
 

 

TIME AND CAUSALITY IN GENOMICS DATA 
 

 

 

 

 

by 

Rossin James Erbe 

 

 

 

 

 

 

A dissertation submitted to Johns Hopkins University in conformity with the requirements  

for the degree of Doctor of Philosophy 

 

 

 

Baltimore, Maryland 

February 2023 

 

 

 

 

 

 

 

 

 

 

 

 

© 2023 Rossin Erbe 

All Rights Reserved 

 

 

 

 

 



ii 

 

Abstract 

 
 

 The ability to sequence the genomic information that describes individual cell 

states has provided enormous insight into biological systems. However, to sequence the 

genomic information within a cell, the cell must be killed, preventing measurements from 

the future states that cell would have occupied had it been allowed to survive. Thus, 

sequencing measurements only provide a single snapshot in time of cellular genomic 

states. Often the ultimate goal of an analysis is to derive mechanistic insight into the 

biology of a system or process from the data. However, such mechanistic, causal 

inference is almost impossible without temporal information because causality in 

standard formulations is based on the concept of connected causes and effects through 

time. 

 This thesis has interacted with time in genomics data in several ways. The first 

contribution of this thesis is a neural network-based model that attempts to predict future 

single-cell transcriptomic states from single-cell transcriptomics data sets. This work 

demonstrates that using metabolic labeling data sets, future RNA states are estimable 

within the same cell in the short term, providing a proof of principle that can be expanded 

as genomics data sets with a temporal dimension become more common.  

 The second contribution of this thesis is a simulation of molecular cell states over 

time, which is able to demonstrate how single time points from cells do not allow for 

robust mechanistic inference. Further, the simulation conforms to observations that 
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mRNA expression and expression of the corresponding protein are often poorly 

correlated and provides mechanistic explanations for how this occurs. 

 The final contribution relates to time in a different sense, analyzing the impact of 

human age on biomarkers used for cancer immunotherapy. We found that older 

individuals possessed a number of favorable biomarkers at higher levels than their 

younger counterparts, possibly explaining clinical observations that older individuals do 

no worse than younger individuals on immune checkpoint therapies despite the usual 

anticorrelation between patient age and effective immune responses.  
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Chapter 1 

 

Introduction 

 

 The ideal outcome of most genomic studies is to uncover the mechanisms that 

underly the biological system of interest. As the first step in my efforts to understand how 

to robustly infer mechanism from genomics data I performed an in depth literature review 

of methods that use graphical networks to describe the casual regulatory relationships 

that control biological systems. This review was published in Volume 82, Issue 2 of 

Molecular Cell and is reprinted here with permission as an introduction to this thesis. 

 A vast web of interdependent molecular interactions governs biological systems 

and allows organisms to function. This network of interactions is highly complex, 

involving reactions at many molecular scales (e.g. from the level of genes to the level of 

cells) (Schaffer and Ideker, 2021). To effectively model such complex systems, it is 

worthwhile to examine the many molecular levels from which one might approach this 

challenge (Figure 1.1). At the molecular scale of the gene, researchers often attempt to 

understand the tens of thousands of different genes that drive the biological operations 

of complex multicellular life. Even when studied in isolation, understanding the function 

of each of these genes is a monumental task, and many human genes have not yet 
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been extensively characterized (Su and Hogenesch, 2007), (Stoeger et al., 2018). 

Moreover, genes do not act in isolation; their function is inextricably tied to the rest of the 

biological system. For example, transcription factors (TFs) concurrently regulate the 

expression of multiple genes, possibly even the gene coding for the regulating TF itself.  

The expression of each gene as an RNA product is thought to be primarily controlled by 

its epigenetic state and the activity of regulatory proteins and functional RNAs (Harmston 

and Lenhard, 2013), (Bhan and Mandal, 2014).  However, the exact nature of this 

relationship is still not well characterized for most genes. The protein products of these 

genes likewise often cannot be well understood in isolation, but must be placed in a 

network of other interacting proteins to accomplish a cellular task such as signal 

transduction, catalysis, or molecular transport. Post-transcriptional modifications and 

functional non-coding RNAs further impact cellular function and introduce another 

plethora of interactors that may be involved in a given cellular process (Cech and Steitz, 

2014), (Yao et al., 2019), (Kuijjer et al., 2020). Each cell then interacts with other cells in 

the wider context of a microenvironment, a tissue, and the organism as a whole. 

The regulatory complexity underlying biological processes and disease demonstrates 

the challenges of accurately modeling these systems. Bulk and single-cell profiling 

technologies are now commonly used to provide insight about the variety of molecular 

and cellular actors in biological processes. These technologies generate high-

dimensional data sets that require specialized computational methodologies to interpret 

(Davis-Marcisak et al., 2021). Thus, the growth in molecular profiling technologies has 

been mirrored by the advance of a wide variety of machine learning methods for high-

throughput data analysis. This review describes machine learning methods for high-

throughput data analysis that are designed to model the interactions between biological 
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effectors such as genes, proteins, metabolites, and cells. We focus on methods that are 

predominantly based on graphical networks (Figure 1.2, Table 1.1), which explicitly 

model the interactions or regulatory relationships (called edges) between nodes 

(molecular effectors such as genes, proteins, metabolites, or cells). 

 

1.1 Gene network inference aims to capture the mechanistic regulatory 

relationships underlying gene expression 

A wide variety of computational methodologies have been developed for gene 

regulatory network inference, a graphical network modeling approach to elucidating 

gene function and regulation. The ultimate goal of gene network inference is to uncover 

the regulatory biology of a particular system, often as it relates to a pathological 

phenotype. Graphical network methods have been designed to predict interactions 

algorithmically based on high-throughput molecular data, prior experimental knowledge, 

or a combination of the two. The resulting networks can be analyzed to yield humanly 

interpretable insights about the biological system under study from a convoluted web of 

molecular interactions (Figure 1.3). Network metrics called centrality measures (Table 

1.1), which have been used widely for analysis of webpage and social networks, can 

also be applied to biological network inference. For these biological applications, 

network metrics can be calculated to identify key nodes (e.g. genes or proteins) in a 

system that may act as regulatory hubs controlling the biological process being studied, 

though their usefulness for this purpose in biological networks still requires thorough 

experimental validation. Another strategy for identifying critical parts of the network are 

optimization algorithms such as PCSF (Akhmedov et al., 2017) and SAMNet (Gosline et 

al., 2012), which have been applied in biological networks to find a smaller subsection of 
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the network containing the nodes and edges with the largest regulatory influence in the 

data. Networks can also be used to generate specific mechanistic hypotheses by 

examining the causal predictions made by network structure. For example, if a network 

predicts that a specific gene regulates a set of genes that are all thought to contribute to 

a disease phenotype, that gene could be predicted as a molecular target to treat said 

phenotype. Thus, the structure of the network implies that node to be a potentially useful 

target, due to its regulatory relationship with several other implicated factors. In this way, 

the goal of these graphical network methods is to distill relatively simple insights from the 

immense complexity of biological systems. 

 

1.2 Accurately modeling biological systems using gene network inference 

requires thorough consideration of experimental design 

Gene network inference methods have been developed to predict regulatory 

interactions based upon the dependencies between genes in both bulk and single-cell 

expression data (Nguyen et al., 2021), (Mercatelli et al., 2020). The regulatory networks 

that can be inferred depend on the biological context and study design for the genomics 

data that are input to the network inference methods. The biological context is critical to 

consider because it is impossible to infer regulatory information about systems that are 

not active in the samples used to produce the data. For example, many of the regulatory 

processes of cell division will not be possible to infer from data derived from quiescent 

cells. Additionally, highly stable systems will be difficult to glean much regulatory 

information from - if a gene’s expression undergoes close to zero variance in a data set, 

the genes that exert regulatory control of it will not be able to be determined.  
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The choice of bulk or single-cell data also impacts regulatory network inference. The 

main drawback of bulk data is that if it is drawn from a heterogenous mixture of cells, the 

expression signal from different cell types may be difficult to distinguish. The relevant 

regulatory interactions in different cell types may be different due to differing epigenetic 

landscapes, thus confounding the regulatory signal from the data. Single-cell sequencing 

allows individual cell types to be modeled separately, but technical dropouts (specifically 

genes that were expressed in the cell but zero counts are returned from sequencing due 

to measurement error) introduce additional challenges for predicting accurate regulatory 

relationships between genes because one cannot be sure if a zero occurs because of 

regulatory control or measurement error. In cases with known biological networks, these 

structures can be embedded in single-cell analysis algorithms to enhance data analysis 

(Elyanow et al., 2020). 

 

1.3 Computational methods infer gene interactions through undirected networks 

and causal regulatory mechanisms via directed networks 

After the experiment has been performed, computational methods are needed to 

infer regulatory networks from the resulting high-throughput datasets. The approaches 

for gene network inference can be generally classified into those that produce undirected 

networks - the interactions predicted between genes do not specify which is the 

regulator and which is the target - and directed networks, which attempt to make that 

distinction computationally (Figure 1.2). Additionally, a wide array of visualization tools 

have been developed that further support the network-based interpretation and inference 

of high-throughput datasets, notably the Cytoscape platform (Shannon et al., 2003), 

(Otasek et al., 2019).  
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Among undirected network inference methods, the foundational approach uses 

Pearson correlation statistics between the expression values of pairs of genes to predict 

regulatory relationships between genes (Stuart et al., 2003). While this may appear to be 

a simplistic approach, correlation based methods have been found to recover known 

regulatory interactions better than more complex methods on several data sets (Stone et 

al., 2021). However, they come with the caveat that genes with correlated expression 

are not necessarily functionally related. To overcome this limitation, another method 

utilizes the concept of Mutual Information, which measures how much one can know 

about the expression of gene X, given that you know the expression of gene Y. This 

method is popularly employed by the ARACNE algorithm (Margolin et al., 2006). Partial 

information decomposition (PIDC) has also been applied to refine results to functional 

interactions between genes (Chan et al., 2017). Partial information decomposition is 

used to measure statistical dependencies between three variables. This is applied to 

gene network inference by calculating the unique information between genes X and Y, 

divided by the information provided by every other gene Z in the data set. The results of 

which are used to determine the confidence the algorithm places in a regulatory link 

between X and Y.  

The approaches described above for gene network inference all produce undirected 

networks: they estimate whether pairs of genes have a regulatory interaction between 

them but do not predict which gene is the target and which is the regulator. Therefore, 

these approaches require prior knowledge of gene regulation (e.g. which genes are 

known TFs) to distinguish the directionality of regulatory relationships. To handle cases 

in which prior information is unavailable or incomplete, another class of regulatory 

inference algorithms has been developed to infer directed networks without this reliance 
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on prior biological knowledge. A prominent method that has performed well relative to 

other methods at recapitulating experimentally determined regulatory interactions, 

GENIE3, uses ensembles of decision trees to predict the likelihood of a regulatory link 

between genes based on how useful the expression of gene X is in predicting the 

expression of gene Y (Huynh-Thu et al., 2010), (Aibar et al., 2017). Decision tree 

ensembles can be thought of as a model that learns many general “rules of thumb” (e.g. 

when gene A is above expression level X, gene B is almost always above expression 

level Y) about the system they are employed to predict. From those many rules, a single 

consensus prediction is made by a vote among all the trees (do they predict that gene A 

can in general be used to predict gene B?). The degree to which a gene can predict 

another is returned as a score of how confident the method is in the regulatory link 

between two genes.  

The measurement noise and molecular noise in transcription introduce technical 

variation in gene expression datasets (Tunnacliffe and Chubb, 2020), often propagating 

to the inferred network. Therefore, other approaches aim to concurrently infer a directed 

network while reducing the noise from the input expression data. The scTenifoldNet 

method first produces a baseline directed network using principal components (PC) 

regression (Osorio et al., 2020). PC regression performs principal components analysis 

(PCA), which decomposes the expression data into new variables (PCs) that describe 

the data’s uncorrelated sources of variance. These PCs can then be used to predict the 

expression of each gene in turn. Based on the value of each PC for predicting a target 

gene’s expression, an inference can be made about the effect of each other gene on the 

target gene’s expression. The resulting gene interaction network does not yet correct for 

technical variation in gene expression data. Therefore, this process is repeated for 
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subsamples of the total expression data. Several networks are thus produced, the 

agreement between which can be used to determine which parts arise from technical 

variation and which correspond to regulatory biology (Osorio et al., 2020).  

The methods introduced thus far are generally intended to analyze gene expression 

data collected from a single time point. However, datasets with measurements of gene 

expression over time can enhance the inference of directed networks. Expression 

changes in one gene that precede or follow another can better implicate a causal 

relationship than estimates made from a single point in time. Therefore, other 

approaches have been developed to model gene interactions as a system of equations 

with respect to time. The set of putative regulators of a gene can be determined and 

used to produce equations that predict how a gene’s expression values will change over 

time. These equations can then be solved and related to time course data through 

mathematical approaches such as differential equations. While using such methods with 

bulk RNA-seq data requires explicit time course data, transitions in cellular state that 

occur over time can be estimated computationally from single-cell datasets using 

trajectory inference methods, providing a pseudo-temporal framework in which to use 

these methods (Trapnell et al., 2014), (Saelens et al., 2019). Single-cell regulatory 

inference algorithms such as SCODE have been developed to perform temporal 

modeling using differential equations based on trajectory estimates of cell-state 

transitions from single-cell RNA-seq (Matsumoto et al., 2017). However, differential 

equations require models of the biological mechanisms through which genes interact, 

which may be unknown a priori and lack sufficient data to parameterize. Therefore, 

several other network inference methods instead perform statistical tests of whether the 

time series for one gene forecasts another (Granger Causality), again based upon 
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trajectory estimates from single-cell data, such as SINCERITIES (Papili Gao et al., 2018) 

and SINGE (Deshpande et al., 2019). The Scribe method is capable of using any time-

ordered set of single-cell data as input and uses an estimation of causality from 

information theory called directed information to identify direct regulatory links between 

genes (Qiu et al., 2020). These methods thus yield a network that is intended to account 

for changes in cell state over time in its regulatory predictions. 

 

1.4 Benchmarking the accuracy of gene regulatory networks enables selection of 

inference methodologies and priorities for new algorithm development 

With this wide array of network inference methods, standards for judging their 

relative merits are fundamental. Benchmarking computational algorithms requires 

applying them to datasets with a known ground truth state in order to assess 

performance. The two main approaches generally used for benchmarking gene network 

inference algorithms are based on either simulated datasets with known network 

structure or regulatory databases that contain experimentally determined interactions.  

Simulated benchmarks use a pre-defined network structure to simulate what 

expression profiles might look like given a known set of regulatory interactions. In some 

cases, gene expression datasets are simulated based upon randomized network 

structures. In these cases, algorithm performance is typically benchmarked in multiple 

simulations to test the variance of performance for a given network structure and 

sensitivity across a range of network parameters. However, the simulated networks may 

not reflect the structure of true biological networks. In other cases, the networks used in 

these simulated datasets are based on prior biological knowledge of gene interactions. 

For example, GeneNetWeaver uses a known network of regulatory interactions (such as 
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one that has been fully experimentally determined in S.cerevisiae or E.coli) to estimate 

how expression of gene products would change over time according to a system of 

equations that allows for both additive and multiplicative regulatory interactions 

(Schaffter et al., 2011). Such simulations provide a very clean way of benchmarking 

network inference methods because all regulatory relationships are already known and 

the data only contains as much noise as is introduced purposefully by the researchers to 

maintain biological realism. Methods can be scored against how many of the known 

regulatory interactions each correctly predicts without concerns about whether this 

reference of interactions might be incomplete or incorrect.  

However, benchmarking methods in the context they must ultimately be used in 

(experimental expression data) is desirable to robustly demonstrate a model’s 

effectiveness, especially since the assumptions necessary to simulate data may bias 

them in a way that does not reflect real biological systems. More complex networks of 

interactors with more and less predictable sources of noise will usually provide a more 

accurate representation of the context in which these methods will be applied. 

Furthermore, the performance of a method has been shown to sometimes differ 

substantially between simulated and experimental tests (Pratapa et al., 2020). 

Predictions from network inference methods are most commonly validated against ChIP-

seq, ChIP-chip, and gene perturbation experiments. Often non-specific databases of 

gene interactions are used for these evaluations, and thus the context (cell type, 

epigenetic state, metabolic state) in which the interaction was determined may not be 

the same as in the data set that the gene network inference method is applied to. 

Generally, this limitation can be minimized by examining only highly variably expressed 

genes in a data set. Then, if a gene is not undergoing regulation or is epigenetically 
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repressed, the method will not try to predict its regulators, since that information does 

not exist in the data. However, there may be cases in which genes are variably 

expressed, but are capable of acting in other, currently inactive, processes, which may 

lead to the appearance of the network method failing to identify a regulatory link that 

could have been inferred from the data. In this way, experimental benchmarking has 

more potential to incorrectly label a network as having generated false negative results, 

but provides a more realistic context than simulation based benchmarks. These 

benchmarks are also expected to be incomplete descriptions of gene regulatory 

networks, which may additionally lead to incorrect identification of regulatory interactions 

as false positives. Ideally, algorithms should be tested on both types of benchmarks as 

each can reveal distinct properties of algorithm performance.  

One of the main reasons such a wide variety of network inference approaches have 

been developed is because different approaches perform better at reconstructing 

experimentally determined and simulated regulatory interactions in different data sets 

and contexts. Furthermore, no single method is currently capable of achieving a 

universally high prediction accuracy across simulated or experimental benchmark data 

sets, based on several independent assessments (Greenfield et al., 2010), (Chen and 

Mar, 2018), (Pratapa et al., 2020), (Stone et al., 2021). Across these evaluations, the 

PIDC and GENIE3 (or methods based on GENIE3) methods have been pointed out as 

performing particularly well at capturing experimentally determined interactions in real 

expression data, though even these generally well performing methods occasionally 

yield poor performances (Greenfield et al., 2010), (Chen and Mar, 2018), (Pratapa et al., 

2020), (Stone et al., 2021). The high error rates observed on some data sets could be 

plausibly attributed to any or all of the following factors: the need to include multiple 
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omics data sets to improve predictions, the need for more robust algorithms to 

distinguish direct interactions from indirect interactions between genes and their 

products, molecular noise in transcription levels, measurement noise from sequencing, 

and methodological problems with the benchmarks used. Community-wide data science 

challenges, including notably the Dialogue on Reverse Engineering Assessment and 

Methods (DREAM) challenge, have been developed to facilitate widespread validation of 

network inference methods from simulated and experimental datasets (Marbach et al., 

2012), (Hill et al., 2016). Standardizing datasets for benchmarking enables robust 

comparison of methods against a common ground truth and facilitates the independence 

of simulated datasets from the assumptions used in developing an algorithm (Camacho 

et al., 2018).   

 

1.5 Inference of multi-scale intracellular networks requires multi-omics analysis 

methods 

While building a regulatory graphical network from a high-throughput 

transcriptional data set is a highly complex endeavor, it is still a considerable 

simplification of cellular processes. Within each cell, the DNA sequence, chromatin 

conformation, epigenetic modifications, gene expression, protein expression, protein 

modifications, and metabolites form a complex web of causal factors that produce 

cellular phenotypes (Figure 1.1). These multi-scale processes are more accurately 

modeled from multi-omics datasets that characterize these molecular scales (Table 1.3). 

In particular, elucidating the entire chain of causality by which cellular processes 

generate a phenotype of interest requires following events across different molecular 

levels (Schaffer and Ideker, 2021) (Figure 1.4). Additionally, inferring networks from only 

https://sciwheel.com/work/citation?ids=11195985&pre=&suf=&sa=0
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a single data modality can lead to identifying interactions that appear to be only 

conditionally valid, due to the differing epigenetic context of the cell. For example, in 

gene network inference, using data from one cellular context, a method may correctly 

identify a TF-gene regulatory link, but with data from a different context may fail to 

identify the same relationship. This could occur because the gene’s promoter in the 

second case was in a heterochromatic conformation and not accessible for the TF to 

bind or because a genetic variant altered TF binding affinity. Incorporating variant calling 

and epigenetic data could help resolve such problems in gene network inference, 

particularly as technologies to profile transcriptomics and chromatin state from the same 

single cell become more widely available. 

 Integrating prior knowledge of transcription factor targets, either from databases 

or binding assays, can be used to refine inference of TF-gene regulation from 

expression data. An approach called BETA integrates ChIP-seq of TFs and expression 

data to infer TF-gene regulation (Wang et al., 2013). BETA predicts both whether a TF is 

activating or repressing gene expression and which genes are the TF’s direct targets, 

based on the statistical relationship between TF binding and differential gene 

expression. Similarly, the post-hoc statistics can be applied to matrix factorization to 

incorporate existing databases of TF regulation and patterns in gene expression to score 

the context-specific TF regulation of genes, which can be used to identify genes that are 

co-regulated or that are regulated by multiple TFs (Fertig et al., 2013). Both of these 

methods attempt to discover the regulatory structure of biological systems using multiple 

data types through transcriptional regulatory networks, and serve as an important 

foundation as similar methods are developed for emerging single-cell data sets. 

https://sciwheel.com/work/citation?ids=872307&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=7598363&pre=&suf=&sa=0
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 In the case of genetic variants, an approach has been developed to determine 

the impact of individual genetic variation on gene expression networks using EGRET 

(Weighill et al., 2021). The authors reason that given the substantial proportion of 

functional genetic variants that appear to mediate their effect via differences in gene 

expression (Zhu et al., 2016), gene regulatory networks may differ between individuals in 

important ways. EGRET builds a general gene network based on prior knowledge, 

experimental TF cooperativity, and gene expression data, which it can then update 

based on genetic variant data to produce a different gene network for each individual. 

The mechanistic regulatory impact of genetic variants can be thus inferred, which the 

authors validate using cell lines with known genetic differences (Weighill et al., 2021).  

 While multi-omics analysis can provide a more complete description of cellular 

processes, it also introduces several new challenges for analysis (Lê Cao et al., 2021). 

In the context of regulatory networks, the most immediate challenge is in combining the 

information across multiple data modalities into a single network. Alternatively, networks 

could be defined separately from each data modality, but then it is necessary to address 

a similar challenge: how to model the interactions between those separate networks. 

One approach that has been developed to address this type of problem is the field of 

multilayer networks (Kivela et al., 2014), which formulate networks with distinct layers 

that each contain nodes of a specific type. This framework is applied by (Liu et al., 2020) 

using large-scale databases to produce a multilayer network containing one layer each 

for genes, proteins, and metabolites. The multilayer network thus produced was shown 

to be robust at recovering the importance of genes that are required for cellular function 

or had been annotated as critical cancer genes. 

https://sciwheel.com/work/citation?ids=10737457&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=1475332&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=10737457&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=11497693&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=2679386&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=11681800&pre=&suf=&sa=0
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Predicting causal relationships between molecular effectors is also more complex 

when multiple levels of molecular effectors are involved, due to the need to account for 

possible interactions both within and between modalities. Determining the order of cause 

and effect is also an even larger challenge in this context, especially when processes 

such as gene regulation are often cyclic, making many of the best-developed causal 

inference frameworks, such as directed acyclic graphs (Pearl, 1995), unusable. One 

possible approach is to model only acyclic processes, but ignoring feedback loops in 

biological systems will often omit substantial information. Technical variation arising from 

different sources of noise, variance, or batch effects across the different data modalities 

also must be accounted for to avoid biasing results. 

  The COSMOS method (Dugourd et al., 2021) attempts to navigate the many 

obstacles of multi-omics network modeling with an approach based on prior knowledge 

and their previously developed method for network analysis within a single data modality 

(Liu et al., 2019). COSMOS finds prior knowledge networks that provide relationships 

between transcriptomics, phosphoproteomics, and metabolomics data using the 

OmniPath protein-protein and gene regulatory interaction database (Türei et al., 2016) 

and the Recon3D metabolomics database (Brunk et al., 2018). These prior knowledge 

networks are then refined by removing interactions that create incorrect predictions 

when applied to the transcriptomics, proteomics, and metabolomics data sets provided 

as input. It then removes interactions that lead to incoherent predictions (e.g. two 

molecules that should be correlated end up being anti-correlated). The network is further 

filtered based on the expression differences observed in the biological context of 

interest, which yield a set of genes, proteins, and metabolites that are differentially 

https://sciwheel.com/work/citation?ids=1022989&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=10367925&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=7780543&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=3050563&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=4852281&pre=&suf=&sa=0
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regulated. These molecular effectors are used to produce the final network, which only 

includes nodes (genes, proteins, or metabolites) a set number of regulatory steps away 

from the differentially regulated starting nodes. COSMOS is additionally incapable of 

forming loops, which is a possible limitation of the method, but also allows causal 

analysis to be applied with much less difficulty. From this network, the regulatory effects 

of the perturbed molecules can be causally inferred. A statistical test for gene set 

analysis can then be applied to determine whether the genes identified in the network 

are annotated to pathways with known biological relevance (Dugourd et al., 2021). 

COSMOS is limited to producing a subnetwork connected to differentially regulated 

molecules, which appears to be a strength in that it focuses the method on relevant 

biological differences. Yet it also creates the inability to reach relevant molecular 

effectors that are either more distantly regulated or are not included in the prior 

knowledge network. COSMOS appears to be a significant step in network modeling 

across multi-omics data sets. However, more work still needs to be done to robustly 

model the wide variety of regulatory interactions that control biological systems at a 

multiscale molecular level. 

 

1.6 Intercellular networks model signaling between cells, altering intracellular 

dynamics and producing large-scale phenotypes 

In isolation, even a highly robust model of the internal operations of a single cell 

would often be insufficient to characterize many phenotypes, due to the importance of 

intercellular signaling. For example, intercellular signaling has been shown to be critical 

for cellular differentiation (Kirouac et al., 2010), (Basson, 2012), organ homeostasis 

https://sciwheel.com/work/citation?ids=10367925&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=917018&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=2373424&pre=&suf=&sa=0
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(Arneson et al., 2018), (Wang et al., 2020), the cellular response to aging (Ximerakis et 

al., 2019), and the cellular response to disease (Fernandez et al., 2019), particularly 

cancer (Vaske et al., 2010), (Kumar et al., 2018), (Baghban et al., 2020). In general, the 

collective processes and interactions of many cells produce the tissue-scale and 

organism-scale phenotypes that are the primary focus of biomedical research. Thus, 

characterizing these interactions as a graphical network model provides a valuable 

framework to understand many phenotypes of interest in terms of the interactions of the 

cells that produce them. 

 Several methods have been developed to model cell-cell interactions, generally 

in the form of ligand-receptor interactions at the cell surface. Many models also include 

predictions of the downstream effects these interactions will have within the cells 

involved. Here we will again focus on those methods that model regulatory interactions 

explicitly as graphical networks. Generally, these methods produce a score of cell and 

receptor interactions, and then model the effects these interactions will have on the 

expression of genes regulated downstream of the receptors (Wang et al., 2019), 

(Browaeys et al., 2020), (Cherry et al., 2021). This feature allows these methods to 

describe the impact of intercellular interactions on intracellular processes, which seems 

likely to be a necessary feature to fully understand many cellular phenotypes. However, 

none of the methods thus developed are able to model interactions between the 

downstream signaling effects of multiple different receptors, which may be a significant 

limitation in some circumstances.  

NicheNet uses prior knowledge of ligand-receptor interactions and gene 

regulatory networks along with bulk or single-cell transcriptomics data to predict 

https://sciwheel.com/work/citation?ids=5800177&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=8048258&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=7523520&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=7523520&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=7588432&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=48485&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=5982182&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=8928835&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=6885459&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=7913116&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=11497934&pre=&suf=&sa=0
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activated receptors (Browaeys et al., 2020). These predictions are made using a 

personalized PageRank metric, an adaptation of the method developed by Google to 

score and rank web pages in their search engine (Page et al., 1998). Here, it is instead 

used to produce a score for ligand-receptor interactions. Another method, SoptSC, 

approaches the problem with a greater emphasis on cell clusters, taking single-cell 

expression data and a set of known receptors and their cognate ligands as input to 

calculate the similarity between each cell’s expression profile. This information is 

compiled into a matrix, from which the method creates a cell-cell interaction network and 

clusters the cells, ultimately allowing inferences of signaling pathways activated between 

cell clusters (Wang et al., 2019). DOMINO similarly emphasizes cell clusters, but 

focuses more on TF activity as well as receptor-ligand activation (Cherry et al., 2021). 

DOMINO uses the results of SCENIC (Aibar et al., 2017), a method that builds on 

GENIE3 to score TF activity, combined with prior knowledge networks of ligand-receptor 

pairs to determine interactions between cell types and the activated ligands and TFs 

within each cell type. NATMI takes a slightly different approach (Hou et al., 2020), 

focusing on learning interactions between cells using bulk or single-cell expression data, 

not addressing the specifics of how these regulatory interactions impact downstream 

gene expression. NATMI uses large-scale ligand-receptor databases to create prior 

knowledge networks. It then calculates a weight for each interaction between genes, 

based on three expression based metrics from the data set of interest, which are used to 

determine cell type interactions (Hou et al., 2020).  

Due to the wide array of cell-cell interactions that play roles in cancer (Kumar et 

al., 2018), (Baghban et al., 2020), CCCExplorer was developed specifically for use with 

https://sciwheel.com/work/citation?ids=7913116&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=11898230&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=6885459&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=11497934&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=4362786&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=9778492&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=9778492&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=5982182&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=5982182&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=8928835&pre=&suf=&sa=0
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tumor data (Choi et al., 2015). CCCExplorer identifies differentially expressed ligands in 

cells in the tumor microenvironment as well as expressed receptors on tumor cells. It 

then uses expression data from tumor cells to find expressed TFs, combining prior 

knowledge of each TF’s regulated genes to determine the probability that the 

corresponding pathway is active. These data are combined to identify active signaling 

branches, which are further combined to generate a crosstalk network. This network is 

used to identify regulations between the tumor microenvironment and the tumor cellular 

phenotype (Choi et al., 2015).  

While the methods discussed thus far all produce predictions of cell-cell 

interactions, an important consideration is often the question of where cells are 

interacting in a particular tissue, which may be highly relevant to phenotype. To account 

for this, SpaOTsc maps single-cell transcriptomics to spatial data sets (such as in situ 

hybridization) and uses the spatial element to inform the prediction of cell-cell 

interactions and how these impact gene regulation (Cang and Nie, 2020). This is 

accomplished using partial information decomposition, which calculates the statistical 

dependencies between three variables (e.g. is gene A important to the relationship 

between genes B and C?), and ensembles of decision trees, which in effect combine 

many “rules of thumb” that are computationally learned from the data to produce 

consensus predictions (Table 1.4).  

 

1.7 Overview of Validation of Network Models for Biological Insight 

https://sciwheel.com/work/citation?ids=3812562&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=3812562&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=8798007&pre=&suf=&sa=0
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In order to ensure that computational models are capable of generating robust biological 

insight for users, they must be thoroughly tested for accuracy and biological relevance. 

This is particularly essential given the complexity of network analysis for high-throughput 

profiling data. Several different strategies have been employed for validation of biological 

network methods, each with strengths and weaknesses.  

Simulated data is generally the first test a network method is subjected to and is 

produced by assuming a particular network structure and generating data using a 

mathematical model (e.g. if we know Gene 1 upregulates Gene 2 which downregulates 

Gene 3, what might expression data from this system look like based on what we know 

about the dynamics of gene regulation?). The strengths of simulated data tests are that 

the correct network is known as a certainty and it is quick and inexpensive to do large 

numbers of tests across different contexts. However, these simulations must rely on 

machine-coded assumptions to generate data sets. When the assumptions of the model 

do not adequately conform to the biological processes being simulated, they can 

produce output that lacks some characteristics of genuine data sets.  

Another strategy for benchmarking uses databases of interactions that are known 

to occur in an organism, then scores the model against the number that it identifies 

correctly when tested on real biological data. While this approach has the advantage of 

working with the sort of data the method is intended to be used on in practice, 

performance assessments will be biased by the incompleteness of existing databases. 

Furthermore, in cases that the database was generated from data that came from a 

different context than the data input to the network model, the network may, correctly, 

not identify some context dependent interactions and be penalized incorrectly.  
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Finally, mechanistic experiments can be performed in the same context as the 

data fed into the network model, providing the most reliable feedback on the usefulness 

of a model at identifying biologically relevant regulatory interactions. While providing a 

gold standard, the large number of perturbations required for high-throughput validation 

can make such efforts both cost and time prohibitive at a genome-wide scale. However, 

a limited set of experiments can greatly increase the confidence given to other predicted 

interactions made by the network model, if those tested are validated. 

 

1.8 Applications of network methods enable computational prediction of 

perturbations at scale and prioritization of targets for validation 

Biologically, the value of gene regulatory network inference is that it can be used 

to discover interactions between genes. Producing this comprehensive understanding of 

the regulatory mechanisms of a biological system allows for the application of additional 

computational techniques to predict the impact of interventions on phenotypes 

(Sonawane et al., 2019), (Belyaeva et al., 2020). These methods use the network to go 

beyond associating variables to predicting the experimental results of an intervention to 

the biological system (e.g. a perturbation). Understanding the mechanistic contribution of 

a single gene to a particular biological process or phenotype is often the work of years or 

even decades using traditional experimental tools. Network methods may be able to aid 

investigations about the role of genes and their products in biological systems by 

generating in silico hypotheses regarding the mechanistic impact of altering gene 

expression levels (Figure 1.5). This information can guide candidate prioritization and 

https://sciwheel.com/work/citation?ids=7280505&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=10758185&pre=&suf=&sa=0
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selection for more highly time-intensive experiments to accelerate mechanistic biological 

discovery. 

While some of this information can be provided by high-throughput knock-out 

screening methods such as Perturb-seq (Dixit et al., 2016), the reasons why a particular 

knockout has the impact that it does may still be opaque after such experiments. The 

advantage of gene network analyses is that they can provide both a prediction of the end 

result of a perturbation and a mechanistic account of why that result was produced, 

which may be critical for fully understanding biological processes and rational drug 

design. 

The scTenifoldKnk method aims to computationally predict gene knockout (KO) 

experiments using what the authors term virtual KO screens (Osorio et al., 2021). The 

method produces a directed gene regulatory network using single-cell transcriptomics 

data from unperturbed cells by applying their scTenifold network inference method, as 

described in (Osorio et al., 2020). The virtual knockout is then performed using the 

adjacency matrix (Table 1.1). A gene is “knocked out” by setting the entries for the target 

gene to zero. This creates a version of the network in which the gene is no longer acting, 

simulating the results of a KO. The two networks are then compared, which can be used 

to evaluate which genes will be differentially expressed as a result of the gene KO. 

Within these putative differentially expressed genes, scTenifoldKnk searches for 

enrichment of known gene sets. The authors show that the gene sets found to be 

enriched in these virtual KO differentially expressed genes are often related to the 

known biology of the system being studied. For example, genes predicted to be 

perturbed by a CFTR gene KO are enriched for ABC transporter disorder and abnormal 

https://sciwheel.com/work/citation?ids=2867112&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=10733404&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=10208122&pre=&suf=&sa=0
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surfactant secretion pathways, which would be expected given the known functions of 

the CFTR gene. This capacity to predict differential expressed genes enriched in 

pathways that would be expected based on the known function of a gene is shown 

across several different cellular contexts (Osorio et al., 2021). The authors additionally 

perform more direct experimental validation of the predicted differentially expressed 

genes. When they perform an experimental KO of Malat1 in mouse pancreatic cells, they 

predict 167 perturbations in other genes. However, only four of those predictions overlap 

with the 1695 experimental differentially expressed genes they found between the WT 

and KO cells (Osorio et al., 2021). This result indicates that while the general biological 

significance of a KO may be recovered by the method (e.g. it predicts there will be shifts 

in pathways that are known to be associated with the biology of the system), the precise 

transcriptomic effects are not. This result suggests further development of such methods 

will be required to achieve the ideal of establishing a robust causal model of gene 

network interactions that can make accurate predictions of the transcriptomic effects of a 

gene KO. 

CellBox is another method designed to predict experimental results 

computationally. However, instead of predicting the results of a gene KO, CellBox is 

designed to predict the results of drug perturbations on phenotypes of interest. It uses 

bulk proteomics data from drug perturbation experiments, in which a phenotype of 

interest was measured, to fit a system of ordinary differential equations. These equations 

can then be used to predict the phenotypic effect of unseen drug treatments and 

combinations of drug treatments (Yuan et al., 2021). CellBox provides the functionality of 

varying drug concentration as well as treatment type, which can allow many more 

https://sciwheel.com/work/citation?ids=10733404&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=10733404&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=10243055&pre=&suf=&sa=0
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permutations to be predicted than would normally be experimentally feasible. CellBox 

thus allows a small amount of drug screening data to be generalized to predict the 

outcome of arbitrary drug dosages and combinations at a network and phenotypic level. 

The authors highlight the potentially great value of CellBox for evaluating combination 

therapies for cancer. Oncology may be a specifically useful application of such methods 

due to both the potential for drug synergy as well as the logic that the more therapeutics 

a tumor has to evolve resistance to in order to survive, the less likely resistance is to 

develop (Bayat Mokhtari et al., 2017). If each drug requires a separate genetic or 

epigenetic event for a cancer cell to acquire resistance to it, it will be much less likely to 

undergo sufficient evolutions to evade being killed by the effects of at least one of the 

treatments.  

Given the complex regulatory relationships that exist in tumor cells and their 

cellular microenvironment, oncology is a field in which graphical network models may be 

particularly valuable. A recent study by (Zhou et al., 2021) leverages both gene 

regulatory and cell-cell interactions models to analyze single-cell RNA-seq data from 

triple-negative breast cancer patients, providing an informative example of how network 

methods can be applied at multiple biological levels to glean insights into complex 

systems. The authors used the CellPhoneDB method (Efremova et al., 2020) to identify 

ligand-receptor pairs from their data, from which they were able to determine the 

dominant regulatory role of macrophages in the tumor microenvironment of the patients 

studied, particularly noting EGFR-amphiregulin interactions in patients with basal-like 

tumors. The study further constructed TF-target based gene regulatory networks using 

GENIE3 (Huynh-Thu et al., 2010), which they analyzed via centrality metrics, measures 

https://sciwheel.com/work/citation?ids=5189688&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=11344737&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=8312724&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=2819613&pre=&suf=&sa=0
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of node (in this case gene) importance that are generally in some way based upon how 

many regulatory interactions a gene is involved in. Some centrality measures only 

account for direct interactions, while others include information about how many 

interactions the interactors of a node have as well. These centrality measures were used 

to predict critical genes, capturing known important genes such as MYC and identifying 

ETV6 as an activated critical gene across all subtypes. This use of centrality metrics is a 

simple and highly useful approach to identifying key nodes that may warrant further 

examination and experimental testing of their importance in the biological system of 

study.  

Experimental validation is critical to ensuring the reliability of computational 

methods and is particularly important when dealing with highly complex models such as 

network methods. An advantage of the network methods and subsequent predictions is 

that these analyses can prioritize candidate targets for validation experiments.  Such 

validation can yield much greater confidence in the ability of a method to capture the 

underlying biology of a system or phenotype. The study describing CCCExplorer 

provides an excellent example of this type of validation (Choi et al., 2015). CCCExplorer 

predicted that the high IL6 expression in tumor-associated macrophages in their data 

activated the IL6 receptor on the tumor cells, activating the STAT3 pathway. They 

established an in vitro system of macrophages and the same type of tumor cells in which 

tumor conditioned media upregulated IL6 in wild type macrophages, which in turn 

increased phosphorylated-STAT3 levels in the tumor cells more than ten-fold. 

Additionally, macrophages with IL6 knocked out did not upregulate phosphorylated-

STAT3 in the tumor cells. This kind of validation experiment is able to demonstrate the 

https://sciwheel.com/work/citation?ids=3812562&pre=&suf=&sa=0


26 

ability of a computational method to not only capture already known interactions, but to 

identify novel relationships that have important effects on the biological system of study. 

This sort of validation is critical to establish sufficient confidence in these methods 

beyond computational benchmarking so that they can begin to help guide experimental 

planning and therapeutic development. 

  

1.9 Future Directions for Network Biology Research 

Graphical network methods provide a model to understand the complexity and 

sheer number of interacting molecular effectors that contribute to cellular and organism 

level phenotypes. Progress is ongoing and many improvements have been made in the 

ability of these methods to model the relationships between molecular effectors and 

translate these regulatory models into meaningful insights into biological systems and 

the phenotypes they produce. These methods allow researchers to identify regulatory 

controls active within a cell, which can be used to generate hypotheses about how to 

manipulate a biological process to treat disease. Given the complexity of biological 

systems, such insights may in some cases be extremely difficult to achieve without a 

model capable of containing many of the molecular effectors at play. 

 Network methods currently are used to yield insights into regulatory biology, 

protein and metabolic interactions, intercellular interactions, and how this molecular web 

translates into phenotypes. However, there are still several areas in which significant 

further research is warranted. One of the highest priority areas is the fact that gene 

network inference methods often still do not perform reliably in benchmark experiments 
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on either experimental gold standards or simulated data sets (Chen and Mar, 2018), 

(Pratapa et al., 2020), (Stone et al., 2021), as discussed in the Benchmarking the 

accuracy of gene regulatory networks enables selection of inference methodologies and 

priorities for new algorithm development subsection. Predicting whether genes are 

causally interacting or merely correlated, dealing with transcriptional and measurement 

noise, and cellular heterogeneity still pose major challenges for the field. Identifying 

strategies for handling these issues is a crucial area of ongoing research. Another 

important problem in the field is that few existing network methods integrate across 

omics data sets. Many approaches do not include multi-omics data for reasons of 

complexity, computational capacity, or data availability. While a challenging problem, 

incorporating information across molecular scales is necessary to accurately model the 

regulatory biology of many cellular processes and diseases. Finally, many studies also 

do not provide experimental validation of the novel predictions their methods make. 

Though such validation requires substantial investments of researchers’ time and 

resources, if a method is intended to generate hypotheses worthy of further 

investigation, such validation seems critical to providing users the confidence to plan 

experiments based on a computational method’s predictions.  

 While this review primarily focuses on more recently developed algorithms for 

emerging single-cell technologies, several foundational methods developed for older 

microarray and bulk profiling technologies have continued relevance for analyses of 

these emerging datasets. The solid foundation of mathematical insight into how to model 

biological interactions has allowed these models to continue to be useful even as 

network methods are updated and refined. We note that (Camacho et al., 2018), 

https://sciwheel.com/work/citation?ids=5859642&pre=&suf=&sa=0
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(Sonawane et al., 2019) provide additional reviews of a range of computational 

methodologies for biological network methods, providing greater detail on the methods, 

while we focus more on their specific biological applications in this review. Some of the 

major recent developments in network modeling have been based around accounting for 

technical features of biological data sets, such as sources of noise and heterogeneity 

e.g. (Osorio et al., 2020), as well as providing tools to more easily ascertain the 

biological significance of network models e.g. (Aibar et al., 2017).  

 As algorithms and validation develop to accurately model disease and biological 

systems with network methods, they have the potential to become more powerful tools 

for therapeutic development. Much of the time required to develop new treatments or 

discover the main drivers of some biological process is spent finding a relatively high 

confidence target and understanding the mechanism of action. Thus, prioritizing 

functional candidates through network methods could significantly improve the speed of 

preclinical studies for therapeutic development and studies exploring pathways and 

complex interacting mechanisms in biological systems. 
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Figures and Tables 

 

Figure 1.1 Molecular Interactors in Biological Systems - Diagram of the interactions 

across molecular scales that are involved in the biological processes between and within 

cells, including insoluble regulatory proteins and interactions with the extracellular matrix 

(ECM). A protein-protein interaction network is shown in the top left, demonstrating the 

interactive complexity that can exist within a single molecular scale. Includes as 

components DNA Overview 2 by Michael Ströck, licensed under Creative Commons CC 

https://commons.wikimedia.org/wiki/File:DNA_Overview2.png
https://en.wikipedia.org/wiki/User:Mstroeck
https://creativecommons.org/licenses/by-sa/3.0/deed.en
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BY-SA 3.0, The protein interaction network of Treponema pallidum by Titz et al., 

licensed under Creative Commons CC BY 1.0, a cropped version of Collagen 

biosynthesis by GKFK, licensed under Creative Commons CC BY-SA 3.0, and a 

cropped version of Ligand-receptor interaction by Rit Rajarshi, licensed under Creative 

Commons CC BY-SA 4.0. 

 

 

Figure 1.2 Directed and Undirected Graphs and their Adjacency Matrices - Diagram of 

the basic structure of an undirected and directed network graph. Each is composed of 

nodes (which in biological systems generally represent molecules such as genes or 

proteins) connected by edges (which in biological systems generally represent 

regulatory or direct functional relationships). Undirected networks only assert that a 

https://creativecommons.org/licenses/by-sa/3.0/deed.en
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0002292
https://creativecommons.org/licenses/by/1.0/deed.en
https://commons.wikimedia.org/wiki/File:Collagen_biosynthesis_(en).png
https://commons.wikimedia.org/wiki/File:Collagen_biosynthesis_(en).png
https://commons.wikimedia.org/wiki/User:GKFX
https://creativecommons.org/licenses/by-sa/3.0/deed.en
https://commons.wikimedia.org/wiki/File:Ligand-receptor_interaction.png
https://commons.wikimedia.org/wiki/User:RIT_RAJARSHI
https://creativecommons.org/licenses/by-sa/4.0/deed.en
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relationship exists between nodes, and this relationship is presented as symmetric. This 

feature is reflected in the symmetric adjacency matrix, a matrix representation of the 

network. In row 1, the given values are 0, 1, and 1, indicating that node 1 is not 

connected to itself, but is connected to nodes 2 and 3. The columns can be read the 

same way for undirected networks, hence the symmetry of the matrix. Directed 

networks, by contrast, assert the directionality of the relationship between nodes. In 

biological networks, this is often intended to indicate that one node is the regulator and 

the other node is the target. The corresponding adjacency matrix is read slightly 

differently, where each row indicates the edges going out from that node, while each 

column represents the edges coming in. Thus, the values 0, 0, 1 in row 1 indicate that 

node 1 has an edge going into node 3, but not the other two nodes. 
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Figure 1.3 Building a Biological Network Graph - Graphical network models are generally 

created using prior knowledge databases, high-throughput molecular data, or some 

combination of both. Molecular data is usually summarized as a sequencing counts or 
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abundance matrix describing features such as genes, proteins, or sequencing peaks 

present in each cell or sample. An algorithm is then applied to this data to determine the 

likelihood that these features regulate one another. We diagram these feature 

correspondence predictions as a feature by feature matrix with each element of the 

matrix giving the confidence of the algorithm in an interaction between two molecular 

features. These predictions can then either be used in isolation or combined with prior 

knowledge of feature interactions (which are generally computationally or manually 

curated to suit the particular application) to produce a graphical network of interactions 

underlying a biological system.  
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Figure 1.4 Multi-scale models are necessary to capture some biological interactions - 

Panel A shows a possible example of a gene regulatory structure in which two genes, 

G1 and G2, both regulate a third gene, G3. In general this situation poses no particular 
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problem for gene network inference. However, if the regulation of G3 requires both G1 

and G2 to be expressed for either regulatory effect to occur, panel A does not 

adequately describe the regulatory relationships between these three genes. If G1 is 

expressed and G2 is not, the regulatory link from G1 to G3 is then spurious, as is the link 

from G2 to G3 in the opposite situation. However, when both genes are expressed, both 

links appear valid. Panel B demonstrates a network that can capture this possible 

regulatory structure, in which the products of G1 and G2 form a complex (G1*G2), which 

is the direct regulator of G3. Including combinations of gene products as nodes creates a 

multi-scale network, which will exponentially increase the number of possible 

interactions to consider, the necessary cost of dealing with the type of regulatory 

behavior given in this example.  
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Figure 1.5 A network model of a transcriptomic perturbation - Illustration of how a 

genetic perturbation can be modeled using a graphical network. After a KO or inhibition 

by a drug, the network describes which genes will be transcriptionally affected by this 

perturbation and in which order. By quantifying these relationships the transcriptional 

impact can be predicted, along with the mechanistic steps that would produce it. This 

diagram can be generalized to interactions between proteins or other molecular 

effectors. Includes as components GRNA-Cas9 by Marius Walter, licensed under 

Creative Commons CC BY-SA 4.0 and Antibody_structureA by Michael Jeltsch, licensed 

under Creative Commons CC BY-NC-SA 4.0. 
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Term Definition 

Node An entity in the network that is capable of 
interacting with other entities 

Edge The interactions or relationships between 
nodes 

Degree The number of edges a node is connected to 

Directed network A network in which edges only can go in one 
direction (e.g. A->B is different from B->A) 

Undirected network A network in which edges are not directed 
(e.g. A-B implies that A and B are equal 
interactors) 

Centrality A measure of node importance, which can be 
determined using several different metrics; 
generally in some way describes the number 
of paths in the network that pass through a 
node or how many other nodes it is 
connected to. 

Adjacency matrix A matrix representation of a graphical 
network in which the values of the entries 
represent the interactions or relationships 
between nodes. The size of the matrix is n by 
n, where n is the total number of nodes in the 
network. 

  

Table 1.1 - Basic Graphical Network Terminology 

Table defining general terminology used to describe graphical network methods. 
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Method Algorithm 
type 

Bulk 
or 

single
-cell 

Directed or 
Undirected 

Citation Code Source 

Pearson 
Correlation 

Correlation Both undirected (Stuart et al., 
2003) 

Various 

PIDC Partial 
information 
decompositi

on 

Both undirected (Chan et al., 
2017) 

https://github.c
om/Tchanders
/NetworkInfere

nce.jl 

ARACNE Mutual 
information 

Both undirected (Margolin et 
al., 2006) 

https://github.c
om/califano-

lab/GPU-
ARACNE 

GENIE3 Decision 
tree 

ensembles 

Both directed (Huynh-Thu 
et al., 2010) 

https://arboret
o.readthedocs
.io/en/latest/in

dex.html 

SCODE Ordinary 
differential 
equations 

Single-
cell 

directed (Matsumoto 
et al., 2017) 

https://github.c
om/hmatsu12
26/SCODE 

SINCERITIES Granger 
causality 

Single-
cell 

directed (Papili Gao 
et al., 2018) 

https://github.c
om/CABSEL/
SINCERITIES 

SINGE Granger 
causality 

Single-
cell 

directed (Deshpande 
et al., 2019) 

https://github.c
om/gitter-
lab/SINGE 

Scribe Directed 
Information 

Single-
cell 

directed (Qiu et al., 
2020) 

https://github.c
om/cole-
trapnell-

lab/Scribe 

https://sciwheel.com/work/citation?ids=266505&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=266505&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=4605418&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=4605418&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=828215&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=828215&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=2819613&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=2819613&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=4605419&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=4605419&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=4691529&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=4691529&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=6350456&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=6350456&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=8346037&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=8346037&pre=&suf=&sa=0
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scTenifoldKnk Principal 
components 
regression 
and tensor 

decompositi
on 

Single-
cell 

directed (Osorio et 
al., 2021) 

https://github.c
om/cailab-

tamu/scTenifol
dKnk 

CellBox Ordinary 
differential 
equations 

Bulk 
proteo
mics 

directed (Yuan et al., 
2021) 

https://github.c
om/sanderlab/

CellBox 

Table 1.2 - Gene Network Inference Methods  

Table containing methods described in this review for or involving gene/protein network 

inference. These methods use transcriptomics data as input unless otherwise indicated. 

 

 

Experiment Data Type Output Application for 
network modeling 

RNA-seq/scRNA-
seq 

Transcriptomics Sequences of 
expressed transcripts 

Inferring regulatory 
relationships between 
gene expression 
levels 

ATAC-
seq/scATAC-seq 

Chromatin 
conformation 

Sequences of DNA 
that are in an open 
conformation 

Identifying DNA 
sequences that are 
undergoing 
epigenetic regulation 
and which regions 
can express 
transcripts 

Methyl-
seq/scMethyl-seq 

DNA methylation Methylated regions of 
DNA 

Identifying DNA 
sequences that are 
methylated and are 
thus unlikely to be 
able to express 
transcripts 

https://sciwheel.com/work/citation?ids=10733404&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=10733404&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=10243055&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=10243055&pre=&suf=&sa=0
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ChIP-
seq/scChIP-seq 

Protein binding to 
DNA 

Sequences of DNA 
with a particular 
protein/proteins 
bound 

Determining where 
particular regulatory 
proteins are binding 
in the genome 

Protein Mass 
Spectrometry 

Proteomics Abundance of 
molecules with 
specific mass/charge 
ratio 

Estimate protein 
abundance and 
protein interaction 
networks 

Protein 
microarrays 

Proteomics Abundance of a set 
of proteins 

Estimate protein 
abundance and 
protein interaction 
networks for a 
particular set of 
proteins 

CyTOF Proteomics Abundance and 
location of a set of 
proteins 

Estimate protein 
abundance and 
protein interaction 
networks for a 
particular set of 
proteins, including a 
spatial element 

CITE-seq Transcriptomics 
and proteomics 

Single-cell 
transcriptomics and 
abundance of cell 
surface proteins 

Infer relationships 
between gene 
expression and to cell 
surface protein 
abundance 

Metabolite Mass 
Spectrometry 

Metabolomics Abundance of 
molecules with 
specific mass/charge 
ratio 

Estimate the 
relationships between 
metabolite levels, to 
data from other 
experiments 

NMR 
Spectroscopy 

Metabolomics Abundances of 
organic and some 
inorganic molecules 

Estimate the 
relationships between 
metabolite levels, to 
data from other 
experiments 
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Table 1.3 - High Throughput Technologies for Network Modeling  

A list of high-throughput experiments, their outputs, and how these can be potentially 

applied for biological network modeling. 
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Method Algorithm 
type 

Data Type(s) Citation Code Source 

NicheNet PageRank Bulk or single-
cell 

transcriptomics 

(Browaeys et al., 
2020) 

https://github.co
m/saeyslab/nich

enetr 

SoptSC Similarity 
matrix 

Single-cell 
transcriptomics 

(Wang et al., 
2019) 

https://github.co
m/WangShuxion

g/SoptSC 

DOMINO Decision 
trees 

and 
correlation 

Bulk or single-
cell 

transcriptomics 

(Cherry et al., 
2021) 

https://github.co
m/chris-

cherry/domino 

SpaOTsc Partial 
information 
decompositi

on and 
decision 

tree 
ensembles 

Single-cell 
transcriptomics + 

Spatially 
resolved data 

(Cang and Nie, 
2020) 

https://github.co
m/zcang/SpaOT

sc 

CCCExplorer  Pathway 
activation 
probability 

Bulk or single-
cell 

transcriptomics 

(Choi et al., 
2015) 

https://github.co
m/methodistsma
b/CCCExplorer 

NATMI Prior 
knowledge 
weighting 

Bulk or single-
cell 

transcriptomics 

(Hou et al., 
2020) 

https://github.co
m/asrhou/NATMI 

Table 1.4 - Intercellular Graphical Network Methods 

Table containing methods for intercellular network modeling described in this review. 

 

 

 

 

https://sciwheel.com/work/citation?ids=7913116&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=7913116&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=6885459&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=6885459&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=11497934&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=11497934&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=8798007&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=8798007&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=3812562&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=3812562&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=9778492&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=9778492&pre=&suf=&sa=0
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Chapter 2 

 

Transcriptomic Forecasting with Neural ODEs 

 

Introduction 

Cells are dynamic and constantly changing. Predicting their future molecular 

states enables greater understanding of how biological systems will change naturally 

and in response to perturbation. A limitation of single cell RNA sequencing (scRNA-seq) 

technologies is that they destroy the cell to measure its molecular state. Therefore, 

scRNA-seq cannot track the specific molecular trajectory of an individual cell over time. 

Rather, scRNA-seq yields statistical samples from populations of cells. Performing 

additional time course experiments can increase the information available about cellular 

dynamics and cell state changes over time in a biological process. Time course designs 

can provide substantial information about dynamics of a biological system of interest, but 

are costly and limited to the time period over which they are measured. While many 

single-cell technologies do not dynamically profile the molecular state of an individual 

cell, new metabolic labeling technologies and live cell imaging methods are emerging 

that are starting to unlock the potential for longitudinal sampling of the molecular states 

of cells. As these technologies develop, new computational algorithms are needed to 
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determine the distinct transcriptomic states each cell occupied in the past and estimate 

how cell states will evolve. 

  Predicting cellular dynamics requires models of both cellular phenotypes and 

their underlying molecular states. Trajectory inference methods have been widely 

applied to scRNA-seq data to estimate transitions between cell states (Saelens et al., 

2019). Building on the foundation of pseudotime, trajectory inference methods infer the 

ordering of cells based upon the relative distance of their expression profiles, often 

incorporating information from low dimensional embeddings or distance between 

subgroups to define a trajectory of cellular dynamics (Trapnell et al., 2014), (Reid and 

Wernisch, 2016), (Saelens et al., 2019). These algorithms have been applied to scRNA-

seq data collected at different time points (Trapnell et al., 2014), (Reid and Wernisch, 

2016), (Schiebinger et al., 2019), along a developmental trajectory (Chen et al., 2019), 

and through disease states (Campbell and Yau, 2018). Another form of trajectory 

inference uses optimal transport methods to order cells along a time course by 

calculating the shortest path in expression space between cell states in a Waddington 

landscape (Schiebinger et al., 2019), optimal transport with neural ordinary differential 

equations (Tong et al., 2020), or optimal transport modeled using Jordan-Kinderlehrer-

Otto flow learned by an input convex neural network (Bunne et al., 2022). Notably, 

trajectory inference methods are focused solely on ordering cells and require further 

extensions to model the gene expression values of these cells forward or backward in 

time or to account for tracing of individual cells.  

RNA velocity, rather than focusing on ordering cells, investigates dynamic 

cellular processes by estimating the change in expression occurring in each cell based 

https://sciwheel.com/work/citation?ids=6744309&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=6744309&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=17045&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=2925049&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=2925049&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=6744309&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=17045&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=2925049&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=2925049&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=6347423&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=6855935&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=6409936&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=6347423&pre=&suf=&sa=0
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upon the ratio of spliced to unspliced transcripts (La Manno et al., 2018), (Bergen et al., 

2020).  These methods are most commonly applied to overlay predicted steady state of 

gene expression onto embeddings, and thus model changes in cellular phenotypes. 

Velocity methods have been extended to additionally estimate the cellular direction at 

the level of translation, by comparing spliced counts with protein data, called protein 

acceleration (Gorin et al., 2020).  However, these RNA velocity and protein acceleration 

methods do not make predictions about future or past cell states beyond the immediate 

changes in expression. To predict expression state changes further into the future, 

vector fields have been applied to the concept of RNA velocity to allow for prediction of 

future states (Qiu et al., 2022), (Chen et al., 2022). One of these methods, called 

Dynamo, additionally suggests the use of metabolic labeling scRNAseq variants (Battich 

et al., 2020), (Qiu et al., 2020), (Hendriks et al., 2019), (Erhard et al., 2019), (Cao et al., 

2020), in which cells are treated with a modified uridine for a set period of time before 

they are harvested for sequencing. This modified uridine is incorporated into the RNAs 

produced in that labeling period, which allows more recently produced transcripts to be 

distinguished from older ones. While RNA velocity vector fields methods predict the 

future cellular expression states of the cells in the data for multiple time steps into the 

future, they requires that all predicted future states fall within the UMAP or gene-

dimensional expression space observed in the data set (Qiu et al., 2022), meaning 

unseen cell expression states cannot be identified.  

To estimate the future transcriptomic states of single cells with dynamic 

measurements, we have developed a neural ordinary differential equation (neural ODE) 

(Chen et al., 2018) based method, RNAForecaster. RNAForecaster uses count data as 

https://sciwheel.com/work/citation?ids=5636602&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=9367004&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=9367004&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=8249387&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=12384879&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=8351245&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=8351245&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=9562213&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=7201758&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=7201232&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=8672706&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=8672706&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=12384879&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=12799199&pre=&suf=&sa=0
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input from two time points in the same cell. This sort of data is not available when using 

standard scRNAseq protocols, but can be provided using labeled and unlabeled counts 

from metabolic labeling transcriptomic profiling techniques such as scEU-seq (Battich et 

al., 2020). The counts from the earlier point in time are provided to the input layer of the 

neural network, which attempts to predict the expression of each gene at the later time 

point. This prediction is compared to the actual expression at the later time point to train 

the network. In metabolic labeling data, where the length of the labeling period is known, 

this allows for the network to forecast expression in real time. The key distinguishing 

feature of RNAForecaster from trajectory and RNA velocity methods is that it does not 

depend on a particular lower dimensional embedding of the data but takes input in the 

gene dimensional space. Therefore, RNAForecaster does not limit its predictions of 

future transcriptomic states to the expression space of the input data and attempts to 

generalize beyond the expression values observed in training. Specifically, training the 

method on expression values for each gene instead of relying on an embedding of the 

data provides the potential for this method to predict previously unseen transcriptomic 

states over a limited time period. 

We demonstrate the predictive accuracy of RNAForecaster in simulated data, 

where we can establish a ground truth regarding future cellular expression states. We 

then apply RNAForecaster to scEU-seq from constitutively dividing cells and 

demonstrate that the model can predict the transcriptomic direction of cell cycle 

progression each hour for three days after the initial expression state is provided to 

RNAForecaster. Altogether, these analyses demonstrate the utility of neural ODEs for 

https://sciwheel.com/work/citation?ids=8351245&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=8351245&pre=&suf=&sa=0
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short term forecasting of future expression states from temporally resolved single-cell 

data. 

 

2.1 RNAForecaster is a neural ODE based method for predicting future 

transcriptomic states 

We designed RNAForecaster as a neural ODE (Chen et al., 2018) method that 

can leverage single cell transcriptomics profiling methods with temporal resolution to 

learn to predict future time points over limited time periods. To enable this analysis, the 

input to RNAForecaster is two single cell RNA count matrices. The model does not 

depend on the source of these matrices, only that they measure the same genes and 

cells in two adjacent time points (Figure 2.1A). RNAForecaster requires that these two 

matrices measure the same cell in each column, rather than similar cells harvested 

separately for sequencing. This is required because RNAForecaster attempts to 

estimate the future transcriptomic states of each individual cell. We denote the first gene 

expression matrix as time point t = 0 and the second as time point t = 1. These matrices 

are used to train a neural ODE.  

The training process begins with each cell from the matrix of data from time t = 0 

forming an input vector, where the log counts for each gene fill one node in the input 

layer (Figure 2.1B). The weights connecting the nodes of the hidden layer(s) and the 

output layer create an activation function. The output of the activation function 

represents a prediction of each gene’s expression at time point t = 1. These predictions 

are then compared with the actual expression level of each gene at time t = 1 based on 

https://sciwheel.com/work/citation?ids=12799199&pre=&suf=&sa=0
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that input matrix. The mean squared error (MSE) between these values is the loss 

function of the network. As opposed to standard neural network implementations, 

weights are updated differently in a neural ODE. Specifically, backpropagation is 

performed using an ordinary differential equations solver, allowing the network to have a 

continuous depth and constant memory cost. Thus, the network can yield performant 

predictions without using many hidden layers and maintains a constant memory 

requirement, making it computationally cheaper to train than most deep learning 

alternatives (Chen et al., 2018). After the network is trained, the predicted expression 

values from the output layer can be fed back into the input layer (Figure 2.1B), allowing 

the network to predict the cellular transcriptional state at future time steps. These 

predictions can be repeated recursively until an arbitrary time t = n, although the 

propagation of error with each step will cause the prediction error to generally increase 

over time.  

 The use of the ODE solver for backpropagation explicitly models dynamical 

systems, such as the evolution of gene expression values over time, making neural 

ODEs particularly well suited to predicting future transcriptional states. Additionally, as 

the neural network does not require a large number of layers to be performant (Chen et 

al., 2018) it is able to solve this prediction task in a computationally tractable manner. 

This is a critical feature because using thousands of variable genes as input creates a 

very large number of network parameters, which would produce a very computationally 

demanding network to train using other deep neural network architectures. Further, 

neural ODEs have been found to be particularly accurate at time series predictions 

relative to other neural network variations (Chen et al., 2018). 

https://sciwheel.com/work/citation?ids=12799199&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=12799199&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=12799199&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=12799199&pre=&suf=&sa=0
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 To illustrate the prediction task RNAForecaster performs, we provide an example 

of a sample cell with ten genes (Figure 2.1C). RNAForecaster is trained on the first two 

time points from this cell. By training RNAForecaster on many similar simulated cells, 

each with two time points from the same cell, it can learn the relationships between 

genes and generalize to make future predictions beyond the gene expression space it 

was trained on. This challenge of generalizing to a diverse array of transcriptomic states 

and determination of the temporal limits of predictability will be the focus of the 

applications we discuss.   

 

2.2 RNAForecaster makes accurate predictions in future expression data outside 

its training set in simulated single cell transcriptomic data 

We generate simulated data to benchmark the feasibility of estimating future 

transcript counts with RNAForecaster. Simulated temporally resolved single cell 

expression data was generated using BoolODE (Pratapa et al., 2020) as described in 

the methods. Briefly, this algorithm simulates gene expression from a system of ordinary 

differential equations from a known gene regulatory network and incorporates a model 

that allows for transcriptional busting, and thus contains stochastic elements. To 

recapitulate the way in which expression data provides a single time snapshot of gene 

expression, BoolODE simulates a cell’s expression at hundreds of time points and then 

samples one for inclusion in the output counts matrix. Here, we leverage these additional 

future expression states as the ground truth for comparison with the predictions of 

RNAForecaster. To create each simulated data set, we generated a random ten gene 

network of regulatory relationships between genes. We generated over one hundred 

https://sciwheel.com/work/citation?ids=8018087&pre=&suf=&sa=0
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randomly generated networks, each of which was used to simulate a single-cell data set 

with 2000 cells and ten genes at 801 simulated time points. 

We begin by training RNAForecaster on two simulated time points, each from the 

same cell. Standard scRNA-seq data sets are not able to produce this type of training 

data, but these simulated data allow for a validation of the general principle underlying 

RNAForecaster. A set of cells is randomly selected as the training set (80%) and the 

remaining cells form a validation set. We additionally trained a five hidden layer 

multilayer perceptron (MLP) for comparison on the same data. This MLP model is a 

feed-forward neural network that can provide a comparison for prediction accuracy using 

a simple network architecture (see methods for details). The MLP is used as a 

comparison to benchmark the performance of the neural ODE against the most standard 

neural network architecture. We first compare predictions of expression at t = 1 in the 

held out validation set using the expression at t = 0 as input. The RNAForecaster neural 

ODE significantly outperforms the MLP model on the validation data (p < 1e-16) (Figure 

2.2A), though both methods accurately predict the first time point, with the average 

mean squared error (MSE) across simulations below 0.015 for both networks.  

To determine the temporal range over which predictions can be made, we then 

tested the ability of the models to predict simulated expression for the next fifty time 

points for each cell. While the error in both methods increases over time, the neural ODE 

outperforms the MLP model significantly at all time points (p < 1e-11) (Figure 2.2B). 

Error propagates more quickly in the MLP and we additionally observe the presence of 

extreme outliers in the MLP predictions as early as t = 10, that fall within the same range 

of the worst predictions of the neural ODE at t = 50. The presence of these inaccurate 
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outlier predictions suggests that the MLP is more likely to make poor predictions when 

faced with expression states outside the distribution encountered in its training data, a 

phenomenon termed “catastrophic forgetting” (French, 1999). To illustrate these MSE 

values in terms of the simulated expression levels, we take a closer look at a particular 

cell in Figure 2.2C. We selected this example as an approximately average performance 

by both the neural ODE and MLP. Here the MLP maintains a MSE under 0.02 until time t 

= 8, after which the predictions are inaccurate (median MSE of 0.42 over time points). 

The neural ODE, in contrast, is a better, though far from perfect fit to the simulated data 

(median MSE of 0.054). In some cases, the neural ODE predictions demonstrate a 

closer fit to the data, with median MSE values as low as 0.017 across fifty time points. 

However, we observe some poor fits with the neural ODE as well, producing median 

MSE values as high as 1.58. 

In order to understand why some neural ODE solutions perform substantially 

better than other solutions, we examined the impact of different gradient descent 

initializations. Due to the recursive application of the neural ODE, the random seed used 

to initialize stochastic gradient descent influences predictions substantially. Even with 

the exact same training data, neural ODEs with different initializations can yield highly 

divergent predictions after fifty time points (Figure 2.2D). We observe that the predictions 

at time t = 1 are very similar from differently initialized networks, as we would expect, 

given that the networks are trained on the exact same data. However, because 

stochastic gradient descent can find many local minima, the weights are somewhat 

different. When making recursive predictions with the network, these differences in the 

weights compound, which often leads to very different predictions at later time points 

https://sciwheel.com/work/citation?ids=5980878&pre=&suf=&sa=0
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(Figure 2.2D). We observe that some differently initialized neural ODEs perform better 

than others on a given example, but not uniformly better across all examples. This 

observation suggests that each differently initialized neural ODE may learn slightly 

different information about how to predict future expression states. 

Ensemble based predictions leveraging information across multiple simulations 

from varied parameters have been shown to improve predictions of complex dynamical 

systems (Fertig et al., 2007), and are readily adaptable from weather prediction to 

forecasting biological systems (Kostelich et al., 2011). Therefore, we take an ensemble 

approach to improve RNAForecaster’s ability to leverage the slightly different information 

learned by each network and handle variation in prediction accuracy. Using a different 

random seed to initialize gradient descent for each network, we train multiple neural 

ODEs and then evaluate the predictions of each, taking the median prediction as the 

final expression level estimate. This approach substantially outperforms a single network 

across simulated data sets (Figure 2.2E). As expected, at time t = 1 there is no 

significant difference in prediction accuracy, but there is a significant difference by t = 10 

(p < 1e-6) and the magnitude of the difference in MSE loss increases with t. Most 

notably, the ensembles are much less vulnerable to catastrophic forgetting. If one 

network has extreme outliers in its prediction of gene expression profiles, it will usually 

be overruled by the others. We find that ten networks are sufficient to achieve most of 

the accuracy gains we can achieve through ensembling. Twenty-five networks yields no 

significant improvement over ten networks at any of the fifty time points, though the 

average MSE across simulations is slightly lower.  

https://sciwheel.com/work/citation?ids=13326303&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=13326305&pre=&suf=&sa=0
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To determine the limits over which RNAForecaster can generalize robustly 

outside its training data, we simulated a single-cell data set using the bifurcating cell 

lineage gene regulatory network proposed by the authors of BoolODE (Pratapa et al., 

2020). In the simulation, the cells progress in a single lineage for about 375 simulated 

time points, after which they bifurcate into two distinct lineages (Figure 2.3A). We trained 

RNAForecaster on time points 365 and 366 across 2000 cells to determine whether 

training immediately before the bifurcation provided sufficient information for 

RNAForecaster to predict cell lineage after the bifurcation. We find that RNAForecaster 

can differentiate the two lineages over 100 predicted time points (Figure 2.3B) despite 

being trained before the bifurcation. We compared the MSE on these 100 time points 

against the median MSE across the random simulations described above. The MSE was 

lower than the median level on 42 of 100 time points, indicating that RNAForecaster 

performed comparably in this case to the random network simulations. Immediately 

before the bifurcation, the expression differences in the cells appear sufficient to indicate 

which lineage a cell will become. This result demonstrates the ability of RNAForecaster 

to make predictions outside the space of its training data. However, if trained well before 

the bifurcation, we hypothesized that it should not be possible to reliably predict cell 

lineage fate on a per cell basis. To test this hypothesis, we trained RNAForecaster at 

time points 250 and 251, well in advance of the bifurcation, and predicted through the 

next 200 time points. We find that predictions break down at the bifurcation point, 

estimating transcriptional states that fall into a new cluster of cells in the UMAP that did 

not exist in the simulation (Figure 2.3C-D). The MSE predictions are likewise poor, 

worse than the random network median on all 200 time points. This result still leaves 

uncertainty as to whether the predictions of the second model are worse because of the 
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stochastic effects and recursive error that are unavoidable when predicting from further 

away in time or due to the model being unable to learn key predictive relationships at the 

earlier time point. To distinguish these possibilities, we applied the second model 

(trained at the earlier time points) to predict one hundred time points forward from the 

cells the first model was trained upon. In this simulation, we find that the second model 

does predict the bifurcation (Figure 2.3E-F), though slightly less accurately than the first 

model. This result indicates that the major predictive relationships can be learned 

throughout the lineage of the cells, but that predictions only remain accurate over a 

limited time period due to stochastic effects and error propagation.  

2.3 RNAForecaster can predict gene expression states beyond the space of the 

cell states used as input  

One distinguishing ability of RNAForecaster from trajectory inference single-cell 

algorithms is that it can predict gene expression values outside of the space in a two-

dimensional embedding occupied by the input data. To demonstrate this feature, we 

modified the BoolODE simulation to introduce a knock out (KO) of a single gene after 

one hundred simulated time points, after which the simulation continues with that gene’s 

value set to zero. The simulated knock out of a single gene further introduces changes in 

the expression values of all other genes over time, leading to a divergent cluster of cells 

in UMAP space relative to the simulated cells from earlier time points (Figure 2.4A).  

In order to determine whether RNAForecaster could predict into this space 

without being trained on it, we trained an ensemble of ten neural ODEs based on only 

the two time points before the KO simulation began. We then interrogated 

RNAForecaster’s predictions of future gene expression profiles at time points after the 
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KO occurred. The predicted expression profiles cluster distinctly with the KO simulated 

data, despite being trained on none of these cells (Figure 2.4A-B), illustrating the ability 

of RNAForecaster to make accurate predictions outside the input space it was trained 

on. Across each of the simulated data sets used to evaluate the ensemble network 

performance, we simulated a data set from the same regulatory network with a gene KO. 

We find that RNAForecaster, using an ensemble of ten networks, is capable of 

producing comparably accurate predictions over fifty time points to those it made on the 

simulations that did not introduce a KO. We observe a small but statistically significant 

decrease in prediction accuracy at all time points (the mean difference is less than 0.05 

MSE for time points 1 to 30 and less than 0.1 MSE for all time points) (Figure 2.4C). A 

loss in predictive accuracy from the distributional shift a KO causes is expected, but the 

small size of the difference demonstrates that RNAForecaster is able to produce 

accurate predictions for most simulated KOs through 50 time points.  

 

2.4 RNAForecaster predicts the direction of cell cycle related transcriptomic 

changes over 72 hours from metabolic labeled scEU-seq data 

In order to perform the recursive predictions that allow RNAForecaster to make 

predictions into the future, we need input data that can approximate the t = 0 and t = 1 

matrices we used with simulated data. Critically, these count matrices must contain the 

two time points from the same cell. Metabolic labeling single-cell RNA-seq is the method 

we use to accomplish this. With metabolic labeling protocols (such as the scEU-seq 

protocol (Battich et al., 2020) we will use here) cells are labeled with 4sU modified 

uridine for a specified time period (Figure 2.5A). The cells are then harvested for single-

https://sciwheel.com/work/citation?ids=8351245&pre=&suf=&sa=0
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cell RNA-seq. The 4sU labeled transcripts can be identified as those that were produced 

within the labeling period. The other sequenced transcripts were produced before the 

labeling began. This provides the temporal information we need to train RNAForecaster. 

The input matrix for the input layer consists of the unlabeled counts matrix plus 

estimated degraded transcripts. Metabolic labeling data allows for an estimate of the 

degradation rate in real time, as described by (Qiu et al., 2022). This count matrix is able 

to represent the total transcripts in the cell at time t = 0. The total counts at t = 1 are then 

provided by the unlabeled + labeled counts together (Figure 2.5A).  

 Now that we have a framework that allows us to train RNAForecaster on a 

biological data sets, we need a method for assessing its performance. We cannot get a 

series of expression levels in the same cell, preventing a direct assessment of per gene 

error over time. However, we can train RNAForecaster in a context where we know the 

general future expression path the cells should take, such as the cell cycle. To validate 

the method, we can test if RNAForecaster is able to predict the transcriptomic changes 

that are required for cell cycle progression. For this validation, we employed a scEU-seq 

data set from immortalized human retinal pigment epithelium (RPE) cells, published by 

(Battich et al., 2020). RNAForecaster was trained on the 405 cells in the data with a one 

hour labeling period, using a ten network ensemble. Once trained, RNAForecaster was 

used to predict the future expression levels in each cell for 72 hours. To score each 

cell’s position in the cell cycle, we used tricycle, an R package that projects gene 

expression data onto an embedding of well characterized cycling cells to create a 

continuous score for cell cycle position (Zheng et al., 2021). These scores range from 0 

to 2π, allowing cell cycle scores to be visualized on a circle (Figure 2.5B). The 

https://sciwheel.com/work/citation?ids=12384879&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=8351245&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=10954982&pre=&suf=&sa=0
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expression level predictions of RNAForecaster are then likewise scored by tricycle. The 

degree to which they are ordered from 0 to 2π over time is then assessed to estimate 

the degree to which RNAForecaster accurately predicts cell cycle progression. 

 The tricycle scores are highly ordered with respect to time through 72 hours of 

predictions in most cells (Figure 2.6A). For all 72 hours, the predictions are significantly 

more ordered than randomly generated scores (p < 1e-16). The ordering of these scores 

relative to random was further checked by generating 10 million random sets of tricycle 

scores, none of which achieved an ordering score equal to or greater than the median 

order score from the RNAForecaster predictions. Within the RNAForecaster predictions, 

the order of the scores decreased significantly each day (p < 0.001), indicating the 

fidelity to the cell cycle and general quality of predictions decreased the further 

predictions were into the future, as expected due to error propagation with recursive 

prediction.  

A challenge we dealt with in this data was a tendency of the neural ODE to 

eventually start predicting extremely high transcript counts (Figure 2.6B). This likely 

results as an example of catastrophe when the network encounters input that is 

sufficiently dissimilar to what it was trained on. Then, in an example of positive feedback 

in the predictions, the predicted gene expression levels begin to go towards infinity. In 

order to control these extreme values in the prediction model, we set a realistic prior on 

the upper bound of expression values given the expression distribution observed in the 

training data. Enforcing these priors yields predictions that have similar median total 

counts/cell as in the scEU-seq data, even after 72 recursive predictions (Figure 2.6B). 
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These maximum counts priors also improve performance on cell cycle ordering scores 

by a small but statistically significant amount (p < 0.05) (Figure 2.6C).   

Tricycle is used to score where RNAForecaster’s predictions are in the cell cycle 

at each hour over the three day period, allowing us to determine the rate at which the 

predictions are moving through the cell cycle. While the order of scores strongly reflects 

the cell cycle, the rate of progression predicted by RNAForecaster is much slower than 

expected. Immortalized RPE cells usually replicate about once every 24 hours, and the 

RNAForecaster predictions proceed much more slowly (Figure 2.6D-F). Cells generally 

are predicted to progress steadily through the cell cycle, tracking the order of the cell 

cycle, but falling well short of the expected three completed cycles. This observation 

indicates that RNAForecaster learns the standard movement of cell cycle related genes, 

but is unable to recognize rarer regulatory events that lead to large changes in 

expression over shorter time periods. A relatively small number of cells were available 

for training RNAForecaster (405) which may contribute to this issue. Particularly for less 

common events, a larger data set could allow RNAForecaster to more adequately learn 

to model these gene expression dynamics. Alternatively, predicting shifts that are less 

frequently observed in the training data may be a weakness of the RNAForecaster’s 

neural network architecture. Despite this limitation, accurately predicting the order of 

changes in cell cycle related genes across the different cell cycle stages using only a 

relatively small training set demonstrates the ability of RNAForecaster to estimate future 

expression states in single cells. 

2.5 Discussion 
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RNAForecaster is a tool for generalizing temporal relationships in single cell 

transcriptomic data. Through a neural ODE, we attempt to learn activation functions that 

predict the expression level of a gene in terms of the previous expression levels of other 

genes. We demonstrate that it is possible to forecast future expression states in single-

cell data that have a temporal dimension. The accuracy of the predicted gene 

expression states depends on the time period over which RNAForecaster is applied, with 

a reasonable degree of accuracy over short to intermediate time periods. 

RNAForecaster can thus provide valuable insight into the dynamics of transcription and 

transcriptional regulation over time. Through simulated data, we demonstrate that KOs 

and bifurcations can be predicted if the method can predict starting at time points shortly 

before the event occurs. In order to better capture the relationships between genes that 

allow prediction of their future expression states, it would be ideal to train the 

RNAForecaster network on more time points within the same single cell. While this is 

currently unavailable across at scale, recent techniques allow imaging of a small number 

of genes in cells over time (Cawte et al., 2020), (Wang et al., 2022). As these methods 

improve, RNAForecaster could be trained with longer time series, likely improving its 

accuracy and the span of time over which it can make accurate predictions. Altogether, 

future research should evaluate the limits of predictability using this model over diverse 

timescales and biological conditions. 

 The reliance on ODEs in our framework results in estimates of smooth temporal 

trajectories of gene expression. However, it is important to consider the predictions 

RNAForecaster produces in the context of the biology of transcription. RNA transcription 

occurs in bursts, and thus appears stochastic (Tunnacliffe and Chubb, 2020). Therefore, 

https://sciwheel.com/work/citation?ids=8185953&pre=&suf=&sa=0
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RNAForecaster’s predictions should not be interpreted as an estimate of the exact 

counts in a cell, since this is not precisely predictable. Rather, RNAForecaster should be 

thought of as estimating the expected value of the distribution of a gene’s counts in a 

cell.  

 In simulated data, we observed that significant gains in prediction accuracy could 

be attained by using an ensemble of networks to forecast future expression states 

instead of a single network. Given the recursive application of the network to make 

future predictions, the impact of small differences in the network weights can lead to 

large differences in predictions when two different initializations of stochastic gradient 

descent are used. The slightly different local minima found by these different gradient 

descent initializations often had strengths and weaknesses in their ability to generalize to 

expression levels outside their training data. We attempted to combine these strengths 

through a simple ensemble approach where we use the median predictions of the 

networks. However, even with the ensembling approach, prediction accuracy decreased 

substantially over time in the simulated data as error propagated and predictions trended 

further outside the domain the neural network was trained in. At the same time, 

catastrophically poor predictions occurred at a much lower rate, which does increase the 

time scale in which RNAForecaster is applicable. The downside of this approach is the 

increased computational resources required. However, training ten networks using a 

GPU is faster on single cell transcriptomics sized data sets than training one on a CPU, 

which makes GPU training highly preferred even without ensembling.   

Using metabolic labeling scRNA-seq protocols, RNAForecaster can make 

recursive predictions about future transcriptomic states. These protocols are currently 
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largely confined to in vitro studies, which limits the application of RNAForecaster in many 

in vivo contexts. In vitro, RNAForecaster was capable of accurately predicting the 

general direction of cell cycle related expression changes over 72 hours. However, the 

model failed to recapitulate the speed of cell cycle progress. This may reflect an inability 

of the model to predict cell cycle checkpoints and the ensuing transitions between 

stages, or some other rare regulatory event in the cell cycle. A larger training set might 

allow RNAForecaster to better capture these less common events, given that the training 

data contained only 405 cells. However, it may be the case that the current structure of 

RNAForecaster lacks the capability to handle these sorts of exceptions to the 

transcriptomic changes it sees in most cells. Future work integrating attention based 

architecture (Vaswani et al., 2017) into RNAForecaster could potentially allow the model 

to differentiate, for example, the expression changes within a cell cycle stage from the 

changes at the end of the stage after checkpoints are passed. 

We observed that the neural ODE tended to make extremely high predictions of 

expression values after the previous predictions had departed sufficiently from its 

training data. To handle this we enforced maximum expression level predictions for each 

gene based on the observed data, which constrained the model to obtain realistic 

expression levels on both an individual gene and overall cell level. These maximum 

expression levels can be justified from a Bayesian perspective, where we assign very 

low probability to seeing expression levels of a gene that are higher than a certain point. 

There is a difficult balance, however, between preventing unrealistic expression levels 

and removing valuable signal from the predictions. Preventing these kinds of extreme, 

unrealistic values is a major challenge termed as “catastrophe” in the field of machine 

https://sciwheel.com/work/citation?ids=13191450&pre=&suf=&sa=0
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learning, (French, 1999), and it may be further exacerbated for RNAForecaster due to 

the high dimensionality of the data and the recursive predictions required. The use of 

network ensembles helps alleviate this tendency to some extent. However, future work 

may be needed to teach the neural network about the prior probability for gene 

expression levels outside the range normally observed in cells, rather than having to 

enforce this prior after the fact. 

Whereas many predictive methods, including notably Dynamo (Qiu et al., 2022), 

can estimate cellular states from RNA velocity vector fields estimated through splicing or 

metabolic labeling, RNAForecaster relies on temporal single-cell transcriptomics data 

tracing an individual cell currently enabled uniquely with metabolic labeling data (Qiu et 

al., 2022). Whereas these current methods aim to predict cellular states captured in the 

training data, RNAForecaster instead attempts to generalize its predictions to the full 

space of possible expression states. This formulation uniquely allows RNAForecaster to 

estimate the impact of perturbations that shift the expression state into part of the space 

not observed in the input, as well as future developmental or evolutionary states not 

captured in the input data. Another important difference between Dynamo and 

RNAForecaster is that Dynamo requires its input data to be smoothed using k-nearest 

neighbors averaging in order to compute RNA velocity (Qiu et al., 2022). This procedure 

essentially averages the cells that are close together in expression space, which may 

introduce some distortions or remove important variation (Gorin et al., 2022).  

Several other methods have been proposed with the goal of predicting single-cell 

responses to perturbations. PerturbNet trains a generative neural network using 

perturbation single-cell data sets such as Perturb-seq (Dixit et al., 2016) to predict 

https://sciwheel.com/work/citation?ids=5980878&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=12384879&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=12384879&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=12384879&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=12384879&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=12476863&pre=&suf=&sa=0
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responses to genetic knockouts or knockdowns (Yu and Welch, 2022). This approach 

differs from RNAForecaster by focusing on learning from specific perturbations rather 

than learning general temporal relationships between genes. The scGen method also 

attempts to predict single-cell perturbation responses, using a combination of a 

variational autoencoder and a deep generative network to project what it has learned in 

its training data into unseen cell states (Lotfollahi et al., 2019). While RNAForecaster 

attempts to learn the predictive relationships between genes over time, scGen attempts 

to learn how cell states shift under perturbation using similar perturbations in similar 

cells. These approaches can yield valuable insight into future expression states after a 

perturbation and the correct choice of method for a particular use case will often depend 

on the particulars of a problem and the type of data that is most readily available.  

The gold standard that many computational methods aspire to is inference of 

mechanistic interactions from high-throughput biological data sets. One advantage of 

neural ODEs is that they can yield greater interpretability than other neural network 

formulations (Chen et al., 2018). This feature may allow the relationships between genes 

that RNAForecaster learns to be interrogated, which could potentially yield mechanistic 

insight. The accuracy of gene network inference methods suggests that the high degree 

of correlation between genes makes prediction much easier and more robust than 

causal inference (Pratapa et al., 2020).  However, extending RNAForecaster and other 

methods from the prediction of future gene expression states to mechanistic, molecular 

networks remains an important area of future research. 

RNAForecaster demonstrates that future states in transcriptomic data with a 

temporal dimension can be estimable, even outside the expression space of the input 
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data. As single-cell and machine learning technology improves, it may be possible to 

extend this capability to accurately predict counterfactuals regarding future cell states 

based on a variety of cellular factors. This could be used to predict the response of 

diseased cells to perturbations, potentially informing treatment options on a general or 

personalized level. Extending these techniques to personalized predictions of the effects 

of perturbations and therapies may enable predictive biology and medicine approaches 

(Fertig et al. 2021), (Stein-O’Brien, Ainsile, and Fertig 2021) and require new methods to 

quantify the limits of predictability of therapeutic outcomes across disease systems.  

 

2.6 Methods and Software 

Required Input Data and Preprocessing 

RNAForecaster primarily requires two normalized single-cell RNA counts 

matrices as input. These counts should be from adjacent time points, such that the 

labels time t=0 and time t=1 can be reasonably applied and the cells in each matrix are 

identical. The main preprocessing steps needed are sparsity filtering and log 

normalization. Including genes that have high proportions of zeroes (default greater than 

98%) can cause problems with gradient descent, and thus these genes must be 

removed. The only normalization applied is a log1p transform. In addition, filtering to 

highly variable genes is strongly recommended, and was performed for all biological 

data sets used. 

 When using metabolic labeling data, there is an additional preprocessing step to 

account for transcripts that degraded during the labeling period. The degradation rate is 

https://sciwheel.com/work/citation?ids=11698669&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=10841064&pre=&suf=&sa=0
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calculated using the slope between the labeled and total counts as described by (Qiu et 

al., 2022). A linear regression is fit between the two count matrices and the degradation 

rate is calculated as -log(1-slope) which estimates the number of transcripts degraded 

per labeling period. We then estimate the total counts at the beginning of the labeling 

period by adding each gene’s degradation rate to the unlabeled count matrix. The 

resulting matrix becomes the time t=0 input matrix. 

 

Neural ODE Training 

By default, the input data matrices are divided into training and validation sets 

(default 80-20 split). The default number of nodes in the hidden layer is twice the number 

of nodes in the input layer to allow for interactions between genes. A neural ODE (Chen 

et al., 2018) is then trained using Flux.jl and DiffEqFlux.jl, using the Tsit5 ODE solver 

and a default error tolerance of 1e-3. Training occurs for a default of 10 epochs using a 

default learning rate of 0.005. The loss function is calculated as the mean squared error 

between the output nodes and each gene expression level in the time t=1 matrix.  

 We provide the option to check network stability on recursive predictions at this 

stage. Recursive predictions are made for a user-defined number of steps, checking on 

each step whether any expression levels are higher than any plausible level. If this is 

observed, the training process is restarted. These stability checks can prevent the 

frequency of catastrophe in network predictions outside the training distribution. With 

ensembling, these stability checks are largely unnecessary, but they provide an 

alternative for data sets where the network is less prone to catastrophe.  

https://sciwheel.com/work/citation?ids=12384879&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=12384879&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=12799199&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=12799199&pre=&suf=&sa=0
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 Creating an ensemble of networks simply repeats this process using a different 

random seed to initialize stochastic gradient descent for each network. The default 

number of networks trained is ten. 

Recursive Predictions of Future Expression Levels 

The process of estimating future expression requires the input of a trained neural 

ODE (or ensemble of them) and a set of initial expression states to predict from. These 

expression states are fed into the input nodes of the neural ODE and then the output is 

recorded and fed back into the input nodes, allowing for recursive predictions forward in 

time. Some prior knowledge and assumptions are enforced on the predictions by default. 

All predictions must be non-negative, as this is a constant characteristic of gene 

expression data. Additionally, expression level predictions that are higher than an 

allowed maximum are set to the maximum value (by default two times the maximum 

observed in the training data, in log space).  

 When estimating expression levels using an ensemble of networks, the above 

process is performed for each network and the median prediction is used. 

Variational Autoencoder Input Option 

We tested using a lower dimensional representation of the single cell 

transcriptomics data as input with a VAE. The VAE was trained on the first two time 

points of the data, the same portion that would be used to train the neural ODE. The 

encoder was then applied to the t=0 data and the lower dimensional matrix was used as 

input to the neural ODE, which was trained on the lower dimensional encoding of the t=1 
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matrix. The output lower dimensional representation was then decoded with the VAE 

back into individual gene expression levels. 

Simulating single cell expression data with BoolODE 

BoolODE was designed to simulate single-cell expression data sets on the basis 

of a network of gene-gene interactions (Pratapa et al., 2020). We generated 117 

simulations because we wanted at least one hundred and we were concerned that some 

random networks might generate strange regulatory behaviors. To generate these 117 

different simulations, we first needed 117 different gene-gene networks. These were 

created as random ten gene networks, where genes could have positive, negative, or no 

direct relationship with other genes. Each network was input to BoolODE, which 

simulates 801 time points of expression for 2000 cells in each simulation. Minor changes 

were made to BoolODE code (see 

https://github.com/FertigLab/RNAForecasterPaperCode), to generate output for the task 

of predicting future expression states.  

 The bifurcation simulated example was produced using the bifurcation gene 

network and initial conditions set created for and provided by BooODE (Pratapa et al., 

2020). We simulated 2000 cells for 801 time points to yield the data used in this work. 

UMAP visualizations of the data were produced using Seurat version 4.0.1.  

 To simulate data sets with gene KOs, the simulations were allowed to run for 101 

time points, at which point a gene’s expression value was set to zero and was again set 

to zero on each future iteration, mimicking a KO gene.  

 

https://sciwheel.com/work/citation?ids=8018087&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=8018087&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=8018087&pre=&suf=&sa=0
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Applying RNAForecaster to simulated data 

We used the t=101 simulated count matrix as our t=0 for input to RNAForecaster, 

in order to give the simulation time to initialize and stabilize. RNAForecaster was thus 

trained on t=101 and t=102 for each simulation. Predictions were made for up to 200 

time points later, up to t=300. The neural ODE was trained for 10 epochs, with 100 

hidden layer nodes, and a learning rate of 0.005. 

 Ensembles were created using groups of 10 and 25 networks. Networks used 

100 hidden layer nodes and stability checks were performed. Simulations where stability 

checks were not passed on fifteen iterations were excluded, leaving 111 simulations in 

the final set. 

 

Comparison predictions using a feed-forward MLP model 

For comparison with RNAForecaster’s predictions in simulated data, we 

employed a simple five hidden layer, fully connected feed-forward neural network 

architecture. This MLP model was trained for 10 epochs and a learning rate of 0.005. 

The network node structure from the input to output layer is as follows: Dense(10,32), 

Dense(32,64), Dense(64, 100), Dense(100,100), Dense(100,64), Dense(64, 32), 

Dense(32,10). 

Data download and processing 
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The scEU-seq data set from (Battich et al., 2020) was downloaded using the 

Dynamo python package to acquire the rpeLabeling.h5ad AnnData file produced by (Qiu 

et al., 2022).  

 Genes with more than 98% zero counts in either labeled or unlabeled count 

matrices were filtered from both matrices. The matrices were additionally filtered to 

genes by variance to genes in the top quartile. The degradation rate was then calculated 

using the slope between the labeled and total counts. A linear regression was fit 

between the two count matrices and the degradation rate was calculated as -log(1-

slope) which estimates the number of transcripts degraded per labeling period. We then 

estimate the total counts at the beginning of the labeling period by adding each gene’s 

degradation rate to the unlabeled count matrix. We then subset to those cells treated 

with 4sU uridine for 60 minutes, so that the labeling time is equal for all input cells. The 

resulting matrix becomes the time t=0 input matrix, to be compared to the total counts as 

the t=1 matrix in RNAForecaster.  

  

Training RNAForecaster 

RNAForecaster was trained as an ensemble of ten networks, training for 20 

epochs on all 405 cells with a 60 minute labeling period. These networks were trained on 

a Nvidia Titan V GPU using a mini-batch size of 100 and a learning rate of 0.001. All 

other parameters use the default values.  

 

Predicting future expression states and estimating their position in the cell cycle 

https://sciwheel.com/work/citation?ids=8351245&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=12384879&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=12384879&pre=&suf=&sa=0
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RNAForecaster predicts the future expression levels in each cell from the total 

counts matrix into the future each hour for 72 hours. The maximum prediction for each 

gene is set to 1.2 log fold increase over the maximum value observed in the training 

data. Predictions were performed on a Nvidia Titan V GPU.  

 The resulting predictions were scored for their position in the cell cycle using the 

tricycle R package (Zheng et al., 2021). Tricycle creates a quantitative embedding of the 

cell cycle from scRNAseq data of cells with known cell cycle positions. This embedding 

ranges from 0 to 2π to represent the circular nature of the cell cycle. In this range, 0.5π 

to π is the approximate bounds of S phase, π to 1.75π G2M phase, and 1.75π to 0.25π 

G1 or G0 phase. This embedding is then projected into a target single cell RNA data set 

to approximate the cell cycle position of each cell. We applied tricycle to each initial cell 

state from the scEU-seq data and each expression state predicted by RNAForecaster.  

 To determine the degree to which the tricycle scores in the RNAForecaster 

predictions matched the order of the cell cycle, we developed an ordering metric. The 

predictions made in a cell receive a point in this metric if the score increases (or goes 

back around from 2π to 0), but does not increase by more than 0.75 in a one hour 

period. This metric additionally differentiates small decreases in cell cycle score from 

large ones by giving 0.2 points to decreases of less than 0.25. This is used to 

differentiate slight variation from substantial incorrect shifts in gene expression 

prediction. We additionally plotted the scores, both for individual cells as a line plot, and 

all together on a circle plot. 

 

https://sciwheel.com/work/citation?ids=10954982&pre=&suf=&sa=0
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Figures 

 

Figure 2.1 - Diagram of RNAForecaster 
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A Two count matrices are input to RNAForecaster, each containing the same genes and 

cells. The counts matrices are from adjacent time points from the same cells, labeled 

here as t=0 and t=1. B The t=0 counts for each cell are input to the input layer of a 

neural network. The output layer of the neural network has the same number of nodes 

as the input layer and is compared to the results from the same cell at t=1. The mean 

squared error between the two forms the loss function which is trained on using an ODE 

solver to produce a neural ODE. Once the network is trained the output can be fed into 

the input layer, allowing for prediction of the expression levels at the next time point, 

which can be repeated recursively to predict for t time steps. C A simulation of the 

expression levels in a cell, showing ten genes over fifty time points. RNAForecaster is 

trained on the first two time points, using multiple cells in order to learn some 

generalization of the temporal dynamics between genes. RNAForecaster then attempts 

to estimate expression of each gene at the later time points. 
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Figure 2.2 - RNAForecaster prediction accuracy in simulated single cell expression data 
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A Comparison of MSE loss on the 20% held out validation set of predictions from t=0 to 

t=1 between a neural ODE and a 5 hidden layer MLP, over all simulations. B 

Comparison of log MSE loss on the next 50 simulated time points between a neural 

ODE and a 5 hidden layer MLP. C A median example of expression prediction of a 

single gene in a single cell. The predictions of the neuralODE and MLP are shown. D 

The predictions of ten different neural ODEs, each trained using a different initialization 

of stochastic gradient descent, for the same gene and cell as C. E Log MSE loss 

comparison between a single network neural ODE vs the median predictions from a 10 

or 25 network ensemble of neural ODEs. ** p < 1e-6 *** p<1e-10  
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Figure 2.3 – RNAForecaster predicts bifurcation of cells when trained on cells 

immediately prior to bifurcation 

A UMAP of bifurcating cell simulation across 50 cells from simulated time point 1 to time 

point 800, plus RNAForecaster’s predictions from time point 366 (just before the 

bifurcation) through next 100 time points. Colored by time point. B UMAP of same cells 

as in A, but colored by whether cells were from the ground truth simulation or 

RNAForecaster’s predictions. C UMAP of bifurcating cell simulation across 50 cells from 

simulated time point 1 to time point 800, plus RNAForecaster’s predictions from time 

point 251 through next 200 time points. Colored by time point. D UMAP of same cells as 

in C, but colored by whether cells were from the ground truth simulation or 

RNAForecaster’s predictions. E UMAP of bifurcationg cell simulation across 50 cells 

from simulated time point 1 to time point 800, plus RNAForecaster’s predictions using 

the model from C and D, predicted from time point 366 (just before the bifurcation) 

through the next 100 time points. Colored by time point. F UMAP of same cells as in E, 

but colored by whether cells were from the ground truth simulation or RNAForecaster’s 

predictions. 
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Figure 2.4 - RNAForecaster can predict the impact of a gene KO that moves cell 

expression outside the input space 
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A A UMAP embedding of the training data from one simulation provided to 

RNAForecaster alongside the simulated data after a gene KO and RNAForecaster’s 

estimations of expression states after KO. B UMAP from same simulation as A, labeled 

by time point and whether a cell was from the pre-KO simulations, post-KO simulation, 

or post-KO RNAForecaster prediction. C Boxplot comparing the MSE loss from the ten 

network ensembles shown previously in Figure 2.2 and the MSE loss from ten network 

ensembles onto simulated KO data, where the same gene networks were used to 

generate the simulations in both cases. * p < 0.01 ** p < 1e-6 *** p<1e-10 
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Figure 2.5 - Application of RNAForecaster to metabolic labeling single cell expression 

data 

A Left is a diagram of the basic concept behind metabolic labeling protocols such as 

scEU-seq. On the right is a diagram illustrating how the output from metabolic labeling 

protocols is input to the RNAForecaster neural network. B Diagram showing the tricycle 

cell cycle scores of each one hour labeled cell from the Battich, et al (2020) scEU-seq 

retinal epithelium cell cycle data set. After these cells are used to train RNAForecaster, 

the future expression states of each cell can be predicted. These expression states can 

likewise be scored for cell cycle prediction and we can validate the predictions on 

whether they generally follow the expected trajectory of the cell cycle.    

 

 

Figure 2.6 - Performance of RNAForecaster at forecasting the cell cycle 

A Boxplot of a metric describing the order of the tricycle scores made using 

RNAForecaster’s predictions. A higher score indicates the scores were more aligned 
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with the order of the cell cycle. Compared to the metric when applied to randomly 

generated tricycle scores. B Barplot of the log-log median total counts per cell in the 

scEU-seq data set vs the output of different neural ODE implementations at the 72 hour 

prediction. C Boxplot of the tricycle score order metric for the neural ODE 

implementations shown in B. D-F Examples of tricycle scores on the RNAForecaster 

predictions in three cells. * p < 0.05 ** p < 0.001 *** p < 1e-16 
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Chapter 3 

 

Mechanistic simulation of molecular cell states 

over time 

Introduction 

To understand the interplay between temporal changes from molecular 

interactions and the limitations of experimental data, mathematical simulations of 

molecular cell states can be useful to provide a known ground truth (Hill et al. 2016). In 

addition to providing benchmarks for the performance of network inference methods, 

using simulated genomics data generated from mathematical models can elucidate the 

kinds of temporal and regulatory dynamics that are likely to exist biologically. Moreover, 

simulations enable a broader range of evaluation of conditions and the requirements of 

datasets for inference as they can generate data under conditions that are infeasible or 

prohibitively expensive to generate experimentally. For example, simulations can readily 

provide temporally resolved multi-omics data from the same cells and low noise data. 

Thus, simulations can allow us to understand the impact of not capturing these 

dimensions in profiling methods on the resulting data and may illustrate cellular 

dynamics that are difficult to resolve from real cells. 

https://sciwheel.com/work/citation?ids=1312423&pre=&suf=&sa=0
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A variety of simulation methods that attempt to generate data approximating 

cellular genomics have been proposed (Pratapa et al. 2020), (Das and Mitra 2021), 

(Herbach et al. 2017), (Hill et al. 2016), (Gorin et al. 2022), (Thornburg et al. 2022). 

However, most methods do not use a direct mechanistic model with biologically 

interpretable parameters to simulate molecular states over time, instead parameterizing 

the simulation with a mathematical model such as a set of ordinary or stochastic 

differential equations. Additionally, most simulations do not cover all of DNA 

accessibility, RNA expression, and protein expression. To our knowledge, both of these 

features have not been implemented in the same method in previous work. Therefore, 

we have generated software for Multi-Omic Mechanistic Simulations (MOMS) that 

simulates mechanistic molecular interactions using the general model displayed in 

Figure 3.1, is fully tunable regarding molecular parameters, and simulates based on the 

interplay between DNA accessibility, RNA expression, and protein expression states. 

  

3.1 A mechanistic simulation of cellular states 

The MOMS simulation outputs DNA accessibility, spliced and unspliced RNA 

counts, and protein counts for each gene at each time point (intended to approximate a 

one minute time difference from the previous data output) according to the mechanistic 

model illustrated in Figure 3.1. This model uses genes as its basic units, and the cells 

are assumed to have diploid genomes. Any set of genes can be used to simulate cell 

molecular states, given a list of genes where each gene has the required parameters 

specified: Baseline Transcription Probability, Transcription Factors, Transcriptional 

Repressors, Epigenetic Upregulators, Epigenetic Downregulators, Splicing Rate, RNA 

Half Life, Protein Half Life, Translation Initiation Probability, Translational Inhibitors, and 

https://sciwheel.com/work/citation?ids=8018087&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=10987337&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=6862051&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=1312423&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=14090874&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=12336317&pre=&suf=&sa=0
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Protein Degradation Factors (Figure 3.1). This set of genes can be generated randomly 

or based on some known biological network input by the user. 

Each copy of a gene can be either accessible or not accessible. For the 

simulation, this means the gene is either transcribed at a normal rate based on 

transcription factor binding (if accessible) or is much less likely to be transcribed 

because transcription factors cannot usually bind to the DNA (if not accessible). This is 

specified in the simulation in a binary manner, where each gene copy is accessible or 

not and there is a small (tunable) probability of transcription even when not accessible. If 

a gene is accessible, there is a baseline probability of the standard transcription factors 

binding per unit time of the simulation, which is intended to represent approximately one 

minute of real time. Each gene can be assigned a set of specific transcriptional 

activators and repressors that promote or inhibit RNA transcription, as well as epigenetic 

activators and repressors that can change the accessibility state. The impact of these 

regulatory genes is based on the concentration of the corresponding proteins. Thus, the 

volume of the nucleus and cytosol are specified in the simulation and the binding 

probability is calculated according to the equation 1 - e^-[protein]. The binding affinity is 

assumed to be equal for all proteins. Whether binding occurs at each unit time is 

evaluated with a random number generator using the specified binding probability. The 

splicing rate is specified for each gene and the spliced and unspliced RNA transcript 

counts are tracked separately. RNA degradation is controlled by the RNA half life 

parameter, which is specified for each gene. 

Genes in the simulation are assumed to produce mRNAs. RNA is translated to 

protein based on a specified probability for how likely a spliced transcript is to bind a 

ribosome per unit time, as well as the concentration of translational inhibitors. 
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Translational inhibitors are protein products of specified genes. Protein degradation is 

determined by the protein half-life parameter specified for each gene, as well as the 

concentration of any protein specific degradation factors (i.e. other proteins that bind it 

and cause it to be degraded). 

         This simulation structure is probabilistic and thus the results are to some extent 

stochastic.  As in our previous work, we select a probabilistic model as the basis of cell 

behavior because the precise moment molecules collide and bind is not usually 

predictable in advance without measuring cell state to a degree that is far beyond 

current technologies (Fertig et al. 2011). 

         Often we may want to randomly generate a gene set and its parameters rather 

than specifying each parameter manually. Thus, we provide functionality to generate the 

parameters for random gene sets, with parameter values that fall within normal biological 

ranges based on reference to experimental data. All parameter ranges are user tunable. 

For the simulations presented below, the baseline transcriptional probability was set 

between 0.01 and 0.001, the maximum number of transcriptional regulators was set to 3 

proteins, and the maximum number of epigenetic regulators was set to 4 proteins. The 

splicing rate was randomly set for each gene between 5 and 10 time points 

(approximately 5 to 10 minutes). The RNA half life range was between 60 to 900 time 

points and the protein half-life range was between 720 and 3600 time points, intended to 

reflect the fact that most proteins degrade much slower than RNA (Schwanhäusser et al. 

2011), (Cambridge et al. 2011). Each gene could have at most one translational inhibitor 

and at most two protein degradation factors. The probability of translation initiation for an 

unbound mRNA at each time point was set between 0.1 and 0.75. 

https://sciwheel.com/work/citation?ids=13480866&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=57632&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=57632&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=67651&pre=&suf=&sa=0
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         The Julia software to run MOMS simulations is made freely available on GitHub 

at https://github.com/FertigLab/MOMSCellSimulations. 

  

3.2 Impact of parameters on molecular cell states 

         The outcome of a simulation is determined by the parameters provided for each 

gene, the initial conditions of the simulated cell, plus a random number generator that 

determines the outcome of stochastic elements. A key to the variation in the simulations 

is gaining some insight into how much impact changing the random number generator 

seed and the initial conditions changes the observed cell states over time. 

To do this, we randomly generated the parameters for ten genes and simulated a 

cell for 1000 time points (Figure 3.2A). The simulation was then repeated, changing only 

the random seed used for the random number generator used to evaluate whether 

protein binding occurs during a particular time interval, to determine how deterministic 

the expression levels of RNA and protein are in the simulation (Figure 3.2B). We 

observe general similarity, but with notable differences. The lowest expressed gene (at 

both the RNA and protein level) has a small increase in RNA expression at the RNA 

level, which leads to a larger increase at the protein level for most of the simulation 

period. For the other genes, little to no change in expression is observed at both the 

RNA and protein level. This result demonstrates that while the simulation is stochastic, 

the distribution of values of gene expression are predictable.  

Each simulation is provided with a set of initial conditions to parameterize the 

interactions between genes. Each gene’s expression at the RNA and protein level 

begins at a random value between 0 and 2 molecules. In order to test how much impact 

the initial conditions of the simulation had on the molecular state in the long run, we 

https://github.com/rossinerbe/CellSimulations
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generated a different set of initial conditions randomly for the same gene set used in 

Figure 3.2A. We then ran the simulation with the new initial conditions for 1000 time 

points (Figure 3.2C). Here, the expression of several genes changes substantially. 

Notably, the pink labeled protein, which is highest expressed in Figure 3.2A is three 

orders of magnitude lower expressed with different initial conditions. The lowest 

expressed green labeled gene from 3.2A is now expressed much more highly, at about 

the same level as the pink labeled gene. The turquoise labeled gene’s expression also 

goes to zero at the RNA and protein level by the halfway mark in the simulation and 

does not make a resurgence. The other genes’ expression remains similar to the 

previous initial conditions. These results indicate that the initial conditions can have a 

large impact on future cell states, even if the levels of all genes’ expression are low 

initially. 

With a mechanistic model of cell states that contains parameters corresponding 

to molecular mechanisms, we can perturb those parameters to attempt to understand 

the impact those parameters have on cellular states. Using the same baseline set of 

genes used in Figure 3.2A, we perturbed the splicing rate of each gene and reran the 

simulation (Figure 3.3A). Changing the splicing rate had some impact on the early states 

of the simulation, particularly at the RNA level, but in the long run very little difference in 

expression at the RNA or protein level is observed with the different splicing rates, which 

may indicate that splicing rate does not have a large impact on RNA and protein 

expression levels long term, at least when the splicing rate is only a small fraction of the 

half life of the molecules (as is usually the case in real cells) (Alpert, Herzel, and 

Neugebauer 2017). 

https://sciwheel.com/work/citation?ids=2622002&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=2622002&pre=&suf=&sa=0
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  Another important parameter is RNA and protein half-life. We observe that 

perturbing protein half life mostly yields a large change in protein expression of one 

gene, the pink gene, which is even higher expressed (Figure 3.3B). Only minor changes 

to RNA expression are observed, as might be expected. Perturbing RNA half-life leads 

to three genes having very low RNA expression levels. Protein expression of these 

genes swiftly follows suit, leaving those three genes at or near zero expression for the 

remainder of the simulation (Figure 3.3C).  

  

3.3 Effect of gene perturbations on cellular states 

         Limitations to temporal profiling technologies currently make it difficult to track the 

impact of perturbations within the same single cell over time. We can evaluate how 

perturbations may impact cell states over time using simulated data. To evaluate the 

way a gene knockout impacts future expression states, we modified the simulation from 

Figure 3.2A. We allow the simulation to proceed for fifty time points and then allow no 

more of the RNA transcripts of the blue gene to be produced, mimicking the result of a 

fully deleterious mutation that leads to immediate RNA degradation (Figure 3.4A). The 

remaining RNA degrades rapidly, while the remaining protein degrades over the next 

~150 time points. This knockout leads to substantial changes in gene expression, 

particularly at the protein level. The protein expression of the pink gene reaches its 

maximum three orders of magnitude lower than in the original simulation, while the tan 

gene ends three orders of magnitude higher. Two gene’s protein expression falls to zero, 

three stay relatively constant, and two others increase in expression about tenfold. 

Interestingly, only two of the observed changes in protein expression appear to be driven 
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by changes in RNA expression level: the knockout gene and the orange gene. The other 

differences observed appear to be mediated via the direct regulation of proteins by 

proteins (both through degradation by inhibiting translation). 

We compared this knockout simulation to perturbing the same gene at an 

epigenetic level. After time t=50, the blue gene was set to a non-accessible state (Figure 

3.4B). The RNA expression slowly decreases over time as the remaining counts 

degrade, while a very low level of expression is allowed to occur despite general gene 

inaccessibility. Protein expression slowly falls as well, not reaching zero until 800 time 

points in. The slower change means the change in expression levels plays out slightly 

differently. The pink gene’s protein expression falls to a similar level as in the knockout, 

however, the tan gene does not reach as  high of an expression level and has similar 

expression as the turquoise gene, which is again increased in expression from the 

original simulation to the same level. The RNA expression of the orange gene does not 

start to fall until the last two hundred time points, leaving both its RNA and protein 

expression at close to the original level by the end of the simulation. 

We can also investigate a wider variety of perturbations than can be performed in 

real cells using current technologies. For example, we can set the RNA expression level 

of a gene to zero instantaneously and then trace how each cell responds over time at an 

epigenetic, transcriptional, and proteomic level. In order to test what this sort of 

perturbation would look like, we created a simulation using the same gene set as Figure 

3.2A and at time t = 100 we set the spliced RNA counts to zero. We repeated this 

perturbation every 100 time points through the end of the simulation. We observe that 

the expression of the gene rapidly returns to its original value after the first perturbation. 

This result suggests that the molecular state of the cell is able to reestablish the RNA 



90 

expression of an upregulated gene, even in the absence of any RNA from that gene 

(Figure 3.4C). Despite rebounding in expression level five times, the expression profiles 

of the other genes in the simulation quickly reach approximately the same levels they 

occupy in the knockout simulation, which may indicate that even temporary loss of the 

blue gene’s expression immediately begins moving the cells towards the state observed 

in the knockout simulation, while temporary reexpression of the blue gene does not 

restore the previous state.          

  

3.4 Correlation and causality in a mechanistic simulation 

         The naïve expectation is that an mRNA and the corresponding protein will in 

most cases have strongly correlated expression values. However, due to the time lag 

between transcription and translation as well as due to the influence of other regulatory 

factors, this expectation will not necessarily hold. Profiling studies suggest that in many 

cases, an mRNA and its corresponding protein are almost entirely uncorrelated (Gry et 

al. 2009), (de Sousa Abreu et al. 2009), (Vogel and Marcotte 2012). In order to 

investigate this phenomenon, 100 simulations with different gene sets were generated 

and the correlation between the RNA and protein levels was assessed. The mean 

correlation between RNA and protein expression was 0.63, with a median of 0.80 

(Figure 3.5A). The correlation coefficient for a substantial minority (10.8%) of genes was 

less than zero. Often, we see this occur because of the influence of another gene. For 

example, if gene 1 is strongly regulated at the protein level by gene 2 then gene 1 RNA 

and gene 1 protein may not be correlated because the primary determinant of gene 1 

protein levels may be gene 2 protein levels. We also observe that some regulatory 

networks result in genes and proteins with higher correlations than others. Median 

https://sciwheel.com/work/citation?ids=510179&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=510179&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=270323&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=68731&pre=&suf=&sa=0
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correlation varies substantially between simulations randomly assigned different gene-

level parameters as described previously (Figure 3.5B), with some simulations above 0.9 

and others below zero. The simulations with median correlation below zero often have 

one or two genes that strongly regulate the protein levels of many other genes. These 

one or two genes are usually very highly expressed and thus largely make the 

expression level of other genes irrelevant to cell state due to the overwhelming influence 

of one to two genes. It is important to note that this low correlation is observed even with 

“perfect measurement” of the RNA and protein levels; without the measurement noise 

that would exist with any profiling technique used to measure the expression levels in 

real cells. 

         The goal of many genomics analyses is to extract mechanistic understanding 

from the data (Erbe et al. 2022). To accomplish this, many gene network inference 

methods have been developed, which attempt to infer causal regulatory relationships 

between genes using gene expression data (Margolin et al. 2006), (Chan, Stumpf, and 

Babtie 2017), (Huynh-Thu et al. 2010), (Osorio et al. 2020), (Matsumoto et al. 2017),  

(Papili Gao et al. 2018), (Deshpande et al. 2019), (Qiu et al. 2020). Despite the myriad of 

approaches, independent assessments indicate that these methods often cannot 

robustly predict known causal interactions between genes (Chen and Mar 2018), 

(Pratapa et al. 2020), (Stone et al. 2021). In order to better understand the challenge 

facing these network inference methods, we simulated 2000 cells with the same 

regulatory parameters and randomly selected an expression profile for each cell over 

500 simulated time points. The resulting matrix mimics the output of single cell RNA-seq 

data, without any measurement noise. We performed this simulation experiment with 

both ten gene cells and 100 gene cells. We then used the resulting count matrix to find 

https://sciwheel.com/work/citation?ids=12258140&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=828215&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=4605418&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=4605418&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=2819613&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=10208122&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=4605419&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=4691529&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=6350456&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=8346037&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=5859642&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=8018087&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=11143171&pre=&suf=&sa=0
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the mutual information each gene pair provided and selected the gene pairs with a 

causal regulatory interaction between them. The mutual information for causally 

interacting gene pairs was not significantly higher than non-causal genes for the ten or 

100 gene data set (Figure 3.5C-D). This result indicates that the statistical relationships 

between genes that are not directly causal prevent differentiation of causal and non-

causally related genes on the basis of predictive power, even in a noiseless simulation. 

While the rank distribution in the ten gene set is slightly shifted towards lower ranks, this 

shift is not nearly sufficient to reliably distinguish these gene pairs from non-causal ones. 

This result may help explain the difficulties the field of gene network inference has 

encountered. 

 In order to determine whether this result was based on the specifics of our 

simulation model or would also occur in other biologically-driven simulation frameworks 

models, we assessed whether the information between causally related genes was 

higher when using the BoolODE simulation (Pratapa et al. 2020). BoolODE takes a 

causal regulatory network as input and uses the regulatory relationships to parameterize 

a set of ordinary or stochastic differential equations to simulate single-cell gene 

expression values. We simulated 2000 cells from two different causal regulatory 

networks provided by BoolODE (Pratapa et al. 2020): one derived from studies of 

Gonadal Sex Determination (GSD) and the other designed to produce a trifurcation in 

cell lineage. In both of these simulations, the mutual information between a pair of genes 

was again insufficient to reliably distinguish causal gene pairs (Figure 3.6). While the 

GSD simulation does show a slightly higher proportion of causal gene pairs with high 

mutual information ranks, many of the causal gene pairs are still very low ranked, 

preventing robust causal inference for these gene pairs. The trifurcation simulation 

https://sciwheel.com/work/citation?ids=8018087&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=8018087&pre=&suf=&sa=0
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shows very little bias in rank distribution for the causal genes pairs, indicating there is 

nearly no signal distinguishing these gene pairs from random gene pairs. Taken 

together, the results from the MOMS simulation and BoolODE simulation suggest causal 

inference of direct mechanism from single-cell RNA-seq datasets may not be possible 

for a large subset of genes because the statistical relationship between expression 

values does not distinguish causally related and correlated gene pairs even in the clean 

simulated cases presented here. 

 

3.5 Discussion 

 We present a mechanistic simulation of cell states across epigenetic, 

transcriptomic, and proteomic cell states, MOMS. MOMS includes parameters for 

splicing rate and degradation of genes, allowing the impact of these to be assessed. The 

simulations we have presented indicate that degradation rate parameters are 

substantially more impactful on the long term RNA and protein expression rate than 

splicing rate, though perturbations of either parameter have observable impacts on 

expression.  

 We examined the relationships between the expression values of RNAs and their 

corresponding proteins in order to determine if the proposed simulation matched reports 

from cells of frequent low correlations between these pairs. We did find a wide array of 

correlations between corresponding RNA and protein pairs, including many near or even 

below zero. This result suggests that our simulation captures important regulatory 

features that give rise to those dynamics in vivo. Additionally, the simulation provides 

explanations for how this phenomena can occur. Frequently, we find it is observed due 
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to the overwhelming influence of another gene that obfuscates the relationship because 

protein or RNA expression is most strongly influenced by the other protein. 

One limitation of MOMS is that it supplies output at discrete time intervals rather 

than allowing for continuous assessment of cell states. However, this choice allows for a 

highly computationally efficient simulation relative to a continuous model. For the 

purpose of allowing many simulations across many cells to be performed under many 

different perturbation conditions, we believe this tradeoff will often be worthwhile. 

  We further investigated the ability to distinguish correlation from causation 

using simulated RNA data. By randomly sampling cells from simulations over time (to 

approximate how scRNA-seq captures single time points of RNA expression) we find 

that causal gene pairs often have lower mutual information between them than other 

non-causal gene pairs. We further validated this result using a different type of 

simulation, BoolODE (Pratapa et al. 2020). Taken together, the inability to distinguish 

causal from non-causal gene pairs even in simulated data sets with a ground truth 

suggests robust causal gene network inference using only single cell RNA-seq count 

matrices as input may be subject to pervasive inaccuracies. 

  

 

  

  

 

 

 

 

https://sciwheel.com/work/citation?ids=8018087&pre=&suf=&sa=0
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Figure 3.1 – Overview of the Mechanistic Links and Parameters Incorporated in the 

Simulation 

The simulation software proposed simulates genes with two copies that are accessible 

or not. The simulation accounts for baseline transcription rate and concentration of 

transcription factors when assessing whether transcription of a gene occurs. The RNA in 

the nucleus is then spliced before maturing to cytosolic mRNA which can be translated 

into protein, which can feedback onto the DNA as transcription factors or epigenetic 

regulators. Protein can additionally feedback on itself as a translational inhibitor or 

degradation factor. Otherwise, RNA and protein degradation occurs according to its half-

life. 

 



97 

 



98 

Figure 3.2 Impact of Random Seed and Initial Conditions on Simulation of RNA and 

Protein Levels 

A Spliced RNA counts and protein expression of a baseline ten gene simulation over 

1000 time points. B Spliced RNA counts and protein expression with a different random 

seed than A. C Spliced RNA counts and protein expression with a different set of initial 

conditions from A. 
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Figure 3.3 Impact of Changing Splicing Rate and Half Life Parameters 
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A Spliced RNA counts and protein expression after changing splicing rate of each gene. 

B Spliced RNA counts and protein expression after changing protein degradation rate of 

each gene. C Spliced RNA counts and protein expression after changing RNA 

degradation rate of each gene. 
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Figure 3.4 Impact of Perturbations of RNA and Protein Expression Levels over Time 

A Spliced RNA counts and protein expression if gene 1 (blue) is set to an epigenetically 

repressed state after t=50. B Spliced RNA counts and protein expression if gene 1 (blue) 
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is prevented from transcribing after t=50. C Spliced RNA counts and protein expression 

if gene 1 (blue) is set to zero every 100 time points. 
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Figure 3.5 Correlation and Information between RNA and Proteins 

A Histogram of the correlation of each corresponding RNA-protein pair across 100 ten 

gene simulations. B Histogram of the median correlation of each simulation between 

each corresponding RNA-protein pair across 100 ten gene simulations. C Histogram of 

the mutual information rank among all genes provided by each causal gene pair among 

100 ten gene simulations. D Histogram of the mutual information rank among all genes 

provided by each causal gene pair among 100 hundred gene simulations. 
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Figure 3.6 Mutual Information Between Causal Gene Pairs in BoolODE 
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A Histogram of the mutual information rank of causally related gene pairs compared to 

all gene possible gene pairs for each gene in the BoolODE GSD simulation across 2000 

cells. B Histogram of the mutual information rank of causally related gene pairs 

compared to all gene possible gene pairs for each gene in the BoolODE trifurcation 

simulation across 2000 cells. 
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Chapter 4 

 

Evaluating the impact of age on immune 

checkpoint therapy biomarkers 

 

Introduction 

The association of cancer incidence with age is well established and the 

phenomenon of age-related immune decline has been recognized for even longer 

(Gardner, 1980). Mutations and DNA methylation has been shown to accumulate with 

age and drive carcinogenesis (Tomasetti et al., 2017), (Horvath, 2013), (Klutstein et al., 

2017), (Xie et al., 2018). Recent research has highlighted the specific changes that 

contribute to the general decline of the immune system that occurs as individuals age 

(Aw et al., 2007). Understanding the effect such alterations have on the anti-tumor 

immune response is critical for the informed development and application of 

immunotherapies to elderly patients.  

Outside the context of cancer, older individuals are generally observed to have 

less effective immune responses to disease (Gardner, 1980). This observation is 

commonly associated with systemic immune aging. In particular, loss of T cell receptor 

(TCR) diversity (Britanova et al., 2014), decreased capacity of cytotoxic cells (Solana 
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and Mariani, 2000), and increased inflammatory signaling (Franceschi et al., 2000) have 

been identified as age-related immune changes. These studies note the potential 

significance of these forms of immune aging on cancer, and indeed systemic immune 

aging has received considerable attention in the context of its effect on cancer 

development and progression (Fulop et al., 2017).  Still, the potential translation of these 

findings to cancer therapeutics and patient care requires further comprehensive 

evaluation of the interplay between systemic immunity and the tumor immune 

microenvironment resulting from aging, particularly in the context of immunotherapy. In 

spite of the general immune decline associated with aging, the majority of clinical trial 

analyses suggest that elderly patients experience no reduced benefit or even increased 

benefit as compared to younger patients on ICB therapies (Kugel et al., 2018), (Elias et 

al., 2018), (Jain et al., 2019). However, there is still some contention on this point (Daste 

et al., 2017) and elderly patients are less likely to be treated with ICB therapies than their 

younger counterparts (Hurez et al., 2018), (Jain et al., 2019).  

High-throughput molecular data from atlas studies provide new opportunities to 

comprehensively characterize the immune landscape of tumors (Thorsson et al., 2018), 

and are now sufficiently powered to evaluate aging-related changes (Wu et al., 2019), 

(Shah et al., 2020), (Chatsirisupachai et al., 2021). This study leverages genomics and 

clinical data from 9,523 patients across 31 cancer types from the Cancer Genome Atlas 

(TCGA),  37,961 patients across 8 cancer types from the Genomics Evidence Neoplasia 

Information Exchange (GENIE), 15,557 patients with breast, colon, or head and neck 

cancers from Caris Life Sciences (CLS), and 1,818 patients with breast cancer from 

Molecular Taxonomy of Breast Cancer (METABRIC), as well as genomics data from a 

pan-tissue reference of 948 non-cancer individuals from the Genotype-Tissue 
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Expression project (GTEx) (see Supplemental Data for a summary of patient 

characteristics in each cohort) to evaluate such age related changes in the tumor 

immune landscape. Because the immune microenvironment mediates ICB response, we 

focus our analysis of these these large-scale data to evaluate the impact of aging on the 

molecular and cellular biomarkers of ICB response, such as PDL1 expression (Patel and 

Kurzrock, 2015), tumor mutational burden (TMB) (Yarchoan et al., 2017), (Goodman et 

al., 2017), cell type composition of the ITME (Frankel et al., 2017), TCR diversity (Han et 

al., 2020), expression of other immune checkpoint genes (Taube, 2014), and expression 

of inflammation-related pathways such as interferon gamma (Cristescu et al., 2018), 

(Higgs et al., 2018) and TGFβ signaling (Tauriello et al., 2018). We further compile these 

analyses into a web application Cancer Associations with Molecular Aging (CAMA) to 

allow for further customized analyses of the cellular and molecular pathways altered with 

age pan-cancer. Our analyses from CAMA in the context of ICB biomarkers suggests 

that the aged ITME upregulates major pathways associated with immune response, 

although additional indicators of immune decline warrant future prospective clinical 

studies to provide databases of combined genomics and clinical data in order to directly 

evaluate the impact of age on the ITME in the context of ICB response.   

 

4.1 Tumor mutational burden increases with age in most cancers, while T cell 

receptor diversity decreases 

The large number of public domain genomics datasets from primary tumors and 

normal tissue in the literature provides the opportunity to characterize the impact of age 

on the ITME and ICB biomarkers. Due to the widespread use of tumor mutational burden 



110 

(TMB) as a primary clinical biomarker of ICB therapy (Yarchoan et al., 2017), (Goodman 

et al., 2017), we first examine the relationship of TMB with patient age. As has been 

previously reported among TCGA samples (Chalmers et al., 2017), (Qing et al., 2020), 

we find TMB significantly increases with patient age at diagnosis (1.02% increase per 

year of age, p < 1 x 10-16) (Figure 4.1A) pan-cancer in TCGA when modeling cancer type 

as a covariate. This association is further observed within most cancer types (Figure 

4.1B-C), although both lung adenocarcinomas (-1.31% per year, q = 0.0072) and uterine 

carcinomas (-2.02% per year, q = 0.0022) demonstrate decreased tumor mutational 

burden with age. To validate these findings, we also investigate the relationship of age 

and TMB within the larger mutational data set provided by GENIE for eight ICB-

approved cancer types. This analysis identifies a significant increase in TMB with age in 

all eight cohorts (Figure 4.1D-E). In contrast to TCGA, non-small cell lung cancer 

samples in the GENIE cohort show a small increase in TMB with age (0.2% increase per 

year, q = 6.13 x 10-4).  We further identify significant increases in TMB among elderly 

CLS patients with colorectal and breast cancer (q = 4.92 x 10-15 and q = 6.39 x 10-11 

respectively). In contrast to TCGA and GENIE, the null hypothesis is not rejected in 

HPV-negative head and neck cancers (q-value = 0.244). These results provide a robust 

indication of TMB increases with age across most if not all ICB approved cancer types. 

The canonical interpretation of TMB as a biomarker for ICB therapy is that more 

mutations generally implies more immunogenic mutations, which in turn makes it more 

likely for an antigen to be displayed via MHC I that T cells are able to recognize, allowing 

them to target the corresponding tumor cells. Another factor in the likelihood of this 

recognition event is the number of antigens T cells infiltrating the tumor are able to 

https://sciwheel.com/work/citation?ids=4099280&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=8908750&pre=&suf=&sa=0
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recognize, defined by the TCR sequence carried by each T cell. The overall decline in 

the total number of unique TCR clones as part of the normal aging process (Yager et al., 

2008), (Britanova et al., 2014), (Egorov et al., 2018) is well established in the literature. 

The process of thymic involution (the loss of thymus tissue with age) eventually ends the 

production of naive T cells and is the major driver of normal age-related decreases in T 

cell clonality (Aspinall and Andrew, 2000). However, the impact of carcinogenesis on 

age-related T cell clonality has not been fully characterized. To quantify aging-related 

changes in TCR clonality specific to the ITME, we leveraged estimates of TCR 

sequences previously generated with the miTCR algorithm (Bolotin et al., 2013) by 

(Thorsson et al., 2018) from RNA-seq data in TCGA to determine the association 

between TCR clonality and age. We define our metric of clonal diversity as the Shannon 

entropy multiplied by the number of unique clones divided by the total number of TCR 

sequencing reads to correct for variation in total number of T cells in each tumor sample. 

We determine that this TCR clonality measure significantly decreases with age for pan-

cancer TCGA samples, including cancer type as a covariate (-0.0051 normalized 

Shannon entropy per year; p = 1.48 x 10-8) (Figure 4.1F), corresponding to a 0.26% 

predicted decrease per year in tumor TCR clonality relative to the mean normalized 

Shannon entropy of 1.95 observed pan-cancer. Among individual cancer types, we 

observe a significant increase in TCR clonality with age in patients with lung 

adenocarcinoma (0.013 per year; q = 3.99 x 10-3) and significant decreases in patients 

with breast (-0.01 per year; q = 2.63 x 10-3), uterine (-0.012 per year; q = 0.011), 

melanoma (-0.015 per year; q = 3.99 x 10-3), and gastric cancer (-0.01 per year; q = 

0.040). These results indicate a general decrease in TCR clonality with age, though not 

necessarily a uniform one across cancer types. 

https://sciwheel.com/work/citation?ids=1148097&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=1148097&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=3781043&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=6248482&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=7923366&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=5423502&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=5048820&pre=&suf=&sa=0
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4.2 Age correlates with ICB related gene expression among both patients with 

cancer and normal individuals 

In addition to TMB and TCR clonality as biomarkers of ICB therapies, immune 

checkpoint gene expression can also be used as a biomarker for specific inhibitors. 

PDL1 expression is an established clinical biomarker to predict patient response to anti-

PD1/PDL1 treatment (Patel and Kurzrock, 2015). More broadly, the efficacy of ICB 

immunotherapy is linked to the expression of target genes and their complementary 

receptors such as PD1, PDL1, CTLA4, CD80, and CD86 (Taube, 2014), as well as to 

associated genes such as PDL2, JAK2, LAG3, HAVCR2, TGFB1, and CXCL9 (Conway 

et al., 2018). While the expression of these genes is important for the efficacy of ICB 

therapy, their expression as a function of ageing has not been studied. In order to 

understand the relationship of the expression of these genes and age, we performed 

differential expression analysis in both TCGA and CLS tumor samples, as well as normal 

GTEx tissue samples.  

In TCGA, we identify that of these listed genes, PDL1, CD80, HAVCR2, LAG3, 

PDL2, and CXCL9 expression significantly increases with age (Figure 4.2A, p-values 

and effect sizes provided in Table 4.2), including cancer type as a covariate.  We 

compare these findings to reference non-cancer samples from GTEx to assess whether 

there is any age-associated expression change in these genes in normal tissues (Figure 

4.2A). As in the cancer tissue samples in TCGA, PDL1, HAVCR2, LAG3, PDL2, and 

TGFB1 expression significantly increases with age among GTEx normal samples pan-

tissue, while JAK2 significantly decreases and no significant change is identified in CD86 

https://sciwheel.com/work/citation?ids=93169&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=8903190&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=6174649&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=6174649&pre=&suf=&sa=0
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expression.  CTLA4 and CD80 are very lowly detected across samples in GTEx and 

therefore do not enable comparison (see Methods). These results indicate that the gene 

expression differences observed in tumor samples are likely largely the result of the 

systemic effects of aging, possibly involving the higher levels of inflammation that have 

been reported in older individuals (Fulop et al., 2017), (Kovtonyuk et al., 2016). 

We further investigate age-related changes in expression of these genes within 

each cancer type in CLS, TCGA, and METABRIC. Analysis of the CLS cohorts of 

colorectal, head and neck, and breast cancers identifies a significant increase in PDL1 

expression via immunohistochemistry (q = 1.03 x 10-9), as well as increases in HAVCR2 

(q = 0.0077), LAG3 (q = 7 x 10-4), and PDL2 (q = 0.0357) RNA expression in colorectal 

cancer in elderly patients (Figure 4.2B) and a significant increase in LAG3 expression (q 

= 0.0112) in patients with HPV-negative head and neck cancer (Figure 4.2C), while no 

significant changes in immune checkpoint gene expression were identified in the breast 

cancer cohort (Figure 4.2D). We identify significantly increased expression of PDL2 and 

CXCL9 in lung adenocarcinoma with age in TCGA. Head and neck, colorectal 

adenocarcinomas, and gastric cancer tumors in TCGA also demonstrate increased age-

related expression trends in PDL1 although they do not reach statistical significance, 

while melanoma, breast, bladder, and kidney cancers do not show any age-related 

association. We note that some TCGA studies have relatively low numbers of patient 

RNA-seq samples, limiting the statistical power of subtype-specific analyses, particularly 

when evaluating two highly heterogeneous variables (age and cancer type). Finally, we 

evaluate differential expression with patient age among METABRIC breast cancer 

https://sciwheel.com/work/citation?ids=5675888&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=3348176&pre=&suf=&sa=0
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samples and identify a significant decrease in CD80 expression (q = 0.044), and no 

significant differences in the other immune checkpoint related genes assayed with age. 

 

Gene set enrichment indicates age-related signaling changes in pathways associated 

with ICB response 

To further evaluate the role of transcriptional regulation on ICB biomarkers, we 

performed additional analysis of several molecular pathways that have been shown to 

predict patient response to ICB therapies, including high  Interferon Gamma signaling 

(Higgs et al., 2018), low TGFβ signaling (Tauriello et al., 2018), (Mariathasan et al., 

2018), and low WNT pathway signaling (Xiao et al., 2018). These pathways are 

indicative of an immunostimulatory and immune-inhibitory tumor microenvironment, 

respectively. To determine if the expression of any of these pathways is altered with 

patient age, we perform differential expression and GO term enrichment on both TCGA 

tumor samples and GTEx normal samples. We observe increased enrichment of the 

GO_RESPONSE_TO_INTERFERON_GAMMA term in both TCGA tumors (normalized 

effect size (NES) = 2.05; q = 1.19 x 10-3) and GTEx normal (NES = 2.37; q = 2.84 x 10-3)  

samples with increasing age, decreased 

GO_RESPONSE_TO_TRANSFORMING_GROWTH_FACTOR_BETA in TCGA tumors 

(NES = -2.11; q = 1.03 x 10-3), decreased signaling through the 

GO_CANONICAL_WNT_SIGNALING_PATHWAY in TCGA tumors (NES = -2.00; q = 

1.03 x 10-3), and decreased 

GO_POSITIVE_REGULATION_OF_CANONICAL_WNT_SIGNALING_PATHWAY in 
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both TCGA tumors (NES = -1.57; q = 0.021) and GTEx normals (NES = -1.69; q = 5.64 x 

10-3) (Figure 4.3A).  

We further sought to evaluate the impact of aging on these pathways within 

cancer types. Of particular note, we observe increased enrichment of Interferon Gamma 

signaling terms with age in most ICB-approved cancers: including colon, esophageal, 

head and neck, kidney, lung, and gastric cancer cohorts (Figure 4.3B). However, in 

melanoma and breast cancer cohorts interferon gamma signaling significantly decreases 

with age, and bladder cancers demonstrate no significant difference (Figure 4.3B). We 

identify decreased TGFβ signaling in breast, kidney, and gastric cancers, increased 

TGFβ signaling in lung and bladder cancers, and no significant change in the other 

aforementioned cohorts (Supplemental Figure 4.4A). We additionally observe decreased 

WNT signaling terms in breast, esophageal, kidney, melanoma, and gastric cohorts, 

increased signaling in lung and bladder cancers, and no significant change in colon and 

head and neck cohorts (Supplemental Figure 4.4B). While these results display 

heterogeneity in the relationship of age and the expression of tumor immune pathways, 

they suggest a general shift towards a more immunostimulatory signaling environment in 

older patients in most ICB-approved cancer types, which would be expected to improve 

response to ICB therapies. The similar association identified in the normal tissues 

corresponding to these tumor types from GTEx data further indicates that this shift may 

relate to the general increase in inflammation that has been repeatedly linked to 

biological aging (Kovtonyuk et al., 2016), (Fulop et al., 2017), (Franceschi et al., 2000). 

 

https://sciwheel.com/work/citation?ids=3348176&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=5675888&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=1216707&pre=&suf=&sa=0
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4.3 Age related changes in promoter methylation align with most of the observed 

shifts in gene and pathway expression 

Due to previous work suggesting that DNA methylation regulates tumor 

expression of PDL1 (Asgarova et al., 2018), (Micevic et al., 2019), we hypothesize that, 

to the extent the observed expression increases in immune checkpoint genes occur 

within individual cancer types, they are driven by changes in DNA methylation. We 

leverage merged 450k and 27k methylation array data from TCGA (Thorsson et al., 

2018) and use Illumina methylation array mappings to annotate CpGs to the promoters 

of specific genes. We find that of two probes annotated to the PDL1 promoter region, 

methylation of one of the probes significantly decreases with age pan-cancer (q = 3.27 x 

10-10; -0.3% of mean probe intensity per year of age), while the other does not 

demonstrate any significant change (q = 0.232). Methylation of CpGs annotated to the 

promoters of LAG3, CTLA4, CD86, CD80, and HAVCR2 also decreases with age pan-

cancer (Table 4.2). One CpG annotated to the TGFβ promoter is hypermethylated with 

age, while another has no significant change (Table 4.2). No CpGs within this data were 

annotated to CXCL9. We further investigate CpG methylation within individual cancer 

types. Similar to the gene expression patterns, we observe considerable heterogeneity 

in this data across cancer types. While most cancers approved for ICB therapy have 

decreasing promoter methylation trends with age among the majority of these CpGs, 

many do not reach statistical significance. However, both gastric and esophageal 

cancers demonstrate significant decreases in promoter methylation of PDL1 and CD86 

with increasing age.  

https://sciwheel.com/work/citation?ids=8869321&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=8869319&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=5048820&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=5048820&pre=&suf=&sa=0
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We additionally investigate whether age-related promoter methylation appears in 

concordance with observed changes in pathway expression pan-cancer in TCGA 

samples. While there is no significant change in methylation of gene promoters 

annotated to the GO_RESPONSE_TO_INTERFERON_GAMMA term (q = 0.663), 

GO_RESPONSE_TO_TRANSFORMING_GROWTH_FACTOR_BETA promoter 

methylation increases with age (NES = 1.97, q = 4.36 x 10-4), as does 

GO_CANONICAL_WNT_SIGNALING_PATHWAY (NES = 2.05, q = 4.36 x 10-4). These 

promoter methylation increases are concordant with the observed expression decreases 

of these pathways with increasing age. Taken together, these results suggest that age 

related methylation changes, as have been reported to occur in normal aging and 

oncogenesis (Easwaran and Baylin, 2019), (Easwaran et al., 2012), (Horvath, 2013), 

may drive some of the observed age-related expression-related changes in ICB therapy 

biomarkers. 

 

4.4 Deconvolution of immune cell type abundance in tumor samples reveals an 

age-related decrease in T cell abundance and increase in macrophage abundance  

Ultimately, ICB response relies on the balance between cellular subtypes 

contributing to immune attack and immunosuppression in the ITME. As a result, the 

immune cell infiltrate of the tumor microenvironment has been shown to be associated 

with response to ICB therapies, particularly the relative infiltration of T cells and NK cells 

with macrophages and MDSCs (Frankel et al., 2017). The large number of primary 

tumor transcriptional profiles across disease subtypes available from TCGA provides a 

unique cohort to estimate the impact of age on tumor immune cell composition. We 

https://sciwheel.com/work/citation?ids=8963650&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=150570&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=30669&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=5187033&pre=&suf=&sa=0
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apply the MIXTURE immune cell type deconvolution algorithm (Fernández et al., 2020) 

to infer the absolute proportions of immune cell types from RNA-sequencing data 

derived from pan-cancer TCGA samples. The algorithm provides an absolute proportion 

which describes the portion of total immune content that a particular immune cell type 

makes up in a sample, but is normalized to be comparable across all samples in the 

data set by multiplying the inferred relative proportion by a scaling factor that measures 

the total immune content in the sample. We then fit a linear model with age, including 

cancer type and patient sex as covariates, for each immune cell type to assess changes 

in immune cell infiltration as patients age. We find that overall T cell abundance slightly 

but significantly decreases with age in the ITME (-6.03 x 10-4 per year; mean proportion 

0.198; q-value = 0.00175) while macrophages slightly but significantly increase in 

abundance (1.08 x 10-3 per year; mean proportion 0.662; q = 4.45 x 10-4). Detectable 

changes in the infiltration of NK cells, Dendritic cells, B cells, and other myeloid 

populations do not occur with age pan-cancer. 

To compare the effect of aging in the ITME to that on the immune cell 

compositions of normal tissues, we applied MIXTURE to GTEx consortium RNA-

sequencing data of post-mortem samples from individuals without cancer (GTEx 

Consortium et al., 2017) to infer cell type abundance across tissues. These results 

provide a non-cancer baseline for immune changes that occur across many individuals 

of varying ages to compare with our observations from tumor data. Similar to our TCGA 

and METABRIC analyses, we fit a linear model to each cell type in order to determine 

associations between cell type abundance and age both across and within normal 

tissues. In contrast to our findings in the pan-cancer ITME, in pan-tissue analyses we 

https://sciwheel.com/work/citation?ids=11006307&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=4345863&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=4345863&pre=&suf=&sa=0
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observe a significant increase in overall T cell absolute proportion with age (8.97 x 10-4 

per year; mean proportion 0.106; q = 0.001). We further fail to find significant changes in 

macrophage levels (q = 0.870) with age. Additionally, we observe increases in NK cell 

proportion (0.0019 per year; 0.062 mean proportion; q = 5.13 x 10-14) and decreases in 

other myeloid cell (monocytes, mast cells, eosinophils, neutrophils) (-0.0018 per year; 

0.470 mean proportion; q = 0.0235) proportion that were not found among TCGA tumor 

samples. Recall that each effect size must be evaluated relative to the average 

proportion of immune infiltrate that cell type makes up (e.g. NK cells are expected to 

increase in abundance 153% over 50 years of life on average, while myeloid cells are 

expected to decrease only 19% over that same period despite essentially the same 

absolute proportion change per year). These results indicate differences between 

systemic immune aging and the effects of age on immune tumor infiltrate. Most notably, 

a very large systemic increase in NK cell abundance does not appear to be reflected in 

the tumors of older patients.  

To determine the variance in age-related effects that occur within different cancer 

types, we then evaluate the association between age and immune composition for each 

cancer type with at least 100 samples that could be successfully deconvoluted by the 

MIXTURE algorithm. Non-significant deconvolution is generally due to a low content of 

the immune cells the algorithm searches for, and with this filtering only 8 tumor types in 

TCGA have over 100 samples after filtering. While several cancer types demonstrate 

age-related trends in T cell and macrophage abundance, these are only found to be 

statistically significant in breast cancers (Figure 4.4A). To determine if these results are 

robust across cohorts and whether lack of statistical significance in some cancer types is 
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related to a lack of statistical power, we further examine large breast, head and neck, 

and colon cancer cohorts produced by CLS. As methodological validation, a different 

immune cell type deconvolution program, quanTIseq (Finotello et al., 2019), was used to 

estimate cell type abundance from RNA-seq data. Among 6,462 patients with breast 

cancer, a significant increase in M2 macrophage infiltration was identified with increasing 

age, while no significant difference was observed among infiltrating T cell abundance 

(Figure 4.4B). In contrast, within 7924 patients with colorectal cancer and 527 patients 

with HPV-negative head and neck cancer, no significant differences in macrophage or T 

cell immune cell fraction are observed. We further investigate this association among 

1,818 METABRIC patients with breast cancer, again using MIXTURE for immune cell 

type deconvolution. We identify a similar decrease in T cell abundance with age (-6.57 x 

10-4 per year; mean proportion 0.268; q = 0.00188) and increase in Macrophage 

abundance with age (1.38 x 10-3 per year; mean proportion 0.45; q = 8.21 x 10-9) (Figure 

4.4C), as well as a significant decrease in B cell abundance (4.22 x 10-4 per year; mean 

proportion 0.0554; q = 8.51 x 10-4) that we did not observe in TCGA breast cancer data. 

This analysis thus identifies age-related macrophage proportion increases with patient 

age across three different breast cancer cohorts (TCGA, METABRIC, and CLS) using 

two different computational microdissection methods. 

 

4.5 Patient age associates with little to no detectable difference in survival 

outcomes after ICB treatment 

While the genomics datasets we have examined can help uncover the molecular 

and cellular pathways of mechanistic biomarkers for ICB that are altered by age, they 

https://sciwheel.com/work/citation?ids=7048348&pre=&suf=&sa=0
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cannot directly evaluate therapeutic response. Previous analyses of the impact of age on 

ICB therapeutic efficacy in clinical trials (Kugel et al., 2018), (Elias et al., 2018), (Daste et 

al., 2017), (Jain et al., 2019) have remarked on the limited numbers of older patients 

treated with ICB available for their analyses, and the need for further investigation of this 

subject. To provide additional insight into this question, we investigate the relationship 

between age and outcome. A recently published cohort of anti-PD-1 treated patients with 

renal cell carcinoma (Braun et al., 2020) had age available for 985 patients along with 

progression free survival (PFS) and overall survival (OS). We identify no statistically 

significant difference in progression free survival (PFS) or overall survival (OS) with age 

both based on a log rank test (p = 0.25 and p = 0.29, respectively) and multivariate cox 

proportional hazards analysis (HR = 0.994 [0.987-1.001], p = 0.09 and HR = 1.001 

[0.994-1.009], p = 0.72, respectively), including sex, number of prior therapies, and 

metastatic origin as covariates.  We also investigate survival differences in 11,888 ICB 

treated patients with melanoma, lung, kidney, head and neck, or urothelial cancers 

collected by the United States Department of Veterans Affairs (USVA) (La et al., 2020). 

A multivariate Cox proportional hazards model fit for overall patient survival, including 

cancer type and sex as covariates, identifies a statistically significant reduction in overall 

survival, of small effect size, for patients with increasing age (HR = 1.005 [1.001-1.009], 

p = 0.01). 

 

4.6 High-throughput molecular databases inform an atlas of immune aging in 

cancer and healthy tissues 

https://sciwheel.com/work/citation?ids=5423736&pre=&suf=&sa=0
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Understanding the impact of patient age on likelihood of response to 

immunotherapies is a subject of clear clinical relevance and investigating relevant 

biomarkers of said response forms the central focus of this work. Still, the 

comprehensive analysis of these data was based on general characterization of aging-

related molecular shifts in tumors and the tumor microenvironment. To that end, we 

provide a web application containing these results to enable custom analyses of the 

relationship of age to molecular changes genome-wide: http://www.lab-

apps.onc.jhmi.edu/CAMAAtlas. The Cancer Associations with Molecular Aging (CAMA) 

atlas is informed from analysis of 9,523 patients across 31 cancer types from TCGA, 

37,961 patients across 8 cancer types from GENIE, 1,818 patients with breast cancer 

from METABRIC, and a pan-tissue reference of 948 non-cancer individuals from GTEx.   

Briefly, the web-based application includes distinct panels for each of the 

analyses of distinct molecular modalities and datasets, based upon the data that are 

available from each cohort. The application allows for exploration of associations of TMB 

with age by cancer subtype in both TCGA and GENIE. The application further allows for 

customized evaluation of tumor-subtype changes relative to tissue-specific changes in 

gene expression through differential expression analyses in TCGA and GTEx, 

respectively. While the analyses presented in this study are limited to gene expression 

changes in ICB biomarkers, the CAMA web-application allows users to search for genes 

of interest across the entire genome allowing for evaluation of further age-related 

changes in the immune context and beyond. The application allows for further evaluation 

of the regulatory changes associated with these transcriptional alterations through GO 

enrichment analysis (TCGA and GTEx) and DNA methylation changes with patient age 

http://www.lab-apps.onc.jhmi.edu/CAMAAtlas
http://www.lab-apps.onc.jhmi.edu/CAMAAtlas
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(TCGA). The CAMA atlas is thus intended to act as an initial resource for further studies 

of the relationship between molecular features of cancers and aging. The relationship of 

a particular molecular feature (gene expression, gene promoter methylation, pathway 

enrichment, cell type abundance) with age can be queried by individual cancer type or 

across cancers.  This atlas is meant to provide a resource that broadly characterizes 

cancer genomic associations with patient age and can be used to perform customized 

analyses. These relationships are often available in multiple cohorts, allowing for 

computational validation of identified associations. 

  

4.7 Discussion of age related shifts in tumor molecular enivironment 

This study presents an atlas of age-related shifts in the genomic, transcriptomic, 

and immune tumor environment. The effect of patient age on tumor characteristics has 

not been thoroughly explored in most cancer types. Here we analyze genomics and 

clinical databases from a total of 77,732 cancer patients with 31 different cancer types to 

generally characterize relevant associations between age and these molecular markers, 

which we provide the broad results of as the CAMA atlas http://www.lab-

apps.onc.jhmi.edu/CAMAAtlas.  

We hypothesize that the relationship between age and cancer makes 

understanding the impact of aging on cellular and molecular pathways an important 

consideration for precision medicine. Indeed, the general link between increased age 

and reduced immune effectiveness has naturally inspired caution and concern about the 

treatment of elderly patients with ICB therapies. Therefore, in this study, we leverage 

http://www.lab-apps.onc.jhmi.edu/CAMAAtlas
http://www.lab-apps.onc.jhmi.edu/CAMAAtlas


124 

multiple large-scale cancer genomic cohorts to characterize the impact of age on 

established ICB biomarkers and contextualize previous clinical findings that older 

patients counterintuitively experience either no reduced benefit or increased benefit from 

ICB immunotherapies as compared to younger patients (Kugel et al., 2018), (Elias et al., 

2018), (Jain et al., 2019). Our analysis identifies several possible explanations for these 

data based on currently established and developing predictors of ICB response. Patient 

age at diagnosis is associated with increases among several biomarkers associated with 

effective ICB response, including notably increased TMB, increased expression and 

decreased promoter methylation of immune checkpoint genes, increased Interferon 

Gamma signaling, decreased TGFβ signaling, and decreased canonical WNT signaling. 

The induction of these immunostimulatory biomarkers may be related to normal 

mutational accumulation with age, the increased inflammation that has been observed in 

normal systemic aging(Kovtonyuk et al., 2016), (Fulop et al., 2017), (Franceschi et al., 

2000), and previously identified age-related methylation changes (Easwaran and Baylin, 

2019), (Easwaran et al., 2012), (Horvath, 2013). Expected to act in opposition to these 

immune effects, we observe concurrent features of immunosuppression with age such 

as decreased TCR diversity and T cell infiltration as well as increased macrophage 

abundance, in some cancer types. However, it is critical to note that the effect size of 

TCR decreases with age in pan-cancer is quite small (on average a -0.26% change per 

year of age). Further, the decrease in T cell abundance and increase in macrophage 

abundance is not only small (on average, -0.3% and 0.16% change per year, 

respectively), it is also only statistically significant in one individual cancer type - breast. 

Altogether, these results support an adapting immune landscape with age that 

nonetheless retains characteristics associated with effective ICB response. Nonetheless, 

https://sciwheel.com/work/citation?ids=5423736&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=8828438&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=8828438&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=8973163&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=3348176&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=5675888&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=1216707&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=1216707&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=8963650&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=8963650&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=150570&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=30669&pre=&suf=&sa=0
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we note that all results of this work are correlative and thus a large-scale prospective 

study collecting genomics for immunotherapy treated elderly patients is warranted to 

generate a causal understanding of the effects of age on the immune response to 

cancer. 

We complement our molecular studies with corresponding analysis of patient 

outcomes from large scale clinical databases for two large cohorts of ICB treated 

patients containing patients across an array of ages. Among the renal cell carcinoma 

cohort published by (Braun et al., 2020) we identify no significant difference in 

progression free survival or overall survival with age, supporting the results of previous 

clinical studies. However, among a large group of patients collected by the USVA, we 

find a small decrease in overall survival with age. It is notable that this slight overall 

survival difference observed could be related to general age-related frailty rather than 

differences in immunological efficacy. This point is supported by previous work published 

on this USVA cohort, which showed that a frailty status assessment considerably better 

differentiated therapeutic response in each cancer type than did patient age (La et al., 

2020). The immunological biomarkers assessed in this study further support the 

interpretation that most of the small worsening in survival outcomes sometimes 

observed for older patients is the result of increased systemic frailty rather than 

decreased efficacy of the therapy itself. Future large-scale cohort studies of aged 

populations with combined outcomes, frailty measures, and genomics data are critical to 

fully delineate the relative impact of frailty and functional mechanisms of ICB response 

on its efficacy in the elderly population.  

https://sciwheel.com/work/citation?ids=8983173&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=10294078&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=10294078&pre=&suf=&sa=0
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This study additionally includes normal tissues in our analyses in order to 

understand whether the associations noted appear to be a normal consequence of age 

or an interaction between aging and tumor biology. The associations established 

between age and ICB biomarkers largely recapitulate in GTEx normal samples (ICB 

gene expression, immune pathway enrichment), or, when not assessed here, have 

already been thoroughly established in the literature (TCR diversity (Aspinall and 

Andrew, 2000), (Yager et al., 2008), (Britanova et al., 2014), (Egorov et al., 2018), 

mutational accumulation (Morley, 1998)). The major exception identified to this 

concordance between tumor and normal aging is the large increase in NK cells with age 

in normal tissues, which has been previously identified in the literature (Solana and 

Mariani, 2000), (Gounder et al., 2018). This NK cell increase is not observed pan-cancer 

and is only observed in one cancer type cohort studied, Caris breast, where there was 

only a ~5% increase on average between the youngest and the oldest patients, 

compared to a ~150% increase in GTEx samples. This result suggests that while NK cell 

proportion increases with age, they either are not able to proportionately respond to 

immune stimuli and infiltrate into the aged tumor tissues or that aging biology interacts 

with tumor biology to inhibit the infiltration of NK cells. NK cells have been shown to play 

a significant role in ICB efficacy and general tumor immunity (Shimasaki et al., 2020), 

(Freeman et al., 2019), (Lo et al., 2020), (Jhunjhunwala et al., 2021) and thus this 

observation may be therapeutically relevant, particularly if these accumulated NK cells 

can be stimulated to infiltrate the tumors of elderly patients.  

Beyond their relevance to ICB alone, the molecular and cellular changes inferred 

from the CAMA atlas may support selection of precision medicine strategies based on 

https://sciwheel.com/work/citation?ids=7923366&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=7923366&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=1148097&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=3781043&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=6248482&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=4341843&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=7923073&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=7923073&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=7911440&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=8070901&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=7452904&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=9006914&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=10648004&pre=&suf=&sa=0
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molecular and cellular changes in elderly patients. For example, we identify macrophage 

increases with age in 3 different breast cancer cohorts (TCGA-BRCA, METABRIC, CLS-

Breast) with two different computational microdissection methods (MIXTURE and 

quanTIseq). Combination therapeutics to target immunosuppressive cells are emerging 

as a common therapeutic approach to sensitize tumors to immunotherapies. For 

example, there are several strategies currently in development to target tumor-

associated macrophages (Chanmee et al., 2014),(Poh and Ernst, 2018),(Lee et al., 

2019). These results suggest that elderly patients with breast cancer may be particularly 

promising candidates for these therapies. Thus, characterizing age-related changes in 

these distinct cellular populations in the tumor microenvironment can further illuminate 

combination therapeutic strategies specific for elderly patients.    

To ensure that our data was sufficiently powered to analyze aging-related effects of 

tumors and their microenvironments, we leverage large scale databases that contain 

predominantly bulk profiling technologies. It is important to note the limitations of bulk 

expression data for some of the analyses in this work. Notably, our aging-related 

analyses of cell types relies on computational microdissection to provide estimates of 

proportional representation on each cell type in each sample studied. However, these 

techniques are only effective for samples with substantial immune infiltration, limiting the 

number of tumors that could be included in this analysis. Moreover, these bulk data do 

not enable discovery of cell-type specific molecular pathways that are altered by aging. 

Some computational methods have been developed to attempt to regress out effects of 

individual cell types on bulk expression data to perform such cell-type specific differential 

expression analysis. However, these techniques will be confounded in cases in which 
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immune genes also serve as cell type markers, limiting the applicability of these 

techniques for the analyses in our atlas. A further limitation of computational 

microdissection methods used is that they estimate cell type abundance, but not cell 

state. Single cell data is essential to further evaluate immune cell functionality and 

quality in the ITME. While large-scale single cell studies of aging have been generated in 

healthy tissue for mouse models (Tabula Muris Consortium, 2020), to date these studies 

are for small cohorts in tumors that are not sufficiently powered to identify immune cell 

state transitions associated with aging. Therefore, future single-cell pan-cancer 

characterization from projects such as the Human Tumor Atlas Network (Rozenblatt-

Rosen et al., 2020) will be critical to validate these results and further expand our atlas 

to delineate the role that aging-related changes to immune cell function play in cancer.  

4.8 Methodological Details 

Method Details 

RNA-Sequencing Data 

TCGA RNA-sequencing data processed and normalized according to 

https://docs.gdc.cancer.gov/Data/Bioinformatics_Pipelines/Expression_mRNA_Pipeline/ 

was downloaded from the GDC Data Portal on August 8th, 2019, filtering for all TCGA 

samples with patients above 30 years of age. Patients under 30 were excluded to focus 

on ITME changes in adult populations, which are more likely to generalize to the majority 

of cancer patients.  

https://sciwheel.com/work/citation?ids=9285886&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=8693741&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=8693741&pre=&suf=&sa=0
https://docs.gdc.cancer.gov/Data/Bioinformatics_Pipelines/Expression_mRNA_Pipeline/
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GTEx RNA-sequencing counts version 8 were downloaded from the GTEx Portal 

on November 12th, 2019. Only individuals over 30 were included in the final analysis, to 

be comparable with filtering of TCGA.  

METABRIC RNA-seq counts were downloaded from cBioPortal on October 20th, 

2020 as provided by (Pereira et al., 2016).  

 

TMB Data 

To find the association of patient age and number of tumor mutations we 

downloaded the mutation counts provided for each sample pan-cancer in TCGA from the 

GDC data portal on August 8th, 2019. GENIE TMB counts were downloaded from the 

GDC data portal for all patients with cancers on January 13th, 2021. 

 

TCR Clonality Data 

TCR clonality was estimated from TCGA RNA-seq data using the miTCR 

algorithm (Bolotin et al., 2013), as previously published by (Thorsson et al., 2018). 

These data were published publicly on the GDC data portal and downloaded from the 

link provided in the Key Resources Table for use in this study. 

 

DNA Methylation Data 

https://sciwheel.com/work/citation?ids=1476786&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=5423502&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=5048820&pre=&suf=&sa=0
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Merged 450k and 27k DNA methylation array data preprocessed by (Thorsson et 

al., 2018) were published on the GDC data portal and downloaded from the link provided 

in the Key Resources Table for use in this study. 

All statistical analyses were performed using R version 4.0.2. Statistical 

significance is evaluated as p < 0.05 after the Bonferroni-Hochberg procedure was 

applied in cases of multiple hypothesis testing. 

Modeling the Age Associations of Number of Tumor Mutations and Normalized TCR 

Clonality 

We transformed the TMB counts data with a natural log, which we used to fit a 

log linear model and Cox proportional hazards model, using cancer type as a covariate 

in the log linear model and cancer type and age at diagnosis as covariates for the Cox 

model. We additionally fit log linear models between TMB and patient diagnosis age 

within each TCGA cancer type study. 

TCR clonality is assessed using miTCR (Bolotin et al., 2013) results previously 

published by Thorsson et al., 2018 (Thorsson et al., 2018). Our immune cell type 

deconvolution results demonstrate there may be decreased infiltration of T cells with 

increasing age, so to avoid biasing our results, the Shannon Entropy is multiplied by the 

number of unique TCR clones divided by the total number of TCR reads.  We then fit a 

linear model for the association of age with this TCR clonality measure, including patient 

sex and cancer type as covariates. We again use a Cox Proportional hazards model to 

assess if normalized Shannon entropy is a relevant survival prognostic, using the same 

survival function and covariates as described above. We additionally fit linear models 

https://sciwheel.com/work/citation?ids=5048820&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=5048820&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=5423502&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=5048820&pre=&suf=&sa=0
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between normalized Shannon entropy and patient diagnosis age within each TCGA 

cancer type study. 

 

Differential Expression Analysis with Age 

Differential expression analyses from both TCGA and GTEx data were performed 

on all samples from individuals of at least 30 years of age. The R edgeR package 

version 3.30.3 was used for normalization and identification of differentially expressed 

genes with age. Age at diagnosis was modeled as a continuous variable, including 

cancer type as a covariate for the TCGA analysis and tissue type as a covariate for the 

GTEx analysis. Immune cell type proportions were included as covariates in each 

analysis to account for age-related differences in abundance. Genes were considered 

differentially expressed below an FDR adjusted p-value of 0.05. Differential expression 

analysis for diagnosis age was analogously performed on each cancer type separately 

that had at least 100 samples, though cancer type was naturally no longer included as a 

covariate.  

 

Gene Set Enrichment Analysis 

The fgsea R package version 1.14.0 (Sergushichev, 2016) was used to perform 

gene set enrichment analysis from differential expression results with age from TCGA 

and GTEx, produced as described above. GO terms were downloaded from MsigDB 

(Liberzon et al., 2011) using the msigdbr R package Version 7.2.1. GO enrichment was 

https://sciwheel.com/work/citation?ids=3880002&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=171548&pre=&suf=&sa=0
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determined for all terms both pan-cancer and within each TCGA cancer type study and 

terms related to Interferon Gamma, TGFβ, and WNT were visualized.  

 

Differential Methylation Analysis with Age 

Merged 450k and 27k DNA methylation array data was used to examine the 

relationship between age and DNA mathylation. A linear model for diagnosis age was fit 

using R version 4.0.2 to data from each CpG, including cancer type as a covariate. CpG 

methylation was considered significantly different with age if the FDR adjusted p-value 

for the diagnosis age term was less than 0.05. Annotations of CpG sites to gene 

promoters were retrieved from the IlluminaHumanMethylation27k.db R package Version 

1.4.8. The same process was repeated among each TCGA cancer type study, using a 

linear model between each CpG and patient diagnosis age. Gene set enrichment 

analysis was performed by using the differentially methylated CpGs that are annotated 

to gene promoters. This analysis was performed as described above using the R fgsea 

package version 1.14.0 (Sergushichev, 2016). 

 

Immune Cell Type Deconvolution from Bulk RNA-Sequencing Data 

The MIXTURE algorithm (Fernández et al., 2020) builds on the nu-Support 

Vector Regression framework used by CIBERSORT (Newman et al., 2015) for particular 

use with noisy tumor samples. MIXTURE applies Recursive Feature Selection to make 

the cell type deconvolution more robust to noise and collinearity, and was thus designed 

to improve performance on tumor data.  

https://sciwheel.com/work/citation?ids=3880002&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=11006307&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=400488&pre=&suf=&sa=0
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We run MIXTURE using a population-based null distribution and the nu-SVM 

Robust RFE method on the preprocessed RNA-sequencing data from both TCGA and 

GTEx. A signature expression matrix (LM22 from Newman et al) (Newman et al., 2015) 

is used to determine the proportion of 22 immune cell types in each sample. MIXTURE 

returns both relative and absolute proportions of immune cells. Absolute proportions 

were used for all analyses of TCGA and GTEx datasets. MIXTURE provides a p-value 

for the cell type deconvolution performed. Only samples with a deconvolution p-value 

less than 0.05 were used in the final analyses, leaving 3576 patient samples remaining 

in TCGA and 1689 in GTEx. A further 29 TCGA patients had received treatment prior to 

sample collection, and were removed to avoid biasing of results. 

 

Modeling the Association of Immune Cell Type with Age 

Linear models are fit to investigate the association between the absolute 

proportion of each immune cell type and the initial diagnosis age in TCGA. The models 

are fit separately for each cancer type as well as jointly with cancer type and patient sex 

as covariates. Significance is assessed using Benjamini-Hochberg FDR correction for 

multiple testing across all cell types tested. 

Higher order cell types are defined by adding together individual substituent cell 

type values and dividing by the sum of all cell types, the result of which is used as the 

predictor variable in the linear model. 

GTEx data was similarly analyzed using linear models, including sex and tissue 

type as covariates. 

https://sciwheel.com/work/citation?ids=400488&pre=&suf=&sa=0
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Survival Modeling for Patient Age among Braun et al. 2020 and USVA cohorts 

We fit multivariate Cox proportional hazards models to survival data from 985 

anti-PD1 treated patients with renal cell carcinoma collected by Braun et al. 2020 (using 

progression free survival and overall survival data provide in Supplementary Table 1 of 

Braun et al. 2020) and to 11,888 ICB treated patients with melanoma, lung, kidney, head 

and neck, or urothelial cancers, collected by the United States Department of Veteran 

Affairs. This model was fit using the R survival package version 3.1-12.  We additionally 

produce Kaplan-Meier survival curves based on the Braun et al., 2020 data set, 

separating the curves into 65 and under and 66 and older age groups for each data set. 

These curves were fit using the R survival package version 3.1-12 and the R survminer 

package version 0.4.8. 

 

Caris Life Sciences Data and Analyses 

15,557 Caris samples were analyzed using next-generation sequencing 

(NextSeq, 592 Genes and WES, NovaSEQ), IHC and WTS (NovaSeq) (Caris Life 

Sciences, Phoenix, AZ). PD-L1 expression was tested by IHC using 28-8 and 22c3 

(Agilent) and SP-142 (Spring Biosciences) (positive cut-off >1% for CRC and HNC, >5% 

for BC). TMB was measured by totaling somatic mutations per tumor. Immune 

checkpoint gene expression was normalized to the median expression in the lowest age 

quartile. Immune cell fraction was calculated by quanTIseq (Finotello et al., 2019). 

Immunotherapy biomarkers, immune checkpoint gene expression and immune cell 

https://sciwheel.com/work/citation?ids=7048348&pre=&suf=&sa=0
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fraction was compared across four age quartiles. Median transcripts per million (TPM) 

were normalized to the median TPM value in quartile 1. Statistical significance was 

determined using chi-square and Wilcoxon rank sum test and adjusted for multiple 

comparisons using the Benjamini-Hochberg procedure. 
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Figures 
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Figure 4.1 - TMB generally increases and TCR diversity decreases with patient age at 

diagnosis 

A Scatterplot of log2 tumor mutational burden by patient diagnosis age pan-cancer in 

TCGA data. The linear trend predicted by a multivariate linear model that includes 

cancer type as a covariate is shown. B Barplot of the negative log10 p-values for the age 

term of linear models fit for TMB in each TCGA cancer type study. C Barplot of the 

coefficient estimates per year for the age term of linear models fit for each TCGA cancer 

type study. Positive coefficients indicate increased mutational burden with increasing 

age. D Barplot of the negative log10 p-values for the age term of linear models fit for 

TMB within eight cancer types commonly treated with ICB therapies, data from GENIE. 

E Barplot of the coefficient estimates per year for the age term of linear models fit for 

TMB within eight cancer types commonly treated with ICB therapies in data from GENIE. 

F Scatterplot of normalized Shannon Entropy of TCR sequences by patient diagnosis 

age pan-cancer in TCGA data. The linear trend predicted by a multivariate linear model 

that includes cancer type as a covariate is shown. 
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Figure 4.2 - Patient age at diagnosis correlates with increased expression of immune 

checkpoint genes in some cancer types 

A Dotplot of differential expression statistics for immune checkpoint therapy related 

genes with age. Compares results from pan-cancer TCGA samples and pan-tissue 

GTEx samples. B Caris Life Sciences colorectal cancer cohort PDL1 

immunohistochemistry (top) and immune checkpoint gene expression data in median 

transcripts per million (bottom). * indicates a FDR adjusted p-value  less than 0.05. C 
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Caris Life Sciences HPV-negative head and neck cancer cohort PDL1 

immunohistochemistry (top) and immune checkpoint gene expression data in median 

transcripts per million (bottom). * indicates a FDR adjusted p-value  less than 0.05. D 

Caris Life Sciences breast cancer cohort PDL1 immunohistochemistry (top) and immune 

checkpoint gene expression data in median transcripts per million (bottom). 
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Figure 4.3 - Patient age associates with a more immune stimulatory signaling tumor 

microenvironment 

A Dotplot of gene set enrichment results pan-cancer in TCGA and pan-tissue in GTEx 

for Interferon Gamma, TGFβ, and canonical WNT pathways. B Heatmap of estimated 

effect sizes for gene set enrichment across TCGA studies for all Interferon Gamma 
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related GO terms. Positive values indicate increased enrichment with increasing age. * 

indicates a FDR adjusted p-value  less than 0.05. 

 

Figure 4.4 - Macrophage infiltration increases with age in patients with breast cancer  

A Heatmap displaying the effect size coefficient estimates from linear models fit between 

immune cell type absolute proportion and patient age in each TCGA cancer type study. 

Green squares represent an increase in abundance of that immune cell type with 

increasing age, white represents no change, and blue a decrease. * Indicates a FDR-

adjusted p-value < 0.05. B Violin plots from the Caris Life Sciences breast cancer cohort 
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(n = 6462) corresponding to tumor infiltrating immune cell fraction across different age 

groups among M2 Macrophages and T cells. * Indicates a FDR-adjusted p-value < 0.05. 

C Violin plots from 1,818 patients with breast cancer from METABRIC, comparing T cell 

and macrophage absolute proportion across patient age groups. * Indicates a FDR-

adjusted p-value < 0.05. 

 

Tables 

Gene LogFC (per 

year) 

t-statistic p-value q-value 

CXCL9 0.007 3.945 0.001 0.003 

PDL2 0.004 3.380 0.001 0.004 

LAG3 0.004 3.187 0.001 0.007 

CD80 0.004 3.002 0.003 0.012 

HAVCR2 0.003 2.642 0.008 0.028 

PDL1 0.003 2.612 0.009 0.030 

CD86 0.002 2.131 0.033 0.083 

TGFB1 -0.002 -2.070 0.039 0.094 

CTLA4 -0.001 -0.575 0.566 0.693 

JAK2 0.000 -0.563 0.574 0.700 

PD1 -0.001 -0.421 0.674 0.779 
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Table 4.1 – Differential expression of immune checkpoint genes by age in TCGA  

Differential expression results for immune checkpoint genes and immune checkpoint 

related genes pan-cancer in TCGA. The results are shown for the association with 

patient diagnosis age, including cancer type as a covariate. Note that LogFC is log fold 

change for each year of age. 

 

CpG Gene 

Estimate 

(per year) t-statistic p-value q-value 

CpG 

island? 

cg01107031 TGFB1 0.000218 3.326 0.000881 0.00303 yes 

cg16883145 TGFB1 -2.73 x 10-5 -0.644 0.519 0.662 yes 

cg04387658 CD86 -0.000984 -7.101 1.31 x 10-12 2.39 x 10-11 yes 

cg08460026 CTLA4 -0.000638 -3.888 0.000101 0.000433 no 

cg17484237 HAVCR2 -0.000810 -5.845 5.19 x 10-9 5.10 x 10-8 no 

cg21572897 CD80 -0.000526 -4.385 1.17 x 10-5 6.01 x 10-5 no 

cg26956535 LAG3 -0.000114 -2.468 0.0135 0.0343 no 

cg01820374 LAG3 -0.000410 -4.219 2.47 x 10-5 0.000119 no 

cg02823866 CD274 -2.08 x 10-5 -1.512 0.130 0.232 yes 

cg19724470 CD274 -0.000894 -6.701 2.17 x 10-11 3.27 x 10-10 no 

 

Table 4.2 – Promoter methylation of ICB related genes by age in TCGA 

Table of the linear relationships between methylation of all CpGs annotated to ICB 

related gene promoters to patient diagnosis age in TCGA data. Results are pan-cancer 
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from a multivariate linear model that included cancer type as a covariate. Note that effect 

size estimates are per year of age at diagnosis. 

 Estimate 

(per year) 

t-statistic p-value q-value 

T cells -0.0006 -3.44233 0.000585 0.001754 

Macrophages 0.001075 3.967909 7.42 x 10-5 0.000445 

B cells -0.00028 -1.87737 0.060566 0.121131 

NK cells 3.82 x 10-6 0.055398 0.955826 0.955826 

Dendritic 

cells 

-0.00015 -1.49017 0.136286 0.204429 

Misc. 

Myeloid 

-4.97 x 10-5 -0.50055 0.616722 0.740066 

 

Table 4.3 – Immune cell type proportion by age in TCGA 

Coefficients, statistics, p, and q-values for the diagnosis age term in the linear model fit 

for each immune cell type in TCGA data pan-cancer. Cancer type and sex were included 

as covariates for each of these models. Note that estimated coefficients are per 

additional year of age at diagnosis. 
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Chapter 5  

 

Conclusions 

 

 This thesis explores the extent to which genomics data can be used to predict 

causal mechanism and future cellular genomics states. A major ideal of computational 

biology is being able to identify causality, mechanistic hypotheses, and putative 

therapeutic targets directly from the data. However, such efforts have often not delivered 

on these promises. I identify fundamental limitations in the application of gene network 

inference methods to single-cell RNA-seq data sets based on the observation that direct 

causally linked genes do not necessarily provide more predictive information about their 

targets than other, non-causal genes provide. I demonstrate this problem using multiple 

types of simulated single-cell RNA-seq data sets and the results conform strongly to 

observations regarding the inability of gene network inference methods to reliably 

distinguish direct mechanism from correlation in biological data sets. 

 While the predictive information contained in single-cell RNA-seq data does not 

allow for direct mechanism to be reliably inferred, there is considerable predictive 

information about the expression of other genes in single-cell RNA-seq data sets. I 

proposed methodology to predict future RNA expression levels within the same single-
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cell using metabolic labeling single-cell RNA-seq to generate two time points with which 

to train a neural network predictor. This method, RNAForecaster, is capable of 

accurately predicting future expression levels over short time periods, including in the 

case of perturbations unobserved in the training data and can do so without reliance on 

a lower dimensional embedding that would require the choice of somewhat arbitrary 

parameters. RNAForecaster provides a proof of principle for that future RNA expression 

states of cells, even those that are not observed in the input data, are estimable in the 

short term. While metabolic labeling single-cell RNA-seq is currently a niche type of 

data, more data types with temporal resolution seem likely to be necessary to more 

reliably answer the questions of mechanistic inference that this thesis has discussed, 

which in turn may increase the applicability of RNAForecaster. 
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