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Abstract

Recent advances in natural language processing have focused on applying and

adapting large pretrained language models to specific tasks. These models, such

as BERT (Devlin et al., 2019) and BART (Lewis et al., 2020a), are pretrained on

massive amounts of unlabeled text across a variety of domains. The impact of these

pretrained models is visible in the task of entity linking, where a mention of an

entity in unstructured text is matched to the relevant entry in a knowledge base.

State-of-the-art linkers, such as Wu et al. (2020) and De Cao et al. (2021), leverage

pretrained models as a foundation for their systems. However, these models are also

trained on large amounts of annotated data, which is crucial to their performance.

Often these large datasets consist of domains that are easily annotated, such as

Wikipedia or newswire text. However, tailoring NLP tools to a narrow variety of

textual domains severely restricts their use in the real world.

Many other domains, such as medicine or law, do not have large amounts of

entity linking annotations available. Entity linking, which serves to bridge the gap

between massive unstructured amounts of text and structured repositories of knowledge,
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is equally crucial in these domains. Yet tools trained on newswire or Wikipedia

annotations are unlikely to be well-suited for identifying medical conditions mentioned

in clinical notes. As most annotation efforts focus on English, similar challenges can

be noted in building systems for non-English text. There is often a relatively small

amount of annotated data in these domains. With this being the case, looking to other

types of domain-specific data, such as unannotated text or highly-curated structured

knowledge bases, is often required. In these settings, it is crucial to translate lessons

taken from tools tailored for high-annotation domains into algorithms that are suited

for low-annotation domains. This requires both leveraging broader types of data and

understanding the unique challenges present in each domain.

Primary Reader and Advisor: Mark Dredze

Secondary Readers: James Mayfield & Tom Lippincott
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CHAPTER 1. INTRODUCTION

In domains as disparate as College Football to Medicine, a great deal of effort has

been undertaken to organize and structure domain knowledge. Such structured sources

of data, known as knowledge bases (KB), are created to organize concepts and objects

into structures that can be interpreted by human beings or automated processes.

These typically consist of entries of domain-driven entities or concepts with supporting

metadata, such as definitions, and relationships between entries. Knowledge bases

allow for users to reference information about a topic – for example, that heart attack

is formally known as Myocardial Infarction, caused by a disruption of the flow of

blood to the heart, and is a generalization of more specific medical conditions such as

Acute myocardial infarction. This can be useful for both domain experts, who might

be looking for specific pieces of information, or for novices, who might be looking to

understand complex pieces of information.

However, the structured nature of this information can leave it susceptible to

being isolated from the vast amount of unstructured text available. This can include

documents that discuss information that should be added to a knowledge base by the

curators of the KB. More consequentially, consumers of unstructured text need to

manually refer to information in the knowledge base. In the case of a single document,

this might be straightforward. However, understanding what structured data is being

discussed in a large corpus is significantly more challenging. For example, how often

is Myocardial Infarction discussed in a set of medical documents?

Entity linking, also known as named entity normalization, is a task within natural
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language processing (NLP) that seeks to bridge this gap between unstructured text

and structured data. For each mention of a concept or entity within an unstructured

document, entity linking seeks to identify which, if any, knowledge base entry refers

to the same entity as the mention. This allows for an end user to be provided with an

automatic reference to information about an entity mentioned in the text (e.g. 2010

Rose Bowl). Further, entity linking can identify mentions of concepts or entities at a

macro level, understanding trends within corpora. Finally, entity linking can provide

useful signal to other NLP tasks, such as information retrieval (Dalton et al., 2014; P.

et al., 2015; Tan et al., 2017; Cornolti et al., 2016; Blanco et al., 2015) and question

answering (Khalid et al., 2008).

There has been a vast amount of work in entity linking, resulting in systems

that achieve high levels of performance (Wu et al., 2020; De Cao et al., 2021) on a

variety of datasets. However, this line of work tends to focus on datasets with similar

characteristics. First, most entity linking systems use Wikipedia as a knowledge

base, which restricts the entities studied and the type of information used to what is

available in Wikipedia. Second, the unstructured text is often Wikipedia or Newswire,

which tends to be written more formally than other forms of documents. Finally, both

the knowledge bases and documents are usually English-language exclusively. While

this serves as a useful common point for research, this leaves a large amount of linking

tasks under-addressed.

Designing high-performance linking systems in low-annotation domains requires
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understanding where big data architectures can be best leveraged while still leveraging

alternative domain-specific sources of data. Accomplishing this requires a multi-prong

approach. First, in almost all cases, the amount of training data for linking in other

domains is far less than in the standard setting (e.g. (Wu et al., 2020) uses 9 million

entity linking annotations for training, compared to 1, 964 in a clinical linking dataset

(Pradhan et al., 2013)). In some cases, related annotations can be used to provide

additional training signal. In others, we must look to strategies that can be applied to

settings with smaller amounts of annotations, such as leveraging unstructured text

or training on structured data. Finally, understanding how linkers can be forced to

learn generalized patterns that transfer to examples unseen in training is crucial in all

linking settings but is critical in low-annotation settings.

This dissertation is structured as follows. In the background chapter, the task

of entity linking is introduced in detail in Chapter 2.1, followed by background on

standard entity linking models (Chapter 2.2 and 2.2.2). Applications beyond the

standard entity linking settings are introduced in Chapter 2.3, and discussion of

available datasets is detailed in Chapter 2.4.

Next, in Chapter 3, the task of cross-language entity linking is explored, with a

specific focus on the zero-shot setting, where there is no in-language entity linking

annotations available. This is an example of a setting where a linker needs to be

trained on alternative annotations, and we must look to related annotations and other

sources of data, such as popularity, to design a high-quality linker. Chapter 4 focuses
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on the related task of multi-language entity linking, where English-language entity

linking annotations to English knowledge bases are used to train linkers deployed

to sets of documents and knowledge bases in other languages. This builds upon the

findings of the previous work, but also shows how unannotated text can also be used to

improve linkers in low- or no-annotation settings. Both sections highlight the need to

focus on more challenging entity matches. An approach to better handling challenging

entity matches is discussed in Chapter 5. This linker augments an entity linker trained

on massive amounts of data with information from the knowledge base, which helps

correctly match challenging mentions.

While work that can be applied broadly within entity linking is useful, sometimes

domain-specific methods are required. The importance of this is highlighted in Chapter

6, which first shows that entity linkers trained on Wikipedia and other common data

sources do not transfer well to medical text. Therefore, a clinical linker, which can

leverage the large number of synonyms available within a medical KB, is a more

promising solution. Chapter 7 details a triage system that can support high linking

performance in medical text for neural linking systems. Similar to the previous chapter,

we find that the use of data sources unique to medicine improves performance over

domain-general approaches. Finally, in Chapter 8, we explore how to improve finding

synonyms within unstructured text as their inclusion is shown to improve performance

in nearly all settings. In both cases, Finally, high-level conclusions are discussed, and

future directions for this line of work are hypothesized.
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2.1 Entity Linking

Structured sources of data, known as knowledge bases (KB), are created to organize

concepts and objects into structures that can be interpreted by human beings. However,

their utility is limited when not connected to the vast amount of unstructured text

that exists in the world. Bridging the gap between unstructured and structured

data allows for information to flow in each direction – consumers of text can refer to

relevant structured data, and unstructured text can highlight important additions to

the structured space. Within the field of natural language processing (NLP), the most

common task in connecting the two sources is called entity linking.

The task of entity linking, also known as named entity disambiguation, automates

the process of matching mentions of entities within the unstructured text to a relevant

entry in a knowledge base. An entity is a real-world object that has formalized

attributes, such as a name and description, present within a knowledge base. The

various types of entities can be very broad and subject to constraints specified during

the creation of a dataset or knowledge base. However, in the field of natural language

processing, they fall commonly into select high-level types, such as Persons, Places,

Geo-Political Entities, and Organizations. To understand the task, it is important to

highlight the two most important resources for entity linking. First, how are knowledge

bases commonly structured, and what data is available in them? Second, how are

entities commonly discussed in free text?
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Two of the
party’s European
representatives voted
against the motion
backing current
measures against
the extremist group

name The European Union

Alt. names E.U., Europe ...

desc. The European Union (EU) is a political
and economic union of member states
that are located primarily in Europe...

types Supranational unions, Trade Blocs,
Political systems, ...

relations Capital: Brussels, ...

Figure 2.1: An example entity linking annotation taken from the TAC 2015 Training
set. The sentence includes a mention of European, which is a reference to the entity
The European Union.

2.1.1 Knowledge Bases

A knowledge base collects entities into a single database and models relations

between entities. Depending on the nature of the knowledge base, the breadth of

entities present can be very narrow, such as a knowledge base about College Football,

or very broad, such as DBPedia (Auer et al., 2007). Within a knowledge base, each

entity often contains several different categories of information. In almost all cases,

an entity within a KB will have a formalized, or preferred name. As highlighted in

the example in Figure 2.1, in addition to the formalized name (European Union)

there is often also alternative names, which can include acronyms (E.U.), or more

informal shortened phrases (Europe). This synonym information is vital, as entities

are frequently not referred to by their formalized names.

Descriptions or definitions, which are longer sections of free text related to the

entity, are also often included. These longer sections of text can provide context
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explaining what the entity refers to, and helps to disambiguate between similar

entities. These can range from a sentence to an entire article, depending on the

knowledge base. Additionally, some knowledge bases define other attributes, such as

Foundation Date for the entity European Union, which provide additional context.

Importantly, knowledge bases model how entities are related by providing structured

information. At the entity level, this is usually in the form of type information. Types

are a category that describes a coherent set of entities. The variety of types present

within a knowledge base can also vary by domain, but they are often very granular.

In many knowledge bases, entities are likely to have multiple types. For example,

the entity European Union in DBPedia is labeled with types Political System and

Confederation, while a broader set of types might only label it as a Geopolitical entity.

Finally, knowledge bases contain relational information between entities. A

relation defines how two entities are connected. This often takes the form of a

defined relationship between two entities, which can be unidirectional or bidirectional.

For example, the relation of Capital between European Union and Brussels is

unidirectional, while the relation of Spouse between Barack Obama and Michelle

Obama is bidirectional. These relationships create a graph within the knowledge base,

which illustrates which entities are similar to each other as defined by the knowledge

graph creators.
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2.1.2 Entities in Text

While knowledge bases attempt to reflect how entities are used in the real world,

an author may use a variety of ways to refer to an entity. A reference to an entity

within unstructured text is referred to as an entity mention (or, simply mention). In

more formal text, it may be the case that they use the normalized entity name or

an alternative name within the knowledge base. In a newswire article, an author is

likely to refer to the entity European Union using its formalized name at least once,

for example. However, it is often the case that the surface forms within text do not

exactly match, and are not included in the knowledge base. This includes mentions

that are partial matches (the Union), or complete rephrasing (the Superstate). While

depending on the setting, generally pronouns are not considered named entities, as

they would require resolving the mention to which the pronoun refers. For example, in

the sentence Its cornerstone is the Customs Union,1 the word its refers to European

Union, but it is not named and therefore is outside the task scope.

Often, entity linking is a separate task from named entity recognition (NER, also

known as mention detection), which locates spans of text within a document that

are named entities. While a linker could consider whether all noun phrases in the

document can link to the knowledge base, that would create a large number of entities

to consider. Named entity recognition systems are trained to specifically identify

named entities and often provide high-level type information. While often considered

1https://en.wikipedia.org/wiki/European_Union
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a preceding step to an entity linking system, sometimes these two tasks are modeled

jointly (Stern et al., 2012; Martins et al., 2019). In some cases, a mention identified

by a NER system may not have a relevant entry in the knowledge base yet. These

are often referred to as NIL mentions and may signify that information needs to be

added to the knowledge base. The related task of NIL clustering (Li et al., 2011) seeks

to cluster mentions that refer to the same entity, which serves as a useful basis for

a creation of a new entity. Additionally, a closely related task is that of coreference

resolution. This process attempts to identify mentions that refer to the same concept

or entity within a single document. This can be useful in identifying which mentions

should be linked to the same entity. Cross-document coreference extends this idea to

identifying mentions across a set of documents. In both cases, however, the mentions

are not resolved to the knowledge base as in entity linking.

2.1.3 Task setup

Entity linking is often modeled as a two-step process. As some knowledge bases can

contain millions of entities, it can be expensive to apply accurate but computationally

slower algorithms to all entities. Therefore, many linkers first focus on candidate

selection (also known as candidate generation or triage step). This produces a

manageable set of candidate entities to consider using a more complex reranking

process. The candidate selection step is focused on speed and recall, while the

reranking process tends to focus on accuracy, even if the resulting algorithm is slower.
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The challenge of entity linking, therefore, is to use the available sources of

information – the mention and surrounding sentences from the unstructured text, and

the information present within the knowledge base, to accurately match a mention to an

entity in the knowledge base. While this usually begins with some notion of similarity

between the mention text and the entity name, resolving more challenging cases often

requires leveraging a combination of the additional context in the unstructured text

and the structured data available in the KB.

If done accurately, entity linking has the ability to unlock potential in both

unstructured and structured data. For example, identifying unstructured text related

to an entity might be a useful expansion within the knowledge base (Niu et al., 2012;

Wang et al., 2012; Ré et al., 2014; Nguyen et al., 2017). Identifying links within

unstructured text might be useful for an end user by simply providing visual references

to KB information. Entity linking can also provide signal for other natural language

processing tasks, such as information retrieval (Dalton et al., 2014; P. et al., 2015;

Tan et al., 2017; Cornolti et al., 2016; Blanco et al., 2015) and question answering

(Khalid et al., 2008).

2.1.4 Common Challenges

If a mention in the text uses the exact normalized entity name, and there is no

other similarly named entity in the knowledge base, the linking task is very simple.

For example, if instead of the mention European, the author had written out European
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Union, we easily identify the relevant knowledge base entry via an exact match to the

formal entity name European Union. However, given the variety of ways of referring

to an entity, and the relatedness of entities within the knowledge base, more advanced

algorithms are often required to find the correct link.

Some of these arise from the text itself – authors do not always refer to entities

formally, and these paraphrasings are not always listed in a knowledge base. The

example mention European is an example of a partial match. While this can be

lexically matched to the entity name European Union, this could also be matched

to other entities in the knowledge base, such as European Parliament or European

Space Agency. Abbreviations are also common, such as E.U., which if not listed in the

knowledge base are challenging to resolve. Finally, nicknames or other paraphrasing

can lead to mentions that have no clear lexical relation to the entity name, such

as the mention Supermax and the entity ADX Florence. In some knowledge bases,

alternative names include these more informal phrasings. If not, an entity linker must

use other sources to resolve these links correctly.

Alternatively, ambiguity can arise from the knowledge base, such as when there

are closely related normalized names. Even if a mention is written formally, such as

Michael Jordan, it is a challenge to decide if the correct link is to the former basketball

player Michael Jordan, or the computer scientist Michael Jordan. In these cases,

additional information from the knowledge base, such as types or definitions, is often

relied upon to help disambiguate. Alternatively, entities that are closely related, such

13
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as European Union and European Parliament, are often even more challenging to

disambiguate, since they are likely to have similar types and relations.

Compounding these issues are cases where there are pieces of information that

are not included in the knowledge base. This can include missing information. For

example, if there are no descriptions or types present for two similar entities, linkers

must look to other sources to learn which entities are most relevant for a mention.

However, knowledge bases do not model some information. For example, the popularity

of each entity (defined as how likely an entity is to be mentioned in a text) is an

important element in selecting which entity is most appropriate. There are some

heuristics to determine this within a knowledge base, such as the number of entities

that have a relation with a given entity. However, this can vary heavily per corpus,

and other sources are likely needed to calculate an accurate entity probability.

In addition to the above problems, issues can arise from annotation decisions

made by curators of entity linking datasets (Ling et al., 2015). The curators of each

dataset often create a guide that they ask annotators to follow. The design decisions

made by the curators have a large impact on how a linker should be designed. First,

what granularity of noun phrases should be linked? Some mentions, like football, are

concepts, not named entities, but may have an appropriate link in the knowledge base.

Therefore, it may vary from dataset to dataset if anything that can be linked to a

KB is linked, or if there is a separate set of criteria, such as persons or places. An

additional problem is that of specificity – for a mention like the Super Bowl, depending

14



CHAPTER 2. BACKGROUND

on the context, it could link to a general page Super Bowl or that year’s iteration

of the event 2021 Super Bowl. Finally, many mentions are compounds of potential

entities, like Baltimore and Ohio Railroad. While many datasets are designed to

link the full compound, there are also other entities, such as Baltimore, which could

be linked. In all cases, a set of annotation guidelines could reasonably be designed

with different decisions for all of these. However, this adds a level of challenge when

designing a linker for multiple datasets.

Most modern entity linking systems rely on some form of human-annotated data

to resolve links. This reliance can lead to challenges when attempting to apply an

entity linking system trained on one domain or knowledge base to another setting.

Training data, that might have enabled a linker to correctly resolve challenging links

for specific data, may not be expansive enough to capture new patterns. While many

systems seek to learn general patterns from training data, these do not always hold

in other domains. For example, while Wikipedia contains a wide variety of links, a

system trained on Wikipedia data is unlikely to perform well on medical texts. This

can arise because of lexical variations on the entity name that might not appear in the

knowledge base, or it can arise due to the different structures of the knowledge base.

2.1.5 Early Work

Some of the earliest work in linking tasks took place in the clinical domain.

Specifically, Metamap (Aronson, 2001) is a system built to resolve mentions of clinical
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concepts to a medical ontology. Metamap focuses on leveraging resources present in

the knowledge base, such as synonyms, and uses a dictionary mapping approach to find

the most appropriate concept for a medically-related mention. Beyond clinical-specific

work, the earliest entity linking systems focused on Wikipedia. Entity linking in the

settings where each Wikipedia page serves as an entity in the knowledge base is also

commonly called Wikification. Systems such as Cucerzan (2007) and Bunescu and

Paşca (2006), leveraged the fact that Wikipedia pages contain links to other pages in

Wikipedia, and can serve as entity linking annotations.

However, only linking to pages in Wikipedia is inherently restricting, as there may

not be a relevant Wikipedia page for an important entity. Work in knowledge bases,

such as with DBpedia (Auer et al., 2007), sought to both expand the number of entities

in the knowledge base and provide additional information about the entities, such as

relations between entities, more coherently. Datasets such as those produced by shared

tasks like the Knowledge Base Population track at the Text Analytics Conference

(McNamee and Dang, 2009; Ji et al., 2010; Li et al., 2011) are linked to knowledge

bases that have expanded information compared to Wikipedia. This early work (Rao

et al., 2013; Zheng et al., 2010; Zhang et al., 2010b; Cucerzan, 2011) focused on

linking English language documents to English language knowledge bases. Systems

focused on handling challenging text matches between mentions and entity titles and

disambiguating between similar entities. The algorithms behind these approaches are

expanded on in Chapter 2.2.

16



CHAPTER 2. BACKGROUND

2.1.6 Metrics

There are several common metrics to measure how well an entity linker performs

on a corpus. Which metric is most important depends on the application. Some

linkers, such as those used in a triage system, should be focused on including the

correct entity in a larger set. By contrast, a final reranker needs the correct entity

to be the highest-scored one. All metrics over a corpus C focus on measuring the

alignment between a gold standard entity label ec and a predicted entity label ep.

Another important metric can include the 0th-indexed rank of the gold standard

entity in the predicted list, rc. This essentially meaures how well a system reproduces

the ground truth annotations. Most modern entity linkers predict an ordered list of

entities, and thus it is useful to quantify the ranking performance of a linker.

If the highest-scoring entity is of primary interest, such as with a final linker,

then accuracy or f1 makes sense as the basic metric. In these cases, a metric that

summarizes the performance of all of the examples in the corpora can be a useful

starting point. The most common of these is accuracy (or recall at 1, top-1 accuracy),

which is defined as the number of correctly predicted cases divided by the total

examples;

accuracy =

∑︁
e∈C 1{ec == ep}

|C|
(2.1)

This formulation gives a straightforward picture of overall corpus performance.

However, other metrics, such as precision and recall, have the benefit of focusing on
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entities that have a link in the knowledge base and focusing less on NIL entities.

precision =

∑︁
e∈C(1{ec == ep & ec ̸= NIL})∑︁

e∈C(1{ep ̸= NIL})
(2.2)

recall =

∑︁
e∈C(1{ec == ep & ec ̸= NIL})∑︁

e∈C(1{ec ̸= NIL})
(2.3)

F1, the harmonic mean between precision and recall, is a commonly used combination

of these two metrics.

However, in a situation like triage, the larger concern might be that the correct

entity appears in the list. In that case, accuracy at n (or recall at n, coverage at n),

where n > 1, might be more appropriate;

recall at n =

∑︁
e∈C 1{rc < n}
|C|

(2.4)

Similarly, it might be useful to understand the ranking ability of the linker beyond

the highest scoring prediction. This can be useful if the initial rank produced by a

triage is input to a second-stage linker. In this case, mean reciprocal rank (or MRR)

might be an appropriate metric;

mean reciprocal rank =

∑︁
e∈C

1
rc+1

|C|
(2.5)

MRR can be thought of as giving full credit to examples where the correct label is at

rank 0, and partial credit in all other cases.
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For any of the above metrics, the corpus size can be restricted to examples of

interest. For example, one common metric is non-NIL accuracy, which calculates

the accuracy of examples that can be linked to the knowledge base. Alternatively,

macro-level metrics can be useful, especially in datasets where there are large class

imbalances. For example, macro precision can indicate performance for a specific

entity et

macro precision(et) =

∑︁
e∈C,e==et

1{ec == ep & ec ̸= NIL}
1{ec == ep & ec ̸= NIL}+ 1{ep == NIL & ec ̸= NIL}

(2.6)

The resulting macro precision for each distinct entity et can then be averaged for a

corpus-level metric;

macro avg precision =

∑︁
et∈C macro precision(et)

|et ∈ C|
(2.7)
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2.2 Entity Linking Models

2.2.1 Non-Neural Approaches to Entity Linking

In the breadth of entity linking research prior to the advent of neural methods

(Shen et al., 2014), various machine learning methods have been used to model entity

linking. The earliest entity linking methods used heuristic approaches (Aronson,

2001), which consist of combinations of various measures of similarity. Some of the

next generation of work focused on using binary classification approaches (Cucerzan,

2007; Zhang et al., 2010a; Chen and Ji, 2011; Pilz and Paaß, 2011). Such models

predict if there is a link between a mention and each entity, and use heuristics to

resolve cases where there are multiple positive predictions. More commonly used are

learning-to-rank approaches (Bunescu and Paşca, 2006; Kulkarni et al., 2009; Zheng

et al., 2010; Dredze et al., 2010a; Chen and Ji, 2011), which are trained to produce

a ranking for a set of entities given a mention. This has the benefit of not requiring

handling multiple positive predictions and allowing the use of negative examples in

training. Most commonly, these approaches use Support Vector Machines (SVM,

Graepel, Obermayer, et al. (2000)) to learn a ranking for mentions, although other

learning-to-rank frameworks have been used.

In addition, other authors have explored probabilistic models (Han and Sun, 2011),

integer linear programming (Hajishirzi et al., 2013), structured conditional random

fields (Durrett and Klein, 2014), graph-based approaches (Pan et al., 2015), and
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unsupervised methods (Cucerzan, 2007). Lately, as discussed in Chapter 2.2.2, neural

architectures are becoming more and more prevalent.

However, across the various machine learning approaches, there are important

commonalities. First, one of the foundational elements revolves around capturing the

similarity between the mention text and entity name. While this is simple if there is a

single exact match between the mention name and an entity title, handling multiple

or partial matches, or paraphrases, is much more challenging. Second, many methods

look to additional information to augment the name similarity. This includes modeling

similarity between the textual context from the mention’s document and knowledge

base or using type, relational information from the knowledge base, or entity-specific

features (e.g. popularity).

2.2.1.1 Name Matching

Many early entity linking systems focus heavily on matching the mention string

to one or more entity names in the knowledge base. One of the earliest, Aronson

(2001), focuses on using downstream NLP tools, such as part-of-speech tagging and

stemming, to preprocess the mention and the entity name. Following this, they use the

large number of name variations included in the relevant knowledge base to generate

potential rephrasings of the mention. Using a simple scoring function that combines

four measures of similarity between the mention and the entity, the best candidate

entity is selected. This approach works well if potential abbreviations or paraphrases
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are included in the knowledge base, but struggles in cases where that is not the case.

Many other linkers (Zheng et al., 2010; Zhang et al., 2010b; Cucerzan, 2011)

include similar methods to try to resolve a mention via abbreviation expansion or

identifying if a longer form of the mention occurs elsewhere in the document. Charton

et al. (2014) builds a system that can match mentions to knowledge base titles using a

set of rules, such as generating spelling corrections and shortened names. Other work

(Cucerzan, 2007) uses large data sources, such as Wikipedia, to map potential surface

forms of entities to their normalized component. This can be done by identifying

internal Wikipedia links, and learning how an entity might be phrased in comparison

to its normalized form. With a large amount of data, many of these surface form

variations can be identified even if they are not included in the structured data. In

addition to building a lookup table, this data can be used to learn probabilistic models.

For example, Han and Sun (2011) models the probability of an entity given a surface

form from Wikipedia data.

If a linker uses a two-step approach, the candidate selection stage almost always

focuses heavily on mention - entity text similarity (Zhang et al., 2011; Han et al., 2011;

Ratinov et al., 2011; Gottipati and Jiang, 2011; Shen et al., 2012), often built from a

large data source such as Wikipedia. While at its simplest form, this can take the

form of a dictionary, where for each mention, there is a list of potential entities, many

opt for a probabilistic formulation. For example, in Ratinov et al. (2011), the authors

use two features as probabilities. The first is the fraction of the times that a given
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entity was linked from a mention form, and the second is the fraction of the times

any mention links to a given entity. While some systems rely on exact matches for

the mention, others attempt to handle cases where the dictionary mention is only a

partial match. Overall, this approach has the benefit of being computationally efficient

yet achieving a reasonable level of recall. However, this candidate selection approach

struggles to handle cases where the entity name and mention are not lexically related

and not present in the training data.

2.2.1.2 Leveraging the Document

Relying on the similarity between the mention string and the entity name does not

give a linker access to the variety of other information that may be helpful in selecting

a link. For example, many linkers also model the similarity between the mention’s

surrounding context and the entity description (Ratinov et al., 2011; Hoffart et al.,

2011; He et al., 2013). While this does not produce results that are as precise as

the mention text and entity name similarity, it enables a linker to see if an entity is

topically related to the document. For example, the words representative and voted in

Figure 2.1 likely signal that an appropriate entity would be related to politics instead

of sports. In early work (Bunescu and Paşca, 2006), this took the form of the cosine

similarity between vectors for both the document and the entity description. The

vectors were composed of term frequency-inverse document frequency (TF-IDF Jones

(1972)) values for the words present in each text.
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Other work (Guo et al., 2013; Hoffart et al., 2011; Han et al., 2011; Han and Sun,

2012; Shen et al., 2012; Stoyanov et al., 2012; Kulkarni et al., 2009; Pennacchiotti and

Pantel, 2009; Han and Sun, 2011) uses the other mentions in a document to provide

additional context. This provides a more narrow context than simply using all of

the surrounding text, and can include mentions of similar entities. This process can

include simple resolution steps, such as in Cucerzan (2007), where the authors use

coreference resolution to try and identify if a mention that uses a formalized entity

name (such as George W. Bush) can be resolved to other mentions that might use

non-standard forms (such as Bush). Further, they propose a model that maximizes

the agreement between the categories of the candidate entities in the document in

addition to the mention - entity likelihood for all potential mentions in the document

found by some NER system. For example, Ratinov et al. (2011) uses a local linking

step for all mentions in a document, which is then used to construct a broader mention

context for a document. The authors then apply a global step, which seeks to enforce

coherence between all mentions, by leveraging measures of entity relatedness.

Later work focuses on collaboratively resolving entities more selectively. The

set of all mentions in a document may be too broad of a context to disambiguate.

For example, Cassidy et al. (2012) collaboratively disambiguates mentions which

are topically related to each other. Alternatively, Cheng and Roth (2013) restricts

mentions to those that are related within the knowledge base. Within the context of a

social network, Huang et al. (2014) uses the social graph to find related mentions. Pan
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et al. (2015) seeks to formalize this approach by using abstract meaning representation.

The author’s system builds a contextual graph around both the mention and the

entity, with connections including relations within the knowledge base. Entity links

are selected by maximizing the similarity between the two graphs.

Many linkers (Stern et al., 2012; Clark and Manning, 2015; Le and Titov, 2018;

Luo et al., 2015) leverage the relatedness of other information extraction work to

jointly model two or more tasks. Commonly, this is true of entity linking and named

entity recognition, given the interconnectedness of the tasks. As entity linking relies on

a correct identification of mentions by named entity recognition, ensuring mentions are

identified accurately has a large impact on linking performance. Sil and Yates (2013)

proposes to perform a first step separately for each task which produces a larger amount

of candidate predictions for both. The second step reranks the two tasks, selecting

the predictions for each that maximize the constraints of both problems. Durrett

and Klein (2014) jointly models coreference resolution, named entity recognition, and

entity linking. In addition to a feature set specific to each task, they generate features

that model the interaction between the tasks.

2.2.1.3 Beyond the Document

Other methods include approaches revolving around how to better model the

information available within the knowledge base. One important factor is the relative

popularity of entities within a knowledge base. While the context of a mention may
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provide sufficient information to disambiguate, understanding that George W. Bush,

the former U.S. president, is more likely to occur than George Bush, the NASCAR

driver, regardless of the mention form. In the earliest entity linking work, Cucerzan

(2007) notes that the popularity of an entity is related to both the number of internal

references in the knowledge base and the length of the description (in this case, a

Wikipedia page). In some work (Han and Sun, 2011; Pennacchiotti and Pantel, 2009),

popularity is measured by how often a mention of the entity occurs in a large dataset,

looking to a broader resource to model this information. Other work (Rao et al.,

2013) uses information from search engines to model popularity. However, if new

entities emerge, or the linker is deployed the linker to new datasets that have different

popularity characteristics, the addition of popularity might worsen performance.

Structured information from the knowledge base can also enable linkers to

disambiguate between entities that have similar lexical forms. For example, if a

mention was labeled as a Person by a NER system, it would follow that an entity with

a person type would be a correct link. How these are used varies per system – for

example, Cucerzan (2007) leverage Wikipedia categories as type identifiers. Relations

can also be a useful feature, such as in Cheng and Roth (2013) and Pan et al. (2015),

which use type and relational information to model how mentions relate within a

document. Durrett and Klein (2014) jointly models type prediction and entity liking

(in addition to coreference resolution), and their approach includes features that

model the interactions between NER type predictions and the types available in the
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knowledge base. However. some work (Ling et al., 2015) reports that including NER

type information as a feature can worsen performance, especially when the types are

too fine-grained to generalize.

Many entity linking systems leverage information from search engines to attempt

to resolve entities. This can include systems that use them as the triage step (Han

and Zhao, 2009; Dredze et al., 2010a; Lehmann et al., 2010). A robust search engine,

such as Google, can more easily map between mention text and entity names that are

more complex given the larger amount of data it has available. Gottipati and Jiang

(2011) adapted information retrieval techniques such as query expansion, which seeks

to expand the context of a mention via a search engine, to the entity linking setting.

In addition to modeling what is present within a knowledge base, it is also important

to model what is not present within a knowledge base. While some approaches

(Cucerzan, 2007) do not include the ability to predict NIL labels for entities, it is an

important component of a system designed to be deployed in a real-world setting.

Early work (Bunescu and Paşca, 2006) applies a threshold approach to labeling NILs –

if for a given mention no entity is scored higher than some selected threshold score, it

is linked as NIL. Rao et al. (2013) proposed building specific feature sets for classifying

NIL entities.
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2.2.2 Neural Models

Most of the work in the previous Chapter relies on token matching approaches to

enable matching the mention to entities in the knowledge bases. This approach, while

efficient and interpretable, has several challenges. First, synonyms for entity titles

must be either present in the knowledge base or in the training data for more complex

matches to be completed. For example, the mention America likely refers to the entity

United States, but the two strings are not lexically similar. In previous work, America

would need to be included as a synonym in the knowledge base. However, structured

data is by no means comprehensive, and this leads to cases where incorrect links are

made.

In some deep learning approaches (Ganea and Hofmann, 2017; Francis-Landau

et al., 2016a; Kolitsas et al., 2018), vector space models such as Word2Vec (Mikolov

et al., 2013a) are used to bridge this gap. These pre-trained embeddings are learned via

an unsupervised approach to appropriately identify that America and United States

should have high similarity. In addition, while these embeddings are learned from an

unannotated corpus, they can be updated during model training to learn patterns

present in the target data. This approach enables more complex relationships between

texts to be identified, in either names or longer forms of text. The use of vector-space

representations was paired with a move away from SVM-based learning to rank

architectures and towards neural architectures that can leverage these representations.

In Ganea and Hofmann (2017), the authors use self-attention (Vaswani et al., 2017)
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to create contextual representations for the mention in context and the entities from

Word2Vec embeddings. The authors use a collective disambiguation approach that

is similar to the work in the previous Chapter. Relatedly, in Francis-Landau et al.

(2016a), the authors use Word2Vec embeddings to encode the mention, its surrounding

sentence, its document, and the entity title and description. The respective sequence

of embeddings is then fed through a convolutional neural network, and the resulting

representations for the mention and entity are compared by cosine similarity. In both

cases, beyond simply using vector space embeddings of text, the architectures allow

representations to be learned of larger sections of text, such as the context and the

entity description, that enable better linking performance.

Other neural work has focused on issues in entity linking beyond text representation.

Specifically, there has been work in jointly modeling entity linking and named entity

recognition Kolitsas et al. (2018). As discussed in the previous chapter, these two tasks

are naturally linked, and a neural approach allows for error in either component to be

backpropagated through the entire network. Additionally, there has been neural-based

work that has focused on better modeling type information in entity linking (Raiman

and Raiman, 2018; Onoe and Durrett, 2020). While the integration of type information

into entity linking has been explored previously, as discussed in the previous Chapter,

using neural architectures to learn type embeddings allows for better measures of

similarity between types. Some work, such as Orr et al. (2020) and Bhargav et al.

(2022), specifically focuses on using type information to resolve rarer entities.
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2.2.2.1 Contextualized Representations

However, another challenge is present in architectures that use Word2Vec

embeddings – how can these embeddings model the context of the mention? While

some mentions can be unambiguously mapped to a single entity even if they do not

share a lexical form, this is not always the case. Consider the mention Pandora –

this could be reasonably linked to Pandora (Greek Mythology), Pandora (Avatar),

Pandora (Jewelry), Pandora (Online Radio), or even Pandora (Ohio). With a standard

Word2Vec approach, all of these aspects of the string Pandora would be included in

a single embedding. Methods described in the Chapter previous to this would likely

rely on the similarity between the context to resolve this issue. However, given that

the surrounding sentence informs us of the meaning of the mention (e.g. The town

of Pandora sits on the Riley Creek in Northwest Ohio.), it is beneficial to enable the

embedding for a specific token to be influenced by its context.

Broader work within NLP proposed methods that address this issue. One of the

first models proposed was Context2Vec (Melamud et al., 2016), which built upon the

standard Word2Vec architecture by stacking two LSTMs (Long Short Term Memory,

Hochreiter and Schmidhuber (1997)) on the token embeddings. These two LSTMs –

one right to left, one left to right, encoded the context of the token, and the resulting

embeddings at the token step are combined to create a single embedding. While this

model showed some improvement, the resulting embeddings were still built on token

embeddings. This is an additional challenge, as tokens not present in the original
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training data cannot be modeled.

The later ELMo model (Peters et al., 2018) proposed using character-level

embeddings in addition to modeling the sequence, which enables the model to encode

any token sequence even if not seen in the training data. ELMo representations

are trained using a neural Bidirectional Language Model (BiLM), which models the

forward language model probability of a token tk given its history (t1, ..., tk−1). The

model computes a context-independent token representation xLM
k , using a convolutional

neural network over the token’s characters. The token representation is passed through

L = 2 layers of an LSTM – the final layer is used to predict the next token using a

softmax layer. The backward language model is the same, except the probability of

token tk is trained given its future context (tk+1, ... tN), and the final layer predicts

the previous token. The parameters for the token representation and the softmax layer

are tied between the forward and backward models, while all other LSTM parameters

are independent.

After training the BiLM model, representations for each word in a sentence are built

by passing an entire sentence through the language model and recording the resulting

layers at each time step. This results in sentence-specific representations for each word,

as opposed to the general representations in Word2vec or Context2vec. For each word,

there are three representations – the token representation (referred to as layer 0), the

intermediate representation from the first layer of the LSTM (layer 1), and the final

representation resulting from the top layer of the LSTM (layer 2). Both representations
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from the LSTM, layers 1 and 2, are the result of concatenating the respective

representations from the forward and backward LSTMs. Each of these representations

provides different types of information about the word. The authors note that the

second layer is most effective for word sense disambiguation, a semantically-orientated

task, whereas the token representation is more lexically-oriented.

Further evolution in this space led to BERT (Bidirectional Encoder Representations

from Transformers, Devlin et al. (2019)). BERT includes several important changes,

compared to ELMo, that leads it to be one of the foundational architectures in NLP.

Instead of using character embeddings, BERT uses the Byte Pair Encoding (BPE)

to split tokens into subword elements, which produces a balance between character

embeddings and whole-token embeddings. These, along with positional embeddings,

are fed through several layers of transformers. The transformer architecture (Vaswani

et al., 2017) enables the embedding for a given position in the input to be jointly

conditioned on the surrounding context. This is opposed to ELMo and Context2Vec,

which model the left and right sides separately. In addition, the layers of transformers

allow for interactions between higher-order representations.

BERT is most commonly trained by masking a word in the input and forcing the

model to predict the missing word only using the context. This forces the model to rely

on the context of the masked word, instead of only the input at that position. This

pretraining procedure enables it to be trained on massive amounts of unannotated

data, allowing task-specific architectures to use this general textual modeling ability.
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Advances in contextualized language models, such as BERT, have fueled substantial

performance gains across various tasks in natural language processing. This includes

question answering (Devlin et al., 2019; Beltagy et al., 2020), named entity recognition

(Devlin et al., 2019), document classification (Beltagy et al., 2020), coreference

resolution (Joshi et al., 2019), information retrieval (Akkalyoncu Yilmaz et al., 2019),

and sentence similarity (Reimers and Gurevych, 2019), among other tasks. In light

of this general trend, combined with the previous challenges unique to entity linking,

it is easy to expect that contextualized representations would lead to performance

improvements in Entity Linking.

In addition to the BERT encoding approach, there have been alternative models

proposed. The most relevant to entity linking is BART (Lewis et al., 2020a), which

leverages the Transformer architecture to process sequence-to-sequence tasks. BART,

in part inspired by the GPT architecture (Radford et al., 2018), alters the BERT-style

encoder. Instead of the output being conditioned on the left and right context, GPT

is trained to produce output with only the left context. This autoregressive approach

allows GPT to be used for generation tasks, as each generated token is conditioned on

both the previously generated token, and the input to the left of the current token.

BART iterates on this by first encoding the entire input – as with BERT – and then

decoding the output string again conditioned on the input string, as with GPT. This

allows for the output to be conditioned on the entire document. Applying this type of

model to classification tasks, such as entity linking, instead of text generation tasks,
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is rarer. However, as detailed in Chapter 5, this architecture is frequently used in

information extraction tasks.

2.2.2.2 Contextual Representations and Entity Linking

Much recent work in entity linking relies on contextualized embeddings to represent

text from the mention, surrounding sentence, entity title, and entity description. This

includes the linkers proposed in Sections 3, 4, 5, and 6, which will also discuss work

following those proposed systems. However, there are some important commonalities

in systems that use BERT in an entity linking setting.

Logeswaran et al. (2019) was one of the first systems to leverage BERT in entity

linking, specifically in a setting where a linker needs to adapt to different domains.

The authors propose a simple architecture – the mention m and entity description e

are encoded in the same embedding;

[CLS] m [SEP] e [SEP] (2.8)

The mention m consists of the mention embedded in the surrounding sentence, with

a special marker around the tokens of the mention. The authors note that the

cross-encoding ability of a transformer allows for better performance than encoding

the two separately. The highest-level embedding at the [CLS] token is then multiplied

by a learned weight, which produces a score for each entity given the mention. The
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authors explore whether pretraining on unannotated data using the BERT objective

helps entity linking performance, and they find that it does help.

In addition to their findings surrounding the utility of BERT pretraining, the

authors also propose the setting of zero-shot entity linking. In essence, a zero-shot

entity linker is designed to be trained on one set of domains but deployed to a distinct

set of domains. For example, the authors train their model on American Football

data but evaluate it on Ice Hockey data. This tests the generalizability of the linker,

as domain-specific patterns in American Football may not be useful in other settings.

This follows the trend of zero-shot approaches in other NLP tasks (Pelicon et al., 2021;

Wu et al., 2021; Duan et al., 2019; Srivastava et al., 2018; Ma et al., 2021; Levy et al.,

2017).

The BLINK model (Wu et al., 2020) is a natural extension of Logeswaran et al.

(2019). While Logeswaran et al. (2019) uses a token-based approach for triage, BLINK

uses BERT for this step as well. First, a bi-encoder architecture is used to rank entities

given a mention. Independent representations are created for the mention and the

entity. The mention text, marked by the special symbols [MS] and [ME], surrounded

by the original sentence, noted as cntxtl and cntxtr, is encoded for the mention.

[CLS] cntxtl [MS] mention [ME] cntxtr [SEP]

For the entity, the name and description are encoded separated by the special symbol
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[ENT ].

[CLS] title [ENT] description [SEP]

The score of an entity given a mention is produced by the dot product of the two

representations. The BERT models are fine-tuned by learning to maximize the correct

mention and entity pair over negatively sampled entities. Given the list of n candidates,

a separate reranker is trained that uses a similar approach to Logeswaran et al. (2019).

There are several benefits to this approach. The first triage step is very accurate – on

the TAC KBP 2010 dataset, the triage step is only 1.6% worse than the cross-encoding

step. The embeddings for the entities in the bi-encoder step can be precalculated, and

when paired with an efficient dense search index such as FAISS (Karpukhin et al.,

2020), the triage step can be performed with high computational efficiency. This

finding was also discussed in Gillick et al. (2019). In addition to the architectural

contributions, the authors train the model on entity linking annotations taken from

Wikipedia, which provides a large training set. They find this combination results in

state-of-the-art performance on a variety of datasets.

Linkers that use similar architecture, such as Vyas and Ballesteros (2021), encode

additional information from the knowledge base beyond the entity name and description.

Their setting focuses on the ability to use varying information from different knowledge

base schemas but still focuses on text fields such as date of birth or location. However,

it is important to note that in BLINK and Logeswaran et al. (2019), linkers achieve

high levels of performance by only using the name and description information from
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the knowledge base. This results in linkers that can be applied to different knowledge

bases, which is not the case when using knowledge base-specific type information. On

the other hand, it does mean that it is not leveraging much of the structured data

available with the KB.

Except Logeswaran et al. (2019), all of these linkers are trained on massive amounts

of annotated data. In the case of BLINK, this consists of nearly 9 million training

examples covering 5.9 million entities. As that dataset is generated from Wikipedia,

there is no cost to annotate this data. However, this large amount of training data is

not available for a variety of other domains, from clinical text to food science data.

Therefore, how can these advances achieved in general entity linking be translated

into advances in other domains?
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2.3 Applications

Work in entity linking modeling, as discussed in Section 2.2, has generally focused

on a narrow set of data. First, most entity linking focuses on English language

documents and English language knowledge bases. Second, the majority of entity

linking work focuses on entities that are present in very restrictive domains, such as

Wikipedia or newswire text. While some knowledge bases, such as DBPedia, augment

this information, this results in a focus on entities discussed in newswire or discussion

forum posts. Given the vast amount of unstructured text available, this is inherently

limiting.

Beyond the English-focused entity linking research, some work has looked at

extending the task of entity linking to settings where multiple languages are present.

The most common of these multilingual tasks looks at cross-language entity linking,

where documents in multiple languages are linked to an English language knowledge

base. Later work also considers zero-shot approaches to cross-language linking, which

helps alleviate the imbalances in annotations present between languages. Enabling

entity linking to be multilingual allows for unstructured data in a variety of languages

to be linked to a knowledge base, thus massively expanding the amount of information

available.

Beyond tackling the language barrier, there are a vast amount of other texts in fields

that have curated structured knowledge bases that can benefit from linking approaches.

As discussed in Chapter 2.3.2.1, linking tasks for medical texts is frequently studied, but
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other fields also have received attention. The most popular of these is Logeswaran et al.

(2019), which proposed using Wikia as an entity linking dataset. These annotations,

built similarly to those from Wikipedia, are separated into domain-specific sets, such

as College Football and the Muppets. Other fields include Food Science (Popovski

et al., 2019), Chemical (Dogan et al., 2021), and Creative Works Brasoveanu et al.

(2020) data. Other work (Dai et al., 2018; Dredze et al., 2016; Fang and Chang, 2014)

focus on linking in social media text. While social media tasks often link to commonly

used knowledge bases such as Wikipedia, the length and nature of the text differs

substantially from standard entity linking datasets.

Across all of these cases, the task of entity linking has distinct challenges that

lead to general-domain entity linking approaches performing poorly, and suggest that

domain-specific approaches are required. First is a question of data – substantial

amounts of data has been annotated, manually or otherwise, for training standard

entity linkers. This largely focuses on Wikipedia and TAC datasets, and these

documents and knowledge bases have very divergent content as compared to medicine

or food science. In many, such as medicine, a high level of expertise is required to

build annotations. Second, the structure of the knowledge base is often unique to a

domain. For example, medical knowledge bases focus more on building a hierarchical

structure, whereas Wikipedia-based KBs contain more distributed relations. Beyond

simply adapting the state-of-the-art entity linking techniques to a given domain, it is

important to understand the underlying task and data involved in a specific setting.
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2.3.1 Linking in Multiple Languages

... el jefe de la Oficina de la Presidencia (m.01p1k, ORG), Aurelio Nuño y ...

name President of Mexico (m.01p1k)

desc. The President of the United ...

type government office

Figure 2.2: Cross-language entity linking: example Spanish mention Oficina de la
Presidencia, which is a link to entity President of Mexico

There are a number of settings within the scope of entity linking for multiple

languages. Within the field of natural language processing, the one that has historically

received the most attention is cross-language (or cross-lingual) entity linking. This

is the task of linking mentions of documents in a variety of different languages (e.g.

Spanish and Chinese) to a knowledge base in a single language (almost always English).

This contrasts with the setting of multi-language (or multi-lingual) entity linking,

where the knowledge base contains information in a variety of languages. This reflects

the fact that much early work in structured knowledge sources was English focused.

A general trend towards increased research in multilingual settings can be seen in a

variety of information extraction tasks (Johnson et al., 2019; Rahimi et al., 2019).

2.3.1.1 Cross-Language Entity Linking

There are several challenges present in this cross-language setting that do not

arise in a monolingual setting. Consider the example in Figure 2.2, where a mention

from a Spanish-language document, Oficina de la Presidencia, is linked to the entity
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Presidency of Mexico in an English knowledge base. First, a linker must have the

ability to recognize that text in two different languages are referring to the same entity.

In some cases, such as with Person names written in the Latin alphabet, this is trivial.

However, in the given example, a linker must be able to identify that Presidencia

and Presidency are equivalent, in addition to handling the partial match between the

mention (in English: Office of the President) and the entity title. Again, while this

can be handled via lexical match in some closely related languages, this is not the case

when linking between languages without a shared writing system, such as Chinese

and English.

A second challenge in similar to one faced in monolingual entity linking models –

adapting to entities unseen in the training data. The distribution of entities discussed

in non-English texts often are different than those discussed in English-language

documents. For example, English newsire text is unlikely to discuss the Presidency

of Mexico, but is more likely to discuss superficially similar entities such as the

Presidency of the United States. Popularity bias, as discussed in the previous Chapter,

is a powerful tool for disambiguating entities, but a prior built off of English language

text may not transfer to texts in other languages.

The first work to propose cross-language entity linking was McNamee et al. (2011),

which built a set of documents across multiple languages using the knowledge base

provided by the TAC English-language entity linking challenges. The authors proposed

a now-common approach to cross-language entity linking: transliterating non-English
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mentions into English strings. Specifically, McNamee et al. (2011) uses a transliteration

corpus to train a support vector machine ranker, which uses common entity linking

features such as name and context matching, co-occurring entities, and an indicator for

NIL (no matching candidate.) Later work, such as Pan et al. (2017) uses transliteration

data for a set of 282 languages to generate all possible combinations of mentions,

building off of a monolingual graph-based entity linking system (Pan et al., 2015).

The benefit of this approach is that transliteration does not require in-languages

annotations. Additionally, for many languages with alphabetic writing systems, such

as Russian, there are often easy mappings between the non-English source language

and English. However, transliteration is far more challenging in languages without

alphabetic writing system, such as Chinese or Japanese, or in settings where a mention

may be phrased differently in the source language. A related approach is to use

machine translation to translate a document into English, and then use an English

entity linker. However, an machine translation (MT) system may not be available,

and it further needs a specialized name module to properly translate entity names.

Several systems from the TAC 2015 KBP Entity Discovery and Linking task (Ji et al.,

2015) translate non-English documents into English, then use standard Entity Linking

systems.

Later cross-language work began to leverage the multilingual nature of Wikipedia to

build linking systems. For each page in Wikipedia, there are links to equivalent pages

in other languages. This index, combined with internal links from within Wikipedia,
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allow for the construction of a cross-lingual dataset. This approach typically uses

English Wikipedia as the KB, though it could use a KB in other languages. One of

the first works to study this was Tsai and Roth (2016b), who use a two-step linking

approach, first using an information retrieval-based triage system. Second, they use a

candidate ranking step based on a linear ranking SVM model with several features,

including contextual, document, and coreference.

Upadhyay et al. (2018) proposes a more advanced model in the same setting. They

use FastText (Bojanowski et al., 2017; Smith et al., 2017) to align embeddings

across languages, and a small dictionary to identify alignments. They pass

these representations through a convolutional neural network to create a mention

representation. They in turn use the other mention representations in the document

to create a contextual representation, and also use a separate type vector. They

train their network on hyperlinks from multiple languages in Wikipedia. Before the

ranking step, they use a triage system similar to that of Tsai and Roth (2016b). They

evaluate on several entity linking datasets, including TAC 2015 KBP Ji et al. (2015).

Their results show that training on all languages, instead of monolingual or bilingual

training, generally performs best. For zero-shot entity linking, they train on English

language Wikipedia. They find that their performance is heavily dependent on a

prior probability derived from the triage system – otherwise, there is a large drop in

performance.

Most work in the cross-language entity linking space focuses on languages that are

43



CHAPTER 2. BACKGROUND

high resource, even if they have few entity linking annotations in-language. Other work,

such as Rijhwani et al. (2019), investigate zero-shot entity linking on low-resource

languages. They propose a model consisting of a similarity model using encoders

separately trained on high-resource language mentions, related to the low-resource

language, and English entities. They then use the high-resource language as a pivot

language for low resource language mentions, allowing them to score mentions in an

unseen language.

Relatively less research has explored other multi-language entity linking settings.

Of those that do so, the most common approach is to use a system trained on

English-language documents and knowledge bases to link non-English documents to

a non-English knowledge base. For example, Raiman and Raiman (2018) seeks to

transfer an English-trained system to French-language Wikipedia. They formulate a

type system as a mixed integer problem, which they use to learn a type system from

knowledge graph relations. Their training approach uses broad amounts of annotated

data with type information (e.g. all of English Wikipedia). Since we do not train

English Wikipedia models, and also do not use that magnitude of training data, we

were not able to produce numbers using their system that are comparable to ours

despite our best efforts to do so. Work using unsupervised graph methods, such

as Wang et al. (2015b), are applied in non-English language pairs, such as Chinese.

These models are not leveraging some text-based cross-language ability, but are rather

relying on the inherently cross-language nature of graphs.
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2.3.2 Linking in Different Fields

Some work in entity linking, such as Logeswaran et al. (2019) and Wu et al. (2020),

explore designing entity linkers than can be applied to domains that were unseen

in the training data. In some cases, such as Logeswaran et al. (2019), the authors

constructed a dataset consisting of several different Wikia domains, such as College

Football and Lord of the Rings. A linker was trained on four domains, but evaluated on

other domains that remained unseen during training. Often however, work exploring

domain adaption in entity linking is relegated to entities that can be linked to common

knowledge bases, such as Wikipedia.

Yet in a variety of other fields, there are pairs of unstructured text and structured

knowledge bases available. In many cases, both the unstructured text and the

structured data have different characteristics that make deploying standard entity

linking approaches challenging. First, the unstructured text in a field such as Medicine

is vastly different than that present in Wikipedia. While Wikipedia does contain a

vast amount of knowledge, a model such as Wu et al. (2020) trained only on Wikipedia

may not identify that the medical terms heart attack and myocardial infarction are

synonymous. Second, the structure of knowledge basses in different fields may be very

different. For example, some may have more of a hierarchical structure, but contain

fewer descriptions than are present in DBPedia.

Despite these challenges, the fundamental characteristics of the linking task remain

unchanged. First, how can we build linkers that can identify the variety of lexical
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The patient reports a history of seizure disorder ...

name Epilepsy (C0014544)

desc. A disorder characterized by recurrent seizures

parent concepts Brain Diseases, ...

child concepts Acute repetitive seizure, ...

synonyms Seizure, E.P.,..

Figure 2.3: Medical concept linking: example mention seizure disorder, which is a link
to concept Epilepsy

forms used to refer to entities in a knowledge base? Second, how can we leverage

context from the document and the knowledge base to disambiguate between similar

entities? And finally, are there opportunities to use data within the knowledge base to

improve liking? In many fields, such as Medicine, solutions to these challenges have

been proposed in a distinct tract from general entity linking. However, lessons can be

taken from these disparate approaches to improve linking more broadly.

2.3.2.1 Medicine

Linking within the domain of Medical text has been frequently studied. Medical

concept linking (aliases: “mention normalization”, “medical concept parsing”,

“biomedical entity linking”) produces structured topical content from clinical free text

(Aronson and Lang, 2010). Healthcare providers often refer to medical concepts in

clinical text notes that are absent from associated health record metadata despite

their importance to understanding a patient’s medical status. Following the example

in Figure 2.3, the mention seizure disorder refers to the concept epilepsy contained
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within the Unified Medical Language System (UMLS) ontology (Bodenreider, 2004).

However, this may be absent from metadata as it is not part of the current diagnosis.

Concept mentions can use non-standard terms (e.g. epilepsy), thus concept linking

requires non-lexical methods. Additionally, some terms (cancer) are ambiguous and

could refer to multiple concepts (breast cancer, colon cancer, etc.)

In contrast to the dense KBs in entity linking, medical ontologies are sparser

and contain only a unique identifier (CUI), title, and links to synonyms and related

concepts. In more recent versions of the UMLS, there is an increasing amount of

descriptive text, but it varies per area. Therefore, while the concept epilepsy has

many synonyms in UMLS, it has no definition or other long description. Furthermore,

UMLS concept names are more formal than clinical notes, making mention matching

challenging. Additionally, Entity Linking systems are often able to leverage greater

amounts of annotated data, which are not available in the clinical space. Text that

does not have restrictive privacy protections can be annotated more easily through

crowdsourcing, or other sources of non-gold standard data collected (e.g., Wikipedia

cross-links). As the annotation of clinical notes is expensive due to the knowledge

required of annotators and the protected status of clinical records, any effort in clinical

concept linking must focus on leveraging a small number of annotations, and using

larger amounts of related or unannotated data when possible.

However, there remains a large amount of overlap between entity linking and

concept linking. First, the common paradigm of named entity recognition (or mention
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identification), triage (or candidate selection), and final reranking is widely used. In

both cases, the challenge of NIL mentions (or CUI-less mention) persists. Both tasks

also share the challenge of resolving ambiguities in both the document and knowledge

base, even if the nature of the ambiguity is different in both tasks.

Previous work in Medical Concept Linking focused on building end-to-end systems,

which combine candidate selection and final linking. This includes one of the earliest

linking systems, Metamap (Aronson, 2001; Aronson and Lang, 2010), which consists

of a pipeline to detect candidate spans and link concepts to the UMLS. The system

consists of a pipeline that also performs pre-processing tasks, such as tokenization,

negation detection, word sense disambiguation, and named entity recognition, to

identify potential candidate mentions. The candidate generation approach used in

the original version consists of generating a candidate list consisting of concepts that

contain a variation of the mention phrase. These are then scored by an evaluation

function that considers the type of variation – spelling variants are not penalized, while

derivational variants are the most penalized. The CTakes medical natural language

processing pipeline (Kipper-Schuler et al., 2008; Savova et al., 2010) consists of a

similar set of natural language processing tools to process clinical notes, and includes

concept linking. The original system used a dictionary matching algorithm to match

mention spans to entries in the ontologies and their variant forms.

More recent work in medical concept linking systems uses a triage and final

linker configuration - in Aggarwal and Barker (2015), they generate candidates from
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concepts containing variants of the tokens in the mention text, weighing them by

inverse document frequency. The candidate list is then re-ranked by the similarity

between the mention and candidate context, defined as a bag of words in the mention

sentence and concept definition. Many medical concept linking systems do not include

a distinct candidate generation phase. This includes a Sieve-Based method (D’Souza

and Ng, 2015) which uses an ordered set of rules to identify a matching concept.

This system does not include a separate candidate generation phrase but relies on

a set of high-precision rules to match mentions to concepts from the entire set of

candidates from the ontology. Rajani et al. (2017) combine the output of several

systems, and they then train a system to learn the strengths and weaknesses (e.g.

that a system is very precise, but has poor recall) of each by using auxiliary features,

such as context-concept similarity. Finally, they ensemble the output of all systems

by also considering which system is best suited for a specific mention.

Many systems have focused on the related task of Bio-medical literature concept

linking (Doğan et al., 2014; Zheng et al., 2015; Tsai and Roth, 2016a), using a pairwise

ranking approach, abstract meaning representation, and an indirectly supervised

ranking approach, respectively. Biomedical literature is similar to clinical concept

linking in that both are commonly linked to the UMLS. However, Biomedical literature

has a very formalized text structure compared to clinical notes, which are often

produced rapidly by medical experts. Additionally, biomedical literature does not

have the same privacy concerns as clinical notes, so annotation can be more easily
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generated.

2.3.3 Task-specific Transformers

Advances in contextualized language models (LMs), as discussed in Chapter

2.2.2.1, also have been broadly adopted in task- and field-specific forms. While these

LMs were originally trained on standard NLP domain texts such as Wikipedia and

CommonCrawl, the unsupervised nature of their training means that models tailored

to specific domains can be produced. This is especially useful in the settings discussed

in this Chapter, in which annotations are challenging to produce, but unannotated data

is more widely available. Contextualized language models that have been pretrained

on specific domains also have the potential to alleviate some of the text-matching

problems that are unique to their setting. For example, the original BERT model likely

would not embed 翰·霍普金斯大 and Johns Hopkins University in the same space,

even though they are direct translations. However, multi-language contextualized

models, such as mBERT, can do so. Similarly, a linker can more easily identify that

stroke and myocardial infarction are synonymous if using representations from a BERT

model trained on clinical data, where those phrases likely have been seen in similar

contexts

In the multilingual setting, contextualized language models have fueled advances

in a variety of tasks (Wu and Dredze, 2019; Pires et al., 2019; Gonen et al., 2020;

Chi et al., 2020; Choudhary and O’riordan, 2021; Roy et al., 2020). The earliest
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proposed model, mBERT (Devlin et al., 2019), uses the same architecture and training

procedure as the monolingual version discussed in Chapter 2.2.2.1. However, instead

of only training on English-language data, the authors train mBERT on the top 100

languages in Wikipedia, and those language-specific Wikipedias were used as the

training data. Note that the training method for mBERT remains unsupervised,

meaning that the challenge of transforming a monolingual model into a multilingual

model is reduced. Further, mBERT can learn to learn cross-language relationships

between text without any alignment, and without information about which specific

languages it is embedding.

There have been several lines of research on how these models learn cross-language

alignments without supervision (Wu and Dredze, 2019; Pires et al., 2019). The result

means that NLP systems can work across languages with relatively simple adaptations.

Other research has shown that BERT models trained on one or two languages often

work better than mBERT (Xu et al., 2021), the performance differences are usually

slight. Later multilingual language models, such as XLM-R (Conneau et al., 2020),

build off of this foundation. The authors train their model on the CommonCrawl

corpus, which provides substantially more text for the model to learn from.

Beyond multilingual models, there has also been a proliferation of domain-specific

transformer models, from domains as distinct as Legal Text (Chalkidis et al., 2020) and

Educational Text (Sung et al., 2019). This includes BioBERT (Lee et al., 2020) and

ClinicalBERT (Alsentzer et al., 2019), which continue to train the original BERT model
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on Biomedical and Clinical text, respectively. Similar to the trends in monolingual and

cross-lingual tasks, the use of these models has led to performance gains in a variety

of medical and other domain-specific tasks (Yue and Zhou, 2020; Vassileva et al., 2021;

Lewis et al., 2020b; He et al., 2020). Echoing the broader reasons for adoption, these

domain-specific models can robustly represent text in their specific domains far better

than either lexically-powered methods or vector space representations that are not

contextualized such as Word2Vec.
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2.4 Data

2.4.1 Entity Linking

2.4.1.1 Knowledge Bases

Wikipedia. Wikipedia is commonly used as a knowledge base. Usually, each page

in Wikipedia serves as a knowledge base entry, with the title of the page serving as the

standard entity name. The article body serves as the description – for longer articles,

this results in a very large and perhaps imprecise description. Wikipedia categories are

largely used for types. While sometimes these can be informative, such as the example

in Figure 2.1, they can be overly specific or overly broad. For example, another

category for European Union is articles containing video clips, which is essentially

meaningless. Additionally, Johns Hopkins University has several categories, including

educational institutions established in 1876, which is very granular. Finally, some

pages do not have categories at all. Relational information between entities is less

frequently used, although the number of internal links can serve as a related signal.

In addition to using Wikipedia as a single-language knowledge base, it can be used

as a multi-language knowledge base. As each page in Wikipedia has a list of articles

in other languages on the same topic, information can be collected on an entity in

multiple languages. However, not all entities have entries in all languages.

The best practice for using Wikipedia as a knowledge base is to select a specific
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monthly Wikipedia dump, and only use the pages present in that dump. For example,

BLINK (Wu et al., 2020) uses the 2019/08/01 Wikipedia dump. More recent work

uses the KILT pre-processed version of Wikipedia.2 This is simply a preprocessed

version of that 2019/08/01 in JSON format, which is convenient. However, it does

not add any additional information.

There are several benefits to using Wikipedia as a KB. The entities are frequently

updated without assigning curators of KBs to do so. There are comparable pieces

of information to a more structured knowledge base available. However, the types

and granularity of entities in Wikipedia are restricted. Additionally, categories and

articles are not exactly types and descriptions.

Wikidata. Wikidata3 builds off of the foundation of Wikipedia but adds much

more information. In addition to a link to Wikipedia information, this includes a

shorter description, relationship information between other entities, and additional type

information. Beyond that, each entity page can include a wide variety of structured

data (e.g. such as the entity’s Twitter handle). While all entities in Wikipedia have

a Wikidata entry, the reverse is not true, as Wikidata collects entities from a broad

variety of sources. For example, anyone with an ORCID ID (serving as a unique

identifier for a researcher) has a Wikidata entry.4 Therefore, there may be a lot more

noise in Wikidata compared to other KBs.

TAC KBP Reference Knowledge Base. There are various knowledge bases

2https://github.com/facebookresearch/KILT
3https://www.wikidata.org/wiki/Wikidata:Main_Page
4https://www.wikidata.org/wiki/Q89561211
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released with TAC entity linking annotations. For example, the 2014 TAC KBP

Reference Knowledge Base5 was used for the TAC 2015 KBP dataset.6 This is similar

to Wikidata, in that it adds to the information within Wikipedia. It does contain

multilingual information, but it is similarly incomplete as Wikipedias. They do add

type information (e.g. Person, Organization, Geopolitical Entity, Unknown) that

matches the more high-level approach of some NER systems.

DBPedia. DBPedia is another knowledge base resource, again building upon

Wikipedia.7 It is similar to Wikidata and the TAC Reference knowledge base in that

it augments Wikipedia with type information and relationships between entities. It is

less likely to add datasets

2.4.1.2 Entity Linking Annotations

Wikipedia. In addition to being used as a knowledge base, Wikipedia can also

be used as a source of entity linking annotations. Within any Wikipedia article, there

are frequent references to other Wikipedia articles. The text and referral link of

these mentions can serve as entity linking annotations. The major benefit of using

Wikipedia as a source of annotations is that manual annotation is not required, and a

large number of them can be created automatically. For example, the BLINK model

is trained on 9 million annotations containing 5.9 million entities. This scale is nearly

5https://catalog.ldc.upenn.edu/LDC2014T16
6https://catalog.ldc.upenn.edu/LDC2019T02
7https://www.dbpedia.org/
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impossible to recreate with a manual annotation effort. Additionally, multilingual

annotations can be easily created. If a link to an article in one language contains

a link to another page that also has versions in other languages, a cross-language

annotation can be created. Similar to the Wikipedia KB setting, usually a specific

Wikipedia snapshot is used as the source of annotations. Two common sources of

Wikipedia annotations are from BLINK8 and (Pan et al., 2017).

However, there are some downsides to this approach. First, while the annotations

do not require human annotations, the variations in the ways entities are referred

to are much more restricted than in other settings. For example, 82.9% of examples

in the GENRE Wikipedia-based test set have a Jaro-Winkler score of 0.8 or higher.

This means that when transferring to datasets where there is more variation in the

ways mentions are referred to, challenging links may not be identified. Second, we are

restricted to entities in the Wikipedia KB, with the drawbacks noted in the previous

approach. True NIL annotations, which are present in other datasets, don’t exist in

Wikipedia. They can be artificially generated, however, but the effect may not be the

same.

2015 TAC KBP Entity Linking dataset (Ji et al., 2015). This dataset

consists of newswire and discussion form posts in English, Spanish, and Mandarin

Chinese linked to the TAC KBP reference knowledge base. Some work, such

as Upadhyay et al. (2018), also use this dataset but only for evaluation, instead

8https://github.com/facebookresearch/BLINK
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training on Wikipedia and treating mentions that are linked to TAC entities without

Wikipedia links as NIL. The training set consists of 30,834 mentions (6,857 NIL) across

447 documents. The evaluation set consists of 32,459 mentions (8,756 NIL) across

502 documents. For each annotation, there is also a type (very high-level). For NIL

mentions, there is also cluster information, so this can also be used for NIL clustering.

This is a higher quality dataset than Wikipedia, but far more limited in amount.

Wikia. The Wikia entity linking dataset (Logeswaran et al., 2019) was constructed

from the Wikia website, which consists of individual community-written encyclopedias

on a particular subject or theme. This was constructed in the same manner as the

Wikipedia dataset – mentions taken from the text of in-page hyperlinks, and each

document serves as an entity. The authors collect 16 Wikias, each with a different

topic. Each topic has its knowledge base, thus serving as a challenging adaptation

for our Wikipedia-trained models. The authors exclude all NIL entities and provide

candidate sets for each mention of size 64, retrieved via BM25.

The topics are partitioned by training, validation, and test set so that each appears

in only one set. Each mention is categorized by the amount of token overlap between

the mention text and the normalized entity title by the dataset creators. The categories

include high overlap (downsampled to 5% of mentions) , where the mention text and

normalized entity title are exact matches, multiple categories (28% of mentions) ,

where the normalized entity title consists of the mention text plus a disambiguation

phrase (e.g. mention Batman, entity title Batman (Lego)), and ambiguous substring
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(8% of mentions), where the mention is a substring of the title. The category low

overlap (59% of mentions) includes all remaining mentions. Note that in the original

paper, the authors labeled this as low overlap – however, that is misleading, as many

examples in that category have a high degree of lexical similarity. For example, of

the other examples that have a candidate identified in the validation set, 28.96% of

mention span - entity title pairs have a Jaro-Winkler (Winkler, 1990) of over 0.794,

which is fairly high.

Below are other datasets relevant to the entity linking task;

• Other Datasets that use Wikipedia as the KB

– WikilinksNED Unseen-Mentions (Onoe and Durrett, 2020). Partitions the

annotations such that the test set contains entities unseen in the training

set.

– The TAC KBP 2010 Dataset9 consists of English newswire documents

linked to the TAC reference KB.

– GENRE10 also has preprocessed versions of a variety of entity linking

datasets connected to the Wikipedia knowledge base, including documents

from newswire (e.g. MSNBC) and web corpora (e.g. CWeb).

• Social media

9https://catalog.ldc.upenn.edu/LDC2018T16
10https://github.com/facebookresearch/GENRE
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– Twitter at the Grammys (Dredze et al., 2016) is a dataset of Tweets during

the 2013 Grammys Award Show linked to Wikipedia.

– Yelp (Dai et al., 2018) is a dataset of Yelp reviews, where mentions of

businesses are linked to the corresponding Yelp business page.

– Reddit entity linking dataset (Botzer et al., 2021) consists of Reddit posts

with links to Wikipedia.

– Twitter (Liu et al., 2013) is a dataset of Tweets linked to Wikipedia.

• Other

– Creative Works (Brasoveanu et al., 2020) is a collection of documents about

TV Shows and Movies linked to Wikipedia.

2.4.2 Linking In Other Domains

The Unified Medical Language System (Bodenreider, 2004). The Unified

Medical Language System (UMLS) is the most frequent knowledge base used for

linking tasks in medical or related fields. Unlike other KBs discussed here, the

UMLS is actually a collection of knowledge bases (called controlled vocabulary). The

UMLS provides links between entries within each vocabulary that refer to the same

concept. However, attributions such as names and descriptions, and relationships

between concepts, are at the vocabulary level. Commonly used vocabularies include

SNOMED-CT and RxNorm. The UMLS is updated twice a year, and therefore it
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is best practice for annotations to be linked to a specific UMLS version. In many

ways, the UMLS has similar information to a knowledge base such as BaseKB (Ellis

et al., 2015), such as a preferred concept name, description, and relationships between

concepts. However, the UMLS has a far more expansive collection of synonyms

available for each concept. Additionally, the relationships between concepts are most

commonly hierarchical – e.g. Hypertensive disease is a child concept of heart, but a

parent concept of Accelerated and malignant hypertension. In early versions of the

UMLS, there were far fewer descriptions available for concepts, but more have been

added in later versions. The types are very high level – e.g. Findings.

2.4.2.1 Clinical Concept Linking

ShARe/CLEF eHealth Evaluation Lab 2013 Task 1b (Pradhan et al.,

2013). This dataset consists of concept span annotations built on a subset of MIMIC

2.5 clinical notes (Saeed et al., 2011). The publicly available training set consists of

200 clinical notes, which we split into a training set consisting of 100 notes (1964

included mentions), and development and testing sets consisting of 50 notes each (957

and 1076 included mentions, respectively).

The annotations guidelines state that the concept candidates should be limited

to the SNOMED-CT portion of the Disorder Semantic Group in the Unified Medical

Language System version 2011AA (Campbell et al., 1998), and lists the semantic

types included in the Disorder Semantic Group. In our experiments in Sections 6
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and 7, we found several annotations linked to concepts not included in that list,

including the Finding, Body Substance, and Mental Process semantic types, and

therefore we expanded our ontology to include those concepts. Finally, we include all

preferred entries, with the default settings of UMLS 2011AA, in the SNOMED-CT

Disorder Semantic group (accounting for 116,436 unique concepts), but also include

the first non-preferred entries that do not have a preferred entry (accounting for 8,926

unique concepts). We exclude any concept mentions that are not annotated with a

SNOMED-CT Disorder concept, including non-concept annotations. We restricted

synonyms to only include preferred entries, so only 22,769 out of 125,362 concepts

have at least one synonym included.

MCN corpus (Luo et al., 2019). This corpus consists of medical notes linked to

SNOMED and RXNorm, two other ontologies within the UMLS. They target a broad

coverage of medical mentions, including problems, tests, treatments, and disorders.

Compared to earlier clinical concept linking corpora, the authors annotate many

concepts at a more granular level.

Bennerd Corpus (Sohrab et al., 2020) This corpus consists of

Coronavirus-related documents (Sohrab et al., 2020). This dataset only has a small

manually annotated test set paired with larger machine-annotated mentions. The

machine-annotated mentions are created via a non-neural linking system and are not

high-quality.
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2.4.2.2 Other Linking Tasks

NLM-Chem corpus (Dogan et al., 2021). This is a corpus of 150 scientific

articles split into test, train, and development sections. Mentions of chemical and

drug names are linked to the MeSH ontology within UMLS, a collection of medical

and scientific ontologies (Bodenreider, 2004). Although the corpus is annotated to

the UMLS, the unstructured text is scientific articles, not medical text. While most

mentions link to a single concept (or none, i.e. CUI-less or NIL), several examples are

annotated with multiple entities (6% of the development corpus). This is an extremely

challenging corpus since many of the chemical naming schemes are very complex.

The following datasets focus on linking tasks in other domains;

• Biomedical entity linking

– Concept annotation in the CRAFT corpus (Bada et al., 2012) consists of

67 full text biomedical journal articles linked to UMLS.

– The NCBI disease corpus (Doğan et al., 2014) consists of PubMed articles

linked to MeSH.

– BioCreative V CDR task corpus (Li et al., 2016) consists of Pubmed articles

annotated with chemical and disease links to UMLS.

• Other domains

– Food Science (Popovski et al., 2019) is a corpus of recipes linked to a subset

of the UMLS.
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Cross-Lingual Transfer in Zero-Shot

Cross-Language Entity Linking
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3.1 Introduction

Entity linking work has primarily focused on English documents and knowledge

bases (Chapter 2.3.1), but subsequent work expanded the task to consider multiple

languages (McNamee et al., 2011).1 For example, the TAC KBP shared task (Ji

et al., 2015) links mentions in Chinese and Spanish documents with an English KB.

Successfully linking a mention across languages requires adapting several common

entity linking components to the cross-language setting. Consider the example in

Figure 2.2, which contains the Spanish mention Oficina de la Presidencia, a reference

to the entity President of Mexico in an English KB. To link the mention to the

relevant entity we must compare the mention text and its surrounding textual context

in Spanish to the English entity name and entity description, as well as compare the

mention and entity type. Previous work has focused on transliteration or translation

approaches for name and context (McNamee et al., 2011; Pan et al., 2015), or leveraging

large amounts of cross-language information (Tsai and Roth, 2016b) and multilingual

embeddings (Upadhyay et al., 2018).

Since this early cross-lingual work emerged, there have been major advances in

multilingual NLP (Wu and Dredze, 2019; Pires et al., 2019). Mainstream approaches

to multilingual learning now use multilingual encoders, trained on raw text from

multiple languages (Devlin et al., 2019). These models, such as multilingual BERT

1Elliot Schumacher, James Mayfield, and Mark Dredze. 2021. Cross-Lingual Transfer in Zero-Shot
Cross-Language Entity Linking. In Findings of the Association for Computational Linguistics:
ACL-IJCNLP 2021, pages 583–595, Online. Association for Computational Linguistics.
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or XMLR (Conneau et al., 2020), have achieved impressive results on a range

of multilingual NLP tasks, including part of speech tagging (Tsai et al., 2019),

parsing (Wang et al., 2019; Kondratyuk and Straka, 2019), and semantic similarity (Lo

and Simard, 2019; Reimers and Gurevych, 2019). However, even with these advances,

one of the challenges of crosslingual entity linking lies in the amount of training data

available. Due to the large focus on English-language entity linking data, there are

far more English-language entity linking annotations compared to other languages.

Further, some languages may not have in-language entity linking annotations, even

if they have other resources available. Therefore, we propose to explore whether the

multilingual abilities of BERT can help bridge the performance gap in languages

with fewer annotations. The importance of a multilingual text encoder is higher in a

cross-lingual setting compared to a multilingual, as the knowledge base only contains

text in a single language. Therefore, cross-language understanding is required.

To construct a linker that can leverage annoations in multiple languages, we use

text representations with multilingual BERT (Devlin et al., 2019) for cross-language

entity linking to handle the mention text, entity name, mention context, and entity

description.2 We use a neural ranking objective and a deep learning model to combine

these representations, along with a one-hot embedding for the entity and mention

type, to produce a cross-lingual linker. We use this ranking architecture to highlight

the ability of mBERT to perform this task without a more complex architecture.

2Our code is available at https://github.com/elliotschu/crosslingual-el
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Although previous work tends to use multilingual encoders for one language at a time,

e.g. train a Spanish NER system with mBERT, we ask: can our model effectively link

English-language entities to documents in other languages? We find that, somewhat

surprisingly, our approach does exceedingly well; scores are comparable to previously

reported best results that are trained on data not available to our model (they have

access to non-English names). Next, we consider a multilingual setting, in which

a single system is simultaneously trained to link mentions in multiple languages to

an English KB. Previous work (Upadhyay et al., 2018) has shown that multilingual

models can perform robustly on cross-language entity linking. Again, we find that,

surprisingly, a model trained on multiple languages at once does about as well, or in

some cases better, than the same model trained separately on each language.

These encouraging results lead us to explore the challenging task of zero-shot

transfer, in which we train a model to link single-language documents (e.g. English)

to an English KB, but apply it to unseen language (e.g. Chinese) documents. This

zero-shot ability will enable us to leverage annotations in languages such as English,

which have more resources available, and apply them to languages with none. While

the resulting model certainly does worse on an unobserved language, the reduction in

performance is remarkably small. This result leads us to ask: 1) Why do zero-shot

entity linking models do so well? 2) What information is needed to allow zero-shot

models to perform as well as multilingually-trained models? Using a series of ablation

experiments we find that correctly comparing the mention text and entity name is
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the most important component of an entity linking model. Therefore, we propose an

auxiliary pre-training objective to improve zero-shot performance. However, we find

that this text-focused approach does not improve performance substantially. Rather,

we find that much of the remaining loss comes not from the language transfer, but

from mismatches of entities mentioned across the datasets. This suggests that future

work on the remaining challenges in zero-shot entity linking should focus on topic

adaptation, rather than on improvements in cross-language representations. The

ongoing challenge of topic adaptation can be found in other work, such as in Chapter

6.

In summary, we use a simple ranker to explore effective cross-language entity

linking with multiple languages. We demonstrate its effectiveness at zero-shot linking,

evaluate a pre-training objective to improve zero-shot transfer, and lay out guidelines

to inform future research on zero-shot linking.

3.2 Entity Linking Model

We propose a cross-language entity linker based on a pointwise neural ranker

that scores a mention m and entity e pair, adapting from an architecture discussed

in Dehghani et al. (2017). Unlike a classification architecture, a ranking architecture

is able to score previously unseen entities. As is standard, we use a two-stage system:

triage followed by ranking; this reduces the number of entities that must be ranked
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Figure 3.1: The architecture of our model, following the example in Figure 2.2 and a
negatively-sampled entity The Office.

and results in better performance. Our system is shown in Figure 3.1. We select this

architecture so as to focus on the ability of multilingual transformers to handle this

task.

The ranker takes as input information about the mention and entity: 1) the

mention string and entity name; 2) the context of the mention and entity description;

and 3) the types of the mention and entity. We represent the mention string, entity

name, mention context, and entity description using a pre-trained multilingual deep

transformer encoder (Devlin et al., 2019), while the mention and entity types are

represented as one-hot embeddings. We describe the multilingual representation,

model architecture, and training procedure.
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3.2.1 Multilingual Representations

We use multilingual BERT (mBERT) (Devlin et al., 2019),3 which has been

shown to create effective multilingual representations for downstream NLP tasks,

as discussed in Chapter 2.3.1. Consider the Spanish example in Figure 2.2. First,

we create a representation of the mention text ms, Oficina de la Presidencia, by

creating an mBERT representation of the entire sentence, selecting the lowest layer

representations of each of the mention’s sub-words,4 and form a single representation

using max pooling. We create a representation of the entity name es, President of

Mexico in the same way, although there is no surrounding context as in a sentence.

For the mention context mc we select the surrounding sentences up to BERT’s 512

sub-word limit, positioning the mention in the middle, and pass the text to BERT,

using the resulting top layer of the [CLS] token. We create a similar representation

for the entity context ec from the definition or other text in the KB, using the first

512 subword tokens from that description. For the mention type mt and entity type et

we create one-hot embeddings, omitting ones that do not occur more than 100 times

in the training set.

3We found that XLM-R (Conneau et al., 2020) performed similarly and only report results on
mBERT.

4We experimented with several BERT layers and found this to be the best performing on the
TAC development set.
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3.2.2 Architecture

We feed the representations of the name (ms and es), context (mc, ec) and type

(mt, et) into a neural ranker. Each of these three pairs is passed into distinct multilayer

perceptrons (MLPs), which each produce an embedding that captures the similarity

between each type of information. For example, we input ms and es into a text-specific

hidden layer, which produces a combined representation rs. The same is done for the

context and type representations, producing representations rc and rt, respectively.

These three representations are then fed into a final MLP, which produces a final score

([−1, 1].) . We apply dropout at every layer, use ReLu as the intermediate activation

function, and Tanh for the final layer. While additional features such as entity salience

are likely useful for this task, we chose to restrict our model as much as possible to

use only text features. This focuses on mBERT’s multilingual ability and allows for

easier adaptation to new KBs than with KB-specific features.

3.2.3 Model Training

We learn the parameters θ of our scoring function S using a pairwise approach; this

allows us to train our model without annotated scores. Our ranker scores a mention

m and positive entity e+ pair, and separately scores the same mention paired with n

sampled negative entities e−. We apply the hinge loss between our correct entity and

the highest scoring negative entity,
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Parameter Values

Context Layer(s) [768], [512], [256], [512,256]
Mention Layer(s) [768], [512], [256], [512,256]
Type Layer [128], [64], [32], [16]
Final Layer(s) [512,256], [256,128], [128,64], [1024,512], [512], [256]
Dropout probability 0.1, 0.2, 0.5
Learning rate 1e-5, 5e-4, 1e-4, 5e-3, 1e-3

Table 3.1: To select parameters for the ranker, we tried 10 random combinations of
the above parameters and selected the configuration that performed best on the TAC
development set. The selected parameter is in bold.

L(θ) = max{0, ϵ − (S({m, e+}; θ) − max{S({m, e0−}; θ) . . . S({m, cn−}; θ)}}

We jointly train all components of the network, including the positive and negative

portions of the network, with the ADAM optimizer. The major benefit of this pairwise

approach is that it does not rely on annotated scores, but instead uses negative

sampling to train the ranker. We tested random combinations of hidden layer sizes

and dropout rates to find the best configuration. The specific parameters for our

architecture are shown in Table 3.1. We report results after training for 500 epochs

for TAC and 800 for Wiki. The full TAC multilingual model takes approximately

1 day to train on a single NVIDIA GeForce Titan RTX GPU, including candidate

generation, representation caching, and prediction on the full evaluation dataset.
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3.3 Datasets

We conduct our evaluation on two cross-language entity linking datasets. We

predict NILs by applying a threshold; mentions, where all entities are below a given

threshold, are marked as NIL. We evaluate all models using the evaluation script

provided by Ji et al. (2015), which reports Precision, Recall, F1, and Micro-averaged

precision. The NIL threshold is selected based on the development TAC dataset.

Unless noted, we use −0.8 for English and −1 otherwise.

We first consider the 2015 TAC KBP Entity Linking dataset (Ji et al., 2015),

detailed in Chapter 2.4. We use their evaluation set, and provide a comparison to the

numbers noted in Ji et al. (2015). The referenced systems had access to non-English

language KB text which we exclude, and thus are a goal rather than a baseline. Later

papers, such as Upadhyay et al. (2018), also use this dataset but only for evaluation,

instead training on Wikipedia and treating mentions that are linked to TAC entities

without Wikipedia links as NIL. Therefore, we cannot compare our evaluation to this

work. We reserved a randomly selected 20% of these documents as our development

set. The evaluation set consists of 32,459 mentions (8,756 NIL) across 502 documents.

We created a cross-language entity linking dataset from Wikipedia links (Pan

et al., 2017) that includes Korean, Farsi, Arabic, and Russian. A preprocessed version

of Wikipedia has links in non-English Wikipedia pages to other non-English pages

annotated with that link and an English page link if a corresponding page was available.

From these annotations, we created a dataset consisting of non-English mentions
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linked to English-language entities (Wikipedia page) using English Wikipedia as the

KB. Some BaseKB entities used in the TAC dataset have Wikipedia links provided;

we used those links as seed entities for retrieving mentions, retrieving mentions in

proportion to their presence in the TAC dataset, and sampling a roughly equivalent

number of non-TAC entities. We mark 20% of the remaining mentions as NIL. In

total, we train and evaluate on 5,923 and 1,859 Arabic, 3,927 and 1,033 Farsi, 5,978

and 1,694 Korean, and 5,337 and 1,337 Russian mentions, respectively. We consider

this to be silver-standard data because–unlike the TAC dataset–the annotations have

not been reviewed by annotators. Since we do not have a separate development set

for this dataset, we apply the hyperparameters selected on TAC development data to

this dataset.

3.3.1 Triage

We assume gold-standard mention boundaries in our analysis. We use the triage

system of Upadhyay et al. (2018), which is largely based on work in Tsai and Roth

(2016b). This allows us to score a smaller set of entities for each mention as opposed

to the entire KB. For a given mention m, a triage system will provide a set of k

candidate entities e1 . . . ek. The system uses Wikipedia cross-links to generate a prior

probability Pprior(ei|m) by estimating counts from those mentions. This prior is used

to provide the top k English Wikipedia page titles for each mention (k = 10 for TAC

and k = 100 for Wiki).
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We use this system for both the TAC and Wiki datasets. However, while the

triage system provides candidates in the same KB as the Wiki data, not all entities in

the TAC KB have Wikipedia page titles. Therefore, the TAC triage step requires an

intermediate step - using the Wikipedia titles generated by triage (k = 10), we query

a Lucene database of BaseKB for relevant entities. For each title, we query BaseKB

proportional to the prior provided by the triage system, meaning that we retrieve

more BaseKB entities for titles that have a higher triage score, resulting in l = 200

entities. First, entities with Wikipedia titles are queried, followed by the entity name

itself. If none are found, we query the mention string - this provides a small increase

in triage recall. This necessary intermediate step results in a lower recall rate for the

TAC dataset (85.1% for the evaluation set) than the Wiki dataset, which was 96.3%

for the evaluation set.

3.4 Model Evaluation

We consider several different training and evaluation settings to explore the

multilingual ability of transformers on this task. Recent studies suggest that

multilingual models can achieve similar or even better performance on cross-language

entity linking (Upadhyay et al., 2018). Another work (Mueller et al., 2020) has

shown that this is not always the case. Therefore, we begin by asking: does our

linker do better when trained on all languages (multilingual cross-language) or trained
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Model micro prec. recall F1

e
n

NN 0.195 0.463 0.550 0.502
Mono 0.586 0.703 0.619 0.658
MultiDS 0.509 0.873 0.478 0.618
Multi 0.602 0.691 0.626 0.655
MultiOr 0.654 0.773 0.641 0.703
Tri — 0.736 0.738 0.737

zh

NN 0.207 0.889 0.449 0.597
Mono 0.709 0.867 0.728 0.791
MultiDS 0.733 0.867 0.746 0.801
Multi 0.730 0.862 0.735 0.793
MultiOr 0.828 0.950 0.812 0.876
Tri — 0.854 0.809 0.831

e
s

NN 0.214 0.508 0.552 0.529
Mono 0.595 0.921 0.587 0.714
MultiDS 0.604 0.918 0.590 0.718
Multi 0.652 0.918 0.625 0.744
MultiOr 0.691 0.936 0.655 0.770
Tri — 0.804 0.804 0.804

Table 3.2: Micro-avg. precision, precision, recall, and F1 for TAC datasets.

Model micro prec. recall F1

a
r

NN 0.171 0.414 0.602 0.491
Mono 0.660 0.683 0.816 0.743
Multi 0.637 0.661 0.778 0.715

fa

NN 0.330 0.694 0.734 0.714
Mono 0.702 0.780 0.881 0.827
Multi 0.762 0.817 0.919 0.863

k
o

NN 0.269 0.816 0.597 0.690
Mono 0.752 0.832 0.861 0.846
Multi 0.805 0.850 0.902 0.875

ru

NN 0.358 0.841 0.529 0.649
Mono 0.694 0.834 0.843 0.837
Multi 0.740 0.865 0.876 0.871

Table 3.3: Micro-avg. precision, precision, recall, and F1 for Wiki datasets.
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separately on each individual language (monolingual cross-language)? Is the pattern

of performance gain uniform, or specific to languages with less training data?

We train our model on each of the 7 individual languages in the two datasets

(noted as Mono). Next, we train a single model for each dataset (3 languages in

TAC, 4 in Wiki, each noted as Multi). Mono and Multi share the exact same

architecture - there are no multilingual adjustments made, and the model contains

no language-specific features. As Multi uses data available in all languages and

thus has more training data than Mono, we include a model that is trained on a

randomly-sampled subset of the multilingual training data that is set to match the

training size of Mono (MultiDS). For TAC Multi models, we also report results

using a candidate oracle instead of triage (Multi+Or), where the correct entity is

always added to the candidate list. For all Mono and Multi-based models we report

the average of three runs. The metric-specific standard deviations were all small,

with all but one at or below 0.017. We note the best performing architecture from Ji

et al. (2015) as Tri, again noting that those systems have access to the non-English

text. We also evaluate a simple nearest neighbor model (noted as NN). This model

scores each mention-entity pair using the cosine similarity between the mention name

representation ms and the entity representation es, and selects the highest-scoring

pair.

Table 3.2 shows that for TAC there is a small difference between the Mono and

Multi models. For Wiki in Table 3.3 the difference is often larger. Multi often does
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Evaluation Language
en zh es ar fa ko ru

T
ra

in
in
g

Multi 0.66 0.79 0.74 0.72 0.86 0.88 0.87 Multi

en .00 −.03 −.02 +.03 −.08 −.08 −.05 ar
zh −.05 .00 −.03 −.14 −.04 −.16 −.10 fa
es −.06 −.06 −.03 −.20 −.13 −.03 −.09 ko

−.20 −.08 −.13 −.03 ru

Table 3.4: ∆F1 for each single-language trained model, compared to a
multilingually-trained model, for each evaluation language. Each column is an
evaluated language, and each row is a training setting.

better than Mono, suggesting that additional training data is helpful specifically for

languages (e.g. Farsi) with smaller amounts of data. For languages with a substantial

amount of in-language data, such as English, a monolingual model is better. Overall,

these results are encouraging as they suggest that a single trained model for our system

can be used for cross-language linking for multiple languages. This can reduce the

complexity associated with developing, deploying, and maintaining multiple models in

a multilingual environment. For some models, the Multi improvement may be due to

additional data available, as shown in the difference in performance between Multi

and MultiDS (e.g. Spanish F1 Multi is +.026 over MultiDS). However, the small

difference in performance shows that even by providing additional out-of-language

training data, reasonable performance can be achieved even with reduced in-language

training.
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en zh es
avg F1 avg F1 avg F1

name 0.59 0.70 0.45 0.71 0.42 0.73

+cont +.12 +.05 +.22 +.05 +.14 +.05
+type +.03 +.01 +.10 −.02 +.03 −.03
all +.12 +.05 +.26 +.08 +.19 +.06

Table 3.5: English-only trained ∆micro-average and ∆F1 when using a subset of linker
features, compared to the name-only model for each language in the Development set.

BERT Lang micro prec. recall F1

en en −.07 +.17 −.13 −.03
en es −.01 .00 −.02 −.01
ar ar −.08 −.08 −.03 −.06
ar fa −.09 −.05 −.08 −.06

Table 3.6: Change in performance for monolingually-trained models using
monolingually-trained BERT models, compared to monolingually-trained models
using mBERT.

3.5 Zero-shot Language Transfer

Encouraged by the results of multilingual training, we explore performance in

a zero-shot setting. How does a model trained on a single language perform when

applied to an unseen language? We consider all pairs of languages, i.e. train on each

language and evaluate all others in the same dataset.5

Table 3.4 shows the change in F1 for monolingually-trained models compared to

multilingual models. While zero-shot performance does worse than a model with

access to within-language training data, the degradation is surprisingly small: often

less than 0.1 F1. For example, a model trained on all 3 TAC languages achieves an

5Work in Cross-language entity linking (Upadhyay et al., 2018; Tsai and Roth, 2016b) has done
similar evaluations but focuses on using large external data sources (Wikipedia) to train their models.

78



CHAPTER 3. CROSS-LINGUAL TRANSFER IN ZERO-SHOT
CROSS-LANGUAGE ENTITY LINKING

F1 of 0.79 on Chinese, but if only trained on English, it achieves an F1 of 0.76. This

pattern is consistent across both models trained on related languages (Arabic → Farsi,

loss of 0.08 F1), and on unrelated languages (Russian → Korean, loss of 0.13 F1).

3.5.1 Analysis

Why does zero-shot language transfer do so well for cross-language entity linking?

What challenges remain to eliminate the degradation in performance from zero-shot

transfer?

We answer these questions by exploring the importance of each component of our

cross-language ranking system: mention string, context, and type. We conduct ablation

experiments investigating the performance loss from removing these information

sources. We then evaluate each model in an English-trained zero-shot setting. First,

we train a zero-shot model using only the mention text and entity name. We then

compare the performance change that results from adding the context, the type, and

both context and type (all features).

Table 3.5 shows that comparing the name and mention text alone accounts for

most of the model’s performance. This is a sensible result given that most of the

task involves matching entity names. We find that context accounts for most of

the remaining performance, with type information having a marginal effect. This

highlights the importance of the multilingual encoder since both name and context

rely on effective multilingual representations.
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en zh es
Model avg F1 avg F1 avg F1

Baseline 0.64 0.75 0.51 0.69 0.53 0.75

w/ Name .00 −.01 +.07 +.02 −.02 −.02
w/ Pop Train .00 +.01 +.06 +.04 +.01 +.02

w/ Pop-All +.04 +.03 +.12 +.06 +.10 +.06

Table 3.7: For each proposed Name matching or popularity re-ranking model, the
change in performance (∆F1 and ∆micro-average) compared to the original Rand
model.

Separately, how does using a multilingual transformer model, such as mBERT, affect

the performance of our ranker? First, it is possible that using a monolingual linker with

a BERT model trained only on the target language would improve performance since

such a model does not need to represent several languages simultaneously. As shown

in Table 3.6, model performance for these settings is largely worse for English-only

and Arabic-only (Safaya et al., 2020) models when compared to using mBERT, with

the exception that precision increases substantially for English. Second, perhaps a

monolingual linker with a BERT model trained only on a related language – e.g.

English BERT for Spanish, Arabic BERT for Farsi – would produce acceptable results.

Again, as shown in Table 3.6, the performance is most often worse, illustrating that

mBERT is an important aspect of the linker’s performance.
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en zh es
Model avg F1 avg F1 avg F1

Baseline 0.53 0.66 0.45 0.66 0.42 0.70

w/ Name −.02 −.02 +.02 +.01 −.01 −.01
w/ Pop-Train −.02 +.04 .00 +.07 −.01 +.06

w/ Pop-All +.13 +.10 +.20 +.11 +.22 +.10

Table 3.8: For each proposed Name matching or popularity re-ranking model, the
change in performance (∆F1 and ∆micro-average) compared to the original Tail
models.

en zh es
avg F1 avg F1 avg F1

Multi 0.70 0.73 0.77 0.81 0.68 0.82

Rand −.04 -.02 −.26 −.12 −.15 −.07
N-1 +.01 +.02 −.04 −.02 −.08 −.03
N-1U −.24 -.14 −.49 −.22 −.38 −.19
Tail −.16 -.08 −.31 −.15 −.26 −.12

Table 3.9: For each of the English-only training data subsets described in §3.6.2,
∆Micro-average and ∆F1 compared to the full Multi model. Models that see even
a single example of an entity (e.g. N-1) outperform models that see a portion (e.g.
Tail) or none (e.g. N-1U).
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3.6 Improving Zero-shot Transfer

3.6.1 Name Matching Objective

Given the importance of matching the mention string with the entity name,

will improving this component enhance zero-shot transfer? While obtaining

within-language entity linking data isn’t possible in a zero-shot setting, we can

use pairs of translated names, which are often more easily available (Irvine et al., 2010;

Peng et al., 2015). Since Chinese performance suffers the most zero-shot performance

reduction when compared to the multilingual setting, we use Chinese English name

pair data (Huang, 2005) to support an auxiliary training objective. An example name

pair: “巴尔的摩－俄亥俄铁路公司” and Baltimore & Ohio Railroad.

We augment model training as follows. For each update in a mini-batch, we first

calculate the loss of the subset of the model that scores the mention string and entity

name on a randomly selected pair k = 25, 000 of the Chinese/English name pair

corpus. We score the Chinese name z and the correctly matched English name e+

pair, and separately score the same Chinese name paired with n negatively sampled

English names e−. We create representations for both z and e using the method

described for names in §3.2.1 which are passed to the name-only hidden layer. We

add a matching-specific hidden layer, which produces a score. We apply the hinge
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loss between positive and negative examples,

N (θ) = max{0, ϵ − (S({z, e+}; θ) − max{S({z, e0−}; θ) . . . S({z, en−}; θ)}}

The name pair loss is then multiplied by a scalar λ = 0.5 and added to the loss

described in §3.2.3. The resulting loss Ljoint(θ) = (λ∗N (θ))+L(θ) is jointly minimized.

After training, we discard the layer used to produce a score for name matches. This

procedure still only uses source language entity linking training data, but makes use

of auxiliary resources to improve the name matching component, the most important

aspect of the model.

We analyze the resulting performance by considering modifications to our

English-only training setting, which are designed to replicate scenarios where there

is little training data available. To show the effect of a smaller training corpus, we

select a random 50% of mentions, partitioned by document (Rand). To show the

importance of training on frequently occurring entities, we select 50% of mentions

that are linked to the least frequent entities in the English dataset (Tail).

Tables 3.7 (for the Rand setting) and 3.8 (for the Tail setting) shows the results

on each of the three development TAC languages compared to the Multi model.

For the Rand training set, we see a large improvement in Chinese micro-average

and a small one in F1, but otherwise see small reductions in performance. In the

Tail training setting, a similar pattern occurs, with the exception that Chinese is less
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improved than in Rand. Overall, performance loss remains from zero-shot transfer

which suggests that improvements need to be explored beyond just name matching.

3.6.2 Entities

Another possible source of zero-shot degradation is the lack of information on

specific entities mentioned in the target language. For entity linking, knowledge of

the distribution over the ontology can be very helpful in making linking decisions

(as discussed in Chapter 2.2). While zero-shot models have access to general domain

text, i.e. news, they often lack text discussing the same entities. For example, some

entities that only occur in Chinese (231 unique entities in Dev), such as the frequently

occurring entity Hong Kong, have a number of similar entities and thus are more

challenging to disambiguate.

We measure this effect through several diagnostic experiments where we evaluate

on the development set for all languages, but train on a reduced amount of English

training data in the following ways: In addition to the Rand and Tail settings, we

sample a single example mention for each entity (N-1), resulting in a much smaller

training as compared to those datasets. We also take N-1 and remove all evaluation

set entities (N-1U), leaving all evaluation entities unseen at train time.

Table 3.9 reports results on these reduced training sets. All languages use a −1 NIL

threshold. Compared to the multilingual baseline (Multi) trained on all languages,

there is a decrease in performance in all settings. Several patterns emerge. First, the
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models trained on a subset of the English training data containing more example

entities - e.g. N-1 - have much higher performance than the models that do not. This

is true even in non-English languages. Unobserved entities do poorly at test time,

suggesting that observing entities in the training data is important.

However, a mention training example can improve the performance of a mention

in another language if linked to the same entity, which suggests that this provides

the model with data-specific entity information. Therefore, the remaining zero-shot

performance degradation can be largely attributed not to a change in language, but

to a change in topic, i.e. what entities are commonly linked to in the data. This may

also explain why although the name matching component is so important in zero-shot

transfer, our auxiliary training objective was unable to fully mitigate the problem.

The model may be overfitting to observed entities, forcing the name component to

memorize specific names of popular entities seen in the training data. This suggests

we are faced with a topic adaptation rather than a language adaptation problem.

We validate this hypothesis by experimenting with information about entity

popularity. Will including information about which entities are popular improve

zero-shot transfer? We answer this question by re-ranking the entity linker’s top

ten predicted entities using popularity information and selecting the most popular

entity from the list. Adding this feature into the model and re-training did not

lead to a sizable performance gain. We define the popularity of an entity to be the

number of times it occurred in the training data. We report results for two popularity
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measures–one using the popularity of the English subset of the data used for training,

and one using all of the training data (including for Spanish and Chinese).

Tables 3.7 (Rand) and 3.8 (Tail) show that both strategies improve F1, meaning

that a missing component of zero-shot transfer is information about which entities

are favored in a specific dataset. The gain from using popularity estimated from the

training data only is smaller than using the popularity data drawn from all of TAC.

With more accurate popularity information, we can better mitigate loss. This finding

follows other work (see Chapter 2.2) which suggests that an accurate prior of entity

probabilities enables accurate linking.

Several patterns emerge from most common corrections made with the Population

reranking for Tail, included in Table 3.10. Many errors arise from selecting related

entities that are closely related to the correct entity – for example, United States

Congress instead of the United States of America. Additionally, people with similar

names are often confused (e.g. Edmund Hillary instead of Hillary Clinton). Finally,

many appear to be annotation decisions – often both the original prediction (e.g.

Islamic State) and the corrected popular prediction (e.g. Islamic State of Iraq and

Syria) appear reasonable choices. While most corrections were in Chinese (632), some

occurred in both English (419) and Spanish (187). These errors – especially those in

English – illustrate that much of the remaining error is in failing to adapt to unseen

entities.
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Original Prediction Popular Correction Count

United States Department of State United States of America 146
united states congress United States of America 121
Soviet Union Russian 57
Central Intelligence Agency United States of America 41
healthcare of cuba Cuba 36
islamic state Islamic State of Iraq and Syria 33
edmund hillary First lady Hillary Rodham Clinton 32
United States Department of
Defense

United States of America 32

Tamerlan Tsarnaev Dzhokhar A. Tsarnaev 27
Carl Pistorius Oscar Leonard Carl Pistorius 23
CUBA Defending Socialism ...
documentary

Cuba 22

Barack Obama Sr. Barack Hussein Obama II 18
Iraq War Iraq 14
Dzhokhar Dudayev Dzhokhar A. Tsarnaev 13
Sumter County / Cuba town Cuba 13
United States Army United States of America 13
military of the united states United States of America 13
Republic of Somaliland Somalian 13
ISIS Islamic State of Iraq and Syria 13
Islamic State of Iraq and Syria Islamic State of Iraq and Syria 12
National Assembly of People’s
Power

Cuba 11

Sara Netanyahu Benjamin Netanyahu 10

Table 3.10: All pairs of original prediction and popular prediction altered by the
reranking procedure described in Chapter 3.6.2, for the Tail model
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3.7 Conclusion

We demonstrate that a basic neural ranking architecture for cross-language entity

linking can exploit the power of multilingual transformer representations to perform

well on cross-language entity linking. Further, this enables a multilingual entity

linker to achieve good performance, eliminating the need for language-specific models.

Additionally, we find that this model does surprisingly well at zero-shot language

transfer. We find that the zero-shot transfer loss can be partly mitigated by an

auxiliary training objective to improve the name-matching components. However, we

find that the remaining error is not due to language transfer, but to topic transfer.

Future work that improves zero-shot transfer might focus on better ways to adapt

to entity popularity in target datasets, instead of relying on further improvements in

multilingual representations. Focusing on adapting to the topic and entities present in

a given document is critical. This could be accomplished by adding a document-level

representation or by leveraging other mentions in the document. English-focused work

on rare entity performance (Orr et al., 2020; Jin et al., 2014) may provide additional

direction.

Since the completion of this work, research has increasingly focused on entity

linking in multilingual settings. Increasingly, however, research has focused on linking

to knowledge bases that are inherently multilingual, instead of solely English. For

example, Botha et al. (2020) released a dataset of entity linking annotations for 100

languages. The knowledge base contains descriptions in multiple langauges, and the
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authors select the cannonical description to be used for encoding by selecting the

most frequently used link from the training data. The authors similarly use XLM-R

and mBERT to build representations for the dataset. This approach has the benefit

of using multilingual text resources if available but can only use a higher-resource

language (e.g. English) if it is the only one available.

This approach has been extended in other research settings. For example, De Cao

et al. (2022) uses multilingual autoregressive language models, such as BART, to

predict entity links. The authors propose to use their model to independently score

text from entities in multiple languages, and combine scores for an entity across all

languages to achieve a final score for a mention-entity pair. More details of the model,

as applied in a monolingual setting, are discussed in Chapter 5. While those two

works focus on linking to Wikipedia, other work (Liu et al., 2021b; Galperin et al.,

2022) applies similar techniques to other multi-languages settings, such as medical

data. Overall, this approach has the benefit of leveraging text in multiple languages.

However, it is also true that the vast majority of information in knowledge bases is in

English, and thus methods that focus on this task remain useful.
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4.1 Introduction

In Chapter 3, we discussed the challenges of entity linking in a cross-lingual

setting.1 In cross-lingual entity linking, all languages are linked to a single, typically

English-language, knowledge base. While transferring a system to a new document

language presents challenges, it does not consider issues that arise when transferring to

a new KB language. KBs in different languages consider different topics, and matching

text within the same language presents different challenges compared to building

cross-language representations. People build KBs in many different languages, and we

should explore how to link documents to these KBs. An additional challenge arises

due to the smaller amounts of in-language annotations available for most non-English

languages.

This project considers zero-shot cross-lingual adaptation of a trained entity linking

system to a new monolingual setting: the same new language for both the query

document and KB. We consider adaptation so as to utilize the extensive annotated

data resources for English and other well-resourced languages, improving entity linking

on languages that have little to no training data. Consider the example in Figure

4.1, which links the Spanish language mention Senado (English Senate) to the KB

entry Senado de la República (English Senate of the Republic of Mexico). An entity

linker uses the mention text and surrounding sentence paired with the KB entry

1Elliot Schumacher, James Mayfield, and Mark Dredze. 2022. Zero-shot Cross-Language Transfer
of Monolingual Entity Linking Models. In Multilingual Representation Learning Workshop at EMNLP
2022 . Association for Computational Linguistics.
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(including information such as the name, and description) to score the likelihood of a

match. Many approaches to entity linking learn these linkages by training on a set of

hand-annotated links in the desired language. If there are no or few language-specific

annotations, how can we train a model on an annotation-rich language to perform

well on other languages?

We adopt our model from the one described in Chapter 3.2.2, while adapting

the linker to a newer multilingual pretrained transformer model, XLM-Roberta

(XLM-R) (Conneau et al., 2020). XLM-R is a multilingual model that yields robust

representations of text in a wide variety of languages. However, we find that even

with the cross-language ability of XLM-R, in-language annotation data is key to an

accurate linker. We thus propose ways to improve the zero-shot cross-lingual transfer

of a trained linker from one language to another.

We adapt a method from Chen and Cardie (2018) to add an adversarial objective

to linker training which uses an intermediate layer in the linker to transform

language-specific embeddings to language-agnostic embeddings via a language

classification module. To train this language-agnostic layer, we force the language

classifier alone to predict the incorrect language label for unannotated portions of the

source (e.g. English) and target (e.g. Spanish) text. We jointly train the ranker and

the language classifier using the correct source (e.g. English) language labels. which

encourages the name and mention representation to be language-independent.

Second, we augment the entity linker with information from the target language

92



CHAPTER 4. IMPROVING ZERO-SHOT MULTI-LINGUAL ENTITY LINKING

...lo acompañan el presidente del Senado ...

name Senado de la República

desc. El Senado de los Estados Unidos de México...

Figure 4.1: Example Spanish mention Senado, which is a link to the Spanish KB
entity Senado de la República (the Senate of Mexico)

KB to capture the popularity of each entity, better handling entities that are common

in the target language but rare in the source. We find that both model adjustments

improve zero-shot performance on several language pairs and that the adversarial

model specifically produces consistent improvement in recall. Overall, we demonstrate

that entity linking models can be effectively adapted to a new language for both the

query document and KB.

4.1.1 Architecture

We use a standard neural ranking architecture to focus on the mechanisms of

transfer that have been applied successfully in cross-lingual entity linking (see Chapter

3.2.2). To score a mention m and candidate entity e, we leverage a pointwise neural

ranker inspired by the architecture of Dehghani et al. (2017). This produces a score

for each mention-entity pair, creating a ranking of entities specific to each mention.

Additionally, this pointwise approach allows the scoring of previously unseen entities.

We select a subset of entities to score using a triage system (§4.3.)

The only major architectural difference from the cross-language entity linker in

the previous chapter is that this linker does not use type information. The use of
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Parameter Values

Context Layer(s) [768], [512], [256], [512,256]
Mention Layer(s) [768], [512], [256], [512,256]
Final Layer(s) [512,256], [256,128], [128,64], [1024,512], [512], [256]
Dropout probability 0.1, 0.2, 0.5
Learning rate 1e-5, 5e-4, 1e-4, 5e-3, 1e-3

Table 4.1: To select parameters for the ranker, we tried 10 random combinations of
the above parameters and selected the configuration that performed best on the TAC
development set. The selected parameter is in bold.

type information can be helpful but is also knowledge-base specific, which makes

its inclusion challenging in a setting where there are multiple type systems. We use

random combinations of parameters to select the best model configuration, which is

shown in Table 4.1. The full TAC multilingual model takes approximately 1 day to

train on a single NVIDIA GeForce Titan RTX GPU, including candidate generation,

representation caching, and prediction on the full evaluation dataset – the Wiki model

takes approximately 12 hours for the same set of steps.

4.1.2 Multilingual Representations

To create representations of the name and context for a mention-entity pair,

we use XLM-Roberta (XLM-R, Conneau et al. (2020)), a multilingual transformer

representation model. XLM-R outperforms other transformer models (such as

mBERT (Devlin et al., 2019)) on multilingual tasks, and we confirmed this behavior

in our initial experiments. Consider the Spanish example in Figure 4.1. We create a

representation of the mention text ms, Senado, by feeding the entire sentence through
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XLM-R and form a single representation using max pooling on only the subwords of

the mention. We create a representation of the entity name es, Senado de la República

in the same way, except without any surrounding context.

To create mc, we select the sentences surrounding the mention up to XLM-R’s

sub-word limit. We use max pooling over XLM-R to create a single representation. A

similar method is used for the entity context ec, but uses the definition or other text

in the KB, using the first 512 subword tokens from that description.

4.2 Multilingual Transfer

The use of XLM-R makes our model inherently multilingual, allowing a single

model to build representations in several languages. While this allows our models to

do fairly well on previously unseen languages, we consider ways to further improve

models during transfer: adaptation of the name matching model, and adaptation to

the new knowledge base.

4.2.1 Language Adaptation

One source of error may arise from a linker learning language-specific patterns

which do not generalize to other languages. Consider the example in Figure 4.1: would

the model recognize that Spanish mention Senado is not linked to the United States

Senate? While XLM-R provides a multilingual representation, the entity linking model
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Algorithm 1 Pseudo-code of adversarial model training. In each epoch, a random set
of text (y = 5) is used to adversarially train the language classifier. Then, the entity
linker and the language classifier with the correct labels are jointly trained.

Require: Mentions M, entity labels E; English Text A; L2 Text B; Hyperparameter
λ > 0, y, z ∈ N , num epochs

1: for ep = 0 to num epochs do
2: ladv, l = 0
3: for i = 0 to y do ▷ Adversarial Step
4: tA = representation of Ai

5: tB = representation of Bi

6: pA = Hadv(Hs0(tA))
7: pB = Hadv(Hs0(tB)) ▷ Calculate Lang scores
8: ladv += MSE(pA, L2) + MSE(pB, ENG) ▷ Calculate Loss using reversed

labels
9: end for
10: Update Hadv using ladv
11: for i = 0 to z do ▷ Main Step
12: m = representation of Mi

13: rm = Hs0(m)
14: e = representation of Ei

15: re = Hs0(e)
16: l = EL Loss (Eq. 1) with rm and re
17: pM = Hadv(rm)
18: pE = Hadv(re) ▷ Calculate Lang scores
19: l += λ (MSE(pM , ENG) + MSE(pE, ENG)) ▷ Calculate Loss using

correct labels
20: end for
21: Update all parameters except Hadv using l
22: end for
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Figure 4.2: Our adversarial training approach consists of two steps – standard entity
linking paired with training a language classifier (center) and adversarially training
the language classifier (right). The hidden layer hs0 is shared.

has not been trained to learn this nuance in the Spanish knowledge base.

We add an adversarial objective to ensure that the model focuses on

language-agnostic representations of the text, which will better transfer to other

languages. The advantage of this approach is that it does not require annotated

training data, but uses unannotated text to encourage desired model behavior. Chen

and Cardie (2018) train a text classification system with an adversarial objective that

forces the network to learn domain-invariant features. In addition to a standard text

classifier that uses features from a shared and domain-specific feature extractor, they

add a domain discriminator which uses the shared feature extractor as input. They

run two training passes: 1) a training pass for the entire network that uses the correct

classification and domain labels; 2) an adversarially trained domain discriminator

and only the shared feature extractor, which uses the inverse of domain labels as
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the target. Prediction only uses the standard classification output. This objective

improves performance when classifying text from previously unseen domains. We use

this approach to learn language-invariant representations for our linking task, so they

can be transferred to new languages using only source-language linking annotations.

Our proposed adversarial approach is described in Algorithm 1 and illustrated

in Figure 4.2. For each epoch, we first adversarially train the language classifier.

Using pairs of unannotated English A and L2 (second language) B text, we create

representations in the same method as for ms as described §3.2.1. Initially, we

use randomly selected names from the ontology for A and B (see §4.4.3 for other

approaches). Each of the two representations are fed into the shared invariant layer hs0,

the language classifier hadv, and softmaxed to produce separate language likelihood

scores for the English pA and L2 pB text. Importantly, we calculate the mean squared

error (MSE) using the inverted language labels – for the English input, we calculate

the error as if it was labelled as L2, and for the L2 input, we treat it as English. If

we train with multiple L2 languages at the same time; all incorrect labels are applied

with equal probability. We stop training the adversarial step after 50 epochs for one

dataset (Wiki) based on development data performance.

We also run a standard entity linking training pass, in which we jointly train

the linker and the language classifier using our set of training mentions M and

corresponding entity labels E. The entity linking loss is unchanged from §4.1.1, except

that the ms and es are first fed separately through the shared invariant layer hs0. The
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loss for the language classifier is unchanged from the first step except that the correct

labels are used. The effect of the language classifier loss is controlled by the parameter

λ, which we set to be either 0.25 or 0.01 depending on the dataset. Models including

this are referred to as +A. We experimented with adding the additional layers hs0

and not applying the adversarial objective, and feeding both the language-invariant

(e.g. m) and language-specific representations (e.g. rm)) into the linker, but both

performed worse in development experiments.

4.2.2 KB Adaptation

The second source of error comes from a change in the scope of the KB, not

necessarily due to the change in language. Trained entity linkers tend to do well on

popular, or previously seen entities. New entities, which are common when a linker

changes to a new KB, do worse. Consider the example in Figure 4.1: a linker trained

on English will favor the KB entry for the U.S. Senate, more common in English

language documents, as opposed to the Mexican Senate, which is more common in

Spanish documents. This is especially important since we consider models transferred

from TAC to our Wiki data (§4.3), which cover different topics.

We adapt the model to a KB in a new language by supplying the entity linker with

popularity measures drawn from the new KB. This information could normally be

derived from some annotated entity linking data, but in the zero-shot cross-language

transfer setting we instead leverage the cross-links among entities in the KB, a good
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indicator of entity popularity. For example, the entity Senado de la República might

have a link to the lower legislature of Mexico, Cámara de Diputados, and the President

of Senate, Presidente de la Cámara de Senadores. Others, such as Senado de Arizona,

are likely to have fewer. We count unique cross-links between entities, divide by the

median number of links, and feed the result into the final feed-forward neural network

h (indicated as +P).

4.3 Datasets

We consider entity linking datasets in multiple languages from two sources. Both

datasets were used in our cross-lingual work 3.3, but are preprocessed differently to

emulate a setting with distinct knowledge bases. We treat each language as having a

distinct KB, although entities may overlap in different languages. We predict NILs

(mentions with no matching entity) as those where all candidate entities are below a

given threshold (−1 unless otherwise noted). We evaluate using the script from Ji

et al. (2015): Precision, Recall, F1, and Micro-averaged precision. We use the triage

system described in 3.3.1 for both datasets. Originally, the triage system was designed

to produce links for non-English mentions to English titles. We tweak this approach

by applying the same pipeline, but for in-language titles, which did not require any

major algorithmic adaptations.

The 2015 TAC KBP Entity Discovery and Linking dataset (Ji et al., 2015) consists
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of newswire and discussion posts in English, Spanish, and Mandarin Chinese, and

is detailed further in Chapter 2.4. The training set consists of mentions across

447 documents, and the evaluation set consists of mention annotations across 502

documents. This leaves us 14, 793 development mentions, of which 11, 344 are non-NIL.

We created a multi-language entity linking dataset from Wikipedia links (Pan

et al., 2017) for Farsi and Russian. A preprocessed version of Wikipedia is annotated

with links to in-language pages, which we treat as entities. Some BaseKB entities

used in the TAC dataset have Wikipedia links provided; we used those links as seed

entities for retrieving mentions, retrieving a sample mention of those, and adding the

remaining links in the page. We mark 20% of the mentions as NIL. We consider this

to be silver-standard data because–unlike TAC –the annotations are automatically

derived. Thus the resulting distribution of mentions is different. Comparing the

number of exact matches between the mention text and the entity name in Wikipedia

(e.g., in Farsi 54.5%) to TAC (e.g., in Spanish 21.2%) underscores that TAC is a more

illustrative dataset, thus we caution against treating Wikipedia as a replacement for a

human-annotated entity linking dataset. This dataset is created in a similar fashion to

the one in Chapter 3 but is filtered to find in-language links, instead of cross-language

links.
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4.4 Model Evaluation

We begin with a zero-shot evaluation: how well does a model trained on English

(TAC) transfer to a new language without in-language training data? This baseline,

which uses the same architecture as in Chapter 3.2.2, leverages only the crosslingual

ability of XLM-R to apply English language annotations to the new languages. We

evaluate the English-trained model on Spanish (es) and Chinese (zh) for TAC and

Russian (ru) and Farsi (fa) for Wiki. We also train a separate model for each of

these languages to establish an in-language performance baseline. We illustrate the

difference in the performance of an English-only model as compared to an in-language

trained one in Figure 4.3; the dashed line above each metric shows the increase in

performance. To control for the effect of training set size we ensure that the training

sets are of equivalent size for each language by randomly downsizing the larger training

dataset (e.g. English) to match the smaller (e.g. Spanish). For comparison, we include

a simple nearest neighbor baseline (noted as nn), which selects the highest scoring

mention-entity pair using cosine similarity between the mention name ms and the

entity representation es.

We then apply our language (noted as +A) and KB (noted as +AP) adaptation

strategies for each language, and measure the performance on both the target and

English language. In all cases, reported metrics are averaged over three runs. We

report results for each language in the form of micro-averaged precision (micro), recall

(r), and F1. See Table 4.4 for full results and additional metrics, and Tables 4.3 and
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Train
/Test

All Non-NIL
Model micro p r f1 micro p r f1

zh/zh Baseline 0.795 0.890 0.830 0.859 0.801 0.884 0.884 0.884
en/zh Baseline 0.202 0.905 0.697 0.788 0.077 0.899 0.721 0.800
en/zh +A 0.439 0.897 0.732 0.806 0.367 0.892 0.764 0.823
en/zh +A 0.381 0.911 0.756 0.827 0.296 0.907 0.794 0.847
en/zh +PA 0.635 0.889 0.753 0.815 0.606 0.881 0.789 0.833
en/zh +A (Desc) 0.266 0.908 0.718 0.802 0.156 0.903 0.747 0.818
en/zh +PA (Desc) 0.645 0.885 0.774 0.826 0.618 0.877 0.815 0.845
en/zh +P 0.544 0.894 0.685 0.776 0.494 0.888 0.707 0.787

es/es Baseline 0.714 0.933 0.777 0.848 0.739 0.930 0.891 0.910
en/es Baseline 0.488 0.942 0.643 0.764 0.444 0.944 0.716 0.815
en/es +A 0.469 0.938 0.693 0.797 0.420 0.939 0.782 0.853
en/es +A (multi) 0.548 0.952 0.753 0.841 0.523 0.956 0.860 0.906
en/es +PA 0.654 0.931 0.695 0.796 0.660 0.931 0.784 0.851
en/es +A (Desc) 0.496 0.943 0.737 0.828 0.455 0.949 0.839 0.891
en/es +PA (Desc) 0.650 0.937 0.692 0.796 0.656 0.939 0.780 0.852
en/es +P 0.664 0.928 0.698 0.797 0.674 0.930 0.788 0.853
zh/es Baseline 0.378 0.942 0.661 0.777 0.301 0.943 0.739 0.829
zh/es +A 0.514 0.939 0.785 0.855 0.479 0.945 0.902 0.923

Table 4.2: Single runs of Development TAC results for our reported models. Note that
while we report results with the training sets equalized (zh and en training are set to
be of equal size) for evaluation, the full development results do not have equalized
training set sizes.

4.2 for development results.

4.4.1 Transfer Performance

Figure 4.3 and Table 4.4 show that zero-shot cross-language transfer from English

gives worse performance compared to in-language models. For TAC languages (es and

zh) there is a large decrease in micro-avg and F1, and the same for Wiki languages (fa

and ru), except that F1 decreases more substantially than recall, illustrating a drop in

precision. The overall drop in performance is not large - the largest drop in F1 is only
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Train/Test Model micro p r f1 Eval Epoch

ru/ru Baseline 0.650 0.823 0.888 0.854 800
en/ru Baseline 0.484 0.762 0.855 0.806 550
en/ru +A 0.451 0.712 0.893 0.792 50
en/ru +A (multi) 0.419 0.652 0.865 0.743 200
en/ru +P 0.473 0.685 0.860 0.762 50

fa/fa Baseline 0.832 0.881 0.966 0.922 800
en/fa Baseline 0.603 0.720 0.928 0.811 150
en/fa +A 0.447 0.555 0.948 0.700 200
en/fa +A (multi) 0.448 0.538 0.966 0.691 50

Table 4.3: Single runs of Development Wiki results for select reported models. Note
that while we report results with the training sets equalized (ru and en training are set
to be of equal size) for evaluation, the full development results do not have equalized
training set sizes.

.1 less compared to the in-language baseline. This illustrates that the linker is able to

transfer across language and knowledge bases effectively. Compared to the baseline

nearest neighbor model, which one has the higher performance improvement depends

on the language. For example, while Spanish F1 is nearly the same, Chinese F1 is

slightly higher with the nn, but in Farsi, the English-trained model is an improvement

for F1. This finding is similar to that of Chapter 3.

We also evaluate other languages as sources of transfer. Table 4.4 shows results

on training models on Chinese using the +A approach and testing on Spanish,

demonstrating that our results are not specific to English. Note that the same pattern

appears when transferring from a Chinese-trained model to a Spanish model. While

the Spanish performance is understandably worse when transferring from Chinese

instead of English, the reduction of F1 performance is only −.086.
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Figure 4.3: Compared to an English-only baseline (0.0 on y-axis), how do models with
the adversarial objective (+A), the adversarial objective with popularity (+PA), and
a nearest neighbor baseline (nn) perform?

4.4.2 Language and KB adaptation

We train the TAC and Wiki datasets with different configurations based on

development results (see §4.4.3): TAC: λ = 0.25 and the adversarial step covers all of

training; Wiki: λ = 0.01 and stop the adversarial step after 50 epochs. The difference

in λ is large. This suggests that the TAC dataset benefits more from the cross-lingual

training, perhaps due to the larger dataset size.

Applying the adversarial objective to English-trained models usually increases

recall compared to the baseline English-trained models, and often even compared to the

in-language trained models. For example, the English-trained, Chinese-tested model
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sees a large drop in recall which is almost completely eliminated when applying the

adversarial objective. This increase in recall leads to nearly-equivalent F1 performance

in Spanish and Chinese in-language models and English-trained models with the

adversarial objective. In short, adversarial training greatly improves the models’ ability

to locate the right KB entry, suggesting better name matching. This recall-focused

improvement is useful for settings where high-recall is desired, such as in search. The

exception to this is Farsi – this is likely because the high recall of 0.934 of the zero-shot

model established a high starting point. Compared to the nearest neighbor baseline,

the +A outperforms the baseline in all languages for F1, nn F1, micro-avg., and recall.

The same pattern appears when transferring a Chinese model instead of English. The

F1 performance is only −.017 below the in-language trained model despite not sharing

a writing system.

We also explored transferring a multilingual model: training on English with +A

and testing on all target languages at once (see Table 4.4). In almost all cases, the

multilingual adversarial approach performs worse than a single-language one, but only

slightly; it may be preferable when targeting multiple languages. This is in contrast

to the cross-language task 3.4, where multilingual training helped languages with

less training data. This is likely due to the fact that in the cross-language task, the

annotations are targeting the same knowledge base even if in a different language,

unlike in this setting.

KB popularity (+AP) has the largest effect on micro-average precision by doing
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much better on rarer entities, specifically in the TAC dataset. While in Chinese the

improvement in micro-average is larger in the +AP models than in +A, in all other

cases the micro-average is close to the +A model.

We explored model behavior on different types of entities using the TAC evaluation

dataset and provided mention types (see Table 4.5). For Person mentions, we see

consistent performance between in-language, English, and English+A trained models.

While this is not unexpected in Spanish (which has similar names to English), it is

also true in Chinese, which uses a different orthography than English. The largest

performance change occurred in Geo-Political Entities. For Chinese, F1 drops 0.15 for

an English trained model compared to an in-language trained model, but the deficit is

erased in the English+A model. A similar pattern occurs in Spanish, suggesting that

the adversarial model is able to improve the more challenging entity types.

4.4.3 Design of Adversarial Objective

How does the configuration of the +A model change its behavior? We vary three

factors and measure results on TAC evaluation (full results shown in Table 4.6): 1)

the size of the coefficient λ; 2) whether to train using the entity linking objective only

for an additional 50 epochs instead of for all epochs (for lower λ and additional entity

linking training, we found that both worked better on Wiki development data, while a

higher λ and full training worked better for TAC); and 3) training +A using randomly

selected names from English and the target language plausibly learns a better name
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Spanish (es) evaluation Chinese (zh) evaluation
Training micro p r F1 nn F1 micro p r F1 nn F1

same 0.623 0.910 0.711 0.798 0.870 0.670 0.862 0.787 0.822 0.844

nn 0.375 0.924 0.633 0.751 0.809 0.244 0.910 0.719 0.803 0.826
en 0.565 0.925 0.635 0.753 0.810 0.371 0.893 0.647 0.750 0.757
en+A 0.615 0.923 0.706 0.800 0.876 0.472 0.877 0.770 0.820 0.839
en+P 0.632 0.919 0.616 0.738 0.790 0.462 0.869 0.636 0.734 0.734
en+PA 0.628 0.921 0.633 0.750 0.808 0.622 0.871 0.698 0.775 0.790
en+A (all) 0.562 0.917 0.694 0.790 0.862 0.466 0.882 0.722 0.794 0.813
zh 0.492 0.924 0.579 0.712 0.755 — — — — —
zh+A 0.523 0.901 0.690 0.781 0.852 — — — — —

Farsi (fa) evaluation Russian (ru) evaluation
Training micro p r F1 nn F1 micro p r F1 nn F1

same 0.838 0.902 0.958 0.929 0.908 0.526 0.729 0.827 0.775 0.721

nn 0.392 0.560 0.950 0.705 0.585 0.362 0.654 0.868 0.746 0.680
en 0.623 0.748 0.934 0.830 0.774 0.552 0.798 0.863 0.829 0.791
en+A 0.498 0.616 0.918 0.737 0.639 0.508 0.697 0.899 0.785 0.729
en+A (all) 0.525 0.631 0.955 0.759 0.668 0.516 0.758 0.852 0.802 0.755
en+P 0.627 0.700 0.958 0.809 0.741 0.565 0.700 0.889 0.783 0.728
en+PA 0.584 0.679 0.930 0.785 0.709 0.519 0.661 0.881 0.755 0.691

Table 4.4: Compared to an in-language trained model and a nearest-neighbor baseline
(nn), how does a zero-shot model trained only on English transfer? For each setting,
we report Micro-avg., precision, recall, F1, and non-NIL F1 on TAC and Wiki datasets.

In-Language en en+A
lang type # micro r f1 micro r f1 micro r f1

zh FAC 59 0.169 0.631 0.756 0.119 0.515 0.670 0.169 0.632 0.768
zh GPE 3933 0.856 0.906 0.912 0.108 0.685 0.796 0.510 0.887 0.916
zh LOC 461 0.729 0.947 0.886 0.488 0.810 0.840 0.547 0.933 0.892
zh ORG 1441 0.160 0.726 0.774 0.299 0.629 0.722 0.127 0.799 0.821
zh PER 3116 0.708 0.682 0.797 0.612 0.676 0.792 0.610 0.676 0.792

es FAC 59 0.051 0.294 0.454 0.068 0.285 0.444 0.102 0.289 0.448
es GPE 1570 0.664 0.891 0.927 0.338 0.674 0.791 0.532 0.830 0.888
es LOC 174 0.144 0.824 0.874 0.672 0.717 0.810 0.787 0.863 0.892
es ORG 799 0.451 0.681 0.782 0.444 0.678 0.779 0.444 0.691 0.788
es PER 2022 0.715 0.624 0.755 0.693 0.602 0.741 0.723 0.624 0.755

Table 4.5: How do the results of in-language training compare to English-only trained
models and models trained with the adversarial objective when looking at type-level
performance?
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model than it does language-invariant representations, so we instead train with the

first 512 subwords of randomly selected descriptions.

Compared to a Chinese trained model, we considered versions with all non-baseline

models trained on the joint entity linking and adversarial objective for 50 epochs, and

the +EL models trained on EL data for an additional 50. Our reported setting for

TAC, λ = 0.25 with name data, performs best on recall, F1, and non-NIL F1. However,

when using the description data and λ = 0.01 with or without additional EL training,

better micro-averaged precision is achieved. Generally, the models using name data

perform slightly better than those using descriptions, but the overall difference is

slight (e.g. +.009 F1 for λ = 0.25 with name, −.015 F1 with description), suggesting

that the model is learning better multilingual representations. Finally, recall generally

performs best with a higher λ and full adversarial training, and improves less with a

lower λ and EL-only training.

4.4.4 Effect on English Performance

What effect does forcing an English-trained model to better orient to a target

language have on English-language performance? Table 4.7 shows TAC English

evaluation results in three settings: 1) a baseline linker with English training data

matched to the size of the target language’s training data; 2) the added +A objective;

3) the added +AP objective. These are the same models as in Table 4.7, except

tested on English.
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Test micro r F1 nn F1

zh 0.674 0.789 0.824 0.846

en base −.341 −.123 −.060 −.071

+
A

n
am

e .25 −.190 −.001 +..009 −.003
.01 −.202 −.078 −.033 −.036

.25+ −.205 −.123 −.062 −.073

.01+ −.230 −.137 −.072 −.087
+
A

d
es

c .25 −.317 −.048 −.015 −.012
.01 −.169 −.088 −.041 −.046

.25+ −.287 −.188 −.108 −.133

.01+ −.145 −.150 −.080 −.097

Table 4.6: How do adversarial settings affect performance? We consider the coefficient
λ, type of text (names or descriptions), and entity-only training for 50 more epochs
(i.e. we stop updating the language classifier, indicated by +).

Interestingly, the performance change is very small: a small increase for

micro-average and a small decrease in F1 and non-NIL F1. The largest drop in

performance is less than 0.05. This illustrates the capacity of the model: it can adapt

to a new language while maintaining its performance on the source language.

4.4.5 Analysis

While our training methods are effective, they are inconsistent across our

experiments. +A improves performance more on TAC data (Spanish and Chinese)

than Wiki data (Farsi and Russian).

We postulate several explanations for this trend. First, the distribution of mentions

is different between the two datasets. The lexical similarity between mentions and

entity names – one measure of how easy the mentions are to link – is much higher in
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Target micro F1 nn F1

en 0.484 0.672 0.797

zh+A +.009 +.014 +.015
zh+P +.030 −.025 −.031

en 0.472 0.678 0.802

es+A +.004 −.014 −.017
es+P +.011 −.036 −.043

Table 4.7: Compared to a baseline English TAC model (with training set size reduced
to the noted language’s training set size), we find that English performance is largely
unchanged for both +A and +P.

Wiki. For Farsi development mentions, 54.5% were exact matches and also had an

overall Jaro-Winkler (Winkler, 1990) lexical similarity of 94.1%. Compared to Spanish

TAC (21.1% exact, 71.4% similarity) and Chinese (28% exact, 66.1% similarity),

the Farsi data is relatively easy to link. While many entity linking studies rely on

Wikipedia data due to its availability, it is not representative of other data types; we

should build more human-annotated entity linking resources in non-English languages.

When comparing the drop in performance from an in-language trained model to

an English trained model, recall drops in the TAC data, while precision drops in the

Wiki data. The drop in precision may be because we use English TAC data to train

the zero-shot Wiki models, and that recall is fairly easy given the high mention-entity

similarity. Another factor is the possibility that Wikipedia text is less suited as

adversarial training data, compared to that from TAC. Thus, while seeing an increase

in recall in the Wiki models, this does not cancel out the reduction in precision.
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4.5 Conclusion

We explored how to build a monolingually-trained entity linker that can be

transferred to new languages that do not have annotated training data. With a neural

ranker model using XLM-R, we see that while in-language-trained models perform

better than English-trained models applied to second languages, the performance

decrease is not large.

We have validated several ways to improve these zero-shot models and find that an

adversarial language classifier improves recall and F1 on many datasets. Furthermore,

by adjusting the adversarial parameters, different performance objectives can be

achieved, such as maximizing recall. We also present an analysis of our models,

demonstrating which settings have the highest expectation of success. Overall, we

find that training the model to learn language-invariant representations is effective in

improving performance when transferring to both text and a KB in a new language.

As discussed in Chapter 3.7, recent work in multiple-language entity linking has

focused on linking documents in multiple languages to language-agnostic knowledge

bases. While this work only focuses on one-to-one pairings, the approaches taken

in the work might be appropriate for settings where there is information available

within the knowledge base that is specific to one language. Further, much of the recent

multilingual work depends on the availability of large amounts of data, unannotated

or otherwise. This assumption does not hold for a variety of domains. Beyond entity

linking, adversarial approaches to multilingual tasks have been used in other settings,
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such as Question Answering (Rosenthal et al., 2021), Information Retrieval (Wang

et al., 2021), and natural language inference (Dong et al., 2021).

113



Chapter 5

On the Surprising Effectiveness of

Name Matching Alone in

Autoregressive Entity Linking

114



CHAPTER 5. ON THE SURPRISING EFFECTIVENESS OF NAME MATCHING
ALONE IN AUTOREGRESSIVE ENTITY LINKING

5.1 Introduction

As detailed in Chapter 2.1, early work in entity linking in Wikipedia (Cucerzan,

2007; Bunescu and Paşca, 2006) followed by the formulation of the task at the TAC

KBP shared task (McNamee and Dang, 2009; Ji et al., 2010; Li et al., 2011) has led

to more than a decade of research into how to match textual mentions of entities

to grounded entities in a knowledge base (KB). This large body of research has led

to some clear findings (Dredze et al., 2010b; Durrett and Klein, 2014; Gupta et al.,

2017; Lample et al., 2016; Francis-Landau et al., 2016b; Cao et al., 2018; Wang et al.,

2015b; Witten and Milne, 2008; Piccinno and Ferragina, 2014). Entity linking is

commonly modeled as a ranking task, in which a triaged set of KB entities is ranked

by comparison to a textual entity mention. These ranking systems rely on different

information sources. First, the entity mention is compared to the entity name in the

KB (name matching), with allowances for aliases, acronyms, etc. Second, the context

of the mention is compared to entity descriptions in the KB to select the correct

entity among a set of similarly named candidates. Third, other relevant information

from the KB (type information, links to related entities, popularity, etc.) can help

disambiguate between candidates. This information is formulated as features (either

engineered or learned) into the ranking system.

The recent emergence of autoregressive large language models as multi-task learners

(Radford et al., 2019) has led to numerous new applications of these models. These

models have been particularly effective in few-shot learning settings (Brown et al., 2020;
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Chowdhery et al., 2022), but typically fall behind supervised training of traditional

systems that can flexibly incorporate a range of features. Despite this trend, De

Cao et al. (2021) presented GENRE, an autoregressive language model that uses

supervised training to link textual mentions to entities in a KB. Given a sentence and a

previously-identified mention span, the model generates an entity name selected from a

set of (triaged) candidates, with the option to generate entities without any constraints

(with worse performance). Surprisingly, aside from the entity name, GENRE uses no

information from the KB, in contrast to other high-performing entity linking systems

that rely on textual entity descriptions (Wu et al., 2020) or type information (Orr

et al., 2020). We may expect an autoregressive LM to do well, but how can it beat

the best available feature-based entity linking systems?

We explore the benefits and drawbacks of autoregressive entity linking. First, we

ask – why GENRE performs so well? Our answer comes from an analysis of the

behavior of GENRE across several different entity linking datasets. Specifically, we

measure the generalization ability of the model by looking at performance on new

datasets and knowledge bases. We find that GENRE relies heavily on memorization of

name patterns, meaning that it struggles to generalize to new entities and KBs. KB

information is often found to be useful in these cases, but its absence from GENRE

means it struggles when name matching fails. The importance of this ability to

match unseen entities can be seen in other work, including Chapter 3, where much

of the performance reduction in the Zero-Shot setting arises from a lack of training

116



CHAPTER 5. ON THE SURPRISING EFFECTIVENESS OF NAME MATCHING
ALONE IN AUTOREGRESSIVE ENTITY LINKING

Figure 5.1: An example mention taken from the TAC training set. In the original
GENRE model, constrained decoding would be performed over only the normalized
entity names (in blue, bolded) in the candidate list, given the mention and the
sentence context. In our proposed GENRE-KP, we perform constrained decoding
over the normalized entity names and keywords taken from entity descriptions in
the knowledge base. These keywords help disambiguate between the correct entity
(European Union) vs. similar but incorrect entities (European Parliament).

examples for specific entities. Therefore, our second question is: can GENRE make

use of information from the KB when available? Specifically, we provide contextual

information about an entity from the KB to GENRE and measure its resulting

performance in various settings. We find that while it sometimes can make use of

this information, it still struggles to learn generalizable patterns. Our analysis shows

opportunities for incorporating KB information into an autoregressive entity linker,

but also the challenges of doing so given current model architectures.

117



CHAPTER 5. ON THE SURPRISING EFFECTIVENESS OF NAME MATCHING
ALONE IN AUTOREGRESSIVE ENTITY LINKING

5.2 GENRE: An Autoregressive Entity

Linker

GENRE (De Cao et al., 2021) is an autoregressive language model that links

textual mentions to entities in Wikipedia through text generation. Autoregressive

language models, such as BART (Lewis et al., 2020a), are trained to generate text, as

opposed to other non-autoregressive based models (e.g. BERT (Devlin et al., 2019)),

which are better suited for classification or scoring tasks. BART and similar models

do very well at text generation tasks, including text summarization (Johner et al.,

2021).

GENRE formulates entity linking as text generation as follows. Given the selected

entity mention and its left context within the sentence, the model is trained to predict

the next tokens as the normalized entity name. Consider the example in Figure 5.1.

The model encodes the context Two of the party’s European, and is trained to generate

the correct normalized entity name European Parliament for this context. During

training, the model is trained to minimize the smoothed cross-entropy loss between the

generated entity name and the correct (normalized) entity name, where the normalized

entity name matches the title of the associated node in the KB (Wikipedia page title).

In this setup, negative sampling is not required. GENRE starts with a pretrained

BART model and continues training on 9 million example entity mentions selected

from Wikipedia, where the entity name is appended after each entity mention (see
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Chapter 5.5).

Asking GENRE to freely generate a normalized name is both extremely challenging

and unnecessary. In practice, a pre-filtering (triage) step can be used to automatically

select the most likely entity candidates for a textual reference via a name matching

algorithm.1 De Cao et al. (2021) evaluated GENRE under several conditions. First, a

free decoding step whereby the model could output any string; this did not do well.

Second, constraining the model to generate a valid entity name from the KB. Third,

constraining the model to generate an entity from the small set of triaged candidates.

For the constrained generation case, the authors constructed a trie T , where each

node of the trie consists of a vocabulary entry, with a specialized token in the root.

For each subword t ∈ T , its children are allowed subword continuations.

In an evaluation on the several entity linking datasets, including Wikipedia and

MSNBC (Derczynski et al., 2015), GENRE achieved state-of-the-art results compared

to traditional entity linking systems. Yet the shocking thing about this result is

what GENRE lacks. First, GENRE uses no information from the KB. Typical entity

linking systems consider contextual overlap between the mention string and the KB

entity description; GENRE does not. For example, when linking the textual mention

America, a system would measure overlap with the KB description The United States

of America is a transcontinental country primarily located in North America (United

States) or Americans are the citizens and nationals of the United States of America.

1Previous work has noted that this task itself is a challenge, and relying on a candidate set that
contains the correct entity is often unrealistic.
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(American). Another popular feature is entity type, for example, country (United

States) or nationality (American). Other features such as entity popularity, entity

type, and related entities, are not available to GENRE. This information has long

been used to disambiguate entities, and recent systems continue to show their ongoing

effectiveness. Orr et al. (2020) use type information to help disambiguate entities that

do not occur frequently. BLINK (Wu et al., 2020) build contexualized embeddings for

each entity using entity descriptions. None of this information is available to GENRE.

Furthermore, due to the generation nature of BART, GENRE only uses the left

context of the entity mention. In sentences such as that in Figure 5.1, a very limited

left context is availble to provide any information. While GENRE can memorize

associations between the limited left context and the entity name, it cannot generalize

even this limited information to new settings.

Despite these limitations, GENRE represents a state-of-the-art entity linker.

5.3 GENRE and Generalization

How does GENRE achieve great entity linking results with such limited information?

We explore this through the issue of generalization: how well does the model do on

new unseen data?

Since the model does not have access to the KB, its predictions on new data are

based entirely on what it can learn about entities from training data.
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De Cao et al. (2021) suggested that GENRE predicts entities with contextualized

name matching by leveraging large amounts of entity linking annotations during

training. For example, while the original authors show that the model performs

acceptably on rare entities (e.g. approximately 80% accuracy on Wikipedia entities

seen once in the training data), the accuracy for entities unseen in the training data is

only 50%. Bhargav et al. (2022) show that GENRE is very data-intensive to train;

reducing training to 0.01% of the original size performs 11% worse than BLINK.

Constrained decoding is also necessary for accurate predictions. Generating without

triaged candidates drops the accuracy by 9.2%. However, the importance of training

data is clearly central, as triage could be adapted to new settings separately.

What is GENRE learning from the massive training data? One possibility is

that it learns how to normalize entity names (Bill Clinton to Willian Clinton) from

annotated data. Pretraining on massive amounts of unannotated text followed by a

large amount of entity linking annotations may also allow it to learn how to normalize

certain informal names (America) to formal ones (The United States). Furthermore,

pretraining may allow for robust modeling of the context before mentions. Finally, as

in other NLP tasks, the effect of using the encoding of the context provided by the

sentence is likely valuable.

If GENRE exhibits these behaviors, it can generalize certain abilities to new

domains. However, if instead, it is memorizing the training data, e.g. learning specific

entities that appear in training, it cannot generalize. For example, Wikipedia titles
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and mentions follow conventions, which may be learnable by the model, but will not

generalize to settings that do not use Wikipedia data or KBs. Additionally, De Cao

et al. (2021) report results on examples where the gold entity is found in the triage

step, which biases toward lexical matches. Examples that can be lexically matched are

likely to be solved by name matching. These links are far more common in Wikipedia

than in other domains.

In short, while generalization is a challenge for any machine learning model, it

may be especially challenging for the mechanisms used by GENRE to learn from the

training data. Our first question is: Does GENRE learn generalizable patterns or does

it memorize the entities in the training data? We answer by probing how GENRE

leverages its training data to perform linking. We evaluate GENRE on new datasets

(Chapter 5.5) more challenging than those reported in the original paper. We begin

with datasets linked to Wikipedia KBs, then proceed to datasets with different KBs.

These new KBs contain entities unobserved in training, especially difficult for GENRE

because it cannot access the KB.

5.4 GENRE and the Knowledge Base

GENRE faces challenges in generalization from its lack of access to the KB, which

contains information about unseen entities. If GENRE was able to access the KB,

could it better generalize to new data? A long line of entity linking research suggests
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that the answer should be “yes”. In this Chapter, we modify the training data to

provide this information to GENRE.

The key idea is to augment the training data with short descriptions of information

in the KB. Specifically, we add several keywords that summarize an entity’s description

in the KB to each training instance. GENRE is then asked (and trained) to generate

the entity title followed by these keywords after each entity mention. This approach

uses an unchanged GENRE model architecture to both learn to normalize names and

bias the model towards entity descriptions (via keywords) that are most triggered by

the (left) context of the mention.

We choose to use keywords instead of full-text descriptions for several reasons.

First, in many KBs (especially Wikipedia) entity descriptions are quite long, often

multiple paragraphs. This stretches the context beyond what GENRE can reasonably

model. Even selecting a short snippet, e.g. the first sentence, also pushes the model

beyond what is reasonable. Instead, selecting a few important phrases from the

description allows us to easily control the length of the produced string. Furthermore,

if selected correctly, these keywords can highlight topically related content, signaling

a match with the left context of the entity.

Context enables GENRE to match the topic of the context with that of the

candidate entity. For example, the entity Washington, D.C. is paired with the

keywords district city congress united states metropolitan area, while the superficially

similar entity Washington (State) is paired with seattle united states british columbia
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cascade range. Since topical relevance can more easily be learned from the pretraining,

the model can better generalize to this (potentially) new entity. This idea is in the

same spirit as Bevilacqua et al. (2022), which uses autoregressive language models for

search, but decodes entire spans from a corpus, as opposed to keywords.

5.4.1 Keyword Selection

We use the PKE toolkit (Boudin, 2016) to select keywords from the entity

description. After a careful examination of several of the unsupervised methods

in the toolkit, we found that Topic Rank (Bougouin et al., 2013) produced the most

descriptive keywords. We selected the top n keywords (phrases) and multiplied the

Topic Rank score s by a frequency factor from the KB. For each keyword in the KB,

we took a summation over their inverse rank ( 1
rank+1

) within each entity-specific set.

The final score for a keyword k for a given entity is

sk ∗ (1 + log(
∑︂

e∈KB,k∈e

1

rankk + 1
)) (5.1)

The addition of the frequency factor removed some highly-scored esoteric keywords

(e.g. Punic Wars for Spain) that may not generalize well. We also experimented with

the number of keywords to include, and found that adding at least five words was best.

Many keywords are phrases with multiple words, which results in some sequences

being just over five words. This selection procedure can be easily applied to other
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sources of information in KBs.

To avoid GENRE memorizing this training data, we use a different selection

method during the training step. During training, we sample five words from the

entire keyword list proportional to the Topic Rank score and resample for each training

instance. Scores less than zero are set to a small value (0.0001), then normalized to

form a probability distribution. At inference, we use the same top-scoring keywords

for every instance of an entity. Examples of selected keywords are shown in Appendix

Table 5.4.

5.4.2 Training and Inference

We closely follow the training procedure in De Cao et al. (2021). Beginning with

the pretrained GENRE model, we train GENRE-KP to maximize the entity title and

keyword sequence given the sentence context: maximize logpθ(y|x) with respect to

the model’s parameters θ. We closely follow their choices of training methods and

parameter selections, and use teacher forcing, dropout, and label smoothing. The

authors originally add a special token to the beginning of each target sequence. In

addition to using this token, we add special tokens before and after the keywords to

indicate where keywords are present. We do not add these as tokens to the vocabulary

due to Fairseq (Ott et al., 2019) constraints. We believe the performance difference is

likely small.

Similarly, we use GENRE’s candidate scoring with constrained beam search. For
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Wikipedia-based datasets, we use the same beam size (10) as in their work. However,

for other datasets, we found that a smaller beam size works better (5). Additionally,

since we are scoring longer strings that likely vary much more in length than in the

title-only model, we explored normalizing the likelihood of a candidate by its length

(in number of byte pair encoding tokens). In some datasets, we found this provided a

small improvement.

Training these models from scratch – 50 epochs on 9 million training examples –

exceeded our computational resources, as would have multiple training runs. Therefore,

we initialized training using the existing models. We trained each model on a single

NVIDIA GeForce RTX 2080 for 32 hours, iterating over all the data.

5.5 Data

The authors of GENRE use the BLINK dataset, created by that method’s authors

(Wu et al., 2020) from Wikipedia. This was created from a May 2019 English

Wikipedia dump, and includes 5.9 million entities. They use a 9 million sized-subset

of Wikipedia-linked mentions (e.g. links within Wikipedia pages to other Wikipedia

pages). The knowledge base consists of all pages within that snapshot of Wikipedia.

We use this dataset to train our keyword model. While we also report evaluation

results on the Wikipedia test set, we primarily target datasets that are in more

challenging settings. For evaluation, we use the provided candidate sets.
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w/ Retrieved Candidates w/ Oracle
Dataset GENRE GENRE-KP GENRE GENRE-KP

Wikipedia
Acc. 92.11 ±.67 81.09 ±.97 90.85 ±.69 77.52 ±1.0
MRR 0.952 0.874 0.943 0.845

TAC
Acc. 92.36 ±.56 91.84 ±.58 80.66 ±.75 80.87 ±.75
MRR 0.950 0.950 0.856 0.862

Table 5.1: Results on datasets using Wikipedia as the KB, including evaluations on
only examples where the correct entity is in the candidate set, and all examples with
the correct candidate added if not present. Confidence Intervals (at 95%) are included
for accuracy.

For evaluation, we consider two datasets. First, the English text within the 2015

TAC KBP Entity Linking dataset (Ji et al., 2015). While this dataset does not directly

link to Wikipedia, almost all entities linked in the English dataset include a Wikipedia

title in their metadata. Therefore, we convert all entities with Wikipedia links to their

respective entry in the Wikipedia KB and convert all others to NIL. To generate a

candidate set at inference time, we use the system of Upadhyay et al. (2018), which

is largely based on work in Tsai and Roth (2016b). This approach uses Wikipedia

cross-links to generate a prior probability Pprior(ei|m) by estimating counts from those

mentions. This prior is used to provide the top k English Wikipedia page titles for

each mention. Second, we use the Wikia entity linking dataset (Logeswaran et al.,

2019) which was constructed from the Wikia website. The authors exclude all NIL

entities and provide candidate sets for each mention of size 64, retrieved via BM25.

More details on both datasets are in Chapter 2.4.
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5.6 Experimental Setup

For GENRE-KP, we train all models on the Wikipedia dataset alone and select

the best-performing model using the Wikipedia validation set’s loss. In all cases, we

do not use the Wikia or TAC training data for training but only as a validation set.

For Wikia and TAC data, we provide the model with the sentence where the mention

occurs. Sentence boundaries are identified with Spacy (Honnibal and Montani, 2017).

We adopt the method of reporting results from Logeswaran et al. (2019), which reports

normalized accuracy, which is calculated over the set of examples that are non-NIL

and have the gold standard entity in their candidate set. As this restricts the types of

examples to those that have mentions which are lexically similar to the entity name,

we also report oracle results for some datasets, where we add the gold standard entity

to all non-NIL examples if not already present.

5.7 Results

Our experiments address two questions. First, why does GENRE perform so well?

We answer this by evaluating generalization to new datasets. Second, can GENRE

utilize KB information to improve generalization (GENRE-KP)?
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Method
Validation Test

macro micro mrr top-K macro micro mrr top-K

TF-IDF* 26.06
Gupta et al* 27.03
GENRE 29.09 26.89 ±1.0 .42 52.88 31.99 33.16 ±1.1 .44 43.01
GENRE-KP 29.53 29.63 ±1.0 .46 55.65 28.11 27.83 ±1.1 .42 44.64
Comb. (par) 35.54 35.14 ±1.1 .49 54.48 35.63 36.14 ±1.1 .47 43.89
Comb. (jw) 32.36 30.97 ±1.0 .46 58.82 34.48 35.00 ±1.1 .46 47.00

Table 5.2: Results on Wikia Datasets. Results for methods marked with an asterisk
are taken from Logeswaran et al. (2019). The combination models are built off of
the predictions of GENRE-KP and GENRE described in Chapter 5.7.2. Confidence
Intervals (at 95%) are included for micro accuracy.

degree of sim.
validation accuracy test accuracy

# GENRE GENRE-KP # GENRE GENRE-KP

mult. categories 4106 11.93 26.04 2341 16.66 25.72
amb. substring 543 54.70 36.46 419 47.02 28.88
high overlap 501 89.22 71.66 825 91.03 62.30
other 2434 33.07 25.55 3227 28.54 20.42

Table 5.3: Results on Wikia Validation by the degree of similarity category. The count
column indicates the number of examples that have the correct entity in the triage
candidate set.
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5.7.1 GENRE Generalization

To probe GENRE’s reliance on the mention string matching the normalized entity

name, we performed two experiments with the TAC training dataset using the original

GENRE model. First, we remove the available context around the entity and replace

it with a generic prompt: This entity is called mention. In this setting, no context is

available for linking decisions. Second, we keep the original context but remove the

actual mention string. In this setting, GENRE relies on context alone.

How important to GENRE are each type of information: name matching and

context? Compared to the normal model’s performance of 49.1% on TAC data

(unnormalized, i.e. including NIL entities), using only the mention string GENRE did

nearly as well (41.6%). By comparison, using only context drops accuracy sizeably

(26.8%). This suggests that GENRE largely relies on the training data to learn

transformations between the mention and the entity name alone. The context adds a

bit to the model’s ability.

Despite this result, GENRE performs well on the more challenging datasets. Table

5.1 shows the performance of the GENRE model on the Wikipedia and TAC datasets.

While it is unsurprising that GENRE performs well on Wikipedia, the performance

on the TAC dataset is surprisingly high for the setting with only retrieved candidates.

However, the performance on TAC in the oracle setting is substantially lower. As

detailed in Chapter 5.6, we add the gold standard entity to the candidate set for any

example where it isn’t already present. Focusing only on the retrieved candidates
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restricts examples to those that can be lexically matched, as triage systems frequently

rely on surface forms alone. The oracle setting highlights the fact that many of these

more challenging matches cannot be linked by GENRE.

The results for Wikia are shown in Table 5.2. Previous work (Logeswaran et al.,

2019) reports results on several baselines for the validation set. We include the

best-performing baselines that also have not been trained on Wikia data.2 We report

macro accuracy (accuracy is calculated separately on each domain, and divided by

the number of domains), and micro accuracy (accuracy is calculated on the corpus as

a whole), in addition to mean reciprocal rank (MRR) and top-K accuracy (k = 5). In

absolute terms, the performance on the Wikia dataset is worse, as it is not trained to

link mentions to the Wikia knowledge bases.

However, it does outperform two previously reported baselines by a small margin,

suggesting that even in this challenging setting GENRE is surprisingly effective. For

linking mentions to the Wikipedia KB, the sheer amount of data GENRE is trained

on enables it to recall which entity is likely best. Therefore, when the data allows for

such a strategy, memorization can be effective when paired with a model that can

also model the context.

2The authors of that paper also include several baselines that are trained on Wikia data but are
an unfair comparison for this setting.
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5.7.2 GENRE-KP

We evaluate GENRE-KP (GENRE augmented in training by keywords) on all of

our datasets discussed in the previous chapter. For the Wikipedia dataset in Table 5.1,

GENRE performs consistently better than GENRE-KP. This is unsurprising, given

the model’s ability to memorize training examples and that it has been trained on

other Wikipedia data. As reported in the previous chapter, GENRE relies heavily on

name matching, which is sufficient when the model stays within the same domain. In

addition, 82.9% of examples in the test set have a Jaro-Winkler score of 0.8 or higher,

indicating they are largely lexically similar.

However, performance on the TAC dataset is much closer. On the set of examples

where the correct entity is present in the triage candidate set, GENRE performs

slightly better on accuracy, while both models tie in MRR. However, in the oracle

setting, GENRE-KP performs marginally better in both metrics. This suggests that

when trying to link these more challenging examples, which a lexical triage system

could not identify, GENRE-KP has an advantage. In short, when context matters,

GENRE-KP is better. However, it is still challenging to overcome the memorization

capacity of the original GENRE model, and GENRE-KP is still based on the same

architecture.

As shown in Table 5.1, the confidence intervals for accuracy (α = 0.05) suggest that

the differences in top-predictions are not significant for TAC, but are for Wikipedia.

However, to test whether GENRE and GENRE-KP produce rankings that are
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significantly different, we use a Wilcoxon signed-rank test. For the TAC dataset, the

difference between the two models on the Retrieved Candidates setting (p = 0.005)

and the Oracle setting (p = 0.005) are both significant. This suggests the two models

produce different rankings despite their similar top-level predictions.

Table 5.2 shows results on the Wikia validation and test sets. Again, the differences

between GENRE and GENRE-KP are small and depend on the dataset. In the

validation set, GENRE-KP performs better in all metrics. In the test set, GENRE

performs better with the exception of top-K accuracy, where GENRE-KP performs

better. Comparing the rankings produced by the two models using a Wilcoxon

signed-rank test, we find that the difference in the GENRE and GENRE-KP validation

rankings is significant (p = 2.1e−36), but not significant for the test rankings (p = 0.13).

In terms of micro accuracy, the confidence intervals show that the differences between

GENRE and GENRE-KP are significant.

At first glance, this suggests that the validation data was overfitted. However,

we believe this has more to do with the distribution of examples in each set. Table

5.3 breaks down accuracy by similarity categories (detailed in Chapter 5.5). In

the validation set, the largest category is multiple categories, which are linked to

entities that have a parenthetical in their name. In both sets, GENRE-KP performs

consistently better than GENRE, but the portion of these examples is smaller in

the test set. Conversely, it is unsurprising that in the cases of high overlap and

amb. substring GENRE performs better since those are categories with high lexical
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similarity between mention and entity title. For the other category, GENRE performs

well on examples with high lexical similarity. For example, in the validation set, while

only 28.96% of other examples have a high lexical similarity, those examples consist

of 52.9% of the examples that GENRE gets correct. GENRE performs better on test

and GENRE-KP better on validation because the sets have a different distribution

over example types.

GENRE and GENRE-KP are useful for different types of examples. GENRE is

excellent when the name string alone is sufficient. GENRE-KP improves when context

matters. Therefore, we explore combining the two systems. Table 5.2 shows two

methods for model combination. First, we propose a model (labeled par) where we use

the prediction from GENRE-KP if it predicts a parenthetical, and GENRE otherwise.

Second, we combine scores of GENRE and GENRE-KP with the Jaro-Winkler lexical

similarity between the GENRE model’s top predicted entity and the mention serving

as a scalar between the two scores (labeled jw).3 This puts more weight on examples

where GENRE thinks there is a lexically similar entity name to the mention, but more

weight on GENRE-KP in dissimilar cases.

Neither model changes predictions based on the gold standard entity label – they

only operate off of the top prediction of one of the two models. In both cases,

across both data sets and metrics, both combination models outperform GENRE-KP

and GENRE. The confidence intervals included in Table 5.2 suggest that while the

3We divide the GENRE score by the candidate’s length, to match the length normalization
procedure of GENRE-KP, as described in Chapter 5.4.1.
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Entity Title Keywords

Germany german states country member berlin france
Church of England local parishes christianity common people bishop
General officer army air forces countries different systems
Flowering plant plants families species pollen embryo
Civil liberties religion european convention constitution personal freedoms
Julia Gillard leader education australia university labor
1924 World Series games washington ninth walter johnson giants
John Hodgman radio episode death role appearance
Humoral immunity function phagocytosis cellular components presence antibodies
Camino Real (play) time tennessee williams esmeralda marguerite camille
Bumper Tormohlen december known seasons nba draft record
Craig Wiseman tim mcgraw blake shelton songs year
Carroll Gardens Historic District brooklyn common new york city smith
Dallas city southern united states universities texas
Phanagoria town site augustus black sea auxiliary bishop
Pierre Berton time books canada ontario canadian history
Military advisor afghanistan capabilities marines infantry vietnam
Francesca Schiavone fourth round italy semifinals french open
Show Boat (1951 film) julie stage play characters song magnolia
Los Angeles County, California pasadena arts san bernardino port cities
Metatheria years earliest marsupials placentals north america
The New York Times articles report publisher newspaper paper
Tamil Nadu india coimbatore parts british chennai
Government of Hong Kong chief secretary systems chief executive head
Roberto Matta europe surrealist art life work le corbusier
DC Comics series line picture stories second title
Marvel Comics year american comic books titles series
Berkshire Hathaway years share cash general decline stock
Portugal lisbon portuguese government country territory spain
Methanosphaera carbon dioxide taxonomy genus formate methanol

Table 5.4: Example keywords for the shuffled scoring selection method detailed in
Chapter 5.4.1.

difference between the jw model and the best-performing individual model is not

significant, the difference between the par model and the best-performing individual

model is significant.

In summary, adding KB information to GENRE helps, but only where such

information is informative to the correct prediction. A simple metric (Jaro Winkler)

can successfully identify those cases.
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5.8 Limitations

Our experiments focus solely on English-language entity linking. Similar models

have been trained to perform entity linking in multiple languages (De Cao et al.,

2022), but we do not consider performance beyond English. The issues faced in other

languages are likely to be similar, but the multilingual element of other models might

lead to different results. Further, how to select keywords in the multilingual setting is

unclear.

In addition, we are limited by the available annotated entity linking datasets.

Given that we need a large amount of data to train these models, they are inherently

reliant on Wikipedia. These entity linking datasets are skewed towards specific types

of matches, including ones that are frequently exact matches. The effectiveness of this

model might change when trained on a dataset with different characteristics, even

with a large amount of data.

Finally, the computational resources required to train these models are large,

and our final results do not reflect numerous other preliminary experiments. This

restricts our ability to run multiple experiments, train models from scratch easily, and

potentially leads to underfitting of our final models.
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5.9 Conclusion And Future Work

Autoregressive transformer-based sequence-to-sequence models, such as BART,

have found increasing success in information extraction tasks. The GENRE model,

which applies autoregressive sequence-to-sequence approaches to entity linking, has

high performance on many datasets linked to the Wikipedia domain. However, its

performance on other domains with different challenges produces mixed results.

We suggest that adding previously-explored entity linking features to GENRE

can address some of these pitfalls. Specifically, descriptions are a commonly used

source of text to make linking decisions. While we see performance decreases in the

original Wikipedia datasets, we see some improvements in both newswire text and

in applying GENRE-KP to previously unseen knowledge bases for more challenging

matches. Yet, the ability of GENRE to work in even challenging settings suggests that

it can memorize patterns useful for mention-entity pairs with high lexical similarity.

There are several unexplored directions for our model. Specifically, we used an

off-the-shelf keyword selection method. Selecting keywords in a more targeted fashion

– perhaps by selecting keywords for an entity that best separates it from another entity

– may improve performance. Having the computational resources to train a model

from scratch would also likely improve performance, as opposed to training from a

GENRE checkpoint. Moreover, we focus on integrating descriptive information within

the original GENRE framework. Future work may consider an autoregressive entity

linker with a novel architecture that can integrate and learn representations of entities
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that would better utilize this information in learning.

Within information extraction more broadly, there have been other works that

applied autoregressive models to multilingual entity linking (De Cao et al., 2022) and

closed information extraction (Josifoski et al., 2022). Other autoregressive approaches

to entity linking include De Cao et al. (2021), which seeks to alleviate some of

the performance challenges with GENRE during inference.4 More recently, CM3

(Aghajanyan et al., 2022) was proposed as a method that allows both the left and

right context surrounding an entity mention to be modeled by producing the link at

the end of the sequence. This alleviates one of the challenges of the GENRE model,

which only can leverage the left context of the model. However, it remains the case

that CM3 only uses entity name information. Therefore, the challenges that GENRE

faces are likely true of CM3 as well.

4In early experiments, we found this performed substantially worse in domains for which the
model did not have training data
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6.1 Introduction

Recent work (Chapter 2.2.2.1) has investigated transferring entity linking systems

to new domains, such as sub-sections of Wikia fan-constructed Wikipedia-like sites

(Logeswaran et al., 2019). However, a domain is an ambiguous term, and linking for

some domains is a more challenging task than others. For example, Wikia is linked

to smaller knowledge bases with less ambiguous distinctions present and similar text

structure to the training data (often Wikipedia). Transferring a Wikipedia-trained

linker to a college football dataset is likely easier than transferring to a Medical dataset,

for example.

Linking concepts in the medical domain is a crucial task that has several unique

characteristics. There are some standard challenges, such as partial matches (e.g.

balanced salt solution (BSS; pH 7.6 containing 5.5 mM anhydrous d-glucose contains

a mention of the concept Glucose). In addition, medical knowledge bases often

contain concepts that are closely related in a hierarchical fashion. For example, the

concept Glucose has a parent relationship with Deoxyglucose, and a child relationship

with Sugars. Selecting which of these is the most appropriate concept within the

hierarchy is an additional challenge that is not present within a Wikipedia-based

knowledge base. Additionally, many concepts do not have definitions or other

longer text snippets. Finally, medical and scientific documents contain tokens

often not seen in general domain training data, such as chemical names like

1,2-dioleoyl-sn-glycero-3-phospho-l-serine.
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How does a state-of-the-art entity linker, such as BLINK (Wu et al., 2020), transfer

to medical tasks? We evaluate the BLINK model on three medically-related datasets –

clinical notes, Coronavirus-related documents, and Chemical documents. We propose

a simple adaptation to handle the large number of synonyms present in the medical

knowledge bases. BLINK performs competitively in situations where there is no

training data available. However, BLINK performs far worse in situations where there

is in-domain training data available, highlighting the importance of work that can be

applied to domain-specific settings.

6.2 Adapting an Entity Linker to

Medicine

We use the BLINK model (Chapter 2.2.2.1). In the original model, the authors

propose a second step that jointly embeds the mention and candidate entity pairs

into a single representation, which is paired with a learned weight layer to produce

a final score. They use this approach for only the top candidates (n = 10), and

this reranking step introduces marginal improvements. However, due to the high

computation cost paired with a small performance improvement, we only report results

using the bi-encoder model.

We adapted this model in several ways to better work with our knowledge base.

First, most concepts within UMLS (United Medical Language System, Bodenreider
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(2004), a set of medical knowledge bases) are assigned multiple names (e.g. heart

attack, myocardial infarction, cardiovascular stroke) which can be lexically distinct.

We create a distinct entity representation for each name paired with the entity’s

description and only consider the highest-ranking representation for each entity. We

found this vastly improved our performance– for example, Recall@1 for the Chemical

development dataset improved from 0.301 to 0.639, excluding NILs. Other methods

of including the alternative names did not perform as well, such as including a small

subset of the most lexically dissimilar in a single representation. Additionally, several

concepts within the knowledge base do not have definitions. In this case, we include

alternative names if available and otherwise include no definition.

6.2.1 Datasets

We use several scientific and medical datasets. First, we use the NLM-Chem

corpus (Dogan et al., 2021), which is a corpus of 150 scientific articles split into test,

train, and development sections. While most mentions link to a single concept (or

none, i.e. CUI-less or NIL), there are several that are linked to multiple concepts. As

BLINK does not have a mechanism for predicting multiple links and they are rare

(6% of the development set), we always count these as incorrect. Additionally, we

use two medical datasets consisting of clinical notes. We use the MCN corpus (Luo

et al., 2019), which consists of medical notes linked to SNOMED and RXNorm, two

other ontologies within the UMLS. Finally, we include a recently-collected dataset
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Dataset Test Set Size Baseline Acc. Acc. R@20 R@50

MCN Corpus 6,925 85.26 38.9 (±0.01) 64.5 68.4
NLM-Chem 12,411 — 54.4 67.9 71.2
COVID 947 31.84 34.5 (±0.03) 70.3 73.3

Table 6.1: BLINK performance on several Medical datasets compared to the reported
best baselines. The chemical dataset paper does not report accuracy. Considering the
confidence intervals of BLINK’s accuracy (α = 0.05) compared to the baselines, the
difference for the MCN Corpus is statistically significant, but the difference for the
COVID corpus is not.

consisting of Coronavirus-related documents (Sohrab et al., 2020). While the first two

datasets have manually annotated training sets, this dataset only has a small manually

annotated test set paired with larger machine-annotated mentions. For additional

information on all three datasets, refer to Chapter 2.4.

6.2.2 Results

BLINK’s performance on the three medical datasets is shown in Table 6.1. For

two datasets, we report the best baseline performance as reported in the respective

papers. For the NLM-Chem corpus, the authors do not report accuracy metrics. In

addition to accuracy, we report recall at 20 (R@20) and at 50 (R@50).

In cases where there are domain-specific training data available, such as in the

MCN Corpus, BLINK performs very poorly in comparison. Common errors are shown

in 6.2. Several patterns emerge when evaluating the errors produced in the dataset.

First, BLINK often erroneously predicts a child concept instead of a parent one, or

vice versa. For example, A Chest X-Ray should be linked to Plain Chest X-ray, but
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Figure 6.1: The margin between the Top Ranked Candidate and the Second Ranked
Candidate, compared with Accuracy and Recall at 128.
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BLINK predicts that it should be linked to the parent concept X-Ray. Alternatively,

BLINK incorrectly predicts a child concept Tylenol Cough Oral Liquid in place of the

correct parent concept Tylenol. Separately, there are also more nuanced differences

in type that BLINK is not able to disambiguate between. For example, the mention

Heart Rate should be linked to the act of measurement, Pulse Taking, but is incorrectly

linked to the underlying concept Heart Rate.

For the COVID dataset, the authors only used automatically annotated data to

train their linker. It is less surprising, therefore, that we see a small performance

boost when using BLINK as compared to the baseline. In all other cases, BLINK

performs poorly on these challenging domains. Overall, this highlight an important

conclusion. As shown in the previous analysis of BLINK’s performance, linking to

medical documents has some task-specific characteristics that are challenging to model

without domain-focused work. This includes the differing nature of what is available

in the knowledge base, in terms of synonyms, and the hierarchical nature of the

knowledge base. A model trained on Wikipedia data, which generally has clearly

delineated entities, is not well suited for this task.

While the final linking performance is too poor on these datasets to be used

with confidence, our experiments point to alternative ways that the BLINK linker

might be used in practice. As seen in Figure 6.1, we find that the margin between

the score of the top-ranked candidate, and the second-ranked score, correlates with

how accurate that prediction is. In other words, the larger the margin between the
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predicted entity and the following candidate, the most likely it is to be accurate. While

this does not help in end-linking performance, this could be useful when annotating a

dataset. Annotators could focus on annotating the examples the linker is less able

to disambiguate between, which would result in more informative annotations being

produced. This can enable strategies like Thompson Sampling (Thompson, 1933) to

be deployed.

Therefore, research that focuses squarely on building linking systems is critical

to producing accurate predictions. In the next sections, we show three works that

investigate three important tasks within medical concept linking. In the first, Chapter

6.3, we propose a final re-ranker method for medical linking that focuses on leveraging

resources specific to the medical setting. In Chapter 7.1, we propose a method of

candidate selection for clinical concept linking. As shown in the results in Table 6.1,

non-medical systems can struggle to achieve a high level of recall even at a large

candidate size, and so systems trained specifically for the task are required. Finally,

in Chapter 8.1, we investigate how to best identify synonymous terms within an

unlabelled corpus. As discussed in Chapter 6.2, leveraging synonyms is crucial for

accurate linking performance, and automatically identifying alternative terms that

refer to the same concept expands those available to a linker.
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Mention Correct Concept BLINK Prediction

A Chest X-Ray Plain chest X-ray X-Ray
Medications Pharmacotherapy Medications
Tenderness Sore to Touch Tenderness, Muscle
Tylenol Tylenol Tylenol Cough Oral Liquid
Heart Rate Pulse taking Heart Rate
Right Right Left-to-right shunt

Table 6.2: Selected errors produced by BLINK on the MCN Corpus.
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6.3 Designing Linkers for the Medical

Domain

The challenges of adapting general domain entity linkers, such as BLINK, are

highlighted in Section 6.2.1 While such models have been trained on a vast amount

of data, the domains of Wikipedia and Medicine are too distinct to result in high

performance. Part of this is due to the different terms used – medical terms may be

used in Wikipedia, but are likely far less frequent. Additionally, clinical concepts have

fine-grained distinctions that are not present in Wikipedia. As highlighted in Table

6.2, there are often parent and child distinctions that confuse an entity linker trained

on data that does not contain similar ones. Thus, we propose a clinical-specific entity

linking method, which while leveraging clinical-specific resources, adopts methods

proposed in general entity linking work.

We propose learning contextualized representations that leverage both free text and

information from knowledge bases. We train a contextualized language model (Peters

et al., 2018) on unannotated clinical text, leveraging sentence context to construct

a mention. We explore several methods of building representations of the mention

span and concept, including pooling and attention, and pre-training our linker with

additional data from the ontology to augment the small amount of annotated data

1Elliot Schumacher, Andriy Mulyar, and Mark Dredze. 2020. Clinical Concept Linking with
Contextualized Neural Representations. In Proceedings of the 58th Annual Meeting of the Association
for Computational Linguistics, pages 8585–8592, Online. Association for Computational Linguistics.
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present. The resulting ranker outperforms a non-contextualized version of our model

and beats the previous best-performing system (Leaman et al., 2013) in most metrics.

6.4 Methods

Our concept linking system is based on a pairwise neural network ranker (§6.4.1)

using contextualized representations (§6.4.2) for both the mention and concept. We

leverage the context present in clinical notes for our representations and synonyms

present within the UMLS to train our linker. This architecture is similar to the systems

described in Chapter 3.2.2 and 4.1.1. However, type and description information are

not included. The version of the UMLS that is used with this dataset does not contain

descriptions for the majority of the concepts, so description features are not included.

Additionally, type information is not included due to the more general nature of the

types in UMLS.

6.4.1 Neural Ranker

For a given mention string m and document, the system ranks all possible

candidates c in the KB. Figure 6.2 shows our ranking system, based on the Rank

model of Dehghani et al. (2017). We learn the parameters θ of a scoring function

S(m, c; θ), which consists of a feed-forward neural network with hidden layers d that

takes input representations of m and c in addition to pairwise features. We train
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Figure 6.2: Architecture for our neural ranker. The input consists of gold standard
mention string representation m (purple), gold standard concept representation c+
(blue), and n randomly selected negative concept representation c− pairings (red).
The ELMo hidden states are noted as h, and the hidden states of our feed-forward
neural network are noted as d. To build our ELMo representations for m, c+ and c−,
we select the representation from the lowest layer of the model.
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using pairwise loss, in which we have two point-wise networks – one which takes the

mention m and correct concept c+ as input, the other which takes the mention m and

incorrect concept c− – with shared parameters that are updated to minimize the loss

function. Using a pairwise model allows us to learn a scoring function that does not

rely on annotated scores.

Adapting the approach of Dehghani et al. (2017), we use adaptive hinge loss, which

considers n negative concepts and selects the highest scoring concept as the negative

sample. For mention m, correct concept c+, and n negative samples c0− to cn−, our

loss function is:

L(θ) = max{0, ϵ− (S({m, c+}; θ)−max{S({m, c0−}; θ) . . . S({m, cn−}; θ)}} (6.1)

6.4.2 Contextualized Representations

As described in Chapter 2.2.2, contextualized representations of text have produced

impressive performance gains in a variety of tasks, including clinical. For this work,

we use ELMo, an early contextualized language model that leverages contextualized

representations. These models are robust to out-of-vocabulary types, so they provide

broad coverage to the diverse types present in clinical text. We train ELMo on clinical

notes and create mention representations m by running the entire sentence through

the model and selecting the resulting word representations for the mention (the lowest
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token representation) from the LSTM..2 The concept representations c are created in

the same manner as m except that only the name of the concept, as there is often no

available context.3

For multi-word mentions and concept names, we explore two methods of creating

a single embedding. First, we use max-pooling over the set of token embeddings

(reported as Max in Table 6.3). Second, we run self-attention (Vaswani et al., 2017)4

over the set of token embeddings, with a single head to attend over the tokens (noted

as Attention).

6.4.3 Pre-training with Structured Data

Pre-training a model using an alternative data source has been frequently used in

the field of machine learning (Erhan et al., 2010; Sharif Razavian et al., 2014). This

includes work targeting entity linking (Tsujimura et al., 2019), presented at a recent

shared task (Luo et al., 2019). A model is pre-trained on a large amount of data from

a related dataset and then is trained on the target task, which allows a model to see

more examples to achieve a better initialization for training on the final task.

As creation is expensive, most annotated clinical datasets are small, such as for our

task. Therefore, we look to alternative data sources for pre-training our model. For a

2While there is now a multitude of deep transformer-based LMs (Devlin et al., 2019), the principle
of contextualized representations is the same. Additionally, others have found ELMo trained on
MIMIC does better than a similarly trained BERT model (Schumacher and Dredze, 2019)

3We ran experiments that padded the names with synonyms or other forms of available text
within the knowledge base. However, we did not see consistent improvements.

4We use the implementation provided by https://github.com/kaushalshetty/
Structured-Self-Attention.
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given concept (e.g. epilepsy), the UMLS includes synonyms (e.g. seizure disorder,

epileptic fits), which can be used to pre-train our linker. Unlike in the annotated

clinical data, there is no surrounding context, and terms in the UMLS are more likely

to be formal. However, training on synonyms will allow for a greater variety of terms

to be seen by our model than otherwise possible.

Therefore, using all synonyms taken from the annotated subset of the UMLS,

we pre-train our linker before training on the annotated clinical notes. We follow

the previous training procedure by replacing the mention representation m with the

synonym string representation only (without surrounding sentence), thus training the

linker to assign a higher score to the synonym paired with the corresponding concept

representation c+ against negatively sampled concepts c−. We use this pre-training

initialization with the Attention model discussed in the previous chapter and note

this as Att. + Pre. in Table 6.3.

6.5 Experimental Setup

We train and evaluate our system on the concept linking dataset released for

ShARe/CLEF eHealth Evaluation Lab 2013 Task 1b (Pradhan et al., 2013). This

dataset consists of concept span annotations built on a subset of MIMIC 2.5 clinical

notes (Saeed et al., 2011). We do not report on the task-designated test set as it was

unavailable. Each disorder mention in the clinical note is annotated with concept
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CUI All
Acc MRR Acc MRR

DNorm 0.73 0.75 0.55 0.57

Word2vec 0.26 0.33 0.21 0.30
Max 0.66 0.70 0.58 0.67
Attention 0.70 0.75 0.62 0.71
Att. + Pre. 0.70 0.78 0.59 0.71

Table 6.3: Accuracy (top-1) and MRR (mean reciprocal rank) for the test sets, for
mentions with linked concepts (CUI) and all mentions (All).

information. This information either includes the relevant concept unique identifier

(CUI), or annotations noting cases where the correct concept could not be identified –

primarily with the CUI-less annotation. For more information on this data, refer to

Chapter 2.4.

In Table 6.3, we report results on only mentions with links to the ontology (CUI)

and mentions with links to the ontology and CUI-less mentions (All). We train

ELMo on 199,987 clinical notes from MIMIC III (Johnson et al., 2016) as the source

of our clinical text, pre-processing the data using the NLTK toolkit (Bird et al.,

2009). For the Pre-training model, we augment the clinical text training data with

synonyms, definitions, and names of related concepts from the selected subset of

UMLS. Altogether, this resulted in 645,863 additional sentences of training data.

We compare our system to DNorm (Leaman et al., 2013) for the SHARE/Clef

2013 dataset, the best performing system in the SHARE/Clef 2013 shared task.

Unlike many other concept linking systems, DNorm scores each mention against all

concepts and does not use a triage system, allowing a fair comparison to our system.
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DNorm builds term frequency-inverse document frequency (TF-IDF) representations

of both the mention and concept and learns a weighted similarity to rank concepts

for each mention. It is unable to return concept candidates for mentions that are

out-of-vocabulary as it uses a word-level measure. The authors add a specific CUI-less

representation, which is made of entries occurring more than four times in training. We

report results on our recreated test set, as the evaluation set provided for the shared

task was not available to us. We also compare using Word2vec (Mikolov et al., 2013b)

representations instead of ELMo representations in the same linking architecture to

test the effect of contextualized embeddings. We trained the Word2vec model on the

MIMIC dataset. We created single embeddings (d = 600) for mentions and concepts

by max pooling over all embeddings for words in the corresponding text, ignoring all

out-of-vocabulary words.

We explored several parameter configurations for our model suggested in Dehghani

et al. (2017), reporting the best performing models on development. These include

hidden layers of size [256, 512, 1024] and number of layers in [1,2,3], with a Tanh

activation function for final layer and ReLu (Glorot et al., 2011) for all others. We

optimize using the ADAM optimizer (Kingma and Ba, 2014), and a dropout rate of

0.2. Parameter values and development metrics are available in Table 6.4.Note the

pre-training model contains parameters for the pre-training stage only (and thus we

do not note accuracy or mean reciprocal rank), while Pre + Att contains parameters

for the final trained model. All GPU types have 12 GB of memory.
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Max Attention Pretraining Pre + Att

Dev Acc (CUI) 0.685 0.730 - 0.704
Dev MRR (CUI) 0.719 0.766 - 0.776
Reported Epoch 2499 4000 1 750
Random Seed 3011457727 3027767026 589590319 3635932273
Learning Rate 1e-5 1e-5 1e-5 1e-5
Hidden Layers [1024, 512] [1024, 512] [1024, 512] [1024, 512]
Batch Size 12 12 32 16
Num. Negative Samples 10 10 10 10
Training Time per epoch (min.) 7.2 3.4 1860 4.6
GPU Type Tesla K80 GTX 1080ti Tesla K80 Tesla K80

Table 6.4: The above table contains replication information for the models trained on
SHaRE data.

For the ELMo models, we trained for 10 epochs using the default configuration. For

CUI-less mentions, we select a threshold score based on the development set, equal

to the mean score of all CUI-less entries. If an entry does not have a scored concept

above that threshold, we consider it CUI-less, adding CUI-less at that position in

the list for MRR. We use the Pytorch framework and code from the Spotlight library

(Kula, 2017).

6.6 Results

Table 6.3 reports accuracy and mean reciprocal rank (MRR) for all models. We

compare our models (Word2Vec, Max, Attention, and Att. + Pre.) to DNorm

for all mentions (All) and only those with links to concepts in the KB (CUI). While

DNorm has higher accuracy on entries with CUIs, our models have higher MRR on

entities with CUIs (Att. + Pre.) and perform best on all entities in both accuracy

and MRR (Attention and Att. + Pre.). For each metric, we compare the best score
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(in bold) to the baseline using a two-tailed z-score test (for CUI ACC, we compare it to

the next best score). We find that for all CUI models, the difference is not significant,

while for All models, p < 0.05.

6.7 Discussion

Our neural ranking models with attention outperform all other models, except for

CUI-only accuracy. In the case of entities with CUIs, we find that pre-training the

model does provide a gain in ranking accuracy (MRR). In the case of all entities, we

find that the attention models provide a sizable gain in both accuracy and MRR.

We conducted an error analysis of the best performing MRR model (Att. + Pre.)

on the development data, looking at errors where the gold standard concept was not

highly ranked (assigned a rank of 10 or above). Of those errors (n = 110), we find

that 26% are mentions that contain only acronyms (e.g. LBP for lower back pain),

and 14% are mentions containing some other abbreviation (a shorted word, e.g. post

nasal drip for Posterior rhinorrhoea, or a partial acronym, Seizure d / o for Epilepsy).

Compared to similar errors from Attention model (n = 161), we find that the number

of acronym errors is nearly the same (24) as the better-performing model (26). In

contrast, the number of non-abbreviation errors drops significantly. This suggests that

pre-training provides a useful signal for mentions that consist of variations appearing

in the ontology. However, it does not help with acronyms or other abbreviations that

157



CHAPTER 6. CHALLENGES IN CLINICAL CONCEPT LINKING

are less likely to appear in the ontology or are shorter and more ambiguous (e.g., ’R’

for Rhonchus).

While the linker often predicted unrelated concepts (40% of errors) for concepts

where the correct concept was ranked above 10, many incorrect concept predictions

were somewhat related to the gold concept (e.g., for mention atherosclerotic plaque

with gold concept Atherosclerotic fibrous plaque our model predicted the concept

Atherosclerosis). We further noticed that in 21% of cases the linker predicted a

relevant concept (e.g., mention thrombosed and Thrombosis), but is not counted as

correct due to annotation decisions. This could be due to multiple possible concepts

in the ontology or the presence of closely-related concepts.

Deploying our system in a large-volume clinical setting would likely require several

alterations. The main computational barrier to labeling a large amount of data, the

speed of prediction, can be addressed by using an accurate candidate selection system

to prune the number of concepts considered. Considering a smaller subset (e.g., 20)

of concepts instead of all would significantly improve the speed. This highlights the

importance of an accurate triage system, such as the one described in Chapter 7.1.

Further, if using a consistent portion of the ontology, caching the concept embeddings

c as opposed to building them in-model also enhances efficiency. Depending on the

application, a less accurate but faster linker might be a better choice (e.g. for all

clinical notes at a medical institution). In contrast, a more complex linker, such as

ours, may be a better option for specific subsets of notes that require better accuracy
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(e.g., the results of specific clinical studies).

Our results demonstrate the advantages of using contextualized embeddings for

ranking tasks, and that using information from the knowledge base for training is

an essential direction for learning concept representations for sparse KB domains.

Future work should consider additional methods for integrating ontology structure

into representation learning.

This work has been cited in a recent work on concept linking (Kim et al., 2020;

Xu and Miller, 2022). A large amount of this research has focused on biomedical

concept linking data (Bo and Zhang, 2021), a task discussed in Chapter 2.3. This

includes further exploration into leveraging synonyms and hypernyms for training a

neural linker (Yan et al., 2021; Xu and Bethard, 2021). Liu et al. (2021a) proposes

to learn representations of entities using the structure present within the UMLS. In

nearly all of these methods, the authors use contextualized language models to build

representations of text. While these mostly include more advanced models than ELMo

(discussed in Chapter 2.3.3), this highlights the importance of that element in building

NLP for clinical data.

Newer datasets for clinical concept linking have been released since this work was

concluded (Luo et al., 2019). These are linked to versions of UMLS that include more

descriptions for medical concepts, alleviating one challenging aspect of this problem

faced in this work. However, challenges remain around clinical concept linking. In light

of the large amount of data available for standard entity linking, linking annotations
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for medical data is still challenging to produce due to the expertise required and

the privacy challenges to consider. This reality means that exploring alternatives to

producing more training data is still required.
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7.1 Introduction

The task of concept linking, detailed in Section 2.3.2.1, can be broken down into a

two-step system.1 The first is a candidate generation (or candidate selection, triage)

step which produces a list of possible concepts from the ontology. A ranker then

selects the most appropriate candidate from that list, based on machine learning

and extracted features. This two-step approach has the benefit of pruning unlikely

concept candidates prior to the final linking stage, a necessary step when dealing with

knowledge bases with millions of concepts. This is in contrast to a single-step approach,

which chooses a link from the entire ontology, and may require the computation of

more fine-grained features over a larger set of concepts. The two-stage approach allows

for a simpler feature set to be used in the first step, and a more fine-grained feature

set to be used in the final step.

Previous work in concept linking has largely focused on developing rankers (or

classifiers), assuming an existing method that produces a list of concepts that contain

the correct answer. Candidate generation must be fast, so it often relies on basic lexical

matching algorithms that produce a large list of candidates but do not incorporate

features or machine learning. Such as system could consist of simple n-gram matching

or other lexical similarity features comparing the mention string and the concept

name. Others, such as in the first version of MetaMap (Aronson, 2001), generate

1Elliot Schumacher and Mark Dredze. 2018. Clinical Concept Linking with Contextualized Neural
Representations. In Automated Knowledge Base Construction (AKBC), 2018.
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possible variations of the mention drawn from the structured information within the

ontology, and score each on the type of variation present. While more sophisticated

than standard lexical matching, it requires all likely variations to be present in

the ontology or annotated dictionaries. Similarly, Aggarwal and Barker (2015) has

included a candidate over-generation phase, where possible variants are proposed and

then re-ranked by inverse document frequency (IDF) of text from the document and

knowledge base. While the work in Section 6 does not use a triage system, it only

does so to compare to previous work. Deploying such a system in a real-world setting

is likely too computationally inefficient.

We propose a candidate generation system that produces a candidate list that

has both high coverage, and a ranking that is a useful starting point for a final

classifier. We adapt DiscK (Chen and Van Durme, 2017), a framework that allows for

feature template-level weighting, and efficient retrieval by feature projection. Using a

feature-based system provides flexibility in selecting the criteria for candidate concepts.

We consider several different feature templates useful for medical concept linking,

and learn a retrieval function. We develop our system for linking disorder mentions,

and evaluate using information retrieval metrics that measure the quality of the

ranked candidate list. We find that our approach improves over several standard

lexical matching baselines. Finally, we integrate our candidate generation system

into an existing concept linking system (Leaman et al., 2013). Although restricting

candidates to those generated by DiscK causes a small reduction in coverage and
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mean reciprocal rank, large gains in efficiency are made due to the reduced number of

concepts considered in the final linking stage.

7.2 Triage for concept linking

We define the task of triage for medical concept linking as follows. For a mention

m containing a concept reference, the candidate generation process for selecting N

candidate concepts can be defined as follows. Given a set of concepts c from an

ontology C = (c0, ..., cQ) containing Q candidates, we can select N candidate concepts

from the ontology by scoring each candidate with a candidate likelihood function f .

Therefore, for each candidate i in C, a score can be calculated as

scorei = f(m, ci) (7.1)

The set of candidates C is then sorted by the candidate score, with the top N

candidates from the sorted candidate list selected as the final candidate list.

The scoring function f can be formulated using several different methodologies.

Many systems use non-feature-based approaches, only considering candidates that

match a single criterion. These include string matching algorithms such as the

Levenshtein or Jaro-Winkler distance. While this approach benefits from simplicity, it

excludes candidates with low string similarity. As discussed in Chapter 2.1.4, there

are often mentions of entities, or in this case, concepts, that do not share lexical forms.
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In contrast, a feature-based approach can consider multiple attributes, such as string

similarity, but can be designed to include correct candidates that may not be identified

by a simple method by using a variety of features. In general, we would prefer to use

a more flexible feature-based approach to triage but are limited in that we cannot

efficiently compute features and scores for a large set of candidates.

7.3 Discriminative Information Retrieval

for Knowledge Discovery

Chen and Van Durme (2017) introduced the framework DiscK, which formulates

candidate generation as a feature-based classification retrieval problem. Using a

simple feature set, it learns a weighted similarity score for a query and each concept,

creating a ranked list of concepts for each query. Given a query q and a candidate

set D = {p1, ..., pN}, the system scores the pair by a specified feature function F (q, p)

and retrieves the top-k candidates:

argmax
p∈D

{F (q, p)} (7.2)

This normally requires scores to be calculated between every query and candidate,

which is not efficient for larger sets. However, DiscK proposes a feature set formulation

that allows for feature projection – for a given query, the expected feature values for
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the relevant candidate can be calculated. This allows for efficient retrieval by indexing,

and therefore pairwise scoring is not required.

To allow for this efficient retrieval, they restrict features to two feature types.2 The

Cartesian Product, one of the feature types, for a query and a candidate is defined as

fQ(q)⊗ fP (p) = {((ki, kj) = (vi, vj), wi)} (7.3)

for a query FQ(q) = {(ki = vi, wi)} and for a candidate fP (p) = {(kj = vj, 1)}. The

variables ki and kj refer to specific features type instances and vi and vj refer to

feature values, and wi refers to the weight of that feature instance. For example, if the

feature type is the bigram word count of the query string broken leg, ki would be the

feature instance (e.g. broken leg) and vi is the feature value (e.g. 1 ). The projection

of the Cartesian Product is defined as

t⊗θ (f) ={(k′ = v′, wθ(k,k′)=(v,v′)|k = v, w) ∈ f} (7.4)

for all k′, v′ such that θ(k,k′)=(v,v′) ̸= 0. With this definition, they show that with model

parameters θ,

t⊗θ (f) · g = θ · (f ⊗ g) (7.5)

meaning that the projected features of the candidate multiplied by the features of the

candidate are equivalent to the weighted pairwise score of the query and candidate.

2We do not consider one, the Join type, for features in our current system.
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The term w is specified for each feature – this can be any real number in [0, 1],

representing a Boolean or a normalized count, for example. The feature parameters θ

are selected to optimize the retrieval equation (noted as Equation 7.2) on the training

data. These parameters θ are trained using a negative sampling procedure, with the

goal of learning a set of weights that will correctly predict mention-concept pairs. For

each training mention, it is paired with the correct ontology entry and 50 incorrect

ontology entries. The resulting weights are used to project which ontology entry is

most suited to the mention feature set. This is trained using a log-linear model. This

formulation is computationally efficient because it only involves a sparse feature set,

which allows for efficient retrieval. However, it also restricts the types of features.

DiscK allows us to efficiently retrieve candidates over a large ontology in sublinear

time, and select a small subset containing likely links. A final linker can then use

this subset to make linking decisions. As a ranker only needs to consider a subset of

the entire ontology (e.g. 1% of candidates), computationally-intensive features can

be used at a smaller total computation cost. In larger sets of clinical notes, this will

reduce the total computational cost, making the entire concept linking pipeline more

efficient.
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7.4 DiscK for Clinical Concept Linking

Using the framework discussed in the previous Chapter, we developed a version

of DiscK suited for clinical concept linking. The feature set developed for this task

consists of feature templates that capture the relatedness of the mention text and

properties of a UMLS concept. While features from additional mention properties,

such as the surrounding sentence, were tested, none provided an improvement over

features built from the mention span text alone. The features tested included a bag

of word template using the entire sentence and a range of ngram sizes for words and

char-grams. We imagine this is the case since the wider sentence context may often

not be lexically similar to the concept name or definition.

We used several lexical features to adapt DiscK to concept linking candidate

generation. These include the following feature templates.

• A full-string match between the mention and any of the concept names, which

receive a feature value of 1 if they are identical.

• A bag of words feature template that matches overlapping individual words

between the mention text and the concept name, where each overlapping word

is individually weighted by its inverse document frequency.3

• A bag of words feature template that matches overlapping individual words

between the mention text and the concept definition (if present), where each

3calculated in a separate corpus
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overlapping word is individually weighted by its inverse document frequency. The

inverse document frequency weights were calculated on a separate non-medical

corpus.

• For some models, a bag of character-grams of length 6 are included (see below)

– a range of lengths were tested, but this size resulted in the largest coverage

increase on the development set. The resulting character-grams are also weighted

by inverse document frequency.4

• An abbreviation dictionary built from the Wikipedia list of disease abbreviations5

and matched to the mention text.

• For some models, an expanded abbreviation algorithm was included, which

simply combines the first character in each word in the concept name to create

an acronym.

• A lemmatized bag of word feature template, using the Stanford Toolkit (Manning

et al., 2014), in order to capture any overlapping words that would be excluded

due to differences in morphology.

While we found that many mentions could be matched to concepts by lexical

features, a significant portion required non-lexical features (e.g. mention joint pains,

concept Arthralgia NOS ) Therefore, we added the mention text of any linked concept

4Character-gram IDF statistics were calculated on the MIMIC corpus.
5https://en.wikipedia.org/wiki/List_of_abbreviations_for_diseases_and_

disorders
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in the training data to the set of concept names. We then added these mentions to

the concept name’s bag of word feature template. This ontology augmentation step

helped capture some non-lexical matches, but this only assists in non-lexical matches

found in the training set. This highlights the importance of having a robust set of

synonyms present in the ontology.

7.5 Evaluation and Results

We use the Share/CLEF 2013 Task dataset described in Chapter 2.4. While we are

using (almost6) the same dataset as the Share/CLEF 2013 task (Pradhan et al., 2013),

we are considering a different task. The systems in the shared task are end-to-end

concept linking systems (Pradhan et al., 2013; Savova et al., 2010; Aggarwal and

Barker, 2015; D’Souza and Ng, 2015), whereas we consider a candidate generation

system. The concept linking systems that were evaluated in the shared task may have

included a candidate generation stage, but evaluations of these stages are not provided

and we were not able to locate the code of such a system.

Instead, we compare our weighted candidate generation (abbreviated as Wgt.)

approach to several representative baselines.

• Exact Match – Selects concepts that are an exact string match to the mention

text.

6We do not have access to the Test set, giving us less overall data and different evaluation sets.
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• Partial match – Scores concepts by the number of overlapping words that

occur between the concept name and the mention text.

• Char 4-gram – Scores concepts by the number of character 4-grams that

overlap between the concept name and the mention text.

• BM25 – Scores overlap between the concept name and the mention text using

BM25 (Robertson et al., 1995), a common information retrieval method.

• DiscK Binary – Uses the same feature set as the weighted models (noted as

DiscK Weighted), but uses binary weights instead of those learned in training.

This evaluates the effectiveness of training a model based on these features

compared to using un-weighted features.

• DiscK Combined (abbreviated as Comb.) – Combines the ranking of

the best performing model with respect to mean reciprocal rank and at lower

coverage levels (DiscK-1, R=0.4) with the best performing model at higher

coverage levels (Char 4-gram). Specifically, we normalized the score of each

to be between 0 and 1. For DiscK-1, we performed min-max normalization on

each individual candidate list, and for Char 4-gram, we divided the number of

overlapping character-grams by the number present in the mention. For each

candidate, we selected the max score between the two models. If only one model

assigned a score to a candidate, that score was used.

Two DiscK models are reported – one that excludes character-grams and only
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uses a dictionary to look up abbreviation expansion (DiscK-1), and one that includes

6 character-gram features and an expanded abbreviation algorithm (DiscK-2). All

systems use synonym augmentation – for each mention (or text span) in the training

data that is annotated with a link to a concept in the UMLS, the mention text is

added as a synonym to the set of concept names already present in UMLS. This step,

which is common in clinical concept linking, allows for additional synonyms to be

identified, including those that are likely to only occur within clinical text. However,

this is also limited by the size and diversity of the training data. All systems were

trained on both train and development sets for the final tests.

For our implementations and baselines, we report both coverage (or recall, i.e.

the percentage of instances that the relevant concept was generated in the candidate

list), and mean reciprocal rank, to measure the effectiveness of the ranking. When

calculating the mean reciprocal rank, if any concepts are tied, they are randomly

ordered and assigned the corresponding rank. Several regularization parameters were

tried on the DiscK model - regularization controls both the weights of the model and

the feature selection of the model. The least regularized DiscK-2 model (R = 0.4)

uses six feature templates, while the most regularized model (R = 0.25) contains five

feature templates. While the weights resulting from regularization are not relevant to

the Binary models, the feature template set from the non-Binary version is used in

the Binary version.

As shown in Table 7.1, although DiscK-2 is competitive, the 4-character-gram
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Figure 7.1: Coverage of DiscK models compared to baselines

Figure 7.2: Mean Reciprocal Rank of DiscK models compared to baselines
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baseline performs the best at K = 100, and the Combined model performs best at

K = 1000. However, at smaller candidate sizes (e.g. 10 and 1), DiscK-1 provides the

best coverage, representing a 13.9% improvement over the 4 character-gram baseline.

This change is illustrated in comparing the coverage to the candidate size in Figure

7.1. For mean reciprocal rank, we find that the DiscK-1 model provides the best mean

reciprocal ranking in all settings. Unlike with coverage, this improvement is clear at

each candidate list size, with the best DiscK model at each size providing at least a

0.09 improvement in mean reciprocal rank compared to the binary models, and at

least a 0.18 improvement over the non-DiscK baselines. This is illustrated in Figure

7.2, which compares mean reciprocal rank at different candidate sizes.

We ran feature ablation tests for the DiscK-2 model, with R = 0.25 and N =

1000, shown in Table 7.3. The most important feature templates are the Partial,

Lemma, and 6 character-gram group – the coverage is reduced by half, and the mean

reciprocal rank is also reduced. The ontology augmentation step (which is used in

the partial matching feature template) is also an important component of the system,

as its omission results in an 8.6% drop in coverage. The importance of adding terms

to the ontology highlights the utility of methods described in Chapter 8.1, as adding

synonyms not present in the knowledge base increases performance noticeably. While

all feature templates contribute to increased coverage, the 6-character-gram omission

results in increased MRR.

To determine whether using learned weights produces rankings that are distinct
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Model
K = 1000 K = 100 K = 10 K = 1

Cov. MRR Cov. MRR Cov. MRR Cov. MRR
B
a
se
li
n
e
s Exact Match 25.2% 0.252 25.2% 0.252 25.2% 0.252 25.2% 0.252

Partial Match 88.8% 0.301 78.2% 0.311 51.3% 0.297 21.1% 0.211
Char 4-Gram 93.6% 0.312 81.3% 0.313 51.7% 0.301 21.8% 0.218
BM25 78.9% 0.376 72.7% 0.371 53.0% 0.364 29.0% 0.290

D
is
c
K
-1

Wgt. (0.4) 90.0% 0.559 80.9% 0.558 66.9% 0.555 50.2% 0.502
Wgt. (0.25) 90.0% 0.556 81.0% 0.559 66.4% 0.549 49.8% 0.498
Binary (0.4) 89.2% 0.465 79.6% 0.467 59.8% 0.457 37.5% 0.375
Binary (0.25) 89.2% 0.459 78.9% 0.464 61.4% 0.452 39.1% 0.391
Comb. (0.4) 95.3% 0.357 78.3% 0.362 48.0% 0.342 28.6% 0.287

D
is
c
K
-2

Wgt. (0.4) 92.8% 0.476 80.3% 0.476 60.0% 0.468 42.0% 0.420
Wgt. (0.25) 92.9% 0.469 80.3% 0.469 58.7% 0.459 41.3% 0.413
Binary (0.4) 89.5% 0.448 79.0% 0.455 59.9% 0.438 37.3% 0.373
Binary (0.25) 89.5% 0.448 79.5% 0.441 60.2% 0.450 36.4% 0.364

Table 7.1: Coverage (the percentage of instances that the relevant concept was
generated) and Mean Reciprocal Rank (MRR) for DiscK and Baselines, for varying
candidate list sizes K on the test data. The DiscK models are described in Chapter
7.3 and the Baseline models in Chapter 7.5.

from those produced by binary models, we used the Wilcoxon signed-rank test to

compare each DiscK model with one using binary weights. We find that with the

exception of DiscK-2 with R = 0.25, the p-value for the test is less than 0.01, allowing

us to reject the hypothesis that the weighted versions produce the same ranking as

non-weighted versions.

Model p-value

DiscK-1, R = 0.25 2.20e-8
DiscK-1, R = 0.4 1.99e-8
DiscK-2, R = 0.25 0.077
DiscK-2, R = 0.4 0.002

Table 7.2: Wilcoxon signed-rank test comparing DiscK-1 weighted and binary rankings,
using the models shown in Table 7.1. With the exception of DiscK-2, R = 0.25, all
have a p-value < 0.01, which shows a significant difference between the weighted and
binary rankings of DiscK.
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Model Coverage MRR

Full model 92.9% 0.469

− Ontology aug. 84.3% 0.394
− Exact Match 92.1% 0.324
− Partial Match 92.5% 0.470
− Lemma 92.1% 0.468
− Partial & Lemma 91.7% 0.441
− Char 4-Gram 89.9% 0.497
− Partial, Lemma & Char 4-Gram 43.8% 0.298
− Definition 91.5% 0.432
− Abbreviation 92.2% 0.468

Table 7.3: Feature ablation results for one DiscK model (DiscK-2, R = 0.25, N =
1000) on the test set. The change in coverage and MRR is shown for the removal of
each feature or set of features. The features are described in Chapter 7.3.

7.6 Discussion

While several baselines do an equivalent or better job on coverage (including

the correct concept in the candidate list), DiscK consistently does a better job of

assigning a higher rank to the right link (higher MRR). DiscK achieves at least a 0.09

improvement over binary DiscK in MRR, and at least a 0.18 improvement over all

other baselines. Excluding the combined model, the best performing coverage at N =

1000, 4 char-gram, does exceed the best DiscK model by 0.7. However, the best DiscK

model for mean reciprocal rank exceeds the 4 char-gram model by 0.18. While many

baseline systems assign the relevant concept a high score, they also produce candidate

lists with many ties, which reduces the usefulness of the ranking. The effect of this can

also be seen in coverage with smaller candidate list sizes (e.g. 10). The discriminative

ranking of the DiscK models results in relevant concepts receiving higher relative
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scores, resulting in better coverage for smaller list sizes.

The Combined model explores whether the benefits of the DiscK-1 model (high

mean reciprocal rank) can be combined with the benefits of the Character 4-gram

model (high coverage). This model provides a mean reciprocal rank that is higher than

that in the Character 4-gram model, and the highest level of coverage for K = 1000

of any model. However, the addition of the Character 4-gram candidates increases

the amount of noise in the candidate list, and thus while the coverage is competitive

at higher levels, the MRR is consistently lower than the DiscK models alone.

The baseline and feature ablation results also show that lexical matching algorithms

can provide a high level of coverage in generating candidate lists. With partial matching,

for example, 88.8% of relevant concepts are retrieved, which is competitive with the best

DiscK model. As seen in Table 7.3, the removal of partial, lemma, and character-gram

matching (as they often provide similar information) reduces the coverage to only 43.8%.

However, the performance of lexical matching algorithms is partially deceiving, as

many lexical matches are made with augmented synonyms. Without the augmentation

step, the effectiveness of DiscK model 2 drops to 84.3% coverage. Without this step,

many concept links would require non-lexical transformation.

In reviewing the coverage errors for the DiscK-2 model (R = 0.25, N = 1000),

which provides the highest coverage, several patterns emerged. First, 25 of the 76

errors would require non-lexical transformation to match the mention and concept.

An additional 26 could achieve a partial match with some lexical transformation, but
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some tokens would require non-lexical transformation. The remaining 25 errors could

achieve a match with the correct lexical transformation – most were not retrieved due

to morphology or abbreviation. Additional non-lexical errors were avoided due to the

synonym augmentation step. However, this is less useful when applying this solution

to a larger dataset with a bigger vocabulary, as many non-lexical transformations may

not have been seen in the training data.

7.7 Concept Linking Improvements

To demonstrate the effectiveness of our candidate generation system, we used it in

conjunction with an end-to-end concept linking system. We selected DNorm (Leaman

et al., 2013), a concept linking system that builds weighted TF-IDF representations

of both the mention string and concepts and learns a weighted similarity measure

to rank concepts. DNorm was the highest performing concept linking system in the

Share/CLEF 2013 task (Pradhan et al., 2013). While DNorm is accurate, it must

calculate the similarity between each mention and every concept in the knowledge

base. For our dataset, the number of candidates is n = 125, 362. To reduce the

number of concepts considered, we used our candidate generation method to filter

concepts evaluated by DNorm. As DiscK retrieval is a sublinear operation, generating

candidates in this manner is more efficient. We now operate over candidate lists of (at
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most) size k,7 instead of the full knowledge base, a significant gain in efficiency.

We use the DiscK-2 model (as it had the highest coverage at 1000),8 and we

retrained DNorm using the train, development, and tests splits noted in Chapter 6.5.

In Table 7.4, we report the coverage for varying k and for varying sizes of DNorm

ranked lists of size d. We do not report improvements in terms of time, as DiscK could

not be directly integrated into DNorm. Table 7.5 reports mean reciprocal rank. Since

our candidate generation method eliminates some correct concepts from consideration,

the DNorm version with filtered concepts performs worse than if considering all

candidate sizes. However, the difference in accuracy is small for larger candidate sizes

– for k = 5000, the accuracy at d = 1000 is only 1.97% worse than when considering

all candidates. Similarly, the mean reciprocal rank for d = 1000 is 0.023 points lower

than when considering all candidates. For this small reduction in performance we see

dramatic speedups; DNorm with a candidate list of size k = 5000 only considers 4% of

the original candidates. For smaller levels of k, the performance in terms of coverage

and mean reciprocal rank continue to decrease, but are paired with larger gains in

efficiency. In more extreme cases, such as that of k = 50 and d = 50, there is a 15.7%

decrease in accuracy, but only considers 0.04% of the original candidates. These large

gains in efficiency are particularly attractive when performing concept linking over a

large corpus, such as the electronic health records of a large hospital.

7The candidate lists generated by DiscK will contain at most k candidates, but may contain less
if fewer matches are retrieved

8The character model requires pairwise comparisons, so it would not improve DNorm efficiency.
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DNorm Ranked List Size d
1 10 50 100 500 1000

C
a
n
d
.
L
is
t
S
iz
e
k 50 61.92% 67.78% 73.29%

100 64.07% 72.81% 77.84% 78.80%
250 69.09% 78.87% 84.13% 85.32% 86.28%
500 71.03% 80.21% 86.17% 87.49% 88.65%
1000 70.60% 81.31% 87.86% 89.17% 90.24% 90.83%
2000 71.67% 82.26% 87.62% 90.36% 91.55% 92.38%
5000 71.90% 81.90% 88.74% 90.95% 92.74% 93.57%
All 74.79% 83.23% 88.94% 92.03% 94.88% 95.48%

Table 7.4: Coverage results for DNorm using varying Candidate List sizes k. Cells for
DNorm’s ranked list with a size larger than k are left empty.

DNorm Ranked List Size d
1 10 50 100 500 1000

C
a
n
d
.
L
is
t
S
iz
e
k 50 0.619 0.643 0.643

100 0.641 0.674 0.676 0.676
250 0.690 0.724 0.726 0.727 0.726
500 0.710 0.740 0.740 0.744 0.743
1000 0.706 0.742 0.745 0.746 0.746 0.744
2000 0.717 0.754 0.755 0.758 0.757 0.759
5000 0.719 0.755 0.757 0.757 0.757 0.758
All 0.748 0.777 0.781 0.782 0.781 0.781

Table 7.5: Mean Reciprocal Rank results for DNorm using varying Candidate List
sizes k. Cells for DNorm’s ranked list with a size larger than k are left empty.
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7.8 Conclusion

For medical concept linking, using a weighted feature-based candidate generation

step produces a more robust candidate list than standard triage steps. Compared

to baselines, we find that DiscK produces a candidate list that has a high level of

coverage but also ranks the relevant concept higher than standard methods. This

approach provides improved input for a final linking method, as the DiscK candidate

list better disambiguates between relevant concepts and non-relevant concepts. We

find that the majority of concept links can be identified with lexical features, but

identifying concepts that are not lexically similar requires additional investigation.

Integration of our candidate generation step into an existing concept linking program

(Leaman et al., 2013) shows that with a small reduction in accuracy, large efficiency

gains can be made by replacing a complete pairwise search of the possible candidates

with the sublinear DiscK candidate generation system.

For the task of triage outside of the medical domain, there has been an increased

focus on using dense representations. This was first proposed by the authors of the

BLINK (Wu et al., 2020) linker, described in detail in Chapter 2.2.2. BLINK creates

separate representations of the mention within its sentence and each entity in the

knowledge base. The triage step consists of performing a nearest neighbor search for

the top n closest entities given the mention representation. This approach can also be

made relatively computationally efficient by two additions. First, the authors propose

to cache the representations of the entities – as they are static, they do not need
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to be reproduced at inference time. Second, they use an efficient nearest neighbor

search algorithm, such as HNSW (Malkov and Yashunin, 2018), to achieve sub-linear

performance.

While much later work in clinical concept linking does not focus on triage, some

work (Sung et al., 2020) uses a similar dense representation method for candidate

generation. In comparing this approach to DiscK, a contextualized language model will

likely produce a more robust representation of the mention and entity than permitted

by the restricted feature set. This suggests that a dense triage approach, such as

in BLINK, is likely to be more accurate. However, it is also likely to be far less

computationally efficient, as contextualized representations for each mention need to

be created at inference. This computational inefficiency is compounded if a second

contextualized representation needs to be created for the final reranker, as is the case

with the BLINK reranker.
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8.1 Introduction

Given a word or phrase, the task of synonym discovery identifies other words or

phrases that have the same or similar meaning to the original.1 Constructing lists

of synonyms can be helpful in a range of downstream applications, such as linking

concepts to a knowledge base (Mihalcea and Csomai, 2007) or query expansion in

information retrieval. Both tasks rely on an expanded list of synonyms to ensure

that relevant concepts or documents are retrieved even if they do not contain the

query term. Synonym discovery, and the related task of paraphrase identification

(Bannard and Callison-Burch, 2005; Ganitkevitch et al., 2013; Sekine, 2005), have been

explored using a variety of methods (Grefenstette, 2012; Hagiwara, 2008; Lindén and

Piitulainen, 2004; Leeuwenberg et al., 2016). This task builds on work in measuring

semantic similarity between words and phrases (Mihalcea et al., 2006; Resnik, 1995).

Synonym discovery is especially important within the clinical medical domain

(Pedersen et al., 2007; McCrae and Collier, 2008; Wang et al., 2015a). Medical

synonyms aid in a variety of clinical tasks, such as automatic phenotyping and cohort

selection for comparative effectiveness research (Voorhees and Hersh, 2012). While

ontologies contain synonyms for a specific term, these often do not contain the variety

of synonyms that can occur in clinical notes across different authors and different

domains. Alternatively, new or rare terms may not be present in a standardized

1Elliot Schumacher and Mark Dredze. 2019. Learning unsupervised contextual representations
for medical synonym discovery. In JAMIA Open, 2019.
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ontology. An additional challenge is that a fixed synonym list may not accurately

reflect meaning, as abbreviations and shortened references have meanings that are

contextually dependent. The impact of this is shown in both Sections 6 and 7, where

the presence of synonymous terms in the knowledge base has a clear effect on the

performance of the systems. For these reasons, we are interested in methods that can

automatically identify new synonyms from clinical notes without supervision.

In this work, we consider the task of identifying whether two textual mentions of a

disorder refer to the same underlying medical concept. While synonym discovery is

critical within clinical NLP, the task is especially challenging for disorder mentions

in the clinical domain. First, while typical synonyms tend to be lexically dissimilar,

medical concepts are both lexically similar (“dilated RA” and “dilated RV”) or

dissimilar (“cerebrovascular accident” and “stroke”). A solution to this problem is to

use representations of terms that move away from using the lexical items themselves.

Along these lines, work by Wang et al. (2015a) proposed word embeddings for this task,

and found that Word2vec representations improved over the previous best approach.

However, type-level representations cannot address the second challenge: synonym

determination is often contextual. For example, the two terms “diabetes type 2” and

“diabetes” can be synonymous in that they refer to the same underlying concept, or

they could refer to two different types of diabetes. The key distinguishing factor is

the context of how the terms appear in the clinical note. Context can come from both

the surrounding text, as well as information about the patient. Without this context,
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a method cannot distinguish when two disorder mentions are synonymous. Both of

these challenges are similar to those faced by entity linking (see Chapter 2.1.4) when

matching mentions of entities to standardized knowledge base terms.

We propose learning representations of clinical text for unsupervised synonym

discovery of disorder mentions using contextualized representations. Rather than build

type-level embeddings as in previous work (Wang et al., 2015a), we build on work in

learning contextualized text representations (Melamud et al., 2016; Peters et al., 2018),

and discussed in Chapter 2.2.2. These methods incorporate the mention context into

a representation of the mention. Additionally, we augment the context from learned

representations of the patient (Choi et al., 2016). Incorporating context from the

patient record can indicate that certain concepts are more or less likely for a mention.

Additionally, our methods are fully unsupervised, in contrast to the previous work

that used supervision (Wang et al., 2015a). We greatly prefer unsupervised methods

as they can scale to a large number of medical subdomains as medical annotations are

particularly expensive.

We evaluate our proposed method on the task of finding disorder synonyms

(Pradhan et al., 2014) from English clinical free text, where we define mentions as

synonymous if they both refer to the same medical concept. We consider baselines of

both unlearned representations (character ngrams), and learned non-contextualized

word embeddings (Word2vec). We show improvements on the dataset released for

ShARe/CLEF eHealth Evaluation Lab 2013 Task 1b (Pradhan et al., 2013), which
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includes span-level annotations for disorder concepts built on a subset of MIMIC

2.5 clinical notes. We find that both text context and patient context improve over

previously established baselines, yielding significant improvements in the state of the

art. Finally, we find that our methods identify synonyms that are more lexically

dissimilar than Word2vec.

8.2 Synonym Discovery

We consider the task of finding disorder synonyms (Pradhan et al., 2014) in

English clinical free text. We define mentions as synonymous if they both refer to

the same medical concept. To obtain annotations of this task, we identify mentions

that link to the same medical concept in the dataset released for ShARe/CLEF

eHealth Evaluation Lab 2013 Task 1b (Pradhan et al., 2013), which includes span-level

annotations for disorder concepts built on a subset of MIMIC 2.5 clinical notes. For

training representations, we use MIMIC III (Johnson et al., 2016) which is a superset

of MIMIC 2.5.

Consider the sentence “The patient showed signs of a stroke” and the sentence

“The patient’s father previously had a cerebrovascular accident at the same age.” The

annotated dataset links both mentions (italicized) to the same ontology concept

Cerebrovascular accident. From this, we derive that these mentions are synonymous.

Note that while this task is similar to concept or entity linking, the goal is to identify
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synonyms present in the unstructured corpus, not to link those to a knowledge base.

Therefore, we only use the concept’s unique identifier from the knowledge base to

score whether a synonym is correct, and do not use additional information.

The contextual information of the mention is vital in correctly identifying the right

synonym. For example, the mention stroke could also refer to the concept Heat Stroke,

and further information is needed to identify the correct synonym. The surrounding

text of the mention is one key source of information. Considering the previous example,

the presence of the term hemorrhage would likely indicate the mention is synonymous

with Cerebrovascular accident and not Heat Stroke. Additionally, patient information

is often a relevant indicator. If the patient is an infant, Heat Stroke may be more

likely than Cerebrovascular accident due to the higher likelihood of Heat Stroke in

that population. Our goal is to learn representations that capture the synonymous

relationship between the mention and concept by incorporating the context.

We formalize synonym discovery as follows. For a dataset of N medical records,

each record d corresponds to patient p and contains zero or more highlighted textual

mentions m linked to medical concept c. We then learn a representation of each m in

the corpus. To construct the candidate synonym list, we consider each mention as

a query mq and rank all other mentions as candidate synonyms mc based on cosine

similarity, and consider the top k = 50 mentions to be candidate synonyms to mq.

We measure the effectiveness of our approach by ranked list quality, where a correct

synonym is one where mq and mc share medical concept c.
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Previous work (Wang et al., 2015a) investigated creating type-level representations

for synonym discovery using Word2vec continuous bag of words model (CBOW)

(Mikolov et al., 2013b). They utilized a semi-supervised variant of this method for

synonym discovery and found it to be the best-performing model they considered.

However, this method does not consider context and does not yield representations

specific to individual tokens. We consider several methods that capture the context

in which the word occurs, and that may be more likely to identify synonyms with

divergent lexical forms. Additionally, we integrate learned representations of patient

data, specifically diagnosis codes, that can provide additional context. To focus on

synonym discovery we assume gold mention spans.

8.2.1 Patient Medical Context

As described in Chapter 2.2.2, Context2vec, ELMo, and BERT are all used to

create contextualized representations of text. In addition to modeling the context,

ELMo and BERT use character or subword embeddings, respectively, to alleviate

the out-of-vocabulary issues that other representation methods may face. In this

work, we focus on the ELMo language model to create contextualized representations

of the mentions present in the corpus. For mentions containing multiple words, we

explore using both the dimensional average and maximum to create a single mention

representation.

Additionally, clinical medical records contain extensive structured data. ICD-9
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(International Classification of Diseases) diagnostic codes are commonly used to

represent a patient since they indicate symptoms and diagnosed conditions. Our

corpus is a large de-identified medical records dataset. It contains one or more text

records for a single hospital admission for a patient, and a set of ICD-9 codes that

applies to the admission overall.2 We utilize the Med2vec (Choi et al., 2016) toolkit

in order to learn representations of patient codes. For each admission, the assigned

codes are converted into a binary vector representing all present codes. The binary

vector representation is fed into a second hidden layer, which is concatenated with a

vector containing demographic information about the patient. This in turn is fed into

a final output layer, which is trained to predict neighboring visits using a skip-gram

architecture. We use the provided author’s code to train it on patient data taken from

MIMIC III.

We integrate Med2vec as patient-level context into both the Context2vec and

ELMo models, in the hope that providing additional patient-level context will improve

the representations of the words. We omit integration with BERT as it performs worse

than ELMo in our tuning set (see Table 1). We integrate Med2vec with Context2vec

by concatenating a single vector of averaged ICD-9 code embeddings for the linked

hospital admission (noted as v) to the final states of both LSTMs, passing the combined

vector as input into the final multi-layer perceptron (MLP) in the model. The input

to the MLP becomes

2As noted on MIMIC’s website, all ICD codes in MIMIC III are in ICD-9 format, and these codes
will be switched to ICD-10 in later releases. Our model is not specific to the ICD-9 code format - a
representation for ICD-10 or ICD-11 codes could be learned in a similar way.
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lLS(l1:i−1)⊕ rLS(rn:i+1)⊕ ICD9(v) (8.1)

where lLS and rLS are left to right and right to left LSTM embeddings of the

sentence up to the target word, respectively. By combining the ICD-9 context with

the sentence context as input to a MLP, the model may learn patient-level context

that informs the word-level representations created by Context2vec. The architecture

is shown in Figure 1.

We explore two approaches to integrating Med2vec into ELMo: in the input layer

and the output layer.3 In both cases, we create a single ICD-9 representation by

calculating the dimensional max over the Med2vec representations of each ICD-9 code,

as there are multiple ICD-9 codes assigned to each note. First, we concatenate a

matrix of ICD-9 codes to the token representation layer as input to the LSTM. Each

position in the token representation layer hLM
k,0 becomes hLM

k,0 ⊕ ICD9(v).

Second, we add ICD-9 representations to the output layer as additional input

to the softmax which predicts the preceding or future tokens. Previous work on

neural language modeling (Hoang et al., 2016) has shown that integrating additional

information into the language model can lower perplexity, specifically when added to

the output layer. While our goal isn’t to improve language model perplexity, added

information may similarly inform our task. Instead of the softmax input being the

3We also experimented with multi-task training, but initial results did not show an improvement.

191



CHAPTER 8. UNSUPERVISED DISCOVERY OF SYNONYMS FOR CLINICAL
CONCEPTS

Figure 8.1: Context2vec with Med2vec

concatenated second layers from the forward and backward LSTMs, hLM
k,2 =

−−→
hLM
k,2 ⊕

←−−
hLM
k,2 ,

we add the ICD-9 codes to yield

hLM
k,2 =

−−→
hLM
k,2 ⊕

←−−
hLM
k,2 ⊕ ICD9(v).

The ICD-9 code matrix consists of a single ICD9 representation for each word (taken

from the ICD9 codes linked to the clinical note). For the input version, the ICD9

representations are separately input into the respective LSTMs, while in the output

only one matrix representation is included. In all cases, a single ICD-9 representation

is created by calculating the dimensional max operation over the representations of

the ICD-9 codes assigned to the admission. ELMo with Med2vec Input is illustrated

in Figure 8.2 and ELMo with Med2vec Output is illustrated in Figure 8.3.
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Figure 8.2: ELMo with Med2Vec Input

Figure 8.3: ELMo with Med2vec Output
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8.3 Data

We use two datasets: MIMIC III (Johnson et al., 2016) to train our representations,

and the concept linking dataset released for ShARe/CLEF eHealth Evaluation Lab

2013 Task 1b (Pradhan et al., 2013) to evaluate discovered synonyms. At the time of

this research, this dataset was the only relevant English dataset publicly available,

and further details are included in Chapter 2.4. The shared task dataset consists of

span-level annotations for disorder concepts built on a subset of MIMIC 2.5 clinical

notes (Saeed et al., 2011) (which is a subset of the current version, MIMIC III (Johnson

et al., 2016)). Since we evaluate an unsupervised method, we use a “tuning” set as

it is only used to tune model hyperparameters, while the test set is for evaluating

synonyms. The “training” dataset is only used for training the representations and

consists of unannotated clinical notes.

We train our representations on a subset of MIMIC III. As the annotated clinical

notes are in the dataset, we excluded any patients that had an annotated clinical note

from our representation tuning data. We used 213,466 clinical notes and associated

admissions-level diagnoses data for training representations. For Med2vec, similarity

is reported using the admission-level ICD-9 code representation and does not use any

of the clinical note text. We use an embedding dimensionality of 600 for Context2vec,

and 200 for Med2vec, which was chosen based on the dimensionality used in the

Context2vec and Med2vec papers, respectively. The Context2vec + Med2vec reported

model was produced after 6 epochs of training, and we used the default setting for
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all other model parameters as noted in their respective papers. For ELMo, we used

the standard parameters noted in the original paper - we trained for 10 epochs, with

a dimensionality of 512 for each LSTM. For BERT, we used the pretrained model

provided by Alsentzer et al. (2019), trained on a variety of clinical notes in MIMIC

(and discussed in Chapter 2.3).

8.4 Evaluation

8.4.1 Baselines

We include two baselines drawn from the work of Wang et al. (2015a) to serve as

the state-of-the-art methods for learned and unlearned representations. We do not

evaluate their supervised model as we consider the unsupervised setting.

8.4.1.0.1 Character ngrams

We calculate the number of n-length sequences of characters that appear in both

the mention string and the candidate synonym. Each word is padded with unique

start and end characters. Each mention-candidate pair is assigned a score equal to

(|ngramc ∩ ngramq|)/(|ngramq|), where ngramq is the set of ngrams from the query

mention and ngramc is the set of ngrams from the candidate synonym. This score is

used to create a ranking of synonyms, as with all other models.
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8.4.1.0.2 Word2vec

Word2vec performed best in the unsupervised setting in previous work (Wang

et al., 2015a). We use Word2vec (Mikolov et al., 2013b) to learn representations of

mention strings. We used the gensim toolkit (Řeh̊uřek and Sojka, 2010). We use

negative sampling combined with the skip-gram training algorithm, which are the

best performing parameters from previous work (Wang et al., 2015a). For mentions

containing multiple words, the dimensional average of all words is used as a single

mention representation. All out-of-vocabulary words are excluded from the final

representation, although this situation was rare.

8.4.2 Evaluation Metrics

For a single mention, we calculate the cosine similarity between that mention’s

representation and all other mention representations, creating a ranking. From this

we take the top 50 mentions as potential synonym candidates and calculate mean

reciprocal rank (MRR) and coverage (i.e. recall). We exclude mention pairs that are

equivalent strings as they are the same terms, though identical candidate mention

strings that occur multiple times in the corpus may appear more than once in the

ranking. We only evaluate query mentions that had a synonym present in the data,

i.e. another (different) mention string linked to the same concept as those without

synonymous mentions present cannot be matched in this dataset. We only include
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candidates from within the same data fold.

We scored a synonym as correct if both that mention and the query linked to the

same concept in the gold annotation. We measured mean reciprocal rank (MRR),

coverage (percentage of time a correct synonym appeared in the ranked list), and

top-1 accuracy. For the top-1 results in each model, we calculate the Jaro-Winkler

distance (Winkler, 1990), measuring lexical similarity, between the mention text and

the synonym. The mean Jaro-Winkler distance between a mention and all of its gold

label synonyms was 0.504 for the tuning and 0.476 for the test sets. Both the tuning

and test sets were not used for training representations, but only the test set was held

out until the end of experimentation.

8.5 Results

Table 8.1 shows the results for candidate models on the tuning data. We selected

the model that produced the highest MRR for each model type (noted by separators

in the Table) and evaluated it on the test set (Table 8.2). In all cases, ELMo models

outperform the Word2vec, character ngram, Context2vec, and BERT models. For

MRR, the ELMo models outperform others by 0.09 in tuning and 0.12 in testing. For

Top-1, ELMo provides an 11.3% increase in tuning and a 13.9% increase in testing.

For coverage, ELMo provides smaller but noticeable improvements – a 4.3% increase

for tuning and a 4.1% increase for testing. Adding Med2vec information to the ELMo
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Tuning (n=1275)
Model MRR Cov. Top-1

B
a
se
li
n
e
s Word2vec 0.373 71.9% 30.9%

Char. Bigram 0.404 70.6% 33.7%
Char. Trigram 0.417 69.8% 33.7%
Char. Fourgram 0.414 68.8% 34.0%

C
o
n
te
x
tu

a
l
M

o
d
e
ls

Context2vec 0.374 58.1% 31.8%
C2v + m2v 0.385 63.9% 28.4%

ELMo

L0, Avg 0.499 71.9% 43.7%
L0, Max 0.503 67.8% 45.3%
L1, Avg 0.370 71.5% 28.5%
L1, Max 0.344 63.3% 27.4%
L2, Avg 0.299 71.1% 21.9%
L2, Max 0.291 63.7% 22.2%

ELMo + M2v In

L0, Avg 0.504 76.2% 44.5%
L0, Max 0.488 69.8% 43.5%
L1, Avg 0.346 72.2% 26.5%
L1,Max 0.336 65.5% 26.9%
L2, Avg 0.279 70.0% 19.8%
L2, Max 0.281 63.0% 21.1%

ELMo + M2v Out

L0, Avg 0.484 72.2% 42.6%
L0, Max 0.493 69.6% 44.9%
L1, Avg 0.371 73.3% 29.1%
L1,Max 0.351 66.8% 27.7%
L2, Avg 0.309 71.1% 23.2%
L2, Max 0.302 64.5% 23.1%

BERT

L1, Avg 0.491 65.2% 43.9%
L1, Max 0.489 65.0% 44.3%
L4, Avg 0.438 62.0% 39.4%
L4, Max 0.435 63.3% 38.4%
L8, Avg 0.340 53.9% 30.9%
L8, Max 0.395 51.7% 35.5%
L12, Avg 0.324 47.2% 29.3%
L12, Max 0.372 50.7% 33.3%

Table 8.1: Mean reciprocal rank, coverage, and top-1 accuracy, for pairwise
identification of synonyms of the top 50 results run on the tuning data (n=1275). For
ELMo and BERT models, L(0/1/2) indicates layer number, and Avg or Max indicates
combination method for multiple word phrases. Bolded entries are the best-performing
result for that measure. We report test results on the model names listed in bolded
italics, selecting the best model for MRR in each category (noted by line separators)
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Test (n=599)
Model MRR Cov. Top-1 JW T-1

Word2vec 0.355 69.4% 29.2% 0.798
Char. Trigram 0.359 67.9% 28.0% 0.826
C2v + M2v 0.335 60.6% 28.6% 0.719
ELMo (L0,Max) 0.474 62.4% 43.1% 0.838
ELMo+M2v In (L0,Avg) 0.476 73.5% 40.7% 0.813
ELMo+M2v Out (L0,Max) 0.487 63.4% 44.7% 0.814
BERT (L1, Avg) 0.442 64.9% 39.1% 0.835

Table 8.2: Mean reciprocal rank, coverage, and top-1 accuracy, and Jaro-Winkler
average for correct synonyms in the top-1 for pairwise identification of synonyms of
the top 50 results run on the test data (n=599). Significance tests were performed
using a two-sided Z-score test to compare the best-performing models (bolded) to the
baseline models.

model does not provide consistent improvements to any metric, with the exception of

coverage. The ELMo model with Med2vec integration provides a small increase in

coverage over the standard ELMo model and the other model types. The Jaro-Winkler

distance of the ELMo model varies by layer level – the lowest layer has the most

lexically similar synonyms, while the higher layers have the least lexically similar

synonyms of any model. Overall, we see clear benefits by moving from the type level

embeddings to contextualized representations, with some benefits to incorporating

patient context.

8.5.1 Synonym Analysis

In addition to the quantitative results, we perform a qualitative analysis of one

model, ELMo (L0, Max). For 400 Top-1 errors (the mention was not matched with a

synonym as the first result, but may be matched lower in the list), we categorized the
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Ex. Mention Top-1 Synonym

varicosities varices
left atrial enlargement LA enlargement
difficulty ... breathing shortness of breath
hypokinesis hypokinetic
decreased responsiveness poorly responsive
uterine fibroid fibroid
mitral regurgitation mitral regurg
rib fx fractures ... rib
septic sepsis ... rib

Table 8.3: Correct Top-1 Examples from the ELMo (L0, Max) Model tuning set
results.

Category Perc. Example Mention Top-1 Synonym

Synonym
Overlap

52%

left atrium ... dialated right atrium ... dialated
Myocardial infarction inferior myocardial infarction

diabetes mellitus diabetes millitus type 2
aortic valve disease valvular heart disease

dilated RA dilated RV

Abbreviation 19%
AR MR
UTI ptx

Morph. or Lexical
Overlap

16%
hypokinesis akinesis
bradycardic tachycardic
cyanosis stenosis

No Relation 9%
nausea masses
clubbing bleeding

Sim. Con. 5% bleed bleeding

Table 8.4: Incorrect Top-1 Examples from the ELMo (L0, Max) Model tuning set
results.
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error as one of five types. Correct and incorrect examples with error types are listed in

Tables 8.3 and 8.4 respectively. The first and most common error type was word overlap

- the mention and the incorrect synonym shared at least one word, but the remaining

non-shared words contrasted the meaning of the mention and synonym. This may be

due to the simple method we use to combine words into a single representation (in this

case, the dimensional maximum operation). For example, for the mention “diabetes

mellitus” the top synonym is “diabetes mellitus type 2” – the two share words and

may be linked to related concepts, but the model does not put enough weight on the

distinction provided by the words “type 2”. Second, mentions with abbreviations were

commonly mismatched with other abbreviations. Some abbreviations are linked to

concepts that are related (e.g. “AR” is an abbreviation for Aortic Valve Insufficiency

and “MR” is an abbreviation for Mitral Valve Insufficiency), while others share no

relation (e.g. “UTI” is an abbreviation for Urinary Tract Infection and “ptx” is an

abbreviation for Pneumothorax). The third class of error was morphological or partial

lexical overlap - the mention and incorrect synonyms do not share a word, but often

shared a prefix or suffix (e.g. “hypokinesis” and “akinesis” share the suffix kinesis).

Fourth, some errors consisted of mention and incorrect synonym pairs that were not

correct due to annotation decisions in the data - they often have the same lexical form

but are different concepts in the ontology referenced in the annotations, or may have

been assigned a non-concept annotation. Finally, we could not explain some errors as

there was no clear relation between the mention and the incorrect synonym. In all,
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Figure 8.4: We performed dimensionality reduction using t-SNE on the tuning set
mention representations from the ELMo (L0, Max) Model, randomly selected 5% of
unique mention strings.

these errors are similar to those present in work in concept linking in Chapter 6. We

visualize selected synonyms from the tuning set in Figure 8.4 using t-SNE (Maaten

and Hinton, 2008).

8.5.2 Background

Previous research has studied identifying medical synonyms from within the UMLS

ontology using unsupervised representations, such as Wang et. al. (Wang et al., 2015a)
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using a method centered on Word2vec’s CBOW method. Other work (Henriksson

et al., 2014) uses Random Indexing and Random permutation to identify synonyms in

clinical notes and journal article data. Unlike Wang et. al., this is an unsupervised

method that uses a ranking approach but is limited by its reliance on term statistics

instead of character-based representations. Related work explored applying a similar

method to Japanese patient blogs (Ahltorp et al., 2016). Earlier work (McCrae and

Collier, 2008) explored retrieving synonyms for biomedical text in UMLS and other

ontologies using a pattern generation algorithm. While benefiting from interpretability,

this does not allow for the integration of character or contextual models that our

work provides. Additional work has studied approaches to synonym expansion in

non-medical domains (Leeuwenberg et al., 2016; Gupta et al., 2015), and the related

tasks of addressed abbreviation and acronym resolution (Kirchhoff and Turner, 2016;

Finley et al., 2016) in the clinical space.

8.6 Discussion and Conclusion

Models using ELMo consistently provide the best performance for using

unsupervised representations for the pairwise mention synonym identification task

– in MRR, Coverage, and Top-1 accuracy. We attribute this to two factors. First,

the ELMo model allows the sentence surrounding the mention to influence the final

representation, which better incorporates the context in which the mention occurs.
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Mentions of concepts that do not share a similar lexical form may appear in similar

contexts with similar words, and including the sentence allows for this to be reflected

in the final representation.

Second, using a character model may better handle out of vocabulary words and

morphology. Integration of Med2vec into ELMo provides an improvement in coverage,

which indicates that integrating patient information can better inform representation

learning for this task. To explore this further, we trained an ELMo model that used

tokens instead of characters, and an ELMo model that didn’t use the full sentence to

build representations. In both cases, the performance was worse than the standard

ELMo models, and further, it wasn’t clear which is the more important factor.

While recent work has shown that BERT performs well on a variety of clinical tasks

(Alsentzer et al., 2019), we find that it performs slightly worse than ELMo for this

task. In the general task of synonym identification within the medical domain, other

work has also shown that a BERT-based method performs worse than other proposed

methods. In the case of Yang et al. (2021), the authors show that a knowledge

graph-based method performs better than BERT, suggesting that BERT alone may

not be sufficient for this task. Other work has shown that fine-tuning is vital for BERT

performance (Peters et al., 2019). This is one potential factor in the lower performance

of this model. Since we assume an unsupervised setting, we cannot conduct task

specific fine-tuning, which might alleviate this performance gap.

Other research that cited this work explores how to use ICD codes with
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contextualized representations (Chen et al., 2021). However, more work has focused

on using contextualized representations directly in a task, such as entity linking (see

Chapter 2.2) or concept linking (see Chapter 6). With this approach, a model such as

BERT should create related representations for synonymous terms, especially if trained

on an in-domain corpus. However, for a model like DiscK (discussed in Chapter 7),

this approach is still useful. In settings where using a contextualized model, such as

triage, is too expensive, this synonym identification approach is still highly applicable.
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9.1 Summary

This dissertation contains several research findings concerning the task of entity

linking. In Chapter 3, we show that the cross-language representation ability of

mBERT extends the utility of single-language annotations to multiple languages,

either in a linker trained to use multiple languages, or one trained on a single language

and applied to several unseen. In this zero-shot setting, the remaining loss is due

to the model’s inability to learn granular distinctions within the knowledge base, as

opposed to failures in cross-language capacity. This can be rectified with popularity

information which would have been implicitly learned with training data but can be

calculated separately. Similarly, in Chapter 4, the cross-language representation ability

of a later contextualized language model, XLM-R, allows for a linker trained on English

documents and knowledge bases to be applied to documents and knowledge bases in

other languages. Unlike in the cross-language setting, the multi-language entity linker

does improve performance when we improve the language representation ability of the

model. However, this comes from forcing the linker to be less language-specific with

unannotated in-language text, rather than making the linker more language-specific.

Chapter 5 highlights the benefits and challenges of mainstream large-data

approaches to entity linking. These linkers work very well on mentions of entities that

are present in the training data but struggle with more complex matches. This is

especially true of GENRE, which relies solely on the entity name to disambiguate

between entities. Adding information from the knowledge base helps in some settings
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for in-domain data. However, its effect is more helpful when applied to other knowledge

bases, where it improves prediction in more lexically-complex matches.

Chapter 6 shows the difficulty in translating advances in standard entity linking

to domains with different data. In applying another high-performing entity linker to a

set of technical linking datasets, including chemical and clinical data, we see that the

linking performance is relatively poor. This highlights the importance of research that

looks at domain-specific issues within linking and NLP more broadly. While some

advances in broader linking, such as adapting the use of contextualized representations

to clinical text, can be translated, others cannot. Specifically, the lack of descriptions

for many entries in the knowledge base makes the use of available synonyms all the

more important.

Finally, Sections 7 and 8 build upon that finding, to show two supporting systems

for clinical linking. Chapter 7 shows the usefulness of an efficient triage system that

goes beyond simple lexical matching but also highlights the usefulness of synonyms

within the knowledge base. Chapter 8 works to identify potential synonyms from

unannotated corpora and also highlights that contextualized representations of text

are central to clinical NLP. In all cases, it is critical to understand the different

characteristics of each task. For example, fine-grained distinctions between parent and

child concepts are more likely to occur in clinical data compared to other domains.
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9.2 Conclusions

Across all of these research projects, there are several clear conclusions. First,

a linker’s ability to model the similarity between mentions of entities and entities’

names is by far the most crucial component. Examples of this can be seen in all

of the linkers discussed in this thesis. Further, much of the recent work in the field

illustrates this. The GENRE linker (see Chapter 5) essentially is a mention-name

matcher, going to the extreme of not using any other information from the knowledge

base. With a high-capacity deep learning model, a linker can essentially memorize

the various ways entities are mentioned within the text, removing the need for other

sources of disambiguation. In addition, cross-language representations can enable this

relationship to be modeled in multiple languages by only learning from annotations in

one.

An important caveat, however, is the fact that the ability to model this relationship

does not transfer to new domains as easily as to new languages, especially for cases

where more challenging lexical matches are required. Leveraging synonyms, either in

inference or training (Chapter 6) is one way to address this. But even with a system

to automatically identify synonymous terms (Chapter 8), it is still most effective,

in terms of system accuracy, to use human annotations to gather this information.

Using pretrained models does partially solve this problem. But the lack of in-domain

corpora is one hurdle, in addition to having to retrain models from scratch. This

means that previously trained related models, such as GENRE or BLINK, cannot be
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simply reused.

Overall, it is a challenge to characterize the relationships between linking in

various domains. Cross-language representations such as mBERT have bridged the

gap between cross-language and mono-language linking to a great extent, but this is

not true elsewhere. For instance, in both clinical concept linking and entity linking,

the core of the task is the same. The mention string needs to be matched to the

relevant entity, with context from the document and metadata from the knowledge

base supporting this effort.

But the knowledge base metadata is different in each case, from type systems to

what descriptive text is available. In the document, mentions are often compositional

in the clinical setting (e.g. 2019-nCoV Vaccine mRNA-1273 ), whereas this is rarer in

Wikipedia entity linking. Therefore, it is challenging to decide whether this is simply

a difference in domains, or if it is so different as to represent a separate task. In an

ideal world, it would be more efficient to have a reusable foundation for linking in

any domain, but that remains a challenge. Current trends in the field illustrate the

ongoing division in approaches. For example, work in the task of biomedical entity

linking (see Chapter 2.3) continues concurrently with that in standard entity linking,

despite their similarities. This results in siloed approaches and rebuilding systems

from scratch for every new data set and knowledge base pair. Perhaps a model that

allows for components to be trained modularly – e.g. with an in-domain name matcher

– is a path forward to removing redundancies.
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Finally, future work in entity linking should focus on truly challenging datasets

and domains. A major trend within both entity linking and NLP more broadly is

to train systems with complex architectures (e.g. transformers) with large amounts

of data. This pushes the datasets considered to those with large amounts of data,

such as Wikipedia. Building systems off of Wikipedia is perfectly reasonable, due to

the availability and amount of data, and the presence of many real-world entities are

present in the knowledge base. However, many of these datasets contain many exact

matches and do not focus on either rarer entities not seen in the training data, or more

challenging lexical matches. Further, design decisions, such as only evaluating mentions

that can be lexically matched to the entity title due to a triage step, inherently bias the

distribution of the examples. And while some work proposes to tackle domain-transfer

issues, the datasets used are relatively easy (e.g. is newswire a new domain for a

Wikipedia-trained linker?). There is some work (Orr et al., 2020; Logeswaran et al.,

2019) that targets more challenging sets of examples, but many state of the art linkers

focus on too easy datasets. At a minimum, this should be reported in discussions of

datasets. At best, the movement towards tackling challenging aspects of the task will

help complete the original goal – linking unstructured text to structured data – in

more and more settings.
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9.3 Code Releases

The following code repositories were released as a result of the work done in this

thesis.

• Cross-language entity linking

– https://github.com/elliotschu/crosslingual-el

• Clinical Concept Linking

– https://github.com/elliotschu/clinical-concept-linking
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Entity Recognition and Entity Linking System”. Proceedings of the Workshop

on Innovative Hybrid Approaches to the Processing of Textual Data. Avignon,

France: Association for Computational Linguistics, pages 52–60. url: https:

//aclanthology.org/W12-0508 (cited on pages 11, 25).

Veselin Stoyanov, James Mayfield, Tan Xu, Douglas Oard, Dawn Lawrie, Tim Oates,

and Tim Finin (June 2012). “A Context-Aware Approach to Entity Linking”.

Proceedings of the Joint Workshop on Automatic Knowledge Base Construction and

Web-scale Knowledge Extraction (AKBC-WEKEX). Montréal, Canada: Association
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(AKBC-WEKEX). Montréal, Canada: Association for Computational Linguistics,

pages 106–110. url: https://aclanthology.org/W12-3020 (cited on page 12).

Han Wang, Jin Guang Zheng, Xiaogang Ma, Peter Fox, and Heng Ji (Sept. 2015b).

“Language and Domain Independent Entity Linking with Quantified Collective

Validation”. Proceedings of the 2015 Conference on Empirical Methods in Natural

Language Processing. Lisbon, Portugal: Association for Computational Linguistics,

pages 695–704. doi: 10.18653/v1/D15-1081. url: https://www.aclweb.org/

anthology/D15-1081 (cited on pages 44, 115).

Runchuan Wang, Zhao Zhang, Fuzhen Zhuang, Dehong Gao, Yi Wei, and Qing He

(2021). “Adversarial Domain Adaptation for Cross-Lingual Information Retrieval

with Multilingual BERT”. Proceedings of the 30th ACM International Conference

on Information & Knowledge Management. CIKM ’21. Virtual Event, Queensland,

Australia: Association for Computing Machinery, 3498–3502. isbn: 9781450384469.

261

https://aclanthology.org/W12-3020
https://doi.org/10.18653/v1/D15-1081
https://www.aclweb.org/anthology/D15-1081
https://www.aclweb.org/anthology/D15-1081


BIBLIOGRAPHY

doi: 10.1145/3459637.3482050. url: https://doi.org/10.1145/3459637.3482050

(cited on page 113).

Yuxuan Wang, Wanxiang Che, Jiang Guo, Yijia Liu, and Ting Liu (Nov. 2019).

“Cross-Lingual BERT Transformation for Zero-Shot Dependency Parsing”.

Proceedings of the 2019 Conference on Empirical Methods in Natural Language

Processing and the 9th International Joint Conference on Natural Language

Processing (EMNLP-IJCNLP). Hong Kong, China: Association for Computational

Linguistics, pages 5721–5727. doi: 10 . 18653 / v1 / D19 - 1575. url: https : / /

aclanthology.org/D19-1575 (cited on page 65).

William E Winkler (1990). “String Comparator Metrics and Enhanced Decision Rules

in the Fellegi-Sunter Model of Record Linkage.” ERIC (cited on pages 58, 111,

197).

Ian H Witten and David N Milne (2008). “An effective, low-cost measure of semantic

relatedness obtained from Wikipedia links” (cited on page 115).

Ledell Wu, Fabio Petroni, Martin Josifoski, Sebastian Riedel, and Luke Zettlemoyer

(Nov. 2020). “Scalable Zero-shot Entity Linking with Dense Entity Retrieval”.

Proceedings of the 2020 Conference on Empirical Methods in Natural Language

Processing (EMNLP). Online: Association for Computational Linguistics,

pages 6397–6407. doi: 10 . 18653 / v1 / 2020 . emnlp - main . 519. url: https : / /

aclanthology.org/2020.emnlp-main.519 (cited on pages ii, 3, 4, 35, 45, 54, 116,

120, 126, 141, 181).

262

https://doi.org/10.1145/3459637.3482050
https://doi.org/10.1145/3459637.3482050
https://doi.org/10.18653/v1/D19-1575
https://aclanthology.org/D19-1575
https://aclanthology.org/D19-1575
https://doi.org/10.18653/v1/2020.emnlp-main.519
https://aclanthology.org/2020.emnlp-main.519
https://aclanthology.org/2020.emnlp-main.519


BIBLIOGRAPHY

Liwei Wu, Shanbo Cheng, Mingxuan Wang, and Lei Li (Aug. 2021). “Language Tags

Matter for Zero-Shot Neural Machine Translation”. Findings of the Association

for Computational Linguistics: ACL-IJCNLP 2021. Online: Association for

Computational Linguistics, pages 3001–3007. doi: 10.18653/v1/2021.findings-

acl.264. url: https://aclanthology.org/2021.findings-acl.264 (cited on

page 35).

Shijie Wu and Mark Dredze (Nov. 2019). “Beto, Bentz, Becas: The Surprising

Cross-Lingual Effectiveness of BERT”. Proceedings of the 2019 Conference on

Empirical Methods in Natural Language Processing and the 9th International Joint

Conference on Natural Language Processing (EMNLP-IJCNLP). Hong Kong, China:

Association for Computational Linguistics, pages 833–844. doi: 10.18653/v1/D19-

1077. url: https://aclanthology.org/D19-1077 (cited on pages 50, 51, 64).

Dongfang Xu and Steven Bethard (June 2021). “Triplet-Trained Vector Space and

Sieve-Based Search Improve Biomedical Concept Normalization”. Proceedings of

the 20th Workshop on Biomedical Language Processing. Online: Association for

Computational Linguistics, pages 11–22. doi: 10.18653/v1/2021.bionlp-1.2. url:

https://aclanthology.org/2021.bionlp-1.2 (cited on page 159).

Dongfang Xu and Timothy Miller (2022). “A simple neural vector space model for

medical concept normalization using concept embeddings”. Journal of Biomedical

Informatics 130, page 104080 (cited on page 159).

263

https://doi.org/10.18653/v1/2021.findings-acl.264
https://doi.org/10.18653/v1/2021.findings-acl.264
https://aclanthology.org/2021.findings-acl.264
https://doi.org/10.18653/v1/D19-1077
https://doi.org/10.18653/v1/D19-1077
https://aclanthology.org/D19-1077
https://doi.org/10.18653/v1/2021.bionlp-1.2
https://aclanthology.org/2021.bionlp-1.2


BIBLIOGRAPHY

Haoran Xu, Benjamin Van Durme, and Kenton Murray (Nov. 2021). “BERT,

mBERT, or BiBERT? A Study on Contextualized Embeddings for Neural Machine

Translation”. Proceedings of the 2021 Conference on Empirical Methods in Natural

Language Processing. Online and Punta Cana, Dominican Republic: Association

for Computational Linguistics, pages 6663–6675. doi: 10.18653/v1/2021.emnlp-

main.534. url: https://aclanthology.org/2021.emnlp- main.534 (cited on

page 51).

Cheng Yan, Yuanzhe Zhang, Kang Liu, Jun Zhao, Yafei Shi, and Shengping Liu (Nov.

2021). “Biomedical Concept Normalization by Leveraging Hypernyms”. Proceedings

of the 2021 Conference on Empirical Methods in Natural Language Processing.

Online and Punta Cana, Dominican Republic: Association for Computational

Linguistics, pages 3512–3517. doi: 10.18653/v1/2021.emnlp- main.284. url:

https://aclanthology.org/2021.emnlp-main.284 (cited on page 159).

Yiying Yang, Xi Yin, Haiqin Yang, Xingjian Fei, Hao Peng, Kaijie Zhou, Kunfeng

Lai, and Jianping Shen (2021). “KGSynNet: A Novel Entity Synonyms Discovery

Framework with Knowledge Graph”. Database Systems for Advanced Applications:

26th International Conference, DASFAA 2021, Taipei, Taiwan, April 11–14,

2021, Proceedings, Part I. Taipei, Taiwan: Springer-Verlag, 174–190. isbn:

978-3-030-73193-9. doi: 10.1007/978-3-030-73194-6_13 (cited on page 204).

Xiang Yue and Shuang Zhou (Nov. 2020). “PHICON: Improving Generalization of

Clinical Text De-identification Models via Data Augmentation”. Proceedings of

264

https://doi.org/10.18653/v1/2021.emnlp-main.534
https://doi.org/10.18653/v1/2021.emnlp-main.534
https://aclanthology.org/2021.emnlp-main.534
https://doi.org/10.18653/v1/2021.emnlp-main.284
https://aclanthology.org/2021.emnlp-main.284
https://doi.org/10.1007/978-3-030-73194-6_13


BIBLIOGRAPHY

the 3rd Clinical Natural Language Processing Workshop. Online: Association for

Computational Linguistics, pages 209–214. doi: 10.18653/v1/2020.clinicalnlp-

1.23. url: https://aclanthology.org/2020.clinicalnlp-1.23 (cited on page 52).

Wei Zhang, Yan Chuan Sim, Jian Su, and Chew Lim Tan (2011). “Entity Linking with

Effective Acronym Expansion, Instance Selection, and Topic Modeling”. IJCAI

(cited on page 22).

Wei Zhang, Jian Su, Chew Lim Tan, and Wen Ting Wang (Aug. 2010a). “Entity

Linking Leveraging Automatically Generated Annotation”. Proceedings of the 23rd

International Conference on Computational Linguistics (Coling 2010). Beijing,

China: Coling 2010 Organizing Committee, pages 1290–1298. url: https://

aclanthology.org/C10-1145 (cited on page 20).

Wei Zhang, Chew Lim Tan, Yan Chuan Sim, and Jian Su (2010b). “NUS-I2R: Learning

a Combined System for Entity Linking”. Theory and Applications of Categories

(cited on pages 16, 22).

Jin G Zheng, Daniel Howsmon, Boliang Zhang, Juergen Hahn, Deborah McGuinness,

James Hendler, and Heng Ji (2015). “Entity linking for biomedical literature”.

BMC medical informatics and decision making 15, S4 (cited on page 49).

Zhicheng Zheng, Fangtao Li, Minlie Huang, and Xiaoyan Zhu (June 2010). “Learning

to Link Entities with Knowledge Base”. Human Language Technologies: The

2010 Annual Conference of the North American Chapter of the Association for

Computational Linguistics. Los Angeles, California: Association for Computational

265

https://doi.org/10.18653/v1/2020.clinicalnlp-1.23
https://doi.org/10.18653/v1/2020.clinicalnlp-1.23
https://aclanthology.org/2020.clinicalnlp-1.23
https://aclanthology.org/C10-1145
https://aclanthology.org/C10-1145


BIBLIOGRAPHY

Linguistics, pages 483–491. url: https://aclanthology.org/N10-1072 (cited on

pages 16, 20, 22).

266

https://aclanthology.org/N10-1072


Vita

Elliot Schumacher holds a Bachelor of Science in Computer and Information

Science, and Linguistics, from the Ohio State University, and a Master of Science in

Language Technologies from Carnegie Mellon University. He joined the Computer

Science Department and the Center for Language and Speech Processing at Johns

Hopkins in the Fall of 2017.

267


	Abstract
	Acknowledgments
	List of Tables
	List of Figures
	Introduction
	Background
	Entity Linking
	Knowledge Bases
	Entities in Text
	Task setup
	Common Challenges
	Early Work
	Metrics

	Entity Linking Models
	Non-Neural Approaches to Entity Linking
	Name Matching
	Leveraging the Document
	Beyond the Document

	Neural Models
	Contextualized Representations
	Contextual Representations and Entity Linking


	Applications
	Linking in Multiple Languages
	Cross-Language Entity Linking

	Linking in Different Fields
	Medicine

	Task-specific Transformers

	Data
	Entity Linking
	Knowledge Bases
	Entity Linking Annotations

	Linking In Other Domains
	Clinical Concept Linking
	Other Linking Tasks



	Cross-Lingual Transfer in Zero-Shot Cross-Language Entity Linking
	Introduction
	Entity Linking Model
	Multilingual Representations
	Architecture
	Model Training

	Datasets
	Triage

	Model Evaluation
	Zero-shot Language Transfer
	Analysis

	Improving Zero-shot Transfer
	Name Matching Objective
	Entities

	Conclusion

	Improving Zero-Shot Multi-Lingual Entity Linking
	Introduction
	Architecture
	Multilingual Representations

	Multilingual Transfer
	Language Adaptation
	KB Adaptation

	Datasets
	Model Evaluation
	Transfer Performance
	Language and KB adaptation
	Design of Adversarial Objective
	Effect on English Performance
	Analysis

	Conclusion

	On the Surprising Effectiveness of Name Matching Alone in Autoregressive Entity Linking
	Introduction
	GENRE: An Autoregressive Entity Linker
	GENRE and Generalization
	GENRE and the Knowledge Base
	Keyword Selection
	Training and Inference

	Data
	Experimental Setup
	Results
	GENRE Generalization
	GENRE-KP

	Limitations
	Conclusion And Future Work

	Challenges in Clinical Concept Linking
	Introduction
	Adapting an Entity Linker to Medicine
	Datasets
	Results

	Designing Linkers for the Medical Domain
	Methods
	Neural Ranker
	Contextualized Representations
	Pre-training with Structured Data

	Experimental Setup
	Results
	Discussion

	Learning Efficient Entity Candidate Generation for Clinical Data
	Introduction
	Triage for concept linking
	Discriminative Information Retrieval for Knowledge Discovery
	DiscK for Clinical Concept Linking
	Evaluation and Results
	Discussion
	Concept Linking Improvements
	Conclusion

	Unsupervised Discovery of Synonyms for Clinical Concepts
	Introduction
	Synonym Discovery
	Patient Medical Context

	Data
	Evaluation
	Baselines
	Evaluation Metrics

	Results
	Synonym Analysis
	Background

	Discussion and Conclusion

	Conclusion
	Summary
	Conclusions
	Code Releases

	Vita

