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Abstract

Classical causal models generally assume relatively simple settings like static obser-

vations, complete observability and independent and identically distributed (i.i.d.)

data samples. For many systems of scientific interest, such assumptions are unre-

alistic. More recent work has explored models with complex properties including

(time-invariant) temporal dynamics, data dependence, as well as missingness within

the causal inference framework. Inspired by these advances, this dissertation goes

beyond these classical causal inference models to explore the following complications

that can arise in some causal systems– (i) path dependence, whereby systems exhibit

state-specific causal relationships and a temporal evolution that could be counterfac-

tually altered (ii) entangled missingness, where missingness occurs in data together

with causal dependence and finally, (iii) generalized coarsening, where systems entail

causal processes operating at multiple timescales, and estimands of interest lie at a

timescale different from that in which data is observed. In particular, we use the

language of graphical causal models and discuss an important component of the causal

inference pipeline, namely identification, which links the counterfactual of interest to

the observed data via a set of assumptions. In some cases, we also discuss estimation,

which allows us to obtain identified parameters from finite samples of data. We

illustrate the use of these novel models on observational data obtained from biomedical

and clinical settings.
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Chapter 1

Introduction

Cause-effect relationships form an integral part of our intuitive understanding, and

thus our description, of the world around us as humans. For example, we might have

heard the words “Incessant rains caused the roads to flood yesterday”, or said, “My

cough is the effect of a flu infection”. Unsurprisingly, much scientific inquiry tends

to be causal in nature too, and various attempts to define and understand causality

have been made, since the days of Democritus, back in 400 BC 1. More recently, since

Jerzy Neyman’s work in 1923 [Splawa-Neyman et al., 1990], counterfactual scenarios

arising from hypothetical thought experiments have become a prominent tool to reason

about causality. For example, in a surgery, one might propose answering the question,

"What would the patient’s outcome have been if the surgery was performed by an

attending, instead of a resident surgeon?", to assess the effect of experience on surgical

outcome. Or, "What would the reduction in carbon emissions have been if this policy

were to be enacted?", to assess the effect of a particular law on the environment.

Methods in the field of causal inference [Pearl, 2000, Hernan and Robins, 2020] are

developed to pose and evaluate such counterfactual queries to shed light on cause-effect

relationships.

The presence and magnitude of cause-effect relationships are often investigated using
1“I would rather discover one causal law than be King of Persia", quoted in [Pearl, 2000]
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a randomized controlled trial (RCT). In an ideal RCT , the treatment randomization

scheme ensures that all dependence between treatment and outcome due to spurious

factors is eliminated, and observed dependence between treatment and outcome is

due to a causal relationship. However, running an RCT to answer causal questions is

not always feasible or ethical. For example, there may not be enough resources to run

large trials, or it may not be ethical to randomize which patient receives a life-saving

drug (or not) for a debilitating disease. The field of observational causal inference

seeks to bridge this gap: observational causal inference seeks to answer counterfactual

questions using observational (non-randomized) data. It does so by emulating a target

RCT [Hernán and Robins, 2016] and obtaining an estimate of the causal effects an

RCT, if conducted, would have yielded. Observational data from various fields like

biomedicine and public health, socio-economics, climate science among others, is

growing rapidly in size with the advancement of data collection technology and, so is

the curiosity about what observational causal inference methods can bring to data

analysis.

One can better understand the structure of a hypothetical target experiment using

the simple illustration in Table 1-I, which records variables associated with a surgery

that was either performed by a resident trainee or an experienced attending. Let us

assume that investigators are interested in total surgery time as the outcome. For any

patient who underwent surgery, only one of their two possible outcomes, is recorded in

data; the outcome that is contrary to fact, i.e., the outcome of a surgery performed by

the other surgeon (in grey), is not accessible. In general, causal effects are formulated

as population level comparisons involving both counterfactuals. In this example, we

might construe the (average) causal effect of surgeon experience as the difference

in mean surgery time under the attending (=1.4) versus resident (=1), giving us a

value of 0.4. We are able to easily obtain this number if we have access to both

counterfactuals for every individual.
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In real settings, one has to investigate whether the causal effect is identified from

actually available data. Parameters must be identified in order for parameter estimation

to be well-defined; a parameter is said to be identified if it is a unique function of the

observed data distribution. That is, one must establish a map between the observed

data and counterfactuals via assumptions about the data generating process and the

causal model, which can be formulated via a causal graph. In fact, this dissertation

will describe causal models mainly using the language of graphical causal models

[Pearl, 2000, Hernan and Robins, 2020]. We note, however, that substantial causal

inference literature exists that does not rely on graphical model; see [Rubin, 1974] for

example.

The observational causal inference pipeline using graphical models begins with the

dataset and population of interest. Typically, the dataset would consist of one or

more outcomes and possible causes (treatments) one would like to investigate, and

in addition, other variables that might be relevant, like background information on

demographics. Understanding the context in which data was collected and how good

the measurement systems were, are critical to good data analysis. For example, there

could be seemingly innocuous phenomena, like a clerical typing error rendering an

arbitrary entry wrong or missing, or familial connections between study participants

which renders the data samples not independent of each other. Or simply, the data

might arise from a setting that has significant temporal structure and should not

Outcome under attending Outcome under resident Surgery by Observed outcome
1.2 0.7 Resident 0.7
1.4 1.1 Attending 1.4
2.2 0.6 Attending 2.2
0.8 1.6 Resident 1.6

Table 1-I. The hypothetical truth table for a surgery: The first two columns record
patient outcomes if each patient were operated on by an attending, and independently, by
a resident. In real data, however, we have access to only the third and fourth columns,
the surgeon who actually performed the surgery and the patient’s outcome.
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be treated as static observations. Considering the context from which data arises is

crucial to using an appropriate causal model.

Following dataset curation, one posits a graphical causal model linking the variables in

the data. Such a model might be posited directly on consultation with domain-specific

literature or discovered using a variety of causal discovery methods [Spirtes et al., 2001,

Ramsey et al., 2018] or obtained using a combination of both approaches. With the

graph and data in hand, the next step involves investigating whether the parameter

of interest is identified in the given model [Tian and Pearl, 2002, Shpitser, 2017], and

a significant portion of this dissertation involves discussing identification theory for

novel models and targets of interest. Finally, the last step typically involves estimating

the parameter from observed data, if the parameter is indeed identified [Bickel and

Doksum, 2015]. It is worth noting that there are other steps in the pipeline that

might be considered, like sensitivity analysis of our identified estimates or obtaining

bounds of estimates in the case of unidentified targets [Manski, 1990, Balke and Pearl,

1997, Richardson et al., 2014]. We shall not discuss these topics in this dissertation,

however.

1.1 Motivation

Beginning with Sewell Wright’s path analysis of graphical models for animal hus-

bandry applications back in 1934, observational causal inference has relied on certain

assumptions to identify causal effects [Wright, 1934]. In Wright’s case, he assumed

linear models. Thereafter, works in [Rubin, 1974, Pearl, 2009, Robins, 1986] have

discussed more general causal models, with fewer and less restrictive assumptions,

resulting in seminal results in model selection and general identification theories for

non-parametric models [Tian and Pearl, 2002, Shpitser and Pearl, 2006, Richardson

et al., 2017]. While these theories provide a strong foundation, many of these models

still applied directly only to relatively simple settings from which data arose, like lack
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of censoring or independent and identically distributed (i.i.d.) subjects in the data.

For most scientific systems, such models tend to be fairly unrealistic. More recently,

considerable work has been done to explore more realistic attributes in causal settings.

For example, public health studies, signal processing systems or many biomedical

signals often exhibit temporal dynamics, and models and identification theory for

time-invariant dynamic causal systems were developed to capture them [Peters et al.,

2013, Blondel et al., 2017]. Similarly, the recognition that ties between subjects in

public health studies or social network analyses is unavoidable, resulted in the study

of data dependence and interference: causal dependence of one experimental unit’s

variables on another unit’s variables [Aronow and Samii, 2013, Hudgens and Halloran,

2008a, Basse et al., 2019, Bowers et al., 2013, Ogburn and VanderWeele, 2014] 2.

These works pushed the techniques of causal modeling forward, allowing for a more

nuanced and richer description of certain causal systems.

The work in this dissertation is motivated by the recognition that good causal analysis

of observational data relies on a sound understanding of the attributes of the system

from which the data arises and the ecosystem in which it was recorded, and the need

to develop models that enable a rich characterization of these systems. We aim to

explore specific system attributes that go beyond what classical causal models have

been able to capture and primarily study the question of identification in these models.

In some cases, we will also discuss estimation of identified models. We briefly list

below, the types of system attributes we are interested in, and motivate why we would

be interested in them.

Path dependence: Causal analyses of longitudinal data have historically assumed

that the qualitative causal structure relating variables remains invariant over time. In

structured systems that transition between qualitatively different states in discrete time

steps, such an approach is deficient. For example, consider the task of modeling surgical
2For a detailed set of references, please refer to pertinent material presented in Chapter 2
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procedures. Surgeries are often divided into discrete stages, each with a distinct goal,

variables and relationships among them, possibly not shared across stages: contrast a

skill-intensive cartilage repair against a routine incision closure that can be automated,

as an example. Existing time-invariant models cannot capture the attributes of path

dependence: (i) time-varying variables with state-specific causal relationships, (ii) an

intervention that results in a completely altered temporal evolution of the system, due

to downstream state transitions distinct from these observed in data. We introduce the

path dependent structural equation model (PDSEM) to describe such systems.

Entangled missingness: There is growing interest in causal and statistical inference

for settings with data dependence, i.e. data samples are assumed to not be i.i.d.

However, there are a surprisingly small number of methods overall, and no graphical

causal methods, to account for missingness in dependent data settings. As a motivating

example for such a setting, consider a mass public health surveillance effort, where

demographic and family data are collected on a large population of individuals from

which a smaller group is invited to participate in a substudy where more detailed

data are collected. An individual’s choice to enroll in the substudy may depend both

on their own characteristics, and on the characteristics of, or choices made by, other

individuals in their social network. Not accounting for such factors (of dependence

and missingness), will result in bias. For such systems, we develop a framework for

causal inference in the presence of entangled missingness, defined as missingness with

dependence.

Generalized coarsening: In many physical systems, causal processes operate at

different levels of temporal granularity. For instance, measurables in a “macrostate”

such as pressure and temperature, are a result of dynamics in “microstates” corre-

sponding to particle motion leading to a thermal equilibrium. In general, detailed

information about microstates cannot be obtained from coarsened data on macrostates
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(at equilibrium) alone. For these types of causal systems, we pose the problem of

inferring microstate information from data on macrostates as a formal problem of

causal identifiability, by developing a specialized model, called the punctuated causal

model (PCM) to describe these systems. Then, we are able to discuss identification in

the models, and the assumptions required to identify the microstate parameters.

The dissertation is organized as follows. Chapter 2 is a detailed review of graphical

causal models. It sets up the notation and introduces concepts that will provide

a foundation for the rest of the dissertation. All of this content is prior work that

will be cited appropriately. The following chapters constitute original work, and are

as follows: chapter 3 discusses path dependent causal models, chapter 4 expounds

on entangled missingness, and chapter 5 discusses generalized coarsening. Within

each of these chapters, we dive into the motivation behind the model, prior work,

our contributions including model formulation and identification results, followed by

experiments and future directions for the topic at hand. Chapter 6 provides closing

thoughts and concludes the dissertation. We would like to note that the research

for chapters 3 and 4 was conducted mainly by the author, with valuable input from

the co-authors of the corresponding research articles. The research for chapter 5

was conducted jointly by the author of the dissertation with Numair Sani, as first

co-authors. As a consequence, (1) we present only a part of the results here and,

(2) some of the material in his (future) dissertation might be similar to that in this

chapter; our individual contributions remain distinct, however.
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Chapter 2

Preliminaries

In this chapter, we set up the notation and terminology necessary to follow the rest of

the dissertation. We point out that much of the content in this chapter (as well as the

following chapters) has been reproduced from relevant parts of the published works of

the author of this dissertation or their manuscripts in preparation.

2.1 Fundamental Assumptions in Causal Inference

A counterfactual or potential outcome Yi(a) in causal inference is defined as the

outcome that would have been observed if, possibly contrary to fact, a unit (or sample)

i had received treatment A = a. Causal effects are typically defined as contrasts of

counterfactual outcomes, e.g. β := E[Y (a)− Y (a′)] is a comparison of the expected

value of counterfactual outcomes in a world in which every unit receives treatment

A = a compared with a world in which every unit receives treatment A = a′. This

parameter β is often referred to as the average causal effect (ACE). Since potential

outcomes are not directly observed, assumptions are needed to link the counterfactual

distributions and the observed data distribution, from which samples are actually

drawn, to identify β.

A standard set of assumptions used to express β as a functional of observed data are

the following:
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1. Consistency: The observed outcome realization is equal to the counterfactual

outcome realization had treatment been set to the observed value, or Y (a) = Y

if A = a.

2. Positivity: All treatment assignments, possibly conditioned on a set of baseline

covariates C, have positive support. That is, p(a | C) > 0 for all a in the support

of A and support of C such that P (C = c) > 0.

3. Conditional Ignorability: Potential outcomes are independent of the treatment

assignment, possibly conditioned on a set of baseline covariates C. That is,

Y (a) ⊥⊥ A | C for all a.

Under these assumptions, the parameter β is identified from the observed data

distribution p(Y,A,C) via the adjustment functional: E[E[Y |A = a,C] − E[Y |A =

a′,C]].

Graphical models can be used to encode these types of conditional independence

assumptions in a visually intuitive fashion, and facilitate causal inference. In the

remaining sections of this chapter, we discuss prior work on graphical models that

sets the background for the following chapters. We first discuss directed acyclic

graph (DAG) models. DAG models provide a gentle and intuitive introduction to the

graphical model world, and are quite popular in the statistics and machine learning

literature. Following DAG models, we introduce the dynamic bayesian network (DBN)

model for temporal data. While DAG models are generally used to depict static

information, a simple extension has been formulated in the form of a DBN model

to describe temporal relationships between variables. DBN models also tend to be

commonly used in signal processing and machine learning domains. In this dissertation,

DBNs are used in Chapter 3 and Chapter 5. In the presence of hidden variables,

a different type of graphical model called an acyclic directed mixed graph, which

is derived from a hidden variable DAG using a set of rules (known as the latent
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projection operator), is often preferrable to using the DAG directly. ADMGs can be

used to represent identification theory for a class of hidden variable causal models.

We describe ADMGs after DBNs and use them in Chapter 3 and Chapter 4. Next,

we discuss how DAGs (and ADMGs) have been extended to encode interference and

missing data settings, and use these formulations in Chapter 4. Finally, we also briefly

introduce chain graph models for systems in equilibrium, which are only considered

in our study of generalized coarsening in Chapter 5. Any background material that

might be relevant but not absolutely necessary to this dissertation has been discussed

in Appendix I.

2.2 Statistical and Causal DAG models

A directed acyclic graph (DAG) G(V) is a graph G with a vertex set V representing

variables V, and consists only of directed edges (→) between any two vertices, with

no directed cycles. A directed cycle is a path V → · · · → V , that begins and ends

with the same vertex V . The statistical model of a DAG, also called a Bayesian

network, is the set of distributions that Markov factorize with respect to the DAG as

p(V) = ∏︁
V ∈V p(V | paG(V )) where paG(V ) are parents of V in graph G; we say U is

a parent of V if U → V , for U, V ∈ V. All conditional independence restrictions in

p(V) are encoded in the DAG G(V), and can be read off the graph by applying a set

of d-separation rules on the paths in G(V) [Pearl, 1988].

Causal models of a DAG are also sets of distributions but on counterfactual random

variables. They combine a generative model of p(V) with the theory of interventions

to yield distributions over counterfactual random variables. Each variable V in a

causal model is determined from values of its parents paG(V ) and an exogenous

noise variable ϵV via an invariant causal mechanism called a structural equation

fV (paG(V ), ϵV ). Intervention operations in causal models replace each structural

equation fV (paG(V ), ϵV ) for V ∈ A ⊂ V by one that sets V to a constant value in a
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Figure 2.1. (a) DAG representation of the conditionally ignorable model; (b) CDAG of
the conditionally ignorable model, with additional background context W.

corresponding to V [Pearl, 2009]. The joint distribution of variables in Y ≡ V \A

after the intervention do(a) was performed is denoted by p(Y | do(a)), equivalently

written as p({V (a) : V ∈ Y}), or p(Y(a)), where V (a) is a counterfactual random

variable or a potential outcome. We assume that the structural equations and noise

terms are such that the resulting p(V) is a positive distribution.

The widely used non-parametric structural equation model with independent errors

(NPSEM-IE) [Pearl, 2009], which is the model we will resort to, throughout this

dissertation, assumes additionally that the joint distribution of all exogenous terms

are marginally independent: p(ϵ) = ∏︁
V ∈V p(ϵV ). The NPSEM-IE implies the DAG

factorization of p(V) with respect to G(V), and a truncated DAG factorization known

as the g-formula:

p(Y(a)) =
∏︂
V ∈Y

p(V | paG(V ))|A=a (2.1)

for every A ⊆ V, and Y = V \A.

As an example, the DAG representation of the conditionally ignorable model discussed

in 2.1 is shown in Fig. 2.1 (a). The joint distribution factorizes as: p(V) = p(C)p(A |

C)p(Y | A,C).

Graphical models can be extended to represent the dependence of a set of variables V on

a set of variables W held fixed to values w. Such models are defined using conditional

versions of graphs. A conditional DAG (CDAG) G(V,W) is a graph where vertices

V represent random variables, and vertices W provide fixed context, and denote

random variables W set to values w. In a CDAG, for every W ∈W, paG(W ) = ∅. A
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statistical model of a CDAG G(V,W) is a set of conditional distributions that can be

written as p(V |W) = ∏︁
V ∈V p(V | paG(V )), where paG(V ) may include elements in

W. See Fig. 2.1(b) for an example of a CDAG, where W has no parents and is placed

inside a square to indicate that it is fixed to a constant value.

A conditional causal model, associated with a CDAG G(V,W), may be viewed as

defined by a set of structural equations fV (paG(V ), ϵV ), where paG(V ) may include

elements in W. In such models, interventional distributions p(Y(a) | W) (for

Y = V \ A) depend on W in general, and their identification is obtained by a

generalization of the g-formula:

p(Y(a) |W) =
∏︂
V ∈Y

p(V | paG(V ))|A=a (2.2)

where paG(V ) may include elements in W.

Before we discuss temporal graphical models, we would like to state that, in this work,

we are primarily interested in non-parametric identification of the parameters in a

model, i.e., there are no restrictions on the structural equations of the causal model

aside from what the graph asserts. Our use of the word identification is synonymous

with non-parametric identification for the purposes of this dissertation.

2.3 Temporal Models

While Bayesian networks lend themselves well to modeling static data, data that

changes over time requires more sophisticated models. An extension of the Bayesian

network model for discrete time temporal systems is the popular dynamic Bayesian

network (DBN) model [Murphy, 2012]. We introduce temporal models, and in specific

DBN models, in this section, to serve as background material to later describe temporal

relationships between variables in Chapter 3 and Chapter 5.

A conditional DBN (CDBN) generalizes a DBN given context W, and is specified
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by a pair of CDAGs, and a corresponding pair of factorized distributions. The prior

network CDAG G1(V1,W), or simply G1, containing random variables V1 and fixed

vertices W, and the corresponding distribution p(V1 |W) = ∏︁
V ∈V1 p(V | paG1(V ))

represent the state of the system at the first time step. The transition network

CDAG G+1(V+1,V ∪W), or simply G+1, involves fixed vertices V,W and random

variables V+1 representing vertices at time point t+1. G+1 as well as its corresponding

distribution p(V+1 | V ∪W) = ∏︁
V ∈V+1 p(V | paG+1(V )) represent the way variables

V+1 at any time point t+ 1 depend on each other, and on variables V at the prior

time point t, as well as possibly on values w of W. This kind of dependence leads to

a first-order Markov CDBN, as variables at t+ 1 only depend on variables at t or W,

and not on other prior variables, such as those at timepoint t− 1.

A CDBN represents temporal dynamics up to any time point T via a distribution

p(V1 ∪V2 ∪ . . . ∪VT |W) where V1 represents the variables in the prior network G1,

and Vt for t = 2, . . . , T represents reindexed copies of V+1 corresponding to each

subsequent time point. This distribution is represented in a tractable way by the

following “unrolled” factorization, using G1 and G+1:

p(V1 ∪ . . . ∪VT |W)) = p(V1|W)
T−1∏︂
t=1

p(Vt+1|Vt ∪W)

=
∏︂

V ∈V1

p(V | paG1(V ))
T−1∏︂
t=1

∏︂
V ∈Vt+1

p(V |paG+1(V )).

A simple DBN, i.e., a CDBN where W = ∅, is shown in Fig. 2.2, where the prior

network (2.2(a)) contains two variables A and L, and the transition network (2.2(b))

shows connections among the state variables in the prior state at time t and the

subsequent state at time t+ 1. Fig. 2.2(c) shows the DBN implied by these prior and

transition networks unrolled to 4 time steps.
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Figure 2.2. (a) Prior network CDAG G1, representing the state of the dynamic Bayesian
network at time t = 1. Here, W = ∅ (b) A CDAG G+1 representing the transitions in a
dynamic Bayesian network. (c) A dynamic Bayesian network model unrolled to four time
steps.

CDBNs can be naturally extended to represent causal models by assuming that both

prior and transition networks are causal CDAGs. In other words, we assume values of

every variable V in both the prior and the transition network is determined, via a

structural equation fV (.), in terms of its observed parents paG1(V ) (or paG+1(V )) and

an exogenous noise term ϵV . If we further assume that all exogenous noise variables

are marginally independent, we arrive at a DBN version of the NPSEM-IE, where in

addition to the g-formula (2.1) holding for the prior network, the conditional g-formula

holds for the transition network:

p(Yt+1(a)|Vt,W) =
∏︂

V ∈Yt+1

p(V |paG+1(V ))|A=a, (2.3)

for any A ⊆ Vt+1, and Yt+1 = Vt+1 \ A. Thus, a causal CDBN unrolled to a

set of time points 1, . . . , T yields a standard causal CDAG model with vertices

V1:T ≡ V1 ∪ V2 ∪ . . . ∪ VT and W. For an intervention that sets A ⊆ V1:T to

constant values a, the interventional distribution p(Y1:T (a)), where Y1:T = V1:T \A,

is identified by:

∏︂
V ∈V1\A

p(V |paG1(V ))
T−1∏︂
t=1

∏︂
V ∈Vt+1\A

p(V | paG+1(V ))
⃓⃓⃓⃓
⃓
A=a

(2.4)

The first-order Markov assumption in CDBN models may be relaxed to a kth-order

Markov assumption, where the model at any time step depends on variables in at
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most k prior time steps, a generalization we describe in Appendix I.

2.4 Hidden Variable Causal Models

In causal models where all relevant variables are observed, the g-formula (2.1) provides

an elegant link between observed data and counterfactual distributions. In practice,

however, there are hidden (latent) variables: variables that are relevant to answering

the scientific query being investigated, but not recorded in data. Representations for

such data using a DAG G(V∪H), or CDAG G(V∪H,W), where V and H correspond

to observed and hidden variables, respectively, and W corresponds to fixed observed

context, is not very helpful; applying (2.1) to G(V ∪H) or G(V ∪H ∪W) results in

an expression that involves unobserved variables H. Inferences made by marginalizing

out H may be sensitive to assumptions made about the state spaces for H and the

latent variable model may contain singularities at which asymptotics are irregular

[Drton, 2009]. Additionally, such a model does not form a tractable search space: an

arbitrary number of hidden variables and associated structures may be incorporated

that are consistent with the observed data distribution.

A popular alternative is to represent a class of hidden variable DAGs Gi(V ∪ Hi)

by a single acyclic directed mixed graph ADMG G(V) that consists only of observed

variables, and contains directed (→) and bidirected (↔) edges and no directed cycles

via the latent projection operation [Verma and Pearl, 1990]. In an ADMG, the

bidrected edges represent unobserved confounding. A simple example is shown in

Fig. 2.3: the hidden variable DAG in Fig. 2.3(a) can be viewed alternatively by its

latent projection ADMG in Fig. 2.3(b). Conditional independence statements from

a distribution p(V) may be read off an ADMG by a generalization of d-separation

called m-separation.

In hidden variable models, not every causal effect is identified, and identification
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Figure 2.3. (a) A hidden variable DAG, and (b) its latent projection ADMG.

theory may be expressed on the latent projection ADMG. The ADMG G(V) captures

relationships between observed variables V implied by the factorization of p(V ∪H)

with respect to G(V ∪H) via the nested Markov factorization of p(V) with respect to

G(V) [Richardson et al., 2017]. That is, the nested Markov factorization completely

avoids modeling hidden variables but it captures all equality constraints a hidden

variable DAG factorization imposes. Just as identification in DAGs may be viewed in

terms of a modified DAG factorization (2.1), identification in a hidden variable DAG

G(V ∪H) may be viewed in terms of a modified nested factorization of G(V), as we

describe next.

2.4.1 The Nested Markov Factorization

The nested Markov factorization of p(V) with respect to G(V) is defined in terms

of Markov kernels of the form qD(D| paG(D) \D), where set D ⊆ V is intrinsic in

G(V). Kernels qD(D| paG(D) \ D) are objects that resemble conditional densities

p(V | paG(V )) that arise in the Markov factorization for a DAG; kernels are non-

negative and normalize to 1 for every value of paG(D) \D. A set S is intrinsic in G(V)

if p(S|do(pa(S) \ S)) is identified.

The nested Markov factorization asserts that the observed margin p(V) can be

expressed as a product ∏︁D∈D(G(V)) qD(D | paG(D) \D) of kernels where D(G(V)) is

the set of bidirected connected components, called districts, in G(V). The factorization

implies certain other kernels associated with reachable sets may be expressed as similar

products of intrinsic kernels. Finally, the modified form of the factorization may be

used to express any interventional distribution identified from p(V).

16



Given a latent projection ADMG G(V) representing a hidden variable causal model,

and any disjoint subsets Y,A of V, let Y∗ be the set of ancestors of Y in G(V) via

directed paths that do not pass through A, and let GY∗ be the induced subgraph of G(V)

containing only vertices in Y∗ and edges among these vertices. [Shpitser and Pearl,

2006, Richardson et al., 2017] showed that any interventional distribution p(Y(a)) is

identified from p(V) given G(V) if and only if every bidirected connected component in

GY∗ is intrinsic. Moreover, if p(Y(a)) is identified, it is given by the following margin

of the modified nested Markov factorization, made up of the appropriate kernels:

p(Y(a)) =
∑︂

Y∗\(Y∪A)

∏︂
D∈D(GY∗ )

qD(D| paG(D) \D)|A=a. (2.5)

Reverting to the example in Fig. 2.3(b), the ADMG has intrinsic sets {A}, {M}, {A, Y },

and {Y }, with the corresponding kernels: qA(A) ≡ p(A), qM(M |A) ≡ p(M |A),

qA,Y (A, Y |M) ≡ p(Y |M,A)p(A), and qY (Y |M) ≡ ∑︁A p(Y |M,A)p(A).

The observed margin p(A,M, Y ) factorizes as qA,Y (A, Y |M)qM(M |A), via the nested

Markov factorization. Further, p(Y (a)) is identified from p(A,M, Y ) and equal to∑︁
M qY (Y |M)qM(M |a) = ∑︁

M (∑︁A′ p(Y |M,A′)p(A′)) p(M |a), which is the front-door

formula [Pearl, 1995].

A conditional ADMG (CADMG) G(V,W) can be obtained as a latent projection

of a CDAG G(V ∪H,W), and generalizes an ADMG with observed context W, in

the same way that a CDAG generalizes a DAG. A nested Markov factorization of

the marginal distribution p(V|W) can be defined directly on the latent projection

CADMG G(V,W). In addition, p(Y(a)|W) identified in a hidden variable causal

model represented by G(V ∪H,W) is always equal to a modified version of a nested

factorization [Richardson et al., 2017] associated with G(V,W). See Appendix I

for details on the nested Markov factorization, reachable and intrinsic sets, and

17



identification theory in ADMGs and CAMDGs.

Naturally, our next step would be to discuss temporal models with hidden variables

and related identification results as we did with fully observed models, but we reserve

this discussion for Chapter 3, specifically Section 3.2.1, as our novel work on PDSEMs

is closely interlinked to a reformulation of existing results on this topic. Instead, we

will proceed to discuss interference.

2.5 Interference

Historically, causal inference approaches have made the assumption that all units are

independent and identically distributed (i.i.d.). This assumption might be reasonable

where interactions between units are negligible. However, quite often, human beings

influence one another through their social networks (online and offline), and we say

that interference is present when one unit may causally affect other units [Aronow and

Samii, 2013, Athey et al., 2018, Basse et al., 2019, Basse and Airoldi, 2018, Bowers

et al., 2013, Cai et al., 2019, Eck et al., 2022, Eckles et al., 2017, Forastiere et al., 2021,

Graham et al., 2010, Halloran and Struchiner, 1995, Halloran and Hudgens, 2012,

Hong and Raudenbush, 2006, Hudgens and Halloran, 2008b, Jagadeesan et al., 2020,

Toulis and Kao, 2013, Leung, 2020, Liu and Hudgens, 2014, Papadogeorgou et al.,

2019, Puelz et al., 2019, Rosenbaum, 2007, Rubin, 1990, Sävje, 2021, Sävje et al., 2021,

Sobel, 2006, Tchetgen and VanderWeele, 2012, Toulis et al., 2018, VanderWeele, 2010].

In some works, interference is defined to be the causal effect of one unit’s treatment on

another’s outcome; but we use the term more generally, to mean interactions between

any types of variables: covariates, treatments, or outcomes, and when applicable,

variables to indicate the presence or absence of a potentially missing variable in the

data records (commonly called missingness indicators; see Section 2.6).

In this dissertation, we will assume partial interference, i.e. interference occurs within
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Figure 2.4. Example of a DAG illustration for interference between two units.

blocks of units of fixed finite size, but the blocks themselves are i.i.d. All of our

identification results, however, can be extended to full interference settings where

all units interact with one another (and the effective sample size is 1), or to non-iid

blocks. In the setting of i.i.d. blocks of fixed (and identical) size, we can switch our

lens to treat each block as a unit for estimation.

Let there be b blocks, each block consisting of m = n/b units, where n is the total

number of units in the network. Let A ≡ (A1, . . . , Am) be the vector of treatment

assignments for units i = 1, . . .m, and the m-dimensional vector a be a realization in

the support of A. Similarly, let Y ≡ (Y1, . . . , Ym) and C ≡ (C1, . . . ,Cm) be the vector

of outcomes and covariates respectively. We define Yi(a) to be the counterfactual

outcome of unit i, where the treatment vector A is intervened on and set to a; we

must index the counterfactual outcome of unit i by interventions not only performed

on unit i, but also on other units that belong to the same block because of the

interactions. Compare this to the counterfactual Y (a) in Eqn. (2.1) for a setting with

no interference. Here A = a represents only the unit’s own treatment. Parameters of

interest in interference problems and related estimation strategies are described in

detail in [Ogburn and VanderWeele, 2014, Hudgens and Halloran, 2008a, Tchetgen

Tchetgen and VanderWeele, 2012, Tchetgen Tchetgen et al., 2017].

Ogburn and VanderWeele [2014] proposed causal diagrams for interference, an exten-

sion of causal DAGs to interference problems. Fig. 2.4 is a typical example of how

DAGs are used to represent interference, in this case in a block of 2 units (commonly

referred to as a dyad). In this DAG, the tuple (C1, A1, Y1) corresponds to variables of
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unit 1 and the tuple(C2, A2, Y2) corresponds to variables of unit 2. The presence of

edges between these two tuples encodes the causal influence of one unit’s variables

on another unit’s variables. There are alternate graphical representations of interfer-

ence, including those using chain graph models [Bhattacharya et al., 2019a, Tchetgen

Tchetgen et al., 2017], but we will not discuss them in this work.

The principles of graphical causal models and identification generalize from the i.i.d.

setting to settings with interference, with the only difference being that the graph

now represents an entire block of units rather than a single unit representing an i.i.d.

realization.

2.6 Missing Data

Missing data is a perennial problem in data analyses of all types, and may arise due to

dropout from studies, loss to followup, imperfect data collection, survey non-response,

among other reasons. Systematically missing data records can substantially bias

subsequent analyses if not properly addressed. In this section, we discuss missing data

models developed for i.i.d. settings.

A missing data model encodes assumptions about how missingness arises and how it

relates to the underlying variables. The model is a set of distributions defined over

a set of random variables {O,Z(1),R,Z}, where O denotes the set of variables that

are always observed, Z(1) denotes the set of variables that are potentially missing, R

denotes the set of missingness indicators of the variables in Z(1), and Z denotes the set

of observed proxies of the variables in Z(1). Given Z(1) ∈ Z(1) and its corresponding

missingness indicator RZ ∈ R, the observed proxy Z is deterministically defined by

the following:

Z =

⎧⎨⎩Z(1) if RZ = 1,
? if RZ = 0.

(2.6)

An interesting way to approach missing data is using the lens of causal models: each
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missingness indicator R ∈ R may be viewed as a treatment variable that can be

intervened on, and each Z ∈ Z as an observed outcome. Thus, Z(1) is a counterfactual

random variable had we, possibly contrary to fact, intervened and set the corresponding

missingness indicator RZ to 1. This makes (2.6) the missing data equivalent of the

consistency assumption in causal inference. Note, however, that the missingness

indicator does not operate entirely identical to a treatment variable in that we do

not see RZ = 0 as the treatment variable being set to 0. That is, in the missing data

case, when RZ = 0, Z is not observed, and hence its value is set, deterministically, to

“?”, unlike when the outcome for treatment being set to 0 typically has a well-defined,

non-deterministic value in the support of Z.

The distribution p(O,Z(1),R) is called the full law, the distribution p(O,Z(1)) the

target law, the distribution p(O,Z,R) the observed data law or simply the observed

law, and the conditional distribution p(R | Z(1),O) the missingness process, or the

missing data propensity score.

Typically we are interested in a functional of the target law, often of the form

E[h(O,Z(1))], and the goal of missing data methods is to identify such functionals

in terms of the observed data law. Just like with causal inference, it is common to

assume the missingness consistency assumption (2.6) and a missingness positivity

assumption:

p(R = 1 | Z(1),O) > 0. (2.7)

For nonparametric identification of the full law and therefore of any functionals thereof,

other assumptions, in addition to consistency and positivity, are necessary. Such

assumptions can be encoded in a DAG G(V), where vertices V correspond to random

variables in O ∪ Z(1) ∪R ∪ Z, and certain additional restrictions are placed on G(V):

(i) each Z ∈ Z has only two parents, RZ and Z(1), and (ii) variables in R cannot point

to variables in O ∪ Z(1). Restriction (i) is imposed by definition of Z via (2.6). In
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Figure 2.5. A missing data DAG example corresponding to (a) a MCAR model, (b) a
MAR model, and (c) a MNAR model, all with Z ≡ {Y }, and (d) A missing data MAR
model with Z ≡ {A, Y }.

order to distinguish the deterministic relations implied by (2.6) from probabilistic

relations, we draw edges pointing into Z ∈ Z in gray. Restriction (ii) is imposed to

ensure that, while changes in RZ cause changes in the observed variables Z ∈ Z, they

do not result in changes to the underlying full data Z(1) ∈ Z(1).

A missing data DAG model is a set of distributions defined over variables in O ∪

Z(1) ∪R ∪ Z that factorize with respect to a DAG obeying the above restrictions, as

follows:

p(O,Z(1),R,Z) =
∏︂

V ∈O∪Z(1)∪R

p(V | paG(V ))×
∏︂
Z∈Z

p(Z | RZ , Z
(1)). (2.8)

Examples of missing data DAGs are shown in Fig. 2.5: Fig. 2.5(a) corresponds to

a missing completely at random (MCAR) model where RY ⊥⊥ O, Y (1), Fig. 2.5(b)

corresponds to a missing at random (MAR) model where RY ⊥⊥ Y (1) | O, and

Fig. 2.5(c) corresponds to a missing not at random (MNAR) model where neither

independence holds.

If a missing data model contains hidden variables H, it may be represented by the

latent projection ADMG G(O,Z,Z(1),R) of the DAG G(H,O,Z,Z(1),R). In such

models, the target of inference is some function of the margin of the full data law

p(O,Z(1),R) where H is marginalized out.

It is worth pointing out that there are many non-graphical approaches to dealing with

missing data as well. A simple and popular approach is to use only fully observed
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rows in a complete-case analysis, justifiable only if the underlying mechanism is

MCAR [Rubin, 1976]. For MAR scenarios, many approaches including expectation

maximization [Dempster et al., 1977, Horton and Laird, 1999, Little and Rubin,

2002], multiple imputation [Rubin, 1988, Schafer, 1999], inverse probability weighting

[Robins et al., 1994a, Li et al., 2013] have been developed. For MNAR problems, often

parametric or semiparametric restrictions have been imposed on the underlying data

distribution and missingness selection model, such that they yield identification [Little

and Rubin, 2002, Tchetgen Tchetgen et al., 2016, Wu and Carroll, 1988, Wang et al.,

2014, Miao et al., 2016, Miao and Tchetgen Tchetgen, 2016, Sun et al., 2018]. In this

dissertation,we restrict ourselves to graphical modeling approaches and non-parametric

identification.

The full law in a missing data model is identified if and only if the missingness

mechanism is identified by some functional of the observed data law g(p(R,O,Z)),

because

p(O,Z(1),R) = p(O,Z(1))× p(R | O,Z(1))⏞ ⏟⏟ ⏞
g(p(R,O,Z))

= p(O,Z(1),R = 1)
p(R = 1 | O,Z(1))⏞ ⏟⏟ ⏞

g(p(R,O,Z))|R=1

× p(R | O,Z(1))⏞ ⏟⏟ ⏞
g(p(R,O,Z))

.

(2.9)

For instance, the full law in the MAR missing data DAG model example in Fig. 2.5(d) is

identified because the missingness mechanism p(RA, RY |C, A(1), Y (1)) = p(RA, RY |C)

is a function of observed data. The hierarchy of MCAR, MAR and MNAR mechanisms

holds relevance in the context of identification simply due to the fact that if missingness

is not at random, the full law many not be identified. We discuss non-parametric

identification in missing data models at length in Chapter 4.

2.7 Chain Graph Models

Chain graphs (CGs) are a class of mixed graphs containing directed and undirected

(−) edges with no partially directed cycles, i.e., it is not possible to create a directed
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cycle by orienting any of the undirected edges [Lauritzen, 1996]. A chain graph with

no undirected edges is simply a DAG. We denote a chain graph Gc(V) with vertices

V by the shorthand Gc. For B ⊆ V, we define a block 1 B to be the maximal set of

vertices, where every vertex pair in the subgraph GB is connected by an undirected

path; the subgraph GB is defined as a graph with a vertex set B with all edges in Gc

between elements in B, and an undirected path is a path that contains only undirected

edges. The set B(Gc) denotes the set of all blocks B in Gc.

A CG model is a set of distributions associated with a CG Gc that can be written

in terms of a two-level factorization, the first associated with all blocks in B, and

the second corresponding to elements in each block B. For a more detailed account

on chain graphs, their Markov properties and the factorization, see [Lauritzen and

Richardson, 2002].

Work in [Lauritzen and Richardson, 2002] justifies the use of a chain graph (under

the Lauritzen-Wermuth-Freydenburg (LWF) interpretation) for systems where the

underlying data is obtained via equilibrium-generating dynamics. In this context, a

CG is defined via a combination of structural equation semantics and Gibbs sampling,

the latter enabling equilibrium dynamics. In particular, in a causal CG Gc, the

distribution p(B | paGc(B)) for each block B is determined via a Gibbs sampler on

variables B ∈ B, where the distribution p(B | B \ {B}, paGc(B)) is determined via a

structural equation fB(B \ {B}, paGc(B), ϵB). The intervention do(b) that sets B to b

replaces the structural equation for B by the assignment b. In a causal CG model,

for any disjoint Y, A, the distribution p(Y(a)) is identified by the CG version of the

g-formula [Lauritzen and Richardson, 2002]:
1This usage of block is not to be confused with the usage of block in the context of interference.

We have remained faithful to the definitions of these entities in existing literature, and will clarify
the usage of the word as it appears in our text.
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p(Y(a)) =
∏︂

B∈B(Gc)
p(B \A | pa(B,B ∩A))|A=a (2.10)

With this, we have completed an overview of the preliminaries required to follow our

work documented in Chapters 3, 4 and 5.
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Chapter 3

Path Dependent Models

3.1 Introduction

Causal dynamic Bayesian networks [Blondel et al., 2017], discussed in Section 2.3, are a

discrete-time generalization of causal DAGs , and can model causal relationships in tem-

poral processes evolving in discrete time. However, these models have generally been

used in settings where the causal structure remains invariant over time. For example,

analysis of the impact of anti-retroviral therapy on HIV infection progression assumed

the same variables relevant for the patient health and the same causal relationships

linking them at each time point in the study [Hernán et al., 2000]. Changes tracked

over time (such as HIV developing resistance to the current drug) are thus quantitative,

with the underlying causal structure remaining unchanged over time. However, many

systems undergo qualitative changes as well, where observability, relevance, and causal

relationships of variables vary over time. Furthermore, interventions in such systems

might alter the downstream evolution of the system to be different from that observed

in data. We call systems that exhibit these characteristics path-dependent, inspired by

the economics literature [Liebowtiz and Margolis, 2002].

A motivating example that we use in this work [Srinivasan et al., 2021] is that of a

septoplasty surgery, a procedure performed on the nasal cartilage (or septum) to relieve
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nasal obstruction. The surgery consists of (atleast) five distinct phases: (1) opening

of the septum, (2) raising septal flaps, (3) removal of the deviated septal cartilage and

bone, (4) reconstruction, and (5) closing of the septum. Each stage is associated with

a distinct set of variables and relationships among them that may not be shared across

stages: contrast a skill-intensive task like cartilage repair against a routine incision

closure which could potentially be automated, as an example. Further, procedures

performed at a particular stage can go wrong, forcing surgeons to “double back” to

correct mistakes or deal with complications. Surgeon experience often determines how

likely it is that previous stages of the surgery need to be revisited. These features

make a (septoplasty) surgery a path-dependent system.

The goal of causal inference in this setting is to help assign surgeons to perform

different stages of the surgery while navigating the tradeoff between the need to train

resident surgeons on the one hand, and operating costs and patient safety on the

other. Addressing this tradeoff entails using retrospective data to estimate outcomes

of surgery trajectories that differ from those actually observed due to counterfactually

different choices of surgeon assignment in past stages of the surgery. Other examples

where path dependence may naturally arise include life course studies examining

economic disparities in society or patient outcomes in hospitals using Electronic

Health Record (EHR) data.

3.1.1 Contributions

Our contributions to the causal inference literature are as follows. We introduce

the path-dependent structural equation model (PDSEM) for causal systems that ex-

hibit qualitative changes over time, observed or unobserved confounding, and path-

dependence on counterfactual choices in the past. PDSEMs generalize causal dynamic

Bayesian networks by allowing complex and looping stage transitions between distinct

yet tractable causal models, and generalize Markov decision processes used in reinforce-

27



ment learning [Sutton and Barto, 2018, Zhang and Bareinboim, 2016] by representing

each state as a graphical causal model that allows confounding between actions and

outcomes. We give a complete identification theory for our model. In particular, in the

special case where the PDSEM is first order Markov, all identification queries may be

decomposed into queries pertaining to observed transition probabilities between states,

a generalization of results for causal DBNs in [Blondel et al., 2017]. Finally, we show

how statistical inference may be performed by a combination of plug-in estimation

and Monte Carlo sampling [Bickel and Doksum, 2015], generalizing similar schemes

developed for longitudinal causal models [Westreich et al., 2012].

The roadmap to this chapter is as follows. In Section 3.2, we discuss causal DBNs in

literature, and in Section 3.2.1 we reformulate some existing results to generalize them

later. In Section 3.3, we present a simple example of a PDSEM for the reader to get a

quick glimpse of what constitutes the model, followed by a more rigorous treatment

of PDSEMs for fully observed data and then with hidden variables in Sections 3.4

and 3.5, respectively. Finally, we give a quick summary of our experimental results in

Section 3.7. For a more thorough treatment of the content, please refer to the author’s

work in [Srinivasan et al., 2021].

3.2 Background

Causal DBNs, the model we build on and generalize, have been considered in prior

work. [Peters et al., 2013] illustrated how structural equations can be used in the

context of time series data, addressing issues of identifiability. [Malinsky and Spirtes,

2018, 2019, Mogensen et al., 2018] presented structure learning algorithms for causal

dynamic networks and applied them to macroeconomic data. [Blondel et al., 2017]

developed an identification algorithm and transportability results for dynamic causal

networks.
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3.2.1 Identification in Causal DBNs with Hidden Variables

[Blondel et al., 2017] showed how identification in hidden variable causal DBNs may

be decomposed into a set of independent problems, pertaining to conditional state

transition distributions. We reformulate these results using the language of nested

Markov models (see Section 2.4.1) to facilitate identification theory and statistical

inference in PDSEMs. We start with an assumption that allows us to view the

marginal version of a DBN, defined only on observed variables, as a first-order Markov

DBN.

Assumption 1. Transition network G+1 between time points t and t+ 1 only depends

on fixed variables in the previous time step t that are observed.

If G+1 depends on fixed variables that are hidden, the resulting DBN may result in

observed variables in step t+ 1 depending on observed variables earlier than t even if

observed variables in t are conditioned on, resulting in a model that is not first order

Markov. For example, consider the DBN specified by prior and transition networks in

Fig. 3.1 (a) and (b). Because Lt+1 depends on unobserved Ut, and Ut influences Lt,

“unrolling” this network, and taking the latent projection yields an ADMG shown in

Fig. 3.1 (c), where L3 ends up being dependent on L1, even after conditioning on L2

and A2 (due to the “explaining away” phenomenon arising when a shared effect L2 of

two variables U2 and U1 is conditioned on). On the other hand, the DBN specified by

prior and transition networks in Fig. 3.1 (d) and (e) does not suffer from this issue,

as the transition network only depends on observed variables Lt, At, yielding a latent

projection of the “unrolled” model shown in Fig. 3.1 (f), which factorizes into time step

specific conditional distributions: p(A1, L1)p(A2, L2|A1, L1)p(A3, L3|A2, L2).

In general, given a hidden variable prior network G1 on V1,H1, and transition net-

work G+1 on Vt+1,Ht+1 given Vt, the hidden variable DBN may be represented by

latent projections of the prior and transition networks: an ADMG G1 on V1, and
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Figure 3.1. (a),(d) Prior network hidden variable DAGs G1, representing the state at
time t = 1. (b),(e) Conditional hidden variable DAGs G+1 representing the transitions in
the network, with (e) leading to a first-order Markov model, and (b) leading to higher
order dependences to unobserved hidden variables Ut linking multiple time points. (c),(f)
Latent projection ADMGs of the unrolled hidden variable DBNs to three time steps.

a CADMG G+1 on Vt+1 given Vt, and the corresponding marginal distributions

p(V1) and p(Vt+1,t|Vt). The “unrolled” version of the factorization of this model

is: p(V1)
∏︁T
t=1 p(Vt+1,t|Vt), where each term nested Markov factorizes with respect

to either G1 or G+1 by results in [Richardson et al., 2017]. If the underlying DAGs

correspond to causal models, the hidden variable DBN yields identification theory

where modified nested factorization (2.5) is applied at every time point, just as (2.1)

was applied at every point in a fully observed causal DBN to yield (2.4).

Given a fixed set of time points 1, . . . , T , vertices V1:T ≡ V1 ∪V2 ∪ . . . ∪VT , and

disjoint subsets A,Y ⊆ V1:T , we have the following generalization of results in [Blondel

et al., 2017]:

Lemma 1. Under Assumption 1 , p(Y(a)) is identified from a hidden variable causal

DBN model represented by latent projections G1 on V1 and G+1 on Vt+1 given Vt if

and only if every bidirected connected component in G1Y∗
1

(the induced subgraph of

G1) is intrinsic in G1, and every bidirected component in G+1Y∗
i

(the induced subgraph

of G+1) is intrinsic in G+1, where Y∗
1 is the set of ancestors of Y ∩V1 not through

A ∩V1 in G1, and for every i ∈ 2, . . . , T , Y∗
i is the set of ancestors of Y ∩Vi not
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through A ∩Vi in G+1. Moreover, if p(Y(a)) is identified, we have
(︄ ∑︂

Y∗
1\((Y∪A)∩V1)

∏︂
D∈D(G1Y∗

1
)
q1

D(D| paG(D) \D)|A=a

)︄
×

T∏︂
i=2

(︄ ∑︂
Y∗

i \((Y∪A)∩Vi)

∏︂
D∈D(G+1Y∗

i
)
q+1

D (D|paG(D) \D)|A=a

)︄
,

where q1
D and q+1

D are kernels corresponding to intrinsic sets that are districts inD(G1Y∗
1
)

and D(G+1Y∗
1
) in the nested Markov factorizations of G1 and G+1, respectively.

This result, unlike in [Blondel et al., 2017], allows arbitrary sets of treatments in a

DBN. The proof is in Appendix II. Results for systems with fixed context W are

discussed in [Srinivasan et al., 2021]. If Assumption 1 does not hold, causal effects in

causal DBNs may still be identified for any finite T (see supplementary material of

[Srinivasan et al., 2021]), Section 4.2 in [Blondel et al., 2017]. However, the resulting

functional will likely be computationally intractable.

3.3 A Simple PDSEM

Let us use a simple illustrative example inspired by the surgery setting. We assume a

surgery will consist of only three states: s1 (“incision”), s2 (“modification of tissue”),

and s3 (“closing the incision”). Further, each state has the following variables: A

(patient status prior to any procedures in the current stage), B (experience of surgeon

performing the procedure in the current stage) and C (the observed patient outcome

for the stage after procedure is performed), all observed. The surgery always starts at

s1, and concludes upon reaching s3. Procedures performed in s2 may either succeed,

leading to s3, or fail with some probability, leading the surgeon to revisit s1. The

state transition diagram for this scenario is shown in Fig. 3.2 (b).

The causal diagram in Fig. 3.2 (a) shows relationships between variables in s1 and

functions similar to the prior network in a causal DBN. In addition to variables
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Figure 3.2. A simple PDSEM. (a) Causal structure of the initial state S1. (b) The
state transition diagram. (c),(d),(e) Causal diagrams representing possible transitions
and subsequent states. (f) Causal relationships in a system evolving according to the
state transitions: s1 → s2 → s3. (g) A snapshot of a possible PDSEM trajectory that
terminates in 3 timepoints is represented as an unrolled ADMG.

A1, B1 and C1, it contains S1, representing the state to transition to at time step

1. In our simple model, the state s1 transitions to s2 with probability 1, and so S1

represents a degenerate probability distribution and does not depend on any other

variable. In general, however, the probability associated with S1 may depend on other

variables in the current state. Transitions are specified by multiple causal CDAGs,

one for every allowed state transition. These CDAGs are shown in Fig. 3.2(c),(d)

and (e) (where dashed edges are ignored). These graphs include transition edges

representing relationships between variables in the state at time t and variables in

the state at time t+ 1, and state-specific relationships among variables at time t+ 1.

We assume that the state spaces of variables associated with each state are the same

across state transition and prior graphs. For example, the state spaces of A1, B1, C1 in
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Fig. 3.2(a) and A21, B21, C21 in Fig. 3.2(c) are the same, but the variables themselves

(and the causal graphs relating them) are not. This implies values may be indexed by

state, e.g. a1 can refer without loss of generality to a value of A1 or A21. Similarly,

conditional distributions that depend on variables in a prior state are well-defined if

those variables are indexed by the prior state only, e.g. p(A12|A1) is a shorthand for

“a density over A12 in transition (1, 2) given any value a1 of any variable of the form

Ai1.” Causal graphs in Fig. 3.2(a),(c),(d),(e), along with the state-transition diagram

Fig. 3.2(b), completely describe the fully observed PDSEM. Complex state dynamics

are captured by distinct state causal DAGs and path-dependence is a consequence of

state transitions that may depend on variables in the current state, and not just the

state itself.

This example describes a randomized controlled trial where the surgeon operating

during state s2 is randomly assigned, hence B12 in the transition graph in Fig. 3.2(c)

has no parents. Otherwise, we encode standard causal relationships we expect: C in

the previous state influences A,C in the next, and A in the previous state influences A

in the next. Surgeon assignment B12 in s2 influences assignments in subsequent stages,

whether they are s1 or s3. The state transition at s2 depends on the outcome C at

that state. In s3, B does not influence C, since closing the incision is a task adequately

performed independent of surgeon experience. The observed data factorization of a

fully-observed PDSEM is not finite, but yields a well defined joint distribution p∞

over possible trajectories shown schematically in Fig. 3.2(f):

p1
∏︂∞

t=1
(p12)I(s

1
t ,s

2
t+1) (p23)I(s

2
t ,s

3
t+1) (p21)I(s

2
t ,s

1
t+1) 1I(s3

t )

p1 =p(A1)p(B1|A1)p(C1|A1,B1)p̃(S1)
p12 =p(A12|A1,C1)p(B12)p(C12|B12,A12,C1)p(S12|C12)
p23 =p(A23|A2,C2)p(B23|B2,A23)p(C23|A23,C2)p̃(S23)
p21 =p(A21|A2,C2)p(B21|B2,A2,C2)p(C21|C2,B21,A21)p̃(S21),

where sit is the event “the state at time t is si, and all p̃ are deterministic by definition
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of our model.

PDSEMs allow us to reason about counterfactual questions such as: “what would

happen if all procedures are performed by the resident surgeon (B = b), possibly

contrary to fact?”. The counterfactual joint distribution p∞(b) is obtained by standard

structural equation replacement semantics [Pearl, 2009], on the state-specific marginal

and conditional counterfactual distributions:

p1(b)
∞∏︂
t=1

(p12(b))I(s
1
t ,s

2
t+1)(p23(b))I(s

2
t ),s3

t+1)(p21(b))I(s
2
t ,s

1
t+1)1I(s3

t ),

which is identified by using the g-formula for every component of the factorization, in

a generalization of (2.4), yielding:

p∗
0
∏︂∞

t=1
(p∗

12)I(s
1
t ,s

2
t+1) (p∗

23)I(s
2
t ),s3

t+1) (p∗
21)I(s

2
t ,s

1
t+1) 1I(s3

t )

p∗
1 = p(A1)p(C1|A1, b)p̃(S1)
p∗

12 = p(A12|A1, C1)p(C12|b, A12, C1)p(S12|C12)
p∗

23 = p(A23|A2, C2)p(C23|A23, C2)p̃(S23)
p21 = p(A21|A2, C2)p(C21|C2, b, A21)p̃(S21).

While the distribution p(S12|C12) remains the same, the probability that s1 is visited

from s2 is likely higher in p∞(b) compared to p∞. This is because B12, counterfactually

set to b, causes C12, and C12 causes S12. Thus, PDSEMs encode counterfactually

changing state transition probabilities from their observed values.

3.4 Fully Observed PDSEMs

An arbitrary PDSEM is defined using a set of states s, with initial state s1, an absorbing

state s∗, a set T of state index pairs of the form (i, j), where si ̸= s∗ representing

allowed state transitions, a DAG G1 on V1 for the initial state s1, and for each

(i, j) ∈ T , a CDAG Gij on Vij given Vi. Variables S1 ∈ V1, {Sij ∈ Vij : (i, j) ∈ T }

determine probabilities of transitioning from state to state. Just as in a causal DBN,

the DAG G1, and CDAGs Gij represent structural equation models for the initial

34



state, and the appropriate state transitions, respectively. That is, in the initial state,

each variable V ∈ V1 is determined via fV (paG(V ), ϵV ). Similarly, for each variable

V ∈ Vij in any state transition represented by Gij. We assume S1, {Sij : (i, j) ∈ T }

have no outgoing edges (this is without loss of generality, as structural equations are

already state-specific in a PDSEM).

A first order Markov PDSEM obeys the following assumption that ensures that we

need not condition on any context in the past except variables in the prior state.

Assumption 2. For every state sj, any CDAG Gij or DAG Gj will have random

variables that share state spaces.

We thus denote the values of any Vij for any transition (i, j) into state j by vj (note

the lack of dependence on i). As in our example, we index conditional densities that

depend on variables in a prior state by that state only, e.g. p(A12|A1).

Define V ≡ V1 ∪
(︂⋃︁

(i,j)∈T Vij

)︂
. A PDSEM yields an observed distribution p∞(V)

with the factorization:

p1(V1)
∞∏︂
t=1

⎛⎝ ∏︂
(i,j)∈T

(pij(Vij |Vi))I(s
i
t,s

j
t+1)

⎞⎠ 1I(s∗
t ) (3.1)

where pij(Vij|Vi) = ∏︁
V ∈Vij

p(V | paGij
(V )) and p1(V1) = ∏︁

V ∈V1 p(V | paG1(V )).

An intervention in a PDSEM is defined on a set of treatment variables A ≡ ⋃︁(i,j)∈T Aij

and set to values a with the property that for any (i, j), (k, j) ∈ T , the same values aj

are being set to Aij and Aij . Define Yij in each transition graph Gij to be all variables

in that state not in Aij, with their corresponding values being yj, their union being

Y, and the values of the union being y.

A new counterfactual distribution p∞(Y(a)) is obtained from the counterfactual initial

state distribution p1(Y1(a1)), and transition distributions pij(Yij(aj)|Yi(ai)) as:
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p1(Y1(a1))
∞∏︂
t=1

⎛⎝ ∏︂
(i,j)∈T

(pij(Yij(aj)|Yi(ai)))I(s
i
t,s

j
t+1)

⎞⎠1I(s∗
t )

Individual counterfactual distributions are obtained using standard structural equation

replacement semantics. Since the initial state and transitions are defined using

structural equations, we obtain the following identification result, which generalizes

the DBN g-formula (2.4) to PDSEMs.

Lemma 2. Given a fully observed PDSEM, each factor of the distribution p∞(Y(a))

is identified from p∞(V) as:

p1(Y1(a1)) ≡
∏︂

V ∈Y1\A1

p1(V | paG1(V ))
⃓⃓⃓
A1=a1

pij(Yij(aj)|Yi(ai)) ≡
∏︂

V ∈Yij\Aj

pij(V |paGij
(V ))

⃓⃓⃓
Ai=ai,
Aj=aj

(3.2)

A PDSEM may be generalized from a first order to a kth-order Markov model, where

variables in a particular state, can depend on variables in at most k prior states. This

involves an appropriate generalization of Assumption 2, and specification of a larger

set of transition networks. Details are in Appendix II.

It is worth noting that if all transition networks in a PDSEM obey a single consistent

topological order, it is possible to encode a PDSEM simply by a causal DBN. Such

an encoding will be inefficient and non-intuitive, however, since this causal DBN

would represent restrictions of a PDSEM via context-specific independences in a large

transition network representing a Cartesian product of possible transition networks of

a PDSEM. If a consistent topological order on variables in transition networks does

not exist, PDSEMs do not have a known causal DBN representation. For more details,

refer to [Srinivasan et al., 2021] and Appendix II.
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3.5 PDSEMs with Hidden Variables

To extend causal inference to latent variable PDSEMs, in addition to Assumption 1

and Assumption 2, we assume the probabilities of any state transition trajectories are

observed.

Assumption 3. The variables Sij for any (i, j) ∈ T governing state transition

probabilities are observed.

The latent variable PDSEMs then decompose into an initial state and a set of

transitions such that causal inference results may be stated without loss of generality

using latent projection ADMGs (and CADMGs) of appropriate DAGs and CDAGs. In

addition, the fact that variables Sij are observed implies we can evaluate counterfactual

state transition probabilities, provided they are identified. Next we provide a formal

definition of hidden variable PDSEMs.

Given the initial state DAG G1 on V1,H1 and the set of transition CDAGs Gij on

Vij,Hij given Vi, for all (i, j) ∈ T , define a PDSEM such that:

1. the variables V ≡ {V1}∪
⋃︁

(i,j)∈T Vij , are observed and H ≡ {H1}∪
⋃︁

(i,j)∈T Hij

are hidden,

2. all state transition variables are observed, that is, S1 ∈ V1, Sij ∈ Vij for every

(i, j) ∈ T ), and

3. every state has the same observed and hidden variables regardless of transition,

or, for every j and all (i, j), (k, j) ∈ T , Hij = Hkj and Vij = Vkj.

Given this definition of a latent variable PDSEM, the distribution p∞(V) is obtained

from applying the usual transition probabilities to the margin at the initial state

p1(V1) ≡ ∑︁H1 p1(V1∪̇H1), and the margins of all transition probabilities pij(Vij|Vi) ≡∑︁
Hij

pij(Vij ∪̇Hij|Vi). Here, ∪̇ refers to the disjoint union.
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Fix a set of observed treatment variables A, the union of {Aij : (i, j) ∈ T }, such that

aj are set to Aij,Akj for any (i, j), (k, j) ∈ T , and the set of outcomes Yij = Vij \Aij

for any (i, j) ∈ T , with Y the union of {Yij : (i, j) ∈ T }. Define the set of strict

parents of V as follows: pas
G(V) = paG(V) \V.

Identification for p∞(Y(a)) in a latent variable PDSEM reduces to identification theory

for p1(Y1(a1)) in the latent projection ADMG G1 on V1, and pij(Yij(aj)|Vi(ai)) in

the latent projection CADMG Gij on Vij given Vi, as follows:

Lemma 3. Under Assumptions 1, 2 and 3, given a latent variable PDSEM represented

by G1 and {Gij : (i, j) ∈ T }, p∞(Y(a)) is identified from p∞(V) if and only if every

bidirected component in G1Y∗
1

is intrinsic in G1, and every bidirected component in

GijY∗
j

is intrinsic in Gij for every i and j. Moreover, if p∞(Y(a)) is identified, it is

equal to

p1(Y1(a1))
∞∏︂
t=1

⎛⎝ ∏︂
(i,j)∈T

(pij(Yij(aj)|Yi(ai)))I(s
i
t−1,s

j
t )

⎞⎠1I(s∗
t−1) (3.3)

where
p1(Y1(a1)) =

∏︂
D∈D(G1Y∗

1
)
q1

D(D|pasG1(D))
⃓⃓⃓
A1=a1

, (3.4)

where each kernel q1
D(D| pasG1(D)) is in the nested Markov factorization of p1(V1) with

respect to G1, and

pij(Yij(aj)|Yi(ai)) =
∏︂

D∈D(GVij \Aij
)

qijD(D|pasGij
(D))

⃓⃓⃓
Ai=ai,
Aj=aj

(3.5)

where each kernel qijD(D| pasGij
(D)) is in the nested Markov factorization of pij(Vij|Vi)

with respect to Gij.

Before we discuss experimental results, let us consider the example in Fig. 3.3 to

elucidate the above lemma. The figure shows a slightly modified version of the example

in Fig. 3.2. Here, the first two states of the system involve hidden variables. Transition

graphs are in Fig. 3.3(c)-(e).
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Figure 3.3. A hidden variable PDSEM. (a) Causal structure of the initial state S1. (b)
The state transition diagram. (c),(d),(e) Latent projected causal diagrams representing
possible transitions and subsequent states. (f) A snapshot of a possible PDSEM trajectory
represented as an unrolled ADMG

The nested factorization for the initial graph in Fig. 3.3 (a) has intrinsic sets

(a) : {A1}, {B1}, {C1}, {A1, B1}, {S1}

with corresponding kernels

(a) : qA1(A1) ≡ p(A1); qB1(B1) = p(B1);

qC1(C1|A1, B1) ≡ p(C1|A1, B1);

qA1,B1(A1, B1) ≡ p(A1, B1); qS1(S1) ≡ p(S1).

(3.6)

Similarly, the nested factorizations for the transition graphs in Fig. 3.3 (c),(d),(e) have

intrinsic sets:

(c) : {A12}, {B12}, {C12}, {A12, C12}, {S12}

(d) : {A23}, {B23}, {C23}, {S23}

(e) : {A21}, {B21}, {A21, B21}, {C21}, {S21},

with corresponding kernels
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(c) : qA12(A12|C1) ≡ p(A12|C1); qB12(B12|A12)) ≡ p(B12|A12);

qC12(C12|C1, B12) ≡
∑︂
A12

p(C12|B12, A12, C1)p(A12|C1);

qA12,C12(A12, C12|B12, C1) ≡ p(C12|B12, A12, C1)p(A12|C1); qS12(S12|C12) ≡ p(S12|C12).

(d) : qA23(A23|A2, C2) ≡ p(A23|A2, C2); qB23(B23|B2, A23) ≡ p(B23|B2, A23);

qC23(C23|C2, A23) ≡ p(C23|C2, A23); qS23(S23) ≡ p(S23).

(e) : qA21(A21|A2) ≡ p(A21|A2); qB21(B21|B2) ≡ p(B21|B2); qA21,B21(A21, B21) ≡ p(A21, B21);

qC21(C21|C2, B21, A21) ≡ p(C21|C2, B21, A21); qS21(S21) ≡ p(S21).
(3.7)

Applying the nested Markov factorization on the trajectory in Fig. 3.3 (f), we obtain

the following factorization:

p(A1, B1, C1) · p(A12, B12, C12|A1, B1, C1) · p(A23, B23, C23|A12, B12, C12)
= {qA1,B1(A1, B1)qC1(C1 | A1, B1)}⏞ ⏟⏟ ⏞

(a)

· {qA12,C12(A12, C12|B12, A1, C1)qB12(B12|A12)}⏞ ⏟⏟ ⏞
(c)

·

{qA23(A23|A12, C12) · qA23(B23|B12, A23) · qC23(C23|C12, A23)}⏞ ⏟⏟ ⏞
(d)

,

where the kernels are given in (3.6) and (3.7) above.

3.6 Statistical Inference

Given counterfactual distributions identified via (3.2), (3.4), and (3.5), if a parametric

likelihood may be specified in terms of components of these equations, statistical

inference may be performed by plug-in estimation and Monte-Carlo simulation. In

a fully observed PDSEM, the likelihood may be obtained from (3.1) by imposing

parametric models for every Markov factor. In a hidden variable PDSEM, the likelihood

may be obtained from the nested Markov factorization for the marginal distribution

associated with the prior network ADMG, and the conditional distributions associated

with transition network CADMGs. These likelihoods are available in multivariate

normal assumption on the observed data, which we illustrate via the simulation study,

and discrete state spaces, via the Möbius inversion formula parameterization discussed
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in [Evans and Richardson, 2018] (see experiments in Section 3.7).

Given model parameters obtained by maximizing the PDSEM observed data likelihood,

counterfactual distributions in (3.2), (3.4), and (3.5) may be obtained by simulating

PDSEM trajectories using these modified factorizations, evaluated at MLE parameter

values. Confidence intervals for any counterfactual parameter of interest may be

obtained by parametric bootstrap.

However, an analogous approach is not straightforward for nested Markov parameteri-

zations of the marginal PDSEM representing a PDSEM with hidden variables. In our

simulations, we use a specific generative model for our continuous variables, i.e, the

linear Gaussian Structural Equation model. Another choice based on work in [Evans

and Richardson, 2014] is the Möbius parameterization for binary variables. However,

this is ill-suited for drawing samples. Instead, existing approaches to sampling from a

nested Markov discrete likelihood involve first converting the likelihood expressed in

terms of the Möbius parameters to one expressed as a the joint distribution p(V) (from

which it is easy to generate samples for a discrete sample space of V). Importantly,

such a conversion leads to an intractable object that requires storage and running

time exponential in size of V. This holds even if the underlying model dimension

of the nested Markov model is small. The situation is radically different from that

of DAG models, where a small model dimension directly leads to a computationally

efficient sampling scheme. For settings beyond Gaussian and discrete data, statistical

inference strategies are significantly more complicated and have been discussed in

[Bhattacharya et al., 2020]. While there exist promising approaches, based on the

nested Markov generalization of the variable elimination algorithm [Shpitser et al.,

2011], in general the problem remains open.
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3.7 Experiments

3.7.1 Simulation Study

We simulate data and perform statistical inference using the PDSEM shown in Fig. 3.2.

The system has states {s1, s2, s3} and variables {A,B,C} in each state. Additionally,

s2 has a hidden common cause of A and B. This is represented by the red (dotted)

bidirected edge A↔ B in the latent projected ADMG in Fig. 3.2(c). Patient health

status A, surgeon experience B, and duration of the stage of surgery C, are all

continuous variables. State and transition graphs are identical to those in Fig. 3.2.

This PDSEM was used to consider the causal impact of surgeon experience (measured

by total operating time in their career) on average surgery length. This outcome is

easy to measure, and is known to serve as an informative proxy for other measures

of surgery quality, such as follow-up assessments of quality of life [Rambachan et al.,

2013, Jackson et al., 2011].

Parameters associated with the given generative model are p(St+1 = sj|St = si,Vt),

where sit → sjt+1 is a transition allowed by the model, and p(V ij
t+1 = v|St+1 = sj, St =

si,Vt), where V ij ∈ {Aij, Bij, Cij}, where sit → sjt+1 is an allowed transition. These

are chosen to be reasonable for the surgery application, yielding a distribution Markov

relative to appropriate graphs. We simulated N = 10000 “surgeries,” with initial state

s1. Transition probabilities were generated using a logistic regression on variables

in the current state, with transitions eventually terminating at the absorbing state.

Each variable Vi is generated from a set of linear structural equations with correlated

errors. Using generated data, state transition probabilities were estimated using

maximum likelihood. Parameters for the structural equation model were estimated

using the RICF algorithm [Drton et al., 2009], implemented in the Ananke package

[Bhattacharya et al.].

We assessed the causal impact of surgeon experience on operating time by generating
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two sets of sampled surgery trajectories where, in each stage of the surgery, the surgeon

was intervened to have higher (vs. lower) career operating time by one unit. These

trajectories may be viewed as a Monte Carlo sampling scheme for evaluating the

functional given by (3.3), (3.4) and (3.5). This approach generalizes similar schemes

developed for longitudinal causal models [Westreich et al., 2012]. The comparison of

these two sets of trajectories may be viewed as a generalization of the average causal

effect (ACE) from classical longitudinal causal models to PDSEMs.

The results are shown in Fig. 3.4. Surgeries performed by experienced surgeons are

shorter ( µ = 5.79, q0.05 = 3,q0.95 = 13) than those performed by trainees (µ = 7.02,

q0.05 = 3, q0.95 = 17) where qp denotes the pth quantile. Surgeries performed by

trainees have higher variance.

3.7.2 Septoplasty Application

We are interested in the causal impact of surgeon experience on the average length of

surgery, in the context of septoplasty. Our dataset consists of 236 septoplasty proce-

dures conducted at our institution’s research hospital. A total of 57343 timestamped

records were collected, including tool and personnel activity. Surgeries consist of six

distinct phases: s1 (opening of the septum), s2 (raising septal flaps), s3 (removal of

deviated septal cartilage and bone), s4 (reconstruction), s5 (closing of the incision),

and s6 (other activity). An artificial absorbing state send represents the end of pro-

cedures. Procedures are often led by an attending, with a surgeon trainee assisting.

Of the surgeries, 42.79% of them were performed fully by the leading attending; the

others by a team. Also, attending surgeons perform for 64.98% of all operating time

and trainees the rest. Twelve different surgical tools were tracked for use. The state

transition diagram representing allowed state transitions is presented in Fig. 3.6. We

discretized all variables into two categories, and fit model parameters by maximum

likelihood.
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Figure 3.4. Histograms of the number of transitions in a surgery under two different
interventions: when a more experienced surgeon performs the entire procedure, and when
a less experienced trainee performs the entire procedure.

While there are certainly unobserved but relevant confounding variables in the problem

we consider (such as underlying patient state), we assume these variables influence

treatment variables (identity of the surgeon), as well as variables in the next stage

only via relevant observed variables (such as duration of the stage, and tools currently

in use). In addition to implying Assumption 1, this implies identifiability of the

parameter of interest (a contrast of the average length of surgery had experienced

vs inexperienced surgeon performed all stages) is given by Lemma 2, and statistical

inference may be performed as if the prior network were a DAG, and every transition

network were a CDAG, without loss of generality.

Estimation of p(st|st−1,vt−1) at all levels of st−1,vt−1 is not always possible due to finite

sample limitations. To address this, we apply additive smoothing to p(st|st−1,vt−1),

based on the empirical distribution p(st|st−1). Results are presented in Fig. 3.5.

We have made considerable assumptions in modeling our PDSEM and have closely

matched the generative model to the empirical distribution; see [Srinivasan et al.,

2021] for more details. We observe that the causal effect of surgeon skill on surgery

length, given our learned parameters, is close to zero. This indicates that policies that

govern the trade-off between the need to train surgeons, and overall surgery quality

(as quantified by our outcome) are effective at our institution.
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Figure 3.5. Histograms of hypothetical surgeries performed only by a junior trainee surgeon
(blue) versus hypothetical surgeries performed only by a senior attending surgeon (orange).
Surgeries performed by the attending are slightly longer (µ = 244.3.91, σ = 139.9) than
those of the trainee (µ = 233.5, σ = 125.9).

s1
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s4
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send

Figure 3.6. The state transition diagram for the surgery data application.

3.8 Conclusions

We developed the Path Dependent Structural Equation Model (PDSEM) for longitu-

dinal data unifying complex state structure from DBNs and complex state transition

dynamics from MDPs. We have described counterfactuals associated with these causal

models that can alter the subsequent temporal evolution of the system, identifica-

tion theory for such counterfactuals in terms of the observed data distribution, and

estimation. We showed the utility of the model in clinical settings, in data from a

septoplasty procedure. We also extended our results to kth order Markov systems,

and compared how DBNs might fall short of PDSEMs in describing certain types of

systems. Developing novel methods for efficient Monte Carlo sampling based statistical

inference for hidden variable PDSEMs with the nested Markov model is an area worth

exploring in the future.
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Chapter 4

Entangled Missingness

4.1 Introduction

Systematically missing data records, including due to survey non-response, dropout or

loss-to-followup, imperfect data collection and other reasons, can substantially bias

analyses if not properly addressed. While plenty of methods have been developed

to address missing data, much of it treats samples as independent and identically

distributed (i.i.d.) [Rubin, 1976, Little, 2021, Little and Rubin, 2002, Glymour, 2006,

Daniel et al., 2012, Martel García, 2013, Mohan et al., 2013, Thoemmes and Rose,

2014, Tian, 2015, Shpitser, 2016, Bhattacharya et al., 2019b, Nabi et al., 2020, Mohan

and Pearl, 2021, Scharfstein et al., 2021, Nabi and Bhattacharya, 2022]. The i.i.d.

assumption is only reasonable when interactions between units under investigation are

negligible and can be ignored. In recent years there has been increasing recognition

that many settings are subject to dependence among data samples and in particular,

interference, where variables measured on one unit may have a causal effect on those

measured on another unit through the varied ways in which humans influence one

another, via offline or online network relationships.

Literature has largely lagged behind in recognizing that data dependence and missing

data might occur simultaneously, with the exception of a few pieces of work - [Chang
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et al., 2020] investigated multiple imputation techniques for missing data in health

data networks; [Smith et al., 2017] characterized bias in networks empirically, where

values are designed to be missing systematically; [Gile and Handcock, 2017] used a

likelihood-based modeling approach for health studies with partially observed data;

[Almquist and Butts, 2018] proposed estimation methods for network logistic regression

models in the presence of missing data. But there are no graphical causal methods

that address entangled missingness, defined as missingness with dependence.

Briefly, let us consider a few example settings that involve both data dependence

and missingness. First, consider a study of vaccine effectiveness in which one unit’s

vaccination status may help to protect their friends or family members from contracting

an infectious disease and some records end up missing due to unknown clerical errors

at the hospital. Or, consider instead, a mass public health surveillance effort, where

demographic and family data are collected on a large population of individuals from

which a smaller group is invited to participate in substudy where more detailed data

are collected; an individual’s choice to enroll in the substudy may depend both on

their own characteristics and on the characteristics of, or choices made by, other

individuals in their social network. And finally, consider a course evaluation survey

answered by students. Answers to survey questions in this case would certainly be

unobserved for any individual who did not attend or who dropped out before the end

of the course. However, because classes have social and collaborative components,

the underlying values of responses of a particular individual, had they attended, will

potentially differ depending on the attendance of that individual’s peers. As we will

illustrate, these different examples describe different types of entanglements and must

be treated accordingly to reduce bias.
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4.1.1 Contributions

This work represents the first graphical causal method to study systems that exhibit

both data dependence and missingness. First, we define a hierarchy of entanglements

that can arise in systems. Target law dependence occurs when the full data distribution

exhibits either statistical or causal dependence. Missingness process dependence occurs

when the missingness indicator of one unit may depend on (variables of) other units.

Missingness interference occurs when the underlying variables of interest in a missing

data problem may be indexed by the missingness indicators of multiple units. For this

last setting, we propose modeling multiple versions of underlying variables in a way

that is structurally similar to counterfactual variables or potential outcomes in causal

inference. We show that existing missing data models may be extended to describe

entanglements arising from target law dependence and missingness process dependence,

while those arising from missingness interference require a novel framework. We present

sound and complete non-parametric identification results under this framework. Finally,

we demonstrate the use of this novel modeling approach on synthetic data.

4.2 Background

We have already outlined the main concepts required, including graphical causal

models of DAGs and ADMGs (Section 2.2 and Section 2.4), interference (Section 2.5)

and missing data models for i.i.d data (Section 2.6) in Chapter 2. Notation will remain

consistent with that developed in earlier chapters.

4.3 Motivating Example

Consider the following example, where investigators are interested in evaluating

outcomes of a health and wellness program that involves a diet and workout regimen

of participants, based on their baseline health indicators. Participation in the study is

through voluntary registration. Bob and Anne are neighbors, and see the advertisement
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for enrollment. Imagine two different scenarios: (1) Both Bob and Anne feel strongly

about the program and enroll together. Since they participate together, they are able

to easily motivate each other and adhere to their regimen. As a result, Anne records

a successful outcome, improved metabolism and better BMI. Alternatively, (2) Bob

enrolls and his baseline variables are collected but he does not actually participate.

Anne goes through the program alone but finds it challenging to follow effectively,

and her results are not as good. Bob’s final outcome (BMI) is not measured as he

does not participate. But Anne has two possible hypothetical program results under

the two different scenarios: one where Bob participates, and the other where he does

not. To put it another way, the observed results for Anne depend on the missingness

status of Bob’s results in the study. Similar arguments might be made for Bob.

Formally, for Anne (the unit indexed by 1), the outcome BMI has two possible values:

Y
(rY1 =1,rY2 =0)

1 for when Bob does not participate and his BMI is, hence, not recorded

(rY2 = 0) and Y (rY1 =1,rY2 =1)
1 for when Bob’s BMI is recorded (rY2 = 1). For the purposes

of this example, we make two simplifications here. One, we assume that the only

missing variable for any unit is the outcome, and hence denote rY1 by r1 and rY2

by r2; this assumption will be relaxed in the more general case (see Section 4.4.2.1).

Second, we drop r1 from the superscript and denote the counterfactuals as Y (1,r2=0)
1

and Y (1,r2=1)
1 . This latter simplification can be done without ambiguity because Anne’s

outcomes are defined only when r1 = 1. Anne’s missingness status R1 and observable

BMI Y1 are recorded in the study data. This observed outcome is not just a function

of her counterfactuals Y (1,r2=0)
1 , Y (1,r2=1)

1 and her missingess status R1, but also the

missingness status of Bob’s outcome, R2. One can think of R2 as a switch, selecting

which counterfactual, Y (1,r2=0)
1 or Y (1,r2=1)

1 , is realized in the observation. By symmetry

in this particular example, we assume the same is true for Bob. Thus, we have the

following relationships between observed values Y1, Y2 of neighbors Bob and Anne and
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the corresponding counterfactuals:

Y1 ←
{︄

(1− r2)Y (1,r2=0)
1 + r2Y

(1,r2=1)
1 if r1 = 1

? if r1 = 0

Y2 ←
{︄

(1− r1)Y (1,r1=0)
2 + r1Y

(1,r1=1)
2 if r2 = 1

? if r2 = 0

Since this setting involves multiple counterfactual versions of Y1, it cannot be captured

by existing (i.i.d.) missing data models described in Section 2.6, which are restricted

to counterfactuals of the form Y
(r1=1)

1 or Y (1)
1 for short, one per (each variable of

a) unit. This example represents a special type of entanglement called missingness

interference, and represents a gap in current modeling approaches. We will discuss it

in more detail in Section 4.4.2.

4.4 Graphical Models for Entangled Missingness

We discuss three types of entanglements by which missing data and data dependence,

can occur together. The following definitions pertain to the distribution p(R,O,Z(1),Z)

with all hidden variables H, if any, marginalized out 1.

1. Target Law Dependence (E1): Counterfactuals Z(1)
i and Z(1)

j of units i, j in a

block depend on each other. This means the target law p(O,Z(1)) does not

factorize into unit-specific marginal distributions. Such a situation arises in

problems where the underlying distribution, had there been no missing data,

exhibits data dependence or interference.

2. Missingness Process Dependence (E2): Missingness indicators Ri for unit i

depend on variables corresponding to unit j, and thus the missingness process

p(R | O,Z(1)) does not factorize into unit-specific factors.
1This distinction is necessary since in the presence of hidden variables, the same underlying data

generating process might appear to be coming from different types of entanglements in the two
different laws p(R,O,Z(1),Z,H), pertaining to the hidden variable DAG and p(R,O,Z(1),Z), the
latent projection ADMG. To remain consistent, we define entanglements on the latter.
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3. Missingness Interference (E3): Observed variables Zi for unit i depend on

missingness indicators Rj for unit j.2 Under E3, the counterfactual variable

corresponding to the variable Zi must be indexed not only by RZi
being set to

1, but also by the missingness status of (variables of) other units. For instance

the counterfactual Z
(RZi

=1,RZj
=0)

i would correspond to variable Z of unit i, had

it been observed (RZi
= 1) and had variable Z of unit j been missing.

In Section 4.4.1, we describe illustrative examples and corresponding graphs for entan-

glements without missingness interference; these settings can be described adequately

with a simple reinterpretation of existing missing data models and graphs for i.i.d.

settings. In Section 4.4.2, we describe scenarios with missingness interference, ex-

tend the new notation we briefly introduced in Section 4.3 and present graphical

representations for such settings.

4.4.1 Entanglements Without Missingness Interference

Scenario 1: Consider studying the effect of drug A on disease status Y from a

community hospital database. Assume hospital records are incomplete and missingness

indicators RAi
, RYi

denote whether the treatment and disease status values were

recorded for patient i, with counterfactuals Y (1)
i , A

(1)
i denoting the true (but possibly

unrecorded) values of these variables. Baseline covariates, denoted by Ci for unit i, are

always observed and include age and alcohol consumption. In this example, Z ≡ {A, Y }

and O ≡ {C}. For simplicity of presentation, we will work with dyads.

In order to provide a contrast between settings with i.i.d. missing data models and

those with entanglement, we first start with a scenario which involves no kind of

entanglement (E1̄E2̄E3̄) within this setup and build the examples further to illustrate

how entanglements might arise. Within each example, we also point out the hierarchy of
2This can be interpreted as an extension of classical interference, where one unit’s treatment

affects another unit’s outcome, except that the treatment has been replaced by the missingness
indicator. Hence the name missingness interference.
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Figure 4.1. Four scenarios representing all possible ways target law dependence and
missingness process dependence may arise in a dyadic partial interference setting without
missingness interference arising.

MCAR, MAR and MNAR mechanisms as this will be of use in reconciling identification

results presented in Section 4.5.

Scenario 1.1 (E1̄E2̄E3̄). When the disease being investigated is not contagious, and

the missingness process, pertaining to non-response, deficiencies in data collection,

and so on, does not exhibit dependence across patients, we might be able to assume

that a patient’s record does not influence the record of any other patient, i.e., data is

i.i.d.

The graph in Fig. 4.1(a) depicts this situation. Including different set of edges in

Fig. 4.1(a) yields either MCAR where RA, RY ⊥⊥ A(1), Y (1),C (if only solid edges are

included), MAR where RA, RY ⊥⊥ A(1), Y (1) | C (if in addition to the solid lines, blue
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dashed edges are also included) 3, or MNAR (if at least one brown dashed edge is

included). Edges A→ RA and Y → RY are called self-censoring or self-masking edges

[Brown, 1990, Mohan et al., 2018, Nabi et al., 2020].

Scenario 1.2 (E1E2̄E3̄). Suppose the outcome Y is an infectious disease, like Covid-

19. Since patients can infect one another, data on patients residing in the same

household or geographic area are likely to exhibit dependence in outcomes. In addition,

surging infections may lead to treatment shortages, which will lead to dependence

among treatments due to allocational interference [Ogburn and VanderWeele, 2014];

geographically localized treatment shortages occurred at several points early in the

Covid-19 pandemic. Finally, successful prevention or treatment of an infectious

outcome for unit i may influence outcomes for other units j by preventing potential

transmission from i to j. Missingness mechanisms remain independent across units,

however.

Fig. 4.1(b) depicts this setting. Bidirected arrows encode dependence (due to shared

hidden causes) between A
(1)
1 and A

(1)
2 and between Y

(1)
1 and Y

(1)
2 , respectively. For

simplicity of visualization, we omit connections among baseline variables C1,C2 and

other variables in other units.

The edge subgraph of Fig. 4.1(b) consisting only of solid edges corresponds to a

MCAR model, since R ⊥⊥ Y(1),A(1),C by the m-separation criterion [Richardson,

2003]. Similarly, the edge subgraph of Fig. 4.1(b) consisting of all edges other than

dashed brown corresponds to a MAR model, since R ⊥⊥ Y(1),A(1) | C. Finally,

including dashed brown edges in the MAR model yields an MNAR model.

Scenario 1.3 (E1̄E2E3̄). Assume that we are again dealing with a non-contagious

disease, and that treatment allocation for one unit is not influenced by any features
3Note that the MAR version is identical to that in Fig. 2.5(d) as all of Scenario 1.1 pertains to

i.i.d. settings.
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of other units. However, the missingness process for one unit does depend on other

units. For example, data includes members of a family who may jointly decide to

change healthcare providers, resulting in missing treatment and outcome data for all

members of the family.

Fig. 4.1(c) depicts this setting, and the light blue edges between the counterfactuals

A
(1)
1 , Y

(1)
1 and missingness indicators RA2 , RY2 , as well as Y

(1)
2 , Y

(1)
2 and RA1 , RY1

represent missingness process dependence. Edges from C2 to variables of unit 1, and

from C1 to variables of unit 2 are omitted for simplicity.

An MCAR version of this scenario simply reduces to scenario E1̄E2̄E3̄, representing

i.i.d. data. An example of a MAR mechanism in this scenario corresponds to the

absence of light solid blue edges in Fig. 4.1(c) and instead having edges C1 → RA2 ,

C1 → RY2 , C2 → RA1 and C2 → RY1 (not shown).

Scenario 1.4 (E1E2E3̄). This scenario simply combines complications in scenarios 1.2

and 1.3, such that both target law dependence and missingness process dependence

are present. The edges can be interpreted exactly as before, with scenarios 1.2 and

1.3. Specifically, the light blue solid edges between counterfactuals and missingness

indicators make the missingness process dependence MNAR. Instead, if the dependence

was on observed covariates, the mechanism would be MAR. Dashed edges, both brown

and blue operate within a unit and simply induce dependence that is MNAR or MAR,

respectively.

Finally, we note that the graphs in Fig. 4.1 can be extended in a straightforward

fashion to a network where blocks are not just dyads, but are of arbitary size m, to

illustrate the different types of entanglement discussed here. Identification results

corresponding to the settings described until now are discussed in Section 4.5.1.
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Figure 4.2. Four scenarios representing all possible ways target law dependence and
missingness process dependence may arise in a dyadic partial interference setting when
missingness interference is present. We assume that only outcomes Yi are missing, and Ri

is shorthand for RYi
.

4.4.2 Entanglements With Missingness Interference

In some situations where missingness and data dependence occur together, like the

example of Bob and Anne in Section 4.3, observed realizations of underlying variables

are influenced by missingness indicators of multiple units, leading to a missing data

analogue of interference problems in causal inference. As aforementioned, this type of

situation cannot be captured by missing data models described so far, nor described

by the graphs in Fig. 4.1. Instead, we use the notation developed in Section 4.3.

We call, for every unit i, the set of units whose missingness indicators index the

counterfactuals of unit i, as affectors of i, or aff(i), in the network, inspired by the use

of the word in neuroscience [Ebeling and Feistel, 2011]. This relationship need not be
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symmetric, and one unit can be the affector of another, without the reverse being true.

With these considerations in mind, we now describe the four scenarios that arise when

missingness interference may occur, extending the example of Anne and Bob.

Scenario 2.1 (E1̄E2̄E3). First, consider a setting where there is neither target law

dependence, nor missingness process dependence, but only missingness interference.

Let us assume that diets and exercise regimens are recommended to participants,

based solely on their measured baseline covariates. As an approximation, we assume

that a person’s BMI is affected only by their actions, and hence the target laws are

not directly influenced by each other. As described, Anne is more likely to workout

if her friend Bob does (Rj → Yi), affecting her BMI. We assume that Y (1,rj=0)
i and

Y
(1,rj=1)
i are associated for any unit i via a hidden common cause Hi, resulting in a

bidirected (↔) edge between the counterfactuals in the latent projection graphs. See

Fig. 4.2(a). Brown edges are self-censoring edges.

Scenario 2.2 (E1E2̄E3). Now, assume instead that Bob and Anne are siblings. One

might imagine that the effect of diet and exercise on a human being are mediated by

their genetics, which siblings share, giving rise to target law dependence. Additionally,

assume that those conducting the study randomize who gets to participate, from those

who register (and hence, whether someone is included in the study is independent of

their sibling). This can give rise to a structure as shown in Fig. 4.2(b). Adherence

to prescribed regimens is dependent on a person’s sibling being included in the

study, giving rise to two underlying counterfactual BMIs for each unit. Here too, the

dependence between counterfactuals is assumed to be due to a shared common cause

H, resulting in target law dependence being represented by bidirected edges.

Scenario 2.3 (E1̄E2E3). Assume Bob and Anne are not genetically related. Further,

assume that knowledge of Bob’s potential BMI if he enrolled in the study (or not)

makes Anne more likely to enroll herself, and the investigators include everyone who
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registers, without randomly selecting a subset of the entries, giving rise to missingness

process dependence. This would result in a graph like in Fig. 4.2(c).

The blue edge Y (1,r1=1)
2 → R1 introduces a more general type of self-censoring, which

we call affector-censoring. This corresponds to the situation where a counterfactual

variable of a unit (which is indexed by its affector’s missingness status) censors that

very same missingness status.

Scenario 2.4 (E1E2E3). Finally assume a situation where Bob and Anne share

genetics and also enroll based on their knowledge of how fit the other person is likely

to become as part of the study, combining all three possible types of entanglements in

one setup. This scenario is illustrated via the graph in Fig. 4.2(d).

4.4.2.1 Beyond Dyads

Interactions in many realistic settings are not restricted to dyads and hence we

describe counterfactuals (and graphs) for networks with missingness interference.

For simplicity of presentation, we will restrict ourselves to cases where, whenever

j ∈ aff(i), if the edge RZj
→ Zi exists, then RZ′

j
→ Zi for all Zj, Z ′

j ∈ Zj. That

is, whenever j ∈ aff(i), we are able to use a single missingness indicator Rj which

determines whether Zj is missing, instead of individual variables RZj
in the index of

counterfactuals corresponding to unit i. And that, within a unit, the edge RZi
→ Z ′

i

is absent, for distinct Z,Z ′. This simply allows us to replace RZi
= 1 by 1, in the

index of counterfactuals of unit i. To understand the implications of removing these

restrictions, see the note at the end of this section.

We assume a network of n individuals. The full data is formed by i.i.d. realiza-

tions of the full law p({Oi, Z̃i,RZi ,Hi : i = 1, . . . ,n}), where Z̃i ≡ {Z
(1,raff(i))
i :

raff(i) a value of Raff(i)} represents counterfactual versions of variables Zi for unit i, the

set aff(i) refers to the units that are affectors of unit i, and Raff(i) ≡ {RZj
: j ∈ aff(i)}

where RZj
refers to the set of all missingness indicators RZj

for all variables Zj ∈ Zj
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Figure 4.3. A simple example of a general network with n units undergoing missingness
interference. This graph represents an MCAR model, R ⊥⊥ O,Z(1,raff(i))

i

of unit j. In other words, variables Z(1,raff(i))
i ∈ Z̃i, for every value raff(i), reads “the

value assumed by variables Zi, had they been observed, and had observability status

of the affectors of i in the network been set to raff(i).”

As a generalization of (2.6), every observed proxy Zi ∈ Zi is defined as:

Zi ≡
{︄
Z

(1,raff(i))
i if RZi

= 1 and Raff(i) = raff(i)
? if RZi

= 0 and Raff(i) = raff(i)
, (4.1)

where raff(i) is interpreted to mean interventions that set Raff(i) to their naturally

occurring values. Just as in causal interference, all counterfactuals corresponding to

one variable Zi are dependent on each other in general.

Next, we discuss graphs for these networks. The full data distribution can be rep-

resented by a DAG, which contains a vertex for every Z
(1,raff(i))
i , as well as every

element in ⋃︁ni=1 Oi ∪Zi ∪RZi
∪Hi. We also assume that the set of all counterfactuals

of one variable Zi of unit i share a common parent HZi
∈ Hi, since they are all

associated. This DAG obeys two restrictions, which generalize restrictions discussed

in Section 2.6: (i) variables in R cannot point to variables in ⋃︁n
i=1 Oi ∪ {Z

(1,raff(i))
i },
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Figure 4.4. A general network with d units featuring missingness interference. (a) - (d)
enumerate all possible ways target law dependence and missingness process dependence
may arise, as a generalization of the dyad in Fig. 4.2.

and (ii) every element Zi in Z has all its corresponding counterfactuals and RZi
as

parents. Restriction (ii) is a consequence of the consistency property in (4.1).

A latent projection ADMG, obtained by projecting out fully hidden variables ⋃︁ni=1 Hi

from this DAG, will be our preferred choice of graphical representation, just as in

Fig. 4.1 and Fig. 4.2. A simple example of such an ADMG for general networks is

shown in Fig. 4.3, where each unit i has only one missing variable Zi. Dependence

among counterfactuals Z(1,raff(i))
i is represented by bidirected edges, obtained by latent

projecting Hi out. In this example, every unit is an affector of every other unit.

When the incoming and outgoing edges of vertices Z(1,raff(i))
i and Z(1,r′

aff(i))
i are identical

for all r, r′ in the graph, we can make the graphical representation even more compact

by introducing the vertex Z̃i corresponding to the set Z̃i in place of all its elements
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Z
(1,raff(i))
i , for all i. Such graphs, which we will denote by G̃, are shown in Fig. 4.4. In par-

ticular, the graph composed of solid edges in Fig. 4.4 (a) is a condensed representation

of the graph in Fig. 4.3, and any vertex Z̃i (shown in a dashed black box) compactly

represents the full set of vertices Z(1,raff(i)=0,··· ,0)
i , Z

(1,raff(i)=1,··· ,0)
i , · · · and Z

(1,raff(i)=1,··· ,1)
i ,

all connected by bidirected edges. In G̃, we interpret the edge V → Z̃i, for any node

V , to mean that V influences all the counterfactuals Z(1,raff(i))
i in Z̃i. Similarly V ← Z̃i

is interpreted to mean that all counterfactuals Z(1,raff(i))
i in Z̃i, influence V .

Further, it is helpful to view G̃ in Fig. 4.4 (a) as the generalized version of Fig. 4.2

(a), where there is no target law dependence or missingness process dependence but

only missingness interference. The graph can encode MCAR (only solid edges), MAR

(with blue dotted edges) and MNAR (with brown dashed edges) processes, just as

before. Graphs in Fig. 4.4 (b)-(d) are generalized versions of graphs in Fig. 4.2 (b)-(d).

Graphs G̃ are useful for illustrative purposes as they are compact, but as we show in

Section 4.5.2, identification is more straightforward in models where counterfactuals

do not share identical edges. Hence, we will use graphs G, like those in Fig. 4.3 (and

not G̃ in Fig. 4.4), in the remainder of the paper.

We have looked at examples where all potentially missing variables of a unit are either

all observed or all missing, meaning only a single missingness indicator per unit is

needed. In general, this may not be true. This gives rise to two different complications:

(i) there could be edges from RZj
to Z ′

i for some units i, j and variables Z,Z ′ ∈ Z, and

(ii) edges edges from a missingness indicator of a unit to another variable in that same

unit (e.g. RZi
→ Z ′

i) might be present. If (i) occurs, we cannot index counterfactuals

simply by the missingness indicators of other units as we had done before, but of

specific variables of those units. To be consistent with our prior definition, we call a

unit the affector of another if any missingness indicator of the first unit indexes the

counterfactual of the latter unit. If (ii) occurs, the missingness interference is within the
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unit, and not across units, making the data i.i.d. in the absence of other interactions.

In both of these cases, the graphical structure and mathematical framework remain

the same as what we have discussed so far. What changes is the interpretation of

relationships between units and their recorded variables.

4.5 Identification Results

Having set up the notation and graphical framework for entangled missingness, we

next discuss identification in these models.

4.5.1 Without Missingness Interference

We recognized in Sec. 4.4.1 that the (graphical) models in the absence of missingness

interference are essentially identical to existing i.i.d. models for missing data, with the

only difference arising from how we view the smallest unit of investigation - whether

it is one individual or a set of individuals interacting within a block.

The parameter of interest in a missing data model is generally of the form β =

E[h(Z(1),O)] for some known function h of Z(1), but identification results will be for

the full law p(Z(1),O,R). If this full law is nonparametrically identified from the

observed data then so is any functional of it.

A sound and complete algorithm for full law identification in i.i.d. missing data DAG

models with fully observed variables has been proposed in [Nabi et al., 2020].4 The

authors also provide full law identification in missing data models with hidden variables

in the same work. For both types of graphs, DAGs and ADMGs, their identification

criterion relies on the notion of the Markov blanket [Pearl, 1988, Richardson et al.,

2017]: in an ADMG G, the Markov blanket of a vertex V , denoted by mbG(V ), consists

of all variables sharing an edge with V or with a collider path to V ; a collider path is
4A sound and complete algorithm corresponds to necessary and sufficient identification assump-

tions.
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path where all vertices on the path are colliders of the form → o←,↔ o←,↔ o↔.

In a DAG, which is an ADMG with no bidirected edges, the Markov blanket reduces

to the set of variables with an edge in common with V , and variables that share a child

with V . We provide a brief description of their results in Theorem 1 and Theorem 2

below, as they apply directly to entangled missingness settings without missingness

interference.

Theorem 1. [Full law identification in DAGs [Nabi et al., 2020]]

In a missing data model, represented by DAG G, the full law p(R,Z(1),O) is identified

if and only if Z(1) ̸∈ mbG(RZ),∀Z(1) ∈ Z(1). Thus, for the full law to be identified, no

edge of the form Z(1) → RZ can be present (no self-censoring) and no structure of

the form Z(1) → RZ ← RZ can be present (no colluders). The identifying functional

is given by Eq. 2.9, where the missingness mechanism p(R | Z(1),O) is given by an

odds ratio parameterization [Chen, 2007]:

1
σ(Z(1),O) ×

K∏︂
k=1

p(Rk | R−k = 1,Z(1),O)×
K∏︂
k=2

OR(Rk, R≺k | R≻k = 1,Z(1),O),

(4.2)
where R−k = R \Rk, R≺k = {R1, · · · , Rk−1}, R≻k = {Rk+1, · · · , RK},

OR(Rk, R≺k | R≻k = 1,Z(1),O)

= p(Rk | R≻k = 1, R≺k,Z(1),O)
p(Rk = 1 | R≻k = 1, R≺k,Z(1),O) ×

p(Rk = 1 | R−k = 1,Z(1),O)
p(Rk | R−k = 1,Z(1),O) ,

and σ(Z(1),O) = ∑︁
r{
∏︁K
k=1 p(rk|R−k = 1,Z(1),O)×∏︁K

k=2 OR(rk, r≺k|R≻k = 1,Z(1),O)}

is the normalizing function.

Consider the i.i.d. graph in Fig. 2.5(d). The odds ratio parameterization of the

score p(RA, RY |C, A(1), Y (1)) is identical to its regular DAG parameterization since

p(RA|RY = 1,C, A(1), Y (1)) = p(RA|C), p(RY |RA = 1,C, A(1), Y (1)) = p(RY |C), and

OR(RA, RY |Y (1), A(1),C) = ∑︁
RY ,RA

p(RA|C) × p(RY |C) = 1, and the normalizing

term is one. Self-censoring edges A(1) → RA and Y (1) → RY prevent identification of

the full law in Fig. 4.1 (a).
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The following theorem summarizes the full law identification results in [Nabi et al.,

2020] for ADMGs obtained as latent projections of hidden variable missing data

DAGs.

Theorem 2. [Full law identification in ADMGs [Nabi et al., 2020]]

In a missing data model represented by a hidden variable DAG G(R,Z(1),O,H) and

its latent projection ADMG G(R,Z(1),O) , the full law p(R,Z(1),O) is identified if

and only if Z(1) ̸∈ mbG(RZ),∀Z(1) ∈ Z(1). Thus, for the full law to be identified, no

pair (Z(1), RZ) should be connected directly (a.k.a. no self-censoring) or through a

collider path (a.k.a. no colluding paths). Moreover, the identification of the missingness

mechanism is given by the odds ratio parameterization, as stated in Theorem 1.

None of the graphs in Fig. 4.1 have a colluding path. However, as examples, if the

path A
(1)
1 → RY1 ← RA1 or the path A

(1)
1 ↔ A

(1)
2 ↔ RA1 were to exist in any of the

graphs, then the full law would not be identified.

Settings with entanglements but no missingness interference are amenable to these

(existing) identification results, but valid identification requires careful consideration

of the dependence engendered by the entanglements, and whether they introduce

self-censoring or colluding paths in the corresponding graph.

4.5.2 With Missingness Interference

In settings with missingness interference, the joint distribution over all counterfactuals,

i.e. the full law, involves counterfactual variables from multiple worlds, like Y (1,r2=0)
1

and Y (1,r2=1)
1 in the case of Anne in Section 4.4.2. This implies that the full law is not

identified without very strong assumptions5. Instead, we will consider identification of

single-world objects.
5See discussion on rank preservation [Hernan and Robins, 2020] for an example of a type of strong

assumption relating counterfactuals across worlds.
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Single-world objects in general missing data networks are denoted by h(Z̃; r), where

Z̃ ≡ {Z̃i : i ∈ {1, 2 · · ·n}} is the set of all counterfactuals. Single-world objects

are composed of counterfactuals {Z(1,raff(i))
i : i ∈ {1, 2, · · ·n} and R = r such that

ri = 1 for any i in this set}. For example, in a 3-unit network, where raff(1) = (r2, r3),

raff(2) = (r1, r3) and raff(3) = (r1, r2), we might choose r = (r1, r2, r3) = (1, 0, 1). Then,

p(Z(1,r2=0,r3=1)
1 , Z

(1,r1=1,r2=0)
3 ) is a valid single-world object. No valid single-world

object can include Z(1,raff(2))
2 as r2 = 0, and Z(1,raff(2))

2 are not consistent with r for any

raff(2).

The first identification result we outline shows that, analogues of MCAR and MAR

models when missingness interference is present, yield non-parametric identification

for any single-world object h(Z̃; r).

Theorem 3. In a missing data ADMG G with missingness interference, valid single-world

objects h(Z̃; r) consisting of a set of counterfactuals Z′ ≡ ⋃︁i{Z
(1,raff(i))
i }, i ∈ {1, · · · , n}

are identified when either of these two conditions is satisfied: (1) R′ ⊥⊥ O, Z̃ (MCAR),

or (2) R′ ⊥⊥ Z̃|O (MAR), where R′ refers to the set of all missingness indicators R

that index counterfactuals in h(Z̃; r). The object h(Z̃; r) is a function of p(Z′,R,O),

and the identifying functional is given by:

p(Z′,R,O) = p(Z′,O)× p(R|O,Z′) = p(Z′,R = r,O)
p(R = r | O) × p(R | O) (4.3)

where propensity scores are obtained by simple m-separation or (d-separation) rules

on ADMG (or DAG) factorization.

Proof: See Appendix for proof. □

If the missing data model corresponds to MNAR, single-world objects are not al-

ways identified. But a special single-world object called the full-observability law,

P (Z̃(r=1)
,R), where Z̃(r=1) ≡ {Z(1,raff(i)=1)

i : i ∈ {1,2, · · ·n}} is the set of all counter-

factuals where missingness status is set to full observability (i.e, missingness pattern is
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1), can in fact be identified under certain assumptions, as we will soon show. The full

observability law might be thought of as a close analogue to the full law in i.i.d settings.

It corresponds to the distribution p(Y (1,r2=1)
1 , Y

(1,r1=1)
2 , R1, R2) in our example with

Anne and Bob. We outline our assumptions and definitions before presenting our

result for identifying the full observability law in models for entangled missingness

corresponding to MNAR.

Let the set of all counterfactuals corresponding to patterns with at least one zero be

denoted by Z̃(r̸=1) = Z̃ \ Z̃(r=1).

Assumption 4. In a missing data ADMG G with missingness interference, chG(Z̃(r̸=1))∩

R = ∅. Here, the definition chG(V ) applies disjunctively to a set V, i.e., chG(V) =⋃︁
V ∈V chG(V ).

In other words, the only type of counterfactual that can be a parent of any Ri ∈ R

has the form Z
(1,raff(j)=1)
j , for not necessarily distinct i, j.

We also define the following new entities to be used in our results:

1. e-colluding path: The pair (Z(1,raff(i)=1)
i , Rk) have an (extended- or) e-colluding

path if Z(1,raff(i)=1)
i and Rk are connected through at least one colliding path6

that does not go through an observed proxy, and Rk ∈ Raff(i)

2. e-colluder : Z(1,raff(i)=1)
i → Rj ← Rk, where Rj /∈ Raff(k) and Rk ∈ Raff(i)

3. e-self-censoring or affector-censoring: Z(1,raff(i)=1)
i → Rj ← Rk where Rk ∈ Raff(i)

Theorem 4. In a missing data ADMG G with missingness interference, under Assump-

tion 4, the full-observability law P (Z̃(r=1)
,R) is identified if and only if there is no

e-colluding path. Further, if G is a missing data DAG, the full-observability law is

identified if and only if there is no e-colluder and no e-self-censoring. The identifying
6A path between vertices Vi and Vj is a colliding path if every vertex Vk in the path is a collider,

i.e., bears ones of these forms: (1) → Vk ← , (2) ↔ Vk ↔, (3) → Vk ↔, (4) ↔ Vk ←
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functional is given by

p(Z̃(r=1)
,R) = p(Z̃(r=1))× p(R | Z̃(r=1))⏞ ⏟⏟ ⏞

g(p(R,Z))

= p(Z̃(r=1)
,R = 1)

p(R = 1 | Z̃(r=1))⏞ ⏟⏟ ⏞
g(p(R,Z))|R=1

× p(R | Z̃(r=1))⏞ ⏟⏟ ⏞
g(p(R,Z))

.

(4.4)

and missingness mechanism p(R | Z̃(r=1)) is identified using the OR parameterization

given below:

p(R|Z̃(r=1)) = 1
σ
×

K∏︂
k=1

p(Rk|R−k = 1, Z̃(r=1))×
K∏︂
k=2

OR(Rk, R≺k|R≻k = 1, Z̃(r=1))

where notation and OR is consistent with Section 4.5.1.

Proof: The proof extends the proof for sound and complete identification of the

missing data full law in ADMGs in the absence of colluding paths in [Nabi et al.,

2020]. Proof is in the Appendix. □

We illustrate Theorem 4 using two different examples, one where the full observability

law is identified, and one where the graphical criterion is violated, and hence the law

is not identified.

In the example in Fig. 4.5(a), there are no e-colluding paths. So, by Theorem 4, the

full observability law P (Z(1,r2=2)
1 , Z

(1,r1=1)
2 , Z

(1)
3 , R1.R2, R3) should be identified, and it

is indeed identified as shown:

P (Z(1,r2=1)
1 , Z

(1,r1=1)
2 , Z

(1)
3 , R1, R2, R3)

= p(Z(1,r2=1)
1 , Z

(1,r1=1)
2 , Z

(1)
3 , R1 = 1, R2 = 1, R3 = 1)

p(R1 = 1, R2 = 1, R3 = 1|Z(1,r2=1)
1 , Z

(1,r1=1)
2 , Z

(1)
3 )

× p(R1|Z(1)
3 )× p(R2|Z(1)

3 )× p(R3|Z(1,r2=1)
1 , Z

(1,r2=1)
2 )

= p(Z(1,r2=1)
1 , Z

(1,r1=1)
2 , Z

(1)
3 , R1 = 1, R2 = 1, R3 = 1)

p(R1 = 1, R2 = 1, R3 = 1|Z(1,r2=1)
1 , Z

(1,r1=1)
2 , Z

(1)
3 )

× p(R1|Z3, R3 = 1)× p(R2|Z3, R3 = 1)× p(R3|Z1, Z2, R1 = 1, R2 = 1),

since R1 ⊥⊥ R3 | Z(1)
3 , R2 ⊥⊥ R3 | Z(1)

3 , R3 ⊥⊥ R1, R2 | Z(1,r2=1)
1 , Z

(1,r1=1)
2 , and rules of

consistency allow us to replace counterfactuals by their observed proxies.
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Figure 4.5. Two illustrations of Theorem 4. ADMG in (a) does not have a e-colluding
path. ADMG in (b) features the e-colluding path Z(1,r1=1)

2 → R3 ← R1

The full observability law is however not identified in Fig. 4.5(b) because of the colluding

path Z(1,r1=1)
2 → R3 ← R1. We can try to understand why, using the following intuition

- for identification, the missingness mechanism p(R| pa(R)) should be identified for

all levels of R. Writing the missingness mechanism as p(R1)p(R2)p(R3|R1, Z
(1,r1=1)
2 ),

we realize that we cannot identify the last term unless we are able to set both R1 and

R2 to the value 1, and by consistency, replace the counterfactual Z(1,r1=1)
2 by observed

proxy Z2. Doing so in the joint would mean that we cannot identify this quantity for

levels of R that set R1 or R2 to 0.

The rigorous argument for non-identification involves counting the parameters required

to characterize the full observability law against the observed law in a binary model,

and showing that the observed law has fewer parameters and hence it is not possible

to uniquely map back to the full observability law. A detailed account of parameter

counting in examples with e-colluding paths has been deferred to the Appendix,

under the completeness section of the proof of Theorem 4, as knowledge of the

Möbius parameterization of the nested Markov model for binary variable ADMGs is

required to follow the procedure for parameter counting, which is also discussed in

the Appendix.
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4.6 Experiments

We generate synthetic data and attempt to recover the ground truth in entangled

missingness settings where the targets we are interested in, are identified. In particular,

we reserve our interest to the cases where missingness interference (E3) is present, as

results for settings where missingness interference is absent have been discussed in

literature before [Nabi et al., 2020].

Data was simulated based on the graph in Fig. 4.6. There are three units in the

network, and units 1 and 2 are neighbors. When the graph consists only the solid

edges, we have an MCAR scenario, and including the dashed blue edges (C1 → R1,

C1 → R2, C2 → R1, C2 → R2, C3 → R3), we get a MAR scenario and finally with all

the edges (adding Z(1)
3 → R2, Z

(1)
3 → R1), we get an MNAR case.

Parameters associated with the generative model are as follows: P (C1), P (C2), P (C3),

all chosen to be univariate normal distributions, counterfactuals Z(1,r2=0)
1 ,Z(1,r2=1)

1 ,

Z
(1,r1=0)
3 , Z(1,r1=1)

3 and Z
(1)
3 are drawn from a multivariate normal distribution. The

means of the multivariate normal distribution are given by linear functions of the

corresponding parents C in the graph, and covariance matrix has no zero entries;

this ensures that all the counterfactuals are associated with each other. Missingness

indicators Ri are generated according to the scenario, using a binomial distribution

where the binomial probability is chosen completely at random (MCAR) or is a logistic

sigmoid of a linear function of the parents of Ri (MAR, MNAR). Observed proxies

Zi are a deterministic function of the counterfactuals and missingness indicators, as

given by the consistency assumption.

We are interested in identifying the following functionals: E[Z(1,r2=0)
1 ], E[Z(1,r2=1)

1 ],

E[Z(1,r1=0)
2 ], E[Z(1,r1=1)

2 ], under MCAR, MAR and MNAR conditions. In the given

graph, since there are no e-colluders, we should be able to identify the full observability
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Figure 4.6. The model used to generate synthetic data for our experiments.

law (or its marginals) even in the MNAR case7. We use an estimating equation of

the form E[ I(R=1)
π(C,Z̃)h(Z̃)] where π(C, Z̃) is the inverse weight function composed of

propensity scores and h(.) is the functional we are interested in. The estimator uses

regression models for the weights, and expectations are done empirically.

A total of 50000 samples were generated from the network, and estimation was done

over a bootstrap of 50 samples. The results from these experiments are shown in

Fig. 4.7. We compare the bias of an estimate against the ground truth (which we

have from model parameters), in two different scenarios - when we adjust for the

network structure and the entanglement appropriately, and one where we do not,

for MCAR, MAR and MNAR. In MCAR, the bias would be the same for the two

different approaches since we can treat the complete rows in the dataset as an unbiased,

representative dataset. However, for MAR and MNAR situations, estimates based on

complete rows without adjustment would be biased, as shown in the figure. Estimates

obtained after adjustment are labeled with an asterisk (∗) in the x-axis.

4.7 Conclusions

In this work, we developed a comprehensive hierarchy of entangled missingness to

understand settings with dependent data and missingness, using the language of causal

graphical models. We recognized that the (conventional) full law distribution in the
7In this particular example, E[Z(1,r2=0)

1 ] and E[Z(1,r1=0)
2 ] are also identified by simple graph

factorization and m-separation
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Figure 4.7. Bias recorded in bootstrapped estimates of targets (shown in x-axis), MAR
case (left) and MNAR (right). We compare our adjusted IPW estimates (denoted by an
asterisk (∗) on the x-axis) to the unadjusted estimate, which is obtained by ignoring the
network missingness structure underpinning the data. Error bars represent quantiles q0.05
and q0.95 across 50 boostrap samples.
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presence of missingness interference is in general not identified because of the presence

of cross-world counterfactuals. Hence, we developed sound and complete identification

results via a graphical criterion for the full observability law, a marginal of the full law.

We demonstrate, using synthetic experiments, that if we do not account for the right

kind of entanglement, estimates are biased. Exploring nonparametric identification

for other margins (including joints that have counterfactuals for when atleast one unit

is missing) is a promising area of future work.

71



Chapter 5

Generalized Coarsening

5.1 Introduction

Causal inference methods generally involve making inferences about a parameter in

a larger full data distribution on counterfactual random variables from a smaller

observed data distribution, as we noted right in the beginning, in Section 1. Typically,

the latter is obtained from the former by a combination of marginalization (applied

to unobserved variables), and coarsening (which relates observed and counterfactual

variables). However, many causal systems are not well-described via a coarsened

relationship between the full and the observed data distribution. Instead, we might

have a more generalized form of coarsening in them. In particular, these systems might

be composed of “macrostates” consisting of measurable variables on which data is

available, and “microstates” with dynamics operating at a finer temporal granularity,

that lead to observables in macrostates. This is similar to descriptions in statistical

physics literature, of microstates involving particle motion leading to observables such

as pressure or temperature [Touchette, 2015]. Such a description can also be used

to model processes such as viral infection dynamics where microstates correspond

to individual disease status that evolves according to transmission dynamics, and

macrostates correspond to population-level disease incidence and contagion levels

measured by metrics such as r0, the average number of infections an infected person is
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expected to cause among susceptible individuals [Ridenhour et al., 2014, Coburn et al.,

2009]. In this work, we will take the illustrative example of cellular differentiation and

reprogramming, where microscopic cellular processes are investigated using macroscopic

measurements involving RNA sequencing (see Section 5.3).

It is well known in the statistical physics literature[Reif, 1965] that in a system

described by a relationship of microstates and macrostates, information about the

former is not, in general, possible to obtain using data on the latter. This is simply

due to the fact that many possible configurations of microstates can lead to the same

observable macrostate. In statistical terms, microstate parameters are not identified

from data on macrostates. We shall use the language of graphical causal models to

pose the problem of inferring causal microstate parameters from data on macrostates

as a causal identification problem, and show that under some conditions, interesting

microstate information may be obtained from macrostate data.

5.1.1 Contributions

In this work, we define the punctuated causal model (PCM) that links causal processes

corresponding to microstates with observables in macrostates, that are a result of

the microstates reaching equilibria via discrete time dynamics. While in general it is

not possible to reason about microstates, we show that under some assumptions, we

are able to reason about (and identify) microstate counterfactuals from the data on

macrostates alone, generalizing the g-formula [Pearl, 2009] in fully observed causal

models. We discuss maximum likelihood and semi-parametric estimation for identified

parameters, and illustrate our proposed framework with experiments on synthetic

data as well as data from cellular reprogramming experiments.

The author would like to note that they share credit for this work with collaborator

Numair Sani, who will present some of the results (not discussed in detail here) in his

own dissertation. This will include expounding on identification results and proofs,
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PCMs for hidden variable settings, as well as a recursive formulation for estimation

functionals.

5.2 Background

We will use temporal causal models for discrete time systems, described in Section 2.3,

as the foundation for developing the punctuated causal model. We include a few

additional details that are relevant to the discussion in this chapter, below.

A causal CDBN allows interventions on any subset of variables in the model. But, in

this work we restrict ourselves to interventions on the same set of variables in each

time point. That is, given A ⊆ V, we denote A1, . . . ,AT as copies of A indexed by

time, and Āt = (A1, . . . ,At) for any t = 1, . . . , T . We define V̄t and Ȳt similarly for

Vt and Yt = Vt \At, respectively, for any t = 1, . . . , T . The resulting counterfactual

distribution p(ȲT(āT)|W) factorizes into a product of counterfactual distributions

associated with the causal model corresponding to G1 representing the hypothetical

outcomes at the first time point, and a set of “unrolled” causal models corresponding

to G+1, representing hypothetical outcomes at all subsequent time points. Specifically,

we have the following factorization:

p(ȲT(āT)|W) = p(Y1(ā1)|W)
T−1∏︂
t=1

p(Yt+1(āt+1)|Yt(āt) ∪W),

with this (unrolled) counterfactual distribution identified by the appropriate general-

ization of the g-formula.

5.3 Motivating Example: Cellular Differentiation

To ground our discussion, we will use the illustrative example of cellular differentiation.

Biological cells undergo differentiation, a process in which undeveloped cells multiply

and transform into highly specialized cells that perform functions in multicellular

organisms [Alvarado and Yamanaka, 2014]. It involves changes in cell size, shape,
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Figure 5.1. Reprogramming requires a reversal (above) of a differentiated cell into a
pluripotent stem cell (i.e. iPS), which next may undergo a differentiation process (below)
into another differentiated cell.

membrane potential, metabolic activity, and responsiveness to signals, which are

largely driven by controlled modifications in gene expression. Conversely, modern

epigenetics allows scientists to manipulate and reverse the differentiation process

[Cieślar-Pobuda et al., 2017]. By using forced gene expression, highly differentiated

and specialized somatic cells (e.g. fibroblasts) can be reprogrammed into induced

pluripotent stem cells (iPSCs) which resemble embryonic cells, which can then become

any kind of specialized cell. These processes are widely used in therapeutics for disease

modeling, regenerative medicine, and drug discovery. Fig. 5.1 shows the processes

of differentiation and reprogramming, and is reproduced from [Cieślar-Pobuda et al.,

2017].

Reprogramming is a stochastic, heterogeneous process, with substantial variation

in the speed and path that cells take to convert to their ultimate state, commonly

referred to as cell “fate” [Schiebinger et al., 2019], at equilibrium. 1 The efficiency of

the process depends on the starting cell population, the bio-chemical environment of

the cells and other factors that scientists are still studying today [Francesconi et al.,

2019, Schiebinger et al., 2019]. Many questions about cellular differentiation remain
1We use equilibrium as in statistical mechanics, when the observable macrostate of a system is

time-invariant [Reif, 1965].
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unresolved. Do cells convert via homogenous or heterogenous pathways? Do all cells

convert with the same speed? What are the determinants of variation in the speed

and path of conversion?

Mechanisms of cellular differentiation are often studied by experiments, where somatic

cells (from model animals) are subjected to an array of transcription factors (Oct4,

Sox2, c-Myc, and Klf4) in vitro, which have been shown to induce cell conversion,

over many days [Takahashi and Yamanaka, 2006]. These factors might be added

according to specific protocols to study the effect of such manipulations on cell

conversion. Macroscopic cell states are measured using gene expression data, collected

at intervals of hours or days. However, relevant cellular processes leading to these

observed macrostates occur at much faster timescales, due to microscopic intracellular

interactions. Further, differentiation and reprogramming are documented to involve

“milestone” events along the way to ultimate cell fates, each of which might be

approximated as an equilibrium attained by the system, locally in time.2 Thus,

data from such cellular differentiation experiments can be naturally understood as

being composed of milestone measurements from macrostates after interventions

on microstate cellular processes have been performed [MacArthur and Lemischka,

2013].

Modelled in this way, questions about cellular differentiation can be investigated

using tools from causal inference, provided a causal model is formulated that can

link microstate parameters, representing cellular responses to transcription factors

introduced via an intervention, with macrostate measurements, representing recorded

and observed data. Associative temporal graphical models, including Markov chain

models have been used extensively to study cellular differentiation [Yates et al., 2017,
2It is approximate as the system does not attain total time-invariance, and does undergo further

cellular differentiation. But, we believe this approximation can be justified due to the relative
timescales of the observed macrostates against those of intracellular processes, and is useful in
modeling system evolution.
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Hu et al., 2011]. Our model is explicitly causal, allowing us to take advantage of

available experimental data by considering responses to hypothetical interventions, and

thus allowing useful hypotheses to be generated for subsequent experimentation.

5.4 Punctuated Causal Models

To presage what is to come, note that we will build our punctuated causal model

(PCM) using building blocks called equilibrium causal processes (ECPs), each of which

represents a process that runs to equilibrium with a set of observable macrostate

variables, and causally influences downstream ECPs only via these variables. In

particular, we use a causal DAG to represent causal connections among observable

macrostate variables. But these connections do not necessarily correspond to parent-

child relationships arising from structural equation mechanisms, as in a typical causal

model. Instead, they are mediated by discrete time dynamics of microstates that reach

an equilibrium within an ECP, resulting in observable macrostate variables. Microstate

dynamics of an ECP may potentially be influenced by macrostate variables that occur

prior to that ECP. We call our model punctuated because the causal connections

involve multiple equilibria proceeding in “fits and starts,” by analogy with the concept

of punctuated equilibrium in evolutionary biology [Gould and Gould, 2009]. First, we

define all these entities associated with a general PCM in a mathematically rigorous

fashion, followed by a discussion on the corresponding counterfactuals of interest in a

causal analysis of such systems. Then, in Section 5.4.1, we discuss a special case of

equilibrium dynamics that yields identification.

We describe discrete time microstate dynamics by means of a special type of causal

Bayesian network: the equilibrium causal process (ECP).

Definition 1 (equilibrium causal process (ECP)). An equilibrium causal process is a

causal CDBN associated with CDAGs G+1(V+1,V1 ∪W) and G1(V1,W) such that
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for any A ⊆ V and any value w of W, the distribution p(YT (āT)|W = w) with

probabilities p(YT (āT) = y|W = w) defined as

∑︂
y1(ā1),y2(ā2),...yT−1(āT−1)

p(y1(a1)|w)×
(︄
T−1∏︂
t=1

p(yt+1(āt+1)|yt(āt) ∪w)
)︄

converges to a unique equilibrium distribution p(Y(a)|W = w) as T → ∞. Here

the set of random variables Y(a) is interpreted to mean the set of outcomes Y at

equilibrium, had the intervention A = a taken place at every time point.

In words, an ECP is a causal CDBN such that every possible intervention (including

the empty intervention) leads to a unique intervention-specific equilibrium distribu-

tion.

Definition 2 (Microstate And Macrostate Variables). A microstate variable is a random

variable indexed by time t, generated according to the structural equations associated

with the CDAGs G+1(V+1,V1∪W) and G1(V1,W). A macrostate variable is a random

variable distributed according to the equilibrium distribution of its corresponding

microstate variables.

To define a punctuated causal model (PCM), fix a set of macrostate variables V, a

partition V = {V1, . . . ,VK} of V, and a DAG G(V) representing causal connections

among macrostates {V1, . . . ,VK}. These connections will be mediated by dynamics

represented by ECPs, modeled by CDAGs Gk+1(Vk
+1,Vk

1 ∪Wk), Gk1 (Vk
1,Wk) for every

k = 1, . . . , K, where each Wk is ⋃︁Vj∈paG(V)(Vk) Vj. In other words, Wk represents

dependence of Vk on a subset of prior macrostate variables, as encoded by G(V).

Definition 3 (punctuated causal model (PCM)). A punctuated causal model (PCM)

associated with G(V) and {Gk+1(Vk
+1,Vk

1∪Wk),Gk1 (Vk
1,Wk) : k = 1, . . . , K} associates

an ECP with each pair of graphs Gk+1(Vk
+1,Vk

1 ∪Wk), Gk1 (Vk
1,Wk). In other words,

macrostate variables in Vk represent variables in the corresponding ECP reaching

equilibrium.
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V 1,1

V 1,2

V 2,1

V 2,2

V 3,1

V 3,2

(a) G(V)

V 1,1
t=1

V 1,2
t=1

V 1,1
t=2

V 1,2
t=2

· · ·

· · ·

V 1,1

V 1,2

(b)

A = a

V 1,1
t=1(a)

V 1,2
t=1(a)

V 1,1
t=2(a)

V 1,2
t=2(a)

· · ·

· · ·

V 1,1(a)

V 1,2(a)

(c)

Figure 5.2. (a) A simple PCM with four ECPs (grey dashed blocks), including one trivial
ECP for treatment A, and three observable macrostates (milestones) of cell differentiation.
(b) Unrolled ECP, which corresponds to the first milestone (endogenous Oct4 expression)
in the PCM in (a). The ECP contains microstate variables that unroll to infinite time.
The grey dashed edge from (a) to (b) is not part of the causal diagram, and is used only
to indicate that (b) is an unrolled version of an ECP component of PCM in (a). (c)
Microstate counterfactuals that result from an intervention A = a: V 1,1

t=1(a) is neural cell
identity at time point t = 1 had the transcription factor been set to a in the (sub)process
when endogenous Oct4 expression is being attained.

We also allow a special “trivial” case where modeling temporal dynamics on a set of

macrostate variables Vk is not necessary, in which case the ECP may be replaced by

an ordinary (conditional) causal model associated with a CDAG Gk(Vk,Wk).

We illustrate these definitions by an example shown in Fig. 5.2, which represents

an idealized experiment where cellular reprogramming is affected by externally ma-

nipulating gene expression using transcription factors. Prior work in [Schiebinger

et al., 2019] shows that three significant milestones are observed in reprogramming:

(1) endogenous Oct4 expression marked by emergence of Oct4-EGFP+ cells, (2) initial

signs of pluripotency via expression of marker genes such as Nanog, Zfp42, Dppa4
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and Esrrb, (3) conversion to final iPSC fate, in that order. The treatment variable

A in Fig. 5.2 corresponds to a set of transcription factors, representing one of a

set of alternative experimental conditions, and (trivially) the first macrostate. The

cellular response to this treatment, recorded using gene-expression profiles, is repre-

sented by three macrostates, shown as three blocks of variables: V1 ≡ {V 1,1, V 1,2},

V2 ≡ {V 2,1, V 2,2} and V3 ≡ {V 3,1, V 3,2}. These blocks pertain to the three observed

reprogramming milestones in temporal order. We assume that variable pairs V j,i,

j ∈ {1, 2} are a simplified two-variable representation of cell-identity (e.g. neural-

identity and pluripotent-identity), derived from gene-expression profiles. Cell-identity

is a common concept used in computational biology to represent how similar a given

cell is to a certain type of cell using correlational measures on gene-expression. In our

example, we assume that in all three blocks V i,1 represents neural identity, and V i,2,

pluripotent for i ∈ 1, 2, 3.

As shown in Fig. 5.2, there are four macrostates: A representing the transcription

factors, and V1, V2, V3, representing reprogramming milestones. Microstate variables

V 1,1
t=1, V 1,1

t=2, · · · represent the neural identity of a measured cell over (infinite) time

in the first ECP corresponding to the first milestone (endogenous Oct4 expression),

and microstate variables V 1,2
t=1, V 1,2

t=2, · · · represent pluripotent identity during the

same process and timepoints. The experiment involves two more such ECPs that

follow in succession, giving rise to the PCM shown. Macrostates are causally affected

by temporally prior macrostates, as well as the treatment variable A. These causal

connections among macrostates and the treatment are shown by the DAG G(V) in

Fig. 5.2(a), and are mediated by ECPs, with the ECP corresponding to the first

macrostate displayed in its unrolled state. The precise graph topology of this unrolled

ECP is, in turn, determined by its constituent CDAGs (see Fig. 5.2(b)). Note

that macrostate variables V 1,1 and V 2,1 are obtained after the ECP converges to an

equilibrium.

80



The behavior of the PCM, given that no interventions are performed, yields the

observed data distribution where all macrostate variables V in the PCM are obtained

after each ECP, left in its natural state, reaches equilibrium. The following lemma

gives the factorization of the observed data distribution associated with a PCM into

the equilibrium distributions of its component ECPs, conditioned on the values of the

mediating ECPs.

Lemma 4. For a value assignment v to V, the observed data distribution associated

with a PCM is:

p(V = v) =
K∏︂
k=1

p(vk | wk), (5.1)

where wk and vk are values of Wk and Vk consistent with v.

This resembles the factorization of the observed data distribution associated with a

DAG, but the difference is that, here, each factor represents the equilibrium distribution

of an ECP. For example, we can factorize the observed data distribution for the PCM

in Fig. 5.2 according to this lemma as:

p(A = a, V 1,1 = v1,1, V 1,2 = v1,2, V 2,1 = v2,1, V 2,2 = v2,2, V 3,1 = v3,1, V 3
2 = v3,2)

= p(A = a)p(V 1,1 = v1,1, V 2,1 = v2,1 | A = a)

× p(V 2,1 = v2,1, V 2,2 = v2,2 | V 1,1 = v1,1, V 2,1 = v2,1, A = a)

× p(V 3,1 = v3,1, V 3,2 = v3,2 | V 2,1 = v2,1, V 2,2 = v2,2, A = a)

Next, we define counterfactual quantities associated with interventions on PCMs.

Definition 4 (Macrostate Counterfactual Distributions). Fix a set of treatment variables

A ⊆ V, and let Y = V \A. We assume that an intervention on A is an operation

that sets the values of the corresponding microstate variables at every time point of

every relevant ECP to a. A macrostate counterfactual distribution corresponding to
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Y, had we intervened on the variables in A and set them to a, is defined as:

p(Y(a) = y) ≡
K∏︂
k=1

p(Yk(ak) = yk | wk), (5.2)

where Yk = Vk \A, ak are a subset of a pertaining to Vk ∩A, yk,wk are values

of Yk,Wk consistent with y and a, and p(Yk(ak) = yk | wk) is the equilibrium

distribution obtained from the kth ECP, corresponding to Gk+1(Vk
+1,Vk ∪Wk) and

Gk1 (Vk,Wk).

In Fig. 5.2, the macrostate counterfactual distribution when A = {V 1,1} is set to

value v1,1 can be factorized as

p(A = a, V 1,2(v1,1) = v1,2, V 2,1(v1,1) = v2,1, V 2,2(v1,1) = v2,2, V 3,1(v1,1) = v3,1, V 3,2(v1,1) = v3,2)

= p(A = a)p(V 1,2(v1,1) = v1,2 | A = a)

× p(V 2,1(v1,1) = v2,1, V 2,2(v1,1) = v2,2 | V 1,2(v1,1) = v1,2, A = a)

× p(V 3,1(v1,1) = v3,1, V 3,2(v1,1) = v3,2 | V 2,1(v1,1) = v2,1, V 2,2(v1,1) = v2,2, A = a)

Each factor in this factorization, except the first factor corresponding to A, is obtained

after the corresponding ECP reaches equilibrium given the corresponding intervention.

Next, we define microstate counterfactuals.

Definition 5 (Microstate Counterfactuals). Fix a set of treatment variables A ⊆ V, and

fix a subset Y ⊆ V\A of outcome variables, which can be partitioned into block-specific

subsets Yk ≡ Vk ∩Y. Fix a set of finite horizon time points T k for each non-empty

Yk, with the microstate outcomes of interest being Yk
Tk ≡ {Y k,i

t=Tk : Y k,i ∈ Yk}. Then

a microstate counterfactual corresponds to the result of intervening on A, where A is

set to the same value at every time point.

In order for the microstate counterfactual distribution for each Yk
Tk to be well-defined,

we assume that for every Yk, {Vj : Yj ⊆ Y\Yk}∩anG(V)(Vk) = ∅, i.e., the microstate

behavior of a variable that determines any macrostate variable causally relevant for

82



Yk is rendered irrelevant. In other words, for every variable in our model, we are either

interested in its microstate or macrostate behavior, but never both at once. A valid set

of microstate counterfactuals could be V 1,1
t=2(a) and V 1,2

t=2(a), with k = 1, Tk = 2,A = A,

if A were set to a. Before we can define the microstate counterfactual distribution, we

must first define the macrostate context.

Definition 6 (Macrostate Context). The macrostate context CY is equal to anG(V)({Vk :

Yk ̸= ∅}) \ ⋃︁k{Vk : Yk ̸= ∅}.

In words, the macrostate context is all variables whose macrostate behavior is

needed to determine the microstate values of each element in Yk
Tk at the corre-

sponding time horizon T k. The macrostate context in Fig. 5.2 for Y ≡ {V 2,1, V 2,2} is

{{A}, {V 1,1, V 2,1}}.

Definition 7 (Microstate Counterfactual Distribution). For an intervention that sets A

to the same value at every time point, the distribution over microstate counterfactuals

p({Yk
Tk(a) : Yk ≠ ∅}) is known as the microstate counterfactual distribution. The

microstate counterfactual distribution decomposes into a product of distributions

corresponding to ECPs in CY and any Vk if Yk ̸= ∅ as:

p({Yk
Tk(a) : Yk ̸= ∅}) ≡

∑︂
CY(a)

∏︂
Vk∈CY

p(Yk(ak) = yk | wk)

×
∏︂

Vk:Yk ̸=∅

⎡⎢⎣ ∑︂
yk

1(āk
1),yk

2(āk
2),...yk

T−1(āk
T−1)

p(yk1(ak1)|wk) ·
⎛⎝Tk−1∏︂

t=1
p(ykt+1(āk

t+1)|yk
t (āk

t ) ∪wk)
⎞⎠
⎤⎥⎦ .

(5.3)

As an illustration, the microstate counterfactual distribution for the condition A = {A}

is set to value a, k = 1, Tk = 2,Yk = {V 1,1, V 1,2} is given by

p(A = a, V 1,1
t=1(a) = v1,1

t=1, V
1,2
t=1(a) = v1,2

t=1, V
1,1
t=2(a) = v1,1

t=2, V
1,2
t=2(a) = v1,2

t=2)

= 1× p(V 1,1
t=1(a) = v1,1

t=1)× p(V 1,2
t=1(a) = v1,2

t=1 | V
1,1
t=1(a) = v11

t=1)

× p(V 1,1
t=2(a) = v1,1

t=2 | V
1,1
t=1(a) = v1,1

t=1), V 1,2
t=1(a) = v1,2

t=1)
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× p(V 1,2
t=2(a) = v1,2

t=2 | V
1,1
t=1(a) = v1,1

t=1), V 1,2
t=1(a) = v1,2

t=1, V
1,1
t=2(a) = v1,1

t=2)

In standard causal inference or missing data problems, identification aims to recover

the target parameter of the full data distribution from the observed data distribution,

where the latter is obtained by a coarsening process from the former, generally using

some form of the consistency assumption [Hernan and Robins, 2020, Splawa-Neyman

et al., 1990]. Indeed, had the observed data distribution consisted of conditional

distributions in the conditional causal model of each ECP, identification of the pre-

equilibrium and equilibrium counterfactual distributions in (5.2) and (5.3) would be

easily obtained by the standard application of the g-formula.

However, we are interested in settings where data on microstate dynamics of the

constituent ECPs is not available directly, and only summarized via the macrostate

distribution in (5.1). In other words, the identification problem involving PCMs that

we consider is as follows: the target parameters are functionals of (5.2) and (5.3),

while the observed data distribution corresponds to (5.1).

5.4.1 Identification in Special Cases

We discuss in [Sani* et al., 2022] that, while microstate and macrostate counterfactuals

are not identified from observed data on macrostates in general, identification may be

obtained under additional structural assumptions on the model. We have four main

results, pertaining to identification of macrostate and microstate counterfactuals in

ECPs and corresponding PCMs respectively, under these assumptions. We merely state

these identification results here in order to discuss estimation of identified parameters,

later in Section 5.5. For a detailed account of identification and proofs of Theorems

5-8, please refer to [Sani* et al., 2022] 3.

Definition 8 (Gibbs Compatible ECP). An ECP associated with CDAGs G1(V1 ∪W)
3Co-author Numair Sani will also discuss these results in detail in his dissertation.

84



and G+1(V+1,V1 ∪W) is said to be Gibbs compatible if it satisfies the following:

∀i p(Vi
+1 | paG+1(Vi

+1)) = p(Vi | SVi)

where Vi is the macrostate variable corresponding to Vi
+1, and SVi is the set of

macrostate variables corresponding to paG+1(Vi
+1).

In Fig. 5.2 , for the ECP given by V1 = {V 1,1, V 1,2},W1 = {A} to be Gibbs compatible,

the following conditions must hold:

p(V 1,1
t+1, V

1,2
t+1 | V

1,1
t , V 1,2

t , A) = p(V 1,1
t+1 | V

1,2
t , A)p(V 1,2

t+1 | V
1,1
t+1, A)

p(V 1,1
t+1 | V

1,2
t , A) = p(V 1,1 | V 1,2, A)

p(V 1,2
t+1 | V

1,1
t+1, A) = p(V 1,2 | V 1,1, A)

Given a Gibbs compatible ECP, macrostate counterfactuals are identified from the

observed macrostate distribution p(V) by the following theorem:

Theorem 5. Fix A ⊆ V in a Gibbs compatible ECP represented by a pair of CDAGs

G1(V1 ∪ W) and G(V+1,V1 ∪ W). The macrostate counterfactual Y(a) where

Y := V \A is identified from the observed data distribution on macrostates p(V) as

p(Y(a) = y |W) = p(Yk = y | Ak = ak,W)

Since multiple microstates can correspond to the same observed macrostate, microstate

counterfactuals associated with a Gibbs compatible ECP are not identified from the

observed macrostate distribution alone. But, if p(V1 | paG1(V1)) is known, the

following result holds:

Theorem 6. Fix A ⊆ V in a Gibbs compatible ECP represented by a pair of CDAGs

G1(V1 ∪W) and G(V+1,V1 ∪W). The microstate counterfactual for Y = V \A at

time T is identified as

p(YT(a) = y |W) =
∑︂

y1,y2,...yT −1

p(y1| paG1(y1)) ·
(︄
T−1∏︂
t=1

p(yt+1| paG+1(yt+1))
)︄
|A=a
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from the observed data law p(V) on macrostates and the starting distribution p(V1 |

paG1(V1)), which is assumed to be known.

Identification of macrostate counterfactuals in a PCM is given by the following

theorem:

Theorem 7. Given a PCM associated with DAG G(V) and CDAGs {Gk+1(Vk
+1,Vk

1 ∪

Wk),Gk1 (Vk
1,Wk) : k = 1, . . . , K} corresponding to Gibbs compatible ECPs, fix a

treatment set A ⊆ V and let Y = V \ A. Then the macrostate counterfactual is

identified from the observed data law on macrostates p(V) as

p(Y(a) = y) =
K∏︂
k=1

p(Yk = yk |Wk \A = yWk\A, aA∩Vk

, aWk∩A)

The macrostate distribution of a PCM consisting of Gibbs compatible ECPs will obey

the Markov properties of an LWF chain graph since they share equilibrium-generating

Gibbs dynamics (see Section 2.7), and identification of macrostate counterfactuals

associated with such a PCM will be identical to the chain graph g-formula (2.10).

Microstate counterfactuals in PCMs are identified as stated below:

Theorem 8. Given a PCM associated with DAG G(V) and{Gk+1(Vk
+1,Vk

1∪Wk),Gk1 (Vk
1,Wk) :

k = 1, . . . , K}, fix a treatment set A ⊆ V and let Y ⊆ V \A. Given timepoints of

interest T k for each Yk, the microstate counterfactual {Y k
Tk(a) : Yk ̸= ∅} is identified

from the observed data distribution on macrostates p(V) and the starting microstate

distributions p(Vk
1 | paGk

1
(Vk

1)) as

p(CY(a), {Yk
Tk(a) : Yk ̸= ∅}) ≡

∏︂
Vk∈C

p(Vk | paG(Vk))

×
∏︂

Vk:Yk ̸=∅

⎡⎢⎣ ∑︂
yk

1 ,y
k
2 ,...y

k
T k−1

p(yk1| paGk
1
(yk1)) ·

⎛⎝Tk−1∏︂
t=1

p(ykt+1| paGk
+1

(ykt+1))
⎞⎠
⎤⎥⎦ | Ā = ā

For examples illustrating these theorems, please refer to [Sani* et al., 2022].
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In PCMs that are not obtained from Gibbs compatible ECPs, identification of counter-

factual distributions is challenging and we leave treatment of other types of equilibrium-

generating dynamics for future work.

5.5 Inference

We now discuss estimation of identified parameters in PCMs. But first, we provide some

preliminaries on statistical estimators. Readers who are acquainted with influence-

function based estimators may skip the background in Section 5.5.1 and go straight

to novel results in Section 5.5.2.

5.5.1 Statistical Estimators

Properties typically desired from statistical estimators are consistency, asymptotical

normality and
√
n-rates of estimation, since these give us guarantees on the correctness

of our estimator as well as quantification of uncertainty of our estimate [Bickel and

Doksum, 2015].

If a correct parametric likelihood can be assumed, the plug-in principle [Bickel and

Doksum, 2015] can be used to derive estimators. Conditional on the assumptions

being true, plug-in estimators are
√
n-consistent and and asymptotically normal. For

example, the average causal effect (ACE), E[Y (a)−Y (a′)], given outcome Y , treatment

A and observed covariates C, is identified from the observed data distribution p(Y,A,C)

under the assumption Y (a) ⊥⊥ A | C as:

ACE = E[E[Y | A = a, C]]− E[E[Y | A = a′, C]]

If we specify a parametric form for E[Y | A = a, C], written as µ(A,C; η), a plug-in

estimator can be obtained using the following: 1
n

∑︁n
i=1 µ(a, Ci; η̂)− µ(a′, Ci; η̂), where

η̂ is the maximum likelihood estimate of η.

However, we may not be able to correctly specify the likelihood of the model in
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practice. In such situations, we would like to make minimal assumptions on the model

while still obtaining estimators that are
√
n-consistent and asymptotically normal.

A class of regular and asymptotically linear estimators (RAL)[Tsiatis, 2006, Robins

et al., 1994b] provide us with a principled approach to do so.

Given a model indexed by an infinite dimensional parameter θ, a scalar parameter

of interest ψ can be viewed as a function of θ, i.e. as ψ(θ). An estimator ψ̂n of this

parameter, based on n i.i.d. samples of data Z ∼ p(Z; θ), is a RAL estimator if there

exists a function Uψ(Z), with zero mean and finite variance such that

√
n× (ψ̂n − ψ) = 1√

n
×

n∑︂
i=1

Uψ(Zi) + op(1)

Here op(1) is a term that converges to zero in probability as n goes to infinity, and

Uψ(Z) is called the influence function of the estimator [Tsiatis, 2006].

Influence functions provide estimators for ψ by defining estimating equations of the

form Pn[Uψ̂(Z)] = 0. The resulting estimator obtained by solving the estimating

equations will be consistent and asymptotically normal (CAN) with an asymptotical

variance equal to the variance of the influence function4, i.e.

√
n(ψ̂n − ψ) D−→ N (0, var(Uψ(Z)))

To obtain the influence function for a parameter ψ(θ), for a model indexed by infinite

dimensional parameter θ, we define the score vector for an observation Z ∼ p(Z; θ), as

Sθ(Z; θ0) = ∂ log p(Z;θ)
∂θ

⃓⃓⃓⃓
θ=θ0

. The influence function for ψ̂n, the estimator of parameter

ψ(θ), can be obtained using the integral equation:

∂ψ(θ)
∂θ

⃓⃓⃓⃓
θ=θ0

= E[Uψ(Z)Sθ(Z; θ0)]

Estimators based on influence functions often also have robustness properties, i.e.

certain nuisance5 functions can be misspecified while still obtaining a consistent
4We use D−→ to denote convergence in distribution.
5A nuisance parameter or function is an entity whose value we are not directly interested in, but

whose value determines or modifies the quantities we are interested in.
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Figure 5.3. The model that was used to generate data in the simulation study. (a) The
PCM (b) The expanded equilibrium process in the ECP involving Y 1,1 and Y 1,2

estimate for the target parameter. Additionally, influence functions allow for slower

than
√
n convergence rates for nuisance functions, allowing for the use of highly flexible

machine learning models to fit nuisance functions[Bickel et al., 1993, Chernozhukov

et al., 2018] while still obtaining desirable statistical guarantees.

5.5.2 Estimators for Specific Targets

We derive influence function based estimators for two microstate counterfactuals in

Fig. 5.3, namely β ≡ E[Y 1,2
t=1(a1, a2)] and ψ ≡ E[Y 1,1

t=2(a1, a2)]. In this example, we use

C, A and Y in place of V : nodes Y denote the outcome, A, the treatment and C,

the observed covariates. While we only provide influence functions (and associated

robustness properties) for two microstate counterfactuals here, influence functions

can be derived for any arbitrary microstate counterfactual that is identified, and a

recursive formulation is discussed in [Sani* et al., 2022].

5.5.2.1 Target β ≡ E[Y 1,2
t=1(a1, a2)]

Target β ≡ E[Y 1,2
t=1(a1, a2)] is identified from the observed data distribution as∑︁

Y 1,1,Y 1,2,C1,C2 E[Y 1,2 | Y 1,1, a1, a2, C1, C2]p(Y 1,1
t=1 | a1, a2, C1, C2)p(C1, C2). We give

the influence function and robustness properties of the estimator in Theorems 9 and

10 respectively. Proofs are deferred to Appendix IV.
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Theorem 9. The influence function for β is given as

Uβ(Z) = I(A1 = a1)I(A2 = a2)
p(Y 1,1, A1, A2 | C1, C2) p(Y

1,1
t=1 | A1, A2, C1, C2)×

{Y 1,2 − E[Y 1,2 | Y 1,1, A1, A2, C1, C2]}

+
∑︂
Y 1,1

E[Y 1,2 | Y 1,1, a1, a2, C1, C2] p(Y 1,1
t=1 | a1, a2, C1, C2)− β

Theorem 10. The estimator obtained by solving the influence function for β is doubly

robust as long as one of p(Y 1,1, A1, A2 | C1, C2) or E[Y 1,2 | Y 1,1, a1, a2, C1, C2] is

specified correctly.

5.5.2.2 Target ψ ≡ E[Y 1,1
t=2(a1, a2)]

We present the influence function for ψ, and its robustness properties, but these are

slightly different than those exhibited by U(β). We use the short-hand π ≡ p(Y 1,1
t=1 |

A1, A2, C1, C2) and ϕa1,a2(Y 1,1 | Y 1,2) ≡ E [Y 1,1 | Y 1,2, A1, A2, C1, C2].

Target ψ is identified from the observed data distribution as ∑︁Y 1,1,Y 1,2,C1,C2 E[Y 1,1 |

Y 1,2, a1, a2, C1, C2] p(Y 1,2 | Y 1,1, a1, a2, C1, C2) π p(C1, C2) and its corresponding influ-

ence function is given below.

Theorem 11. The influence function for ψ is given as

U(ψ) =

⎧⎨⎩∑︂
Y 1,1

I(A1 = a1)I(A2 = a2)πp(Y 1,2 | Y 1,1, A1, A2, C1, C2)
p(Y 1,2, A1, A2 | C1, C2)

⎫⎬⎭
×
{︂
Y 1,1 − E

[︂
Y 1,1 | Y1,2, A

1, A2, C1, C2
]︂}︂

+
{︄
I(A1 = a1)I(A2 = a2)π
p(Y 1,1, A1, A2 | C1, C2)

}︄
×
{︂
ϕa1,a2(Y 1,1 | Y 1,2)− E

[︂
ϕa1,a2(Y 1,1 | Y 1,2) | Y 1,1, A1, A2, C1, C2

]︂}︂
+

∑︂
Y 1,1,Y 1,2

E[Y 1,1 | Y 1,2, a1, a2, C1, C2]p(Y 1,2 | Y 1,1, a1, a2, C1, C2)π − ψ

Since the model has more nuisance parameters, it will exhibit different robustness

properties.
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Theorem 12. The influence function based estimator for ψ above exhibits 2 out of 4

robustness, where as long as the following pairs of models are specified correctly, we

obtain a consistent and unbiased estimator:

(︂
E[Y 1,1 | Y 1,2, a1, a2, C1, C2], p(Y 1,2 | Y 1,1, a1, a2, C1, C2)

)︂
(︂
p(Y 1,2, A1, A2 | C1, C2), p(Y 1,2 | Y 1,1, A1, A2, C1, C2)

)︂
(︂
p(Y 1,1, A1, A2 | C1, C2), E[Y 1,1 | Y 1,2, A1, A2, C1, C2]

)︂

All proofs and derivations are in Appendix IV.

5.6 Experiments

Next, we demonstrate the utility of our model through simulations (Section 5.6.1) and

a data application (Section 5.6.2) involving cellular reprogramming.

5.6.1 Simulation Study

Data is simulated according to the PCM in Fig. 5.3(a), an extension of the simplified

model of cell reprogramming in Fig. 5.2, but which allows for incremental complexity in

the form of covariates C1, C2, that can be thought of as macro-environmental factors.

Treatment variables A1 and A2 correspond to transcription factors; these variables

are assumed to be binary for simplicity. As before, Y 1,1 and Y 1,2 correspond to the

macrostate of an infinite ECP, and pertain to neural and pluripotent identity, and are

also binary. Additionally, we assume that the ECP is Gibbs compatible [Lauritzen

and Richardson, 2002], giving rise to the undirected edge Y 1,1 − Y 1,2 as interpreted in

[Lauritzen and Richardson, 2002]. While the experiment measures macrostate variables

Y 1,1 and Y 1,2, we are interested in how microstate variables Y 1,1
t=1, Y 1,2

t=1, Y 1,1
t=2 · · · respond

to interventions on A1 and A2 on average, i.e., counterfactuals E[Y 1,2
t=1(a1, a2)] and

E[Y 1,2
t=2(a1, a2)]. These quantities inform us “what the expected pluripotent or neural

identity would have been at the first and second timepoint, respectively (as measured
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Target Analytical Plug-in IF-based (q0.05, q0.95)
E[Y 1,2

t=1(a1, a2)] 0.619 0.618 0.624 (0.617, 0.630)
E[Y 1,1

t=2(a1, a2)] 0.370 0.371 0.372 (0.365, 0.378)

Table 5-I. Bootstrapped estimates of targets for a chosen intervention a1 = 0, a2 = 0

in a scale appropriate for the experiment), had the transcription factors been set to

a1, a2?”. We assume that the distribution π(Y 1,1
t=1) = p(Y 1,1

t=1 | A1, A2, C1, C2) is known

in order to identify these targets.

We use the following distributions to generate data: P (C1), P (C2), P (A1|C1), P (A2|C2)

are all Bernoulli with the parameter chosen from U [0, 1]; the joint distribution

P (Y 1,1, Y 1,2|A1, A2, C1, C2) is also set as a table of Bernoulli probabilities for all

levels of Y 1,1, Y 1,2, A1, A2, C1 and C2. Gibbs factors P (Y 1,1 = 1|A1, A2, C1, C2, Y 1,2)

and P (Y 2 = 1|A1, A2, C1, C2, Y 1) can be determined uniquely from the joint distri-

butions and starting distribution for π(Y 1,1
t=1) is also set to Bernoulli with a known

parameter. Gibbs sampling was done over 5000 initiations, for 2000 iterations. We

use the running mean, a popular convergence diagnostic metric, to determine that

equilibrium is always attained within the first 2000 iterations.

We estimate the targets E[Y 1,2
t=1(a1, a2)] and E[Y 1,1

t=2(a1, a2)] using two methods: (1)

plug-in using MLE estimates of the identification formulae in Theorem 8 and (2)

influence-function based estimator of the targets as given in Theorems 9 and 11, over

a boostrap of 1000 samples. And each of these targets is compared to the analytical

estimate obtained from the underlying generative model. Table 5-I records the results

for a particular intervention a1 = 0, a2 = 0. Variation across bootstrap trials is

documented in Fig. 5.4.

5.6.2 Cellular Reprogramming

We are interested in estimating the (counterfactual) trajectories of cells in reprogram-

ming, modeled using a PCM, similar to the one in Fig. 5.2. Our data, central to the
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Figure 5.4. Histograms showing how β̂ − β̂trial varies across bootstrap trials for targets
β̂ = E[Y 1,2

t=1(a1, a2)] on the left and E[Y 1,1
t=2(a1, a2)] on the right, for the intervention

a1 = a2 = 0.

work in [Schiebinger et al., 2019], is obtained from the NCBI Gene Expression Omnibus

(ID: GSE122662). It consists of single-cell RNA-sequencing data obtained from 251203

cells over 18 days. As part of our analysis, we assume that data is collected only when

the transcription factors are added and when the previously cited milestones, namely

(1) endogenous Oct4 expression marked by emergence of Oct4-EGFP+ cells, (2) initial

signs of pluripotency via expression of marker genes such as Nanog, Zfp42, Dppa24

and Esrrb, and (3) conversion to final iPSC fate, occur. These happen on Day 10, Day

12 and Day 18 of the culture, respectively. The reprogramming process initiates on

the day marked 8.5, when the transcription factors are added, which we will consider

as the starting point of the trajectory for our purposes. In the experiment, there are

two arms, one consisting of cells in medium 2i, and the other in serum; for details on

these media, please refer to [Schiebinger et al., 2019]. Investigators in [Schiebinger

et al., 2019] were interested in tracing the trajectory of these cell cultures over time;

see [Schiebinger et al., 2019] for more details about the data and experiments. In our

analysis, we will restrict our attention to mapping out the trajectory of the microstate

variables over time in either medium, as we describe below.

We assume that the dynamics of the cellular reprogramming process is captured well by

a PCM. In particular, just as described in Section 5.3 and Section 5.4, there are three
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Figure 5.5. Sample trajectories corresponding to 2 dimensions, namely MEF and epithelial
identities. The blue trajectory is derived the Gibbs compatible PCM, and the orange one
represents the trajectory from the original dataset, coarsely sampled every 12 hours.

ECPs that make up the reprogramming trajectory, each of them GIbbs compatible,

and there is a trivial block corresponding to the treatment that precedes them (see

Fig. 5.2). One notable difference between the figure and the data is that real data

from our experiment is high-dimensional and consists of 32 dimensions of cell-identity,

in constrast to the two dimensions shown in our simplified illustration. These 32

dimensions are obtained from gene-expression data using the dimensionality-reduction

method explained in [Schiebinger et al., 2019], an approach standard in computational

biology. Intuitively, each of these dimensions corresponds to a normalized correlation

obtained between the cell’s expression and a known gene-expression for a specific

kind of cell, like a neural cell, for example. Each of the 32 dimensions and their

interpretations are discussed in [Sani* et al., 2022].

Since the three ECPs are Gibbs compatible, we can use the starting distribution (which

we have from data) as well as the equilibrium distribution at each of the milestone

points to deduce the microstate trajectory. For each of the ECPs, we assume that the

Gibbs factors P (Y i|A,Y−i)6 are given by kernel ridge regressions. The goodness of fit

of these regressions is shown in the supplementary material of [Sani* et al., 2022]. The

Gibbs trajectories are generated using these regressions and the starting distribution,
6Y−i ≡ Y \ Y i where Y is the 32-dimensional cell-identity vector, and A is binary, corresponding

to the medium, serum or 2i.
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for each of the cells originally recorded in the data. The equilibrium was considered

to be attained when the difference in the running mean at a sample distance of 10

was under the threshold 0.005. The mean pre-equilibrium trajectory for the three

ECPs, across each of the dimensions was appended together, maintaining relative

temporal widths, for each medium. See Fig. 5.5 for some examples. For the rest of the

plots, please refer to Appendix IV. We infer from these plots that Gibbs compatible

PCMs capture the overall trend observed in the cellular reprogramming process, along

each of the cell identity dimensions. Some of the regressions and trajectories deviate

from the ground truth, which suggests that there might be room to explore other

conditional distributions and equilbrium dynamics.

Unlike in the example with synthetic data, we do not attempt to recover the microstate

counterfactuals at each timepoint since the data is extremely high-dimensional. The

identifying functional is algebraically intensive to derive, but is technically identified.

We reserve extensions to higher dimensions for future work.

5.7 Conclusions

We developed a framework to reason about interventions performed on stochastic

processes reaching equilibrium. We define microstate and macrostate counterfactuals,

and provide sound and complete identification algorithms for these. We also derived

flexible semiparametric estimators for the identified counterfactuals. Finally, we

demonstrate the utility of our model through experiments on synthetic data and

a data application involving cellular reprogramming. Exploring different types of

equilibrium generating dynamics, as well as extensions for high-dimensional data are

promising avenues for future work.
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Chapter 6

Conclusions and Future Work

In this dissertation, we introduced graphical causal models for settings with various

complications in data, including path dependence and entangled missingness. We also

extended causal modeling approaches to systems where observed data is not merely

a coarsened version of the full data distribution as in conventional causal inference

settings; instead the observed data is obtained as a consequence of equilibrium

generating dynamics and they occur at different timescales.

Within each of these studies, we motivated the need for these models with various

clinical and healthcare applications and explored various parts of the causal inference

pipeline, with a special emphasis on identification and in some cases, estimation. We

also pointed out that, while we have uncovered some new ideas and established novel

results, many unanswered theoretical questions remain in each of these topics. For

example, in hidden variable path dependent systems, inference strategies remain limited

to relatively simple model assumptions; efficient Monte Carlo sampling procedures,

based on the nested Markov model would be an interesting avenue to pursue. In

settings of entangled missingness, there is plenty to be explored, like valid targets of

interest that do not assume full observability, associated identification theories and

estimation procedures.
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The author of this dissertation has worked on a few other topics (not in this document)

during their graduate study, including applications of causal inference to electronic

health record (EHR) data, and recognizes that bridging the gap between theory and

practice in causal inference is what they would be most excited to pursue in the

future. The models developed here, while they have been used in specific datasets

like a surgery or cellular reprogramming, directly apply to various settings in the

clinic. For example, entangled missingness is ubiquitous in hospital settings, for

e.g. in allocational matters of hospital resources. Path dependence is crucial to how

a patient moves (and their condition improves or deteriorates) within the hospital

system. However, while causal inference has provided us with rich tools to model and

investigate EHR data, application of these methods to high-dimensional data, remains

tremendously challenging, due to several issues not limited to dataset sample sizes,

mixed data-types, coding errors, existing estimation strategies among others. There

appears to be growing recognition within clinical medicine that observational causal

inference tools can be valuable when RCTs cannot be conducted [Hoffman et al., 2022,

Lee et al., 2022] and the author would like to make the best of this opportunity to

improve patient care using causal inference methods in the years to come.
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Appendix I

Additional Background on Causal
Graphical Models

A. Graph Preliminaries
Let capital letters X denote random variables, and let lower case letters x values of X. Sets of random
variables are denoted V, and sets of values v. For a subset A ⊆ V, vA denotes the subset of values
in v of variables in A. Domains of X and X are denoted by XX and XX, respectively.

Standard genealogic relations on graphs are as follows: parents, children, descendants, siblings and
ancestors of X in a graph G are denoted by paG(X), chG(X), deG(X), siG(X), anG(X), respectively
[Lauritzen, 1996]. These relations are defined disjunctively for sets, e.g. paG(X) ≡

⋃︁
X∈X paG(X).

By convention, for any X, anG(X) ∩ deG(X) ∩ disG(X) = {X}.

We will also define the set of strict parents as follows: pas
G(X) = paG(X) \X. Given any vertex V in

an ADMG G, define the ordered Markov blanket of V as ombG(V ) ≡ (disG(V ) ∪ paG(disG(V ))) \ V .
Given a graph G with vertex set V, and S ⊆ V, define the induced subgraph GS to be a graph
containing the vertex set S and all edges in G among elements in S.

B. The Nested Markov Factorization
The nested Markov factorization has been explained succinctly in the main text of this dissertation.
Here, we provide further details and restate some of the results we have already discussed, in context
of new background provided below.

The nested Markov factorization of p(V|W) with respect to a CADMG G(V,W) links kernels,
mappings derived from p(V|W) and CADMGs derived from G(V,W) via a fixing operation.

Kernel: A kernel qV(V|W) is a mapping from values in W to normalized densities over V [Lau-
ritzen, 1996]. A conditional distribution is a familiar example of a kernel, in that

∑︁
v∈V qV(v|w) = 1.

Conditioning and marginalization are defined in kernels in the usual way: For A ⊆ V, qV(A|W) ≡∑︁
V\A qV(V|W) and qV(V \A|A ∪W)≡ qV(V|W)

qV(A|W) .

Fixability and the fixing operator: A variable V ∈ V in a CADMG G is fixable if deG(V ) ∩
desG(V ) = ∅. In other words, V is fixable if paths V ↔ ...↔ B and V → ...→ B do not both exist
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in G for any B ∈ V\{V }.

We define a fixing operator ϕV (G) for graphs, and a fixing operator ϕV (q;G) for kernels. Given a
CADMG G(V,W), with a fixable V ∈ V, ϕV (G(V,W)) yields a new CADMG G(V \ {V },W∪{V })
obtained from G(V,W) by moving V from V to W, and removing all edges with arrowheads into V .
Given a kernel qV(V|W), and a CADMG G(V,W), the operator ϕV (qV(V|W),G(V,W)) yields a
new kernel:

qV\{V }(V \ {V }|W ∪ {V }) ≡ qV(V|W)
qV(V | ombG(V ))

Fixing sequences: A sequence ⟨V1, . . . , Vk⟩ is said to be valid in G(V,W) if V1 fixable in G(V,W),
V2 is fixable in ϕV1(G(V,W)), and so on. If any two sequences σ1, σ2 for the same set S ⊆ V are
fixable in G, they lead to the same CADMG. The graph fixing operator can be extended to a set S:
ϕS(G). This operator is defined as applying the vertex fixing operation in any valid sequence σ for
set S.

Given a sequence σS, define η(σS) to be the first element in σS, and τ(σS) to be the subsequence of
σS containing all elements but the first. Given a sequence σS on elements in S valid in G(V,W),
the kernel fixing operator ϕσS(qV(V|W),G(V,W)) is defined to be equal to qV(V|W) if σS is the
empty sequence, and ϕτ(σS)(ϕη(σS)(qV(V|W);G(V,W)), ϕη(σS)(G(V,W))) otherwise.

Reachability: Given a CADMG G(V,W), a set R ⊆ V is called reachable if there exists a sequence
for V \R valid in G(V,W). In other words, if S is fixable in G, V \ S is reachable.

Intrinsic sets: A set R reachable in G(V,W) is intrinsic in G(V,W) if ϕV\R(G) contains a single
district, R itself. The set of intrinsic sets in a CADMG G is denoted by I(G).

Nested Markov factorization: A distribution p(V|W) is said to obey the nested Markov fac-
torization with respect to the CADMG G(V,W) if there exists a set of kernels of the form
{qS(S| paG(S)) : S ∈ I(G)}} such that for every valid sequence σR for a reachable set R in G,
we have:

ϕσR(p(V|W);G(V,W)) =
∏︂

D∈D(ϕR(G(V,W)))

qD(D| pas
G(D))

If a distribution obeys this factorization, then for any reachable R, any two valid sequences on R
applied to p(V|W) yield the same kernel qR(R|V\R). Hence, kernel fixing may be defined on sets, just
as graph fixing. In this case, for every D ∈ I(G), qD(D| pas

G(D)) ≡ ϕV\D(p(V|W);G(V,W)).

The district factorization or Tian factorization of p(V|W) results from the nested factorization:

p(V|W) =
∏︂

D∈D(G(V,W))

qD(D|pas
G(D))

=
∏︂

D∈D(G(V,W))

(︄ ∏︂
D∈D

p(D | pre≺(D))
)︄
,

where pre≺(D) is the set of predecessors of D according to a topological total ordering ≺. Each
factor

∏︁
D∈D p(D | pre≺(D)) is only a function of D ∪ paG(D) under the nested factorization.

An important result in [Richardson et al., 2017] states that if p(V ∪H|W) obeys the factorization
for a CDAG G(V ∪H,W), then p(V|W) obeys the nested factorization for the latent projection
CADMG G(V,W).
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Identification: Not every interventional distribution p(Y(a)) is identified in a hidden variable
causal model. However, every p(Y(a)|W) identified from p(V|W) can be expressed as a modified
nested factorization as follows:

p(Y(a)|W)

=
∑︂

Y∗\Y

∏︂
D∈D(GY∗ )

p(D| do(pas
G(D)))|A=a

=
∑︂

Y∗\Y

∏︂
D∈D(GY∗ )

ϕV\D(p(V|W);G(V,W))|A=a

where Y∗ ≡ anG(V(a),W)(Y) \ a. That is, p(Y(a)|W) is only identified if it can be expressed as a
factorization, where every piece corresponds to a kernel associated with a set intrinsic in G(V,W).
Moreover, no piece in this factorization contains elements of A as random variables.

C. kth Order Markov Temporal Causal Models
Causal DBNs may be generalized to kth-order Markov models, where variables in a particular time
step depend on variables in at most k prior states.

A kth-order Markov DBN consists of a single prior network G1, which is a DAG with vertices V1, a
set of k− 1 initial transition networks G2, . . . ,Gk, where each Gi is a CDAG with random vertices Vi

and fixed vertices
⋃︁i−1

j=1 V⃗ j , and a transition network Gt with random vertices Vt and fixed vertices⋃︁t−1
j=t−k V⃗ j . Each DAG and CDAG in a kth-order DBN is associated with a factorization of the

corresponding joint or conditional distribution. The “unrolled” factorization of the DBN makes
use of the prior distribution p1(V1) and initial transition network distributions pi(Vi|V1, . . . ,Vi−1)
for the first k − 1 steps, and then uses a repeated version of the transition network distribution
pt(Vt|Vt−k, . . . ,Vt−1):

∏︂
V ∈V1

p1(V | paG1(V ))
k−1∏︂
t̃=1

∏︂
V ∈Vt̃

pt̃(V | paGt̃
(V )) ·

T−1∏︂
t̃=k

∏︂
V ∈Vt

pt(V | paGt
(V )). (I.1)

The causal version of a kth-order Markov DBN is obtained in the natural way by endowing each
DAG and CDAG with structural equation model semantics, and obtaining standard identification
results, via the g-formula, and the ID algorithm in cases hidden variables are present.

The relaxation of the first-order Markov assumption in these models does not come without a cost:
additional transition networks must be specified, and all transition networks may potentially depend
on a larger set of variables, resulting in a more difficult statistical inference problem on model
parameters.
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Appendix II

Path Dependent Models:
Additional Material

A. k-th order Markov Temporal Causal Models
PDSEMs may also be relaxed to a kth-order Markov model, similar to DBNs (shown in Appendix I).
For example, given a model with 3 states, if we wish all transitions to depend on two rather than one
prior state, we would need to specify a prior network (with a corresponding causal model), a set of 3
single-step transition networks (corresponding to steps from the initial state to any of the 3 possible
states), and then finally a set of 9 transition networks, representing variables in one of three states
that depend on any two prior states (which may involve states repeating). Such a model would have
a separate transition network G⟨1,2,3⟩ for variables in state 3 at time t, where state 2 was visited at
time t− 1, and state 1 was visited at time t− 2, and a transition network G⟨2,1,3⟩ for variables in
state 3 at time t, where state 1 was visited at time t− 1, and state 2 was visited at time t− 2.

In general, a kth-order Markov PDSEM with S states will have a single prior network DAG
corresponding to the initial state, Si transition networks CDAGs that depend on i prior states (for
i = 1, . . . , k − 1), indexed by sequences of states visited (starting with the initial state and ending in
one of the states s ∈ S), and Sk+1 transition network CDAGs that depend on k prior states, indexed
by sequences of states visited, and ending in one of the states s ∈ S. Note that the initial transition
networks all assume that the starting state is the initial state, while the transition network does
not.

In addition, a kth-order Markov PDSEM makes the following assumption, that generalizes Assumption
2 in Chapter 3 of the main text:

Assumption 5. For every state sj , any CDAG G⟨...j...⟩ or DAG Gj that mentions variables in state
j will have corresponding random variables that share state spaces.

As was the case with DBNs, each DAG or CDAG in a PDSEM is associated with a causal model,
which induces an appropriate DAG or CDAG factorization and g-formula for identification of
interventional distributions. These, in turn, yield PDSEM factorizations that naturally generalize
those in Section 3.4.

Let Tk̃ be a set of all valid state transition sequences σk̃ of size k̃ = 1, . . . , k − 1 that start with the
initial state, and T be a set of all valid state transition sequences σk of size k. Further, let Vσ be
random variables in the final state in a state transition sequence σ, while Wσ be fixed variables in
states prior to the final state in σ. Finally, let I(σ) be the indicator that the current state is the final
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Figure II.1. A causal DBN encoding the PDSEM in Fig. 3.2, via (a) the prior network,
and (b) the complete transition network with context-specific independences.

state in σ, and the |σ| − 1 prior states were the states prior to the last state in σ. We then obtain
the following observed data factorization of the kth-order Markov PDSEM:

p1(V1)
k−1∏︂
t=1

⎛⎝ ∏︂
σk̃∈Tk̃

(︂
p(Vσk̃

|Wσk̃
)
)︂I(σk̃)

⎞⎠ ∞∏︂
t=k

⎛⎝ ∏︂
σk∈T

(p(Vσk
|Wσk

))I(σk)

⎞⎠ 1I(s∗
t )

p1(V1) =
∏︂

V ∈V1

p(V | paG1(V )); pσk̃
(Vσk̃

|Wσk̃
) =

∏︂
V ∈Vσ

k̃

p(V | paGσ
k̃
(V )); pσk

(Vσk
|Wk̃)

=
∏︂

V ∈Vσk

p(V | paGσk
(V ));

Extensions to truncated factorizations representing interventional distributions, and hidden variable
versions of these models are straightforward generalizations of the k = 1 case, described in the main
body.

As was the case with DBNs, relaxation of the first-order Markov assumption to a kth-order Markov
assumption comes at a cost – many additional transition networks must be specified, and the resulting
statistical inference is more likely to suffer from the curse of dimensionality.

B. Representing a PDSEM as a DBN
If variables in all transition networks in a PDSEM obey a single consistent topological order, one
may encode a PDSEM by a causal DBN as follows. First, define a transition variable T with values
representing all possible state transition pairs (si, sj) in a PDSEM. Then, use this variable as a parent
of every variable in the single transition network allowed by a DBN, and use it to select a subset
of all possible parents to implement transition specific networks of a PDSEM via context-specific
independence.

In the example shown in Fig. 3.2, one topological order on variables that is consistent for the
prior network and all transition networks is A ≺ B ≺ C. Thus, a causal DBN representing the
example PDSEM would have a prior network shown in Fig. II.1 (a), and a complete conditional
DAG as a transition network shown in Fig. II.1 (b), with a factorization: p(Ct|Bt, At, Tt, Vt−1)) ·
p(Bt|At, Tt, Vt−1) · p(At|Tt, Vt−1) · p(Tt|Vt−1), where Vt−1 ≡ Ct−1, Bt−1, At−1, Tt−1. Note that in
this transition network, every state variable has the transition variable as a parent, and this parent
is used to implement state transition independences in a PDSEM via context-specific independence.
For example, the Markov factor p(Bt|At, Tt, Ct−1, Bt−1, At−1, Tt−1) will not depend on At unless Tt

has value (s2, s3).
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Note that this representation, is in some sense, isomorphic to PDSEMs. The causal DBN factorization
exhibits no independences, and all interesting probabilistic and causal structure is obtained via
context-specific independences, which would be represented explicitly in transition networks of a
PDSEM.

In addition, if no consistent topological order on variables in all transition networks in a PDSEM
exists, then there is no known representation scheme for such a PDSEM using causal DBNs.

C. Proofs
Lemma 1 Under Assumption 1, p(Y(a)) is identified from a hidden variable causal DBN model
represented by latent projections G1 on V1 and G+1 on Vt+1 given Vt if and only if every bidirected
connected component in G1,Y1∗ (the induced subgraph of G1) is intrinsic in G1, and every bidirected
component in G+1Y∗

i
(the induced subgraph of G+1) is intrinsic in G+1, where Y∗

1 is the set of
ancestors of Y ∩V1 not through A∩V1 in G1, and for every i ∈ 2, . . . , T , Y∗

i is the set of ancestors
of Y ∩Vi not through A ∩Vi in G+1. Moreover, if p(Y(a)) is identified, we have(︄ ∑︂

Y∗
1\((Y∪A)∩V1)

∏︂
D∈D(G1Y∗

1
)
q1

D(D| paG(D) \D)|A=a

)︄
×

T∏︂
i=2

(︄ ∑︂
Y∗

i \((Y∪A)∩Vi)

∏︂
D∈D(G+1Y∗

i
)
q+1

D (D|paG(D) \D)|A=a

)︄
,

where q1
D and q+1

D are kernels corresponding to intrinsic sets representing elements of D(G1Y∗
1
) and

D(G+1Y∗
1
) in the nested Markov factorizations of G1 and G+1, respectively.

Proof: We want to obtain p(Y(a)) from the observed joint p(V1:T ). Using identification result 2.5
on the unrolled ADMG gives

∑︁
Y ∗\Y p(Y∗(a)) =

∑︁
Y∗\Y

∏︁
D∈D(GunrolledY∗ ) p(D(pa(D) \ D))|A=a.

Assumption 1 ensures that no district D spans time points, and parents pa(D) at time t+ 1 lie either
at t or t+1. This allows us to write

∑︁
Y∗\Y p(Y∗(a)) =

∑︁
Y∗\Y

∏︁
D∈D(G1Y ∗ ) p(D(pa(D)\D))|A=a×∏︁T −1

t=1
∏︁

D∈D(G+1Y ∗ ) p(D(pa(D) \D))|A=a. Applying the identification results in [Richardson et al.,
2012] to the prior network ADMG G1 and extensions of these results in [Sherman and Shpitser, 2018]
to the transition network CADMGs G+1, these counterfactual conditionals can be replaced by given
modified nested factorizations, provided every appropriate bidirected connected set in the prior or
transition graph is intrinsic in that graph.

Note that completeness of our procedure does not immediately follow from the completeness argument
in [Shpitser and Pearl, 2006]. This is because a completeness argument entails constructing in any
ADMG G(V) where identification fails two causal models which agree on the observed data distribution
p(V), but disagree on p(Y(a)). Furthermore, the construction employed in [Shpitser and Pearl, 2006]
relied on an unrestricted causal model inducing a given latent projection ADMG G(V). However, in
the case of causal DBNs, the model is not unrestricted – indeed there is a very strong restriction
that all transition networks at any time point share all structural equations.

Nevertheless, it is possible to extend the completeness proof in [Shpitser and Pearl, 2006] to yield
completeness of the procedure in this lemma by employing an extended construction modeled after
one in [Shpitser and Sherman, 2018].

From this point on, we will refer to G1:T (V1:T ) by G(V) for simplicity. Assume p(Y(a)) is not
identified in G(V), and assume there exists a hedge structure ancestral of Y′. Note that by first
order Markov assumption, the hedge structure must lie entirely in a transition network in a single
time step. Fix a subgraph G̃ of G(V) containing the hedge, the set Y, a set of vertices S making up

113



directed paths from every element of the root set R to some element of Y′ (without loss of generality
we assume these vertices do not have more than one child).

We extend G̃ with a new set of vertices S∗ that are copies of S with the property that if S ∈ S has a
parent in R, so does the corresponding S∗ ∈ S∗, and if T ∈ S is a parent of S ∈ S, the corresponding
T ∗ ∈ S∗ is a parent of S∗ ∈ S∗. We then apply the counterexample construction connecting the
hedge structure to Y′ appearing in [Shpitser and Pearl, 2006] to elements of S∗. In particular, we
make sure that

∑︁
S∗ p(Y′|S∗)p(S∗|R) is a one-to-one map. This implies p(Y(a)) is not identified in

an extended model containing vertices V and S∗. Lemma 1 in [Shpitser and Sherman, 2018] then
implies p(Y(a)) is also not identified in G(V), establishing our result. □

Lemma 2 Given a fully observed PDSEM, each factor of the distribution p∞(Y(a)) is identified
from p∞(V) as:

p1(Y1(a1)) ≡
∏︂

V ∈Y1\A1

p1(V |paG1(V ))
⃓⃓⃓
A1=a1

pij(Yij(aj)|Yi(ai)) ≡
∏︂

V ∈Yij\Aj

pij(V |paGij
(V ))

⃓⃓⃓
Ai=ai,
Aj=aj

Proof: This follows from the factorization of p∞(V(a)) into elements of the form p1(Y1(a1)), and
pij(Yj(aj)|Yi(ai)), the fact that G1, {Gij : (i, j) ∈ T } define causal models under standard structural
equation semantics, and equation 2.1 . □

Lemma 3 Under Assumptions 1, 2 and 3, given a latent variable PDSEM represented by G1 and
{Gij : (i, j) ∈ T }, p∞(Y(a)) is identified from p∞(V) if and only if every bidirected component in
G1Y∗

1
is intrinsic in G1, and every bidirected component in GijY∗

j
is intrinsic in Gij for every i and j.

Moreover, if p∞(Y(a)) is identified, it is equal to

p1(Y1(a1))
∞∏︂
t=1

⎛⎝ ∏︂
(i,j)∈T

(pij(Yij(aj)|Yi(ai)))I(s
i
t−1,s

j
t )

⎞⎠1I(s∗
t−1) (II.1)

where
p1(Y1(a1)) =

∏︂
D∈D(G1Y∗

1
)
q1

D(D|pasG1(D))
⃓⃓⃓
A1=a1

, (II.2)

where each kernel q1
D(D| pas

G1
(D)) is in the nested Markov factorization of p1(V1) with respect to G1,

and

pij(Yij(aj)|Yi(ai)) =
∏︂

D∈D(GVij \Aij
)

qijD(D|pasGij
(D))

⃓⃓⃓
Ai=ai,
Aj=aj

(II.3)

where each kernel qij
D(D| pas

Gij
(D)) is in the nested Markov factorization of pij(Vij |Vi) with respect

to Gij.

Proof: Assumption 3 implies all state transitions are known, and thus allows us to proceed by
induction on any sequence of state transitions with positive probability after t steps.

Unrolling the prior network, and appropriate transition networks for such a sequence yields an
ADMG representing the observed data distribution had that transition taken place, with Assumption
1 implying that districts in this ADMG do not span multiple time steps. This immediately implies
the conclusion by the same argument used in the proof of Lemma 1.

In fact, this argument works for any transition sequence of any size. □
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Appendix III

Entangled Missingness: Additional
Material

A. Binary Parameterization of Nested Markov Mod-
els

From the nested factorization (discussed in Section B. of Appendix I), intrinsic sets given their parents
form the atomic units of the nested Markov model. Using this observation, a smooth parameterization
of discrete nested Markov models was provided by [Evans and Richardson, 2014]. We provide a brief
description of how to derive the Möbius parameters of a binary nested Markov model.

For each district D ∈ D(G)), consider all possible subsets S ⊆ S. If S is intrinsic in ϕV\S(G),
define the head H of the intrinsic set to be all vertices in S that are childless in ϕV\S(G) and the
tail T to be all parents of the head in the CADMG ϕV\S(G), excluding the head itself. Formally,
H ≡ {V ∈ S| chϕV\S(G)(V ) = ∅} and T ≡ paϕV\S(G)(H) \ H. The corresponding set of Möbius
parameters for this intrinsic head and tail pair parameterizes the kernel qS(H = 0|T); i.e., the kernel
where all variables outside the intrinsic set S are fixed, and all elements of the head are set to zero
given the tail. Note that these parameters are, in general, variationally dependent (in contrast to
variationally independent in the case of an ordinary DAG model) as the heads and tails in these
parameter sets may overlap. The joint density for any query p(V = v) can be obtained through the
Möbius inversion formula; see [Lauritzen, 1996, Evans and Richardson, 2014] for details. We will
denote qS(H = 0|T) simply as q(H = 0|T) as it is generally clear what variables are still random in
the kernel corresponding to a given intrinsic set.

A..1 Binary Parameterization of Missing Data Models
We use the parameterization described earlier to count the number of parameters required to
parameterize the full observability law of a missing data ADMG and its corresponding observed law.
We then use this to reason that if the number of parameters in the full observability law exceeds
those in the observed law, it is impossible to establish a map from the observed law to the full law.
This in turn implies that such a full observability law is not identified. In the full observability, the
deterministic factors, i.e., proxies given parents can be ignored as the probability of those events
is always 1. However, while counting the observed law, we are careful to treat counterfactuals as
unobserved and obtain the corresponding ADMG. The Möbius parameters are then derived in a
similar manner as before, but with additional constraint that if Zi appears in the head of a parameter,
and missingness indicators Ri or Raff(i) appear in the tail, then the kernel must be restricted to
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cases where Ri = 1 and Raff(i) = 1. This is because, (1) when Ri = 0, the probability of the head
taking any value aside from those where Zi = ? is deterministically 0, and (2) cases where Raff(i)
are set to values different from 1 are irrelevant to the identification of the full observability law.
The consideration that Ri = 1 always holds, but that Raff(i) = 1 is only for identifying the full
observability law. For other cases, considerations vary.

B. Proofs
We restate the theorems and outline their proofs here.

Theorem 3 In a missing data ADMG G with missingness interference, valid single-world objects
h(Z̃; r) consisting of a set of counterfactuals Z′ ≡

⋃︁
i{Z

(1,raff(i))
i }, i ∈ {1, · · · , n} are identified when

either of these two conditions is satisfied: (1) R′ ⊥⊥ O, Z̃ (MCAR), or (2) R′ ⊥⊥ Z̃|O (MAR), where
R′ refers to the set of all missingness indicators R that index counterfactuals in h(Z̃; r). The object
h(Z̃; r) is a function of p(Z′,R,O), and the identifying functional is given by:

p(Z′,R,O) = p(Z′,O)× p(R|O,Z′) = p(Z′,R = r,O)
p(R = r | O) × p(R | O) (III.1)

where propensity scores are obtained by simple m-separation or (d-separation) rules on ADMG (or
DAG) factorization.

Proof: Z′ is the set of counterfactuals in h(Z̃; r) such that they construct a valid single-world
counterfactual in the world R = r. Further, let the set of all missingness indicators that index Z′

be R′, and that R′ = r′ when R = r. We are interested in identifying a distribution P (Z′) or a
function h(Z̃; r) thereof. The crucial factor here is that no variable, whose missingness indicator is 0,
is present in h(.).

In case (1), we can write P (Z′) = P (Z′ | R′ = r′) since R′ ⊥⊥ Z̃ and Z′ ⊂ Z̃. And by consistency, we
can replace all counterfactuals by their corresponding proxies and the object is identified.

In case (2), we can write P (Z′) = P (Z′ | O)× P (O) = P (Z′ | O,R′ = r′)× P (O) since R′ ⊥⊥ Z̃ | O
and Z′ ⊂ Z̃. And by consistency, we can identify the distribution as we can replace all counterfactuals
by their corresponding proxies.

□

Theorem 4 In a missing data ADMG G with missingness interference, under Assumption 4, the
full-observability law P (Z̃(r=1)

,R) is identified if and only if there is no e-colluding path. Further, if
G is a missing data DAG, the full-observability law is identified if and only if there is no e-colluder
and no e-self-censoring. The identifying functional is given by

p(Z̃(r=1)
,R) = p(Z̃(r=1))× p(R | Z̃(r=1))⏞ ⏟⏟ ⏞

g(p(R,Z))

= p(Z̃(r=1)
,R = 1)

p(R = 1 | Z̃(r=1))⏞ ⏟⏟ ⏞
g(p(R,Z))|R=1

× p(R | Z̃(r=1))⏞ ⏟⏟ ⏞
g(p(R,Z))

.

and missingness mechanism p(R | Z̃(r=1)) is identified using the OR parameterization given be-
low:

p(R|Z̃(r=1)) = 1
σ
×

K∏︂
k=1

p(Rk|R−k = 1, Z̃(r=1))×
K∏︂

k=2
OR(Rk, R≺k|R≻k = 1, Z̃(r=1))

Soundness: The absence of e-colluding paths results in identification.
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The absence of a e-colluding path between Z
(1,raff(i))
i and Rk ∈ Raff(i) implies that Z(1,raff(i))

i /∈
mbG(Rk) where

mbG(V ) = {paG(V ),disG(V ),paG(disG(V )), chG(V ), paG(chG(V )),
disG(chG(V )), paG(disG(chG(V )))}

Let Z̃(rk=1) = {Z(1,raff(i)=1)
i : Rk ∈ Raff(i)} ∪ Z(1,raff(k))

k . In words, Z̃(rk=1) is the set of all counter-
factuals that correspond to full observability, and are indexed (and influenced) by Rk.

By Markov property, we have that V ⊥⊥ V \mbG(V )|mbG(V ). Therefore, the absence of e-colluding
paths implies the following assumptions:

Rk ⊥⊥ {Z
(1,raff(i))
i ∈ Z̃(rk=1)} | {R \Rk, Z̃ \ Z(1,raff(i)=1)

i } for Rk ∈ R

Given these assumptions, we can identify p(R|Z̃(r=1)) using the OR parameterization. The proof is
similar to the identification proof of the no self-censoring model given in [Malinsky et al., 2021] and
the representation of it in [Nabi et al., 2020]. Since we are assuming chG(Z̃(r ̸=1)) ∩R = ∅, it suffices
to only ID p(R|Z̃(r=1)).

p(R|Z̃(r=1)) = 1
σ
×

K∏︂
k=1

p(Rk|R−k = 1, Z̃(r=1))×
K∏︂

k=2
OR(Rk,R≺k|R≻k = 1, Z̃(r=1))

where notation and OR is consistent with Section 2.6.

We have p(Rk|R−k = 1, Z̃(r=1)) = p(Rk|R−k = 1, Z̃(r=1) \ Z̃(rk=1)). By consistency, every coun-
terfactual past the conditioning bar is equal to the observed proxy. Then, pairwise OR terms are
identified because OR(Rk, Ri | R−(k,i) = 1, Z̃(r=1)) is not a function of Z̃(ri=1) or Z̃(rk=1). Finally
higher order terms are ID in similar ways [Nabi et al., 2020, Malinsky et al., 2021].

Completeness: One approach to demonstrate completeness is to count the number of parameters
required to parameterize the full-observability law of a missing data graph and its corresponding
observed law and reason that if the former requires more parameters than the latter, it is impossible
to identify all the parameters of the full-observability law uniquely. In order to do so, we assume all
variables are binary, and adopt the binary parameterization of Nested Markov Models (see Appendix
I).

First, we present two simple e-colluding path examples to show how the parameter counting argument
proceeds. Thereafter, we provide the general argument for completeness for all graphs.

Consider the simple graph in Fig. III.1(a) which has e-self-censoring Z
(1,r1=1)
2 → R1. To count

the parameters required for the full-observability law, we follow the procedure in [Nabi et al.,
2020]. The binary parameterization of the full law of a missing data ADMG is the same as
counting in an ordinary ADMG, with all the irrelevant counterfactuals projected out, except that
deterministic factors P (Zi|Rj , Z

(1,raff(i))
i ) can be ignored. This gives us the graph in Fig. III.1(b).

The 5 parameters associated with this graph are q(Z(1,r2=1)
1 = 0), q(Z(1,r1=1)

2 = 0), q(R2 = 0) and
q(R1 = 0|Z(1,r1=1)

2 = 1), q(R1 = 0|Z(1,r1=1)
2 = 0).

Next, we obtain the graph in (c) for the observed law, by projecting out all the counterfactuals
in (a). Counting the observed law under full observability in entangled missingness settings has
a special consideration: if Zi appears in the head of a parameter, and any of the corresponding
missingness indicators Raff(i) appear in the tail, the kernel must be restricted to cases where Ri = 1
and Raff(i) = 1. This is because, (1) when Ri = 0, the probability of the head taking any value
aside from those where Zi = ? is deterministically 0, and (2) cases where Raff(i) are set to values
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Figure III.1. Examples where P (Z̃(r=1)
,R) is not identified. The proof is demonstrated

using parameter counting. (a)-(c): Extended self-censoring (neighbor-censoring), (a)
depicts the data generating process, (b) ADMG for P (Z̃(r=1)

,R), (c) ADMG for observed
law. (d)-(f): Extended colluder, (d) depicts the data generating process, (e) ADMG for
P (Z̃(r=1)

,R), (f) ADMG for observed law.

different from 1 are irrelevant to the identification of the full observability law1. The observed law in
(c) can be parameterized using only 4 parameters, one each corresponding to q(R1 = 0), q(R2 = 0),
q(R1 = 0, Z2 = 0|R2 = 1) and q(Z1 = 0|R1 = 1, R2 = 1). That is one less than the full observability
law and hence the latter may not be uniquely determined from data.

Second, consider the graph in Fig. III.1(d), which has an e-colluder Z(1,r1=1)
2 → R3 ← R1. The

full observability law is shown in (e) and observed law in (f). Counting for (e) yields a total of
9 parameters: q(Z(1)

3 = 0), q(Z(1,r2=1)
1 = 0), q(Z(1,r1=1)

2 = 0), q(R1 = 0), q(R2 = 0) and finally,
q(R3 = 0|R1, Z

(1,r1=1)
2 ), which accounts for 4 parameters. The observed law, on the other hand, needs

only 8 parameters: q(R1 = 0), q(R2 = 0), q(R3 = 0|R1 = 1), q(R3 = 0|R1 = 0), q(Z3 = 0|R3 = 1),
q(Z1 = 0|R1 = 1, R2 = 1), q(Z2 = 0|R1 = 1, R2 = 1) and q(Z2 = 0, R3 = 0|R1 = 1, R2 = 1). Hence,
it is not possible to uniquely map back to the full observability law from observed data.

Finally, we present the general argument for arbitrary graphs.

Assume that there are n variables in Z̃. For simplicity, assume that all counterfactuals are independent
of each other, i.e, Z(1,raff(i)=r)

i ⊥⊥ Z(1,raff(i)=r′)
i , when r ̸= r′ and Z(1,raff(i)=r)

i ⊥⊥ Z(1,raff(i)=r′)
j , when r

may or may not be equal to r′. Graphically, there are no edges between counterfactuals 2. And by
1The consideration that Ri = 1 always holds, but that Raff(i) = 1 is only for identifying the full

observability law. For other cases, considerations vary.
2This assumption does not affect the generality of completeness for other types of models because
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Figure III.2. (a) e-Colluding paths between Z
(1,raff(i)=1)
i and Rj where Rj ∈ Raff(i) (i

and j are neighbors) (b) Projecting out Z(1,raff(i)=1)
i

Assumption 4, Z̃(r ̸=1) is not a parent of any R ∈ R, and can be projected out (adding no new edges)
without affecting the Markov blanket of any variable in Z̃(r=1), R or proxies Z.

Shown in Fig. III.2 (a)-(d) are all possible e-colluding paths between Z
(1,raff(i)=1)
i and Rj . Here,

Rj ∈ Raff(i). Assume there are K variables, V1 · · ·VK , that lie on the smallest collider path between
Z

(1,raff(i)=1)
i and Rj . For this to be the smallest collider path, we require that Z(1,raff(l)=1)

l or Rl are
not in V1, · · ·VK when i and l share the same neighborhood, i.e., when Rl ∈ Raff(i) and Ri ∈ Raff(l).
If not, we could truncate the path to have the smallest such path that goes between Z(1,raff(i)=1)

i and
Rj such that i and j are neighbors. Fig III.2 (e) shows the projection of (a) and (b), and (f) shows
the projection of (c) and (d). V ∗ ∈ Z \ Zl, R \Rl, i and l are neighbors.

We now consider each of these paths (a)-(d) and their corresponding latent projections (e) and (f), as
if they appear in a larger graph that is otherwise completely disconnected. Akin to what we did with
the examples earlier, we count the number of Möbius parameters (as a function of K), and show
that the full observability law always has more parameters than the observed law. When we place
these colluding paths in a larger graph with arbitrary connectivity, the full observability law is still
not identified because of the discrepancy arising from the g-colluding path alone. That is, any edge
super graph (super model) is also not identified.

The following fact will be used towards counting parameters in a binary model: Given a bidirected
chain V1 ↔ · · · ↔ VK′ of length K ′, the number of parameters required to parameterize this chain is
K′(K′+1)

2 , corresponding to parameters given by the following:

q(V1 = 0) q(V1 = V2 = 0) · · · q(V1 = · · ·VK′ = 0) :K ′ params
q(V2 = 0) q(V2 = V3 = 0) · · · q(V2 = · · ·VK′ = 0) :K ′ − 1 params

· · ·
q(VK′ = 0) : 1 param

Parameter counting for Fig. III.2(a), (b), (e)

this model is a submodel of others that involve dependence between counterfactuals, and completeness
in this model guarantees completeness in others.
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1. Number of Möbius parameters in Fig. III.2(a) is (K+2)(K+3)
2

• It is a bidirected chain Z
(1,raff(i)=1)
i ↔ · · · ↔ Rj of length K ′ = K + 2.

2. Number of Möbius parameters in Fig. III.2(b) is (K+2)(K+3)
2

• q(Z(1,raff(i)=1)
i = 0) i.e. 1 parameter.

• A bidirected chain V2 ↔ · · · ↔ VK ↔ Rj of length K ′ = K, i.e. K(K+1)
2 parameters.

• Intrinsic sets involving V1, i.e., q(V1 = 0|Z(1,raff(i)=1)
i ), q(V1 = V2 = 0|Z(1,raff(i)=1)

i ), · · · ,
q(V1 = V2 = · · ·Rj = 0|Z(1,raff(i)=1)

i ) which have 2 parameters each, leading to 2∗(K+1)
parameters totally.

3. Number of Möbius parameters in Fig. III.2(e) is (K+2)(K+3)
2 − 1

• The bidirected chain V ∗
1 ↔ · · · ↔ Rj of length K ′ = K + 1 has (K+1)(K+2)

2 parameters.
It should be noted that for any Zl ∈ {V1 · · ·VK}, in the head of a Möbius parameter, if
R ∈ Rl ∪Raff(l) is the parameter’s tail, R is always set to 1 deterministically. Hence, it
reduces to counting the simple bidirected chain.

• The number of intrinsic sets involving Zi is K+ 1 (and not K+ 2) since Ri is not fixable,
and the set {Zi, V

∗
1 , · · · , V ∗

K} is not intrinsic. Each of these intrinsic sets corresponds to
two parameters, so 2 ∗ (K + 1) parameters.

Parameter counting for Fig. III.2(c), (d), (f)

1. Number of Möbius parameters in Fig. III.2(c) is (K+2)(K+3)
2

• q(Rj = 0) i.e. 1 parameter.

• A bidirected chain Z
(1,raff(i)=1)
i ↔ · · ·VK−1 of length K ′ = K, so K(K+1)

2 parameters.
• Intrinsic sets involving RK , i.e., q(RK = 0|Rj), q(RK = VK−1 = 0|Rj), · · · , q(RK =

VK−1 = · · · , Z(1,raff(i)=1)
i = 0|Rj) , i.e, 2 ∗ (K + 1) parameters.

2. Number of Möbius parameters in Fig. III.2(d) is (K+2)(K+3)
2

• q(Z(1,raff(i)=1)
i = 0) i.e. 1 parameter.

• q(Rj = 0), i.e., 1 parameter.
• A bidirected chain V2 ↔ · · · ↔ VK−1 of length K ′ = K − 2, i.e. (K−2)(K−1)

2 parameters.

• Intrinsic sets involving V1 and not RK , i.e., q(V1 = 0|Z(1,raff(i)=1)
i ), q(V1 = V2 =

0|Z(1,raff(i)=1)
i ), · · · , q(V1 = V2 = · · ·VK−1 = 0|Z(1,raff(i)=1)

i ) which give 2 parameters
each, leading to 2 ∗ (K − 1) parameters.

• Intrinsic sets involving RK and not V1, i.e., q(RK = 0|Z(1,raff(i)=1)
i ), q(RK = V2 =

0|Z(1,raff(i)=1)
i ), · · · , q(RK = V2 = · · ·VK−1 = 0|Z(1,raff(i)=1)

i ) which give 2 parameters
each, leading to 2 ∗ (K − 1) parameters.

• The one intrinsic set involving both V1 and RK , i.e, q(V1 = V2 =, · · · = RK =
0|Rj , Z

(1,raff(i)=1)
i ) corresponding to 4 parameters.

3. Number of Möbius parameters in Fig. III.2(f) is (K+2)(K+3)
2 − 1

• q(Rj = 0), i.e., 1 parameter.
• The bidirected chain Zi ↔ V ∗

1 ↔ · · · ↔ VK−1 of lengthK ′ = K has (K)(K+1)
2 parameters.

As before, for any Zl ∈ {V1 · · ·VK−1}, in the head of a Möbius parameter, if R ∈
Rl ∪Raff(l) is the parameter’s tail, R is always set to 1 deterministically.
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• Intrinsic sets involvingRK , i.e., q(RK = 0|Rj), q(RK , VK−1 = 0|Rj), · · · , q(RK , VK−1, · · · , V1 =
0|Rj) corresponding to 2 ∗K parameters, and the intrinsic set q(RK , VK−1, · · · , V1 =
0, Zi = 0|Rj = 1) which only corresponds to 1 parameter (instead of 2) since Rj ∈ Raff(i)
and has to be set to 1.
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Appendix IV

Generalized Coarsening:
Additional Material

A. Proofs
Theorem 9 The influence function for β is given as

Uβ(Z) = I(A1 = a1)I(A2 = a2)
p(Y 1,1, A1, A2 | C1, C2) p(Y

1,1
t=1 | A1, A2, C1, C2)×

{Y 1,2 − E[Y 1,2 | Y 1,1, A1, A2, C1, C2]}

+
∑︂
Y 1,1

E[Y 1,2 | Y 1,1, a1, a2, C1, C2] p(Y 1,1
t=1 | a1, a2, C1, C2)− β

Proof. The parameter of interest β is identified as:∑︂
Y 1,1,C1,C2

E[Y 1,2 | Y 1,1, A1, A2, C1, C2]π(Y 1,1
t=1, A

1, A2, C1, C2)p(C1, C2)

The influence function Uβ(Z) is derived using the integral equation as

∂β

∂θ

⃓⃓⃓
θ=θ0

= E[Uβ(Z)Sθ(Z; θ0)]

∂β

∂θ

⃓⃓⃓
θ=θ0

=
∑︂

Y 1,2,Y 1,1,C1,C2

Y 1,2 ∂p(Y 1,2 | Y 1,1, A1, A2, C1, C2)
∂θ

p(Y 1,1
t=1, A

1, A2, C1, C2)p(C1, C2)

+
∑︂

Y 1,1,C1,C2

E[Y 1,2 | Y 1,1, A1, A2, C1, C2]p(Y 1,1
t=1, A

1, A2, C1, C2)∂p(C
1, C2)
∂θ

From here, each term is modified until it looks like the integral equation and the influence function is
obtained by visual inspection. Starting with the second term in the above equation∑︂

Y 1,1,C1,C2

E[Y 1,2 | Y 1,1, A1, A2, C1, C2]p(Y 1,1
t=1, A

1, A2, C1, C2)∂p(C
1, C2)
∂θ
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Since S(C1, C2; θ) = ∂ log p(C1,C2)
∂θ = 1

p(C1,C2)
∂p(C1,C2)

∂θ , ∂p(C1,C2)
∂θ = Sθ(C1, C2; θ0)p(C1, C2), the

above can be rewritten as

=
∑︂
Y 1,1

EC1,C2

[︂
E
[︁
Y 1,2 | Y 1,1, A1, A2, C1, C2]︁ p(Y 1,1

t=1, A
1, A2, C1, C2)Sθ(C1, C2; θ0)

]︂

From the properties of the score, we have

EC1,C2

[︄
EC1,C2

[︄∑︂
Y 1,1

E[Y 1,2 | Y 1,1, A1, A2, C1, C2]p(Y 1,1
1,t=1, A

1, A2, C1, C2)
]︄
Sθ(C1, C2; θ0)

]︄
= 0

Denoting
∑︁

Y 1,1 E[Y 1,2 | Y 1,1, A1, A2, C1, C2]p(Y 1,1
t=1, A

1, A2, C1, C2) = qC1,C2 , the above equation
can be rewritten as

EC1,C2
[︁(︁
qC1,C2 − E[qC1,C2 ]

)︁
Sθ(C1, C2; θ0)

]︁
Since E[S(Y 1,1, Y 1,2, A1, A2|C1, C2)] = 0, the above equation can be rewritten as

= E
[︁
E
[︁{︁
qC1,C2 − E[qC1,C2 ]

}︁{︁
Sθ(C1, C2; θ0) + Sθ(Y 1,1, Y 1,2, A1, A2|C1, C2; θ0)

}︁
| C1, C2]︁]︁

Since EC1,C2 [qC1,C2 ] = ψ, the contribution of the second term to the influence function can be written
as:

U2(ψ) =
∑︂
Y 1,1

E[Y 1,2 | Y 1,1, A1, A2, C1, C2]p(Y 1,1
t=1, A

1, A2, C1, C2)− ψ

Similarly, the first term, is rewritten using the score function as:

=
∑︂

Y 1,2,Y 1,1,C1,C2

Y 1,2Sθ(Y 1,2 | Y 1,1, A1, A2, C1, C2; θ0)

× p(Y 1,2 | Y 1,1, A1, A2, C1, C2)p(Y 1,1
t=1, A

1, A2, C1, C2)p(C1, C2)

Introducing two indicator functions I(A1 = a1)I(A2 = a2), and summing over A1, A2, this term can
be rewritten as

= E
[︃
I(A1 = a1)I(A2 = a2)
p(Y 1,1, A1, A2, C1, C2)Y

1,2p(Y 1,1
t=1, A

1, A2, C1, C2)Sθ(Y 1,2 | Y 1,1, A1, A2, C1, C2; θ0)
]︃

Next, from iterated expectations and the properties of score functions, note

E

[︄
I(A1 = a1)I(A2 = a2)
p(Y 1,1, A1, A2, C1, C2)p(Y

1,1
t=1, A

1, A2, C1, C2)E[Y 1,2 | Y 1,1, A1, A2, C1, C2]

× Sθ(Y 1,2 | Y 1,1, A1, A2, C1, C2; θ0)
]︄

= 0

So, we can rewrite the partial derivative of the first term as

=E

[︄
I(A1 = a1)I(A2 = a2)
p(Y 1,1, A1, A2, C1, C2)p(Y

1,1
t=1, A

1, A2, C1, C2){Y 1,2 − E[Y 1,2 | Y 1,1, A1, A2, C1, C2]}
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× Sθ(Y 1,2 | Y 1,1, A1, A2, C1, C2; θ0)
]︄

Using the property of score functions, we can add in the missing score piece to get:

=E

[︄
I(A1 = a1)I(A2 = a2)
p(Y 1,1, A1, A2 | C1, C2)p(Y

1,1
t=1, A

1, A2, C1, C2){Y 1,2 − E[Y 1,2 | Y 1,1, A1, A2, C1, C2]}

Sθ(Y 1,2, Y 1,1, A1, A2, C1, C2; θ0)
]︄

So, the influence function is

Uβ(Z) = I(A1 = a1)I(A2 = a2)
p(Y 1,1, A1, A2 | C1, C2)p(Y

1,1
t=1, A

1, A2, C1, C2){Y 1,2 − E[Y 1,2 | Y 1,1, A1, A2, C1, C2]}

+
∑︂
Y 1,1

E[Y 1,2 | Y 1,1, A1, A2, C1, C2]p(Y 1,1
t=1, A

1, A2, C1, C2)− β

Theorem 10 The estimator obtained by solving the influence function for β is doubly robust as
long as one of p(Y 1,1, A1, A2 | C1, C2) or E[Y 1,2 | Y 1,1, a1, a2, C1, C2] is specified correctly.

Proof. The influence function provides an unbiased and consistent estimator of β as long as at least
one of p(Y1, A

1, A2 | C1, C2) or E[Y2 | Y1, A
1, A2, C1, C2] is specified correctly. To prove this, we first

misspecify each of the nuisance models individually and show the influence function is still mean zero.

First, we incorrectly specify p(Y 1,1, A1, A2 | C1, C2) is mis-specified as p∗(Y 1,1, A1, A2 | C1, C2), but
correctly specify E[Y 1,2 | Y 1,1, A1, A2, C1, C2]. The expectation of the influence function can be
written as:

E[Uβ(Z)] = E
[︃
I(A1 = a1)I(A2 = a2)
p∗(Y 1,1, A1, A2 | C1, C2)p(Y

1,1
t=1, A

1, A2, C1, C2){Y 1,2 − E[Y 1,2 | Y 1,1, A1, A2, C1, C2]}
]︃

+ E

[︄∑︂
Y 1,1

E[Y 1,2 | Y 1,1, A1, A2, C1, C2]p(Y 1,1
t=1, A

1, A2, C1, C2)
]︄

Since E[Y 1,2 | Y 1,1, A1, A2, C1, C2] is specified correctly,
∑︁

Y 1,1 E
[︁
E[Y 1,2 | Y 1,1, A1, A2, C1, C2]

p(Y 1,1
t=1, A

1, A2, C1, C2)
]︁

= β. To prove the expectation of the influence function is mean 0, it remains
to show is that the first term is mean 0. This can be seen by

E
[︃
I(A1 = a1)I(A2 = a2)
p∗(Y 1,1, A1, A2 | C1, C2)p(Y

1,1
t=1, A

1, A2, C1, C2){Y 1,2 − E[Y 1,2 | Y 1,1, A1, A2, C1, C2]}
]︃

= E
[︃
E
[︃
I(A1 = a1)I(A2 = a2)
p∗(Y 1,1, A1, A2 | C1, C2)p(Y

1,1
t=1, A

1, A2, C1, C2)

× {Y 1,2 − E[Y 1,2 | Y 1,1, A1, A2, C1, C2]} | Y 1,1, A1, A2, C1, C2
]︃]︃

= E
[︃
E
[︃
I(A1 = a1)I(A2 = a2)
p∗(Y 1,1, A1, A2 | C1, C2)p(Y

1,1
t=1, A

1, A2, C1, C2)Y 1,2 | Y 1,1, A1, A2, C1, C2
]︃]︃

− E
[︃
I(A1 = a1)I(A2 = a2)
p∗(Y 1,1, A1, A2 | C1, C2)p(Y

1,1
t=1, A

1, A2, C1, C2)E[Y 1,2 | Y 1,1, A1, A2, C1, C2]
]︃
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= 0

Similar steps can be followed when E[Y 1,2 | Y 1,1, A1, A2, C1, C2] is incorrectly specified as E∗[Y 1,2 |
Y 1,1, A1, A2, C1, C2]. Grouping the influence function into two terms and examining:

E[Uβ(Z)] = E
[︃
I(A1 = A1)I(A2 = A2)
p(Y1, A1, A2 | C1, C2) p(Y1,t=1, A

1, A2, C1, C2)Y2

]︃
− E

[︃
I(A1 = A1)I(A2 = A2)
p(Y1, A1, A2 | C1, C2) p(Y1,t=1, A

1, A2, C1, C2)E∗[Y2 | Y1, A
1, A2, C1, C2]

]︃
+ E

[︄∑︂
Y 1,1

E∗[Y 1,2 | Y1, A
1, A2, C1, C2]π(Y1,t=1, A

1, A2, C1, C2)
]︄
− β

As long as the propensity score is specified correctly, E
[︂

I(A1=a1)I(A2=a2)
p(Y 1,1,A1,A2|C1,C2)π(Y 1,1, A1, A2, C1, C2)Y 1,2

]︂
will evaluate to the target parameter. And the reaming two expectation terms will cancel out, and
the mean of the influence function will be zero. Consequently, the double robustness of this influence
function is proved.

Theorem 11 The influence function for ψ is given as

U(ψ) =
{︄∑︂

Y 1,1

I(A1 = a1)I(A2 = a2)πp(Y 1,2 | Y 1,1, A1, A2, C1, C2)
p(Y 1,2, A1, A2 | C1, C2)

}︄
×{︁

Y 1,1 − E
[︁
Y 1,1 | Y1,2, A

1, A2, C1, C2]︁}︁
+
{︃
I(A1 = a1)I(A2 = a2)π
p(Y 1,1, A1, A2 | C1, C2)

}︃
×{︁

qa1,a2(Y 1,1 | Y 1,2)− E
[︁
ϕa1,a2(Y 1,1 | Y 1,2) | Y 1,1, A1, A2, C1, C2]︁}︁

+
∑︂

Y 1,1,Y 1,2

E[Y 1,1 | Y 1,2, a1, a2, C1, C2]p(Y 1,2 | Y 1,1, a1, a2, C1, C2)π − ψ

Proof. Following a similar procedure as Theorem 9 and taking the path wise derivative of the
identifying functional for ψ we get

∂ψ

∂θ

⃓⃓⃓
θ=θ0

=

∑︂
Y 1,1,Y 1,2,C1,C2

(︄∑︂
Y 1,1

∂p(Y 1,1 | Y 1,2, A1, A2, C1, C2)
∂θ

)︄
× p(Y 1,2 | Y 1,1, A1, A2, C1, C2)×

p(Y 1,1
t=1, A

1, A2, C1, C2)p(C1, C2)

+
∑︂

Y 1,1,Y 1,2,C1,C2

E[Y 1,1 | Y 1,2, A1, A2, C1, C2]× ∂p(Y 1,2 | Y 1,1, A1, A2, C1, C2)
∂θ

×

p(Y 1,1
t=1, A

1, A2, C1, C2)p(C1, C2)

+
∑︂

Y 1,1,Y 1,2,C1,C2

E[Y 1,1 | Y 1,2, A1, A2, C1, C2]p(Y 1,2 | Y 1,1, A1, A2, C1, C2)× ∂p(C1, C2)
∂θ

×

p(Y 1,1
t=1, A

1, A2, C1, C2)
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Each term will be examined individually and put into the form from the integral equation. Starting
with the third term, we rewrite it as:

=
∑︂

Y 1,1,Y 1,2,C1,C2

E[Y 1,1 | Y 1,2, A1, A2, C1, C2]p(Y 1,2 | Y 1,1, A1, A2, C1, C2)×

π(Y 1,1, A1, A2, C1, C2)S(C1, C2)p(C1, C2)
= EC1,C2 [

∑︂
Y 1,1,Y 1,2

E[Y 1,1 | Y 1,2, A1, A2, C1, C2]p(Y 1,2 | Y 1,1, A1, A2, C1, C2)×

π(Y 1,1, A1, A2, C1, C2)S(C1, C2)]

Denote
∑︁

Y 1,1,Y 1,2 E[Y 1,1 | Y 1,2, A1, A2, C1, C2]p(Y 1,2 | Y 1,1, A1, A2, C1, C2)π(Y 1,1, A1, A2, C1, C2) =
q(C1, C2). Then

EC1,C2 [EC1,C2 [q(C1, C2)]S(C1, C2)] = 0

Noting EC1,C2 [q(C1, C2)] = ψ, the third term can be rewritten as:

= EC1,C2 [
(︁
q(C1, C2)− ψ

)︁
S(C1, C2)]

= EC1,C2 [EY 1,1,Y 1,2,A1,A2|C1,C2 [
(︁
q(C1, C2)− ψ

)︁
S(C1, C2)]]

= EC1,C2 [EY 1,1,Y 1,2,A1,A2|C1,C2 [
(︁
q(C1, C2)− ψ

)︁
S(Y 1,1, Y 1,2, A1, A2, C1, C2)]]

= EY 1,1,Y 1,2,A1,A2,C1,C2 [
(︁
q(C1, C2)− ψ

)︁
S(Y 1,1, Y 1,2, A1, A2, C1, C2)]

Therefore, the contribution of the third term to the influence function is:

U3(ψ) =
∑︂

Y 1,1,Y 1,2

E[Y 1,1 | Y 1,2, A1, A2, C1, C2]p(Y 1,2 | Y 1,1, A1, A2, C1, C2)π(Y 1,1, A1, A2, C1, C2)− ψ

Now, examining the second term and introducing the score function:

= E
{︃
I(A1 = a1)I(A2 = a2)π(Y 1,1, A1, A2, C1, C2)

p(Y 1,1, A1, A2 | C1, C2)

}︃
E[Y 1,1 | Y 1,2, A1, A2, C1, C2]×

S(Y 1,2 | Y 1,1, A1, A2, C1, C2)

Now, denoting
{︂

I(A1=a1)I(A2=a2)π(Y 1,1
t=1,a1,a2,C1,C2)

p(Y 1,1,A1,A2|C1,C2)

}︂
E[Y 1,1 | Y 1,2, A1, A2, C1, C2] as

q(Y 1,1, Y 1,2, A1, A2, C2, C1), and noting

E
[︁
E
[︁
q(Y 1,1, Y 1,2, a1, a2, C1, C2) | Y 1,1, a1, a2, C1, C2]︁S(Y 1,2 | Y 1,1, A1, A2, C1, C2)

]︁
= 0

Using the above, the second term is rewritten as:

= E
[︁(︁
q(Y 1,1, Y 1,2, A1, A2, C1, C2)
− E[q(Y 1,1, Y 1,2, A1, A2, C1, C2) | Y 1,1, A1, A2, C1, C2]

)︁
S(Y 1,2 | Y 1,1, A1, A2, C1, C2)

]︁
From the properties of score function,

E
[︁(︁
q(Y 1,1, Y 1,2, A1, A2, C1, C2)

− E[q(Y 1,1, Y 1,2, A1, A2, C1, C2) | Y 1,1, A1, A2, C1, C2]
)︁
S(Y 1,1, A1, A2, C1, C2)

]︁
= 0
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And so we get

= E
[︁(︁
q(Y 1,1, Y 1,2, A1, A2, C1, C2)

− E[q(Y 1,1, Y 1,2, A1, A2, C1, C2) | Y 1,1, A1, A2, C1, C2]
)︁
S(Y 1,2, Y 1,1, A1, A2, C1, C2)

]︁
The contribution of the second term to the influence function can be written as

U2(ψ) = q(Y 1,1, Y 1,2, A1, A2, C1, C2)− E[q(Y 1,1, Y 1,2, A1, A2, C1, C2) | Y 1,1, A1, A2, C1, C2]

Now, repeating the procedure for the first term:

=
∑︂

Y 1,1,Y 1,2,C1,C2

(︄∑︂
Y 1,1

Y 1,1p(Y 1,1 | Y 1,2, A1, A2, C1, C2)S(Y 1,1 | Y 1,2, A1, A2, C1, C2)
)︄

p(Y 1,2 | Y 1,1, A1, A2, C1, C2)π(Y 1,1, A1, A2, C1, C2)p(C1, C2)

=
∑︂

Y 1,2,C1,C2

E
[︁
Y 1,1S(Y 1,1 | Y 1,2, A1, A2, C1, C2) | Y 1,2, A1, A2, C1, C2]︁

×

{︄∑︂
Y 1,1

p(Y 1,2 | Y 1,1, A1, A2, C1, C2)π(Y 1,1, A1, A2, C1, C2)p(C1, C2)
}︄

=
∑︂

Y 1,2,A1,A2,C1,C2

I(A1 = a1)I(A2 = a2)E[Y 1,1S(Y 1,1 | Y 1,2, A1, A2, C1, C2) | Y 1,2, A1, A2, C1, C2]

{︄∑︂
Y 1,1

p(Y 1,2 | Y 1,1, A1, A2, C1, C2)π(Y 1,1, A1, A2, C1, C2)p(C1, C2)
}︄

Multiplying and dividing by p(Y 1,2, A1, A2, C1, C2), shifting summations around to get a full expec-
tation:

=
{︄∑︂

Y 1,1

EY 1,2,A1,A2,C1,C2 [I(A1 = a1)I(A2 = a2)π(Y 1,1, A1, A2, C1, C2)p(Y 1,2 | Y 1,1, A1, A2, C1, C2)
p(Y 1,2, A1, A2, C1, C2)

}︄
E[Y 1,1S(Y 1,1 | Y 1,2, A1, A2, C1, C2) | Y 1,2, A1, A2, C1, C2]]

= E
[︃
I(A1 = a1)I(A2 = a2)

{︁∑︁
Y 1,1 π(Y 1,1, A1, A2, C1, C2)p(Y 1,2 | Y 1,1, A1, A2, C1, C2)

}︁
p(Y 1,2, A1, A2 | C1, C2) Y 1,1×

S(Y 1,1 | Y 1,2, A1, A2, C1, C2)
]︃

So, the first term of the influence function can be written as

U1(ψ) =I(A1 = a1)I(A2 = a2){
∑︁

Y 1,1 π(Y 1,1, A1, A2, C1, C2)p(Y 1,2 | Y 1,1, A1, A2, C1, C2)}
p(Y 1,2, A1, A2 | C1, C2){︃

Y 1,1 − E
[︃
I(A1 = a1)I(A2 = a2)
p(Y 1,2, A1, A2 | C1, C2){︁∑︂

Y 1,1

π(Y 1,1, A1, A2, C1, C2)p(Y 1,2 | Y 1,1, A1, A2, C1, C2)
}︁
Y 1,1 | Y 1,2, A1, A2, C1, C2

]︃}︃

Putting all three of these pieces together gives:

U(ψ) =
∑︂
Y ′

1

I(A1 = a1)I(A2 = a2)π(Y ′
1 , A

1, A2, C1, C2)p(Y 1,2 | Y ′
1 , A

1, A2, C1, C2)
p(Y 1,2, A1, A2 | C1, C2) Y 1,1
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−
∑︂
Y ′

1

I(A1 = a1)I(A2 = a2)π(Y ′
1 , A

1, A2, C1, C2)p(Y 1,2 | Y ′
1 , A

1, A2, C1, C2)
p(Y 1,2, A1, A2 | C1, C2) ×

E
[︁
Y 1,1 | Y 1,2, A1, A2, C1, C2]︁

+
{︃
I(A1 = a1)I(A2 = a2)π(Y 1,1, A1, A2, C1, C2)

p(Y 1,1, A1, A2 | C1, C2)

}︃
E[Y 1,1 | Y 1,2, A1, A2, C1, C2]

−
{︃
I(A1 = a1)I(A2 = a2)π(Y 1,1, A1, A2, C1, C2)

p(Y 1,1, A1, A2 | C1, C2)

}︃
×

E
[︁
E
[︁
Y 1,1 | Y 1,2, A1, A2, C1, C2]︁ | Y 1,1, A1, A2, C1, C2]︁

+
∑︂

Y 1,1,Y 1,2

E[Y 1,1 | Y 1,2, A1, A2, C1, C2]p(Y 1,2 | Y 1,1, A1, A2, C1, C2)π(Y 1,1, A1, A2, C1, C2)

− ψ

Theorem 12 The influence function based estimator for ψ above exhibits 2 out of 4 robustness,
where as long as the following pairs of models are specified correctly, we obtain a consistent and
unbiased estimator:(︁

E[Y 1,1 | Y 1,2, a1, a2, C1, C2], p(Y 1,2 | Y 1,1, a1, a2, C1, C2)
)︁(︁

p(Y 1,2, A1, A2 | C1, C2), p(Y 1,2 | Y 1,1, A1, A2, C1, C2)
)︁(︁

p(Y 1,1, A1, A2 | C1, C2), E[Y 1,1 | Y 1,2, A1, A2, C1, C2]
)︁

Proof. The statement of the theorem says that as long as any of the pairs of models are correctly
specified, we will obtain a consistent estimator for ψ

E[Y 1,1 | Y 1,2, A1, A2, C1, C2]&p(Y 1,2 | Y 1,1, A1, A2, C1, C2) (IV.1)
p(Y 1,2, A1, A2 | C1, C2)&p(Y 1,2 | Y 1,1, A1, A2, C1, C2) (IV.2)
p(Y 1,1, A1, A2 | C1, C2)&E[Y 1,1 | Y 1,2, A1, A2, C1, C2] (IV.3)

Starting with the proof assuming only p(Y 1,2, A1, A2 | C1, C2)&p(Y 1,2 | Y 1,1, A1, A2, C1, C2) are
specified correctly, and denote the rest of the models that are misspecified as p∗,E∗. The first term
of the influence function can then be written as:

∑︂
Y 1,1,Y 1,2,A1,A2,C1,C2

⎧⎨⎩∑︂
Y 1,1

t=1

I(A1 = a1)I(A2 = a2)π(Y 1,1
t=1, A

1, A2, C1, C2)p(Y 1,2 | Y 1,1
t=1, A

1, A2, C1, C2)
p(Y 1,2, A1, A2 | C1, C2) Y 1,1

⎫⎬⎭
p(Y 1,1, Y 1,2, A1, A2, C1, C2)

=
∑︂

Y 1,1,Y 1,2,C1,C2

⎧⎨⎩∑︂
Y 1,1

t=1

π(Y 1,1
t=1, A

1, A2, C1, C2)p(Y 1,2 | Y 1,1, A1, A2, C1, C2)
p(Y 1,2, A1, A2 | C1, C2) Y 1,1

⎫⎬⎭×
p(Y 1,1, Y 1,2, A1, A2, C1, C2)

=
∑︂

Y 1,1
t=1,Y 1,2,C1,C2

{︃∑︂
Y 1,1

π(Y 1,1
t=1, A

1, A2, C1, C2)p(Y 1,2 | Y 1,1
t=1, A

1, A2, C1, C2)
p(Y 1,2, A1, A2 | C1, C2) Y 1,1×

p(Y 1,1 | Y 1,2, A1, A2, C1, C2)
}︃
× p(Y 1,2, A1, A2, C1, C2)
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=
∑︂

Y 1,1
t=1,Y 1,2,C1,C2

{︄
π(Y 1,1

t=1, A
1, A2, C1, C2)p(Y 1,2 | Y 1,1

t=1, A
1, A2, C1, C2)

p(Y 1,2, A1, A2 | C1, C2) E[Y 1,1 | Y 1,2, A1, A2, C1, C2]
}︄

p(Y 1,2, A1, A2, C1, C2)

=
∑︂

Y 1,1
t=1,Y 1,2,C1,C2

{︃
π(Y 1,1

t=1, A
1, A2, C1, C2)p(Y 1,2 | Y 1,1

t=1, A
1, A2, C1, C2)×

E[Y 1,1 | Y 1,2, A1, A2, C1, C2]
}︃
× p(C1, C2) = ψ

The rest of the terms are mean 0 by the properties of iterated expectations.

Next, we consider the case where only E[Y 1,1 | Y 1,2, A1, A2, C1, C2] and p(Y 1,2 | Y 1,1, A1, A2, C1, C2)
are specified correctly, and denote the rest of the misspecified models with an ∗. Now, consider the
following term:

E

⎡⎣ ∑︂
Y 1,1,Y 1,2

E[Y 1,1 | Y 1,2, A1, A2, C1, C2]p(Y 1,2 | Y 1,1, A1, A2, C1, C2)π(Y 1,1
t=1, A

1, A2, C1, C2)

⎤⎦
=

∑︂
Y 1,1,Y 1,2,C1,C2

E[Y 1,1 | Y 1,2, A1, A2, C1, C2]p(Y 1,2 | Y 1,1, A1, A2, C1, C2)×

π(Y 1,1, A1, A2, C1, C2)p(C1, C2) = ψ

The rest of the terms are mean 0, which can be seen by applying iterated expectation once.

Finally, Consider the case where p(Y 1,1, A1, A2 | C1, C2) and E[Y 1,1 | Y 1,2, A1, A2, C1, C2] are
correctly specified. Examining the term:

E

[︄{︄
I(A1 = a1)I(A2 = a2)π(Y 1,1

t=1, A
1, A2, C1, C2)

p(Y 1,1, A1, A2 | C1, C2)

}︄
E[Y 1,1 | Y 1,2, A1, A2, C1, C2]

]︄

=
∑︂

Y 1,1,Y 1,2,A1,A2,C1,C2

{︃
I(A1 = a1)I(A2 = a2)π(Y 1,1, A1, A2, C1, C2)

p(Y 1,1, A1, A2 | C1, C2)

}︃
×

E[Y 1,1 | Y 1,2, A1, A2, C1, C2]p(Y 1,1, Y 1,2, A1, A2, C1, C2)

=
∑︂

Y 1,1,Y 1,2,C1,C2

{︃
π(Y 1,1, A1, A2, C1, C2)
p(Y 1,1, A1, A2 | C1, C2)

}︃
E[Y 1,1 | Y 1,2, A1, A2, C1, C2]p(Y 1,1, Y 1,2, A1, A2, C1, C2)

=
∑︂

Y 1,1,Y 1,2,C1,C2

π(Y 1,1, A1, A2, C1, C2)E[Y 1,1 | Y 1,2, A1, A2, C1, C2]×

p(Y 1,2 | Y 1,1, A1, A2, C1, C2)p(C1, C2)
= ψ

The rest of the terms are mean 0 by an application of iterated expectations.
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B. Cellular Reprogramming: Plots
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Figure IV.1. Trajectories for the first 15 (of 32) dimensions for medium 2i. The blue
trajectory is derived from Gibbs compatible PCM and the orange trajectory is plotted from
the original dataset for comparison, sampled every 12 hours. See the next page for the
other dimensions.
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Figure IV.2. Trajectories for 17 (of the 32) dimensions for medium 2i, continued from
Fig. IV.1. The blue trajectory is derived from Gibbs compatible PCM and the orange
trajectory is plotted from the original dataset for comparison, sampled every 12 hours.
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Figure IV.3. Trajectories for the first 15 (of 32) dimensions for medium serum. The blue
trajectory is derived from Gibbs compatible PCM and the orange trajectory is plotted from
the original dataset for comparison, sampled every 12 hours. See the next page for the
other dimensions.
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Figure IV.4. Trajectories for 17 (of the 32) dimensions for medium serum, continued
from Fig. IV.3. The blue trajectory is derived from Gibbs compatible PCM and the orange
trajectory is plotted from the original dataset for comparison, sampled every 12 hours.
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