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Abstract

High-dimensional matrix and tensor data is ubiquitous in machine learning and statistics

and often exhibits low-dimensional structure. With the rise of these types of data is the

need to develop statistical inference procedures that adequately address the low-dimensional

structure in a principled manner. In this dissertation we study asymptotic theory and

statistical inference in structured low-rank matrix models in high-dimensional regimes where

the column and row dimensions of the matrix are allowed to grow, and we consider a variety

of settings for which structured low-rank matrix models manifest.

Chapter 1 establishes the general framework for statistical analysis in high-dimensional

low-rank matrix models, including introducing entrywise perturbation bounds, asymptotic

theory, distributional theory, and statistical inference, illustrated throughout via the matrix

denoising model. In Chapter 2, Chapter 3, and Chapter 4 we study the entrywise estimation

of singular vectors and eigenvectors in different structured settings, with Chapter 2 consid-

ering heteroskedastic and dependent noise, Chapter 3 sparsity, and Chapter 4 additional

tensor structure. In Chapter 5 we apply previous asymptotic theory to study a two-sample

test for equality of distribution in network analysis, and in Chapter 6 we study a model

for shared community memberships across multiple networks, and we propose and analyze

a joint spectral clustering algorithm that leverages newly developed asymptotic theory for

this setting.

Throughout this dissertation we emphasize tools and techniques that are data-driven,

nonparametric, and adaptive to signal strength, and, where applicable, noise distribution.

The contents of Chapters 2-6 are based on the papers Agterberg et al. (2022b); Agterberg

and Sulam (2022); Agterberg and Zhang (2022); Agterberg et al. (2020a) and Agterberg
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et al. (2022a) respectively, and Chapter 1 contains several novel results.
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Chapter 1

Introduction

Consider the Gaussian sequence model, where one observes n samples of the form

xi = µ+ σεi,

where εi ∈ Rd are d-dimensional standard Gaussian random variables and σ > 0 is a standard

deviation parameter. To keep the exposition straightforward, throughout this section we will

keep our discussion informal, though where necessary we will provide appropriate citations.

Define the sample mean x̄ = 1
n

∑︁n
i=1 xi. It is possible to show that x̄ satisfies

∥x̄− µ∥ ≤ Cσ

√︃
d log(n)

n
, (1.1)

with high probability (in n), where C is a universal constant (see, e.g., Theorem 3.1.1 of

Vershynin (2018)). Moreover, it is straightforward to check that

E∥x̄− µ∥2 = σ2
d

n
.

When d is small or finite, these bounds are sufficient to assert that ∥x̄− µ∥ is converging to

zero as n → ∞ (almost surely and in mean squared error). In addition, it holds that (e.g.,
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example 15.16 of Wainwright (2019))

inf
estimators ˜︁x of µ

sup
µ∈Rd

E∥˜︁x− µ∥2 ≥ cσ2
d

n
,

where the infimum is taken over all estimators ˜︁x of µ. Moreover, when d is finite and fixed,

it is well known (e.g., van der Vaart (2000)) that x̄ coincides with the maximum likelihood

estimate for µ, and hence is also asymptotically efficient. In essence, these results in tandem

suggest that x̄ is optimal for estimating µ (for some appropriate notion of optimality).

However, in many modern applications d can be large relative to n (say d ≈ n). There-

fore, despite its optimalty, x̄ may no longer be consistent for µ, as the bound σ2 dn may not

tend to zero as n→ ∞. In order to obtain consistent estimators for µ, a common theme in

high-dimensional statistics is to impose low-dimensional structural assumptions on the data-

generating mechanism. One common such mechanism is via sparsity, which in this setting

imposes the assumption that at most s of the entries of µ are nonzero. Since µ now belongs

to a restricted subset of Rd (i.e., the set of vectors with at most s nonzero coordinates),

it may be that with this additional knowledge one can find an estimator x̄(sparsity) that is

consistent for µ.

It can be shown (see Exercise 10.3.8 of Vershynin (2018)) that there is an estimator

x̄(sparsity) that satisfies

E∥x̄(sparsity) − µ∥ ≤ Cσ

√︃
s log(ed/s)

n
;

and, moreover, it holds that (Example 15.16, Wainwright (2019))

inf
Estimators ˜︁x of µ

sup
µ:µ has at most s

nonzero coordinates

E∥˜︁x− µ∥2 ≥ cσ2
s log(ed/s)

n
.

Consequently, as s→ d, one obtains the same rate as in the nonsparse setting, whereas the

rate improves when s is very small relative to d.

Therefore, we see that a key property emerges: by imposing low-dimensional structural

assumptions, one can maintain consistency (in a minimax sense) even in high dimensions.
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Informally, this setting refers to the fact that the underlying parameter of interest has low

intrinsic dimension, while living in a high ambient dimension. In modern data science the

data need no longer be Euclidean; for example, one may observe matrix or even tensor

data instead of vector valued data. Nonetheless, the story above still continues to be valid

even in these non-Euclidean settings, with the proviso that the low-dimensional structural

assumption now may be tailored to the data type. In many practical settings these low-

dimensional structural assumptions are actually motivated by concrete problem instances;

we shall see several examples in the following sections.

One common low-dimensional structural assumption to place on matrix data is the as-

sumption of low-rankedness. Here, in lieu of the mean vector being sparse, one instead

assumes that the mean matrix is low rank, where “low rank” means that its rank is “small”

relative to the row and column dimensions. In many settings it may not be the entire

underlying low-rank matrix in which we are interested, but rather its eigenvectors and sin-

gular vectors, or perhaps its individual entries. Therefore, a major focus of this dissertation

will be studying the estimation of eigenvectors, singular vectors, and related quantities in

asymptotic regimes where the row and column dimensions of the matrix are growing but

the rank remains small (either fixed or growing slowly). The focus here will be on obtain-

ing fine-grained (e.g., entrywise) bounds in the presence of noise that go beyond previous

(coarse-grained) bounds.

Beyond consistency, we are often also interested in performing hypothesis testing or

obtaining confidence intervals for the underlying low-rank matrix of interest (or its associated

properties). Therefore, another major focus of this work will be in developing the requisite

asymptotic theory and statistical inference procedures for these types of data. In what

follows we will elucidate the model more thoroughly, as well as provide several examples

that help to contextualize the problems that are studied in this dissertation.

Notation: Within this chapter and the corresponding appendix, for two sequences of num-

bers an and bn, we write an ≲ bn if there is a universal constant C such that an ≤ Cbn, and

we write an ≍ bn if an ≲ bn and bn ≲ an. In addition, we write an = O(bn) if an ≲ bn, and

we write an ≪ bn if an/bn → 0 as n → ∞. We also write an = ˜︁O(bn) if there exists some
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constant c > 0 such that an = O(bn log
c(n)); i.e., ˜︁O(·) hides logarithmic factors. Occasion-

ally we will use the letter C to denote some constant that is allowed to change from line to

line. We write ∥ · ∥ for the spectral norm or usual Euclidean norm on matrices and vectors

respectively, and we let bold letters U and S denote matrices. We let ei denote a standard

basis vector, and write Si· as the i’th row of a matrix S, viewed as a column vector. We

write ∥ · ∥F as the Frobenius norm on matrices, and Ir denotes the r× r identity. We write

N (0, η) for a Gaussian distribution with variance η. Finally, we write ∥ · ∥ψ2 as the Orlicz

norm of a random variable (see Appendix C.3).

1.1 High-Dimensional Low-Rank Matrix Models

In this work we consider a matrix generalization of the Gaussian sequence model, the “signal

plus noise” model, where we observe ˆ︁S of the form

ˆ︁S = S+N. (1.2)

Typically S is taken to be a matrix containing important population information and N is

noise, but S may instead be a tensor, or perhaps a collection of matrices. For now we focus

on the setting that S is a matrix.

By analogy to the example in the previous section, when ˆ︁S is high-dimensional (i.e., its

row and column dimensions are growing), without additional structural assumptions on S,

it may not be possible to obtain consistent estimation for S. However, in many practical

settings S naturally exhibits low rank structure, and hence it is possible to retain consistency.

The particular definitions of S and N change from problem to problem, but the underlying

mechanism remains the same – typically S has underlying low-rank structure (in addition to

possibly other structure) that is informed by the problem at hand, and N consists of noise.

In many problems of interest we are not directly interested in S itself but rather its

eigenvectors, singular vectors, or some function thereof, as these, rather than S itself, are

the parameter of interest or contain important population information. Moreover, as S is

low-rank, if one has a sufficiently strong estimate of its eigenvectors, then one may be able
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to translate these results to obtain a strong estimate of S itself.

In order to formalize and contextualize the types of statistical models we will be dis-

cussing, we consider several examples exhibiting the structure in (1.2).

• Matrix Denoising: Throughout this chapter we illustrate our main ideas via the

canonical problem of matrix denoising, which, while perhaps somewhat artificial, is

also arguably the simplest model that instills many of the main ideas behind the

signal plus noise model in (1.2). Assume that the matrix S is positive semidefinite and

rank r with eigendecomposition

S = UΛU⊤,

where U ∈ Rn×r is a matrix with r othornormal columns and Λ ∈ Rr×r is a diagonal

matrix consisting of the nonzero eigenvalues of S. The noise matrix N has entries

drawn according to

ENij = 0; EN2
ij = σ2,

with Nij independent for i ≤ j, with ∥Nij∥ψ2 ≤ σ (e.g., Nij are Gaussian with variance

σ2). We are interested in estimating the matrix U in a regime where n → ∞ (and

perhaps r → ∞ slowly).

• High-Dimensional Mixture Models: The mixture model is a standard statistical

model for high-dimensional community data (Amini and Razaee, 2021; Abbe et al.,

2022; Zhang and Zhou, 2022; Abbe et al., 2022; Amini and Razaee, 2021; Löffler et al.,

2021; Schiebinger et al., 2015; Vempala and Wang, 2004; von Luxburg, 2007; Ding and

Sun, 2019; Li et al., 2020a; Little et al., 2020). Suppose one has n observations, where

each observation i belongs to one of K different communities (that are unobserved).

Denote z : [n] → [K] as the assignment vector associating each index i to its associated

community; i.e. z(i) = k if observation i belongs to community k. Suppose one
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observes

Xi = µz(i) + Yi,

where µ1, . . . , µK are K different mean vectors (associated to each community), and

Yi is a mean-zero independent random variable. To translate this model into the signal

plus noise setting, let X ∈ Rn×d denote the matrix whose rows are Xi, and similarly

for M and Y respectively. Then one observes

X = M+Y,

where M has at most K unique rows (and hence is rank at most K).

When d is small or finite, it is feasible to estimate M, but in high dimensions

(e.g. d ≳ n), estimating M becomes infeasible (information-theoretically) unless the

noise is prohibitively small. However, suppose one is only interested in estimating the

communities (as opposed to the matrix of means M itself). It can be shown that if

M has singular value decomposition M = UΛV⊤, then it holds that U = ZR, where

Z ∈ {0, 1}n×K is a matrix with exactly one nonzero entry in each row (corresponding

to the community membership of each observation), and R is a K × r matrix with

r = rank(M) with non-repeated rows. Consequently, knowledge of the matrix U is

sufficient for community recovery, even in high dimensions.

In Chapter 2 we consider application of our theoretical results in a general model

to this problem when the rows of Y have heterogeneous covariances.

• Principal Component Analysis: Suppose one has n observations Xi ∈ Rd such

that

EXi = 0; EXiX
⊤
i = Σ.
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Assume that

Σ = Σ0 +Σ⊥,

where Σ0 is a rank r matrix of the form UΛU⊤, where Λ is the diagonal matrix of

r leading eigenvalues of Σ, and Σ⊥ consists of the bottom d − r eigenvectors and

eigenvalues of Σ.

In principal component analysis one wishes to estimate the matrix U, whose

columns can be interpreted as the directions with the largest component of the vari-

ance. Consider estimating Σ with the sample covariance ˆ︁Σ = 1
n

∑︁n
i=1XiX

⊤
i . Then to

translate this into the signal plus noise model, consider the decomposition

ˆ︁Σ = Σ0⏞⏟⏟⏞
S

+Σ⊥ +
(︁ˆ︁Σ−Σ

)︁⏞ ⏟⏟ ⏞
N

.

Unlike the matrix denoising model, the noise matrix N is not exactly mean zero, but

instead satisfies ENU = 0; that is, N is only mean-zero after projection onto the

subspace spanned by the leading eigenvectors of Σ. When the eigenvalues of Σ0 are

sufficiently separated from the eigenvalues of Σ⊥ (informally, a large portion of the

variance is contained in the first r directions), it is possible to estimate U.

In Chapter 3 we consider the estimation of U under the additional assumption that

U is sparse, which is known as sparse principal component analysis. See Chapter 3 for

further details.

• Statistical Network Analysis: In network data one only observes pairwise inter-

actions (edges) between nodes (vertices). Define the adjacency matrix A associated

to a network by setting Aij to be one if there is an edge between vertex i and vertex

j, where there are n vertices. Suppose that the graph is undirected, so that A is

symmetric.

In the latent space model, each vertex i has associated to it a low-dimensional

Euclidean vector Xi ∈ Rd. A natural probabilistic model is that the edge probabilities

are formed by a (pseudo) inner product between the latent vectors of the given vertices.
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Explicitly, one has P(Aij = 1) = X⊤
i Xj . Let X ∈ Rn×d denote the matrices whose

rows are the latent vectors Xi. Then we can write

A = XX⊤⏞ ⏟⏟ ⏞
S

+
(︁
A−XX⊤)︁⏞ ⏟⏟ ⏞

N

,

Here the matrix XX⊤ is low rank whenever d≪ n, and the noise A−XX⊤ is centered

Bernoulli noise. One can consider estimating the matrix X via the leading eigenvec-

tors of the adjacency matrix A, scaled by the square roots of their corresponding

eigenvalues.

In Chapter 5 we consider the setting where the inner product is replaced by an

pseudo inner product and the latent vectors Xi are drawn from a distribution FX . We

consider observing two networks with adjacency matrices A(1) and A(2) with latent

position distributions FX and FY respectively, and we consider testing whether FX =

FY (up to identifiability).

In addition, in Chapter 6 we consider observing L networks on the same vertices

from a model where the vectors Xi are shown to lie on rays. Here the unique rays

can be interpreted as communities, where two vertices are in the same community in

one network if their latent vectors lie on the same ray. We consider a setting wherein

the directions of the rays may change from network to network but the communities

remain the same, and we consider jointly estimating the communities with a spectral

clustering algorithm.

• Low-Rank Tensors In low-rank tensor data, each matricization of the underlying

signal tensor is low-rank, where we defer the formal definition of matricization to Chap-

ter 4. Unlike the matrix singular value decomposition, tensor singular value decompo-

sition is ill-defined in general. However, for certain low-rank tensor structures there are

efficient algorithms, and one such algorithm to estimate the singular vectors is via the

higher-order orthogonal iteration (HOOI) algorithm, which uses both low-rank struc-

ture and the additional tensor structure. In Chapter 4 we study a community-based

model for tensor data and propose an algorithm to estimate community memberships
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based on HOOI and the underlying spectral geometry.

In all of the above models it is the singular vectors or related quantities in which we are

interested. Moreover, in many of the settings above we are not just interested in consistent

estimation, but rather in obtaining valid statistical procedures for hypothesis testing and

uncertainty quantification. To obtain such procedures, one must necessarily have a good

understanding of the limiting asymptotic and distributional properties of given estimates.

Therefore, a focus of this dissertation is in establishing asymptotic and distributional theory

for eigenvectors, singular vectors, and related quantities in high-dimensional regimes, where

“asymptotic and distributional theory” refers to studying estimation error rates and limit

theorems in appropriate asymptotic regimes.

In order to discuss the primary technical motivation of this dissertation, in the following

section we provide a review of matrix perturbation theory and its application to a statistical

context. In Section 1.3 we discuss how entrywise perturbation bounds can be used to obtain

a more fine-grained understanding of algorithms and techniques, which are the major focuses

of Chapter 3 and Chapter 4. Next, in Section 1.4 we discuss different types of asymptotic

and distributional theory for these contexts, the first of which is an important tool for

proving the main results in Chapter 6 and the second of which forms the main results in

Chapter 2. Finally, in Section 1.5 we discuss statistical inference, which is the primary focus

of Chapter 5, and in Section 1.6 we discuss the main contributions of this thesis.

Throughout all of this chapter we use matrix denoising as a running example to be able

to put these ideas in context. While matrix denoising is perhaps too simple of a model to

use in practice, as a mathematical tool it is useful to help understand the underlying ideas.

In some cases the results presented will be novel (having not previously appeared in the

literature besides in this dissertation).

1.2 Primer on Matrix Perturbation Theory

Given a matrix-valued observation

ˆ︁S = S+N,

9
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two canonical questions in classical matrix perturbation theory are:

1. Can we quantify how much the eigenvalues of ˆ︁S change as a function of N?

2. Can we quantify how much the eigenvectors of ˆ︁S change as a function N?

If S is rectangular or non-symmetric, we can also consider the singular values or singular

vectors instead.

A partial answer to the first question is given by the famous Weyl’s inequality, which

states that the eigenvalues (resp. singular values) are bounded via

|ˆ︁λi − λi| ≤ ∥N∥,

where ˆ︁λi are the (ordered) eigenvalues of ˆ︁S and λi are the eigenvalues of S.

To answer the second question in a quantitative manner, one must first quantify in what

sense the eigenvectors are converging. One way to quantify eigenvector perturbation is via

the sinΘ distance between subspaces defined as follows. For a given matrix U ∈ Rn×r

with orthonormal columns, let U⊥ ∈ Rn×n−r denote the matrix with orthonormal columns

satisfying U⊤
⊥U = 0 (note that U⊥ is not necessarily unique). The sinΘ distance between

two matrices of eigenvectors U and ˆ︁U is given by

∥ sinΘ(ˆ︁U,U)∥ = ∥U⊤
⊥
ˆ︁U∥;

this quantity is unique (despite the non-uniqueness of U⊥). One can also replace the operator

norm ∥ · ∥ with any unitarily invariant norm (e.g. ∥ · ∥F ). It can be shown that (see Lemma

1 of Cai and Zhang (2018) or Lemma 31) that the (spectral) sinΘ distance satisfies

∥ sinΘ(ˆ︁U,U)∥ ≤ inf
W:WW⊤=Ir

∥ˆ︁U−UW∥ ≤
√
2∥ sinΘ(ˆ︁U,U)∥.

Similar inequalities (with slightly different constants) can be obtained when using the Frobe-

nius norm instead of the spectral norm. We refer the reader to Bhatia (1997) for the details.

In essence, the inequalities above reflect the fact that subspaces are defined up to a global

rotation (hence the appearance of the additional orthogonal matrix), the multidimensional
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analogue of sign-flips.

Remark 1 (The Minimizing Orthogonal Matrix). For the spectral norm, the orthogonal

matrix minimizing ∥ˆ︁U−UW∥ cannot be computed in closed form. However, the Frobenius

norm admits an analytic expression. Define the orthogonal matrix

W∗ := argmin
W:WW⊤=Ir

∥ˆ︁U−UW∥F .

It can be shown that W∗ = sgn(U⊤ ˆ︁U), where sgn(·) is the matrix sign function, defined

as follows. For a given square matrix M, let W1ΣW
⊤
2 denote its singular value decom-

position. Then the matrix sign function is defined via sgn(M) := W1W
⊤
2 . The matrix

W∗ = sgn(U⊤ ˆ︁U) has many appealing properties that will be useful in the subsequent sec-

tions and chapters.

Henceforth we consider ˆ︁U the leading r eigenvectors of ˆ︁S and U the leading r eigenvectors

of S.

A classic perturbation bound for eigenvectors is then given by the famous Davis-Kahan

Theorem (Bhatia, 1997), which states that

∥ sinΘ(ˆ︁U,U)∥ ≤ ∥N∥
δ
,

where δ = max{|λr − ˆ︁λr+1|, |λr+1 − ˆ︁λr|, provided δ ≥ 2∥N∥. The result also holds for

any other unitarily invariant norm. Extensions to singular vectors are possible via Wedin’s

Theorem or Theorem 1 of Cai and Zhang (2018).

Now consider the setting that S is rank r; i.e., λi = 0 for i ≥ r + 1. Suppose that

λr/4 ≥ ∥N∥. Then by Weyl’s inequality,

|ˆ︁λr − λr| ≤ ∥N∥ ≤ λr/2,

so that ˆ︁λr ≥ λr/2. Similarly,

|ˆ︁λr+1| = |ˆ︁λr+1 − λr+1| ≤ ∥N∥,

11
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so that ˆ︁λr+1 ≤ λr/4. Consequently,

δ = max{|λr − ˆ︁λr+1|, |λr+1 − ˆ︁λr|} ≥ λr/2,

and hence the Davis-Kahan Theorem implies that

∥ sinΘ(ˆ︁U,U)∥ ≤ 2
∥N∥
λr

.

In a statistical context when N is random, such a bound is useful as it transfers a statement

about the random quantity δ (which depends on N through the eigenvalues of ˆ︁S) to the

nonrandom quantity λr.

Beyond the Davis-Kahan Theorem, explicit series expansions for the projection matricesˆ︁Uˆ︁U⊤ about UU⊤ (from which versions of the Davis-Kahan Theorem can be derived) have

been studied in Kato (1995) (for the case of a single eigenvector), and, more recently, in Xia

(2021) (for multiple eigenvectors). In Chapter 2 we apply this expansion to establish our

main results.

1.2.1 Probabilistic Bounds and Application to Matrix Denoising

In many situations the bounds in the previous subsection can be combined with probabilistic

concentration inequalities to yield high-probability upper bounds for the convergence of ˆ︁U to

U in sinΘ distance. In the matrix denoising setting, suppose that N consists of independent

Gaussian noise with common variance σ. Then by Bandeira and Handel (2016), it holds

that

∥N∥ ≤ Cσ
√
n

with probability at least 1 − n−20, provided n is sufficiently large. If one further assumes

that λr ≥ Cσ
√
n, then the Davis-Kahan Theorem implies that

∥ sinΘ(ˆ︁U,U)∥ ≤ C
σ
√
n

λr
.
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Consequently, whenever λr/σ ≫
√
n, the eigenvectors of ˆ︁S are consistent for the eigenvectors

of S in sinΘ distance as n→ ∞.

Remark 2 (The Signal to Noise Ratio). Observe that the term λr/σ is invariant to si-

multaneous rescaling of the magnitude of the noise and the eigenvalues of S. In the matrix

denoising setting λr/σ can be understood as the signal-to-noise ratio (SNR), where the con-

dition λr/σ ≫
√
n is required for consistency in sinΘ distance. In the subsequent chapters

we will encounter other notions of the SNR that depend on different problem parameters

(as quantified through some notion of signal strength and some notion of noise standard

deviation). While the particular definition of SNR may vary from problem to problem, the

fundamental concept remains the same.

Remark 3 (Optimality of Davis-Kahan Theorem for Matrix Denoising). A natural question

is whether the condition λr/σ ≫
√
n is not just sufficient, but also necessary for consistency.

It can be shown that the minimax rate for subspace estimation in sinΘ distance can be lower

bounded by c
√
n

(λr/σ)
(Cai and Zhang, 2018), where c is some universal constant. Consequently,

the upper bound implied by the Davis-Kahan Theorem (in the context of Matrix Denoising)

is actually optimal up to universal constants.

1.3 Entrywise Perturbation Bounds

Thus far we have seen that by combining classical (deterministic) eigenvector perturbation

theory with concentration inequalities, one can show that the eigenvectors and singular vec-

tors are consistent in sinΘ distance. In some practical settings, such as in high-dimensional

mixture models, these types of perturbation bounds can also yield upper bounds on, say,

the misclustering error rate of K-means applied to the rows of the estimated singular vec-

tor matrices (as in, e.g., Lei and Rinaldo (2015)). However, in clustering problems, the

bounds implied by the Davis-Kahan Theorem (and many similar bounds) may be sub-

optimal. Roughly speaking, for clustering problems the minimax lower bounds are often

exponential in the signal to noise ratio, and the misclustering error rates implied by the

Davis-Kahan Theorem are typically polynomial in the signal to noise ratio. In this man-

ner the Davis-Kahan Theorem suffices to prove consistency, though it may yield a slower
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convergence rate than is information-theoretically attainable.

Furthermore, the misclustering error bounds implied by the Davis-Kahan Theorem may

be too weak to guarantee, for example, perfect clustering, or guaranteeing that every com-

munity is estimated correctly with probability tending to one (misclustering rates instead

typically show all but a vanishing fraction of communities are estimated correctly). In ad-

dition, sinΘ distances are not metrics on matrices, but rather subspaces, and hence do not

necessarily imply that the individual entries of ˆ︁U are converging to U, but rather that the

angles between the subspaces corresponding to these matrices are tending to zero. Con-

sequently, sinΘ bounds are often too coarse to understand how precisely the estimated

eigenvector matrices are converging, and therefore cannot be applied to study subsequent

inference with eigenvectors, singular vectors, or related quantities. For example, in network

analysis problems such as in Chapter 5, finer-grained characterizations of eigenvectors are

important to establish the consistency of hypothesis testing procedures.

In entrywise perturbation theory one considers the entrywise perturbation of the eigen-

vectors (up to an orthogonal transformation). Two canonical entrywise norms to use are the

entrywise max norm and the ℓ2,∞ norm, with the latter defined via

∥M∥2,∞ := max
i

∥Mi·∥.

The ℓ2,∞ norm exhibits a number of appealing geometric properties discussed in Cape et al.

(2019b), and, since for any matrix M it holds that ∥M∥max ≤ ∥M∥2,∞, the ℓ2,∞ perturbation

has been more often considered in the literature.

Beyond simply providing perfect clustering results, entrywise perturbation bounds can

be used for the following reasons:

• A refined understanding of the effect of noise on signal: While the deterministic

bounds discussed in the previous sections can provide consistency in sinΘ distance,

they only do so through the ratio of the overall magnitude of the noise term ∥N∥ and

the smallest nonzero singular value λr. Entrywise perturbation bounds can be used to

establish a more refined understanding of how the noise N affects estimation through

the notion of incoherence, defined formally for symmetric matrices in the following
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subsection.

• Guarantees for nonconvex algorithm initializations: A number of nonconvex

algorithms begin with a so-called spectral initialization, which uses the eigenvectors

of an appropriate matrix as an initial starting point for an iterative sequence (as

in Chapter 4). Entrywise perturbation bounds can be used to study the entrywise

convergence of nonconvex algorithms via an inductive argument.

• Implicit regularization: A number of nonconvex algorithms often require not only

that the initializations lie within a region of contraction, but also that the initializations

have certain desirable properties. Many algorithms explicitly regularize to induce these

properties – Theorem 1 can be used to show that these properties hold automatically,

without requiring the need for explicit regularization.

• Precursors to asymptotic theory and distributional theory: Entrywise per-

turbation bounds and their respective proofs are often required en route to developing

asymptotic theory and distributional theory, both major focuses of this dissertation.

These further results can be used to establish stronger upper bounds in applications,

such as exponential misclustering error rates (e.g. Chapter 6).

• Subsequent inference: Finally, entrywise perturbation and the following asymptotic

and distributional theory can be used to justify statistical inference procedures built

from eigenvectors and singular vectors, as studied in Chapter 5.

Both Cape et al. (2019b) and Abbe et al. (2020) initiated the entrywise analysis of

eigenvectors of symmetric matrices, with the first focusing on general deterministic tools and

techniques, and the second focusing on a general “leave-one-out” analysis technique. Beyond

these two, extensions and refinements have been considered for rectangular matrices (Cai

et al., 2021a), network analysis problems (Jin et al., 2019), principal component analysis

(Yan et al., 2021), and kernel spectral clustering (Abbe et al., 2022). A general procedure

for obtaining entrywise eigenvector perturbation bounds is described in Chen et al. (2021c),

and some parts of the subsequent subsection are motivated by their discussions. We refer

the interested reader to the related work sections of Chapters 2, 3, and 4.
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CHAPTER 1. INTRODUCTION

1.3.1 Entrywise Perturbation Bounds for Matrix Denoising

We now detail a general entrywise perturbation bound for matrix denoising. In order to do

so we first discuss the notion of incoherence for symmetric matrices.

The incoherence parameter of a symmetric n × n matrix S = UΛU⊤ of rank r with

matrix of eigenvectors U ∈ Rn×r is defined as the smallest number µ0 such that

max
i

∥Ui·∥ ≤ µ0

√︃
r

n
.

If S is the matrix with one nonzero entry λ, then it holds that µ0 =
√
n, and if S is the

constant matrix with entries λ/n, it holds that µ0 = 1. In this manner the incoherence

of a matrix is a measure of spikiness of the underlying matrix. Informally speaking, if S

is “too spiky” (i.e., with large µ0), then it may be difficult to obtain consistent row-wise

estimation of U. This intuition manifests in the following result, establishing the entrywise

perturbation of ˆ︁U (the leading r eigenvectors of ˆ︁S).

Theorem 1 (Entrywise Perturbation Bounds for Symmetric Matrix Denoising). Consider

the matrix denoising problem and suppose that λr/σ ≥ C
√︁
n log(n) for some sufficiently

large constant C. Suppose that Nij are subgaussian random variables with ψ2 norm at most

σ and variance σ2 for i ≤ j. Define W∗ := sgn(U⊤ ˆ︁U), and suppose S is incoherent with

incoherence constant µ0. Then there exists a universal constant C ′ such that with probability

at least 1−O(n−20)

∥ˆ︁U−UW∗∥2,∞ ≤ C ′µ0
√︁
r log(n)

λr/σ
.

We now discuss the consequences of this bound in the context of the previous section.

• A refined understanding of the effect of noise on signal: In comparison to the

bound implied by the Davis-Kahan Theorem, which states that with high probability

∥ˆ︁U−UW∗∥F = inf
W

∥ˆ︁U−UW∥F ≤
√
r inf

W
∥ˆ︁U−UW∥ ≲

σ
√
rn

λr
,

Theorem 1 is smaller by a factor of µ0
√︁
log(n)/

√
n. When µ0 = O(1) (i.e., S is
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“not too spiky”), this result shows that the errors are spread out amongst the rows

of ˆ︁U. Furthermore, as µ0 transitions from 1 to
√
n (or S becomse “more spiky”), we

see that we eventually match the bound implied by the Davis-Kahan Theorem (up

to logarithmic terms), which demonstrates how the spectral properties of S interact

with the entrywise noise through the incoherence parameter µ0. In contrast, the sinΘ

perturbation bound does not depend on the incoherence parameter.

• Implicit Regularization: Observe that by Theorem 1 it holds that

∥ˆ︁U∥2,∞ ≤ ∥UW∗∥2,∞ +
µ0

√
r√
n

(︃
C ′
√︁
n log(n)

λr/σ

)︃
≤ 2µ0

√︃
r

n
,

which shows that ˆ︁S has incoherence parameter at most 2µ0 (here we have used the

fact that since W∗ is orthogonal, ∥UW∗∥2,∞ = ∥U∥2,∞).

Many nonconvex algorithms proceed with an initial estimate of the eigenvectors of

an appropriate matrix, but they occasionally require an additional thresholding step

obtained by setting any rows of the eigenvectors that are “too large” to some tuning

parameter δ (e.g., Jing et al. (2021)). Typically the additional thresholding step is

performed to guarantee that the empirical eigenvectors are also incoherent, and hence

Theorem 1 shows that no additional thresholding is needed to maintain incoherence.

In other words, no explicit regularization (in the form of thresholding) is required to

induce incoherence.

• Precursors to limit theorems, distributional theory, and subsequent infer-

ence: The proof and statement of Theorem 1 are important steps necessary to es-

tablish the results of Theorem 2, Theorem 3, and Theorem 4 which will be stated

in the next sections. These results study limit theorems, distributional theory, and

subsequent inference with eigenvectors.

Remark 4 (Comparison to Previous Bounds). A similar result in this context can be found

in Theorem 4.2 of Chen et al. (2021c), who demonstrate that

∥ˆ︁U−UW∗∥2,∞ ≲
µ0σκ

√
r

λr
+
σ
√︁
r log(n)

λr
,
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CHAPTER 1. INTRODUCTION

where κ = λ1/λr is the condition number of S. Observe that this bound is slightly weaker

if µ0 = O(1), and, moreover, their bound holds only for almost surely bounded noise. In

contrast, our result above has no dependence on the condition number κ when µ0 = O(1).

Furthermore, our proof also lends itself easily to deriving the asymptotic expansions and

distributional theory that we will study in the subsequent sections.

Remark 5 (Optimality). Recall that a minimal information-theoretical threshold for con-

sistency in sinΘ distance is that λr/σ ≫
√
n. Theorem 1 requires that λr/σ ≥ C

√︁
n log(n)

for some sufficiently large constant C, and proves consistency in ℓ2,∞ distance if λr/σ ≫√︁
n log(n). Consequently, the condition in Theorem 1 is optimal up to the

√︁
log(n) factor.

1.4 Asymptotics and Distributional Theory

While Theorem 1 establishes that the entries of ˆ︁U are converging to the entries of U (up

to orthogonal transformation) when µ0 and r are sufficiently small, it falls short of pro-

viding the types of asymptotic expansions and distributional theory needed for statistical

inference. For example, in Chapter 6 we study the misclustering error rate of a proposed

clustering algorithm using estimated eigenvectors, and Theorem 1 is unable to provide such

a rate. Consequently, in many settings, it is useful to further refine the notion in which ˆ︁U
is converging to U. Throughout this section ˆ︁U and U can be replaced with empirical and

population estimates of eigenvectors, singular vectors, or scaled eigenvectors (see Chapter 5).

In classical univariate Gaussian mean estimation (with variance σ2), it holds that x̄→ µ

as n → ∞, and, furthermore,
√
n(x̄ − µ) → N (0, σ2) in distribution as n → ∞. The

additional scaling of
√
n demonstrates that by “exploding” the errors by

√
n, one obtains

a Gaussian distribution. Therefore, by analogy, we are interested in studying under what

scaling ˆ︁U−UW∗ is Gaussian. Since ˆ︁U is a random variable whose dimensions are growing

with n, it is useful to study only its individual rows. By studying distributional theory, we

can determine how precisely the noise and signal interact, and interesting phenomena can

manifest. See Chapter 2 for an example of this.

Beyond distributional theory, it is also useful to study how precisely the error rate in

Theorem 1 comes about via the notion of asymptotic expansions. Roughly speaking, in
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this dissertation we refer to “asymptotic expansions” as a means to express ˆ︁U as U plus

a first-order correction term that is linear or nearly linear in the noise. These types of

asymptotic expansions can yield an even more refined understanding of the bounds in the

previous section, allowing for stronger results. For example, in Chapter 6 by deriving an

asymptotic expansion for the output of our proposed estimator we are able to establish an

exponential misclustering error rate (as opposed to polynomial). Furthermore, asymptotic

expansions can be used to develop other subsequent inference procedures as in Chapter 5.

1.4.1 Asymptotics for Matrix Denoising

We now consider an asymptotic expansion for the eigenvectors of ˆ︁U in the matrix denoising

context.

Theorem 2 (First-Order Asymptotic Expansion for Matrix Denoising). Consider the matrix

denoising problem and suppose that λr/σ ≥ C
√︁
n log(n) for some sufficiently large constant

C. Suppose that Nij are subgaussian random variables with ψ2 norm at most σ and variance

σ2 for i ≤ j. Define W∗ := sgn(U⊤ ˆ︁U), and suppose S is incoherent with incoherence

constant µ0. There is an event E satisfying P
(︁
E
)︁
≥ 1− n−10 such that

ˆ︁UW⊤
∗ −U = NUΛ−1 + Γ,

where

∥Γ∥2,∞ ≲
µ0
(︁
r +

√︁
r log(n)

)︁
√
n(λr/σ)

+
µ0

√
rn log(n)

(λr/σ)2
.

Recall that Theorem 1 yields an entrywise bound of order ˜︁O(︃ 1
λr/σ

)︃
when r, µ0 = O(1).

Theorem 2 demonstrates that the eigenvectors ˆ︁U are (up to orthogonal transformation)

equal to U plus a term that is linear in the noise (the term NUΛ−1) and a second-order

residual term. In contrast to Theorem 1, which only reflects the order of the leading-order

term NUΛ−1, Theorem 2 explicitly characterizes the structure of the leading-order term.

In addition, since λr/σ ≥ C
√︁
n log(n), the higher-order term Γ is of significantly smaller

order than the bound obtained in Theorem 1. The proof of Theorem 2 relies on the proof
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of Theorem 1.

Remark 6 (Comparison to Previous Results). To the best of our knowledge, Theorem 2 is

novel in this particular setting, though similar results have been obtained previously. In Yan

et al. (2021) the authors demonstrate the the singular vectors admit a similar asymptotic

expansion, but their results do not hold for eigenvectors as ours do here; consequently, their

results are not immediately applicable.

We next consider developing distributional theory for the rows of ˆ︁U. For convenience

we consider the setting that µ0, r, κ ≍ 1; this condition can be relaxed with more careful

tabulation of error terms (here κ = λ1/λr is the condition number of S).

Theorem 3 (Central Limit Theorem for Rows in Matrix Denoising). Consider the matrix

denoising setting with r fixed, where each Nij are subgaussian random variables with ψ2

norm at most σ and variance σ2. Suppose that the condition number κ of S is bounded, and

that µ0 = O(1). Suppose further that λr/σ ≫
√
n log(n). Then it holds that

Λ

σ

(︃ˆ︁UW⊤
∗ −U

)︃
i·
→ N (0, Ir)

in distribution as n→ ∞.

This result, which is based on the technical tools used to develop Theorem 1, further

refines the notion in which the error decays at an order λr/σ. In classical (univariate,

Gaussian) mean estimation, the error rate for estimation is roughly of order ˜︁O( σ√
n
), and, by

“exploding” the errors by
√
n/σ, one obtains a standard Gaussian distribution. Similarly,

Theorem 3 demonstrates that by “exploding” the error by λr/σ, one obtains a standard

Gaussian distribution.

Remark 7 (Asymptotic Variance). Observe that the asymptotic covariance for the i’th row

of ˆ︁U is given by the matrix 1
σΛ. In other words, the i, l entry of ˆ︁U is approximately Gaussian

with mean Uil and variance λl/σ (up to orthogonal transformation). Roughly speaking, the

standard deviations of the entries of the l’th singular vector are proportional to the l’th

eigenvalue. Consequently, this phenomenon showcases the fact that the variance increases
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when moving further into the spectrum. In Chapter 2 we note a similar phenomenon occurs

for the estimated singular vectors.

Remark 8 (Optimality). The condition that λr/σ ≫
√
n log(n) is stronger than the condi-

tion λr/σ ≫
√
n required for consistency in sinΘ distance by a factor of log(n). In the proof

of this result we did not put much effort into eliminating logarithmic terms, and it may be

that further improvements are possible down to the condition λr/σ ≫
√
n. However, such

refinements are cumbersome and not the main point of this section.

1.5 Statistical Inference

Thus far we have considered entrywise convergence rates (Theorem 1), asymptotic expan-

sions (Theorem 2), and distributional theory (Theorem 3) for eigenvectors, singular vectors,

and related quantities. Many similar (albeit more complicated) results form the cornerstone

of the main results in subsequent chapters. However, in many settings, while these results

are elegant and mathematically interesting, they are not immediately practical, as one may

need to estimate additional parameters of interest or perform some hypothesis test that

depends on an asymptotic distribution that requires knowledge of some parameter of the

distribution. These analyses are intimately tied to the particular inference problem at hand,

and, as such, may require case-by-case analysis.

Potential inferential problems of interest may include:

• Confidence intervals and regions for eigenvectors and singular vector esti-

mates: In many settings one may require a high degree of confidence in an estimate,

such as in applications to the medical sciences. While results concerning asymptotic

and distributional theory may reveal the structure of how the noise interacts with the

signal through its low-dimensional structure, they often fail to provide a means for

obtaining confidence intervals or regions for estimates.

• Testing vertex memberships in network analysis: Consider a network model

where vertices are permitted to belong to a convex combination of communities; i.e.,

each vertex has a membership vector describing the intensity of membership in each
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community (see, e.g., Chapter 4 for a similar model). Alternatively, consider a setting

wherein each vertex has associated to it a latent low-dimensional Euclidean vector.

In either setting one may be interested in testing whether two vertices have the same

membership vectors or the same latent vectors. The results in the subsequent section

are motivated by several works studying this hypothesis test (Fan et al., 2022; Du and

Tang, 2022).

• Global network hypothesis testing: Given a single network or multiple networks,

there are a number of reasonable tests of practical interest. Consider, for example, a

goodness-of-fit test, or the two-sample test of equality of distribution for a network.

The results in the previous section do not establish whether test statistics constructed

from estimated quantities can yield consistent hypothesis testing in general. In Chap-

ter 5 we demonstrate that a test statistic built from scaled eigenvectors yields consistent

testing by applying previous asymptotic theory to the particular setting we consider.

• Uncertainty quantification and hypothesis testing for algorithms and tech-

niques: Beyond simply running an algorithm, one may be interested obtaining confi-

dence intervals for the final output. The tools and techniques in the previous section

can be used to derive confidence intervals and testing guarantees for estimates con-

structed from observations, providing a data-driven manner to quantify the uncertainty

of an algorithm.

In all of these settings, while additional analysis may be required to demonstrate consistency

of a given inference procedure, it is through the analysis in the previous sections that we

are able to arrive at the intuition behind developing these tools.

1.5.1 Hypothesis Testing in Matrix Denoising

For our final application to matrix denoising, we consider a hypothesis test statistic inspired

by some of the ideas in Fan et al. (2022) and Du and Tang (2022), where we consider testing
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whether two given rows of S are equal. Explicitly, consider the hypotheses

H0 : Si· = Sj·;

HA : Si· ̸= Sj·.

Note that since S is low rank, under the null it holds that (UΛ)i· = (UΛ)j·. Our test statistic

is motivated by this idea.

Since we do not have access to UΛ, we propose to use ˆ︁Uˆ︁Λ, and we construct a test

statistic defined via

T 2
ij :=

1

2σ2
∥(ˆ︁Uˆ︁Λ)i· − (ˆ︁Uˆ︁Λ)j·∥2,

where we assume that σ is known for convenience. The following result demonstrates the

asymptotic distribution of T 2
ij under the null and local alternatives respectively.

Theorem 4. Instate the conditions of Theorem 3 and define

T 2
ij : =

1

2σ2
∥(ˆ︁Uˆ︁Λ)︁

i· − (ˆ︁Uˆ︁Λ)j·∥2.
Then:

• (Consistency under the null) If Si· = Sj·, it holds that T 2
ij → χ2

r, where χ2
r denotes a

χ2 random variable with r degrees of freedom.

• (Consistency under local alternatives) If it holds that ∥Si· − Sj·∥ ≫ σ, then it holds

that P(T 2
ij > C) → 1 for any C > 0. If instead it holds that 1

2σ2 ∥Si· − Sj·∥2 → µ > 0,

then T 2
ij → χ2

r(µ), where χ2(µ) denotes a noncentral χ2 distribution with noncentrality

parameter µ and r degrees of freedom.

Theorem 4 demonstrates that the test statistic T 2
ij is asymptotically consistent under

the null and the local alternative ∥Si· − Sj·∥ ≫ σ. In essence, Theorem 4 demonstrates

that despite only having access to the matrix ˆ︁S, one can still perform valid and principled

statistical inference by harnessing the low-rank structure. This observation is used as a

guiding principle for the rest of this dissertation. The hypothesis test considered in this
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section is by no means the only test or statistical inference problem of interest; however, it

is useful to establish the spirit of the types of problems that may be practically important,

but still statistically principled.

Remark 9 (Relationship to Previous Results). The test statistic in this section is closely

inspired by similar test statistics for related problems considered in Fan et al. (2022) and Du

and Tang (2022), both of whom study a related problem in network analysis. To the best of

our knowledge, such a result in a general matrix denoising setting has not been considered

in the literature. Since we assume homoskedasticity and knowledge of σ2, our test statistic

requires no estimation of the covariance matrix, whereas these other two require estimation

of the limiting covariance. Furthermore, our local power result is likely optimal given the

local power of the Hotelling T 2 test statistic in r dimensions, something that is obfuscated

in the network setting (with heteroskedastic and non (sub)Gaussian noise).

1.6 Contributions of This Thesis

We now outline in more detail the contributions of this thesis, as well as some potential

avenues for future work.

• Chapter 2: In this chapter we consider a generalization of the matrix denoising model,

where the signal matrix is rectangular and low rank, and where the noise matrix is

permitted to have dependence within rows and heteroskedasticity between them. We

present an estimator for the left singular vectors of the signal matrix, and we show that

our estimator is asymptotically Gaussian around the true left singular vectors (modulo

orthogonal transformation), with limiting covariance dependent on how the signal and

noise interact with each other. We also apply our results to high-dimensional mixture

models, establishing consistency of data-driven confidence regions in the fixed-rank

setting. With respect to this chapter, the main results in Chapter 2 are most closely

related to Theorem 3.

• Chapter 3: This chapter considers the sparse principal component analysis (sparse

PCA) model, where the leading few eigenvectors of the population covariance are
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assumed to be sparse. Under an assumption of sparsistency (see Chapter 3), we

establish ℓ2,∞ perturbation bounds of a similar form to Theorem 1 for this model.

These results reveal how the low-rank structure, sparsity structure, and noise interact.

• Chapter 4: In this chapter we consider low Tucker rank tensors, which are a form

of low-rank matrix model with additional tensorial structures. We study a model

for community membership for tensor data, and we propose an estimator for the

membership matrices. To prove our main results we also establish ℓ2,∞ perturbation

bounds for the output of higher-order orthogonal iteration, an algorithm for computing

the tensor singular value decomposition that uses the additional tensorial structure.

Our main results are most similar to Theorem 1, albeit for the output of an iterative

algorithm instead of simply the singular vectors. We also apply our procedure to

several different datasets.

• Chapter 5: This chapter considers a two-sample network hypothesis test to test

whether two networks have the same distribution. Leveraging the results of Rubin-

Delanchy et al. (2022) (who establish asymptotic expansions for the scaled eigenvectors

of a similar form to Theorem 2) we show that a two-sample test statistic is consistent

for this hypothesis. The test statistic uses the technical machinery of optimal transport

combined with a maximum mean discrepancy (Gretton et al., 2012) computed using

the scaled eigenvectors.

• Chapter 6: In this chapter we study a statistical model for multilayer networks on

the same vertex set, wherein each network has the same community structure. We

propose a joint spectral clustering algorithm that leverages information from all the

networks but still respects their individual heterogeneity. We establish an expected

misclustering error rate that improves exponentially with mutiple networks, and we

apply our algorithm to US flight data. To establish our main results we provide an

asymptotic expansion for the output of our algorithm similar in spirit to Theorem 2,

but now relying explicitly on the individual network-level parameters.

It is also worth noting again that several of the results in this chapter are in fact novel.

In particular, Theorem 2 and Theorem 3 have not been established in this setting in the
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literature previously to the best of my knowledge, and while Theorem 4 is similar to and

inspired by results in Fan et al. (2022) and Du and Tang (2022), the result in this setting

and for this null hypothesis have not been studied.

1.6.1 Future Work

Finally, while this dissertation makes an initial foray into establishing asymptotic and dis-

tributional theory for low-rank matrix models, there are there are still a number of potential

future works, including, but not limited to:

• Distributional Theory and Uncertainty Quantitification for Tensor Data:

While Chapter 4 considers the ℓ2,∞ estimation of population singular vectors, it falls

short of providing distributional theory and uncertainty quantification in the spirit

if Theorem 3. In ongoing work we are developing this theory and applying it to a

number of potential inferential problems of interest, such as a vertex testing problem.

• Statistical Inference for Sparse Models: The results of Chapter 3 rely on an

assumption that the nonzero support of the sparse eigenvectors are found with high

probability. In many settings one may wish to test whether an individual row is zero

to obtain a higher degree of confidence for the output. In sparse models it is common

to have to debias the output of a given algorithm, but such theory is limited in the

sparse PCA model (to the best of our knowledge, only Janková and van de Geer (2021)

study this problem, and only for the rank one setting). It would be useful to provide

hypothesis testing guarantees in a general setting.

• Fine-grained estimation bounds and statistical inference for nonconvex al-

gorithms: In Chapter 4 we study the output of HOOI, a nonconvex algorithm for

estimating tensor singular vectors. However, there are a number of different nonconvex

algorithms tailored to different settings; for example, one may have algorithms tailored

to other types of tensor structures, algorithms allowing for outliers, or algorithms that

allow for additional sparse structure (e.g., as in sparse PCA). It is of interest to pro-

vide fine-grained perturbation bounds in the spirit of Theorem 1 for these algorithms,

potentially as a precursor to developing inference techniques.
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• Multilayer network analysis: While Chapter 5 and Chapter 6 consider two prob-

lems related to multiple network analysis, there are still a number of interesting prob-

lems remaining. For example, it may be interesting to study other joint community

models that generalize the problem studied in Chapter 6, and it may be interesting

to determine the fundamental lower bounds for these models. Furthermore, existing

techniques ignore new vertices, often causing one to throw away potentially useful in-

formation; it is of interest to come up with methodology that accounts for these new

vertices.
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Chapter 2

Entrywise Estimation of Singular

Vectors of Low-Rank Matrices with

Heteroskedasticity and Dependence

2.1 Introduction

Consider the signal-plus-noise model

ˆ︂M =M + E,

where M ∈ Rn×d is a deterministic rank r signal matrix and E is a mean-zero noise matrix.

We assume M has the singular value decomposition

M = UΛV ⊤,

where U is an n× r matrix with orthonormal columns, Λ is an r× r diagonal matrix whose

entries are the r nonzero singular values λ1 ≥ λ2 ≥ · · · ≥ λr > 0 of M , and V is an d × r

matrix with orthonormal columns. Letting E⊤
i denote the i’th row of the noise matrix E,
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we suppose each noise vector Ei is of the form

Ei = Σ
1/2
i Yi,

where EYi = 0, Σi ∈ Rd×d is a positive semidefinite matrix allowed to depend on the row

i, and the coordinates Yiα of the vector Yi are independent subgaussian random variables

satisfying EY 2
iα = 1. Define the signal to noise ratio

SNR :=
λr

σ
√
rd
,

where σ2 := maxi ∥Σi∥ is the maximum spectral norm of the covariances of each row.

In this work we study the entrywise estimation of the matrix U (or column space of

M) in the “quasi-asymptotic regime” wherein n and d are assumed to be large but finite.

Because we allow the rows of E to have different covariances, the “vanilla SVD” can be

biased, so we propose a bias-corrected estimator for the matrix U and analyze its limiting

distribution when the signal to noise ratio is large enough relative to the dimension of the

problem. Furthermore, we do not assume distinct singular values for M .

Our main contributions are the following:

• We provide a nonasymptotic Berry-Esseen Theorem (Theorem 5) for the entries of our

proposed estimator for U under general assumptions on the signal matrix M and the

noise matrix E;

• We study the ℓ2,∞ approximation (Theorem 6) of our proposed estimator to U which

matches previous ℓ2,∞ bounds in the special case of independent noise.

• We apply our results to the particular setting of a K-component subgaussian mixture

model (Corollary 2) and show that one can accurately estimate the resulting limiting

covariance of the rows of our estimator within each community (Corollary 3), allowing

us to derive data-driven, asymptotically valid confidence regions.

Since we allow for dependence within each row of the noise matrix E, our asymptotic

results highlight the geometric relationship between the covariance structure and the singular

subspaces of M . Furthermore, our estimator is based off the HeteroPCA algorithm proposed
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in Zhang et al. (2022), so as a byproduct of our results, we also provide a more refined analysis

of this algorithm, leading to an upper bound on the ℓ2,∞ error that scales with the noise.

The organization of the paper is as follows. In the next subsection we discuss related

work, and we end this section with notation and terminology we will use throughout. In

Section 2.2, we recall the HeteroPCA algorithm of Zhang et al. (2022), and use this to define

our estimator ˆ︁U for U . We also discuss alternative approaches to the problem and some of

the shortcomings of those approaches which have motivated the present work. In Section 2.3,

we state our main theorems, namely our ℓ2,∞ concentration and Berry-Esseen theorems. We

also discuss the various assumptions of our model, and compare these to previous work. In

Section 2.3.2, we discuss the statistical implications of our results for mixture distributions.

We further illustrate our results in simulations in Section 2.4. Discussion of these results and

potential future work is in Section 2.5. Finally, Section 2.6 contains the proof of Theorem 6

and a proof sketch of Theorem 5. The full proof of Theorem 5 and additional supplementary

lemmas are contained in the Appendices.

2.1.1 Related Work

Spectral methods, which refer to a collection of tools and techniques informed by matrix

analysis and eigendecompositions, underpin a number of methods used in high-dimensional

multivariate statistics and data science, including but not limited to network analysis (Abbe

et al., 2022, 2020; Agterberg et al., 2020a; Athreya et al., 2018; Cai et al., 2021a; Fan et al.,

2022; Jin et al., 2019; Lei, 2019; Lei and Rinaldo, 2015; Mao et al., 2020; Rubin-Delanchy

et al., 2020; Zhang et al., 2020b), principal components analysis, (Cai et al., 2021a; Cai

and Zhang, 2018; Cai et al., 2021b; Koltchinskii et al., 2020; Koltchinskii and Lounici, 2017;

Koltchinskii and Xia, 2016; Koltchinskii and Lounici, 2016; Wang and Fan, 2017; Johnstone

and Lu, 2009; Lounici, 2013, 2014; Xie et al., 2022; Zhu et al., 2019), and spectral clustering

(Abbe et al., 2022, 2020; Amini and Razaee, 2021; Cai et al., 2021a; Lei, 2019; Löffler et al.,

2021; Schiebinger et al., 2015; Srivastava et al., 2021). In addition, eigenvectors or related

quantities can be used as a “warm start” for optimization methods (Chen et al. (2019b,

2021c); Chi et al. (2019); Lu and Li (2017); Ma et al. (2020); Xie and Xu (2020); Xie

(2021)), yielding provable convergence to quantities of interest provided the initialization
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is sufficiently close to the optimum. The model we consider includes as a submodel the

high-dimensional K-component mixture model. High-Dimensional mixture models play an

important role in the analysis of spectral clustering (Abbe et al., 2022; Amini and Razaee,

2021; Löffler et al., 2021; Schiebinger et al., 2015; Vempala and Wang, 2004; von Luxburg,

2007) and classical multidimensional scaling (Ding and Sun, 2019; Li et al., 2020a; Little

et al., 2020).

To analyze these methods, researchers have used existing results on matrix perturbation

theory such as the celebrated Davis-Kahan sinΘ Theorem (Bhatia, 1997; Yu et al., 2014;

Chen et al., 2021c), which provides a deterministic bound on the difference between the

eigenvectors of a perturbed matrix and the eigenvectors of the unperturbed matrix, provided

the perturbation is sufficiently small. Unfortunately, the Davis-Kahan Theorem and classical

approaches to matrix perturbation analysis may fail to provide entrywise guarantees for

estimated eigenvectors, though there has been work on studying the subspace distances in

the presence of random noise (Li and Li, 2018; Xia, 2021; Bao et al., 2021; O’Rourke et al.,

2018; Ding, 2020).

Entrywise eigenvector analysis plays an important role in furthering the understanding

of spectral methods in a number of statistical problems (Abbe et al., 2020, 2022; Cai et al.,

2021a; Cape et al., 2019a,b; Chen et al., 2021c; Damle and Sun, 2020; Eldridge et al., 2018;

Fan et al., 2018; Lei, 2019; Luo et al., 2020; Mao et al., 2020; Rohe and Zeng, 2020; Xia

and Yuan, 2020; Xie et al., 2022; Zhong and Boumal, 2018; Zhu et al., 2019). A number of

works have studied entrywise eigenvector or singular vector analysis when the noise matrix

E consists of independent entries (Abbe et al., 2020, 2022; Chen et al., 2021c; Cape et al.,

2019a; Cai et al., 2021a; Lei, 2019), and some authors have also studied the estimation

of linear forms of eigenvectors (Chen et al., 2021b; Cheng et al., 2021; Fan et al., 2020;

Koltchinskii and Xia, 2016; Koltchinskii and Lounici, 2017; Koltchinskii and Xia, 2016;

Koltchinskii, 1998; Koltchinskii et al., 2020; Li et al., 2021). In the present work, we extend

existing results on entrywise analysis by allowing for dependence in the noise matrix. We

address this more general setting using a combination of matrix series expansions (Cape

et al., 2019a; Chen et al., 2021b; Eldridge et al., 2018; Xia, 2019, 2021; Xia and Yuan, 2020;

Xie et al., 2022), leave-one-out analysis (Abbe et al., 2020, 2022; Chen et al., 2021c; Lei,
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2019), and careful conditioning arguments.

While entrywise statistical guarantees refine classical deterministic perturbation tech-

niques, they do not necessarily allow for studying the distributional properties of the eigen-

vectors. Several works have studied the asymptotic distributions of individual eigenvectors

(Cape et al., 2019a; Fan et al., 2020) or sinΘ distances (Bao et al., 2021; Ding, 2020; Li

and Li, 2018; Xia, 2021), but there are very few finite-sample results on the distribution

of the individual entries of singular vectors rather than eigenvectors, and existing results

often depend on independence of the noise. We explicitly characterize the distribution of

the individual entries of the estimated singular vectors, which showcases the effect that the

geometric relationship of the covariance structure of the rows of E and the spectral structure

of the signal matrix M has on this distribution.

Finally, the bias of the singular value decomposition in the presence of heteroskedastic

noise has been addressed in a number of works (Cai et al., 2021a; Abbe et al., 2022; Florescu

and Perkins, 2016; Koltchinskii and Gine, 2000; Leeb and Romanov, 2021; Lei and Lin, 2022;

Lounici, 2014). A common method for addressing this is the diagonal deletion algorithm, for

which an entrywise analysis is carried out in Cai et al. (2021a) for several different statistical

problems. However, as identified in Zhang et al. (2022), in some situations diagonal deletion

incurs unnecessary additional error, leading them to propose the HeteroPCA algorithm

which we further study here. We include detailed comparisons to existing work in Section

2.3.

2.1.2 Notation

We use capital letters for both matrices and vectors, where the distinction will be clear from

context, except for the letter C, which we use to denote constants. For a matrix M , we

write Mij as its i, j entry, M·j for its j’th column and Mj· for its j’th row. The symbol ei

represents the standard basis vector in the appropriate dimension. We use ∥·∥ to denote the

spectral norm for matrices and the Euclidean norm for vectors, and ∥ · ∥F as the Frobenius

norm for matrices. We write the ℓ2,∞ norm of a matrix as ∥U∥2,∞ = maxi ∥Ui·∥ which is

the maximum Euclidean row norm. We consider the set of orthogonal r × r matrices as

O(r), and we exclusively use the letter O to mean an element of O(r). We write ⟨·, ·⟩ as the
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standard Euclidean inner product.

For a random variable X taking values in R, we let ∥X∥ψ2 denote its ψ2 (subgaussian)

Orlicz norm; that is,

∥X∥ψ2 := sup
z∈R

{E exp(X2/z) ≤ 2},

and for a random variable Y taking values in Rd, we let ∥Y ∥ψ2 denote sup ∥⟨Y, u⟩∥ψ2 , where

the supremum is over all unit vectors u. Similarly we denote ∥·∥ψ1 as the ψ1 (subexponential)

Orlicz norm. For more details on relationships between these norms, see Vershynin (2018).

For two equal-sized matrices U1 and U2 with orthonormal columns, we denote the sinΘ

distance between them as

∥ sinΘ(U1, U2)∥ := ∥U1U
⊤
1 − U2U

⊤
2 ∥.

For details on the sinΘ distance between subspaces, see Bhatia (1997), Chen et al. (2021c),

Cape et al. (2019b), or Cape (2020). For a square matrix M , we write Γ(M) to be the

hollowed version of M ; that is, Γ(M)ij = Mij for i ̸= j and Γ(M)ii = 0. We write

G(M) :=M − Γ(M).

Occasionally we will write f(n, d) ≲ g(n, d) if there exists a constant C sufficiently large

such that f(n, d) ≤ Cg(n, d) for sufficiently large n and d. We also write f(n, d) ≪ g(n, d)

if f(n, d)/g(n, d) tends to zero as n and d tend to infinity. We write f(n, d) = O(g(n, d)) if

f(n, d) ≲ g(n, d). For two numbers a and b, we write a∨ b to denote the maximum of a and

b. Finally we write f(n, d) ≍ g(n, d) if f(n, d) = O(g(n, d)) and g(n, d) = O(f(n, d)).

2.2 Background and Methodology

We consider a rectangular matrix M ∈ Rn×d in the “high-dimensional regime” wherein n

and d are large and comparable, though we are interested in the setting that d is larger

than n. We observe ˆ︂M = M + E where the additive error matrix E has rows E⊤
i which

are independent with covariance matrices Σi ∈ Rd×d that are allowed to vary between rows.

We write the singular value decomposition of M as UΛV ⊤, where U ∈ Rn×r, V ∈ Rd×r are
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matrices with orthonormal columns and Λ ∈ Rr×r is diagonal with nonincreasing positive

diagonal entries λ1 ≥ λ2 ≥ · · · ≥ λr > 0 that are not necessarily distinct. We note that

this decomposition of M is not unique, so we fix some choice of U , which necessarily fixes a

choice of V also. Our results account for the nonuniqueness of U by aligning the estimatorˆ︁U to U through right-multiplication by an r× r orthogonal matrix. For more details on this

alignment procedure, see, for example, Chen et al. (2021c) or Cape (2020).

Algorithm 1 HeteroPCA (Algorithm 1 of Zhang et al. (2022))
Require: Input matrix A+ Z, rank r, and maximum number of iterations T
1: Let N0 := Γ(A+ Z); T = 0
2: repeat
3: Take SVD of NT :=

∑︁
i λ

(T )
i U

(T )
·i (V

(T )
·i )⊤

4: Set ˜︁NT :=
∑︁

i≤r λ
(T )
i U

(T )
·i (V

(T )
·i )⊤ the best rank r approximation of NT

5: Set NT+1 := G( ˜︁NT ) + Γ(NT )
6: T = T + 1
7: until convergence or maximum number of iterations reached
8: return ˆ︁U := U (T )

Since U may equivalently be understood to be the matrix of eigenvectors of A =MM⊤

corresponding to its r nonzero eigenvalues, it is natural to consider A and its noisy coun-

terpart A + Z, where Z = ME⊤ + EM⊤ + EE⊤, sometimes referred to as the “sample

Gram matrix” in the literature (e.g. (Cai et al., 2021a)). The matrix E[Z] is diagonal with

diagonal entries Tr(Σi). When d is large and the rows of E are heteroskedastic, this means

that the eigenvectors of A+ E[Z] may not well-approximate those of A.

Authors have suggested hollowing the matrix A + Z as a method to correct this bias,

which amounts to using the eigenvectors of Γ(A + Z) as the estimator for those of A. An

analysis of this approach is given in Cai et al. (2021a) and Abbe et al. (2022), though this

is not the primary focus of the latter. Unfortunately, while the eigenvectors of Γ(A + Z)

may be closer to the eigenvectors of A than those of A + Z, they still incur a nontrivial,

deterministic bias owing to the loss of information along the diagonal of A. In Zhang et al.

(2022), the authors provide an example where the eigenvectors of Γ(A + Z) do not yield a

consistent estimator for U in the regime that n and d tend to infinity with d ≍ n. This

motivates their alternative approach to correcting the bias, the HeteroPCA algorithm, which

we review in Algorithm 1. In essence, the algorithm proceeds by iteratively re-scaling the
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diagonals, attempting to fit the off-diagonal entries of A + Z while maintaining the low

rank r. We refer to the output of this algorithm after sufficiently many iterations as ˆ︁A (see

Theorem 5 for a quantitative condition on the number of iterations), and prove in Lemma 2

that it well-approximates the “idealized” perturbation of A given by ˜︁A = A+Γ(Z) in spectral

norm. This latter matrix has mean A, meaning that the bias along the diagonal has been

accounted for. Removing this bias is also important for our distributional results, since

otherwise one must center around the eigenvectors of Γ(A) rather than those of A, but our

interest is in the latter quantity.

The leading eigenvectors ˆ︁U of this matrix ˆ︁A serve as our estimator for U , and our con-

centration and distributional results demonstrate the quality of this estimator. This builds

on the work in Zhang et al. (2022), where they prove a bound on the sinΘ distance betweenˆ︁U and U , showing that ˆ︁U is a consistent estimator for U . While a bound on the discrepancy

between ˆ︁U and U in this metric is a first step towards the entrywise concentration results we

obtain here, our results require much tighter control of the error between them. In addition,

measuring the error in this way does not lend itself to the distributional results we consider

in Theorem 5.

In the case that M is well-conditioned and has highly incoherent singular vectors U

and V , the bias associated with diagonal deletion is not too severe, and the difference in

performance between the eigenvectors of ˆ︁A and Γ(A+Z) may not be significant, especially

when n and d are large. On the other hand, for moderate n and d, or for moderate levels

of incoherence in U and V , the bias incurred by diagonal deletion is highly significant. We

consider an example of this in Figure 2.1, in the setting of estimating memberships in a

Gaussian mixture model, under heteroskedasticity and dependence. The noise level in this

problem is relatively small, which suggests that consistent estimation should be possible for

the right estimator, however the moderate incoherence causes a severe breakdown in the

performance of the estimate obtained by diagonal deletion, while the HeteroPCA algorithm

continues to perform well.
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Figure 2.1: Comparison of the estimators for U given by the eigenvectors of Γ(A+Z) (diago-
nal deletion) and those of ˆ︁A (the output of the HeteroPCA algorithm). For convenience, we
also plot the eigenvectors of the “idealized” matrix A+Γ(Z) that the HeteroPCA algorithm
is approximating as well as a zoomed-in reference for classes one and two. For details on
the experimental setup, see Section 2.4.

2.3 Main Results

Before presenting our main results, we discuss the various assumptions required, and their

role in the analysis. Our first assumption concerns the noise matrix E.

Assumption 2.1 (Noise). The noise matrix E has rows E⊤
i that can be written in the

form Ei = Σ
1/2
i Yi, where each Yi is a vector of independent mean-zero subgaussian ran-

dom variables with unit variance and ψ2 norm uniformly bounded by 1, and Σi is positive

semidefinite.

The following assumption ensures that there is sufficient signal to consistently identify

the eigenvectors U . We let κ := λ1/λr denote the condition number of M .

Assumption 2.2 (Enough Signal). The signal-to-noise ratio satisfies SNR ≥ CSNRκ
√︁

log(n ∨ d),

for a sufficiently large constant CSNR.

We remark that in the case of independent noise, SNR → ∞ is required in order for

consistency (e.g. Cai and Zhang (2018); Zhang et al. (2022); Xia (2021)).

The following assumption ensures that we have sufficiently many samples for our con-

centration results to hold.
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Assumption 2.3 (High Dimensional Regime, Low Rank). There exists a constant c1 and

a sufficiently small constant c2 such that such that d ≥ c1n, and r ≤ c2n. In addition,

log(d) ≤ n.

The next assumption concerns the incoherence of the matrix M , which measures the

“spikiness” of the matrix. We say M is µ0-incoherent if

max

{︃
∥U∥2,∞

√︃
n

r
, ∥V ∥2,∞

√︃
d

r

}︃
≤ µ0.

When µ0 = O(1), then the entries of U and V are spread, which corresponds to M being

fully incoherent. For more details, see (Chen et al., 2021c; Chi et al., 2019).

Assumption 2.4 (Incoherence). The matrix U of left singular vectors of M satisfies ∥U∥2,∞ ≤

µ0
√︁

r
n , where µ0 satisfies κ2µ0 ≤

√
n. In addition, there exists a constant CI sufficiently

large such that ∥V ∥2,∞ ≤ CI∥U∥2,∞.

We note that in much of the literature one assumes that both V and U are both

µ0-incoherent, whereas Assumption 2.4 is slightly stronger as we assume that ∥V ∥2,∞ ≤

CI∥U∥2,∞. As we assume that d ≳ n, this assumption is not stringent, but rather we make

this assumption for convenience as this results in a simple statement of Theorem 6 in terms

of ∥U∥2,∞. In order to apply our results to mixture distributions (see Section 2.3.2), we need

that ∥ˆ︁UO∗ − U∥2,∞ ≪ ∥U∥2,∞ in order to guarantee sufficient cluster separation. Conse-

quently, assuming both U and V are µ0-incoherent is not quite sufficient for these purposes;

instead we must additionally assume that ∥V ∥2,∞ ≤ CI∥U∥2,∞.

Our final assumption concerns the relationship between the covariance of each row and

the singular subspace of M . It ensures that the covariance matrices Σi are not too ill-

conditioned on the signal subspace of M .

Assumption 2.5 (Covariance Condition Number). There exists a constant κσ such that

0 <
1

κσ
≤ min

i,j

σi

∥Σ1/2
i V·j∥

≤ max
i,j

σ

∥Σ1/2
i V·j∥

≤ κσ <∞.

Informally, Assumption 2.5 requires that Σi does not act “adversarially” along V in the

sense that the action of Σi along the subspace V is well-behaved. Note that if Σi = σ2Id for
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all i, then this condition is automatically satisfied with κσ = 1. Our main result (see the

forthcoming Theorem 5) is stated in terms of a fixed i and j. While we make the simplifying

assumption that κσ is uniformly bounded in both i and j, we note that if instead κσ is

allowed to depend on i and j and satisfies

0 <
1

κσ
≤ min

k

σk

∥Σ1/2
i V·j∥

≤ σ

∥Σ1/2
i V·j∥

≤ κσ <∞,

then our asymptotic normality results continue to hold with the proviso that κσ depends on

both i and j (with appropriate modifications in the setting of Corollary 2 and 3).

We are now ready to present our main result concerning the distribution of the entrywise

difference between ˆ︁U and U .

Theorem 5. Define

σ2ij := ∥Σ1/2
i V·j∥2λ−2

j .

Suppose Assumptions 2.1, 2.2, 2.3, 2.4 and 2.5 hold. Let ˆ︁U be the output of the HeteroPCA

algorithm after T = Θ
(︂

λ2r
∥U∥2,∞∥Γ(Z)∥

)︂
iterations. Then there exist absolute constants C1, C2

and C3 and an orthogonal matrix O∗ such that

sup
x∈R

⃓⃓⃓⃓
P
(︃

1

σij
e⊤i

(︂ˆ︁UO∗ − U
)︂
ej ≤ x

)︃
− Φ(x)

⃓⃓⃓⃓
≤ C1

∥Σ1/2
i V·j∥33

∥Σ1/2
i V·j∥3

+ C2κ
3κσµ0

r log(n ∨ d)
SNR

+ C3κ
2κσµ0

√︃
r

n

(︃√︁
log(n ∨ d) + µ0κ

2√r
)︃
.

One should interpret Theorem 5 as stating that the entries of ˆ︁U are approximately

Gaussian about their corresponding population counterparts modulo the nonidentifiability

in the singular subspace stemming from the repeated singular values. One can also generalize

our analysis for the rows of ˆ︁UO∗ to obtain the joint distribution; see Corollary 2 for an

application of this for fixed r.
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Suppose κ, κσ, µ0 = O(1). Then we see that asymptotic normality holds as long as

max

{︃
∥Σ1/2

i V·j∥33
∥Σ1/2

i V·j∥3
,
r log(n ∨ d)

SNR
,
r log(n ∨ d)√

n

}︃
→ 0.

When Σi is the identity and V·j = 1√
d
1, then the first term is exactly equal to 1√

d
. Moreover,

if SNR ≥
√
n, then we obtain the classical parametric rate up to logarithmic factors. If

instead µ0 log(n∨ d) ≪ min(
√
n,SNR), then asymptotic normality still holds. Therefore, in

the “high-signal” regime with SNR ≫
√
n, asymptotic normality holds as long as µ0 log(n∨

d) = o(
√
n).

We remark that the additional logarithmic factors stem from our ℓ2,∞ result in Theorem

6 below. It may be possible that these logarithmic factors can be eliminated with more

refined analysis, but we leave this for future work, since our primary focus is on studying

asymptotic normality in the presence of dependence. Furthermore, our results allow the

covariances to be (strictly) positive semidefinite as long as the vector V·j is not too close

to the null space of the matrix Σi. A simple example is if Σi ∝ V V ⊤, then asymptotic

normality still holds.

Note that Theorem 5 (and Assumption 2.5) depends on the fact that σij ̸= 0 (and,

moreover, does not shrink to zero relative to the overall noise σ). If instead σij = 0, then one

must consider the higher-order asymptotics, in which case the dominant term contributing to

the asymptotic normality becomes a higher order noise term, resulting in a different scaling

for the asymptotic normality. While it may be possible to obtain asymptotic normality in

this setting, Theorem 6 still holds regardless, thereby yielding strong concentration for ˆ︁U .

The following corollary specializes Theorem 5 to the case of scalar matrices Σi. We

note that in this case, the variances of the entries of the j’th singular vector estimate are

proportional to the inverse of the j’th singular value of MM⊤. Furthermore, the leading

term in Theorem 5 simplifies to be ∥V ∥2,∞ ≤ CI∥U∥2,∞ ≲ µ0
√︁

r
n ,which is smaller than the

rightmost term by Assumption 2.4. In particular, this result shows that the variance of the

i, j entry of ˆ︁U is asymptotically equal to to σ2i /λ
2
j , which reflects the fact that the variance

increases deeper into the spectrum of M .
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Corollary 1. Assume the setting of Theorem 5, with Σi = σ2i Id for all i. Then

sup
x∈R

⃓⃓⃓⃓
P
(︃
λj
σi
e⊤i

(︂ˆ︁UO∗ − U
)︂
ej ≤ x

)︃
− Φ(x)

⃓⃓⃓⃓
≤ C ′

1κ
3κσµ0

r log(n ∨ d)
SNR

+ C ′
2κ

2κσµ0

√︃
r

n

(︃√︁
log(n ∨ d) + µ0κ

2√r
)︃
.

Our second theorem is an ℓ2,∞ concentration result for the matrix ˆ︁U as an estimator

for the matrix U . Theorem 6 is a consequence of a deterministic bound concerning the

HeteroPCA algorithm (see Theorem 8) and a bound concerning the idealized (random)

perturbation A + Γ(Z) (see Theorem 7). As part of our proof of Theorem 6, we prove

additional tight concentration for several residual terms that we rely on in the proof of

Theorem 5.

Theorem 6. Suppose Assumptions 2.1, 2.2, 2.3 and 2.4 hold. Let ˆ︁U be the output of the

HeteroPCA algorithm after T = Θ
(︂

λ2r
∥U∥2,∞∥Γ(Z)∥

)︂
iterations. Then there exists a universal

constant C > 0 such that with probability at least 1− 2(n ∨ d)−4

inf
O∈O(r)

∥ˆ︁U − UO∥2,∞ ≤ C

(︃√
rnd log(n ∨ d)σ2

λ2r
+

√︁
rn log(n ∨ d)κσ

λr

)︃
∥U∥2,∞.

Suppose κ, κσ, µ0, r = O(1). The upper bound in Theorem 6 holds as long as SNR ≳√︁
log(n ∨ d), whereas the asymptotic normality in Theorem 5 holds when SNR ≫ log(n∨d).

It is possible that with additional work the asymptotic normality in Theorem 5 holds in the

regime
√︁

log(n ∨ d) ≲ SNR ≲ log(n ∨ d), but this is not the focus of the present paper.

2.3.1 Comparison to Prior Work

Our Theorem 5 is the first distributional result for the entries of the singular vector estimator

in the setting of dependent, heteroskedastic noise. In Xia (2021), the author derives Berry-

Esseen Theorems for the sinΘ distance between the singular vectors under the assumption

that the noise consists of independent Gaussian random variables with unit variance. See

also Bao et al. (2021) for a similar result in slightly different regime. In Xia and Yuan

(2020), the authors use the techniques in Xia (2021) to develop Berry-Esseen Theorems for

linear forms of the matrix M . They also develop ℓ2,∞ bounds (see their Theorem 4) en route
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to their main results that are similar to the bounds we obtain. While our approach and

that of Xia (2021) and Xia and Yuan (2020) share a common core, our main results require

additional technical considerations due to the heteroskedasticity and dependence. We also

include a deterministic analysis of the HeteroPCA algorithm, which is not needed in Xia

and Yuan (2020) as the entries all have the same variance.

The works Koltchinskii and Lounici (2016); Koltchinskii et al. (2020) study estimating

general linear forms of the eigenvectors of a sample covariance matrix. More specifically,

Theorem 7 of Koltchinskii and Lounici (2016) derive the asymptotic normality of the linear

form

√
n
⟨︂ˆ︁U·i −

√︁
1 + b(n)U·i, a

⟩︂
,

where b(n) is a bias term, a is a unit vector, and ˆ︁U·i is the i’th estimated eigenvector of

the sample covariance matrix. If a = ei, then our results are similar in spirit to those of

Koltchinskii and Lounici (2016). However, there are a few key differences:

• Koltchinskii and Lounici (2016) study covariance estimation, whereas we study the

signal-plus-noise model, where the signal is assumed to be deterministic. Viewing

the matrix X as the matrix whose rows are the observations, in effect Koltchinskii

and Lounici (2016) study the right singular subspace of X assuming that the vectors

are mean-zero. However, our analysis allows for dependence within rows, whereas

Koltchinskii and Lounici (2016) study iid observations of sample vectors, which corre-

sponds to dependence within columns.

• The results of Koltchinskii and Lounici (2016) rely heavily on the fact that the corre-

sponding eigenvalue is simple, whereas our results allow for repeated singular values.

Consequently, our results only hold up an orthogonal transformation O∗ that accounts

for the nonidentifiability of the associated singular spaces, whereas Koltchinskii and

Lounici (2016) are able to directly analyze the corresponding empirical eigenvector up

to a global sign flip.

• Koltchinskii and Lounici (2016) obtain asymptotic normality for a general linear form
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of the eigenvectors, whereas we obtain asymptotic normality for only the individual

entries. However, Koltchinskii and Lounici (2016) consider iid Gaussian random vari-

ables, whereas we allow general subgaussian tail conditions. Consequently, Koltchinskii

and Lounici (2016) are able to make use of powerful techniques tailored specifically to

Gaussian random variables, whereas our analysis uses a combination of leave-one-out

arguments and conditioning.

Therefore, the results of Koltchinskii and Lounici (2016), while closely related, are not

immediately comparable to our results.

In the context that M is a symmetric, square matrix and E is a matrix of independent

noise along the upper triangle, Cape et al. (2019a) developed asymptotic normality results

for the rows of the leading eigenvectors, which is similar in spirit to our main result in

Theorem 5. Similarly, Fan et al. (2020) studied general bilinear forms of eigenvectors in this

setting. Our results do not apply in these settings even if n = d since we require that Eij

and Eji are independent if j ̸= i. On the other hand, their results cannot be applied in our

setting either because of the dependence structure.

Regarding our ℓ2,∞ concentration results, perhaps the most similar results appear in Cai

et al. (2021a), in which the authors study the performance of the diagonal deletion algorithm

in the presence of independent heteroskedastic noise. Our work differs from theirs in several

ways:

• We allow for dependence among the rows of the noise matrix, whereas Cai et al.

(2021a) requires the entries of the noise matrix to be independent random variables.

• Cai et al. (2021a) allow for missingness in the matrix M , whereas we assume that the

matrix M is fully observed.

• Assumption 2.2 requires that
√︁
d log(n ∨ d) ≲ λr/σ, whereas the theory in Cai et al.

(2021a) covers the setting (nd)1/4 ≲ λr/σ, which is a broader range than ours for the

SNR regime. However, we note that our ℓ2,∞ concentration holds under the weaker

assumption λr/σ ≳ κ(nd)1/4
√︁
r log(n ∨ d) (which can be seen from the main proof in

Section 2.6).
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• Our main results include both asymptotic normality and ℓ2,∞ concentration, whereas

Cai et al. (2021a) only obtain ℓ2,∞ concentration.

• Our ℓ2,∞ concentration result does not incur the “diagonal deletion effect” in the upper

bound of Theorem 1 in Cai et al. (2021a), since this has been accounted for using the

HeteroPCA algorithm (see Theorem 8). This allows our upper bound to scale with

the noise.

The most important of these differences is perhaps the last point, since eliminating the

diagonal deletion effect is crucial for our asymptotic normality analysis. Besides us removing

this term, our upper bound agrees with theirs up to a
√
r factor. Also, since we have rid

ourselves of the error coming from diagonal deletion, we are able to achieve the minimax

lower bound for this problem given in Theorem 2 of Cai et al. (2021a) up to log factors when

r, µ0, κ ≍ 1.

Shortly after posting our manuscript to ArXiv and submitting for publication, a very

closely related manuscript (Yan et al., 2021) was also posted, studying a very similar setting

to ours. In Yan et al. (2021), the authors study statistical inference for Heteroskedastic PCA

under the spiked covariance model, where the spike component is assumed to be low rank;

moreover, they also use the HeteroPCA algorithm of Zhang et al. (2022). They also obtain

ℓ2,∞ concentration and asymptotic normality, though their asymptotic normality results

are not directly comparable, as they focus on statistical inference for the spike component

(as opposed to the singular subspace directly). The key difference is that our asymptotic

normality results allow for dependence within rows, which is a setting not covered by Yan

et al. (2021). However, our ℓ2,∞ concentration result is markedly similar to theirs (see their

Theorem 10) and agrees up to factors of r and κ. In Yan et al. (2021), the authors study the

regime (nd)1/4 ≲ λr/σ (ignoring logarithmic terms, factors of r, and factors of κ). While

our ℓ2,∞ concentration continues to hold in this regime, our asymptotic normality result

may not hold. Since our main focus in this paper is the entrywise estimation of singular

subspaces under both dependence and heteroskedasticity, we leave deriving limit theory and

asymptotic normality in this regime to future work.

Finally, in Abbe et al. (2022), the authors study exact recovery in the case of the two-
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component mixture model. Their results are similar to ours in that they allow for dependence

and heteroskedasticity, but they do not study the limiting distribution of their diagonal dele-

tion estimator. Moreover, their results are not directly comparable, as they use a different

definition of incoherence and do not study the explicit dependence of their bound on the

noise parameters and the spectral structure of the matrix M , but instead find conditions on

their signal-to-noise ratio such that their upper bound tends to zero. On the other hand,

their theory covers the weak-signal regime, and they extend their results to Hilbert spaces.

In principle, since our results depend only on the properties of the Gram matrix, they could

also be extended to a general Hilbert space, but we do not pursue such an extension here.

2.3.2 Application to Mixture Distributions

Consider the following submodel. Suppose we observe n observations of the form Xi =

Mi + Ei ∈ Rd, where there are K unique vectors µ1, . . . , µK . Let ˆ︂M be the matrix whose

i’th row is X⊤
i . If M is rank K, by Lemma 2.1 of Lei and Rinaldo (2015), there are K

unique rows of the matrix U , where each row i corresponds to the membership of the vector

Xi. We then have the following Corollary to Theorem 5 in this setting.

Corollary 2. Let Xi =Mi + Ei, and define the matrix

Si := Λ−1V ⊤ΣiV Λ−1. (2.1)

Suppose κ, κσ, µ0 are bounded and r stays fixed as n and d tend to infinity, and suppose

log(n ∨ d)
SNR

→ 0.

Then

(Si)
−1/2

(︃ˆ︁UO∗ − U

)︃
i·
→ N(0, Ir)

as n and d tend to infinity with d ≥ n ≥ log(d).

We remark that the result above allows Ei to have an i-dependent covariance matrix. In
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the setting that the covariance matrix of Ei depends only on the vector µk, where k is such

that Mi = µk, the following result shows that we can leverage this structure to consistently

estimate the matrix Si, which is the same within each community. We assume that one can

accurately estimate the cluster memberships with probability tending to one, which holds

by the signal-to-noise ratio condition, the ℓ2,∞ bound in Theorem 6, and the setting for

Corollary 2 since the eigenvector difference ∥ˆ︁U − UO∗∥2,∞ ≪ ∥U∥2,∞, which implies that

the rows of ˆ︁U are asymptotically separated (see e.g. Lei and Rinaldo (2015)).

Corollary 3. Suppose the setting for Corollary 2, and assume that there are K different

communities with each community having mean µk and covariance matrix Σ(k) (that is,

Σi = Σ(k) for all i in community k). Let nk denote the number of observations in community

k, and suppose that nk ≍ n. Suppose Ū (k) is the estimate for the centroid of the k-th mean,

and let Ck denote the set of indices such that Mi = µk. Define the estimate

ˆ︁S(k) :=
1

nk

∑︂
i∈Ck

(︃ˆ︁Ui· − Ū
(k)
)︃(︃ˆ︁Ui· − Ū

(k)
)︃⊤

.

Then for the orthogonal matrix O∗ appearing in Corollary 1,

∥(S(k))−1O⊤
∗
ˆ︁S(k)O∗ − Ir∥ → 0

in probability, where S(k) is the community-wise covariance defined in (2.1).

We note that the appearance of the orthogonal matrix O∗ is of no inferential consequence,

since Gaussianity is preserved by orthogonal transformation. This result implies that one can

consistently estimate the covariance matrix for the corresponding row, which immediately

implies that one can derive a pivot for the i’th row in the mixture setting described above,

by setting

ˆ︁Ti := (ˆ︁S(k))−1/2(ˆ︁Ui − Ū
(k)

).

Corollaries 2 and 3, the Continuous Mapping Theorem, and Slutsky’s Theorem imply thatˆ︁Ti → N(0, Ir) as n and d tend to infinity, which provides an asymptotically valid confidence
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region. We remark that in the asymptotic regime in Corollaries 2 and 3, when r is fixed,

any fixed finite collection of rows can be shown to be asymptotically independent, and hence

the confidence region is simultaneously valid for any fixed set of rows; for example, for one

row each of each community.

2.4 Numerical Results

We consider the following mixture model setup. We let M be the matrix whose first n1, n2,

and n3 rows are µ1, µ2, and µ3 respectively where

µ1 : = (10, 10, . . . , 10, 12, . . . , 12)⊤

µ2 : = (10, 10, . . . , 10, 10, . . . , 10)⊤

µ3 : = (5, 5, . . . , 5, 5.5, . . . , 5.5)⊤

The matrix M is readily seen to be rank 2, since µ3 = .25µ1 + .25µ2.

We compare ˆ︁U to the diagonal deletion estimator in this setting in Figure 2.1 of Sec-

tion 2.2, where we can clearly see the bias that comes from deleting the diagonal entries in

the final approximation of the singular vectors. We consider the class-wise covariances

Σ(k) := σ2kFkF
⊤
k + Id,

where σ1 = 15, σ2 = 10, σ3 = 7.5, and Fk is drawn uniformly on the Stiefel manifold

of dimensions 100, 50, and 200 respectively, and n1 = 200, and n2 = n3 = 400, with

d = 1000. For the smallest class with mean µ1 we clearly see that the reduced incoherence

severely impacts the estimation with the diagonal deletion estimator, while the effect on ˆ︁U
is relatively small. On the latter two classes, we observe that the rows of ˆ︁U are very close to

those of the idealized matrix A+ Γ(Z), and the covariances are comparable between these.

On the other hand, the rows of the diagonal deletion estimator do not preserve the covariance

structure of this idealized matrix, since the diagonal deletion estimator is approximating the

eigenvectors of Γ(A+Z). Since A+Γ(Z) is an unbiased perturbation of A while Γ(A+Z) is

not, we consider this to be the more natural object of comparison, and our theory supports
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Figure 2.2: Plot of 1000 Monte Carlo iterations of the first row of ˆ︁UO∗ − U with the same
M matrix as above and n = d = 1800 with n1 = n2 = n3 = 600. The covariances here
are spherical within each mixture component, though they differ between components. The
dotted line represents the theoretical 95 percent confidence ellipse from Theorem 5 and
Corollary 2. The solid line is the estimated ellipse. The different scalings on the two axes
arise because the variances in these two dimensions are proportional to the first two squared
singular values of M , as seen in Corollary 1. Further details are in Section 2.4.

this view.

To study the effect of larger n and d, in Figure 2.2 we plot 1000 Monte Carlo iterations

of (ˆ︁UO∗ − U)1· where O∗ is estimated using a Procrustes alignment between ˆ︁U and U on

n = d = 1500 points with n1 = n2 = n3 = 500, where we use the balanced case to ensure

incoherence. The solid line represents the estimated 95% confidence ellipse, and the dotted

line represents the 95% confidence ellipse implied by Theorem 5. We consider the spherical

noise setting, with class-wise covariances .1Id, .2Id, and .3Id for each component respectively.

The empirical and theoretical ellipses are readily seen to be close.

2.4.1 Elliptical Versus Spherical Covariances

In Figure 2.3 we examine the effect of elliptical covariances on the limiting distribution

predicted by Corollary 2. We consider the same M matrix and mixture sizes as in Figure
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Figure 2.3: Comparison of Λ(ˆ︁UO∗ − U)1· for the same mixture distribution as above, only
we modify the covariance for the first mixture component between each data set. Details
are in Section 2.4.1.

2.1, only we fix the covariances as

Σ
(1)
E : = F1F

⊤
1 + .1Id

Σ(2) : = F2F
⊤
2 + Id

Σ(3) : = 2Id,

where F1 and F2 are square matrices with entries drawn independently from uniform dis-

tributions on [0, .003] and [0, .001] respectively. We also consider the spherical case Σ
(1)
S =

V V ⊤+Id. We run 1000 iterations of this simulation and examine the first row of the matrix

(ˆ︁UO∗−U)Λ, where again O∗ is estimated using the procrustes difference between ˆ︁U and U .

The only thing we change between each dataset is the covariance; i.e., we draw E1 ∈ Rn1×d

as a random Gaussian matrix with independent entries and multiply by (Σ
(1)
E )1/2 or (Σ(1)

S )1/2

to obtain the first n1 rows of the matrix E. We keep the other n − n1 rows fixed within

each Monte Carlo iteration, so the only randomness for each iteration is in drawing the nd

Gaussian random variables. We scale ˆ︁UO∗ − U by Λ in order to explicitly showcase the
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covariance structure. The way we create Σ
(1)
E yields that the limiting covariance S(1)

E is

approximately

S
(1)
E := Λ−1

⎛⎜⎝ 2.35 0.083

0.083 0.104

⎞⎟⎠Λ−1,

so that Λ(ˆ︁UO∗ −U)1· is approximately Gaussian with covariance

⎛⎜⎝ 2.35 0.083

0.083 0.104

⎞⎟⎠. On the

other hand, when we consider the spherical case, we see that S(1)
S is of the form

S
(1)
S = 2Λ−2

so that Λ(ˆ︁UO∗ − U)1· is approximately Gaussian with covariance 2Ir. Figure 2.3 shows

these differences, where we plot the empirical 95% confidence ellipses with respect to both

the estimated covariance (solid line) and theoretical covariance (dashed line).

To study the relationship between Σi and V in more detail, we also consider the following

setting. We consider the class-wise covariances again

Σ(1) : = 15F1F
⊤
1 + .1Id

Σ
(2)
θ : = 5V·1V

⊤
·1 + 5V θ

2 (V
θ
2 )

⊤ + .1Id

Σ(3) : = 10F3F
⊤
3 + .1Id,

where again F1 and F3 are drawn uniformly from the Stiefel manifold of dimension 100 and

200 respectively, with n1 = 200 and n2 = n3 = 400. We also change µ3 = (5, . . . , 5, 6, . . . 6)

to better separate the clusters. The vector V θ
2 is orthogonal to V·1 and satisfies ⟨V θ

2 , V·2⟩ = θ

for θ ∈ {.9, .5, .1}. As θ decreases, the limiting covariance matrix in Corollary 2 will change

along the second dimension only. Figure 2.4 reflects this theory, where we plot 1000 Monte

Carlo runs of Λ(ˆ︁UO∗ − U)(n1+1)·. The variance stays fixed along the first dimension, but it

shrinks along the second dimension, showcasing the geometric relationship between V and

Σ(2) as suggested by Corollary 2.
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Figure 2.4: Comparison of Λ(ˆ︁UO∗ − U)(n1+1)· for the same mixture distribution as above,
only we modify the covariance for the second mixture component between each data set
by changing the angle between the leading covariance and the second mixture component.
Details are in Section 2.4.1.

2.5 Discussion

We have shown that under general model assumptions for the noise matrix, allowing for

heteroskedasticity between rows and dependence within them, that the entries of the left

singular vectors of the output from HeteroPCA are consistent estimators for those of the

original signal matrix M , and the errors are asymptotically normally-distributed in a natu-

ral high-dimensional regime. Furthermore, our Berry-Esseen theorem makes clear the rate

at which this asymptotic approximation becomes valid, revealing the effect of the relation-

ship between the noise covariances and the spectral structure of the signal matrix on the

distributional convergence. In the particular case that the individual covariances are scalar

multiples of the identity, our results also show that the variances of the entries of the j’th

estimated singular vector are proportional to the inverse j’th singular value of the signal

matrix. In particular, this means that estimating additional singular vectors in this model

becomes more challenging and requires more data, since the variance in this estimation

grows with j.
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In this paper, we assume the rank r is known a priori, but in practice one may need to

estimate r using, for example, the methods proposed in Zhu and Ghodsi (2006), Han et al.

(2020), or Yang et al. (2020). In addition, while our results highlight the interplay of the

dependence structure of the noise with the signal matrix, additional work is required to make

the upper bound computable from observed data. For example, our results do not imply

consistent estimation for the row-wise covariance matrices Σi, though we do show if one

has covariances that are only distinct between clusters, then one can estimate the limiting

covariance matrix Si for each row of ˆ︁U . Our techniques could therefore be appropriately

modified to develop two-sample asymptotically valid confidence regions or test statistics,

such as in deriving a Hotelling T 2 analogue for the singular vectors as in Fan et al. (2022);

Du and Tang (2022). Furthermore, one possibility for further inference would be to consider

drawing several matricesM+E independently from the same distribution, assuming the rows

are matched together between samples, in which case one could leverage existing statistical

methodology to conduct two-sample tests of hypothesis.

Another possible extension is estimating linear forms of singular vectors under the de-

pendence structure we consider, which has been studied in other settings under independent

noise. Our results naturally extend to sufficiently sparse linear forms (i.e. linear forms T

such that ∥TU∥ ≤ b∥U∥2,∞), but studying linear forms for which ∥TU∥ ≍ 1 would require

additional methods, as the entrywise analysis methods we use would not be applicable. Fi-

nally, our results hold for a natural subgaussian mixture model, but many high-dimensional

datasets contain outlier vectors or heavier tails, in which case additional techniques are

required.

2.6 Proof Architecture for Theorems 5 and 6

In this section we state several intermediate lemmas, prove Theorem 6, and sketch the proof

of Theorem 5. Full proofs are in the appendices. First we collect some initial spectral norm

bounds that are useful in the sequel. The first is a bound on the noise error ∥Γ(Z)∥, the

proof of which is adapted from Theorem 2 in Amini and Razaee (2021). Throughout this

section and all the proofs, we allow constants C to change from line to line.
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Lemma 1 (Spectral Norm Concentration). Under assumption 2.1, there exists a universal

constant Cspectral such that with probability at least 1− 4(n ∨ d)−6

∥Γ(EM⊤ +ME⊤ + EE⊤)∥ ≤ Cspectral

(︃
σ2(n+

√
nd) + σ

√
nκλr

)︃
.

The next bound shows that the approximation of ˜︁A = A + Γ(Z) to ˆ︁A, the output of

the HeteroPCA algorithm, is much smaller than the approximation of ˜︁A to A. Recall that

NT denotes the approximation of A from Algorithm 1 after T iterations. We note that

the existence of T0 in the statement of this lemma follows from Zhang et al. (2022) and

Assumptions 2.3 and 2.4. In particular, if we take T0 ≥ C log
(︂

λ2r
∥Γ(Z)∥

)︂
, then by the proof

of Theorem 7 in Zhang et al. (2022), it holds that ∥NT −A∥ ≤ 3∥Γ(Z)∥.

Lemma 2. Define T0 as the first iteration such that ∥NT − A∥ ≤ 3∥Γ(Z)∥. Let ρ =

10∥Γ(Z)∥/λ2r, and suppose Assumption 2.2. Define ˜︁KT := ∥NT − ˜︁A∥. Then for all T ≥ T0

and n large enough, on the event in Lemma 1, we have that ρ < 1
2 , and

˜︁KT ≤ 4ρT−T0∥Γ(Z)∥+ 20

1− ρ
∥U∥2,∞∥Γ(Z)∥.

Consequently, when T = Θ
(︂
log
(︂

λ2r
∥U∥2,∞∥Γ(Z)∥

)︂)︂
, it holds that

∥ ˆ︁A− ˜︁A∥ ≤ 41∥U∥2,∞∥Γ(Z)∥.

Assumption 2.2 implies that

λ2r ≥ C

(︃
σ2rd log(n ∨ d) + σ

√︁
nr log(n ∨ d)κλr

)︃
,

which ensures that that there is an eigengap on the event in Lemma 1. Therefore, a stan-

dard application of the Davis-Kahan Theorem (e.g. Chen et al. (2021c)) and Lemma 1

immediately implies that ˆ︁U ˆ︁U⊤ − UU⊤ tends to zero in spectral norm.

To prove our main ℓ2,∞ result, we analyze the statistical error and algorithmic error
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separately. Define H := U⊤ ˜︁U , and ˜︁H := ˜︁U⊤ ˆ︁U . First, write ˆ︁U − UO as

ˆ︁U − UO = (ˆ︁U − ˜︁U ˜︁H) + (˜︁U − UH) ˜︁H + U(H ˜︁H −O).

The first term captures the algorithmic error between the eigenvectors of the output of

Algorithm 1, ˆ︁A, and those of the matrix it approximates, ˜︁A. The next term is the statistical

error between the matrix ˜︁A approximated by the algorithm and the true matrix of interest A.

Finally, we have a correction term which accounts for the fact that ˜︁H and H are contractions

rather than orthogonal matrices.

Since the bound on the algorithmic error depends on the properties of ˜︁U , we first prove

the bound on the middle term, or the statistical error between ˜︁U and U . Then we bound the

algorithmic error and finally the correction term. The following result bounds the statistical

error between ˜︁U and UH with high probability.

Theorem 7. Under Assumptions 2.1, 2.2, 2.3 and 2.4, we have that there exists a universal

constant CR such that

∥˜︁U − UH∥2,∞ ≤ CR

(︃√
rnd log(max(n, d))σ2

λ2r
+

√︁
rn log(n ∨ d)κσ

λr

)︃
∥U∥2,∞

with probability at least 1− (n ∨ d)−4.

In order to prove this result, we use the matrix series expansion developed in Xia (2021)

to write the difference of projection matrices in terms of the noise matrix, each term of

which requires careful considerations due to the dependence between columns of the noise

matrix E.

Consequently, by Assumption 2.2, the result in Theorem 7 implies that

∥˜︁U∥2,∞ ≤ ∥˜︁U − UH∥2,∞ + ∥U∥2,∞

≲ ∥U∥2,∞,

which shows that the matrix ˜︁U is just as incoherent as U up to constant factors. We also

have the following result for the deterministic analysis.
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Theorem 8. Define ˜︁H := ˜︁U⊤ ˆ︁U . Suppose the event in Theorem 7 holds. Then, in the

setting of Lemma 2, we have that there exists a universal constant CD such that

∥ˆ︁U − ˜︁U ˜︁H∥2,∞ ≤ CDκ
2
∥U∥22,∞∥Γ(Z)∥

λ2r
.

Finally, we consider the correction term.

Lemma 3. There exists an orthogonal matrix O∗ and a universal constant C such that

under Assumptions 2.2 and 2.4, the event in Lemma 1, and T = Θ
(︂

λ2r
∥U∥2,∞∥γ(Z)∥

)︂
,

∥UH ˜︁H − UO⊤
∗ ∥2,∞ ≤ C∥U∥2,∞

∥Γ(Z)∥2

λ4r
.

We now have all the pieces to prove Theorem 6.

Proof of Theorem 6. We note that all the events that determine Lemmas 2, 3, and Theo-

rem 8 are the event in Lemma 1, and the event in Theorem 7. Taking a union bound, these

events occur simultaneously with probability at least 1−(n∨d)−4−4(n∨d)−6 ≥ 1−2(n∨d)−4;

henceforth we operate on the intersection of these events. Since Theorem 7 gives the stated

upper bound for ∥˜︁U −UH∥2,∞ on this set, by increasing the constants if necessary, we need

only show that this bound holds for the algorithmic error ∥ˆ︁U − ˜︁U ˜︁H∥2,∞, and the correction

term ∥UH ˜︁H − UO∗∥2,∞.

Under assumption 2.4, we have that

κ2∥U∥2,∞ ≤ κ2µ0
√︁
r/n

≤
√︁
r log(n ∨ d).

Hence, the bound in Theorem 8 becomes

∥ˆ︁U − ˜︁U ˆ︁H∥2,∞ ≤ CD∥U∥2,∞
√︁
r log(n ∨ d)∥Γ(Z)∥

λ2r
. (2.2)
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In addition, on the event of Lemma 1,

∥Γ(Z)∥ ≤ Cspectral

(︃
σ2(n+

√
nd) + σ

√
nκλr

)︃
.

This gives the desired bound for the algorithmic error. For the correction term, we note

that the upper bound in Lemma 3 does not exceed that of Equation (2.2), which has already

been bounded.

Combining these bounds, there is a constant C > 0 such that with probability at least

1− 2(n ∨ d)−4,

inf
O∈O(r)

∥ˆ︁U − UO∥2,∞ ≤ C

(︃√
rnd log(n ∨ d)σ2

λ2r
+

√︁
rn log(n ∨ d)κσ

λr

)︃
∥U∥2,∞,

as advertised.

In order to prove Theorem 5, we show that

e⊤i

(︂ˆ︁UO∗ − U
)︂
ej = ⟨Ei, V·j⟩λ−1

j +R, (2.3)

where V·j is the j’th column of V and R is a residual term that we bound using similar ideas

to the proof of Theorem 6. A straightforward calculation reveals that E
(︃
⟨Ei, V·j⟩λ−1

j

)︃2

=

V ⊤
·j ΣiV·jλ

−2
j , and hence if we define σij := ∥Σ1/2

i V·j∥λ−1
j , we have that

⟨Ei, V·j⟩λ−1
j

σij
=

⟨Ei, V·j⟩
∥Σ1/2

i V·j∥

=
⟨Yi,Σ1/2

i V·j⟩
∥Σ1/2

i V·j∥
,

which by Assumption 2.1 is a sum of d independent mean-zero random variables to which

the classical Berry-Esseen Theorem (Berry, 1941) can be applied. The residual term R

consists of higher-order terms stemming from a matrix series expansion (see Lemma 14 in

Appendix B.1). However, we have already bounded many of these residual terms as part

of the proof of Theorem 7, so we need only show that dividing the residual terms by σij

yields convergence to zero. We then use the Lipschitz property of the Gaussian cumulative
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distribution function to complete the proof of the theorem.
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Chapter 3

Entrywise Bounds for Sparse PCA

via Sparsistent Algorithms

3.1 Introduction

Principal component analysis (PCA) is a standard statistical technique for dimension-

ality reduction of data in an unsupervised manner. Given i.i.d mean-zero observations

X1, . . . , Xn ∈ Rp with covariance matrix Σ ∈ Rp×p, the goal of PCA is to estimate the

leading k-dimensional subspace of Σ, which has the interpretation of representing each ob-

servation as a linear combination of principal components, where each principal component is

a direction of maximal variance. The classical theory of PCA (e.g. Anderson (2003)) shows

that if the number of covariates p is fixed and the number of samples n tends to infinity,

then the leading eigenvectors of the sample covariance approximate the leading eigenvectors

of the population covariance well.

In the modern era of big data, it is often unrealistic to assume that p remains fixed

in n. In the seminal work of Johnstone and Lu (2009), the authors introduced the spiked

covariance model where the leading eigenvalue of the population covariance satisfies λ1 > 1,

while all other eigenvalues are all 1. In Johnstone and Lu (2009), the authors showed that

if ˆ︁u1 is the leading eigenvector of the sample covariance and u1 is the leading eigenvector of

the population covariance, then ⟨ˆ︁u1, u1⟩ need not tend to 1 as p and n tend to infinity unless

59



CHAPTER 3. ENTRYWISE BOUNDS FOR SPARSE PCA VIA SPARSISTENT
ALGORITHMS

either p/n → 0 or the leading eigenvalue λ1 tends to infinity. They then went on to show

that if λ1 remains bounded away from infinity but the leading eigenvector is sparse then a

simple thresholding estimator could yield consistent estimation. Since then, there has been

much work on generalizing the model in Johnstone and Lu (2009) to settings where either

the leading eigenvalues tend to infinity (Bao et al., 2020; Cai et al., 2020, 2021a; Fan et al.,

2020; Yan et al., 2021) or the leading eigenvectors are sparse (Amini and Wainwright, 2009;

d’Aspremont et al., 2007; Cai et al., 2013; Gao et al., 2017; Gataric et al., 2020; Gu et al.,

2014; Lei and Vu, 2015; Ma, 2013; Yang et al., 2015).

In this paper we consider the setting where the leading eigenvalues of the covariance

matrix are bounded away from zero and infinity, but the leading k eigenvectors are s-

sparse as n and p tend to infinity. There have been substantial theoretical (Banks et al.,

2018; Cai et al., 2013; Krauthgamer et al., 2015; Vu and Lei, 2013; Wang et al., 2016) and

methodological (Berthet and Rigollet, 2013; Chen and Rohe, 2020; Gataric et al., 2020;

Ma, 2013; Rohe and Zeng, 2020; Xie et al., 2022) developments in sparse PCA. In Vu et al.

(2013) the authors propose a semidefinite program enforcing sparsity to estimate the leading

eigenvectors of the population covariance given only the sample covariance, and in Lei and

Vu (2015) the authors provide general results for which the algorithm in Vu et al. (2013)

selects the correct support. Similarly, Gu et al. (2014) propose a nonconvex algorithm that

selects the correct support with high probability.

In many of the existing theoretical results on sparse PCA, authors are primarily con-

cerned with subspace estimation error in spectral or Frobenius norm (e.g. Cai et al. (2013);

Vu et al. (2013); Vu and Lei (2013)). However, in many situations entrywise guarantees can

lead to more refined results which can be useful for downstream inference. In this paper,

building upon a host of recent works on entrywise guarantees for eigenvectors (Abbe et al.,

2022, 2020; Agterberg et al., 2022b; Cai et al., 2021a; Cape et al., 2019a,b; Charisopoulos

et al., 2020; Chen et al., 2021c; Damle and Sun, 2020; Fan et al., 2018; Jin et al., 2019; Lei,

2019; Mao et al., 2020; Xia and Yuan, 2020; Xie et al., 2022; Xie, 2022; Yan et al., 2021),

we study entrywise guarantees for sparse PCA for a very general class of models. Our main

results hold for any sparsistent algorithm, i.e. one that selects the correct support for the

eigenvectors, with high probability. Sparsistency has also been studied in other contexts in
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high-dimensional statistics, such as in sparse linear models (Fan and Li, 2001; Wainwright,

2009; Zhao and Yu, 2006). See Bühlmann and van de Geer (2011) for a more comprehensive

overview.

The literature on entrywise eigenvector analysis includes a suite of tools and techniques

to bound the entries of eigenvectors in ways that classical matrix perturbation theory (e.g.

Horn and Johnson (2012); G. W. Stewart and J.-G. Sun (1990); Bhatia (1997)) fails to

address. The Davis-Kahan Theorem (Yu et al., 2014) provides a useful benchmark for

eigenvector analysis, but this can lead to suboptimal entrywise bounds. The primary reason

for the lack of optimality is due to the fact that the Davis-Kahan Theorem can be somewhat

coarse, as it fails to take into account the probabilistic nature of empirical eigenvectors in

statistical settings. Therefore, entrywise eigenvector bounds require careful probabilistic and

matrix analysis techniques that go beyond what the Davis-Kahan Theorem and classical

matrix perturbation theory can do. See Chen et al. (2021c) for an accessible introduction to

entrywise eigenvector estimation. The only other work on entrywise eigenvector analysis in

sparse PCA is in Xie et al. (2022), which is a Bayesian setting under the relatively stringent

spiked model. In this paper we develop entrywise bounds for sparse PCA under a much

more general model class. More specifically, our results hold for models satisfying a mild

eigengap requirement (see Assumption 3.4) that includes the spiked model.

The rest of this paper is organized as follows. In Section 3.2 we provide the requisite

background for sparse PCA and existing results on sparsistency. In Section 3.3 we provide

our main results, and Section 3.4 includes the discussion. We include a sketch of our main

proof in Section C.1, but the full proofs are relegated to the supplementary material.

3.1.1 Notation

We use capital letters to denote matrices and random vectors, which will be clear from

context, and lower case letters to denote fixed vectors. We let X1, . . . , Xn denote a collection

of n random variables in Rp. For a generic real-valued random variable X, its ψα Orlicz

norm of order α (or just ψα norm) is defined via ∥X∥ψα := inf{t > 0 : E exp(|X|α/t) ≤ 1}.

Random variables with finite ψ2 norm are called subgaussian and random variables with

finite ψ1 norm are called subexponential. More discussion on Orlicz norms is included in
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Appendix C.3 in the supplementary material.

For d1 ≥ d2, we define the set of matrices U ∈ Rd1×d2 with orthonormal columns as

O(d1, d2) and when d = d1 = d2, we denote this set as O(d). We use ∥ · ∥ as the spectral

norm on matrices and the Euclidean norm on vectors, ∥ · ∥F as the Frobenius norm, and

∥ · ∥max for the maximum entry norm. Except for the spectral norm, we write ∥ · ∥p→q

as the operator norm from ℓp → ℓq; that is ∥M∥p→q := sup∥x∥p=1 ∥Mx∥q. Of particular

importance is the 2 → ∞ norm, which is the maximum row norm of a matrix. Except for

the maximum entry norm, we write ∥ · ∥p to denote the entrywise p norm of a matrix viewed

as a long vector. For a matrix M , diag(M) extracts its diagonal, and Tr(M) is its trace.

For two symmetric matrices A and B, we write A ≽ B if A−B is positive semidefinite. For

a matrix M , Mj· and M·i denote its j’th row and i’th column respectively. For a collection

of indices J , MJJ denotes the principal submatrix of M found by taking its columns and

rows corresponding to indices in J , and for a vector x, x[J ] denotes the components of x

corresponding to indices in J . For a matrix M , the operator supp(M) denotes its support,

i.e. the indices corresponding to nonzero components in M . We denote the reduced condition

number of Σ (with respect to the dimension k) as κ := λ1
λk

.

For two functions f(n) and g(n), we write f(n) ≲ g(n) or f(n) = O(g(n)) if there exists

a constant C such that f(n) ≤ Cg(n) for all n sufficiently large, and we write f(n) ≪ g(n)

or f(n) = o(g(n)) if f(n)/g(n) → 0 as n → ∞. In the proofs, a generic constant C may

change from line to line.

3.2 Sparse PCA and Sparsistency

Suppose {Xi}ni=1 ∈ Rp are mean-zero random variables with covariance matrix Σ and eigen-

values λ1 ≥ · · · ≥ λp ≥ 0. Define the empirical covariance ˆ︁Σ := 1
n

∑︁n
i=1XiX

⊤
i , which is

just the usual method of moments estimator. We assume that Σ has a sparse k-dimensional

leading subspace, meaning that its leading k eigenvectors are s-sparse, in the sense that

there is a set J ⊂ {1, . . . , p} with cardinality at most s, with each eigenvector’s nonzero

support restricted to indices in J . In the language of Vu and Lei (2013), this setting refers

to row -sparsity (as opposed to column-sparsity). See Vu and Lei (2013) for a comparison.
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We denote the p× k matrix U as the matrix of k orthonormal eigenvectors of Σ. Since U is

assumed row-sparse, it has at most s nonzero rows. Concretely, this means that the nonzero

support of each column of U is restricted to rows with indices in J . A useful interpretation

of the set J is that it corresponds to the subset of covariates that contribute to the directions

of maximum variance. In order for Σ to have a well-defined (sparse) leading k-dimensional

subspace, it must have an eigengap, meaning that λk−λk+1 > 0. In Section 3.3, Assumption

3.4 offers a slightly more quantitative condition on this eigengap.

The sparse PCA problem consists of estimating the matrix U from the observations

{Xi}ni=1. There have been a number of approaches, including, but not limited to semidefinite

programming Amini and Wainwright (2009); d’Aspremont et al. (2007), Fantope Projection

and Selection algorithm (Vu et al., 2013; Lei and Vu, 2015), nonconvex approaches (Gu et al.,

2014), Bayesian approaches (Xie et al., 2022), amongst others (Gataric et al., 2020; Chen

and Rohe, 2020; Wang et al., 2014; Ma, 2013). In this paper we consider any algorithm that

selects the correct support with high probability (see Assumption 3.2) in an asymptotic

regime where k ≪ s ≪ n ≲ p. From a practical standpoint, it is useful to consider the

regime where k stays fixed but s tends to infinity as n and p at a rate s = o(n). This

regime is similar to that studied in the literature on high-dimensional sparse linear models,

where one assumes that the coefficients are s-sparse with s≪ n. While it is possible to use

analogous techniques to those in sparse linear models to study sparse PCA (e.g. Janková and

van de Geer (2021)), the unsupervised problem of sparse PCA is markedly distinct from the

supervised setting of sparse linear regression, and often requires additional considerations.

Note that if Π is a permutation matrix, then ΠΣΠ⊤(ΠU) = ΠΣU = ΠUΛ, where Λ is

the k× k diagonal matrix of leading eigenvalues of Σ. This shows that ΠU are eigenvectors

of ΠΣΠ⊤. Therefore, given the set of nonzero indices J , without loss of generality, we can

assume J = {1, . . . , s} by permuting Σ if necessary. We can partition Σ via

Σ :=

⎛⎜⎝ΣJJ ΣJJc

Σ⊤
JJc ΣJcJc

⎞⎟⎠ ;

a similar partition holds for ˆ︁Σ and U . Under the assumption that the leading eigenvectors
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Algorithm 2 “Debiased” Sparse PCA

Require: Sparsistent sparse PCA algorithm SparsePCA, empirical covariance matrix ˆ︁Σ
1: Run SparsePCA algorithm on ˆ︁Σ, obtaining support set estimate ˆ︁J ⊂ {1, . . . , p}.
2: Define ˜︁U ˆ︁J as the leading k eigenvectors of ˆ︁Σ ˆ︁J ˆ︁J .
3: return Full matrix ˜︁U , where

˜︁Ui· = {︄(˜︁U ˆ︁J)i· i ∈ ˆ︁J
0 i /∈ ˆ︁J

of Σ are sparse, we have from the eigenvector equation that

ΣU =

⎛⎜⎝ΣJJ ΣJJc

Σ⊤
JJc ΣJcJc

⎞⎟⎠
⎛⎜⎝UJ

0

⎞⎟⎠ =

⎛⎜⎝ΣJJUJ

Σ⊤
JJcUJ

⎞⎟⎠ =

⎛⎜⎝UJ
0

⎞⎟⎠Λ

which shows also that UJ is orthogonal to the matrix Σ⊤
JJc and that the leading k eigenvectors

and eigenvalues of ΣJJ are exactly the leading k eigenvectors of Σ with the zeros removed.

An important property of any sparse PCA algorithm is identifying the support J with

high probability. Suppose ˆ︁U is any estimator for U (or, equivalently, ˆ︁UU⊤ is any estimator

for UU⊤). In this work we consider a “debiased” version of sparse PCA under the assumption

that ˆ︁U and U contain the same set of nonzero components, which implies that the estimatorˆ︁U equivalently estimates the support J . We defer the particular details of this assumption

to Assumption 3.2. Our estimator is then defined as the following modification on any

sparsistent algorithm: given any set J , let ˜︁UJ be the s × k matrix of eigenvectors of the

principal submatrix ˆ︁ΣJJ , and define ˜︁U :=

⎛⎜⎝˜︁UJ
0

⎞⎟⎠. If the algorithm is sparsistent, then the

correct set J will be selected with high probability. In this way, the particular choice of

sparse PCA algorithm can be viewed as a variable selection procedure as opposed to an

estimation procedure. The full procedure is presented in Algorithm 2.

A natural question is whether sparsistent algorithms for sparse PCA exist. The answer

is positive: in Theorem 1 of Lei and Vu (2015), the authors provide deterministic conditions

on Σ guaranteeing that the Fantope Projection and Selection estimator is unique and has

support set J with probability at least 1−O(p−2) when s
√︂

log(p)
n → 0. Their conditions re-

quire an error bound on ∥ˆ︁Σ−Σ∥max as well as conditions on the magnitudes of the eigengaps
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and entries of the projection matrices. Similarly, Gu et al. (2014) provide general conditions

on Σ (in terms of the magnitudes of the entries) so that their (nonconvex) algorithm obtains

the support set J with probability at least 1−O(n−2) when sk log(p)
n → 0. In general, spar-

sistency is a property of an algorithm, and the particular structure of Σ must be taken into

account. Therefore, our results will hold for general matrices Σ with only mild conditions,

and can be coupled with additional structural assumptions and algorithms to yield improved

recovery guarantees.

3.3 Main Results

In order to state our main results, we need a few assumptions. Our main results will be

stated for large n with p, s and k functions of n. We have the following assumption on the

dimensions.

Assumption 3.1 (Sample Size and Dimension). The sample size n and dimension p satisfy

s log(p) ≪ n; k ≪ s.

The assumption that s log(p) ≪ n is weaker than the assumption s ≲
√︁
n/ log(p) as is

the condition in Lei and Vu (2015) for sparsistency. However, this still allows p/n → ∞;

e.g. p = nc for any c ≥ 1. The second condition k ≪ s is not explicitly required, but it does

rule out the degenerate case k = O(s), since k ≤ s by definition. In many works k = 1 (e.g.

Amini and Wainwright (2009); Elsener and van de Geer (2019); Janková and van de Geer

(2021)).

The next assumption imposes the condition that whatever variable selection procedure

we use selects the correct support set J with high probability.

Assumption 3.2 (Sparsistency). The algorithm is sparsistent, meaning that with probability

1− δ the correct set J is chosen.

Note that Theorem 1 of Lei and Vu (2015) provides sufficient conditions for Assumption

3.2 to hold, as does Theorem 1 of Gu et al. (2014). In general, this assumption is the hardest

to check as it depends on the particular variable selection algorithm. In Lei and Vu (2015),
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the authors show that δ = O(p−2) when s
√︂

log(p)
n → 0 (in addition to some other conditions

omitted here). Similarly, Gu et al. (2014) show that δ = O(n−2) when s log(p)
n → 0 (in

addition to other conditions omitted here). Typically the other conditions include some

“signal-strength” requirements, such as the magnitudes of the entries of Σ being sufficiently

large. The particular details for these requirements can be found in Lei and Vu (2015) and

Gu et al. (2014) respectively.

The following assumption imposes general tail conditions on the distribution of the ob-

servations X1, . . . , Xn.

Assumption 3.3 (Randomness). The variables Xi are mean zero and satisfy Xi = Σ1/2Yi

for independent random variables Yi with independent coordinates with unit variance. Fur-

thermore, the ψ2 norm of each coordinate Yij satisfies ∥Yij∥ψ2 = 1 .

This assumption says that the Xi’s are linear combinations of Yi’s whose entries are

independent. In general, assuming that each observation is a linear combination of indepen-

dent random variables is a little stringent, but still common in the random matrix theory

literature (e.g. El Karoui (2010); Knowles and Yin (2017); Bao et al. (2020); Ding and Yang

(2021); Yang (2019, 2020)). While a more general result may be possible, Assumption 3.3

includes the setting that the Yi’s are i.i.d. Gaussians with identity covariance.

The following assumption imposes a quantitative condition on the eigengap (note that

the existence of an eigengap is required for identifiability).

Assumption 3.4 (Eigenvalues). The top eigenvalues of Σ satisfy

Cλ1

(︃√︃
s

n
+

√︃
log(p)

n

)︃
+
λk+1

8
≤ λk

8

for some sufficiently large constant C. In addition, for all p, we have that 2λk+1 < (1−ε)λk

for some ε > 1
64 .

The requirement ε > 1
64 is somewhat arbitrary and can be relaxed in general to any

constant strictly greater than zero. The other part of the assumption is required to obtain

enough signal on the top k eigenvalues of Σ, and hence ΣJJ . Furthermore, in light of Lemma

4 (our principal submatrix concentration bound), this ensures that the top k eigenvalues of
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ˆ︁ΣJJ “track" those of ΣJJ . In lieu of stronger assumptions, such as in a spiked model, this

is the minimum requirement to guarantee that leading eigenvectors of ˆ︁ΣJJ are well-defined.

The main results will be stated in terms of the 2 → ∞ norm of the difference of two

matrices. Recall that for a matrix M ∈ Rp×k, we have that

∥M∥2→∞ = max
1≤i≤p

∥Mi·∥2;

that is, ∥M∥2→∞ is the maximum (Euclidean) row norm of the matrix M . Moreover, the

2 → ∞ norm has some attractive geometrical properties; for example, for two matrices A

and B, we have that ∥AB∥2→∞ ≤ ∥A∥2→∞∥B∥. More discussion on these relationships can

be found in Cape et al. (2019b).

The following assumption concerns the incoherence of the matrix U , which is defined

as ∥U∥2→∞. This assumption is only included to ease interpretation and is not explicitly

required. A more general – albeit more complicated – result is provided in the supplementary

material.

Assumption 3.5 (Incoherence and Conditioning). Suppose ∥U∥2→∞ ≲
(︁
k
s

)︁1/2, that k ≲
√
s, and that the eigenvalues satisfy

λk+1 ≤
λ

2
< λ ≤ λk ≤ λ1 ≤ κλ

for some parameters κ and λ.

The requirement k ≲
√
s is only needed to simplify terms. The incoherence assumption

states that the matrix ΣJJ is incoherent in the usual sense. In this paper we do not worry

about the particular incoherence constant as long as it is O(1), whereas in the matrix

completion literature (Candes and Plan, 2010; Candes and Tao, 2010; Chen et al., 2020,

2019b) one often studies the precise dependence on the incoherence constant. If one desires

a more refined understanding of incoherence, our more general result in the supplementary

material shows how our upper bound depends explicitly on the incoherence of U .

In addition, Assumption 3.5 should not be confused with Assumption 3.4 on the eigengap.

The parameter κ is the reduced condition number of the leading k-dimensional subspace
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of Σ, and can be much smaller than the usual (full) condition number of Σ, especially

when the leading k eigenvalues are of comparable order (or “spiked”) relative to the bottom

p − k eigenvalues. Assumption 3.4 in fact implies an upper bound on κ of order at most√︁
n/(s log(p)), but it is useful to think of the setting that κ = O(1), which corresponds

to the case where the leading k eigenvalues are of comparable order. In the setting that

the eigenvalues are uniformly bounded away from zero and infinity, this assumption is not

particularly strong; moreover, if the leading k eigenvalues grow sufficiently fast as a function

of n and p, then the leading k eigenvectors are consistent without additional assumptions.

Consequently, the primary technical condition in Assumption 3.5 is on the incoherence, i.e.

∥U∥2→∞ ≲
(︁
k
s

)︁1/2.
Before stating the main theorem, we will require some notions from subspace perturba-

tion theory (Bhatia, 1997; G. W. Stewart and J.-G. Sun, 1990). For V, V ′ ∈ O(p, k), the

quantity

dF (V, V
′) = inf

W∈O(k)
∥V − V ′W∥F (3.1)

defines a metric on k-dimensional subspaces invariant to choice of basis. Therefore, by

analogy, one might wish to study the quantity

d2→∞(V, V ′) := inf
W∈O(k)

∥V − V ′W∥2→∞. (3.2)

Unfortunately, for fixed V, V ′, one cannot necessarily compute the minimizer in (3.2) in

closed form. However, for fixed V, V ′ the minimizer of (3.1) is attained using the singular

value decomposition of V ⊤V ′. That is, let W1DW
⊤
2 be the singular value decomposition of

V ⊤V ′. Then the minimizer of (3.1), denoted W∗, satisfes W∗ :=W1W
⊤
2 . In addition,

d2→∞(V, V ′) ≤ ∥V − V ′W∗∥2→∞.

Therefore, the results will be stated in terms of the existence of an orthogonal matrix

W∗ ∈ O(k) that provides an upper bound for the 2 → ∞ distance. In the proof, we show

that W∗ is actually a specific Frobenius-optimal orthogonal matrix. For convenience, we also

68



Joshua Agterberg

include more information on subspace distances in the supplementary material (Appendix

C.3).

We are now prepared to state our main result.

Theorem 9. Suppose Assumptions 3.1, 3.2, 3.3, 3.4, and 3.5 are satisfied, and let ˜︁U be the

output of Algorithm 2. Then with probability at least 1− δ− p−2, there exists an orthogonal

matrix W∗ ∈ O(k) such that

max
1≤i≤n

∥˜︁Ui· − (UW∗)i·∥ ≲ κ2
√︃
k log(p)

n
+ κ3

s log(p)

n
.

Consequently, if κ = O(1), then

max
1≤i≤n

∥˜︁Ui· − (UW∗)i·∥ ≲

√︃
k log(p)

n
+
s log(p)

n
.

As a brief remark, the dependence on the reduced condition number κ here may be

suboptimal and could potentially be improved – we believe this is primarily an artifact of

our proof technique and not a fundamental requirement. Recall that in the regime that the

eigenvalues are bounded away from zero and infinity, when the leading k eigenvalues are of

comparable order, it holds that κ = O(1).

Note that by taking δ = O(p−2) and the conditions in Lei and Vu (2015) needed for

sparsistency, the above bound holds with probability at least 1 − O(p−2); similarly, under

the conditions needed for sparsistency in Gu et al. (2014), one has δ = O(n−2), in which

case the bound holds with probability at least 1−O(n−2).

3.4 Discussion

In the regime that the eigenvalues are uniformly bounded away from zero and infinity in n,

then Theorem 9 shows that we have the error rate

max
1≤i≤n

∥˜︁Ui· − (UW∗)i·∥ ≲ max

(︃√︃
k log(p)

n
,
s log(p)

n

)︃
.
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In contrast, under the same conditions, in Frobenius norm, it has been shown in Cai et al.

(2013) that the minimax rate satisfies

∥˜︁U − UW∗∥F ≲

√︃
s log(p)

n
,

so Theorem 9 improves upon this. Moreover, our result improves greatly upon the Frobenius

norm bound in Vu et al. (2013), as well as the Frobenius minimax rates studied in Cai et al.

(2013) and Vu and Lei (2013). To the best of our knowledge, this is the first 2 → ∞

guarantee for sparse PCA under a generic sparsistency requirement. A similar result was

found in Xie et al. (2022) for spiked sparse covariance matrices, but here the only assumption

on the spike is Assumption 3.4, which is a much weaker assumption.

Our bounds can also be compared to the spiked covariance matrix setting Σ = UΛU⊤+

σ2I, where U is no longer sparse but λk → ∞ in n and p. In this setting the eigenvectors ˆ︁U
of ˆ︁Σ are consistent in the following sense. Define the effective rank r(Σ) := Tr(Σ)

λ1
. Theorem

1 of Cape et al. (2019b) (see also Yan et al. (2021) and Cai et al. (2021a)) shows that if

λ1 ≳ d/k, r(Σ) = o(n), κ = O(1), and λk − σ2 ≳ λk, then

max
1≤i≤n

∥ˆ︁Ui· − (UW∗)i·∥ ≲

√︃
max{r(Σ), log(d)}

n

√︄
k3

p
.

Here the primary error is no longer in detecting the leading eigenvectors (as the assumption

that λ1 ≳ d/k implies large enough separation), but rather in the inherent statistical error

implicit from the difference ˆ︁Σ − Σ. Our upper bound requires that J is either known or

can be estimated consistently (Assumption 3.2), so that our error depends on the inherent

statistical error from ˆ︁ΣJJ − ΣJJ . In contrast, we do not optimize for factors of λ1 in our

upper bound, as the setting for sparse PCA typically assumes that the eigenvalues remain

bounded in n and p. We instead need only the (milder) eigenvalue separation in Assumption

3.4.

Suppose instead of just observing X1, . . . , Xn ∈ Rp, one also observes response variables

Yi ∈ R. Consider the linear model Yi = X⊤
i β + εi, where εi is a mean-zero error term with

variance σ2. Suppose one first performs unsupervised dimensionality reduction on the data
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matrix via sparse PCA and then computes ˆ︁β using ordinary least squares with the reduced

data matrix. The 2 → ∞ bound in Theorem 9 could provide a partial answer to the out-of-

sample prediction performance using a variable selection procedure. To be concrete, defineˆ︁β as the output of ordinary least squares by regressing Yi along X ˜︁U ˜︁U⊤, where ˜︁U is the

output of the sparse PCA procedure in Algorithm 2 and X is the n×p matrix of predictors.

Following Huang et al. (2020a), we can bound the risk of a new sample point (x∗, Y∗) via

E∥Y∗ − x⊤∗
˜︁βSPCA∥2|X ≤ β⊤

(︁
I − ˜︁U ˜︁U⊤)︁Σ(︁I − ˜︁U ˜︁U⊤)︁β +

σ2

n
Tr
[︃(︃

1

n
˜︁U ˜︁U⊤X⊤X ˜︁U ˜︁U⊤

)︃†
Σ

]︃
+ σ2,

where the first term represents the bias, the second term represents the variance, and the

third term (σ2) is the noise intrinsic to the problem. The bias term can be expanded further

via

β⊤
(︁
I − ˜︁U ˜︁U⊤)︁Σ(︁I − ˜︁U ˜︁U⊤)︁β = β⊤

(︁˜︁U ˜︁U⊤ − UU⊤)︁Σ(︁˜︁U ˜︁U⊤ − UU⊤)︁β
+ 2β⊤

(︁˜︁U ˜︁U⊤ − UU⊤)︁Σ(︁I − UU⊤)︁β
+ λk+1∥β∥22.

Consider the second term. This could be bounded by noting that

⃓⃓
β⊤
(︁˜︁U ˜︁U⊤ − UU⊤)︁Σ(︁˜︁U ˜︁U⊤ − UU⊤)︁β ⃓⃓ ≤ ⃦⃦β⊤(︁˜︁U ˜︁U⊤ − UU⊤)︁⃦⃦

∞
⃦⃦
Σ
(︁
I − UU⊤)︁β⃦⃦

1

≤ λk+1∥β∥∞∥β∥1∥˜︁U ˜︁U⊤ − UU⊤∥2→∞.

This bound has a factor of ∥˜︁U ˜︁U⊤ − UU⊤∥2→∞, which, while not exactly the same as

what appears in Theorem 9, is closely related to it by appealing to notions in subspace

perturbation theory (see, e.g. Lemma 1 of Cai and Zhang (2018)). Therefore, through

similar analysis, one could obtain bounds for the other bias and variance terms with respect

to the eigenvalues of Σ, the quantity ∥˜︁U ˜︁U⊤−UU⊤∥2→∞ and the quantities ∥β∥1 and ∥β∥∞.

Consequently, these bounds would complement those in Theorem 1 of Huang et al. (2020a)

as sparse PCA is typically needed in a regime when r(Σ) ≳ n, whereas Huang et al. (2020a)

study the setting that r(Σ) = o(n).
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Finally, our upper bound depends on the debiased estimator ˜︁UJ , which is the matrix

of eigenvectors of ˆ︁ΣJJ . A key requirement is that any algorithm obtains the correct set J

with probability at least 1− δ. In general, one must consider the output of an optimization

procedure to determine whether a specific algorithm obtains the correct set J . If one ad-

ditionally wanted to test whether a certain row of U is equal to zero (i.e., whether i ∈ J),

then one would need to construct a different debiased estimator as in Janková and van de

Geer (2021) that uses the first-order necessary optimality conditions. This procedure there-

fore relies heavily on the particular algorithm used, whereas our bounds hold for generic

algorithms.

3.5 Overview of the Proof of Theorem 9

The full proof of Theorem 9 is in the supplementary material, though we include a brief

overview here. First, our main upper bound holds without Assumption 3.5, and we provide

this general upper bound in Theorem 22 (stated in the supplementary material C.1) and

show how Theorem 9 can be deduced from Assumption 3.5. To prove Theorem 22, we first

show the following principal submatrix concentration bound.

Lemma 4 (Principal Submatrix Concentration). Let J be an index set of {1, ..., p} of size

s. Then

∥ˆ︁ΣJJ − ΣJJ∥ ≲ λ1

(︃√︃
s

n
+

√︃
log(p)

n

)︃

with probability at least 1−O(p−4).

The proof is somewhat standard and primarily follows arguments detailed in Wainwright

(2019) via ε-nets and concentration, though we include it in Section C.2.1 for completeness.

It is also very similar to a result in Amini and Wainwright (2009) for Gaussian random

variables. To the best of our knowledge, there is no general result of this form in the

literature for subgaussian random vectors. The following Lemma shows that the leading k

eigenvalues of ˆ︁ΣJJ are well-separated from its bottom eigenvalues.
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Lemma 5 (Existence of an Eigengap). Under the event in Lemma 4 and Assumption 3.4,

the eigenvalues of ˆ︁ΣJJ and ΣJJ satisfy

λk − ˜︁λk+1 ≥
λk − λk+1

8
; ˜︁λk − λk+1 ≥

λk − λk+1

8
;

˜︁λk ≥ λk
4
.

Consequently, this bound holds with probability at least 1−O(p−4).

We also note that λk+1(ΣJJ) ≤ λk+1 by the Cauchy interlacing inequalities (Horn and

Johnson, 2012), and the top k eigenvalues of ΣJJ are the same as those of Σ by the eigen-

vector equation. These lemmas set the stage for our main analysis.

As an immediate consequence of Lemmas 4 and 5, we can obtain the following proposition

concerning the spectral proximity of UJU⊤
J to ˜︁UJ ˜︁U⊤

J , ensuring that ˜︁UJ (and hence ˜︁U) is

well-defined.

Proposition 1 (Spectral Proximity). Under the assumptions of Theorem 22, we have that

∥UJU⊤
J − ˜︁UJ ˜︁U⊤

J ∥ ≲
λ1

λk − λk+1

[︃√︃
s

n
+

√︃
log(p)

n

]︃

with probability at least 1−O(p−4).

We use this bound several times in our subsequent analysis. After these preliminary

bounds, which are restated for convenience in the supplementary material, we develop an

expansion for the difference ˜︁UJ − UJW∗ in terms of the error matrix (Σ − ˆ︁Σ) and deter-

ministic quantities depending only on Σ. Informally, we show that we have the “first-order”

approximation

˜︁UJ − UJW∗ = (ˆ︁ΣJJ − UJU
⊤
J ΣJJ)˜︁UJ ˜︁Λ−1 +R,

where R is a residual term and ˜︁Λ is the diagonal matrix of the k leading eigenvalues of ˆ︁ΣJJ .
Lemma 5 ensures that the eigenvalues of ˜︁Λ can be bounded with respect to the eigenvalues of

Σ. The residual term R (the terms T1, T2, and T3 in the supplementary material) is bounded

in Lemmas 24, 25, and 26 with tools from complex analysis (Greene and Krantz, 2006),
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matrix perturbation theory (Bhatia, 1997), and high-dimensional probability (Wainwright,

2019; Vershynin, 2018).

To bound the leading term in 2 → ∞ norm, we show that it can be further decomposed

into two terms, that we dub J1 and J2, by the decomposition

(ˆ︁ΣJJ − UJU
⊤
J ΣJJ)˜︁UJ = (ˆ︁ΣJJ − ΣJJ)˜︁UJ + U⊥Λ⊥U

⊤
⊥
˜︁UJ

: = J1 + J2,

where U⊥ is the s × (s − k) matrix such that [UJ , U⊥] is an orthogonal matrix. The first

term reflects the error from the randomness and the leading subspace UJ and the second

term reflects the influence of U⊥ on ˜︁UJ .

The term J2 = U⊥Λ⊥U
⊤
⊥
˜︁UJ is bounded using a matrix series expansion for the matrix˜︁UJ (Lemma 27). More explicitly, we define the perturbation E := ˆ︁ΣJJ − UJU

⊤
J ΣJJUJU

⊤
J ,

and we show that we can write

˜︁UJ =
∞∑︂
m=0

Em(UJΛU
⊤
J )˜︁UJΛ−m+1.

We then analyze each term in 2 → ∞ norm, take a union bound for the first O(log(n))

terms and bound the remaining part of the series coarsely using the spectral norm. Similar

techniques have been used in Cape et al. (2019a); Xie et al. (2022); Tang (2018) and Tang

et al. (2017c), but our analysis requires additional considerations due to the fact that we do

not have a mean-zero perturbation since EE = U⊥U
⊤
⊥ΣJJU⊥U

⊤
⊥ . However, the matrix EUJ

is mean-zero since U⊤
⊥UJ = 0.

The remaining term J1 = (ˆ︁ΣJJ − ΣJJ)˜︁UJ is then analyzed directly through its block-

structure (Equation (C.5)). Letting X be the n×p matrix whose rows are the observations,

by Assumption 3.3, X = Y Σ1/2, where Y is an n×p matrix of independent random variables

74



Joshua Agterberg

with unit variance. Then the empirical covariance ˆ︁Σ = 1
nX

⊤X and hence

ˆ︁ΣJJ =
1

n

(︃
(Σ1/2)JJY

⊤
J YJ(Σ

1/2)JJ +Σ
1/2
JJcY

⊤
JcYJ(Σ

1/2)JJ

+ (Σ1/2)JJY
⊤
J YJc(Σ

1/2
JJc)

⊤ +Σ
1/2
JJcY

⊤
JcYJc(Σ

1/2
JJc)

⊤
)︃

where we have abused the notation

Σ
1/2
JJc = (Σ1/2)JJc .

Above, the n×pmatrix Y is partitioned via Y = [YJ , YJc ], where YJ and YJc are the variables

corresponding to J and its complement, Jc, respectively. This term is bounded in Lemmas

28, 29, and 30. Lemmas 28 and 29 are standard applications of matrix perturbation theory

(via Proposition 1) and standard concentration inequalities such as Bernstein’s inequality,

but Lemma 30 requires studying the spectral properties of the matrix ΣJJc and its relation

to UJ (Proposition 10).

Our proof is then completed by combining and aggregating all of these bounds. Through-

out the proof we make heavy use of several important concentration inequalities and notions

from subspace perturbation theory, so Appendix C.3 in the supplementary material contains

additional information on these topics.
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Chapter 4

Estimating Higher-Order Mixed

Memberships via ℓ2,∞ Tensor

Perturbation Bounds

4.1 Introduction

Higher-order multiway data, i.e., tensor data, is ubiquitous in modern machine learning and

statistics, and there is a need to develop new methodologies for these types of data that

succinctly capture the underlying structures. In a variety of scenarios, tensor data may

exhibit community-like structures, where each component (node) along each different mode

is associated with a certain community/multiple communities. High-order clustering aims

to partition each mode of a dataset in the form of a tensor into several discrete groups. In

many settings, the assumption that groups are discrete, or that each node belongs to only one

group, can be restrictive, particularly if there is a domain-specific reason that groups need

not be distinct. For example, in the multilayer flight data we consider in Section 4.3.3, one

observes flights between airports over time. Imposing the assumption that the underlying

tensor has discrete communities assumes that each time index can be grouped into distinct

“buckets" – however, time is continuous, and individual time points can belong to multiple

primary communities. Similarly, airports do not need to belong to discrete communities – if
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communities loosely correspond to geographical location, then airports may belong to some

combination of geographical locations, as the location is a continuous parameter.

To ameliorate this assumption of distinct communities, in this paper we propose the

tensor mixed-membership blockmodel, which relaxes the assumption that communities are

discrete. Explicitly, we assume that each entry of the underlying tensor T ∈ Rp1×p2×p3 can

be written via the decomposition

Ti1i2i3 =

r1∑︂
l1=1

r2∑︂
l2=1

r3∑︂
l3=1

Sl1l2l3
(︁
Π1

)︁
i1l1

(︁
Π2

)︁
i2l2

(︁
Π3

)︁
i3l3

, (4.1)

where Πk ∈ [0, 1]pk×rk satisfies
∑︁rk

l=1(Πk)il = 1 and S ∈ Rr1×r2×r3 is a mean tensor. In

words, the model (4.1) associates to each index along each mode a [0, 1]-valued membership

vector. For each index i of each mode k, the entries of its membership vector
(︁
Πk

)︁
i· corre-

spond to one of the rk latent underlying communities, with the magnitude of the entry gov-

erning the intensity of membership within that community. The entry i1, i2, i3 of the under-

lying tensor is then a weighted combination of the entries of the mean tensor S ∈ Rr1×r2×r3 ,

with weights corresponding to three different membership vectors
(︁
Π1

)︁
i1·,
(︁
Π2

)︁
i2·,
(︁
Π2

)︁
i3·.

In the previous example of airport flights, considering just the mode corresponding to

time (in months), the mixed-membership tensor blockmodel posits that there are latent

“pure” months and each individual time is a convex combination of these pure months. For

a given index i, each entry of the i’th row of the membership matrix (Πtime)i· corresponds

to how much the time index i reflects each of the latent “pure communities.” When the

matrices Πk are further assumed to be {0, 1}-valued, every index is “pure" and this model

reduces to the tensor blockmodel considered in Han et al. (2021); Chi et al. (2020); Wu et al.

(2016), and Wang and Zeng (2019).

The factorization in (4.1) can be related to the so-called Tucker decomposition of the

tensor T . A tensor T is said to be of Tucker rank (r1, r2, r3) if it can be written via

T = C ×1 U1 ×2 U3 ×3 U3,

where C ∈ Rr1×r2×r3 is a core tensor and Uk ∈ Rpk×rk are orthonormal loading matrices
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(see Section 4.1.2 for details). In this paper, we consider estimating Πk (i.e., the community

memberships) by considering the explicit relationship between the decomposition (4.1) and

the loading matrices Uk in its Tucker decomposition. Our main contributions are as follows:

• We provide conditions for the identifiability of the model (4.1) (Proposition 2) and we

relate the decomposition in (4.1) to the Tucker decomposition of the underlying tensor

(Proposition 3 and Lemma 6).

• We propose an algorithm to estimate the membership matrices Πk obtained by com-

bining the higher-order orthogonal iteration (HOOI) algorithm with the corner-finding

algorithm of Gillis and Vavasis (2014), and we demonstrate a high-probability per-

node error bound for estimation of the membership matrices Πk in the presence of

heteroskedastic, subgaussian noise (Theorem 10).

• To prove our main results, we develop a new ℓ2,∞ perturbation bound for the HOOI

algorithm in the presence of heteroskedastic, subgaussian noise (Theorem 11) that may

be of independent interest.

• We conduct numerical simulations and apply our algorithm to three different datasets:

– In the first dataset consisting of global flights by airline, we find a “separation

phenomenon” between American airports and airlines and Chinese airports and

airlines.

– In the next dataset consisting of flights between US airports over time, we obtain

evidence of a “seasonality effect” that vanishes at the onset of the COVID-19

pandemic.

– In the final dataset consisting of global trading for different food items, we find

that global food trading can be grouped by region, with European countries

grouped more closely together than other regions.

Our main technical result, Theorem 11, relies only on spectral properties of the underlying

tensor and holds for nearly-optimal signal-to-noise ratio conditions such that a polynomial-

time estimator exists. Our proof is based on a careful leave-one-out construction that re-

quires additional “tensorial” considerations. See Section 4.4 for further details on our proof
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techniques. For ease of presentation, this paper focuses on the order-three setting. Our re-

sults and methodology naturally extend to the higher-order setting, and we give an informal

statement of the extension to higher-order in Section 5.5.

The rest of this paper is organized as follows. In Section 4.1.1 we review related works,

and in Section 4.1.2 we set notation and review tensor algebra. In Section 4.2 we provide our

main estimation algorithm and present our main theoretical results, including our per-node

estimation errors, and in Section 4.3 we present our results on simulated and real data. In

Section 4.4 we provide an overview of the proof of our main ℓ2,∞ perturbation bound, and

we finish in Section 5.5 with a discussion. We defer the full proofs of our main results to the

appendices.

4.1.1 Related Work

Tensors, or multidimensional arrays, arise in problems in the sciences and engineering (Hore

et al., 2016; Koniusz and Cherian, 2016; Schwab et al., 2019; Zhang et al., 2020a), and there is

a need to develop principled statistical theory and methodology for these data. Tensor data

analysis techniques are closely tied to spectral methods, which have myriad applications in

high-dimensional statistics (Chen et al., 2021c), including in principal component analysis,

spectral clustering, and as initializations for nonconvex algorithms (Chi et al., 2019). With

the ubiquity of spectral methods, there has also been a development of both theory and

methodology for fine-grained statistical inference with spectral methods, though the existing

theory is limited to specific settings, and may not be applicable to tensors.

Algorithms for high-order clustering have relied on convex relaxations (Chi et al., 2020)

or spectral relaxation (Wu et al., 2016). Perhaps the most closely related results for high-

order clustering are in Han et al. (2021), who consider both statistical and computational

thresholds for perfect cluster recovery. Their proposed algorithm HLloyd is a generalization

of the classical Lloyd’s algorithm for K-Means clustering to the tensor setting. Similarly,

Luo and Zhang (2022) consider the statistical and computational limits for clustering, but

they focus on expected misclustering error. Unlike these previous works, our model allows

for mixed-memberships, and hence we are not estimating discrete memberships.

The tensor mixed-membership blockmodel is also closely related to and inspired by the
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mixed-membership stochastic blockmodel proposed by Airoldi et al. (2008), and our esti-

mation algorithm is closely related to the algorithm proposed in Mao et al. (2021), who

propose estimating mixed memberships in networks by studying the relationship between

the leading eigenvectors and the membership matrix. Similar to Mao et al. (2021) we also

repurpose the algorithm proposed in Gillis and Vavasis (2014) for membership estimation,

and we obtain our main results by obtaining sharp ℓ2,∞ perturbation bounds for the esti-

mated singular vectors. However, unlike Mao et al. (2021), our analysis requires studying

the output of the higher-order orthogonal iteration (HOOI) algorithm, whereas Mao et al.

(2021) need only consider the ℓ2,∞ perturbation of the leading eigenvectors. Nearly optimal

perturbation bounds for the matrix mixed-membership blockmodel have also been obtained

in Xie (2022), and we provide a comparison of our results to both Mao et al. (2021) and Xie

(2022), demonstrating the effect of higher-order “tensorial” structure on estimation accuracy.

Our ℓ2,∞ perturbation bounds are not simply extensions of previous bounds for matrices,

and instead require additional novel theoretical techniques; see Section 4.4 for details.

Considering general perturbation results for tensors, Cai et al. (2022) focuses on sym-

metric tensors of low CP rank, and they consider the performance of their noisy tensor

completion algorithm obtained via vanilla gradient descent, and they prove entrywise con-

vergence guarantees and ℓ2,∞ perturbation bounds. Our analysis differs in a few key ways:

first, we consider tensors of low Tucker rank, which generalizes the CP rank; next, our

analysis holds for asymmetric tensors under general subgaussian noise, and, perhaps most

crucially, we analyze the HOOI algorithm, which can be understood as power iteration (as

opposed to gradient descent). Therefore, while the results in Cai et al. (2022) may be qualita-

tively similar, the results are not directly comparable. Similarly, Wang et al. (2021) consider

the entrywise convergence of their noiseless tensor completion algorithm for symmetric low

Tucker rank tensors; our analysis is somewhat similar, but we explicitly characterize the

effect of noise, which is a primary technical challenge in the analysis.

Besides Cai et al. (2022) and Wang et al. (2021), entrywise perturbation bounds for ten-

sors are still lacking in general, though there are several generalizations of classical matrix

perturbation bounds to the tensor setting. A sharp (deterministic) sinΘ upper bound for

tensor SVD was obtained in Luo et al. (2021), and Auddy and Yuan (2022b) consider per-
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turbation bounds for orthogonally decomposable tensors. Zhang and Han (2019) considered

tensor denoising when some of the modes have sparse factors. Zhang and Xia (2018) estab-

lished statistical and computational limits for tensor SVD with Gaussian noise; our work

builds off of their analysis by analyzing the tensor SVD algorithm initialized with diagonal

deletion. Finally, Richard and Montanari (2014) and Auddy and Yuan (2022a) also consider

estimating low CP-rank tensors under Gaussian and heavy-tailed noise respectively.

Our main ℓ2,∞ bound is also closely related to a series of works developing fine-grained

entrywise characterizations for eigenvectors and singular vectors, such as Abbe et al. (2020,

2022); Agterberg and Sulam (2022); Agterberg et al. (2022b); Cape et al. (2019b,a); Cai et al.

(2021a); Koltchinskii and Xia (2015); Yan et al. (2021), for example. The monograph Chen

et al. (2021c) gives an introduction to spectral methods from a statistical point of view,

with the final chapter focusing on entrywise bounds and distributional characterizations

for estimates constructed from eigenvectors. Several works on entrywise singular vector

analyses have also applied their results to tensor data, such as Xia and Zhou (2019); Cai

et al. (2021a), though these analyses often fail to take into account the additional structure

arising in tensor data.

From a technical point of view, our work uses the “leave-one-out” analysis technique,

first pioneered for entrywise eigenvector analysis in Abbe et al. (2020), though the method

had been used previously to analyze nonconvex algorithms (Chi et al., 2019; Ma et al., 2020;

Chen et al., 2020, 2021d,e), M-estimators (El Karoui et al., 2013; Sur et al., 2019; Sur and

Candès, 2019), among others (Ding and Chen, 2020; Zhong and Boumal, 2018). The leave-

one-out technique for singular vectors and eigenvectors has been further refined to analyze

large rectangular matrices (Cai et al., 2021a), kernel spectral clustering (Abbe et al., 2022),

to obtain distributional guarantees for spectral methods (Yan et al., 2021), and to study

the performance of spectral clustering (Zhang and Zhou, 2022). A comprehensive survey on

the use of this technique can be found in Chen et al. (2021c). Our work bridges the gap

between analyzing nonconvex algorithms and analyzing spectral methods: HOOI performs a

low-dimensional SVD at each iteration, thereby requiring both singular vector analyses and

algorithmic considerations. Our proof technique also demonstrates an implicit regularization

effect in tensor SVD – provided the initialization is sufficiently incoherent, tensor SVD
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maintains this level of incoherence at each iteration. Finally, our proof of the spectral

initialization also slightly improves upon the bound in Cai et al. (2021a) (for the singular

vectors of rectangular matrices) by a factor of the condition number; see Theorem 25.

4.1.2 Notation and Preliminaries

For two functions f and g viewed as functions of some increasing index n, we say f(n) ≲ g(n)

if there exists a uniform constant C > 0 such that f(n) ≤ Cg(n), and we say f(n) ≍ g(n)

if f(n) ≲ g(n) and g(n) ≲ f(n). We write f(n) ≪ g(n) if f(n)/g(n) → 0 as the index n

increases. We also write f(n) = O(g(n)) if f(n) ≲ g(n), and we write f(n) = ˜︁O(g(n)) if

f(n) = O(g(n) logc(n)) for some value c (not depending on n).

We use bold letters M to denote matrices, we let Mi· and M·j denote its i’th row and

j’th column, both viewed as column vectors, and we let M⊤ denote its transpose. We denote

∥ · ∥ as the spectral norm for matrices and the Euclidean norm for vectors, and we let ∥ · ∥F

denote the Frobenius norm. We let ei denote the i’th standard basis vector and Ik denote

the k × k identity. For a matrix M we let ∥M∥2,∞ = maxi ∥e⊤i M∥. For two orthonormal

matrices U and V satisfying U⊤U = V⊤V = Ir, we let ∥ sinΘ(U,V)∥ denote their sinΘ

(spectral) distance; i.e., ∥ sinΘ(U,V)∥ = ∥(Ir −UU⊤)V∥. For an orthonormal matrix U

we let U⊥ denote its orthogonal complement; that is, U⊥ satisfies U⊤
⊥U = 0. We denote

the r × r orthogonal matrices as O(r).

For multi-indices r = (r1, r2, r3) and p = (p1, p2, p3), we let r−k =
∏︁
j ̸=k rj , and we

define p−k similarly. We also denote pmin = min pk and pmax = max pk, with rmin and rmax

defined similarly. A tensor T ∈ Rp1×p2×p3 is a multidimensional array. We let calligraphic

letters T denote tensors, except for the letter M, for which Mk(T ) denotes its matricization

along the k’th mode; i.e., Mk(T ) satisfies

Mk(T ) ∈ Rpk×p−k ;
(︁
Mk(T )

)︁
ik,j

= Ti1i2i3 ; j = 1 +
d∑︂
l=1
l ̸=k

{︄
(il − 1)

∏︂
m=1
m ̸=k

pm

}︄
,

for 1 ≤ il ≤ pl, l = 1, 2, 3. See Kolda and Bader (2009) for more details on matricizations.

We also reserve the calligraphic letter P for either permutations or projections, as will be
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clear from context. For an orthonormal matrix U, we let PU denote its corresponding

orthogonal projection PU = UU⊤.

We denote the multilinear rank of a tensor T as a tuple r = (r1, r2, r3), where rk is the

rank of the k’th matricization of T . A tensor T of rank r has a Tucker decomposition

T = C ×1 U1 ×2 U3 ×3 U3,

where C ∈ Rr1×r2×r3 is the core tensor and Uk are the pk × rk left singular vectors of

the matrix Mk(T ). Here the mode 1 product of a tensor T ∈ Rp1×p2×p3 with a matrix

U ∈ Rp1×r1 is denoted by T ×k U
⊤ ∈ Rr1×p2×p3 and is given by

(T ×1 U
⊤)ji2i3 =

pk∑︂
i1=1

Ti1i2i3Ui1j .

The other mode-wise multiplications are defined similarly. For two matrices U and V, we

denote U⊗V as their Kronecker product. For a tensor S ∈ Rr1×r2×r3 and matrices Uk of

appropriate sizes, the following identity holds (see e.g., Kolda (2006)):

M1(S ×1 U1 ×2 U2 ×3 U3) = U1M1(S)
(︁
U⊤

2 ⊗U⊤
3

)︁
,

with similar identities holding for the other modes. For a matrix M we write SVDr(M)

to denote the leading r singular vectors of M. Concretely, for a tensor of Tucker rank

r = (r1, r2, r3), it holds that Uk = SVDrk(Mk(T )).

For a tensor T with Tucker decomposition T = S ×1 U1 ×2 U2 ×3 U3, we denote its

incoherence parameter µ0 as the smallest number such that

max
k

√︃
pk
rk

∥Uk∥2,∞ ≤ µ0.

For a nonsquare matrix M of rank r, we let λmin(M) denote its smallest nonzero singular

value, and we denote its singular values as λk(M). For a square matrix M, we let λmin(M)

denote its smallest nonzero eigenvalue and σmin(M) denote its smallest nonzero singular

value, with other eigenvalues and singular values defined similarly. For a tensor T of rank
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r = (r1, r2, r3), we let λmin(T ) denote its smallest nonzero singular value along all of its

matricizations; that is,

λmin(T ) = min
k
λmin(Mk(T )).

We let the condition number of a tensor T be denoted as κ, defined as

κ := max
k

∥Mk(T )∥
λmin(Mk(T ))

.

Finally, for a random variable X, we let ∥X∥ψ2 denote its subgaussian Orlicz norm; that is,

∥X∥ψ2 = inf{t > 0 : E exp(X2/t2) ≤ 2}.

See Chapter 2 of Vershynin (2018) for more details on Orlicz norms and subgaussian random

variables.

4.2 Main Results

We now describe our model in detail. Assume that one observes

ˆ︁T = T + Z ∈ Rp1×p2×p3 ,

where Z consists of independent mean-zero subgaussian noise satisfying ∥Zijk∥ψ2 ≤ σ (note

that Z is not assumed to be homoskedastic). Assume further that the underlying tensor T

admits the following factorization:

T = S ×1 Π1 ×2 Π2 ×3 Π3, (4.2)

where Πk ∈ [0, 1]pk×rk is a membership matrix with rows that sum to one, and S ∈ Rr1×r2×r3

is a mean tensor. The matrices Πk can be interpreted as follows: (Πk)ikl denotes how much

the ik’th node along the k’th mode belongs to community l.

For a node ik along mode k, we say ik is a pure node if (Πk

)︁
ik·

∈ {0, 1}rk ; that is, exactly
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one entry of the ik’th row of Πk is nonzero (and hence equal to one). Intuitively, a pure node

is a node that belongs to one and only one community. Observe that if all nodes are pure

nodes, then one recovers the tensor blockmodel. As in the matrix setting (Mao et al., 2021),

the existence of pure nodes is intimately related to the identifiability of the model (4.1). The

following result establishes the identifiability of the tensor mixed-membership blockmodel

when S is rank rk along each mode and there is a pure mode for each community along each

direction. We note that it is also possible to establish identifiability in the case that S has

some mode with a rank less than rk, but this is beyond the scope of this paper.

Proposition 2 (Identifiability). Consider the model (4.2). Assume the following two con-

ditions hold.

• Each matricization of S is rank rk respectively with rk ≤ r−k;

• For each mode k, there is at least one pure node for each community.

Then if there exists another set of parameters S ′,Π′
1,Π

′
2, and Π′

3 such that T = S ′×1Π
′
1×2

Π′
2 ×3 Π

′
3 it must hold that Πk = Π′

kPk, where Pk is an rk × rk permutation matrix and

S = S ′ ×1 P1 ×2 P2 ×3 P3.

Next, suppose that each matricization of S is rank rk respectively with rk ≤ r−k. Suppose

that Πk is identifiable up to permutation; i.e., any other Π′
k generating the same tensor T

must satisfy Π′
k = ΠkPk for some permutation Pk and S ′ = S ×k Pk. Then there must be

at least one pure node for each community along mode k.

Therefore, we see that when the underlying tensor is full rank and there is at least

one pure node for each community, the model will be identifiable up to permutation of the

communities.

In order to describe our estimation procedure in the following subsection, we provide

the following crucial observation relating the tensor mixed-membership blockmodel to its

Tucker factorization.

Proposition 3. Suppose T is a tensor mixed-membership blockmodel of the form in (4.2),

and suppose that each matricization of S is rank rk respectively with rk ≤ r−k for each

k. Suppose further that there is a pure node for each community along each mode. Let
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T = C ×1 U1 ×2 U3 ×3 U3 denote its rank (r1, r2, r3) Tucker factorization. Then it holds

that

Uk = ΠkU
(pure)
k ,

where U
(pure)
k ∈ Rrk×rk is rank rk and contains the rows of Uk corresponding to pure nodes.

Consequently, Proposition 3 shows that the singular vectors Uk of the underlying tensor

T belong to a simplex with vertices given by U
(pure)
k , or the rows of Uk corresponding to

pure nodes. The connection between the membership matrix Πk and the singular vectors

Uk has previously been considered in the matrix setting in Mao et al. (2021).

4.2.1 Estimation Procedure

We now detail our estimation procedure. In light of Proposition 3, the singular vectors of

the tensor T and the matrices Πk are intimately related via the matrix U
(pure)
k . Therefore,

given estimated tensor singular vectors ˆ︁Uk obtained from the observed tensor ˆ︁T , we propose

to estimate the pure nodes by applying the corner-finding algorithm of Gillis and Vavasis

(2014) to the rows of ˆ︁Uk to obtain estimated pure nodes. Consequently, in order to run the

corner-finding algorithm, we will require the estimated tensor singular vectors ˆ︁Uk.

However, unlike the matrix SVD, tensor SVD is not well-defined in general. For low

Tucker rank tensors, a common algorithm to estimate the singular vectors of tensors is

via the higher-order orthogonal iteration (HOOI) algorithm (De Lathauwer et al., 2000).

Under the specific Gaussian additive model, this algorithm has been analyzed and minimax

optimal error bounds in sinΘ distances were established in Zhang and Xia (2018), which is

the main impetus behind using HOOI to estimate the singular vectors. However, a major

technical challenge in analyzing our estimator is in providing a fine-grained understanding

of the output of HOOI for tensor SVD in order to ensure that the correct pure nodes are

found. See Section 4.2.4 for further details. Algorithm 3 includes full pseudo-code for HOOI.

In order to initialize HOOI, since we do not assume homoskedastic noise we propose

initializing via diagonal-deletion; namely, we define ˆ︁U(0)
k as the leading rk eigenvectors of
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Algorithm 3 Higher-Order Orthogonal Iteration (HOOI)

1: Input: ˆ︁T ∈ Rp1×p2×p3 , Tucker rank r = (r1, r2, r3), initialization ˆ︁U(0)
2 , ˆ︁U(0)

3 .
2: repeat
3: Let t = t+ 1
4: For k = 1, 2, 3

ˆ︁U(t)
k = SVDrk

(︂
Mk

(︂ˆ︁T ×k′<k (ˆ︁U(t)
k′ )

⊤ ×k′>k (ˆ︁U(t−1)
k′ )⊤

)︂)︂
.

5: until Convergence or the maximum number of iterations is reached.
6: return : ˆ︁U(tmax)

k .

the matrix

Γ
[︂
Mk

(︁ˆ︁T )︁Mk

(︁ˆ︁T )︁⊤]︂ ,
where Γ(·) is the hollowing operator : for a square matrix M, Γ(M) sets its diagonal entries

to zero, i.e.,

[Γ(M)]ij =

⎧⎪⎨⎪⎩ [M]ij i ̸= j;

0 i = j.

Algorithm 4 provides the full pseudo-code for this initialization procedure.

We now have all the pieces to our estimation procedure. First, using the initializationsˆ︁U(0)
k , we plug these into Algorithm 3 to estimate the tensor singular vectors. Next, given

the estimates ˆ︁Uk for k = 1, 2, 3, we obtain the index sets Jk containing the estimated

pure nodes via the algorithm proposed in Gillis and Vavasis (2014), and we set ˆ︁U(pure)
k :=(︁ ˆ︁Uk

)︁
Jk·

. Finally, we estimate ˆ︁Πk via ˆ︁Πk = ˆ︁Uk

(︁ ˆ︁U(pure)
k

)︁−1. The full procedure is stated

in Algorithm 5. In practice we have found that there are occasionally negative or very

small values of ˆ︁Πk; therefore, our actual implementation thresholds small values and re-

normalizes the rows of ˆ︁Πk, though the theory discussed in the following sections will be for

the implementation without this additional step.

4.2.2 Technical Assumptions

To develop the theory for our estimation procedure, we will require several assumptions. In

light of Proposition 2 and to induce regularity into the community memberships, we impose
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Algorithm 4 Diagonal-Deletion Initialization

1: Input: ˆ︁T ∈ Rp1×p2×p3 , Tucker rank r = (r1, r2, r3).
2: for k = 2, 3 do
3: Set ˆ︁U(0)

k as the leading rk eigenvectors of the matrix ˆ︁G, with

ˆ︁G := Γ
(︁
Mk(ˆ︁T )Mk(ˆ︁T )⊤

)︁
, where Γ(·) is the hollowing operator

that sets the diagonal of “·" to zero;

4: end for
5: return : ˆ︁U(0)

k .

Algorithm 5 Successive Projection Algorithm for Tensor Mixed-Membership Estimation

1: Input: tensor ˆ︁T ∈ Rp1×p2×p3 , ranks r1, r2, r3
2: Compute the estimated loading matrices {ˆ︁Uk}3k=1 via Algorithm 3, initialized via Algo-

rithm 4.
3: for k = 1, 2, 3 do
4: R := ˆ︁Uk, Jk = {}, j = 1
5: while R ̸= 0n×rk and j ≤ rk do
6: Set j∗ = argmax ∥e⊤j R∥2. If there are ties, set j∗ as the smallest index.
7: Set vj := e⊤j∗R

8: Set R = R
(︁
Irk −

vjv
⊤
j

∥vj∥2
)︁

9: Jk = Jk ∪ {j∗}
10: j = j + 1
11: end while
12: Define ˆ︁Πk := ˆ︁Uk(ˆ︁Uk[Jk, ·])−1

13: end for
14: return : three membership matrices { ˆ︁Πk}3k=1.

the following assumption.

Assumption 4.1 (Regularity and Identifiability). The community membership matrices Πk

satisfy

pk
rk

≲ λmin

(︃
Π⊤
kΠk

)︃
≤ λmax

(︃
Π⊤
kΠk

)︃
≲
pk
rk
.

In addition, each matricization of S is rank rk respectively, and there is at least one pure

node for each community for every mode.

The condition above implies that each community is approximately the same size. When

T is a tensor blockmodel, the matrix Π⊤
kΠk is a diagonal matrix with diagonal entries equal

to the community sizes; Assumption 4.1 states then that the community sizes are each of
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order pk/rk, which is a widely used condition in the literature on clustering (Löffler et al.,

2021; Han et al., 2021; Wu and Yang, 2020; Hu and Wang, 2022).

Tensor SVD is feasible only with certain signal strength (Zhang and Xia, 2018). In order

to quantify the magnitude of the signal strength, we introduce an assumption on the signal-

to-noise ratio (SNR), as quantified in terms of singular values of S and maximum variance

σ.

Assumption 4.2 (Signal Strength). The smallest singular value of S, ∆ = λmin(S), satis-

fies

∆2

σ2
≳
κ2p2max log(pmax)r1r2r3

p1p2p3p
1/2
min

.

Here κ denotes the condition number of S. When pk ≍ p and rk = O(1), Assumption

4.2 is equivalent to the assumption

∆2

σ2
≳
κ2 log(p)

p3/2
.

Remark 10 (Relationship to Tensor Blockmodel). In the tensor blockmodel setting, Han

et al. (2021) define the signal-strength parameter

˜︁∆2 := min
k

min
i ̸=j

∥
(︁
Mk(S)

)︁
i· −

(︁
Mk(S)

)︁
j·∥

2;

i.e., the worst case row-wise difference between any two rows of each matricization of S.

Han et al. (2021) explicitly consider settings where S is rank degenerate; however, if one

further assumes that S is rank (r1, r2, r3), then it is straightforward to check that both ˜︁∆ and

∆ coincide up to a factor of the condition number, since

∥
(︁
Mk(S)

)︁
i· −

(︁
Mk(S)

)︁
j·∥

2 = (ei − ej)
⊤(︁Mk(S)

)︁(︁
Mk(S)

)︁⊤
(ei − ej) ≥ ∥ei − ej∥2∆2 ≍ ∆2,

and

∥
(︁
Mk(S)

)︁
i· −

(︁
Mk(S)

)︁
j·∥

2 = (ei − ej)
⊤(︁Mk(S)

)︁(︁
Mk(S)

)︁⊤
(ei − ej) ≤ ∥ei − ej∥2κ2∆2 ≍ κ2∆2.
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Han et al. (2021) demonstrate that the condition ∆2

σ2 ≳ 1
p3/2

is required to obtain perfect

cluster recovery in polynomial time if the number of cluster centroids is assumed constant

and pk ≍ p. Therefore, our assumption that ∆2

σ2 ≳ κ2 log(p)

p3/2
is optimal up to logarithmic

factors and factors of κ in order for a polynomial time estimator to achieve exact community

detection (albeit in the simple setting that S is full rank along each mode). However, in

contrast to Han et al. (2021), our model permits mixed memberships, so the two conditions

are not directly comparable.

Finally, our analysis relies heavily on the following lemma relating the signal strength

parameter ∆ to the smallest singular value of the core tensor C in the Tucker decomposition

of T .

Lemma 6. Let T be a Tensor Mixed- Membership Blockmodel of the form (4.2), let T =

C×1U1×2U2×3U3 denote its Tucker decomposition, and let λ = λmin(C) denote its smallest

singular value. Suppose further that Assumptions 4.1 and 4.2 hold with rk ≤ r−k for each

k. Then it holds that

λ ≍ ∆
(p1p2p3)

1/2

(r1r2r3)1/2
; µ0 = O(1).

Furthermore, U(pure)
k (U

(pure)
k )⊤ =

(︁
Π⊤
kΠk

)︁−1.

4.2.3 Estimation Errors

The following theorem characterizes the errors in estimating Πk.

Theorem 10 (Uniform Estimation Error). Suppose that rmax ≲ p
1/2
min, that rmax ≍ r with

r ≲ rmin, and that κ2 ≲ p
1/4
min. Suppose further that Assumptions 4.1 and 4.2 hold. Let ˆ︁Πk

be the output of Algorithm 5 with t iterations for t ≍ log

(︃
κpmax(r1r2r3)1/2

(∆/σ)(p1p2p3)1/2

)︃
∨ 1. Then with

probability at least 1− p−10
max there exists a permutation matrix P ∈ Rrk×rk such that

max
1≤i≤pk

∥
(︁
Πk − ˆ︁ΠkP

)︁
i·∥ ≲

κ
√︁
r3 log(p)

(∆/σ)(p−k)1/2
.
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Consequently, when pk ≍ p, it holds that

max
1≤i≤pk

∥
(︁
Πk − ˆ︁ΠkP

)︁
i·∥ ≲

κ
√︁
r3 log(p)

(∆/σ)p
.

Observe that Theorem 10 establishes a uniform error bound for the estimated commu-

nities; that is, the worst case error over all nodes i.

Remark 11 (Relationship to Matrix Mixed-Membership Blockmodels). Theorem 10 is re-

lated to similar bounds in the literature for the matrix setting. Mao et al. (2021) considers

estimating the membership matrix with the leading eigenvectors of the observed matrix. Ex-

plicitly, they define the p× p matrix

M = ρnΠBΠ⊤,

and they assume one observes

ˆ︂M = M+E,

where E consists of mean-zero Bernoulli noise with EE2
ij = Mij(1−Mij). Their main result

(Theorem 3.5) demonstrates an upper bound of the form

∥Π− ˆ︁ΠP∥2,∞ = ˜︁O(︃ r3/2
√
pρnλmin(B)

)︃
,

where the ˜︁O(·) hides logarithmic terms (we assume for simplicity that B is positive definite).

See also Xie (2022) for a similar bound for sparse Bernoulli noise.

The term √
ρnλmin(B) can be informally understood as the signal-to-noise ratio (SNR)

in the Bernoulli noise setting1. Consequently, when κ, r ≍ 1, and pk ≍ p, one has the bounds

(Matrix setting) ∥Π− ˆ︁ΠP∥2,∞ = ˜︁O(︃ 1

SNR×√
p

)︃
;

(Tensor setting) ∥Π− ˆ︁ΠP∥2,∞ = ˜︁O(︃ 1

SNR× p

)︃
.

1If the noise were truly Gaussian with mean Mij and variance bounded by ρn, then our definition of ∆
would be simply ρnλmin(B), resulting in the SNR of √ρnλmin(B).
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Therefore, Theorem 10 can be understood as providing an estimation improvement of order
√
p compared to the matrix setting – one may view this extra √

p factor as stemming from

the higher-order tensor structure. However, the technical arguments required to prove Theo-

rem 10 require analyzing the output of HOOI, and, consequently, Theorem 10 is not simply

an extension of previous results to the tensor setting.

Since the rows of Πk can be understood as weight vectors, a natural metric to use in

this setting is the average ℓ1 norm. Theorem 10 then implies the following corollary.

Corollary 4 (Average ℓ1 Error). In the setting of Theorem 10, with probability at least

1− p−10
max, one has for each k,

inf
Permutations P

1

pk

pk∑︂
i=1

∥
(︁ ˆ︁Πk −ΠkP

)︁
i·∥1 ≲

r2κ
√︁
log(pmax)

(∆/σ)(p−k)1/2
.

4.2.4 Key Tool: ℓ2,∞ Tensor Perturbation Bound

In this section we introduce the new ℓ2,∞ tensor perturbation bound, which serves as a key

tool for developing the main results of this paper. Other ℓ2,∞ bounds for HOOI in this

setting have not appeared in the literature to the best of our knowledge. Unlike the matrix

SVD, HOOI (Algorithm 3) is an iterative algorithm that proceeds by updating the estimates

at each iteration. Therefore, analyzing the output of HOOI requires carefully tracking the

interplay between noise and estimation error at each iteration as a function of the spectral

properties of the underlying tensor.

In what follows, recall we define the incoherence of a tensor T as the smallest number

µ0 such that

max
k

√︃
pk
rk

∥Uk∥2,∞ ≤ µ0.

By way of example, for a p× p× p tensor T , observe that when T contains only one large

nonzero entry, it holds that µ0 =
√
p, whereas when T is the tensor with constant entries,

it holds that µ0 = 1. Consequently, µ0 can be understood as a measure of “spikiness” of the

underlying tensor, with larger values of µ0 corresponding to more “spiky” T .
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In addition, we will present bounds for the estimation of Uk up to right mulitplication

of an orthogonal matrix Wk. The appearance of the orthogonal matrix Wk occurs due to

the fact that we do not assume that singular values are distinct, and hence singular vectors

are only identifiable up to orthogonal transformation. Previous results of this type also

typically include an additional orthogonal matrix (Agterberg and Sulam, 2022; Agterberg

et al., 2022b; Cai et al., 2021a; Abbe et al., 2020; Cape et al., 2019b).

The following result establishes the ℓ2,∞ perturbation bound for the estimated singular

vectors from the HOOI algorithm (initialized via diagonal deletion, Algorithm 4) under the

general tensor denoising model. Note that the setting considered in this section is more

general than the setting considered in the previous sections.

Theorem 11. Suppose that ˆ︁T = T +Z, where Zijk are independent mean-zero subgaussian

random variables satisfying ∥Zijk∥ψ2 ≤ σ. Let T have Tucker decomposition T = C ×1

U1 ×2 U2 ×3 U3, and suppose that T is incoherent with incoherence constant µ0. Suppose

that λ/σ ≳ κ
√︁

log(pmax)pmax/p
1/4
min, µ

2
0r ≲ p

1/2
min, that κ2 ≲ p

1/4
min, and that r ≲ rmin, where

λ = λmin(C). Let ˆ︁U(t)
k denote the output of HOOI (Algorithm 3) after t iterations initialized

via diagonal deletion (Algorithm 4). Then there exists an orthogonal matrix Wk ∈ O(rk)

such that after t iterations with t ≍ log(σκpmax/λ) ∨ 1, with probability at least 1− p−10
max :

∥ˆ︁U(t)
k −UkWk∥2,∞ ≲

κµ0
√︁
rk log(pmax)

λ/σ
.

Remark 12 (Signal Strength Condition). The condition λ/σ ≳ κ
√︁

log(pmax)pmax/p
1/4
min

is only slightly stronger than the condition λ/σ ≳ pmax

√︁
r/pmin when r ≲ p

1/2
min. It has

been shown in Luo et al. (2021) that this second condition implies a bound of the form

∥ sinΘ(ˆ︁Uk,Uk)∥ ≲
√
pk

λ/σ , which matches the minimax lower bound established in Zhang and

Xia (2018) when pk ≍ p. Therefore, the condition λ/σ ≳ κ
√︁
log(pmax)pmax/p

1/4
min allows for

different orders of pk without being too strong. Perhaps one way to understand Theorem 11

is that after sufficiently many iterations, the sinΘ upper bound is of order √
pk/(λ/σ), and

Theorem 11 demonstrates that these errors are approximately spread out amongst the entries

of ˆ︁Uk when Uk is incoherent. It is perhaps of interest to study the ℓ2,∞ errors under different

signal strength conditions; however, we leave this setting to future work.
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Next for simplicity, consider the regime pk ≍ p. First, we assume that µ20r ≲
√
p which

allows r to grow. In addition, in this regime the SNR condition translates to the condition

λ/σ ≳ κp3/4
√︁
log(p), which is optimal up to a factor of κ

√︁
log(p) for a polynomial-time

estimator to exist (Zhang and Xia, 2018). The work Abbe et al. (2022) suggests that without

an additional logarithmic factor it may not be possible to obtain ℓ2,∞ bounds, so it is possible

that this additional logarithmic factor is actually necessary.

Remark 13 (Optimality). It was shown in Zhang and Xia (2018) that the minimax rate

for tensor SVD satisfies

inf
Ūk

sup
T ∈Fp,r(λ)

E∥ sinΘ(Ūk,Uk)∥ ≳
√
pk

λ/σ
,

where Fp,r(λ) is an appropriate class of low-rank signal tensors and the infimum is over all

estimators of Uk. By properties of the sinΘ distance and the ℓ2,∞ norm, it holds that

inf
Ūk

sup
T ∈Fp,r(λ)

E inf
W∈O(r)

∥Ūk −UkW∥2,∞ ≥ 1
√
pk

inf
Ūk

sup
T ∈Fpk,r(λ)

E inf
W∈O(r)

∥Ūk −UW∥2

≳
1

√
pk

inf
Ūk

sup
T ∈Fpk,r(λ)

E∥ sinΘ(Ūk,Uk)∥ ≳
1

λ/σ
.

Consequently, when κ, µ0, r ≍ 1, Theorem 11 shows that HOOI attains the minimax rate for

the ℓ2,∞ norm up to a logarithmic term. Such a result is new to the best of our knowledge.

Remark 14 (Relationship to Matrices). Considering again pk ≍ p, under the conditions of

Theorem 11, we prove (see Theorem 25) that the diagonal-deletion initialization satisfies the

high-probability upper bound

∥ˆ︁US
k −UkWk∥2,∞ ≲

(︃
κ
√︁
p log(p)

λ/σ⏞ ⏟⏟ ⏞
linear error

+
p3/2 log(p)

(λ/σ)2⏞ ⏟⏟ ⏞
quadratic error

+κ2µ0

√︃
r

p⏞ ⏟⏟ ⏞
bias term

)︃
µ0

√︃
r

p
. (4.3)

The full proof of this result is contained in Appendix D.1.5; it should be noted that this

result slightly improves upon the bound of Cai et al. (2021a) by a factor of κ2 (though we do

not include missingness as in Cai et al. (2021a)). This quantity in (4.3) consists of three

terms: the first term is the “linear error” that appears in Theorem 11, the second term is the
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“quadratic error”, and the third term is the error stemming from the bias induced by diagonal

deletion. In the high noise regime λ/σ ≍ p3/4polylog(p), the quadratic error can dominate

the linear error; and, moreover, the bias term does not scale with the noise of the problem.

In Zhang and Xia (2018), it was shown that tensor SVD removes the “quadratic” error for

the sinΘ distance for homoskedastic noise; Theorem 11 goes one step further to show that

these errors are evenly spread out, particularly when µ0 is sufficiently small.

Remark 15 (Adaptivity of HOOI to Heteroskedasticity). The bias term in (4.3), which

does not scale with the noise σ, arises naturally due to the fact that one deletes the diag-

onal of both the noise and the underlying low-rank matrix. In the setting that the noise is

heteroskedastic, Zhang et al. (2022) showed that a form of bias-adjustment is necessary for

many settings; moreover, they showed that their algorithm HeteroPCA eliminates this bias

factor in sinΘ distance – in essence, the HeteroPCA algorithm is a debiasing procedure for

the diagonal of the Gram matrix. The follow-on works Agterberg et al. (2022b) and Yan

et al. (2021) have shown that this algorithm also eliminates the bias term in ℓ2,∞ distance,

implying that it is possible to obtain a bound that scales with the noise, albeit at the cost

of additional computation. In contrast, Theorem 11 shows that the HOOI algorithm, when

initialized via diagonal deletion, does not require any additional bias-adjustment to combat

heteroskedasticity in order to obtain a bound that scales with the noise. In effect, this result

demonstrates that HOOI is adaptive to heteroskedasticity.

Remark 16 (Implicit Regularization). Theorem 11 and its proof also reveal an implicit

regularization effect in tensor SVD with subgaussian noise – when the underlying low-rank

tensor is sufficiently incoherent (e.g., µ0 = O(1)) and the signal-to-noise ratio is sufficiently

strong, all of the iterations are also incoherent with parameter µ0. Several recent works

have proposed incoherence-regularized tensor SVD (Ke et al., 2020; Jing et al., 2021), and

Theorem 11 suggests that this regularization may not be needed. However, these prior works

have focused on the setting of Bernoulli noise, for which the subgaussian variance proxy

can be of much larger order than the standard deviation, particularly for sparse networks.

Moreover, these previous works have included some form of symmetry, whereas this work

considers the completely asymmetric setting. Nevertheless, it may be possible to extend our
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work to the multilayer network or hypergraph setting using other forms of concentration

inequalities for certain “tensorial terms” arising in the analysis (see Section 4.4 for details

on the proof techniques).

4.2.5 The Cost of Ignoring Tensorial Structure

Perhaps the simplest tensor singular vector estimation procedure for Tucker low-rank tensors

is the HOSVD algorithm, which simply takes the singular vectors of each matricization ofˆ︁T and outputs these as the estimated singular vectors. We discuss briefly why HOSVD-like

procedures instead of HOOI in Algorithm 5 may not yield the same estimation error as in

Theorem 10, particularly in the high-noise setting. For simplicity we focus on the regime

κ, r, µ0 ≍ 1 and pk ≍ p.

Recall that we do not assume that the noise is homoskedastic. It has previously been

demonstrated that in the presence of heteroskedastic noise, HOSVD can yield biased esti-

mates (Zhang et al., 2022). Therefore, in order to combat bias, one could modify the HOSVD

procedure and instead use a procedure that eliminates the bias term stemming from either

vanilla HOSVD or diagonal-deleted SVD (Algorithm 4). It was shown in Agterberg et al.

(2022b) and Yan et al. (2021) that the output of the HeteroPCA algorithm proposed in Zhang

et al. (2022) after sufficiently many iterations yields the high-probability upper bound

∥ˆ︁U(HeteroPCA)
k −UkWk∥2,∞ ≲

√︁
log(p)

λ/σ
+
p log(p)

(λ/σ)2
,

where ˆ︁U(HeteroPCA)
k denotes the estimated singular vectors obtained by applying the HeteroPCA

algorithm after sufficiently many iterations. Note that this upper bound does not suffer from

any bias; in essence, this is the sharpest ℓ2,∞ bound in the literature for any procedure that

ignores tensorial structure.

Suppose one uses the estimate ˆ︁U(HeteroPCA)
k to estimate Πk via Algorithm 5, and letˆ︁Π(HeteroPCA)

k denote the output of this procedure. Arguing as in our proof of Theorem 10,

by applying the results of Gillis and Vavasis (2014) and Lemma 6, using this bound we will
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(a) ℓ2,∞ estimation error defined via
err = minP ∥Π1 − ˆ︁Π1P∥2,∞ with vary-
ing values of σ = σmax for heteroskedas-
tic noise averaged over 10 runs.

(b) Relative ℓ2,∞ error defined via err/σ
averaged across each p for different
amounts of heteroskedasticity, ranging
from 1 (least heteroskedastic) to .25
(most heteroskedastic).

Figure 4.1: Simulated maximum node-wise errors, as described in Section 4.3.1.

obtain that

∥ ˆ︁Π(HeteroPCA)
k −ΠkP∥2,∞ ≲

√︁
log(p)

(∆/σ)p
+

log(p)

(∆/σ)2p3/2
.

In the challenging regime ∆/σ ≍
√

log(p)

p3/4
(recall that by Assumption 4.2 we must have that

∆2

σ2 ≳ log(p)

p3/2
), the above bound translates to

∥ ˆ︁Π(HeteroPCA)
k −ΠkP∥2,∞ ≲

1

p1/4
+ 1 ≍ 1,

which does not tend to zero as p → ∞. Therefore, in this high-noise regime, the estimates

obtained via HeteroPCA (or any similar procedure that ignores the tensorial structure) may

not even be consistent. In contrast, Theorem 10 shows that in this regime our proposed

estimation procedure yields the upper bound

∥ ˆ︁Πk −ΠkP∥2,∞ ≲
1

p1/4
,

which still yields consistency, even in the high-noise regime.
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4.3 Numerical Results

We now consider the numerical performance of our proposed procedure. In Section 4.3.1 we

provide simulation results for several examples, including varying levels of heteroskedasticity.

We then apply our algorithm to three different flight data sets – the first is the data described

in Han et al. (2021), which measures global flights, the second is USA flight data, available

from the Bureau of Transportation Statistics2, and the third is a global trade dataset,

available from De Domenico et al. (2015).

4.3.1 Simulations

In this section we consider the maximum row-wise estimation error for the tensor mixed

membership blockmodel via Algorithm 5 for simulated data. In each data setup we generate

the underlying tensor by first generating the mean tensor S ∈ R3×3×3 with N(0, 1) entries

and then adjusting the parameter ∆ to 10. We then draw the memberships by manually

setting the first three nodes along each mode to be pure nodes, and then drawing the other

vectors from a random Dirichlet distribution. We generate the noise as follows. First, we

generate the standard deviations {σijk} via σijk ∼ σmax × β(α, α), where β denotes a β

distribution. The parameter α governs the heteroskedasticity, with α = 1 corresponding to

uniformly drawn standard deviations and α → 0 corresponding to “highly heteroskedastic"

standard deviations. We then generate the noise via Zijk ∼ N(0, σ2ijk).

In Fig. 4.1(a) we examine the ℓ2,∞ error as a function of σ = σmax for Algorithm 5

applied to this noisy tensor averaged over 10 runs with α = 1. Here we keep the mean

matrix fixed but re-draw the memberships, variances, and noise each run. We vary σ from

1 to 96 by five. We see a clear linear relationship in the error for each value of p from 100

to 500 by 50, with larger values of σmax being significantly less accurate for smaller values

of p.

In Fig. 4.1(b) we consider the mean relative ℓ2,∞ error defined as follows. First, for

each value of σmax we obtain an estimated ℓ2,∞ error err averaged over 10 runs. We then

divide this error by σmax to put the errors on the same scale. Finally, we average this

2https://www.transtats.bts.gov/
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Figure 4.2: Community memberships for airports (left) and airlines (right), separated ac-
cording to country to emphasize “disconnectedness” between Chinese airports and airlines
with American airports and airlines.

error for all values of σmax and plot the value as a function of p for different amounts of

heteroskedasticity. We see that the error decreases in p as anticipated, and slightly more

heteroskedasticity results in slightly worse performance.

4.3.2 Application to Global Flight Data

We now apply our mixed-membership estimation to the flight data described in Han et al.

(2021). There are initially 66,765 global flight routes from 568 airlines and 3,309 airports3,

and we preprocess similar to Han et al. (2021) by considering only the top 50 airports with

the highest numbers of flight routes. We end up with a tensor ˆ︁T of size 39× 50× 50, where

each entry ˆ︁Ti1i2i3 is one if there is a flight route from airport i2 to i3 in airline i1 and zero

otherwise. We use the same choice of r = {5, 5, 5} as in Han et al. (2021), chosen via the

Bayesian information criterion for block models (Wang and Zeng, 2019) from candidate r

values ranging from 3 to 6. When running our algorithm, occasionally there are negative

or very small values of ˆ︁Πk; we therefore threshold and re-normalize in order to obtain our

estimates.

First, our algorithm relies on identifying pure nodes along each mode. For the airports,

the pure nodes are London, Atlanta, Chicago, Beijing, and Newark. For airlines, we find the

pure nodes to be United, US airways, British Airways, Delta, and Air China. When ana-
3https://openflights.org/data.html#route
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lyzing the output, we found that airlines and airports associated to the USA had extremely

low membership in Chinese-associated pure nodes, and vice versa for Chinese airlines and

airports. Therefore, in Fig. 4.2 we plot the average membership of each airport and airline

associated to its home country, whether it is in China, the USA, or elsewhere. This figure

demonstrates that the USA has less membership in the airline and airport communities

based outside the USA; in particular almost no membership in Chinese communities, and

China has almost entirely pure membership in Chinese airport and airline communities. The

other countries have nearly equal membership in each community.

Furthermore, we observe that the USA airlines have zero membership in the “Air China”

pure node, and the China airlines have primarily membership in the “Air China” pure node.

We find a similar phenomenon in the airports as well. Interestingly, other airports (i.e.,

non-Chinese and non-American) do not exhibit this phenomenon. In Han et al. (2021) five

clusters were found, including one that contains Beijing, which is a pure node here. This

analysis suggests that perhaps the Beijing cluster might be much more distinct from the

USA cluster than the other clusters are from each other. Airports and airlines in other

countries do not exhibit such a trend – they have memberships in all other clusters equally.

This observation is not identifiable in settings with discrete memberships, since either a node

belongs to a community or does not, whereas in the tensor mixed membership blockmodel

setting we can examine the strength of the membership.

4.3.3 Application to USA Flight Data

We also apply our methods to USA flight data publicly available from the Bureau of Trans-

portation Statistics4 and also analyzed in Agterberg et al. (2022a). We focused on the

largest connected component, resulting in 343 airports with counts of flights between air-

ports for each month from January 2016 to September 2021, resulting in 69 months of data

and a 343 × 343 × 69 dimensional tensor. To choose the embedding dimension, we apply

the “elbow” method of Zhu and Ghodsi (2006). First, we apply the elbow procedure to the

square roots of the nonnegative eigenvalues of the diagonal-deleted Gram matrix, which is

the matrix we use for our initialization. This yields r1 = r2 = 3 for the airport mode, but
4https://transtats.bts.gov/
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Figure 4.3: Pure node memberships for the airport mode, with pure nodes ATL (top left),
LAX (top right), and LGA (bottom left). Red demonstrates high membership and purple
demonstrates low membership within that particular community. The pure nodes are drawn
with large triangles.

for the mode corresponding to time, this procedure resulted in only two nonnegative eigen-

values. Therefore, we ran the elbow method on the vanilla singular values instead, resulting

in elbows at 1 and 4. We therefore chose r3 = 4 to perform our estimation.

Plotted in Fig. 4.3 are the membership intensities in each of the communities associated

to the three different pure nodes, with red corresponding to high membership and purple

corresponding to low memberships. The three pure nodes were found to be ATL (Atlanta),

LAX (Los Angeles), and LGA (New York). From the figure it is evident that the LGA

community is associated with flights on the eastern half of the country, and LAX is associated

with flights on the western half of the country. Based on the colors, the ATL community has

memberships primarily from some airports on both the east and west coasts, but less directly

in central USA. Therefore, it seems that the ATL community serves as a “hub” community

connecting airports in the west coast to airports in the east coast – this intuition is justified

by noting that ATL has the largest number of destinations out of any airport in the USA.

Plotted in Fig. 4.4 are the memberships in each of the four time communities, where

the pure nodes were found to be August 2016, March 2020, January 2021, and August

2021. The blue lines correspond to the yearly smoothed values (using option loess in the
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Figure 4.4: Pure node memberships for the time mode, with higher values corresponding to
stronger membership intensity. Data are smoothed within each year to emphasize the effect
of seasonality

Figure 4.5: Joint plot emphasizing COVID-19 (left) and seasonality (right) effects of the
January 2021 community.

R programming language), and the grey regions represent confidence bands. We chose to

smooth within each year in order to emphasize seasonality. Immediately one notices the pure
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node associated to March 2020 yields strong seasonality (demonstrating a “sinusoidal” curve

within each year), only for it to vanish at the onset of the COVID-19 lockdowns in the USA,

which began on March 15th, 2020. The seasonality effect seems to mildly recover in 2021,

which roughly corresponds to the reopening timeline. The pure nodes associated to August

seem to demonstrate a seasonality effect, with August 2021 also including a COVID-19 effect

(as the membership in 2020 increases) – note that vaccines in the USA became available to

the general public beginning in May 2021, so the community associated to August 2021 may

include some of the “normal” seasonal effects.

Finally, the January 2021 community seems to exhibit a combination of a form of season-

ality together with COVID-19, though it is perhaps not as pronounced as the March 2020

seasonality effect, nor is it as pronounced as the August 2021 COVID-19 effect. To empha-

size these effects, we plot this mode by combining it (i.e., adding it together) with March

2020 (to emphasize seasonality) and August 2021 (to emphasize the COVID-19 effect) in

Fig. 4.5. When combined with August 2021, the COVID-19 effect becomes more pronounced

during and after 2020. When combined with March 2020, the seasonality effect becomes

even more pronounced before March 2020, with larger swings within each year. Both com-

binations further corroborate our finding that the January 2021 community exhibits both

of these effects.

4.3.4 Application to Global Trade Data

Next, we apply our algorithm to the global trade network dataset collected in De Domenico

et al. (2015)5 and further analyzed in Jing et al. (2021), which consists of trading rela-

tionships for 364 different goods between 214 countries in the year 2010, with weight cor-

responding to amount traded. Here each individual network corresponds to the trading

relationships between countries for a single good. To preprocess, we first convert each net-

work to undirected, and we keep the networks with largest connected component of at least

size 150, which results in a final tensor of dimension 59× 214× 214. Note that unlike Jing

et al. (2021), we do not delete or binarize edges, nor do we only use the largest connected

component within each network. To select the ranks we use the same method as in the
5http://www.fao.org
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previous section, resulting in r = (5, 4, 4).

In Fig. 4.6 we plot each of the memberships associated to the “country” mode, where

the pure nodes are found to be USA, Japan, Canada, and Germany. For the communities

corresponding to Germany and Japan, we see that the weight of the corresponding countries

roughly corresponds to geographical location, with closer countries corresponding to higher

membership intensity. In particular, Germany’s memberships are highly concentrated in

Europe and Africa, with the memberships of all European countries being close to one.

On the other hand, for the pure nodes associated to the USA and Canada, we see that the

membership is relatively dispersed outside of Europe, which provides evidence that European

trade communities are “closer-knit” than other communities. Since the USA and Canada

likely have similar trading patterns, in Fig. 4.7 we combine these two values by adding them

together, and we see that the memberships are fairly global besides Europe, though the

intensity in any one area is not as strong as the intensities for the other pure nodes.

Next we consider the pure nodes corresponding to the different goods. The pure nodes

were found to be maize (corn), crude materials, distilled alcoholic beverages, food prep nes

(not elsewhere specfied), and whole cow milk cheese. It was found in Jing et al. (2021)

that communities roughly correspond to either prepared or unprepared food; we also found

food prep nes as one of the pure nodes, which gives further evidence to this finding. This

community is also the “largest” community – the mean membership in this mode is .4147.

To better understand the separation between processed and unprocessed food, we combine

the “processed” communities food prep nes, distilled alcoholic beverages, and whole cow

milk cheese into one community and group the other two communities together. Below is a

summary of the communities with greater than .7 membership intensity in either group, as

well as those with smaller than .7 intensity in both communities.

• Processed > .7: Tobacco products nes, Butter (cowmilk), Tomatoes, Milk (skimmed,

dried), Tobacco (unmanufactured), Spices (nes), Fruit (prepared nes), Cigarettes,

Potatoes, non alcoholic Beverages, Vegetables (frozen), Oil (essential nes), Oil (veg-

etable origin nes), Nuts (prepared (exc. groundnuts)), Sugar Raw Centrifugal, Vegeta-

bles (fresh nes), Waters (ice, etc.), Flour, wheat, Nuts nes, Tomato paste, Macaroni,
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Sugar refined, Food prep nes, Cheese (whole cow milk), Chocolate products nes, Beer

of barley, Beverages (distilled alcoholic), Bread, Cereals (breakfast), Coffee extracts,

Coffee (roasted), Fruit (dried nes), Apples, Flour (maize), Pastry, Sugar confectionery,

Wine, Sugar nes.

• Unprocessed > .7: Crude materials, Maize, palm oil, Sesame seed, Wheat

• Neither: milled Rice, dehydrated Vegetables, Pepper (piper spp.), chicken, Infant

food, Fruit (fresh nes), Tea, Beans (dry), Coffee (green), dry Chillies and peppers, or-

ange juice (single strength), soybean oil, fruit Juice nes, Milk (whole dried), Vegetables

(preserved nes), Honey (natural).

By examining these “communities,” it seems that the processed foods are more similar than

the unprocessed foods, since many more foods have higher memberships in communities

associated to processed foods. Moreover, the “neither” category also contains some “mildly

processed foods" (e.g., dried milk), which shows how the mixture model here is more repre-

sentative of the data. We leave further investigations to future work.

Figure 4.6: Pure node memberships for the countries, with red corresponding to higher
membership intensity. Grey corresponds to countries that were not included in the analysis.
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Figure 4.7: Combined memberships for the pure nodes associated to the USA and Canada.

4.4 Overview of the Proof of Theorem 11

In this section we provide a high-level overview and highlight the novelties of the proof of

Theorem 11, the main theorem of this paper. As mentioned previously, the proof idea is

based on a leave-one-out analysis. Different versions of leave-on-out analysis has been used

in, for example, Yan et al. (2021); Abbe et al. (2022, 2020); Chen et al. (2021c). However,

a key difference is that these previous works focus on the eigenvectors or singular vectors

of the perturbed matrix, and subsequently do not have to analyze additional iterates. A

series of related works in nonconvex optimization have studied the iterates of algorithms

using a leave-one-out sequence, but these analyses typically focus on gradient descent or

similar optimization techniques (Ma et al., 2020; Chen et al., 2021e,d; Zhong and Boumal,

2018; Ding and Chen, 2020; Cai et al., 2022), and hence do not need to consider additional

singular vectors besides the first step. In contrast to these works, our upper bounds rely

on an inductive argument in the number of iterations, where we show that a certain upper

bound holds for each iteration, so our analysis uses primarily matrix perturbation tools.

To be concrete, without loss of generality, assume that σ = 1. For simplicity assume

that pk ≍ p throughout this section. Our proof proceeds by showing that at each iteration
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t with probability at least 1− 3tp−15 one has the bound

∥ˆ︁U(t)
k −UkW

(t)
k ∥2,∞ ≤

(︃
δL
λ

+
1

2t

)︃
µ0

√︃
r

p
, (4.4)

where we define δL as the linear error

δL := C0κ
√︁
p log(p),

with C0 some fixed constant. Here the matrix W
(t)
k is defined via

W
(t)
k : = argmin

W:WW⊤=Irk

∥ˆ︁U(t)
k −UkW∥F ;

i.e., it is the orthogonal matrix most closely aligning Uk and ˆ︁U(t)
k in Frobenius norm. A

key property of the matrix W
(t)
k is that it can be computed analytically from the singular

value decomposition of U⊤
k
ˆ︁U(t)
k as follows. Let U⊤

k
ˆ︁U(t)
k have singular value decomposition

W1ΣW
⊤
2 ; then W

(t)
k = W1W

⊤
2 . The matrix W

(t)
k is also known as the matrix sign function

of U⊤
k
ˆ︁U(t)
k , denoted as sgn(U⊤

k
ˆ︁U(t)
k ).

To show that the bound in (4.4) holds, we consider a fixed mth row to note that

e⊤m

(︃ˆ︁U(t)
k −UkW

(t)
k

)︃
= e⊤m

(︃ˆ︁U(t)
k −UkU

⊤
k
ˆ︁U(t)
k +Uk(Uk

ˆ︁U(t)
k −W

(t)
k )

)︃
= e⊤m

(︃
(I−UkU

⊤
k )
ˆ︁Uk +Uk(U

⊤
k
ˆ︁U(t)
k −W

(t)
k )

)︃
.

The second term is easily handled since W
(t)
k is close to U⊤

k
ˆ︁U(t)
k (see Lemma 33).

The first term requires additional analysis. For ease of exposition, consider the case

k = 1. Recall that ˆ︁U(t)
1 are defined as the left singular vectors of the matrix

ˆ︁T1

(︃ˆ︁U(t−1)
2 ⊗ ˆ︁U(t−1)

3

)︃
= T1

(︃ˆ︁U(t−1)
2 ⊗ ˆ︁U(t−1)

3

)︃
+ Z1

(︃ˆ︁U(t−1)
2 ⊗ ˆ︁U(t−1)

3

)︃
,

where T1 = M1(T ) and Z1 = M1(Z). To analyze ˆ︁U(t)
1 more directly, we consider the

108



Joshua Agterberg

corresponding Gram matrix. Then ˆ︁U(t)
1 are the eigenvectors of the matrix

T1

(︃
Pˆ︁U(t−1)

2

⊗ Pˆ︁U(t−1)
3

)︃
T⊤

1 + Z1

(︃
Pˆ︁U(t−1)

2

⊗ Pˆ︁U(t−1)
3

)︃
T⊤

1

+T1

(︃
Pˆ︁U(t−1)

2

⊗ Pˆ︁U(t−1)
3

)︃
Z⊤
1 + Z1

(︃
Pˆ︁U(t−1)

2

⊗ Pˆ︁U(t−1)
3

)︃
Z⊤
1 .

Let this matrix be denoted ˆ︁T(t)
1 , and note that ˆ︁U(t)

1 satisfies

ˆ︁U(t)
1 = ˆ︁T(t)

1
ˆ︁U(t)
1 (ˆ︁Λ(t)

1 )−2,

where ˆ︁Λ(t)
1 are the singular values of the matricizations of the iterates (and hence (ˆ︁Λ(t)

1 )2 are

the eigenvalues of ˆ︁T(t)
1 ). With this identity together with the fact that (I−U1U

⊤
1 )T1 = 0

yields the identity

e⊤m

(︃ˆ︁U(t)
k −UkW

(t)
k

)︃
= e⊤m(I−UkU

⊤
k )
ˆ︁U(t)
k + e⊤mUk(U

⊤
k
ˆ︁U(t)
k −W

(t)
k )

= e⊤m(I−U1U
⊤
1 )Z1

(︁
Pˆ︁U(t−1)

2

⊗ Pˆ︁U(t−1)
3

)︁
T⊤

1
ˆ︁U(t)
k (ˆ︁Λ(t)

k )−2

+ e⊤m(I−U1U
⊤
1 )Z1

(︁
Pˆ︁U(t−1)

2

⊗ Pˆ︁U(t−1)
3

)︁
Z⊤
1
ˆ︁U(t)
1 (ˆ︁Λ(t)

1 )−2;

+ e⊤mUk(U
⊤
k
ˆ︁U(t)
k −W

(t)
k )

=: e⊤mL
(t)
1 + e⊤mQ

(t)
1 + e⊤mUk(U

⊤
k
ˆ︁U(t)
k −W

(t)
k ),

where the first two terms represent the linear error and quadratic error respectively (dubbed

so because each term is linear and quadratic in the noise matrix Z1 respectively). Again for

ease of exposition, consider the linear error. To analyze a row of the linear error, one needs

to analyze the vector

e⊤m(I−U1U
⊤
1 )Z1

(︁
Pˆ︁U(t−1)

2

⊗ Pˆ︁U(t−1)
3

)︁
T⊤

1
ˆ︁U(t)
k (ˆ︁Λ(t)

k )−2.

Ideally we would like to argue that this behaves like a sum of independent random variables

in Z1, but this is not true, as there is nontrivial dependence between Z1 and the projection

matrix Pˆ︁U(t−1)
2

⊗ Pˆ︁U(t−1)
3

.

The primary argument behind the leave-one-out analysis technique is to define a se-
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quence that is independent from the random variables in e⊤mZ1. Hand waving slightly, the

prototypical leave-one-out analysis for eigenvector and singular vector analyses (e.g., Cai

et al. (2021a); Abbe et al. (2020)) argues that

∥e⊤mZ1
ˆ︁U∥ ≤ ∥e⊤mZ1(ˆ︁U−ULOO)∥+ ∥e⊤mZ1U

LOO∥

≲ ∥Z1∥∥ sinΘ(ˆ︁U,ULOO)∥+ ∥e⊤mZ1U
LOO∥,

where ULOO is the matrix obtained by zeroing out the m’th row of Z1. By independence,

the second term can be handled via standard concentration inequalities, and the first term

is typically handled by standard tools from matrix perturbation theory, which is sufficient

as the leave-one-out sequence is extremely close to the true sequence ˆ︁U.

For tensors, this approach suffers from two drawbacks: one is that the spectral norm of

Z1 may be very large in the tensor setting – of order √
p2p3 ≍ p when σ = 1. However,

this can be managed by carefully using the Kronecker structure that arises naturally in the

tensor setting; in fact, Zhang and Xia (2018) showed that

sup
∥U1∥=1,∥U2∥=1,rank(U1,U2)≤2r

∥Z1(U1 ⊗U2)∥ ≲
√
pr

when σ = 1, which eliminates the naive upper bound of order p when r ≪ p. Note that

this bound holds only for subgaussian noise, as it relies quite heavily on an ε-net argument,

which is in general suboptimal for heavy-tailed or Bernoulli noise6. This term turns out to

be a major hurdle in analyzing Bernoulli noise; see e.g., Jing et al. (2021), Ke et al. (2020),

Yuan and Zhang (2017) for methods to handle similar terms for other types of noise.

The second drawback is a bit more subtle, but it has to do with the leave-one-out

sequence definition. Suppose one defines the leave-one-out sequence by removing the m’th

row of Z1 and running HOOI with this new noise matrix, as one may be most tempted to

do. Let Ǔ
(t)
k denote the output of this sequence for the k’th mode (with m fixed). Then

the sinΘ distance between the true sequence and the leave-one-out sequence for mode 1 will

6By way of analogy, for an n × n mean-zero Bernoulli noise matrix E with entrywise variance at most
ρn, an ε-net argument only yields ∥E∥ ≲

√
n, whereas a more refined argument as in Bandeira and Handel

(2016) yields ∥E∥ ≲
√
nρn.
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depend on the difference matrix

(︃
T1
ˆ︁U(t−1)
2 ⊗ ˆ︁U(t−1)

3 + Z1
ˆ︁U(t−1)
2 ⊗ ˆ︁U(t−1)

3

)︃
−
(︃
T1Ǔ

(t−1)
2 ⊗ Ǔ

(t−1)
3 + Z1−m

1 Ǔ
(t−1)
2 ⊗ Ǔ

(t−1)
3

)︃
= T1

(︃(︁ˆ︁U(t−1)
2 ⊗ ˆ︁U(t−1)

3

)︁
−
(︁
Ǔ

(t−1)
2 ⊗ Ǔ

(t−1)
3

)︁)︃
+ Z1

(︃(︁ˆ︁U(t−1)
2 ⊗ ˆ︁U(t−1)

3

)︁
−
(︁
Ǔ

(t−1)
2 ⊗ Ǔ

(t−1)
3

)︁)︃

+

⎛⎜⎜⎜⎜⎝
· · · 0 · · ·

e⊤mZ1

· · · 0 · · ·

⎞⎟⎟⎟⎟⎠(︁Ǔ(t−1)
2 ⊗ Ǔ

(t−1)
3

)︁
, (4.5)

where we define Z1−m
1 as the matrix Z1 with the m’th row set to zero, and the final term is

only nonzero in itsm’th row. The second two terms (containing Z1) can be shown to be quite

small by appealing to spectral norm bounds together with the Kronecker structure (e.g.,

Lemma 48). However, the first term depends on both the matrix T1 and the proximity of the

leave-one-out sequence to the true sequence. If one simply bounds this term in the spectral

norm, the sinΘ distance may end up increasing with respect to the condition number κ,

and hence may be much larger than the concentration for Z1 (and may not shrink to zero

sufficiently quickly). Therefore, in order to eliminate this problem, we carefully construct a

modified leave-one-out sequence ˜︁U(t)
k that can eliminate the dependence on T1 as follows.

First, we set the initialization ˜︁U(0,1−m)
k as one may expect: ˜︁U(0,1−m)

k are the left singular

vectors obtained via the diagonal deletion of ˆ︁T , only with the m’th row of Z1 set to zero.

Let Z1−m
k denote the matrix Zk with the entries associated to the m’th row of Z1 set to

zero (note that in this manner Zk − Z1−m
k will consist of sparse nonzero columns). We set˜︁U(0,1−m)

k as the leading rk eigenvectors of the matrix

Γ
(︁
TkT

⊤
k + Z1−m

k T⊤
k +Tk(Z

1−m
k )⊤ + Z1−m

k (Z1−m
k )⊤

)︁
,

so that ˜︁U(0,1−m)
k is independent from the m’th row of Z1 (for each k). We now set ˜︁U(t,1−m)

k

inductively via

˜︁U(t,1−m)
k := SVDrk

(︁
Tk + Z1−m

k
˜︁Pt,1−m
k

)︁
,
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which is independent from e⊤mZ1. Here, we set ˜︁Pt,1−m
k inductively as the projection matrix

˜︁Pt,1−m
k :=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
P˜︁U(t−1,1−m)

2 ⊗˜︁U(t−1,1−m)
3

k = 1;

P˜︁U(t−1,1−m)
3 ⊗˜︁U(t,1−m)

1

k = 2;

P˜︁U(t,1−m)
1 ⊗˜︁U(t,1−m)

2

k = 3,

which is the projection matrix corresponding to the previous two iterates of the leave-one-

out sequence. Note that this matrix is still independent from the m’th row of Z1, and

hence each sequence ˜︁U(t,1−m)
k is independent from the m’th row of Z1. Moreover, with this

choice of matrix of singular vectors, the projection matrix ˜︁U(t,1−m)
1 (˜︁U(t,1−m)

1 )⊤ is also the

projection onto the dominant left singular space of the matrix

(︃
T1 + Z1−m

1
˜︁Pt,1−m
1

)︃ˆ︁U(t−1)
2 ⊗ ˆ︁U(t−1)

3

as long as an eigengap condition is met (Lemma 36). Then the true sequence and the

leave-one-out sequence depend only on the difference matrix

(︃
Z1−m
1

˜︁Pt,1−m
1 − Z1

)︃(︁ˆ︁U(t−1)
2 ⊗ ˆ︁U(t−1)

3

)︁
,

which depends only on the random matrix Z1, and hence is approximately mean-zero. In

particular, with this careful leave-one-out construction, we can eliminate the extra terms

containing Tk in (4.5) to obtain good bounds on the sinΘ distance between the leave-one-

out sequence and the true sequence (c.f., Lemma 37).

Finally, the exposition above has focused on the case k = 1. Since there are three

modes and we prove the result by induction, we actually need to construct three separate

leave-one-out sequences (each one corresponding to each mode), and we control each of

these sequences simultaneously at each iteration. Therefore, at each iteration, we show

that (4.4) holds as well as controlling the three separate leave-one-out sequences. Our final

proof requires careful tabulation of the probabilities of the events defined by each of these

separate sequences. To ease the analysis, we first bound each term deterministically under

eigengap conditions, and then further obtain probabilistic bounds by induction using the
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leave-one-out sequences.

4.5 Discussion

In this paper, we have considered the tensor mixed-membership blockmodel, which general-

izes the tensor blockmodel to settings where communities are no longer discrete. By studying

the ℓ2,∞ perturbation of the HOOI algorithm, we can obtain a consistent estimator for the

memberships provided there are pure nodes along each mode. By applying our proposed

algorithm to several different datasets, we have identified phenomena that are not feasible

to obtain in the discrete community setting.

It is natural to consider estimating the mixed memberships of the higher-order tensors.

Suppose one observes a tensor ˆ︁T ∈ Rp1×p2×···×pd . Our algorithm and methodology naturally

extend to this setting, with the only modification being the implementation of the HOOI

algorithm, which is straightforward to adapt to the higher-order setting. By adapting our

main arguments, we can prove the following informal result.

Theorem 12 (Estimation of mixed memberships for higher-order tensors; informal). Sup-

pose that rmax ≲ p
1/(d−1)
min , that rmax ≍ r with r ≲ rmin, and that κ2 ≲ p

1/(2(d−1))
min . Sup-

pose that the smallest singular value of S satisfies ∆2/σ2 ≳ κ2p2maxr1···rd
p1···pd

√︂
p
(d−1)/(d−2)
min

. Let ˆ︁Πk

be the output of Algorithm 5 (with HOOI adapted to order d) with t iterations for t ≍

log

(︃
κpmax(r1···rd)1/2
(∆/σ)(p1···pd)1/2

)︃
∨ 1 . Then with probability at least 1− p−10

max, there exist d permutation

matrices Pk ∈ Rrk×rk such that for each k

max
1≤i≤pk

∥
(︁
Πk − ˆ︁ΠkPk

)︁
i·∥ ≲d

κ
√︁
rd log(pmax)

(∆/σ)(p−k)1/2
.

Consequently, when pk ≍ p, it holds that

max
1≤i≤pk

∥
(︁
Πk − ˆ︁ΠkPk

)︁
i·∥ ≲d

κ
√︁
rd log(p)

(∆/σ)p(d−1)/2
.

Here a ≲d b means that the implicit constant depends on the number of modes d.

As in the order three setting, we see an improvement in the error rate of order √
p for
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each additional mode, albeit at the cost of a slightly stronger signal-strength condition and

condition on r. In future work it may be interesting to determine the dependence of the

implicit constants on the order d and to study the regime where d→ ∞.

In other future work, it may be natural to extend the mixed-membership tensor block-

model to allow degree corrections as in Jin et al. (2019) or Hu and Wang (2022). Fur-

thermore, the analysis in this paper focuses on subgaussian noise, whereas many multilayer

network datasets have Bernoulli noise, as well as different types of symmetry, and a natural

extension would encompass noise and structures of this form, and would also perhaps include

missingness.

Beyond these natural extensions of the model it is of interest to extend the ℓ2,∞ pertur-

bation theory covered herein to other regimes of signal strength, as well as provide entrywise

bounds for other types of low-rank structures beyond the Tucker low-rank assumption. Fur-

thermore, it may be relevant to develop distributional theory for the outputs of tensor SVD,

and to obtain principled confidence intervals for the outputs of HOOI.
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Chapter 5

Nonparametric Two-Sample

Hypothesis Testing for Random

Graphs with Negative and Repeated

Eigenvalues

5.1 Introduction

Network data arises naturally in several fields, including neuroscience (Bullmore and Sporns,

2009; Bullmore and Bassett, 2011; Vogelstein et al., 2013; Finn et al., 2015; Priebe et al.,

2019; Arroyo-Relión et al., 2019) and social networks (Newman et al., 2002; Newman, 2006;

Carrington et al., 2005) among others. With the introduction of network data in the various

sciences, there is a need for developing corresponding statistical methodology and theory.

Often one wishes to determine whether or not two graphs exhibit similar distributional

properties for some notion of similarity between distributions on networks. Furthermore, as

in classical statistics, one may wish to analyze graph data with only a few assumptions on the

probability distributions. For example, for Euclidean data, given i.i.d. observations {Xi}ni=1

and {Yj}mj=1 ∈ Rd with cumulative distribution functions denoted FX and FY respectively, a

model-agnostic way to test whether FX = FY is use nonparametric methods, such as Mood
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(1954); Anderson et al. (1994); Gretton et al. (2012); Székely and Rizzo (2013), and Chen

and Friedman (2017).

For the two-sample test we consider, we take the perspective that a single network

constitutes an observation as is often the case in the statistical network analysis literature.

A number of works have studied hypothesis testing when the graphs are on the same vertex

set (Tang et al., 2017a; Li and Li, 2018; Levin et al., 2019; Ghoshdastidar et al., 2020;

Draves and Sussman, 2020), analogous to the “matched pairs” paradigm in Euclidean data.

However, in many settings, there is not necessarily an a priori matching between vertices;

for example, one could introduce and remove vertices without fundamentally altering the

network structure (e.g. Cai and Li (2015)). In this paper we study a nonparametric two-

sample test without assuming that the graphs have an alignment between the vertices.

We assume only that the two networks have conditionally independent edges and that the

graphs’ edge-probability matrices are low rank (see Section 5.2.1 for a formal description).

We consider a latent-space model (Hoff et al., 2002) introduced in Rubin-Delanchy et al.

(2020), wherein each vertex has a latent vector in Euclidean space associated to it. The

latent-space framework is specific enough to allow for a meaningful notion of similarity

between graphs on different vertex sets, and it general enough to allow for arbitrary low-

rank graphs. Low rank, conditionally edge-independent random graphs include a number

of submodels including the stochastic blockmodel (Holland et al., 1983), the random dot

product graph (Athreya et al., 2018), and finite-rank graphons (Lovász, 2012). In addition,

other tests have been designed for fixed models and related problems, such as Lei (2016);

Bickel and Sarkar (2016) and Fan et al. (2022). A more thorough discussion of related

literature is in Section 5.3.3.

A major difficulty in allowing for negative eigenvalues in the graphs requires an under-

standing the relationship between the latent-space Euclidean geometry and the indefinite

geometry induced by the negative eigenvalues. Nevertheless, we show that despite the un-

derlying geometry, consistent testing can be performed given access only to the adjacency

matrices. More specifically, we show that a test procedure based on a two-sample U -statistic

with radial kernel κ applied to rotated adjacency spectral embeddings yields a consistent

test. Since we only assume that the graphs have a low-rank structure, our analysis includes
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random graphs whose edge-probability matrices have negative eigenvalues and a vanishing

eigengap amongst the nonzero eigenvalues, and we conduct our study under different sparsity

regimes. In particular, our proposed test procedure and its theoretical properties depend

on a careful analysis of the interplay between indefinite orthogonal transformations, optimal

transport, and convergence of degenerate U -statistics.

We further show that under the null hypothesis, for sufficiently dense graphs, the non-

degenerate limiting distribution of our test statistic can be related to that of the U -statistic

evaluated at suitably transformed latent vectors, and we provide additional results for sparser

graphs. The convergence of our test statistic is analogous to that of Anderson et al. (1994);

Gretton et al. (2012) in the Euclidean setting. Furthermore, our sparsity requirement is con-

sistent with a number of works on network bootstraps for nondegenerate U -statistics (Levin

and Levina, 2019; Lunde and Sarkar, 2019; Zhang and Xia, 2020; Lin et al., 2020a,b), which

occur as subgraph frequencies. An important aspect of our results is that our test statistic

is a degenerate (two-sample) U -statistic (e.g. Serfling (1980)).

The paper is organized as follows. In the following subsection, we motivate the problem

more thoroughly, and in Section 5.2, we give the relevant definitions and describe our setting.

In Section 5.3 we state our main theoretical results for sparse, indefinite random graphs with

negative and repeated eigenvalues and describe a modification to handle repeated eigenval-

ues. In Section 5.4 we show our results on simulated data, and in Section 5.5 we discuss our

results. Section E.1 contains the proofs of our main results.

Notation: We use capital letters to denote random vectors X ∈ Rd, bold lowercase letters

to denote fixed vectors, and bold capital letters for fixed or random matrices (which will be

clear from context). The distribution of a random vector X will be denoted by FX , and for

X1, . . . , Xn i.i.d. some distribution FX , we use X to denote the n× d matrix with its rows

the vectors X1, . . . , Xn. In many occasions, given X1, . . . , Xn i.i.d. FX , we let X denote a

realization from F that is independent from {Xi}ni=1. We write ∥ · ∥ for the usual Euclidean

norm on vectors and the spectral norm on matrices and ∥ · ∥F for the Frobenius norm. For

a matrix M we write its ℓ2 to ℓ∞ operator norm via ||M||2,∞ ≡ maxi ||Mi·||, where Mi· are

the rows of M. We use Ik to denote the k×k identity matrix. For a matrix M, the operator
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diag(M) extracts its diagonal as a matrix, and for two matrices M and N, the operator

bdiag(M,N) constructs the block-diagonal matrix

⎛⎜⎝M 0

0 N

⎞⎟⎠ . We write f(n) = O(g(n))

if there exists a constant C > 0 such that f(n) ≤ Cg(n) for all n sufficiently large, and

f(n) = ω(g(n)) if there exists a constant c > 0 such that cg(n) ≤ f(n) for all n sufficiently

large. We also write f(n) ≫ g(n) if g(n)/f(n) → 0 as n→ ∞.

5.1.1 Motivating Example

Suppose there are n and m vertices in two different graphs respectively, and suppose the

vertices can be partitioned into three disjoint sets, called communities, where each vertex

belongs to community k, k ∈ {1, 2, 3}, with probability 1/3. Suppose further that for

vertices in the same community, the probability of connection is a and for vertices in different

communities the probability of connection is b; such a model is referred to as the three-block

balanced homogenous stochastic blockmodel in the literature. The matrix

B :=

⎛⎜⎜⎜⎜⎝
a b b

b a b

b b a

⎞⎟⎟⎟⎟⎠
has three eigenvalues; one always positive eigenvalue of a + 2b and a repeated eigenvalue

a− b, which is negative when b > a. Let Z(1) ∈ {0, 1}n×3 be the matrix such that Z(1)
ik = 1

if vertex i belongs to community k and 0 otherwise, and similarly for Z(2) ∈ {0, 1}m×3.

Define

P(1) := Z(1)B(Z(1))⊤; P(2) := Z(2)B(Z(2))⊤.

Now, consider the eigendecomposition of P(1) and P(2). In the setting that exactly 1/3 of

the vertices belong to each community respectively, the eigenvalues are simply scaled by n/3

or m/3 for graphs one and two respectively. Furthermore, if one scales the eigenvectors by

the square roots of the absolute values of these eigenvalues, by viewing each row as a point,

one obtains three distinct points on R3 that remain constant in n and m. For example, the
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Figure 5.1: Comparisons of the naïve sign-flip alignment procedure (left) and the optimal
transport alignment procedure (right) for two adjacency spectral embeddings for the stochas-
tic blockmodel. On the left hand side, we see that that visually the clusters do not lie on
top of each other, and on the right hand side, the clusters appear to lie on top of each other.

first eigenvector scaled by the
√︂

n(a+2b)
3 yields the vector whose entries are all

√︂
a+2b
3 .

Elementary copmputation shows that the second and third eigenvector correspond to

the same eigenvalue n(a−b)
3 and correspond to a two-dimensional subspace. Hence, even

though scaling the eigenvector by
√︂

n|a−b|
3 (or

√︂
m|a−b|

3 ) yields a term that does not change

as n and m increase, it is not defined uniquely because of the repeated eigenvalue. In fact,

since the second and third eigenvectors correspond to any choice of basis for the subspace

corresponding to the eigenvalue n(a−b)
3 , one can arbitrarily rotate the second and third

eigenvectors by any 2× 2 orthogonal transformation and still obtain eigenvectors.

Suppose one observes two graphs A(1) ∈ {0, 1}n×n and A(2) ∈ {0, 1}m×m with A(1)

independent of A(2), where each A
(1)
ij ∼ Bernoulli(P

(1)
ij ) for i ≤ j, with A

(1)
ij = A

(1)
ji for j ≤ i

and similarly for A(2). A common way to estimate the scaled eigenvectors of the matrices

P(1) and P(2) given observed graphs A(1) and A(2) is the adjacency spectral embedding,

which here is just the leading 3 eigenvectors scaled by the square roots of the absolute

values of their eigenvalues (see Definition 4). Even if the adjacency spectral embedding is
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consistent, it will only be consistent up to some transformation that takes into account the

nonidentifiability of the second and third eigenvectors.

As we will make clear in Section 5.2.1, when we refer to (in)equality in distribution

we are referring to the fact that two stochastic blockmodels could be different in both the

block assignment probabilities and the block probabilities matrix B. If one knew an a priori

correspondence between the vertices, one could simply perform orthogonal Procrustes, which

has a closed-form solution. Unfortunately, for two graphs of different sizes, there are many

situations in which one need not have a correspondence between the graphs. Therefore,

though the two graphs do not have an a priori alignment, under the null hypothesis that

the two graphs have the same distribution there is a block-orthogonal matrix W that will

approximately align the supports of the empirical distributions of the rows of the adjacency

spectral embeddings (see Proposition 5).

Motivated by this problem and the literature on optimal transport, we show that esti-

mating the orthogonal matrix by aligning the support of the empirical distributions suffices

to obtain consistency; in particular, we propose minimizing the Orthogonal Wasserstein Dis-

tance, which outputs a block-orthogonal matrix ˆ︂W (see Section 5.3.2). This remedies the

nonidentifiability of the second and third eigenvectors above.

For a generic eigenvector, if the corresponding eigenvalue has multiplicity one, then the

only freedom in selecting the eigenvector is the choice of sign. In general, ignoring the

orthogonal transformations would yield a test statistic that minimizes over all possible sign-

flip combinations. In Figure 5.1, we plot the second and third dimensions of the adjacency

spectral embeddings for adjacency matrices simulated from a stochastic blockmodel with

connectivity matrix

B =

⎛⎜⎜⎜⎜⎝
.5 .8 .8

.8 .5 .8

.8 .8 .5

⎞⎟⎟⎟⎟⎠ ,

and probability of community membership 1
3 for each community. In the left figure, we plot

the second and third dimensions of the adjacency spectral embeddings for two graphs on

n = 300 vertices, where the first embedding is rotated using only the best sign flip. Here
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“best” corresponds to the minimum value of the test statistic. In the right figure, we plot the

second and third dimensions of the two embeddings after using the optimal transport-based

alignment we outline in Section 5.3.2.

From a purely visual standpoint, when the distributions for each graph are the same,

the empirical distributions should lie approximately on top of one another; however, we see

that sign flips fail to recover this correspondence. The left hand side shows visually how the

second and third dimensions are not approximately aligned, and the right hand illustrates

how the supports of the distributions approximately lie on top of one another, showing that

estimating the rotation approximately recovers the implicit distributional correspondence.

This figure demonstrates an important point for spectral methods in statistical network

analysis: simply ignoring repeated eigenvalues could yield inconsistent testing. Section

5.4 contains further simulations and quantitative comparisons under more general model

settings.

5.2 Preliminaries

We will now situate the hypothesis test described in the previous section in the general

setting in which we will be performing our hypothesis test.

5.2.1 Setting

We use the latent position framework of the generalized random dot product graph proposed

in Rubin-Delanchy et al. (2020) and closely related to that in Lei (2020b). First, we discuss

the notion of a (p, q) admissible distribution. In what follows, the matrix Ip,q is defined as

Ip,q := diag(Ip,−Iq).

Definition 1. We say FX with support Ω ⊂ Rd is a (p, q) admissible distribution if for all

x,y ∈ Ω, x⊤Ip,qy ∈ [0, 1].

For a fixed (p, q) admissible distribution, we consider the generalized random dot product

graph as follows.
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Definition 2 (Rubin-Delanchy et al. (2020)). We say a graph A ∈ {0, 1}n×n is a generalized

random dot product graph on n vertices with (p, q)-admissible distribution FX , sparsity factor

αn, and latent positions X if the matrix A is symmetric, and the entries Aij are conditionally

independent given X and Bernoulli random variables with

P(Aij = 1|X) = αnX
⊤
i Ip,qXj

with Aij = Aji, and X1, . . . , Xn ∼ FX are i.i.d. We write (A,X) ∼ GRDPG(FX , n, αn).

The introduction of the matrix Ip,q is to model large in magnitude negative eigenvalues

of the adjacency matrix. The GRDPG model allows for arbitrary low-rank models, so

is sufficiently agnostic to provide a meaningful setting for nonparametric inference. In a

nonparametric setting, the parameters for the GRDPG model are simply the signature (p, q),

the sparsity parameter αn, and the distribution FX (which may or may not be parametric).

For this work, we assume the signature (p, q) is known. Practically speaking, this model is

equivalent to assuming only that the probability generating matrix is low-rank, and there are

several works showing that low-rank models can approximate full-rank models arbitrarily

well (Tang et al., 2013; Xu, 2018; Udell and Townsend, 2019; Lei, 2020b; Rubin-Delanchy,

2020). Finally, in the setting q = 0, one recovers the random dot product graph (RDPG)

model (Athreya et al., 2018), which assumes a low rank, positive semidefinite probability

matrix.

One potential issue with the GRDPG model is that it exhibits nonidentifiability. To be

explicit, suppose Q is a matrix such that QIp,qQ
⊤ = Ip,q (this is known as the indefinite

orthogonal group O(p, q)). Define the distribution ˜︁FX := FX ◦Q, where FX ◦Q means that

one generates Xi ∼ FX and then left multiplies the vectors Xi by Q⊤. Then the probabilities
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of each edge are fixed since

P ˜︁FX
(Aij = 1|X) = αn(Q

⊤Xi)
⊤Ip,q(Q

⊤Xj)

= αnX
⊤
i (QIp,qQ

⊤)Xj

= αnX
⊤
i Ip,qXj

= PFX
(Aij = 1|X).

Hence, the distribution of the graph remains unchanged if one transforms the support of

FX by any indefinite orthogonal transformation Q. Therefore, any nonparametric test of

equality of distribution must allow equality up to indefinite orthogonal transformations.

This motivates the following definition.

Definition 3. Let FX and FY be two (p, q) admissible distributions. We say FX and FY

are equal up to indefinite orthogonal transformation if there exists a matrix Q ∈ O(p, q) such

that

FX = FY ◦Q.

In this case, we write FX ≃ FY .

We note that in the RDPG model, FX ≃ FY is equivalent to saying the distributions

are equivalent up to orthogonal transformation, since when q = 0 the nonidentifiability is of

the form of orthogonal matrices.

We are now ready to formally describe our hypothesis test under the generalized random

dot product graph framework. Suppose we observe two graph adjacency matrices A(1) and

A(2) such that (A(1),X) ∼ GRDPG(FX , n, αn) and (A(2),Y) ∼ GRDPG(FY ,m, βm) are

mutually independent and have the same signature (p, q). We consider the hypothesis test

H0 : FY ≃ FX

HA : FY ̸≃ FX .

Again, we assume throughout that (p, q) is known and fixed in n and m. In general, we
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do not assume (αn, βm) are known, but, for ease of exposition we shall first assume that

they are known. They can be estimated consistently, so we will revisit these issues later (see

Corollary 6).

Remark 17 (Equivalence to Section 5.1.1). Although the above hypothesis test seems to

suffer from a lack of identifiability, the nonidentifiability is primarily an artifact of working

in the framework of the GRDPG model. Were we to reformulate the test in Section 5.1.1 in

terms of the stochastic block model with generating matrices B(1) and B(2) and probability

vectors π(1) and π(2), this test would just be determining whether both B(1) = B(2) and

π(1) = π(2) up to permutation of the communities. To see the explicit equivalence, one can

transform any stochastic blockmodel with connectivity matrix B into a GRDPG model by

letting B = VDV⊤ and fixing K vectors ν1, . . . , νK as the rows V|D|1/2, where V is chosen

arbitrarily if there are repeated eigenvalues. Then the GRDPG model in question is just a

mixture of point masses corresponding to the entries of π, where the vectors are the rows of

V|D|1/2.

This test also allows one graph to be a submodel of the other. For example, this test

includes the situation that A(1) comes from a stochastic blockmodel and A(2) comes from a

model that may be broader, such as the mixed-membership stochastic blockmodel.

In practice, one observes only the graph adjacency matrix, and therefore must estimate

the latent position matrix X. The statistical properties of the scaled eigendecomposition,

referred to as the adjacency spectral embedding (ASE), are investigated in Rubin-Delanchy

et al. (2020). The definition is given below.

Definition 4 (Adjacency Spectral Embedding). Suppose (A,X) ∼ GRDPG (FX , n, αn),

and write the eigendecomposition of A as
∑︁n

i=1 λiuiu
⊤
i , where the λi are ordered by mag-

nitude; |λ1| ≥ |λ2| ≥ · · · ≥ |λn|, and the ui are orthonormal. Form the d× d matrix ΛA by

taking the d largest (in magnitude) eigenvalues of A sorted by positive and then negative

components, and the n×d matrix UA with columns consisting of the eigenvectors associated

to the eigenvalues in ΛA. The adjacency spectral embedding of A is the n× d matrix

ˆ︁X := UA|ΛA|1/2,
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where the operator | · | takes the absolute values of the entries.

5.2.2 A Kernel Estimator

To describe our test statistic, we must first define mean embedding of a distribution. Consider

a symmetric positive-definite kernel κ(·, ·) : Rd×Rd → R with associated reproducing kernel

Hilbert space H. The mean embedding of a distribution function F with support Ω is defined

via

µ[F ] :=

∫︂
Ω
κ(·, x)dF (x).

A kernel κ is called characteristic (Sriperumbudur et al., 2011) if the embedding µ[F ] is

injective, so that F = G if and only if µ[F ] = µ[G]. Examples of characteristic kernels

include the Gaussian kernel κ(x, y) = exp
(︁
− 1
σ2 ∥x− y∥2

)︁
and the Laplace kernel κ(x, y) =

exp
(︁
− 1
σ∥x− y∥1

)︁
.

Since κ is a function of two variables, given independent samples X = {Xi}ni=1 and

Y = {Yj}mj=1, we define the (two-sample) U -statistic

Un,m(X,Y) :=
1

n(n− 1)

∑︂
j ̸=i

κ (Xi, Xj)−
2

mn

n∑︂
i=1

m∑︂
k=1

κ (Xi, Yk) +
1

m(m− 1)

∑︂
l ̸=k

κ (Yk, Yl) .

In the asymptotic regime that n and m tend to infinity, under the assumption m
n+m → ρ ∈

(0, 1), Gretton et al. (2012) showed that

Un,m(X,Y) → ∥µ[FX ]− µ[FY ]∥2H

almost surely, and, when κ is characteristic, then ∥µ[FX ] − µ[FY ]∥2H = 0 if and only if

FX = FY . Moreover, they showed that (n +m)Un,m(X,Y) has a nondegenerate limiting

distribution under the null hypothesis FX = FY . The scaling by (n+m) is due to the fact

that the U -statistic is degenerate, where degeneracy of a U -statistic with kernel h of two

variables means that EFX
(h(X, ·)) is constant. See, for example, Serfling (1980) for more

details on the theory of degenerate U -statistics.
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5.3 Hypothesis Testing With Negative and Repeated Eigen-

values

We now present a detailed asymptotic analysis of our two-sample test statistic. Given two

graphs A(1) and A(2) on n and m vertices respectively our test statistic is defined via

Un,m(ˆ︁X, ˆ︁Y) :=
1

n(n− 1)

∑︂
j ̸=i

κ
(︂ ˆ︁Xi, ˆ︁Xj

)︂
− 2

mn

n∑︂
i=1

m∑︂
k=1

κ
(︂ ˆ︁Xi, ˆ︁Yk)︂+ 1

m(m− 1)

∑︂
l ̸=k

κ
(︂ˆ︁Yk, ˆ︁Yl)︂ ,

where ˆ︁X and ˆ︁Y are the adjacency spectral embeddings of A(1) and A(2) respectively. In

what follows, all of our asymptotic results are stated as n and m tend to infinity. We will

require some assumptions on the kernel κ.

Assumption 1. The kernel κ is characteristic, radial, and twice continuously differentiable

on Rd.

The assumption that κ is radial is so that our results can be expressed in terms of indi-

vidual orthogonal matrices that may themselves be products of several orthogonal matrices.

For example, we have the identity U(ˆ︁XW1, ˆ︁YW2) = U(ˆ︁X˜︂W, ˆ︁Y), where ˜︂W = W1W
⊤
2 .

Our main results can be modified slightly to hold without this assumption at the penalty of

introducing more orthogonal matrices. Differentiability is a relatively mild requirement, and

the assumption of κ being characteristic is satisfied by continuous kernels whose embeddings

are dense in H equipped with the supremum norm, since the support of FX and FY can

be taken to be compact (see Theorem 26), and hence any universal kernel defined on Rd is

characteristic for the problem we consider herein.

Since real-world graphs are sparse, we conduct a more thorough study of our test statistic

under sparsity. First, we make assumptions on the sparsity for which our more general results

hold. We implicitly assume that either αn, βn → 0 or that αn ≡ βm ≡ 1, since if αn or βm

are converging to some constant greater than zero, one can just rescale the distribution FX

or FY .
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Assumption 2a. The sparsity parameters for the graphs satisfy

min(nαn,mβm) = ω(log4(n)),

and

mβm
mβm + nαn

→ ρ ∈ (0, 1).

If instead we have a slightly denser graph, we make the following assumption.

Assumption 2b. The sparsity parameters for the graphs satisfy for some η > 0,

min(nαn,mβm) = ω(n1/2 log1+η(n)),

and

m

m+ n
→ ρ ∈ (0, 1).

In both asymptotic regimes, there are two competing factors: the first is in the ap-

proximation of the unperturbed U -statistic to the population value; that is, the U -statistic

obtained given access to the latent vectors X1, . . . , Xn, and the second is in the approxi-

mation of the estimated U -statistic to the unperturbed U -statistic. In the first asymptotic

regime, the primary difficulty stems from the approximation of ˆ︁X and ˆ︁Y to X and Y (up to

indefinite orthogonal transformation) because the graph sparsity makes estimation difficult.

In the second asymptotic regime, the primary difficulty comes from the approximation of

the U -statistic to the maximum mean discrepancy between two appropriately defined dis-

tributions. The asymptotic regime in Assumption 2b up to the logarithmic term has been

assumed in the literature (Tang et al., 2017c; Jones and Rubin-Delanchy, 2021) and is a

common assumption in the theory of bootstrapped U -statistics for random graphs, partic-

ularly as they pertain to subgraph counts. See Levin and Levina (2019); Lunde and Sarkar

(2019); Zhang and Xia (2020); Lin et al. (2020a), and Lin et al. (2020b) for details.

When considering negative eigenvalues, if one uses the GRDPG model framework, one
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necessarily has to contend with indefinite orthogonal transformations. From the equation

QIp,qQ
⊤ = Ip,q we have that |det(Q)| = 1, and hence Q is invertible and Q−1 ∈ O(p, q) as

well. We also note that the set O(p, q) includes block-diagonal orthogonal matrices; i.e. if

we have Wp and Wq for p× p and q × q orthogonal matrices, then

⎛⎜⎝Wp 0

0 Wq

⎞⎟⎠ Ip,q

⎛⎜⎝W⊤
p 0

0 W⊤
q

⎞⎟⎠ =

⎛⎜⎝WpW
⊤
p 0

0 −WqW
⊤
q

⎞⎟⎠ = Ip,q.

We refer to the subgroup O(p, q)∩O(d) as the subgroup of block-orthogonal matrices. Note

that ∥Q∥ = 1 for any block-orthogonal Q, whereas for any finite M > 0, there exists

Q ∈ O(p, q) \O(d) with ∥Q∥ > M .

Therefore, allowing for negative eigenvalues involves studying matrices Q ∈ O(p, q) that

could be badly behaved (in a spectral norm sense). Nevertheless, using the limiting results

in Agterberg et al. (2020b), by subtly passing between indefinite and Euclidean geometry,

we can show that when using the adjacency spectral embeddings, one does not even have

to consider indefinite orthogonal matrices. Our first proposition shows that the U -statistic

applied to the rows of the adjacency spectral embedding yields a consistent test. All proofs

are deferred to Section E.1.

Proposition 4. Let (A(1),X) ∼ GRDPG(FX , n, αn) and (A(2),Y) ∼ GRDPG(FY ,m, βm)

be independent. Suppose Assumption 2a or Assumption 2b is satisfied, and suppose further

that κ satisfies Assumption 1. Set ∆X := E(XX⊤), and similarly for ∆Y. Suppose that

both ∆XIp,q and ∆YIp,q have distinct eigenvalues. Then

Un,m(ˆ︁X/α1/2
n , ˆ︁Y/β1/2m ) →

⎧⎪⎪⎨⎪⎪⎩
0 FX ≃ FY

c > 0 FX ̸≃ FY ,

almost surely.

Our main requirements are the uniqueness of a certain indefinite orthogonal matrix from

Agterberg et al. (2020b), which is given by the assumption that ∆XIp,q and ∆YIp,q have

distinct eigenvalues which corresponds to distinct eigenvalues of P(1) and P(2). Without
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distinct eigenvalues, one is still able to obtain consistency up to a block orthogonal trans-

formation.

Proposition 5. Let (A(1),X) ∼ GRDPG(FX , n, αn) and (A(2),Y) ∼ GRDPG(FY ,m, βm)

be independent. Suppose Assumption 2a or Assumption 2b is satisfied, and suppose further

that κ satisfies Assumption 1. If FX ≃ FY , there exists a sequence of block orthogonal

matrices ˆ︂Wn ∈ O(p, q) ∩O(d) such that

Un,m(ˆ︁Xˆ︂Wn/α
1/2
n , ˆ︁Y/β1/2m ) → 0

almost surely. However, if FX ̸≃ FY , then for any sequence of orthogonal matrices ˆ︂Wn ∈

O(p, q)∩O(d), there exists a constant C > 0 depending only on FX and FY such that almost

surely

lim inf
n,m

Un,m(ˆ︁Xˆ︂Wn/α
1/2
n , ˆ︁Y/β1/2m ) ≥ C.

We emphasize that these results are desirable since the matrices ˆ︂Wn are block orthogo-

nal matrices and not indefinite orthogonal matrices, and hence the only estimation required

is the matrix ˆ︂Wn. Proposition 5 suggests that if one can estimate the matrices ˆ︂Wn con-

sistently, then we can devise a consistent test procedure through a permutation test and

bootstrapping the test statistic distribution.

5.3.1 Main Results

Our main results include a more refined study of our test statistic. Define

P(1) := αnXIp,qX
⊤; P(2) := βmYIp,qY

⊤,

and let UXΛXU⊤
X and UYΛYU⊤

Y be their respective eigendecompositions, with ΛX and

ΛY arranged with the p positive eigenvalues first and q negative eigenvalues second. Define

˜︁X := UX|ΛX|
1/2

; ˜︁Y := UY|ΛY|
1/2
.
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The matrices ˜︁X and ˜︁Y can be viewed as surrogates for the matrices α1/2
n X and β1/2m Y up to

indefinite orthogonal transformation. In fact, the proof of Proposition 4 reveals that under

the distinct eigenvalues assumption there exists a block-orthogonal matrix Wn such that

Un,m(ˆ︁X/√αn, ˆ︁Y/√︁βm)− Un,m(˜︁XWn/α
1/2
n , ˜︁Y/β1/2m ) → 0

and, furthermore,

Un,m(˜︁XWn/α
1/2
n , ˜︁Y/β1/2m ) → ∥µ[FX ◦ ˜︁Q−1

X ]− µ[FY ◦ ˜︁Q−1
Y ]∥2H,

where ˜︁QX and ˜︁QY are indefinite orthogonal matrices defined only in terms of the distribu-

tions FX , FY and the signature (p, q). Therefore, we analyze the convergence of a scaled

U -statistic.

Theorem 13. Let (A(1),X) ∼ GRDPG(FX , n, αn) and (A(2),Y) ∼ GRDPG(FY ,m, βm)

be independent, and suppose Assumption 2a is satisfied. Suppose ∆XIp,q and ∆YIp,q have

distinct eigenvalues, and let κ satisfy Assumption 1. Then, under the null hypothesis FX ≃

FY , there exists a sequence of block-orthogonal matrices Wn ∈ O(d) ∩O(p, q) such that

(mβm + nαn)

(︄
Un,m

(︄ ˆ︁X
√
αn
,
ˆ︁Y√
βm

)︄
− Un,m

(︄ ˜︁XWn√
αn

,
˜︁Y√
βm

)︄)︄
→ 0

almost surely. If instead FX ̸≃ FY ,

(mβm + nαn)

log(n)

(︄
Un,m

(︄ ˆ︁X
√
αn
,
ˆ︁Y√
βm

)︄
− Un,m

(︄ ˜︁XWn√
αn

,
˜︁Y√
βm

)︄)︄
→ 0

almost surely.

The hypotheses of the previous theorem include that ∆Ip,q has distinct eigenvalues.

Similar to Proposition 5, we can actually remove this assumption if we are willing to include

additional orthogonal matrices.

Theorem 14. Consider the setting of Theorem 13, but suppose that ∆Ip,q does not neces-

sarily have distinct eigenvalues. Then, we have that under the null FX ≃ FY there exist two
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sequences of block-orthogonal matrices ˆ︂Wn and Wn such that

(mβm + nαn)

(︄
Un,m

(︄ ˆ︁Xˆ︂Wn√
αn

,
ˆ︁Y√
βm

)︄
− Un,m

(︄ ˜︁XWn√
αn

,
˜︁Y√
βm

)︄)︄
→ 0

almost surely. If instead FX ̸≃ FY , then

(mβm + nαn)

log(n)

(︄
Un,m

(︄ ˆ︁Xˆ︂Wn√
αn

,
ˆ︁Y√
βm

)︄
− Un,m

(︄ ˜︁XWn√
αn

,
˜︁Y√
βm

)︄)︄
→ 0

almost surely.

In Theorem 14, the additional orthogonal matrix ˆ︂Wn appears because without distinct

eigenvalues assumption ˆ︁X and ˆ︁Y need to be simultaneously aligned to each other as well as to˜︁X and ˜︁Y. Again, a priori there are indefinite orthogonal transformations to contend with,

but, as we show in Section E.1, we can effectively bypass these transformations through

careful analyses of their convergence. Similar to the proof of Proposition 4, the proof of

Theorem 14 reveals that Un,m(˜︁XWn/α
1/2
n , ˜︁Y/β1/2m ) is converging to a quantity that depends

only on population parameters; however, without the distinct eigenvalues assumption the

matrices ˜︁Q−1
X and ˜︁Q−1

Y are no longer unique, so the convergence analysis and its statement

require careful tabulation of additional block-orthogonal matrices.

If instead Assumption 2b holds, one can obtain a similar limiting result without including

the sparsity in the scaling under the null hypothesis.

Corollary 5. Suppose the setting of Theorem 14, but suppose instead that Assumption 2b

is satisfied. Under the null hypothesis, we have that

(m+ n)

(︄
Un,m

(︄ ˆ︁Xˆ︂Wn√
αn

,
ˆ︁Y√
βm

)︄
− Un,m

(︄ ˜︁XWn√
αn

,
˜︁Y√
βm

)︄)︄
→ 0

almost surely, for the same sequences of orthogonal matrices ˆ︂Wn and Wn as in Theorem

14.

Finally, we note that in general the sparsity factors αn and βm are not known. If instead

we wish to use the estimated sparsity factors, we have the following result.
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Corollary 6. Assume that E(X⊤
1 Ip,qX2) = 1 and that αn, βm → 0. Define

ˆ︁αn :=

(︃
n

2

)︃−1∑︂
i<j

A
(1)
ij ; ˆ︁βm :=

(︃
m

2

)︃−1∑︂
i<j

A
(2)
ij .

Then the limiting results in Theorem 13, Theorem 14, and Corollary 5 all hold under their

respective conditions with ˆ︁X/α1/2
n and ˆ︁Y/β1/2m replaced with ˆ︁X/ˆ︁α1/2

n and ˆ︁Y/ˆ︁β1/2m respectively

and the almost sure convergence replaced with convergence in probability.

The condition E(X1Ip,qX2) = 1 is used only for identifiability of αn and βm when they

need to be estimated. See e.g., Lunde and Sarkar (2019) for an identical condition in the

setting of graphons.

Interpretation

There are several different alignment matrices that appear in order to show the conver-

gence in Theorems 13 and 14. However, in our analysis we are able to show that only the

indefinite orthogonal matrices that are simultaneously orthogonal have any effect on the

limiting values. Given Propositions 4 and 5, the main results in Theorems 13 and 14 further

detail that under the null hypothesis FX ≃ FY one can perform consistent testing given

access to only the graphs A(1) and A(2). The results of Gretton et al. (2012) imply that

(m+n)Un,m(X,Y) has a nondegenerate limiting distribution under the null hypothesis. For

graphs with average degree growing faster than n1/2polylog(n), Corollary 5 says that the

same scaling occurs under the null hypothesis with ˜︁X and ˜︁Y as replacements for X and Y.

For almost surely dense graphs; i.e. graphs with αn = βm = 1, Theorems 13 and 14 also

provide a result under the alternative.

As mentioned in Section 5.3.1, under the distinct eigenvalues assumption, the proof of

Proposition 4 reveals that

Un,m(˜︁XWn/
√
αn, ˜︁Y/√︁βm) → ∥µ[FX ◦ ˜︁Q−1

X ]− µ[FY ◦ ˜︁Q−1
Y ]∥2H,

where ˜︁Q−1
X and ˜︁Q−1

Y are deterministic quantities depending only on FX and FY . A similar

convergence happens without the distinct eigenvalues assumption but with additional block-
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orthogonal matrices. Lemma 50 shows that the rate of the approximation of ˜︁XWn/
√
αn and˜︁Y/√βm to X˜︁Q−1

X and Y ˜︁Q−1
Y is of order

√︁
log(n)/n, which, in general, is not fast enough

to guarantee the convergence of

(n+m)
(︂
Un,m(˜︁XWn/α

1/2
n , ˜︁Y/β1/2m )− Un,m(X˜︁Q−1

X ,Y ˜︁Q−1
Y )
)︂

to zero. However, Propositions 4 and 5 show that the U -statistic evaluated at ˆ︁Xˆ︂Wn and ˆ︁Y
still tends to zero under the null hypothesis and to a constant under the alternative, which,

together with Theorems 13 and 14, suggests that (n +m)Un,m(˜︁XWn/α
1/2
n , ˜︁Y/β1/2m ) has a

nondegenerate limiting distribution.

For testing purposes, the lack of distributional results is of no consequence, since if one

can reliably estimate the orthogonal transformation ˆ︂Wn appearing in Theorem 14 (and

Proposition 5) then one can perform consistent testing through a bootstrapped permutation

test; see the following section. Furthermore, the limiting distribution for the maximum mean

discrepancy between two distributions FX and FY will not be independent of FX and FY

in general, so one may have to use a permutation test to approximate the null distribution

anyways.

For sparser graphs, the almost sure convergence in Theorems 13 and 14 under the null

hypothesis requires the scaling mβm+nαn, which, if n ≍ m and αn ≍ βm is slower than the

convergence in Gretton et al. (2012) by a factor of αn. The reason for this stems primarily

from the fact that for sparse graphs it is much more difficult to estimate ˜︁X and ˜︁Y. The

sparsity factor here brings down the effective sample size; one observes only O(nαn) edges

on average for sparse graphs instead of O(n) edges for dense graphs. Therefore, though the

scaling may not be optimal, Theorems 13 and 14 provide a more refined study of the test

statistic, since Propositions 4 and 5 already imply consistent testing.

We also note that our results can be adapted to the conditional mixed-membership

and degree-corrected stochastic blockmodel. Consider a deterministic sequence of matrices

P = Pn, where P has the structure

P = αnΘZBZ⊤Θ,
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where Z ∈ [0, 1]n×K is a membership matrix whose rows sum to 1, and Θ ∈ (0, 1)n×n is a

diagonal matrix of degree-correction parameters. For identifiability, assume maxiΘii = 1.

Let B = VDV⊤ be the eigendecomposition of B, and let p and q denote the number of pos-

itive and negative entries of D respectively. Define X = ΘZV|D|1/2; then P = αnXIp,qX
⊤.

Though Theorem 14 is not immediately applicable as the rows of X are no longer drawn

i.i.d., the proof can be modified as long as Θ and Z both converge in the sense that the

limit 1
nZ

⊤Θ⊤ΘZB exists. If B is full rank and does not change in n, the notion of repeated

eigenvalues then refers to the eigenvalues of the limit of 1
nZ

⊤Θ⊤ΘZB, which depends on

the particular sequence of Z and Θ matrices.

5.3.2 Optimal Transport for Repeated Eigenvalues

We note that thus far, we have demonstrated that negative eigenvalues do not affect limit-

ing results despite a priori having to consider indefinite orthogonal transformations. Such

a result is desirable, as one does not have to resort to numerical algorithms optimizing over

O(p, q), which could be unstable due to the ill-conditioning inherent in indefinite orthogo-

nal transformations. Furthermore, we have shown that any modification to our test need

estimate only the matrix ˆ︂Wn from Theorem 14. We now draw our attention to estimatingˆ︂Wn.

Let ˆ︁X and ˆ︁Y be the adjacency spectral embeddings of A(1) and A(2). One can view a

collection of points as a distribution by assigning equal point mass to each point. Defineˆ︁F ˆ︁X as the empirical distribution for ˆ︁X and define ˆ︁Fˆ︁Y as the empirical distribution for ˆ︁Y;

that is ˆ︁F ˆ︁X places point mass of 1
n at each ˆ︁Xi, and ˆ︁Fˆ︁Y places point mass of 1

m at each ˆ︁Yj .
Let d2(·, ·) denote the Wasserstein ℓ2 distance between two distributions; that is, given two

distributions F and G, we define

d2(F,G) := inf
ΓF,G

(E(X,Y )∼ΓF,G
∥X − Y ∥22)1/2,

where ΓF,G is the set of distributions whose marginals are F and G. The set ΓF,G is called

the set of couplings of F and G. If F and G are empirical distributions on n and m points

respectively, the couplings can be represented by matrices whose rows and columns sum to
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1
m and 1

n ; these are the assignment matrices.

In light of Theorem 14, we propose finding the orthogonal matrix ˆ︂Wn that solves the

problem

inf
W∈O(d)∩O(p,q)

d2( ˆ︁F ˆ︁X/ˆ︁α1/2
n
, ˆ︁Fˆ︁Y /ˆ︁β1/2

m
◦W), (5.1)

where ˆ︁Fˆ︁Y /ˆ︁β1/2
m

◦W is the empirical distribution ˆ︁Fˆ︁Y /ˆ︁β1/2
m

transformed by an orthogonal matrix

W. The above distance is considered in both Lei (2020b) and Levin and Levina (2019) as

the orthogonal Wasserstein distance.

The problem in expression 5.1 is simultaneously an optimal transport problem in find-

ing the minimum over couplings and a Procrustes problem in finding the minimum over

orthogonal matrices. Define the matrix CW ∈ Rn×m as the cost matrix with respect to W

by setting

(CW)ij := || ˆ︁Xi −Wˆ︁Yj ||2.
Then expression 5.1 can be written as

min
W,Π

⟨Π,CW⟩ (5.2)

where the inner product is the Frobenius (matrix) inner product, W is a block-orthogonal

matrix, and Π satisfies Π1 = 1
m1 and Π⊤1 = 1

n1; that is, Π is an assignment matrix. We

have the following proposition.

Proposition 6. Assume that E(X⊤
1 Ip,qX2) = 1 and that αn, βm → 0. Suppose ˆ︂Wn mini-

mizes ⟨Π,CW⟩ over the block-orthogonal matrices. Suppose further that FX ≃ FY ; that is,

the null hypothesis holds. Then there exists constants c > 0 and C > 0 possibly depending

on d such that with probability at least 1− c(n−2 +m−2),

d2( ˆ︁F ˆ︁X/ˆ︁α1/2
n
, ˆ︁Fˆ︁Y /ˆ︁β1/2

m
◦ ˆ︂Wn) ≤ C

(︄
log1/d(n)

n1/d
+

log1/d(m)

m1/d
+

log(n)

(nαn)1/2
+

log(m)

(mβm)1/2

)︄
.

We also show that the orthogonal Wasserstein distance does not tend to zero under the

alternative.
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Proposition 7. Assume that E(X⊤
1 Ip,qX2) = 1 and that αn, βm → 0. Suppose ˆ︂Wn min-

imizes ⟨Π,CW⟩ over the block-orthogonal matrices. Suppose that FX ̸≃ FY . Then there

exists a constant C > 0 depending on FX and FY such that

lim inf
n,m

d2( ˆ︁F ˆ︁X/√ˆ︁αn
, ˆ︁Fˆ︁Y /√ˆ︁βm ◦ ˆ︂Wn) ≥ C

almost surely.

Again, the assumption E(X⊤
1 Ip,qX2) = 1 is for identifiability of αn and βm. If instead

one assumes that αn = βm = 1, the result still holds without the sparsity factors.

The above theory shows that given two adjacency matrices A(1) and A(2), calculating

the adjacency spectral embeddings ˆ︁X and ˆ︁Y, aligning them with an orthogonal matrix by

solving Equation 5.2, and calculating the corresponding U -statistic, Un,m(ˆ︁X, ˆ︁Yˆ︂Wn) yields

a consistent test statistic. From there, one can bootstrap the null distribution of Un,m to

get an approximate p-value. The procedure is summarized in Algorithm 6.

Algorithm 6 Nonparametric Two-Graph Hypothesis Testing

Require: A(1) ∈ Rn×n,A(2) ∈ Rm×m

1: Embed A(1) and A(2) into Rd using the adjacency spectral embeddings, obtaining ˆ︁X
and ˆ︁Y and sparsity estimates ˆ︁α1/2

n and ˆ︁β1/2m .
2: Find ˆ︂Wn minimizing Equation 5.2 above using Algorithm 7;
3: Calculate the value of the U -statistic Un,m(ˆ︁X/ˆ︁α1/2

n , ˆ︁Yˆ︂Wn/ˆ︁β1/2m );
4: Bootstrap the U -statistic distribution assuming the null hypothesis;
5: Calculate the empirical probability of observing Un,m(ˆ︁X/ˆ︁α1/2

n , ˆ︁Yˆ︂Wn/ˆ︁β1/2m ) under the
bootstrapped null distribution.

6: return Estimated p-value.

To solve for the matrix ˆ︂Wn in practice, we use the method proposed in Alvarez-Melis

et al. (2019) tailored to our specific problem, in which the authors propose solving an

entropy-regularized version of the problem which can be done efficiently. Define the auxiliary

expression

inf
Π,W

⟨Π, CW⟩+ εH(Π) (5.3)

where H(Π) is the entropy of the distribution given by Π. For a fixed ε, Equation 5.3
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can be computed efficiently via the Sinkhorn algorithm (Cuturi, 2013). We then alternately

minimize over W and Π to find the solution. Finally, given a fixed orthogonal matrix W,

we project W onto the block-orthogonal matrices. The (Frobenius) projection is given by

the following proposition. We summarize the entire procedure in Algorithm 7.

Proposition 8. Let W ∈ O(d). Then

inf
R∈O(d)∩O(p,q)

∥R−W∥F

is attained by taking the orthogonal components of the singular value decomposition of the

top p× p block of W and the bottom q × q block of W.

Algorithm 7 Optimal Transport-Procrustes

Require: ˆ︁X, ˆ︁Y initial guesses W ∈ O(d)∩O(p, q), Π = 1
mn11

⊤, dimension p and q = d−p.

1: repeat
2: Set M := Πˆ︁XW( ˆ︁Y)⊤ with singular value decomposition UΣV⊤, set W′ := UV⊤

3: Calculate CW′ via (CW′)ij := || ˆ︁Xi −W′ ˆ︁Yj ||22
4: Set ε > 0 as some positive number and solve for Π via the Sinkhorn algorithm
5: Set W := W′

6: until max number of iterations
7: Define Wp := W[1 : p, 1 : p]; Wq := W[p + 1 : d, p + 1 : d] with singular value

decompositions UpΣpV
⊤
p and UqΣqV

⊤
q

8: Set ˆ︂W = bdiag(UpV
⊤
p ,UqV

⊤
q )

9: return ˆ︂W
In essence, the algorithm alternates between solving for an orthogonal transformation

given a fixed assignment matrix and solving for the assignment matrix given the orthogonal

transformation.

Close Eigenvalues

Before moving on, we provide some intuition as to why estimating a rotation can be bene-

ficial even when one does not have exactly repeated eigenvalues. We focus on the positive

semidefinite case for convenience, though the analysis for the indefinite case is similar.

Suppose E(XX⊤) has d distinct eigenvalues, and let UA and UP be the leading d
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eigenvectors of A and P = αnXX⊤. Let W∗ be defined via

W∗ = inf
W∈O(d)

∥UA −UPW∥F ,

which has a closed-form solution in terms of the left and right singular vectors of the matrix

U⊤
AUP. Since E(XX⊤) has distinct eigenvalues, without loss of generality assume that the

columns of UA are chosen so that the inner product between the columns of UA and UP

are positive. Then the sequence of matrices W∗ is converging to the identity, which also

provides the uniqueness (up to sign) of the matrices ˆ︁X and ˆ︁Y.

Define

δ := min
1≤i≤d

(︃
λi(E(XX⊤))− λi+1(E(XX⊤))

)︃
,

where λd+1 := −∞ by convention. It can be shown (see Appendix E.2) that

∥W∗ − I∥F = O

(︃
log(n)

nαnδ

)︃
,

where the big O(·) notation hides dependence on the dimension d. Hence, even though the

right hand side tends to zero as nαn → ∞, so the eigenvectors of A and P are well-aligned

(up to sign), the rate of convergence of the orthogonal matrix depends on n, αn, and the

corresponding eigengap.

In practice, one observes only the two graphs, and the eigenvalues must be estimated

from the eigenvalues of A. Therefore, even though the orthogonal matrix is converging to

the identity, for any finite n, it may not be close if the eigengap is small relative to n. So

if one observes two graphs from the same model, but both n and m are small relative to

δ, then one may still need to estimate a rotation to align ˆ︁X and ˆ︁Y, despite asymptotically

having distinct eigenvalues.

5.3.3 Relation to Previous Results

There have been several tests proposed assuming that the graphs have the same set of

vertices, such as Tang et al. (2017a); Ghoshdastidar et al. (2017); Li and Li (2018); Levin

et al. (2019) and Draves and Sussman (2020). In Tang et al. (2017a); Levin and Levina (2019)
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and Draves and Sussman (2020), the authors work under the random dot product graph

model, though they require that the expected degree grows as ω(n) (that is, the sparsity

parameter is constant). In Li and Li (2018), working under the stochastic blockmodel,

the authors are able to derive more explicit limiting results for their test statistic. In

Ghoshdastidar et al. (2020), the authors allow for arbitrary distributions on two graphs, but

again require that the graphs be on the same set of nodes. In contrast to all of these works,

we do not assume that the two graphs are on the same set of vertices.

Our test statistic is based on a two-sample U -statistic using the rows of ˆ︁X and ˆ︁Y. In

Levin and Levina (2019), the authors consider bootstrapping nondegenerate U -statistics for

random dot product graphs by estimating the latent positions. In addition, there have been

a number of works on U -statistics for graphs in the more general graphon model (Lunde

and Sarkar, 2019; Zhang and Xia, 2020; Lin et al., 2020a,b), but these involve bootstrapping

moments of the underlying graphon, which can be computationally infeasible in practice. In

this paper, we study a degenerate two-sample test statistic, which is not considered in any

of these works.

Both Ghoshdastidar et al. (2017) and Tang et al. (2017b) consider a similar test as

in this paper. In Ghoshdastidar et al. (2017), the authors introduce a formalism for two-

sample testing under the assumption one observes only the adjacency matrices. Although

our broad setting is similar to theirs, the model we study has more structural assumptions,

allowing us to construct a test statistic using estimated latent positions. In addition, since

our population test statistic is injective, we obtain a universally consistent and computa-

tionally tractable test statistic for GRDPGs, whereas the test statistic in Ghoshdastidar

et al. (2017) will not necessarily be universally consistent or computationally tractable in

general. Furthermore, the structure in the setting we consider allows for a much simpler

bootstrapping procedure.

In Tang et al. (2017b), the authors consider a similar test statistic as in our setting under

the assumption that A(1) and A(2) are both from the random dot product graph model,

the sparsity parameters are constant, and the matrices E(XX⊤) and E(Y Y ⊤) have distinct

eigenvalues. Leveraging previous results for random dot product graphs, the authors show

that if κ is a radial kernel, and m
n+m → ρ ∈ (0, 1), then there exists a sequence of orthogonal
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matrices Wn such that

(n+m)
(︂
Un,m(ˆ︁X, ˆ︁Y)− Un,m(X,YWn)

)︂
→ 0

almost surely under the null hypothesis, where Un,m(ˆ︁X, ˆ︁Y) is the U -statistic defined using

the estimates ˆ︁X and ˆ︁Y from the adjacency spectral embeddings of A(1) and A(2). Moreover,

for the sequence of orthogonal matrices Wn we have

Un,m(X,YWn) →

⎧⎪⎪⎨⎪⎪⎩
0 FX ≃ FY

c > 0 FX ̸≃ FY ,

where recall for RDPGs FX ≃ FY means that FX and FY are the equivalent up to orthogonal

transformation.

While at first glance the test statistic proposed in Tang et al. (2017b) is similar to our

test statistic, analyzing the test statistic in a general low-rank setting involves substantial

theoretical and methodological considerations with respect to indefinite orthogonal trans-

formations, optimal transport, and sparsity. In addition, the assumption that E(XX⊤) and

E(Y Y ⊤) have repeated eigenvalues precludes testing in the case of the K-block balanced ho-

mogeneous stochastic blockmodel from Section 5.1.1 even if the B matrix is positive definite.

Our results include the random dot product graph as a special case, though the analysis

and our proposed methodology are not simply trivial extensions of the results in Tang et al.

(2017b).

We remark that Propositions 6 and 7 provide similar bounds to Theorem 5 of Levin

and Levina (2019) and Theorem 4.4 of Lei (2020b), both of which consider convergence of

empirical distributions to the corresponding latent position distribution under the single-

graph setting, though in both of these works they require that the orthogonal matrix in

the eigendecomposition of E(XX⊤) is block diagonal. As a counterexample, consider the

following GRDPG model. Let B ∈ [0, 1]K×K be a symmetric connectivity matrix of rank

K, and let VDV⊤ be its eigendecomposition. Let Zi ∼Dirichlet(α) for some α ∈ RK , and

define Xi = V|D|1/2Zi, which is a valid GRDPG distribution. Then the matrix E(XX⊤)
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has a block-orthogonal eigendecomposition if and only if V|D|1/2E(ZZ⊤)|D|1/2V⊤ does,

where E(ZZ⊤) is the second moment matrix for a Dirichlet random variable. If α is the all

ones vector, then

V|D|1/2E(ZZ⊤)|D|1/2V⊤ =
K

K + 1
V|D|V⊤ +

1

K(K + 1)
V|D|1/211⊤|D|1/2V⊤.

The example B = −.1I + .211⊤ yields an orthogonal matrix that is not block-diagonal.

Hence, even though assuming the eigendecomposition of E(XX⊤) has a block diagonal

structure is an attractive assumption amenable to theoretical analysis, this assumption can

be violated by many different models.

Because of the prevalence of spectral methods in the literature, estimation of ˆ︂Wn arises

often in related inference tasks. For example, Zhang (2018) proposes solving a smooth

function of the Laplace distance between distributions to estimate ˆ︂Wn, and Li and Li

(2018), operating under the stochastic blockmodel, consider estimating ˆ︂Wn by minimizing

over the community memberships. Indeed, both methods are practically similar to ours, and

may provide comparable results in practice, though we believe we are the first to apply it

to nonparametric hypothesis testing and to provide asymptotic statistical guarantees under

both the null and alternative hypotheses. Furthermore, Optimal Transport-Procrustes has

been used to some success in the literature on natural language processing. Though our

methodology is similar to Alvarez-Melis et al. (2019), other methods have been proposed for

numerically solving the problem (e.g. Grave et al. (2019)).

Finally, we mention that though our algorithm is based on entropy-regularized Wasser-

stein distance, our results are stated in terms of the unregularized Wasserstein distance.

While it may be possible to extend results on regularized optimal transport (e.g. Gangrade

et al. (2019); Bigot et al. (2019)) to the mixed continuous and discrete setting implicitly

required for our purposes, such an extension would require nontrivial analysis of the regu-

larized Sinkhorn distance between ˆ︁X and ˆ︁Y.
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Figure 5.2: Density plot of the difference ˆ︁Usign flips − ˆ︁Urotation 100 Monte Carlo iterations of
a stochastic blockmodel. A Wilcoxon test gives a p-value of < .0001 for testing whether the
estimated rotation is better than sign flips.

5.4 Simulations

Recall the motivating example in Section 5.1.1, given by the balanced homogeneous stochas-

tic blockmodel, in which for vertices in the same community, the probability of an edge is a

and between communities the probability of an edge is b. When b > a and the probability

of belonging to a community is 1
K if there are K communities, then this model has both

repeated and negative eigenvalues. With the same model as in Section 5.1.1, where

B =

⎛⎜⎜⎜⎜⎝
.5 .8 .8

.8 .5 .8

.8 .8 .5

⎞⎟⎟⎟⎟⎠
and the probability of community membership is 1/3, we simulate 100 Monte Carlo iterations

on n = 300 vertices from this stochastic blockmodel, and we calculate the value of our test

statistic with both the naïvely rotated versions and the output of Algorithm 7.

Under the distinct eigenvalues assumption, choosing the sign of ˆ︁X to match those of ˆ︁Y
142



Joshua Agterberg

suffices to give convergence as in Theorem 13; we dub this naïve alignment procedure the

sign flips procedure. In Figure 5.2, we plot the density of the difference of our estimated

test statistic using the Gaussian kernel with both the sign flips procedure and the estimated

rotation from Algorithm 7. Since this is a finite sample simulation, we find the alignmentˆ︂Wn by running Algorithm 7 from multiple different initializations, and we take the valueˆ︂W that minimizes the test statistic, where ˆ︂W are the local minimums from Algorithm 7 for

the estimated rotation and ˆ︂W are the sign matrices for ˆ︁Usign flip. We see that the density

lies almost completely to the right of zero which suggests that the naïve estimate is nearly

always larger than the estimated rotation. Moreover, there are some situations in which the

difference is quite large, which demonstrates that the test statistic estimated using only sign

flips need not necessarily converge to zero under the null hypothesis.

Under the null hypothesis, the test statistic should be tending to zero almost surely, and

we see that the value of the test statistic evaluated using the estimated rotation is much

more concentrated about zero. Moreover, a Wilcoxon test gives a p-value of less than 0.0001

for testing whether the estimated rotation test statistic is smaller than the sign-flips.

In Figure 5.3, using the same B matrix as in the previous example, we also allow for

independent degree correction parameters θi ∼ .5× U(0, 1) + .5, where U(0, 1) denotes the

Uniform distribution on (0, 1). For two vertices i and j with communities k and l respectively,

the probability of an edge is defined as θiθjBkl. We plot the second and third dimensions ofˆ︁X and ˆ︁Y with both sign flips and the estimated orthogonal matrix output from Algorithm

7. By the independence of the degree-correction parameters, the matrix E(XX⊤)Ip,q still

has repeated eigenvalues, since it will be a scalar times the corresponding second moment

matrix for a stochastic blockmodel. Here we use n = m = 500 to encourage the convergence

of the second moment matrix. We see that visually the corresponding clusters lie on top of

each other despite the added noise from the degree correction. Note that the clusters are

“elongated” relative to the stochastic blockmodel in Figure 5.1; this is due to the fact that

the latent position distribution for a degree-corrected stochastic blockmodel is supported on

a ray, since the degree correction parameters change the magnitude of the latent positions

but not the direction.

In Figure 5.4 we plot the density of the test statistic with and without the rotation, and
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Figure 5.3: Comparisons of the naïve sign-flip alignment procedure and the optimal trans-
port alignment procedure for two adjacency spectral embeddings for the degree-corrected
stochastic blockmodel. The left hand side shows the naïve alignment, and visually the clus-
ters are not on top of each other, and the right hand side shows that using Algorithm 7
places the clusters approximately on top of each other

Figure 5.4: Density plot of the difference ˆ︁Usign flips − ˆ︁Urotation for 100 Monte Carlo iterations
of a degree-corrected stochastic blockmodel. A Wilcoxon test gives a p-value of < .0001 for
testing whether the estimated rotation is better than the Sign Flips.
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Figure 5.5: Estimated power curves for the stochastic blockmodel (left) and degree-corrected
stochastic blockmodel (right) alternatives. In both graphs, red corresponds to the null
hypothesis and the other colors correspond to various alternatives as discussed in Section
5.4.1.

a Wilcoxon test gives a p-value of less than .0001 for whether the rotated lies to the left of

the naïve alignment. We see that the distribution of the estimated rotation lies to the left

of the distribution of sign flips.

5.4.1 Simulated Power Analysis

For the stochastic blockmodel in the previous section, the left hand side of Figure 5.5 gives

estimated power curves for the following setup. First, we generate A(1) as a stochastic

blockmodel with B(1) as before. We then generate A(2) independently from A(1) with

probability matrix B(1)+εI for ε ∈ {0, .1, .2} in red, green, and blue respectively. Note that

all these choices of ε still yield a probability generating matrix with negative eigenvalues.

We run 100 simulated permutation tests with 500 permutations and choose the critical value

for α = .05.

Similarly, the right hand side of Figure 5.5 shows estimated power curves for the follow-

ing setup. First, we generate A(1) from a stochastic blockmodel with B as before. Then
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we generate A(2) as the degree-corrected stochastic blockmodel with degree-correction pa-

rameters chosen independently as β × U(0, 1) + (1 − β) for various choices of β. When

β = 0 there are no degree-correction parameters, and the null hypothesis holds. As in the

previous example, we run this simulation 100 times with 500 permutations per run. We

consider β ∈ {0, .1, .2, .3} in red, green, blue, and purple respectively. Larger values of β can

be understood qualitatively as moving further away from the null hypothesis. We see that

under the alternative for larger values of n the estimated power tends to 1, and the Type I

error remains below .05 under the null hypothesis.

5.5 Discussion

We have shown that a test statistic defined by using the maximum mean discrepancy ap-

plied to the rows of the adjacency spectral embedding yields a consistent test in a natural

asymptotic regime as the number of vertices tends to infinity. The methodology we propose

shows that solving the optimal transport problem estimates the orthogonal matrix stemming

from the eigenvalue multiplicity of the matrices E(XX⊤)Ip,q and E(Y Y ⊤)Ip,q. While our

optimization scheme alternates between points, we note that we have not proven that it

yields a globally optimum solution in general, and many different initializations may be re-

quired to find the global minimizer. In addition, we note that using the resulting orthogonal

transformation, if globally minimized, does not asymptotically affect power in the case of

distinct eigenvalues, as the orthogonal transformation it is approximating is a sign matrix.

Our results show that the U -statistic associated to the reproducing kernel yields consis-

tent testing under appropriate edge density; determining the exact nondegenerate limiting

distribution is yet an open problem. The proof reveals that it will depend on the asymptotic

distribution of the difference of indefinite orthogonal matrices
√
n(QX − ˜︁QX) in Section E.1,

but for practical purposes, this is irrelevant, as the resulting limit will not be independent

of FX and FY in general. While exact derivation of the limiting distribution is complicated,

we note that our procedure yields a consistent test through a simple bootstrapping proce-

dure. Our main results have demonstrated that only repeated eigenvalues (and not negative

eigenvalues) require any modification to obtain consistency for two graph hypothesis testing.
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As in Tang et al. (2017b), one can also extend our methodology to determine whether

FX ≃ FY ◦ c for some constant c > 0, or for the setting FX ◦ π ≃ FY ◦ π, where π is the

projection onto the sphere. Here FX ≃ FY ◦ c means that FX ≃ FcY , and FX ◦ π ≃ FY ◦ π

means that Fπ(X) ≃ Fπ(Y ). For c appropriately defined so that FY ◦ c is a valid (p, q)-

admissible distribution, one can use the estimates

ˆ︁sX = n−1/2∥ˆ︁X∥F ; ˆ︁sY = m−1/2∥ ˆ︁Y∥F ,

and hence, by Lemma 51, these are consistent estimates of the parameters

sX = n−1/2∥˜︁X∥F ; sY = m−1/2∥ ˜︁Y∥F .

Similarly, one can project the estimates ˆ︁X and ˆ︁Y to the unit sphere to test whether FY ◦π ≃

FY ◦ π.

It remains an open question as to whether our results can be extended to graphons

or other random graph models. In addition, while we have demonstrated that estimation

of sparsity is sufficient to obtain consistency, graphs below the
√
n threshold may require

additional analysis.
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Chapter 6

Joint Spectral Clustering for

Multilayer Degree-Corrected

Stochastic Blockmodels

6.1 Introduction

Community detection, or the problem of clustering the vertices of a network into distinct

groups (communities) in a coherent manner that somehow reflects the structure of the net-

work, has become a fundamental tool for the analysis of network data, with many applica-

tions in fields such as neuroscience (Sporns and Betzel, 2016), biology (Luo et al., 2007),

social sciences (Conover et al., 2011), among others.

In order to understand community detection in networks from a statistical perspective,

a number of models have been proposed that characterize edge connectivity probabilities

according to some notion of ground-truth communities.

A workhorse community-based statistical model for networks is the stochastic blockmodel,

which posits that vertices belong to latent communities and that edges are drawn indepen-

dently, with edge probability determined by the community memberships of each vertex

(Holland et al., 1983). A number of works have studied community detection from the lens

of the stochastic blockmodel, including deriving information-theoretical limits (Zhang and

149



CHAPTER 6. JOINT SPECTRAL CLUSTERING FOR MULTILAYER
DEGREE-CORRECTED STOCHASTIC BLOCKMODELS

Zhou, 2016) and phase transition phenomena (Abbe, 2017). Of the various algorithms pro-

posed for community detection in stochastic blockmodels, spectral clustering procedures (von

Luxburg, 2007; Rohe et al., 2011; Lei and Rinaldo, 2015), which are collections of clustering

techniques that use matrix factorizations such as eigendecompositions and singular value

decompositions, have been shown to exhibit good performance both in practice and theoret-

ically, including achieving perfect clustering down to the information-theoretical threshold

(Lyzinski et al., 2014; Lei, 2019; Abbe et al., 2020; Su et al., 2020).

One potential drawback of the stochastic blockmodel is that vertices are assumed to be

“equivalent” within communities; i.e., edge probabilities are determined solely by community

memberships. To relax this assumption, in the degree-corrected stochastic blockmodel (Karrer

and Newman, 2011) each vertex has associated to it a degree correction parameter intended

to shrink edge probabilities according to its magnitude. On the one hand, the degree-

corrected stochastic blockmodel allows for vertex heterogeneity within communities, but on

the other hand the model is more general than the stochastic blockmodel, often requiring

more sophisticated procedures to recover communities. A number of variants of spectral

clustering algorithms for community detection in this model have been considered (Lyzinski

et al., 2014; Lei and Rinaldo, 2015; Jin, 2015; Gao et al., 2018), intended to ameliorate the

“nuisance” degree correction parameters.

Many modern datasets deal with observations that consists of multiple networks on the

same vertex set (Kivelä et al., 2014; Bazzi et al., 2020), denoted as layers, such as multiedges

or multiview data, networks with time-varying structure, or multiple network observations.

Community detection in these data presents additional challenges, as it is important to

take advantage of a shared structure in the collection of graphs while respecting individual

levels of idiosyncrasy. For these types of network data, which we refer to as multilayer net-

works, perhaps the simplest community-based statistical model is the multilayer stochastic

blockmodel (Holland et al., 1983). This model posits that communities are shared across

networks but that edge probabilities change between networks. Spectral algorithms for

multilayer stochastic blockmodels and generalizations have been considered in Lei and Lin

(2022); Jing et al. (2021); Pensky and Wang (2021); Pensky and Zhang (2019); Arroyo et al.

(2021); Han et al. (2015), though we defer a more thorough discussion of closely related

150



Joshua Agterberg

work to Section 6.1.1.

A key aspect of the multilayer stochastic blockmodel is that it allows for network het-

erogeneity via the possibly changing edge probabilities. However, as in the single network

setting, vertices in the multilayer stochastic blockmodel are essentially equivalent; i.e., given

their community memberships and the block probability matrices, their edge probabilities

are entirely determined. In the multilayer degree-corrected stochastic blockmodel that we

consider in this work, individual vertices have network-specific degree correction parame-

ters, so that there is global network heterogeneity (via the connection probabilities), and

local vertex heterogeneity (via the degree correction parameters).

Our main contributions are as follows:

• We establish necessary and sufficient conditions for community identifiability of the

multilayer degree-corrected stochastic blockmodel and propose a spectral clustering

algorithm to estimate community memberships under this model. Our necessary and

sufficient conditions for identifiability also hold for the single network setting.

• We obtain an expected misclustering error that improves exponentially with the num-

ber of networks, and we demonstrate perfect clustering under sufficient signal strength.

Our technical results rely only on signal strength conditions of each network and hold

under severe degree heterogeneity within and between networks.

• In simulated data, we demonstrate that our method is competitive in multiple scenar-

ios. Meanwhile, when there is severe heterogeneity across the network layers, state-

of-the-art community detection methods can fail in recovering the correct community

structure of the model.

• We illustrate the flexibility of the model and methodology in a time series of United

States flight network data from January 2016 to September 2021, identifying trends in

airport popularity and the influence of COVID-19 on travel both at the local (vertex)

and global (community) level.

Our proposed algorithm consists of two stages: first, we compute individual (network-level)

spectral embeddings, and then we compute a joint embedding by aggregating the output

of the first stage. To prove our main technical results, we develop two separate first-order
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entrywise expansions for each stage of our algorithm that explicitly depend on all of the

parameters of the model, including degree-corrections. The proof is based on combining the

“leave-one-out” analysis technique (Chen et al., 2021c) together with matrix-analytic con-

centration arguments that carefully track the dependence on the degree-corrections. Fur-

thermore, as a byproduct of our main results we establish an exponential error rate for single

network spectral clustering on the scaled eigenvectors with spherical normalization (Theo-

rem 18) that matches the error rate of state-of-the-art spectral methods for single-network

degree-corrected blockmodels (Jin, 2015; Jin et al., 2021). This result holds under slightly

weaker conditions on the degree-correction parameters, and slightly stronger conditions on

the community separation.

The rest of this paper is structured as follows. In Section 6.1.1 we consider closely

related work, and in Section 6.1.2 we set notation. We present our model and identifiability

in Section 6.2, and we present our algorithm in Section 6.2.1. The main results are presented

in Section 6.3, and our simulations and real data analysis are presented in Section 6.4 and

Section 6.5 respectively. We finish in Section 6.6 with a discussion, and we prove our main

results in Section 6.7. The full proofs of all of our results are in the appendices.

6.1.1 Related Work

Community detection in the single network setting has received widespread attention in

recent years (Abbe, 2017; Fortunato and Newman, 2022). A number of works have studied

community detection in the stochastic blockmodel, including consistency (Rohe et al., 2011;

Zhao et al., 2012; Lei and Rinaldo, 2015), phase transition phenomena (Abbe et al., 2020) and

minimax rates (Gao et al., 2018). Beyond the stochastic blockmodel, a number of inference

techniques have been considered for generalizations, such as the mixed-membership block-

model (Airoldi et al., 2008; Mao et al., 2021), the random dot product graph (Athreya et al.,

2018) and generalised random dot product graph (Rubin-Delanchy et al., 2022). This work

is closely related to the literature on degree-corrected stochastic blockmodels (Karrer and

Newman, 2011). The work Jin (2015) considered community detection in degree-corrected

stochastic blockmodels using SCORE, or spectral clustering on ratios of eigenvectors, and

several refinements, generalizations, and applications of this procedure have been consid-
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ered, including Jin et al. (2019, 2021); Ke and Wang (2022) and Fan et al. (2022). Our main

results are perhaps most similar to Jin et al. (2021), who obtain an exponential error rate

for spectral clustering with the SCORE procedure for a single network.

Turning to community detection in multilayer networks, several procedures have been

considered for the multilayer stochastic blockmodel, including spectral methods Han et al.

(2015); Bhattacharyya and Chatterjee (2018, 2020); Huang et al. (2020b); Lei and Lin (2022),

matrix factorization approaches (Paul and Chen, 2020; Lei et al., 2020), the expectation-

maximization algorithm (De Bacco et al., 2017), and efficient MCMC approaches Peixoto

(2015); Bazzi et al. (2020). Extensions have also been considered, such as Chen et al.

(2021a), which allows some members of each community to switch between networks. Fur-

thermore, Jing et al. (2021); Pensky and Wang (2021), and Noroozi and Pensky (2022) all

consider generalizations of the multilayer stochastic blockmodel where there are a few dif-

ferent possible community configurations. Other spectral methods for multilayer data have

considered different low-rank models Levin et al. (2019); Draves and Sussman (2021); Jones

and Rubin-Delanchy (2021); Pantazis et al. (2022); Arroyo et al. (2021); Zheng and Tang

(2022); MacDonald et al. (2022). Although spectral methods are competitive in terms of

computation and accuracy, existing methods are limited in handling heterogeneous degree

correction parameters. Both Bhattacharyya and Chatterjee (2020) and Bhattacharyya and

Chatterjee (2018) consider degree-corrections for each network, but they require that the

degree-corrections remain the same across networks, making the analysis feasible. Our work

is perhaps most closely connected to the works Arroyo et al. (2021) and Zheng and Tang

(2022), which consider the estimation of a common invariant subspace, but the model we

consider in this paper is substantially different, and we provide finer theoretical results to

analyze misclustering rates.

From a technical point of of view, our analysis is also closely related to the literature on

entrywise eigenvector analysis of random matrices (Abbe et al., 2020; Chen et al., 2021c),

of which there has been applications to networks (Cape et al., 2019a; Abbe et al., 2020;

Su et al., 2020; Mao et al., 2021; Jin et al., 2019, 2021; Ke and Wang, 2022; Abbe et al.,

2022), principal component analysis (Cape et al., 2019b; Cai et al., 2021a; Yan et al., 2021;

Agterberg and Sulam, 2022), high-dimensional mixture models (Abbe et al., 2022; Agterberg
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et al., 2022b; Zhang and Zhou, 2022), randomized algorithms (Zhang and Tang, 2022),

ranking from paired data (Chen et al., 2019a, 2022), tensor data analysis (Cai et al., 2021a;

Xia and Zhou, 2019), among others. In the single-network community detection setting,

several authors have previously considered the entrywise analysis of the eigenvectors of a

single degree-corrected stochastic blockmodel, such as Lyzinski et al. (2014); Jin et al. (2019,

2021); Su et al. (2020) and Ke and Wang (2022). Here we provide an entrywise analysis of the

scaled eigenvectors of degree-corrected stochastic blockmodels with explicit dependence on

the degree-correction parameters that is needed for the analysis of the multilayer embedding.

6.1.2 Notation

We use bold or greek capital letters M or Λ for matrices, and we let Mi· and M·j denote the

i’th row and j’th column respectively, where we view both as column vectors. We let ∥M∥

and ∥M∥2,∞ denote its spectral and ℓ2,∞ norm, where the latter is defined as maxi ∥Mi·∥,

where ∥Mi·∥ is the usual (vector) Euclidean norm. For a vector x we let ∥x∥1, ∥x∥∞ denote

its vector ℓ1 and ℓ∞ norms respectively. We let Ir denote the r × r identity. For two

orthonormal matrices U and V satisfying U⊤U = V⊤V = Ir, we let ∥ sinΘ(U,V)∥ denote

their (spectral) sinΘ distance, defined as ∥ sinΘ(U,V)∥ = ∥(I−UU⊤)V∥. We write O(r)

to denote the set of r×r orthogonal matrices; i.e. W ∈ O(r) if WW⊤ = Ir. We also denote

ei as the standard basis vector, and, where appropriate, we view e⊤i M as a column vector.

We let I{·} denote the indicator function, and R+ denote the strictly positive real numbers.

We will also use asymptotic notation throughout this paper. For two functions f(n) and

g(n), we write f(n) ≲ g(n) if there exists some constant C > 0 such that f(n) ≤ Cg(n),

and we write f(n) ≪ g(n) if f(n)/g(n) → 0 as n→ ∞. We denote by f(n) ≍ g(n) the case

where both f(n) ≲ g(n) and g(n) ≲ f(n). We also write f(n) = O(g(n)) if f(n) ≲ g(n).

We denote [n] = {1, 2, . . . , n}, and we use L and l to refer to individual networks, i and

j to refer to nodes, and K, r, and s to refer to communities.
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6.2 The Multilayer Degree-Corrected Stochastic Blockmodel

Suppose one observes a collection of L adjacency matrices A(1), . . . ,A(L) of size n × n,

with the vertices of the corresponding graphs aligned across the collection. For simplicity

of the presentation and the theory, we assume that the adjacency matrices represent simple

undirected graphs, hence these matrices are symmetric with binary entries, and we allow the

networks to have self-edges (loops), but the main results are not materially different if loops

are not permitted. Much of the theory and methodology we consider here is also applicable

in the settings of weighted or directed networks, but we focus on the binary and undirected

setting since our primary concern in the present work is to quantify the misclustering error

rate as a function of the degree parameters.

The model considered in this paper assumes a shared community structure across all

the graphs, but allows for idiosyncrasy in the edge probabilities across the collection of

graphs by letting the global and local individual parameters of each graph to be different.

In particular, we consider a multilayer version of the degree-corrected stochastic blockmodel

(Karrer and Newman, 2011), in which both the block connectivity matrices and the vertex

degree parameters can be different for each network. Some versions of this model have

appeared in Peixoto (2015); Bazzi et al. (2020); Bhattacharyya and Chatterjee (2020), but

to be precise, we will use the following definition.

Definition 5 (Multilayer Degree-Corrected Stochastic Blockmodel). A collection of L graphs

{A(l)}Ll=1 on n vertices are drawn from the multilayer degree-corrected stochastic blockmodel

(multilayer DCSBM) if:

• each vertex i belongs to one of K communities. Let z : [n] → [K] be the community

membership function satisfying z(i) = r if vertex i belongs to community r;

• θ
(l)
1 , . . . , θ

(l)
n ∈ R+ are the degree correction parameters associated to each vertex i in

network l;

• B(1), . . . ,B(L) ∈ RK×K
+ are symmetric block connectivity matrices;

• the edges of the networks are mutually independent, and their expected values (prob-
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abilities) are described by

E[A(l)
ij ] = θ

(l)
i θ

(l)
j B

(l)
z(i),z(j), l ∈ [L], i, j ∈ [n], i ≥ j.

The degree correction parameters denote a local connectivity component and the block

connection probability matrices characterize a global connectivity component, both of which

can vary from graph to graph, while the community memberships remain constant. Since the

edges are binary, the expected value also denotes the probability of the corresponding edge,

but this definition can be used in other distributions (e.g. Poisson (Karrer and Newman,

2011)).

It is convenient to represent the multilayer DCSBM using matrix notation. Denote the

collection of matrices that encode the edge expectations by P(1), . . . ,P(L) ∈ [0, 1]n×n, such

that E[A(l)
ij ] = P

(l)
ij for each l ∈ [L] and i, j ∈ [n], i ≥ j. Then we can write

P(l) = Θ(l)ZB(l)Z⊤Θ(l), l ∈ [L], (6.1)

where Θ(l) ∈ Rn×n is a diagonal matrix with Θ
(l)
ii = θ

(l)
i > 0, Z ∈ {0, 1}n×K is a binary

matrix indicating community memberships (Zir = 1 if z(i) = r, and Zir = 0 otherwise), and

B(l) ∈ RK×K
+ is a symmetric matrix proportional to the connectivity between and within

communities in the graph l. We assume that rank(B(l)) = Kl, and we allow Kl to be less

than K.

The multilayer DCSBM model is flexible enough to represent heterogeneous structures

both at the vertex and the community levels, while retaining a joint community structure

across the graphs. Due to these local and global idiosyncrasies, distinguishing between local

and global graph structure at the single and multilayer level becomes important, as it is

possible to formulate parameterizations of the model that give equivalent characterizations.

For instance, one may group high degree vertices in their own community according to

degree correction parameters alone. To ensure identifiability and maintain a parsimonious

model, we assume that the number of communities K is the smallest possible that can

represent the communities uniquely (up to label permutations). Our first result establishes
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the identifiability of the communities in the model.

Theorem 15 (Community membership identifiability). Suppose that {P(l)}Ll=1 ∈ Rn×n are

matrices such that

P(l) = Θ(l)ZB(l)Z⊤Θ(l), l = 1, . . . , L,

where Z ∈ {0, 1}n×K is a binary block membership matrix with at least one vertex in each

community (
∑︁K

r=1 Zir = 1, i ∈ [n], and
∑︁n

i=1 Zir ≥ 1, r ∈ [K]), {B(l)}Ll=1 are symmetric

matrices with entries in R+, and {Θ(l)}Ll=1 are diagonal matrices with positive entries on the

diagonal. Let B(l) = V(l)D(l)(V(l))⊤ be the eigendecomposition of B(l), with V(l) ∈ RK×Kl

a matrix with orthonormal columns and D(l) ∈ RKl a diagonal matrix, and rank(B(l)) = Kl.

Write Q(l) as the matrix with normalized rows of V(l), i.e., Q
(l)
r· = 1

∥V(l)
r· ∥

V
(l)
r· , and let

Q = [Q(1), · · · ,Q(L)]. The membership matrix Z is identifiable (up to label permutations) if

and only if Q has no repeated rows.

In essence, the identifiability condition requires that the matrices {B(l)} have exactly K

jointly distinguishable rows, which determine the community memberships. The condition

Q having no repeated rows implies that there are precisely K unique directions associated to

the rows of [V(1), · · · ,V(L)]. Therefore, if ˜︁Q(l) is defined by normalizing the rows of V(l) in

any other way, then as long as ˜︁Q has K distinct rows the communities will be identifiable. A

key feature of Theorem 15 is that it also holds for L = 1, thereby establishing both necessary

and sufficient conditions for identifiability in the single network model.

The matrix B(l) is often assumed to be full rank (Qin and Rohe, 2013; Jin et al., 2022),

in which case there are exactly K identifiable communities. Theorem 15 requires a milder

condition to allow flexibility in modeling multiple networks, as the number of identifiable

communities in each layer may be smaller than K. The identifiable communities in the joint

model are given by the different directions taken by the combined rows of B(l) across all

the layers. For instance, two communities may have the same row directions in a particular

network layer, but when considered as an ensemble, all of the communities have distinct

directions. Since this condition is also necessary for identifiability, this value of K gives the

most parsimonious representation in terms of the number of communities.
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Identifiability of the degree correction and block connectivity parameters requires addi-

tional constraints, as it is otherwise possible to change their values up to a multiplicative

constant. Multiple characterizations have been used previously for the single-network set-

ting, and these immediately extend to the multilayer setting. For instance, if for all i, we

have B
(l)
ii = 1, (e.g. Jin et al. (2022)) then the other model parameters are identifiable as

well. We adopt this identifiability constraint to facilitate the presentation of the theoretical

results in Section 6.3, as it allows us to isolate the effect of the degree correction parameters.

Nevertheless, to ease interpretation, in Section 6.5 we adopt a different constraint, namely,

that the sum of degree corrections within each community is equal to 1. Both parameteri-

zations are equivalent, and the corresponding normalizing constants can either be absorbed

into the degree corrections or the block connectivity matrices.

Remark 18 (Relationship to (Generalized) Random Dot Product Graphs). We note that,

in the single-network setting, Theorem 15 can also be interpreted through the lens of the

(generalized) random dot product graph (GRDPG) (Rubin-Delanchy et al., 2022; Athreya

et al., 2018). Under the GRDPG model, each vertex is associated with a latent position

in low-dimensional Euclidean space. Under this framework, Theorem 15 shows that the

communities in the DCSBM are identifiable if and only if the latent positions associated to

each vertex lie on exactly K unique rays emanating from the origin.

6.2.1 DC-MASE: Degree-Corrected Multiple Adjacency Spectral Em-

bedding

In order to obtain a statistically principled, computationally efficient, and practical algo-

rithm for community detection, we will consider a spectral clustering procedure. General

spectral clustering approaches for one network typically proceed in a standard manner: first,

using a few leading eigenvectors of the adjacency matrix (or related quantities, such as the

graph Laplacian), obtain individual vertex representations by considering the rows of the

matrices; we will refer to this first step as obtaining an embedding. Then, the communities

are estimated by clustering the rows of this matrix using a clustering algorithm such as

K-means or K-medians.
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For multilayer networks with shared community structure, the general procedure is sim-

ilar, only now the requirement is to use all of the networks to obtain individual vertex

representations in a low-dimensional space. For the multilayer stochastic blockmodel, a

typical approach is to simply consider a few leading eigenvectors of the average adjacency

matrix Ā = 1
L

∑︁
lA

(l) (Tang et al., 2009; Han et al., 2015). However, as discussed in e.g.

Paul and Chen (2020); Lei and Lin (2022), this procedure is only guaranteed to work when

there is certain level of homogeneity in the block connectivity matrices, and it can fail if

the B(l) matrices are different. Lei and Lin (2022) proposed to rectify this by considering

a bias-corrected version of the sum of the squared adjacency matrices. Alternatively, one

can look at an embedding obtained by aggregating the projections onto the principal sub-

spaces of each graph (Paul and Chen, 2020; Arroyo et al., 2021). In these situations, the

population probability matrices {P(l)} share a common singular subspace, and running the

relevant algorithm on those reveals the community memberships. Unfortunately, this is not

the case in the setting considered herein, but with some modification, a certain matrix can

be shown to have a left singular subspace that reveals the community memberships.

Our proposal to find an embedding is based on several observations concerning the joint

spectral geometry of the matrices {P(l)}, some of which have been considered before in the

single-network literature (Qin and Rohe, 2013; Lyzinski et al., 2014; Lei and Rinaldo, 2015;

Jin, 2015; Su et al., 2020).

• Observation 1: The rows of the Kl scaled eigenvectors of P(l) are supported on at

most K different rays in RKl , with each ray corresponding to a distinct community,

and magnitude of each row determined by the magnitude of its corresponding degree-

correction parameter.

Suppose that each P(l) has eigendecomposition U(l)Λ(l)(U(l))⊤, where U(l) is an n × Kl

orthonormal matrix and Λ(l) is the matrix of eigenvalues of P(l). Define

˜︁X(l) : = U(l)|Λ(l)|1/2, (6.2)

where | · | is the entrywise absolute value. It can be shown (see the proof of Proposition 9

below) that ˜︁X(l) = Θ(l)ZM(l), where M(l) ∈ RK×Kl hasK ′
l unique rows, withKl ≤ K ′

l ≤ K.
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Figure 6.1: Pictorial representation of Algorithm 8.

Explicitly, this observation implies that that each row i of ˜︁X(l) satisfies

˜︁X(l)
i· = θ

(l)
i M

(l)
z(i)·. (6.3)

• Observation 2: Projecting each row of ˜︁X(l) to the sphere results in a matrix of at

most K unique rows, with each row corresponding to community membership.

Define Y(l) via

Y
(l)
i· =

˜︁X(l)
i·

∥˜︁X(l)
i· ∥

.

By (6.3), it holds that Y
(l)
i· =

M
(l)
z(i)·

∥M(l)
z(i)·∥

. In particular, there are only K ′
l ≤ K unique rows of

Y(l), with each row corresponding to community membership.

• Observation 3: The left singular subspace of Y = [Y(1),Y(2), · · · ,Y(L)] ∈ Rn×
∑︁

lKl

reveals the community memberships.

Suppose that Y has singular value decomposition given by Y = UΣV⊤. It can be shown (see

Proposition 9) that under the condition of Theorem 15, rank(Y) = ˜︁K ≤ K and U ∈ Rn× ˜︁K
160



Joshua Agterberg

satisfies

U = ZM,

where M ∈ RK× ˜︁K is some matrix without repeated rows. Explicitly, this says that there are

only K unique rows of U, with each row i of U corresponding to community membership

of vertex i. Moreover, since U is obtained via the singular value decomposition of Y, it

contains information from all the networks. Clustering the rows of the matrix U therefore

reveals the community memberships.

The observations presented above lead to a joint spectral clustering algorithm applied to

the sample adjacency matrices, which is summarized in Algorithm 8 and a pictorial repre-

sentation is shown in Fig. 6.1. Without the row-normalization step, one obtains the scaled

multiple adjacency spectral embedding (MASE) algorithm of Arroyo et al. (2021), who

consider the COSIE (COmmon Subspace Independent Edge) model where each “popula-

tion” network shares a common invariant subspace (which includes the multilayer stochastic

blockmodel as a special case). Due to the different degree correction parameters, the mul-

tilayer DCSBM model is not a particular instance of the COSIE model, but our algorithm

can be viewed as a normalized version of the MASE algorithm, so we dub it DC-MASE,

or degree-corrected multiple adjacency spectral embedding. Introducing this normalization

step is crucial in the presence of heterogeneous degree correction parameters and makes this

methodology applicable to a much more flexible model. The following proposition formalizes

the three arguments to construct the algorithm. The proof of this result can be found in

Appendix F.1.

Proposition 9. Under the conditions of Theorem 15, Algorithm 8 applied to the collection

of matrices P(1), . . . , P(L) recovers the community memberships exactly.

Variations of Algorithm 8 can be obtained by changing the initial embedding, row-

normalization, or clustering procedures, for which we conjecture that similar results to

Proposition 9 may hold, but we do not undertake a complete analysis of these different

choices in the present work. In particular, here we consider the adjacency spectral em-

bedding that uses the scaled eigenvectors in Eq. (6.2) due to their interpretation as the
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Algorithm 8 Degree-corrected multiple adjacency spectral embedding (DC-MASE)

Require: Collection of adjacency matrices A(1), . . . ,A(L); individual ranks K1, . . . ,KL,
joint rank ˜︁K, number of communities K.

1. For each graph l ∈ [L],

(a) Let ˆ︁X(l) ∈ Rn×Kl be defined ˆ︁X(l) := ˆ︁U(l)|ˆ︁Λ(l)|1/2, where ˆ︁U(l) is the matrix
containing the Kl eigenvectors associated to the Kl largest eigenvalues (in
magnitude) of A(l) and ˆ︁Λ(l) are the corresponding eigenvalues;

(b) let ˆ︁Y(l) ∈ Rn×Kl be the matrix containing the rows of ˆ︁X(l) projected to the
sphere, defined as

ˆ︁Y(l)
i· =

ˆ︁X(l)
i·

∥ˆ︁X(l)
i· ∥

2. Form the matrix ˆ︁Y = [ ˆ︁Y(1), · · · ˆ︁Y(L)] by concatenating the row-scaled eigenvector
matrices.

3. Let ˆ︁U ∈ Rn× ˜︁K be the matrix containing the ˜︁K leading left singular values of ˆ︁Y.

4. Assign community memberships as the clusters of the rows of ˆ︁U into K groups via
K-means.

return Community memberships.

estimated latent positions of a (generalized) random dot product graph (RDPG) (Sussman

et al., 2012; Rubin-Delanchy et al., 2022). Other variations can be obtained by changing

the embedding, for example, to unscaled eigenvectors or using the Laplacian matrix; the

normalization procedure, for example, by using SCORE (Jin, 2015); or by changing the

clustering procedure to K-medians (Lei and Rinaldo, 2015) or Gaussian mixture modeling

(Athreya et al., 2016).

6.2.2 Estimating the Number of Communities

Choosing the number of communities in the multilayer DCSBM via DC-MASE is an im-

portant yet challenging problem, as one is required to estimate the individual and joint

embedding dimensions for each adjacency matrix, as well as the total number of communi-

ties in the joint model. Throughout this paper, we assume that these numbers are known

or can be estimated appropriately, but we discuss here some approaches for choosing these

parameters in practice.

The first step of Algorithm 8 requires the selection of Kl, which corresponds to the rank
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of the matrix P(l) = E[A(l)], and hence this corresponds to a rank estimation problem. A

common practical approach is to look for an elbow in the scree plot of the eigenvalues of

the adjacency matrix (Zhu and Ghodsi, 2006). Similarly, to estimate ˜︁K, one can look for

elbows in the scree plot of the singular values obtained from the concatenated matrix ˆ︁Y, as

this matrix concentrates around a population matrix that has rank exactly equal to ˜︁K. In

simulations, we have observed that overestimating these parameters typically does not have

a significant effect on the performance of the clustering method.

The choice of K is more important, as it controls the number of communities in the

joint model. Several existing methods assume that the matrix B(l) has full rank, in which

case the value of Kl corresponds to the number of communities in the degree-corrected SBM

for each network l ∈ [L]. A number of methods exist for estimating the communities in

a single-layer DCSBM (Wang and Bickel, 2017; Ma et al., 2021; Le and Levina, 2022; Li

et al., 2020b; Han et al., 2020), including recent work by Jin et al. (2022), who achieves the

optimal phase transition under this assumption. Alternatively, one can use an appropriate

criterion for choosing the number of clusters via K-means.

6.3 Main Results

Having described our algorithm in detail, we are now prepared to discuss the associated

community recovery guarantees. In order to do so, we first must state some assumptions on

the regularity of each network. For simplicity of analysis and to facilitate interpretation, we

assume that B
(l)
rr = 1 for all r ∈ [K], l ∈ [L], and that each B(l) is rank K, but our main

results continue to hold as long as the K-th smallest singular value of Y grows sufficiently

quickly (see the supplementary materials for the details).

Assumption 6.1 (Regularity Conditions). Let C(r) denote the indices associated to com-

munity r; i.e., the set of i such that z(i) = r. It holds that |C(r)| ≍ |C(s)| for r ̸= s and

K∥θ(l)C(r)∥
2 ≍ ∥θ(l)∥2 for all r ∈ [K]. In addition, each matrix B(l) is rank K with unit

diagonals; let λ(l)t denote its ordered eigenvalues. Then |λ(l)K | ≥ λ
(l)
min for some λ(l)min ∈ (0, 1)

and ∥B(l)∥ = λ
(l)
1 ≍ 1.

The first part of Assumption 6.1 essentially requires that the communities and degree
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corrections within each community are balanced, and it is commonly imposed in the analysis

of the DCSBM Jin et al. (2022); Su et al. (2020), but it can be relaxed by keeping track

of these constants. We also assume for simplicity that ∥B(l)∥ ≤ C, which is not strictly

required but facilitates analysis.

We have introduced the parameter λ(l)min, which can be understood as a proxy for the

community separation. For example, consider the matrix B(l) =

⎛⎜⎝ 1 1− η

1− η 1

⎞⎟⎠ . Then it

holds that λ(l)min = η. As η → 0, the communities become more similar. We also assume for

simplicity that λ(l)min ∈ (0, 1); when this is not the case, the communities are well-separated,

so the problem is qualitatively easier. Therefore, the assumption that λ(l)min ∈ (0, 1) restricts

our analysis to the models for which community detection is more difficult. Also, as seen in

the example just above, when B(l) is positive semidefinite, we necessarily have λ(l)min ∈ (0, 1).

Next we introduce some assumptions on the individual network-level signal strengths

and degree homogeneity. Let θ(l)min := miniΘ
(l)
ii , and let θ(l)max be defined similarly. Define

also the following average minimum eigenvalue parameter:

λ̄ : =
1

L

L∑︂
l=1

λ
(l)
min ∈ (0, 1).

The following is our main technical assumption on the individual network signal strengths.

Assumption 6.2 (Network-Level Signal Strengths). There exist constants C and c (with

C depending on the community sizes) such that each network l satisfies

C

(︃
θ
(l)
max

θ
(l)
min

)︃
K8θ

(l)
max∥θ(l)∥1 log(n)
(λ

(l)
min)

2∥θ(l)∥4
≤ λ̄; (Signal Strength)

θ
(l)
min

θ
(l)
max

≥
√︃

log(n)

n
(Degree Heterogeneity)

θ
(l)
min∥θ

(l)∥1 ≥ c log(n). (Logarithmic Degree Growth).

To build intuition we consider several examples.

Example 6.1 (Degree-Correction Heterogeneity). We consider a setting with λmin ≍ 1,

K ≍ 1 and we suppose that θ(l)i = a, for 1 ≤ i ≤ γn and θ(l)i = b > a for γn+ 1 ≤ i ≤ n. It
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is easy to show that Assumption 6.2 holds if b2(γa+(1−γ)b)
a(γa2+(1−γ)b2)2 ≲ n

log(n)and a/b ≳
√︂

log(n)
n . For

example, if γn = 1 (an outlier model) and b≫ a, the first condition reduces to ab ≳ log(n)/n.

If b = 1, a =
√︁

log(n)/n satisfies the degree heterogeneity assumption.

Example 6.2 (Close Communities with Homogeneous Degree Corrections). We consider a

setting with all θ(l)i ≍ √
ρn, K ≍ 1, and λ(l)min ≍ λmin for all l. Then we require λ3min ≳ log(n)

nρn
.

If only o(L) networks have λ(l)min ≍ λmin, and all others have λ(l)min ≍ 1, then we have the

weaker condition λ2min ≳ log(n)
nρn

. Then so long as the majority of networks have strong signal,

we can tolerate even weaker signal in the worst-behaved layers.

Assumption 6.2 is markedly similar to the main technical assumptions in Jin et al. (2021)

for a single network. When L = 1, our condition in Assumption 6.2 is only slightly stronger

than that of Jin et al. (2021) in terms of λ̄ and slightly weaker in terms of θ
(l)
max

θ
(l)
min

, though we

include a more detailed comparison in Section 6.3.2. To understand the intuition behind

the signal-strength condition in terms of λ̄ in Assumption 6.2, recall that the second step of

DC-MASE requires taking the left singular vectors of the matrix Y. When λ̄ is small, the

average community separation is small, and hence the rays associated to each (unscaled)

embedding ˜︁X(l) (see (6.3)) will be nearly colinear. Consequently, in this regime, the K

unique rows of Y can be quite close, so Y is nearly rank degenerate, and hence the second

SVD step will not be as stable. Therefore, in order for the SVD step to succeed, we will

require sufficient separation of the communities, which is why Assumption 6.2 concerns λ̄.

This phenomenon will also manifest in our main results in the following subsection.

6.3.1 Misclustering Error Rate and Perfect Clustering for Multilayer

Networks

With these assumptions in hand, we are now prepared to state our main results. For technical

reasons we use (1+ε)K-means to obtain our estimate. Let ˆ︁z denote the estimated clustering

by applying (1 + ε) K-means to DC-MASE; i.e. ˆ︁z(i) = r if node i is estimated to belong to

community r. Let z denote the true clustering. We define

ℓ(ˆ︁z, z) : = inf
Permutations P

1

n

n∑︂
i=1

I{ˆ︁z(i) ̸= P(z(i))}.
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In other words ℓ(ˆ︁z, z) is the misclustering error up to label permutations. The following

theorem is our main technical result, demonstrating an upper bound on the misclustering

error.

Theorem 16. Suppose that Assumption 6.1 and Assumption 6.2 are satisfied, and suppose

that L ≲ n5. Define

err(i)ave : =
1

L

∑︂
l

∥θ(l)∥33
θ
(l)
i ∥θ(l)∥4λ(l)min

; (6.4)

err(i)max : = max
l

θ
(l)
max

θ
(l)
i ∥θ(l)∥2(λ(l)min)

1/2
. (6.5)

Then there exists a sufficiently small constant c depending on the implicit constants in the

assumptions such that the expected misclustering error is

Eℓ(ˆ︁z, z) ≤ 2K

n

n∑︂
i=1

exp

(︄
− cLmin

{︃
λ̄
2

K4err
(i)
ave

,
λ̄

K2err
(i)
max

}︃)︄
+O(n−10).

The assumption that L ≲ n5 is primarily for technical convenience; this is made so that

we can take a union bound over all L networks. If L is larger but still polynomial in n, the

result can still hold at the cost of increasing all of the implicit constants in the assumptions.

However, once L is sufficiently large relative to n, the exponent can be made to be smaller

than e−cn for some constant c, and hence by Markov’s inequality one obtains that P(ℓ(ˆ︁z, z) ≥
1
n) ≤ ne−cn +O(n−9) = O(n−9), which shows that all vertices are recovered correctly with

high probability. Therefore, while our theory only covers L growing polynomially with n, for

all practical purposes this assumption is irrelevant, as perfect clustering will be guaranteed

once L is larger than some polynomial of n.

Theorem 16 makes precise the sense in which DC-MASE aggregates information across

all of the networks. In the bound there are two factors: one is the worst-case error for each

network err
(i)
max, and one is the average-case error err

(i)
ave. In order to further consider the

rate of improvement relative to L, we also consider the following application in the regime

that the signal strengths are comparable.

Corollary 7 (Network Homogeneity). Instate the conditions of Theorem 16, and suppose
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that λ(l)min = λmin and θ
(l)
i = θi for all l. Then there exists a sufficiently small constant c

depending on the implicit constants in the assumptions such that

Eℓ(ˆ︁z, z) ≤ 2K

n

n∑︂
i=1

exp

(︃
− cLθimin

{︃
∥θ∥4λ3min

K4∥θ∥33
,
∥θ∥2λ3/2min

K2θmax

}︃)︃
+O(n−10).

When L = 1, Corollary 7 nearly matches the rate obtained in Theorem 1 of Jin et al.

(2021) up to factors of K and λmin. However, Corollary 7 further elucidates the sense in

which DC-MASE aggregates information from multiple networks: the error rate includes a

gain of L but penalties of λmin (relative to which term is the minimizer in the rate). In

particular, if networks have extreme degree heterogeneity but well-separated communities,

then the error rate for DC-MASE highly improves upon the corresponding rate for single

networks.

To further ease interpretation, we consider the setting that θ(l)max ≤ Cθ
(l)
min with with

θ
(l)
max ≍ √

ρn for each l as in Example 6.2. In this setting the term nρn can be interpreted

as the order of the average expected degree of each vertex, and hence larger ρn corresponds

to denser networks. We then have the following corollary.

Corollary 8 (Homogeneous Degrees). Suppose that the conditions of Theorem 16 hold and

that θ(l)max ≤ Cθ
(l)
min for all l, and suppose that θ(l)max ≍ √

ρn for some ρn. Suppose also that

λ
(l)
min ≍ λmin for all l. Then

Eℓ(ˆ︁z, z) ≤ 2K exp

(︃
− cL

nρnλ
3
min

K4

)︃
+O(n−10).

In the regime considered in Corollary 7, Jin et al. (2021) demonstrated that the SCORE

clustering procedure with L = 1 yields the error rate of order exp(−cλ2minnρn) + o(n−3),

where we have ignored factors of K. In contrast, when L is large, we see that Corollary 8

demonstrates an error rate of order exp(−cLλ3minnρn) +O(n−10). Therefore, we see that in

this regime DC-MASE benefits whenever λmin ≫ 1
L , even if each network is very sparse.

Our final technical result shows that under sufficient global signal strength DC-MASE

yields perfect clustering with high probability. Define the following signal-to-noise ratio
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parameter vector

SNRl : =

(︃
θ
(l)
min

θ
(l)
max

)︃1/2

(λ
(l)
min)

1/2∥θ(l)∥. (6.6)

When θmax ≍ θmin ≍ √
ρn, it holds that SNRl ≍

√︂
λ
(l)
minnρn. Our result will be stated in

terms of a condition on SNRl.

Theorem 17 (Perfect Clustering). Suppose that the conditions of Theorem 16 hold, and that

minl SNR
2
l ≥ CK8 log(n)

Lλ̄
2 ,where C is some sufficiently large constant. Then running K-means

on the output of DC-MASE yields perfect recovery with probability at least 1−O(n−9).

Theorem 17 demonstrates that if the layer-wise SNR is sufficiently strong relative to λ̄,

we achieve perfect clustering. We note that Assumption 6.2 already implies that SNR2
l ≳(︃

θ
(l)
max∥θ(l)∥1
∥θ(l)∥2

)︃
K8 log(n)

λ̄λ
(l)
min

as well as imposing a lower bound on λ̄. If (Lλ̄)−1 ≲ θ
(l)
max∥θ(l)∥1
∥θ(l)∥2λ(l)min

for all

l, then this condition is already met. Therefore, since the term θ
(l)
max∥θ(l)∥1
∥θ(l)∥2λ(l)min

is always larger

than one (by assumption), the condition in Theorem 17 is only more stringent whenever

λ̄ ≪ 1
L , which can only happen in the moderate L regime, since Assumption 6.2 already

imposes a lower bound on λ̄. At an intuitive level, this condition further reflects the idea

that the second SVD step may not perform as well when λ̄ is small.

6.3.2 Spherical Clustering for Single Networks

In the previous subsection we have compared our results to the best-known expected mis-

clustering error for spectral clustering without refinement for degree-corrected stochastic

blockmodels; i.e., the result in Jin et al. (2021). However, DC-MASE uses the spherical

normalization, and the result in Jin et al. (2021) uses the SCORE normalization. While Jin

et al. (2021) demonstrate that the SCORE procedure exhibits an exponential misclustering

rate, to the best of our knowledge there is no similarly strong error rate for vanilla spectral

clustering with the spherical normalization, though there are polynomial upper bounds (Lei

and Rinaldo, 2015; Qin and Rohe, 2013), as well as some perfect clustering results (Lyzinski

et al., 2014; Su et al., 2020). Conveniently, as a byproduct of our analysis we characterize

the rows of ˆ︁Y(l), and we are able to apply the same proof strategy for Theorem 16 to analyze
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the result of running K-means on these rows.

The following theorem demonstrates an exponential error rate for single network clus-

tering. For simplicity, we suppress the dependence of the parameters on the index l.

Theorem 18 (Single Network Misclustering Rate: Spherical Normalization). Assume that

Assumption 6.1 and Assumption 6.2 hold (with λ̄ = λmin). Then the output of (1 + ε)

K-means on the rows of ˆ︁Y satisfies

Eℓ(ˆ︁z, z) ≤ 2K

n

n∑︂
i=1

exp

(︃
− cθimin

{︃
∥θ∥4λ2min

K3∥θ∥33
,
∥θ∥2λmin

K3/2θmax

}︃)︃
+O(n−10).

This rate exactly matches the rate obtained in Jin et al. (2021). However, the technical

condition requires a stronger condition on λmin, but a weaker condition on the degree het-

erogeneity (relative to θmax/θmin). The main assumption behind Theorem 2.1 of Jin et al.

(2021) requires that

K8θmax∥θ∥1 log(n)
∥θ∥4λ2min

(︃
θmax

θmin

)︃2

≲ 1.

In contrast, we require that

K8θmax∥θ∥1 log(n)
∥θ∥4λ3min

θmax

θmin
≲ 1.

Therefore, our condition is weaker whenever 1
λmin

≲ θmax
θmin

. This regime corresponds to high

degree heterogeneity relative to the community separation. For example, if the network is

sparse (e.g. ∥θ∥ ≍
√︁
log(n)), then it must be that λmin ≍ 1 (or else the assumption fails).

It is not clear if this assumption (either ours or that of Jin et al. (2021)) is necessary or an

artifact of our proof technique, and it would be interesting to try to weaken them.

6.4 Simulation Results

We evaluate the performance of different methods for community detection in networks

generated from the multilayer DCSBM. The experiments focus on the effect of the num-

ber of graphs L for recovering the communities under different parameter setups. An im-
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plementation of the code is available at https://github.com/jesusdaniel/dcmase. The

performance measure reported in the experiments is the adjusted rand index (ARI) (Hubert

and Arabie, 1985), which is a number that indicates the similarity between the estimated

community labels and the true ones, and it is equal to 1 if the two partitions are the same

(up to label permutations).

The benchmarks considered include spectral-based, optimization-based and likelihood-

based clustering algorithms for multilayer networks. For spectral methods, the list comprises

clustering on the embeddings defined as (i) the leading eigenvectors of the aggregated sum

of the adjacency matrices
∑︁

lA
(l) (Han et al., 2015; Bhattacharyya and Chatterjee, 2020),

(ii) the leading eigenvectors of the bias-adjusted sum-of-squared (SoS) adjacency matrices of

Lei and Lin (2022), and (iii) an estimate of the common invariant subspace of the adjacency

matrices obtained via multiple adjacency spectral embedding (MASE) from Arroyo et al.

(2021). Existing methods and theoretical results for multilayer community detection with

the aforementioned embedding procedures typically considerK-means clustering on the rows

of these embeddings to obtain communities, but this clustering scheme is not expected to

work well under high degree heterogeneity even for a single network. Thus, to isolate the

performance of the embedding from the clustering method adopted, we employed spherical

spectral clustering by normalizing the rows of the embeddings before performing K-means

clustering (Lei and Rinaldo, 2015; Bhattacharyya and Chatterjee, 2020), as we observed

better empirical performance compared to the unnormalized version. We also consider the

orthogonal linked matrix factorization (OLMF) of Paul and Chen (2020), and an optimized

Monte Carlo Markov Chain approach (Peixoto, 2014a, 2015) implemented via the graph-tool

package (Peixoto, 2014b).

All the simulated graphs are generated using the multilayer DCSBM with n = 150 ver-

tices and K = 3 equal sized communities, for which we assume that the membership matrix

Z is such that vertices in the same community have adjacent rows. We focus on studying the

effect of number of graphs L in the presence of different types of parameter heterogeneity.

For that goal, we consider scenarios in which the block connectivity matrices {B(l)} or the

degree correction parameters {Θ(l)} are the same or different across the collection of graphs.

For the block connectivity matrices, we generate these parameters as follows:
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• Same connectivity matrices: the matrices B(l), l ∈ [L] are all set to be equal and

defined as B
(l)
rr = 1, r ∈ [K], and B

(l)
rs = 0.4, r ̸= s.

• Different connectivity matrices: each matrix B(l), l ∈ [L] is generated independently

with its entries equal to B
(l)
rr = p(l) ∼ Unif(0, 1), for r ∈ [K], and B

(l)
rs = q(l) ∼

Unif(0, 1) for r ̸= s.

In terms of the degree correction parameters, we consider scenarios as follows:

• Same degree corrections: the diagonal entries of the matrices satisfy Θ
(l)
ii = θi and are

generated from a shifted exponential distribution such that θ1, . . . , θn
i.i.d.∼ Exp(1)+0.2.

• Different degree corrections: the parameters are generated in a similar fashion to

the previous scenario, but now each matrix has its own parameters θ(l)1 , . . . , θ
(l)
n

i.i.d.∼

Exp(1) + 0.2..

• Alternating degrees: the vertices within each community are split into two equal sized

groups, and each group alternates between having low and high degrees on each net-

work, that is, θ(l)i = 0.8 if either l and i are odd or l and i are even numbers, and

θ
(l)
i = 0.15 otherwise.

The expected adjacency matrices are then defined as P(l) = α(l)Θ(l)ZB(l)ZΘ(l) similar to

Eq. (6.1), and the constant α(l) is introduced to keep the average expected degree equal

to 10. For each parameter setup, the experiments are repeated 100 times, and the average

results are reported.

The results are shown in Figure 6.2. As expected, the accuracy of the methods generally

improves with more graphs, and although there is no specific method that dominates in

all the scenarios considered, we observe that DC-MASE is the only one that consistently

improves its performance with L until perfect clustering is achieved. When the degree

correction parameters are the same (left column), most of the methods perform accurately,

especially in the setting with the same connectivity matrices. In particular, spectral methods

perform well due to the fact that the singular subspace is shared in the expected adjacency

matrices, and the population version of the matrix in which the embedding is performed cap-

tures the community structure after further correcting for degree heterogeneity via spherical
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Figure 6.2: Community detection accuracy of different methods (measured via adjusted
Rand index (ARI), averaged over 100 replications) as a function of the number of graphs.
See Section 6.4 for a discussion of the setups.

normalization. In the scenario with different but random degree corrections (middle col-

umn) several methods are still able to perform accurately even when the population matrix

does not have the correct clustering structure, possibly due to an averaging effect of the

degree-correction parameters generated independently at random for each graph1. Aggre-

gation methods, such as the sum of the adjacency matrices, perform very well when the

global structure of the graphs is the same, but are not able to identify the correct struc-

ture in the presence of severe parameter heterogeneity. Notably, in the alternating degrees

scenario (right column), DC-MASE is the only method that performs accurately, whereas

other methods struggle to identify the model communities and instead cluster the vertices

based on degree similarity.

1Since all of the degree-corrections are i.i.d., there is still a notion of an “average matrix” with the correct
clustering structure. E.g., denoting EθP

(l) as the expectation of the matrix P(l) by integrating with respect
to the independence of the θi’s, we see that Eθ(P

(l))ij = c(ZB(l)Z⊤)ij for i ̸= j.
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6.5 Analysis of US Airport Network

We evaluate the performance of the method in a time series of networks encoding the number

of flights between airports in the United States within a given month for the period of

January 2016 to September 2021. A multilayer degree-corrected SBM allows us to track

the flight dynamics both at the airport and community levels to characterize the effect of

the Covid 19 pandemic in flight connectivity. The data are publicly available and were

downloaded from the US Bureau of Transportation Statistics (Bureau of Transportation

Statistics, 2022).

The vertices of the networks correspond to some of the airports located within the 48

contiguous states in the US. For each network, the weighted edges contain the total number

of flights of class F (scheduled passenger/cargo service) between each pair of airports within

a given month. We restricted the analysis to the vertices in the intersection of the largest

connected components of all the networks, resulting in a total of n = 343 airports. The

period of the study contains 69 months (number of graphs).

To identify communities of airports with similar connectivity patterns in the data, we

apply DC-MASE to the collection of adjacency matrices. The number of communities was

selected to be K = 4 to facilitate interpretation and based on the scree plots of the in-

dividual network embeddings and the concatenated matrix, as described in Section 6.2.2.

Figure 6.3(a) shows the estimated community memberships of the airports. Three of the

communities identified (communities 2, 3 and 4) appear to be related to the geographical

area, (west, east and southwest, respectively), whereas community 1 contains most of the

hub airports in the east side of the country, as well as other smaller airports that are mostly

connected to these hubs.

To characterize the dynamics in community and airport connectivity, we estimate the

block connectivity matrices and degree correction parameters of the multilayer DCSBM. As

the edges count the total number of flights between pairs of locations, the adjacency matrices

are weighted, and thus, the parameters of the model describe the expected adjacency matrix

E[A(l)] = Θ(l)ZB(l)Z⊤Θ(l). For ease of interpretation, we adopt a similar identifiability

condition as in Karrer and Newman (2011) by constraining the sum of the degree correction
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parameters within each community to be equal to the size of the community, that is, if

vertex i is in community r then

∑︂
i∈C(r)

θ
(l)
i = |C(r)|, for r ∈ [K], l ∈ [L].

With this parameterization, we have the following relations. Let d(l)i =
∑︁n

j=1 E[A
(l)
ij ] be the

expected degree of node i in network l. Then, for every i ∈ [n], r, s ∈ [K] and l ∈ [L] we

have

θ
(l)
i =

d
(l)
i

1
|C(r)|

∑︁
j∈C(r) d

(l)
j

, B(l)
rs =

1

|C(r)| |C(s)|
∑︂

i∈C(r),j∈C(s)

E[A(l)
ij ]. (6.7)

Under this parameterization, the degree correction parameters are on average equal to 1,

and large values can be interpreted as higher individual connectivity of the corresponding

vertex relative to other vertices in the community. Meanwhile, the block connectivity simply

calculates the average number of edges within and between each pair of communities. When

comparing the values of these parameters across time, this parameterization allows us to

split global and local dynamics into the block connectivity matrices and degree corrections,

respectively. We obtain plug-in estimates of the model parameters by using A(l) rather than

E[A(l)], and by using the estimated community memberships, which under certain edge

distributions (e.g. Poisson) coincides with the maximum profile likelihood estimates given

the fitted community memberships.

The multilayer DCSBM estimated parameters shown in Figure 6.3(b) track the changes

in airport connectivity at the community level, which are mostly related to regional dynam-

ics. By contrast, Figure 6.4(a) shows the individual airport popularity relative to airports

within its community over time. While the overall number of flights within and between

communities decreased after the pandemic started, the impact on the airport traffic was

not homogeneous, and this is captured by the changes in degree correction parameters.

Figure 6.4(b) explores these changes in more detail for community 1, which includes some

of the largest hubs, such as ATL, DFW and ORD. These became relatively more promi-

nent with respect to other airports in their community at the start of the pandemic in the

US. Meanwhile, the airports in the New York City area (EWR and LGA) were relatively
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more negatively affected, possibly due to the pandemic dynamics and related closures. This

analysis illustrates the flexibility of the multilayer DCSBM model for tracking local and

community-level dynamics with changes over time.

Community 1 2 3 4

(a) Map of US airports colored according to the
communities discovered by DC-MASE.

(b) Time series plot of the estimated block connec-
tivity matrices in the multilayer DCSBM for the US
airports data, with the communities discovered by
DC-MASE. Each cell represents an entry of these
matrices over time. The vertical line indicates Jan-
uary 1st, 2020.

(a) Degree correction parameter estimates in
the US airport data. Each line corresponds
to the parameter for some specific airport
over time; the collection is divided according
to the communities discovered by the algo-
rithm. The variability in the parameter es-
timates suggests the need for a DCSBM, al-
lowing different degree correction parameters
at each time point.

(b) Degree correction parameter estimates for
community 1, with some major airports high-
lighted. While some hub airports became rel-
atively more prominent within the community
after the pandemic started, the NYC airports
(EWR and LGA) were relatively more nega-
tively impacted.

We compared the performance of DC-MASE with the other spectral clustering algorithms

considered in Section 6.4. In the absence of ground truth communities, we measure the

performance in terms of out-of-sample mean squared error (MSE) for a given graph l and
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some number of communities K, defined as

MSE(K, l) =
1

n2
∥A(l) − ˆ︁P(l)ˆ︁Z(−l,K)

∥2F .

Here, ˆ︁Z(−l,K) indicates the estimated community memberships obtained from a particular

method fitted on the set of of graphs indexed by [L] \ {l} with K communities. Given ˆ︁Z,

the value of the expected adjacency matrix is estimated as ˆ︁P(l)ˆ︁Z = ˆ︁Θ(l)ˆ︁Z ˆ︁Zˆ︁B(l)ˆ︁Z ˆ︁Z⊤ ˆ︁Θ(l)ˆ︁Z , whereˆ︁Θ(l)ˆ︁Z and ˆ︁B(l)ˆ︁Z are the plug-in estimates defined via Eq. (6.7) using the communities defined

by ˆ︁Z. As the expected value of the average MSE is minimized by the expected adjacency

matrices calculated with the correct communities, small values of this quantity are a proxy

for the quality of the community estimates.

After calculating the MSE for all the graphs in the data and for different values of K, we

performed a paired comparison via the MSE difference between the results for a given method

and DC-MASE for each value of K and l. Figure 6.5 shows boxplots of these differences

across all values of l ∈ [L] and as a function of the number of communities. Notably, the

MSE differences are positive for almost all graphs in the data and all values of K, indicating

that the communities obtained by DC-MASE generally have smaller generalization error

than the ones obtained by the other spectral methods considered.

6.6 Discussion

In this work we have considered the multilayer degree-corrected stochastic blockmodel, es-

tablished its identifiability, and proposed a joint spectral clustering algorithm based on clus-

tering the rows of a matrix that appropriately aggregates information about the communities

in the model. The proposed method is simple and efficient, while the most expensive com-

putations (required to estimate the leading eigenvalues and eigenvectors of each network)

are able to be performed in parallel. This allows the methodology to scale to large datasets,

both in terms of network size and in the number of graphs or layers. Our main results

demonstrate that the method can effectively leverage the information across the graphs to

obtain an improvement in community estimation, particularly when the number of networks
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Figure 6.5: Paired out-of-sample mean squared error (MSE) difference for the Frobenius
error of the estimated expected adjacency matrices obtained by each method and DC-MASE.
Positive values indicate that the MSE of the respective method is larger than the MSE of
DC-MASE.

L is large, even in the presence of significant vertex and layer heterogeneity. In our sim-

ulations, we observe that clustering with DC-MASE performs consistently well in various

scenarios, and it is competitive with other state-of-the-art methods for multilayer commu-

nity detection, particularly in situations with extreme degree heterogeneity. In our flight

data studies, we see that the multilayer DCSBM is a flexible but succinct model, allowing

us to identify clusters, track degree corrections, and observe block connectivity over time.

While the multilayer DCSBM is a flexible model, our main results require sufficient

community separation for the proposed spectral method to succeed. This is partly due to

the nature of the method, which aggregates the data after performing an eigendecomposition

of each graph individually, and this requires enough signal on each graph to succeed. It

has been argued that methods that perform aggregation in earlier stages can outperform

late fusion techniques (Paul and Chen, 2020; Jing et al., 2021; Lei et al., 2020), and often

perform better even under very sparse regimes (Lei and Lin, 2022). However, the model

considered here requires one to appropriately handle the parameter heterogeneity before

aggregation, and we observed in simulations that other spectral methods may fail to achieve
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this goal. With respect to the theory, it may be possible to relax the community separation

assumption using singular gap-free perturbation bounds as in, e.g., Löffler et al. (2021); Han

et al. (2021); Zhang and Zhou (2022), but this is beyond the scope of this work as these

other works rely on the assumption that the noise is Gaussian. Finally, the recent work

Ke and Wang (2022) demonstrates that the eigenvectors of the regularized Laplacian can

yield optimal mixed-membership estimation under extreme degree heterogeneity; it would be

interesting to study the multilayer DCSBM in this regime as well as extend the methodology

to mixed-membership models.

6.7 Proof Ingredients and Proof of Theorem 16

This section details the main ingredients required for the proof of Theorem 16. Our proof

requires three key steps, each proved sequentially.

In what follows we let ˆ︁Y(l) be defined in Algorithm 8, and we let Y(l) denote the corre-

sponding matrix associated to the population matrix P(l). We also recall ˆ︁Y = [ ˆ︁Y(1), . . . , ˆ︁Y(L)],

and we let Y = [Y(1), . . . ,Y(L)]. Finally, we let U and Σ denote the leading K left singular

vectors and singular values of Y, and we let ˆ︁U and ˆ︁Σ be defined similarly. For simplicity of

notation, we assume that ˆ︁Z and ˆ︁z satisfy

∥ˆ︁Z− Z∥F = min
P

∥ˆ︁Z− ZP∥F ,

n∑︂
i=1

I{ˆ︁z(i) ̸= z(i)} = min
P

n∑︂
i=1

I{ˆ︁z(i) ̸= P(z(i))},

where the minimum is taking among all permutations P and permutation matrices P.

Step 1: First Stage Asymptotic Expansion

In Theorem 19 we show that the initial estimates ˆ︁Y(l) satisfy

ˆ︁Y(l)W
(l)
∗ −Y(l) = L(A(l) −P(l)) +R(l)

Stage I,

where L(·) is a linear function and R(l)
Stage I is a residual with small ℓ2,∞ error. Here W

(l)
∗ is
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the K ×K orthogonal matrix aligning the leading K eigenvectors of A(l) and P(l). Unlike

previous results of this type (Du and Tang, 2022; Fan et al., 2022), our residual bounds

depend explicitly on the degree corrections, which is what enables us to analyze the second

stage of Algorithm 8 and obtain the exponential clustering rate in Theorem 16.

Step 2: Second Stage sinΘ Perturbation Bounds

In the second step, we prove Theorem 20, applying Theorem 19 to obtain concentration in

sinΘ distance for the empirical singular vectors ˆ︁U to the true singular vectors U that reveal

the community memberships. In particular, by virtue of our first-order expansion, since L(·)

is linear in the noise, we are able to obtain stronger concentration for sinΘ distance than if

one were to simply apply the naïve concentration using the triangle inequality, which would

not yield improvement with L.

Step 3: Second Stage Asymptotic Expansion

In our final step, we prove Theorem 21, which combines these previous results as well as

several additional concentration bounds to establish an asymptotic expansion for ˆ︁UW∗−U

of the form

ˆ︁UW∗ −U =
∑︂
l

L(A(l) −P(l))(Y(l))⊤UΣ−2 +RStage II,

where RStage II can be understood as an “overall residual term” containing all of the residuals

from all the networks, as well as the second stage of the algorithm, and W∗ is the orthogonal

matrix most closely aligning ˆ︁U and U. Here L(A(l) − P(l)) is the same linear operator as

in the first step (Theorem 19), and W∗ is an orthogonal matrix aligning ˆ︁U and U. Using

this final result, we then have all the ingredients to prove Theorem 16.

In the following subsections we formally state these results and then prove Theorem 16.

After characterizing each result we discuss how it relates to previous literature.
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6.7.1 First Stage Characterization

In the first step of the proof, we derive the following asymptotic expansion result for the

individual networks. Recall that ˆ︁X(l) and ˜︁X(l) denote the scaled eigenvectors of A(l) and

EA(l) = P(l), respectively, and we let ˆ︁U(l) and U(l) be the leading K eigenvectors of A(l) and

P(l) respectively. We let I(l)p,q denote the diagonal matrix with elements ±1, where 1 appears

p times and −1 appears q times, with p corresponding to the number of positive eigenvalues

of P(l) and q corresponding to the number of negative eigenvalues of P(l). Equivalently, p

and q count the number of positive and negative eigenvalues of B(l). We let Λ(l) denote the

nonzero eigenvalues of P(l), and ˆ︁Λ(l) denote the leading p positive and q negative eigenvalues

of A(l), arranged in decreasing order by magnitude after splitting according to positive and

negative.

The following result characterizes the rows of ˆ︁Y(l).

Theorem 19 (Asymptotic Expansion: Stage I). Suppose that Assumption 6.1 and Assump-

tion 6.2 hold. Fix a given l ∈ [L]. Let W(l)
∗ denote the orthogonal matrix satisfing

W
(l)
∗ : = argmin

W∈O(K)
∥ˆ︁U(l) −U(l)W

(l)
∗ ∥F .

Then there is an event E(l)
Stage I with P(E(l)

Stage I) ≥ 1−O(n−15) such that the following expan-

sion holds:

ˆ︁Y(l)(W
(l)
∗ )⊤ −Y(l) = L(A(l) −P(l)) +R(l)

Stage I,

where the matrix R(l)
Stage I satisfies

∥R(l)
Stage I∥2,∞ ≲

K2θ
(l)
max∥θ(l)∥1

λ
(l)
min∥θ(l)∥4

(︃
log(n)

θ
(l)
max

θ
(l)
min

+
1

λ
(l)
min

+

(︃
θ
(l)
max

θ
(l)
min

)︃1/2K5/2 log(n)

(λ
(l)
min)

1/2

)︃
,

and the matrix L(A(l) −P(l)) has rows given by

L(A(l) −P(l))i· =
1

∥˜︁X(l)
i· ∥

(︃
I−

˜︁X(l)
i· (
˜︁X(l)
i· )

⊤

∥˜︁X(l)
i· ∥2

)︃(︃(︁
A(l) −P(l)

)︁
U(l)|Λ(l)|−1/2I(l)p,q

)︃
i·
.
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Explicitly, Theorem 19 provides an entrywise expansion for the rows of ˆ︁Y(l) about their

corresponding population counterparts, up to the orthogonal transformation most closely

aligning ˆ︁U(l) and U(l).

We remark briefly how Theorem 19 is related to and generalizes several previous results

for single network analysis. In Du and Tang (2022), the authors consider the rows of ˆ︁Y
to test if Zi· = Zj· (under a mixed-membership model). To prove their main result, they

establish a similar asymptotic expansion to Theorem 19. Our asymptotic linear term is the

same as theirs, but our residual term exhibits a much finer characterization of the dependence

on degree correction parameters, as they implicitly assume that θmax ≍ θmin, whereas we

allow significant degree heterogeneity and extremely weak signals (Du and Tang (2022) also

implicitly assume that λ(l)min ≍ 1). Similarly, Fan et al. (2022) consider the asymptotic

normality of rows of the SCORE-normalized eigenvectors for testing equality of membership

in degree-corrected stochastic blockmodels. However, they also require that θmax ≍ θmin,

which again eliminates the possibility of severe degree correction. Moreover, our results also

allow K to grow and λmin to shrink to zero sufficiently slowly, provided this is compensated

for elsewhere in the signal strength, and previous results require much stronger conditions on

these parameters. Finally, a similar asymptotic expansion (with explicit degree corrections

and dependencies) was used implicitly to prove the main result in Jin et al. (2021), albeit for

the SCORE normalization (as opposed to spherical normalization). Therefore, our results

complement theirs by providing an analysis of the spherical normalization often used in

practice. We will also apply Theorem 19 in the proof of Theorem 18.

The following result will be used as an intermediate bound in the proof of Theorem 18,

demonstrating a concentration inequality for ∥ ˆ︁Y(l) −Y(l)W
(l)
∗ ∥2,∞.

Corollary 9. With probability at least 1−O(n−15), it holds that

∥ ˆ︁Y(l) −Y(l)W
(l)
∗ ∥2,∞ ≲

(︃
θ
(l)
max

θ
(l)
min

)︃1/2 K
√︁
log(n)

∥θ(l)∥(λ(l)min)
1/2

+
K2θ

(l)
max∥θ(l)∥1

λ
(l)
min∥θ(l)∥4

(︃
log(n)

θ
(l)
max

θ
(l)
min

+
1

λ
(l)
min

+

(︃
θ
(l)
max

θ
(l)
min

)︃1/2K5/2 log(n)

(λ
(l)
min)

1/2

)︃
.

The proof follows from Lemma 58 (see Appendix F.2) and Theorem 19.

181



CHAPTER 6. JOINT SPECTRAL CLUSTERING FOR MULTILAYER
DEGREE-CORRECTED STOCHASTIC BLOCKMODELS

6.7.2 Second Stage Characterization I: sinΘ Bound

With the strong upper bounds for the first stage in Theorem 19, we can apply this result to

establish sinΘ perturbation for the output of DC-MASE. In what follows we denote SNR−1

as the entrywise inverse of the vector SNR defined in Equation 6.6.

Theorem 20 (sinΘ Perturbation Bound). Suppose the conditions in Theorem 16 hold.

Define

αmax =
K2θ

(l)
max∥θ(l)∥1

λ
(l)
min∥θ(l)∥4

(︃
log(n)

θ
(l)
max

θ
(l)
min

+
1

λ
(l)
min

+

(︃
θ
(l)
max

θ
(l)
min

)︃1/2K5/2 log(n)

(λ
(l)
min)

1/2

)︃
;

i.e., αmax is the residual upper bound from Theorem 19. Then with probability at least

1−O(n−10), it holds that

∥ sinΘ(ˆ︁U,U)∥ ≲ K2
√︁
log(n)

(︁
1
L∥SNR

−1∥22
)︁1/2

√
Lλ̄

+K3 log(n)
∥SNR−1∥2∞

λ̄

+K2
√︁
log(n)

αmax∥SNR−1∥∞
λ̄

+
Kαmax

λ̄
.

In particular, under the conditions of Theorem 16 it holds that

∥ sinΘ(ˆ︁U,U)∥ ≲
1

K
.

We note that the first bound provided in Theorem 20 may actually be much stronger than

the upper bound of 1
K , which is all that is needed for the proof of Theorem 16. First, by

combining Assumption 6.2 and the definition of SNRl in Equation 6.6 it is straightforward

to check that each term is smaller than one, since we require that

C
K8θ

(l)
max∥θ(l)∥1 log(n)
∥θ(l)∥2SNR2

l

≤ λ̄,

for some large constant C. Since θ
(l)
max∥θ(l)∥1
∥θ(l)∥2 is always larger than one, we see that As-

sumption 6.2 is a stronger assumption than each term in Theorem 20 being smaller than

one.

For ease of interpretation, when all l have λ(l)min ≍ 1, and θ(l)max ≍ θ
(l)
min ≍ √

ρn and K ≍ 1,
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we have that

∥SNR−1∥∞ ≲
1

√
nρn

;

αmax ≲
log(n)

nρn
;

1

L
∥SNR−1∥22 ≲

1

nρn
.

Therefore, the sinΘ bound simplifies to

∥ sinΘ(ˆ︁U,U)∥ ≲

√︁
log(n)√
Lnρn

+
log(n)

nρn
.

This final bound shows that ˆ︁U concentrates in sinΘ distance about U as n increases by a

factor that improves with
√
L when L ≲ nρn/ log(n). For a single stochastic blockmodel

without degree corrections, the sinΘ distance between ˆ︁U and U can be upper bounded as√︂
log(n)
nρn

(Lei and Rinaldo, 2015). Therefore, Theorem 20, which utilizes the information from

all the networks and allows degree heterogeneity, already demonstrates improvement from

multiple networks by a factor of max{ 1√
L
,

√
log(n)√
nρn

} relative to the single-network setting.

6.7.3 Second Stage Characterization II: Asymptotic Expansion

In essence, we require Theorem 20 to demonstrate that the clusters are correctly identified

(see the proof of Theorem 16 in Section 6.7.4), but it falls short of providing a fine-grained

characterization for the rows of ˆ︁U, which is what is needed for the exponential error rate.

The following result demonstrates a first-order asymptotic expansion for the singular

vectors in the second stage of our algorithm. The proof is given in the Appendix.

Theorem 21 (Asymptotic Expansion: Stage II). Suppose the conditions of Theorem 16

hold. Define

W∗ : = argmin
W∈O(K)

∥ˆ︁U−UW∥F .

There is an event EStage II satisfying P
(︁
EStage II

)︁
≥ 1−O(n−10) such that on this event, we
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have the asymptotic expansion

ˆ︁UW⊤
∗ −U =

∑︂
l

L(A(l) −P(l))(Y(l))⊤UΣ−2 +RStage II,

where L(·) is the operator from Theorem 19 and the residual satisfies

∥RStage II∥2,∞ ≲
K3
√︁

log(n)

nLλ̄
∥SNR−1∥2 +

K4 log(n)

L2
√
nλ̄

2 ∥SNR−1∥22

+
K7/2 log(n)√

nλ̄
∥SNR−1∥2∞ +

αmax√
nλ̄

.

Here αmax is as Theorem 20. In particular, under the assumptions of Theorem 16, it holds

that

∥RStage II∥2,∞ ≤ 1

16
√
nmax

.

Theorem 21 establishes a first-order expansion for the rows of the difference matrixˆ︁UW⊤
∗ −U, which is the main technical tool required to establish Theorem 16. The proof of

Theorem 21 relies on both Theorem 19 and Theorem 20, but requires a number of additional

considerations to bound the residual term RStage II in ℓ2,∞ norm.

6.7.4 Proof of Theorem 16 and Theorem 17

With all of these ingredients in place, we are nearly prepared to prove Theorem 16. In the

proof we will also require several results concerning the population parameters, which we

state in the following two lemmas. The proofs can be found in Appendix F.1.

Lemma 7 (Population Properties: Stage I). Suppose Assumption 6.1 holds, and let λ(l)r

denote the eigenvalues of P(l) and let λr(B(l)) denote the eigenvalues of B(l). Then for all
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1 ≤ r ≤ K,

θ
(l)
i ≲ ∥˜︁X(l)

i· ∥ ≲ θ
(l)
i ;

∥U(l)
i· ∥ ≲

√
K

θ
(l)
i

∥θ(l)∥
;

λ(l)r ≍ ∥θ(l)∥2

K
λr(B

(l)).

Next, the following result establishes the population properties of the the second stage; in

particular demonstrating a lower bound on the smallest eigenvalue of the population matrix

YY⊤ in terms of λ̄.

Lemma 8 (Population Properties: Stage II). Suppose that Y is rank K, and let Y = UΣV⊤

be its (rank K) singular value decomposition. Then it holds that

U = ZM,

where M ∈ RK×K is some invertible matrix satisfying

∥Mr· −Ms·∥ =

√︂
n−1
r + n−1

s .

In addition, when nmin ≍ nmax, it holds that

λ2Y : = λmin

(︃∑︂
l

Y(l)(Y(l))⊤
)︃

≳
n

K
Lλ̄.

Armed with these lemmas as well as Theorems 19, 20, and 21, we are prepared to prove

Theorem 16.

Proof of Theorem 16. We follow the analysis technique developed in Jin et al. (2021) to

derive an exponential rate for the output of (1 + ε) K-means. First will use the the sinΘ

bound (Theorem 20) together with Lemma 5.3 of Lei and Rinaldo (2015) to demonstrate a

Hamming error of order strictly less than nmin
4 , so that each cluster has at a majority of its

true members. This allows us to associate each empirical cluster centroid to a true cluster

centroid. Next, we will study the empirical centroids of these clusters to show that they
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are strictly closer to their corresponding true cluster centroid than they are to each other.

Finally, we decompose the expected error into individual node-wise errors, where we apply

the asymptotic expansion in Theorem 21 to obtain the exponential error rate.

In what follows, let EsinΘ denote the event

∥ sinΘ(ˆ︁U,U)∥ ≤ β

8K
√
Cε
,

where β ∈ (0, 1) is such that nmin ≥ βnmax and Cε is a constant to be defined in the subse-

quent analysis. We note that by Theorem 20 the event EsinΘ holds with probability at least

1 − O(n−10). We also let (ˆ︁Z,ˆ︂M) denote the output of (1 + ε) K-means on the rows of ˆ︁U,

where ˆ︁Z ∈ {0, 1}n×K and ˆ︂M ∈ RK×K .

Step 1: Initial Hamming Error

First by Lemma 8 it holds that U = ZM where M has K unique rows satisfying

1
√
nmax

≤ ∥Mr· −Ms·∥ ≤
√
2

√
nmin

.

Define the matrix ˆ︁V := ˆ︁Zˆ︂M. Define Sr := {i ∈ C(r) : ∥W∗ ˆ︁Vi· − Ui·∥ ≥ δr/2}, where

δr =
1√
nr

. By Lemma 5.3 of Lei and Rinaldo (2015), it holds that

1

n

n∑︂
i=1

I{ˆ︁z(i) ̸= z(i)} ≤ 1

n

K∑︂
r=1

|Sr| ≤
K∑︂
r=1

|Sr|
nr

=
K∑︂
r=1

|Sr|δ2r

≤ Cε∥ˆ︁UW∗ −U∥2F ≤ Cε∥ sinΘ(ˆ︁U,U)∥2F ≤ CεK∥ sinΘ(ˆ︁U,U)∥2.

Therefore, on the event EsinΘ, it holds that

n∑︂
i=1

I{ˆ︁z(i) ̸= z(i)} ≤ CεKn
β2

64K2Cε
≤ β

64
nmin,

since n ≤ Knmax ≤ K
β nmin. Therefore, since this error is strictly less than βnmin/64 ≤

nminnr/(64nmax), each cluster r has at least nr − βnmin/64 ≥ (1 − nmin/(64nmax))nr ≥

(63/64)nr of its true members. This implies that we can associate each empirical cluster to
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a true cluster – let these empirical clusters be denoted ˆ︁C(r). Observe that we must have

that |ˆ︁C(r)| ≥ (1− β/64)nmin and that |ˆ︁C(r) \ C(r)| ≤ βnmin/64.

Step 2: Properties of Empirical Centroids

Recall that the cluster centroid associated to ˆ︁C(r) is equal to ˆ︂Mr·. Then by definition,

ˆ︂Mr· =
1

|ˆ︁C(r)| ∑︂
i∈ˆ︁C(r)

ˆ︁Ui·.

Recall that U consists of K unique rows of M. Without loss of generality assume that Mr·

is associated to C(r). Then

∥W∗ˆ︂Mr· −Mr·∥ =
1

|ˆ︁C(r)| ⃦⃦ ∑︂
i∈ˆ︁C(r)

(W∗ ˆ︁Ui· −Mr·)∥

≤ 1

|ˆ︁C(r)| ⃦⃦ ∑︂
i∈ˆ︁C(r)

(W∗ ˆ︁Ui· −Ui·)
⃦⃦
+

1

|ˆ︁C(r)| ⃦⃦ ∑︂
i∈ˆ︁C(r)

(Ui· −Mr·)
⃦⃦

≤ 1

|ˆ︁C(r)|
⃦⃦⃦⃦ ∑︂
i∈ˆ︁C(r)

(W∗ ˆ︁Ui· −Ui·)

⃦⃦⃦⃦
+

1

|ˆ︁C(r)|
⃦⃦⃦⃦ ∑︂
i∈ˆ︁C(r)\C(r)

(Ui· −Mr·)

⃦⃦⃦⃦
.

We observe that for i /∈ C(r), it holds that

1
√
nmax

≤ ∥Ui· −Mr·∥ ≤
√
2

√
nmin
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by Lemma 8. Therefore,

∥W∗ˆ︂Mr· −Mr·∥ ≤ 1

|ˆ︁C(r)|
⃦⃦⃦⃦ ∑︂
i∈ˆ︁C(r)

(W∗ ˆ︁Ui· −Ui·)

⃦⃦⃦⃦
+

1

|ˆ︁C(r)|
⃦⃦⃦⃦ ∑︂
i∈ˆ︁C(r)\C(r)

(Ui· −Mr·)

⃦⃦⃦⃦

≤ 1

|ˆ︁C(r)|1/2 ∥ˆ︁UW⊤
∗ −U∥F +

|ˆ︁C(r) \ C(r)|
|ˆ︁C(r)|

√
2

√
nmin

≤
√
2K√︁

nmin(1− β/64)
∥ sinΘ(ˆ︁U,U)∥+ βnmin

64(1− β/64)nmin

√
2

√
nmin

≤
√
2K√︁

βnmax(1− β/64)

β

8KC
1/2
ε

+
β

64(1− β/64)

√
2√

βnmax

≤ 1
√
nmax

(︃ √
2β

8K1/2C
1/2
ε

√︁
1− β/64

+
β1/2

√
2

64(1− β/64)

)︃
≤ 1

8
√
nmax

,

since nmin ≥ βnmax, K ≥ 1 and β < 1, as well as the assumption Cε ≥ 4. Therefore, on the

event EsinΘ it holds that

max
1≤r≤K

∥W∗ˆ︂Mr· −Mr·∥ ≤ 1

8
√
nmax

.

Step 3: Applying The Asymptotic Expansion

In this section we will use the previous bound on the cluster centroids and Theorem 21 to

obtain the desired bound. Recall that by Theorem 20, P(EcsinΘ) = O(n−10). It then holds

that

Eℓ(ˆ︁z, z) = 1

n

n∑︂
i=1

P(Zi· ̸= ˆ︁Zi·)
≤ 1

n

n∑︂
i=1

P(Zi· ̸= ˆ︁Zi·, EsinΘ) +O(n−10).

Suppose that ∥(ˆ︁UW⊤
∗ )i· − Ui·∥ ≤ 1

4
√
nmax

, and suppose the i’th node is in community r.

188



Joshua Agterberg

Then on the event EsinΘ

∥W∗ ˆ︁Ui· −W∗ˆ︂Mr·∥ ≤ ∥(ˆ︁UW⊤
∗ )i· −Ui·∥+ ∥Ui· −ˆ︂Mr·∥

≤ 1

4
√
nmax

+max
s

∥W∗ˆ︂Ms· −Ms·∥

≤ 3

8
√
nmax

.

In addition, for any s ̸= r, we have that

∥W∗ ˆ︁Ui· −W∗ˆ︂Ms·∥ ≥ ∥Mr· −Ms·∥ − ∥W∗ ˆ︁Ui· −Ui·∥ − ∥W∗ˆ︂Ms· −Ms·∥

≥ 1
√
nmax

− 1

4
√
nmax

− 1

8
√
nmax

≥ 5

8
√
nmax

.

Therefore, node i must belong to cluster ˆ︁C(r), so that there is no error on node i. Therefore,

P(Zi· ̸= ˆ︁Zi·, EsinΘ) ≤ P(∥(ˆ︁UW⊤
∗ )i· −Ui·∥ ≥ 1

4
√
nmax

)

≤ P(∥(ˆ︁UW⊤
∗ )i· −Ui·∥ ≥ 1

4
√
nmax

, EStage II) +O(n−10),

where EStage II is the event in Theorem 21. On the event EStage II it holds that

ˆ︁UW⊤
∗ −U =

∑︂
l

L(A(l) −P(l))(Y(l))⊤UΣ−2 +RStage II,

with

∥RStage II∥2,∞ ≤ 1

16
√
nmax

.
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Therefore,

P(∥(ˆ︁UW⊤
∗ )i· −Ui·∥ ≥ 1

4
√
nmax

, EStage II) ≤ P
(︃⃦⃦⃦⃦
e⊤i
∑︂
l

L(A(l) −P(l))(Y(l))⊤UΣ−2

⃦⃦⃦⃦
≥ 1

8
√
nmax

)︃

≤ P
(︃⃦⃦⃦⃦
e⊤i
∑︂
l

L(A(l) −P(l))(Y(l))⊤UΣ−2

⃦⃦⃦⃦
≥ C

√
K√
n

)︃
≤ Kmax

k
P
(︃⃓⃓⃓⃓∑︂

l

e⊤i L(A(l) −P(l))
(︁
Y(l))⊤UΣ−2ek

⃓⃓⃓⃓
≥ C

1√
n

)︃
.

We will apply the Bernstein inequality now. We have that

∑︂
l

e⊤i L(A(l) −P(l))(Y(l))⊤UΣ−2ek =
∑︂
l

∑︂
j

(A(l) −P(l))ij

(︃
U(l)|Λ(l)|−1/2Ip,qJ(˜︁Xi·)(Y

(l))⊤UΣ−2

)︃
jk

.

Using Lemma 7 and Lemma 8, the variance v of this quantity is upper bounded by

v ≤
∑︂
l

∑︂
j

θ
(l)
i θ

(l)
j ∥e⊤j U(l)|Λ(l)|−1/2Ip,qJ(˜︁Xi·)(Y

(l))⊤UΣ−2∥2

≤
∑︂
l

∑︂
j

θ
(l)
i θ

(l)
j ∥e⊤j U(l)∥2∥|Λ(l)|−1/2∥2∥J(˜︁Xi·)∥2∥(Y(l))⊤UΣ−2∥2

≤ C
∑︂
l

∑︂
j

θ
(l)
i θ

(l)
j

K(θ
(l)
j )2

∥θ(l)∥2
K

∥θ(l)∥2λ(l)min

1

∥˜︁Xi·∥2
nK2

n2L2λ̄
2

≤ C
K4

nL2λ̄
2

∑︂
l

∑︂
j

θ
(l)
i θ

(l)
j

(θ
(l)
j )2

∥θ(l)∥4λ(l)min(θ
(l)
i )2

≤ C
K4

nL2λ̄
2

∑︂
l

∥θ(l)∥33
θ
(l)
i ∥θ(l)∥4λ(l)min

.

In addition, each term satisfies

max
l,j

∥e⊤j U(l)|Λ(l)|−1/2Ip,qJ(˜︁Xi·)(Y
(l))⊤UΣ−2∥ ≤ max

l,j
C

θ
(l)
j K

θ
(l)
i ∥θ(l)∥2(λ(l)min)

1/2

K√
nLλ̄

≤ C
K2

√
nLλ̄

max
l

θ
(l)
max

θ
(l)
i ∥θ(l)∥2(λ(l)min)

1/2
.
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By Bernstein’s inequality,

P
(︃⃓⃓⃓⃓∑︂

l

e⊤i L(A(l) −P(l))
(︁
Y(l))⊤UΣ−2ek

⃓⃓⃓⃓
≥ C

1√
n

)︃

≤ 2 exp

(︃
−

C2 1
128n

C1
K4

nL2λ̄
2

∑︁
l

∥θ(l)∥33
θ
(l)
i ∥θ(l)∥4λ(l)min

+ C1
1√
n

K2√
nLλ̄

maxl
θ
(l)
max

θ
(l)
i ∥θ(l)∥2(λ(l)min)

1/2

)︃

≤ 2 exp

(︃
− C1

C2
K4

L2λ̄
2

∑︁
l

∥θ(l)∥33
θ
(l)
i ∥θ(l)∥4λ(l)min

+ 1
24C2

K2

Lλ̄
maxl

θ
(l)
max

θ
(l)
i ∥θ(l)∥2(λ(l)min)

1/2

)︃

≤ 2 exp

(︄
− C3min

{︃
λ̄
2
L

K4

(︃
1

L

∑︂
l

∥θ(l)∥33
θ
(l)
i ∥θ(l)∥4λ(l)min

)︃−1

,
Lλ̄

K2
min
m

θ
(l)
i ∥θ(l)∥2(λ(l)min)

1/2

θ
(l)
max

}︃)︄

≤ 2 exp

(︄
− cLmin

{︃
λ̄
2

K4err
(i)
ave

,
λ̄

K2err
(i)
max

}︃)︄
,

where err
(i)
ave and err

(i)
max are as defined in Eqs. (6.4) and (6.5). This completes the proof.

Proof of Theorem 17

Proof of Theorem 17. The proof proceeds from partway through the proof of Theorem 16.

We have already shown that on the event EsinΘ if ∥(ˆ︁UW⊤
∗ )i· −Ui·∥ ≤ 1

4
√
nmax

then node i

must be classified correctly. By repeating the argument in step 3 of the proof of Theorem 16,

it holds that

P(Zi· ̸= ˆ︁Zi·) ≤ 2K exp

(︃
− cLmin

{︃
λ̄
2

K4err
(i)
ave

,
λ̄

K2err
(i)
max

}︃)︃
+O(n−10).

In order for the exponential to be strictly less than O(n−10), we require that

min

{︃
λ̄
2

K4err
(i)
ave

,
λ̄

K2err
(i)
max

}︃
≥ C log(n)

L
,
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where C is a sufficiently large constant. Recalling the definitions of err(i)ave and err
(i)
max, we

see that we must have

λ̄

K2
≥ C log(n)

L
max
l

θ
(l)
max

θ
(l)
min

1

∥θ(l)∥2(λ(l)min)
1/2

;

λ̄
2

K4
≥ C log(n)

L

(︃
1

L

∑︂
l

∥θ(l)∥33
θ
(l)
min∥θ(l)∥4λ

(l)
min

)︃
.

Considering the first term and rearranging, we see that we require that

λ̄

K2
min
l

(︃
θ
(l)
min

θ
(l)
max

)︃
∥θ(l)∥2(λ(l)min)

1/2 ≥ C log(n)

L
.

A sufficient condition is that

min
l

SNR2
l ≥

CK8 log(n)

Lλ̄

As for the second term, by upper bounding ∥θ(l)∥33 ≤ θ
(l)
max∥θ(l)∥2, we see that it sufficient to

have that

λ̄
2

K4
≥ C log(n)

L

(︃
1

L

∑︂
l

(︃
θ
(l)
max

θ
(l)
min

)︃
1

∥θ(l)∥2λ(l)min

)︃
. (6.8)

Therefore, rearranging (6.8) yields the sufficient condition

(︃
1

L

∑︂
l

1

SNR2
l

)︃−1

≥ C
K8 log(n)

Lλ̄
2 .

It is straightforward to check that the condition in Theorem 17 is sufficient for the result to

hold.
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Appendix A

Proofs from Chapter 1

A.1 Proofs of Matrix Denoising Results (Theorems 1, 2, and

3)

In this section we provide proofs of the main results in this chapter. Our proofs rely on a

number of auxiliary lemmas; these are proven in the following subsection. We prove each

theorem sequentially, as each theorem relies on the previous results and their proofs as well..

Proof of Theorem 1. At the outset, we note that by Theorem 4.4.5 of Vershynin (2018),

∥N∥ ≲ σ
√
n with probability at least 1 − e−cn. Let ˆ︁λr denotes the r’th largest eigenvalue

of ˆ︁S. Then by Weyl’s inequality it holds that

|ˆ︁λr − λr| ≲ σ
√
n,

which implies that ˆ︁λr ≥ λr/2 for n sufficiently large, since λr ≥ Cσ
√︁
n log(n) by assumption.

We will use this result without additional reference in the subsequent analysis.

We now expand ˆ︁U−UW∗ via

ˆ︁U−UW∗ = Nˆ︁Uˆ︁Λ−1 +UU⊤NUU⊤ ˆ︁Uˆ︁Λ−1 +UU⊤NU⊥U
⊤
⊥
ˆ︁Uˆ︁Λ−1 +U(U⊤ ˆ︁U−W∗)

: = Nˆ︁Uˆ︁Λ−1 + (I) + (II) + (III),
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with

(I) : = UU⊤NUU⊤ ˆ︁Uˆ︁Λ−1

(II) : = UU⊤NU⊥U
⊤
⊥
ˆ︁Uˆ︁Λ−1

(III) : = U(U⊤ ˆ︁U−W∗).

The following lemma bounds the terms (I), (II), and (III) respectively.

Lemma 9. The following bounds hold with probability at least 1−O(n−30):

∥UU⊤NUU⊤ ˆ︁Uˆ︁Λ−1∥2,∞ ≲
σ

λr
µ0

√︃
r

n

(︃√
r +

√︁
log(n)

)︃
;

∥UU⊤NU⊥U
⊤
⊥
ˆ︁Uˆ︁Λ−1∥2,∞ ≲ µ0

√︃
r

n

σ2n

λ2r
;

∥U(U⊤ ˆ︁U−W∗)∥2,∞ ≲ µ0

√︃
r

n

σ2n

λ2r
.

Therefore, by Lemma 9, we obtain that with probability at least 1−O(n−30)

(︁ ˆ︁U−UW∗
)︁
i· =

(︁
Nˆ︁Uˆ︁Λ−1

)︁
i· +O

(︃
µ0
(︁
r +

√︁
r log(n)

)︁
√
n(λr/σ)

+
µ0

√
rn

(λr/σ)2

)︃
. (A.1)

It therefore suffices to focus on the first term. Observe that

∥
(︁
Nˆ︁Uˆ︁Λ−1

)︁
i·∥ ≲

1

λr
∥
(︁
Nˆ︁U)︁

i·∥.

Consequently, it suffices to analyze the term ∥
(︁
Nˆ︁U)︁

i·∥. This requires the use of the leave-

one-out strategy from Abbe et al. (2020) (see also the proofs in Chapter 6 and Chapter 4),

though other methods are available (e.g., see the proofs from Chapter 2 or Chapter 3). For

now, we simply state the following lemma.

Lemma 10. Let i be fixed and instate the conditions of Theorem 1. Then, with probability

at least 1−O(n−30) it holds that

∥
(︁
Nˆ︁U)︁

i·∥ ≲ σ
√︁
n log(n)∥ˆ︁U∥2,∞.
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Therefore, by Lemma 10 and (A.1), we obtain that with probability at least 1−O(n−30),

∥ˆ︁U−UW∗∥2,∞ ≲
σ
√︁
n log(n)

λr
∥ˆ︁U∥2,∞ + µ0

√︃
r

n

(︃√
r +

√︁
log(n)

λr/σ
+

σ2n

(λr/σ)2

)︃
.

As a result,

∥ˆ︁U∥2,∞ ≤ ∥ˆ︁U−UW∗∥2,∞ + ∥U∥2,∞

≤
σ
√︁
n log(n)

λr
∥ˆ︁U∥2,∞ + µ0

√︃
r

n
.

Since λr/σ ≥ C
√︁
n log(n), it holds that ∥ˆ︁U∥2,∞ ≲ µ0

√︁
r
n . Putting it all together yields

that with probability at least 1−O(n−30) ≥ 1− n−20,

∥ˆ︁U−UW∗∥2,∞ ≤
σµ0

√︁
r log(n)

λr
+ µ0

√︃
r

n

(︃
r +

√︁
r log(n)

λr/σ
+

σ2n

(λr/σ)2

)︃
≍
σµ0

√︁
r log(n)

λr
+
r +

√︁
r log(n)√

n(λr/σ)
+
µ0σ

2√rn
(λr/σ)2

≍
σµ0

√︁
r log(n)

λr
,

which is the desired bound in Theorem 1, which completes the proof.

Proof of 2. We start midway through the proof of Theorem 1 to demonstrate that by (A.1)

we have the expansion

(︁ ˆ︁UW⊤
∗ −U

)︁
i· = e⊤i N

ˆ︁Uˆ︁Λ−1W⊤
∗ +O

(︃
µ0
(︁
r +

√︁
r log(n)

)︁
√
n(λr/σ)

+
µ0

√
rn

(λr/σ)2

)︃
(A.2)

In the previous part of the proof we bounded the first term directly; we now expand it out

further. It holds that

e⊤i N
ˆ︁Uˆ︁Λ−1W⊤

∗ = e⊤i NUΛ−1 + e⊤i N
[︁ ˆ︁U−UU⊤ ˆ︁U]︁ˆ︁Λ−1W⊤

∗

+ e⊤i NU
[︁
Λ−1U⊤ ˆ︁U−U⊤ ˆ︁Uˆ︁Λ−1]W⊤

∗ + e⊤i NUΛ−1(W∗ −U⊤ ˆ︁U).

The following lemmas bound these three terms. The first term requires the use of leave-one-

out sequences, so we state it as its own independent lemma.

195



APPENDIX A. PROOFS FROM CHAPTER 1

Lemma 11. In the context of Theorem 2, the following bound holds with probability at least

1−O(n−20):

∥N
[︁ ˆ︁U−UU⊤ ˆ︁U]ˆ︁Λ−1W⊤

∗ ∥2,∞ ≲
σ2µ0

√
rn log(n)

λ2r

Finally, the next lemma bounds the remaining two terms.

Lemma 12. In the context of Theorem 2, the following bounds hold with probability at least

1−O(n−20) :

∥NU
[︁
Λ−1U⊤ ˆ︁U−U⊤ ˆ︁Uˆ︁Λ−1

]︁
W⊤

∗ ∥2,∞ ≲
σ2µ0

√︁
rn log(n)

λ2r
;

∥NUΛ−1(W∗ −U⊤ ˆ︁U)∥2,∞ ≲
σµ0

√︁
r log(n)

λr

σ2n

λr
.

Therefore, by (A.2), Lemma 11,Lemma 12, and the fact that λr/σ ≥ C
√︁
n log(n), it

holds that

(︁ ˆ︁UW⊤
∗ −U

)︁
i· = e⊤i NUΛ−1 +O

(︃
µ0
(︁
r +

√︁
r log(n)

)︁
√
n(λr/σ)

+
µ0

√
rn

(λr/σ)2
+
µ0

√
rn log(n)

(λr/σ)2
+
µ0
√︁
rn log(n)

(λr/σ)2

)︃
= e⊤i NUΛ−1 +O

(︃
µ0
(︁
r +

√︁
r log(n)

)︁
√
n(λr/σ)

+
µ0

√
rn log(n)

(λr/σ)2

)︃
.

Therefore, we have shown that there is an event E satisfying P
(︁
E
)︁
≥ 1− n−10 such that

ˆ︁UW⊤
∗ −U = NUΛ−1 + Γ,

where

∥Γ∥2,∞ ≲
µ0
(︁
r +

√︁
r log(n)

)︁
√
n(λr/σ)

+
µ0

√
rn log(n)

(λr/σ)2
.

This completes the proof.
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Proof of Theorem 3. When r is fixed, we note that

e⊤i NUΛ−1 =
∑︂
j

NijUj·Λ
−1,

and it is not hard to see that when EN2
ij = σ2 this term has covariance σ2Λ−2. Consequently,

by the Lindeberg-Feller Central Limit Theorem it holds that

1

σ
Λ

(︃
NUΛ−1

)︃
i·
→ N (0, Ir),

as long as µ0 = O(1). The result is then completed by Slutsky’s Theorem and the fact that

1

σ
∥Λ∥Γ ≤

κµ0
(︁
r +

√︁
r log(n)

)︁
√
n

+
κµ0

√
rn log(n)

λr/σ
→ 0,

since λr/σ ≫ κµ0
√
rn log(n) when κ, µ0, r = O(1).

Proof of Theorem 4. First we note that ∥ˆ︁Λ∥ ≲ κλr on the high probability event ∥N∥ ≲

σ
√
n. Next, observe that by Theorem 2

⃦⃦⃦⃦ ˆ︁Uˆ︁ΛW⊤
∗ −UΛ−NU

⃦⃦⃦⃦
2,∞

≤
⃦⃦⃦⃦ ˆ︁U[︃ˆ︁Λ(W⊤

∗ − ˆ︁U⊤U)

+ ˆ︁Λˆ︁U⊤U− ˆ︁U⊤UΛ + (ˆ︁U⊤U−W⊤
∗ )Λ

]︃⃦⃦⃦⃦
2,∞

+

⃦⃦⃦⃦(︁ ˆ︁UW⊤
∗ −U−NUΛ−1

)︁
Λ

⃦⃦⃦⃦
2,∞

≤ ∥ˆ︁U∥2,∞
(︃
κλr∥W⊤

∗ − ˆ︁U⊤U∥+ ∥ˆ︁Λˆ︁U⊤U− ˆ︁U⊤UΛ∥
)︃
+ ∥ΓΛ∥2,∞. (A.3)

The proof of Lemma 9 reveals that

∥U⊤ ˆ︁U−W∗∥ ≲
σ2n

λ2r
.

Similarly, the proof of Lemma 12 reveals that

∥ˆ︁Λˆ︁U⊤U− ˆ︁U⊤UΛ∥ ≲ σ
√
r + σ

√︁
log(n) + σ

√
n
σ
√
n

λr
.
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By Theorem 1 it holds that ∥ˆ︁U∥2,∞ ≲ µ0
√︁

r
n . Plugging in these bounds to (A.3) reveals

that

⃦⃦⃦⃦ ˆ︁Uˆ︁ΛW⊤
∗ −UΛ−NU

⃦⃦⃦⃦
2,∞

≲ µ0

√︃
r

n

(︃
κλr

σ2n

λ2r
+ σ

√
r + σ

√︁
log(n) + σ

√
n
σ
√
n

λr

)︃
+ ∥ΓΛ∥2,∞

≲
µ0κσ

2√nr
λr

+
µ0σr√
n

+
µ0σ

√︁
r log(n)√
n

+
µ0σ

2√rn
λr

+ κλr∥Γ∥2,∞

≲
µ0κσ

2√nr
λr

+
µ0σr√
n

+
µ0σ

√︁
r log(n)√
n

+
µ0σ

2√rn
λr

+ κλr

(︃
µ0σ(r +

√︁
r log(n))

λr
√
n

+
µ0σ

2√rn log(n)
λ2r

)︃
≍ σ

(︃
κ
(︁
µ0r + µ0

√︁
r log(n)

)︁
√
n

+
µ0κ

√
rn log(n)

λr/σ

)︃
= o(σ)

which holds since κ, µ0, r = O(1) and λr/σ ≫
√
n log(n) by assumption. Therefore, by

Slutsky’s Theorem, these results demonstrate that

1

σ
e⊤i

(︃ˆ︁Uˆ︁ΛW⊤
∗ −UΛ

)︃
→ N (0, Ir)

in distribution. Furthermore, e⊤i

(︃ˆ︁Uˆ︁ΛW⊤
∗ ) is asymptotically independent from e⊤j

(︃ˆ︁Uˆ︁ΛW⊤
∗ )

(since they only depend on the shared diagonal element, which is negligible). Together this

implies that

1

2σ2
(ei − ej)

⊤
(︃ˆ︁Uˆ︁ΛW⊤

∗ −UΛ

)︃
→ N

(︁
0, Ir

)︁
in distribution.

We now analyze the test statistic under the null and alternative respectively. When Si· =

Sj·, it holds that (ei−ej)⊤UΛ = 0, since ∥Si·−Sj·∥ = ∥(ei−ej)⊤UΛU⊤∥ = ∥(ei−ej)⊤UΛ∥.

Therefore, under the null hypothesis it holds that

1

2σ2
(ei − ej)

⊤
(︃ˆ︁Uˆ︁ΛW⊤

∗

)︃
→ N

(︁
0, Ir

)︁
,
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and hence the continuous mapping theorem implies that

T 2
ij =

1

2σ2
∥(ei − e⊤j )

ˆ︁Uˆ︁Λ∥2 = 1

2σ2
∥(ei − ej)

⊤ ˆ︁Uˆ︁ΛW⊤
∗ ∥2 → χ2

r

in distribution.

Under the local alternative

∥Si· − Sj·∥ ≫ σ,

it holds that

∥(ei − ej)
⊤UΛ∥2 ≫ σ2,

and hence it holds that

T 2
ij =

1

2σ2
∥(ei − e⊤j )

ˆ︁Uˆ︁Λ∥2 = 1

2σ2
∥(ei − ej)

⊤ ˆ︁Uˆ︁ΛW⊤
∗ ∥2 → ∞

in probability. Under the weaker condition

1

2σ2
∥Si· − Sj·∥2 → µ <∞,

the Continuous Mapping Theorem implies that

1

2σ2
T 2
ij → χ2

r(µ),

as desired. This completes the proof.

A.2 Proofs of Auxiliary Lemmas

A.2.1 Proof of Lemma 9

Proof of Lemma 9. Throughout we use the fact that ˆ︁λr ≳ λr and ∥N∥ ≲ σ
√
n with over-

whelming probability.
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For the first term, observe that

∥UU⊤NUU⊤ ˆ︁Uˆ︁Λ−1∥2,∞ ≲ ∥U∥2,∞∥U⊤NU∥∥ˆ︁Λ−1∥

≲ µ0

√︃
r

n

∥U⊤NU∥
λr

.

It now follows from a straightforward ε-net argument(e.g., the proof of Theorem 4.4.5 of

Vershynin (2018)) that ∥U⊤NU∥ ≲ σ
(︁√
r+
√︁
log(n)

)︁
with probability at least 1−O(n−30).

Therefore, with this same probability,

∥UU⊤NUU⊤ ˆ︁Uˆ︁Λ−1∥2,∞ ≲
σ

λr
µ0

√︃
r

n

(︃√
r +

√︁
log(n)

)︃
.

For the next term, it holds that

∥UU⊤NU⊥U
⊤
⊥
ˆ︁Uˆ︁Λ−1∥2,∞ ≲ µ0

√︃
r

n

∥N∥∥U⊤
⊥
ˆ︁U∥

λr

≲ µ0

√︃
r

n

σ
√
n

λr
∥U⊤

⊥
ˆ︁U∥.

Observe that ∥U⊤
⊥
ˆ︁U∥ = ∥ sinΘ(ˆ︁U,U)∥. Consequently, by the Davis-Kahan Theorem,

∥U⊤
⊥
ˆ︁U∥ ≲

σ
√
n

λr
.

Putting it together yields that

∥UU⊤NU⊥U
⊤
⊥
ˆ︁Uˆ︁Λ−1∥2,∞ ≲

σ2n

λ2r
.

For the final term, we note that

∥U(U⊤ ˆ︁U−W∗)∥2,∞ ≤ µ0

√︃
r

n
∥U⊤ ˆ︁U−W∗∥.

It is straightforward to check that since W∗ = sgn(U⊤ ˆ︁U), one has the bound

∥U(U⊤ ˆ︁U−W∗)∥2,∞ ≤ µ0

√︃
r

n
∥U⊤ ˆ︁U−W∗∥ ≤ ∥ sinΘ(ˆ︁U,U)∥2 ≲ σ2n

λ2r
.
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For details see, for example, Lemma 4.15 of Chen et al. (2021c). Combining these bounds

completes the proof.

A.2.2 Proof of Lemma 10

Proof of Lemma 10. Let ˜︁U(i) be the estimate obtained by setting the i’th row and column

of N to zero. Then

∥
(︁
Nˆ︁U)︁

i·∥ ≤ ∥
(︃
N(ˆ︁U− ˜︁U(i)(˜︁U(i))⊤ ˆ︁U)

)︃
i·
∥+ ∥

(︁
N˜︁U(i)(˜︁U(i))⊤ ˆ︁U)︁

i·∥

≤ ∥N∥∥ˆ︁U− ˜︁U(i)(˜︁U(i))⊤ ˆ︁U∥+ ∥
(︁
N˜︁U(i)

)︁
i·∥. (A.4)

Let ˜︁λ(i)r+1 denote the r+ 1’st eigenvalue of S+N(i), where N(i) has its i’th row and column

set to zero. Then it holds that

∥ˆ︁S− S−N(i)∥ ≤ ∥N−N(i)∥ ≤ 3∥(N)i·∥ ≤ ∥N∥ ≲ σ
√
n,

and, hence, since ˆ︁λr ≥ λr/2, by Weyl’s inequality it holds that

∥ˆ︁λr − ˜︁λr+1| ≥ λr/2− Cσ
√
n ≥ λr/4 ≳ λ.
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Therefore, we can apply the Davis-Kahan Theorem (Theorem 2.7 of Chen et al. (2021c)) to

yield that

∥ˆ︁U− ˜︁U(i)(˜︁U(i))⊤ ˆ︁U∥ ≤ ∥ˆ︁Uˆ︁U⊤ − ˜︁U˜︁U⊤∥

≲ ∥ sinΘ(ˆ︁U, ˜︁U(i))∥

≲
∥(N−N(i))˜︁U(i)∥

λr

≲
∥e⊤i N˜︁U∥+ ∥Neie⊤i ˜︁U∥+ ∥e⊤i Neie⊤i ˜︁U∥

λr

≲
∥e⊤i N˜︁U(i)∥

λr
+

∥N∥
λr

∥e⊤i ˜︁U(i)∥

≲
∥e⊤i N˜︁U(i)∥

λr
+

∥N∥
λr

∥˜︁U(i)∥2,∞

≲
∥e⊤i N˜︁U(i)∥

λr
+
σ
√
n

λr
∥˜︁U(i)∥2,∞ (A.5)

Observe that

e⊤i N
˜︁U(i) =

n∑︂
j=1

Nij

(︁ ˜︁U(i)
)︁
j·,

which is sum of independent mean-zero random matrices, conditional on N(i). By the Matrix

Hoeffing inequality (Tropp, 2015), it holds that

∥
(︁
N˜︁U(i)

)︁
i·∥ ≲ σ

√︁
n log(n)∥˜︁U∥2,∞ (A.6)

with probability at least 1 − O(n−30). Plugging this bound into Eq. (A.5) and further

simplifying, we obtain that

∥ˆ︁U− ˜︁U(i)(˜︁U(i))⊤ ˆ︁U∥ ≲
σ
√︁
n log(n)

λr
∥˜︁U∥2,∞ +

σ
√
n

λr
∥˜︁U(i)∥2,∞

≍
σ
√︁
n log(n)

λr
∥˜︁U(i)∥2,∞.
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As a byproduct of this bound, we also obtain

∥˜︁U(i)∥2,∞ ≤ ∥˜︁U(i) − ˆ︁Uˆ︁U⊤ ˜︁U(i)∥2,∞ + ∥ˆ︁Uˆ︁U⊤ ˜︁U(i)∥2,∞

≤ ∥˜︁U(i)(˜︁U(i))⊤ − ˆ︁Uˆ︁U⊤∥+ ∥ˆ︁U∥2,∞

≲
σ
√︁
n log(n)

λr
∥˜︁U(i)∥2,∞ + ∥ˆ︁U∥2,∞,

which shows that by rearranging ∥˜︁U(i)∥2,∞ ≤ 2∥ˆ︁U∥2,∞ since λr/σ ≥ C
√︁
n log(n) for some

sufficiently large constant C. Therefore, with probability at least 1−O(n−30),

∥ˆ︁U− ˜︁U(i)(˜︁U(i))⊤ ˆ︁U∥ ≲
σ
√︁
n log(n)

λr
∥ˆ︁U∥2,∞.

By Eq. (A.6), we have also therefore shown that

∥
(︁
N˜︁U(i)

)︁
i·∥ ≲ σ

√︁
n log(n)∥ˆ︁U∥2,∞.

Plugging in these bounds to (A.4) we obtain that

∥
(︁
Nˆ︁U)︁

i·∥ ≤ ∥N∥∥ˆ︁U− ˜︁U(i)(˜︁U(i))⊤ ˆ︁U∥+ ∥
(︁
N˜︁U(i)

)︁
i·∥

≲ σ
√
n
σ
√︁
n log(n)

λr
∥ˆ︁U∥2,∞ + σ

√︁
n log(n)∥ˆ︁U∥2,∞

≍ σ
√︁
n log(n)∥ˆ︁U∥2,∞,

which all hold cumulatively with probability at least 1 − O(n−30), where the final bound

follows from the fact that λr/σ ≥ C
√︁
n log(n) for some sufficiently large constant C. This

completes the proof.

A.2.3 Proof of Lemma 11

Proof of Lemma 11. We will first fix the i’th row, and we will use the leave-one-out sequences

from the proof of Lemma 9. Let ˜︁U(i) be the leading eigenvectors of S+N(i), where N(i) is
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obtained by setting the i’th row and column of N to zero. For the first term, we have that

∥e⊤i N
[︁ ˆ︁U−UU⊤ ˆ︁U]ˆ︁Λ−1W⊤

∗ ∥ ≤ ∥e⊤i N
[︁ ˆ︁U− ˜︁U˜︁U⊤ ˆ︁U]ˆ︁Λ−1W⊤

∗ ∥+ ∥e⊤i N
[︁ ˜︁U˜︁U⊤ ˆ︁U−UU⊤ ˆ︁U]ˆ︁Λ−1W⊤

∗ ∥

≲
1

λr

(︃
∥e⊤i N

[︁ ˆ︁U− ˜︁U˜︁U⊤ ˆ︁U]∥+ ∥∥e⊤i N
[︁ ˜︁U˜︁U⊤ ˆ︁U−UU⊤ ˆ︁U]∥

)︃
≲

1

λr

(︃
∥N∥∥ˆ︁U− ˜︁U˜︁U⊤∥+ ∥∥e⊤i N

[︁ ˜︁U˜︁U⊤ ˆ︁U−UU⊤ ˆ︁U]∥
)︃

≲
1

λr

(︃
σ
√
n∥ˆ︁U− ˜︁U˜︁U⊤ ˆ︁U∥+ ∥∥e⊤i N

[︁ ˜︁U˜︁U⊤ ˆ︁U−UU⊤ ˆ︁U]∥
)︃
.

By repeating the argument in the proof of Lemma 10, with probability at least 1−O(n−30)

it holds that

∥ˆ︁U− ˜︁U(i)(˜︁U(i))⊤ ˆ︁U∥ ≲
σ
√︁
n log(n)

λr
∥ˆ︁U∥2,∞

≲
σ
√︁
n log(n)

λr
µ0

√︃
r

n

≍
σµ0

√︁
r log(n)

λr
, (A.7)

where we have used the fact that on the event in Theorem 1 it holds that ∥ˆ︁U∥2,∞ ≤ 2µ0
√︁

r
n .

Therefore, we have that

∥e⊤i N
[︁ ˆ︁U−UU⊤ ˆ︁U]ˆ︁Λ−1W⊤

∗ ∥ ≲
1

λr

(︃
σ
√
n
σµ0

√︁
r log(n)

λr
+ ∥∥e⊤i N

[︁ ˜︁U˜︁U⊤ ˆ︁U−UU⊤ ˆ︁U]∥
)︃

≍
σ2µ0

√︁
rn log(n)

λ2r
+

∥e⊤i N
[︁ ˜︁U(i)(˜︁U(i))⊤ ˆ︁U−UU⊤ ˆ︁U]︁∥

λr
.

(A.8)

We now observe that

∥e⊤i N
[︁ ˜︁U(i)(˜︁U(i))⊤ ˆ︁U−UU⊤ ˆ︁U]︁∥ = ∥e⊤i N

[︁ ˜︁U(i)(˜︁U(i))⊤ −UU⊤]︁∥.
Observe that by construction ˜︁U(i) is independent of the i’th row of N, and hence ˜︁U(i)(˜︁U(i))⊤−

UU⊤ is independent of the i’th row of N. Therefore, the term e⊤i N
[︁ ˜︁U(i)(˜︁U(i))⊤−UU⊤]︁ is

a sum of independent mean-zero random matrices (conditional on N(i)), and by the Matrix
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Hoeffding inequality (Tropp, 2015), we obtain that

∥e⊤i N
[︁ ˜︁U(i)(˜︁U(i))⊤ −UU⊤]︁∥ ≲ σ

√︁
n log(n)∥˜︁U(i)(˜︁U(i))⊤ −UU⊤∥2,∞.

Next, we note that by (A.7),

∥˜︁U(i)(˜︁U(i))⊤ −UU⊤∥2,∞ ≤ ∥˜︁U(i)(˜︁U(i))⊤ − ˆ︁Uˆ︁U⊤∥+ ∥ˆ︁Uˆ︁U⊤ −UU⊤∥2,∞

≲
σµ0

√︁
r log(n)

λr
+ ∥ˆ︁Uˆ︁U⊤ −UU⊤∥2,∞.

Next, we note that with probability at least 1−O(n−30),

∥ˆ︁Uˆ︁U⊤ −UU⊤∥2,∞ ≤ ∥ˆ︁Uˆ︁U⊤UU⊤ −UU⊤∥2,∞ + ∥ˆ︁Uˆ︁U⊤(I−UU⊤)∥2,∞

≤ ∥ˆ︁Uˆ︁U⊤U−U∥2,∞ + ∥ˆ︁U∥2,∞∥ˆ︁U⊤(I−UU⊤)∥

≤ ∥ˆ︁U(ˆ︁U⊤U−W⊤
∗ )∥2,∞ + ∥ˆ︁UW⊤

∗ −U∥2,∞ + ∥ˆ︁U∥2,∞∥ sinΘ(ˆ︁U,U)∥

≤ ∥ˆ︁U∥2,∞∥U⊤ ˆ︁U−W∗∥+
σµ0

√︁
r log(n)

λr
+ ∥ˆ︁U∥2,∞

σ
√
n

λr

≲ µ0

√︃
r

n
∥U⊤ ˆ︁U−W∗∥+

σµ0
√︁
r log(n)

λr
+ µ0

√︃
r

n

σ
√
n

λr

where in the penultimate line we have applied Theorem 1 as well as the fact that ∥ sinΘ(ˆ︁U,U)∥ ≲

σ
√
n

λr
with this same probability, and the final line we have used the fact that by Theorem 1

∥ˆ︁U∥2,∞ ≲ µ0
√︁

r
n . By arguing as in the proof of Lemma 9, it holds that

∥W∗ −U⊤ ˆ︁U∥ ≲
σ2n

λr
.

Putting it all together, we obtain

∥e⊤i N
[︁ ˜︁U(i)(˜︁U(i))⊤ −UU⊤]︁∥ ≲ σ

√︁
n log(n)∥˜︁U(i)(˜︁U(i))⊤ −UU⊤∥2,∞

≲ σ
√︁
n log(n)

σµ0
√︁
r log(n)

λr
.
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Plugging this into Eq. (A.8), we obtain the final bound

∥e⊤i N
[︁ ˆ︁U−UU⊤ ˆ︁U]︁ˆ︁Λ−1W⊤

∗ ∥ ≲
σ2µ0

√︁
rn log(n)

λ2r
+

1

λr

(︃
σ
√︁
n log(n)

σµ0
√︁
r log(n)

λr

)︃
≍ σ2µ0

√
rn log(n)

λ2r
,

which holds with probability at least 1−O(n−20). This completes the proof.

A.2.4 Proof of Lemma 12

Proof of Lemma 12. For both terms, we first note that the Matrix Hoeffing inequality and

a union bound implies that with probability at least 1−O(n−20),

∥NU∥2,∞ ≲ σ
√︁
n log(n)∥U∥2,∞

≲ σµ0
√︁
r log(n).

Therefore, we observe that

∥NU
[︁
Λ−1U⊤ ˆ︁U−U⊤ ˆ︁Uˆ︁Λ−1

]︁
W⊤

∗ ∥2,∞ ≲ ∥NU∥2,∞∥Λ−1U⊤ ˆ︁U−U⊤ ˆ︁Uˆ︁Λ−1∥

≲ σµ0
√︁
r log(n)∥Λ−1

(︁
U⊤ ˆ︁Uˆ︁Λ− ΛU⊤ ˆ︁U)︁ˆ︁Λ−1∥

≲
σµ0

√︁
r log(n)

λ2r
∥U⊤ ˆ︁Uˆ︁Λ− ΛU⊤ ˆ︁U∥. (A.9)

By the eigenvector-eigenvalue equation, it holds that

∥U⊤ ˆ︁Uˆ︁Λ− ΛU⊤ ˆ︁U∥ = ∥U⊤ˆ︁Sˆ︁U−U⊤Sˆ︁U∥

= ∥U⊤Nˆ︁U∥

≤ ∥U⊤NUU⊤ ˆ︁U∥+ ∥U⊤N(I−UU⊤)ˆ︁U∥

≤ ∥U⊤NU∥+ ∥N∥∥ sinΘ(U, ˆ︁U)∥

≲ σ

(︃√
r +

√︁
log(n)

)︃
+ σ

√
n∥ sinΘ(U, ˆ︁U)∥

≲ σ
√
r + σ

√︁
log(n) + σ

√
n
σ
√
n

λr
,
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which holds with probability at least 1 − O(n−20), where we have used the fact that by a

simple ε-net argument with this same probability ∥U⊤NU∥ ≲ σ
(︁√
r +

√︁
log(n)

)︁
, as well

as the bounds on ∥N∥ and ∥ sinΘ∥ that we have used repeatedly. Plugging this bound into

(A.9), we obtain

∥NU
[︁
Λ−1U⊤ ˆ︁U−U⊤ ˆ︁Uˆ︁Λ−1

]︁
W⊤

∗ ∥2,∞ ≲
σµ0

√︁
r log(n)

λ2r

(︃
σ
(︁√
r +

√︁
log(n)

)︁
+ σ

√
n
σ
√
n

λr

)︃
≍
σ2µ0

√︁
r log(n)

λ2r

(︃√
r +

√︁
log(n) +

√
n
σ
√
n

λr

)︃
≲
σ2µ0

√︁
rn log(n)

λ2r
,

since r ≤ n and λr ≫ σ
√
n.

As for the other term, arguing similarly as in the proof of Lemma 17, we have that

∥NUΛ−1
(︁
W∗ −U⊤ ˆ︁U)︁∥2,∞ ≤ ∥NU∥2,∞

λr
∥W∗ −U⊤ ˆ︁U∥

≲
σµ0

√︁
r log(n)

λr
∥W∗ −U⊤ ˆ︁U∥

≲
σµ0

√︁
r log(n)

λr
∥ sinΘ(U, ˆ︁U)∥2

≲
σµ0

√︁
r log(n)

λr

σ2n

λ2r
.

which holds with probability at least 1−O(n−20). This completes the proof.
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Appendix B

Proofs from Chapter 2

B.1 Proof of Theorem 7

First, note that it holds that

∥˜︁U ˆ︁H − U ˜︁H ˆ︁H∥2,∞ ≤ ∥˜︁U − U ˜︁H∥2,∞

≤ ∥˜︁U ˜︁U⊤ − UU⊤ ˜︁U ˜︁U⊤∥2,∞

≤ ∥˜︁U ˜︁U⊤ − UU⊤∥2.∞∥˜︁U ˜︁U⊤∥

≤ ∥˜︁U ˜︁U⊤ − UU⊤∥2,∞,

which is a difference of projection matrices. We now wish to expand ˜︁U ˜︁U⊤ in terms of the

noise matrix Γ(EM⊤ +ME⊤ + EE⊤).

In what follows, define, for some sufficiently large constant C0

δ1 : =
√
rnd log(max(n, d))σ2;

δ2 : =
√︁
rn log(n ∨ d)λ1σ;

δ : = C0(δ1 + δ2).

The two terms δ1 and δ2 appear frequently in our bounds, so this notation simplifies the

statements of several of our results. With this new notation, to prove Theorem 7 it is
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sufficient to show that

∥˜︁U ˜︁U⊤ − UU⊤∥2,∞ ≤ CR
δ

λ2r
∥U∥2,∞.

It is slightly more mathematically convenient to study the perturbation EM⊤+ME⊤+

Γ(EE⊤), so we introduce the matrix ˜︁UD ˜︁U⊤
D which is the projection onto the leading eigenspace

of the matrix MM⊤+ME⊤+EM⊤+Γ(EE⊤). We have the following spectral norm guar-

antee that shows that ˜︁UD ˜︁U⊤
D and ˜︁U ˜︁U⊤ are exceedingly close.

Lemma 13. With probability at least 1− 2(n ∨ d)−5,

∥˜︁UD ˜︁U⊤
D − ˜︁U ˜︁U⊤∥ ≤ Cδ1

λ2r
∥U∥2,∞

By Lemma 1 and Lemma 13, we have that with probability at least 1− c(n ∨ d)−5 that

∥EM⊤ +ME⊤ + Γ(EE⊤)∥ ≤ δ√︁
r log(n ∨ d)

provided C0 is sufficiently large.

In order to analyze the approximation of ˜︁UD ˜︁U⊤
D to UU⊤, we will use the projection

matrix expansion in Xia (2019), restated slightly for our purposes here.

Lemma 14 (Theorem 1 from Xia (2021)). Let U be the eigenvectors of A corresponding to

its nonzero eigenvalues and let ˜︁UD be the eigenvectors of A +W , where ∥W∥ ≤ λ2r
2 . Then˜︁UD admits the series expansion

˜︁UD ˜︁U⊤
D = UU⊤ +

∑︂
p≥1

SA,k(W ),

where SA,p is defined according to Xia (2021) via

SA,p(W ) =
∑︂

s:s1+···+sp+1=p

(−1)1+τ(s)P−s1WP−s2W · · ·WP−sp+1 ,

where P−p = UΛ−2pU⊤, and P0 = U⊥U
⊤
⊥ .

By Assumption 2.2, we have that λ2r ≥ 2∥EM⊤ + ME⊤ + Γ(EE⊤)∥, and hence the
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assumptions to apply the expansion in Lemma 14 hold. Let W :=ME⊤+EM⊤+Γ(EE⊤).

We note that we therefore have

˜︁UD ˜︁U⊤
D − UU⊤ =

∑︂
p≥1

SMM⊤,p(W ),

Note that if s1 ≥ 1, ∥UΛ−2s1U⊤W · · ·UΛ−2sp+1U⊤∥2,∞ ≤ ∥U∥2,∞λ−2p
r ∥W∥p which is

bounded above by δpλ−2p
r ∥U∥2,∞ by Lemma 1. Hence, it suffices to bound terms of the

form

∥(U⊥U
⊤
⊥WU⊥U

⊤
⊥ )pWU∥2,∞.

We have the following lemma characterizing terms of this form, whose proof is in Appendix

B.5. This proof requires additional considerations about dependence which requires specially

crafted “leave-one-out" terms that have hitherto not been considered in the literature on

entrywise eigenvector analysis.

Lemma 15. Let W = EM⊤ +ME⊤ + Γ(EE⊤). There exists universal constants C1 and

C2 such that for any p ≥ 1, we have that with probability at least 1− (p+1)(n∨ d)−5 for all

1 ≤ p0 ≤ p that

∥(U⊥U
⊤
⊥WU⊥U

⊤
⊥ )p0−1WU∥2,∞ ≤ C1(C2δ)

p0∥U∥2,∞,

Let c be some number to be chosen later. There are at most 4p terms such that s1 +

· · ·+ sp+1 = p, and hence

∥
∑︂
p≥1

SA,k(W )∥2,∞ ≤
c log(n∨d)∑︂

p=1

∥SA,p(W )∥2,∞ +
∞∑︂

p=c log(n∨d)

∥SA,p(W )∥2,∞

≤ ∥U∥2,∞
c log(n∨d)∑︂

p=1

C1

(︃
4C2δ

λ2r

)︃p
+

∞∑︂
p=c log(n∨d)

(︃
4∥W∥
λ2r

)︃p
≤ C∥U∥2,∞

δ

λ2r
+

1

2c log(n∨d)

≤ CR∥U∥2,∞
δ

λ2r
,

211



APPENDIX B. PROOFS FROM CHAPTER 2

where in the final line we have used the fact that the second term can be bounded by

2−c log(n∨d) ≤ ∥U∥2,∞ for c taken to be sufficiently large. Finally, this bound holds with

probability at least 1− c log(n ∨ d)(n ∨ d)−5 − 4(n ∨ d)−6 ≥ 1− (n ∨ d)−4, which completes

the proof of Theorem 7.

B.2 Proof of Theorem 8

First, we have the following result on the eigengap.

Lemma 16. Suppose Assumption 2.2 holds, and suppose T ≥ T0, where T0 is the first

iterate such that ∥NT −A∥ ≤ 3∥Γ(Z)∥. Then on the event in Lemma 1, we have

(ˆ︁λ(T )r )2 − ˜︁λ2r+1 ≥ λ2r/2.

In particular,

ˆ︁λ2r − ˜︁λ2r+1 ≥ λ2r/2.

Proof. ˆ︁λ2r ≥ ˜︁λ2r − ∥NT − ˜︁A∥ ≥ ˜︁λ2r − 4∥Γ(Z)∥ once T ≥ T0. Then ˆ︁λ2r − ˜︁λ2r+1 ≥ ˜︁λ2r −˜︁λ2r+1 − 4∥Γ(Z)∥ ≥ λ2r − λ2r+1 − 6∥Γ(Z)∥ = λ2r − 6∥Γ(Z)∥. On the event in Lemma 1,

∥Γ(Z)∥ ≤ Cspectral(σ
2(n +

√
nd) + σ

√
nκλr), and under the signal-to-noise ratio condition

of Assumption 2.2,

λ2r ≥ 12Cspectral

(︂
σ2(n+

√
nd) + σ

√
nκλr

)︂
,

this gives

∥Γ(Z)∥ ≤ 1

12
λ2r ,

meaning that ˆ︁λ2r − ˜︁λ2r+1 ≥ λ2r/2.

We can now prove Theorem 8.
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Proof of Theorem 8. We write:

ˆ︁U − ˜︁U ˜︁U⊤ ˆ︁U = P˜︁U ˜︁A[ˆ︁U − ˜︁U ˜︁H]ˆ︁Λ−1 + [NT − P˜︁U ˜︁A][ˆ︁U − ˜︁U ˜︁H]ˆ︁Λ−1

+ [NT − P˜︁U ˜︁A]˜︁U ˜︁Hˆ︁Λ−1 − ˜︁U [ ˜︁Hˆ︁Λ− ˜︁Λ ˜︁H]ˆ︁Λ−1

: = J1 + J2 + J3 + J4.

We bound each term successively.

The term J1: Note that ∥ˆ︁U − ˜︁U ˜︁H∥ ≤
√
2∥ sinΘ(ˆ︁U, ˜︁U)∥. Therefore, we have that

∥P˜︁U ˜︁A[ˆ︁U − ˜︁U ˜︁H]ˆ︁Λ−1∥2,∞ ≤ ∥P˜︁U ˜︁A∥2,∞∥ˆ︁U − ˜︁U ˜︁H∥∥ˆ︁Λ−1∥

≤ ∥˜︁U ˜︁Λ˜︁U∥2,∞∥ˆ︁U − ˜︁U ˜︁H∥ˆ︁λ−2
r

≤
˜︁λ21ˆ︁λ2r ∥˜︁U∥2,∞∥ˆ︁U − ˜︁U ˜︁H∥

≤
√
2
˜︁λ21ˆ︁λ2r ∥˜︁U∥2,∞∥ sinΘ(ˆ︁U, ˜︁U)∥. (B.1)

The term J2: We decompose via

[NT − P˜︁U ˜︁A][ˆ︁U − ˜︁U ˜︁H]ˆ︁Λ−1 = ˆ︁U [ˆ︁Λˆ︁U⊤ − ˜︁H⊤˜︁Λ˜︁U⊤][ˆ︁U − ˜︁U ˜︁H]ˆ︁Λ−1 + [ˆ︁U − ˜︁U ˜︁H] ˜︁H⊤˜︁Λ˜︁U⊤[ˆ︁U − ˜︁U ˜︁H]ˆ︁Λ−1

− ˜︁U [I − ˜︁H ˜︁H⊤]˜︁Λ˜︁U⊤[ˆ︁U − ˜︁U ˜︁H]ˆ︁Λ−1.

Note that ˜︁U⊤[ˆ︁U − ˜︁U ˜︁H] = 0, by the definition of ˜︁H, whence we have

[NT − P˜︁U ˜︁A][ˆ︁U − ˜︁U ˜︁H]ˆ︁Λ−1 = ˜︁U ˜︁H[ˆ︁Λˆ︁U⊤ − ˜︁H⊤˜︁Λ˜︁U⊤][ˆ︁U − ˜︁U ˜︁H]ˆ︁Λ−1 + [ˆ︁U − ˜︁U ˜︁H][ˆ︁Λˆ︁U⊤ − ˜︁H⊤˜︁Λ˜︁U⊤][ˆ︁U − ˜︁U ˜︁H]ˆ︁Λ−1

= ˜︁U ˜︁Hˆ︁Λ[ˆ︁U − ˜︁U ˜︁H]⊤[ˆ︁U − ˜︁U ˜︁H]ˆ︁Λ−1 + [ˆ︁U − ˜︁U ˜︁H]ˆ︁Λ[I − ˜︁H⊤ ˜︁H]ˆ︁Λ−1.

Taking norms, we have

∥[NT − P˜︁U ˜︁A][ˆ︁U − ˜︁U ˜︁H]ˆ︁Λ−1∥2,∞ ≤ ∥˜︁U∥2,∞ˆ︁λ21∥ˆ︁U − ˜︁U ˜︁H∥2ˆ︁λ−2
r + ∥ˆ︁U − ˜︁U ˜︁H∥2,∞ˆ︁λ21∥I − ˜︁H⊤ ˜︁H∥ˆ︁λ−2

r
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Recall that ∥I− ˜︁H⊤ ˜︁H∥ ≤ ∥ˆ︁U ˆ︁U⊤−˜︁U ˜︁U⊤∥ ≤ 2∥ sinΘ(ˆ︁U, ˜︁U)∥, and ∥ˆ︁U−˜︁U ˜︁H∥ ≤
√
2∥ sinΘ(ˆ︁U, ˜︁U)∥.

Consequently,

∥J2∥2,∞ ≤ 2∥˜︁U∥2,∞
ˆ︁λ21ˆ︁λ2r ∥ sinΘ(ˆ︁U, ˜︁U)∥2 + 2∥ˆ︁U − ˜︁U ˜︁H∥2,∞

ˆ︁λ21ˆ︁λ2r ∥ sinΘ(ˆ︁U, ˜︁U∥. (B.2)

The term J3: Again using the fact that ˜︁U⊤[ˆ︁U − ˜︁U ˜︁H] = 0,

[NT − P˜︁U ˜︁A][ˆ︁U − ˜︁U ˜︁H]ˆ︁Λ−1 = ˆ︁U ˆ︁Λ[I − ˜︁H⊤ ˜︁H]ˆ︁Λ−1

= ˜︁U ˜︁Hˆ︁Λ[I − ˜︁H⊤ ˜︁H]ˆ︁Λ−1 + [ˆ︁U − ˜︁U ˜︁H]ˆ︁Λ[I − ˜︁H⊤ ˜︁H]ˆ︁Λ−1.

This gives

∥[NT − P˜︁U ˜︁A][ˆ︁U − ˜︁U ˜︁H]ˆ︁Λ−1∥2,∞ ≤ ∥˜︁U∥2,∞ˆ︁λ21∥I − ˜︁H⊤ ˜︁H∥ˆ︁λ−2
r + ∥ˆ︁U − ˜︁U ˜︁H∥2,∞ˆ︁λ21∥I − ˜︁H⊤ ˜︁H∥ˆ︁λ−2

r

≤ 2(∥˜︁U∥2,∞ + ∥ˆ︁U − ˜︁U ˜︁H∥2,∞)
ˆ︁λ21ˆ︁λ2r ∥ sinΘ(ˆ︁U, ˜︁U)∥. (B.3)

The term J4: In 2,∞ norm, we note that

∥˜︁U [ ˜︁Hˆ︁Λ− ˜︁Λ ˜︁H]ˆ︁Λ−1∥2,∞ ≤ ∥˜︁U∥2,∞ˆ︁λ2r ∥ ˜︁Hˆ︁Λ− ˜︁Λ ˜︁H∥.

Furthermore,

∥ ˜︁Hˆ︁Λ− ˜︁Λ ˜︁H∥ = ∥˜︁U⊤[NT − ˜︁A]ˆ︁U∥

≤ ∥˜︁U⊤[NT − ˜︁A]∥.
Consequently,

∥J4∥ ≤ ∥˜︁U∥2,∞
1ˆ︁λ2r ∥˜︁U⊤[NT − ˜︁A]∥. (B.4)
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Putting it together: Collecting the bounds in (B.1),(B.2),(B.3), and (B.4), we see that

∥ˆ︁U − ˜︁U ˜︁H∥2,∞ ≤
˜︁λ21ˆ︁λ2r ∥˜︁U∥2,∞

[︄
√
2∥ sinΘ(ˆ︁U, ˜︁U)∥+

ˆ︁λ21˜︁λ21 (2∥ sinΘ(ˆ︁U, ˜︁U)∥2 + 2∥ sin(ˆ︁U, ˜︁U)∥) +
˜︁KT˜︁λ21
]︄

+ ∥ˆ︁U − ˜︁U ˜︁H∥2,∞
4ˆ︁λ21ˆ︁λ2r ∥ sinΘ(ˆ︁U, ˜︁U)∥,

where ˜︁KT := ∥NT − ˜︁A∥. Applying Davis-Kahan, Lemma 2, and Lemma 16, we see that

∥ sinΘ(ˆ︁U, ˜︁U)∥ ≤ ∥ ˆ︁A− ˜︁A∥ˆ︁λ2r − ˜︁λ2r+1

≤ 41∥U∥2,∞∥Γ(Z)∥
λ2r/2

=: τ.

By Theorem 7, for large enough n, ∥˜︁U∥2,∞ ≤ ∥U∥2,∞ since the bound in Theorem 7 is of

the form c∥U∥2,∞, where c < 1 for n sufficiently large. This gives

∥ˆ︁U − ˜︁U ˜︁H∥2,∞ ≤ 2
˜︁λ21ˆ︁λ2r ∥U∥2,∞

[︄
√
2τ +

ˆ︁λ21˜︁λ21
(︁
2τ2 + 2τ

)︁
+
τλ2r/2˜︁λ21

]︄
+ ∥ˆ︁U − ˜︁U ˜︁H∥2,∞

4ˆ︁λ21ˆ︁λ2r τ.
The proof of Lemma 16 reveals that (11/12)λ21 ≤ ˜︁λ21 ≤ (13/12)λ21, (3/4)λ2r ≤ ˆ︁λ2r ≤ (5/4)λ2r ,

with the same bounds holding for ˆ︁λ1, also. Thus ˜︁λ21/ˆ︁λ2r ≤ (13/9)κ2, ˆ︁λ21/˜︁λ21 ≤ 15/11, andˆ︁λ21/ˆ︁λ2r ≤ (5/3)κ2. This gives

∥ˆ︁U−˜︁U ˜︁H∥2,∞ ≤ 2(13/9)κ2∥U∥2,∞
[︃√

2τ + (15/11)
(︁
2τ2 + 2τ

)︁
+

τλ2r/2

(11/12)λ21

]︃
+∥ˆ︁U−˜︁U ˜︁H∥2,∞4(5/3)κ2τ.

When (20/3)κ2τ ≤ 1/2, which occurs for n sufficiently large under the event in Theorem

7, this gives

∥ˆ︁U − ˜︁U ˜︁H∥2,∞ ≤ κ2
500∥U∥22,∞∥Γ(Z)∥

λ2r

[︃√
2 + (15/11)

(︃
2 +

3

20κ2

)︃
+

6

11κ2

]︃
= CDκ

2
∥U∥22,∞∥Γ(Z)∥

λ2r

as required.
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B.3 Proof of Theorem 5

First, we justify Equation (2.3). Note that by Theorem 6, on that event ∥ˆ︁U∥2,∞ ≤ C∥U∥2,∞,

which implies that ˆ︁U is as incoherent as U up to constant factors. Now following similarly

in the first part of the proof Theorem 6, we have that for the same orthogonal matrix O∗

as in Lemma 3 that

e⊤i

(︃ˆ︁UO∗ − U

)︃
ej = e⊤i ˆ︁U(O∗ − ˆ︁U⊤ ˜︁U ˜︁U⊤U)ej + e⊤i

(︃ˆ︁U ˆ︁U⊤ ˜︁U ˜︁U⊤U − ˜︁U ˜︁U⊤U

)︃
ej + e⊤i

(︃˜︁U ˜︁U⊤U − U

)︃
ej .

(B.5)

As in the proof of Theorem 7 (see Appendix B.5), let ˜︁UD be the matrix of eigenvectors of

MM⊤ + EM⊤ +ME⊤ + Γ(EE⊤), and let W := EM⊤ +ME⊤ + Γ(EE⊤).

Now we again apply Lemma 14 to ˜︁UD ˜︁U⊤
D . First, recall the definition of SMM⊤,1(W ) =

U⊥U
⊤
⊥WUΛ−2U⊤ + U⊤Λ−2U⊤WU⊥U

⊤
⊥ , and note that SMM⊤,1(W )U = U⊥U

⊤
⊥WUΛ−2.

Now, just as in the proof of Theorem 7 we expand ˜︁UD ˜︁U⊤
D as an infinite series in W via

e⊤i

(︃˜︁U ˜︁U⊤U − U

)︃
ej = e⊤i

(︃˜︁UD ˜︁U⊤
DU − U

)︃
ej − e⊤i

(︃˜︁UD ˜︁U⊤
D − ˜︁U ˜︁U⊤

)︃
Uej

= e⊤i SMM⊤,1(W )Uej + e⊤i
∑︂
k≥2

SMM⊤,k(W )Uej − e⊤i

(︃˜︁UD ˜︁U⊤
D − ˜︁U ˜︁U⊤

)︃
Uej

= e⊤i U⊥U
⊤
⊥

(︃
EM⊤ +ME⊤ + Γ(EE⊤)

)︃
Λ−2ej + e⊤i

∑︂
k≥2

SMM⊤,k(W )Uej

− e⊤i

(︃˜︁UD ˜︁U⊤
D − ˜︁U ˜︁U⊤

)︃
Uej

= e⊤i

(︃
EM⊤ + Γ(EE⊤)

)︃
UΛ−2ej − e⊤i UU

⊤
(︃
EM⊤ + Γ(EE⊤)

)︃
UΛ−2ej

+ e⊤i
∑︂
k≥2

SMM⊤,k(W )Uej − e⊤i

(︃˜︁UD ˜︁U⊤
D − ˜︁U ˜︁U⊤

)︃
Uej (B.6)

where in the penultimate line we used the fact that U⊥U
⊤
⊥M = 0. Hence, plugging the
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expansion in (B.6) into (B.5), we see that

e⊤i

(︃ˆ︁UO∗ − U

)︃
ej = e⊤i EM

⊤UΛ−2ej + e⊤i Γ(EE
⊤)UΛ−2ej − e⊤i UU

⊤
(︃
EM⊤ + Γ(EE⊤)

)︃
UΛ−2ej

+ e⊤i
∑︂
k≥2

SMM⊤,k(W )Uej − e⊤i

(︃˜︁UD ˜︁U⊤
D − ˜︁U ˜︁U⊤

)︃
Uej

+ e⊤i ˆ︁U(O∗ − ˆ︁U⊤ ˜︁U ˜︁U⊤U)ej + e⊤i

(︃ˆ︁U ˆ︁U⊤ ˜︁U ˜︁U⊤U − ˜︁U ˜︁U⊤U

)︃
ej

: = e⊤i EM
⊤UΛ−2ej +R0 +R1 +R2 +R3 +R4 +R5,

where

R0 : = e⊤i Γ(EE
⊤)UΛ−2ej ;

R1 : = e⊤i U

(︃
EM⊤ + Γ(EE⊤)

)︃
UΛ−2ej ;

R2 : = e⊤i

(︃˜︁UD ˜︁U⊤
D − ˜︁U ˜︁U⊤

)︃
Uej ;

R3 : = e⊤i
∑︂
k≥2

SMM⊤,k(W )Uej ;

R4 : = e⊤i ˆ︁U(O∗ − ˆ︁U⊤ ˜︁U ˜︁U⊤U)ej ;

R5 : = e⊤i

(︃ˆ︁U ˆ︁U⊤ ˜︁U ˜︁U⊤U − ˜︁U ˜︁U⊤U

)︃
ej .

We now characterize the residual terms.

Lemma 17. There exist universal constants C6 and C7 such that the residual terms R1,R2,

and R3 satisfy, uniformly over i and j,

1

σij

(︃
|R1|+ |R2|+ |R3|

)︃
≤ C6κσκ

2µ0

√︃
r log(n ∨ d)

n
+ C7κ

3κσµ0
r log(n ∨ d)

SNR

with probability at least 1− 5(n ∨ d)−4.

Lemma 18. On the intersection of the events in Theorem 6 and Lemma 1 the residual terms

R4 and R5 satisfy for all i and j,

1

σij

(︃
|R4|+ |R5|

)︃
≤ C8κ

3κσµ0
1

SNR
+ C9κ

4κσµ
2
0

r√
n
.
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for some universal constants C8 and C9.

To bound R0, we note that we can equivalently write

R0 :=
∑︂
k ̸=i

⟨Ei, Ek⟩(UΛ−2)kj =
∑︂
k ̸=i

⟨Ei, Ek⟩Ukjλ−2
j .

We have the following bound for R0.

Lemma 19. There exists a universal constant C10 such that with probability at least 1 −

4(n ∨ d)−4

1

σij

⃓⃓⃓⃓∑︂
k ̸=i

⟨Ei, Ek⟩Ukjλ−2
j

⃓⃓⃓⃓
≤ C10µ0κσ

log(n ∨ d)
SNR

,

where the probability is uniform over i and j.

Let R := R0 +R1 +R2 +R3 +R4 +R5. This argument leaves us with

e⊤i (
ˆ︁UO∗ − U)ej = e⊤i EM

⊤UΛ−2ej +R.

Note in addition that M⊤UΛ−2 = V ΛU⊤UΛ−2 = V Λ−1 by definition. Hence, the term

e⊤i EM
⊤UΛ−2ej can be equivalently written as ⟨Ei, V·j⟩λ−1

j where V·j is the j’th column of

the matrix V , which justifies equation (2.3).

Now, combining the bounds for the residuals in Lemmas 17, 18, and 19, we see that with

probability at least 1− 10(n ∨ d)−4 − 4(n ∨ d)−6 ≥ 1− (n ∨ d)−3,

|R|
σij

≤ C6κσκ
2µ0

√︃
r log(n ∨ d)

n
+ C7κ

3κσµ0
r log(n ∨ d)

SNR
+ C8κ

3κσµ0
1

SNR

+ C9κ
4κσµ

2
0

r√
n
+ C10µ0κσ

log(n ∨ d)
SNR

≤ ˜︁C1κ
3κσµ0

r log(n ∨ d)
SNR

+ ˜︁C2κ
2κσµ0

√︃
r

n

(︃√︁
log(n ∨ d) + µ0κ

2√r
)︃

= : B.

We can now complete the proof of Theorem 5. By the classical Berry-Esseen Theorem
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(Berry, 1941), for any x ∈ R, denoting Yiα as the α entry of Yi,

⃓⃓⃓⃓
P
(︃

⟨Ei, V·j⟩
∥Σ1/2

i V·j∥
> x

)︃
− Φ(x)

⃓⃓⃓⃓
≤ C

∑︁
α |(Σ

1/2
i V·j)α|3E|Yiα|3

∥Σ1/2
i V·j∥3

≤ C
∥Σ1/2

i V·j∥33
∥Σ1/2

i V·j∥3
.

Hence, by the Lipchitz property of Φ, (e.g. Xia (2021))

P
(︃

1

σij
e⊤i

(︃ˆ︁UO∗ − U

)︃
ej ≤ x

)︃
≤ P

{︄
⟨Ei, V·j⟩
∥Σ1/2

i V·j∥
≤ x+B

}︃
+ (n ∨ d)−3

≤ Φ(x+B) + C
∥Σ1/2

i V·j∥33
∥Σ1/2

i V·j∥3
+ (n ∨ d)−3

≤ Φ(x) + C
∥Σ1/2

i V·j∥33
∥Σ1/2

i V·j∥3
+B + (n ∨ d)−3.

A similar bound for the left tail also holds. Therefore, after relabeling constants and noting

that κ2κσ
√︁
r/n ≥ (n ∨ d)−3, we conclude that

sup
x∈R

⃓⃓⃓⃓
P
(︃

1

σij
e⊤i

(︃ˆ︁UO∗ − U

)︃
ej ≤ x

)︃
− Φ(x)

⃓⃓⃓⃓
≤ C

∥Σ1/2
i V·j∥33

∥Σ1/2
i V·j∥3

+B + (n ∨ d)−3

≤ C1
∥Σ1/2

i V·j∥33
∥Σ1/2

i V·j∥3
+ C2κ

3κσµ0
r log(n ∨ d)

SNR

+ C3κ
2κσµ0

√︃
r

n

(︃√︁
log(n ∨ d) + µ0κ

2√r
)︃
.

B.4 Proof of Corollaries in Section 2.3.2

Proof of Corollary 2. By the proof of Theorem 5, we have that

e⊤i

(︃ˆ︁UO∗ − U

)︃
ej = ⟨Ei, V·j⟩λ−1

j +Rij ,

Hence. the i’th row of ˆ︁U satisfies

e⊤i

(︃ˆ︁UO∗ − U

)︃
= E⊤

i V Λ−1 +Ri.
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We now analyze (Si)
−1/2Ri. However, by Lemmas 17, 18, and 19, we see that Rij satisfies

with probability at least 1− (n ∨ d)−3

|R|ij ≤ C2σijκ
3κσµ0

r log(n ∨ d)
SNR

+ C3σijκ
2κσµ0

√︃
r

n

(︃√︁
log(n ∨ d) + µ0κ

2√r
)︃
.

In addition, note that

∥S−1/2
i ∥σij ≤ κκσ.

Therefore,

S
−1/2
i Ri → 0

in probability (and almost surely) as n and d tend to infinity, since ∥S−1/2
i ∥σij = O(1) when

κ and κσ are bounded. Furthermore, we note that

E
(︃
⟨Ei, V·j⟩⟨Ei, V·k⟩λ−1

j λ−1
k

)︃
= (Si)jk.

Hence, the result holds by the Cramer-Wold device and Slutsky’s Theorem.

Proof of Corollary 3. Without loss of generality assume that Ck = {1, · · · , nk}, or else re-

order the matrix. Furthermore, we assume that the set of indices for community k is

known; under the assumptions for Theorem 6 this will be true for sufficiently large n, d since

∥ˆ︁U − UO∗∥ ≪ ∥U∥2,∞ and each row of U reveals the community memberships by Lemma

2.1 of Lei and Rinaldo (2015).

In what follows, recall that Λ−1V ⊤Ei is an r-dimensional column vector and E⊤
i V Λ−1

is a row vector. For convenience, we let Ū (k) denote the rank one matrix whose rows are all
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just Ū (k) . By the expansion in the proof Theorem 5, we have that

1

nk

nk∑︂
i=1

(︃ˆ︁U − Ū
(k)
)︃
i·

(︃ˆ︁U − Ū
(k)
)︃⊤

i·
=

1

nk

nk∑︂
i=1

(︃ˆ︁U − UO⊤
∗

)︃
i·

(︃ˆ︁U − UO⊤
∗

)︃⊤

i·

+
1

nk

nk∑︂
i=1

(︃ˆ︁U − UO⊤
∗

)︃
i·

(︃
UO⊤

∗ − Ū
(k)
)︃⊤

i·

+
1

nk

nk∑︂
i=1

(︃
UO⊤

∗ − Ū
(k)
)︃
i·

(︃ˆ︁U − UO⊤
∗

)︃⊤

i·

+
1

nk

nk∑︂
i=1

(︃
Ū

(k) − UO⊤
∗

)︃
i·

(︃
Ū

(k) − UO⊤
∗

)︃⊤

i·

: = J1 + J2 + J3

where

J1 : =
1

nk

nk∑︂
i=1

(︃ˆ︁U − UO⊤
∗

)︃
i·

(︃ˆ︁U − UO⊤
∗

)︃⊤

i·
;

J2 : =
1

nk

nk∑︂
i=1

(︃
Ū

(k) − UO⊤
∗

)︃
i·

(︃
Ū

(k) − UO⊤
∗

)︃⊤

i·
;

J3 : =
1

nk

nk∑︂
i=1

(︃ˆ︁U − UO⊤
∗

)︃
i·

(︃
UO⊤

∗ − Ū
(k)
)︃⊤

i·
+

1

nk

nk∑︂
i=1

(︃
UO⊤

∗ − Ū
(k)
)︃
i·

(︃ˆ︁U − UO⊤
∗

)︃⊤

i·
.

We will show that (S(k))−1J1 converges to Ir in probability and that the other terms tend

to zero in probability.

The term J1: Using the same expansion as in the proof for Corollary 2 we expand out
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ˆ︁U − UO⊤
∗ via

J1 : =
1

nk

nk∑︂
i=1

(︃ˆ︁U − UO⊤
∗

)︃
i·

(︃ˆ︁U − UO⊤
∗

)︃⊤

i·

=
1

nk

nk∑︂
i=1

(︃
O∗(Λ

−1V ⊤Ei) +O∗Ri

)︃(︃
O∗(Λ

−1V ⊤Ei) +O∗Ri

)︃⊤

=
1

nk

nk∑︂
i=1

O∗(Λ
−1V ⊤EiE

⊤
i V Λ−1)O⊤

∗ +
1

nk

nk∑︂
i=1

O∗Ri(E
⊤
i V Λ−1)O⊤

∗ +
1

nk

nk∑︂
i=1

O∗(Λ
−1V ⊤Ei)RiO⊤

∗

+
1

nk

nk∑︂
i=1

O∗RiR
⊤
i O⊤

∗

: = J11 + J12 + J13,

where

J11 : =
1

nk

nk∑︂
i=1

O∗(Λ
−1V ⊤EiE

⊤
i V Λ−1)O⊤

∗ ;

J12 : =
1

nk

nk∑︂
i=1

O∗Ri(E
⊤
i V Λ−1)O⊤

∗ +
1

nk

nk∑︂
i=1

O∗(Λ
−1V ⊤Ei)RiO⊤

∗ ;

J13 : =
1

nk

nk∑︂
i=1

O∗RiR
⊤
i O⊤

∗ .

Since Ei = (Σ(k))1/2Yi, the term J11 satisfies

O∗(S
(k))−1O⊤

∗ J11 = O∗(S
(k))−1 1

nk

nk∑︂
i=1

Λ−1V ⊤Σ
1/2
i YiY

⊤
i Σ

1/2
i V Λ−1O⊤

∗ .

The random variable Λ−1V ⊤Σ
1/2
i YiY

⊤
i Σ

1/2
i V Λ−1 is an r × r matrix with expectation S(k),

and hence ∥O∗(S
(k))−1O⊤

∗ J1 − Ir∥ → 0 in probability by the strong law of large numbers,

the rotation invariance of the spectral norm, and the fact that each Yi has independent

subgaussian components. We now show the other terms all tend to zero in probability.

As for J12, we analyze the term

O∗(S
(k))−1O⊤

∗
1

nk

nk∑︂
i=1

O∗Ri(E
⊤
i V Λ−1)O⊤

∗ = O∗(S
(k))−1 1

nk

nk∑︂
i=1

Ri(E
⊤
i V Λ−1)O⊤

∗ .

The other term is similar. By the rotational invariance of the spectral norm, we may ignore
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the orthogonal matrices henceforth. By the residual bounds in Lemmas 17, 18, and 19, we

have that with probability at least 1− (n ∨ d)−3,

max
i

∥(S(k))−1/2Ri∥ ≲
log(n ∨ d)

SNR
+

√︃
log(n ∨ d)

n
,

where we let the implicit constants depend on κ, µ0, κσ, and r, since they are assumed

bounded in n and d. Let this event be denoted E . Then

P
(︃
∥(S(k))−1 1

nk

nk∑︂
i=1

Ri(E
⊤
i V Λ−1)∥ > t

)︃
≤ P

(︃
∥(S(k))−1 1

nk

nk∑︂
i=1

Ri(E
⊤
i V Λ−1)∥ > t ∩ E

)︃
+ (n ∨ d)−3,

so it suffices to analyze this term on the event E . Note that the vector E⊤
i V Λ−1 is an

r−dimensional random variable with covariance matrix S(k). Note that the condition num-

ber of S(k) is at most κ2κ2σ, and hence (S(k))1/2 has condition number at most κκσ. There-

fore,

∥(S(k))−1 1

nk

nk∑︂
i=1

Ri(E
⊤
i V Λ−1)∥ ≤ κκσ∥(S(k))−1/2 1

nk

nk∑︂
i=1

Ri(E
⊤
i V Λ−1)(S(k))−1/2∥

≤ rκκσ∥
1

nk

nk∑︂
i=1

(S(k))−1/2Ri(E
⊤
i V Λ−1)(S(k))−1/2∥max.

Now consider the j, l entry of the above matrix, which can be written as

1

nk

nk∑︂
i=1

(︃
(S(k))−1/2Ri

)︃
j

[︃
(E⊤

i V Λ−1)(S(k))−1/2

]︃
l

.
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By (the restricted) Markov’s inequality,

P
(︃⃓⃓⃓⃓

1

nk

nk∑︂
i=1

(︃
(S(k))−1/2Ri

)︃
j

[︃
(E⊤

i V Λ−1)(S(k))−1/2

]︃
l

⃓⃓⃓⃓
> t ∩ E

)︃

≤ 1

t
EIE
⃓⃓⃓⃓
1

nk

nk∑︂
i=1

(︃
(S(k))−1/2Ri

)︃
j

[︃
(E⊤

i V Λ−1)(S(k))−1/2

]︃
l

⃓⃓⃓⃓
≤ 1

t
max
i

EIE
⃓⃓⃓⃓(︃

(S(k))−1/2Ri

)︃
j

[︃
(E⊤

i V Λ−1)(S(k))−1/2

]︃
l

⃓⃓⃓⃓
≲

1

t

(︃
log(n ∨ d)

SNR
+

√︃
log(n ∨ d)

n

)︃
E
⃓⃓⃓⃓[︃
(E⊤

i V Λ−1)(S(k))−1/2

]︃
l

⃓⃓⃓⃓
≲

1

t

(︃
log(n ∨ d)

SNR
+

√︃
log(n ∨ d)

n

)︃
,

where the final inequality is due to the fact that E⊤
i V Λ−1(S(k))−1/2 is an isotropic r-

dimensional subgaussian random variable, and hence has moments are bounded by O(1).

Therefore, we conclude that since the j, l entry converges to zero in probability, since r is

fixed, we conclude that (S(k))−1J12 converges to zero in probability.

For J13, after accounting for orthogonal matrices, we note that

1

nk

⃦⃦⃦⃦
(S(k))−1

nk∑︂
i=1

RiR
⊤
i

⃦⃦⃦⃦
≤ max

i
∥(S(k))−1RiR

⊤
i ∥.

The matrix RiR
⊤
i is rank one and S(k) is assumed to be positive definite by Assumption

2.5. Therefore this term satisfies

max
i

∥(S(k))−1RiR
⊤
i ∥ = max

i
R⊤
i (S

(k))−1R⊤
i

= max
i

∥(S(k))−1/2Ri∥2.

By the argument for the same term in the proof of Corollary 1, we conclude that this term

tends to zero in probability, where we have implicitly used the fact that the bounds in Lem-

mas 17, 18 and 19 are uniform over i.

The term J2: We note that Ū (k) is the same for all i and by Lemma 2.1 of Lei and

Rinaldo (2015), the term Ui· is the same for all i belonging to community k. Hence, again
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using the asymptotic expansion as in the proof of Corollary 1, we have that

(︃
Ū

(k) − U (k)O⊤
∗

)︃(︃
Ū

(k) − U (k)O⊤
∗

)︃⊤
=

(︃
1

nk

nk∑︂
i=1

(ˆ︁Ui − UiO⊤
∗ )

)︃(︃
1

nk

nk∑︂
i=1

(ˆ︁Ui − UiO⊤
∗ )

)︃⊤

=

(︃
1

nk

nk∑︂
i=1

O∗(Λ
−1V ⊤Ei) +O∗Ri

)︃(︃
1

nk

nk∑︂
i=1

O∗(Λ
−1V ⊤Ei) +O∗Ri

)︃⊤

= O∗

(︃
1

nk

nk∑︂
i=1

Λ−1V ⊤Ei

)︃(︃
1

nk

nk∑︂
i=1

Λ−1V ⊤Ei

)︃⊤
O⊤

∗

+O∗

(︃
1

nk

nk∑︂
i=1

Ri

)︃(︃
1

nk

nk∑︂
i=1

Λ−1V ⊤Ei

)︃⊤
O⊤

∗

+O∗

(︃
1

nk

nk∑︂
i=1

Λ−1V ⊤Ei

)︃(︃
1

nk

nk∑︂
i=1

Ri

)︃⊤
O⊤

∗

+O∗

(︃
1

nk

nk∑︂
i=1

Ri

)︃(︃
1

nk

nk∑︂
i=1

Ri

)︃⊤
O⊤

∗

: = J21 + J22 + J23 + J24.

The term J21 satisfies

∥O∗(S
(k))−1O⊤

∗ J21∥ ≤ κκσ
1

n2k
∥(S(k))−1/2

nk∑︂
i=1

Λ−1V ⊤Ei∥2.

Therefore, by Markov’s inequality, since κ and κσ are assumed bounded, by including them
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in the implicit constants, we have that

P
(︃
∥O∗(S

(k))−1O⊤
∗ J21∥ > t

)︃
≲

E
(︃
∥(S(k))−1/2

∑︁nk
i=1 Λ

−1V ⊤Ei∥2
)︃

n2kt

=

E
(︃∑︁nk

i=1 Λ
−1V ⊤Ei

)︃⊤
(S(k))−1

(︃∑︁nk
j=1 Λ

−1V ⊤Ei

)︃)︃
n2kt

=

nk∑︂
i=1

E
[︃
E⊤
i V Λ−1(S(k))−1

(︃∑︁nk
j=1 Λ

−1V ⊤Ej

)︃]︃
n2kt

=

nk∑︂
i=1

ETr
(︃∑︁nk

j=1 Λ
−1V ⊤Ej

)︃[︃
E⊤
i V Λ−1(S(k))−1

]︃
n2kt

=

nk∑︂
i=1

TrΛ−1V ⊤Σ(k)V Λ−1(S(k))−1

n2kt

=

nk∑︂
i=1

r

n2kt

=
r

nkt
,

which implies that ∥(S(k))−1J21∥ converges to zero in probability.

Note that J22 is a rank one matrix. Therefore

∥O∗(S
(k))−1O⊤

∗ J22∥ ≤ κκσ
n2k

⃓⃓⃓⃓⟨︃
(S(k))−1/2

nk∑︂
i=1

Ri, (S
(k))−1/2

nk∑︂
i=1

E⊤
i V Λ−1

⟩︃⃓⃓⃓⃓

≲
1

n2k

⃦⃦⃦⃦
(S(k))−1/2

nk∑︂
i=1

Ri

⃦⃦⃦⃦⃦⃦⃦⃦
(S(k))−1/2

nk∑︂
i=1

E⊤
i V Λ−1

⃦⃦⃦⃦

≲

⃦⃦⃦⃦
(S(k))−1/2

nk∑︂
i=1

E⊤
i V Λ−1

⃦⃦⃦⃦
maxi ∥(S(k))−1/2Ri∥

nk
. (B.7)

By the same calculation as in J21, for any t > 0,

P
(︃⃦⃦⃦⃦

(S(k))−1/2
nk∑︂
i=1

E⊤
i V Λ−1

⃦⃦⃦⃦
> t

)︃
≤ rnk

t2
.
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Setting t = n1/2
√︁

log(n) shows that

⃦⃦⃦⃦
(S(k))−1/2

nk∑︂
i=1

E⊤
i V Λ−1

⃦⃦⃦⃦
≤
√︁
n log(n) (B.8)

with probability at least 1 − o(1). Furthermore, by the same argument as in the proof of

Corollary 1, (i.e. the residual bounds on Ri (as in Lemmas 17, 18, and 19), we have that

with probability at least 1− (n ∨ d)−3

max
i

∥(S(k))−1/2Ri∥ ≲
log(n ∨ d)

SNR
+

√︃
log(n ∨ d)

n
, (B.9)

where we again let the implicit constants depend on κ, µ0, κσ, and r, since they are assumed

bounded in n and d. Hence, combining (B.7), (B.8), and (B.9), we have that with probability

at least 1− o(1),

∥O∗(S
(k))−1O⊤

∗ J22∥ ≤
√︁
n log(n)

nk

(︃
log(n ∨ d)

SNR
+

√︃
log(n ∨ d)

n

)︃

which converges to zero. The same exact proof works for J23. For J24, we note that by

Cauchy-Schwarz, the term tends to zero by a similar method as in the bound for J1.

The term J3: Recall that J3 consists of two terms, one of which is the transpose of

the other. We analyze only the first as the other is similar, again using the same expansion
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as in J1 and J2. We have that

⃦⃦⃦⃦
O∗[S

(k)]−1O⊤
∗

[︃
1

nk

nk∑︂
i=1

(︃ˆ︁U − UO⊤
∗

)︃
i·

(︃
UO⊤

∗ − Ū
(k)
)︃⊤

i·

]︃⃦⃦⃦⃦

=

⃦⃦⃦⃦
1

nk

nk∑︂
i=1

[S(k)]−1O⊤
∗

(︃
O∗Λ

−1V ⊤Ei +O∗Ri

)︃(︃
UO⊤

∗ − Ū
(k)
)︃⊤

i·

]︃
O∗

⃦⃦⃦⃦

≤ κκσ

⃦⃦⃦⃦
1

nk

nk∑︂
i=1

[S(k)]−1/2

(︃
Λ−1V ⊤Ei +Ri

)︃(︃
UO⊤

∗ − Ū
(k)
)︃⊤

i·
O∗[S

(k)]−1/2

]︃⃦⃦⃦⃦

≤ κκσ

⃦⃦⃦⃦
1

nk

nk∑︂
i=1

[S(k)]−1/2

(︃
Λ−1V ⊤Ei +Ri

)︃(︃
1

nk

nk∑︂
m=1

UO⊤
∗ − ˆ︁U)︃⊤

m·
O∗[S

(k)]−1/2

]︃⃦⃦⃦⃦

≤ κκσ

⃦⃦⃦⃦
1

nk

nk∑︂
i=1

[S(k)]−1/2

(︃
Λ−1V ⊤Ei +Ri

)︃(︃
1

nk

nk∑︂
m=1

O∗Λ
−1V ⊤Em +O∗Rm

)︃⊤
O∗[S

(k)]−1/2

]︃⃦⃦⃦⃦

≤ κκσ

⃦⃦⃦⃦
1

nk

nk∑︂
i=1

[S(k)]−1/2

(︃
Λ−1V ⊤Ei +Ri

)︃(︃
1

nk

nk∑︂
m=1

E⊤
mV Λ−1 +R⊤

m

)︃
[S(k)]−1/2

]︃⃦⃦⃦⃦

≲

⃦⃦⃦⃦
1

nk

nk∑︂
i=1

[S(k)]−1/2

(︃
Λ−1V ⊤Ei

)︃(︃
1

nk

nk∑︂
m=1

E⊤
mV Λ−1

)︃
[S(k)]−1/2

]︃⃦⃦⃦⃦

+

⃦⃦⃦⃦
1

nk

nk∑︂
i=1

[S(k)]−1/2

(︃
Λ−1V ⊤Ei

)︃(︃
1

nk

nk∑︂
m=1

R⊤
m

)︃
[S(k)]−1/2

]︃⃦⃦⃦⃦

+

⃦⃦⃦⃦
1

nk

nk∑︂
i=1

[S(k)]−1/2Ri

(︃
1

nk

nk∑︂
m=1

E⊤
mV Λ−1

)︃
[S(k)]−1/2

]︃⃦⃦⃦⃦

+

⃦⃦⃦⃦
1

nk

nk∑︂
i=1

[S(k)]−1/2Ri

(︃
1

nk

nk∑︂
m=1

R⊤
m

)︃
[S(k)]−1/2

]︃⃦⃦⃦⃦
: = J31 + J32 + J33 + J34.

Since the term inside of J31 is a product of two rank-one matrices, its spectral norm is equal

to

⃦⃦⃦⃦
1

nk

nk∑︂
i=1

[S(k)]−1/2Λ−1V ⊤Ei

⃦⃦⃦⃦2
=

1

n2k

⃦⃦⃦⃦ nk∑︂
i=1

[S(k)]−1/2Λ−1V ⊤Ei

⃦⃦⃦⃦2
.

Note that

E
(︃ nk∑︂
i=1

[S(k)]−1/2Λ−1V ⊤Ei

)︃(︃ nk∑︂
m=1

E⊤
mV Λ−1[S(k)]−1/2

)︃
=

nk∑︂
i=1

Ir

= nkIr.
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Therefore, by Markov’s inequality,

P
(︃

1

n2k

⃦⃦⃦⃦ nk∑︂
i=1

[S(k)]−1/2Λ−1V ⊤Ei

⃦⃦⃦⃦2
> t

)︃
≤

E
⃦⃦⃦⃦∑︁nk

i=1[S
(k)]−1/2Λ−1V ⊤Ei

⃦⃦⃦⃦2
n2kt

=
nkTrIr
n2kt

≤ r

nkt
,

so that J31 tends to zero in probability.

For J32, using the inequality |ab| ≤ |a||b|, we have that on the event E ,

⃓⃓⃓⃓(︃
1

nk

nk∑︂
i=1

[S(k)]−1/2
(︁
Λ−1V ⊤Ei

)︁)︃(︃ 1

nk

nk∑︂
i=1

R⊤
i

)︃
[S(k)]−1/2

)︃
jl

⃓⃓⃓⃓

≤ max
m

⃓⃓⃓⃓(︃
[S(k)]−1/2Rm

)︃
l

⃓⃓⃓⃓⃓⃓⃓⃓(︃
1

nk

nk∑︂
i=1

[S(k)]−1/2
(︁
Λ−1V ⊤Ei

)︁)︃
j

⃓⃓⃓⃓

≲

(︃
log(n ∨ d)

SNR
+

√︃
log(n ∨ d)

n

)︃⃓⃓⃓⃓(︃
1

nk

nk∑︂
i=1

[S(k)]−1/2
(︁
Λ−1V ⊤Ei

)︁)︃
j

⃓⃓⃓⃓
.

We have already shown that the outermost term tends to zero in probability, implying that

J32 tends to zero in probability since r is fixed. The same argument also works for J33. For

J34, the same argument as J13 suffices, and hence J3 tends to zero in probability, which

completes the proof.

B.5 Proofs of Lemmas in Section B.1

In this section we prove the additional Lemmas required for the proof of Theorem 7.

B.5.1 Proof of Lemmas 1 and 13

We first prove the spectral norm concentration bound in Lemma 1. We restate it here.

Lemma 1 (Spectral Norm Concentration). Under assumption 2.1, there exists a universal

229



APPENDIX B. PROOFS FROM CHAPTER 2

constant Cspectral such that with probability at least 1− 4(n ∨ d)−6

∥Γ(EM⊤ +ME⊤ + EE⊤)∥ ≤ Cspectral

(︃
σ2(n+

√
nd) + σ

√
nκλr

)︃
.

Proof of Lemma 1. We will follow the proof in Theorem 2 and Lemma 3 in Amini and

Razaee (2021). More specifically, defining ν := d+∥M∥2/σ2, we will show that there exists a

universal constant c such that for any u ≥ 0, with probability at least 1−4(n∨d)−6 exp(−u2),

∥Γ(EM⊤ +ME⊤ + EE⊤)∥ ≤ 2σ2νmax(δ2, δ), (B.10)

for δ =

√︂
6 log(n∨d)/c+n log(9)/c+u2/c

ν . To obtain the final result, note that by choosing C

sufficiently large, we have that when u = 0,

δ ≤ C
√︁
n/ν.

Furthermore, max(δ2, δ) ≤ δ2 + δ for all δ. Then the result reads that with probability at

least 1− 4(n ∨ d)−6,

∥Γ(EM⊤ +ME⊤ + EE⊤)∥ ≤ 2σ2ν(δ2 + δ)

≤ 2σ2ν(C2n/ν + C
√︁
n/ν)

≤ 2σ2C(Cn+
√
nν)

≤ 2σ2C(Cn+
√︁
n(d+ ∥M∥2/σ2))

≤ 2σ2C(Cn+
√
nd) + 2C

√
nσλ1

≤ Cspectral

(︃
σ2(n+

√
nd) +

√
nσκλr

)︃

by taking Cspectral sufficiently large and recalling that κ = λ1/λr.

We now prove the claim (B.10). Let z ∈ Rn be a unit vector, and define Yz := z⊤Γ(Z)z.

Recall Z = EM⊤ +ME⊤ + EE⊤, where the rows of E are of the form Σ
1/2
i Wi for vectors

Wi with independent mean-zero coordinates with unit ψ2 norm. Define X⃗ ∈ Rnd as the
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vector obtained by stacking the vectors Xi. Then

z⊤(A+ Γ(Z))z = ∥Xz∥2 −
∑︂
i

z2i ∥Xi∥2 + z⊤G(A)z.

Define the matrix Ξz := z⊤ ⊗ Id ∈ Rd×nd. Then ΞzX⃗ = Xz, where X is the matrix whose

columns are Xi. Let Σ be the block-diagonal matrix whose i’th block is Σ
1/2
i . Then

Xz = Ξzµ⃗+ ΞzΣ
1/2W⃗ = ΞzΣ

1/2ξ⃗,

for ξ = Σ−1/2µ⃗+ W⃗ . Similarly, note that

n∑︂
i=1

z2i ∥Xi∥2 = ∥diag(ziId)X⃗∥2 = ∥diag(ziId)Σ1/2ξ⃗∥2.

Therefore, we have that z⊤Az − z⊤G(A)z = z⊤Γ(A)z and

z⊤(Γ(Z))z = z⊤(A+ Γ(Z))z − z⊤Az

= ∥X⃗z∥2 −
n∑︂
i=1

z2i ∥Xi∥2 + z⊤G(A)z − z⊤Az

= ∥ΞzΣ1/2ξ⃗∥2 − ∥diag(z)Σ1/2ξ⃗∥2 − z⊤Γ(A)z

= ξ⃗
⊤
Bz ξ⃗ − ξ⃗

⊤
Cz ξ⃗ − z⊤Γ(A)z

= ξ⃗
⊤
(Bz − Cz)ξ⃗ − E

(︃
ξ⃗
⊤
(Bz − Cz)ξ⃗

)︃
,

where Bz := Σ1/2Ξ⊤
z ΞzΣ

1/2; Cz := Σ1/2diag(ziId)diag(ziId)Σ
1/2. We now apply the ex-

tension of the Hanson-Wright inequality (Theorem 6 in Amini and Razaee (2021)) to this

quadratic form to determine that

P
(︃
|Yz| ≥ t

)︃
≤ 4 exp

(︃
− cmin

(︃
t2

∥Bz − Cz∥2F + ∥˜︂M(Bz − Cz)∥2F
,

t

∥Bz − Cz∥

)︃)︃
, (B.11)

where ˜︂M := (Σ−1/2µ⃗)⊤. We now bound the denominators.

We have thatBz−Cz = Σ1/2(Ξ⊤
z Ξz−diag(z2i Id))Σ

1/2. Hence ∥Bz−Cz∥F = ∥Σ1/2(Ξ⊤
z Ξz−

diag(z2i Id))Σ
1/2∥F ≤ ∥Σ1/2∥2∥(Ξ⊤

z Ξz − diag(z2i Id))∥F . Furthermore, by the parallelogram
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law and the fact that z is unit norm,

∥Ξ⊤
z Ξz − diag(z2i Id)∥2F = 2∥Ξ⊤

z Ξz∥2F + 2∥diag(z2i Id)∥2F − ∥Ξ⊤
z Ξz + diag(z2i Id)∥2F

≤ 2d+ 2d

≤ 4d,

so that ∥Bz − Cz∥2F ≤ 4dσ4, where σ2 = ∥Σ∥ = maxi ∥Σi∥. Additionally,

∥˜︂M(Bz − Cz)∥2F = ∥(Σ−1/2µ⃗)⊤Σ1/2(Ξ⊤
z Ξz − diag(z2i Id))Σ

1/2∥2F

= ∥µ⃗(Ξ⊤
z Ξz − diag(z2i Id))Σ

1/2∥2F

= ∥Σ1/2(Ξ⊤
z Ξz − diag(z2i Id))µ⃗∥22

≤ σ2∥(Ξ⊤
z Ξz − diag(z2i Id))µ⃗∥22.

Note that

∥(Ξ⊤
z Ξz − diag(z2i Id))µ⃗∥2 ≤ ∥Ξ⊤

z Ξzµ⃗∥+ ∥diag(z2i Id)µ⃗∥

≤ 2∥M∥

using the definition of µ⃗. Finally, for the operator norm, we have that

∥Bz − Cz∥ ≤ ∥Bz∥+ ∥Cz∥

≤ σ2∥Ξz∥2 + σ2∥diag(z2i Id)∥2

≤ 2σ2.

In summary,

∥Bz − Cz∥2F ≤ 4σ4d; (B.12)

∥˜︂M(Bz − CZ)∥2F ≤ 4σ2∥M∥2; (B.13)

∥Bz − Cz∥ ≤ 4σ2. (B.14)

232



Joshua Agterberg

Plugging (B.12), (B.13), and (B.14) into Equation B.11 and absorbing 1/4 into the constant

c yields

P
(︃
|Yz| ≥ t

)︃
≤ 4 exp

(︃
− cmin

(︃
t2

σ4d+ σ2∥M∥2
,
t

σ2

)︃)︃
.

Define ˜︁t := σ2t. Then the inequality above becomes

P
(︁
|Yz| ≥ tσ2

)︁
≤ 4 exp

(︃
− cmin

(︃
t2

d+ σ−2∥M∥2
, t

)︃)︃
.

By changing t to νt, the above concentration can be written via

P
(︃
|Yz| ≥ tσ2ν

)︃
≤ 4 exp(−cνmin(t2, t)).

Define δ :=
√︂

6 log(n∨d)+n log(9)+u2

νc . Note that regardless of the value of δ,

min(max(δ2, δ)2,max(δ2, δ)) ≤ δ2.

Taking t = max(δ2, δ), we arrive at

P(|Yz| ≥ σ2νmax(δ2, δ)) ≤ 4 exp(−cνmin(max(δ2, δ)2,max(δ2, δ)))

≤ 4 exp(−cνδ2)

≤ 4 exp(−c6 log(n ∨ d) + n log(9) + u2

c
)

≤ 4 exp(−6 log(n ∨ d)− n log(9)− u2).

Now we follow the proof of Theorem 2 in Amini and Razaee (2021) via an ε-net. Let N be

a 1/4 net of the n-sphere, and hence that |N | ≤ 9n. Then ∥Γ(Z)∥ ≤ 2maxz∈N |Yz|, so that
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by a union bound,

P
(︃
∥Γ(Z)∥ ≥ 2σ2νmax(δ2, δ)

)︃
≤ 4 · 9n exp(−6 log(n ∨ d)− n log(9)− u2)

≤ 4 exp(n log(9)− 6 log(n ∨ d)− n log(9)− u2)

≤ 4(n ∨ d)−6 exp(−u2).

This proves the result.

Lemma 13. With probability at least 1− 2(n ∨ d)−5,

∥˜︁UD ˜︁U⊤
D − ˜︁U ˜︁U⊤∥ ≤ Cδ1

λ2r
∥U∥2,∞

Proof of Lemma 13. This follows because

∥diag(EM⊤ +ME⊤)∥2 = max
i

|(EM⊤ +ME⊤)ii|

= 2max
i

|⟨Ei.Mi⟩|

= 2max
i

|
∑︂
α

Yiα(Σ
1/2
i Mi)α|.

This is a sum of d independent random variables with ψ2 norm bounded by 2maxi ∥Σ1/2
i Mi∥ ≤

2σmaxi ∥Mi∥ ≤ 2σλ1∥U∥2,∞. Consequently, Hoeffding’s inequality and a union bound that

∥diag(EM⊤+ME⊤)∥ ≤ 2λ1σ∥U∥2,∞
√︁

6 log(n ∨ d) with probability at least 1−2(n∨d)−5.

By the Davis-Kahan theorem,

∥˜︁UD ˜︁U⊤
D − ˜︁U ˜︁U⊤∥ ≤ C

2λ1
λ2r

σ∥U∥2,∞
√︁
log(n ∨ d)

≤ Cδ1
λ2r

∥U∥2,∞

where we have used Weyl’s inequality and Assumption 2.2.
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B.5.2 Proof of Lemma 15

In order to prove Lemma 15, we will also require the following additional lemmas.

Lemma 20. There exists an absolute constant C0 such that with probability at least 1− (n∨

d)−5 it holds that

∥U⊥U
⊤
⊥WU∥2,∞ ≤ C0

(︃√
rnd log(n ∨ d)σ2∥U∥2,∞ +

√︁
rn log(n ∨ d)λ1σ

)︃
∥U∥2,∞,

Proof of Lemma 20. Note that

∥U⊥U
⊤
⊥WU∥2,∞ ≤ ∥UU⊤(ME⊤ + EM⊤ + Γ(EE⊤))U∥2,∞ + ∥(EM⊤ +ME⊤ + Γ(EE⊤))U∥2,∞

≤ ∥U∥2,∞∥W∥+ ∥(EM⊤ +ME⊤ + Γ(EE⊤))U∥2,∞ (B.15)

We will analyze the second term. Note that the i, j entry of W can be written as

E⊤
i Mj +M⊤

i Ej + E⊤
i Ej(1− δij).

Furthermore, note that

∥WU∥2,∞ ≤
√
r∥WU∥max.

Fix an index i, j. then this shows that

(WU)ij =

n∑︂
k=1

(︃
⟨Yi,Σ1/2

i Mk⟩+ ⟨Yk,Σ
1/2
k Mi⟩+ (1− δik)⟨Yi,Σ

1/2
i Σ

1/2
k Yk⟩

)︃
Ukj .

Define

ξik :=

⎧⎪⎪⎨⎪⎪⎩
⟨Yi,Σ1/2

i Mk⟩+ ⟨Yk,Σ
1/2
k Mi⟩+ ⟨Yi,Σ1/2

i Σ
1/2
k Yk⟩ i ̸= k

2⟨Yi,Σ1/2
i Mi⟩ i = k.
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Then

(WU)ij =

n∑︂
k=1

ξikUkj

Expanding out ξik, we have that

ξik =

⎧⎪⎪⎨⎪⎪⎩
∑︁d

α=1(Yiα[Σ
1/2
i Mk]α + Ykα(Σ

1/2
k Mi)α) +

∑︁d
α=1

∑︁d
β=1(Σ

1/2
k Σ

1/2
i )αβYiαYkβ i ̸= k

2
∑︁d

α=1(Yiα[Σ
1/2
i Mi]α i = k,

where Yiα denotes the α coordinate of the i’th random vector Yi. We want to write this in

terms of the independent collection of random variables Y . We have that

⃓⃓⃓⃓ n∑︂
k=1

ξikUkj

⃓⃓⃓⃓
≤ 2

⃓⃓⃓⃓ n∑︂
k=1

Ukj

d∑︂
α=1

(Yiα[Σ
1/2
i Mk]α]

⃓⃓⃓⃓
+

⃓⃓⃓⃓ n∑︂
k=1,k ̸=i

Ukj

d∑︂
α=1

Ykα(Σ
1/2
k Mi)α)

⃓⃓⃓⃓

+

⃓⃓⃓⃓ n∑︂
k=1,k ̸=i

Ukj

d∑︂
α=1

d∑︂
β=1

(Σ
1/2
k Σ

1/2
i )αβYiαYkβ

⃓⃓⃓⃓

= (I) + (II) + (III).

In what follows, each term is bounded separately.

The term (I): The first term can be written via

d∑︂
α=1

Yiα

[︃ n∑︂
k=1

Ukj [Σ
1/2
i Mk]α

]︃
,

which is a sum of d mean-zero random variables. So it suffices to bound the coefficients in

order to apply the Hoeffding concentration inequality for subgaussians. The coefficients can

be found via

a(I)(α) :=
n∑︂
k=1

Ukj [Σ
1/2
i Mk]α
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for α ranging from 1 to d. Furthermore,

d∑︂
α=1

(︃ n∑︂
k=1

Ukj˜︂Mikα

)︃2

≤
d∑︂

α=1

(︃ n∑︂
k=1

U2
kj

)︃(︃ n∑︂
k=1,k ̸=i

˜︂M2
ikα

)︃

≤
d∑︂

α=1

(︃ n∑︂
k=1

(Σ
1/2
i Mk)

2
α

)︃
≤ ∥Σ1/2

i M⊤∥2F

= ∥MΣ
1/2
i ∥2F

≤ n∥MΣ
1/2
i ∥22,∞

≤ n∥U∥22,∞λ21σ2.

By the generalized Hoeffding inequality (Theorem 2.6.3 in Vershynin (2018)) we obtain

P
(︃
|(I)| > t

)︃
≤ 2 exp

[︃
− c

(︃
t2

n∥U∥22,∞λ21σ2

)︃]︃

Taking t = C∥U∥2,∞λ1σ
√︁
n(2γ log(n ∨ d) + 2 log(r)) shows that this holds with probability

at least 1− 2r−1n−γ . Therefore, we derive the first bound,

(I) ≤ C∥U∥2,∞λ1σ
√︁
n(2γ log(n ∨ d) + 2 log(r))

≤ C∥U∥2,∞λ1σ
√︁
γn log(n ∨ d),

since log(r) ≤ log(n ∨ d).

The term (II): By a similar argument, it suffices to bound the norm of the coefficient

vector, where the coefficient vector ranges over α and k ̸= i with

(a2)α,k := Ukj(Σ
1/2
k Mi)α).

237



APPENDIX B. PROOFS FROM CHAPTER 2

Therefore, we see that

∥a2∥22 : =
d∑︂

α=1

n∑︂
k=1,k ̸=i

U2
kj(Σ

1/2
k Mi)α)

2

≤
d∑︂

α=1

n∑︂
k=1,k ̸=i

(Σ
1/2
k Mi)α)

2

≤
n∑︂

k=1,k ̸=i
∥Σ1/2

k Mi∥2

≤ nmax
k

∥M⊤
i Σ

1/2
k ∥2

≤ n∥Mi∥2max
k

∥Σ1/2
k ∥2

≤ n∥M∥2,∞max
k

∥Σ1/2
k ∥2

≤ nσ2∥M∥22,∞

≤ ∥U∥22,∞nσ2λ21.

Therefore, we see that with probability at least 1− 2r−1n−γ ,

(II) ≤
√
2∥U∥2,∞σλ1

√︁
γ log(n ∨ d)n,

which matches the previous bound.

The term (III): The final quantity is of the form

(III) :=
n∑︂

k=1,k ̸=i
Ukj

d∑︂
α=1

d∑︂
β=1

(Σ
1/2
k Σ

1/2
i )αβYiαYkβ.

We use a conditioning argument. First, consider the event

A := {
d∑︂

α=1

YiαUkj(Σ
1/2
k Σ

1/2
i )αβ > s for any k and β}

for some s > 0 to be determined later. Note that this event depends on the collection {Yiα}α

only. Conditional on this event, we see that the sum is a sum of independent mean-zero

subguassian random variables with ψ2 norm bounded by s. Since there are (n − 1)d such
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random variables, the generalized Hoeffding inequality shows that

P(|(III)| > t|A) ≤ 2 exp

(︃
− 1

2

t2

(n− 1)ds2

)︃

so taking t =
√
2
√︁
(n− 1)ds2(γ log(n ∨ d) + log(r)) shows that this holds with probability

at least 1− 2r−1n−γ . Now I will find a probabilistic bound on s.

Note that the sum in the event A is a sum over d independent random variables, so it

suffices to estimate the term

d∑︂
α=1

(Ukj(Σ
1/2
k Σ

1/2
i )αβ)

2

uniformly over k, β. We see that

max
k,β

d∑︂
α=1

(Ukj(Σ
1/2
k Σ

1/2
i )αβ)

2 ≤ max
k,β

U2
kj

d∑︂
α=1

(Σ
1/2
k Σ

1/2
i )2αβ

≤ max
k

∥Σ1/2
i Σ

1/2
k ∥22,∞U2

kj

≤ ∥Σ1/2
i ∥22,∞∥U∥22,∞max

k
∥Σ1/2

k ∥2

≤ ∥Σ1/2
i ∥22,∞∥U∥22,∞σ2.

Therefore, we have that since there are at most nd terms with k and β,

P(A) ≤ ndmax
k,β

P
(︃ d∑︂
α=1

YiαUkj(Σ
1/2
k Σ

1/2
i )αβ > s for fixed k and β

)︃
≤ 2nd exp

(︃
− 1

2

s2

∥Σ1/2
i ∥22,∞∥U∥22,∞σ2

)︃
,

so taking s =
√
2
√︁

(γ + 1) log(n ∨ d) + log(d) + log(r)∥U∥2,∞∥Σ1/2
i ∥2,∞σ shows that this

holds with probability at least 1 − 2r−1n−γ . Therefore, with this fixed choice of s, we see

that

P((III) ≤ t) ≤ P((III) ≤ t|A) + P(Ac)

≤ 2r−1n−γ + 2r−1n−γ
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Doing the algebra, we see that

t =
√
2
√︁

(n− 1)ds
√︁
γ log(n ∨ d) + log(r)

=
√
2
√︁

(n− 1)d
√︁
γ log(n ∨ d) + log(r)

(︃√
2
√︁

(γ + 1) log(n ∨ d) + log(d) + log(r)∥U∥2,∞∥Σ1/2
i ∥2,∞σ

)︃
≤ 4

√
nd
√︁
(γ + 1) log(n ∨ d)

√︁
(γ + 1) log(n ∨ d)∥U∥2,∞∥Σ1/2

i ∥2,∞σ

≤ 8
√
nd∥U∥2,∞σ2γ log(n ∨ d)

Letting γ ≥ 20 and taking a union over all nr entries shows that with probability at least

1− (n ∨ d)−10.,

∥WU∥2,∞ ≤ C0

(︃√
rnd log(n ∨ d)σ2 +

√︁
rn log(n ∨ d)λ1σ

)︃
∥U∥2,∞.

Hence, the result holds by also applying Lemma 1 on the term ∥W∥ in Equation (B.15).

Since the spectral norm bound is smaller than the bound above and holds with probability

at least 1− 4(n ∨ d)−6, the result holds by increasing the constant C0 by a factor of 2.

Lemma 15. Let W = EM⊤ +ME⊤ + Γ(EE⊤). There exists universal constants C1 and

C2 such that for any p ≥ 1, we have that with probability at least 1− (p+1)(n∨ d)−5 for all

1 ≤ p0 ≤ p that

∥(U⊥U
⊤
⊥WU⊥U

⊤
⊥ )p0−1WU∥2,∞ ≤ C1(C2δ)

p0∥U∥2,∞,

Proof of Lemma 15. We will prove the result by induction. When p = 1, the result holds

by Lemma 20, where we take C1 and C2 in the statement of the lemma to be large, fixed

constants. We now fix these constants C1 and C2.

Let p > 1. Assume that with probability at least 1−p(n∨d)−5 that for all 1 ≤ p0 ≤ p−1

that

∥U⊥U
⊤
⊥ (U⊥U

⊤
⊥WU⊥U

⊤
⊥ )p0−1WU∥2,∞ ≤ C1(C2δ)

p0∥U∥2,∞.

Note that by the definition of W := EM⊤ + ME⊤ + Γ(EE⊤), we have the identity
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U⊥U
⊤
⊥WU⊥U

⊤
⊥ = U⊥U

⊤
⊥Γ(EE⊤)U⊥U

⊤
⊥ . Let B be the event that

B :=

{︃
∥U⊥U

⊤
⊥ (U⊥U

⊤
⊥WU⊥U

⊤
⊥ )p0−1WU∥2,∞ ≤ C1(C2δ)

p0∥U∥2,∞ for all 1 ≤ p0 ≤ p− 1

}︃
⋂︂{︃

∥W∥ ≤ δ√︁
r log(n ∨ d)

}︃
⋂︂{︃

∥Γ(EE⊤)∥ ≤ δ√︁
r log(n ∨ d)

}︃
.

Note that P(B) ≥ 1− p(n ∨ d)−5 − 12(n ∨ d)−6 by the induction hypothesis and Lemmas 1

and 13 (to get the bound on Γ(EE⊤), we apply Lemma 1 with M = 0).

We note that

∥(U⊥U
⊤
⊥WU⊥U

⊤
⊥ )p−1WU∥2,∞ ≤ ∥UU⊤Γ(EE⊤)(U⊥U

⊤
⊥WU⊥U

⊤
⊥ )p−2WU∥2,∞

+ ∥Γ(EE⊤)(U⊥U
⊤
⊥WU⊥U

⊤
⊥ )p−2WU∥2,∞

≤ ∥U∥2,∞∥Γ(EE⊤)∥∥W∥p−1 + ∥Γ(EE⊤)(U⊥U
⊤
⊥WU⊥U

⊤
⊥ )p−2WU∥2,∞

≤ ∥U∥2,∞∥Γ(EE⊤)∥∥W∥p−1 +
√
r∥Γ(EE⊤)(U⊥U

⊤
⊥WU⊥U

⊤
⊥ )p−2WU∥max.

(B.16)

We first will analyze the (i, j) entry of the matrix Γ(EE⊤)(U⊥U
⊤
⊥WU⊥U

⊤
⊥ )p−2WU . Fix an

index i and consider the auxiliary matrix X−i defined via

X−i := (U⊥U
⊤
⊥ (I − eie

⊤
i )W (I − eie

⊤
i )U⊥U

⊤
⊥ )p−2(I − eie

⊤
i )W (I − eie

⊤
i )U.

Note that X−i is independent of the random variable Ei. Define also the matrix X via

X : = (U⊥U
⊤
⊥WU⊥U

⊤
⊥ )p−2WU.

We note that the i, j entry of the matrix Γ(EE⊤)X can be written as

∑︂
k ̸=i

⟨Ei, Ek⟩X−i
kj +

∑︂
k ̸=i

⟨Ei, Ek⟩(Xkj −X−i
kj ) := Iij1 + Iij2
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where

Iij1 : =
∑︂
k ̸=i

⟨Ei, Ek⟩X−i
kj ;

Iij2 : =
∑︂
k ̸=i

⟨Ei, Ek⟩(Xkj −X−i
kj ).

Let Aij be the event that for all k, |X−i
kj | ≤ 2C1(C2δ)

p−1∥U∥2,∞ =: A. We first study Iij1

on the event Aij .

Note that

Iij1 = (Ei)
⊤
(︃∑︂
k ̸=i

EkX
−i
kj

)︃

= Y ⊤
i Σ

1/2
i

(︃
(E−i)⊤X−iej

)︃
,

where E−i is the matrix E with the i’th row set to zero. Recall that by construction Aij

does not depend on Ei. Hence, conditional on Ek for k ̸= i, this is a sum of d independent

mean-zero random variables Yiα with coefficients indexed by α. Define the vector v :=

Σ
1/2
i (E−i)⊤X−iej ∈ Rd. Note that

∥v∥ =

⃦⃦⃦⃦
Σ
1/2
i (E−i)⊤X−iej

⃦⃦⃦⃦
≤ ∥Σ1/2

i ∥∥E−i∥∥X−iej∥2

≤ σi∥E−i∥∥X−iej∥2,

which always holds. Moreover, on the event Aij it holds that

∥X−iej∥2 ≤
√
nmax

k
|X−i

kj |

≤
√
nA.

Suppose for the moment that E is the event that ∥E−i∥ ≤ B, for some bound B. Then by
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independence of this event with Ei, it holds that

∥Y ⊤
i v∥2ψ2

= ∥v∥22.

Therefore, by Hoeffding’s inequality, for some universal constant C3,

P
(︃
|Y ⊤
i Σ

1/2
i (E−i)⊤X−iej | > C3

√
nσiAB

√︁
20 log(n ∨ d) ∩ Aij ∩ E

)︃
≤ 2(n ∨ d)−20. (B.17)

We now deduce a bound B for the spectral norm of E−i. Note that for any deterministic

unit vectors a ∈ Rn and b ∈ Rd, by independence of the Ykα’s it holds that

∥a⊤E−ib∥2ψ2
= ∥

∑︂
k ̸=i

∑︂
j

akE
−i
kj bj∥

2
ψ2

=

⃦⃦⃦⃦∑︂
k ̸=i

∑︂
j

ak(Σ
1/2
k Yk)jbj

⃦⃦⃦⃦2
ψ2

=
∑︂
k ̸=i

a2k

⃦⃦⃦⃦∑︂
j

(Σ
1/2
k Yk)jbj

⃦⃦⃦⃦2
ψ2

=
∑︂
k ̸=i

a2k

⃦⃦⃦⃦∑︂
j

∑︂
α

(Σ
1/2
k )jαYkαbj

⃦⃦⃦⃦2
ψ2

=
∑︂
k ̸=i

a2k
∑︂
α

⃦⃦⃦⃦
Ykα

∑︂
j

(Σ
1/2
k )jαbj

⃦⃦⃦⃦2
ψ2

=
∑︂
k ̸=i

a2k
∑︂
α

∥
∑︂
j

(Σ
1/2
k )jαbj∥22

=
∑︂
k ̸=i

a2k
∑︂
α

[Σ
1/2
k b]2α

=
∑︂
k ̸=i

a2k∥Σ
1/2
k b∥22

≤ σ2
∑︂
k ̸=i

a2k∥b∥2

≤ σ2.

Therefore, by a standard ε-net argument (e.g. the argument in the proof of Theorem 4.4.5
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in Vershynin (2018)), it holds that there exists a universal constant C4 such that

P
(︃
∥E−i∥ > C4σ(

√
d+ u)

)︃
≤ 2 exp(−u2).

Here we implicitly used Assumption 2.3, or that d ≥ cn. Define the event

E :=

{︃
∥E−i∥ ≤ C4σ(

√
d+

√︁
20 log(n ∨ d))

}︃
,

so that P(Ec) ≤ 2(n ∨ d)−20. On the event E it holds that ∥E−i∥ ≤ C4σ
√︁
20d log(n ∨ d).

By Equation (B.17),

P
(︃
|Y ⊤
i Σ

1/2
i (E−i)⊤X−iej | >20C3C4σ

2
√
ndA log(n ∨ d) ∩ Aij

)︃
≤ P

(︃
|Y ⊤
i Σ

1/2
i (E−i)⊤X−iej | > 20C3C4σ

2
√
ndA log(n ∨ d) ∩ Aij ∩ E

)︃
+ P(Ec)

≤ 4(n ∨ d)−20.

Furthermore, A := 2C1(C2δ)
p−1∥U∥2,∞. Recall that δ satisfies, for some sufficiently large

absolute constant C0,

δ = C0

(︃√
rnd log(n ∨ d)σ2 +

√︁
rn log(n ∨ d)σλ1

)︃
,

so that δ√
r
≥ log(n ∨ d)

√
ndσ2 + λ1

√︁
n log(n ∨ d)σ. Therefore,

P
(︃
|Iij1 | > C1(C2δ)

p

4
√
r

∥U∥2,∞ ∩ Aij

)︃
≤ 4(n ∨ d)−20

as long as C2 ≥ 20C3C4, which is true by taking C2 large since C3 and C4 are universal
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constants. Therefore, from equation (B.16),

P
(︃
∥U∥2,∞∥Γ(EE⊤)∥∥W∥p−1 +

√
r∥Γ(EE⊤)(U⊥U

⊤
⊥WU⊥U

⊤
⊥ )p−2WU∥max > C1(C2δ)

p∥U∥2,∞
)︃

≤ P
(︃
∥U∥2,∞∥Γ(EE⊤)∥∥W∥p−1 +

√
r∥Γ(EE⊤)(U⊥U

⊤
⊥WU⊥U

⊤
⊥ )p−2WU∥max > C1(C2δ)

p∥U∥2,∞ ∩ B
)︃
+ P(Bc)

≤ P
(︃
∥Γ(EE⊤)(U⊥U

⊤
⊥WU⊥U

⊤
⊥ )p−2WU∥max >

C1

2
√
r
(C2δ)

p∥U∥2,∞ ∩ B
)︃
+ P(Bc)

≤ P
(︃⋃︂

i,j

⃓⃓⃓⃓
e⊤i Γ(EE

⊤)(U⊥U
⊤
⊥WU⊥U

⊤
⊥ )p−2WUej

⃓⃓⃓⃓
>

C1

2
√
r
(C2δ)

p∥U∥2,∞ ∩ B
)︃
+ P(Bc)

≤ nrmax
i,j

P
(︃
|Γ(EE⊤)(U⊥U

⊤
⊥WU⊥U

⊤
⊥ )p−2WU |ij >

C1

2
√
r
(C2δ)

p∥U∥2,∞ ∩ B
)︃
+ P(Bc)

≤ nrmax
i,j

P
(︃
|Iij1 + Iij2 | > C1

2
√
r
(C2δ)

p∥U∥2,∞ ∩ B
)︃
+ P(Bc)

≤ nrmax
i,j

P
(︃
|Iij1 | > C1

4
√
r
(C2δ)

p∥U∥2,∞ ∩ B
)︃
+ nrmax

i,j
P
(︃
|Iij2 | > C1

4
√
r
(C2δ)

p∥U∥2,∞ ∩ B
)︃
+ P(Bc)

≤ nrmax
i,j

P
(︃
|Iij1 | > C1

4
√
r
(C2δ)

p∥U∥2,∞ ∩ B ∩ Aij

)︃
+ nrmax

i,j
P(B ∩ Ac

ij)

+ nrmax
i,j

P
(︃
|Iij2 | > C1

4
√
r
(C2δ)

p∥U∥2,∞ ∩ B
)︃
+ P(Bc). (B.18)

In Lemma 21 we show for all i and j that P(B ∩ Ac
ij) = 0 and

P
(︃
|Iij2 | > C1

4
√
r
(C2δ)

p∥U∥2,∞ ∩ B
)︃

= 0.

In addition, from our previous analysis,

P
(︃
|Iij1 | > C1(C2δ)

p

4
√
r

∥U∥2,∞ ∩ Aij

)︃
≤ 4(n ∨ d)−20.

Finally, P(Bc) ≤ p(n∨d)−5+12(n∨d)−6 by the induction hypothesis. Plugging these results

into Expression (B.18), we obtain

nrP
(︃
|Iij1 | > C1

4
√
r
(C2δ)

p∥U∥2,∞ ∩ Aij

)︃
+ nrP(B ∩ Ac

ij) + P
(︃
|Iij2 | > C1

4
√
r
(C2δ)

p∥U∥2,∞ ∩ B
)︃
+ P(Bc)

≤ 4(nr)(n ∨ d)−20 + p(n ∨ d)−5 + 12(n ∨ d)−6

≤ (p+ 1)(n ∨ d)−5
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as desired.

Lemma 21. Define X−i and X as in the proof of Lemma 15. Let Aij and B be the events

defined via

Aij :=

{︃
max
k

|X−i
kj | ≤ 2C1(C2δ)

p−1∥U∥2,∞
}︃

B :=

{︃
∥U⊥U

⊤
⊥ (U⊥U

⊤
⊥WU⊥U

⊤
⊥ )p0−1WU∥2,∞ ≤ C1(C2δ)

p0∥U∥2,∞ for all 1 ≤ p0 ≤ p− 1

}︃
⋂︂{︃

∥W∥ ≤ δ√︁
r log(n ∨ d)

}︃
⋂︂{︃

∥Γ(EE⊤)∥ ≤ δ√︁
r log(n ∨ d)

}︃
.

Then B ∩Ac
ij is empty for all i and j. Define also Iij2 := e⊤i Γ(EE

⊤)(X −X−i)ej . as in the

proof of Lemma 15. Then again for all i and j,

P
(︃
|Iij2 | > C1

4
√
r
(C2δ)

p∥U∥2,∞ ∩ B
)︃

= 0.

Proof of Lemma 21. The proof will be split up into steps, the first of which will be expanding

out the difference X −X−i in terms of a matrix telescoping series, the second of which will

be bounding individual terms, and the final step will prove the two results.

Step 1: A useful expansion

We have that

X = (U⊥U
⊤
⊥WU⊥U

⊤
⊥ )p−2WU

X−i = (U⊥U
⊤
⊥ (I − eie

⊤
i )W (I − eie

⊤
i )U⊥U

⊤
⊥ )p−2(I − eie

⊤
i )W (I − eie

⊤
i )U.
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Define the matrix ξ :=W − (I − eie
⊤
i )W (I − eie

⊤
i ). We note that

X −X−i = (U⊥U
⊤
⊥WU⊥U

⊤
⊥ )p−2WU − (U⊥U

⊤
⊥ (I − eie

⊤
i )W (I − eie

⊤
i )U⊥U

⊤
⊥ )p−2(I − eie

⊤
i )W (I − eie

⊤
i )U

= (U⊥U
⊤
⊥WU⊥U

⊤
⊥ )p−2WU − (U⊥U

⊤
⊥ (I − eie

⊤
i )W (I − eie

⊤
i )U⊥U

⊤
⊥ )p−2(W − ξ)U

=

[︃
(U⊥U

⊤
⊥WU⊥U

⊤
⊥ )p−2 − (U⊥U

⊤
⊥ (I − eie

⊤
i )W (I − eie

⊤
i )U⊥U

⊤
⊥ )p−2

]︃
WU

+ (U⊥U
⊤
⊥ (I − eie

⊤
i )W (I − eie

⊤
i )U⊥U

⊤
⊥ )p−2ξU

=

[︃
(U⊥U

⊤
⊥WU⊥U

⊤
⊥ )p−2 − (U⊥U

⊤
⊥ (I − eie

⊤
i )W (I − eie

⊤
i )U⊥U

⊤
⊥ )p−3(U⊥U

⊤
⊥ (W − ξ)U⊥U

⊤
⊥ )

]︃
WU

+ (U⊥U
⊤
⊥ (I − eie

⊤
i )W (I − eie

⊤
i )U⊥U

⊤
⊥ )p−2ξU

=

[︃(︃
(U⊥U

⊤
⊥WU⊥U

⊤
⊥ )p−3 − (U⊥U

⊤
⊥ (I − eie

⊤
i )W (I − eie

⊤
i )U⊥U

⊤
⊥ )p−3

)︃
(U⊥U

⊤
⊥WU⊥U

⊤
⊥ )

]︃
WU

+ (U⊥U
⊤
⊥ (I − eie

⊤
i )W (I − eie

⊤
i )U⊥U

⊤
⊥ )p−3(U⊥U

⊤
⊥ ξU⊥U

⊤
⊥ )WU

+ (U⊥U
⊤
⊥ (I − eie

⊤
i )W (I − eie

⊤
i )U⊥U

⊤
⊥ )p−2ξU.

Note that if p = 2 then we simply have ξU . Define the matrices

Sξ := U⊥U
⊤
⊥ ξU⊥U

⊤
⊥

S−i : = (U⊥U
⊤
⊥ (I − eie

⊤
i )W (I − eie

⊤
i )U⊥U

⊤
⊥ )

S : = U⊥U
⊤
⊥WU⊥U

⊤
⊥ .

Then iterating the process above, it holds that

X −X−i =

p−2∑︂
m=1

(U⊥U
⊤
⊥ (I − eie

⊤
i )W (I − eie

⊤
i )U⊥U

⊤
⊥ )m−1(U⊥U

⊤
⊥ ξU⊥U

⊤
⊥ )(U⊥U

⊤
⊥WU⊥U

⊤
⊥ )p−m−2WU

+ (U⊥U
⊤
⊥ (I − eie

⊤
i )W (I − eie

⊤
i )U⊥U

⊤
⊥ )p−2ξU

=

p−2∑︂
m=1

Sm−1
−i SξS

p−m−2WU + Sp−2
−i ξU,

where the sum is understood to be the empty sum if p = 2.

Step 2: Analyzing each term in the sum
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We now analyze each individual term in the sum on the event B, where we also analyze

each row of W (X − X−i). Let the matrix B ∈ {Γ(EE⊤), I} be fixed. We ignore the

boundary term BSp−2
−i ξU for now. Note that the k’th row of such term can be written as

e⊤k BS
m−1
−i SξS

p−m−2WU,

Recall that

Sξ = U⊥U
⊤
⊥ ξU⊥U

⊤
⊥

= U⊥U
⊤
⊥

(︃
eie

⊤
i W +Weie

⊤
i − eie

⊤
i Weie

⊤
i

)︃
U⊥U

⊤
⊥

= U⊥U
⊤
⊥ eie

⊤
i WU⊥U

⊤
⊥ + U⊥U

⊤
⊥Weie

⊤
i U⊥U

⊤
⊥ − U⊥U

⊤
⊥ eie

⊤
i Weie

⊤
i U⊥U

⊤
⊥ .
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Therefore, by homogeneity of the vector norm, we have that

∥e⊤k BSm−1
−i SξS

p−m−2WU∥

≤ ∥e⊤k BSm−1
−i U⊥U

⊤
⊥ eie

⊤
i WU⊥U

⊤
⊥S

p−m−2WU∥+ ∥e⊤k BSm−1
−i U⊥U

⊤
⊥Weie

⊤
i U⊥U

⊤
⊥S

p−m−2WU∥

+ ∥e⊤k BSm−1
−i U⊥U

⊤
⊥ eie

⊤
i Weie

⊤
i U⊥U

⊤
⊥S

p−m−2WU∥

≤ ∥e⊤k BSm−1
−i U⊥U

⊤
⊥ ei∥∥e⊤i WU⊥U

⊤
⊥S

p−m−2WU∥+ ∥e⊤k BSm−1
−i U⊥U

⊤
⊥Wei∥∥e⊤i U⊥U

⊤
⊥S

p−m−2WU∥

+ ∥e⊤k BSm−1
−i U⊥U

⊤
⊥ ei∥∥e⊤i Wei∥∥e⊤i U⊥U

⊤
⊥S

p−m−2WU∥

≤ ∥e⊤k BSm−1
−i U⊥U

⊤
⊥ ei∥

(︃
∥e⊤i U⊥U

⊤
⊥WU⊥U

⊤
⊥S

p−m−2WU∥+ ∥e⊤i UU⊤WU⊥U
⊤
⊥S

p−m−2WU∥
)︃

+ ∥e⊤k BSm−1
−i U⊥U

⊤
⊥Wei∥∥e⊤i U⊥U

⊤
⊥S

p−m−2WU∥

+ ∥e⊤k BSm−1
−i U⊥U

⊤
⊥ ei∥∥e⊤i Wei∥∥e⊤i U⊥U

⊤
⊥S

p−m−2WU∥

≤ ∥BSm−1
−i ∥∥U⊥U

⊤
⊥WU⊥U

⊤
⊥S

p−m−2WU∥2,∞ + ∥BSm−1
−i ∥∥U∥2,∞∥WU⊥U

⊤
⊥S

p−m−2WU∥

+ ∥BSm−1
−i U⊥U

⊤
⊥W∥∥U⊥U

⊤
⊥S

p−m−2WU∥2,∞ + ∥BSm−1
−i ∥∥W∥∥U⊥U

⊤
⊥S

p−m−2WU∥2,∞

≤ ∥BSm−1
−i ∥∥Sp−m−1WU∥2,∞ + ∥U∥2,∞∥BSm−1

−i ∥∥W∥p−m + ∥BSm−1
−i ∥∥W∥∥U⊥U

⊤
⊥S

p−m−2WU∥2,∞

+ ∥BSm−1
−i ∥∥W∥∥U⊥U

⊤
⊥S

p−m−2WU∥2,∞

≤ ∥BSm−1
−i ∥

(︃
C1(C2δ)

p−m∥U∥2,∞ + ∥U∥2,∞∥W∥p−m + 2∥W∥C1(C2δ)
p−m−1∥U∥2,∞

)︃
≤ ∥BSm−1

−i ∥∥U∥2,∞
(︃
C1(C2δ)

p−m +

[︃
δ√︁

r log(n ∨ d)

]︃p−m
+ 2

δ√︁
r log(n ∨ d)

C1(C2δ)
p−m−1

)︃
.

But for ∥BSm−1
−i ∥, this bound is uniform in i and j. Finally, for the boundary term, we

note that the same strategy can be applied in precisely the same manner, yielding the same

bound.

Step 3: Putting it together

First we show the upper bound on Iij2 on B. Recall that

Iij2 = e⊤i Γ(EE
⊤)(X −X−i)ej .
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By the bounds on each term, we have that

|e⊤i Γ(EE⊤)(X −X−i)ej |

≤ ∥e⊤i Γ(EE⊤)(X −X−i)∥

≤
p−2∑︂
m=1

∥Γ(EE⊤)∥∥W∥m−1∥U∥2,∞
(︃
C1(C2δ)

p−m +

[︃
δ√︁

r log(n ∨ d)

]︃p−m
+ 2

δ√︁
r log(n ∨ d)

C1(C2δ)
p−m−1

)︃

≤ 4C1∥U∥2,∞
p−2∑︂
m=1

∥Γ(EE⊤)∥∥W∥m−1(C2δ)
p−m

≤ 4C1∥U∥2,∞
p−2∑︂
m=1

(︃
δ√︁

r log(n ∨ d)

)︃m
(C2δ)

p−m

≤ 4C1∥U∥2,∞√︁
r log(n ∨ d)

(C2δ)
p
p−2∑︂
m=1

C−m
2

≤ C1

4
√
r
(C2δ)

p∥U∥2,∞

as long as C2 ≥ 48.

Next we show that B ∩ Ac
ij is empty for all i and j. More specifically, we show that

|X−i
kj −Xkj | ≤ C1(C2δ)

p−1∥U∥2,∞,

Again upper bounding the k, j entry by the k’th row norm, we note that the k’th row of

X−X−i can be written as e⊤k (X−X−i). Using the expansion and the bounds on each term

in the summation, we have that

∥e⊤k (X −X−i)∥ ≤
p−1∑︂
m=1

∥W∥m−1∥U∥2,∞
(︃
C1(C2δ)

p−m +

[︃
δ√︁

r log(n ∨ d)

]︃p−m
+

δ√︁
r log(n ∨ d)

C1(C2δ)
p−m−1

)︃
≤ 4C1∥U∥2,∞(C2δ)

p−1
∑︂
m=1

C−m
2

≤ C1∥U∥2,∞(C2δ)
p−1,
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and hence on B we have that

∥e⊤kX−iej∥ ≤ ∥X∥2,∞ + ∥e⊤k (X −X−i)∥

≤ 2C1(C2δ)
p−1∥U∥2,∞

as desired. Therefore B ∩ Ac
ij is empty.

B.6 Proof of Lemmas in Section B.2

B.6.1 Proof of Lemma 2

We will need the following lemma, adapted from Zhang et al. (2022).

Lemma 22 (Lemma 1 in Zhang et al. (2022)). Let U, V ∈ O(n, r) and let A be a fixed n×n

matrix. Then

∥G(UU⊤
A)∥ ≤ ∥U∥2,∞∥A∥

∥G(AV V ⊤)∥ ≤ ∥V ∥2,∞∥A∥.

Proof of Lemma 2. First, if T0 ≥ C log
(︂

λ2r
∥Γ(Z)∥

)︂
, then by Zhang et al. (2021) it holds that

∥NT − A∥ ≤ 3∥Γ(Z)∥. In addition, supposing the result holds and that ρ ≤ 1
2 , then when

T − T0 ≥ C log
(︂

1
∥U∥2,∞

)︂
it holds that

∥ ˆ︁A− ˜︁A∥ ≤ 41∥U∥2,∞∥Γ(Z)∥.

Hence, we must have that

T ≥ C log

(︃
1

∥U∥2,∞

)︃
+ T0

≥ C

(︃
log

(︃
1

∥U∥2,∞

)︃
+ log

(︃
λ2r

∥Γ(Z)∥

)︃)︃
≥ C

(︃
log

(︃
λ2r

∥U∥2,∞∥Γ(Z)∥

)︃)︃
.
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This proves the “consequently” part. We now show that

˜︁KT ≤ 4

ρT−T0
∥Γ(Z)∥+ 20

1− ρ
∥U∥2,∞∥Γ(Z)∥.

We have that

∥NT − ˜︁A∥ = ∥G(NT − ˜︁A)∥
≤
⃦⃦⃦
G
(︂(︁
PUT−1 − P˜︁U)︁ (︂NT−1 − ˜︁A)︂)︂⃦⃦⃦+ ⃦⃦⃦G(︂P˜︁U

(︂
NT−1 − ˜︁A)︂)︂⃦⃦⃦+ ⃦⃦⃦G(︂PUT−1

⊥
˜︁A)︂⃦⃦⃦

≤
⃦⃦⃦
G
(︂(︁
PUT−1 − P˜︁U)︁ (︂NT−1 − ˜︁A)︂)︂⃦⃦⃦+ ⃦⃦⃦G(︂P˜︁U

(︂
NT−1 − ˜︁A)︂)︂⃦⃦⃦+ ⃦⃦⃦G(︂PUT−1

⊥
A
)︂⃦⃦⃦

+ ∥G(PUT−1
⊥

Γ(Z))∥

≤
⃦⃦⃦
G
(︂(︁
PUT−1 − P˜︁U)︁ (︂NT−1 − ˜︁A)︂)︂⃦⃦⃦+ ⃦⃦⃦G(︂P˜︁U

(︂
NT−1 − ˜︁A)︂)︂⃦⃦⃦+ ⃦⃦⃦G(︂PUT−1

⊥
A
)︂⃦⃦⃦

+ ∥G(PUT−1
⊥

− P˜︁U⊥
)Γ(Z))∥+ ∥G(P˜︁U⊥

Γ(Z))∥

= J1 + J2 + J3 + J4 + J5.

we now bound each term.

The term J1: We use the restricted-rank operator norm of G to bound this term, since

rank(PUT−1 − P˜︁U ) ≤ 2r:

∥G((PUT−1 − P˜︁U )(NT−1 − ˜︁A))∥ ≤ ∥PUT−1 − P˜︁U∥∥NT−1 − ˜︁A∥.

The term J2: By Lemma 22,

∥G(P˜︁U (NT−1 − ˜︁A))∥ ≤ ∥˜︁U∥2,∞∥NT−1 − ˜︁A∥.

The term J3: By Lemmas 22 and 23,

∥G(PUT−1
⊥

A)∥ = ∥G(PUT−1
⊥

APU )∥ ≤ ∥U∥2,∞∥PUT−1
⊥

A∥ ≤ 2∥U∥2,∞∥NT−1 −A∥.
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The term J4: Since PUT−1
⊥

− P˜︁U⊥
= (I − P˜︁U⊥

) − (I − PUT−1
⊥

) = P˜︁U − PUT−1 , we proceed

as we did for J1, obtaining

∥G((PUT−1
⊥

− P˜︁U⊥
)Γ(Z)∥ ≤ ∥PUT−1 − P˜︁U∥∥Γ(Z)∥.

The term J5: We have G(P˜︁U⊥
Γ(Z)) = G(Γ(Z)) − G(P˜︁UΓ(Z)) = −G(P˜︁UΓ(Z)). By

Lemma 22,

∥G(P˜︁U⊥
Γ(Z))∥ ≤ ∥˜︁U∥2,∞∥Γ(Z)∥.

Putting it together: Let KT−1 := ∥NT−1 −A∥ and let ˜︁KT−1 := ∥NT−1 − ˜︁A∥. Compiling

these bounds, we have that

J1 ≤ ∥PUT−1 − P˜︁U∥ ˜︁KT−1

J2 ≤ ∥˜︁U∥2.∞ ˜︁KT−1

J3 ≤ 2∥U∥2,∞KT−1

J4 ≤ ∥PUT−1 − P˜︁U∥∥Γ(Z)∥
J5 ≤ ∥˜︁U∥2,∞∥Γ(Z)∥.

These bounds hold regardless of T . Hence, we may take T such that ∥NT−1−A∥ ≤ 3∥Γ(Z)∥

(by Zhang et al. (2021), we may take T ≥ C log
(︂

λ2r
∥Γ(Z)∥

)︂
.The proof of Lemma 16 shows

that ∥Γ(Z)∥ ≤ λ2r/12, so ˜︁KT−1 ≤ 4(λ2r/12) ≤ λ2r/2, and by the Davis-Kahan theorem, we

have that

∥PUT−1 − P˜︁U∥ ≤ 2
˜︁KT−1

λ2r
.
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Applying this to the above bounds, we see that

J1 ≤ 2
˜︁K2
T−1

λ2r

J4 ≤ 2
˜︁KT−1

λ2r
∥Γ(Z)∥.

Moreover, we have the trivial bound

KT−1 ≤ ˜︁KT−1 + ∥Γ(Z)∥.

Hence, we see that

J1 ≤ 2
˜︁K2
T−1

λ2r

J2 ≤ ∥˜︁U∥2.∞ ˜︁KT−1

J3 ≤ 2∥U∥2,∞
(︃ ˜︁KT−1 + ∥Γ(Z)∥

)︃
J4 ≤ 2

˜︁KT−1

λ2r
∥Γ(Z)∥

J5 ≤ ∥˜︁U∥2,∞∥Γ(Z)∥.

Now, for T0 such that KT0 ≤ 3∥Γ(Z)∥, ˜︁KT0 ≤ 4∥Γ(Z)∥, and we see that we have the initial

bound

˜︁KT0+1 ≤ 40
∥Γ(Z)∥2

λ2r
+ 5∥˜︁U∥2,∞∥Γ(Z)∥+ 10∥U∥2,∞∥Γ(Z)∥.

On the event in Theorem 7 and Assumption 2.2, once n and d are large enough, ∥˜︁U −

UU⊤ ˜︁U∥2,∞ ≤ ∥U∥2,∞, so

∥˜︁U∥2,∞ ≤ ∥˜︁U − UU⊤ ˜︁U∥2,∞ + ∥UU⊤ ˜︁U∥2,∞ ≤ 2∥U∥2,∞,

since ∥U⊤ ˜︁U∥ ≤ 1. This gives

˜︁KT0+1 ≤ 40
∥Γ(Z)∥2

λ2r
+ 20∥U∥2,∞∥Γ(Z)∥.
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Let ρ = 10∥Γ(Z)∥/λ2r , and suppose that for T − 1 ≥ T0 we have the bound

˜︁KT−1 ≤ 4ρT−1−T0∥Γ(Z)∥+ 20

1− ρ
∥U∥2,∞∥Γ(Z)∥.

Clearly for T0 we have this bound. With the recursion, and using ˜︁KT−1 ≤ 4∥Γ(Z)∥ and

∥˜︁U∥2,∞ ≤ 2∥U∥2,∞, we get

˜︁KT ≤ 10
˜︁KT−1

λ2r
∥Γ(Z)∥+ 20∥U∥2,∞∥Γ(Z)∥

≤ 10

λ2r

[︃
4ρT−1−T0∥Γ(Z)∥+ 20

1− ρ
∥U∥2,∞∥Γ(Z)∥

]︃
∥Γ(Z)∥+ 20∥U∥2,∞∥Γ(Z)∥

≤ 4ρT−T0∥Γ(Z)∥+
(︃
1 +

ρ

1− ρ

)︃
20∥U∥2,∞∥Γ(Z)∥

= 4ρT−T0∥Γ(Z)∥+ 20

1− ρ
∥U∥2,∞∥Γ(Z)∥

as required.

B.7 Proof of Lemmas in Section B.3

Recall Lemma 17.

Lemma 17. There exist universal constants C6 and C7 such that the residual terms R1,R2,

and R3 satisfy, uniformly over i and j,

1

σij

(︃
|R1|+ |R2|+ |R3|

)︃
≤ C6κσκ

2µ0

√︃
r log(n ∨ d)

n
+ C7κ

3κσµ0
r log(n ∨ d)

SNR

with probability at least 1− 5(n ∨ d)−4.

Proof of Lemma 17. Recall the definitions of R1, R2 and R3 via

R1 : = e⊤i UU
⊤
(︃
EM⊤ + Γ(EE⊤)

)︃
UΛ−2ej ;

R2 : = e⊤i

(︃˜︁UD ˜︁U⊤
D − ˜︁U ˜︁U⊤

)︃
Uej ;

R3 : = e⊤i
∑︂
k≥2

SMM⊤,k(W )Uej .
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We analyze each in turn.

The term R1: We will split this into two terms, R11 and R12. From the identity M⊤U =

V Λ, the i, j entry of R1 can be written as

1

λj
e⊤i UU

⊤EV·j +
1

λ2j

∑︂
k ̸=l

(UU⊤)ikUlj⟨Ek, El⟩ : = R11 +R12,

where

R11 : =
1

λj

n∑︂
k=1

(UU⊤)ik⟨Ek, V·j⟩;

R12 : =
1

λ2j

∑︂
k ̸=l

(UU⊤)ikUlj⟨Ek, El⟩.

Dividing R11 by σij reveals it is of the form

1

∥Σ1/2
i V·j∥

n∑︂
k=1

(UU⊤)ik⟨Ek, V·j⟩.

To calculate an upper bound, we need to calculate the ψ2 norm squared:

1

∥Σ1/2
i V·j∥2

n∑︂
k=1

(UU⊤)2ikV
⊤
·j ΣkV·j ≤

σ2

∥Σ1/2
i V·j∥2

n∑︂
k=1

(UU⊤)2ik

≤ κ2σ∥U∥22,∞

which by Hoeffding’s inequality shows that this is less than ˜︁CR1κσ∥U∥2,∞t with probabil-

ity at least 1 − 2 exp(−ct2). Hence, we obtain the bound CR1κσ∥U∥2,∞
√︁

log(n ∨ d) with

probability at least 1− 2(n ∨ d)−4.

We now analyze R12. Note that

R12 :=
1

λ2j

∑︂
k ̸=l

(UU⊤)ikUlj⟨Ek, El⟩

resembles the random variable in the Hanson-Wright inequality (e.g. Vershynin (2020);

Chen and Yang (2020)). By the generalized Hanson-Wright inequality (e.g. Exercise 6.2.7
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in Vershynin (2018)), we have that

P
{︃⃓⃓⃓⃓∑︂

k ̸=l
Bkl⟨Ek, El⟩

⃓⃓⃓⃓
≥ t

)︃
≤ 2 exp

[︃
− cmin

(︃
t2

σ4d∥B∥2F
,

t

σ2∥B∥

)︃]︃

where Bkl := (UU⊤)ilUkj . Note that its Frobenius norm can be evaluated via

∥B∥2F =
∑︂
k ̸=l

(UU⊤)2ilU
2
kj

≤
n∑︂
l=1

(UU⊤)2il

n∑︂
k=1

U2
kj

≤
n∑︂
l=1

(UU⊤)2il

≤ ∥U∥22,∞.

Similarly,

∥B∥ : = sup
∥x∥=1,∥y∥=1

n∑︂
k=1

xk(UU
⊤)ik

n∑︂
l=1

Uljyl

≤ sup
∥x∥=1

n∑︂
k=1

xk(UU
⊤)ik

= ∥(UU⊤)i∥2

≤ ∥U∥2,∞.

Therefore,

P
{︃⃓⃓⃓⃓∑︂

k ̸=l
Bkl⟨EkEl⟩

⃓⃓⃓⃓
≥ t

)︃
≤ 2 exp

[︃
− cmin

(︃
t2

σ4d∥U∥22,∞
,

t

σ2∥U∥2,∞

)︃]︃
.

Taking t = s
√
d∥U∥2,∞σ2 shows that

P
{︃⃓⃓⃓⃓∑︂

k ̸=l
Bkl⟨EkEl⟩

⃓⃓⃓⃓
≥ s

√
d∥U∥2,∞σ2

)︃
≤ 2 exp

(︃
− cmin

(︃
s2, s

√
d

)︃)︃
,
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and hence taking s = 1√
c

√︁
4 log(n ∨ d) we see that with probability at least 1− 2(n ∨ d)−4

⃓⃓⃓⃓
1

λ2j

∑︂
k ̸=l

Bkl⟨EkEl⟩
⃓⃓⃓⃓
≤ CR1

σ2

λ2j
∥U∥2,∞

√︁
d log(n ∨ d).

Dividing by σij reveals that with this same probability,

|R22/σij | ≤ CR1κσκ
σ
√
d

λj
∥U∥2,∞

√︁
log(n ∨ d)

≤ CR1κσκµ0
σ
√
rd

λr

√︃
log(n ∨ d)

n

≤ CR1κσκµ0
1

SNR

√︃
log(n ∨ d)

n
.

The term R2: Note that ˜︁UD and ˜︁U were already analyzed in Lemma 13, which shows that

∥˜︁UD ˜︁U⊤
D − ˜︁U ˜︁U⊤∥ ≤

CR2λ1σ
√︁
log(n ∨ d)
λ2r

∥U∥2,∞

≤ CR2∥U∥2,∞κ
σ

λr

√︁
log(n ∨ d)

with probability at least 1− 2(n ∨ d)−4. Multiplying by 1
σij

yields the upper bound

CR2κσ∥U∥2,∞κ2
√︁

log(n ∨ d) ≤ CR2κσµ0κ
2

√︃
r log(n ∨ d)

n
.

with probability at least 1− 2(n ∨ d)−4.

The term R3: First, note that

⃓⃓⃓⃓
e⊤i
∑︂
k≥2

SMM⊤,k(W )Uej

⃓⃓⃓⃓
≤ ∥

∑︂
k≥2

SMM⊤,k(W )U∥2,∞

≤
∑︂
k≥2

∥SMM⊤,k(W )U∥2,∞.

Examining the proof of Theorem 7 shows that the exact same result holds, only now we

start the summation at k = 2. Consequently, using the definition of δ as in the proof of
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Theorem 7, by Lemma 15 we have that with probability 1− c log(n ∨ d)(n ∨ d)−5 that

∞∑︂
k=2

∥SMM⊤,k(W )U∥2,∞ ≤ ∥U∥2,∞
c log(n∨d)∑︂

k=2

C1

(︃
4C2δ

λ2r

)︃k
+

∞∑︂
k=c log(n∨d)

(︃
4δ

λ2r

)︃k
≤ CR3∥U∥2,∞

δ2

λ4r
.

Hence, with probability at least 1− (n ∨ d)−4,

1

σij
|R3| ≤ CR3∥U∥2,∞

δ2

λ4r

1

σij

≤ CR3∥U∥2,∞
1

σijλ4r

(︃√
rnd log(max(n, d))σ2 +

√︁
rn log(n)λ1σ

)︃2

≤ CR3∥U∥2,∞
rnd log2(d)σ4 + rn log(n ∨ d)λ21σ2 + rn

√
d log3/2(n)σ3

σijλ4r

≤ CR3κκσ∥U∥2,∞
rnd log2(d)σ3 + rn log(n ∨ d)λ21σ + rn

√
d log3/2(n)σ2

λ3r

≤ CR3κκσ∥U∥2,∞
(︃
rnd log2(n)σ3 + rn

√
d log3/2(n)σ2

λ3r
+
rn log(n ∨ d)κ2σ

λr

)︃
≤ CR3κκσµ0

(︃
r3/2

√
ndσ3

λ3r
log2(n ∨ d) + r3/2

√
ndσ2

λ3r
log3/2(n ∨ d) + r3/2

√
nκ2σ

λr
log(n ∨ d)

)︃
≤ CR3κκσµ0

(︃
log2(n)

SNR3 +

√
r

λr

log3/2(n ∨ d)
SNR2 +

κ2r log(n ∨ d)
SNR

)︃
≤ CR3κ

3κσµ0
r log(n ∨ d)

SNR
,

where we have absorbed extra constants into CR3 since SNR ≥ κ
√︁
log(n ∨ d) by Assumption

2.2. Therefore, summing up the probabilities and absorbing the constants, we see that with

probability at least 1− 5(n ∨ d)−4 that

1

σij

(︃
|R1|+ |R2|+ |R3|

)︃
≤ CR1κσκµ0

1

SNR

√︃
log(n ∨ d)

n
+ CR2κσµ0κ

2

√︃
r log(n ∨ d)

n

+ CR3κ
3κσµ0

r log(n ∨ d)
SNR

≤ C6κσκ
2µ0

√︃
r log(n ∨ d)

n
+ C7κ

3κσµ0
r log(n ∨ d)

SNR

as required.

Lemma 18. On the intersection of the events in Theorem 6 and Lemma 1 the residual terms
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R4 and R5 satisfy for all i and j,

1

σij

(︃
|R4|+ |R5|

)︃
≤ C8κ

3κσµ0
1

SNR
+ C9κ

4κσµ
2
0

r√
n
.

for some universal constants C8 and C9.

Proof of Lemma 18. Recall the definitions of R4 and R5 via

R4 : = e⊤i
ˆ︁U(O∗ − ˆ︁U⊤ ˜︁U ˜︁U⊤U)ej ;

R5 : = e⊤i

(︃ˆ︁U ˆ︁U⊤ ˜︁U ˜︁U⊤U − ˜︁U ˜︁U⊤U

)︃
ej .

On the event in Theorem 6, ∥ˆ︁U∥2,∞ ≤ ∥U∥2,∞ + infO∗ ∥ˆ︁U − UO∗∥2,∞ ≤ C∥U∥2,∞ by

Assumption 2.2. Therefore, the term R4 can be bounded in a similar manner to the proof

of Lemma 3 (see Appendix B.8) via

⃓⃓⃓⃓
e⊤i ˆ︁U(O∗ − ˆ︁U⊤ ˜︁U ˜︁U⊤U)ej

⃓⃓⃓⃓
≤ ∥ˆ︁U∥2,∞∥O∗ − ˆ︁U⊤ ˜︁U ˜︁U⊤U∥

≤ C∥U∥2,∞
(︃
∥ sin(ˆ︁U, ˜︁U)∥2 + ∥ sin(˜︁U,U)∥2

)︃
≤ C∥U∥2,∞

∥Γ(Z)∥2

λ4r
,

where the final inequality is by the Davis-Kahan Theorem and Lemmas 1 and 2. On the

event in Lemma 1, the numerator can be bounded by

C2
spectral

(︃
σ2(n+

√
nd) + σλ1

√
n

)︃2

.
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Consequently, there exists a universal constant CR4 such that

1

σij
|R4| ≤

1

σij
CR4∥U∥2,∞

σ3n
√
d+ σ2λ21n+ σ4nd

λ4r

= CR4

λj

∥Σ1/2
i V·j∥

∥U∥2,∞
σ3n

√
d+ σ2λ21n+ σ4nd

λ4r

≤ CR4κκσ∥U∥2,∞
σ2n

√
d+ σλ21n+ σ3nd

λ3r

≤ CR4κκσµ0
σ2

√
rnd+ σλ21

√
rn+ σ3

√
rnd

λ3r

≤ CR4κκσµ0

(︃
1

λrSNR
2 +

κ2

SNR
+

1

SNR3

)︃
≤ C8κ

3κσµ0
1

SNR
.

The term R5 satisfies

1

σij

⃓⃓⃓⃓
e⊤i

(︃ˆ︁U ˆ︁U⊤ ˜︁U ˜︁U⊤U − ˜︁U ˜︁U⊤U

)︃
ej

⃓⃓⃓⃓
≤ 1

σij
∥ˆ︁U ˆ︁U⊤ ˜︁U ˜︁U⊤U − ˜︁U ˜︁U⊤U∥2,∞

≤ 1

σij
∥ˆ︁U ˆ︁U⊤ ˜︁U − ˜︁U∥2,∞.

The definition of ˜︁H in the proof of Theorem 8 shows that ˜︁H⊤ = ˆ︁U⊤ ˜︁U . Define

O1 := argmin
O∈O(r)

∥ˆ︁U − ˜︁UO∥F .
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Then

1

σij
∥ˆ︁U ˆ︁U⊤ ˜︁U − ˜︁U∥2,∞ =

1

σij
∥ˆ︁U ˜︁H⊤ − ˜︁U∥2,∞

≤ 1

σij

(︃
∥ˆ︁U ˜︁H⊤ − ˆ︁UO⊤

1 ∥2,∞ + ∥ˆ︁UO⊤
1 − ˜︁U∥2,∞

)︃
=

1

σij

(︃
∥ˆ︁U ˜︁H⊤ − ˆ︁UO⊤

1 ∥2,∞ + ∥ˆ︁U − ˜︁UO1∥2,∞
)︃

≤ 1

σij

(︃
∥ˆ︁U( ˜︁H⊤ −O⊤

1 )∥2,∞ + ∥ˆ︁U − ˜︁U ˜︁H∥2,∞ + ∥˜︁U(O1 − ˜︁H)∥2,∞
)︃

≤ 1

σij

(︃
∥ˆ︁U∥2,∞∥ ˜︁H −O1∥+ ∥˜︁U∥2,∞∥O1 − ˜︁H∥+ ∥ˆ︁U − ˜︁U ˜︁H∥2,∞

)︃
≤ 1

σij

(︃
2C∥U∥2,∞∥ sin(ˆ︁U, ˜︁U)∥22 + ∥ˆ︁U − ˜︁U ˜︁H∥2,∞

)︃
≤ 1

σij

(︃
2C∥U∥2,∞

∥Γ(Z)∥2

λ4r
+ ∥ˆ︁U − ˜︁U ˜︁H∥2,∞

)︃
,

where the final line follows from the Davis-Kahan Theorem. By Theorem 8 we have that

∥ˆ︁U − ˜︁U ˜︁H∥2,∞ ≤ CDκ
2∥U∥22,∞

∥Γ(Z)∥
λ2r

. (B.19)

We have already shown that

1

σij
∥U∥2,∞

∥Γ(Z)∥2

λ4r
≤ C8

κ3κσµ0
SNR

,

which matches the bound for R4, so by increasing the constant C8, we need only bound the

term in Equation (B.19). We have that

1

σij
CDκ

2∥U∥22,∞
∥Γ(Z)∥
λ2r

≤ C9

σij
κ2∥U∥22,∞

σ2(n+
√
nd) + σλ1

√
n

λ2r

≤ C9κσκ
3∥U∥22,∞

σ(n+
√
nd) + λ1

√
n

λr

≤ C9κσκ
3µ20

rσ(n+
√
nd) + λ1r

√
n

nλr

≤ C9κσκ
3µ20

(︃
rσ

λr
+
rσ

√
d√

nλr
+ κ

r√
n

)︃
≤ C9κ

4κσµ
2
0

r√
n
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which is the desired upper bound.

Lemma 19. There exists a universal constant C10 such that with probability at least 1 −

4(n ∨ d)−4

1

σij

⃓⃓⃓⃓∑︂
k ̸=i

⟨Ei, Ek⟩Ukjλ−2
j

⃓⃓⃓⃓
≤ C10µ0κσ

log(n ∨ d)
SNR

,

where the probability is uniform over i and j.

Proof of Lemma 19. First, conditionally on Ei the sum is a sum of independent random

variables each with ψ2 norm bounded by

⃦⃦⃦⃦
⟨Ei, Ek⟩Ukjλ−2

j

⃦⃦⃦⃦
ψ2

≤ max
k

∥⟨Ei, Ek⟩∥ψ2 |Ukj |λ
−2
j

≤ C∥Ei∥σ∥U∥2,∞λ−2
j ,

where C is a universal constant. Hence, for any t ≥ 0, we have that

⃓⃓⃓⃓∑︂
k ̸=i

⟨Ei, Ek⟩Ukjλ−2
j

⃓⃓⃓⃓
≤ Cσ

√
n∥Ei∥∥U∥2,∞λ−2

j t

with probability at least 1 − 2 exp(−ct2). Furthermore, for some other universal constant

C, ∥Ei∥ ≤ Cσi
√
ds with probability at least 1− 2 exp(−cs2) (uniformly over i). Hence,

⃓⃓⃓⃓∑︂
k ̸=i

⟨Ei, Ek⟩Ukjλ−2
j

⃓⃓⃓⃓
≤ C10σ

√
ndλ−2

j ∥U∥2,∞σit

with probability at least 1− 4 exp(−ct). Recall σ2ij := ∥Σ1/2
i V·j∥2λ−2

j . Then

1

σij

⃓⃓⃓⃓∑︂
k ̸=i

⟨Ei, Ek⟩Ukjλ−2
j

⃓⃓⃓⃓
≤ C10

σij
σ
√
ndλ−2

j ∥U∥2,∞σit

≤ C10
σ
√
d

λj

σi

∥Σ1/2
i V·j∥

√
n∥U∥2,∞t

≤ C10κσ
σ
√
d

λj

√
n∥U∥2,∞t
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with probability at least 1 − 4e−ct, since σi/∥Σ1/2
i V·j∥ ≤ κσ remains bounded away from

zero and infinity. Taking t = C(4/c) log(n∨d) and absorbing the constants shows that with

probability at least 1− 4(n ∨ d)−4, uniformly over i and j that

1

σij

⃓⃓⃓⃓∑︂
k ̸=i

⟨Ei, Ek⟩Ukjλ−2
j

⃓⃓⃓⃓
≤ C10κσ

σ
√
d

λj

√
n∥U∥2,∞ log(n ∨ d)

≤ C10µ0κσ
log(n ∨ d)

SNR

as required.

B.8 Proof of Auxiliary Lemmas

First, recall Lemma 3.

Lemma 3. There exists an orthogonal matrix O∗ and a universal constant C such that

under Assumptions 2.2 and 2.4, the event in Lemma 1, and T = Θ
(︂

λ2r
∥U∥2,∞∥γ(Z)∥

)︂
,

∥UH ˜︁H − UO⊤
∗ ∥2,∞ ≤ C∥U∥2,∞

∥Γ(Z)∥2

λ4r
.

Proof of Lemma 3. We have that for any orthogonal matrices O and ˜︁O that

∥UU⊤ ˜︁U ˜︁U⊤ ˆ︁U − UO∥2,∞ ≤ ∥U∥2,∞∥U⊤ ˜︁U ˜︁U⊤ ˆ︁U −O∥

≤ ∥U∥2,∞
(︃
∥U⊤ ˜︁U ˜︁U⊤ ˆ︁U − ˜︁O ˜︁U⊤ ˆ︁U∥+ ∥O − ˜︁O ˜︁U⊤ ˆ︁U∥

)︃
≤ ∥U∥2,∞

(︃
∥U⊤ ˜︁U − ˜︁O∥+ ∥O − ˜︁O ˜︁U⊤ ˆ︁U∥

)︃
.

Let O(1) and O(2) be the orthogonal matrices satisfying

O(1) : = argmin ∥U − ˜︁UO∥F ;

O(2) : = argmin ∥˜︁U − ˆ︁UO∥F .

Define O∗ := (O(1)O(2))⊤. Letting ˜︁O = O(1) and O = O⊤
∗ implies that this is less than or
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equal to

∥U∥2,∞
(︃
∥ sinΘ(U, ˜︁U)∥2 + ∥ sinΘ(˜︁U, ˆ︁U)∥2

)︃
.

By the Davis-Kahan Theorem, under Assumptions 2.2 and 2.4 and under the event in Lemma

1 by Lemmas 2 and 1 we have that for some constant C,

∥U∥2,∞
(︃
∥ sinΘ(U, ˜︁U)∥2 + ∥ sinΘ(˜︁U, ˆ︁U)∥2

)︃
≤ C∥U∥2,∞

(︃
∥Γ(Z)∥2

λ4r
+ ∥U∥42,∞

∥Γ(Z)∥2

λ4r

)︃
≤ C∥U∥2,∞

∥Γ(Z)∥2

λ4r

since ∥Γ(Z)∥/λ2r ≤ C under these assumptions and the event in Lemma 1.

Lemma 23. If M has rank r, and ˆ︁U is the projector onto the top r left singular vectors of

M + E, and if λr ≥ 2∥E∥, then

∥(I − Pˆ︁U )M∥ ≤ 2∥E∥.

Proof. We have that

∥(I − P˜︁U )M∥ ≤ ∥(I − P˜︁U )(M + E)∥+ ∥(I − P˜︁U )E∥

≤ λr+1(M + E) + ∥E∥

≤ 2∥E∥

by Weyl’s inequality.

265



APPENDIX B. PROOFS FROM CHAPTER 2

THIS PAGE INTENTIONALLY LEFT BLANK

266



Appendix C

Proofs from Chapter 3

C.1 Proof of Theorem 9

In this section we prove Theorem 9. First, Theorem 9 is actually a consequence of the follow-

ing more general theorem that does not require Assumption 3.5. Section C.1.1 develops the

preliminary bounds in terms of principal submatrix and eigenvalue concentration (Lemmas

4 and 5), and in Section C.1.2 we prove Theorem 22. In Section C.1.3 we show how Theorem

9 can be deduced by combining Theorem 22 with Assumption 3.5. En route to the proof of

Theorem 22 we introduce several technical lemmas; we prove these in Section C.2. Recall

that we denote κ := λ1
λk

as the (reduced) condition number of Σ.

Theorem 22. Suppose Assumptions 3.1, 3.2, 3.3, and 3.4 are satisfied. Then with proba-

bility at least 1− δ − p−2, there exists an orthogonal matrix W∗ ∈ O(k) such that

max
1≤i≤p

∥˜︁Ui· − (UW∗)i·∥ ≲ E1 + E2 + E3 + E4 + E5
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where

E1 : =
κλ1

λk − λk+1

s log(p)

n
∥U∥2→∞ + κk

√︃
log(p)

n
∥U∥2→∞

E2 : =
λ21

(λk − λk+1)2
s log(p)

n
∥U∥2→∞

E3 : =
√︃
s log(p)

n

κλ
1/2
1

λk − λk+1
min

(︃
∥Σ∥1/2max,

√︁
λ1∥U∥2→∞

)︃
E4 : =

λk+1

λk
κ2
√︃
k log(p)

n
+
λk+1

λk
κ3
s log(p)

n
;

E5 : =
κλ1

λk − λk+1

s log(p)

n
+ κ

√︃
k log(p)

n
.

C.1.1 Preliminary Bounds

Note that by Assumption 3.2, we need only examine the s × k matrix of eigenvectors ofˆ︁ΣJJ and ΣJJ respectively. We will develop an expansion for the difference ˜︁UJ − UJW∗ by

viewing ˆ︁ΣJJ as a perturbation of ΣJJ . For convenience we restate the initial preliminary

bounds in the main paper. Except for Proposition 1, the proofs are in Section C.2.1. The

first is the following principal submatrix concentration bound.

Lemma 4 (Principal Submatrix Concentration). Let J be an index set of {1, ..., p} of size

s. Then

∥ˆ︁ΣJJ − ΣJJ∥ ≲ λ1

(︃√︃
s

n
+

√︃
log(p)

n

)︃

with probability at least 1−O(p−4).

Henceforth, we assume the correct support set J is known; it is the correct set J with

probability at least 1− δ by Assumption 3.2. As discussed in the main paper, using Lemma

4, we can derive the following eigenvalue bound, which we present as a lemma below.

Lemma 5 (Existence of an Eigengap). Under the event in Lemma 4 and Assumption 3.4,
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the eigenvalues of ˆ︁ΣJJ and ΣJJ satisfy

λk − ˜︁λk+1 ≥
λk − λk+1

8
; ˜︁λk − λk+1 ≥

λk − λk+1

8
;

˜︁λk ≥ λk
4
.

Consequently, this bound holds with probability at least 1−O(p−4).

Finally, we have the following sinΘ distance error between UJ and ˜︁UJ .
Proposition 1 (Spectral Proximity). Under the assumptions of Theorem 22, we have that

∥UJU⊤
J − ˜︁UJ ˜︁U⊤

J ∥ ≲
λ1

λk − λk+1

[︃√︃
s

n
+

√︃
log(p)

n

]︃

with probability at least 1−O(p−4).

Proof of Proposition 1. By the Davis-Kahan Theorem (Bhatia, 1997; Yu et al., 2014) and

Lemma 5,

∥UJU⊤
J − ˜︁UJ ˜︁U⊤

J ∥ ≤ ∥ˆ︁ΣJJ − ΣJJ∥
λk − ˜︁λk+1

.

≲
∥ˆ︁ΣJJ − ΣJJ∥
λk − λk+1

(C.1)

By Lemma 4, with probability at least 1−O(p−4), the numerator can be bounded by

∥ˆ︁ΣJJ − ΣJJ∥ ≤ λ1

(︃√︃
s

n
+

√︃
log(p)

n

)︃

Combining this and Equation (C.1) gives the result.

In the proofs that follow, we will use the fact that by Proposition 1, we have that

∥UJU⊤
J − ˜︁UJ ˜︁U⊤

J ∥ ≲
λ1

λk − λk+1

√︃
s log(p)

n
,

which is a little more amenable to downstream analysis. In addition, we use several equiv-

alent expressions for the spectral norm of the difference of projections; see Lemma 31 in

Appendix C.3 for a discussion of how to equate these.
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C.1.2 Proof of Theorem 22

We now proceed with the proof. At a high level, the argument consists of a deterministic

matrix decomposition, each term of which we bound in probability. Define ˜︁Λ as the diagonal

k × k matrix of eigenvalues of ˆ︁ΣJJ . Define W∗ to be the matrix

W∗ := argmin
W∈O(k)

∥˜︁UJ − UJW∥F .

Is is well-known that W∗ can be computed from the singular value decomposition of U⊤
J
˜︁UJ

(e.g. Abbe et al. (2020); Cape et al. (2019b); Chen et al. (2021c)).

We now expand the difference via

˜︁UJ − UJW∗ = ˜︁UJ − UJU
⊤
J
˜︁UJ − UJ(W∗ − U⊤

J
˜︁UJ)

= ˜︁UJ − UJΛU
⊤
J
˜︁UJ ˜︁Λ−1 + UJΛU

⊤
J
˜︁UJ ˜︁Λ−1 − UJU

⊤
J
˜︁UJ − UJ(W∗ − U⊤

J
˜︁UJ)

= ˜︁UJ − UJΛU
⊤
J
˜︁UJ ˜︁Λ−1 + UJ(ΛU

⊤
J
˜︁UJ − U⊤

J
˜︁UJ ˜︁Λ)˜︁Λ−1 − UJ(W∗ − U⊤

J
˜︁UJ)

= ˜︁UJ ˜︁Λ˜︁Λ−1 − UJΛU
⊤
J
˜︁UJ ˜︁Λ−1 + UJ(ΛU

⊤
J
˜︁UJ − U⊤

J
˜︁UJ ˜︁Λ)˜︁Λ−1 − UJ(W∗ − U⊤

J
˜︁UJ)

= (˜︁UJ ˜︁Λ− UJΛU
⊤
J
˜︁UJ)˜︁Λ−1 + UJ(ΛU

⊤
J
˜︁UJ − U⊤

J
˜︁UJ ˜︁Λ)˜︁Λ−1 − UJ(W∗ − U⊤

J
˜︁UJ)

= A+ T1 − T2, (C.2)

where

A : = (˜︁UJ ˜︁Λ− UJΛU
⊤
J
˜︁UJ)˜︁Λ−1;

T1 : = UJ(ΛU
⊤
J
˜︁UJ − U⊤

J
˜︁UJ ˜︁Λ)˜︁Λ−1

T2 : = UJ(W∗ − U⊤
J
˜︁UJ).

Both T1 and T2 are analyzed concisely in Lemmas 24 and 25 as follows. Their proofs are in

Section C.2.2. The proof of Lemmas 24 and 25 are both rather straightforward and based

on previous results in entrywise eigenvector analysis (Abbe et al., 2022, 2020; Agterberg and

Sulam, 2022; Cai et al., 2021a; Cape et al., 2019a,b; Chen et al., 2021c; Tang et al., 2017c;

Xia and Yuan, 2020; Xie et al., 2022; Xie, 2022; Yan et al., 2021).
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Lemma 24 (Bound on T1). We have that

∥UJ(ΛU⊤
J
˜︁UJ − U⊤

J
˜︁UJ ˜︁Λ)˜︁Λ−1∥2→∞ ≲

∥U∥2→∞λ
2
1

λk(λk − λk+1)

s log(p)

n

+
kλ1∥U∥2→∞

λk

√︃
log(p)

n

≡ E1

with probability at least 1−O(p−4).

Lemma 25 (Bound on T2). We have that

∥UJ(W∗ − U⊤
J
˜︁UJ)∥2→∞ ≲

∥U∥2→∞λ
2
1

(λk − λk+1)2
s log(p)

n

≡ E2

with probability at least 1−O(p−4).

Expanding Equation (C.2) into T3 and T4:

We further expand the remaining term in (C.2) by viewing ˆ︁ΣJJ as a perturbation of

UJU
⊤
J ΣJJ and using the eigenvector-eigenvalue equation via

A = (˜︁UJ ˜︁Λ− UJΛU
⊤
J
˜︁UJ)˜︁Λ−1

= (ˆ︁ΣJJ ˜︁UJ − ΣJJUJU
⊤
J
˜︁UJ)˜︁Λ−1

= (UJU
⊤
J ΣJJ ˜︁UJ + (ˆ︁ΣJJ − UJU

⊤
J ΣJJ)˜︁UJ − ΣJJUJU

⊤
J
˜︁UJ)˜︁Λ−1

= UJU
⊤
J ΣJJ(˜︁UJ − UJU

⊤
J
˜︁UJ)˜︁Λ−1 + (ˆ︁ΣJJ − UJU

⊤
J ΣJJ)˜︁UJ ˜︁Λ−1

= T3 + T4,
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where

T3 := UJU
⊤
J ΣJJ(˜︁UJ − UJU

⊤
J
˜︁UJ)˜︁Λ−1

T4 := (ˆ︁ΣJJ − UJU
⊤
J ΣJJ)˜︁UJ ˜︁Λ−1.

The term T3 can be analyzed via techniques from complex analysis. We present this bound

as a lemma, but defer the proof to Section C.2.3.

Lemma 26 (Bound on T3). We have that

∥UJU⊤
J ΣJJ(˜︁UJ − UJU

⊤
J
˜︁UJ)˜︁Λ−1∥2→∞ ≲

√︃
s log(p)

n

λ
3/2
1

λk(λk − λk+1)
min

(︃
∥Σ∥1/2max,

√︁
λ1∥U∥2→∞

)︃
≡ E3

with probability at least 1−O(p−3).

Expanding T4 in terms of J1 and J2:

We now proceed to bound T4. We have by Lemma 5 and properties of the 2 → ∞ norm

that

∥(ˆ︁ΣJJ − UJU
⊤
J ΣJJ)˜︁UJ ˜︁Λ−1∥2→∞ ≤ 1˜︁λk ∥(ˆ︁ΣJJ − UJU

⊤
J ΣJJ)˜︁UJ∥2→∞

≲
1

λk
∥(ˆ︁ΣJJ − UJU

⊤
J ΣJJ)˜︁UJ∥2→∞. (C.3)

Note that ˜︁UJ is the matrix of eigenvectors of ˆ︁ΣJJ and hence is not independent of the error

matrix ˆ︁ΣJJ −UJU
⊤
J ΣJJ , so one cannot bound the maximum row norm of the matrix above

with standard concentration techniques. Let U⊥ be the matrix such that [UJ , U⊥] is an s×s

orthogonal matrix, and let ˜︁U⊥ be defined similarly. Define also Λ⊥ and ˜︁Λ⊥ as the matrix of
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bottom s− k eigenvalues of ΣJJ and ˆ︁ΣJJ respectively. Since ˜︁U⊤
⊥
˜︁UJ = 0, we have that

1

λk
∥(ˆ︁ΣJJ−UJU⊤

J ΣJJ)˜︁UJ∥2→∞

=
1

λk

⃦⃦⃦⃦(︃˜︁UJ ˜︁Λ˜︁U⊤
J + ˜︁U⊥˜︁Λ⊥ ˜︁U⊤

⊥ − UJΛJU
⊤
J

)︃˜︁UJ ⃦⃦⃦⃦
2→∞

≤ 1

λk

⃦⃦⃦⃦(︃˜︁UJ ˜︁Λ˜︁U⊤
J + ˜︁U⊥˜︁Λ⊥ ˜︁U⊤

⊥ − UJΛJU
⊤
J − U⊥Λ⊥U

⊤
⊥

)︃˜︁UJ ⃦⃦⃦⃦
2→∞

+
1

λk
∥U⊥Λ⊥U

⊤
⊥
˜︁UJ∥2→∞

≤ 1

λk
∥(ˆ︁ΣJJ − ΣJJ)˜︁UJ∥2→∞ +

1

λk
∥U⊥Λ⊥U

⊤
⊥
˜︁UJ∥2→∞

: =
1

λk
∥J1∥2→∞ +

1

λk
∥J2∥2→∞ (C.4)

where

J1 : = (ˆ︁ΣJJ − ΣJJ)˜︁UJ ;
J2 : = U⊥Λ⊥U

⊤
⊥
˜︁UJ .

The term J2 can be bounded in the following lemma, but it is rather technical; moreover,

it requires some analysis that is relatively novel in the subspace estimation literature; in

particular, we combine some ideas from Xia and Yuan (2020) as well as Cape et al. (2019a);

Xie et al. (2022); Tang (2018); Tang et al. (2017c). The proof is in Section C.2.4.

Lemma 27 (Bound on J2). The term J2 satisfies

∥U⊥Λ⊥U
⊤
⊥
˜︁UJ∥2→∞ ≲ κ2λk+1

√︃
k log(p)

n
+ λk+1κ

3 s log(p)

n

≲ E4λk

with probability at least 1−O(p−3).

Further expanding the term J1:

What remains is to bound the first term of (C.4); i.e. the term J1. First, note that by

Assumption 3.3, each vector Xi ∈ Rp is of the form Xi = Σ1/2Yi, where EYiY ⊤
i = I. Let

X be the n × p matrix whose rows are the Xi’s; it follows that X = Y Σ1/2. Let Y be
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partitioned via Y = [YJ , YJc ], where YJ is the n × s matrix of variables corresponding to

those in J , and YJc is the n × p − s matrix of the other variables. Define through slight

abuse of notation the matrix Σ
1/2
JJc := (Σ1/2)JJc . With these notations in place, we observe

that since ˆ︁Σ = 1
n(X

⊤X) we have the block structure

ˆ︁ΣJJ =
1

n

(︃
(Σ1/2)JJY

⊤
J YJ(Σ

1/2)JJ +Σ
1/2
JJcY

⊤
JcYJ(Σ

1/2)JJ + (Σ1/2)JJY
⊤
J YJc(Σ

1/2
JJc)

⊤ +Σ
1/2
JJcY

⊤
JcYJc(Σ

1/2
JJc)

⊤
)︃
.

Therefore, we observe that

(ˆ︁ΣJJ − ΣJJ)˜︁UJ =
1

n

(︃
(Σ1/2)JJ(Y

⊤
J YJ − nI)(Σ1/2)JJ +Σ

1/2
JJcY

⊤
JcYJ(Σ

1/2)JJ

+ (Σ1/2)JJY
⊤
J YJc(Σ

1/2
JJc)

⊤ +Σ
1/2
JJc(Y

⊤
JcYJc − nI)(Σ

1/2
JJc)

⊤
)︃˜︁UJ .

(C.5)

Here the identity matrices are of size s and p− s respectively in order of appearance. In

light of the structure in (C.5), define the matrices

K1 : =
1

n
(Σ1/2)JJ(Y

⊤
J YJ − nI)(Σ1/2)JJ ˜︁UJ ;

K2 : =
1

n
Σ
1/2
JJcY

⊤
JcYJ(Σ

1/2)JJ ˜︁UJ ;
K3 : =

1

n
(Σ1/2)JJY

⊤
J YJc(Σ

1/2
JJc)

⊤ ˜︁UJ ;
K4 : =

1

n
Σ
1/2
JJc(Y

⊤
JcYJc − nI)(Σ

1/2
JJc)

⊤ ˜︁UJ .
Then

J1 = (ˆ︁ΣJJ − ΣJJ)˜︁UJ = K1 +K2 +K3 +K4.

We have lemmas that bound the 2 → ∞ norms of each of these matrices. Each of these

bounds follows essentially the same set of steps:

1. Bound the 2 → ∞ norm using properties of the 2 → ∞ norm in terms of the maximum

entry.

2. Write each entry as a sum of mean-zero subexponential random variables and use
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either Bernstein’s inequality or the Hanson-Wright inequality (see Appendix C.3) to

bound the result.

The proofs for these lemmas are in Sections C.2.5 and C.2.6. Recall that we define E5 via

E5 : =
κλ1

λk − λk+1

s log(p)

n
+ κ

√︃
k log(p)

n

≡ 1

λk

(︃
λ21

λk − λk+1

s log(p)

n
+ λ1

√︃
k log(p)

n

)︃
.

Lemma 28 (The matrix K1). The matrix K1 satisfies

∥ 1
n
(Σ1/2)JJ(Y

⊤
J YJ − nI)(Σ1/2)JJ ˜︁U∥2→∞ ≲

λ21
λk − λk+1

s log(p)

n
+ λ1

√︃
k log(p)

n

≲ E5λk

with probability at least 1−O(p−4).

Lemma 29 (The matrix K2). The matrix K2 satisfies

∥ 1
n
Σ
1/2
JJcY

⊤
JcYJ(Σ

1/2)JJ ˜︁U∥2→∞ ≲ λ1

√︃
k log(p)

n
+

λ21
λk − λk+1

s log(p)

n

≲ E5λk

with probability at least 1−O(p−4).

Lemma 30 (The matrices K3 and K4). The matrices K3 and K4 satisfy

∥ 1
n
(Σ1/2)JJY

⊤
J YJc(Σ

1/2
JJc)

⊤ ˜︁UJ∥2→∞ ≲
s log(p)

n

λ21
λk − λk+1

≲ E5λk;

∥ 1
n
Σ
1/2
JJc(Y

⊤
JcYJc − nI)(Σ

1/2
JJc)

⊤ ˜︁U∥2→∞ ≲
s log(p)

n

λ21
λk − λk+1

≲ E5λk

with probability at least 1−O(p−3).
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Putting it together:

We are now ready to complete the proof. We have that

∥˜︁UJ − UJW∗∥2→∞ ≤
⃦⃦⃦⃦ (︂ ˜︁UJ ˜︁Λ− UJΛU

⊤ ˆ︁U)︂ ˜︁Λ−1

⃦⃦⃦⃦
2→∞

+ ∥T1∥2→∞ + ∥T2∥2→∞

≤
⃦⃦⃦⃦ (︂ ˜︁UJ ˜︁Λ− UJΛU

⊤ ˆ︁U)︂ ˜︁Λ−1

⃦⃦⃦⃦
2→∞

+ E1 + E2

≤ ∥T3∥2→∞ + ∥T4∥2→∞ + E1 + E2

≤ ∥T4∥2→∞ + E1 + E2 + E3

≲
∥J1∥2→∞ + ∥J2∥2→∞

λk
+ E1 + E2 + E3

≲
∥J1∥2→∞

λk
+ E1 + E2 + E3 + E4

≲
1

λk

(︃
∥K1∥2→∞ + ∥K2∥2→∞ + ∥K3∥2→∞ + ∥K4∥2→∞

)︃
+ E1 + E2 + E3 + E4

≤ E1 + E2 + E3 + E4 + E5

with probability at least 1 − O(p−3). Consequently, by the union bound and Assumption

3.2, this bound holds with probability at least 1− δ − p−2 as desired.

C.1.3 Proof of Theorem 9

In this section we show how Theorem 9 can be deduced from Theorem 22. We simply bound

E1 through E5 using the additional assumptions introduced in Assumption 3.5.

Note that under Assumption 3.5, we have that λk+1 ≤ λ
2 and λk ≥ λ, implying that

λk − λk+1 ≥ λ
2 . In addition λ1 ≤ κλ. Therefore,

λ1
λk

≤ κλ

λ
≤ κ;

λ1
λk − λk+1

≲
κλ

λ
≤ κ.
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Therefore,

E1 =
κλ1

λk − λk+1

s log(p)

n
∥U∥2→∞ + κk

√︃
log(p)

n
∥U∥2→∞

≲ κ2
s log(p)

n
∥U∥2→∞ + κk

√︃
log(p)

n
∥U∥2→∞

≲ κ2
√
sk log(p)

n
+ κ

k3/2√
s

√︃
log(p)

n

≲ κ2
s log(p)

n
+ κ

√︃
k log(p)

n
, (C.6)

where the penultimate inequality comes from the fact that ∥U∥2→∞ ≲ (k/s)1/2 and that

k ≲
√
s. Similarly,

E2 : =
λ21

(λk − λk+1)2
s log(p)

n
∥U∥2→∞

≲ κ2
s log(p)

n
∥U∥2→∞

≲ κ2
√
sk log(p)

n

≲ κ2
s log(p)

n
. (C.7)

For E3,

E3 =
√︃
s log(p)

n

κλ
1/2
1

λk − λk+1
min

(︃
∥Σ∥1/2max,

√︁
λ1∥U∥2→∞

)︃
≲

√︃
s log(p)

n

κλ
1/2
1

λk − λk+1

√︁
λ1∥U∥2→∞

≲ κ2
√︃
s log(p)

n
∥U∥2→∞

≲ κ2
√︃
k log(p)

n
(C.8)

since ∥U∥2→∞ ≲ (k/s)1/2. For E4, we have that since λk+1 < λk, then

E4 = κ2
λk+1

λk

√︃
k log(p)

n
+
λk+1

λk
κ3
s log(p)

n

≲ κ2
√︃
k log(p)

n
+ κ3

s log(p)

n
. (C.9)
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Finally, for E5, we see that

E5 : =
κλ1

λk − λk+1

s log(p)

n
+ κ

√︃
k log(p)

n
.

≲ κ2
s log(p)

n
+ κ

√︃
k log(p)

n
. (C.10)

The condition number is always larger than 1. Hence, combining (C.6),(C.7),(C.8),(C.9)

and (C.10) completes the proof.

C.2 Proofs of Intermediate Lemmas

In this section we collect the proofs of the Lemmas needed en route to the proof of Theorem

22. All the lemmas are self-contained and repeated for convenience.

C.2.1 Proofs of Lemmas 4 and 5

First, we recall the statement of Lemma 4.

Lemma 4 (Principal Submatrix Concentration). Let J be an index set of {1, ..., p} of size

s. Then

∥ˆ︁ΣJJ − ΣJJ∥ ≲ λ1

(︃√︃
s

n
+

√︃
log(p)

n

)︃

with probability at least 1−O(p−4).

Proof of Lemma 4. The result is similar to Amini and Wainwright (2009), but for general

subgaussian ensembles as opposed to Gaussian ensembles. The proof is standard via an

ε-net; we follow similarly to the proof of Theorem 6.5 in Wainwright (2019).

Let ∆ = ˆ︁ΣJJ − ΣJJ . First take an 1/8-net of the Ss−1 sphere; denote these vectors

v1, ..., vN , where N ≤ 17s (see Example 5.8 in Wainwright (2019)). Then for any s-unit

vector v, there exists some vector vj of distance at most ε = 1
8 to v. Therefore

⟨v,∆v⟩ = ⟨vj ,∆vj⟩+ 2⟨(v − vj),∆vj⟩+ ⟨v − vj ,∆(v − vj)⟩.
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Hence, we see that by the triangle inequality and Cauchy-Schwarz,

|⟨v,∆v⟩| ≤ |⟨vj ,∆vj⟩|+ 2∥∆∥∥v − vj∥∥vj∥+ ∥∆∥∥v − vj∥2

≤ |⟨vj ,∆vj⟩|+
1

2
∥∆∥,

where the final inequality comes from the fact that vj is at most distance 1
8 to v. Letting v

denote the unit vector achieving sup⟨v,Qv⟩ and rearranging we have that

∥∆∥ ≤ 2|⟨vj ,∆vj⟩| ≤ 2 max
1≤i≤n

|⟨vi,∆vi⟩|.

So we therefore have that

E(exp(λ∥∆∥)) ≤ E
(︃
exp(2λ max

1≤i≤N
|⟨vi,∆vi⟩|)

)︃
≤

N∑︂
i=1

(︃
E(exp(2λ⟨vi,∆vi⟩)) + E(exp(−2λ⟨vi,∆vi⟩))

)︃
.

We now bound the mgf above, which is the primary technical difference between this and

Theorem 6.5 in Wainwright (2019). Denote Xi[J ] as the vector Xi with only the components

in J , and let u be an arbitrary unit vector. From the assumption the Xi’s are iid we have

that

E exp(tu⊤∆u) =
n∏︂
i=1

EXi

[︃
exp

(︃
t

n
[(Xi[J ]

⊤u)2 − u⊤ΣJJu]

)︃]︃
=

(︃
EX1

[︃
exp

(︃
t

n
[(X1[J ]

⊤u)2 − u⊤ΣJJu]

)︃]︃)︃n
.

Let ε be a Rademacher random variable independent of X1. Then by the contraction

property of Rademacher random variables,

EX1

[︃
exp

(︃
t

n
[(X1[J ]

⊤u)2 − u⊤ΣJJu]

)︃]︃
≤ EX1,ε

[︃
exp

(︃
2t

n
ε((X1[J ])

⊤u)2
)︃]︃

=

∞∑︂
k=0

1

k!

(︃
2t

n

)︃k
E(εk(X1[J ]

⊤u)2k)

= 1 +

∞∑︂
k=1

1

(2k)!

(︃
2t

n

)︃2k

E((X1[J ]
⊤u)4k)

where the first is by the series expansion for the exponential, and the second is by noting
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that the ε are rademacher and hence have vanishing odd moments.

Note that by assumption the Xi’s can be written as Xi = Σ1/2Yi for some indepen-

dent Yi’s satisfying ∥Yij∥ψ2 ≤ 1. Then ∥Σ1/2Yi∥ψ2 ≤
√
λ1. Hence, by equivalence of the

subgaussian norm, the moments satisfy

E((X1[J ]
⊤u)4k) ≤ (4k)!

22k(2k)!
(
√
8eλ

1/2
1 )4k.

From this, we deduce

1 +
∞∑︂
k=1

1

(2k)!

(︁2t
n

)︁2kE((X1[J ]
⊤u)4k) ≤ 1 +

∞∑︂
k=1

1

(2k)!

(︃
2t

n

)︃2k (4k)!

22k(2k)!
(
√
8eλ

1/2
1 )4k

≤ 1 +
∞∑︂
k=1

(︃
16t

n
e2λ1

)︃2k

which is a geometric series. Hence, since 1
1−a ≤ e2a for all a ∈ [0, 1/2], we have that

1 +
∞∑︂
k=1

(︃
16t

n
e2λ1

)︃2l

≤ exp

(︃
2
[︁16t
n
e2λ1

]︁2)︃

for all |t| < n
32e2λ1

. Therefore, we have shown

E exp(tu⊤∆u) ≤ exp

(︃
512

t2

n
e4λ21

)︃
.

From here, using the sum, we have that for all |t| < n
64e2λ1

that

E(exp(t∥∆∥)) ≤
N∑︂
i=1

(︃
E(exp(2t⟨vi,∆vi⟩)) + E(exp(−2t⟨vi,∆vi⟩))

)︃
≤ 2Ne2048

t2

n
e4λ21

≤ exp(C
t2λ21
n

+ 4s),

since 2(17s) ≤ e4s. Therefore, by the Chernoff bound,

P
(︃
∥∆∥ > η

)︃
≤ exp

(︃
C
t2λ21
n

+ 4s− ηt

)︃
.
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Minimizing over t shows that

t =
nη

2Cλ21

is the minimizer provided that η < Cλ1
32e2

. Plugging this value of t in yields

P
(︃
∥∆∥ > η

)︃
≤ exp

(︃
4s− η2n

4Cλ21

)︃
= exp

[︃
n

(︃
4s

n
− η2

4Cλ21

)︃]︃
.

Suppose η = C2λ1

(︃√︁
s
n +

√︂
4 log(p)

n

)︃
for some sufficiently large constant C2. Note that

Assumption 3.1 ensures that this choice of η satisfies η < Cλ1
32e2

since s/n = o(1) and

log(p)/n = o(1). Therefore, with this choice of η, we have that

exp

[︃
n

(︃
4s

n
− η2

4Cλ21

)︃]︃
≤ exp(−4 log(p))

≤ p−4.

Consequently, recalling that ∆ = ˆ︁ΣJJ − ΣJJ we have that

P
[︃
∥ˆ︁ΣJJ − ΣJJ∥ > C2λ1

(︃√︃
s

n
+

√︃
4 log(p)

n

)︃]︃
≤ p−4

as desired.

Again, we recall the statement of Lemma 5.

Lemma 5 (Existence of an Eigengap). Under the event in Lemma 4 and Assumption 3.4,

the eigenvalues of ˆ︁ΣJJ and ΣJJ satisfy

λk − ˜︁λk+1 ≥
λk − λk+1

8
; ˜︁λk − λk+1 ≥

λk − λk+1

8
;

˜︁λk ≥ λk
4
.

Consequently, this bound holds with probability at least 1−O(p−4).
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Proof of Lemma 5. By Weyl’s inequality, the event in Lemma 4 implies that for all 1 ≤ i ≤ s

that

|λi − ˜︁λi| ≤ Cλ1

(︃√︃
s

n
+

√︃
log(p)

n

)︃
.

Note that ΣJJ is a principal submatrix of Σ; hence its eigenvalues satisfy λi(ΣJJ) ≤ λi for

all i ≥ k + 1 (when 1 ≤ i ≤ k we have equality). Therefore, By Assumption 3.4, we have

that

λk − ˜︁λk+1 ≥ λk − λk+1(ΣJJ)− Cλ1

(︃√︃
s

n
+

√︃
log(p)

n

)︃
≥ λk − λk+1 − Cλ1

(︃√︃
s

n
+

√︃
log(p)

n

)︃
≥ 7

8
(λk − λk+1)

≥ λk − λk+1

8
,

and similarly for ˜︁λk − λk+1. For the final bound,

˜︁λk ≥ λk − Cλ1

(︃√︃
s

n
+

√︃
log(p)

n

)︃
≥ λk − λk/8

≥ λk
4
,

which completes the proof.

C.2.2 Proof of Lemmas 24 and 25

First we will recall the statement of Lemma 24.
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Lemma 24 (Bound on T1). We have that

∥UJ(ΛU⊤
J
˜︁UJ − U⊤

J
˜︁UJ ˜︁Λ)˜︁Λ−1∥2→∞ ≲

∥U∥2→∞λ
2
1

λk(λk − λk+1)

s log(p)

n

+
kλ1∥U∥2→∞

λk

√︃
log(p)

n

≡ E1

with probability at least 1−O(p−4).

Proof of Lemma 24. Note that by properties of the 2 → ∞ norm, we have

∥UJ(ΛU⊤
J
˜︁U − U⊤

J
˜︁UJ ˜︁Λ)˜︁Λ−1∥2→∞ ≤ ∥UJ∥2→∞∥ΛU⊤

J
˜︁U − U⊤

J
˜︁UJ ˜︁Λ∥ˆ︁λ−1

k . (C.11)

We note that λk ≲ ˜︁λk with probability 1 − O(p−4) by Lemma 5. Furthermore, by the

eigenvector equation,

ΛU⊤
J
˜︁UJ − U⊤

J
˜︁UJ ˜︁Λ = (UJΛ)

⊤ ˜︁UJ − U⊤
J
˜︁UJ ˜︁Λ

= (ΣJJUJ)
⊤ ˜︁U − U⊤

J
ˆ︁ΣJJ ˜︁UJ

= U⊤
J (ΣJJ − ˆ︁ΣJJ)˜︁UJ .

In addition,

U⊤
J (ΣJJ − ˆ︁ΣJJ)˜︁UJ = U⊤

J (ΣJJ − ˆ︁ΣJJ)UJU⊤
J
˜︁UJ + U⊤

J (ΣJJ − ˆ︁ΣJJ)(I − UJU
⊤
J )˜︁UJ .

The second term satisfies

∥U⊤
J (ΣJJ − ˆ︁ΣJJ)(I − UJU

⊤
J )˜︁UJ∥ ≤ ∥U⊤

J (ΣJJ − ˆ︁ΣJJ)∥∥(I − UJU
⊤
J )˜︁UJ∥.

Note that

∥(ΣJJ − ˆ︁ΣJJ)UJ∥ ≤ ∥ΣJJ − ˆ︁ΣJJ∥∥UJ∥
≤ ∥ΣJJ − ˆ︁ΣJJ∥
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since UJ has orthonormal columns. Therefore, by Lemma 4,

∥U⊤
J (ΣJJ − ˆ︁ΣJJ)∥ ≲ λ1

(︃√︃
s log(p)

n

)︃
. (C.12)

Note that ∥(I − UJU
⊤
J )˜︁UJ∥ ≲ ∥ sinΘ(UJ , ˜︁UJ)∥ ≲ ∥UJU⊤

J − ˜︁UJ ˜︁U⊤
J ∥ (see Lemma 31 in

Appendix C.3). Therefore, by Proposition 1, we have that

∥(I − UJU
⊤
J )˜︁UJ∥ ≲

λ1
λk − λk+1

(︃√︃
s log(p)

n

)︃
. (C.13)

In summary, we have shown so far that by (C.11), (C.12), and (C.13),

∥UJ(ΛU⊤
J
˜︁UJ − U⊤

J
˜︁UJ ˜︁Λ)˜︁Λ−1∥2→∞ ≲

∥U∥2→∞λ
2
1

λk(λk − λk+1)

s log(p)

n

+
∥U∥2→∞

λk
∥U⊤

J (ΣJJ − ˆ︁ΣJJ)UJU⊤
J
˜︁UJ∥.

Therefore, we focus on bounding the term

∥U⊤
J (ΣJJ − ˆ︁ΣJJ)UJU⊤

J
˜︁UJ∥.

Naively, ∥U⊤
J
˜︁UJ∥ ≤ 1 so by submultiplicativity, we have that

∥U⊤
J (ΣJJ − ˆ︁ΣJJ)UJU⊤

J
˜︁UJ∥ ≤ ∥U⊤

J (ΣJJ − ˆ︁ΣJJ)UJ∥.
For any indices i and k, the entry of the above matrix can be written as

1

n

n∑︂
l=1

⟨(UJ)·i, (XlX
⊤
l − E(XlX

⊤
l ))(UJ)·k⟩ =

1

n

n∑︂
l=1

(︃
((UJ)

⊤
·iXl)(X

⊤
l (UJ)·k)− (UJ)

⊤
·iΣ(UJ)·k

)︃
.

This is a sum of independent, mean-zero subexponential random variables. Therefore, to

apply the generalized Bernstein inequality (see Theorem 23 in Appendix C.3), we need to
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find the ψ1 norm of the above random variable. By properties of the ψ1 norm, we have that

∥((UJ)⊤·iXl)(X
⊤
l (UJ)·k)− (UJ)

⊤
·jΣ(UJ)·i∥ψ1 ≤ C∥((UJ)⊤·iXl)(X

⊤
l (UJ)·k)∥ψ1

≤ C∥(UJ)⊤·iXl∥ψ2∥X⊤
l (UJ)·k∥ψ2

= C∥(UJ)⊤·iΣ1/2Yl∥ψ2∥Y ⊤
l Σ1/2(UJ)·k∥ψ2

= C
√︁
λiλk∥(UJ)⊤·iYl∥ψ2∥(UJ)⊤·kYl∥ψ2

≤ C
√︁
λjλk

≤ Cλ1

since Xl = Σ1/2Yl, the (UJ)·i are the eigenvectors of Σ and the vectors Y are assumed

to be subgaussian with unit ψ2 norm. Therefore, by the generalized Bernstein inequality

(Theorem 23), we have that for fixed i, k, that

P
(︃
| 1
n

n∑︂
l=1

⟨(UJ)·i, (XlX
⊤
l − E(XlX

⊤
l ))(UJ)·k|⟩ ≥ t

)︃
≤ 2 exp

[︃
− c0nmin

(︃
t2

(λ1)2
,
t

λ1

)︃]︃
.

Since log(k) ≪ log(p), taking t = Cλ1

√︂
2 log(k)+4 log(p)

n for some constant C yields that

|(U⊤
J (ΣJJ − ˆ︁ΣJJ)UJ)ik| ≤ Cλ1

√︃
2 log(k) + 4 log(p)

n

≲ λ1

√︃
log(p)

n

with probability at least 1−O(p−4k−2). Therefore,

∥U⊤
J (ΣJJ − ˆ︁ΣJJ)UJ∥ ≤ ∥U⊤

J (ΣJJ − ˆ︁ΣJJ)UJ∥F
≤ k∥U⊤

J (ΣJJ − ˆ︁ΣJJ)UJ∥max

≤ Ckλ1

√︃
2 log(k) + 4 log(p)

n

≲ kλ1

√︃
log(p)

n

with probability at least 1−O(p−4) by taking a union bound over all k2 entries. Therefore,
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putting it all together, we see that

∥UJ(ΛU⊤
J
˜︁U − U⊤

J
˜︁UJ ˜︁Λ)˜︁Λ−1∥2→∞ ≲

∥U∥2→∞λ
2
1

λk(λk − λk+1)

s log(p)

n

+
kλ1∥U∥2→∞

λk

√︃
log(p)

n

with probability at least 1−O(p−4) as desired.

Now we prove Lemma 25.

Lemma 25 (Bound on T2). We have that

∥UJ(W∗ − U⊤
J
˜︁UJ)∥2→∞ ≲

∥U∥2→∞λ
2
1

(λk − λk+1)2
s log(p)

n

≡ E2

with probability at least 1−O(p−4).

Proof of Lemma 25. This proof follows similarly to ideas in Cape et al. (2019a); Abbe et al.

(2020); Lei (2019).

By properties of the 2 → ∞ norm, we have

∥UJ(W∗ − U⊤
J
˜︁UJ)∥2→∞ ≤ ∥UJ∥2→∞∥W∗ − U⊤

J
˜︁UJ∥.

We will now analyze the term inside the spectral norm. Note that W∗ is the Frobenius-

optimal Procrustes transformation. Let V1ΣV ⊤
2 be the SVD of U⊤

J
˜︁UJ . Then Σ contains the

sines of the canonical angles between UJ and ˜︁UJ (see Bhatia (1997) or G. W. Stewart and

J.-G. Sun (1990) for details; Lemma 31 in Appendix C.3 also contains equivalent expressions
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for the sinΘ distances). Then, letting θj be the canonical angles and σj = cos(θj),

∥W∗ − U⊤
J
˜︁UJ∥ = ∥V1V ⊤

2 − V1ΣV
⊤
2 ∥

= ∥I − Σ∥

= max
1≤j≤k

|(1− σj)|

≤ max
1≤j≤k

(1− σ2j )

= max
j

sin2(θj)

= ∥UJU⊤
J − ˜︁UJ ˜︁U⊤

J ∥2

≲
λ21

(λk − λk+1)2
s log(p)

n
.

with probability at least 1−O(p−4) by Proposition 1.

C.2.3 Proof of Lemma 26

Recall the statement of Lemma 26.

Lemma 26 (Bound on T3). We have that

∥UJU⊤
J ΣJJ(˜︁UJ − UJU

⊤
J
˜︁UJ)˜︁Λ−1∥2→∞ ≲

√︃
s log(p)

n

λ
3/2
1

λk(λk − λk+1)
min

(︃
∥Σ∥1/2max,

√︁
λ1∥U∥2→∞

)︃
≡ E3

with probability at least 1−O(p−3).

Proof of Lemma 26. Note that since U⊤
J ΣJJ = ΛU⊤

J , we have that

∥UJU⊤
J ΣJJ(˜︁UJ − UJU

⊤
J
˜︁UJ)˜︁Λ−1∥2→∞ ≤ ∥U∥2→∞˜︁λk ∥U⊤

J ΣJJ(˜︁UJ − UJU
⊤
J
˜︁UJ)∥

≤ ∥U∥2→∞˜︁λk ∥ΛU⊤
J (˜︁UJ ˜︁U⊤

J − UJU
⊤
J )∥.
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On the other hand,

∥UJU⊤
J ΣJJ(˜︁UJ − UJU

⊤
J
˜︁UJ)˜︁Λ−1∥2→∞ ≤ ∥UΛ1/2∥2→∞˜︁λk ∥Λ1/2U⊤

J (˜︁UJ − UJU
⊤
J
˜︁UJ)∥

≤
√︁

∥Σ∥max˜︁λk ∥Λ1/2U⊤
J (˜︁UJ ˜︁U⊤

J − UJU
⊤
J )∥,

where the term ∥Σ∥max comes from the fact that

|UJU⊤
J Σi,j | = |⟨(UΛ1/2)i, (UΛ1/2)j⟩|,

and hence that

∥U |Λ|1/2∥2→∞ = max
i

√︂
⟨(UΛ1/2)i, (UΛ1/2)i⟩

≤ max
i

√︂
|(UJU⊤

J Σ)ii|

≤ max
i,j

√︂
|Σij |,

since the eigenvalues of Σ are all positive. Therefore,

∥UJU⊤
J ΣJJ(˜︁UJ − UJU

⊤
J
˜︁UJ)˜︁Λ−1∥2→∞ ≤ 1˜︁λk min

(︃√︁
λ1∥U∥2→∞∥Λ1/2U⊤

J (˜︁UJ ˜︁U⊤
J − UJU

⊤
J )∥,

∥Σ∥1/2max∥Λ1/2U⊤
J (˜︁UJ ˜︁U⊤

J − UJU
⊤
J )∥

)︃
(C.14)

Therefore, what remains is to analyze

∥Λ1/2U⊤
J (˜︁UJ ˜︁U⊤

J − UJU
⊤
J )∥.

To find this bound, we will represent the difference ˜︁UJ ˜︁U⊤
J −UJU⊤

J using the holomorphic

functional calculus as done in Lei (2019) for the spiked Wigner matrix setting. This technique

has been used extensively in studying eigenvector perturbation; e.g. Mao et al. (2020); Lei

(2019); Koltchinskii and Xia (2016); Xia (2021); Wahl (2019a,b). More specifically, let C

denote a contour on the complex plane with real part ranging from λk−η to λ1+η, and with
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imaginary part ranging from −γ to γ. Then, for a proper choice of η, the top k eigenvalues

of both ΣJJ and ˆ︁ΣJJ lie in C, and one can write the difference of the spectral projections

via a complex integral

˜︁UJ ˜︁U⊤
J − UJU

⊤
J = −

[︃
1

2πi

∮︂
C
(ˆ︁ΣJJ − zI)−1dz − 1

2πi

∮︂
C
(ΣJJ − zI)−1dz

]︃

by the residue theorem (e.g. (Greene and Krantz, 2006)). Using the identity A−1 −B−1 =

B−1(A−B)A−1, and assuming the real number η is chosen appropriately so that the contours

are the same, the integrals can be combined to arrive at the expression

˜︁UJ ˜︁U⊤
J − UJU

⊤
J = − 1

2πi

∮︂
C
(ΣJJ − zI)−1(ˆ︁ΣJJ − ΣJJ)(ˆ︁ΣJJ − zI)−1dz.

Premultiplying by Λ1/2U⊤
J yields (formally) that

∥Λ1/2U⊤
J (˜︁UJ ˜︁U⊤

J − UJU
⊤
J )∥ =

1

2π

⃦⃦⃦⃦ ∮︂
C
Λ1/2U⊤

J (ΣJJ − zI)−1(ˆ︁ΣJJ − ΣJJ)(ˆ︁ΣJJ − zI)−1dz

⃦⃦⃦⃦
.

Note that the matrix is diagonalizable by the same eigenvectors as ΣJJ , so that

U⊤
J (ΣJJ − zI)−1 = U⊤

J (UJ(Λ− zI)−1U⊤
J ) + U⊤

J (U⊥(Λ⊥ − zI)−1U⊤
⊥

= (Λ− zI)−1U⊤
J

by orthonormality, where U⊥ are defined as the s × s completion of UJ such that [UJ , U⊥]

is an s× s orthogonal matrix. Therefore, we have

∥Λ1/2U⊤
J (˜︁UJ ˜︁U⊤

J − UJU
⊤
J )∥ =

1

2π

⃦⃦⃦⃦ ∮︂
C
Λ1/2(Λ− zI)−1U⊤

J (ˆ︁ΣJJ − ΣJJ)[˜︁U, ˜︁U⊥](ˆ︁Λall − zI)−1dz

⃦⃦⃦⃦
,

where ˆ︁Λall is the diagonal matrix of all the eigenvalues of ˆ︁ΣJJ .

The rest of the proof mirrors closely that of Lemma A.8 in Lei (2019). Recall that in

order to do all these manipulations, we required that the parameter η was chosen such that

the contour C contains the top k eigenvalues of ˆ︁ΣJJ and ΣJJ . In fact, Lemma 5 shows that
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the choice

η :=
λk − λk+1

4

suffices. To see this, note that by Lemmas 4 and 5,

|˜︁λk − λk| ≤
λk − λk+1

8
;

|˜︁λk+1 − λk+1| ≤
λk − λk+1

8
,

so that the interval λk ± η contains ˜︁λk, the interval λk ± η does not contain ˜︁λk+1, and both˜︁λk and ˜︁λk+1 satisfy

|λk − ˜︁λk − η| ≥ η/2

|λk − ˜︁λk+1 − η| ≥ η/2.

Therefore, the top k eigenvalues of ˆ︁ΣJJ lie within C with high probability and the bottom

eigenvalues lie outside of it. With this particular choice of η, we can proceed to bound the

integrand along the contour C. We will conduct the rest of the analysis assuming that this

event holds; it does with probability at least 1−O(p−4).

Define a := λk − η and b := λ1 + η. We decompose the contour C into the following sets

C1 := {z = a+ xi, x ∈ (−γ, γ)} C2 := {z = x+ γi : x ∈ [a, b]}

C3 := {z = b+ xi, x ∈ (−γ, γ)} C4 := {z = x− γi : x ∈ [a, b]}.

Let I(z) be the integrand. Observe that

⃦⃦⃦⃦ ∮︂
C
I(z)dz

⃦⃦⃦⃦
≤
∮︂
C1

⃦⃦⃦⃦
I(z)dz

⃦⃦⃦⃦
+

∮︂
C2

⃦⃦⃦⃦
I(z)dz

⃦⃦⃦⃦
+

∮︂
C4

⃦⃦⃦⃦
I(z)dz

⃦⃦⃦⃦
+

∮︂
C4

⃦⃦⃦⃦
I(z)dz

⃦⃦⃦⃦
.

Therefore, we bound the above integrals directly. The tricky analysis will be along C1 and

C3; we will show that the integral along C2 and C4 tend to zero for large γ. To this end, we
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will focus on C1 first. Note that

∮︂
C1

⃦⃦⃦⃦
Λ1/2(Λ− zI)−1U⊤

J (ˆ︁ΣJJ − ΣJJ)[˜︁U, ˜︁U⊥](ˆ︁Λall − zI)−1

⃦⃦⃦⃦
dz (C.15)

≤
∮︂
C1

⃦⃦⃦⃦
Λ1/2(Λ− zI)−1

⃦⃦⃦⃦⃦⃦⃦⃦
U⊤
J (ˆ︁ΣJJ − ΣJJ)[˜︁U, ˜︁U⊥]

⃦⃦⃦⃦⃦⃦⃦⃦
(ˆ︁Λall − zI)−1

⃦⃦⃦⃦
dz

≤
⃦⃦⃦⃦
U⊤
J (ˆ︁ΣJJ − ΣJJ)[˜︁U, ˜︁U⊥]

⃦⃦⃦⃦ ∫︂ γ

−γ

⃦⃦⃦⃦
Λ1/2(Λ− (a+ xi)I)−1

⃦⃦⃦⃦⃦⃦⃦⃦
(ˆ︁Λall − (a+ xi)I)−1

⃦⃦⃦⃦
dx.

First, recall the definition of a := λk − η. The term on the right-most side satisfies

⃦⃦⃦⃦
(ˆ︁Λall − (a+ xi)I)−1

⃦⃦⃦⃦
≤ 1√︁

(η)2/4 + x2

for all x since (ˆ︁λi − a) ≥ η/2. Therefore, we are left to bound the middle term, for which

we must bound

max
1≤i≤k

λ
1/2
i√︁

(λi − a)2 + x2
.

Define the function

g(u;x, a) :=
u√︁

(u− a)2 + x2
.

Then

max
1≤i≤k

λ
1/2
i√︁

(λi − a)2 + x2
≤ sup

u≥a+η

(︃
g(u;x, a)

)︃1/2 1

(η2 + x2)1/4
.

The details of the function g are carried out in Lei (2019); the analysis therein implies

sup
u≥a+η

g(u;x, a) ≤ a+ η√︁
η2 + x2

I|x|≤√
aη +

√︃
a+ η

η
I|x|>√

aη.
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Therefore the integral from (C.15) satisfies

∫︂ γ

−γ
∥Λ1/2(Λ− (a+ xi)I)−1∥∥(ˆ︁Λall − (a+ xi)I)−1∥dx

≤
∫︂ γ

−γ

1√︁
η2/4 + x2

1

(η2 + x2)1/4

(︃
a+ η√︁
η2 + x2

I|x|≤√
aη +

√︃
a+ η

η
I|x|>√

aη

)︃1/2

dx

≤
∫︂
|x|≤√

aη

4

(η2 + x2)3/4

(︃
a+ η√︁
η2 + x2

)︃1/2

dx+

∫︂
|x|>√

aη

4

(η2 + x2)3/4

(︃√︃
a+ η

η

)︃1/2

dx

≤ 4
√
a+ η

∫︂
|x|≤√

aη

1

η2 + x2
dx+ 4

(︃
a+ η

η

)︃1/4 ∫︂
|x|>√

aη

1

(η2 + x2)3/4
dx

≤ 8
√
a+ η

∫︂ √
aη

0

1

η2 + x2
dx+ 8

(︃
a+ η

η

)︃1/4 ∫︂ ∞

√
aη

1

(η2 + x2)3/4
dx

≤ 8

√
a+ η

η

∫︂ √
a/η

0

1

1 + u2
du+ 8

(︃
a+ η

η

)︃1/4 1

η1/2

∫︂ ∞

√
a/η

1

(1 + u2)3/4
du

≤ 8

√
a+ η

η
2π + 8

(︃
a+ η

η

)︃1/4 1

η1/2

∫︂ ∞

√
a/η

1

u3/2
du

≤ 16π

√
a+ η

η
+ 8

(︃
a+ η

η

)︃1/4 1

η1/2
2

(a/η)1/2

≲

√
a+ η

η
+

(︃
a+ η

a

)︃1/4 1

a1/2
.

Recall that a+η = λk; η = (λk−λk+1)/4. With these, the bound becomes (up to constants)

∮︂
C1

⃦⃦⃦⃦
Λ1/2(Λ− zI)−1U⊤

J (ˆ︁ΣJJ − ΣJJ(˜︁U, ˜︁U⊥)(ˆ︁Λall − zI)−1

⃦⃦⃦⃦
dz

≲

√
λ1

λk − λk+1
∥(ˆ︁ΣJJ − ΣJJ)UJ∥+ κ1/4

1

λ
1/2
k

∥(ˆ︁ΣJJ − ΣJJ)UJ∥

≲

√
λ1

λk − λk+1
∥(ˆ︁ΣJJ − ΣJJ)UJ∥.

The exact same argument goes through for contour C3 as well. We will see that the contours

along the imaginary axis tend to zero as γ → ∞. Assuming this for the moment, by Equation

(C.14), we see that the final bound is of the form

1

λk
∥Λ1/2U⊤

J (˜︁UJ ˜︁U⊤
J − UJU

⊤
J )∥min

(︃
∥Σ∥1/2max,

√︁
λ1∥U∥2→∞

)︃
≲

∥(ˆ︁ΣJJ − ΣJJ)UJ∥
λk

(︃ √
λ1

λk − λk+1

)︃
min

(︃
∥Σ∥1/2max,

√︁
λ1∥U∥2→∞

)︃
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By Lemma 4, we have that the term ∥(ˆ︁ΣJJ − ΣJJ)UJ∥ can be bounded via

λ1

√︃
s log(p)

n

with probability at least 1−O(p−4). Therefore, the bound becomes

√︃
s log(p)

n

λ
3/2
1

λk(λk − λk+1)
min

(︃
∥Σ∥1/2max,

√︁
λ1∥U∥2→∞

)︃
,

which is the desired bound.

It remains to show that the integrals tend to zero along the curves C2 and C4. Let I(z)

denote the integrand. Then for sufficiently large γ,

∮︂
C2

∥I(z)∥dz =
∫︂ b

a

⃦⃦⃦⃦
Λ1/2(Λ− (x+ γi)I)−1U⊤

J (ˆ︁ΣJJ − ΣJJ)[˜︁UJ ˜︁U⊥](ˆ︁Λall − (x+ γi)I)−1

⃦⃦⃦⃦
dx

≤ (b− a) sup
x∈[a,b]

⃦⃦⃦⃦
Λ1/2(Λ− (x+ γi)I)−1U⊤

J (ˆ︁ΣJJ − ΣJJ)[˜︁UJ ˜︁U⊥](ˆ︁Λall − (x+ γi)I)−1

⃦⃦⃦⃦
= O(γ−2),

which tends to zero as γ → ∞.

C.2.4 Proof of Lemma 27

First, recall the statement of Lemma 27.

Lemma 27 (Bound on J2). The term J2 satisfies

∥U⊥Λ⊥U
⊤
⊥
˜︁UJ∥2→∞ ≲ κ2λk+1

√︃
k log(p)

n
+ λk+1κ

3 s log(p)

n

≲ E4λk

with probability at least 1−O(p−3).

Recall the definition of J2 via

J2 := U⊥Λ⊥U
⊤
⊥
˜︁UJ .
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Again U⊥ is the matrix such that the s× s matrix [UJ , U⊥] is orthogonal.

Proof of Lemma 27. Define the matrix E := ˆ︁ΣJJ − UJU
⊤
J ΣJJUJU

⊤
J . Note that

˜︁UJΛ− E ˜︁UJ = UJU
⊤
J ΣJJUJU

⊤
J
˜︁UJ .

Following Cape et al. (2019a) (see also Xie et al. (2022); Tang et al. (2017c); Tang (2018)),

by Assumption 3.4, the spectra of E and Λ are disjoint almost surely, so the matrix ˜︁U can

be expanded as a matrix series (Theorem VII.2.2 in Bhatia (1997)) via

˜︁UJ =
∞∑︂
m=0

Em(UJΛU
⊤
J )˜︁UJΛ−(m+1).

Therefore,

J2 = U⊥Λ⊥U
⊤
⊥
˜︁UJ = U⊥Λ⊥U

⊤
⊥EUΛU⊤ ˜︁UΛ−2 +

∞∑︂
m=2

U⊥Λ⊥U
⊤
⊥E

mUΛU⊤
J
˜︁UJΛ−(m+1)

since the 0-th term cancels off because U⊤
⊥UJ = 0. Taking the first term and setting R to

be the rest of the series, we have that,

∥U⊥Λ⊥U
⊤
⊥
˜︁UJ ˜︁U⊤

J ∥2→∞ = ∥U⊥Λ⊥U
⊤
⊥EUJΛU

⊤
J
˜︁UΛ−2∥2→∞ + ∥R∥2→∞, (C.16)

where R is the residual to be bounded. We first bound the leading term. We have that

∥U⊥Λ⊥U
⊤
⊥EUJΛU

⊤
J
˜︁UJΛ−2∥2→∞ ≤ ∥U⊥Λ⊥U

⊤
⊥EUJ∥2→∞λ

−1
k κ. (C.17)

We note that since U⊤
⊥UJ = 0, then

EUJ = (ˆ︁ΣJJ − UJU
⊤
J ΣJJUJU

⊤
J )UJ = (ˆ︁ΣJJ − ΣJJ)UJ .

Define Σ⊥
JJ := U⊥Λ⊥U

⊤
⊥ . In light of the block structure in (C.5), we see that we can write
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Σ⊥
JJEUJ via the sum of the terms

1

n
(Σ⊥

JJ)

(︃
(Σ1/2)JJ(Y

⊤
J YJ − nI)(Σ1/2)JJ +Σ

1/2
JJcY

⊤
JcYJ(Σ

1/2)JJ

+ (Σ1/2)JJY
⊤
J YJc(Σ

1/2
JJc)

⊤ +Σ
1/2
JJc(Y

⊤
JcYJc − nI)(Σ

1/2
JJc)

⊤
)︃
UJ .

Recalling that (Σ
1/2
JJc)⊤UJ = 0, this yields the only the terms

1

n
(Σ⊥

JJ)

(︃
(Σ1/2)JJ(Y

⊤
J YJ − nI)(Σ1/2)JJ +Σ

1/2
JJcY

⊤
JcYJ(Σ

1/2)JJ

)︃
UJ = Σ⊥

JJ(Σ
1/2)JJ

(︃
Y ⊤
J YJ
n

− I

)︃
UJΛ

1/2

+Σ⊥
JJΣ

1/2
JJc

Y ⊤
JcYJ
n

UJΛ
1/2.

Define A3/2 := Σ⊥
JJ(Σ

1/2)JJ , which satisfies ∥A3/2∥ ≤
√
λ1λk+1. In 2 → ∞ norm, we have

that

∥A3/2

(︃
Y ⊤
J YJ
n

− I

)︃
UJΛ

1/2∥2→∞ ≤
√︁
kλ1max

i,j

⃓⃓⃓⃓(︃
A3/2

(︃
Y ⊤
J YJ
n

− I

)︃
UJ

)︃
ij

⃓⃓⃓⃓
.

Define the matrix M via Mkl := (A3/2)ikUlj . Fixing i and j, note that we can write the i, j

entry above as

⃓⃓⃓⃓∑︂
k,l

Mkl

(︃
1

n
(

n∑︂
q=1

(YqlYqk − EYqlYqk)
)︃⃓⃓⃓⃓

=
1

n

⃓⃓⃓⃓∑︂
q

∑︂
k,l

Mkl

(︃
YqlYqk − EYqlYqk

)︃⃓⃓⃓⃓

≤ 1

n

∑︂
q

⃓⃓⃓⃓∑︂
k,l

Mkl

(︃
YqlYqk − EYqlYqk

)︃⃓⃓⃓⃓

≤ max
q

⃓⃓⃓⃓∑︂
k,l

Mkl

(︃
YqlYqk − EYqlYqk

)︃⃓⃓⃓⃓
,

which is a quadratic form in the random variables Yql (for fixed q). To bound this, we

will apply the Hanson-Wright inequality (Theorem 24 in Appendix C.3), which requires
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bounding the Frobenius norm of M . Note that we can bound the Frobenius norm of M via

∥M∥2F =
∑︂
k,l

M2
kl

=
∑︂
k,l

(A3/2)
2
ikU

2
lj

= ∥A3/2∥22→∞

≤
(︃√︁

λ1λk+1

)︃2

.

Therefore, applying the Hanson-Wright inequality shows that

P
(︃⃓⃓⃓⃓∑︂

k,l

Mkl

(︃
YqlYqk − EYqlYqk

)︃⃓⃓⃓⃓
> t

)︃
≤ 2 exp

(︃
− cmin

{︃
t2

∥M∥2F
,

t

∥M∥

}︃)︃
.

Set t := C

√︂
log(s)+log(k)+5 log(p)

n

√
λ1λk+1. Then since log(p)

n = o(1), we see that with proba-

bility at least 1−O(s−1k−1p−5) that

⃓⃓⃓⃓∑︂
k,l

Mkl

(︃
YqlYqk − EYqlYqk

)︃⃓⃓⃓⃓
≲
√︁
λ1λk+1

√︃
log(p)

n
.

Taking a union bound over all n random variables shows that with probability at least

1−O(s−1k−1p−4),

√︁
kλ1

⃓⃓⃓⃓(︃
A3/2

(︃
Y ⊤
J YJ
n

− I

)︃
UJ

)︃
ij

⃓⃓⃓⃓
≲ λ1λk+1

√︃
k log(p)

n
.

Taking a union bound over all s rows and k columns yields that with probability at least

1−O(p−4),

∥A3/2

(︃
Y ⊤
J YJ
n

− I

)︃
UJΛ

1/2∥2→∞ ≲ λk+1λ1

√︃
k log(p)

n
. (C.18)
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For the other term, proceeding similarly,

∥Σ⊥
JJΣ

1/2
JJc

Y ⊤
JcYJ
n

UJΛ
1/2∥2→∞ ≤

√︁
λ1kmax

i,j

⃓⃓⃓⃓(︃
(Σ⊥

JJΣ
1/2
JJc)

Y ⊤
JcYJ
n

UJ

)︃
ij

⃓⃓⃓⃓

≤
√︁
λ1kmax

i,j
max
q

⃓⃓⃓⃓ p∑︂
k=s+1

s∑︂
l=1

(Σ⊥
JJΣ

1/2
JJc)ikYqkYql(UJ)lj

⃓⃓⃓⃓
.

For fixed q, i, and j, note that k ranges from s+ 1 to p and l ranges from 1 to s, so this is

a sum of independent exponential random variables. We will bound these using Bernstein’s

inequality (Theorem 23 in Appendix C.3). Note that the ℓ2 norm of the coefficients is

bounded by

p∑︂
k=s+1

s∑︂
l=1

(Σ⊥
JJΣ

1/2
JJc)

2
ik(UJ)

2
lj ≤ ∥Σ⊥

JJΣ
1/2
JJc∥22→∞ ≤ (2

√︁
λ1λk+1)

2.

Similarly,

max
k,l

|(Σ⊥
JJΣ

1/2
JJc)ik(UJ)lj | ≤ ∥UJ∥2→∞max

i,k
|e⊤i (Σ⊥

JJΣ
1/2
JJc)ek|

≤ 2∥UJ∥2→∞
√︁
λ1λk+1.

By the generalized Bernstein Inequality (Theorem 23), we have for any fixed i,j, and q that

P
(︃⃓⃓⃓⃓ p∑︂

k=s+1

s∑︂
l=1

(Σ⊥
JJΣ

1/2
JJc)ikYqkYql(UJ)lj

⃓⃓⃓⃓
> t

)︃
≤ 2 exp

[︃
− cmin

(︃
t2

(
√
λ1λk+1)2

,
t

∥U∥2→∞
√
λ1λk+1

)︃]︃
.

Taking t =
√
λ1λk+1

√︂
log(s)+log(k)5 log(p)

n shows that this holds with probability at least

1 − O(s−1k−1p−5). Taking a union bound over s rows, k columns, and n different random

variables shows that with probability at least 1−O(p−4) that

∥Σ⊥
JJΣ

1/2
JJc

Y ⊤
JcYJ
n

UJΛ
1/2∥2→∞ ≤

√︁
λ1kmax

i,j

⃓⃓⃓⃓(︃
(Σ⊥

JJΣ
1/2
JJc)

Y ⊤
JcYJ
n

UJ

)︃
ij

⃓⃓⃓⃓
≲ λk+1λ1

√︃
k log(p)

n
(C.19)
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Combining (C.19) and (C.18) with (C.17) yields that

∥U⊥Λ⊥U
⊤
⊥EUJΛU

⊤
J
˜︁UJΛ−2U⊤

J ∥2→∞ ≲
κ

λk
∥U⊥Λ⊥U

⊤
⊥EUJ∥2→∞

≲
κ

λk

(︃
λ1λk+1

√︃
k log(p)

n

)︃
≲ κ2λk+1

√︃
k log(p)

n
. (C.20)

So what remains is to bound the residual term R in (C.16). Recall the definition of R via

R :=
∞∑︂
m=2

U⊥Λ⊥U
⊤
⊥E

mUJΛU
⊤
J
˜︁UJΛ−(m+1).

We will bound for each m, but for clarity, we will first study the case m = 2. We have that

U⊥Λ⊥U
⊤
⊥E

2UJ = U⊥Λ⊥U
⊤
⊥ (ˆ︁ΣJJ − UJU

⊤
J ΣJJUJU

⊤
J )(ˆ︁ΣJJ − UJU

⊤
J ΣJJUJU

⊤
J )UJ

= U⊥Λ⊥U
⊤
⊥ (ˆ︁ΣJJ − UJU

⊤
J ΣJJUJU

⊤
J )(ˆ︁ΣJJ − ΣJJ)UJ

= U⊥Λ⊥U⊥(ˆ︁ΣJJ − ΣJJ)
2UJ + (U⊥Λ⊥U⊥)

2(ˆ︁ΣJJ − ΣJJ)UJ .

The first term is readily bounded by Lemma 4, and the second term can be bounded using

the techniques in the previous part of the proof of this Lemma.

We now generalize this strategy for each m, by first providing a similar identity to the

one above. Define ∆ := ˆ︁ΣJJ − ΣJJ . Note that by definition E = ∆ + U⊥Λ⊥U
⊤
⊥ and that

EUJ = ∆UJ . Then we have that

U⊥Λ⊥U
⊤
⊥E

mUJ = U⊥Λ
⊤
⊥U⊥E

m−1∆UJ

= U⊥Λ⊥U
⊤
⊥E

m−2(∆ + U⊥Λ⊥U⊥)∆UJ

= U⊥Λ⊥U
⊤
⊥E

m−2∆UJ + U⊥Λ⊥U
⊤
⊥E

m−2U⊥Λ⊥U
⊤
⊥∆UJ . (C.21)

Let s(m) be the set of indices such that s1 + ...+ sm = m. Then for all m we have that

U⊥Λ⊥U
⊤
⊥E

mUJ = U⊥Λ⊥U
⊤
⊥

[︃∑︂
s(m)

∆s1(U⊥Λ⊥U
⊤
⊥ )s2∆s3(U⊥Λ⊥U

⊤
⊥ )s4 · · · (U⊥Λ⊥U

⊤
⊥ )sm−1∆sm

]︃
UJ ,
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which is essentially a noncommutative Binomial Theorem.

First, consider the case that s1, ..., sm has only single powers of ∆ appearing. If ∆

appears all the way on the right hand side; that is, sm = 1, then for any integer m0, we

have that

∥U⊥Λ
m0
⊥ U⊤

⊥∆UJ∥2→∞ ≤ Cλm0
k+1

(︃
λ1

√︃
k log(p))

n

)︃
,

with probability at least 1 − O(p−4) using analogous techniques to the steps leading up to

Equation (C.20) (i.e. the case m0 = 1). If ∆ is not on the right hand side, suppose that its

index is sg = 1. Then this term is of the form

(U⊥Λ⊥U
⊤
⊥ )1+s1+s2+...+sg−1∆(U⊥Λ⊥U

⊤
⊥ )sg+1+...+sm0UJ ≡ 0

since U⊤
⊥UJ = 0. So the only terms that have at most one factor of ∆ appearing are those

that show up as ∆UJ .

Next, if s1, ..., sm is a set of integers and at least two of the terms si that appear on the

∆ factor are greater than 1, then

∥U⊥Λ⊥U
⊤
⊥∆s1(U⊥Λ⊥U

⊤
⊥ )s2∆s3(U⊥Λ⊥U

⊤
⊥ )s4 · · · (U⊥Λ⊥U

⊤
⊥ )sm−1∆smUJ∥2→∞ ≤ ∥∆∥2λm−1

k+1 ,

provided that ∥∆∥ < λk+1, which happens by Assumption 3.1 and the spectral norm con-

centration in Lemma 4 with probability at least 1 − O(p−4). Fix this event. Then for any

m, there are at most 2m ways to select exponents with a power of at least two on the term

∥∆∥. Therefore, this implies that for fixed m

∥U⊥Λ⊥U
⊤
⊥E

mUJ∥2→∞ ≤ ∥U⊥Λ
m
⊥U

⊤
⊥∆UJ∥

+
∑︂

{m:exponent on ∥∆∥ is at least 2}

∥U⊥Λ⊥U
⊤
⊥∆s1 · · · (U⊥Λ⊥U

⊤
⊥ )sm−1∆smUJ∥2→∞

≤ Cλmk+1

(︃
λ1

√︃
k log(p))

n

)︃
+ 2mλm−1

k+1 ∥∆∥2.

This bound corresponds to one such m, and hence is its own event. In order to bound for
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all m, we follow a strategy in Xia and Yuan (2020). Let ˜︁m := ⌈log(p)⌉. Then

∥
∞∑︂
m=2

U⊥Λ⊥U
⊤
⊥E

mUJΛU
⊤
J
˜︁UJΛ−(m+1)∥2→∞

≤
∞∑︂
m=2

∥U⊥Λ⊥U
⊤
⊥E

mUJ∥2→∞
λ1

λm+1
k

≤
˜︁m∑︂

m=2

∥U⊥Λ⊥U
⊤
⊥E

mUJ∥2→∞
λ1

λm+1
k

+
∞∑︂

m=˜︁m ∥U⊥Λ⊥U
⊤
⊥E

mUJ∥2→∞
λ1

λm+1
k

≤
˜︁m∑︂

m=2

(︃
Cλmk+1

(︃
λ1

√︃
k log(p))

n

)︃
λ1

λm+1
k

+

˜︁m∑︂
m=2

(︃
2mλm−1

k+1 ∥∆∥2
)︃

λ1

λm+1
k

+
∞∑︂

m=˜︁m
λ1

λm+1
k

∥∆∥λm+1
k+1 .

Define

δ1 : = Cκ

(︃
λ1

√︃
k log(p))

n

)︃
δ2 : = κλ−1

k ∥∆∥2

Then the three sums above can be written as

δ1

˜︁m∑︂
m=2

λmk+1

λmk
+ δ2

˜︁m∑︂
m=2

2mλm−1
k+1

λm−1
k

+ λ1∥∆∥
∞∑︂

m=˜︁m
λm+1
k+1

λm+1
k

≲ δ1
λ2k+1

λ2k
+ δ2(1 + ε)

λk+1

λk
+ λ1∥∆∥

(︃
λk+1

λk

)︃log(p)

≲ δ1
λ2k+1

λ2k
+ δ2

λk+1

λk
+ λ21

√︃
s log(p)

n
(1− ε)log(p).

Here, the penultimate inequality follows from the fact that by Assumption 3.4, we have

that for some ε > 1/64, 2λk+1/λk < 1 − ε, and hence the second term’s geometric series

converges. The final inequality follows from the assumption λk+1/λk < (1 − ε). Note that

this event holds with probability at least 1−O(log(p)p−4) ≥ 1−O(p−3). Noting that

∥∆∥ ≲ λ1

√︃
s log(p)

n
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by Lemma 4, we see that the resulting bound for the residual satisfies

∥R∥2→∞ ≲ δ1
(︁λk+1

λk

)︁2
+ δ2

λk+1

λk
+ λ21

√︃
s log(p)

n
(1− ε)log(p)

≲
(︁λk+1

λk

)︁2
κ

(︃
λ1

√︃
k log(p))

n

)︃
+
λk+1

λk
κλ−1

k ∥∆∥2 + λ21

√︃
s log(p)

n
(1− ε)log(p)

≲
(︁λk+1

λk

)︁2
κ

(︃
λ1

√︃
k log(p))

n

)︃
+
λk+1

λk
κλ−1

k ∥∆∥2

≲
(︁λk+1

λk

)︁2
κ

(︃
λ1

√︃
k log(p))

n

)︃
+
λk+1

λk
κλ−1

k λ21
s log(p)

n

≲ κ2λk+1

√︃
k log(p)

n
+ λk+1κ

3 s log(p)

n

with probability at least 1−O(p−3) by the assumption ε > 1
64 . Combining with our initial

bound in (C.20), we see that

∥J2∥2→∞ ≲ κ2λk+1

√︃
k log(p)

n
+ λk+1κ

3 s log(p)

n

with probability at least 1−O(p−3) as desired.

C.2.5 Proof of Lemmas 28 and 29

Recall the statement of Lemma 28.

Lemma 28 (The matrix K1). The matrix K1 satisfies

∥ 1
n
(Σ1/2)JJ(Y

⊤
J YJ − nI)(Σ1/2)JJ ˜︁U∥2→∞ ≲

λ21
λk − λk+1

s log(p)

n
+ λ1

√︃
k log(p)

n

≲ E5λk

with probability at least 1−O(p−4).

Recall K1 is given by

K1 : =
1

n
(Σ1/2)JJ(Y

⊤
J YJ − nI)(Σ1/2)JJ ˜︁U.
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Proof of Lemma 28. Note that since UJU⊤
J + U⊥U

⊤
⊥ = I, we have that

∥ 1
n
(Σ1/2)JJ(Y

⊤
J YJ − nI)(Σ1/2)JJ ˜︁UJ∥2→∞ ≤ ∥ 1

n
(Σ1/2)JJ(Y

⊤
J YJ − nI)(Σ1/2)JJUJU

⊤
J
˜︁UJ∥2→∞

+ ∥ 1
n
(Σ1/2)JJ(Y

⊤
J YJ − nI)(Σ1/2)JJU⊥U

⊤
⊥
˜︁UJ∥2→∞

≤ ∥ 1
n
(Σ1/2)JJ(Y

⊤
J YJ − nI)(Σ1/2)JJUJ∥2→∞∥U⊤

J
˜︁UJ∥

+ ∥ 1
n
(Σ1/2)JJ(Y

⊤
J YJ − nI)(Σ1/2)JJU⊥∥2→∞∥U⊤

⊥
˜︁UJ∥

≤
√
k∥ 1
n
(Σ1/2)JJ(Y

⊤
J YJ − nI)(Σ1/2)JJUJ∥max

+
√
s∥ 1
n
(Σ1/2)JJ(Y

⊤
J YJ − nI)(Σ1/2)JJU⊥∥max∥U⊤

⊥
˜︁UJ∥,

(C.22)

We bound each term inside the max norm, using a strategy similar to the beginning of the

proof of Lemma 27. For the first term, note that we can write the absolute value of its i, j

entry via

⃓⃓⃓⃓
1

n

∑︂
q

∑︂
k,l

(︃
(Σ1/2)JJ

)︃
ik

(YqkYql − EYqkYql))
(︃
(Σ1/2)JJUJ

)︃
kj

⃓⃓⃓⃓

≤ max
q

⃓⃓⃓⃓∑︂
k,l

(︃
(Σ1/2)JJ

)︃
ik

(YqkYql − EYqkYql))
(︃
(Σ1/2)JJUJ

)︃
lj

⃓⃓⃓⃓
.

We focus on bounding for fixed q. This is a quadratic form in the random variable {Yqk}sk=1.

Define the matrix M via

Mkl :=

(︃
(Σ1/2)JJ

)︃
ik

(︃
(Σ1/2)JJUJ

)︃
lj

.

Note that

∥M∥2F =
∑︂
k,l

(︃
(Σ1/2)JJ

)︃2

ik

(︃
(Σ1/2)JJUJ

)︃2

lj

≤ λ1∥(Σ1/2)JJ∥22→∞

≤ λ21.

Therefore, for any fixed q, i, and j, applying the Hanson-Wright inequality (Theorem 24 in
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Appendix C.3),

P
(︃⃓⃓⃓⃓∑︂

k,l

(︃
(Σ1/2)JJ

)︃
ik

(YqkYql − EYqkYql))
(︃
(Σ1/2)JJUJ

)︃
lj

⃓⃓⃓⃓
> t

)︃
≤ 2 exp

(︃
− cmin

{︃
t2

λ21
,

t

∥M∥

}︃)︃
.

Setting t = Cλ1

√︂
log(s)+log(k)+5 log(p)

n and taking a union bound for all n random variables

shows that with probability at least 1−O(s−1k−1p−4) that

max
q

⃓⃓⃓⃓∑︂
k,l

(︃
(Σ1/2)JJ

)︃
ik

(YqkYql − EYqkYql))
(︃
(Σ1/2)JJUJ

)︃
lj

⃓⃓⃓⃓
≲ λ1

√︃
log(p)

n
.

Therefore, taking a union bound over all s rows and k columns shows that with probability

at least 1−O(p−4) that

∥ 1
n
(Σ1/2)JJ(Y

⊤
J YJ − nI)(Σ1/2)JJUJ∥max ≲ λ1

√︃
log(p)

n
. (C.23)

The exact same argument yields with the same probability that

∥ 1
n
(Σ1/2)JJ(Y

⊤
J YJ − nI)(Σ1/2)JJU⊥∥max ≲ λ1

√︃
log(p)

n
. (C.24)

Combining (C.22) with (C.23) and (C.24) yields

∥ 1
n
(Σ1/2)JJ(Y

⊤
J YJ − nI)(Σ1/2)JJ ˜︁UJ∥2→∞ ≤

√
k∥ 1
n
(Σ1/2)JJ(Y

⊤
J YJ − nI)(Σ1/2)JJUJ∥max

+
√
s∥ 1
n
(Σ1/2)JJ(Y

⊤
J YJ − nI)(Σ1/2)JJU⊥∥max∥U⊤

⊥
˜︁UJ∥

≲ λ1

√︃
k log(p)

n
+ λ1

√︃
s log(p)

n
∥U⊤

⊥
˜︁UJ∥.

So what remains is to bound the term ∥U⊤
⊥
˜︁UJ∥, However, we note that this is simply (by a

factor of
√
2) the sinΘ distance between the subspace UJU⊤

J and ˜︁UJ ˜︁U⊤
J (see Lemma 31 in

Appendix C.3). Therefore, by Proposition 1, we have that this can be bounded by

∥U⊤
⊥
˜︁UJ∥ ≲

λ1
λk − λk+1

√︃
s log(p)

n
.
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Putting it all together, this yields that with probability at least 1−O(p−4) that

∥K1∥2→∞ = ∥ 1
n
(Σ1/2)JJ(Y

⊤
J YJ − nI)(Σ1/2)JJ ˜︁UJ∥2→∞

≲
λ21

λk − λk+1

s log(p)

n
+ λ1

√︃
k log(p)

n
,

which is the desired bound.

Again, we repeat the statement of Lemma 29.

Lemma 29 (The matrix K2). The matrix K2 satisfies

∥ 1
n
Σ
1/2
JJcY

⊤
JcYJ(Σ

1/2)JJ ˜︁U∥2→∞ ≲ λ1

√︃
k log(p)

n
+

λ21
λk − λk+1

s log(p)

n

≲ E5λk

with probability at least 1−O(p−4).

Recall that

K2 : = Σ
1/2
JJcY

⊤
JcYJ(Σ

1/2)JJ ˜︁UJ
Proof of Lemma 29. We have that

∥ 1
n
Σ
1/2
JJcY

⊤
JcYJ(Σ

1/2)JJ ˜︁UJ∥2→∞ ≤ ∥ 1
n
Σ
1/2
JJcY

⊤
JcYJ(Σ

1/2)JJUJ∥2→∞

+ ∥ 1
n
Σ
1/2
JJcY

⊤
JcYJ(Σ

1/2)JJU⊥∥2→∞∥U⊤
⊥
˜︁UJ∥

≤
√
k∥ 1
n
Σ
1/2
JJcY

⊤
JcYJ(Σ

1/2)JJUJ∥max

+
√
s∥ 1
n
Σ
1/2
JJcY

⊤
JcYJ(Σ

1/2)JJU⊥∥max∥U⊤
⊥
˜︁UJ∥. (C.25)

We bound each norm inside the max separately. Define the random variable ηij as the i, j

entry of the matrix Σ
1/2
JJcY ⊤

JcYJ(Σ
1/2)JJUJ . Then

ηij =
1

n

n∑︂
q=1

s∑︂
k=1

p−s∑︂
l=1

[Σ
1/2
JJc ]ilξ

(q)
s+l,k

(︃
(Σ1/2)JJUJ

)︃
kj

,
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where ξ(q)s+l,k := Yq,s+lYqk. Following a strategy similar to the proof of Lemma 27, we have

to bound both the maximum and sum of squared ψ1 norms of the random variable

αqlj :=
1

n
[Σ

1/2
JJc ]ilξ

(q)
s+l,k

(︃
(Σ1/2)JJUJ

)︃
kj

.

The squared entries satisfy

∥ 1
n
[Σ

1/2
JJc ]ilξ

(q)
s+l,k

(︃
(Σ1/2)JJUJ

)︃
kj

∥2ψ1
≤ 1

n2
([Σ

1/2
JJc ]il)

2

(︃
(Σ1/2)JJUJ

)︃2

kj

.

Summing up over q, l, j,

n∑︂
q=1

s∑︂
k=1

p−s∑︂
l=1

∥αqlj∥2ψ1
≤ 1

n

s∑︂
k=1

p−s∑︂
l=1

([Σ
1/2
JJc ]il)

2

(︃
(Σ1/2)JJUJ

)︃2

kj

≤ 1

n

s∑︂
k=1

(︃
(Σ1/2)JJUJ

)︃2

kj

∥Σ1/2
JJc∥22→∞

≤
λ1∥Σ1/2

JJc∥22→∞
n

.

Also,

max
q,l,j

∥αqlj∥ψ1 ≤ 1

n

√︁
λ1∥Σ1/2

JJc∥2→∞.

By the the Generalized Bernstein inequality (Theorem 23 in Appendix C.3),

P
(︃
|ηij | > t

)︃
≤ 2 exp

(︃
− cnmin

[︃
t2

λ1∥Σ1/2
JJc∥22→∞

,
t

√
λ1∥Σ1/2

JJc∥2→∞

]︃)︃
.

Again taking t = C∥Σ1/2
JJc∥2→∞

√
λ1

√︂
log(s)+log(k)+4 log(p)

n shows that this holds with proba-

bility 1−O(s−1k−1p−4). Taking a union over all s rows and k columns of the matrix yields

that

∥ 1
n
Σ
1/2
JJcY

⊤
JcYJ(Σ

1/2)JJUJ∥max ≲ ∥Σ1/2
JJc∥2→∞

√︁
λ1

√︃
log(p)

n

≲ λ1

√︃
log(p)

n
.
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Applying precisely the same argument to the other term yields with probability 1−O(p−4)

that

∥ 1
n
Σ
1/2
JJcY

⊤
JcYJ(Σ

1/2)JJU⊥∥max ≲ λ1

√︃
log(p)

n
.

Therefore, combining these bounds with the initial bound in (C.25) and Proposition 1 and

the equivalent expressions for the sinΘ distances (Lemma 31 in Appendix C.3), we have

that with probability at least 1−O(p−4),

∥K2∥2→∞ = ∥ 1
n
Σ
1/2
JJcY

⊤
JcYJ(Σ

1/2)JJ ˜︁UJ∥2→∞ ≤
√
k∥ 1
n
Σ
1/2
JJcY

⊤
JcYJ(Σ

1/2)JJUJ∥max

+
√
s∥ 1
n
Σ
1/2
JJcY

⊤
JcYJ(Σ

1/2)JJU⊥∥max∥U⊤
⊥
˜︁UJ∥

≲ λ1

√︃
k log(p)

n
+

λ21
λk − λk+1

s log(p)

n

as desired.

C.2.6 Proof of Lemma 30

It will be useful to collect some properties of the matrix Σ
1/2
JJc , which we state as a proposition.

Proposition 10 (Properties of the Matrix Σ
1/2
JJc). The matrix Σ

1/2
JJc satisfies

∥Σ1/2
JJc∥ ≤ 2

√︁
λ1

Furthermore, the left singular subspace of Σ1/2
JJc must contain columns of U⊥.

Proof of Proposition 10. First, we note that

∥Σ1/2
JJc∥ =

⃦⃦⃦⃦ ⎛⎜⎝ 0 (Σ1/2)JJc

((Σ1/2)JJc)⊤ 0

⎞⎟⎠ ⃦⃦⃦⃦

≤ ∥Σ∥1/2 +
⃦⃦⃦⃦ ⎛⎜⎝(Σ1/2)JJ 0

0 Σ
1/2
JcJc

⎞⎟⎠ ⃦⃦⃦⃦

≤ 2
√︁
λ1,
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since eigenvalues bound eigenvalues of any principal submatrix. For the second claim, note

that

Σ1/2

⎛⎜⎝UJ
0

⎞⎟⎠ =

⎛⎜⎝ (Σ1/2)JJ (Σ1/2)JJc

((Σ1/2)JJc)⊤ Σ
1/2
JcJc

⎞⎟⎠
⎛⎜⎝UJ

0

⎞⎟⎠
=

⎛⎜⎝UJ
0

⎞⎟⎠Λ1/2.

This shows that the matrix (Σ
1/2
JJc)⊤ satisfies (Σ

1/2
JJc)⊤UJ = 0, so that its null space must

contain the space spanned by UJ . However, this also shows that since (Σ
1/2
JJc)⊤ ∈ R(p−s)×s,

then its rank is at most s−k. Hence, define (Σ1/2
JJc)⊤ = V1DV

⊤
2 as the reduced singular value

decomposition of (Σ1/2
JJc)⊤. Since its rank is at most s−k, we have that V1 ∈ O(p− s, s−k),

V2 ∈ O(s, s− k), and D is an s− k × s− k diagonal matrix of singular values.

Since (Σ
1/2
JJc)⊤UJ = V1DV

⊤
2 UJ = 0, the term V2 ∈ O(s, s − k) must span a space

perpendicular to UJ . The only matrix up to choice of basis in O(s, s−k) satisfying V ⊤
2 UJ = 0

is the matrix U⊥, which establishes the second claim.

Therefore, all this shows that

• The left singular subspace of Σ1/2
JJc contains columns of U⊥;

• Its singular values are all uniformly bounded by 2
√
λ1.

We are now prepared to prove Lemma 30.

Lemma 30 (The matrices K3 and K4). The matrices K3 and K4 satisfy

∥ 1
n
(Σ1/2)JJY

⊤
J YJc(Σ

1/2
JJc)

⊤ ˜︁UJ∥2→∞ ≲
s log(p)

n

λ21
λk − λk+1

≲ E5λk;

∥ 1
n
Σ
1/2
JJc(Y

⊤
JcYJc − nI)(Σ

1/2
JJc)

⊤ ˜︁U∥2→∞ ≲
s log(p)

n

λ21
λk − λk+1

≲ E5λk

with probability at least 1−O(p−3).
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Proof of Lemma 30. Let Σ
1/2
JJc have singular value decomposition U⊥DV

⊤, where U⊥ ∈

O(s, s − k), Dii ≥ 0, 1 ≤ i ≤ s − k, V ∈ O(p − s, s − k). We will show the result for

Dii > 0, though the same proof goes through if Dii = 0 for some i.

Then the term K3 satisfies

∥K3∥2→∞ = ∥(Σ1/2)JJ
Y ⊤
J YJc

n
(Σ

1/2
JJc)

⊤ ˜︁UJ∥2→∞

≤ ∥(Σ1/2)JJ
Y ⊤
J YJc

n
V DU⊤

⊥
˜︁UJ∥2→∞

≤ ∥(Σ1/2)JJ
Y ⊤
J YJc

n
V DU⊤

⊥U⊥∥2→∞∥U⊤
⊥
˜︁UJ∥

≤ ∥(Σ1/2)JJ
Y ⊤
J YJc

n
V ∥2→∞

√︁
λ1∥U⊤

⊥
˜︁UJ∥. (C.26)

The term ∥U⊤
⊥
˜︁UJ∥ can be bounded via Proposition 1 and Lemma 31 in Appendix C.3. So

what remains is to bound the 2 → ∞ norm in (C.26). Note that the matrix V is of column

dimension at most (s − k). Hence, each of the s rows of the matrix (Σ1/2)JJYJYJcV is of

dimension at most s− k.

Following a strategy similar to that in Lemmas 28 and 29, we have that

∥(Σ1/2)JJ
Y ⊤
J YJc

n
V ∥2→∞ ≤

√
s− kmax

i,j

⃓⃓⃓⃓
(Σ1/2)JJ

Y ⊤
J YJc

n
V

⃓⃓⃓⃓
i,j

≤
√
smax

i,j

⃓⃓⃓⃓
(Σ1/2)JJ

Y ⊤
J YJc

n
V

⃓⃓⃓⃓
i,j

.

By analogous arguments as in Lemma 29, the i, j entry is a sum of independent mean-

zero subexponential random variables, each with ψ1 norm bounded 1
n

√
λ1. Therefore, by

Bernstein’s inequality, any i, j entry is bounded by

C
√︁
λ1

√︃
log(p)

n
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with probability at most 1−O(p−3). Combining with Proposition 1, we have the bound

∥K3∥2→∞ ≲ λ1

√︃
s log(p)

n
∥U⊤

⊥
˜︁UJ∥

≲ λ1

√︃
s log(p)

n

(︃
λ1

λk − λk+1

√︃
s log(p)

n

)︃
≲

λ21
λk − λk+1

s log(p)

n

as desired.

For the term K4, we see that

∥K4∥2→∞ = ∥Σ1/2
JJc

(︃
Y ⊤
JcYJc

n
− I

)︃
V DU⊤

⊥
˜︁UJ∥2→∞

≤ ∥Σ1/2
JJc

(︃
Y ⊤
JcYJc

n
− I

)︃
V ∥2→∞

√︁
λ1∥U⊤

⊥
˜︁UJ∥

≤
√︁
sλ1∥Σ1/2

JJc

(︃
Y ⊤
JcYJc

n
− I

)︃
V ∥max∥U⊤

⊥
˜︁UJ∥. (C.27)

We will bound the term inside the max norm for fixed i and j. Observe that

⃓⃓⃓⃓(︃
Σ
1/2
JJc

(︃
Y ⊤
JcYJc

n
− I

)︃
V

)︃
ij

⃓⃓⃓⃓
= max

i,j

⃓⃓⃓⃓
1

n

∑︂
q

∑︂
k,l

(︃
Σ
1/2
JJc

)︃
ik

(YqkYql − EYqkYql)Vlj
⃓⃓⃓⃓

≤ max
q

⃓⃓⃓⃓∑︂
k,l

(︃
Σ
1/2
JJc

)︃
ik

(YqkYql − EYqkYql)Vlj
⃓⃓⃓⃓
.

We will first bound the term inside the absolute value for fixed q by Hanson-Wright (Theorem

24 in Appendix C.3). Let M be the matrix defined via

Mkl :=

(︃
Σ
1/2
JJc

)︃
ik

Vlj .

Then

∥M∥2F =
∑︂
k,l

(︃
Σ
1/2
JJc

)︃2

ik

V 2
lj =

∑︂
k

(︃
Σ
1/2
JJc

)︃2

ik

≤ ∥Σ1/2
JJc∥22→∞ ≤ 4λ1.
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Therefore, by applying the Hanson-Wright inequality, for any fixed q it holds that

P
(︃⃓⃓⃓⃓∑︂

k,l

(︃
Σ
1/2
JJc

)︃
ik

(YqkYql − EYqkYql)Vlj
⃓⃓⃓⃓
≥ t

)︃
≤ 2 exp

(︃
− cmin

{︃
t2

4λ1
,

t

∥M∥

}︃)︃
.

Setting t = C
√
λ1

√︂
log(s)+log(k)+5 log(p)

n and taking a union bound over all q random variables

shows that for fixed i and j, with probability at least 1−O(s−1k−1p−4),

⃓⃓⃓⃓(︃
Σ
1/2
JJc

(︃
Y ⊤
JcYJc

n
− I

)︃
V

)︃
ij

⃓⃓⃓⃓
≲
√︁
λ1

√︃
log(p)

n
.

Taking a union bound over s rows and k columns shows that with probability at least

1−O(p−4),

∥Σ1/2
JJc

(︃
Y ⊤
JcYJc

n
− I

)︃
V ∥max ≲

√︁
λ1

√︃
log(p)

n
.

Therefore, from the initial bound in (C.27) and Proposition 1,

∥K4∥2→∞ = ∥Σ1/2
JJc

(︃
Y ⊤
JcYJc

n
− I

)︃
V DU⊤

⊥
˜︁UJ∥2→∞

≤
√︁
sλ1∥Σ1/2

JJc

(︃
Y ⊤
JcYJc

n
− I

)︃
V ∥max∥U⊤

⊥
˜︁UJ∥

≲ λ1

√︃
s log(p)

n
∥U⊤

⊥
˜︁UJ∥

≲
s log(p)

n

λ21
λk − λk+1

as desired.

C.3 Background Material on Orlicz Norms, Concentration,

and Subspace Perturbation

Here we briefly discuss Orlicz ψα Norms and Bernstein’s inequality for subexponential ran-

dom variables.
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The Orlicz Norm of order α for a real-valued random variable X is defined via

∥X∥ψα := inf{t > 0 : E exp(|X|α/t) ≤ 1}.

Random variables with finite ψ2 norm are called subgaussian and those with a finite ψ1 norm

are called subexponential. Generally speaking, ifX is subgaussian, thenX2 is subexponential

and ∥X2∥ψ1 ≲ ∥X∥2ψ2
. One also has the “Cauchy-Schwarz” bound ∥XY ∥ψ1 ≲ ∥X∥ψ2∥Y ∥ψ2

(Vershynin, 2018).

For subexponential random variables, one has the following generalized Bernstein’s in-

equality. See Theorem 2.8.2 in Vershynin (2018) for the proof.

Theorem 23 (Theorem 2.8.2 in Vershynin (2018)). Let X1, ..., XN be independent, mean

zero subexponential random variables and let a = (ai)
N
i=1. Then there exists a universal

constant c > 0 such that for all t ≥ 0, we have that

P

{︄⃓⃓⃓⃓
⃓
N∑︂
i=1

aiXi

⃓⃓⃓⃓
⃓ ≥ t

}︄
≤ 2 exp

[︃
−cmin

(︃
t2

K2∥a∥22
,

t

K∥a∥∞

)︃]︃

where K = maxi ∥Xi∥ψ1.

We also make use of the Hanson-Wright Inequality. See Theorem 6.2.1 in Vershynin

(2018) for the proof.

Theorem 24 (Hanson-Wright Inequality –Theorem 6.2.1 in Vershynin (2018)). Let X1, . . . , XN

be independent, mean-zero subgaussian random variables. Let M be some fixed N×N matrix.

Then there exists a universal constant c > 0 such that for all t ≥ 0, we have that

P
{︃⃓⃓⃓⃓∑︂

k,l

MklXkXl − EMklXkXl

⃓⃓⃓⃓
≥ t

}︃
≤ 2 exp

(︃
− cmin

{︃
t2

K4∥M∥2F
,

t

K2∥M∥

}︃)︃
,

where K = maxi ∥Xi∥ψ2.

We also use several notions from subspace perturbation theory. Suppose U and ˆ︁U are

two d1 × d2 matrices with orthonormal columns with d2 ≤ d1. The sinΘ distance between

the subspaces spanned by U and ˆ︁U is defined as follows. Let I − UU⊤ = U⊥U
⊤
⊥ . Then the
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(spectral) sinΘ distance is defined as

∥ sinΘ(U1, U2)∥ : = ∥ˆ︁U⊤U⊥∥.

Throughout the supplementary material, we use several equivalent terms for the sinΘ dis-

tance. We present this here as a lemma, the statement of which is slightly modified from

Lemma 1 of Cai and Zhang (2018).

Lemma 31 (Modified from Lemma 1 of Cai and Zhang (2018)). The sinΘ distance between

two matrices satisfies

∥ sinΘ(ˆ︁U,U)∥ ≤ inf
W :WW⊤=Id2

∥ˆ︁U − UW∥ ≤
√
2∥ sinΘ(ˆ︁U,U)∥;

∥ sinΘ(ˆ︁U,U)∥ ≤ ∥ˆ︁U ˆ︁U⊤ − UU⊤∥ ≤ 2∥ sinΘ(ˆ︁U,U)∥.
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Proofs from Chapter 4

D.1 Proof of Theorem 11

This section contains the full proof of Theorem 11. Without loss of generality, throughout

this section we assume that σ = 1. Throughout we denote Tk = Mk(T ) and Zk similarly.

We also let p = pmax for convenience throughout the proofs.

Before proving our main results, we state the following results for the initialization. The

proof is contained in Appendix D.1.5. It is worth noting that our ℓ2,∞ slightly sharpens the

results of Cai et al. (2021a) by a factor of κ2 for the diagonal-deleted estimator; however,

we do not consider missingness as they do. In what follows, we define the leave-one-out

initialization ˜︁U(S,k−m)
k as the eigenvectors of the matrix

Γ
(︂
TkT

⊤
k + Zk−mk T⊤

k +T⊤
k Z

k−m
k + Zk−mk (Zk−mk )⊤

)︁
,

where Zk−mk denotes the matrix Zk with its m’th row set to zero (the double appearance of

the index k will be useful for defining the other two leave-one-out sequences in the following

subsection).

Theorem 25 (Initialization ℓ2,∞ error). Instate the conditions of Theorem 11. Then with
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probability at least 1−O(p−20), it holds for each k that

∥ˆ︁US
k −UkW

S
k ∥2,∞ ≲

κµ0
√︁
r1 log(p)

λ
+
µ0

√
rkp−k log(p)

λ2
+ κ2µ20

rk
pk

;

max
m

∥ˆ︁US
k (
ˆ︁US
k )

⊤ − ˜︁U(S,k−m)
k (˜︁U(S,k−m)

k )⊤∥ ≲
κµ0

√︁
rk log(p)

λ
+
µ0

√
rkp−k log(p)

λ2
.

In Appendix D.1.1 we describe in detail the leave-one-out sequences for the iterates of

tensor SVD. In Appendix D.1.2 we obtain the deterministic bounds needed en route to The-

orem 11, and in Appendix D.1.3 we use these bounds to obtain high-probability guarantees

on good events. Appendix D.1.4 contains the final proof of Theorem 25. Throughout we rely

on several self-contained probabilistic lemmas, whose statements and proofs can be found

in Appendix D.3.

D.1.1 The Leave-One-Out Sequence

In this section we formally define the leave-one-out sequence. First, we already have definedˆ︁US
k and ˜︁U(S,k−m)

k in the previous section, but we will need a few additional pieces of notation.

We define ˆ︁U(t)
k as the output of tensor power iteration after t iterations, with ˆ︁U(0)

k = ˆ︁US
k .

It will also be useful to define

ˆ︁P(t)
k :=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

Pˆ︁U(t−1)
k+1 ⊗ˆ︁U(t−1)

k+2

k = 1;

Pˆ︁U(t−1)
k+1 ⊗ˆ︁U(t)

k+2

k = 2;

Pˆ︁U(t)
k+1⊗ˆ︁U(t)

k+2

k = 3.

The matrix ˆ︁P(t)
k is simply the projection matrix corresponding to the previous two iterates.

We have already defined the matrix Zj−mj as the j’th matricization of Z with its m’th

row set to zero. We now define Zj−m as the corresponding tensor Z, where the entries

corresponding to the m’th row of Zj are set to zero. Finally, define Zj−mk := Mk(Zj−m). In

other words Zj−mk is the k’th matricization of the tensor Z with the entries corresponding

to the m’th row of Zj set to zero.
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We now define ˜︁U(S,j−m)
k as the leading rk eigenvectors of the matrix

Γ
(︁
TkT

⊤
k + Zj−mk T⊤

k +Tk(Z
j−m
k )⊤ + Zj−mk (Zj−mk )⊤

)︁
.

We now show that the other leave-one-out sequence initializations are sufficiently close to

the true initialization.

Lemma 32 (Proximity of the initialization leave-one-out sequences). Instate the conditions

of Theorem 11. Then the initializations of the leave-one-out sequences satisfy for each k the

bound

max
1≤j≤3

max
1≤m≤pj

∥˜︁U(S,j−m)
k (˜︁U(S,j−m)

k )⊤ − ˆ︁US
k (
ˆ︁US
k )

⊤∥ ≲
κ
√︁
pk log(p)

λ
µ0

√︃
r1
pj

+
(p1p2p3)

1/2 log(p)

λ2
µ0

√︃
r1
pj

with probability at least 1−O(p−19).

Lemma 32 is proven in Appendix D.1.5 after the proof of Theorem 25. To define subse-

quent iterates, we set ˜︁U(t,j−m)
k as the outputs of tensor power iteration using these initial-

izations, though with one modification. We now define ˜︁U(t,j−m)
k as the left singular vectors

of the matrix

Tk + Zj−mk
˜︁Pt,j−m
k ,

which is still independent from e⊤mZj . Here, we set ˜︁Pt,j−m
k inductively as the projection

matrix

˜︁Pt,j−m
k :=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

P˜︁U(t−1,j−m)
k+1 ⊗˜︁U(t−1,j−m)

k+2

k = 1;

P˜︁U(t−1,j−m)
k+1 ⊗˜︁U(t,j−m)

k+2

k = 2;

P˜︁U(t,j−m)
k+1 ⊗˜︁U(t,j−m)

k+2

k = 3.

Note that for each k there are 3 different leave-one-out sequences, one corresponding to each

mode, by leaving out the m’th row of that mode (note that for convenience we use the index

m for each leave-one-out sequence, but we slightly abuse notation as m as defined above

must satisfy 1 ≤ m ≤ pj).
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We now introduce some notation used for the remainder of our proofs. Define

L
(t)
k := Uk⊥U

⊤
k⊥Zk

ˆ︁P(t)
k T⊤

k
ˆ︁U(t)
k (ˆ︁Λ(t)

k )−2;

Q
(t)
k := Uk⊥U

⊤
k⊥Zk

ˆ︁P(t)
k Z⊤

k
ˆ︁U(t)
k (ˆ︁Λ(t)

k )−2;

τk := sup
∥U1∥=1,rank(U1)≤2rk+1

∥U2∥=1,rank(U2)≤2rk+2

∥Zk
(︃
PU1 ⊗ PU2

)︃
∥;

ξ
(t,j−m)
k :=

⃦⃦⃦⃦(︃
Zj−mk − Zk

)︃ ˜︁Pt,j−m
k

⃦⃦⃦⃦
˜︁ξ(t,j−m)
k :=

⃦⃦⃦⃦(︃
Zj−mk − Zk

)︃ ˜︁Pt,j−m
k Vk

⃦⃦⃦⃦

η
(t,j−m)
k :=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
∥ sinΘ(˜︁U(t−1,j−m)

k+1 , ˆ︁U(t−1)
k+1 )∥+ ∥ sinΘ(˜︁U(t−1,j−m)

k+2 , ˆ︁U(t−1)
k+2 )∥ k = 1

∥ sinΘ(˜︁U(t−1,j−m)
k+1 , ˆ︁U(t−1)

k+1 )∥+ ∥ sinΘ(˜︁U(t,j−m)
k+2 , ˆ︁U(t)

k+2)∥ k = 2

∥ sinΘ(˜︁U(t,j−m)
k+1 , ˆ︁U(t)

k+1)∥+ ∥ sinΘ(˜︁U(t,j−m)
k+2 , ˆ︁U(t)

k+2)∥ k = 3

η
(t)
k :=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
∥ sinΘ(Uk+1, ˆ︁U(t−1)

k+1 )∥+ ∥ sinΘ(Uk+2, ˆ︁U(t−1)
k+2 )∥ k = 1

∥ sinΘ(Uk+1, ˆ︁U(t−1)
k+1 )∥+ ∥ sinΘ(Uk+2, ˆ︁U(t)

k+2)∥ k = 2

∥ sinΘ(Uk+1, ˆ︁U(t)
k+1)∥+ ∥ sinΘ(Uk+2, ˆ︁U(t)

k+2)∥ k = 3

.

First we will state results deterministically with dependence on τk, ξ
(t,j−m)
k and η(t,j−m)

k .

Note that we already have the bound ˜︁ξ(t,j−m)
k ≤ ξ

(t,j−m)
k since ∥Vk∥ = 1, but it will turn

out to be slightly more useful to have the dependence on Vk.

D.1.2 Deterministic Bounds

In this section we collect and prove deterministic bounds that we will then combine with

probabilistic induction in Appendix D.1.3.

Lemma 33 (Closeness of the orthogonal matrix). Let W(t)
k = sgn(ˆ︁U(t)

k ,Uk) be the matrix

sign of ˆ︁U(t)
k and Uk. Then

∥UkW
(t)
k −UkU

⊤
k
ˆ︁U(t)
k ∥2,∞ ≤ µ0

√︃
rk
pk

∥ sinΘ(ˆ︁U(t)
k ,Uk)∥2.
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Proof of Lemma 33. Observe that

∥UkW
(t)
k −UkU

⊤
k
ˆ︁U(t)
k ∥2,∞ ≤ ∥Uk∥2,∞∥W(t)

k −U⊤
k
ˆ︁U(t)
k ∥

≤ µ0

√︃
rk
pk

∥ sinΘ(ˆ︁U(t)
k ,Uk)∥2.

For details on the final inequality, see Lemma 4.6.3 of Chen et al. (2021c).

Lemma 34 (Deterministic Bound for the Linear Term). Suppose Tk = UkΛkV
⊤
k , and

suppose that λ/2 ≤ λrk(
ˆ︁Λ(t)
k ) Then the linear term L

(t)
k satisfies

∥e⊤mL
(t)
k ∥ ≤ 8κ

λ
∥Uk∥2,∞

(︃
τkη

(t)
k + ∥U⊤

k ZkVk∥
)︃
+

8κ

λ

(︃
τkη

(t,k−m)
k

)︃
+

4κ

λ
˜︁ξt,k−mk ,

Proof of Lemma 34. Without loss of generality we prove the result for k = 1; the cases for

k = 2 and k = 3 are similar by changing the index for t using the definition of ˆ︁P(t)
k .

Recall we let Tk = UkΛkV
⊤
k . Then the m’th row of the linear term L

(t)
1 can be written

as

e⊤mU1⊥U
⊤
1⊥Z1

[︃
Pˆ︁U(t−1)

2

⊗ Pˆ︁U(t−1)
3

]︃
T⊤

1
ˆ︁U(t)
1 (ˆ︁Λ(t)

1 )−2

= e⊤mU1⊥U
⊤
1⊥Z1

[︃
Pˆ︁U(t−1)

2

⊗ Pˆ︁U(t−1)
3

]︃
V1Λ1U

⊤
1
ˆ︁U(t)
1 (ˆ︁Λ(t)

1 )−2.

Taking norms, we see that as long as 2λ−1 ≥ (ˆ︁λ(t)r1 )−1 as in the assumptions of this lemma,

we have

⃦⃦⃦⃦
e⊤mU1⊥U

⊤
1⊥Z1

[︃
Pˆ︁U(t−1)

2

⊗ Pˆ︁U(t−1)
3

]︃
V1Λ1U

⊤
1
ˆ︁U(t)
1 (ˆ︁Λ(t)

1 )−2

⃦⃦⃦⃦
≤ 4κ

λ

⃦⃦⃦⃦
e⊤mU1⊥U

⊤
1⊥Z1

[︃
Pˆ︁U(t−1)

2

⊗ Pˆ︁U(t−1)
3

]︃
V1

⃦⃦⃦⃦
≤ 4κ

λ

⃦⃦⃦⃦
e⊤mZ1

[︃
Pˆ︁U(t−1)

2

⊗ Pˆ︁U(t−1)
3

]︃
V1

⃦⃦⃦⃦
+

4κ

λ

⃦⃦⃦⃦
e⊤mU1U

⊤
1 Z1

[︃
Pˆ︁U(t−1)

2

⊗ Pˆ︁U(t−1)
3

]︃
V1

⃦⃦⃦⃦
.

(D.1)

317



APPENDIX D. PROOFS FROM CHAPTER 4

Thus, it suffices to analyze the two terms

T1 :=

⃦⃦⃦⃦
e⊤mZ1

[︃
Pˆ︁U(t−1)

2

⊗ Pˆ︁U(t−1)
3

]︃
V1

⃦⃦⃦⃦
;

T2 :=

⃦⃦⃦⃦
e⊤mU1U

⊤
1 Z1

[︃
Pˆ︁U(t−1)

2

⊗ Pˆ︁U(t−1)
3

]︃
Vk

⃦⃦⃦⃦
;

for fixed m. For the term T1, we introduce the leave-one-out sequence to observe that

⃦⃦⃦⃦
e⊤mZ1

[︃
Pˆ︁U(t−1)

2

⊗ Pˆ︁U(t−1)
3

]︃
V1

⃦⃦⃦⃦
≤
⃦⃦⃦⃦
e⊤mZ1

[︃(︃
Pˆ︁U(t−1)

2

− P˜︁U(t−1,1−m)
2

)︃
⊗ Pˆ︁U(t−1)

3

]︃
V1

⃦⃦⃦⃦
+

⃦⃦⃦⃦
e⊤mZ1

[︃
P˜︁U(t−1,1−m)

2

⊗ Pˆ︁U(t−1)
3

]︃
V1

⃦⃦⃦⃦
≤
⃦⃦⃦⃦
e⊤mZ1

[︃(︃
Pˆ︁U(t−1)

2

− P˜︁U(t−1,1−m)
2

)︃
⊗ Pˆ︁U(t−1)

3

]︃
V1

⃦⃦⃦⃦
+

⃦⃦⃦⃦
e⊤mZ1

[︃
P˜︁U(t−1,1−m)

2

⊗
(︃
Pˆ︁U(t−1)

3

− P˜︁U(t−1,1−m)
3

)︃]︃
V1

⃦⃦⃦⃦
+

⃦⃦⃦⃦
e⊤mZ1

[︃
P˜︁U(t−1,1−m)

2

⊗ P˜︁U(t−1,1−m)
3

]︃
V1

⃦⃦⃦⃦
≤ 2τ1∥ sinΘ(ˆ︁U(t−1)

2 , ˜︁U(t−1,1−m)
2 )∥+ 2τ1∥ sinΘ(ˆ︁U(t−1)

3 , ˜︁U(t−1,1−m)
3 )∥

+

⃦⃦⃦⃦
e⊤mZ1

[︃
P˜︁U(t−1,1−m)

2

⊗ P˜︁U(t−1,1−m)
3

]︃
V1

⃦⃦⃦⃦
. (D.2)

As for T2, we note that

⃦⃦⃦⃦
e⊤mU1U

⊤
1 Z1

[︃
Pˆ︁U(t−1)

2

⊗ Pˆ︁U(t−1)
3

]︃
V1

⃦⃦⃦⃦
(D.3)

≤ ∥U1∥2,∞∥U⊤
1 Z1

[︃
Pˆ︁U(t−1)

2

⊗ Pˆ︁U(t−1)
3

]︃
V1

⃦⃦⃦⃦
≤ ∥U1∥2,∞∥U⊤

1 Z1

[︃(︃
Pˆ︁U(t−1)

2

− PU2

)︃
⊗ Pˆ︁U(t−1)

3

]︃
V1

⃦⃦⃦⃦
+ ∥U1∥2,∞∥U⊤

1 Z1

[︃
PU2 ⊗

(︃
PU3 − Pˆ︁U(t−1)

3

)︃]︃
V1

⃦⃦⃦⃦
+ ∥U1∥2,∞∥U⊤

1 Z1

[︃
PU2 ⊗ PU3

]︃
V1

⃦⃦⃦⃦
≤ 2∥U1∥2,∞τ1

(︃
∥ sinΘ(U2, ˆ︁U(t−1)

2 )∥+ ∥ sinΘ(U3, ˆ︁U(t−1)
3 )∥

)︃
+ ∥U1∥2,∞∥U⊤

1 Z1V1∥, (D.4)

where the final line used the fact that PU2 ⊗ PU3V1 = V1 by definition.
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We now plug in the bound for T1 in (D.2) and T2 in (D.4) to the initial bound in (D.1)

to obtain that

⃦⃦⃦⃦
e⊤mU1⊥U

⊤
1⊥Z1

[︃
Pˆ︁U(t−1)

2

⊗ Pˆ︁U(t−1)
3

]︃
V1Λ1U

⊤
1
ˆ︁U(t)
1 (ˆ︁Λ(t)

1 )−2

⃦⃦⃦⃦
≤ 8κ

λ
∥U1∥2,∞τ1

(︃
∥ sinΘ(U2, ˆ︁U(t−1)

2 )∥+ ∥ sinΘ(U3, ˆ︁U(t−1)
3 )∥

)︃
+

4κ

λ
∥U1∥2,∞∥U⊤

1 Z1V1∥

+
8κ

λ
τ1∥ sinΘ(ˆ︁U(t−1)

2 , ˜︁U(t−1,1−m)
2 )∥+ 8κ

λ
τ1∥ sinΘ(ˆ︁U(t−1)

3 , ˜︁U(t−1,1−m)
3 )∥

+
4κ

λ

⃦⃦⃦⃦
e⊤mZ1

[︃
P˜︁U(t−1,1−m)

2

⊗ P˜︁U(t−1,1−m)
3

]︃
V1

⃦⃦⃦⃦
≤ 8κ

λ
∥U1∥2,∞

(︃
τ1η

(t)
1 + ∥U⊤

1 Z1V1∥
)︃

+
8κ

λ

(︃
τ1η

(t,1−m)
1

)︃
+

4κ

λ
˜︁ξt,1−m1

as desired.

Lemma 35 (Deterministic Bound for the Quadratic Term). Suppose λ/2 ≤ λrk(
ˆ︁Λ(t)
k ). Then

the quadratic term Q
(t)
k satisfies

∥e⊤mQ
(t)
k ∥ ≤ 4

λ2
∥Uk∥2,∞

(︃
τkη

(t)
k +

⃦⃦⃦⃦
U⊤
k Zk

[︃
PUk+1

⊗ PUk+1

]︃⃦⃦⃦⃦)︃
+

16

λ2
τ2k

(︃
η
(t,k−m)
k

)︃
+

4

λ2
ξt,k−mk

(︃
τk∥ sinΘ(ˆ︁U(t)

k ,Uk)∥+ τkη
(t−1)
k +

⃦⃦⃦⃦
UkU

⊤
k ZkPUk+1

⊗ PUk+2

⃦⃦⃦⃦)︃
.

Proof of Lemma 35. Similar to Lemma 34 we prove for k = 1; the case for k = 2 or k = 3

follows by modifying the index of t according to the definition of ˆ︁P(t)
k .

Recall that

Q
(t)
1 = U1⊥U

⊤
1⊥Z1

[︃
Pˆ︁U(t−1)

2

⊗ Pˆ︁U(t−1)
3

]︃
Z⊤
1
ˆ︁U(t)
1 (ˆ︁Λ(t)

1 )−2.

Observe that Pˆ︁U(t−1)
2

⊗Pˆ︁U(t−1)
3

is a projection matrix and hence equals its square. Therefore,
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we simply decompose by noting that under the condition that ˆ︁λrk(ˆ︁Λ(t)
k ) ≥ λ/2

⃦⃦⃦⃦
e⊤mQ

(t)
1

⃦⃦⃦⃦
=

⃦⃦⃦⃦
U1⊥U

⊤
1⊥Z1

[︃
Pˆ︁U(t−1)

2

⊗ Pˆ︁U(t−1)
3

]︃
Z⊤
1
ˆ︁U(t)
1 (ˆ︁Λ(t)

1 )−2

⃦⃦⃦⃦
≤ 4

λ2

⃦⃦⃦⃦
e⊤mU1U

⊤
1 Z1

[︃
Pˆ︁U(t−1)

2

⊗ Pˆ︁U(t−1)
3

]︃
Z⊤
1
ˆ︁U(t)
1

⃦⃦⃦⃦
+

4

λ2

⃦⃦⃦⃦
e⊤mZ1

[︃
Pˆ︁U(t−1)

2

⊗ Pˆ︁U(t−1)
3

]︃
Z⊤
1
ˆ︁U(t)
1

⃦⃦⃦⃦
≤ 4

λ2
∥U1∥2,∞

⃦⃦⃦⃦
U⊤

1 Z1

[︃
Pˆ︁U(t−1)

2

⊗ Pˆ︁U(t−1)
3

]︃[︃
Pˆ︁U(t−1)

2

⊗ Pˆ︁U(t−1)
3

]︃
Z⊤
1
ˆ︁U(t)
1

⃦⃦⃦⃦
+

4

λ2

⃦⃦⃦⃦
e⊤mZ1

[︃
Pˆ︁U(t−1)

2

⊗ Pˆ︁U(t−1)
3

]︃[︃
Pˆ︁U(t−1)

2

⊗ Pˆ︁U(t−1)
3

]︃
Z⊤
1
ˆ︁U(t)
1

⃦⃦⃦⃦
≤ 4

λ2
∥U1∥2,∞τ1

⃦⃦⃦⃦
U⊤

1 Z1

[︃
Pˆ︁U(t−1)

2

⊗ Pˆ︁U(t−1)
3

]︃⃦⃦⃦⃦
+

4

λ2

⃦⃦⃦⃦
e⊤mZ1

[︃
Pˆ︁U(t−1)

2

⊗ Pˆ︁U(t−1)
3

]︃[︃
Pˆ︁U(t−1)

2

⊗ Pˆ︁U(t−1)
3

]︃
Z⊤
1
ˆ︁U(t)
1

⃦⃦⃦⃦
≤ 4

λ2
∥U1∥2,∞τ1

⃦⃦⃦⃦
U⊤

1 Z1

[︃
Pˆ︁U(t−1)

2

⊗ Pˆ︁U(t−1)
3

]︃⃦⃦⃦⃦
+

4

λ2

⃦⃦⃦⃦
e⊤mZ1

[︃
P˜︁U1−m,t−1

2 ⊗ˆ︁U(t−1)
3

− Pˆ︁U(t−1)
2 ⊗ˆ︁U(t−1)

3

]︃[︃
Pˆ︁U(t−1)

2

⊗ Pˆ︁U(t−1)
3

]︃
Z⊤
1
ˆ︁U(t)
1

⃦⃦⃦⃦
+

4

λ2

⃦⃦⃦⃦
e⊤mZ1

[︃
P˜︁U1−m,t−1

2 ⊗ˆ︁U(t−1)
3

]︃[︃
Pˆ︁U(t−1)

2

⊗ Pˆ︁U(t−1)
3

]︃
Z⊤
1
ˆ︁U(t)
1

⃦⃦⃦⃦
≤ 4

λ2
∥U1∥2,∞τ1

⃦⃦⃦⃦
U⊤

1 Z1

[︃
Pˆ︁U(t−1)

2

⊗ Pˆ︁U(t−1)
3

]︃⃦⃦⃦⃦
+

8

λ2
τ21 ∥ sinΘ(˜︁U1−m,t−1

2 , ˆ︁U(t−1)
2 )∥

+
4

λ2

⃦⃦⃦⃦
e⊤mZ1

[︃
P˜︁U1−m,t−1

2
⊗
(︃
Pˆ︁U(t−1)

3

− P˜︁U1−m,t−1
3

)︃]︃[︃
Pˆ︁U(t−1)

2

⊗ Pˆ︁U(t−1)
3

]︃
Z⊤
1
ˆ︁U(t)
1

⃦⃦⃦⃦
+

4

λ2

⃦⃦⃦⃦
e⊤mZ1

[︃
P˜︁U1−m,t−1

2
⊗ P˜︁U1−m,t−1

3

]︃[︃
Pˆ︁U(t−1)

2

⊗ Pˆ︁U(t−1)
3

]︃
Z⊤
1
ˆ︁U(t)
1

⃦⃦⃦⃦
≤ 4

λ2
∥U1∥2,∞τ1

⃦⃦⃦⃦
U⊤

1 Z1

[︃
Pˆ︁U(t−1)

2

⊗ Pˆ︁U(t−1)
3

]︃⃦⃦⃦⃦
+

8

λ2
τ21

(︃
∥ sinΘ(˜︁U1−m,t−1

2 , ˆ︁U(t−1)
2 )∥+ ∥ sinΘ(˜︁U1−m,t−1

3 , ˆ︁U(t−1)
3 )∥

)︃
+

4

λ2

⃦⃦⃦⃦
e⊤mZ1

[︃
P˜︁U1−m,t−1

2
⊗ P˜︁U1−m,t−1

3

]︃[︃
Pˆ︁U(t−1)

2

⊗ Pˆ︁U(t−1)
3

]︃
Z⊤
1
ˆ︁U(t)
1

⃦⃦⃦⃦
≤ 4

λ2
∥U1∥2,∞τ1

⃦⃦⃦⃦
U⊤

1 Z1

[︃
Pˆ︁U(t−1)

2

⊗ Pˆ︁U(t−1)
3

]︃⃦⃦⃦⃦
+

8

λ2
τ21

(︃
∥ sinΘ(˜︁U1−m,t−1

2 , ˆ︁U(t−1)
2 )∥+ ∥ sinΘ(˜︁U1−m,t−1

3 , ˆ︁U(t−1)
3 )∥

)︃
+

4

λ2

⃦⃦⃦⃦
e⊤mZ1

[︃
P˜︁U1−m,t−1

2
⊗ P˜︁U1−m,t−1

3

]︃⃦⃦⃦⃦⃦⃦⃦⃦
(ˆ︁U(t)

1 )⊤Z1Pˆ︁U(t−1)
2

⊗ Pˆ︁U1−m,t−1
3

⃦⃦⃦⃦
≤ 4

λ2
∥U1∥2,∞τ1

⃦⃦⃦⃦
U⊤

1 Z1

[︃
Pˆ︁U(t−1)

2

⊗ Pˆ︁U(t−1)
3

]︃⃦⃦⃦⃦
+

8

λ2
τ21

(︃
η
(t,1−m)
1

)︃
+

4

λ2
ξt,1−m1

⃦⃦⃦⃦
(ˆ︁U(t)

1 )⊤Z1Pˆ︁U(t−1)
2

⊗ Pˆ︁U(t−1)
3

⃦⃦⃦⃦
.
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Finally, we note that

⃦⃦⃦⃦
(ˆ︁U(t)

1 )⊤Z1Pˆ︁U(t−1)
2

⊗ Pˆ︁U(t−1)
3

⃦⃦⃦⃦
=

⃦⃦⃦⃦ ˆ︁U(t)
1 (ˆ︁U(t)

1 )⊤Z1Pˆ︁U(t−1)
2

⊗ Pˆ︁U(t−1)
3

⃦⃦⃦⃦
≤
⃦⃦⃦⃦(︃ ˆ︁U(t)

1 (ˆ︁U(t)
1 )⊤ −U1U

⊤
1

)︃
Z1Pˆ︁U(t−1)

2

⊗ Pˆ︁U(t−1)
3

⃦⃦⃦⃦
+

⃦⃦⃦⃦
U1U

⊤
1 Z1Pˆ︁U(t−1)

2

⊗ Pˆ︁U(t−1)
3

⃦⃦⃦⃦
≤ ∥ sinΘ(ˆ︁U(t)

1 ,U1)∥τ1 +
⃦⃦⃦⃦
U1U

⊤
1 Z1Pˆ︁U(t−1)

2

⊗ Pˆ︁U(t−1)
3

⃦⃦⃦⃦
≤ ∥ sinΘ(ˆ︁U(t)

1 ,U1)∥τ1 +
⃦⃦⃦⃦
U1U

⊤
1 Z1

(︃
Pˆ︁U(t−1)

2

− PU2

)︃
⊗ Pˆ︁U(t−1)

3

⃦⃦⃦⃦
+

⃦⃦⃦⃦
U1U

⊤
1 Z1PU2 ⊗

(︃
Pˆ︁U(t−1)

3

− PU3

)︃⃦⃦⃦⃦
+

⃦⃦⃦⃦
U1U

⊤
1 Z1PU2 ⊗ PU3)

⃦⃦⃦⃦
≤ τ1∥ sinΘ(ˆ︁U(t)

1 ,U1)∥+ τ1∥ sinΘ(ˆ︁U(t−1)
2 ,U2)∥+ τ1∥ sinΘ(ˆ︁U(t−1)

3 ,U2)∥

+

⃦⃦⃦⃦
U1U

⊤
1 Z1PU2 ⊗ PU3

⃦⃦⃦⃦
≤ τ1∥ sinΘ(ˆ︁U(t)

1 ,U1)∥+ τ1η
(t)
1 +

⃦⃦⃦⃦
U1U

⊤
1 Z1PU2 ⊗ PU3

⃦⃦⃦⃦
,

and, similarly,

⃦⃦⃦⃦
U⊤

1 Z1

[︃
Pˆ︁U(t−1)

2

⊗ Pˆ︁U(t−1)
3

]︃⃦⃦⃦⃦
≤
⃦⃦⃦⃦
U⊤

1 Z1

[︃(︃
Pˆ︁U(t−1)

2

− PU2

)︃
⊗ Pˆ︁U(t−1)

3

]︃⃦⃦⃦⃦
+

⃦⃦⃦⃦
U⊤

1 Z1

[︃
PU2 ⊗

(︃
Pˆ︁U(t−1)

3

− PU3

)︃]︃⃦⃦⃦⃦
+

⃦⃦⃦⃦
U⊤

1 Z1

[︃
PU2 ⊗ PU3

]︃⃦⃦⃦⃦
≤ τ1η

(t)
1 +

⃦⃦⃦⃦
U⊤

1 Z1

[︃
PU2 ⊗ PU3

]︃⃦⃦⃦⃦
.

Plugging in these bounds to our initial bound completes the proof.

Lemma 36 (Eigengaps). Suppose that τk ≤ λ/4 and that

η
(t)
k ≤ 1

4
.
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Then the following bounds hold:

λrk

(︃
Tk
ˆ︁P(t)
k + Zj−mk

˜︁Pt,j−m
k

ˆ︁P(t)
k

)︃
≥ 3λ

4
;

λrk+1

(︃
Tk
ˆ︁P(t)
k + Zk ˆ︁P(t)

k

)︃
≤ λ

4
.

Proof. Note that since Zj−mk is Zk with columns (or rows if k = j) removed, it holds that

Z⊤
k Zk ≽ (Zj−mk )⊤Zj−mk

and hence that

˜︁Pt,j−m
k Z⊤

k Zk
˜︁Pt,j−m
k ≽ ˜︁Pt,j−m

k (Zj−mk )⊤Zj−mk
˜︁Pt,j−m
k .

Taking norms, it holds that

⃦⃦⃦⃦
Zj−mk

˜︁Pt,j−m
k

⃦⃦⃦⃦2
=

⃦⃦⃦⃦ ˜︁Pt,j−m
k (Zj−mk )⊤Zj−mk

˜︁Pt,j−m
k

⃦⃦⃦⃦
≤
⃦⃦⃦⃦ ˜︁Pt,j−m

k Z⊤
k Zk

˜︁Pt,j−m
k

⃦⃦⃦⃦2
=

⃦⃦⃦⃦
Zk ˜︁Pt,j−m

k

⃦⃦⃦⃦
≤ τ2k ,

where we took the supremum in the final inequality. Therefore, ∥Zj−mk
˜︁Pt,j−m
k ∥ ≤ τk. There-

fore, by Weyl’s inequality, it holds that

⃓⃓⃓⃓
λrk

(︃
Tk
ˆ︁P(t)
k + Zj−mk

˜︁Pt,j−m
k

ˆ︁P(t)
k

)︃
− λrk(Tk

ˆ︁P(t)
k )

⃓⃓⃓⃓
≤ ∥Zj−mk

˜︁Pt,j−m
k

ˆ︁P(t)
k ∥

≤ ∥Zj−mk
˜︁Pt,j−m
k ∥

≤ τk

≤ λ

4
. (D.5)
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Next, when η(t)k ≤ 1
4 , this implies that

max

(︃
∥ sinΘ(ˆ︁U(t−1)

k+1 ,Uk+1)∥, ∥ sinΘ(ˆ︁U(t−1)
k+2 ,Uk+2)∥

)︃
≤ 1

4
,

and hence that

λmin(Tk
ˆ︁P(t)
k ) = λmin

(︃
TkUk+1 ⊗Uk+2(Uk+1 ⊗Uk+2)

⊤ ˆ︁P(t)
k

)︃
≥ λλmin

(︃
(Uk+1 ⊗Uk+2)

⊤ ˆ︁P(t)
k

)︃
≥ λλmin(U

⊤
k+1

ˆ︁U(t−1)
k+1 )λmin(U

⊤
k+2

ˆ︁U(t−1)
k+2 )

≥ λ(1− 1

16
)

≥ 15

16
λ. (D.6)

Combining (D.6) and (D.5) gives the first claim.

For the second claim, we simply note that by Weyl’s inequality,

⃓⃓⃓⃓
λrk+1

(︃
Tk
ˆ︁P(t)
k + Zk ˆ︁P(t)

k

)︃
− λrk+1

(︃
Tk
ˆ︁P(t)
k

)︃⃓⃓⃓⃓
≤ ∥Zk ˆ︁P(t)

k ∥

≤ τk ≤
λ

4
.

Since Tk is rank rk, it holds that

λrk+1

(︃
Tk
ˆ︁P(t)
k

)︃
= 0,

which proves the second assertion. This completes the proof.

Lemma 37 (Deterministic Bound for Leave-One-Out Sequence). Suppose that τk ≤ λ
4 and

that η(t)k ≤ 1
4 . Then it holds that

∥ sinΘ(ˆ︁U(t)
k ,
˜︁Ut,j−m
k )∥ ≤ 16κ

λ
τk

(︃
η
(t,j−m)
k

)︃
+

16κ

λ
ξt,j−mk

(︃
η
(t,j−m)
k

)︃
+

8κ

λ
˜︁ξt,j−mk +

16

λ2
τ2k

(︃
η
(t,j−m)
k

)︃
+

8

λ2
τkξ

t,j−m
k +

4

λ2
(ξt,j−mk )2,
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Proof. We prove the result for k = 1; the result for k = 2 and k = 3 are similar by modifying

the index on t.

Recall that ˆ︁U(t)
1 are the singular vectors of the matrix

T1
ˆ︁U(t−1)
2 ⊗ ˆ︁U(t−1)

3 + Z1
ˆ︁U(t−1)
2 ⊗ ˆ︁U(t−1)

3

and ˜︁Ut,j−m
1 are the singular vectors of the matrix

T1 + Zj−m1
˜︁Pt,j−m
1

Consequently, the projection ˜︁Ut,j−m
1 (˜︁Ut,j−m

1 )⊤ is also the projection onto the dominant left

singular space of the matrix

(︃
T1 + Zj−m1

˜︁Pt,j−m
1

)︃ˆ︁U(t−1)
2 ⊗ ˆ︁U(t−1)

3 ,

Therefore, both projections are projections onto the dominant eigenspaces of the matrices

defined via

ˆ︁A := T1Pˆ︁U(t−1)
2 ⊗ˆ︁U(t−1)

3

T⊤
1 +

[︃
Z1Pˆ︁U(t−1)

2 ⊗ˆ︁U(t−1)
3

T⊤
1 +T1Pˆ︁U(t−1)

2 ⊗ˆ︁U(t−1)
3

Z⊤
1 + Z1Pˆ︁U(t−1)

2 ⊗ˆ︁U(t−1)
3

Z⊤
1

]︃
;

˜︁A := T1Pˆ︁U(t−1)
2 ⊗ˆ︁U(t−1)

3

T⊤
1 +

[︃
Zj−m1 P˜︁Ut−1,j−m

2
⊗ P˜︁Ut−1,j−m

3
Pˆ︁U(t−1)

2 ⊗ˆ︁U(t−1)
3

T⊤
1

+T1Pˆ︁U(t−1)
2 ⊗ˆ︁U(t−1)

3

P˜︁Ut−1,j−m
2

⊗ P˜︁Ut−1,j−m
3

(Zj−m1 )⊤

+ Zj−m1 P˜︁Ut−1,j−m
2

⊗ P˜︁Ut−1,j−m
3

Pˆ︁U(t−1)
2 ⊗ˆ︁U(t−1)

3

P˜︁Ut−1,j−m
2

⊗ P˜︁Ut−1,j−m
3

Zj−m1 )⊤
]︃
.
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Therefore, the perturbation ˆ︁A− ˜︁A is equal to the sum of three terms, defined via

P1 := Z1Pˆ︁U(t−1)
2 ⊗ˆ︁U(t−1)

3

T⊤
1 − Zj−m1 P˜︁Ut−1,j−m

2
⊗ P˜︁Ut−1,j−m

3
Pˆ︁U(t−1)

2 ⊗ˆ︁U(t−1)
3

T⊤
1

=

[︃
Z1Pˆ︁U(t−1)

2 ⊗ˆ︁U(t−1)
3

− Zj−m1 P˜︁Ut−1,j−m
2

⊗ P˜︁Ut−1,j−m
3

]︃
Pˆ︁U(t−1)

2 ⊗ˆ︁U(t−1)
3

T⊤
1

P2 := T1Pˆ︁U(t−1)
2 ⊗ˆ︁U(t−1)

3

Z⊤
1 −T1Pˆ︁U(t−1)

2 ⊗ˆ︁U(t−1)
3

P˜︁Ut−1,j−m
2

⊗ P˜︁Ut−1,j−m
3

(Zj−m1 )⊤

= T1Pˆ︁U(t−1)
2 ⊗ˆ︁U(t−1)

3

(︃
Pˆ︁U(t−1)

2 ⊗ˆ︁U(t−1)
3

Z⊤
1 − P˜︁Ut−1,j−m

2
⊗ P˜︁Ut−1,j−m

3
(Zj−m1 )⊤

)︃
P3 := Z1Pˆ︁U(t−1)

2 ⊗ˆ︁U(t−1)
3

Z⊤
1 − Zj−m1 P˜︁Ut−1,j−m

2
⊗ P˜︁Ut−1,j−m

3
Pˆ︁U(t−1)

2 ⊗ˆ︁U(t−1)
3

P˜︁Ut−1,j−m
2

⊗ P˜︁Ut−1,j−m
3

Zj−m1 )⊤

where we have used the fact that Pˆ︁U(t−1)
2 ⊗ˆ︁U(t−1)

3

is a projection matrix and hence equal to

its square. We now bound each term successively.

The term ∥P1∥: Observe that

P1 =

[︃
Z1Pˆ︁U(t−1)

2

⊗ Pˆ︁U(t−1)
3

− Zj−m1 P˜︁Ut−1,j−m
2

⊗ P˜︁Ut−1,j−m
3

]︃
Pˆ︁U(t−1)

2

⊗ Pˆ︁U(t−1)
3

T⊤
1

=
[︂
Z1

(︂
Pˆ︁U(t−1)

2

− P˜︁Ut−1,j−m
2

)︂
⊗ Pˆ︁U(t−1)

3

]︂
Pˆ︁U(t−1)

2

⊗ Pˆ︁U(t−1)
3

T⊤
1

+
[︂
Z1P˜︁Ut−1,j−m

2
⊗
(︂
Pˆ︁U(t−1)

3

− P˜︁Ut−1,j−m
3

)︂]︂
Pˆ︁U(t−1)

2

⊗ Pˆ︁U(t−1)
3

T⊤
1

+
[︂
Z1 − Zj−m1

]︂(︃
P˜︁Ut−1,j−m

2
⊗ P˜︁Ut−1,j−m

3

)︃[︂
Pˆ︁U(t−1)

2

− P˜︁Ut−1,j−m
2

]︂
⊗ Pˆ︁U(t−1)

3

T⊤
1

+
[︂
Z1 − Zj−m1

]︂(︃
P˜︁Ut−1,j−m

2
⊗ P˜︁Ut−1,j−m

3

)︃
P˜︁Ut−1,j−m

2
⊗
[︂
Pˆ︁U(t−1)

3

− P˜︁Ut−1,j−m
3

]︂
T⊤

1

+
[︂
Z1 − Zj−m1

]︂(︃
P˜︁Ut−1,j−m

2
⊗ P˜︁Ut−1,j−m

3

)︃
T⊤

1 .

Taking norms yields

∥P1∥ ≤ 2λ1τ1

(︃
∥ sinΘ(ˆ︁U(t−1)

2 , ˜︁Ut−1,j−m
2 )∥+ ∥ sinΘ(ˆ︁U(t−1)

3 , ˜︁Ut−1,j−m
3 )∥

)︃
+ 2λ1∥

[︂
Z1 − Zj−m1

]︂
P˜︁Ut−1,j−m

2
⊗ P˜︁Ut−1,j−m

3
∥∥ sinΘ(ˆ︁U(t−1)

2 , ˜︁Ut−1,j−m
2 )∥

+ 2λ1∥
[︂
Z1 − Zj−m1

]︂
P˜︁Ut−1,j−m

2
⊗ P˜︁Ut−1,j−m

3
∥∥ sinΘ(ˆ︁U(t−1)

3 , ˜︁Ut−1,j−m
3 )∥

+ λ1∥
[︂
Z1 − Zj−m1

]︂
P˜︁Ut−1,j−m

2
⊗ P˜︁Ut−1,j−m

3
V1∥

≤ 2λ1τ1

(︃
η
(t,j−m)
1

)︃
+ 2λ1ξ

t,j−m
1

(︃
η
(t,j−m)
1

)︃
+ λ1˜︁ξt,j−m1 .
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For P2 we proceed similarly. It holds that

P2 = T1Pˆ︁U(t−1)
2

⊗ Pˆ︁U(t−1)
3

(︃
Pˆ︁U(t−1)

2

⊗ Pˆ︁U(t−1)
3

Z⊤
1 − P˜︁Ut−1,j−m

2
⊗ P˜︁Ut−1,j−m

3
(Zj−m1 )⊤

)︃
= T1Pˆ︁U(t−1)

2

⊗ Pˆ︁U(t−1)
3

(︃[︃
Pˆ︁U(t)

k+1

− P˜︁Ut−1,j−m
2

]︃
⊗ Pˆ︁U(t−1)

3

Z⊤
1

)︃
+T1Pˆ︁U(t−1)

2

⊗ Pˆ︁U(t−1)
3

(︃
P˜︁Ut−1,j−m

2
⊗
[︂
Pˆ︁U(t−1)

3

− P˜︁Ut−1,j−m
3

]︂
Z⊤
1

)︃
+T1

(︃
Pˆ︁U(t−1)

2

− P˜︁Ut−1,j−m
2

)︃
⊗ Pˆ︁U(t−1)

3

(︃
P˜︁Ut−1,j−m

2
⊗ P˜︁Ut−1,j−m

3
(Z1 − Zj−m1 )⊤

)︃
+T1P˜︁Ut−1,j−m

2
⊗
(︃
P˜︁Ut−1,j−m

3
− Pˆ︁U(t−1)

3

)︃(︃
P˜︁Ut−1,j−m

2
⊗ P˜︁Ut−1,j−m

3
(Z1 − Zj−m1 )⊤

)︃
+T1P˜︁Ut−1,j−m

2
⊗ P˜︁Ut−1,j−m

3
(Z1 − Zj−m1 )⊤.

Taking norms yields the same upper bound as for ∥P1∥.

For the the term P3, we note that since Pˆ︁U(t−1)
2 ⊗ˆ︁U(t−1)

3

is a projection matrix and hence
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equal to its cube, it holds that

∥P3∥ ≤
⃦⃦⃦⃦
Z1

[︂
Pˆ︁U(t−1)

2

− P˜︁Ut−1,j−m
2

]︂
⊗ Pˆ︁U(t−1)

3

Pˆ︁U(t−1)
2 ⊗ˆ︁U(t−1)

3

Pˆ︁U(t−1)
2 ⊗ˆ︁U(t−1)

3

Z1

⃦⃦⃦⃦
+

⃦⃦⃦⃦
Z1P˜︁Ut−1,j−m

2
⊗
[︂
P˜︁Ut−1,j−m

3
− Pˆ︁U(t−1)

3

]︂
Pˆ︁U(t−1)

2 ⊗ˆ︁U(t−1)
3

Pˆ︁U(t−1)
2 ⊗ˆ︁U(t−1)

3

Z1

⃦⃦⃦⃦
+

⃦⃦⃦⃦
Z1P˜︁Ut−1,j−m

2
⊗ P˜︁Ut−1,j−m

3
Pˆ︁U(t−1)

2 ⊗ˆ︁U(t−1)
3

[︂
Pˆ︁U(t−1)

2

− P˜︁Ut−1,j−m
2

]︂
⊗ Pˆ︁U(t−1)

3

Z1

⃦⃦⃦⃦
+

⃦⃦⃦⃦
Z1P˜︁Ut−1,j−m

2
⊗ P˜︁Ut−1,j−m

3
Pˆ︁U(t−1)

2 ⊗ˆ︁U(t−1)
3

P˜︁Ut−1,j−m
2

⊗
[︂
P˜︁Ut−1,j−m

3
− Pˆ︁U(t−1)

3

]︂
Z1

⃦⃦⃦⃦
+

⃦⃦⃦⃦
Z1P˜︁Ut−1,j−m

2
⊗ P˜︁Ut−1,j−m

3
Pˆ︁U(t−1)

2 ⊗ˆ︁U(t−1)
3

P˜︁Ut−1,j−m
2

⊗ P˜︁Ut−1,j−m
3

[︂
Z1 − Zj−m1

]︂⊤ ⃦⃦⃦⃦
+

⃦⃦⃦⃦ [︂
Z1 − Zj−m1

]︂
P˜︁Ut−1,j−m

2
⊗ P˜︁Ut−1,j−m

3
Pˆ︁U(t−1)

2 ⊗ˆ︁U(t−1)
3

P˜︁Ut−1,j−m
2

⊗ P˜︁Ut−1,j−m
3

Zj−m1

⃦⃦⃦⃦
≤ 2τ21

(︃
∥ sinΘ(ˆ︁U(t−1)

2 , ˜︁Ut−1,j−m
2 )∥+ ∥ sinΘ(ˆ︁U(t−1)

3 , ˜︁Ut−1,j−m
3 )∥

)︃
+ τ1

⃦⃦⃦⃦ [︂
Z1 − Zj−m1

]︂
P˜︁Ut−1,j−m

2
⊗ P˜︁Ut−1,j−m

3

⃦⃦⃦⃦
+

⃦⃦⃦⃦
Zj−m1 P˜︁Ut−1,j−m

2
⊗ P˜︁Ut−1,j−m

3

⃦⃦⃦⃦⃦⃦⃦⃦ [︂
Z1 − Zj−m1

]︂
P˜︁Ut−1,j−m

2
⊗ P˜︁Ut−1,j−m

3

⃦⃦⃦⃦
≤ 4τ21

(︃
η
(t,j−m)
1

)︃
+ τ1ξ

t,j−m
1 +

⃦⃦⃦⃦
Zj−m1 P˜︁Ut−1,j−m

2
⊗ P˜︁Ut−1,j−m

3

⃦⃦⃦⃦
ξt,j−m1

≤ 4τ21

(︃
η
(t,j−m)
1

)︃
+ 2τ1ξ

t,j−m
1 +

⃦⃦⃦⃦(︃
Z1 − Zj−m1

)︃
P˜︁Ut−1,j−m

2
⊗ P˜︁Ut−1,j−m

3

⃦⃦⃦⃦
ξt,j−m1

≤ 4τ21

(︃
η
(t,j−m)
1

)︃
+ 2τ1ξ

t,j−m
1 +

(︁
ξt,j−m1

)︁2
.

We note that by Lemma 36, it holds that

λr1
(︁ ˜︁A)︁− λr1+1

(︁ ˆ︁A)︁ = λ2r1

(︃
T1
ˆ︁P(t)
1 + Zj−m1

˜︁Pt,j−m
1

)︃
− λ2r1+1

(︃
T1
ˆ︁P(t)
1 + Zk ˆ︁P(t)

1

)︃
≥
(︃
3

4
λ

)︃2

−
(︃
λ

4

)︃2

≥ λ2

4
.

Consequently, by the Davis-Kahan Theorem, it holds that

∥ sinΘ(ˆ︁U(t)
1 , ˜︁Ut,j−m

1 )∥ ≤ 4

λ2

(︃
∥P1∥+ ∥P2∥+ ∥P3∥

)︃
,

which holds under the eigengap condition by Lemma 36 and the assumption τk ≤ λ
4 . There-
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fore,

∥ sinΘ(ˆ︁U(t)
1 , ˜︁Ut,j−m

1 )∥ ≤ 4

λ2

(︃
∥P1∥+ ∥P2∥+ ∥P3∥

)︃
≤ 8

λ2

(︃
2λ1τ1

(︃
η
(t,j−m)
1

)︃
+ 2λ1ξ

t,j−m
1

(︃
η
(t,j−m)
1

)︃
+ λ1˜︁ξt,j−m1

)︃
+

4

λ2

(︃
4τ21

(︃
η
(t,j−m)
1

)︃
+ 2τ1ξ

t,j−m
1 +

(︁
ξt,j−m1

)︁2)︃
≤ 16κ

λ
τ1

(︃
η
(t,j−m)
1

)︃
+

16κ

λ
ξt,j−m1

(︃
η
(t,j−m)
1

)︃
+

8κ

λ
˜︁ξt,j−m1 +

16

λ2
τ21

(︃
η
(t,j−m)
1

)︃
+

8

λ2
τ1ξ

t,j−m
1 +

4

λ2
(ξt,j−m1 )2

as desired.

D.1.3 Probabilistic Bounds on Good Events

This section contains high-probability bounds for the terms considered in the previous sub-

section. Let r = max rk, p = max pk. In what follows, we denote

δ
(k)
L := C0κ

√︁
pk log(p),

where C0 is taken to be some fixed constant.
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We will also recall the notation from the previous section:

ˆ︁P(t)
k :=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

Pˆ︁U(t−1)
k+1 ⊗ˆ︁U(t−1)

k+2

k = 1;

Pˆ︁U(t−1)
k+1 ⊗ˆ︁U(t)

k+2

k = 2;

Pˆ︁U(t)
k+1⊗ˆ︁U(t)

k+2

k = 3.

˜︁Pt,j−m
k :=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

P˜︁U(t−1,j−m)
k+1 ⊗˜︁U(t−1,j−m)

k+2

k = 1;

P˜︁U(t−1,j−m)
k+1 ⊗˜︁U(t,j−m)

k+2

k = 2;

P˜︁U(t,j−m)
k+1 ⊗˜︁U(t,j−m)

k+2

k = 3.

L
(t)
k := Uk⊥U

⊤
k⊥Zk

ˆ︁P(t)
k T⊤

k
ˆ︁U(t−1)
k (ˆ︁Λ(t−1)

k )−2;

Q
(t)
k := Uk⊥U

⊤
k⊥Zk

ˆ︁P(t)
k Z⊤

k
ˆ︁U(t−1)
k (ˆ︁Λ(t−1)

k )−2

τk := sup
∥U1∥=1,rank(U1)≤2rk+1

∥U2∥=1,rank(U2)≤2rk+2

∥Zk
(︃
PU1 ⊗ PU2

)︃
∥;

ξ
(t,j−m)
k :=

⃦⃦⃦⃦(︃
Zj−mk − Zk

)︃ ˜︁Pt,j−m
k

⃦⃦⃦⃦
˜︁ξ(t,j−m)
k :=

⃦⃦⃦⃦(︃
Zj−mk − Zk

)︃ ˜︁Pt,j−m
k Vk

⃦⃦⃦⃦

η
(t,j−m)
k :=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
∥ sinΘ(˜︁U(t−1,j−m)

k+1 , ˆ︁U(t−1)
k+1 )∥+ ∥ sinΘ(˜︁U(t−1,j−m)

k+2 , ˆ︁U(t−1)
k+2 )∥ k = 1

∥ sinΘ(˜︁U(t−1,j−m)
k+1 , ˆ︁U(t−1)

k+1 )∥+ ∥ sinΘ(˜︁U(t,j−m)
k+2 , ˆ︁U(t)

k+2)∥ k = 2

∥ sinΘ(˜︁U(t,j−m)
k+1 , ˆ︁U(t)

k+1)∥+ ∥ sinΘ(˜︁U(t,j−m)
k+2 , ˆ︁U(t)

k+2)∥ k = 3

η
(t)
k :=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
∥ sinΘ(Uk+1, ˆ︁U(t−1)

k+1 )∥+ ∥ sinΘ(Uk+2, ˆ︁U(t−1)
k+2 )∥ k = 1

∥ sinΘ(Uk+1, ˆ︁U(t−1)
k+1 )∥+ ∥ sinΘ(Uk+2, ˆ︁U(t)

k+2)∥ k = 2

∥ sinΘ(Uk+1, ˆ︁U(t)
k+1)∥+ ∥ sinΘ(Uk+2, ˆ︁U(t)

k+2)∥ k = 3

.

We will also need to define several probabilistic events. The first event EGood collects

several probabilistic bounds that hold independently of t, provided tmax ≤ C log(p) for some
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constant C:

EGood :=

{︃
max
k

τk ≤ C
√
pr

}︃⋂︂{︃
∥ sinΘ(ˆ︁U(t)

k ,Uk)∥ ≤
δ
(k)
L

λ
+

1

2t
for all t ≤ tmax and 1 ≤ k ≤ 3

}︃
⋂︂{︃

max
k

⃦⃦⃦⃦
U⊤
k ZkVk

⃦⃦⃦⃦
≤ C

(︂√
r +

√︁
log(p)

)︂}︃
;⋂︂{︃

max
k

⃦⃦⃦⃦
U⊤
k ZkPUk+1

⊗ PUk+2

⃦⃦⃦⃦
≤ C

(︂
r +

√︁
log(p)

)︂}︃
;⋂︂{︃

max
k

⃦⃦⃦⃦
ZkVk

⃦⃦⃦⃦
≤ C

√
pk

}︃
.

By Lemma 48, the proof in Zhang and Xia (2018), and a standard ε-net argument, it is

straightforward to show that

P (EGood) ≥ 1−O(p−30).

Note that Zhang and Xia (2018) assumes homoskedastic entries, but their proof of Theorem

1 goes through in precisely the same way under the conditions of Theorem 11, since their

induction argument only requires a suitably warm initialization. Alternatively, one can

apply Theorem 1 of Luo et al. (2021), where the sinΘ bounds hold by the assumption

λ ≳ κ
√︁
log(p)p/p

1/4
min.

We now define several events we use in our induction argument. Set

E t,k2,∞ :=

{︃
∥ˆ︁U(t)

k −UkW
(t)
k ∥2,∞ ≤

(︃
δ
(k)
L

λ
+

1

2t

)︃
µ0

√︃
rk
pk

}︃
;

E t,kj−m :=

{︃
∥ sinΘ(˜︁Ut,j−m

k , ˆ︁U(t)
k )∥ ≤

(︃
δ
(k)
L

λ
+

1

2t

)︃
µ0

√︃
rk
pj

}︃
;

E t0−1,1
main :=

t0−1⋂︂
t=1

{︄
3⋂︂

k=1

E t,k2,∞ ∩
3⋂︂
j=1

pj⋂︂
m=1

E t,jk−m

}︄
;

E t0−1,2
main := E t0−1,1

main ∩
{︃ 3⋂︂
k=1

pk⋂︂
m=1

E t0,1k−m

}︃
∩ E t0,12,∞

E t0−1,3
main := E t0−1,2

main ∩
{︃ 3⋂︂
k=1

pk⋂︂
m=1

E t0,2k−m

}︃
∩ E t0,22,∞.

The event E t,k2,∞ concerns the desired bound, the event E t,kj−m controls the leave one out

sequences, and the other events E t0−1,k
main are simply the intersection of these events, mainly
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introduced for convenience.

Finally, the following event concerns the incoherence of our leave-one-out sequences:

˜︁E t,kj−m :=

{︄
∥ ˜︁Pt0,j−m

k Vk∥2,∞ ≤ µ20

√
r−k

pj

(︃
δ
(k+1)
L

λ
+

1

2t0−1

)︃(︃
δ
(k+2)
L

λ
+

1

2t0−1

)︃
;

+ µ20

√
r−k

√
pjpk+2

(︃
δ
(k+1)
L

λ
+

1

2t0−1

)︃
+ µ20

√
r−k

√
pjpk+1

(︃
δ
(k+2)
L

λ
+

1

2t0−1

)︃
+ 6µ20

√
r−k√
p−k

(︃
δ
(k+1)
L

λ
+

1

2t0−1

)︃
+ 3µ20

√
r−k√
p−k

(︃
δ
(k+2)
L

λ
+

1

2t0−1

)︃
+ µ0

√︃
rk
p−k

.

}︄
⋂︂{︄

∥ ˜︁Pt0,j−m
k ∥2,∞ ≤ µ20

√
r−k

pj

(︃
δ
(k+1)
L

λ
+

1

2t0−1

)︃(︃
δ
(k+2)
L

λ
+

1

2t0−1

)︃

+ 2µ20

√
r−k

√
pjpk+2

(︃
δ
(k+1)
L

λ
+

1

2t0−1

)︃
+ 2µ20

√
r−k

√
pjpk+1

(︃
δ
(k+2)
L

λ
+

1

2t0−1

)︃
+ 2µ20

√
r−k√
p−k

.

}︄
.

While the precise definition of the event ˜︁E t,kj−m is complicated, it is useful to keep in mind

that the event will be used as an event independent of the nonzero elements in the matrices

Zk − Zj−mk , and it simply controls the incoherence of the leave-one-out sequences.

The following lemma shows that the leave-one-out sequences are incoherent whenever

there are bounds on the previous iterates in ℓ2,∞ norm.

Lemma 38. For any fixed t0, j, k, and m with 1 ≤ t0 ≤ tmax, 1 ≤ j ≤ 3, 1 ≤ k ≤ 3, and

1 ≤ m ≤ pj, it holds that the set

EGood ∩ E t0−1,k
main ∩

(︂˜︁E t0,kj−m

)︂c
is empty.

Proof. Without loss of generality, we prove the result for k = 1; the cases k = 2 and k = 3

are similar (in fact, the result can be made slightly sharper, but this is not needed for our

purposes).

Note that when t0 ≥ 1, it holds that on the event E t0−1,1
main .

∥ˆ︁U(t0−1)
1 ∥2,∞ ≤ ∥ˆ︁U(t0−1)

1 −U1W
(t0−1)
1 ∥2,∞ + ∥U1∥2,∞ ≤ 2µ0

√︃
r1
p1
.
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Similarly,

∥ˆ︁U(t0−1)
2 ∥2,∞ ≤ 2µ0

√︃
r2
p2

;

∥ˆ︁U(t0−1)
3 ∥2,∞ ≤ 2µ0

√︃
r3
p3
.

In addition, on this event it holds that

∥P˜︁U(t0−1,j−m)
2

− Pˆ︁U(t0−1)
2

∥ ≤
(︃
δ
(2)
L

λ
+

1

2t0−1

)︃
µ0

√︃
r2
pj

;

∥P˜︁U(t0−1,j−m)
3

− Pˆ︁U(t0−1)
3

∥ ≤
(︃
δ
(3)
L

λ
+

1

2t0−1

)︃
µ0

√︃
r3
pj
. (D.7)
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Next, observe that on the events listed,

∥P˜︁U(t0−1,j−m)
2

⊗ P˜︁U(t0−1,j−m)
3

V1∥2,∞ ≤
⃦⃦⃦⃦[︃

P˜︁U(t0−1,j−m)
2

− Pˆ︁U(t0−1)
2

]︃
⊗ P˜︁U(t0−1,j−m)

3

V1

⃦⃦⃦⃦
2,∞

+

⃦⃦⃦⃦
Pˆ︁U(t0−1)

2

⊗ P˜︁U(t0−1,j−m)
3

V1

⃦⃦⃦⃦
2,∞

≤
⃦⃦⃦⃦[︃

P˜︁U(t0−1,j−m)
2

− Pˆ︁U(t0−1)
2

]︃
⊗
[︃
P˜︁U(t0−1,j−m)

3

− Pˆ︁U(t0−1)
3

]︃
V1

⃦⃦⃦⃦
2,∞

+

⃦⃦⃦⃦[︃
P˜︁U(t0−1,j−m)

2

− Pˆ︁U(t0−1)
2

]︃
⊗ Pˆ︁U(t0−1)

3

V1

⃦⃦⃦⃦
2,∞

+

⃦⃦⃦⃦
Pˆ︁U(t0−1)

2

⊗
[︃
P˜︁U(t0−1,j−m)

3

− Pˆ︁U(t0−1)
3

]︃
V1

⃦⃦⃦⃦
2,∞

+

⃦⃦⃦⃦
Pˆ︁U(t0−1)

2

⊗ Pˆ︁U(t0−1)
3

V1

⃦⃦⃦⃦
2,∞

≤
⃦⃦⃦⃦[︃

P˜︁U(t0−1,j−m)
2

− Pˆ︁U(t0−1)
2

]︃
⊗
[︃
P˜︁U(t0−1,j−m)

3

− Pˆ︁U(t0−1)
3

]︃
V1

⃦⃦⃦⃦
2,∞

+

⃦⃦⃦⃦[︃
P˜︁U(t0−1,j−m)

2

− Pˆ︁U(t0−1)
2

]︃
⊗ Pˆ︁U(t0−1)

2

V1

⃦⃦⃦⃦
2,∞

+

⃦⃦⃦⃦
Pˆ︁U(t0−1)

2

⊗
[︃
P˜︁U(t0−1,j−m)

3

− Pˆ︁U(t0−1)
3

]︃
V1

⃦⃦⃦⃦
2,∞

+

⃦⃦⃦⃦[︃
Pˆ︁U(t0−1)

2

− PU2

]︃
⊗ Pˆ︁U(t0−1)

3

V1

⃦⃦⃦⃦
2,∞

+

⃦⃦⃦⃦
PU2 ⊗

[︃
Pˆ︁U(t0−1)

3

− PU3

]︃
V1

⃦⃦⃦⃦
2,∞

+

⃦⃦⃦⃦
PU2 ⊗ PU3V1

⃦⃦⃦⃦
2,∞

=: (I) + (II) + (III) + (IV ) + (V ) + (V I),
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where

(I) :=

⃦⃦⃦⃦[︃
P˜︁U(t0−1,j−m)

2

− Pˆ︁U(t0−1)
2

]︃
⊗
[︃
P˜︁U(t0−1,j−m)

3

− Pˆ︁U(t0−1)
3

]︃
V1

⃦⃦⃦⃦
2,∞

;

(II) : =

⃦⃦⃦⃦[︃
P˜︁U(t0−1,j−m)

2

− Pˆ︁U(t0−1)
2

]︃
⊗ Pˆ︁U(t0−1)

3

V1

⃦⃦⃦⃦
2,∞

;

(III) :=

⃦⃦⃦⃦
Pˆ︁U(t0−1)

2

⊗
[︃
P˜︁U(t0−1,j−m)

3

− Pˆ︁U(t0−1)
3

]︃
V1

⃦⃦⃦⃦
2,∞

;

(IV ) :=

⃦⃦⃦⃦[︃
Pˆ︁U(t0−1)

2

− PU2

]︃
⊗ Pˆ︁U(t0−1)

3

V1

⃦⃦⃦⃦
2,∞

;

(V ) :=

⃦⃦⃦⃦
PU2 ⊗

[︃
Pˆ︁U(t0−1)

3

− PU3

]︃
V1

⃦⃦⃦⃦
2,∞

;

(V I) :=

⃦⃦⃦⃦
PU2 ⊗ PU3V1

⃦⃦⃦⃦
2,∞

.

We now bound each term in turn, where we will use (D.7) repeatedly. We have that

(I) ≤
⃦⃦⃦⃦[︃

P˜︁U(t0−1,j−m)
2

− Pˆ︁U(t0−1)
2

]︃
⊗
[︃
P˜︁U(t0−1,j−m)

3

− Pˆ︁U(t0−1)
3

]︃⃦⃦⃦⃦
2,∞

≤
⃦⃦⃦⃦
P˜︁U(t0−1,j−m)

2

− Pˆ︁U(t0−1)
2

⃦⃦⃦⃦⃦⃦⃦⃦
P˜︁U(t0−1,j−m)

3

− Pˆ︁U(t0−1)
3

⃦⃦⃦⃦
≤ µ20

√
r2r3
pj

(︃
δ
(2)
L

λ
+

1

2t0−1

)︃(︃
δ
(3)
L

λ
+

1

2t0−1

)︃
. (D.8)

Similarly,

(II) ≤
⃦⃦⃦⃦[︃

P˜︁U(t0−1,j−m)
2

− Pˆ︁U(t0−1)
2

]︃
⊗ Pˆ︁U(t0−1)

3

⃦⃦⃦⃦
2,∞

≤
⃦⃦⃦⃦
P˜︁U(t0−1,j−m)

2

− Pˆ︁U(t0−1)
2

⃦⃦⃦⃦⃦⃦⃦⃦
Pˆ︁U(t0−1)

3

⃦⃦⃦⃦
2,∞

≤
(︃
δ
(2)
L

λ
+

1

2t0−1

)︃
µ20

√︃
r2
pj

√︃
r3
p3
.

Next,

(III) ≤
⃦⃦⃦⃦
Pˆ︁U(t0−1)

2

⊗
[︃
P˜︁U(t0−1,j−m)

3

− Pˆ︁U(t0−1)
3

]︃⃦⃦⃦⃦
2,∞

≤
(︃
δ
(3)
L

λ
+

1

2t0−1

)︃
µ20

√︃
r3
pj

√︃
r2
p2
.

334



Joshua Agterberg

For the next two terms, we note that for any orthogonal matrix W ∈ O(rk),

∥ˆ︁U(t0−1)
2

ˆ︁Ut0−1⊤
2 −U2U

⊤
2 ∥2,∞ = ∥ˆ︁U(t0−1)

2 WW⊤ ˆ︁Ut0−1⊤
2 −U2U

⊤
2 ∥2,∞

≤ ∥(ˆ︁U(t0−1)
2 W −U2)(ˆ︁U(t0−1)

2 W)⊤∥2,∞

+ ∥U2(ˆ︁U(t0−1)
2 W −U2)∥2,∞

≤ ∥ˆ︁U(t0−1)
2 W −U2∥2,∞

+ ∥U2∥2,∞∥ˆ︁U(t0−1)
2 W −U2∥.

By taking the infimum over O(r2), we note that by Proposition 1 of Cai and Zhang (2018)

inf
W∈O(r2)

∥ˆ︁U(t0−1)
2 W −U2∥ ≤

√
2∥ sinΘ(ˆ︁U(t0−1)

2 ,U2)∥

≤
√
2

(︃
δ
(2)
L

λ
+

1

2t0−1

)︃
,

where the final inequality is on the event EGood since t0 ≤ tmax. We also note that on the

event E t0−1,1
main and the right-invariance of ∥ · ∥2,∞ to orthogonal matrices,

inf
W∈O(r2)

∥ˆ︁U(t0−1)
2 W −U2∥2,∞ ≤ inf

W∈O(r2)
∥ˆ︁U(t0−1)

2 −U2W∥2,∞

≤ ∥ˆ︁U(t0−1)
2 −U2W

(t0−1)
2 ∥2,∞

≤ µ0

√︃
r2
p2

(︃
δ
((2)
L

λ
+

1

2t0−1

)︃
.

Therefore,

∥Pˆ︁U(t0−1)
2

− PU2∥2,∞ ≤ 3µ0

√︃
r2
p2

(︃
δ
(2)
L

λ
+

1

2t0−1

)︃
.

Similarly,

∥Pˆ︁U(t0−1)
3

− PU3∥2,∞ ≤ 3µ0

√︃
r3
p3

(︃
δ
(3)
L

λ
+

1

2t0−1

)︃
.
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Therefore,

(IV ) ≤
⃦⃦⃦⃦
Pˆ︁U(t0−1)

2

− PU2

⃦⃦⃦⃦
2,∞

∥Pˆ︁U(t0−1)
3

∥2,∞;

≤ 6µ20

√︃
r3
p3

√︃
r2
p2

(︃
δ
(2)
L

λ
+

1

2t0−1

)︃
;

(V ) ≤
⃦⃦⃦⃦
PU2 ⊗

[︃
Pˆ︁U(t0−1)

3

− PU3

]︃⃦⃦⃦⃦
2,∞

≤ 3µ20

√︃
r2
p2

√︃
r3
p3

(︃
δ
(3)
L

λ
+

1

2t0−1

)︃
.

Finally,

(V I) :=

⃦⃦⃦⃦
PU2 ⊗ PU3V1

⃦⃦⃦⃦
2,∞

= ∥V1∥2,∞

≤ µ0

√︃
r1
p−1

.

Plugging all of these bounds in we obtain

∥P˜︁U(t0−1,j−m)
2

⊗ P˜︁U(t0−1,j−m)
3

V1∥2,∞ ≤ µ20

√
r2r3
pj

(︃
δ
(2)
L

λ
+

1

2t0−1

)︃(︃
δ
(3)
L

λ
+

1

2t0−1

)︃
;

+ µ20

√
r2r3√
pjp3

(︃
δ
(2)
L

λ
+

1

2t0−1

)︃
+ µ20

√
r2r3√
pjp2

(︃
δ
(3)
L

λ
+

1

2t0−1

)︃
+ 6µ20

√
r2r3√
p2p3

(︃
δ
(2)
L

λ
+

1

2t0−1

)︃
+ 3µ20

√
r2r3√
p2p3

(︃
δ
(3)
L

λ
+

1

2t0−1

)︃
+ µ0

√︃
r1
p−1

.

This shows that the first part of the event in ˜︁E t0,1j−m must hold. For the second part of the
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event, we note that

∥P˜︁U(t0−1,j−m)
2 ⊗˜︁U(t0−1,j−m)

3

∥2,∞ ≤ ∥
(︃
P˜︁U(t0−1,j−m)

2

− Pˆ︁U(t0−1)
2

)︃
⊗ P˜︁U(t0−1,j−m)

3

∥2,∞

+ ∥Pˆ︁U(t0−1)
2

⊗ P˜︁U(t0−1,j−m)
3

∥2,∞

≤ ∥
(︃
P˜︁U(t0−1,j−m)

2

− Pˆ︁U(t0−1)
2

)︃
⊗
(︃
P˜︁U(t0−1,j−m)

3

− Pˆ︁U(t0−1)
3

)︃
∥2,∞

+ ∥
(︃
P˜︁U(t0−1,j−m)

2

− Pˆ︁U(t0−1)
2

)︃
⊗ Pˆ︁U(t0−1)

3

∥2,∞

+ ∥Pˆ︁U(t0−1)
2

⊗
(︃
P˜︁U(t0−1,j−m)

3

− Pˆ︁U(t0−1)
3

)︃
∥2,∞

+ ∥Pˆ︁U(t0−1)
2

⊗ Pˆ︁U(t0−1)
3

∥2,∞

≤ µ20

√
r2r3
pj

(︃
δ
(2)
L

λ
+

1

2t0−1

)︃(︃
δ
(3)
L

λ
+

1

2t0−1

)︃
+ 2µ20

√
r2r3√
pjp3

(︃
δ
(2)
L

λ
+

1

2t0−1

)︃
+ 2µ20

√
r2r3√
pjp2

(︃
δ
(3)
L

λ
+

1

2t0−1

)︃
+ 2µ20

√
r2r3√
p2p3

.

where we used the fact that ∥ˆ︁U(t0−1)
3 ∥2,∞ ≤ 2µ0

√︂
r3
p3

on the events in question, and similarly

for ˆ︁U(t0−1)
2 . This shows the second part of the event must hold, which completes the proof.

Lemma 39 (Proximity of the Leave-one-out Sequence on a good event). Let 1 ≤ j ≤ 3 and

1 ≤ m ≤ pj be fixed. Then

P

{︄{︃
∥ sinΘ(ˆ︁Ut0

k ,
˜︁Ut0,j−m
k )∥ ≥

(︃
δ
(k)
L

λ
+

1

2t0

)︃
µ0

√︃
rk
pj

}︃⋂︂
EGood

⋂︂
E t0−1,k
main

}︄
≤ p−29.

Proof. On the event EGood it holds that τk ≤ C
√
pr ≪ λ by assumption, since r ≤ Cp

1/2
min

and λ ≳ κp/p
1/4
min

√︁
log(p). Therefore, the eigengap assumption in Lemma 37 is met, so on

the event EGood it holds that

∥ sinΘ(ˆ︁U(t)
k ,
˜︁Ut,j−m
k )∥ ≤ 16κ

λ
τk

(︃
η
(t0,j−m)
k

)︃
+

16κ

λ
ξt0,j−mk

(︃
η
(t0,j−m)
k

)︃
+

8κ

λ
˜︁ξt0,j−mk +

16

λ2
τ2k

(︃
η
(t0,j−m)
k

)︃
+

8

λ2
τkξ

t0,j−m
k +

4

λ2
(ξt0,j−mk )2,
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where we recall the notation

η
(t,j−m)
k :=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

⃦⃦⃦
sinΘ

(︂˜︁Ut−1,j−m
k+1 , ˆ︁U(t−1)

k+1

)︂⃦⃦⃦
+
⃦⃦⃦
sinΘ

(︂˜︁Ut−1,j−m
k+2 , ˆ︁U(t−1)

k+2

)︂⃦⃦⃦
k = 1;⃦⃦⃦

sinΘ
(︂˜︁Ut−1,j−m

k+1 , ˆ︁U(t−1)
k+1

)︂⃦⃦⃦
+
⃦⃦⃦
sinΘ

(︂˜︁Ut,j−m
k+2 , ˆ︁U(t)

k+2

)︂⃦⃦⃦
k = 2⃦⃦⃦

sinΘ
(︂˜︁Ut,j−m

k+1 , ˆ︁U(t)
k+1

)︂⃦⃦⃦
+
⃦⃦⃦
sinΘ

(︂˜︁Ut,j−m
k+2 , ˆ︁U(t)

k+2

)︂⃦⃦⃦
k = 3;

;

ξ
(t,j−m)
k :=

⃦⃦⃦(︂
Zj−mk − Zk

)︂ ˜︁Pt,j−m
k

⃦⃦⃦
;

˜︁ξ(t,j−m)
k :=

⃦⃦⃦(︂
Zj−mk − Zk

)︂ ˜︁Pt,j−m
k Vk

⃦⃦⃦
.

Similar to Lemma 38 we now complete the proof for k = 1 without loss of generality (if

k = 2 or 3, the proof is similar since slightly stronger bounds hold, but this again is not

needed for our analysis). On the event EGood ∩ E t0−1,1
main , we have the additional bounds

τ1 ≤ C1
√
pr;

η
(t0,j−m)
1 ≤ µ0

√︃
r2
pj

(︃
δ
(2)
L

λ
+

1

2t0−1

)︃
+ µ0

√︃
r3
pj

(︃
δ
(3)
L

λ
+

1

2t0−1

)︃
.

Plugging this in to the deterministic bound for ∥ sinΘ(ˆ︁U(t)
k ,
˜︁Ut,j−m
k )∥ above yields

∥ sinΘ(ˆ︁U(t)
1 , ˜︁Ut,j−m

1 )∥ ≤ 16C1κ

λ

√
pr

(︃
µ0

√︃
r2
pj

(︃
δ
(2)
L

λ
+

1

2t0−1

)︃
+ µ0

√︃
r3
pj

(︃
δ
(3)
L

λ
+

1

2t0−1

)︃)︃
+

16κ

λ
ξt0,j−mk

(︃
µ0

√︃
r2
pj

(︃
δ
(2)
L

λ
+

1

2t0−1

)︃
+ µ0

√︃
r3
pj

(︃
δ
(3)
L

λ
+

1

2t0−1

)︃)︃
+

8κ

λ
˜︁ξt0,j−mk +

16C2
1pr

λ2

(︃
µ0

√︃
r2
pj

(︃
δ
(2)
L

λ
+

1

2t0−1

)︃
+ µ0

√︃
r3
pj

(︃
δ
(3)
L

λ
+

1

2t0−1

)︃)︃
+

8C1
√
pr

λ2
ξt0,j−mk +

4

λ2
(ξt0,j−mk )2.
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Observe that

16C1κ

λ

√
pr

(︃
µ0

√︃
r2
pj

(︃
δ
(2)
L

λ
+

1

2t0−1

)︃
+ µ0

√︃
r3
pj

(︃
δ
(3)
L

λ
+

1

2t0−1

)︃)︃
= µ0

√︃
r2
pj

16C1κ
√
pr

λ

C0κ
√︁
p2 log(p)

λ
+ µ0

√︃
r3
pj

16C1κ
√
pr

λ

C0κ
√︁
p3 log(p)

λ

+
16C1κ

√
pr

λ

(︃
µ0

√︃
r3
pj

+ µ0

√︃
r2
pj

)︃
1

2t0−1

= µ0

√︃
r1
pj

C0κ
√︁
p1 log(p)

λ

(︃16C1κ
√
pr
√︂

p2
p1

√︂
r2
r1

λ
+

16C1κ
√
pr
√︂

p3
p1

√︂
r3
r1

λ

)︃

+ µ0

√︃
r1
pj

1

2t0−1

(︃16C1κ
√
pr
√︂

r3
r1

λ
+

16C1κ
√
pr
√︂

r2
r1

λ

)︃

≤ µ0

√︃
r1
pj

δ
(1)
L

λ

(︃32C1κ
√
pr
√︂

p
pmin

λ
max

{︃√︃
r3
r1
,

√︃
r2
r1

}︃)︃
+ µ0

√︃
r1
pj

1

2t0−1

(︃
32C1κ

√
pr

λ
max

{︃√︃
r3
r1
,

√︃
r2
r1

}︃)︃
≤ µ0

√︃
r1
pj

δ
(1)
L

λ

(︃
32C1C2κp/p

1/4
min

λ

}︃)︃
+ µ0

√︃
r1
pj

1

2t0−1

(︃
32C1C2κ

√
pr

λ

)︃
≤ 1

8
µ0

√︃
r1
pj

(︃
δ
(1)
L

λ
+

1

2t0

)︃
,

which holds under the assumption λ ≳ κ
√︁
log(p)p/p

1/4
min, rk/rj ≤ C, and µ20r ≲ p

1/2
min. By a

similar argument,

16C2
1pr

λ2

(︃
µ0

√︃
r2
pj

(︃
δ
(2)
L

λ
+

1

2t0−1

)︃
≤ 1

8
µ0

√︃
r1
pj

(︃
δ
(1)
L

λ
+

1

2t0

)︃
.

Therefore,

∥ sinΘ(ˆ︁U(t)
1 , ˜︁Ut,j−m

1 )∥ ≤ 1

8
µ0

√︃
r1
pj

(︃
δ
(1)
L

λ
+

1

2t0

)︃
+

8κ

λ
˜︁ξt0,j−m1

+ ξt0,j−m1

16κ

λ

(︃
µ0

√︃
r2
pj

(︃
δ
(2)
L

λ
+

1

2t0−1

)︃
+ µ0

√︃
r3
pj

(︃
δ
(3)
L

λ
+

1

2t0−1

)︃)︃
+

8C1
√
pr

λ2
ξt0,j−m1 +

4

λ2
(ξt0,j−m1 )2.
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The bound above depends only on ξt0,j−m1 and ˜︁ξt0,j−m1 . Define

(I) := ξt0,j−m1

{︃
16κ

λ

(︃
µ0

√︃
r2
pj

(︃
δ
(2)
L

λ
+

1

2t0−1

)︃
+ µ0

√︃
r3
pj

(︃
δ
(3)
L

λ
+

1

2t0−1

)︃)︃
+

8C1
√
pr

λ2

}︃
;

(II) :=
4

λ2
(ξt0,j−m1 )2;

(III) :=
8κ

λ
˜︁ξt0,j−m1 .

Then

P

{︄{︃
∥ sinΘ(ˆ︁Ut0

1 ,
˜︁Ut0,j−m
1 )∥ ≥

(︃
δ
(1)
L

λ
+

1

2t0

)︃
µ0

√︃
r1
pj

}︃⋂︂
EGood

⋂︂
E t0−1,1
main

}︄

≤ P

{︄{︃
(I) ≥ 1

4

(︃
δ
(1)
L

λ
+

1

2t0

)︃
µ0

√︃
r1
pj

}︃⋂︂
EGood

⋂︂
E t0−1,1
main

}︄

+ P

{︄{︃
(II) ≥ 1

4

(︃
δ
(1)
L

λ
+

1

2t0

)︃
µ0

√︃
r1
pj

}︃⋂︂
EGood

⋂︂
E t0−1,1
main

}︄

+ P

{︄{︃
(III) ≥ 1

4

(︃
δ
(1)
L

λ
+

1

2t0

)︃
µ0

√︃
r1
pj

}︃⋂︂
EGood

⋂︂
E t0−1,1
main

}︄
.

We now will derive probabilistic bounds for each of the terms above on the event

EGood ∩ E t0−1,1
main . We will consider each term separately, though the strategy for each will

remain the same: since there is nontrivial dependence between the events above and the

random variable ξj−m1 , we use the auxiliary event ˜︁E t0,1j−m, which is independent of the nonzero

entries in the random matrix Zj−m1 − Z1. We then use Lemma 38 to show that the inter-

section of this event with other events is empty.
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The term (I): We note that

P

{︄{︃
(I) ≥ 1

4

(︃
δ
(1)
L

λ
+

1

2t0

)︃
µ0

√︃
r1
pj

}︃⋂︂
EGood

⋂︂
E t0−1,1
main

}︄

≤ P

{︄{︃
(I) ≥ 1

4

(︃
δ
(1)
L

λ
+

1

2t0

)︃
µ0

√︃
r1
pj

}︃⋂︂
EGood

⋂︂
E t0−1,1
main

⋂︂ ˜︁E t0,1j−m

}︄

+ P

{︄
EGood

⋂︂
E t0−1,1
main

⋂︂(︁˜︁E t0,1j−m
)︁c}︄

≤ P

{︄{︃
(I) ≥ 1

4

(︃
δ
(1)
L

λ
+

1

2t0

)︃
µ0

√︃
r1
pj

}︃⋂︂ ˜︁E t0,1j−m

}︄
,

where we have used Lemma 38 to show that the intesection of the complement ˜︁E t0,1j−m with

the other events is zero.

Now we simply observe that ˜︁E t0,kj−m does not depend on any of the random variables in

the matrix Zj−mk − Zk, so we are free to condition on this event. Recall that

ξt0,j−mk =

⃦⃦⃦⃦(︃
Zk − Zj−mk

)︃ ˜︁Pt0,j−m
1

⃦⃦⃦⃦
.

By Lemma 47, it holds that

ξt0,j−m1 ≤ C
√︂
p−j log(p)

⃦⃦⃦⃦ ˜︁Pt0,j−m
1

⃦⃦⃦⃦
2,∞

with probability at least 1−O(p−30). On the event ˜︁E t0,kj−m we have that

⃦⃦⃦⃦ ˜︁Pt0,j−m
1

⃦⃦⃦⃦
2,∞

≤ µ20

√
r2r3
pj

(︃
δ
(2)
L

λ
+

1

2t0−1

)︃(︃
δ
(3)
L

λ
+

1

2t0−1

)︃

+ 2µ20

√
r2r3√
pjp3

(︃
δ
(2)
L

λ
+

1

2t0−1

)︃
+ 2µ20

√
r2r3√
pjp2

(︃
δ
(3)
L

λ
+

1

2t0−1

)︃
+ 2µ20

√
r2r3√
p2p3

.
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Therefore,

ξt0,j−m1

≤ C ′
√︂
p−j log(p)

(︃
µ20

√
r2r3
pj

δ
(2)
L

λ
+
µ20

√
r2r3
pj

δ
(3)
L

λ
+ 2µ20

√
r2r3√
pjp3

δ
(2)
L

λ
+ 2µ20

√
r2r3√
pjp2

δ
(3)
L

λ
+ 2µ20

√
r2r3√
p2p3

)︃
+ C ′

√︂
p−j log(p)

(︃
µ20

√
r2r3
pj

1

2t0−1

1

2t0−1
+ 2µ20

√
r2r3√
pjp3

1

2t0−1
+ 2µ20

√
r2r3√
pjp2

1

2t0−1

)︃
≤ C ′′µ0

√︃
r1
pj

√︁
p1 log(p)

√
p−1

{︄
µ0

√
r2r3

pj
√
r1
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where we have absorbed the constants in each term. Therefore, with probability at least
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is less than one. This follows from basic algebra and the assumptions λ ≳ κ
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log(p)p/p
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min,

that µ20r ≲ p
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min, and that rk ≍ r. A similar argument shows that the second term is smaller

than 1
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. Therefore, on the event ˜︁E t0,1j−m, with probability at least 1 − O(p−30) it

342



Joshua Agterberg

holds that
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The term (II): By a similar argument, we note that
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where again we used Lemma 38. Conditioning on the event ˜︁E t0,1j−m, by the same argument as
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ξj−m1

≤ ˜︁Cµ0√︃r1
pj

√︁
p1 log(p)

√
p−1

{︄
µ0

√
r2r3

pj
√
r1

(︃
δ
(2)
L

λ
+
δ
(3)
L

λ

)︃
+ µ0

√
r2r3√
pjp3r1

δ
(2)
L

λ
+ µ0

√
r2r3√
pjp2r1

δ
(3)
L

λ
+ µ0

√
r2r3√
p2p3

}︄

+ ˜︁Cµ0√︃r1
pj

√︁
p1 log(p)

√
p−1

{︄
µ0

√
r2r3

pj
√
r1

1

2t0−1
+ 2µ0

√
r2r3√
pjp3r1

1

2t0−1
+ µ0

√
r2r3√
pjp2r1

1

2t0−1

}︄
,

where we have once again absorbed the constant. Therefore, with probability at least 1 −
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O(p−30),
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where the final inequality holds when the additional terms are smaller than one, which holds

via basic algebra as long as C0 ≥ 4C ˜︁C, λ ≳ κ
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log(p)p/p
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min, rk ≍ r and µ20r ≲ p
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The term (III): Proceeding similarly again,
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where again we used Lemma 38. Conditioning on the event ˜︁E t0,1j−m, by Lemma 47, with

probability at least 1−O(p−30) one has
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On the event ˜︁E t0,1j−m it holds that
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Therefore, with probability at least 1−O(p−30),
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where the final inequality holds by basic algebra as long as C0 ≥ 64CC ′ for some other

constant C ′, as well as the assumptions λ ≳ κ
√︁

log(p)p/p
1/4
min, rk ≍ r and µ20r ≲ p

1/2
min.

Consequently, we have shown that the desired bounds on the terms (I), (II), and (III)
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hold with probability at most O(p−30) ≤ p−29 as desired.

Lemma 40 (Bounding the linear term on a good event). Let t0 and k be fixed, and let m

be such that 1 ≤ m ≤ pk. Then
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Proof of Lemma 40. The proof of this is similar to the proof of Lemma 39, only using the
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Plugging in these bounds yields
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These two inequalities hold as long as C0 is larger than some fixed constant and the assump-
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tions λ ≳ κ
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where we have used Lemma 38 to conclude that the event in the penultimate line is empty.

Therefore, it suffices to bound ˜︁ξt0,1−m1 on the event ˜︁E t0,11−m. Since this event is independent

from the random variables belonging to e⊤mZ1, by Lemma 46, it holds that with probability

at least 1−O(p−30) that

˜︁ξt0,1−m1 =

⃦⃦⃦⃦(︃
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1 − Z1
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.

On the event ˜︁E t0,11−m it holds that

∥ ˜︁Pt0,1−m
1 V1∥2,∞ ≤ µ20
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;
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.
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Therefore with probability at least 1−O(p−30), one has
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,

where the final inequality holds by similar algebraic manipulations as in the previous part of

this proof provided that C0 is larger than some fixed constant together with the assumptions

λ ≳ κ
√︁
log(p)p/p

1/4
min, rk ≍ r and µ20r ≲ p

1/2
min. This completes the proof.

Lemma 41 (Bounding the quadratic term on a good event). The quadratic term satisfies

P

{︄{︃
∥e⊤mQ

(t)
k ∥ ≥ 1

4

(︃
δ
(k)
L

λ
+

1

2t

)︃
µ0

√︃
rk
pk

}︃⋂︂
E t0−1,1
main

⋂︂
EGood

}︄
≤ p−29.

Proof. Again without loss of generality we prove the result for k = 1; the bounds for k = 2

and 3 are similar. First, on the event EGood it holds that λ/2 ≤ λr1(
ˆ︁Λ(t0−1)), and hence by
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Lemma 35 it holds that

∥e⊤mQ
t0
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.

On the event E t0−1,1
main ∩ EGood, one has the following bounds:
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√
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Plugging these in yields
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where the final inequality holds as long as
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Both of these conditions hold when λ ≳ κ
√︁
log(p)p/p

1/4
min, rk ≍ r and r ≤ Cp

1/2
min provided

the constant C0 is larger than some fixed constant. Finally, we note that
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where we have used Lemma 38 to conclude that the event in the penultimate line is empty.

351



APPENDIX D. PROOFS FROM CHAPTER 4

Since the event ˜︁E t0,11−m is independent from the random variables belonging to e⊤mZ1, by

Lemma 46, it holds that with probability at least 1−O(p−30) that
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where the final inequality holds as long as
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both of which hold when C0 is larger than some fixed constant and λ ≳ κ
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log(p)p/p

1/4
min,

rk ≍ r and r ≤ Cp
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min. This completes the proof.
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D.1.4 Putting it all together: Proof of Theorem 11
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(k+2)
L

λ
+

1

2t0−1

)︃
+ 2µ20

√
r−k√
p−k

.

}︄
;

E t0−1,1
main :=

(t0−1)⋂︂
t=1

{︄
3⋂︂

k=1

E t,k2,∞ ∩
3⋂︂
j=1

pj⋂︂
m=1

E t,jk−m

}︄
;

E t0−1,2
main := E t0−1,1

main ∩
{︃ 3⋂︂
k=1

pk⋂︂
m=1

E t0,1k−m

}︃
∩ E t0,12,∞

E t0−1,3
main := E t0−1,2

main ∩
{︃ 3⋂︂
k=1

pk⋂︂
m=1

E t0,2k−m

}︃
∩ E t0,22,∞.

Proof of Theorem 11. We will show that by induction that with probability at least 1 −
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3(t0 + 1)p−15 that simultaneously for all t ≤ t0 and each k

∥ˆ︁Ut0
k −UkW

t0
k ∥2,∞ ≤

δ
(k)
L

λ
µ0

√︃
rk
pk

+
1

2t
µ0

√︃
rk
pk

;

max
1≤m≤pk

max
1≤j≤3

∥ sinΘ(ˆ︁Ut0
j ,
˜︁Ut0,k−m
j )∥ ≤

δ
(k)
L

λ
µ0

√︃
rk
pj

+
1

2t
µ0

√︃
rk
pj
.

Assuming that for the moment, suppose the algorithm is run for at most C log(κp/λ) iter-

ations. Then since λ ≳ κp
√︁

log(p)/p
1/4
min it holds that

t ≥ max{C log(p), 1}

and hence that

1

2t
≤ 1

2C log(κp/λ)

≤
C0

√︁
pk log(p)

λ

≤
δ
(k)
L

λ
.

Moreover, the probability holds with at least

1− (t− 1)p−15 ≥ 1− C(log(p)− 1)p−15 ≥ 1− p−10.

Therefore, it remains to show that the result holds by induction.

Step 1: Base Case

By Theorem 25 it holds that with probability at least 1−O(p−20) that

∥ˆ︁US
k −UkW

S
k ∥2,∞ ≲

κµ0
√︁
r1 log(p)

λ
+
µ0

√
rkp−k log(p)

λ2
+ κ2µ20

rk
pk

≤
(︃
Cκ
√︁
pk log(p)

λ
+

1

2

)︃
µ0

√︃
rk
pk
,
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where the final inequality holds since λ ≳ κp
√︁
log(p)p

1/4
min and µ20r ≤ Cp

1/2
min and that κ2 ≤

cp
1/4
min as long as c×

√
C ≤ 1

4 . In addition, by Lemma 32 we have the initial bound for each

k via

max
j

max
m

∥ sinΘ(ˆ︁US
k ,
˜︁Uj−m
k )∥ ≲

κ
√︁
pk log(p)

λ
µ0

√︃
r1
pj

+
(p1p2p3)

1/2 log(p)

λ2
µ0

√︃
r1
pj

≤
(︃
Cκ
√︁
pk log(p)

λ
+

1

2

)︃
µ0

√︃
rk
pj
,

which holds with probability at least 1−O(p−19). Therefore, we have established the base

case, which holds with probability 1−O(p−19) ≥ 1− 3p−15, as long as C0 in the definition

of δL satisfies C0 ≥ C, with C as above.

Step 2: Induction Step

Suppose that for all t ≤ t0 − 1 it holds that with probability at least 1− 3t0p
−15 that

max
k

∥ˆ︁U(t)
k −UkW

(t)
k ∥2,∞ ≤

δ
(k)
L

λ
µ0

√︃
rk
pk

+
1

2t
µ0

√︃
rk
pk

;

max
k

max
m

max
j

∥ sinΘ(ˆ︁U(t)
j ,
˜︁Ut,k−m
j )∥ ≤

δ
(k)
L

λ
µ0

√︃
rk
pj

+
1

2t
µ0

√︃
rk
pj
.

Observe that the induction hypothesis is equivalent to stating that E(t0−1)
1,main holds with proba-

bility at least 1−3t0p
−15. We will now show that with probability at least 1−3t0p

−15−p−15

that E(t0−1)
2,main holds, which is equivalent to showing that

∥ˆ︁Ut0
1 −U1W

t0
1 ∥2,∞ ≤

δ
(1)
L

λ
µ0

√︃
r1
p1

+
1

2t0
µ0

√︃
r1
p1

;

max
m

max
j

∥ sinΘ(ˆ︁Ut0
j ,
˜︁Ut0,1−m
j )∥ ≤

δ
(1)
L

λ
µ0

√︃
r1
pj

+
1

2t0
µ0

√︃
r1
pj
.
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In other words, we will show that all of the bounds for the first mode hold. Note that

ˆ︁Ut0
1 −U1U

⊤
1
ˆ︁Ut0
1 = U1⊥U

⊤
1⊥Z1

[︃
Pˆ︁U(t0−1)

2

⊗ Pˆ︁U(t0−1)
3

]︃
Z⊤
1
ˆ︁Ut0
1 (
ˆ︁Λ(t0)
1 )−2

+U1⊥U
⊤
1⊥Z1

[︃
Pˆ︁U(t0−1)

2

⊗ Pˆ︁U(t0−1)
3

]︃
T⊤

1
ˆ︁Ut0
1 (
ˆ︁Λ(t0)
1 )−2

= Qt0
1 + Lt01 .

Therefore,

ˆ︁Ut0
1 −U1W

t0
1 = ˆ︁Ut0

1 −U1U1
ˆ︁Ut0
1 +U1(U1

ˆ︁Ut0
1 −Wt0

1 )

= Qt0
1 + Lt01 +U1(U1

ˆ︁Ut0
1 −Wt0

1 ).

Consequently,

e⊤m

(︃ˆ︁Ut0
1 −U1W

t0
1

)︃
= e⊤mQ

t0
1 + e⊤mL

t0
1 + e⊤mU1(U1

ˆ︁Ut0
1 −Wt0

1 ).
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We now proceed by bounding probabilistically. Observe that

P
{︃
∥ˆ︁Ut0

1 −U1W
t0
1 ∥2,∞ ≥ µ0

√︃
r1
p1

(︃
δ
(1)
L

λ
+

1

2t0

)︃
⋃︂

max
m

max
j

∥ sinΘ(ˆ︁Ut0
j ,
˜︁Ut0,1−m
j ∥ ≥ µ0

√︃
r1
pj

(︃
δ
(1)
L

λ
+

1

2t0

)︃}︃
≤ P

{︃
∥ˆ︁Ut0

1 −U1W
t0
1 ∥2,∞ ≥ µ0

√︃
r1
p1

(︃
δ
(1)
L

λ
+

1

2t0

)︃
⋃︂

max
m

max
j

∥ sinΘ(ˆ︁Ut0
j ,
˜︁Ut0,1−m
j ∥ ≥ µ0

√︃
r1
pj

(︃
δ
(1)
L

λ
+

1

2t0

)︃⋂︂
E(t0−1)
1,main

}︃
+ 3t0p

−15

≤ P
{︃
∥ˆ︁Ut0

1 −U1W
t0
1 ∥2,∞ ≥ µ0

√︃
r1
p1

(︃
δ
(1)
L

λ
+

1

2t0

)︃⋂︂
E(t0−1)
1,main

}︃
+ P

{︃
max
m

max
j

∥ sinΘ(ˆ︁Ut0
j ,
˜︁Ut0,1−m
j ∥ ≥ µ0

√︃
r1
pj

(︃
δ
(1)
L

λ
+

1

2t0

)︃⋂︂
E(t0−1)
1,main

}︃
+ 3t0p

−15

≤ P
{︃
∥ˆ︁Ut0

1 −U1W
t0
1 ∥2,∞ ≥ µ0

√︃
r1
p1

(︃
δ
(1)
L

λ
+

1

2t0

)︃⋂︂
E(t0−1)
1,main

⋂︂
EGood

}︃
+ P

{︃
max
m

max
j

∥ sinΘ(ˆ︁Ut0
j ,
˜︁Ut0,1−m
j ∥ ≥ µ0

√︃
r1
pj

(︃
δ
(1)
L

λ
+

1

2t0

)︃⋂︂
E(t0−1)
1,main

⋂︂
EGood

}︃
+O(p−30) + 3t0p

−15

≤ pmax
m

P
{︃
∥e⊤m

(︁ ˆ︁Ut0
1 −U1W

t0
1

)︁
∥ ≥ µ0

√︃
r1
p1

(︃
δ
(1)
L

λ
+

1

2t0

)︃⋂︂
E(t0−1)
1,main

⋂︂
EGood

}︃
+ pmax

m
P
{︃
max
j

∥ sinΘ(ˆ︁Ut0
j ,
˜︁Ut0,1−m
j ∥ ≥ µ0

√︃
r1
pj

(︃
δ
(1)
L

λ
+

1

2t0

)︃⋂︂
E(t0−1)
1,main

⋂︂
EGood

}︃
+O(p−30) + 3t0p

−15

≤ pmax
m

[︄
P
{︃
∥e⊤mL

t0
1 ∥ ≥ 1

4
µ0

√︃
r1
p1

(︃
δ
(1)
L

λ
+

1

2t0

)︃⋂︂
E(t0−1)
1,main

⋂︂
EGood

}︃

+ P
{︃
∥e⊤mQ

t0
1 ∥ ≥ 1

4
µ0

√︃
r1
p1

(︃
δ
(1)
L

λ
+

1

2t0

)︃⋂︂
E(t0−1)
1,main

⋂︂
EGood

}︃
+ P

{︃
∥e⊤mU1

(︁
U⊤

1
ˆ︁Ut0
1 −Wt0

1

)︁
∥ ≥ 1

4
µ0

√︃
r1
p1

(︃
δ
(1)
L

λ
+

1

2t0

)︃⋂︂
E(t0−1)
1,main

⋂︂
EGood

}︃]︄

+ pmax
m

P
{︃
max
j

∥ sinΘ(ˆ︁Ut0
j ,
˜︁Ut0,k−m
j ∥ ≥ µ0

√︃
r1
pj

(︃
δ
(1)
L

λ
+

1

2t0

)︃⋂︂
E(t0−1)
1,main

⋂︂
EGood

}︃
+O(p−30) + 3t0p

−15

≤ 3p−28 + p−28 +O(p−30) + 3t0p
−15

≤ (3t0 + 1)p−15,
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for p sufficiently large, where the penultimate inequality holds by Lemmas 39, 40, and 41,

and the fact that on EGood,

∥e⊤mU1

(︂
U⊤

1
ˆ︁Ut0
1 −Wt0

1

)︂
∥ ≤ 1

4
µ0

√︃
r1
p1

(︃
δ
(1)
L

λ
+

1

2t0

)︃

by Lemma 33 since t0 ≤ C log(p) by assumption. Therefore, we have shown that the

bound holds for k = 1. For k = 2, we proceed similarly, only now on the hypothesis that

E t0−1,2
main holds with probability at least 1 − 3t0p

−15 − p−15. The exact same argument goes

through,accumulating an additional factor of p−15. Finally, for k = 3, we proceed again,

only now assuming that E t0−1,3
main holds with probability at least 1 − 3t0p

−15 − 2p−15. This

accumulates a final factor of p−15. Therefore, since this accumulates three factors of p−15, it

holds that E t0,1main holds with probability at least 1−3(t0+1)p−15 as desired, which completes

the proof.

D.1.5 Initialization Bounds

This section contains the proof the initialization bounds. Appendix D.1.5 contains pre-

liminary lemmas and their proofs, Appendix D.1.5 contains the proof of Theorem 25, and

Appendix D.1.5 contains the proof of Lemma 32.

Preliminary Lemmas

The following result establishes concentration inequalities for the spectral norm of the noise

matrices, needed in order to establish sufficient eigengap conditions.

Lemma 42. The following bounds hold simultaneously with probability at least 1−O(p−30) :

1. ∥diag(Z1T
⊤
1 )∥ ≲ λ1µ

2
0r
√︂

log(p)
p1

;

2. ∥Γ(Z1Z
⊤
1 )∥ ≲ (p1p2p3)

1/2

3. ∥Γ(T1Z
⊤
1 )∥ ≲ λ1

√
p1;

4. ∥U1Z1V1∥ ≲
√
r.
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Proof. Part one follows since

∥diag(Z1T
⊤
1 )∥ = max

i

⃓⃓
e⊤i Z1T

⊤
1 ei
⃓⃓

≤ max
i

∥e⊤i Z1V1∥∥e⊤i U1Λ1∥

≤ ∥Z1V1∥2,∞µ0
√︃
r1
p1
λ1

≤ C
√︁
p−1 log(p)µ0

√︃
r1
p1
λ1∥V1∥2,∞

≲ λ1µ
2
0r

√︄
log(p)

p1
,

where the final inequality holds with probability at least 1−O(p−30) by Lemma 47.

Part two follows by a slight modification of Lemma 1 of Agterberg and Sulam (2022)

(with M in the statement therein taken to be 0), where the higher probability holds by

adjusting the constant in the definition of δ in the proof therein. We omit the detailed proof

for brevity.

Part three follows since

∥Γ(Z1T
⊤
1 )∥ ≤ ∥Z1T

⊤
1 ∥+ ∥diag(Z1T

⊤
1 )∥

≲ ∥Z1V1∥λ1 + λ1µ
2
0r

√︄
log(p)

p1

≲
√
p1λ1 + λ1µ

2
0r

√︄
log(p)

p1

≲
√
p1λ1,

where the penultimate inequality ∥Z1V1∥ ≲
√
p1 holds by a standard ε−net argument, and

the final inequality holds since µ20r ≲
√
pmin by assumption.

Part four follows via a standard ε-net argument.

We also have the following result, needed in establishing the concentration of the leave-

one-out sequences.

Lemma 43. The following bounds hold with probability at least 1−O(p−30):
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1. ∥Γ(T1(Z1 − Z1−m
1 )⊤)∥ ≲ λ1µ0

√︁
r log(p);

2. ∥Γ(Z1Z
⊤
1 − Z1−m

1 (Z1−m
1 )⊤)∥ ≲ p3/2

3. ∥Γ(T1(Z
1−m
1 − Z1−m,1−l

1 )⊤)∥ ≲ µ0λ1
√︁
r log(p)

√︂
p1
p−1

;

4. ∥Γ(Z1−m
1 (Z1−m

1 )⊤ − Z1−m,1−l
1 (Z1−m,1−l

1 )⊤)∥ ≲ p.

5. ∥Γ(Z1−m
1 (Z1−m

1 )− Z1−m,1−l
1 (Z1−m,1−l

1 )⊤)˜︁US,1−m,1−l
1 ∥ ≲

√
p1 log(p)∥˜︁US,1−m,1−l

1 ∥2,∞

Here Z1−m,1−l
1 is the matrix Z1 with its m’th row and l’th column removed, and ˜︁US,1−m,1−l

1

is matrix of leading eigenvectors obtained by initializing with the noise matrix Z1 replaced

with Z1−m,1−l
1 .

Proof of Lemma 43. For part one, we observe that Z1−Z1−m
1 is a zero matrix with only its

m’th row nonzero. Therefore,

∥Γ
(︁
Z1 − Z1−m

1 )T⊤
1

)︁
∥ ≤ ∥(Z1 − Z1−m

1 )T⊤
1 ∥+ ∥diag

(︁
(Z1 − Z1−m

1 )T⊤
1

)︁
∥

= ∥e⊤mZ1T
⊤
1 ∥+max

i
|e⊤i
(︁
Z1 − Z1−m

1

)︁
T⊤

1 ei|

≤ ∥Z1V1∥2,∞λ1 + ∥Z1V1∥2,∞λ1µ0
√︃

r

p1

≲ ∥Z1V1∥2,∞λ1

≲ λ1
√︁
p−1 log(p)∥V1∥2,∞

≲ λ1µ0
√︁
r log(p),

with probability at least 1−O(p−30), where the penultimate line follows from Lemma 46.

For part 2, we first observe that Γ
(︁
Z1Z

⊤
1 − Z1−m

1 (Z1−m
1 )⊤

)︁
is a matrix with i, j entry

equal to

Γ
(︁
Z1Z

⊤
1 − Z1−m

1 (Z1−m
1 )⊤

)︁
ij
=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
⟨e⊤mZ1, e

⊤
j Z1⟩ i = m, j ̸= m

⟨e⊤mZ1, e
⊤
i Z1⟩ j = m, i ̸= m

0 else.
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Therefore, we can decompose this matrix via

Γ
(︁
Z1Z

⊤
1 − Z1−m

1 (Z1−m
1 )⊤

)︁
= Grow +Gcol,

where Grow is the matrix whose only nonzero row is its m’th row, in which case it the m, j

entry is ⟨e⊤mZ1, e
⊤
j Z1⟩ for j ̸= m, and Gcol is defined as the transpose of this matrix. We

then observe that with high probability

∥Γ
(︁
Z1Z

⊤
1 − Z1−m

1 (Z1−m
1 )⊤

)︁
∥ ≤ ∥Grow∥+ ∥Gcol∥

≤ 2∥Grow∥

= 2∥e⊤mΓ(Z1Z
⊤
1 )∥

≤ 2∥Γ(Z1Z
⊤
1 )∥

≲ p3/2,

where the final inequality follows from Lemma 42.

For part three, we first observe that Z1−m
1 − Z1−m,1−l

1 is a matrix with only its l’th

column nonzero. Then we note

∥Γ
(︁(︁
Z1−m
1 − Z1−m,1−l

1

)︁
T⊤

1

)︁
∥ ≤ √

p1∥Γ
(︁(︁
Z1−m
1 − Z1−m,1−l

1

)︁
T⊤

1

)︁
∥2,∞

≤ √
p1

[︃
∥
(︁
Z1−m
1 − Z1−m,1−l

1

)︁
T⊤

1 ∥2,∞

+ ∥diag
(︃(︁

Z1−m
1 − Z1−m,1−l

1

)︁
T⊤

1

)︃
∥2,∞

]︃
≤ √

p1

[︃
max
i

∥
(︁
Z1

)︁
il

(︁
T⊤

1

)︁
l·∥+max

i
|(Z1)il(T

⊤
1 )li|

]︃
≲

√
p1

[︃√︁
log(p)∥T⊤

1 ∥2,∞ +
√︁
log(p)∥T⊤

1 ∥max

]︃
≲
√︁
p1 log(p)∥T⊤

1 ∥2,∞

≲
√︁
p1 log(p)∥V1∥2,∞λ1

≲ µ0λ1
√︁
r log(p)

√︃
p1
p−1

,

where we used the fact that maxi,l |(Z1)il| ≲
√︁
log(p) with probability at least 1−O(p−30).
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We next note that Γ
(︁
Z1−m
1 (Z1−m

1 )⊤ − Z1−m,1−l
1 (Z1−m,1−l

1 )⊤
)︁

is a matrix with entries

equal to (Z1)il(Z1)jl for i ̸= j and i, j ̸= m. In particular, it is a the p1 − 1 × p1 − 1

dimensional submatrix of the matrix whose entries are simply (Z1)il(Z1)jl for i ̸= j. This is

a sample Gram matrix, so by Lemma 1 of Agterberg and Sulam (2022), it holds that

∥Γ
(︁
Z1−m
1 (Z1−m

1 )⊤ − Z1−m,1−l
1 (Z1−m,1−l

1 )⊤
)︁
∥ ≲ p

with probability at least 1−O(p−30) (where as in the proof of Lemma 42 the result holds by

taking M = 0, d = 1, and modifying the constant on δ in the proof of Lemma 1 of Agterberg

and Sulam (2022)).

For the final term, we note that

∥Γ(Z1−m
1 (Z1−m

1 )− Z1−m,1−l
1 (Z1−m,1−l

1 )⊤)˜︁US,1−m,1−l
1 ∥2,∞

= max
a

⃦⃦∑︂
j ̸=a

(Z1)al(Z1)jl
(︁ ˜︁US,1−m,1−l

1

)︁
j·
⃦⃦

≤ max
a

|(Z1)|al∥
∑︂
j ̸=a

(Z1)jl
(︁ ˜︁US,1−m,1−l

1

)︁
j·
⃦⃦

≲
√︁

log(p)max
a

∥
∑︂
j ̸=a

(Z1)jl
(︁ ˜︁US,1−m,1−l

1

)︁
j·
⃦⃦

≲
√
p1 log(p)∥˜︁US,1−m,1−l

1 ∥2,∞,

where the final inequality follows from Lemma 46 applied to Z⊤
1 .

The following result verifies the eigengap conditions that we use repeatedly throughout

the proof. We adopt similar notation to Cai et al. (2021a).

Lemma 44. Define the matrices

G := Γ
(︁
T1T

⊤
1 +T1Z

⊤
1 + Z1T

⊤
1 + Z1Z

⊤
1

)︁
;

G(m) := Γ
(︁
T1T

⊤
1 +T1(Z

−m
1 )⊤ + Z−m

1 T⊤
1 + Z−m

1 (Z−m
1 )⊤)

)︁
;

G(m,l) := Γ
(︁
T1T

⊤
1 +T1(Z

−m−l
1 )⊤ + Z−m−l

1 T⊤
1 + Z−m−l

1 (Z−m−l
1 )⊤)

)︁
.
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Then on the events in Lemma 42 and Lemma 43, it holds that

λ2r − ∥G−T1T
⊤
1 ∥ ≳ λ2;

λr
(︁
G
)︁
− λr+1

(︁
G
)︁
− ∥G−G−m∥ ≳ λ2;

λr
(︁
G−m)︁− λr+1

(︁
G−m)︁− ∥G−m −G−m−l∥ ≳ λ2;

λr
(︁
G
)︁
≳ λ2.

Proof of Lemma 44. First, we note that on the event in Lemma 42,

∥G−T1T
⊤
1 ∥ ≤ ∥diag(T1T

⊤
1 )∥+ 2∥Γ(T1Z

⊤
1 )∥+ ∥Γ(Z1Z

⊤
1 )∥

≲ λ21µ
2
0

r

p1
+ λ1

√
p1 + p3/2

≪ λ2;

∥G−G−m∥ ≤ 2∥Γ(T1(Z1 − Z1−m
1 )⊤)∥+ ∥Γ(Z1Z

⊤
1 − Z1−m

1 (Z1−m
1 )⊤∥

≲ λ1µ0
√︁
r log(p) + p3/2

≪ λ2;

∥G−m −G−m−l∥ ≤ ∥Γ
(︁
T1(Z

1−m
1 − Z1−m,1−l

1 )⊤
)︁
∥+

⃦⃦⃦⃦
Γ

(︃
Z1−m
1

(︁
Z1−m
1

)︁⊤ − Z1−m,1−l
1

(︂
Z1−m,1−l
1

)︂⊤)︃⃦⃦⃦⃦
≲ µ0λ1

√︁
r log(p)

√︃
p1
p−1

+ p

≪ λ2.

Therefore, by Weyl’s inequality,

λr
(︁
G
)︁
− λr+1

(︁
G
)︁
− ∥G−T1T

⊤
1 ∥ ≥ λ2r − 3∥G−T1T

⊤
1 ∥

≳ λ2.

Similarly,

λr
(︁
G−m)︁− λr+1

(︁
G−m)︁− ∥G−G−m∥ ≳ λr

(︁
G
)︁
− λr+1

(︁
G
)︁
− 2∥G−G−m∥

≳ λ2.
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Finally, we note that

λr
(︁
G
)︁
≥ λ2r − ∥G−T1T

⊤
1 ∥

≥ λ2 − ∥G−T1T
⊤
1 ∥

≳ λ2.

This completes the proof.

With these spectral norm concentration and eigengap conditions fixed, we now consider

the ℓ2,∞ analysis. The first step is to show that several terms are negligible with respect to

the main bound. For the remainder of the analysis, we implicitly use the eigenvalue bounds

in Lemma 44, which hold under the events in Lemma 42 and Lemma 43.

Lemma 45. The following bounds hold with probability at least 1−O(p−30):

1. ∥U1U
⊤
1 Z1T

⊤
1
ˆ︁US
1
ˆ︁Λ−2
1 ∥2,∞ ≲ µ0

√︂
r1
p1

√
rκ
λ

2. ∥U1U
⊤
1 Γ(Z1Z

⊤
1 )
ˆ︁US
1
ˆ︁Λ−2
1 ∥2,∞ ≲ µ0

√︂
r1
p1

(p1p2p3)1/2

λ2

3. ∥U1U
⊤
1 diag

(︃
T1T

⊤
1 +T1Z

⊤
1 + Z1T

⊤
1

)︃ˆ︁US
1
ˆ︁Λ−2
1 ∥2,∞ ≲ µ0

√︂
r1
p1

(︃
κ2µ20

r
p1

+
κµ20r

√
log(p)

λ
√
p1

)︃
4. ∥diag(T1T

⊤
1 +T1Z

⊤
1 + Z1T

⊤
1 )
ˆ︁US
1
ˆ︁Λ−2
1 ∥2,∞ ≲ κ2µ20

r1
p1

+
κµ20r

√
log(p)

λ
√
p1

5. ∥U1(W
S
1 −U⊤

1
ˆ︁US
1 )∥2,∞ ≲ µ0

√︂
r1
p1

(︃
κ2µ20

r
p1

+
κ
√
p1
λ + (p1p2p3)1/2

λ2

)︃2

.

Moreover, all of these terms are upper bounded by the quantity

(︃
κ
√︁
p1 log(p)

λ
+

(p1p2p3)
1/2 log(p)

λ2
+ κ2µ0

√︃
r

p1

)︃
µ0

√︃
r

p1
.

Proof of Lemma 45. For part one, we note that

∥U1U
⊤
1 Z1T

⊤
1
ˆ︁US
1
ˆ︁Λ−2
1 ∥2,∞ ≲ ∥U1∥2,∞

∥U⊤
1 Z1V1∥λ1
λ2

≲ µ0

√︃
r1
p1

√
rκ

λ
,

since ∥U⊤
1 Z1V1∥ ≲

√
r by Lemma 42.
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For part 2, we note

∥U1U
⊤
1 Γ(Z1Z

⊤
1 )
ˆ︁US
1
ˆ︁Λ−2
1 ∥2,∞ ≲ µ0

√︃
r1
p1

∥Γ(Z1Z
⊤
1 )∥

λ2

≲ µ0

√︃
r1
p1

(p1p2p3)
1/2

λ2
.

by Lemma 42.

For part 3,

∥U1U
⊤
1 diag

(︃
T1T

⊤
1 +T1Z

⊤
1 + Z1T

⊤
1

)︃ˆ︁US
1
ˆ︁Λ−2
1 ∥2,∞ ≲ µ0

√︃
r1
p1

∥diag
(︃
T1T

⊤
1 +T1Z

⊤
1 + Z1T

⊤
1

)︃
∥

λ2

≲ µ0

√︃
r1
p1

(︃
1

λ2
max
i

|e⊤i U1Λ
2
1U

⊤
1 ei|+

2∥diag(Z1T
⊤
1 )∥

λ2

)︃
≲ µ0

√︃
r1
p1

(︃
κ2µ20

r

p1
+

2∥diag(Z1T
⊤
1 )∥

λ2

)︃
≲ µ0

√︃
r1
p1

(︃
κ2µ20

r

p1
+
κµ20r

√︁
log(p)

λ
√
p1

)︃
,

by Lemma 42.

For part 4,

∥diag(T1T
⊤
1 +T1Z

⊤
1 + Z1T

⊤
1 )
ˆ︁US
1
ˆ︁Λ−2
1 ∥2,∞ ≲

1

λ2

(︃
∥diag(T1T

⊤
1 )∥+ 2∥diag(Z1T

⊤
1 )∥
)︃

≲ κ2µ20
r1
p1

+
∥diag(Z1T

⊤
1 )∥

λ2

≲ κ2µ20
r1
p1

+
κµ20r

√︁
log(p)∥

λ
√
p1

by Lemma 42.

Finally, by Lemma 33,

∥U1(W
S
1 −U⊤

1
ˆ︁US
1 )∥2,∞ ≤ µ0

√︃
r1
p1

∥ sinΘ(ˆ︁US
1 ,U1)∥2.

Note that U1 are the eigenvectors of T1T
⊤
1 and ˆ︁US

1 are the eigenvectors of the matrix

Γ

(︃
T1T

⊤
1 + Z1T

⊤
1 +T1Z

⊤
1 + Z1Z1

⊤
)︃
.
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We note that

⃦⃦⃦⃦
T1T

⊤
1 − Γ

(︃
T1T

⊤
1 + Z1T

⊤
1 +T1Z

⊤
1 + Z1Z1

⊤
)︃⃦⃦⃦⃦

≤ ∥diag(T1T
⊤
1 )∥+ 2∥Γ(Z1T

⊤
1 )∥+ ∥Γ(Z1Z

⊤
1 )∥

≲ λ21µ
2
0

r

p1
+ λ1

√
p1 + p3/2

≪ λ2,

where we note that we used the fact that λr ≳ κp3/4
√︁
log(p), the fact that µ20r ≲

√
p, and

the assumption κ ≲ p1/4. Therefore, by the Davis-Kahan Theorem,

∥ sinΘ(ˆ︁US
1 ,U1)∥ ≲

λ21µ
2
0
r
p1

+ λ1
√
p1 + (p1p2p3)

1/2

λ2

≲ κ2µ20
r

p1
+
κ
√
p1

λ
+

(p1p2p3)
1/2

λ2
.

Therefore,

∥U1(W
S
1 −U⊤

1
ˆ︁US
1 )∥2,∞ ≲ µ0

√︃
r1
p1

(︃
κ2µ20

r

p1
+
κ
√
p1

λ
+

(p1p2p3)
1/2

λ2

)︃2

.

Proof of Theorem 25

Proof of Theorem 25. Without loss of generality, we consider k = 1. We simply decompose

ˆ︁US
1 −U1W

S
1 = Z1T

⊤
1
ˆ︁US
1
ˆ︁Λ−2
1 + Γ(Z1Z

⊤
1 )
ˆ︁US
1
ˆ︁Λ−2
1 −U1U

⊤
1 Z1T

⊤
1
ˆ︁US
1
ˆ︁Λ−2
1 −U1U

⊤
1 Γ(Z1Z

⊤
1 )
ˆ︁US
1
ˆ︁Λ−2
1

+U1U
⊤
1 diag

(︃
T1T

⊤
1 +T1Z

⊤
1 + Z1T

⊤
1

)︃ˆ︁US
1
ˆ︁Λ−2
1

− diag(T1T
⊤
1 +T1Z

⊤
1 + Z1T

⊤
1 )
ˆ︁US
1
ˆ︁Λ−2
1 +U1(W

S
1 −U⊤

1
ˆ︁US
1 )

= (I) + (II) + (III) + (IV ) + (V ) + (V I),
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where

(I) := Z1T
⊤
1
ˆ︁US
1
ˆ︁Λ−2
1 ;

(II) := Γ(Z1Z
⊤
1 )
ˆ︁US
1
ˆ︁Λ−2
1

(III) = −U1U
⊤
1 Z1T

⊤
1
ˆ︁US
1
ˆ︁Λ−2
1 ;

(IV ) = −U1U
⊤
1 Γ(Z1Z

⊤
1 )
ˆ︁US
1
ˆ︁Λ−2
1

(V ) = U1U
⊤
1 diag

(︃
T1T

⊤
1 +T1Z

⊤
1 + Z1T

⊤
1

)︃ˆ︁US
1
ˆ︁Λ−2
1

(V I) = −diag(T1T
⊤
1 +T1Z

⊤
1 + Z1T

⊤
1 )
ˆ︁US
1
ˆ︁Λ−2
1

(V II) = U1(W
S
1 −U⊤

1
ˆ︁US
1 )

We note that terms (III) − (V II) are all of smaller order than the bound we desire by

Lemma 45 (with high probability). With these bounds out of the way, we now turn our

attention to terms (I) and (II). For Term (I), we simply note that by Lemma 46

∥Z1T
⊤
1
ˆ︁US
1
ˆ︁Λ−2
1 ∥2,∞ ≲

κ∥Z1V1∥2,∞
λ

≲
κµ0

√︁
r log(p)

λ
.

It remains to show that the final term is of smaller order than the bound we desire, which

will require the leave-one-out sequences. Note that

∥e⊤mΓ(Z1Z
⊤
1 )
ˆ︁US
1
ˆ︁Λ−2∥ ≲ ∥e⊤mΓ(Z1Z

⊤
1 )
ˆ︁US
1 − ˜︁US,1−m

1 (˜︁US,1−m
1 )⊤ ˆ︁US

1 ∥λ−2 + ∥e⊤mΓ(Z1Z
⊤
1 )
˜︁US,1−m
1 ∥λ−2

≲
∥Γ(Z1Z

⊤
1 )∥

λ2
∥ˆ︁US

1 (
ˆ︁US
1 )

⊤ − ˜︁US,1−m
1 (˜︁US,1−m

1 )⊤∥+ ∥e⊤mΓ(Z1Z
⊤
1 )
˜︁US,1−m
1 ∥λ−2

:= A+B.
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The term B: For this term, we note that

e⊤mΓ(Z1Z
⊤
1 )
˜︁US,1−m
1 =

∑︂
a̸=m

⟨Zm·,Za·⟩(˜︁US,1−m
1 )a·

=
∑︂
l

Zml

(︃∑︂
a̸=m

Zal(˜︁US,1−m
1 )a·

)︃

is a sum of p−1 independent random variables (over l), and hence satisfies

∥
∑︂
l

Zml

(︃∑︂
a̸=m

Zal(˜︁US,1−m
1 )a·

)︃
∥ ≲

√︁
p−1 log(p)max

l
∥
∑︂
a̸=m

(Zal ˜︁US,1−m
1 )a·∥.

However ˜︁US,1−m
1 is still dependent on the a’th column of Z, so we introduce a leave-two-out

estimator ˜︁US,1−m,1−l
1 , obtained by initializing (with diagonal deletion) with the noise matrix

Z1 replaced with Z1−m,1−l
1 . For fixed l, we observe that

∥
∑︂
a̸=m

(Zal ˜︁US,1−m
1 )a·∥ ≤ ∥

∑︂
a̸=m

(Zal)
(︁ ˜︁US,1−m

1 )a· −
(︁ ˜︁US,1−m,1−l

1 (˜︁US,1−m,1−l
1 )⊤ ˜︁US,1−m

1

)︁
a·∥

+ ∥
∑︂
a̸=m

(Zal)
(︁ ˜︁US,1−m,1−l

1 (˜︁US,1−m,1−l
1 )⊤ ˜︁US,1−m

1

)︁
a·∥

≤ ∥(Z−m)⊤∥∥˜︁US,1−m
1 (˜︁US,1−m

1 )⊤ − ˜︁US,1−m,1−l
1 (˜︁US,1−m,1−l

1 )⊤∥

+ ∥e⊤l (Z−m)⊤ ˜︁US,1−m,1−l
1 ∥.

Note that by Lemma 47, it holds that

∥e⊤l (Z−m)⊤ ˜︁US,1−m,1−l
1 ∥ ≲

√︁
p1 log(p)∥˜︁US,1−m,1−l

1 ∥2,∞. (D.9)
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In addition, by the Davis-Kahan Theorem (using the eigengap condition in Lemma 44),

∥˜︁US,1−m
1 (˜︁US,1−m

1 )⊤ − ˜︁US,1−m,1−l
1 (˜︁US,1−m,1−l

1 )⊤∥

≲
1

λ2

(︃
∥Γ(Z1−m

1 − Z1−m,1−l
1 )T⊤

1 ∥

+ ∥Γ(Z1−m
1 (Z1−m

1 )− Z1−m,1−l
1 (Z1−m,1−l

1 )⊤)˜︁US,1−m,1−l
1 ∥

)︃
≲

1

λ2

(︃
µ0λ1

√︁
r log(p)

√︃
p1
p−1

+
√
p1 log(p)∥˜︁US,1−m,1−l

1 ∥2,∞
)︃
, (D.10)

where the final inequality holds by Lemma 43. Consequently, plugging this and (D.9) into

the bound for B, we obtain

B ≲

√︁
p−1 log(p)

λ2

{︃
∥Z−m∥ 1

λ2

(︃
λ1µ0

√︁
r log(p)

√︃
p1
p−1

+
√
p1 log(p)∥˜︁US,1−m,1−l

1 ∥2,∞
)︃

+
√︁
p1 log(p)∥˜︁US,1−m,1−l

1 ∥2,∞
}︃
.

≲

√︁
p−1 log(p)

λ2

{︃
p

λ2

(︃
λ1µ0

√︁
r log(p)

√︃
p1
p−1

+
√
p1 log(p)∥˜︁US,1−m,1−l

1 ∥2,∞
)︃

+
√︁
p1 log(p)∥˜︁US,1−m,1−l

1 ∥2,∞
}︃
, (D.11)

where we used the fact that ∥Z−m∥ ≤ ∥Z∥ ≲ p with high probability. The bound (D.11)

can be improved so as not to depend on ˜︁US,1−m,1−l
1 . By the bound in (D.10), it holds that

∥˜︁US,1−m,1−l
1 ∥2,∞ ≤ ∥˜︁US,1−m

1 (˜︁US,1−m
1 )⊤ ˜︁US,1−m,1−l

1 ∥2,∞

+ ∥˜︁US,1−m,1−l
1 − ˜︁US,1−m

1 (˜︁US,1−m
1 )⊤ ˜︁US,1−m,1−l

1 ∥2,∞

≤ ∥˜︁US,1−m
1 ∥2,∞ +

1

λ2

(︃
µ0λ1

√︁
r log(p)

√︃
p1
p−1

+
√
p1 log(p)∥˜︁US,1−m,1−l

1 ∥2,∞
)︃
,

≤ ∥˜︁US,1−m
1 ∥2,∞ + µ0

√︃
r

p1
+ o(1)∥˜︁US,1−m,1−l

1 ∥2,∞,

where we have implicitly observed that

κp1
√︁

log(p)

λ
√
p−1

µ0

√︃
r

p1
≤ µ0

√︃
r

p1
,
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which holds since λ ≳ κ
√︁

log(p)p/p
1/4
min. By rearranging, we therefore have that

∥˜︁US,1−m,1−l
1 ∥2,∞ ≲ µ0

√︃
r

p1
+ ∥˜︁US,1−m

1 ∥2,∞.

Plugging this into (D.11), we obtain

B ≲

√︁
p−1 log(p)

λ2

{︃
p

λ2

(︃
λ1µ0

√︁
r log(p)

√︃
p1
p−1

+
√
p1 log(p)∥

[︃
∥˜︁US,1−m

1 ∥2,∞ + µ0

√︃
r

p1

]︃)︃
+
√︁
p1 log(p)

[︃
∥˜︁US,1−m

1 ∥2,∞ + µ0

√︃
r

p1

]︃}︃
≲
p
√
p1rκµ0 log(p)

λ3
+
p
√
p1p2p3 log

3/2(p)

λ4
∥˜︁US,1−m

1 ∥2,∞ +
p
√
p1p2p3 log

3/2(p)

λ4
µ0

√︃
r

p1

+

√
p1p2p3 log(p)

λ2
∥˜︁US,1−m

1 ∥2,∞ +

√
p1p2p3 log(p)

λ2
µ0

√︃
r

p1

≍
κ
√︁
p1 log(p)

λ
µ0

√︃
r

p1

(︃
p
√︁
p1 log(p)

λ2

)︃
+

√
p1p2p3 log(p)

λ2
∥˜︁US,1−m

1 ∥2,∞
(︃
1 +

p
√︁

log(p)

λ2

)︃
+

√
p1p2p3 log(p)

λ2
µ0

√︃
r

p1

(︃
1 +

p
√︁
log(p)

λ2

)︃
≲
κ
√︁
p1 log(p)

λ
µ0

√︃
r

p1
+

√
p1p2p3 log(p)

λ2
∥˜︁US,1−m

1 ∥2,∞ +

√
p1p2p3 log(p)

λ2
µ0

√︃
r

p1
,

which holds whenever λ2 ≳ p
√︁
p1 log(p). This bound still depends on the leave-one-out

sequence, but we will obtain a bound independent of this sequence shortly upon analyzing

term A.

The term A: Note that by Lemma 42 we have that ∥Γ(Z1Z
⊤
1 )∥ ≲ (p1p2p3)

1/2, which

yields

A ≲
(p1p2p3)

1/2

λ2
∥ˆ︁US

1 (
ˆ︁US
1 )

⊤ − ˜︁US,1−m
1 (˜︁US,1−m

1 )⊤∥.
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Therefore it suffices to bound the term on the right. By the Davis-Kahan Theorem, it holds

that

∥ˆ︁US
1 (
ˆ︁US
1 )

⊤ − ˜︁US,1−m
1 (˜︁US,1−m

1 )⊤∥

≲
∥Γ((T1Z1 − Z1−m

1 )⊤ + (Z1 − Z1−m
1 )T⊤

1 + Z1Z
⊤
1 − Z1−m

1 (Z1−m
1 )⊤

)︁ ˜︁US,1−m
1 ∥

λ2

≲
1

λ2

{︃
∥Γ
(︁
(Z1 − Z1−m

1 )T⊤
1

)︁
∥+ ∥Γ

(︁
Z1Z

⊤
1 − Z1−m

1 (Z1−m
1 )⊤

)︁ ˜︁US,1−m
1 ∥

}︃
.

By Lemma 43, it holds that

∥Γ
(︁
(Z1 − Z1−m

1 )T⊤
1

)︁
∥ ≲ λ1µ0

√︁
r log(p), (D.12)

so it suffices to consider the second term. Note that the matrix

Γ
(︁
Z1Z

⊤
1 − Z1−m

1 (Z1−m
1 )⊤

)︁
is rank one symmetric matrix whose (m, l) entry is simply ⟨e⊤mZ1, e

⊤
l Z1⟩ for l ̸= m. There-

fore, define the matrices Gcol and Grow with Gcol the matrix whose only nonzero entries are

in the m’th column, in which case they are ⟨e⊤mZ1, elZ1⟩ for l ̸= m, and Grow the matrix

whose only nonzero entries are in the m’th row, with entries defined similarly. Then

⃦⃦
Γ
(︁
Z1Z

⊤
1 − Z1−m

1 (Z1−m
1 )⊤

)︁ ˜︁US,1−m
1 ∥ ≤ ∥Grow

˜︁US,1−m
1 ∥+ ∥Gcol

˜︁US,1−m
1 ∥.

We consider each term separately. First, note that

∥Grow
˜︁US,1−m
1 ∥ = ∥e⊤mΓ(Z1Z

⊤
1 )
˜︁US,1−m
1 ∥.
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This was already bounded en route to the analysis for term B. In fact, we already have the

upper bound

∥e⊤mΓ(Z1Z
⊤
1 )
˜︁US,1−m∥

≲ κ
√︁
p1 log(p)µ0

√︃
r

p1
+

√
p1p2p3 log(p)∥˜︁US,1−m

1 ∥2,∞ +
√
p1p2p3 log(p)µ0

√︃
r

p1
.

(D.13)

Next, we argue similarly to the proof of Lemma 4 of Cai et al. (2021a). We have

∥Gcol
˜︁US,1−m
1 ∥ ≤ ∥Gcol

˜︁US,1−m
1 ∥F

=

(︃∑︂
j ̸=m

∥⟨e⊤mZ1, e
⊤
j Z1⟩(˜︁US,1−m

1 )m·∥2
)︃1/2

≤
(︃∑︂
j ̸=m

|⟨e⊤mZ1, e
⊤
j Z1⟩|2∥(˜︁US,1−m

1 )m·∥2
)︃1/2

≤ ∥˜︁US,1−m
1 ∥2,∞∥Γ(Z1Z

⊤
1 )∥

≲ (p1p2p3)
1/2∥˜︁US,1−m

1 ∥2,∞.

Therefore,

∥ˆ︁US
1 (
ˆ︁US
1 )

⊤ − ˜︁US,1−m
1 (˜︁US,1−m

1 )⊤∥

≲
1

λ2

{︃
λ1µ0

√︁
r log(p) + κ

√︁
p1 log(p)µ0

√︃
r

p1
+
√
p1p2p3 log(p)∥˜︁US,1−m

1 ∥2,∞

+
√
p1p2p3 log(p)µ0

√︃
r

p1
+ (p1p2p3)

1/2∥˜︁US,1−m
1 ∥2,∞

}︃
≲
κ
√︁
p1 log(p)

λ
µ0

√︃
r

p1
+

√
p1p2p3 log(p)

λ2
µ0

√︃
r

p1
+

√
p1p2p3 log(p)

λ2
∥˜︁US,1−m

1 ∥2,∞.

Therefore, it holds that

∥˜︁US,1−m
1 ∥2,∞ ≤ ∥ˆ︁US

1 (
ˆ︁US
1 )

⊤ ˜︁US,1−m
1 ∥2,∞ + ∥˜︁US,1−m

1 − ˆ︁US
1 (
ˆ︁US
1 )

⊤ ˜︁US,1−m
1 ∥2,∞

≤ ∥ˆ︁US
1 ∥2,∞ +

κ
√︁
p1 log(p)

λ
µ0

√︃
r

p1
+

√
p1p2p3 log(p)

λ2
µ0

√︃
r

p1
+

√
p1p2p3 log(p)

λ2
∥˜︁US,1−m

1 ∥2,∞

≤ ∥ˆ︁US
1 ∥2,∞ + µ0

√︃
r

p
+ o(1)∥˜︁US,1−m

1 ∥2,∞,
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so by rearranging we arrive at

∥˜︁US,1−m
1 ∥2,∞ ≲ ∥ˆ︁US

1 ∥2,∞ + µ0

√︃
r

p
.

Consequently,

∥ˆ︁US
1 (
ˆ︁US
1 )

⊤ − ˜︁US,1−m
1 (˜︁US,1−m

1 )⊤∥

≲
κ
√︁
p1 log(p)

λ
µ0

√︃
r

p1
+

√
p1p2p3 log(p)

λ2
µ0

√︃
r

p1
+

√
p1p2p3 log(p)

λ2
∥ˆ︁US

1 ∥2,∞ (D.14)

Therefore, we have that

A ≲
(p1p2p3)

1/2

λ2
∥ˆ︁US

1 (
ˆ︁US
1 )

⊤ − ˜︁US,1−m
1 (˜︁US,1−m

1 )⊤∥

≲
(p1p2p3)

1/2

λ2

{︃
κ
√︁
p1 log(p)

λ
µ0

√︃
r

p1
+

√
p1p2p3 log(p)

λ2
µ0

√︃
r

p1
+

√
p1p2p3 log(p)

λ2
∥ˆ︁US

1 ∥2,∞
}︃

≪
κ
√︁
p1 log(p)

λ
µ0

√︃
r

p1
+

√
p1p2p3 log(p)

λ2
µ0

√︃
r

p1
+

√
p1p2p3 log(p)

λ2
∥ˆ︁US

1 ∥2,∞.

In addition,

B ≲
κ
√︁
p1 log(p)

λ
µ0

√︃
r

p1
+

√
p1p2p3 log(p)

λ2
∥˜︁US,1−m

1 ∥2,∞ +

√
p1p2p3 log(p)

λ2
µ0

√︃
r

p1

≲
κ
√︁
p1 log(p)

λ
µ0

√︃
r

p1
+

√
p1p2p3 log(p)

λ2
∥ˆ︁US

1 ∥2,∞ +

√
p1p2p3 log(p)

λ2
µ0

√︃
r

p1
, .

Combining both of these with the initial bounds in Lemma 45, we arrive at

∥e⊤m
(︁ ˆ︁US

1 −U1W
S
1

)︁
∥ ≲

(︃
κ
√︁
p1 log(p)

λ
+

(p1p2p3)
1/2 log(p)

λ2
+ κ2µ0

√︃
r

p1

)︃
µ0

√︃
r

p1
+

(p1p2p3)
1/2

λ2
∥ˆ︁US

1 ∥2,∞.

By taking a union bound over all the rows, we have that with probability at least 1−O(p−29)

that

∥ˆ︁US
1 −U1W

S
1 ∥2,∞ ≲

(︃
κ
√︁
p1 log(p)

λ
+

(p1p2p3)
1/2 log(p)

λ2
+ κ2µ0

√︃
r

p1

)︃
µ0

√︃
r

p1
+

(p1p2p3)
1/2

λ2
∥ˆ︁US

1 ∥2,∞.
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Therefore,

∥ˆ︁U∥2,∞ ≤ ∥U1∥2,∞ + ∥ˆ︁US
1 −U1W

S
1 ∥2,∞

≤ µ0

√︃
r

p1
+ o(1)∥ˆ︁US

1 ∥2,∞,

which, by rearranging, yields

∥ˆ︁US
1 ∥2,∞ ≲ µ0

√︃
r

p1
.

Therefore,

∥ˆ︁US
1 −U1W

S
1 ∥2∞ ≲

(︃
κ
√︁
p1 log(p)

λ
+

(p1p2p3)
1/2 log(p)

λ2
+ κ2µ0

√︃
r

p1

)︃
µ0

√︃
r

p1
.

In addition, (D.14) together with the bound above shows that with high probability,

∥ˆ︁US
1 (
ˆ︁US
1 )

⊤ − ˜︁US,1−m
1 (˜︁US,1−m

1 )⊤∥

≲
κ
√︁
p1 log(p)

λ
µ0

√︃
r

p1
+

√
p1p2p3 log(p)

λ2
µ0

√︃
r

p1
+

√
p1p2p3 log(p)

λ2
∥ˆ︁US

1 ∥2,∞

≲
κ
√︁
p1 log(p)

λ
µ0

√︃
r

p1
+

√
p1p2p3 log(p)

λ2
µ0

√︃
r

p1
.

Taking another union bound overm shows that this bound holds for allm with probability at

least 1−O(p−29). Both of these bounds therefore hold with probability at least 1−p−20.

Proof of Lemma 32

In this section we prove Lemma 32, which controls the remaining two leave-one-out sequences

not bounded in Theorem 25.

Proof of Lemma 32. First we provide concentration guarantees, similar to Lemma 43. We

will bound the following terms:

• ∥Γ
(︁
T1(Z1 − Zj−m1 )⊤

)︁
∥;

• ∥Γ
(︁
Z1Z

⊤
1 − Zj−m1 (Zj−m1 )⊤

)︁
∥
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• ∥Γ
(︁
Z1Z

⊤
1 − Zj−m1 (Zj−m1 )⊤

)︁ ˜︁US,j−m
1 ∥.

First, note that by Lemma 47, with probability at least 1−O(p−30) it holds that

∥Γ
(︁
(Z1 − Zj−m1 )T⊤

1

)︁
∥ ≤ ∥(Z1 − Zj−m1 )T⊤

1 ∥+ ∥diag
(︁
(Z1 − Zj−m1 )T⊤

1

)︁
∥

≤ 2∥(Z1 − Zj−m1 )T⊤
1 ∥

≲
√︂
p−j log(p)∥T⊤

1 ∥2,∞

≲ λ1µ0

√︃
r1
p1
pj

log(p).

Next, we consider the matrix Γ
(︁
Z1Z

⊤
1 − Zj−m1 (Zj−m1 )⊤

)︁
. First, observe that for i ̸= k this

matrix has entries of the form

Γ
(︁
Z1Z

⊤
1 − Zj−m1 (Zj−m1 )⊤

)︁
ik

=
∑︂
l∈Ω

(Z1)il(Z1)kl,

where Ω is the set of indices such that the l’th column of Z1 corresponds to elements

belonging to the m’th row of Zj . A general formula is possible, but not needed for our

purposes here; the cardinality of Ω is equal to the number of nonzero columns of Z1−Zj−m1 ,

which is p−1−j . Since this matrix is a sample gram matrix, by Lemma 1 of Agterberg and

Sulam (2022) it holds that with probability at least 1 − O(p−30) (where as in the proof

of Lemma 42 the higher probability holds by modifying the constant on δ in the proof of

Lemma 1 of Agterberg and Sulam (2022)) that

∥Γ
(︁
Z1Z

⊤
1 − Zj−m1 (Zj−m1 )⊤

)︁
∥ ≲

√
p1 +

√
p1p−1−j

≲
√
p1 +

√
p−j

≪ p2/p
1/2
min
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For the remaining term, we note that

∥Γ
(︁
Z1Z

⊤
1 − Zj−m1 (Zj−m1 )⊤

)︁ ˜︁US,j−m
1 ∥ ≤ √

p1∥Γ
(︁
Z1Z

⊤
1 − Zj−m1 (Zj−m1 )⊤

)︁ ˜︁US,j−m
1 ∥2,∞

=
√
p1max

i
∥

p1∑︂
k ̸=i,k=1

∑︂
l∈Ω

(Z1)il(Z1)kl
(︁ ˜︁US,j−m

1

)︁
k·∥

≲
√
p1

√︂
p−1−j log(p)max

l
∥

p1∑︂
k ̸=i,k=1

(Z1)kl
(︁ ˜︁US,j−m

1

)︁
k·∥

≲ p1
√
p−1−j log(p)∥˜︁US,j−m

1 ∥2,∞

≲
√
p1
√
p−j log(p)∥˜︁US,j−m

1 ∥2,∞,

where we have implicitly used the matrix Hoeffding’s inequality twice: once over the summa-

tion over l conditional on the collection (Z1)kl for k ̸= i, and then again over the summation

in k.

Note that ˆ︁US
1 are the eigenvectors of the matrix Γ

(︁
T1T

⊤
1 + Z1Z

⊤
1 + T1Z

⊤
1 + Z1T

⊤
1

)︁
and ˜︁US,j−m

1 are the eigenvectors of the matrix Γ
(︁
T1T

⊤
1 + Zj−m1 (Zj−m1 )⊤ + T1(Z

j−m
1 )⊤ +

Zj−m1 T⊤
1

)︁
. Therefore, the spectral norm of the difference is upper bounded by

2∥Γ
(︁
T1(Z1 − Zj−m1 )⊤

)︁
∥+ ∥Γ

(︁
Z1Z

⊤
1 − Zj−m1 (Zj−m1 )⊤

)︁
∥ ≲ λ1µ0

√︃
r1
p1
pj

log(p) + p2/p
1/2
min

≪ λ2.

Moreover, Lemma 44 shows that

λr

(︃
Γ
(︁
T1T

⊤
1 + Z1Z

⊤
1 +T1Z

⊤
1 + Z1T

⊤
1

)︁)︃
− λr+1

(︃
Γ
(︁
T1T

⊤
1 + Z1Z

⊤
1 +T1Z

⊤
1 + Z1T

⊤
1

)︁)︃
≳ λ2,

so by the Davis-Kahan Theorem,

∥˜︁Uj−m
1 (˜︁US,j−m

1 )⊤ − ˆ︁US
1 (
ˆ︁US
1 )

⊤∥ ≲
1
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(︃
λ1µ0

√︃
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p1
pj
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√
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√
p−j log(p)∥˜︁US,j−m
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≲
κ
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p1 log(p)

λ
µ0

√︃
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pj

+

√
p1p−j log(p)
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∥˜︁US,j−m

1 ∥2,∞

(D.15)
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In addition, we note that by Theorem 25, with probability at least 1−O(p−20) it holds that

∥˜︁US,j−m
1 ∥2,∞ ≤ ∥ˆ︁US

1 (
ˆ︁US
1 )

⊤ ˜︁US,j−m
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ˆ︁US
1 )

⊤ ˜︁US,j−m
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≤ ∥ˆ︁US
1 ∥2,∞ + ∥˜︁US,j−m

1 (˜︁US,j−m
1 )⊤ − ˆ︁US

1 (
ˆ︁US
1 )

⊤∥

≤ ∥ˆ︁US
1 ∥2,∞ +

κ
√︁
p1 log(p)

λ
µ0

√︃
r1
p1

+
(p1p2p3)

1/2 log(p)
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∥˜︁US,j−m

1 ∥2,∞

≤ µ0

√︃
r1
p1

+ o(1)∥˜︁US,j−m
1 ∥2,∞,

so by rearranging we obtain that

∥˜︁US,j−m
1 ∥2,∞ ≲ µ0

√︃
r1
p1
.

Plugging this into (D.15) yields

∥˜︁Uj−m
1 (˜︁US,j−m

1 )⊤ − ˆ︁US
1 (
ˆ︁US
1 )

⊤∥ ≲
κ
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p1 log(p)
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pj

+

√
p−j log(p)
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≲
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p1 log(p)
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r1
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+
(p1p2p3)

1/2 log(p)

λ2
µ0

√︃
r1
pj

with probability at least 1−O(p−20). The proof is then completed by taking a union bound

over all p1 rows.

D.2 Proofs of Tensor Mixed-Membership Blockmodel Identi-

fiability and Estimation

In this section we prove our main results concerning the mixed-membership identifiability

and estimation. First we establish Proposition 2 as well as Lemma 6 relating the properties

of the tensor mixed-membership blockmodel to the tensor denoising model. We then prove

our estimation guarantees Theorem 10. Throughout we let Sk = Mk(S) and Tk defined

similarly.
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D.2.1 Proofs of Proposition 2, Proposition 3, and Lemma 6

First we prove Proposition 3 and Lemma 6 simultaneously as we will require part of the

proof in the proof of Proposition 2.

Proof of Proposition 3 and Lemma 6. For the first part, we follow the proof of Lemma 2.3

of Mao et al. (2021). Without loss of generality we prove the result for mode 1. Let T1 have

singular value decomposition T1 = U1Λ1V
⊤
1 Then since U1Λ1V

⊤
1 = Π1S1(Π2 ⊗ Π3)

⊤,

without loss of generality we may assume the first r1 rows of T1 correspond to pure nodes.

We note that therefore

U
(pure)
1 Λ2

1(U
(pure)
1 )⊤ = S1(Π2 ⊗Π3)

⊤(Π2 ⊗Π3)S
⊤
1 .

Since the rank of Π2 and Π3 are r2 and r3 respectively, it holds that the matrix above

is rank r1 as long as r1 ≤ r2r3 since S1 is rank r1, which shows that U
(pure)
1 is rank r1.

Furthermore, we have that T1[1 : r1, ·] = U
(pure)
1 Λ1V

⊤
1 = S1(Π2 ⊗Π3)

⊤ which shows that

U
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1 = S1(Π2 ⊗Π3)

⊤V1Λ
−1
1 . Therefore,

U1 = T1V1Λ
−1
1
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⊤V1Λ

−1
1

= Π1U
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1 .

Next, we observe that
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(︁
TkT

⊤
k
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≳ ∆2 p1p2p3

r1r2r3
,

379



APPENDIX D. PROOFS FROM CHAPTER 4

where the penultimate line follows from the fact that
(︁
Πk+1 ⊗Πk+2

)︁
has full column rank.

Therefore, λ ≳ ∆ (p1p2p3)1/2
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. For the reverse direction, by a similar argument,
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⊤
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(︁
Πk+1 ⊗Πk+2

)︁⊤(︁
Πk+1 ⊗Πk+2

)︁
λmin(S

⊤
k Sk)

≤ min
k

pkpk+1pk+2

r1r2r3
λmin(S

⊤
k Sk)

≤ ∆2 p1p2p3
r1r2r3

,

where we have used the assumption that λmax(Π
⊤
kΠk) ≤ pk

rk
.

For the remaining part, we note that by the previous argument, we have

Uk = ΠkU
(pure)
k .

Since U⊤
kUk = Ir1 , it holds that

U
(pure)
k (U

(pure)
k )⊤Π⊤

kΠkU
(pure)
k (U

(pure)
k )⊤ = U

(pure)
k U⊤

kUk(U
(pure)
k )⊤ = U

(pure)
k (U

(pure)
k )⊤,

which demonstrates that

U
(pure)
k (U

(pure)
k )⊤ = (Π⊤

kΠk)
−1.
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Since U
(pure)
k is an r1 × r1 matrix and λr1(Π⊤

kΠk) ≳
pk
rk

, it holds that

∥U(pure)
k ∥22,∞ = max

i
⟨
(︁
U

(pure)
k

)︁
i·,
(︁
U

(pure)
k

)︁
i·⟩

≤ λmax

(︁
U

(pure)
k (U

(pure)
k )⊤

)︁
≤ λmax

(︁
Π⊤
kΠk

)︁
≲
rk
pk
.

Since Uk = ΠkU
(pure)
k has rows that are convex combinations of U(pure)

k , it holds that

∥Uk∥2,∞ ≲
√︃
rk
pk
,

which demonstrates that µ0 = O(1). This completes the proof.

Proof of Proposition 2. The proof of the first part is similar to Theorem 2.1 of Mao et al.

(2021). Suppose that Tk has SVD UkΛkV
⊤
k . By Proposition 3 (which only relies on the

assumptions in Proposition 2) it holds that there an invertible matrix U
(pure)
k such that

Uk = ΠkU
(pure)
k , where U

(pure)
k consists of the rows of Uk corresponding to pure nodes.

Therefore, for each i it holds that (Uk)i· is in the convex hull of U(pure)
k .

Now suppose that there exists other parameters S ′,Π′
1, Π′

2 and Π′
3 such that T =

S ′×1Π
′
1×2Π

′
2×3Π

′
3, where each Π′

k may have different pure nodes. Note that since T is the

same regardless of Πk and Π′
k, its singular value decomposition is fixed (where we arbitrarily

specify a choice of sign for unique singular values or basis for repeated singular values). By

the previous argument we have that ˜︁U(pure)
k must belong to the convex hull of U(pure)

k , where˜︁U(pure)
k corresponds to the pure nodes associated to Π′

k. By applying Proposition 3 again

to the new decomposition, it must hold that Uk = Π′
k
˜︁U(pure)
k , which shows that U

(pure)
k

belongs to the convex hull of ˜︁U(pure)
k . Since both convex hulls are subsets of each other, it

holds that the convex hulls of U(pure)
k and ˜︁U(pure)

k are the same. Consequently, it must hold

that U
(pure)
k = Pk ˜︁U(pure)

k for some permutation matrix Pk.

Now we note that by the identity Uk = ΠkU
(pure)
k = Π′

k
˜︁U(pure)
k , it holds that ΠkU

(pure)
k =
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Π′
kPkU

(pure)
k , which demonstrates that

(Πk −Π′
kPk)U

(pure)
k = 0.

Since U
(pure)
k is full rank, it must therefore hold that Πk = Π′

kPk. Consequently,

T = S ′ ×1

(︁
Π1P1

)︁
×2

(︁
Π2P2

)︁
×3

(︁
Π3P3

)︁
,

which shows that S = S ′ ×1 P1 ×2 P2 ×3 P3, which completes the proof of the first part of

the result.

The second part of the result essentially follows the proof of Theorem 2.2 of Mao et al.

(2021). Without loss of generality we prove the result for mode 1. Assume for contradiction

that there is a community without any pure nodes; without loss of generality let it be the

first community. Then there is some δ > 0 such that (Π1)i1 ≤ 1− δ for all i. Define

H : =

⎡⎢⎣ 1 + (r1 − 1)ε2 −ε21⊤r1−1

0 ε1r1−11
⊤
r1−1 + (1− (r1 − 1)ε)Ir1−1

⎤⎥⎦ ,
where 0 < ε < δ. For ε sufficiently small, H is full rank, and the rows of H sum to

one. Consequently, ˜︁Π1 := Π1H also has rows that sum to one. Moreover, for any i,

( ˜︁Π1)i1 = (Π1)i1(1 + (K − 1)ε2) ≥ 0, and for any 2 ≤ l ≤ r1,

( ˜︁Π1)il = −(Π1)i1ε
2 +

r1∑︂
l′=1

(Π1)il′Hl′l

= −(Π1)i1ε
2 + (Π1)il(1− (K − 1)ε) +

r1∑︂
l′=1

(Π1)il′ε

≥ −(Π1)i1ε
2 +

r1∑︂
l′=1

(Π1)il′ε

≥ (1− δ)ε2 + εδ

> 0,

and hence ˜︁Π1 has positive entries. Therefore, for ε sufficiently small ˜︁Π1 is a valid member-
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ship matrix. In addition, we have that

M1(T ) = Π1M1(S)
(︁
Π2 ⊗Π3

)︁⊤
= ˜︁Π1H

−1M1(S)
(︁
Π2 ⊗Π3

)︁⊤
= ˜︁Π1M1(S ×1 H

−1)
(︁
Π2 ⊗Π3

)︁⊤
,

which shows that T = ˜︁S ×1
˜︁Π1 ×2 Π2 ×3 Π3 is another representation of T , where ˜︁S =

S ×1H
−1. Since H is not a permutation matrix, we see that we have a contradiction, which

completes the proof.

D.2.2 Proof of Theorem 10

Proof of Theorem 10. Our proof is similar to the proof of the main result in Mao et al.

(2021) as well as the proof of Theorem 4.9 in Xie (2022), where we will apply Theorem 3 of

Gillis and Vavasis (2014). We first prove the result assuming that λ/σ ≳ κp
√︁

log(p)/p
1/4
min,

that r ≤ p
1/4
min and that µ0 = O(1); the result will then follow by applying Lemma 6. Without

loss of generality, we prove the result for k = 1.

First, observe that by Theorem 11, with probability at least 1− p−10 it holds that there

is an orthogonal matrix W such that for t iterations with t as in Theorem 11 it holds that

the output ˆ︁U of HOOI satisfies

ˆ︁U = UW + error,

with

∥error∥2,∞ ≲
κ
√︁
rk log(p)

λ/σ
.

Since by Lemma 6 U = ΠU(pure), it holds that

ˆ︁U⊤ = W⊤(U(pure))⊤Π⊤ + error⊤.

We will apply Theorem 3 of Gillis and Vavasis (2014), with M, W, H and N therein equal to
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U, W⊤(U(pure))⊤, Π⊤ and error⊤ respectively. Define, for some sufficiently large constant

C,

ε := C
κ
√︁
rk log(p)

λ/σ
.

It then holds that ∥errori·∥ ≤ ε on the event in Theorem 11. We also need to check the

bound

ε < λmin(U
(pure))min

(︃
1

2
√
r1 − 1

,
1

4

)︃(︃
1 + 80

σ21(U
(pure))

σ2r (U
(pure))

)︃−1

.

First we note that by the proof of Lemma 6, we have that λ2min(U
(pure)) = λmin

(︁
U(pure)(U(pure))⊤

)︁
=

λmin

(︁
(Π⊤Π)−1

)︁
. Since λmax

(︁
Π⊤Π

)︁
≲ p1

r1
, we have that λmin(U

(pure)) ≳
√
r1√
p1

.

We note that

∥U(pure)W∥22,∞
λ2r(U

(pure))
≤ λ2max(U

(pure))

λ2r(U
(pure))

=
λ2max(U

(pure))

λ2r(U
(pure))

=
λmax(Π

⊤Π)

λmin(Π⊤Π)

≍ C,

since λmin(Π
⊤Π) ≳ p1 by assumption. Consequently, plugging in these estimates, it suffices

to show that

ε < c

√
r1√
p1

1
√
r1

=
c

√
p1
,

where c is some sufficiently small constant. Plugging in the definition of ε, we see that we

require that

C
κ
√︁
r1 log(p)

λ/σ
≤ c

√
p1
,
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which is equivalent to the condition

λ/σ ≳ κ
√︁
p1r1 log(p),

which holds under the condition λ/σ ≳ κp
√︁
log(p)/p

1/4
min and r ≤ p

1/4
min. Therefore, we may

apply Theorem 3 of Gillis and Vavasis (2014) to find that there exists a permutation P such

that

∥ˆ︁U(pure) − P⊤U(pure)W∥2,∞ ≤ Cε.

We now use this bound to provide our final bound. First, since ε ≲ 1√
p , by Weyl’s inequality

it holds that

λmin(ˆ︁U(pure)) ≥ λmin(U
(pure)
k )−

√
r1ε

≥ C

√
r1√
p1

−
c
√
r1√
p1

≳
√
r1√
p1
,
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as long as c is sufficiently small. Consequently, ∥(ˆ︁U(pure))−1∥ ≲
√︂

p1
r1

. Therefore,

∥ ˆ︁Π−ΠP∥2,∞ = ∥ˆ︁U(ˆ︁U(pure))−1 −U(U(pure))−1P∥2,∞

= ∥ˆ︁U(ˆ︁U(pure))−1 −UW(P⊤U(pure)W)−1∥2,∞

≤ ∥
(︁ ˆ︁U−UW

)︁
(ˆ︁U(pure))−1∥2,∞ + ∥UW

(︁
(ˆ︁U(pure))−1 − (P⊤U(pure)W)−1

)︁
∥2,∞

≤ ∥ˆ︁U−UW∥2,∞∥(ˆ︁U(pure))−1∥+ ∥ΠU(pure)W
(︁
(ˆ︁U(pure))−1 − (P⊤U(pure)W)−1

)︁
∥2,∞

≤ ε∥(ˆ︁U(pure))−1∥+ ∥Π∥∞→∞∥U(pure)W
(︁
(ˆ︁U(pure))−1 − (P⊤U(pure)W)−1

)︁
∥2,∞

≤ ε∥(ˆ︁U(pure))−1∥+ ∥U(pure)W
(︁
(P⊤ ˆ︁U(pure))−1 − (U(pure)W)−1

)︁
P∥2,∞

≤ ε∥(ˆ︁U(pure))−1∥+ ∥
(︁
U(pure)W(P ˆ︁U(pure))−1 − Irk

)︁
P∥2,∞

≤ ε∥(ˆ︁U(pure))−1∥+ ∥
(︁
U(pure)W − P ˆ︁U(pure)

)︁
(P ˆ︁U(pure))−1P∥2,∞

≤ ε∥(ˆ︁U(pure))−1∥+ ∥P⊤U(pure)W − ˆ︁U(pure)∥2,∞∥(P ˆ︁U(pure))−1∥2,∞

≤ 2ε
√︁
p1/r1

≲
κ
√︁
r1 log(p)

λ/σ

√︃
p1
r1

≍
κ
√︁
p1 log(p)

λ/σ
.

Therefore, all that remains is to apply Lemma 6. First, we need to check that the condition

λ/σ ≳ κp
√︁
log(p)/p

1/4
min

holds; by Lemma 6 this is equivalent to the condition

∆/σ ≳
κp
√︁
log(p)

p
1/4
min

√
r1r2r3√
p1p2p3

,

which is in Assumption 4.2. Finally, by Lemma 6, we obtain the final upper bound

∥ ˆ︁Π−ΠP∥2,∞ ≲
κσ
√︁
r1r2r3 log(p)

∆(p−1)1/2
,

as desired.
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D.2.3 Proof of Corollary 4

Proof of Corollary 4. Fix an index k, and let P denote the permutation matrix from Theo-

rem 10. Then it holds that

inf
Permutations P

∥
(︁ ˆ︁Πk −ΠkP

)︁
i·)i·∥1 ≤

√
rk∥
(︁ ˆ︁Πk −ΠkP

)︁
i·∥2

≤
r2κ
√︁
log(p)

(∆/σ)(p−k)1/2
.

Averaging over the rows completes the proof.

D.3 Auxiliary Probabilistic Lemmas

Lemma 46. Let A be any fixed matrix independent from e⊤mZk. Then there exists an

absolute constant C > 0 such that with probability at least 1−O(p−20
max),

∥e⊤mZkA∥ ≤ Cσ
√︁
p−k log(pmax)∥A∥2,∞.

Proof. This follows from Cai et al. (2021a), Lemma 12.

Lemma 47. Let A be a matrix independent from Zk − Zj−mk , where Zj−mk is defined in

Appendix D.1. Then there exists an absolute constant C > 0 such that with probability at

least 1−O(p−30
max),

∥
(︃
Zk − Zj−mk

)︃
A∥ ≤ Cσ

√︂
p−j log(pmax)∥A∥2,∞.

Proof. If j = k, the result follows by Lemma 46. Therefore, we restrict our attention to

when j ̸= k. First, note that

∥
(︃
Zk − Zj−mk

)︃
A∥ ≤ √

pk∥
(︃
Zk − Zj−mk

)︃
A∥2,∞.
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Next, consider any fixed row of Zk − Zj−mk . Observe that the q’th row can be written as

∑︂
Ω

(︁
Zk
)︁
ql
Al·,

where the set Ω consists of the p−k−j random variables in the q’th row of Zk −Zj−mk . Note

that this is a sum of independent random matrices. By the matrix Bernstein inequality

(Proposition 2 of Koltchinskii et al. (2011)), it holds that with probability at least 1− p−31
max

that

∥
∑︂
Ω

(︁
Zk
)︁
ql
Al·∥ ≤ Cmax

{︃
σZ

√︂
p−k−j log(pmax), UZ log(p)

}︃

where

σ2Z := max
l

max

{︃⃦⃦⃦⃦
E
(︁(︁
Zk
)︁
ql
Al·
)︁(︁(︁

Zk
)︁
ql
Al·
)︁⊤ ⃦⃦⃦⃦

,

⃦⃦⃦⃦
E
(︁(︁
Zk
)︁
ql
Al·
)︁⊤(︁(︁

Zk
)︁
ql
Al·
)︁⃦⃦⃦⃦}︃

;

UZ := max
l

∥(Zk)qlAl·∥ψ2

(Note that Proposition 2 of Koltchinskii et al. (2011) holds for IID random matrices, but

the proof works equally as well if uniform bounds on σZ and UZ are obtained). Observe

that

⃦⃦⃦⃦
E
[︃
(Zk)qlAl·

]︃[︃
(Zk)qlAl·

]︃⊤ ⃦⃦⃦⃦
≤ σ2∥Al·A

⊤
l· ∥

≤ σ2∥A∥22,∞;⃦⃦⃦⃦
E
[︃
(Zk)qlAl·

]︃⊤[︃
(Zk)qlAl·

]︃⃦⃦⃦⃦
≤ σ2 ∥A⊤

l·Al·∥

≤ σ2∥A∥22,∞.

Similarly, by subgaussianity of the entries of Zk,

max
l

∥(Zk)qlAl·∥ψ2 ≤ Cσ∥A∥2,∞.
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Therefore, with probability at least 1− p−31
max, it holds that

∥
∑︂
Ω

(︁
Zk
)︁
ql
Al·∥ ≤ Cmax

{︃
σZ

√︂
p−k−j log(pmax), UZ log(pmax)

}︃
≤ Cσ∥A∥2,∞max

{︃√︂
p−k−j log(pmax), log(pmax)

}︃
≤ Cσ∥A∥2,∞

√︂
p−k−j log(pmax).

Taking a union bound over all pk rows shows that this holds uniformly with probability at

least 1−O(p−30
max). Therefore,

⃦⃦⃦⃦(︃
Zk − Zj−mk

)︃
A∥ ≤ √

pk∥
(︃
Zk − Zj−mk

)︃
A

⃦⃦⃦⃦
2,∞

≤ Cσ∥A∥2,∞
√︂
p−j log(pmax)

as desired.

Lemma 48. Suppose Z ∈ Rp1×p2×p3 is a tensor with mean-zero subgaussian entries, each

with ψ2 norm bounded by 1. Suppose that r2r3 ≤ p1r1. Then for some universal constant

C, the following holds with probability at least 1− c exp(−cpmax):

sup
∥U1∥=1,rank(U1)≤2r1
,∥U2∥=1,rank(U2)≤2r2

∥Z
(︃
PU1 ⊗ PU2

)︃
∥ ≤ C

√
pmaxrmax.

Proof. See Lemma 8 of Han et al. (2021) or Lemma 3 of Zhang and Han (2019).
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Appendix E

Proofs from Chapter 5

E.1 Proofs of Main Results

In this section, we first prove Proposition 4, Theorems 13 and 14 and Corollaries 5 and 6.

We then prove Propositions 5, 6, 7, and 8. Finally, we prove the more technical results. Our

proofs require careful tabulation of the various alignment matrices orthogonal matrices. We

remark that all orthogonal matrices appearing in the following proofs are written with the

letter W and all indefinite orthogonal matrices are written with the letter Q, and we allow

the constants implicit in the notation O(·) to depend on d in an arbitrary manner. Finally,

in our proofs, we will provide bounds with a constant C that may change from line to line.

Before proving Proposition 4, we include some important related results that we will

require. First, Theorem 7 in Solanki et al. (2019) says that when we have a (p, q)-admissible

distribution, the support is bounded.

Theorem 26 (Theorem 7 of Solanki et al. (2019)). Suppose F is a (p, q)-admissible distri-

bution; that is for all x,y ∈ supp(F ), x⊤Ip,qy ∈ [0, 1]. Then supp(F ) is bounded.

If needed, we can assume without loss of generality that the support Ω is compact by

extending it to its closure if necessary. We will also need an adaptation of Theorem 1 from

Agterberg et al. (2020b) for the two graph setting. The proof is straightforward and included

in Section E.1.5.

Lemma 49. Suppose FX ≃ FY , and that ∆XIp,q and ∆YIp,q have distinct eigenvalues.
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Let QX be the matrix such that UX|Λ|1/2QX = X. and similarly for QY and Y. Then

there exists a fixed matrix ˜︁Q such that both ||QX − ˜︁Q|| → 0 and ||QYT−1 − ˜︁Q|| → 0 almost

surely, where T ∈ O(p, q) is the matrix such that FY = FX ◦T.

Finally, we need the following restatement of Theorem 5 of Rubin-Delanchy et al. (2020).

Given Lemma 49 and the concentration results in this section (c.f. Lemma 50) the proof is

straightforward by adapting the proof in Rubin-Delanchy et al. (2020) and is thus omitted.

Note that Q−1
X = Ip,qQ

⊤
XIp,q from the equation QXIp,qQ

⊤
X = Ip,q, which will be useful in

the sequel.

Theorem 27. Let (A,X) ∼ GRDPG(FX , n, αn) for nαn = ω(log4(n)). Let QX be the

matrix such that UX|Λ|1/2QX = X. Then there exists an orthogonal matrix W∗ ∈ O(d) ∩

O(p, q) depending on n such that with probability at least 1− n−2

∥ˆ︁X− α1/2
n XQ−1

X W∗∥2,∞ = O

(︃
log(n)

n1/2

)︃
.

Furthermore, as n → ∞, if ∆Ip,q has distinct eigenvalues, then ∥W∗ − I∥ = O
(︁
(nαn)

−1
)︁

with probability at least 1− n−2. In this case, we have the bound

∥ˆ︁X− α1/2
n XQ−1

X ∥2,∞ = O

(︃
log(n)

n1/2

)︃
.

Proof of Proposition 4. We first show that |Un,m(ˆ︁X/α1/2
n , ˆ︁Y/β1/2m )−Un,m(XQ−1

X WX
∗ ,YQ−1

Y WY
∗ )| →

0 almost surely. By continuity of κ and the fact that the supports of FX and FY are bounded

by Theorem 26, we have that

|κ( ˆ︁Xi/α
1/2
n , ˆ︁Xj/α

1/2
n )− κ((WX

∗ Q−1
X )⊤Xi, (W

X
∗ Q−1

X )⊤Xj)| ≤ C||α−1/2
n

ˆ︁X−XQ−1
X WX

∗ ||2,∞;

|κ(ˆ︁Yi/β1/2m , ˆ︁Yj/β1/2m )− κ((WY
∗ Q−1

Y )⊤Yi, (W
Y
∗ Q−1

Y )⊤Yj)| ≤ C||β−1/2
m

ˆ︁Y −YQ−1
Y WY

∗ ||2,∞;

|κ( ˆ︁Xi/α
1/2
n , ˆ︁Yj/β1/2m )− κ((WX

∗ Q−1
X )⊤Xi, (W

Y
∗ Q−1

Y )⊤Yj)| ≤ Cmax

(︃
||α−1/2

n
ˆ︁X−XQ−1

X WX
∗ ||2,∞,

||β−1/2
m

ˆ︁Y −YQ−1
Y WY

∗ ||2,∞
)︃
.
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Each term tends to zero almost surely by Theorem 27. Hence,

|Un,m(ˆ︁X/α1/2
n , ˆ︁Y/β1/2m )− Un,m(XQ−1

X WX
∗ ,YQ−1

Y WY
∗ )| → 0

almost surely. Furthermore, we see that since ∆Ip,q has distinct eigenvalues, the matrices

WX
∗ and WY

∗ are converging to the identity as n→ ∞.

Hence, it suffices to consider what the term Un,m(XQ−1
X ,YQ−1

Y ) is converging to under

the null and alternative respectively. Note that

|Un,m(XQ−1
X ,YQ−1

Y )− Un,m(X˜︁Q−1,Y ˜︁Q−1
Y )| ≤ C

(︂
∥X(Q−1

X − ˜︁Q−1
X )∥2,∞ + ∥Y(Q−1

Y − ˜︁Q−1
Y )∥2,∞

)︂
≤ C

(︂
∥Q−1

X − ˜︁Q−1
X ∥+ ∥Q−1

Y − ˜︁Q−1
Y ∥

)︂
,

where we have implicitly used Theorem 26 and the fact that κ is twice continuously differ-

entiable and hence Lipschitz on the closure of the support of FX ◦ ˜︁Q−1. The right hand side

tends to zero almost surely by Lemma 49 and Theorem 2 in Agterberg et al. (2020b).

Hence, it suffices to analyze the convergence of Un,m(X˜︁Q−1
X ,Y ˜︁Q−1

Y ) under the null and

alternative respectively. Note that ˜︁Q−1
X and ˜︁Q−1

Y are deterministic matrices. Under the null

hypothesis, the matrix ˜︁Q−1
Y can be replaced with the limiting matrix T−1 ˜︁Q−1 by Lemma

49. Therefore, under the null hypothesis, FX ◦T = FY , so µ[FX ◦ ˜︁Q−1] = µ[FY ◦T−1 ˜︁Q−1]

since κ is assumed to be a characteristic kernel. By Gretton et al. (2012), as n,m→ ∞ and

n/(n+m) → ρ ∈ (0, 1), we have that

Un,m(X˜︁Q−1,YT−1 ˜︁Q−1) → ∥µ[FX ◦ ˜︁Q−1]− µ[FY ◦T−1 ◦ ˜︁Q−1]∥2H = 0. (E.1)

Hence, Un,m(ˆ︁X/α1/2
n , ˆ︁Y/β1/2m ) converges to zero under the null hypothesis.

Under the alternative hypothesis, the matrix T−1 ˜︁Q−1 is replaced with a matrix Q̌, and

the term

∥µ[FX ◦ ˜︁Q−1]− µ[FY ◦ Q̌−1
]∥2H = c > 0

or otherwise the null hypothesis would be true. Therefore, under the alternative, the term
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Un,m(ˆ︁X/α1/2
n , ˆ︁Y/β1/2m ) converges to some positive constant which completes the proof.

E.1.1 Proof of Theorems 13 and 14 and Corollaries 5 and 54

We will require a few supporting lemmas. The first is on the rate of approximation of the

limiting matrix ˜︁Q from Theorem 2 of Agterberg et al. (2020b). We note that this improves

on a bound of order
(︁ log(n)

n

)︁1/8 given in Solanki et al. (2019). The proof is in Section E.1.5.

Lemma 50. Define QX as the matrix such that UX|ΛX|1/2 = α
1/2
n XQ−1

X , and let ˜︁Q be its

corresponding limit. Then with probability at least 1 − n−2 that there exists an orthogonal

matrix WX ∈ O(d) ∩O(p, q) such that

∥WXQX − ˜︁Q∥ = O

(︄√︁
log(n)√
n

)︄
. (E.2)

Moreover, WX has blocks corresponding to repeated eigenvalues of ∆Ip,q. If ∆Ip,q has no

repeated eigenvalues, then WX is a sign matrix. In addition, the matrices QX and ˜︁Q do

not depend on the sparsity factor.

The next lemma is a technical result concerning the Frobenius norm concentration of ˆ︁X
to X and is needed to guarantee the existence of the specific matrices WX

∗ and WY
∗ , though

it is also used in the proof of Lemma 52. We note that similar results were proven in Tang

et al. (2017a) and Tang and Priebe (2018) in the setting of random dot product graphs,

and in Athreya et al. (2020) in the setting of numerical linear algebra for random matrices.

The asymptotic normality of a related Frobenius norm error for stochastic blockmodels was

proven in Li and Li (2018). The proof is in Section E.1.3. Throughout this section, recall

that we define

˜︁X := UX|ΛX|1/2; P(1) = UXΛXU⊤
X = αnXIp,qX

⊤

with similar notation for ˜︁Y and P(2). We therefore have the identity

˜︁X = α1/2
n XQ−1

X . (E.3)
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Note that ˜︁X and ˆ︁X depend on the sparsity αn, but the matrix X does not (since its rows are

i.i.d. FX), and that the matrix ˜︁X can be thought of as the adjacency spectral embedding

of the probability generating matrix P = αnXIp,qX
⊤. See also Table E.2 below.

Lemma 51. Let (A,X) ∼ GRDPG(FX , n, αn) for some αn satisfying nαn ≥ ω(log4(n)).

Asymptotically almost surely, for the sequence of block-orthogonal matrices W∗ from Theo-

rem 27, the matrix ˆ︁XW⊤
∗ − ˜︁X admits the decomposition

ˆ︁XW⊤
∗ − ˜︁X = (A−P)UX|ΛX|−1/2Ip,q +R

where the matrix R satisfies

∥R∥F = O

⎛⎝√︄ log(n)

nαn

⎞⎠
with high probability. Furthermore, also with high probability,

⃓⃓⃓
∥ˆ︁X− ˜︁XW∗∥2F − C(˜︁X)2

⃓⃓⃓
= O

⎛⎝√︄ log(n)

nαn

⎞⎠ ,

where

C2(X) : = E∥(A−P)U|S|−1/2∥2F .

where the expectation is with respect to the randomness in A. Finally, as n → ∞, we have

that

∥ˆ︁X− ˜︁XW∗∥2F → Tr
(︃˜︁Q−1∆−1Γ∆−1 ˜︁Q−⊤

)︃
.

almost surely, where Γ is defined via

Γ :=

⎧⎪⎪⎨⎪⎪⎩
E[XX⊤(X⊤Ip,qµ−X⊤Ip,q∆Ip,qX)] αn ≡ 1

E[XX⊤(X⊤Ip,qµ)] αn → 0.
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Finally, we present the following functional central limit theorem for the approximation

of ˆ︁X to ˜︁X under sparsity. The proof can be found in Section E.1.4. The result is similar to

Theorem 5 in Tang et al. (2017b), but requires a number of different technical considerations.

Lemma 52. Let (A,X) ∼ GRDPG(FX , n, αn) where nαn ≫ log4(n). Suppose F : Rd → R

is a collection of twice continuously differentiable functions. Let ˜︁X := UX|ΛX|1/2, and let

W∗ be the matrix guaranteed by Lemma 51. Then, as n→ ∞, the empirical process

f ∈ F ↦→ ˆ︁Gnf :=

√︃
αn
n

n∑︂
i=1

[︄
f

(︄
W∗ ˆ︁Xi√
αn

)︄
− f

(︄ ˜︁Xi√
αn

)︄]︄
→ 0 (E.4)

almost surely as n→ ∞. Moreover, with probability at least 1−O(n−2),

sup
f∈F

⃓⃓⃓⃓√︃
αn
n

n∑︂
i=1

[︄
f

(︄
W∗ ˆ︁Xi√
αn

)︄
− f

(︄ ˜︁Xi√
αn

)︄]︄ ⃓⃓⃓⃓
= O

(︃√︄
log(n)

nαn

)︃
. (E.5)

In addition, the results hold with the replacement W∗ ˆ︁Xi and ˜︁Xi replaced with ˆ︁Xi and W⊤
∗
˜︁Xi

respectively. Finally, if
√
nαn = ω(n1/2 log1+η(n)) for some η > 0 then the result in Equation

E.4 still holds under the scaling 1√
n

instead of
√
αn√
n

, and in Equation (E.5) the right hand

side bound is of the form O

(︃
log1/2(n)

n1/2αn

)︃
.
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Notation Definition

QX,QY ∈ O(p, q) The matrices such that UX|ΛX|1/2QX = α
1/2
n X

and UY|ΛY|1/2QY =β
1/2
m Y

(Equation E.3)

˜︁QX, ˜︁QY ∈ O(p, q) The limiting matrices for QX and QY from Lemma 50

(Equation E.3)

WX
∗ ,WY

∗ ∈ O(d) ∩O(p, q) The block-orthogonal matrices aligning ˆ︁X and ˜︁X
(Lemma 51 and Theorem 27)

WX, WY ∈ O(d) ∩O(p, q) The block-orthogonal matrices aligning QX and ˜︁QX

from Lemma 50.

Table E.1: Table of Notation

FX ˜︁QX

WX

X QX

αnXIp,qX
⊤ = P ˜︁X

WX
∗

A ˆ︁X

i.i.d.

Lemma 50
Lemma 50

αn

Eq. (E.3)
Lemma 50

ASE

B
ernoulli

Eq.
(E

.3)

Lemma 51

ASE
Lemma 51

Table E.2: Diagram of the alignment matrices and where they come from. Both ˜︁QX and
WX come from Lemma 50, whereas the matrix WX

∗ comes from Lemma 51 (or Theorem
27).
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Armed with these technical results, we are now ready to prove Theorems 13 and 14. To

make the proof more straightforward, we have compiled the notation for all the alignment

matrices in Table E.1. Although the proof mirrors that in Tang et al. (2017b), the steps

require careful tabulation of sparsity parameters, orthogonal transformations, and indefinite

orthogonal transformations, all of which require novel technical analyses. Table E.2 also

shows how to find the various alignment matrices. Essentially, we have the approximations

ˆ︁XWX
∗ WX ≈ ˜︁XWX = α1/2

n XQ−1
X WX ≈ α1/2

n X˜︁Q−1
X ,

using Lemmas 50 and 51. Similar approximations hold for ˆ︁Y and ˜︁Y.

Proof of Theorems 13 and 14. Define the matrices WX
∗ and WX where (WX

∗ )⊤ is the or-

thogonal matrix from Lemma 51, and WX is the matrix from Lemma 50. Define WY
∗ and

WY similarly.

First, define ˜︁Vn,m := Vn,m

(︂ ˜︁XWX√
αn

,
˜︁YWY√
βm

)︂
via

˜︁Vn,m(︄ ˜︁XWX√
αn

,
˜︁YWY√
βm

)︄
=

⃦⃦⃦⃦
⃦ 1n

n∑︂
i=1

Φ

(︄
W⊤

X
˜︁Xi√

αn

)︄
− 1

m

m∑︂
k=1

Φ

(︄
W⊤

Y
˜︁Yk√

βm

)︄⃦⃦⃦⃦
⃦
2

H

=
1

n2

n∑︂
i=1

m∑︂
j=1

κ

(︄
W⊤

X
˜︁Xi√

αn
,
W⊤

X
˜︁Xj√

αn

)︄

− 2

mn

n∑︂
i=1

m∑︂
k=1

κ

(︄
W⊤

X
˜︁Xi√

αn
,
W⊤

Y
˜︁Yk√

βm

)︄

+
1

m2

m∑︂
k=1

m∑︂
l=1

κ

(︄
W⊤

Y
˜︁Yk√

βm
,
W⊤

Y
˜︁Yl√

βm

)︄

and analogously for ˆ︁Vn,m. We have the decomposition

(mβm + nαn)

(︄
Vn,m

(︄ ˜︁XWX√
αn

,
˜︁YWY√
βm

)︄
− Vn,m

(︄ ˆ︁XWX
∗ WX√
αn

,
ˆ︁YWY

∗ WY√
βm

)︄)︄

= (mβm + nαn)

(︄
Un,m

(︄ ˜︁XWX√
αn

,
˜︁YWY√
βm

)︄
− Un,m

(︄ ˆ︁XWX
∗ WX√
αn

,
ˆ︁YWY

∗ WY√
βm

)︄)︄
+ r1 + r2,
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where

r1 =
(mβm + nαn)

n(n− 1)

n∑︂
i=1

[︃
κ

(︄
W⊤

X
˜︁Xi√

αn
,
W⊤

X
˜︁Xi√

αn

)︄
− κ

(︄
(WX

∗ WX)⊤ ˆ︁Xi√
αn

,
(WX

∗ WX)⊤ ˆ︁Xi√
αn

)︄]︃

+
(mβm + nαn)

n(n− 1)

m∑︂
k=1

[︃
κ

(︄
W⊤

Y
˜︁Yk√

βm
,
W⊤

Y
˜︁Yk√

βm

)︄
− κ

(︄
(WY

∗ WY)⊤ ˆ︁Yk√
βm

,
(WY

∗ WY)⊤ ˆ︁Yk√
βm

)︄]︃
;

r2 =
(mβm + nαn)

n2(n− 1)

n∑︂
i=1

n∑︂
j=1

[︃
κ

(︄
W⊤

X
˜︁Xi√

αn
,
W⊤

X
˜︁Xj√

αn

)︄
− κ

(︄
(WX

∗ WX)⊤ ˆ︁Xi√
αn

,
(WX

∗ WX)⊤ ˆ︁Xj√
αn

)︄]︃

+
(mβm + nαn)

m2(m− 1)

m∑︂
k=1

m∑︂
l=1

[︃
κ

(︄
W⊤

Y
˜︁Yk√

βm
,
W⊤

Y
˜︁Yl√

βm

)︄
− κ

(︄
(WY

∗ WY)⊤ ˆ︁Yk√
βm

,
(WY

∗ WY)⊤ ˆ︁Yl√
βm

)︄]︃
.

By Theorem 26, Ω̄ is compact, so by the fact that κ is twice continuously differentiable, κ

is Lipschitz on Q−1
X Ω̄ since Q−1

X Ω̄ is compact. In particular, for some positive K, we have

that

∥r1∥ ≤ K
mβm + nαn

n− 1
max
i

⃦⃦⃦⃦
⃦W⊤

X
˜︁Xi√

αn
− (WX

∗ WX)⊤ ˆ︁Xi√
αn

⃦⃦⃦⃦
⃦

+K
mβm + nαn
m− 1

max
i

⃦⃦⃦⃦
⃦W⊤

Y
˜︁Yi√

αn
− (WY

∗ WY)⊤ ˆ︁Yi√
αn

⃦⃦⃦⃦
⃦

≤ 2K
mβm + nαn

nαn

√
αn

log(n)
√
nαn

+ 2K
mβm + nαn

mβm

√︁
βm

log(m)√
mβm

≤ C

(︃
log(n)√

n
+

log(m)√
m

)︃
,

by the assumption that mβm
mβm+nαn

→ ρ ∈ (0, 1) and the 2,∞ bound in Theorem 27. By a

similar argument,

∥r2∥ ≤ K
mβm + nαn

(n− 1)
max
i

⃦⃦⃦⃦
⃦W⊤

X
˜︁Xi√

αn
− (WX

∗ WX)⊤ ˆ︁Xi√
αn

⃦⃦⃦⃦
⃦

+K
mβm + nαn
m− 1

max
i

⃦⃦⃦⃦
⃦W⊤

Y
˜︁Yi√

αn
− (WY

∗ WY)⊤ ˆ︁Yi√
αn

⃦⃦⃦⃦
⃦

≤ C

(︃
log(n)√

n
+

log(m)√
m

)︃
.
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Both of these bounds are independent of αn and βm. Define

ξ : =

√
mβm + nαn

n

n∑︂
i=1

κ(W⊤
X
˜︁Xi/

√
αm, ·)−

√
mβm + nαn

m

m∑︂
k=1

κ(W⊤
Y
˜︁Yk/√︁βm, ·)

ˆ︁ξ : = √
mβm + nαn

n

n∑︂
i=1

κ((WX
∗ WX)⊤ ˆ︁Xi/

√
αm, ·)−

√
mβm + nαn

m

m∑︂
k=1

κ((WY
∗ WY)⊤ ˆ︁Yk/√︁βm, ·).

We now have that

⃓⃓⃓⃓
(mβm + nαn)

(︄
Vn,m

(︄ ˜︁XWX
∗ WX√
αn

,
˜︁YWY

∗ WY√
βm

)︄
− Vn,m

(︄ ˆ︁XWX√
αn

,
ˆ︁YWY√
βm

)︄)︄ ⃓⃓⃓⃓
=
⃓⃓⃓
∥ξ∥2H − ∥ˆ︁ξ∥2H ⃓⃓⃓

≤ ∥ξ − ˆ︁ξ∥H (︂2∥ξ∥H + ∥ξ − ˆ︁ξ∥H)︂ .
We have that

ξ − ˆ︁ξ =√︃mβm + nαn
n

n∑︂
i=1

κ(W⊤
X(WX

∗ )⊤ ˆ︁Xi/
√
αn, ·)− κ(W⊤

X
˜︁Xi/

√
αn, ·)√

n

−
√︃
mβm + nαn

n

n∑︂
i=1

κ(W⊤
Y(WY

∗ )⊤ ˆ︁Yi/√βm, ·)− κ((W⊤
Y
˜︁Yi/√βm, ·)√

n

: = ζX − ζY .

We note that since κ is radial, we can disregard W⊤
X and W⊤

Y. Moreover,

∥ζX∥ =

⃦⃦⃦⃦
⃦
√︃
mβm + nαn

n

n∑︂
i=1

κ((WX
∗ )⊤ ˆ︁Xi/

√
αn, ·)− κ( ˜︁Xi/

√
αn, ·)√

n

⃦⃦⃦⃦
⃦

=

⃦⃦⃦⃦
⃦
√︃
mβm + nαn

nαn

√
αn

n∑︂
i=1

κ((WX
∗ )⊤ ˆ︁Xi/

√
αn, ·)− κ( ˜︁Xi/

√
αn, ·)√

n

⃦⃦⃦⃦
⃦

=

√︃
mβm + nαn

nαn

⃦⃦⃦⃦
⃦√αn

n∑︂
i=1

κ((WX
∗ )⊤ ˆ︁Xi/

√
αn, ·)− κ( ˜︁Xi/

√
αn, ·)√

n

⃦⃦⃦⃦
⃦ .

Since mβm/(mβm+nαn) → ρ ∈ (0, 1) the term outside of the norm is of order O(1). Lemma

52 then implies that the term inside of the norm tends to zero, and the same argument holds

400



Joshua Agterberg

for ζY . In particular, we see that by Lemma 52,

∥ξ − ˆ︁ξ∥H = O

(︃√︄
log(n)

nαn
+

√︄
log(m)

mβm

)︃
(E.6)

with probability at least 1−O(n−2 +m−2)

We now bound ∥ξ∥H under the null and alternative respectively. Recall that ˜︁QX is

the limiting matrix guaranteed by Lemma 50. Note further that ˜︁X/√αn = XQ−1
X so that˜︁XWX/

√
αn = XQ−1

X WX, where WX was the matrix such that QX −WX
˜︁QX is of order√︁

log(n)/n with probability at least 1− n−2. Hence, from the equation

Q−1
X = Ip,qQ

⊤
XIp,q,

we see that with probability at least 1− n−2 that

∥Q−1
X WX − ˜︁Q−1

X ∥ = ∥Ip,qQ⊤
XIp,qWX − Ip,q ˜︁Q⊤

XIp,q∥

= ∥Q⊤
XIp,qWX − ˜︁Q⊤

XIp,q∥

= ∥Q⊤
XWXIp,q − ˜︁Q⊤

XIp,q∥

= ∥Q⊤
XWX − ˜︁Q⊤

X∥

= ∥W⊤
XQX − ˜︁QX∥

= ∥QX −WX
˜︁QX∥

= O

(︃√︁
log(n)√
n

)︃
.
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Hence, we have that

ξ =

√
mβm + nαn

n

n∑︂
i=1

κ(W⊤
X
˜︁Xi/

√
αm, ·)−

√
mβm + nαn

m

m∑︂
k=1

κ(W⊤
Y
˜︁Yk/√︁βm, ·)

=

√
mβm + nαn√

n

n∑︂
i=1

κ((Q−1
X WX)

⊤
Xi, ·)√

n
−

√
mβm + nαn√

m

m∑︂
k=1

κ((Q−1
Y WY)

⊤
Yi, ·)√

m

=

√
mβm + nαn√

n

n∑︂
i=1

κ((Q−1
X WX)

⊤
Xi, ·)− κ(˜︁Q−⊤

X Xi, ·)√
n

−
√
mβm + nαn√

m

m∑︂
k=1

κ((Q−1
Y WY)

⊤
Yi, ·)− κ(˜︁Q−⊤

Y XY , ·)√
m

+

√
mβm + nαn√

n

n∑︂
i=1

κ(˜︁Q−⊤
X Xi, ·)√
n

−
√
mβm + nαn√

m

m∑︂
k=1

κ(˜︁Q−⊤
Y Yk, ·)√
m

=

√
mβm + nαn√

n

n∑︂
i=1

κ((Q−1
X WX)

⊤
Xi, ·)− κ(˜︁Q−⊤

X Xi, ·)√
n

−
√
mβm + nαn√

m

m∑︂
k=1

κ((Q−1
Y WY)

⊤
Yi, ·)− κ(˜︁Q−⊤

Y XY , ·)√
m

+

√
mβm + nαn√

n

n∑︂
i=1

κ(˜︁Q−⊤
X Xi, ·)− µ[FX ◦ ˜︁Q−⊤

X ]√
n

−
√
mβm + nαn√

m

m∑︂
k=1

κ(˜︁Q−⊤
Y Yk, ·)− µ[FY ◦ ˜︁Q−⊤

Y ]√
m

+
√︁
mβm + nαnµ[FX ◦ ˜︁Q−⊤

X ]−
√︁
mβm + nαnµ[FY ◦ ˜︁Q−⊤

Y ]

For the first two terms, by the Lipschitz property of κ and the fact that Ω̄ is bounded by

Theorem 26, we have that

√
mβm + nαn√

n

n∑︂
i=1

κ((Q−1
X WX)

⊤
Xi, ·)− κ(˜︁Q−⊤

X Xi, ·)√
n

≤
√
mβm + nαn√

n

n∑︂
i=1

∥(Q−1
X WX)

⊤
Xi − ˜︁Q−⊤

X Xi∥√
n

≤
√︁
mβm + nαn∥max

i
∥Xi(Q

−1
X WX)− ˜︁Q−1

X )∥

≤ ∥X∥2,∞
√︁
mβm + nαn∥Q−1

X WX − ˜︁Q−1
X ∥

≤ C
√︁
mβm + nαn

√︁
log(n)√
n

= O

(︃√︁
αn log(n)

)︃
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with probability at least 1−O(n−2) by Lemma 50. Hence the first term is of order

O

(︃√︁
αn log(n) +

√︁
βm log(m)

)︃

with probability at least 1−O(n−2 +m−2).

Now, define

ψX : =
n∑︂
i=1

κ(˜︁Q−1
X Xi, ·)− µ(FX ◦ ˜︁Q−1

X )

n

ψY : =

n∑︂
i=1

κ(˜︁Q−1
Y Yi, ·)− µ(FY ◦ ˜︁Q−1

Y )

m

By Remark 1 in Schneider (2016), we see that

P(∥ψX∥2 > ε2) ≤ 2 exp

[︃
−nε2

64

]︃

which in particular shows that ∥ψX∥ ≤ C
√

log(n)√
n

with probability at least 1− O(n−2), and

similarly for ψY . Thus far, we have shown with probability at least 1−O(n−2 +m−2) that

∥ξ∥H = O

(︃√︁
αn log(n) +

√︁
βm log(m)

)︃
+
√︁
mβm + nαn

(︃
∥µ[FX ◦ ˜︁Q−⊤

X ]− µ[FY ◦ ˜︁Q−⊤
Y ]∥H

)︃
.

Under the null hypothesis, the term in the parentheses is zero as ˜︁QY can be chosen to be

T−1 ˜︁Q−1
X by Lemma 50 and the fact that ˜︁QY and ˜︁QX do not depend on the sparsity factors

by Lemma 50. Hence, we see that

∥ξ − ˆ︁ξ∥(︃2∥ξ∥+ ∥ξ − ˆ︁ξ∥)︃ = O

(︃√︄
log(n)

nαn
+

√︄
log(m)

mβm

)︃(︃√︁
αn log(n) + βm log(m)

)︃
.

Under the alternative the term ∥µ[FX ◦ ˜︁Q−⊤
X ] − µ[FY ◦ ˜︁Q−⊤

Y ]∥H is not necessarily zero, so

we have that

∥ξ − ˆ︁ξ∥(︃2∥ξ∥+ ∥ξ − ˆ︁ξ∥)︃ = O

(︃√︄
log(n)

nαn
+

√︄
log(m)

mβm

)︃(︃√︁
αn log(n) + βm log(m) +

√︁
nαn +mβm

)︃
= O

(︃√︁
log(n) +

√︁
log(m)

)︃
.
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Hence, dividing by log(n) yields the result.

We immediately derive the proof of Corollary 5.

Proof of Corollary 5. We will highlight where the previous proof changes. Examining the

proof of Theorems 13 and 14, we see that we have (under the new scaling (m + n)) the

residual bounds

r1 = O

(︃
log(n)
√
nαn

+
log(m)√
mβm

)︃
.

and similarly for r2. Furthermore, by the final statement in Lemma 52, we have that

∥ξ − ˆ︁ξ∥H ≤ O

(︃√︁
log(n)√
nαn

+

√︁
log(m)√
mβm

)︃
.

Under the null hypothesis, through a similar analysis, we have that

∥ξ∥H = O

(︃√︁
log(n) + log(m)

)︃
.

Therefore, with probability 1−O(n−2 +m−2), we have the bound

∥ξ − ˆ︁ξ∥(︃2∥ξ∥+ ∥ξ − ˆ︁ξ∥)︃ = O

(︃√︁
log(n)√
nαn

+

√︁
log(m)√
mβm

)︃(︃√︁
log(n) +

√︁
log(m)

)︃
= O

(︃
log(n)√
nαn

+
log(m)√
mβm

)︃

since m/(n + m) → ρ ∈ (0, 1). Therefore, since min(αn, βm) ≥ n−1/2 log1+η(n) for some

η > 0, the right hand side tends to zero.

In order to prove Corollary 6, we will need the following additional lemmas. The first is

straightforward and included in Section E.1.5 for completeness.

Lemma 53. When E(X⊤
1 Ip,qX2) = 1, we have with probability at least 1−O(n−2) that

1√ˆ︁αn − 1
√
αn

= O

(︃√︁
log(n)

n1/2αn

)︃
.
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The next lemma shows we can replace αn with ˆ︁αn in the appropriate place and still maintain

convergence in probability. The proof is in Section E.1.3 and is simply a modification of the

proof of Lemma 52.

Lemma 54. Under the setting of Lemma 52, the limiting result holds with ˆ︁Xi/α
1/2
n replaced

with ˆ︁Xi/ˆ︁α1/2
n with the almost sure convergence replaced with convergence in probability.

Proof of Corollary 6. Now, the result follows by simply noting that the functional CLT still

holds in probability, and hence the result holds with ˆ︁X/α1/2
n and ˆ︁Y/β1/2m replaced withˆ︁X/ˆ︁α1/2

n and ˆ︁Y/ˆ︁β1/2m .

E.1.2 Proofs of Propositions

In this section we prove Proposisions 5, 6, and 8.

Proof of Proposition 5

We need the following generalization of Lemma 49 to the repeated eigenvalues setting. The

proof is also straightforward and postponed to Section E.1.5.

Lemma 55. Let QX be defined as above, and QY similarly. Then there exist determin-

istic matrices ˜︁QX and ˜︁QY and sequences of orthogonal matrices WX and WY such that

QXWX − ˜︁QX → 0 and similarly for QY and WY. In particular, under the null hypothesis

there exists some T such that FX ◦ T = FY , in which case ˜︁QY can be chosen such that˜︁QY = ˜︁QXT.

Proof of Proposition 5. We will show the result holds for any two sequences of block-orthogonal

matrices W1
n and W2

n, since the result follows by taking Wn := W1
n(W

2
n)

⊤. First, by a

similar argument to the proof of Proposition 4, we note that it suffices to prove the result

with the replacement XQ−1
X and YQ−1

Y instead of ˆ︁X/α1/2
n and ˆ︁Y/β1/2m , since the 2 → ∞

result in Theorem 27 and the Lipschitz property of κ shows that

|Un,m(ˆ︁XWX
∗ W1

n/α
1/2
n , ˆ︁YWY

∗ W2
n/β

1/2
m )− Un,m(XQ−1

X W1
n,YQ−1

Y W2
n)| → 0
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for any sequence of block-orthogonal matrices W1
n and W2

n.

We prove under the alternative first; that is, suppose FX ̸≃ FY . Suppose that

lim inf Un,m(XQ−1
X W1

n,YQ−1
Y W2

n) = 0

for some sequence of block-orthogonal matrices W1
n,W

2
n. By passing to a convergent sub-

sequence, we may assume the limit exists. Let ˜︁Q−1
X and ˜︁Q−1

Y be the limiting matrices given

by Lemma 55, and similarly for the sequences of block orthogonal matrices WX and WY.

We have that

|Un,m(X˜︁Q−1
X W1

n,Y
˜︁Q−1
Y W2

n)| = |Un,m(X˜︁Q−1
X WX(WX)⊤W1

n,Y
˜︁Q−1
Y WY(WY)⊤W2

n)|

≤
⃓⃓⃓⃓
Un,m(X˜︁Q−1

X WX(WX)⊤W1
n,Y

˜︁Q−1
Y WY(WY)⊤W2

n)

− Un,m(XQ−1
X (WX)⊤W1

n,YQ−1
Y (WY)⊤W2

n)

⃓⃓⃓⃓
+ |Un,m(XQ−1

X (WX)⊤W1
n,YQ−1

Y (WY)⊤W2
n)|. (E.7)

We note that

⃓⃓⃓⃓
Un,m(X˜︁Q−1

X WX(WX)⊤W1
n,Y

˜︁Q−1
Y WY(WY)⊤W2

n)− Un,m(XQ−1
X (WX)⊤W1

n,YQ−1
Y (WY)⊤W2

n)

⃓⃓⃓⃓

tends to zero by Lemma 50. Therefore, we see that

lim sup |Un,m(X˜︁Q−1
X W1

n,Y
˜︁Q−1
Y W2

n)| ≤ lim inf |Un,m(XQ−1
X (WX)⊤W1

n,YQ−1
Y (WY)⊤W2

n)|

where by assumption the right hand side is presumed to exist. Note that the only terms on

the left hand side that are random are the matrices X and Y whose rows are drawn i.i.d.

FX and FY respectively. If the term on the right hand side tends to zero (which it does by

assumption), then that implies that

lim sup |Un,m(X˜︁Q−1
X W1

n,Y
˜︁Q−1
Y W2

n)| → 0.
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This implies that

∥µ[FX ◦ ˜︁Q−1
X W1

n]− µ[FY ◦ ˜︁Q−1
Y W2

n]∥2H → 0,

by, e.g. Remark 1 in Schneider (2016) (as in the proof of Theorems 13 and 14). The only

quantities that are changing in n and m are W1
n and W2

n. Define the map

W ↦→ ∥µ[FX ◦ ˜︁Q−1
X ]− µ[FY ◦ ˜︁Q−1

Y W]∥2H. (E.8)

By Lemma 6 in Gretton et al. (2012), we have that for any two distributions X ∼ F and

Y ∼ G that

∥µ[F ]− µ[G ◦W1]∥2H − ∥µ[F ]− µ[G ◦W2]∥2H = 2EF,G
[︂
κ(X,W⊤

1 Y )− κ(X,W2
⊤Y )

]︂
+ EG

[︂
κ(W⊤

1 Y,W
⊤
1 Y

′)− κ(W⊤
2 Y,W

⊤
2 Y

′)
]︂

by the definition that Y ∼ G ◦ W if W⊤Y ∼ G. Hence, continuity of the map in (E.8)

follows from continuity of κ. Therefore, by the assumption that κ is radial, we see that since

∥µ[FX ◦ ˜︁Q−1
X ]− µ[FY ◦ ˜︁Q−1

Y W
2

n(W
1
n)

⊤]∥2H → 0,

we must have that some subsequence of W2
n(W

1
n)

⊤ is converging (since the set O(p, q)∩O(d)

is compact). Let ˜︂W be this subsequential limit. Then this implies that

∥µ[FX ◦ ˜︁Q−1
X ]− µ[FY ◦ ˜︁Q−1

Y
˜︂W]∥2H = 0.

However, under the alternative, since κ is characteristic, we have that µ[FX ] ̸= µ[FY ◦ T]

for any T ∈ O(p, q). But then the above equation is a contradiction. Furthermore, working
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backwards, we have the chain of inequalities

inf
W∈O(d)∩O(p,q)

∥µ[FX ◦ ˜︁Q−1
X ]− µ[FY ◦ ˜︁Q−1

Y W]∥2H ≤ lim inf |Un,m(X˜︁Q−1
X W1

n,Y
˜︁Q−1
Y W2

n)|

≤ lim sup |Un,m(X˜︁Q−1
X W1

n,Y
˜︁Q−1
Y W2

n)|

≤ lim inf |Un,m(XQ−1
X (WX)⊤W1

n,YQ−1
Y (WY)⊤W2

n)|,

which shows that

C := inf
W∈O(d)∩O(p,q)

∥µ[FX ◦ ˜︁Q−1
X ]− µ[FY ◦ ˜︁Q−1

Y W]∥2H

is a lower bound independent of the particular sequence W1
n,W

2
n. This proves the second

assertion.

Now, suppose the null hypothesis holds. Then, let W1
n = W2

n = I above. By similar

manipulations as in (E.7), we have that

|Un,m(XQ−1
X (WX)⊤,YQ−1

Y (WY)⊤)| ≤ |Un,m(X˜︁Q−1
X ,Y ˜︁Q−1

Y )− Un,m(XQ−1
X (WX)⊤,YQ−1

Y (WY)⊤)|

+ |Un,m(X˜︁Q−1
X ,Y ˜︁Q−1

Y )|.

Again, the first term tends to zero by Lemma 50. We argue the second term tends to zero,

and hence the result follows. We note that by Lemma 55, we have that ˜︁QY = ˜︁QXT, where

T is such that FX ◦T = FY . But then

|Un,m(X˜︁Q−1
X ,Y ˜︁Q−1

Y )| = |Un,m(X˜︁Q−1
X ,YT−1 ˜︁Q−1

X )|,

and since FX ◦T = FY , we also have that FX ◦ ˜︁Q−1
X = FY ◦T−1QX

−1, and hence the left

hand side tends to zero.
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Proofs of Propositions 6 and 7

The proofs of these propositions are similar to Propositions 4 and 5 but require analysis of

Wasserstein distances.

Proof of Proposition 6. Suppose first that the sparsity factors αn and βm are known. By

Lemmas 55 and 50, we have that under the null hypothesis there exist sequences of orthog-

onal matrices WX and WY such that with probability at least 1− n−2 −m−2

∥QX −WX
˜︁Q∥ = O

(︄√︁
log(n)√
n

)︄
; ∥QYT−1 −WY

˜︁Q∥ = O

(︄√︁
log(m)√
m

)︄
. (E.9)

Furthermore, by Theorem 27, there exists block-orthogonal WX
∗ and WY

∗ (depending on n

and m) such that with probability 1− n−2 −m−2

∥ˆ︁X− α1/2
n XQ−1

X WX
∗ ∥2→∞ = O

(︃
log(n)√

n

)︃
; ∥ ˆ︁Y − β1/2m YQ−1

Y WY
∗ ∥2→∞ = O

(︃
log(m)√

m

)︃
(E.10)

Define the event A := {(E.9) and (E.10) hold.} Note that P(A) ≥ 1 − 2n−2 − 2m−2. Note

that on A we have that

∥ˆ︁X− α1/2
n X˜︁Q−1W⊤

XWX
∗ ∥2,∞ = O

(︃
log(n)√

n

)︃
; ∥ ˆ︁Y − β1/2m YT−1 ˜︁Q−1W⊤

YWY
∗ ∥2→∞ = O

(︃
log(m)√

m

)︃
.

Define Γ ˆ︁X,ˆ︁Y to be the set of couplings of ˆ︁F ˆ︁X/α1/2
n

and ˆ︁Fˆ︁Y /β1/2
m

. We have that for any

block-orthogonal Wn, the minimizer ˆ︂Wn satisfies

d2( ˆ︁F ˆ︁X/α1/2
n
, ˆ︁Fˆ︁Y /β1/2

m
◦ ˆ︂Wn) ≤ d2( ˆ︁F ˆ︁X/α1/2

n
, ˆ︁Fˆ︁Y /β1/2

m
◦Wn)

To show this tends to zero, we choose an appropriate block-orthogonal matrix Wn. Define

Wn := (WX
∗ WX)⊤(WYWY

∗ ).

Note that under the null hypothesis FX ≃ FY we have that FX ◦ ˜︁Q−1 = FY ◦T−1 ◦ ˜︁Q−1 for
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some T ∈ O(p, q). Then, by the rotational invariance of the Euclidean norm, we have that,

d2( ˆ︁F ˆ︁X/α1/2
n

◦Wn, ˆ︁Fˆ︁Y /β1/2
m

) = d2( ˆ︁F ˆ︁X/α1/2
n

◦ (W⊤
XWX

∗ )⊤, ˆ︁Fˆ︁Y /β1/2
m

◦ (WYWY
∗ )⊤)

≤ d2( ˆ︁F ˆ︁X/α1/2
n

◦ (W⊤
XWX

∗ )⊤, ˆ︁FX ◦ ˜︁Q−1)

+ d2( ˆ︁Fˆ︁Y /β1/2
m

◦ (WYWY
∗ )⊤, ˆ︁FY ◦T−1 ˜︁Q−1

)

+ d2( ˆ︁FX ◦ ˜︁Q−1, FX ◦ ˜︁Q−1) + d2( ˆ︁FY ◦T−1 ˜︁Q−1
, FY ◦T−1 ˜︁Q−1

)

We show each term is small. For the first two terms, note that these are the empirical CDFs

of the points ˆ︁Xi and Xi, where the Xi aare suitably transformed but fixed. Consider the

coupling γ which places mass of 1
n at the joint observation ( ˆ︁Xi, Xi). Then on the event A,

d2( ˆ︁F ˆ︁X/α1/2
n

◦ (W⊤
XWX

∗ )⊤), ˆ︁FX ◦ ˜︁Q−1) ≤
(︃
1

n
∥ˆ︁X(W⊤

XWX
∗ )⊤/

√
αn −X˜︁Q−1∥2F

)︃ 1
2

=
1√
n
∥ˆ︁X/√αn −X˜︁Q−1W⊤

XWX
∗ ∥F

≤ ∥ˆ︁X/√αn −X˜︁Q−1W⊤
XWX

∗ ∥2,∞

= O

(︃
log(n)

(nαn)1/2

)︃

Similarly,

d2( ˆ︁Fˆ︁Y /β1/2
m

◦ (WY
∗ WY), ˆ︁FY ◦T−1 ˜︁Q−1

) = O

(︃
log(m)

(mβm)1/2

)︃
.

Finally, we bound the final two terms. By Theorem 26, supp(F ) is bounded and hence so

is any fixed invertible linear transformation of supp(F ). Hence, since ∥X∥∞ ≤ M almost

surely, we can apply Theorem 2 of Fournier and Guillin (2015) to see that with probability

1− n−2 that

d2( ˆ︁FX ◦ ˜︁Q−1, FX ◦ ˜︁Q−1) = O

(︃
log1/d(n)

n1/d

)︃
;
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see also Levin and Levina (2019); Lei (2020a,b) for a related problem. Similarly,

d2( ˆ︁FY ◦T−1 ˜︁Q−1
, FY ◦T−1 ˜︁Q−1

) = O

(︃
log1/d(m)

m1/d

)︃

with probability 1 −m−2. Therefore, putting it all together, we see that with probability

1−O(n−2 +m−2),

d2( ˆ︁F ˆ︁X/α1/2
n
, ˆ︁Fˆ︁Y /β1/2

m
◦ ˆ︂Wn) = O

(︄
log1/d(n)

n1/d
+

log1/d(m)

m1/d
+

log(n)

(nαn)1/2
+

log(m)

(mβm)1/2

)︄
.

Finally, if the sparsity is not known, we have that by Lemma 53, 1√ˆ︁αn
= 1√

αn

(︃
1 +

O

(︃√
log(n)

n1/2αn

)︃)︃
with probability at least 1−O(n−2). Hence, we see that

∥ˆ︁X(ˆ︁α−1/2
n − α−1/2

n )∥2,∞ ≤ ∥ˆ︁X∥2,∞O
(︃√︁

log(n)

n1/2αn

)︃
= O

(︃√︁
log(n)

n1/2αn

)︃(︃
∥ˆ︁X−

√
αnXQ−1

X WX
∗ ∥2,∞ + ∥

√
αnXQ−1

X WX
∗ ∥2,∞

)︃
= O

(︃√︁
log(n)

n1/2αn

)︃(︃
log(n)√

n
+O(

√
αn)

)︃
= O

(︃
log(n)3/2

nαn

)︃
+O

(︃√︄
log(n)

nαn

)︃

= O

(︃√︄
log(n)

nαn

)︃
.

Therefore, by analogous arguments as in the setting with the sparsity factors known, re-

placing ˆ︁α−1/2
n and ˆ︁β−1/2

m with α
−1/2
n and β

−1/2
m is negligible compared to the 2,∞ bound.

Hence, we have that with probability at least 1−O(n−2 +m−2)

d2( ˆ︁F ˆ︁X/ˆ︁α1/2
n
, ˆ︁Fˆ︁Y /ˆ︁β1/2

m
◦ ˆ︂Wn) = O

(︄
log1/d(n)

n1/d
+

log1/d(m)

m1/d
+

log(n)

(nαn)1/2
+

log(m)

(mβm)1/2

)︄
.

Proof of Proposition 7. Like the previous proof, we assume first that the sparsity factors αn

and βm are known. Let WX,WY,W
X
∗ and WY

∗ be as in the proof of Proposition 6, and

let ˜︁QX be the limit guaranteed by Lemma 50 and similarly for ˜︁QY. Note in this setting
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˜︁QX is not necessarily equal to ˜︁QY. Let A be the same event as in the previous proof. By

the reverse triangle inequality, we have that

d2( ˆ︁F ˆ︁X/α1/2
n
, ˆ︁Fˆ︁Y /β1/2

m
◦ ˆ︂Wn) ≥ −d2( ˆ︁F ˆ︁X/α1/2

n
, FX ◦ (˜︁Q−1

X (WXWX
∗ ))

− d2( ˆ︁Fˆ︁Y /β1/2
m

◦ ˆ︂Wn, FY ◦ (˜︁Q−1
Y (WYWY

∗ ) ◦ ˆ︂Wn)

+ d2(FX ◦ (˜︁Q−1
X (WXWX

∗ ), FY ◦ (˜︁Q−1
Y (WYWY

∗ ) ◦ ˆ︂Wn))

From the proof of Proposition 6, with probability 1−O(n−2) it holds that

d2( ˆ︁F ˆ︁X/α1/2
n
, FX ◦ (˜︁Q−1

X (WXWX
∗ )) = O

(︃
log(n)

(nαn)1/2
+

log1/d(n)

n1/d

)︃
,

and analogously for the term depending on FY .

Consider the sequence ˜︂Wn := (WYWY
∗ )

⊤ˆ︂Wn(WXWX
∗ ). We note as a product of

block-orthogonal matrices ˜︂Wn is block-orthogonal and hence an element of O(p, q). There-

fore, through the above argument and the invariance of the Frobenius norm to orthogonal

transformations, we have that with probability 1−O(n−2 +m−2) that

d2( ˆ︁F ˆ︁X/α1/2
n
, ˆ︁Fˆ︁Y /β1/2

m
◦ ˆ︂Wn) ≥ cn − εn > 0,

where εn → 0, and

cn := d2(FX ◦ ˜︁Q−1
X , FY ◦ ˜︁Q−1

Y ◦ ˜︂Wn).

Note that the only dependence on n in the above comes from ˜︂Wn. Furthermore, O(p, q) ∩

O(d) is a closed subgroup of O(d), and hence compact. Also, the mapping

˜︂W ↦→ d2(FX ◦ ˜︁Q−1
X , FY ◦ ˜︁Q−1

Y ◦ ˜︂W)

is continuous since for any fixed µ0 ∈ Rd, we have that

∫︂
∥µ0 − ˜︂W⊤Y ∥2dF (Y ) = E∥µ0 − ˜︂W⊤Y ∥2,
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is continuous. Hence, consider a convergent subsequence ˜︂Wkn obtaining lim inf cn and let˜︂W be its associated subsequential limit. Hence, on the sequence of events An,

lim inf d2(FX ◦ ˜︁Q−1
X , FY ◦ ˜︁Q−1

Y ◦ ˜︂Wkn) = d2(FX ◦ ˜︁Q−1
X , FY ◦ ˜︁Q−1

Y ◦ ˜︂W) ≥ C

for some constant C > 0 or else we would have FX ≃ FY since ˜︂W ∈ O(p, q). Therefore, by

Borel-Cantelli, there exists a constant C > 0 such that

lim inf d2(F ˆ︁X/α1/2
n
, Fˆ︁Y /β1/2

m
◦ ˆ︂Wn) ≥ C

almost surely.

To replace the αn and βm with their respective estimated counterparts, the same argu-

ment as in the proof of Proposition 6 goes through.

Proof of Proposition 8

Proof of Proposition 8. Let R have block diagonal components Rp and Rq, and let Wp and

Wq be the top p×p and bottom q×q block of W respectively. Expanding out the Frobenius

norm, we have that

argmin
R∈O(d)∩O(p,q)

∥R−W∥F = argmin
R∈O(d)∩O(p,q)

∥R−W∥2F

= argmin
R∈O(d)∩O(p,q)

Tr
(︃
(R−W)⊤(R−W)

)︃
= argmin

R∈O(d)∩O(p,q)
Tr
(︃
R⊤R− 2R⊤W +W⊤W

)︃
= argmax

R∈O(d)∩O(p,q)
Tr(R⊤W)

= argmax
R∈O(d)∩O(p,q)

Tr(R⊤
pWp) + Tr(R⊤

qWq)

= argmax
Rp∈O(p)

Tr(R⊤
pWp) + argmax

Rq∈O(q)
Tr(R⊤

qWq),
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since R⊤R = W⊤W = I. Let Wp have singular value decomposition UpΣpV
⊤
p and simi-

larly for Wq. Then the maximum for each of the above is achieved by setting Rp = UpV
⊤
p

and Rq = UqV
⊤
q .

E.1.3 Proof of the Frobenius Concentration (Lemma 51)

In this section we present the proof of Lemma 51. We will need the following Lemma,

adapted from Lemma A.4 Athreya et al. (2020).

Lemma 56. Let A be a matrix whose entries are generated via Aij ∼ Bernoulli(Pij) for

i ≤ j, and let V = UX|ΛX|−1/2 . Then with probability at least 1−O(n−2),

⃓⃓⃓⃓
∥(A−P)V∥2F − E(∥(A−P)V∥2F )

⃓⃓⃓⃓
= O

(︃√︄
log(n)

nαn

)︃
.

Proof of Lemma 56. We follow the proof in Athreya et al. (2020), though we have a slightly

different argument for the inclusion of the sparsity factor. Let A′ ∼ P be independent from

A. For 1 ≤ r ≤ s ≤ n define the term

Zrs := ∥(A(r,s) −P)V∥2F ,

where the matrix A(r,s) agrees with A in every entry except the (r, s) and (s, r)ones, where

it equals A′. Defining Z := ∥(A−P)V∥2F , we see that for r ̸= s

Z − Zrs = 2
(︁
A−A′)︁

rs

[︂[︂
(A−P)VV⊤

]︂
rs
+
[︂
(A−P)VV⊤

]︂
sr
+
(︁
A′ −P

)︁
rs

(︂(︂
VV⊤

)︂
ss
+
(︂
VV⊤

)︂
rr

)︂]︂

Furthermore, we have that

(Z − Zrs)
2 ≤

⎧⎪⎪⎪⎨⎪⎪⎪⎩
16

(︃
[(A−P)VV⊤]2rs + [(A−P)VV⊤]2sr + (A′ −P)2rs

[︁
(VV⊤)2ss +VV⊤)2rr

]︁)︃
r ̸= s

8

(︃
[(A−P)VV⊤]2rr + (A′ −P)2rs [VV⊤]2rr

)︃
r = s
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Hence,

∑︂
r≤s

(Z − Zrs)
2 ≤ 16Z∥V∥22 + 8

∑︂
r

(VV⊤)2rr + 16
∑︂
r<s

(A′ −P)2rs[(VV⊤2
ss + (VV⊤)2rr]

= 16Z∥V∥22 + 8∥diag(VV⊤)∥2F + 16
n∑︂
s=1

s−1∑︂
r=1

(A′ −P)2rs[(VV⊤)2ss + (VV⊤)2rr].

For the final term above, we have that

EA′

[︃ n∑︂
s=1

s−1∑︂
r=1

(A′ −P)2rs[(VV⊤)2ss + (VV⊤)2rr]

]︃
=

n∑︂
s=1

s−1∑︂
r=1

EA′(A′ −P)2rs[(VV⊤)2ss + (VV⊤)2rr]

≤ 2nαn∥diag(VV⊤)∥2F .

Moreover, from the definitions of V, we have that ∥diag(VV⊤)∥2F ≤ dλ−2
d ≤ Cd(nαn)

−2,

and ∥V∥22 = |λd|−1 ≤ C(nαn)
−1. Hence, we see that

EA′
∑︂
r≤s

(Z − Zrs)
2 ≤ C1

nαn
Z +

C2d

(nαn)2
+
C3d

nαn
,

Define a := C1
nαn

and b := C2d
(nαn)2

+ C3d
nαn

. By Theorems 5 and 6 in Boucheron et al. (2003),

we have that

P(|Z − EZ| > t) ≤ 2 exp

(︃
−t2

4aE(Z) + 4b+ 2at

)︃
≤ 2 exp

(︃
−t2nαn

4C1E(Z) + 4C2d(nαn)−1 + 4C3d+ 2C1t

)︃
≤ 2 exp

(︃
−t2nαn˜︁C1 + ˜︁C2t

)︃

for some constants ˜︁C1 and ˜︁C2 (depending on d) and for nαn sufficiently large. Note that we
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implicitly used that EZ = O(1), which can be seen from the fact that

E(Z) = E∥(A−P)V∥2F

=

n∑︂
i=1

d∑︂
k=1

E
(︃∑︂

j

(Aij −Pij)Vjk

)︃2

=

n∑︂
i=1

d∑︂
k=1

n∑︂
j=1

V2
jkE((Aij −Pij))

2 +

n∑︂
j ̸=l

VjkVlkE((Aij −Pij)(Ail −Pil))

=

n∑︂
i=1

d∑︂
k=1

n∑︂
j=1

V2
jkPij(1−Pij)

≤ nαn

d∑︂
k=1

n∑︂
j=1

V2
jk

≤ nαn∥UX|ΛX|−1/2∥2F

≤ C

for some constant C depending on d and λd. Hence, with the choice t = ˜︁C√︂ log(n)
nαn

for some

constant ˜︁C depending on d, this is bounded above by 2n−2.

We are now ready to prove Lemma 51.

Proof of Lemma 51. First, by the proof of Theorem 5 in Rubin-Delanchy et al. (2020), we

note that there exists an orthogonal matrix W∗ ∈ O(d) ∩O(p, q) (see equations 5 and 6 in

Rubin-Delanchy et al. (2020)) such that

ˆ︁U|ˆ︁Λ|1/2 −U|Λ|1/2W⊤
∗ = (A−P)U|Λ|−1/2W⊤

∗ Ip,q +R,

where the matrix R satisfies

∥R∥2,∞ = O

(︃
d1/2 log1/2(n)
√
n(nαn)1/2

)︃
.

Passing to the Frobenius norm, we see that

∥R∥F = O

(︃
d1/2 log1/2(n)

(nαn)1/2

)︃
.
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This proves the first claim. Hence,

∥ˆ︁X− ˜︁XW⊤
∗ ∥F = ∥(A−P)U|Λ|−1/2∥F +O

(︃√︄
d log(n)

nαn

)︃
.

We then can apply Lemma 56 to see that

P
(︂
|∥(A−P)V∥2F − C(P)2| > C

√︁
log(n)/nαn

)︂
= O(n−2),

where V = U|Λ|−1/2 and C2(P) = E∥(A−P)V∥2F . The rest of the proof is similar to

Tang and Priebe (2018). By similar manipulations as those leading to Equation 18 in

Rubin-Delanchy et al. (2020), we have that

(A−P)U|Λ|−1/2W⊤
∗ Ip,q = α−1/2

n (A−P)X(X⊤X)−1Ip,qQX
−1.

By Lemma 50, we have that there exists a sequence of block-orthogonal matrices such that

W⊤
nQ

−1
X → ˜︁Q−1 almost surely. Hence, we have that

∥(A−P)U|Λ|−1/2∥2F =
1

αn
∥(A−P)X(X⊤X)−1Ip,qQX

−1∥2F

=
1

αn
Tr
(︃
Q−1

X (X⊤X)−1X⊤E(A−P)2X(X⊤X)−1Q−⊤
X

)︃
=

1

αn
Tr
(︃
W⊤

nQ
−1
X (X⊤X)−1X⊤E(A−P)2X(X⊤X)−1Q−⊤

X Wn

)︃
= Tr

(︃
W⊤

nQ
−1
X (n(X⊤X)−1)

[︃
X⊤E(A−P)2X

n2αn

]︃
(n(X⊤X)

−1
)Q−⊤

X Wn

)︃
.

By the strong law of large numbers the term X⊤X/n→ ∆ almost surely, so n(X⊤X)
−1 →

∆−1 almost surely by the continuous mapping theorem. In addition, we have that

X⊤E(A−P)2X

n2αn
=

1

n2αn

n∑︂
i=1

∑︂
k

XiX
⊤
i (pik(1− pik))

=
1

n2

n∑︂
i=1

∑︂
k

XiX
⊤
i (X

⊤
i Ip,qXk − αnX

⊤
i Ip,qXkX

⊤
k Ip,qXi).
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As n→ ∞, this is tending to the matrix Γ, where Γ is defined via

Γ :=

⎧⎪⎪⎨⎪⎪⎩
E(XX⊤(X⊤Ip,qµ−X⊤Ip,q∆Ip,qX)) α ≡ 1

E(XX⊤(X⊤Ip,qµ)) α→ 0,

where µ = E(X). Hence, putting it together, we have almost surely,

∥ˆ︁X− ˜︁XW⊤
∗ ∥2F → Tr

(︃˜︁Q−1∆−1Γ∆−1 ˜︁Q−⊤
)︃
.

E.1.4 Proof of the Functional CLT (Lemma 52) and Related Lemmas

In this section, we prove Lemma 52 and Lemma 54.

Proof of Lemma 52. We follow the proof by analogy to the proof Lemma 3 of Tang et al.

(2017b), though we use the decomposition from Lemma 51. As F is twice continuously

differentiable, for f ∈ F we Taylor expand to note that

√
αn√
n

n∑︂
i=1

(f( ˆ︁Xi/
√
αn)− f(W∗ ˜︁Xi)/

√
αn) =

√
αn√
n

n∑︂
i=1

(∂f)( ˜︁Xi)
( ˆ︁Xi −W∗ ˜︁Xi)√

αn

+

√
αn

2
√
n

∑︂
i

( ˆ︁Xi −W∗ ˜︁Xi)
⊤(∂2f)(X∗

i )(
ˆ︁Xi −W∗ ˜︁Xi)

αn
,

for someX∗
i . The second order term is straightforwardly bounded by noting that by Theorem

26 Ω̄ is compact, and hence we can apply Lemma 51 to see that there exists some constant

C such that

sup
f∈F

n∑︂
i=1

( ˆ︁Xi −W∗ ˜︁Xi)
⊤(∂2f)(X∗

i )(
ˆ︁Xi −W∗ ˜︁Xi)√

nαn
≤ sup

f∈F ,X∈Ω̄

∥∂2(f)(X)∥∥ ˆ︁Xi −W∗ ˜︁Xi∥2F√
nαn

≤ C
√
nαn

,

which converges to zero almost surely.

We now bound the linear terms. Let M(∂f) = M(∂f ; ˜︁X1, . . . ., ˜︁Xn) ∈ Rn×d be the
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matrix whose rows are the vectors ∂(f)( ˜︁X1). Then

ζ(f) : =
1√
n

n∑︂
i=1

(∂f)( ˜︁Xi)
⊤( ˆ︁Xi −W∗ ˜︁Xi)

=
1√
n

Tr
(︁
(ˆ︁X− ˜︁XW∗)[M(∂f)]⊤

)︁
=

1√
n

Tr
(︁
(A−P)U|Λ|−1/2Ip,q)[M(∂f)]⊤

)︁
+

1√
n

Tr
(︁
R[M(∂f)]⊤

)︁
,

where R is the residual matrix in 51. Recall the second term satisfies

1√
n

Tr
(︁
R[M(∂f)]⊤

)︁
=

1√
n
⟨R,M(∂f)⟩

≤ sup
f∈F ,X∈Ω̄

√
n∥∂f(X)∥√

n
∥R∥F

≤ C
√
n√
n

∥R∥F

≤
C
√︁

log(n)
√
nαn

,

where the penultimate inequality comes from the fact that Ω̄ can be taken to be compact

by Theorem 26, and since F is twice-continuously differentiable, the gradient is Lipschitz

on any fixed transformation of the support.

Now, we show that the final term converges to zero. The rest of the proof is largely

the same as in Tang et al. (2017b). Define the set of derivatives of ∂F := {∂f : f ∈ F}.

Let ∥∂f∥∞ be the maximum Euclidean norm attained by f on Ω̄. Note that by enlarging

it if necessary, Ω̄ can be taken to be compact and contain the ˆ︁Xi’s by the fact that κ is

twice continuously differentiable on Rd and by virtue of Theorems 27 and 26 and Lemma

50. Therefore the set of derivatives is totally bounded; define M := sup∂F ∥∂f∥∞.

Then for any j there exists a finite subset Sj of covering functions such that for any

g ∈ ∂F , we have that ∥g − fj∥∞ ≤ 2−jM . Define the mapping Pj as the mapping that
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assigns the function g ∈ ∂F to its closest function fj ∈ Sj . Then we have that

sup
f

⃓⃓⃓⃓
1√
n

Tr
(︁
(A−P)U|Λ−1/2Ip,q)[M(∂f)]⊤

)︁⃓⃓⃓⃓
= sup

f

⃓⃓⃓⃓
1√
n

n∑︂
i=1

∞∑︂
j=0

(Pj+1∂f − Pj∂f)( ˜︁Xi)
⊤[︁(A−P)U|Λ|−1/2Ip,q

]︁
i

⃓⃓⃓⃓

≤
∞∑︂
j=0

sup
f

⃓⃓⃓⃓ n∑︂
i=1

(Pj+1∂f − Pj∂f)( ˜︁Xi)
⊤[︁(A−P)U|Λ|−1/2Ip,q

]︁
i

⃓⃓⃓⃓

+
1√
n

⃓⃓⃓⃓ n∑︂
i=1

(P0∂f)( ˜︁Xi)
⊤[︁(A−P)U|Λ|−1/2Ip,q

]︁
i

⃓⃓⃓⃓
.

We note that for fixed j, defining the term Pf
j as the n×d matrix whose rows are (Pj+1∂f−

Pj∂f)( ˜︁Xi)
⊤, we have that

1√
n

n∑︂
i=1

⃓⃓⃓⃓
(Pj+1∂f − Pj∂f)( ˜︁Xi)

⊤[︁(A−P)U|Λ|−1/2
]︁
i

⃓⃓⃓⃓
=

1√
n

⃓⃓⃓⃓ d∑︂
s=1

((Pf
j )

⊤(︁(A−P)Us
−Is>p + Is≤p√︁

|λs|1/2
)︁⃓⃓⃓⃓
.

We note that

∥(Pj
f )s∥ ≤ 3

2
2−jM

√
n.

Hence, for fixed s ∈ {1 . . . , d} this is a linear combination of mean-zero random variables.

Therefore we have by Hoeffding’s inequality that

P
(︃
((Pf

j )
⊤
s

(︁
(A−P)Us

−Is>p + Is≤p√︁
|λs|1/2

)︁
> t

)︃
≤ 2 exp

(︃
− t2

C2−2jλ−1
d

)︃
,

for some constant C depending on M . Hence, by the union bound, we have that

P
[︃

1√
n

⃓⃓⃓⃓ d∑︂
s=1

((Pf
j )

⊤
s

(︁
(A−P)Us

−Is>p + Is≤p√︁
|λs|1/2

)︁⃓⃓⃓⃓
> dt

]︃
≤ 2d exp

(︃
− t2

C2−2j |λd|−1

)︃
,

provided that t is chosen appropriately. By another union bound over the set Sj , we have

that

P
[︃
sup
f

1√
n

⃓⃓⃓⃓ n∑︂
i=1

((Pf
j )

⊤(︁(A−P)U|Λ|−1/2Ip,q
)︁
i

⃓⃓⃓⃓
> dt

]︃
≤ 2d|Sj | exp

(︃
− t2

C2−2j |λd|−1

)︃
.

420



Joshua Agterberg

We note that |Sj | ≤ (C2j)d by using the bound on the covering number (e.g. Lemma 2.5 in

van de Geer (2009)). Following the steps from equation A.5 to A.6 in Tang et al. (2017b),

by rearranging the equation above, we have that for any tj > 0

P
[︃
sup
f

⃓⃓⃓⃓
1√
n

⃓⃓⃓⃓ n∑︂
i=1

((Pf
j )

⊤(︁(A−P)U|Λ|−1/2Ip,q
)︁
i

⃓⃓⃓⃓
> ηj

]︃
≤ 2d exp(−t2j ),

where ηj = d
√︂
C2−2jλ−1

d (t2j + log |Sj+1|2). Summing over j and bounding the zeroth order

term similarly, we have

P
[︃
sup
f

| 1√
n

Tr
(︁(︁
(A−P)U|Λ−1/2Ip,q)[M(∂f)]⊤

)︁
≥

∞∑︂
j=0

˜︁Cηj]︃ ≤ 2d

∞∑︂
j=0

exp
(︁
−t2j
)︁
.

Taking t2j = 2(log(j) + log(n)), we have that

P
[︃
sup
f

| 1√
n

Tr
(︁(︁
(A−P)U|Λ−1/2Ip,q)[M(∂f)]⊤

)︁
≥ dλ

−1/2
d (C1

√︁
log(n) + C2)

]︃
≤ 2dC3

n2
,

for some constants C1, C2, and C3. Hence, combining all this, we see the linear term satisfies

sup
f

|ζ(f)| ≤ C

√︁
log(n)
√
nαn

with probability at least 1−O(n−2). We note that the hidden constants and the constants

in the bound depend on the diameter of the set ∂F and the dimension d.

Finally, if
√
nαn ≥ log1+η(n), then the right hand side still tends to zero with an addi-

tional factor of
√
αn in the denominator, which is the final assertion of Lemma 52.

Proof of Lemma 54. First, by Lemma 53, we have that
√
αn/

√ˆ︁αn → 1 in probability (and

almost surely). In the proof of Lemma 52, we have shown that

sup
f

√
αn√
n

n∑︂
i=1

(∂f)( ˜︁Xi)
( ˆ︁Xi −W∗ ˜︁Xi)√

αn
→ 0;

sup
f

√
αn

2
√
n

∑︂
i

( ˆ︁Xi −W∗ ˜︁Xi)
⊤(∂2f)(X∗

i )(
ˆ︁Xi −W∗ ˜︁Xi)

αn
→ 0
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almost surely. Therefore, we can replace
√
αn by

√ˆ︁αn and apply Slutsky’s Theorem to

conclude that

sup
f

√
αn√
n

n∑︂
i=1

(∂f)( ˜︁Xi)
( ˆ︁Xi√ˆ︁αn − W∗ ˜︁Xi)√

αn
→ 0;

sup
f

√
αn

2
√
n

∑︂
i

( ˆ︁Xi√ˆ︁αn − W∗ ˜︁Xi)
⊤

√
αn

(∂2f)(X∗
i )

( ˆ︁Xi√ˆ︁αn − W∗ ˜︁Xi)√
αn

→ 0

in probability.

E.1.5 Proofs of Auxiliary Lemmas

In this section we prove the additional technical lemmas; namely Lemmas 49, 55, 50, and

53.

Proofs of Lemmas 49, 55, and 50

This section contains various results associated to the approximation of the matrix QX to

its limiting value.

Proof of Lemma 49. By Agterberg et al. (2020b), we see that QX
a.s.−−→ ˜︁QX, where ˜︁Q is a

fixed indefinite orthogonal matrix, and similarly for QY, so that QY → ˜︁Q′ for some fixed

matrix ˜︁Q′. Define the matrix ˜︁X := YT−1. Note that the rows of ˜︁X are distributed iid FX .

Suppose that Q˜︁X is the indefinite orthogonal matrix such that

UY|SY|1/2Q˜︁X = ˜︁X.
Then we apply Theorem 1 from Agterberg et al. (2020b) again, which implies that ||Q˜︁X −QX|| →

0 almost surely. However, noting ˜︁X = YT−1 gives that Q˜︁X = QYT−1, which gives the re-

sult.

Proof of Lemma 55. The proof mostly is similar to that of Lemma 49, only instead we apply

Corollary 2 from Agterberg et al. (2020b). We have that there exists a sequence of block-

orthogonal matrices WX such that ||QX −WX
˜︁Q|| → 0. Again, we are free to repeat the
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argument in the case FX = FY ◦T, only replacing QX with QYT−1, to see that

||QYT−1 −WY
˜︁Q|| → 0.

Note that the (block)-orthogonal matrix above need not necessarily be the same due to

nonidentifiability of the eigenvectors. Hence,

W⊤
YQYT−1 −W⊤

XQX → 0,

which in particular implies that both terms are tending towards ˜︁Q almost surely.

Proof of Lemma 50. Define ∆ = E(XX⊤), and let ˜︁V and V be the orthogonal matrices in

the eigendecomposition of
(︃

X⊤X
n

)︃1/2

Ip,q

(︃
X⊤X
n

)︃1/2

and ∆1/2Ip,q∆
1/2 respectively. Let Λ

be the eigenvalues of XIp,qX
⊤ and let ˜︁Λ be the eigenvalues of ∆1/2Ip,q∆

1/2. We will first

show that with probability at least 1− n−2, that the following hold simultaneously:

∥∆1/2 −
(︃
X⊤X

n

)︃1/2

∥ = O

(︄√︁
log(n)√
n

)︄
; (E.11)

∥
(︃
|Λ|
n

)︃−1/2

− |˜︁Λ|
−1/2

∥ = O

(︄√︁
log(n)√
n

)︄
; (E.12)

∥V − ˜︁VW
⊤
n ∥ = O

(︄√︁
log(n)√
n

)︄
; , (E.13)

where Wn ∈ O(p, q) ∩O(d) will be defined later.

First, by Theorem 6.2 in Higham (2008), for A and B positive-definite matrices, we have

that

∥A1/2 −B1/2∥ ≤ 1

λmin(A)1/2 + λmin(B)1/2
∥A−B∥. (E.14)

The result above is stated in Higham (2008) for matrices with distinct eigenvalues. However,

if A and B do not have distinct eigenvalues, the result holds by adding small values of ε to

each of the repeated eigenvalues, applying the result for the new slightly perturbed matrices,

and then taking the limit as ε→ 0.
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By the Law of Large Numbers, X⊤X
n is almost surely positive definite whenever ∆ is.

Applying the above inequality to ∆ and X⊤X
n , we see that

∥∆1/2 − (
X⊤X

n
)1/2∥ ≤ 1

λmin(∆)1/2 + λmin(
X⊤X
n )1/2

∥∆− X⊤X

n
∥

≤ 1

λmin(∆)1/2
∥∆− X⊤X

n
∥.

By Theorem 6.5 in Wainwright (2019) (which applies to second moment matrices by shifting

by the mean), we have that for some constants c1, c2 and c3,

∥∆− X⊤X

n
∥ ≤ ∥∆∥c1

{︄√︃
d

n
+
d

n

}︄
+ δ

with probability at least 1− c3 exp(−c2nmin(δ, δ2)). Taking δ =
√︂

2 log(n)
c3n

, we see that

∥∆− X⊤X

n
∥ = O

(︄
∥∆∥

√︃
d

n

√︁
log(n)

)︄

with probability at least 1 − O(n−2). Putting it all together and noting ∥∆∥ and d are

constants in n, we arrive at

∥∆1/2 − X⊤X

n

1/2

∥ ≤ O

(︄√︁
log(n)√
n

)︄
.

which proves (E.11).

For (E.12), we note that Λ and ˜︁Λ/n are the eigenvalues of the matrix ∆1/2Ip,q∆
1/2 and(︃

X⊤X
n

)︃1/2

Ip,q

(︃
X⊤X
n

)︃1/2

respectively. To see the latter, we note that XIp,qX
⊤ has the

same nonzero eigenvalues as (X⊤X)1/2Ip,q(X
⊤X)1/2 by similarity. By Weyl’s inequality, we
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have that

|λi − ˜︁λi| ≤ ∥X
⊤X

n

1/2

Ip,q
X⊤X

n

1/2

−∆1/2Ip,q∆
1/2∥

≤ ∥X
⊤X

n

1/2

Ip,q∆
1/2 −∆1/2Ip,q∆

1/2∥+ ∥X
⊤X

n

1/2

Ip,q∆
1/2 − X⊤X

n

1/2

Ip,q
X⊤X

n

1/2

∥

≤ ∥X
⊤X

n

1/2

−∆1/2∥∥∆1/2∥+ ∥X
⊤X

n

1/2

∥∥∆1/2 − X⊤X

n

1/2

∥

= O

(︄√︁
log(n)√
n

)︄

by (E.11) and the fact that X⊤X
n can be bounded above by a constant. Now, define the

function g(λ) := 1
|λ|1/2 . Since ∆ is full-rank and Ip,q is orthogonal, so is ∆Ip,q and hence

∆1/2Ip,q∆
1/2 by similarity. Therefore, there exists an ε > 0 such that all eigenvalues of

∆1/2Ip,q∆
1/2 are outside the range (−ε, ε), and hence so are those of (X

⊤X
n )1/2Ip,q(

X⊤X
n )1/2

for n sufficiently large with probability at least 1− n−2. The function g(λ) is differentiable

outside of (−ε, ε), and hence by the Delta method applied to each eigenvalue individually,

g(λi)− g(˜︁λi) = O

(︃√
log(n)√
n

)︃
, for n sufficiently large with probability 1−O(n−2), where the

hidden constant depends on g′(˜︁λi). This proves (E.12).

For (E.13), we simply apply the Davis-Kahan Theorem to the eigenvectors associated to

each eigenvalue. First, consider i such that ˜︁λi is unique. By (E.12), for n sufficiently large,

the eigenvalues outside of i are separated from each other and we can apply the Davis-Kahan

Theorem. We see that

∥vi − ˜︁vi∥ ≤ C
∥X⊤X

n

1/2
Ip,q

X⊤X
n

1/2
−∆1/2Ip,q∆

1/2∥
δ
(i)
gap

= O

(︄√︁
log(n)√
n

)︄
,

where the hidden constant depends on δ
(i)
gap := min(λi+1 − λi, λi − λi−1), though this is a

deterministic value depending only on ∆. For non-unique eigenvalues, we apply the same

argument, only with an orthogonal matrix attached to the Vi. We note that the orthogonal

matrix is chosen only for each group of repeated eigenvalues, and hence the combined matrix

is block-orthogonal.
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We are now ready to prove the result in Equation E.2. By Agterberg et al. (2020b), we

can write

QX =

(︃
|Λ|
n

)︃−1/2

V⊤
(︃
X⊤X

n

)︃1/2

˜︁Q =
(︂
|˜︁Λ|
)︂−1/2 ˜︁V⊤ (∆)1/2 .

The result follows by using (E.11), (E.12), and (E.13) together and adding and subtracting

terms and noting that by construction the orthogonal matrix from (E.13) commutes with(︂
|˜︁Λ|
)︂−1/2

.

We note that the matrix QX is invariant to the sparsity factor, since the eigenvectors of

αnP = αnXIp,qX
⊤ are the same as those of P and the eigenvalues are scaled by αn so that

if D are the eigenvalues of αnP then

UX|D|1/2 =
√
αnUX|ΛX|1/2

=
√
αnXQ−1

X ,

showing that the matrix QX depends only on the matrix P and not the sparsity component

αn.

Proof of Lemma 53

Proof of Lemma 53. First, for any fixed matrix X, we have that the Aij ’s are independent

random variables, and recall that

ˆ︁αn =
1(︁
n
2

)︁∑︂
i<j

Aij .

Define θn := αn

(n2)

∑︁
i<j Pij . Then E(ˆ︁αn|X) = θn. Therefore, we have that

P
(︃
|ˆ︁αn − αn| > 2t

)︃
≤ P(|ˆ︁αn − θn| > t) + P(|θn/αn − 1| > t/αn).
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For the first, term, we note that by applying Hoeffding’s inequality, we see that

P
(︃
|ˆ︁αn − θn| ≥ t

)︃
≤ 2 exp

(︃
− 2

(︃
n

2

)︃
t2
)︃

≤ 2 exp

(︃
− (n2 + n)t2

)︃
≤ 2 exp

(︃
− n2t2

2

)︃
.

For the second term, note that 1

(n2)

∑︁
i<j X

⊤
i Ip,qXj is a U -statistic with expected value 1.

Hoeffding’s inequality for U -statistics (e.g. Example 2.23 in Wainwright (2019)) shows that

P
(︃
| 1(︁
n
2

)︁∑︂
i<j

X⊤
i Ip,qXj − 1| ≥ t

)︃
≤ 2 exp(−nt2/8).

Hence, we see that

P
(︃
|ˆ︁αn − αn| > 2t

)︃
≤ 2 exp

(︃
− n2t2

2

)︃
+ 2 exp(− nt2

8α2
n

)

Set t = 4

√︂
αn log(n)

n . Then recalling that for some C > 0 1 ≥ αn ≥ C log4(n)/n, we have

P
(︃
|ˆ︁αn − αn| > 8

√︃
αn log(n)

n

)︃
≤ 2 exp

(︃
− 8nαn log(n)

)︃
+ 2 exp

(︃
− 2 log(n)α−1

n

)︃
≤ 2 exp

(︃
− 8C log5(n)

)︃
+ 2n−2

≤ 4n−2.

Now, define the event A := {|ˆ︁αn − αn| ≤ 4

√︂
αn log(n)

n }. On A, since αn ≥ C log4(n)
n ,

|ˆ︁αn − αn|
αn

≤ 4

log1.5(n)
,
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which is small for n sufficiently large. Hence, by Taylor expansion, we have that

1√ˆ︁αn =
1√︁

αn + (ˆ︁αn − αn)

=
1

√
αn

(︃√︄
1 +

ˆ︁αn − αn
αn

)︃−1

=
1

√
αn

(︃
1 +

1

2

ˆ︁αn − αn
αn

+O

(︃ˆ︁αn − αn
αn

)︃2)︃
.

By the previous observations, we have that this is equal to

1
√
αn

(︃
1 +O

[︃√︄
log(n)

nαn

]︃)︃
.

for n sufficiently large.

E.2 More on the Discussion in Section 5.3.2

In this section, for f and g two functions of n, we write f(n) ≪ g(n) if f(n)/g(n) → 0 as n

tends to infinity.

The eigenvalues of αnXX⊤ are the same as those of αnX⊤X, and as n→ ∞, the matrix

1
nX

⊤X is converging almost surely to E(XX⊤). Therefore, as n→ ∞,

1

nαn

(︁
λi(P)− λi+1(P)

)︁
→ δi,

where δi = λi(E(XX⊤))− λi+1(E(XX⊤)). We have

∥W∗ − I∥F ≤ ∥W∗ −U⊤
AUP∥F + ∥U⊤

AUP − I∥F .

The first term can be bounded directly using the Davis-Kahan Theorem as

∥W∗ −U⊤
AUP∥F = O

(︃
∥A−P∥
λd(P)

)︃2

= O((nαn)
−1).

For the second term, following the analysis on Page 24 of Rubin-Delanchy et al. (2020), we
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have that for i ̸= j,

(U⊤
AUP)ij = −(UA)⊤i (A−P)(UP)j

λj(P)− λi(A)
.

By previous results on eigenvalue concentration (e.g. Eldridge et al. (2018); O’Rourke et al.

(2018); Cape et al. (2017)), we have that

|λi(A)− λi(P)| ≤ C log(n)

with high probability. Hence, the above bound can be written as

(UA)⊤i (A−P)(UP)j
λj(P)− λi(A)

=
(UA)⊤i (A−P)(UP)j

λj(P)− λi(P)± C log(n)

Moreover, by Koltchinskii and Gine (2000), we have that λi(P)
nαn

−λi(E(XX⊤)) = OP(n
−1/2).

Hence, we can further simplify the bound to when i = j + 1

(UA)⊤i (A−P)(UP)j
λj(P)− λi(P)± C log(n)

=
(UA)⊤i (A−P)(UP)j

nαnλj(E(XX⊤))− nαnλi(E(XX⊤))±OP(
√
nαn)

=
(UA)⊤i (A−P)(UP)j

nαnδ ±OP(
√
nαn)±O(log(n))

.

Expanding the numerator, we see that we can write this via

(︃
nαnδ ±OP(

√
nαn)±O(log(n))

)︃−1(︃
(UA)⊤i (A−P)(UP)j

)︃
=

(︃
nαnδ ±OP(

√
nαn)±O(log(n))

)︃−1[︃
(UA)⊤i (UPU

⊤
P)(A−P)(UP)j

]︃
+

(︃
nαnδ ±OP(

√
nαn)±O(log(n))

)︃−1[︃
(UA)⊤i (I−UPU

⊤
P)(A−P)(UP)j

]︃
.

The first term U⊤
P(A−P)(UP)j is a sum of independent random variables, so Hoeffding’s

inequality reveals that it is of order at most log(n) with high probability. The second term
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can be bounded via the Davis-Kahan theorem as

[︃
(UA)⊤i (I−UPU

⊤
P)(A−P)(UP)j

]︃
≤ ∥(UA)⊤i (I−UPU

⊤
P)∥∥(A−P)∥

≤ C∥A−P∥
λd(P)

∥(A−P)∥

= O(1).

Putting it together, we arrive at

∥U⊤
AUP − I∥F = O

(︃
log(n)

nαnδ

)︃
,

where δ = mini δi, provided
√
nαn ≪ nαnδ and log(n) ≪ nαnδ.

From an asymptotic standpoint, the term δ in the denominator makes little difference

as it is a constant, and nαn → ∞. However, for finite n, depending on αn and n, even

if nαn ≫ log4(n), the constant may depend on δ. Therefore, for any fixed model, though

the rate of convergence depends on nαn, for all practical purposes it also depends on the

eigengap δ.
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Appendix F

Proofs from Chapter 6

F.1 Proofs of Identifiability, Algorithm Recovery Results, and

Theorem 18

In this section we prove Theorem 15 and Proposition 9, as well as Lemma 7 and Lemma 8.

F.1.1 Proof of Theorem 15

Proof of Theorem 15. We first prove the “if” direction. Suppose for contradiction that there

is another block membership matrix ˜︁Z ∈ {0, 1}n×K′ with at least one vertex assigned to each

community, and positive diagonal matrices { ˜︁Θ(l)}Ll=1 and symmetric matrices {˜︁B(l)}Ll=1 such

that

Θ(l)ZB(l)Z⊤Θ(l) = ˜︁Θ(l)˜︁Z˜︁B(l)˜︁Z⊤ ˜︁Θ for each l ∈ [L].

Equivalently, since the matrices ˜︁Θ(l) have positive diagonal, for all l ∈ [L] it holds that

˜︁Z˜︁B(l)˜︁Z⊤ =[ ˜︁Θ(l)]−1Θ(l)ZB(l)Z⊤[ ˜︁Θ(l)]−1Θ(l)

:=Γ(l)ZB(l)(Γ(l)Z)⊤

=Γ(l)ZV(l)D(l)(Γ(l)ZV(l))⊤. (F.1)

For any vertex index i ∈ [n], denote by z(i) and ˜︁z(i) the community memberships according

to Z and ˜︁Z. We will show that K ′ ≥ K and if K ′ = K then z(i) = z(j) if and only if

431



APPENDIX F. PROOFS FROM CHAPTER 6

˜︁z(i) = ˜︁z(j).
By the RHS of Eq. (F.1), the column space of Γ(l)ZV(l) should be contained within the

column space of ˜︁Z (as these two matrices are full rank by construction), and hence, there is

a matrix ˜︂M(l) ∈ RK×Kl such that

Γ(l)ZV(l) = ˜︁Z˜︂M(l), for all l ∈ [L]. (F.2)

In particular, this implies that for any i ∈ [n],

Γ
(l)
ii V

(l)
z(i)· =

˜︂M(l)˜︁z(i)· for all l ∈ [L]. (F.3)

If ˜︁z(i) = ˜︁z(j) then

Γ
(l)
ii V

(l)
z(i)· = Γ

(l)
jjV

(l)
z(j)· for all l ∈ [L].

This equation implies that the normalized rows are the same, i.e., Q
(l)
z(i)· = Q

(l)
z(j)· for all

l ∈ [L], and hence Qz(i)· = Qz(j)·, which is only possible if z(i) = z(j) according to the

condition in the proposition.

Now, take a set of vertices T ⊂ [n] such that each vertex is in a different community

according to ˜︁Z. Without loss of generality, suppose that ˜︁ZT · = I, and hence, Eq. (F.2)

implies

(Γ(l)ZV(l))T · = Γ
(l)
T ·V

(l)
z(T )· = M(l) for all l ∈ [L].

If there are two indexes i, j ∈ T such that z(i) = z(j), then the corresponding rows of

M(l) are proportional, that is Mz(i)· = Γ
(l)
ii V

(l)
z(i)· and Mz(j)· = Γ

(l)
jjV

(l)
z(i)· for all l ∈ [L]. If

K ′ = K, this implies that M(l) can only have at most K − 1 different rows that are not

proportional, and these are the same for all l ∈ [L]. Hence, by Eq. (F.3) the matrix Q has

at most K − 1 different rows, which contradicts the assumption. Note that this is also the

case if K ′ < K. If K ′ > K, then it is still possible to have z(i) = z(j), but then Z can fit

the same model with fewer communities.

We now prove the “only if” direction. Suppose for contradiction that Q has repeated rows;

we will construct ˜︁Z and B(l) that yield the same P(l) matrices. Without loss of generality
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we may assume that rows one and two are repeated, since communities are identifiable up

to permutation. Furthermore, without loss of generality we can have Q(l) = V(l). Indeed,

for i ∈ C(r), we can rescale θ(l)i via θ(l)i ↦→ θ
(l)
i ∥V(l)

r· ∥, which still yields the same matrix P(l)

since

P
(l)
ij = θ

(l)
i θ

(l)
j (V(l)D(l)V(l))⊤z(i)z(j) =

(︁
θ
(l)
i ∥V(l)

z(i)·∥
)︁(︁
θ
(l)
j ∥V(l)

z(j)·∥
)︁(V(l)D(l)V(l))⊤z(i)z(j)

∥V(l)
z(i)·∥∥V

(l)
z(j)·∥

.

Therefore, the first two rows of V(l) are repeated for all l. However, this implies that

B
(l)
1r =

(︁
V(l)D(l)(V(l))⊤

)︁
1r

=

Kl∑︂
s=1

V
(l)
1sD

(l)
ssV

(l)
rs =

Kl∑︂
s=1

V
(l)
2sD

(l)
ssV

(l)
rs = B

(l)
2r ,

which shows that the first row and column of B(l) is repeated. Therefore, we can collapse

the first two communities into one community, creating a new matrix ˜︁B(l) with K − 1

communities (with the first two communities merged). Then we have that

P
(l)
ij = θ

(l)
i θ

(l)
j B

(l)
z(i)z(j) = θ

(l)
i θ

(l)
j B

(l)˜︁z(i)˜︁z(j),

which shows that Z is not identifiable unless Q has no repeated rows.

F.1.2 Proof of Proposition 9

Proof of Proposition 9. We will demonstrate that the left singular vectors obtained imme-

diately before clustering contain exactly K unique rows, for which the final result follows.

We will analyze each stage separately.

First Stage (individual network embedding): First, suppose that P(l) = U(l)Λ(l)(U(l))⊤

with U ∈ Rn×Kl is the eigendecomposition of P(l), and let B(l) = V(l)D(l)(V(l))⊤ be

the eigendecomposition of B(l), with V ∈ RK×Kl a matrix with orthogonal columns and

D(l) ∈ RKl×Kl a diagonal matrix with non-zero elements in the diagonal. From this factor-
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ization it is evident that

P(l) = Θ(l)ZB(l)Z⊤Θ(l) = Θ(l)ZV(l)D(l)(V(l))⊤Z⊤Θ(l).

Since U(l) and Θ(l)ZV(l) are full rank matrices, they have the same column space, so

U(l) = Θ(l)ZV(l)H(l),

where H(l) ∈ RKl×Kl is a full rank matrix. From this decomposition it is immediate that

U(l) consists of rows of V(l)H(l) with each row of U(l) scaled by θ
(l)
i . Let ξ(l)r denote the

r’th row of VH|Λ(l)|1/2. Then if z(i) = r,

(U(l)|Λ(l)|1/2)i· = θ
(l)
i ξ

(l)
r = θ

(l)
i V

(l)
r· H

(l),

and hence

Y
(l)
i· =

θ
(l)
i ξ

(l)
r

∥θ(l)i ξ
(l)
r ∥

=
1

∥ξ(l)r ∥
ξ(l)r =

1

∥V(l)
r· H(l)∥

V
(l)
r· H

(l),

which does not depend on θ(l)i .

Second Stage (joint network embedding): We now consider the left singular vectors

of the matrix Y defined as

Y = [Y(1), · · · ,Y(L)].

Observe that the leading K left singular vectors U of Y are given by the leading K eigen-

vectors of the matrix YY⊤, which can equivalently be written as

YY⊤ =

L∑︂
l=1

Y(l)(Y(l))⊤.

Consider i and j in community r and s respectively. Then from the analysis in the previous
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step,

(︁
YY⊤)︁

ij
=

L∑︂
l=1

⟨ξ(l)r , ξ(l)s ⟩
∥ξ(l)r ∥∥ξ(l)s ∥

.

Consequently, this shows that YY⊤ is a matrix of the form

YY⊤ = Z

(︃ L∑︂
l=1

(Ξ(l))(Ξ(l))⊤
)︃
Z⊤ = (ZΞ)(ZΞ)⊤,

where Ξ(l) is the matrix whose rows are ξ(l)r /∥ξ(l)r ∥ and Ξ = [Ξ(1) · · ·Ξ(l)]. Next observe that

Ξ(l) = D(l)Q(l)H(l) = Q(l)M(l)

for some matrix M(l) that is full rank, where Q(l) is as in Theorem 15. Since Q has K

different rows (by assumption), Ξ has K different rows, and hence ΞΞ⊤ is a K ×K block

matrix. Let U denote the leading ˜︁K eigenvectors of YY⊤, where ˜︁K is the rank of Y. Let

VΓV⊤ denote the eigendecomposiion of (Z⊤Z)1/2ΞΞ⊤(Z⊤Z)1/2. Then it is straightforward

to see that U = Z(Z⊤Z)−1/2V since they both have orthonormal columns. It suffices to

argue that V does not have repeated rows. Assuming this for the moment, by taking

M = (Z⊤Z)V, it holds that U = ZM, with M having no repeated rows, whence the result

is proven.

It remains to argue that V does not have repeated rows. Under the conditions of

Theorem 15 we have already shown that Ξ does not have repeated rows. Hence ΞΞ⊤ is a

block matrix with no repeated rows and columns, and hence (Z⊤Z)1/2ΞΞ⊤(Z⊤Z)1/2 is also a

block matrix with no repeated rows and columns. Now assume for contradiction that V has

repeated rows. This implies that V = ˜︁Z˜︁V for some matrices ˜︁Z ∈ {0, 1}K× ˜︁K and ˜︁V ∈ R ˜︁K× ˜︁K
a full rank matrix. Suppose that V has rows r and r′ repeated, and without loss of generality

suppose that row is the first row of ˜︁V (or else permute ˜︁V), so that ˜︁Zr1 = ˜︁Zr′1 = 1. Then
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from the equation (Z⊤Z)1/2ΞΞ⊤(Z⊤Z)1/2 = ˜︁Z˜︁VΓ˜︁V⊤˜︁Z⊤, it holds that for all 1 ≤ s ≤ K,

1
√
nrns

⟨ξr·, ξs·⟩ = ⟨
(︁˜︁Z˜︁VΓ1/2

)︁
r·,
(︁˜︁Z˜︁VΓ1/2

)︁
s·⟩

= ⟨
(︁ ˜︁VΓ1/2

)︁
1·,
(︁˜︁Z˜︁VΓ1/2

)︁
s·⟩

= ⟨
(︁˜︁Z˜︁VΓ1/2

)︁
r′·,
(︁˜︁Z˜︁VΓ1/2

)︁
s·⟩

=
1

√
nr′ns

⟨ξr′·, ξs·⟩.

Consequently, since the above identity holds for all s, this shows that the r and r′’th rows

and columns of (Z⊤Z)1/2ΞΞ⊤(Z⊤Z)1/2 are identical. However, this is a contradiction, which

completes the proof.

F.1.3 Proof of Lemma 7

We will restate Lemma 7 for convenience.

Lemma 7 (Population Properties: Stage I). Suppose Assumption 6.1 holds, and let λ(l)r

denote the eigenvalues of P(l) and let λr(B(l)) denote the eigenvalues of B(l). Then for all

1 ≤ r ≤ K,

θ
(l)
i ≲ ∥X(l)

i· ∥ ≲ θ
(l)
i ;

∥U(l)
i· ∥ ≲

√
K

θ
(l)
i

∥θ(l)∥
;

λ(l)r ≍ ∥θ(l)∥2

K
λr(B

(l)).

Proof of Lemma 7. Define the matrix

G(l) := K∥θ(l)∥−2diag(∥θ(l)C(1)∥, . . . , ∥θ
(l)
C(K)∥)B

(l)diag(∥θ(l)C(1)∥, . . . , ∥θ
(l)
C(K)∥).

Letting λr(·) denote the eigenvalues of a matrix, by Ostrowski’s Theorem (Theorem 4.5.9

of Horn and Johnson (2012) and Assumption 6.1, the eigenvalues of G(l) satisfy λr(G(l)) ≍

λr(B
(l)). Since the eigenvalues of P(l) = Θ(l)ZB(l)Z⊤Θ(l) are the same as the eigenvalues
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of the matrix (︁
Z⊤(Θ(l))2Z

)︁1/2
B(l)

(︁
Z⊤(Θ(l))2Z

)︁1/2
,

we have

λr

(︃(︁
Z⊤(Θ(l))2Z

)︁1/2
B(l)

(︁
Z⊤(Θ(l))2Z

)︁1/2)︃ ≍ ∥θ(l)∥2

K
λr
(︁
G(l)

)︁
≍ ∥θ(l)∥2

K
λr(B

(l)).

To prove the other two assertions, we first observe that

P(l) = Θ(l)Z
(︁
Z⊤(Θ(l))2Z

)︁−1/2
[︃(︁
Z⊤(Θ(l))2Z

)︁1/2
B(l)

(︁
Z⊤(Θ(l))2Z

)︁1/2]︃(︁
Z⊤(Θ(l))2Z

)︁−1/2
Z⊤Θ(l).

Suppose that the matrix
(︁
Z⊤(Θ(l))2Z

)︁1/2
B(l)

(︁
Z⊤(Θ(l))2Z

)︁1/2 has singular value decompo-

sition ˜︁U˜︁Σ˜︁V⊤. Then it holds that

P(l) = Θ(l)Z
(︁
Z⊤(Θ(l))2Z

)︁−1/2 ˜︁U˜︁Σ˜︁V⊤(︁Z⊤(Θ(l))2Z
)︁−1/2

ZΘ(l).

However, since the columns of the matrix Θ(l)Z
(︁
Z⊤(Θ(l))2Z

)︁−1/2 ˜︁U are orthonormal, the

decomposition above is a valid singular value decomposition for P(l). Since P(l) is symmetric,

its eigenvectors coincide with its singular vectors up to an orthogonal transformation, which

in particular shows that there exists an orthogonal transformation W such that

U(l) = Θ(l)Z
(︁
Z⊤(Θ(l))2Z

)︁−1/2 ˜︁UW.

We immediately obtain the bound

∥U(l)
i· ∥ = θ

(l)
i

1

∥θ(l)C(z(i))∥
≲ θ

(l)
i

√
K

∥θ(l)∥
,

where we have used the fact that ∥θC(r)∥2 ≍
∥θ(l)∥2
K for all r. Similarly, it holds that

∥X(l)
i· ∥ ≤ ∥U(l)

i· ∥∥|Λ
(l)|1/2∥ ≲ θ

(l)
i .

It remains to provide a lower bound on Xi·. By the fact that the singular values of a
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symmetric matrix are the absolute value of its eigenvalues, it holds that

U(l)|Λ(l)|1/2 = U(l)˜︁Σ1/2

= Θ(l)Z
(︁
Z⊤(Θ(l))2Z

)︁−1/2 ˜︁UW˜︁Σ1/2.

Observe that
(︁
Z⊤(Θ(l))2Z

)︁−1/2 ˜︁U = B(l)
(︁
Z⊤(Θ(l))2Z

)︁1/2 ˜︁V˜︁Σ−1, which shows that

U(l)|Λ(l)|1/2 = Θ(l)ZB(l)
(︁
Z⊤(Θ(l))2Z

)︁1/2 ˜︁V˜︁Σ−1W˜︁Σ1/2

= Θ(l)ZB(l)
(︁
Z⊤(Θ(l))2Z

)︁1/2 ˜︁V|Λ(l)|−1W|Λ(l)|1/2.

Consider a given row i and suppose that z(i) = r. Then by Ostrowki’s Theorem again,

∥X(l)
i· ∥ ≥ θ

(l)
i ∥B(l)

r· ∥σmin

(︃(︁
Z⊤(Θ(l))2Z

)︁1/2 ˜︁V|Λ(l)|−1W|Λ(l)|1/2
)︃

≥ θ
(l)
i ∥B(l)

r· ∥σmin

(︁
Z⊤(Θ(l))2Z

)︁1/2
σmin

(︁
|Λ(l)|−1W|Λ(l)|1/2

)︁
≥ θ

(l)
i ∥B(l)

r· ∥min
r

∥θC(r)∥σmin

(︁
|Λ(l)|−1/2

)︁
≥ θ

(l)
i ∥B(l)

r· ∥min
r

∥θ(l)C(r)∥
√
K

∥θ(l)∥

≳ θ
(l)
i ∥B(l)

r· ∥

≳ θ
(l)
i ,

where the final line follows from the assumption that B(l) has unit diagonals. This completes

the proof.

F.1.4 Proof of Lemma 8

We restate Lemma 8 for convenience.

Lemma 8 (Population Properties: Stage II). Suppose that Y is rank K, and let Y = UΣV⊤

be its (rank K) singular value decomposition. Then it holds that

U = ZM,
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where M ∈ RK×K is some invertible matrix satisfying

∥Mr· −Ms·∥ =

√︂
n−1
r + n−1

s .

In addition, when nmin ≍ nmax, it holds that

λ2Y : = λmin

(︃∑︂
l

Y(l)(Y(l))⊤
)︃

≳
n

K
Lλ̄.

Proof of Lemma 8. The first part of the proof holds by Lemma 2.1 of Lei and Rinaldo (2015)

applied to the matrix YY⊤, which is a block matrix. See also the proof of Proposition 9.

For the second part we proceed as follows. First recall by the proof of Proposition 9 that

we can write the matrix YY⊤ as the matrix

YY⊤ =
L∑︂
l=1

Ξ(l)(Ξ(l))⊤,

where the matrix Ξ(l) is defined as follows. First, let Q(l) be the matrix such that

U(l) = Θ(l)ZQ(l).

Then the rows of Ξ(l) are equal to the rows of Q(l)|Λ(l)|1/2 normalized by their magnitude.

It was discussed in the proof of Proposition 9 that the entries of Q(l) are of order 1
∥θ(l)∥ .

Observe that we can write Y(l) = Z(˜︁D(l))−1Q(l)|Λ(l)|1/2, where ˜︁D(l) is the K ×K diagonal

matrix of row norms of Q(l)|Λ(l)|1/2. Observe that

∥˜︁D(l)∥2 = max
i

∥
(︁
Q(l)|Λ(l)|1/2

)︁
i·∥

2

= max
i

K∑︂
r=1

(Q
(l)
ir )

2|λr|

= max
i

K∑︂
r=2

C

∥θ(l)∥2
∥θ(l)∥2

K
|λr(B(l))|+ C

∥θ(l)∥2
∥θ(l)∥2

≲ 1,
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where we have applied Lemma 7 to observe that λr ≍ ∥θ(l)∥2
K λr(B

(l)) for 2 ≤ r ≤ K and

λ1 ≍ ∥θ(l)∥2, since by Assumption 6.1 that the largest eigenvalue of B(l) is upper bounded

by a constant. Therefore, we have that

λmin

(︃∑︂
l

Y(l)(Y(l))⊤
)︃

= λmin

(︃∑︂
l

Z(˜︁D(l))−1Q(l)|Λ(l)|(Q(l))⊤(˜︁D(l))−1Z⊤
)︃

= λmin

(︃
Z⊤Z

(︁∑︂
l

(˜︁D(l))−1(Q(l)|Λ(l)|(Q(l))⊤(˜︁D(l))−1
)︁)︃

≥ λmin(Z
⊤Z)λmin

(︃∑︂
l

(˜︁D(l))−1Q(l)|Λ(l)|(Q(l))⊤(˜︁D(l))−1

)︃
≳

n

K
L

(︃
1

L

∑︂
l

λmin

[︃
(˜︁D(l))−1Q(l)|Λ(l)|(Q(l))⊤(˜︁D(l))−1

]︃)︃

where we have used the fact that λmin(Z⊤Z) = nmin ≍ n/K and that the term inside the

sum is rank K and hence invertible. Consequently, it suffices to show that

λmin

[︃
(˜︁D(l))−1Q(l)|Λ(l)|(Q(l))⊤(˜︁D(l))−1

]︃
≳ λ

(l)
min.

However, by the argument in Lemma 7, it holds that Q(l)(Q(l))⊤ = (Z⊤(Θ(l))2Z)−1. Set

G(l) := K−1∥θ(l)∥2(Z⊤(Θ(l))2Z). By Assumption 6.1, ∥(G(l))−1∥ ≤ C and Q(l)(Q(l))⊤ =

K∥θ(l)∥−2(G(l))−1. Consequently,

λmin

[︃
(˜︁D(l))−1Q(l)|Λ(l)|(Q(l))⊤(˜︁D(l))−1

]︃
≳ λmin((˜︁D(l))−1)2λmin

(︁
Q(l)|Λ(l)|(Q(l))⊤

)︁
≳ λmin

(︁
(Q(l))⊤Q(l)|Λ(l)|

)︁
≳ λmin

(︁
(Q(l))⊤Q(l)

)︁
λmin(|Λ(l)|)

≳ K∥θ(l)∥−2λmin(G
(l))

∥θ(l)∥2

K
λ
(l)
min

≳ λ
(l)
min,

where we have used Assumption 6.1 and Lemma 7 implicitly. This completes the proof.
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F.1.5 Proof of Theorem 18

Proof of Theorem 18. The proof of this result is similar to the proof of the main result. First

we demonstrate the initial error implies that each community contains at least 3
4 of its true

members, whereupon we study the empirical centroids and show that they are closer to their

true cluster centroid than they are to each other. Finally, instead of applying Theorem 21

to obtain the exponential error rate we apply Theorem 19. As this result only involves a

single network, we suppress the dependency on l for ease of notation.

Step 1: Initial Hamming Error

Observe that Y = ZMY, where it straightforward to check that

√︁
λmin ≤ ∥

(︁
MY

)︁
r· −

(︁
MY

)︁
s·∥ ≤ 2.

The upper bound is immediate; as for the lower bound, we may apply the same argument

as in the proof of Lemma 8. Let the matrix ˆ︁X := ˆ︁Zˆ︂MY, where ˆ︁Z and ˆ︂MY are the outputs

of (1 + ε) K-means on the rows of ˆ︁Y, and let Sr := {i ∈ C(r) : ∥W∗ ˆ︁Xi· − Yi·∥ ≥ δr/2},

where δr =
√
λmin. By Lemma 5.3 of Lei and Rinaldo (2015) and a similar argument as in

the proof of Theorem 16, it holds that

inf
P

n∑︂
i=1

I{ˆ︁z(i) ̸= P(z(i))} ≤ Cε
λmin

∥ ˆ︁YW⊤
∗ −Y∥2F

≤ Cεn

λmin
∥ ˆ︁YW⊤

∗ −Y∥22,∞.

By Corollary 9, with probability at least 1−O(n−15) it holds that

∥ ˆ︁YW⊤
∗ −Y∥2,∞ ≲

(︃
θmax

θmin

)︃1/2K
√︁
log(n)

∥θ∥λ1/2min

+
K2θ

(l)
max∥θ(l)∥1

λ
(l)
min∥θ(l)∥4

(︃
log(n)

θ
(l)
max

θ
(l)
min

+
1

λ
(l)
min

+

(︃
θ
(l)
max

θ
(l)
min

)︃1/2K5/2 log(n)

(λ
(l)
min)

1/2

)︃
≤ β

8
√
CεK

λmin,
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where β ∈ (0, 1] is such that nmin ≥ βnmax, and where the final bound holds under the

conditions of Theorem 18. Let this event be denoted E . By squaring the above bound we

arrive at

inf
P

n∑︂
i=1

I{ˆ︁z(i) ̸= P(z(i))} ≤ n
β2

64K
λmin

≤ β

64
λminnmin.

Therefore, each cluster is associated to a true cluster, denoted as ˆ︁C(r), where |ˆ︁C(r)| ≥

(1−βλmin/64)nmin and |ˆ︁C(r)\C(r)| ≤ βλmin
64 nmin. Note that since β ∈ (0, 1) and λmin ∈ (0, 1),

then βλmin/64 < 1 this is a well-defined fraction.

Step 2: Properties of Empirical Centroids

Recall that we denote (ˆ︂MY)r· and (MY)r· as the cluster centroids for ˆ︁C(r) and C(r) respec-

tively. Then by a similar argument as in the proof of Theorem 16, we have that

∥W∗(ˆ︂MY)r· − (MY)r·∥ ≤ 1

|ˆ︁C(r)|1/2 ∥ ˆ︁YW⊤
∗ −Y∥F + 2

|ˆ︁C(r) \ C(r)|
|ˆ︁C(r)|

≤ 1√︁
nmin(1− βλmin/64)

√
n∥ ˆ︁YW⊤

∗ −Y∥2,∞ + 2
βnminλmin

64(1− βλmin/64)nmin

≤ 1√︁
nminβ(1− βλmin/64)

√
n

β

8
√
CεK

λmin +
λmin

32(1− βλmin/64)

≤ 1√︁
nminβ(1− βλmin/64)

√︄
Knmin

β

β

8
√
CεK

λmin +
λmin

32(1− βλmin/64)

≤ 1

8

√︁
λmin,

since λmin ∈ (0, 1) by assumption. The above bound holds on the event E .

Step 3: Applying The Asymptotic Expansion

Arguing similarly as in the proof of Theorem 16, it holds that

Eℓ(ˆ︁z, z) ≤ 1

n

n∑︂
i=1

P
(︁
Zi· ̸= ˆ︁Zi·, E)︁+O(n−15).
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On the event E , it holds that

∥RStage I∥2,∞ ≤ 1

8

√︁
λmin,

and hence by repeating the arguments in the proof of Theorem 16,

P(Zi· ̸= ˆ︁Zi·, E) ≤ P
(︁
∥( ˆ︁YW⊤

∗ )i· −Yi·∥ ≥ 1

4

√︁
λmin, E

)︁
≤ Kmax

k
P
{︃⃓⃓
e⊤i L(E)U(l)|Λ(l)|−1/2Ip,qek

⃓⃓
≥ 1

4

√︁
λmin/K

}︃
.

Here L(E) is the linear term from Theorem 19 with E = A−P. We now apply Bernstein’s

inequality. The variance v is upper bounded by

v ≤
∑︂
j

θiθj∥e⊤j U(l)∥2∥|Λ(l)|−1/2∥2∥J(Xi·)∥2

≲
∑︂
j

θiθj
θ2jK

∥θ∥2
K

∥θ∥2λmin

1

θ2i

≲
K2∥θ∥33

∥θ∥4λminθi
.

Similarly,

max
j

∥e⊤j U(l)∥∥|Λ(l)|−1/2∥∥J(Xi·)∥ ≲ θj
K

∥θ∥2λ1/2min

1

θi

≲
Kθmax

∥θ∥2λ1/2minθi
.

By Bernstein’s inequality,

P
{︃⃓⃓
e⊤i L(E)U(l)|Λ(l)|−1/2Ip,qek

⃓⃓
≥ 1

8

√︁
λmin/K

}︃
≤ 2 exp

(︃
−

1
128

λmin
K

C
K2∥θ∥33

∥θ∥4λminθi
+

λ
1/2
min

24
√
K
C Kθmax

∥θ∥2λ1/2minθi

)︃

≤ 2 exp

(︃
− cθimin

{︃
∥θ∥4λ2min

K3∥θ∥33
,
∥θ∥2λmin

K3/2θmax

}︃)︃
.

Assembling everything together completes the proof.
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F.2 Proof of First Stage Characterization (Theorem 19)

This section contains the full proof of Theorem 19. First, we will restate Theorem 19 here

for convenience.

Theorem 19 (Asymptotic Expansion: Stage I). Suppose that Assumption 6.1 and Assump-

tion 6.2 hold. Fix a given l ∈ [L]. Let W(l)
∗ denote the orthogonal matrix satisfing

W
(l)
∗ : = argmin

W∈O(K)
∥ˆ︁U(l) −U(l)W

(l)
∗ ∥F .

Then there is an event E(l)
Stage I with P(E(l)

Stage I) ≥ 1−O(n−15) such that the following expan-

sion holds:

ˆ︁Y(l)(W
(l)
∗ )⊤ −Y(l) = L(A(l) −P(l)) +R(l)

Stage I,

where the matrix R(l)
Stage I satisfies

∥R(l)
Stage I∥2,∞ ≲

K2θ
(l)
max∥θ(l)∥1

λ
(l)
min∥θ(l)∥4

(︃
log(n)

θ
(l)
max

θ
(l)
min

+
1

λ
(l)
min

+

(︃
θ
(l)
max

θ
(l)
min

)︃1/2K5/2 log(n)

(λ
(l)
min)

1/2

)︃
,

and the matrix L(A(l) −P(l)) has rows given by

L(A(l) −P(l))i· =
1

∥X(l)
i· ∥

(︃
I−

X
(l)
i· (X

(l)
i· )

⊤

∥X(l)
i· ∥2

)︃(︃(︁
A(l) −P(l)

)︁
U(l)|Λ(l)|−1/2I(l)p,q

)︃
i·
.

As an immediate application of Theorem 19, we can obtain a spectral norm concentration

bound for the residual, which will be useful in subsequent steps.

Lemma 57. The residual term R(l)
Stage I satisfies

∥R(l)
Stage I∥ ≲

√
n
K2θ

(l)
max∥θ(l)∥1

λ
(l)
min∥θ(l)∥4

(︃
log(n)

θ
(l)
max

θ
(l)
min

+
1

λ
(l)
min

+

(︃
θ
(l)
max

θ
(l)
min

)︃1/2K5/2 log(n)

(λ
(l)
min)

1/2

)︃
.

with probability at least 1−O(n−15).

The proof of this result follows immediately by noting that ∥ · ∥ ≤
√
n∥ · ∥2,∞ and the

bound in Theorem 19.
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We will also use an ℓ2,∞ bound for the linear term appearing in Theorem 19 in the proof

of Theorem 21.

Lemma 58. The linear term in Theorem 16 satisfies, with probability at least 1−O(n−15),

∥L(A(l) −P(l))∥2,∞ ≲

(︃
θ
(l)
max

θ
(l)
min

)︃1/2 K
√︁
log(n)

(λ
(l)
min)

1/2∥θ(l)∥
.

Proof of Lemma 58. Throughout this proof we suppress the dependence of Θ(l),Λ(l) and

U(l) on the index l, and we denote λ via 1
λ = ∥(Λ(l))−1∥. Define E := A(l) −P(l), so that E

is a mean-zero random matrix.

We will apply the Matrix Bernstein inequality to each row separately. To wit, by Corol-

lary 3.3 of Chen et al. (2021c), we have that with probability at least 1− O(n−16) it holds

that

∥e⊤i L(E)∥ ≲
√︁
v log(n) + w log(n),

where

v = max

{︃⃦⃦⃦⃦∑︂
j

(︃
U|Λ|−1/2Ip,qJ(Xi·)

)︃⊤

j·
EE2

ij

(︃
U|Λ|−1/2Ip,qJ(Xi·)

)︃
j·

⃦⃦⃦⃦
,

⃦⃦⃦⃦∑︂
j

EEij
(︃
U|Λ|−1/2Ip,qJ(Xi·)

)︃
j·

(︃
U|Λ|−1/2Ip,qJ(Xi·)

)︃⊤

j·
Eij

⃦⃦⃦⃦}︃
;

w = max
j

⃦⃦⃦⃦
Eij

(︃
U|Λ|−1/2Ip,qJ(Xi·)

)︃
j·

⃦⃦⃦⃦
.
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Since E(E2
ij) is a scalar, we have that by Lemma 7,

v ≤
∑︂
j

EE2
ij

⃦⃦⃦⃦(︃
U|Λ|−1/2Ip,qJ(Xi·)

)︃
j·

⃦⃦⃦⃦2
≤
∑︂
j

θiθj∥e⊤j U∥2 1
λ
∥J(Xi·)∥2

≲
∑︂
j

θiθj
θ2jK

∥θ∥2
K

∥θ∥2λmin

1

∥Xi·∥2

≲
∑︂
j

θiθj
θ2jK

∥θ∥2
K

∥θ∥2λmin

1

θ2i

≲
∑︂
j

K2

λmin∥θ∥4

(︃
θj
θi

)︃
θ2j

≲
K2

λmin∥θ∥4

(︃
θmax

θmin

)︃
∥θ∥2

≲
K2

λmin∥θ∥2

(︃
θmax

θmin

)︃
.

Similarly,

w ≤ max
j

⃦⃦⃦⃦(︃
U|Λ|−1/2Ip,qJ(Xi·)

)︃
j·

⃦⃦⃦⃦
≲
θmax

√
K

∥θ∥

√
K

∥θ∥λ1/2min

1

θi

≲

(︃
θmax

θmin

)︃
K

∥θ∥2λ1/2min

.

Therefore, with probability at least 1−O(n−16), we have that

∥e⊤i L(E)∥ ≲

(︃
θmax

θmin

)︃1/2K
√︁

log(n)

λ
1/2
min∥θ∥

+

(︃
θmax

θmin

)︃
K log(n)

λ
1/2
min∥θ∥2

≲

(︃
θmax

θmin

)︃1/2K
√︁

log(n)

λ
1/2
min∥θ∥

max

{︃
1,

(︃
θmax

θmin

)︃1/2
√︁
log(n)

∥θ∥

}︃
.

We now show that Assumption 6.2 implies that 1 is the maximum above. Assumption 6.2

states that

C
θmax

θmin

K8θmax∥θ∥1 log(n)
∥θ∥4(λmin)2

≤ λ̄.
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Since λ̄ ≤ 1 by assumption and ∥θ∥2 ≤ θmax∥θ∥1, it is straightforward to verify that As-

sumption 6.2 implies that

(︃
θmax

θmin

)︃
log(n)

∥θ(l)∥2
≲ 1.

Taking square roots reveals that

(︃
θmax

θmin

)︃1/2
√︁
log(n)

∥θ(l)∥
≲ 1,

which shows that one is the dominant term in the maximum, as long as C is larger than

some universal constant. Taking a union bound over all the rows completes the proof.

F.2.1 Preliminary Lemmas

Throughout this section and its proof we suppress the dependence on l in all terms. We also

let λ denote the absolute value of the smallest nonzero eigenvalue of P. In what follows, we

will assume that λ ≳
√︁
θmax∥θ∥1 log(n), which by Lemma 7 holds under Assumption 6.2.

We will verify this explicitly at the beginning of the proof of Theorem 19.

The following result shows a form of spectral norm concentration.

Lemma 59 (Spectral Norm Concentration for One Graph). When θmax∥θ∥1 ≥ log(n), it

holds that

∥A−P∥ ≲
√︁
θmax∥θ∥1;

∥U⊤(A−P)U∥ ≲
√
K +

√︁
log(n),

with probability at least 1−O(n−20).

Proof. See Lemma C.1 of Jin et al. (2019), or directly apply Remark 3.13 from Bandeira

and Handel (2016). The other part follows from a straightforward ε-net argument.

The following lemma demonstrates good concentration for several residual terms, show-

ing that several terms “approximately commute."
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Lemma 60 (Approximate Commutation). When λ ≳
√︁
θmax∥θ∥1 log(n) and mini θi∥θ∥1 ≳

log(n), the following bounds hold with probability at least 1−O(n−20) :

∥W∗ −U⊤ ˆ︁U∥ ≲
θmax∥θ∥1

λ2
(F.4)

∥ˆ︁U⊤U|Λ|1/2 − |ˆ︁Λ|1/2 ˆ︁U⊤U∥ ≲
K2

λ1/2

(︃√︁
K log(n) +

θmax∥θ∥1
λ

)︃
(F.5)

∥ˆ︁U⊤U|Λ|−1/2Ip,q − |ˆ︁Λ|−1/2Ip,q ˆ︁U⊤U∥ ≲
K2

λ3/2

(︃√︁
K log(n) +

θmax∥θ∥1
λ

)︃
. (F.6)

Proof of Lemma 60. For (F.4), the argument follows since W∗ is the product of the orthog-

onal matrices in the singular value decomposition of U⊤ ˆ︁U and hence

∥W∗ −U⊤ ˆ︁U∥ = ∥I− cosΘ∥

≤ ∥ sinΘ(U, ˆ︁U)∥2

≲
∥A−P∥2

λ2

≲
θmax∥θ∥1

λ2

which holds with probability at least 1−O(n−20) by Lemma 59.

For all the following terms, we first show that |ˆ︁Λ|(Ip,q ˆ︁U⊤U − ˆ︁U⊤UIp,q) is sufficiently

small by modifying a similar argument to Rubin-Delanchy et al. (2022). Observe that

Ip,q ˆ︁U⊤U− ˆ︁U⊤UIp,q =

⎛⎜⎝ 0 2ˆ︁U⊤
+U−

−2ˆ︁U⊤
−U+ 0

⎞⎟⎠ ,

where U+ denotes the eigenvectors of U corresponding to the positive eigenvectors (and

similarly for U−, ˆ︁U+, and ˆ︁U− respectively). Let u+
j and ˆ︁u−

j denote the j’th columns ofˆ︁U+ and ˆ︁U− respectively. Then the j, i entry of ˆ︁U⊤
−U+ is simply (u+

i )
⊤ˆ︁u−

j , and hence by

the eigenvector-eigenvalue equation,

(u+
i )

⊤ˆ︁u−
j =

(u+
i )

⊤(A−P)ˆ︁uj,−ˆ︁λj,− − λi,+

=
(u+

i )
⊤(A−P)U−U

⊤
−ˆ︁uj,−ˆ︁λj,− − λi,+

+
(u+

i )
⊤(A−P)

(︁
I−U−U

⊤
−
)︁ˆ︁uj,−ˆ︁λj,− − λi,+

,
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where λi,+ denotes the i’th largest in magnitude eigenvalue of P (and similarly for ˆ︁λj,− for

the negative eigenvalues of A). It is straightforward to check that the j, i entry of the matrix

|ˆ︁Λ+|(Ip,q ˆ︁U⊤
+U− − ˆ︁U⊤

+U−Ip,q) is given by

|ˆ︁λj+|ˆ︁λj,+ − λi,−
(u+

i )
⊤(A−P)ˆ︁uj,− =

1

1− λi,−ˆ︁λj,+
(u+

i )
⊤(A−P)U+U

⊤
+ˆ︁uj,−

+
1

1− λi,−ˆ︁λj,+
(u+

i )
⊤(A−P)(I−U+U

⊤
+)ˆ︁uj,−

Since λi,− is negative and ˆ︁λj,+ is positive with high probability, 1 − λi,−ˆ︁λj,+ is strictly larger

than one. A similar argument holds for the entries with the “+" changed to a “−".

Without loss of generality consider the term corresponding to the negative eigenvalues.

We can write the matrix as follows. Denote M as the matrix whose i, j entry is |ˆ︁λj,−|ˆ︁λj,−−λi,+
.

Then we have the equality

U⊤
+
ˆ︁U−|ˆ︁Λ−| = M ◦

(︃
U⊤

+(A−P)U−U
⊤
−
ˆ︁U− +U⊤

+(A−P)
(︁
I−U−U

⊤
−
)︁ ˆ︁U−

)︃
.

Therefore,

∥U⊤
+
ˆ︁U−|ˆ︁Λ−|∥ ≤ ∥M∥

(︃
∥U⊤

+(A−P)U−∥+ ∥U⊤
+(A−P)

(︁
I−U−U

⊤
−
)︁ ˆ︁U−∥

)︃
≤ ∥M∥

(︃
∥U⊤(A−P)U∥+ ∥A−P∥∥

(︁
I−U−U

⊤
−
)︁ ˆ︁U−∥

)︃
, (F.7)

where we have used the fact that U⊤
+(A−P)U− is a submatrix of U⊤(A−P)U. We now

note that

∥
(︁
I−U−U

⊤
−
)︁ ˆ︁U−∥ = ∥ sinΘ(U−, ˆ︁U−)∥.

In addition, the eigenvalues corresponding to ˆ︁U− are all negative, and the eigengap condition

is satisfied since the eigenvalues corresponding to (I−U−U−)P are either all zero or positive.
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Consequently, the eigengap satisfies

min
λi>0

λi − max
p+1≤i≤n

ˆ︁λi ≳ λ

by applying Weyl’s inequality to the negative eigenvalues and the bottom n−K eigenvalues

separately. We can therefore apply the Davis-Kahan Theorem to obtain

∥ sinΘ(U−, ˆ︁U−)∥ ≲
∥A−P∥

λ

≲

√︁
θmax∥θ∥1
λ

(F.8)

with probability at least 1−O(n−20). In addition, observe that the matrix M satisfies

∥M∥ ≲ K. (F.9)

Finally, by Lemma 59, we have that ∥U⊤(A−P)U∥ ≲
√
K+

√︁
log(n) with high probability.

Plugging in this estimate, (F.9), and (F.8) into (F.7) yields

∥U⊤
+
ˆ︁U−∥ ≲ K

(︃√
K +

√︁
log(n) +

θmax∥θ∥1
λ

)︃
.

Therefore, by applying a similar argument to U⊤
−
ˆ︁U+, we obtain

∥|ˆ︁Λ|(Ip,q ˆ︁U⊤U− ˆ︁U⊤UIp,q)∥ ≲ K

(︃
∥U⊤(A−P)U∥+ ∥A−P∥∥ sinΘ(U−, ˆ︁U−)∥

+ ∥A−P∥∥ sinΘ(U+, ˆ︁U+)∥
)︃

≲ K

(︃√
K +

√︁
log(n) +

θmax∥θ∥1
λ

)︃
, (F.10)

which holds with probability at least 1−O(n−20).

We now bound (F.5). First, note that we have

∥ˆ︁U⊤U|Λ|1/2 − |ˆ︁Λ|1/2 ˆ︁U⊤U∥ = ∥ˆ︁U⊤U|Λ|1/2Ip,q − |ˆ︁Λ|1/2 ˆ︁U⊤UIp,q∥

= ∥ˆ︁U⊤UIp,q|Λ|1/2 − |ˆ︁Λ|1/2 ˆ︁U⊤UIp,q∥,
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where the first line follows since Ip,q is orthogonal and the second line follows since diagonal

matrices commute. We observe that the k, l entry of the matrix above can be written as

(︃ˆ︁U⊤UIp,q|Λ|1/2 − |ˆ︁Λ|1/2 ˆ︁U⊤UIp,q

)︃
kl

= ⟨ˆ︁U·k,U·l(Ip,q)ll⟩
(︃
|λl|1/2 − |ˆ︁λk|1/2)︃

= ⟨ˆ︁U·k,U·l⟩(Ip,q)ll
|λl| − |ˆ︁λk|

|λl|1/2 + |ˆ︁λk|1/2 .
Define the matrix H via Hkl :=

1

|λl|1/2+|ˆ︁λk|1/2 . Then the matrix ˆ︁U⊤UIp,q|Λ|1/2−|ˆ︁Λ|1/2 ˆ︁U⊤UIp,q

can be written as

ˆ︁U⊤UIp,q|Λ|1/2 − |ˆ︁Λ|1/2 ˆ︁U⊤UIp,q = H ◦
(︃ˆ︁U⊤UIp,q|Λ| − |ˆ︁Λ|ˆ︁U⊤UIp,q

)︃
= H ◦

(︃ˆ︁U⊤UIp,q|Λ| − |ˆ︁Λ|Ip,q ˆ︁U⊤U

)︃
+H ◦

(︃
|ˆ︁Λ|(︃Ip,q ˆ︁U⊤U− ˆ︁U⊤UIp,q

)︃)︃
= H ◦

(︃ˆ︁U⊤UΛ− ˆ︁Λˆ︁U⊤U

)︃
+H ◦

(︃
|ˆ︁Λ|(︃Ip,q ˆ︁U⊤U− ˆ︁U⊤UIp,q

)︃)︃
.

where ◦ denotes the hadamard product. It is straightforward to observe that ∥H∥ ≲ K
λ1/2

.

Consequently, we have that

∥ˆ︁U⊤UIp,q|Λ|1/2 − |ˆ︁Λ|1/2 ˆ︁U⊤UIp,q∥

≤ ∥H∥∥ˆ︁U⊤UΛ− ˆ︁Λˆ︁U⊤U∥+ ∥H∥∥|ˆ︁Λ|(︁Ip,q ˆ︁U⊤U− ˆ︁U⊤UIp,q
)︁
∥

≲
K

λ1/2
∥ˆ︁U⊤UΛ− ˆ︁Λˆ︁U⊤U∥+ K2

λ1/2

(︃√
K +

√︁
log(n) +

θmax∥θ∥1
λ

)︃
≲

K

λ1/2
∥ˆ︁U⊤PU− ˆ︁U⊤AU∥+ K2

λ1/2

(︃√
K +

√︁
log(n) +

θmax∥θ∥1
λ

)︃
≲

K

λ1/2
∥ˆ︁U⊤(P−A)U∥+ K2

λ1/2

(︃√
K +

√︁
log(n) +

θmax∥θ∥1
λ

)︃
. (F.11)
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We note that

∥ˆ︁U⊤(P−A)U∥ ≲ ∥ˆ︁U⊤UU⊤(P−A)U∥+ ∥ˆ︁U⊤(I−UU⊤)(P−A)U∥

≲
√
K +

√︁
log(n) + ∥ sinΘ(ˆ︁U,U)∥∥A−P∥

≲
√
K +

√︁
log(n) +

θmax∥θ∥1
λ

.

Plugging this into our bound (F.11), we obtain that

∥ˆ︁U⊤UIp,q|Λ|1/2 − |ˆ︁Λ|1/2 ˆ︁U⊤UIp,q∥ ≲
K

λ1/2

(︃√
K +

√︁
log(n) +

θmax∥θ∥1
λ

)︃
+

K2

λ1/2

(︃√
K +

√︁
log(n) +

θmax∥θ∥1
λ

)︃
≲

K2

λ1/2

(︃√︁
K log(n) +

θmax∥θ∥1
λ

)︃
.

This proves (F.5).

We now consider the term (F.6). Since diagonal matrices commute,

∥ˆ︁U⊤U|Λ|−1/2Ip,q − |ˆ︁Λ|−1/2Ip,q ˆ︁U⊤U∥

= ∥ˆ︁U⊤UIp,q|Λ|−1/2 − |ˆ︁Λ|−1/2Ip,q ˆ︁U⊤U∥

= ∥|ˆ︁Λ|−1/2Ip,q

(︃
|ˆ︁Λ|1/2Ip,q ˆ︁U⊤U− ˆ︁U⊤UIp,q|Λ|1/2

)︃
Ip,q|Λ|−1/2∥

≲
1

λ
∥|ˆ︁Λ|1/2Ip,q ˆ︁U⊤U− ˆ︁U⊤UIp,q|Λ|1/2∥

≲
1

λ

(︃
∥|ˆ︁Λ|1/2(Ip,q ˆ︁U⊤U− ˆ︁U⊤UIp,q)∥+ ∥|ˆ︁Λ|1/2 ˆ︁U⊤UIp,q − ˆ︁U⊤UIp,q|Λ|1/2∥

)︃
≲

1

λ3/2
∥|ˆ︁Λ|(Ip,q ˆ︁U⊤U− ˆ︁U⊤UIp,q)∥+

1

λ
∥|ˆ︁Λ|1/2 ˆ︁U⊤UIp,q − ˆ︁U⊤UIp,q|Λ|1/2∥

≲
K

λ3/2

(︃√
K +

√︁
log(n) +

θmax∥θ∥1
λ

)︃
+

K2

λ3/2

(︃√︁
K log(n) +

θmax∥θ∥1
λ

)︃
≲

K2

λ3/2

(︃√︁
K log(n) +

θmax∥θ∥1
λ

)︃
.

where we have implicitly used the bound (F.5) and (F.11). This bound holds cumulatively

with probability at least 1−O(n−20), which completes the proof.
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The following lemma characterizes the row-wise concentration of terms that involve ˆ︁U.

However, this proof requires the use of leave-one-out sequences, so we defer its proof to

Appendix F.2.3 after the proof of Theorem 19.

Lemma 61 (Row-Wise Concentration I). When λ ≳
√︁
θmax∥θ∥1 log(n) and mini θi∥θ∥1 ≳

log(n), it holds that

∥e⊤i (A− EA)ˆ︁U∥ ≲
√︁
θi∥θ∥1 log(n)∥ˆ︁U∥2,∞

The following result demonstrates that ˆ︁U is sufficiently close to UU⊤ ˆ︁U in ∥ · ∥2,∞.

Lemma 62 (Closeness of ˆ︁U to U). When λ ≳
√︁
θmax∥θ∥1 log(n) and mini θi∥θ∥1 ≳ log(n),

the following bounds holds with probability at least 1−O(n−19) :

∥ˆ︁U−UU⊤ ˆ︁U∥2,∞ ≲

√︁
θmax∥θ∥1 log(n)

λ
∥U∥2,∞

∥ˆ︁U−UW∗∥2,∞ ≲

√︁
θmax∥θ∥1 log(n)

λ
∥U∥2,∞

∥ˆ︁Uˆ︁U⊤U−U∥2,∞ ≲

√︁
θmax∥θ∥1 log(n)

λ
∥U∥2,∞.

The bound above matches the bound in Jin et al. (2019), Lemma 2.1.

Proof of Lemma 62. Observe that since U are the eigenvectors of P and P is rank K,

e⊤i
(︁ ˆ︁U−UU⊤ ˆ︁U)︁ = e⊤i (I−UU⊤)ˆ︁U

= e⊤i (I−UU⊤)Aˆ︁Uˆ︁Λ−1

= e⊤i (I−UU⊤)(A−P)ˆ︁Uˆ︁Λ−1

= e⊤i (A−P)ˆ︁Uˆ︁Λ−1 − e⊤i UU⊤(A−P)ˆ︁Uˆ︁Λ−1.

Taking norms reveals that

∥e⊤i
(︁ ˆ︁U−UU⊤ ˆ︁U)︁∥ ≤ ∥e⊤i

(︁
A−P

)︁ ˆ︁U∥∥ˆ︁Λ−1∥+ ∥e⊤i U∥∥A−P∥∥ˆ︁Λ−1∥.
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By Lemma 59, we have that ∥A−P∥ ≲
√︁
θmax∥θ∥1. In addition, Weyl’s inequality implies

that ∥ˆ︁Λ−1∥ ≲ λ−1. Therefore, combining these bounds with Lemma 61, we see that with

probability at least 1−O(n−20) that

∥e⊤i
(︁ ˆ︁U−UU⊤ ˆ︁U)︁∥ ≲

√︁
θi∥θ∥1 log(n)

λ
∥ˆ︁U∥2,∞ + ∥e⊤i U∥

√︁
θmax∥θ∥1
λ

≲

√︁
θmax∥θ∥1 log(n)

λ
∥ˆ︁U∥2,∞ + ∥U∥2,∞

√︁
θmax∥θ∥1
λ

.

This bound is independent of row i, so taking a union bound reveals that with probability

at least 1−O(n−19) that

∥ˆ︁U−UU⊤ ˆ︁U∥2,∞ ≲

√︁
θmax∥θ∥1 log(n)

λ
∥ˆ︁U∥2,∞ + ∥U∥2,∞

√︁
θmax∥θ∥1
λ

.

By Lemma 60, it holds that

∥W∗ −U⊤ ˆ︁U∥ ≲
θmax∥θ∥1

λ2
.

Therefore,

∥ˆ︁U−UW∗∥2,∞ ≤ ∥ˆ︁U−UU⊤ ˆ︁U∥2,∞ + ∥U∥2,∞∥W∗ −U⊤ ˆ︁U∥

≲

√︁
θmax∥θ∥1 log(n)

λ
∥ˆ︁U∥2,∞ + ∥U∥2,∞

√︁
θmax∥θ∥1
λ

+
θmax∥θ∥1

λ2
∥U∥2,∞

≲

√︁
θmax∥θ∥1 log(n)

λ
∥ˆ︁U∥2,∞ + ∥U∥2,∞

√︁
θmax∥θ∥1
λ

.

As a byproduct, this also reveals that

∥ˆ︁U∥2,∞ ≤ ∥ˆ︁U−UW∗∥2,∞ + ∥U∥2,∞

≤ 1

2
∥ˆ︁U∥2,∞ +

3

2
∥U∥2,∞,

as long as λ ≥ C
√︁
θmax∥θ∥1 log(n) for some sufficiently large constant C (which we verify

at the beginning of the proof of Theorem 19, and which holds under Assumption 6.2). By
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rearranging, it holds that ∥ˆ︁U∥2,∞ ≲ ∥U∥2,∞. Plugging this in yields

∥ˆ︁U−UW∗∥2,∞ ≲

√︁
θmax∥θ∥1 log(n)

λ
∥U∥2,∞;

∥ˆ︁U−UU⊤ ˆ︁U∥2,∞ ≲

√︁
θmax∥θ∥1 log(n)

λ
∥U∥2,∞.

The final inequality holds since

∥ˆ︁Uˆ︁U⊤U−U∥2,∞ ≤ ∥ˆ︁Uˆ︁U⊤U− ˆ︁UW⊤
∗ ∥2,∞ + ∥ˆ︁U−UW∗∥2,∞

≤ ∥ˆ︁U∥2,∞∥ˆ︁U⊤U−W⊤
∗ ∥+ ∥ˆ︁U−UW∗∥2,∞

≲ ∥U∥2,∞∥W∗ −U⊤ ˆ︁U∥+ ∥ˆ︁U−UW∗∥2,∞.

The proof is completed by plugging in the previous bounds.

The following result establishes finer control over the rows of the estimated eigenvectors.

We relegate the proof of his result to Appendix F.2.3, since it requires the use of leave-one-out

sequences.

Lemma 63 (Row-wise Concentration II). When λ ≳
√︁
θmax∥θ∥1 log(n) and mini θi∥θ∥1 ≳

log(n), with probability at least 1−O(n−19), it holds that

∥e⊤i (A− EA)(ˆ︁Uˆ︁U⊤U−U)∥ ≲
√︁
θi∥θ∥1 log(n)∥

√︁
θmax∥θ∥1 log(n)

λ
∥U∥2,∞.

F.2.2 Proof of Theorem 19

Proof of Theorem 19. Throughout the proof we suppress the dependence of these terms on

the index l. Our proof proceeds in several steps: first, we express ˆ︁XW∗ − X as a linear

term plus a residual term, where the residual term obeys a strong row-wise concentration

bound. Next, we demonstrate that the rows of ˆ︁Y (i.e. the normalized rows of ˆ︁X) concentrate

about the corresponding rows of Y. Before embarking on the proof, we make note of several
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preliminary facts. By Lemma 7, we have that

λ ≳
∥θ∥2λmin

K
;

∥e⊤i U∥ ≲

√
Kθi
∥θ∥

;

θi ≲ ∥e⊤i X∥ ≤ θi.

We will use these bounds repeatedly without reference when simplifying our results.

In addition, many of the previous lemmas require that λ ≳
√︁
θmax∥θ∥1 log(n). We verify

that this condition holds under Assumption 6.2 now. Assumption 6.2 requires that

C

(︃
θmax

θmin

)︃
K8θmax∥θ∥1 log(n)

∥θ∥4λ2min

≤ λ̄. (F.12)

By Lemma 7 it holds that

λ ≳
∥θ∥2

K
λmin.

Consequently, it suffices to argue that (F.12) implies the condition

∥θ∥2

K
λmin ≳

√︁
θmax∥θ∥1 log(n),

or equivalently,

K
√︁
θmax∥θ∥1 log(n)
∥θ∥2λmin

≲ 1.

Squaring both sides yields the condition

K2θmax∥θ∥1 log(n)
∥θ∥4λ2min

≲ 1.

This is weaker than (F.12) as λmin, λ̄ ∈ (0, 1) by assumption and K ≥ 1, as long as C is

larger than some universal constant.
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Step 1: First-Order Approximation of ˆ︁X:

At the outset we recall that W∗ is the Frobenius-optimal matrix aligning ˆ︁U and U. More-

over, by the concentration inequality in Lemma 59 and the assumption on the eigenvalue λ

above, we have that ∥ˆ︁Λ−1∥ ≲ λ−1 with probability at least 1 − O(n−20). We now expand

via:

ˆ︁XW⊤
∗ −X = (A− EA)U|Λ|−1/2Ip,q +R1W

⊤
∗ +R2W

⊤
∗ +R3W

⊤
∗ +R4 +R5 +R6;

R1 : = −UU⊤(A− EA)ˆ︁U|ˆ︁Λ|−1/2Ip,q;

R2 : = U(U⊤ ˆ︁U|ˆ︁Λ|1/2 − |Λ|1/2U⊤ ˆ︁U);

R3 : = U|Λ|1/2(U⊤ ˆ︁U−W∗);

R4 : = (A− EA)(ˆ︁Uˆ︁U⊤U−U)|Λ|−1/2Ip,q;

R5 : = −(A− EA)ˆ︁U(ˆ︁U⊤U|Λ|−1/2Ip,q − |ˆ︁Λ|−1/2Ip,q ˆ︁U⊤U);

R6 : = (A− EA)ˆ︁U|ˆ︁Λ|−1/2Ip,q(W
⊤
∗ − ˆ︁U⊤U).

We now bound each residual in turn. We will also use Lemma 60, Lemma 61, Lemma 62,

Lemma 63 repeatedly without reference; the cumulative probability will be at least 1 −

O(n−18).

The term R1:

First, we note that

∥e⊤i R1∥ ≤ ∥e⊤i U∥∥U⊤(A−P)ˆ︁U|ˆ︁Λ|−1/2∥

≲
∥e⊤i U∥
λ1/2

(︃
∥U⊤(A−P)U∥+ ∥A−P∥∥U⊤

⊥
ˆ︁U∥
)︃

≲
∥e⊤i U∥
λ1/2

(︃
∥U⊤(A−P)U∥+ ∥A−P∥2

λ

)︃
.

By Lemma 59, we have that ∥U⊤(A − P)U∥ ≲
√
K +

√︁
log(n) with probability at least

1−O(n−20). Consequently,

∥e⊤i R1∥ ≲
∥e⊤i U∥
λ1/2

(︃√
K +

√︁
log(n) +

θmax∥θ∥1
λ

)︃
.
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By Lemma 7, we have that ∥e⊤i U∥ ≲
√
Kθi
∥θ∥ and that λ ≳ ∥θ∥2

K λmin. Putting it together, we

arrive at the bound

∥e⊤i R1∥ ≲
Kθi

∥θ∥2λ1/2min

(︃√
K +

√︁
log(n) +

Kθmax∥θ∥1
∥θ∥2λmin

)︃
≲

Kθi

∥θ∥2λ1/2min

(︃√︁
K log(n) +

Kθmax∥θ∥1
∥θ∥2λmin

)︃
. (F.13)

The term R2:

We have

∥e⊤i R2∥ ≲ ∥e⊤i U∥∥U⊤ ˆ︁U|ˆ︁Λ|1/2 − |Λ|1/2U⊤ ˆ︁U∥

≲

√
Kθi
∥θ∥

∥U⊤ ˆ︁U|ˆ︁Λ|1/2 − |Λ|1/2U⊤ ˆ︁U∥

≲

√
Kθi
∥θ∥

K2

λ1/2

(︃√︁
K log(n) +

θmax∥θ∥1
λ

)︃
≲

√
Kθi
∥θ∥

K5/2

λ
1/2
min∥θ∥

(︃√︁
K log(n) +

Kθmax∥θ∥1
∥θ∥2λmin

)︃
≍ K3θi

∥θ∥2λ1/2min

(︃√︁
K log(n) +

Kθmax∥θ∥1
∥θ∥2λmin

)︃
. (F.14)

The term R3:

Following similarly as the previous step, we have that

∥e⊤i R3∥ ≲ ∥e⊤i X∥∥U⊤ ˆ︁U−W∗∥

≲ θi
θmax∥θ∥1

λ2

≲ θi
K2θmax∥θ∥1
∥θ∥4λ2min

. (F.15)

The term R4:
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By Lemma 63, we have

∥e⊤i R4∥ ≲ ∥e⊤i (A−P)(ˆ︁Uˆ︁U⊤U−U)∥∥|Λ|−1/2∥

≲

√︁
θi∥θ∥1 log(n)

λ1/2

√︁
θmax∥θ∥1 log(n)

λ
∥U∥2,∞

≲

√︁
Kθi∥θ∥1 log(n)
λ
1/2
min∥θ∥

K
√︁
θmax∥θ∥1 log(n)
∥θ∥2λmin

√
Kθmax

∥θ∥

≍
θ
1/2
i K2θ

3/2
max∥θ∥1 log(n)
λ
3/2
min∥θ∥4

. (F.16)

The term R5:

By Lemma 61 and Lemma 60, we have that

∥e⊤i R5∥ ≲ ∥e⊤i (A−P)ˆ︁U∥∥ˆ︁U⊤U|Λ|−1/2Ip,q − |ˆ︁Λ|−1/2Ip,q ˆ︁U⊤U∥

≲ ∥e⊤i (A−P)ˆ︁U∥ K
2

λ3/2

(︃√︁
K log(n) +

θmax∥θ∥1
λ

)︃
≲
√︁
θi∥θ∥1 log(n)∥ˆ︁U∥2,∞

K2

λ3/2

(︃√︁
K log(n) +

θmax∥θ∥1
λ

)︃
.

By Lemma 62, we have that ∥ˆ︁U∥2,∞ ≲ ∥U∥2,∞ as long as λ ≳
√︁
θmax∥θ∥1 log(n), which is

true by Assumption 6.2. Therefore,

∥e⊤i R5∥ ≲
√︁
θi∥θ∥1 log(n)∥U∥2,∞

K2

λ3/2

(︃√︁
K log(n) +

θmax∥θ∥1
λ

)︃
≲
√︁
θi∥θ∥1 log(n)

√
Kθmax

∥θ∥
K2

λ3/2

(︃√︁
K log(n) +

θmax∥θ∥1
λ

)︃
≍
√︁
θi∥θ∥1 log(n)

√
Kθmax

∥θ∥
K7/2

λ
3/2
min∥θ∥3

(︃√︁
K log(n) +

Kθmax∥θ∥1
λmin∥θ∥2

)︃

≍
θ
1/2
i

√︁
∥θ∥1 log(n)θmaxK

4

λ
3/2
min∥θ∥4

(︃√︁
K log(n) +

Kθmax∥θ∥1
λmin∥θ∥2

)︃
. (F.17)

The term R6:
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Similarly to the previous term, we obtain

∥e⊤i R6∥ ≲
∥e⊤i (A−P)ˆ︁U∥

λ1/2
∥ˆ︁U⊤U−W∗∥

≲

√︁
θi∥θ∥1 log(n)∥U∥2,∞

λ1/2
θmax∥θ∥1

λ2

≲

√︁
θi∥θ∥1 log(n)

√
Kθmax

λ1/2∥θ∥
θmax∥θ∥1

λ2

≍
θ
1/2
i ∥θ∥3/21 θ2max

√︁
log(n)K3

λ
5/2
min∥θ∥6

(F.18)

Putting it together:

By (F.13), (F.14), (F.15), (F.16), (F.17), and (F.18), we obtain that

∥e⊤i R1∥ ≲ θi
K3/2

∥θ∥2λ1/2min

(︃√︁
K log(n) +

Kθmax∥θ∥1
∥θ∥2λmin

)︃
;

∥e⊤i R2∥ ≲
K3θi

∥θ∥2λ1/2min

(︃√︁
K log(n) +

Kθmax∥θ∥1
∥θ∥2λmin

)︃
;

∥e⊤i R3∥ ≲ θi
K2θmax∥θ∥1
∥θ∥4λ2min

;

∥e⊤i R4∥ ≲ θ
1/2
i

K2θ
3/2
max∥θ∥1 log(n)
λ
3/2
min∥θ∥4

;

∥e⊤i R5∥ ≲
θ
1/2
i

√︁
∥θ∥1 log(n)θmaxK

4

λ
3/2
min∥θ∥4

(︃√︁
K log(n) +

Kθmax∥θ∥1
λmin∥θ∥2

)︃
;

∥e⊤i R6∥ ≲ θ
1/2
i

K3∥θ∥3/21 θ2max

√︁
log(n)

λ
5/2
min∥θ∥6

.

We now group these terms for simplicity. First, observe that the bound for ∥e⊤i R1∥ is no

more than the bound for ∥e⊤i R2∥ since λmin < 1 and K ≥ 2. Therefore,

∥e⊤i R1∥+ ∥e⊤i R2∥+ ∥e⊤i R3∥ ≲ θi

(︃
K7/2

√︁
log(n)

∥θ∥2λ1/2min

+
K4θmax∥θ∥1
∥θ∥4λ3/2min

+
K2θmax∥θ∥1
∥θ∥4λ2min

)︃
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We now simplify the remaining terms; i.e. the terms R4 through R6. We observe that

∥e⊤i R4∥+ ∥e⊤i R5∥+ ∥e⊤i R6∥

≲ θ
1/2
i

K2θ
3/2
max∥θ∥1 log(n)
λ
3/2
min∥θ∥4

+ θ
1/2
i

K4
√︁

∥θ∥1 log(n)θmax

λ
3/2
min∥θ∥4

(︃√︁
K log(n) +

Kθmax∥θ∥1
λmin∥θ∥2

)︃

+ θ
1/2
i

K3∥θ∥3/21 θ2max

√︁
log(n)

λ
5/2
min∥θ∥6

≲ θ
1/2
i

K2θ
3/2
max∥θ∥1 log(n)
λ
3/2
min∥θ∥4

+ θ
1/2
i

K9/2
√︁

∥θ∥1θmax log(n)

λ
3/2
min∥θ∥4

+ θ
1/2
i

K5∥θ∥3/21 θ2max

√︁
log(n)

λ
5/2
min∥θ∥6

+ θ
1/2
i

K3∥θ∥3/21 θ2max

√︁
log(n)

λ
5/2
min∥θ∥6

≲ θ
1/2
i

K2θ
3/2
max∥θ∥1 log(n)
λ
3/2
min∥θ∥4

+ θ
1/2
i

K9/2
√︁

∥θ∥1θmax log(n)

λ
3/2
min∥θ∥4

+ θ
1/2
i

K5∥θ∥3/21 θ2max

√︁
log(n)

λ
5/2
min∥θ∥6

≲ (θiθmax)
1/2

(︃
K2θmax∥θ∥1 log(n)

λ
3/2
min∥θ∥4

+
K9/2

√︁
∥θ∥1θmax log(n)

λ
3/2
min∥θ∥4

+
K5∥θ∥3/21 θ

3/2
max

√︁
log(n)

λ
5/2
min∥θ∥6

)︃

≲ θi

(︃
θmax

θmin

)︃1/2(︃K2θmax∥θ∥1 log(n)
λ
3/2
min∥θ∥4

+
K9/2

√︁
∥θ∥1θmax log(n)

λ
3/2
min∥θ∥4

+
K5∥θ∥3/21 θ

3/2
max

√︁
log(n)

λ
5/2
min∥θ∥6

)︃

≲ θi

(︃
θmax

θmin

)︃1/2(︃K9/2θmax∥θ∥1 log(n)
λ
3/2
min∥θ∥4

)︃
,

where we have used the fact that λmin∥θ∥2 ≳ K
√︁
θmax∥θ∥1 log(n) and θmax∥θ∥1 ≳ log(n),

the first of which we verified at the beginning of this proof and the second by Assumption 6.2.

Putting these together, we arrive at

∥e⊤i R∥ ≲ θi

(︃
K7/2

√︁
log(n)

∥θ∥2λ1/2min

+
K4θmax∥θ∥1
∥θ∥4λ3/2min

+
K2θmax∥θ∥1
∥θ∥4λ2min

)︃

+ θi

(︃
θmax

θmin

)︃1/2(︃K9/2θmax∥θ∥1 log(n)
λ
3/2
min∥θ∥4

)︃

≲ θi
K7/2

√︁
log(n)

∥θ∥2λ1/2min

+ θi
K2θmax∥θ∥1
∥θ∥4λ2min

+ θi

(︃
θmax

θmin

)︃1/2(︃K9/2θmax∥θ∥1 log(n)
λ
3/2
min∥θ∥4

)︃

Consequently, we see that with probability at least 1−O(n−18), each row i of ˆ︁X satisfies

ˆ︁XW⊤
∗ −X = e⊤i (A−P)U|Λ|−1/2Ip,q + e⊤i R,
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where R satisfies

∥e⊤i R∥ ≲ θi
K7/2

√︁
log(n)

∥θ∥2λ1/2min

+ θi
K2θmax∥θ∥1
∥θ∥4λ2min

+ θi

(︃
θmax

θmin

)︃1/2(︃K9/2θmax∥θ∥1 log(n)
λ
3/2
min∥θ∥4

)︃

≲ θi
K2θmax∥θ∥1
∥θ∥4λ2min

+ θi

(︃
θmax

θmin

)︃1/2(︃K9/2θmax∥θ∥1 log(n)
λ
3/2
min∥θ∥4

)︃
(F.19)

In what follows, denote

αR : =
K2θmax∥θ∥1
∥θ∥4λ2min

+

(︃
θmax

θmin

)︃1/2(︃K9/2θmax∥θ∥1 log(n)
∥θ∥4λ3/2min

)︃
, (F.20)

so that ∥e⊤i R∥ ≲ θiαR.

Step 2: First Order Approximation of ˆ︁Y:

Now, we note that

e⊤i (A−P)U|Λ|−1/2Ip,q =

n∑︂
j=1

(Aij −Pij)(U|Λ|−1/2Ip,q)j·

is a sum of n independent random matrices. Bernstein’s inequality shows that this is less

than or equal to

√︁
θi∥θ∥1 log(n)

λ1/2
∥U∥2,∞ ≲

K
√︁
θi∥θ∥1 log(n)
λ
1/2
min∥θ∥

θmax

∥θ∥

≍
K
√︁
θi∥θ∥1 log(n)θmax

∥θ∥2λ1/2min

≍ θi

(︃
θmax

θi

)︃1/2[︃K√︁θmax∥θ∥1 log(n)
∥θ∥2λ1/2min

]︃
.

Consequently, we obtain that

∥e⊤i ˆ︁XW⊤
∗ − e⊤i X∥ ≲ θi

(︃
θmax

θi

)︃1/2[︃K√︁θmax∥θ∥1 log(n)
∥θ∥2λ1/2min

]︃
+ θiλ

1/2
minαR

= θi

{︄(︃
θmax

θi

)︃1/2[︃K√︁θmax∥θ∥1 log(n)
λ
1/2
min∥θ∥2

]︃
+ αR

}︄

≤ 1

64
∥Xi∥,
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since ∥Xi∥ ≳ θi, as long as αR ≲ 1 and that

(︃
θmax

θmin

)︃1/2K
√︁
θmax∥θ∥1 log(n)
λ
1/2
min∥θ∥2

≲ 1, (F.21)

both of which are guaranteed Assumption 6.2, which we will verify now. First, a direct

comparison of αR with Assumption 6.2 shows that αR ≤ λ̄
C
√
K

, which is strictly less than

one. In addition, by squaring (F.21), we see that we require that

θmax

θmin

K2θmax∥θ∥1 log(n)
λmin∥θ∥4

≲ 1,

but this is of smaller order than the first term in αR. Consequently, we are free to apply

Taylor’s Theorem to the function x ↦→ x/∥x∥ in a neighborhood of at most constant radius

of Xi· not containing zero to obtain

(︁ ˆ︁YW⊤
∗
)︁
i· −Yi· =

(︁ ˆ︁XW⊤
∗
)︁
i·

∥ˆ︁Xi·∥
− Xi·

∥Xi·∥

= J(Xi·)
(︁
(ˆ︁XW⊤

∗ )i· −Xi·
)︁
+
(︁ ˜︁RY

)︁
i·,

where

∥e⊤i ˜︁RY ∥ ≲ r2 max
|α|=2

sup
∥c−Xi∥≤r

∥Dα(c)∥,

where Dα denotes the partial derivatives of the function x ↦→ x
∥x∥ , and r satisfies

r ≤ Cθi

{︄(︃
θmax

θi

)︃1/2[︃K√︁θmax∥θ∥1 log(n)
λ
1/2
min∥θ∥2

]︃
+ αR

}︄
, (F.22)

for some constant C > 0. We also have used the notation

J(Xi·) =
1

∥Xi·∥

(︃
I− Xi·X

⊤
i·

∥Xi·∥2

)︃
,
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which is the Jacobian of the mapping x ↦→ x
∥x∥ . Expanding further, we have that

(︁ ˆ︁YW⊤
∗
)︁
i· −Yi· =

1

∥Xi·∥

(︃
I− Xi·X

⊤
i·

∥Xi·∥2

)︃(︁
(ˆ︁XW∗)i· −Xi·

)︁
+
(︁ ˜︁RY

)︁
i·

=
1

∥Xi·∥

(︃
I− Xi·X

⊤
i·

∥Xi·∥2

)︃(︃(︁
A−P

)︁
U|Λ|−1/2Ip,q

)︃
i·
+

1

∥Xi·∥

(︃
I− Xi·X

⊤
i·

∥Xi·∥2

)︃(︁
R
)︁
i· +

(︁ ˜︁RY

)︁
i·.

This justifies the linear part of the expansion, where we define

(︁
RStage I

)︁
i· : =

1

∥Xi·∥

(︃
I− Xi·X

⊤
i·

∥Xi·∥2

)︃(︁
R
)︁
i· +

(︁ ˜︁RY

)︁
i·.

Therefore, it remains to bound this residual. Recall that we already have the bound

∥e⊤i R∥ ≲ θiαR

with probability at least 1 − O(n−18) by (F.20). Consequently, with this same probability,

we note that ∥Xi∥ ≳ θi, so that

⃦⃦⃦⃦
1

∥Xi·∥

(︃
I− Xi·X

⊤
i·

∥Xi·∥2

)︃(︁
R
)︁
i·

⃦⃦⃦⃦
≲

1

θi

⃦⃦⃦⃦(︃
I− XiX

⊤
i

∥Xi∥2

)︃(︁
R
)︁
i·

⃦⃦⃦⃦
≲ αR,

since the term I − Xi·X⊤
i·

∥Xi·∥2 is a projection matrix. We therefore need only bound the term

e⊤i
˜︁RY which satisfies

∥e⊤i ˜︁RY ∥ ≲ r2 max
|α|=2

sup
∥c−Xi·∥

∥Dα(c)∥.

We now note that the mixed partials of the mapping x ↦→ x
∥x∥ are given by

∂2

∂xi∂xj

xk
∥x∥

=
3xixjxk
∥x∥5

−
δikxj + δijxk + δjkxi

∥x∥3
.

We evaluate this in a neighborhood of Xi· of radius at most r where r satisfies the inequality
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in (F.22). It is straightforward to observe that since r ≲ ∥Xi·∥, we have

max
|α|=2

sup
∥c−Xi∥≤r

∥Dα(c)∥ ≲
1

∥Xi∥2
.

Therefore,

∥e⊤i ˜︁RY ∥ ≲
r2

∥Xi∥2

≲
θ2i

∥Xi·∥2

{︄(︃
θmax

θi

)︃1/2[︃K√︁θmax∥θ∥1 log(n)
λ
1/2
min∥θ∥2

]︃
+ αR

}︄2

≲

{︄(︃
θmax

θi

)︃1/2[︃K√︁θmax∥θ∥1 log(n)
λ
1/2
min∥θ∥2

]︃
+ αR

}︄2

≲

(︃
θmax

θi

)︃
K2θmax∥θ∥1 log(n)

λmin∥θ∥4
+ αR,

which holds as long as C in Assumption 6.2 is larger than t he universal constants above,

and hence both terms will be smaller than one. Therefore, we obtain that

∥e⊤i RStage I∥ ≲

(︃
θmax

θmin

)︃
K2θmax∥θ∥1 log(n)

λmin∥θ∥4
+ αR

≍
(︃
θmax

θmin

)︃
K2θmax∥θ∥1 log(n)

λmin∥θ∥4
+
K2θmax∥θ∥1
∥θ∥4λ2min

+

(︃
θmax

θmin

)︃1/2(︃K9/2θmax∥θ∥1 log(n)
∥θ∥4λ3/2min

)︃

≲
K2θmax∥θ∥1
λmin∥θ∥4

(︃
log(n)

θmax

θmin
+

1

λmin
+

(︃
θmax

θmin

)︃1/2K5/2 log(n)

λ
1/2
min

)︃

which holds with probability at least 1 − O(n−18). This is the advertised bound, which

completes the proof.

F.2.3 Proofs of Lemmas 61 and 63

To prove these lemmas we require leave-one-out sequences, similar to Abbe et al. (2020).

First we state the following lemma concerning the leave-one-out sequences. The proof is

deferred to Appendix F.2.3.

Lemma 64 (Good properties of Leave-one-out sequences). Let A(l,−i) denote the matrix A(l)

with its i’th row and column replaced with P(l). Let ˆ︁U(−i) denote the leading K eigenvectors
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of A(l,−i). Suppose that λ ≳
√︁
θmax∥θ∥1 log(n) and mini θi∥θ∥1 ≳ log(n). Then the following

hold with probability at least 1−O(n−20):

|λK(A(l))− λK+1(A
(l,−i))| ≳ λ(l);

∥e⊤i (A(l) −P(l))ˆ︁U(−i)∥ ≲
√︁
θi∥θ∥1 log(n)∥ˆ︁U∥2,∞;

∥ˆ︁Uˆ︁U⊤ − ˆ︁U(−i)(ˆ︁U(−i))⊤∥ ≲

√︁
θi∥θ∥1 log(n)

λ
∥ˆ︁U∥2,∞.

We now prove Lemma 61. The statement is repeated for convenience.

Lemma 61 (Row-Wise Concentration I). When λ ≳
√︁
θmax∥θ∥1 log(n) and mini θi∥θ∥1 ≳

log(n), it holds that

∥e⊤i (A− EA)ˆ︁U∥ ≲
√︁
θi∥θ∥1 log(n)∥ˆ︁U∥2,∞

Proof of Lemma 61. First, let ˆ︁U(−i) denote the eigenvectors of A(l) with the i’th row and

column replaced with the corresponding row and column of P(l). Observe that

∥e⊤i (A− EA)ˆ︁U∥ = ∥e⊤i (A− EA)ˆ︁Uˆ︁U⊤∥

≤ ∥e⊤i (A(l) −P(l))ˆ︁U(−i)(ˆ︁U(−i))⊤∥+ ∥e⊤i (A(l) −P(l))
(︁ ˆ︁Uˆ︁U⊤ − ˆ︁U(−i)(ˆ︁U(−i))⊤

)︁
∥

≤ ∥e⊤i (A(l) −P(l))ˆ︁U(−i)∥+ ∥e⊤i (A(l) −P(l))∥∥ˆ︁Uˆ︁U⊤ − ˆ︁U(−i)(ˆ︁U(−i))⊤∥

≤ ∥e⊤i (A(l) −P(l))ˆ︁U(−i)∥+ ∥(A(l) −P(l))∥∥ˆ︁Uˆ︁U⊤ − ˆ︁U(−i)(ˆ︁U(−i))⊤∥

≲
√︁
θi∥θ∥1 log(n)∥ˆ︁U∥2,∞ +

√︁
θmax∥θ∥1

√︁
θi∥θ∥1 log(n)

λ
∥ˆ︁U∥2,∞,

where the final inequality holds with probability at least 1 − O(n−20) by Lemma 64 and

Lemma 59. Consequently, since λ ≳
√︁
θmax∥θ∥1, we obtain that

∥e⊤i (A− EA)ˆ︁U∥ ≲
√︁
θi∥θ∥1 log(n)∥ˆ︁U∥2,∞

with probability at least 1−O(n−20) which completes the proof.

We now restate Lemma 63 for convenience.
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Lemma 63 (Row-wise Concentration II). When λ ≳
√︁
θmax∥θ∥1 log(n) and mini θi∥θ∥1 ≳

log(n), with probability at least 1−O(n−19), it holds that

∥e⊤i (A− EA)(ˆ︁Uˆ︁U⊤U−U)∥ ≲
√︁
θi∥θ∥1 log(n)∥

√︁
θmax∥θ∥1 log(n)

λ
∥U∥2,∞.

Proof. First we will argue that

∥e⊤i (A− EA)(ˆ︁Uˆ︁U⊤U−U)∥ ≲
√︁
θi∥θ∥1 log(n)

√︁
θi∥θ∥1 log(n)

λ
∥ˆ︁U∥2,∞

+
√︁
θi∥θ∥1 log(n)∥ˆ︁Uˆ︁U⊤U−U∥2,∞ (F.23)

with probability at least 1−O(n−20). Provided this is true, by Lemma 62, we have that

∥ˆ︁U∥2,∞ ≲ ∥U∥2,∞;

∥ˆ︁Uˆ︁U⊤U−U∥2,∞ ≲

√︁
θmax∥θ∥1 log(n)

λ
∥U∥2,∞,

with probability at least 1−O(n−19). Plugging these in yields

∥e⊤i (A− EA)(ˆ︁Uˆ︁U⊤U−U)∥ ≲
√︁
θi∥θ∥1 log(n)

√︁
θi∥θ∥1 log(n)

λ
∥U∥2,∞

+
√︁
θi∥θ∥1 log(n)∥

√︁
θmax∥θ∥1 log(n)

λ
∥U∥2,∞

≲
√︁
θi∥θ∥1 log(n)∥

√︁
θmax∥θ∥1 log(n)

λ
∥U∥2,∞,

which is the desired bound. Therefore, it remains to prove the claim (F.23).

Proceeding similarly to the proof of Lemma 61,

∥e⊤i (A−EA)(ˆ︁Uˆ︁U⊤U−U)∥

≤ ∥e⊤i
(︁
A−P

)︁
(ˆ︁Uˆ︁U⊤U− ˆ︁U(−i)(ˆ︁U(−i))⊤U)∥+ ∥e⊤i

(︁
A−P

)︁(︁ ˆ︁U(−i)(ˆ︁U(−i))⊤U−U
)︁
∥

≤ ∥e⊤i
(︁
A−P

)︁
∥∥ˆ︁Uˆ︁U⊤ − ˆ︁U(−i)(ˆ︁U(−i))⊤∥+ ∥e⊤i

(︁
A−P

)︁(︁ ˆ︁U(−i)(ˆ︁U(−i))⊤U−U
)︁
∥.

First, we note that the matrix
(︁ ˆ︁U(−i)(ˆ︁U(−i))⊤U −U

)︁
is independent from the i’th row of
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A−P. The matrix Bernstein inequality (Corollary 3.3 of Chen et al. (2021c)) shows that

∥e⊤i
(︁
A−P

)︁(︁ ˆ︁U(−i)(ˆ︁U(−i))⊤U−U
)︁
∥ ≤

√︁
42v log(n) +

42

3
w log(n)

with probability at least 1− 2n−20, where we have defined

v : = max

{︃⃦⃦⃦⃦ n∑︂
j=1

E
[︁
(Aij −Pij)

(︁ ˆ︁U(−i)(ˆ︁U(−i))⊤U−U
)︁
j·
(︁ ˆ︁U(−i)(ˆ︁U(−i))⊤U−U

)︁⊤
j·(Aij −Pij)

⃦⃦⃦⃦
,

⃦⃦⃦⃦ n∑︂
j=1

E
[︃(︁ ˆ︁U(−i)(ˆ︁U(−i))⊤U−U

)︁⊤
j·(Aij −Pij)

2
(︁ ˆ︁U(−i)(ˆ︁U(−i))⊤U−U

)︁
j·

]︃⃦⃦⃦⃦}︃
;

w : = max
1≤j≤n

∥(Aij −Pij)
(︁ ˆ︁U(−i)(ˆ︁U(−i))⊤U−U

)︁
j·∥

≤ ∥ˆ︁U(−i)(ˆ︁U(−i))⊤U−U∥2,∞.

For the term v, we recognize that Aij −Pij is a scalar, yielding

v ≤ θi∥θ∥1∥ˆ︁U(−i)(ˆ︁U(−i))⊤U−U∥22,∞

(for details on this calculation, see the proof of Lemma 64). Consequently,

∥e⊤i
(︁
A−P

)︁(︁ ˆ︁U(−i)(ˆ︁U(−i))⊤U−U
)︁
∥ ≤

√︁
42v log(n) +

42

3
w log(n)

≲
√︁
θi∥θ∥1 log(n)∥ˆ︁U(−i)(ˆ︁U(−i))⊤U−U∥2,∞,

as long as mini θi∥θ∥1 ≳ log(n). Moreover, a straightforward Bernstein inequality argu-

ment shows that ∥e⊤i
(︁
A − P

)︁
∥ ≲

√︁
θi∥θ∥1 log(n) with probability at least 1 − O(n−20).

Consequently, by Lemma 64 and Lemma 59, with probability at least 1−O(n−20) it holds
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that

∥e⊤i (A−EA)(ˆ︁Uˆ︁U⊤U−U)∥

≤ ∥e⊤i
(︁
A−P

)︁
∥∥ˆ︁Uˆ︁U⊤ − ˆ︁U(−i)(ˆ︁U(−i))⊤∥

+ ∥e⊤i
(︁
A−P

)︁(︁ ˆ︁U(−i)(ˆ︁U(−i))⊤U−U
)︁
∥

≲
√︁
θi∥θ∥1 log(n)

√︁
θi∥θ∥1 log(n)

λ
∥ˆ︁U∥2,∞

+
√︁
θi∥θ∥1 log(n)∥ˆ︁U(−i)(ˆ︁U(−i))⊤U−U∥2,∞

≲
√︁
θi∥θ∥1 log(n)

√︁
θi∥θ∥1 log(n)

λ
∥ˆ︁U∥2,∞

+
√︁
θi∥θ∥1 log(n)

(︃
∥ˆ︁U(−i)(ˆ︁U(−i))⊤U− ˆ︁Uˆ︁U⊤U∥2,∞ + ∥ˆ︁Uˆ︁U⊤U−U∥2,∞

)︃
≲
√︁
θi∥θ∥1 log(n)

√︁
θi∥θ∥1 log(n)

λ
∥ˆ︁U∥2,∞ +

√︁
θi∥θ∥1 log(n)∥ˆ︁Uˆ︁U⊤U−U∥2,∞.

Proof of Lemma 64

We restate Lemma 64 for convenience.

Lemma 64 (Good properties of Leave-one-out sequences). Let A(l,−i) denote the matrix A(l)

with its i’th row and column replaced with P(l). Let ˆ︁U(−i) denote the leading K eigenvectors

of A(l,−i). Suppose that λ ≳
√︁
θmax∥θ∥1 log(n) and mini θi∥θ∥1 ≳ log(n). Then the following

hold with probability at least 1−O(n−20):

|λK(A(l))− λK+1(A
(l,−i))| ≳ λ(l);

∥e⊤i (A(l) −P(l))ˆ︁U(−i)∥ ≲
√︁
θi∥θ∥1 log(n)∥ˆ︁U∥2,∞;

∥ˆ︁Uˆ︁U⊤ − ˆ︁U(−i)(ˆ︁U(−i))⊤∥ ≲

√︁
θi∥θ∥1 log(n)

λ
∥ˆ︁U∥2,∞.

Proof of Lemma 64. First, by Lemma 59, it holds that

∥A(l) −P(l)∥ ≲
√︁
θmax∥θ∥1

≤ λ/
√︁
log(n).
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Therefore, Weyl’s inequality shows that

|λK(A(l))| ≥ |λK | − ∥A(l) −P(l)∥

≥ λ− λ/
√︁
log(n)

≥ λ/2 ≳ λ,

and that |λK+1(A
(l))| ≤ ∥A(l)−P(l)∥ ≤ |λK |/

√︁
log(n). Therefore, |λK(A(l))|−|λK+1(A

(l))| ≳

λ. Furthermore,

∥e⊤i
(︁
A(l) −P(l)

)︁
∥ ≤ ∥A(l) −P(l)∥.

Observe that A(l) = A(l,−i) + eie
⊤
i

(︁
A(l) −P(l)

)︁
+
(︁
A(l) −P(l)

)︁
eie

⊤
i − eie

⊤
i

(︁
A(l) −P(l)

)︁
eie

⊤
i .

Consequently, by Weyl’s inequality,

|λK(A(l,−i))− λK+1(A
(l))| ≥ |λK(A(l))| − |λK+1(A

(l))|

−
⃦⃦⃦⃦
eie

⊤
i

(︁
A(l) −P(l)

)︁
+
(︁
A(l) −P(l)

)︁
eie

⊤
i − eie

⊤
i

(︁
A(l) −P(l)

)︁
eie

⊤
i

⃦⃦⃦⃦
≳ |λK |.

This proves the first assertion. As a byproduct, we are free to apply the Davis-Kahan

Theorem to ˆ︁U and ˆ︁U(−i) to observe that

∥ˆ︁Uˆ︁U⊤ − ˆ︁U(−i)(ˆ︁U(−i))⊤∥ ≲
∥e⊤i

(︁
A−P(l)

)︁ ˆ︁U(−i)∥+ ∥
(︁
A−P

)︁
eie

⊤
i
ˆ︁U(−i)∥

λ

≲
∥e⊤i

(︁
A−P(l)

)︁ ˆ︁U(−i)∥
λ

+
∥e⊤i

(︁
A−P

)︁
∥∥e⊤i ˆ︁U(−i)∥
λ

.

Consequently, we need only bound the numerators above; however, a bound on the first

term will also prove the second assertion of this lemma. Note that

e⊤i
(︁
A−P

)︁ ˆ︁U(−i) =

n∑︂
j=1

(︁
Aij −Pij

)︁ ˆ︁U(−i)
j· .

Since ˆ︁U(−i) is independent from the i’th row of Aij , this is a sum of n independent random
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matrices condition on ˆ︁U(−i). Therefore, the matrix Bernstein inequality (Corollary 3.3 of

Chen et al. (2021c)) reveals that

∥e⊤i
(︁
A−P

)︁ ˆ︁U(−i)∥ ≤
√︁

42v log(n) +
42

3
w log(n)

with probability at least 1− 2n−20. Here we note that

v : = max

{︃⃦⃦⃦⃦ n∑︂
j=1

E
[︁
(Aij −Pij)ˆ︁U(−i)

j· (ˆ︁U(−i)
j· )⊤(Aij −Pij)

]︁⃦⃦⃦⃦
,

⃦⃦⃦⃦ n∑︂
j=1

E
[︁
(ˆ︁U(−i)

j· )⊤(Aij −Pij)
2 ˆ︁U(−i)

j·
]︁⃦⃦⃦⃦}︃

;

w : = max
1≤j≤n

∥(Aij −Pij)ˆ︁U(−i)
j· ∥

≤ ∥ˆ︁U(−i)∥2,∞,

where the expectation in the first term is conditional on ˆ︁U(−i). Observing that Aij −Pij is

a scalar reveals that

v ≤ max

{︃⃦⃦⃦⃦ n∑︂
j=1

ˆ︁U(−i)
j· (ˆ︁U(−i)

j· )⊤E(Aij −Pij)
2

⃦⃦⃦⃦
,

⃦⃦⃦⃦ n∑︂
j=1

(ˆ︁U(−i)
j· )⊤ ˆ︁U(−i)

j· E(Aij −Pij)
2

⃦⃦⃦⃦}︃

≤
n∑︂
j=1

∥ˆ︁U(−i)
j· ∥2θiθj

≤ ∥ˆ︁U(−i)∥22,∞θi∥θ∥1.

Therefore, it holds that

∥e⊤i
(︁
A−P

)︁ ˆ︁U(−i)∥ ≤
√︁

42v log(n) +
42

3
L log(n)

≤
√︁

42θi∥θ∥1 log(n)∥ˆ︁U(−i)∥2,∞ +
42

3
log(n)∥ˆ︁U(−i)∥2,∞

≲
√︁
θi∥θ∥1 log(n)∥ˆ︁U(−i)∥2,∞,

which holds as long as mini θi∥θ∥1 ≳ log(n). Moreover, we have that ∥e⊤i (A − P)∥ ≲√︁
θi∥θ∥1 log(n) by a direct application of matrix Bernstein again. Consequently, applying
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these bounds yields that

∥ˆ︁Uˆ︁U⊤ − ˆ︁U(−i)(ˆ︁U(−i))⊤∥ ≲
∥e⊤i

(︁
A−P(l)

)︁ ˆ︁U(−i)∥
λ

+
∥e⊤i

(︁
A−P

)︁
∥∥e⊤i ˆ︁U(−i)∥
λ

≲

√︁
θi∥θ∥1 log(n)

λ
∥ˆ︁U(−i)∥2,∞.

As a byproduct, we also have that

∥ˆ︁U(−i)∥2,∞ = ∥ˆ︁U(−i)(ˆ︁U(−i))⊤∥2,∞

≤ ∥ˆ︁U(−i)(ˆ︁U(−i))⊤ − ˆ︁Uˆ︁U⊤∥2,∞ + ∥ˆ︁Uˆ︁U⊤∥2,∞

≤ 1

2
∥ˆ︁U(−i)∥2,∞ + ∥ˆ︁U∥2,∞,

which holds as long as λ ≳
√︁
θmax∥θ∥1 log(n). Consequently, by rearranging, we have that

∥ˆ︁U(−i)∥2,∞ ≲ ∥ˆ︁U∥2,∞ which yields the inequality

∥ˆ︁Uˆ︁U⊤ − ˆ︁U(−i)(ˆ︁U(−i))⊤∥ ≲

√︁
θi∥θ∥1 log(n)

λ
∥ˆ︁U∥2,∞,

which holds with probability at least 1−O(n−20). Moreover, with this same probability, we

have that

∥e⊤i (A−P)ˆ︁U(−i)∥ ≲
√︁
θi∥θ∥1 log(n)∥ˆ︁U∥2,∞.

This completes the proof.

F.3 Proof of Second Stage sinΘ Bound (Theorem 20)

First we will restate Theorem 20.

Theorem 20 (sinΘ Perturbation Bound). Suppose the conditions in Theorem 16 hold.

Define

αmax =
K2θ

(l)
max∥θ(l)∥1

λ
(l)
min∥θ(l)∥4

(︃
log(n)

θ
(l)
max

θ
(l)
min

+
1

λ
(l)
min

+

(︃
θ
(l)
max

θ
(l)
min

)︃1/2K5/2 log(n)

(λ
(l)
min)

1/2

)︃
;
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i.e., αmax is the residual upper bound from Theorem 19. Then with probability at least

1−O(n−10), it holds that

∥ sinΘ(ˆ︁U,U)∥ ≲ K2
√︁

log(n)

(︁
1
L∥SNR

−1∥22
)︁1/2

√
Lλ̄

+K3 log(n)
∥SNR−1∥2∞

λ̄

+K2
√︁
log(n)

αmax∥SNR−1∥∞
λ̄

+
Kαmax

λ̄
.

In particular, under the conditions of Theorem 16 it holds that

∥ sinΘ(ˆ︁U,U)∥ ≲
1

K
.

In what follows we give a high-level overview of the proof. Define the matrix Y :=

[Y(1), · · · ,Y(L)] ∈ Rn×LK , and let ˆ︁Y be defined similarly. Since we consider the singular

vectors of Y and ˆ︁Y, we will examine the eigenvectors of their associated n×n Gram matrices,

or the matrices YY⊤ and ˆ︁Y ˆ︁Y⊤ respectively. Therefore, we will view ˆ︁Y ˆ︁Y⊤ as a perturbation

of matrix YY⊤. We expand via

YY⊤ − ˆ︁Y ˆ︁Y⊤ = L(E)Y⊤ + YL(E)⊤ +Rall,

where we define

Rall : =
∑︂
l

L(E(l))L(E(l))⊤ + L(E(l))(R(l)
Stage I)

⊤ +R(l)
Stage IL(E

(l))⊤ +R(l)
Stage I(R

(l)
Stage I)

⊤

+
∑︂
l

R(l)
Stage I(Y

(l))⊤ +Y(l)(R(l)
Stage I)

⊤,

and

L(E) : =
[︁
L(E(1)), · · · ,L(E(L))

]︁
,

where we have defined E(l) as the mean-zero random matrix E(l) := A(l) −P(l). Hence,

L(E)Y⊤ + YL(E)⊤ =
∑︂
l

L(E(l))(Y(l))⊤ +Y(l)L(E(l))⊤.
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By virtue of the tight characterization for each R(l)
Y in Theorem 19, we can see that YY⊤ is

nearly a linear perturbation of ˆ︁Y ˆ︁Y⊤. The proof of Theorem 20 makes this rigorous.

F.3.1 Preliminary Lemmas: Spectral Norm Concentration Bounds

Throughout this section we use the notation E(l) := A(l)−P(l). The following lemma bounds

several terms involving L(E(l)) in spectral norm.

Lemma 65. It holds that

∥L(E(l))∥ ≲
K
√︁
n log(n)

(λ
(l)
min)

1/2∥θ(l)∥

(︃
θ
(l)
max

θ
(l)
min

)︃1/2

;

∥
∑︂
l

L(E(l))(Y(l))⊤∥ ≲ Kn
√︁
L log(n)

[︄
1

L

∑︂
l

(︃
θ
(l)
max

θ
(l)
min

)︃
1

λ
(l)
min∥θ(l)∥2

]︄1/2
.

with probability at least 1−O(n−15).

Proof of Lemma 65. We recall that

L(E(l))i· = J(Xi·)

(︃
(A(l) −P(l))U(l)|Λ(l)|−1/2I(l)p,q

)︃
i·
.

Therefore, we can write this matrix via

L(E(l)) =

(︃∑︂
i,j

E
(l)
ij eie

⊤
j

)︃(︃
U(l)|Λ(l)|−1/2I(l)p,qJ(Xi·)

)︃

=
∑︂
i≤j

E
(l)
ij eie

⊤
j

(︃
U(l)|Λ(l)|−1/2I(l)p,qJ(Xi·)

)︃
+
∑︂
j<i

E
(l)
ij eje

⊤
i

(︃
U(l)|Λ(l)|−1/2I(l)p,qJ(Xj·)

)︃
,

both of which are a sum of independent random matrices. Without loss of generality we

bound the first term; the second is similar. We will apply the matrix Bernstein inequality
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(Chen et al. (2021c), Corollary 3.3). We need to bound:

v : = max

{︃⃦⃦⃦⃦∑︂
i≤j

E(E(l)
ij )

2

(︃
U(l)|Λ(l)|−1/2I(l)p,qJ(Xi·)

)︃⊤
eie

⊤
j eje

⊤
i

(︃
U(l)|Λ(l)|−1/2I(l)p,qJ(Xi·)

)︃⊤ ⃦⃦⃦⃦
,

⃦⃦⃦⃦∑︂
i≤j

E(E(l)
ij )

2eie
⊤
j

(︃
U(l)|Λ(l)|−1/2I(l)p,qJ(Xi·)

)︃(︃
U(l)|Λ(l)|−1/2I(l)p,qJ(Xi·)

)︃⊤
eje

⊤
i

⃦⃦⃦⃦}︃
;

w : = max
i,j

∥E(l)
ij eie

⊤
j

(︃
U(l)|Λ(l)|−1/2I(l)p,qJ(Xi·)

)︃
∥.

For v, we note that

⃦⃦⃦⃦∑︂
i≤j

E(E(l)
ij )

2

(︃
U(l)|Λ(l)|−1/2I(l)p,qJ(Xi·)

)︃⊤
eie

⊤
j eje

⊤
i

(︃
U(l)|Λ(l)|−1/2I(l)p,qJ(Xi·)

)︃⊤ ⃦⃦⃦⃦

≤
∑︂
i≤j

E(E(l)
ij )

2

⃦⃦⃦⃦(︃
U(l)|Λ(l)|−1/2I(l)p,qJ(Xi·)

)︃⊤
eie

⊤
j eje

⊤
i

(︃
U(l)|Λ(l)|−1/2I(l)p,qJ(Xi·)

)︃⊤ ⃦⃦⃦⃦

≤
∑︂
i≤j

θ
(l)
i θ

(l)
j ∥e⊤j U(l)∥2∥|Λ(l)|−1/2∥2∥J(Xi·)∥2

≤ K

λ
(l)
min∥θ(l)∥2

∑︂
i≤j

θ
(l)
i θ

(l)
j ∥e⊤j U(l)∥2∥J(Xi·)∥2

≤ K

λ
(l)
min∥θ(l)∥2

∑︂
i≤j

θ
(l)
i θ

(l)
j

(θ
(l)
j )2K

∥θ(l)∥2
1

(θ
(l)
i )2

≤ K2

λ
(l)
min∥θ(l)∥4

∑︂
i≤j

θ
(l)
j

θ
(l)
i

(θ
(l)
j )2

≤ K2n

λ
(l)
min∥θ(l)∥4

(︃
θ
(l)
max

θ
(l)
min

)︃∑︂
j

θ2j

≤ K2n

λ
(l)
min∥θ(l)∥4

(︃
θ
(l)
max

θ
(l)
min

)︃
∥θ(l)∥2

≤ K2n

λ
(l)
min∥θ(l)∥2

(︃
θ
(l)
max

θ
(l)
min

)︃
.
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The other term satisfies the same upper bound. In addition,

w = max
i,j

∥E(l)
ij eie

⊤
j

(︃
U(l)|Λ(l)|−1/2I(l)p,qJ(Xi·)

)︃
∥

≤ ∥U(l)∥2,∞∥|Λ(l)|−1/2∥max
i

∥J(Xi·)∥

≤ K

∥θ∥2λ(l)min

(︃
θ
(l)
max

(θ
(l)
min)

1/2

)︃
.

Therefore, by the Matrix Bernstein inequality, with probability at least 1−O(n−20) it holds

that

∥L(E(l))∥ ≲
√︁
v log(n) + w log(n)

≲
K
√︁
n log(n)

(λ
(l)
min)

1/2∥θ(l)∥

(︃
θ
(l)
max

θ
(l)
min

)︃1/2

+
K log(n)

∥θ(l)∥2(λ(l)min)
1/2

(︃
θ
(l)
max

θ
(l)
min

)︃

≤
K
√︁
log(n)

(λ
(l)
min)

1/2∥θ(l)∥

(︃
θ
(l)
max

θ
(l)
min

)︃1/2

max

{︃√
n,

(︃
θ
(l)
max

θ
(l)
min

)︃1/2
√︁
log(n)

∥θ(l)∥

}︃
.

Finally, we note that by Assumption 6.2, it holds that θmax
θmin

≲
√
n, which implies that

√
n is

the maximum of the term above. Therefore,

∥L(E(l))∥ ≲
K
√︁
n log(n)

(λ
(l)
min)

1/2∥θ(l)∥

(︃
θ
(l)
max

θ
(l)
min

)︃1/2

,

which completes the proof of the first statement.

For the next statement, we proceed similarly, only now streamlining the analysis. Rep-

resenting the sum similarly, we have that

∑︂
l

L(E(l))(Y(l))⊤ =
∑︂
l

(︃∑︂
i≤j

E
(l)
ij eie

⊤
j

(︃
U(l)|Λ(l)|−1/2I(l)p,qJ(Xi·)

)︃
(Y(l))⊤

+
∑︂
l

(︃∑︂
j<i

E
(l)
ij eje

⊤
i

(︃
U(l)|Λ(l)|−1/2I(l)p,qJ(Xj·)

)︃
(Y(l))⊤.
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We focus again on the first term. Since it holds that ∥Y(l)∥ ≤ ∥Y(l)∥F =
√
n, we have that

v ≤
∑︂
l

K2n2

λ
(l)
min∥θ(l)∥2

(︃
θ
(l)
max

θ
(l)
min

)︃

= K2n2
∑︂
l

(︃
θ
(l)
max

θ
(l)
min

)︃
1

λ
(l)
min∥θ(l)∥2

and

w = max
i,j,m

∥E(l)
ij eie

⊤
j

(︃
U(l)|Λ(l)|−1/2I(l)p,qJ(Xi·)

)︃
(Y(l))⊤∥

≤ max
l

K
√
n

∥θ(l)∥2(λ(l)min)
1/2

(︃
θ
(l)
max

θ
(l)
min

)︃
.

Therefore, with probability at least 1−O(n−15),

∥
∑︂
l

L(E(l))(Y(l))⊤∥ ≲ Kn
√︁
log(n)

[︄∑︂
l

(︃
θ
(l)
max

θ
(l)
min

)︃
1

λ
(l)
min∥θ(l)∥2

]︄1/2

+K
√
n log(n)max

l

1

∥θ(l)∥2(λ(l)min)
1/2

(︃
θ
(l)
max

θ
(l)
min

)︃
.

Finally, we note that as long as θmax
θmin

≲
√
n, the first term dominates. Therefore,

∥
∑︂
l

L(E(l))(Y(l))⊤∥ ≲ Kn
√︁
L log(n)

[︄
1

L

∑︂
l

(︃
θ
(l)
max

θ
(l)
min

)︃
1

λ
(l)
min∥θ(l)∥2

]︄1/2
.

Next, we bound residual term Rall in spectral norm.

Lemma 66. The residual term Rall satisfies

∥Rall∥ ≲ LK2n log(n)∥SNR−1∥2∞ +KLn
√︁

log(n)αmax∥SNR−1∥∞ + nLαmax

with probability at least 1−O(n−15).
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Proof of Lemma 66. Recall that

Rall : =
∑︂
l

L(E(l))L(E(l))⊤ + L(E(l))(R(l)
Stage I)

⊤ +R(l)
Stage IL(E

(l))⊤ +R(l)
Stage I(R

(l)
Stage I)

⊤

+
∑︂
l

R(l)
Stage I(Y

(l))⊤ +Y(l)(R(l)
Stage I)

⊤

: = (I) + (II) + (III) + (IV ),

where

(I) : =
∑︂
l

L(E(l))L(E(l))⊤;

(II) : =
∑︂
l

L(E(l))(R(l)
Stage I)

⊤ + (R(l)
Stage I)L(E

(l))⊤;

(III) : =
∑︂
l

R(l)
Stage I(R

(l)
Stage I)

⊤;

(IV ) : =
∑︂
l

R(l)
Stage I(Y

(l))⊤ +Y(l)(R(l)
Stage I)

⊤.

We bound each term separately.

The Term (I): We note that by Lemma 65 we have the bound

∥L(E(l))∥ ≲
K
√︁
n log(n)

(λ
(l)
min)

1/2
⃦⃦
θ(l)
⃦⃦ (︄θ(l)max

θ
(l)
min

)︄1/2

.

Therefore,

⃦⃦⃦⃦∑︂
l

L(E(l))L(E(l))

⃦⃦⃦⃦
≲ Lmax

l

(︃
K
√︁
n log(n)

(λ
(l)
min)

1/2
⃦⃦
θ(l)
⃦⃦ (︄θ(l)max

θ
(l)
min

)︄1/2)︃2

= LK2n log(n)max
l

(︃
θ
(l)
max

θ
(l)
min

)︃
1

λ
(l)
min∥θ(l)∥2

≍ LK2n log(n)∥SNR−1∥2∞. (F.24)

The term (II) : without loss of generality we consider the first term. By Lemma 57, it
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holds that

∥R(l)
Stage I∥ ≲

√
nα(l),

where α(l) is the residual bound from Theorem 19. Therefore,

∑︂
l

∥L(E(l))R(l)
Stage I∥ ≲ L

√
nmax

l
α(l)max

l
∥L(E(l))∥

≍ KLn
√︁

log(n)αmax∥SNR−1∥∞, (F.25)

where we set αmax := maxl α
(l).

The Term (III): By a similar argument,

(III) ≲ nLmax
l

(α(l))2

≲ nLα2
max. (F.26)

The term (IV ): Finally, it holds that

∑︂
l

∥R(l)
Stage I∥∥Y

(l)∥ ≲ L
√
nαmaxmax

l
∥Y(l)∥

≲ Lnαmax. (F.27)

Putting it all together: Combining (F.24), (F.25), (F.26), and (F.27), we have that

∥Rall∥ ≲ LK2n log(n)∥SNR−1∥2∞ +KLn
√︁

log(n)αmax∥SNR−1∥∞ + nLα2
max + nLαmax

≍ LK2n log(n)∥SNR−1∥2∞ +KLn
√︁
log(n)αmax∥SNR−1∥∞ + nLαmax,

since αmax < 1 by Assumption 6.2 (as shown in the proof of Theorem 19).
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F.3.2 Proof of Theorem 20

Proof of Theorem 20. First, by Lemma 65, we have the bound

∥
∑︂
l

L(E(l))(Y(l))⊤∥ ≲ Kn
√︁
L log(n)

[︄
1

L

∑︂
l

(︃
θ
(l)
max

θ
(l)
min

)︃
1

λ
(l)
min∥θ(l)∥2

]︄1/2
.

Recall we define

(︁ 1
L
∥SNR−1∥22

)︁
: =

1

L

∑︂
l

(︃
θ
(l)
max

θ
(l)
min

)︃
1

λ
(l)
min∥θ(l)∥2

.

Then the bound can be concisely written as

∥
∑︂
l

L(E(l))(Y(l))⊤∥ ≲ Kn
√︁
L log(n)

(︁ 1
L
∥SNR−1∥22

)︁1/2
.

In addition, by Lemma 66, we have that

Rall ≲ LK2n log(n)∥SNR−1∥2∞ +KLn
√︁
log(n)αmax∥SNR−1∥∞ + nLαmax.

Therefore, it holds that

∥YY⊤ − ˆ︁Y ˆ︁Y⊤∥ ≲ Kn
√︁
L log(n)

(︁ 1
L
∥SNR−1∥22

)︁1/2
+ LK2n log(n)∥SNR−1∥2∞

+KLn
√︁

log(n)αmax∥SNR−1∥∞ + nLαmax.

Recall that λ2Y ≳ n
KLλ̄ by Lemma 8. Therefore, as long as

nLλ̄ ≳ K2n
√︁
L log(n)

(︁ 1
L
∥SNR−1∥22

)︁1/2
+ LK3n log(n)∥SNR−1∥2∞

+K2Ln
√︁

log(n)αmax∥SNR−1∥∞ + nLKαmax (F.28)
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it holds that

∥ sinΘ(ˆ︁U,U)∥ ≲ K2
√︁

log(n)

(︁
1
L∥SNR

−1∥22
)︁1/2

√
Lλ̄

+K3 log(n)
∥SNR−1∥2∞

λ̄

+K2
√︁
log(n)

αmax∥SNR−1∥∞
λ̄

+
Kαmax

λ̄
. (F.29)

Since the events listed above hold together with probability at least 1 − O(Ln−15), we see

that the whole event holds with probability at least 1 − O(n−10) by the assumption that

L ≲ n5.

We now verify (F.28). It is sufficient to check that the sinΘ bound in (F.29) is less than

one (which is equivalent to checking (F.28)). In fact, we will show that each term is less

than (in order) 1
K , which is the second statement of the result.

Assumption 6.2 requires that

C

(︃
θ
(l)
max

θ
(l)
min

)︃
K8θ

(l)
max∥θ(l)∥1 log(n)
∥θ(l)∥4(λ(l)min)

2
≤ λ̄.

This immediately implies that αmax

λ̄
≲ 1

K from the definition of αmax. By plugging in the

definition of SNR−1
l , we see that we require

CX
K8θ

(l)
max∥θ(l)∥1 log(n)
∥θ(l)∥2SNR2

l

≤ λ̄λ
(l)
min.

Therefore the final three terms being are less than 1
K since θ

(l)
max∥θ(l)∥1
∥θ(l)∥2 is always larger than

one. For the remaining term, we observe that by averaging the above equation over L, we

require that

C
K8 log(n)

L

∑︂
l

θ
(l)
max∥θ(l)∥1

∥θ(l)∥2SNR2
l

≤ λ̄
2
. (F.30)

By squaring the first term, we see that we need the first term to satisfy

K2 log(n)

L2λ̄
∥SNR−1∥22 ≲

1

K2
.

This is weaker than the condition (F.30). The proof is now complete.
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F.4 Proof of Second Stage Asymptotic Expansion (Theorem 21)

First we will restate Theorem 21.

Theorem 21 (Asymptotic Expansion: Stage II). Suppose the conditions of Theorem 16

hold. Define

W∗ : = argmin
W∈O(K)

∥ˆ︁U−UW∥F .

There is an event EStage II satisfying P
(︁
EStage II

)︁
≥ 1−O(n−10) such that on this event, we

have the asymptotic expansion

ˆ︁UW⊤
∗ −U =

∑︂
l

L(A(l) −P(l))(Y(l))⊤UΣ−2 +RStage II,

where L(·) is the operator from Theorem 19 and the residual satisfies

∥RStage II∥2,∞ ≲
K3
√︁

log(n)

nLλ̄
∥SNR−1∥2 +

K4 log(n)

L2
√
nλ̄

2 ∥SNR−1∥22

+
K7/2 log(n)√

nλ̄
∥SNR−1∥2∞ +

αmax√
nλ̄

.

Here αmax is as Theorem 20. In particular, under the assumptions of Theorem 16, it holds

that

∥RStage II∥2,∞ ≤ 1

16
√
nmax

.

To prove Theorem 21 we first state and prove several ∥ · ∥2,∞ concentration results for

the residual terms that arise in the asymptotic expansion, and we prove Theorem 21 in

Appendix F.4.2.

F.4.1 Preliminary Lemmas: ℓ2,∞ Residual Concentration Bounds

The following lemma bounds each of these residual terms in ∥ · ∥2,∞.

Lemma 67 (Second Stage Residual Bounds). The following bounds hold with probability at
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least 1−O(n−10):

∥UU⊤L(E)Y⊤ ˆ︁Uˆ︁Σ−2∥2,∞ ≲
K3
√︁

log(n)

n
√
Lλ̄

(︁ 1
L
∥SNR−1∥22

)︁1/2
;

∥(I−UU⊤)Rall
ˆ︁Uˆ︁Σ−2∥2,∞ ≲

K3/2αmax√
nλ̄

+
K7/2 log(n)∥SNR−1∥2∞√

nλ̄
+
K5/2

√︁
log(n)αmax∥SNR−1∥∞√

nλ̄
.

Proof of Lemma 67. At the outset, we note that Weyl’s inequality and the condition in

Theorem 20 implies that ∥ˆ︁Σ−2∥ ≲ K(λ̄nL)−1 with high probability.

We analyze each term separately. First, we observe that

∥UU⊤L(E)Y⊤ ˆ︁Uˆ︁Σ−2∥2,∞ ≲ ∥U∥2,∞∥∥U⊤L(E)Y⊤∥∥ˆ︁Σ−2∥

≲
K3/2

√
n

1

nLλ̄
∥U⊤L(E)Y⊤∥.

We now establish a concentration inequality for the term U⊤L(E)Y⊤. The result is similar

to the proof of Lemma 65, so we postpone it to the end. For now, we simply state that with

probability at least 1−O(n−20),

∥U⊤L(E)Y⊤∥ ≲ K3/2
√︁
nL log(n)

(︁ 1
L
∥SNR−1∥22

)︁1/2
+K3/2 log(n)max

l

(︃
θmax

θmin

)︃
1

∥θ(l)∥2(λ(l)min)
1/2

(F.31)

≲ K3/2
√︁
nL log(n)

(︁ 1
L
∥SNR−1∥22

)︁1/2
,

as long as maxl
θ
(l)
max

θ
(l)
min

≲
√︁
n/ log(n), which holds under Assumption 6.2. Putting it together,

we obtain

∥UU⊤L(E)Y⊤ ˆ︁Uˆ︁Σ−2∥2,∞ ≲
K3/2

√
n

1

nLλ̄
K3/2

√︁
nL log(n)

(︁ 1
L
∥SNR−1∥22

)︁1/2
≍
K3
√︁
log(n)

n
√
Lλ̄

(︁ 1
L
∥SNR−1∥22

)︁1/2
.
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For the next term, we note that

∥(I−UU⊤)Rall
ˆ︁Uˆ︁Σ−2∥2,∞ ≤ ∥Rall∥2,∞∥ˆ︁Σ−2∥+ ∥U∥2,∞∥Rall∥∥ˆ︁Σ−2∥

≲ K
∥Rall∥2,∞
nLλ̄

+
K3/2

n3/2Lλ̄
∥Rall∥. (F.32)

By Lemma 58, Lemma 65, and Lemma 57, we have the bounds

∥L(E(l))∥2,∞ ≲

(︃
θ
(l)
max

θ
(l)
min

)︃1/2 K
√︁

log(n)

(λ
(l)
min)

1/2∥θ(l)∥
;

∥L(E(l))∥ ≤
K
√︁
n log(n)

(λ
(l)
min)

1/2
⃦⃦
θ(l)
⃦⃦ (︄θ(l)max

θ
(l)
min

)︄1/2

;

∥Rall∥ ≲ LK2n log(n)∥SNR−1∥2∞ +KLn
√︁
log(n)∥SNR−1∥∞αmax + nLαmax;

∥R(l)
Stage I∥2,∞ ≲ αmax;

∥R(l)
Stage I∥ ≲

√
nαmax

Therefore, we obtain

∥Rall∥2,∞ ≲ Lmax
l

∥L(E(l))∥2,∞∥L(E(l))∥+ Lmax
l

∥L(E(l))∥2,∞∥R(l)
Y ∥

+ Lmax
l

∥R(l)
Stage I∥2,∞∥L(E(l))∥+ Lmax

l
∥R(l)

Stage I∥2,∞∥R(l)
Stage I∥

+ Lmax
l

∥R(l)
Stage I∥2,∞∥Y(l)∥+ Lmax

l
∥Y(l)∥2,∞∥R(l)

Stage I∥

≲ L

(︃
θ
(l)
max

θ
(l)
min

)︃1/2 K
√︁

log(n)

(λ
(l)
min)

1/2∥θ(l)∥
K
√︁
n log(n)

(λ
(l)
min)

1/2
⃦⃦
θ(m)

⃦⃦ (︄θ(l)max

θ
(l)
min

)︄1/2

+ Lmax
l

(︃
θ
(l)
max

θ
(l)
min

)︃1/2 K
√︁
log(n)

(λ
(l)
min)

1/2∥θ(l)∥2
√
nαmax

+ Lαmaxmax
l

(︃
θ
(l)
max

θ
(l)
min

)︃1/2 K
√︁
n log(n)

(λ
(l)
min)

1/2∥θ(l)∥
+ L

√
nα2

max +
√
nLαmax

≍ L
√
n

(︃
θ
(l)
max

θ
(l)
min

)︃
K2 log(n)

λ
(l)
min∥θ(l)∥2

+ L
√
nαmax,
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where we have used the assumption that

(︃
θ
(l)
max

θ
(l)
min

)︃1/2 K
√︁
log(n)

(λ
(l)
min)

1/2∥θ∥
≲ 1. (F.33)

We will verify this momentarily. Plugging this into (F.32), we obtain that

∥(I−UU⊤)Rall
ˆ︁Uˆ︁Σ−2∥2,∞

≲ K
∥Rall∥2,∞
nLλ̄

+
K3/2

n3/2Lλ̄
∥Rall∥

≲
K

nLλ̄

(︃
L
√
nmax

l

(︃
θ
(l)
max

θ
(l)
min

)︃
K2 log(n)

λ
(l)
min∥θ(l)∥2

+ L
√
nαmax

)︃
+

K3/2

n3/2Lλ̄

{︃
LK2n log(n)∥SNR−1∥2∞ +KLn

√︁
log(n)∥SNR−1∥∞αmax + nLαmax

}︃
≍ K3/2αmax√

nλ̄
+
K7/2 log(n)∥SNR−1∥2∞√

nλ̄
+
K5/2

√︁
log(n)αmax∥SNR−1∥∞√

nλ̄
,

since

∥SNR−1∥∞ = max
l

(︃
θ
(l)
max

θ
(l)
min

)︃1/2 1

(λ
(l)
min)

1/2∥θ(l)∥
.

which holds with probability at least 1−O(n−15).

We now verify (F.33). By Assumption 6.2, the definition of SNR, and the fact that
θ
(l)
max∥θ(l)∥1
∥θ(l)∥2 ≥ 1, it holds that λ̄ ≥ K5 log(n)∥SNR−1∥2∞, which in particular implies that

K2 log(n)∥SNR∥2∞ ≤ 1 since λ̄ ≤ 1. This verifies (F.33).

Therefore, we will have completed the proof provided we can establish the bound (F.31).
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Observe that

U⊤L(E)Y⊤ =
∑︂
l

U⊤
[︃∑︂
i≤j

E
(l)
ij eie

⊤
j

]︃(︁
U(l)|Λ(l)|−1/2I(l)p,qJ(Xi·)

)︁
(Y(l))⊤

+
∑︂
l

U⊤
[︃∑︂
j<i

E
(l)
ij eje

⊤
i

]︃(︁
U(l)|Λ(l)|−1/2I(l)p,qJ(Xj·)

)︁
(Y(l))⊤

=
∑︂
l

∑︂
i≤j

E
(l)
ij U

⊤eie
⊤
j

(︁
U(l)|Λ(l)|−1/2I(l)p,qJ(Xi·)

)︁
(Y(l))⊤

+
∑︂
l

∑︂
j<i

E
(l)
ij U

⊤eje
⊤
i

(︁
U(l)|Λ(l)|−1/2I(l)p,qJ(Xj·)

)︁
(Y(l))⊤,

both of which are a sum of independent random matrices. We bound the first term now;

the second is similar. We will apply Matrix Bernstein (Corollary 3.3 of Chen et al. (2021c)).

To wit, we need to bound

v : =
∑︂
l

∑︂
i≤j

E
(︁
E

(l)
ij

)︁2∥U⊤eie
⊤
j

(︁
U(l)|Λ(l)|−1/2I(l)p,qJ(Xi·)

)︁
(Y(l))⊤∥2;

w : = max
m,i,j

∥U⊤eie
⊤
j

(︁
U(l)|Λ(l)|−1/2I(l)p,qJ(Xi·)

)︁
(Y(l))⊤∥.

We observe that

v ≤
∑︂
l

∑︂
i≤j

θ
(l)
i θ

(l)
j ∥U⊤eie

⊤
j

(︁
U(l)|Λ(l)|−1/2I(l)p,qJ(Xi·)

)︁
(Y(l))⊤∥2

≤
∑︂
l

∑︂
i≤j

θ
(l)
i θ

(l)
j ∥U∥22,∞∥e⊤j

(︁
U(l)|Λ(l)|−1/2I(l)p,qJ(Xi·)

)︁
(Y(l))⊤∥2

≲
K

n

∑︂
l

∑︂
i≤j

θ
(l)
i θ

(l)
j ∥e⊤j U(l)∥2∥|Λ(l)|−1/2∥2∥J(Xi·)∥2∥Y(l)∥2

≲ K3
∑︂
l

∑︂
i≤j

θ
(l)
i θ

(l)
j

(θ
(l)
j )2

∥θ(l)∥2
1

λ
(l)
min∥θ(l)∥2

1

(θ
(l)
i )2

≲ K3
∑︂
l

1

λ
(l)
min∥θ(l)∥4

∑︂
i,j

θ
(l)
j

θ
(l)
i

(θ
(l)
j )2

≲ K3n
∑︂
l

1

λ
(l)
min∥θ(l)∥2

(︃
θ
(l)
max

θ
(l)
min

)︃
= K3nL

(︁ 1
L
∥SNR−1∥22

)︁
,
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where we have implicitly used Lemma 7. In addition, via similar arguments,

w ≲ K3/2max
l

(︃
θmax

θmin

)︃
1

∥θ(l)∥2(λ(l)min)
1/2

.

Therefore, the result is completed by applying Matrix Bernstein. This completes the proof.

The following result bounds several additional “approximate commutation” terms, anal-

ogous to Lemma 60 for Stage 1.

Lemma 68 (Second Stage Approximate Commutation). The following bounds hold with

probability at least 1−O(n−10) :

∥U⊤ ˆ︁U−W∗∥ ≲

(︃
K2
√︁

log(n)

(︁
1
L∥SNR

−1∥22
)︁1/2

√
Lλ̄

+K3 log(n)
∥SNR−1∥2∞

λ̄

+K2
√︁
log(n)

αmax∥SNR−1∥∞
λ̄

+
Kαmax

λ̄

)︃2

;

∥Σ−2U⊤ ˆ︁U−U⊤ ˆ︁Uˆ︁Σ−2∥ ≲
K3
√︁
log(n)

(︁
1
L∥SNR

−1∥22
)︁1/2

nL3/2λ̄
2 +

K4 log(n)∥SNR−1∥2∞
nLλ̄

2

+
K3
√︁
log(n)αmax∥SNR−1∥∞

nLλ̄
2 +

K2αmax

nLλ̄
2 , ;

∥
∑︂
l

L(E(l))(Y(l))⊤∥2,∞ ≲ K
√︁
Ln log(n)

(︁ 1
L
∥SNR−1∥22

)︁1/2
;

Proof. For the first bound, we observe that

∥U⊤ ˆ︁U−W∗∥ ≲ ∥ sinΘ(ˆ︁U,U)∥2

≲

(︃
K2
√︁
log(n)

(︁
1
L∥SNR

−1∥22
)︁1/2

√
Lλ̄

+K3 log(n)
∥SNR−1∥2∞

λ̄

+K2
√︁
log(n)

αmax∥SNR−1∥∞
λ̄

+
Kαmax

λ̄

)︃2

,

where the final inequality holds by Theorem 20, with probability at least 1−O(n−10).
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For the second bound, we observe that

∥Σ−2U⊤ ˆ︁U−U⊤ ˆ︁Uˆ︁Σ−2∥

= ∥Σ−2
(︁
U⊤ ˆ︁Uˆ︁Σ2 − Σ2U⊤ ˆ︁U)︁ˆ︁Σ−2∥

≲
K2

n2L2λ̄
2 ∥U

⊤ ˆ︁Uˆ︁Σ2 − Σ2U⊤ ˆ︁U∥

≲
K2

n2L2λ̄
2 ∥U

⊤( ˆ︁Y ˆ︁Y⊤ − YY⊤)ˆ︁U∥

≲
K2

n2L2λ̄
2

{︃
∥L(E)Y⊤∥+ ∥Rall∥

}︃
≲

K2

n2L2λ̄
2

{︃
Kn
√︁
L log(n)

(︁ 1
L
∥SNR−1∥22

)︁1/2
+ LK2n log(n)∥SNR−1∥2∞

+KLn
√︁
log(n)αmax∥SNR−1∥∞ + nLαmax

}︃
≍
K3
√︁

log(n)
(︁
1
L∥SNR

−1∥22
)︁1/2

nL3/2λ̄
2 +

K4 log(n)∥SNR−1∥2∞
nLλ̄

2

+
K3
√︁

log(n)αmax∥SNR−1∥∞
nLλ̄

2 +
K2αmax

nLλ̄
2 ,

which holds with probability at least 1−O(n−10) by Lemma 65 and Lemma 66.

For the third term, we note that we can write the i’th row of the matrix in question via

(︃∑︂
l

L(E(l))(Y(l))⊤
)︃
i·
=
∑︂
l

∑︂
j

E
(l)
ij

(︃
U(l)|Λ(l)|−1/2I(l)p,qJ(Xi·)(Y

(l))⊤
)︃
j·
,

which is a sum of independent random matrices. To wit, we bound via the Matrix Bernstein

inequality (Corollary 3.3 of Chen et al. (2021c)). The proof is similar to Lemma 65 (amongst

others), so we omit the detailed proof for brevity. Matrix Bernstein then implies that with

probability at least 1−O(n−11) that

⃦⃦⃦⃦∑︂
l

∑︂
j

E
(l)
ij

(︃
U(l)|Λ(l)|−1/2I(l)p,qJ(Xi·)(Y

(l))⊤
)︃
j·

⃦⃦⃦⃦

≲ K
√︁
log(n)max

l
∥(Y(l))⊤∥

(︃∑︂
l

(︃
θ
(l)
max

θ
(l)
min

)︃
1

λ
(l)
min∥θ(l)∥2

)︃1/2

≲ K
√︁
L log(n)

(︁ 1
L
∥SNR−1∥22

)︁1/2
max
l

∥(Y(l))⊤∥

≲ K
√︁
Ln log(n)

(︁ 1
L
∥SNR−1∥22

)︁1/2
.
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Taking a union bound over all n rows completes the proof of this bound.

F.4.2 Proof of Theorem 21

Proof of Theorem 21. First, recall we have the expansion

ˆ︁Y ˆ︁Y⊤ − YY⊤ =
L∑︂
l=1

ˆ︁Y(l)( ˆ︁Y(l))⊤ − (Y(l))(Y(l))⊤

: = L(E)Y⊤ + YL(E)⊤ +Rall,

where recall we define

Rall : =
∑︂
l

L(E(l))L(E(l))⊤ + L(E(l))(R(l))⊤ +R(m))L(E(l))⊤ +R(l)(R(l))⊤

+
∑︂
l

R(l)(Y(l))⊤ +Y(l)(R(l))⊤,

and

L(E) : =
[︁
L(E(1)), · · · ,L(E(L))

]︁
,

and hence that

L(E)Y⊤ + YL(E)⊤ =
∑︂
l

L(E(l))(Y(l))⊤ +Y(l)L(E(l))⊤.
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We now study how well ˆ︁U approximates U in an entrywise sense. We start with the

expansion:

ˆ︁U−UW∗ = (I−UU⊤)
(︁
YY⊤ − ˆ︁Y ˆ︁Y⊤)︁ ˆ︁Uˆ︁Σ−2 +U(U⊤ ˆ︁U−W∗)

= (I−UU⊤)
(︁
L(E)Y⊤ + YL(E)⊤ +Rall

)︁ ˆ︁Uˆ︁Σ−2 +U(U⊤ ˆ︁U−W∗)

= L(E)Y⊤ ˆ︁Uˆ︁Σ−2 −UU⊤L(E)Y⊤ ˆ︁Uˆ︁Σ−2

+ (I−UU⊤)YL(E)⊤ ˆ︁Uˆ︁Σ−2 + (I−UU⊤)Rall
ˆ︁Uˆ︁Σ−2 +U(U⊤ ˆ︁U−W∗)

= L(E)Y⊤ ˆ︁Uˆ︁Σ−2 −UU⊤L(E)Y⊤ ˆ︁Uˆ︁Σ−2

+ (I−UU⊤)Rall
ˆ︁Uˆ︁Σ−2 +U(U⊤ ˆ︁U−W∗), (F.34)

where we have observed that the term

(I−UU⊤)YL(E)⊤ ˆ︁Uˆ︁Σ−2 ≡ 0,

since Y has left singular vectors U. We now expand the first-order term out further. Observe

that

∑︂
l

L(E(l))(Y(l))⊤ ˆ︁Uˆ︁Σ−2 =
∑︂
l

L(E(l))(Y(l))⊤UΣ−2W∗ +
∑︂
l

L(E(l))(Y(l))⊤UΣ−2
(︁
W∗ −U⊤ ˆ︁U)︁

+
∑︂
l

L(E(l))(Y(l))⊤U
(︁
Σ−2U⊤ ˆ︁U−U⊤ ˆ︁Uˆ︁Σ−2

)︁
+
∑︂
l

L(E(l))(Y(l))⊤
(︁ ˆ︁U−UU⊤ ˆ︁U)︁ˆ︁Σ−2. (F.35)
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Plugging (F.35) into (F.34) yields the full expansion

ˆ︁U−UW∗ =
∑︂
l

L(E(l))(Y(l))⊤UΣ−2W∗ +
∑︂
l

L(E(l))(Y(l))⊤UΣ−2
(︁
W∗ −U⊤ ˆ︁U)︁

+
∑︂
l

L(E(l))(Y(l))⊤U
(︁
Σ−2U⊤ ˆ︁U−U⊤ ˆ︁Uˆ︁Σ−2

)︁
+
∑︂
l

L(E(l))(Y(l))⊤
(︁ ˆ︁U−UU⊤ ˆ︁U)︁ˆ︁Σ−2

−UU⊤L(E)Y⊤ ˆ︁Uˆ︁Σ−2

+ (I−UU⊤)Rall
ˆ︁Uˆ︁Σ−2 +U(U⊤ ˆ︁U−W∗).

Multiplying through by W⊤
∗ yields

ˆ︁UW⊤
∗ −U =

∑︂
l

L(E(l))(Y(l))⊤UΣ−2 +
∑︂
l

L(E(l))(Y(l))⊤UΣ−2
(︁
W∗ −U⊤ ˆ︁U)︁W⊤

∗

+
∑︂
l

L(E(l))(Y(l))⊤U
(︁
Σ−2U⊤ ˆ︁U−U⊤ ˆ︁Uˆ︁Σ−2

)︁
W⊤

∗

+
∑︂
l

L(E(l))(Y(l))⊤
(︁ ˆ︁U−UU⊤ ˆ︁U)︁ˆ︁Σ−2W⊤

∗

−UU⊤L(E)Y⊤ ˆ︁Uˆ︁Σ−2W⊤
∗

+ (I−UU⊤)Rall
ˆ︁Uˆ︁Σ−2 +U(U⊤ ˆ︁U−W∗)W

⊤
∗

: =
∑︂
l

L(E(l))(Y(l))⊤UΣ−2 +R1 +R2 +R3 +R4 +R5 +R6,

where

R1 : =
∑︂
l

L(E(l))(Y(l))⊤UΣ−2
(︁
W∗ −U⊤ ˆ︁U)︁W⊤

∗ ;

R2 : =
∑︂
l

L(E(l))(Y(l))⊤U
(︁
Σ−2U⊤ ˆ︁U−U⊤ ˆ︁Uˆ︁Σ−2

)︁
W⊤

∗ ;

R3 : =
∑︂
l

L(E(l))(Y(l))⊤
(︁ ˆ︁U−UU⊤ ˆ︁U)︁ˆ︁Σ−2W⊤

∗ ;

R4 : = −UU⊤L(E)Y⊤ ˆ︁Uˆ︁Σ−2W⊤
∗ ;

R5 : = (I−UU⊤)Rall
ˆ︁Uˆ︁Σ−2;

R6 : = U(U⊤ ˆ︁U−W∗)W
⊤
∗ .
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By Lemma 67, we have the bounds

∥R4∥2,∞ ≲
K3
√︁
log(n)

n
√
Lλ̄

(︁ 1
L
∥SNR−1∥22

)︁1/2
;

∥R5∥2,∞ ≲
K3/2αmax√

nλ̄
+
K7/2 log(n)∥SNR−1∥2∞√

nλ̄
+
K5/2

√︁
log(n)αmax∥SNR−1∥∞√

nλ̄
.

In addition, by properties of the ℓ2,∞ norm and Lemma 68, it holds that

∥R6∥2,∞ ≤ ∥U∥2,∞∥U⊤ ˆ︁U−W∗∥

≲

√︃
K

n

(︃
K2
√︁
log(n)

(︁
1
L∥SNR

−1∥22
)︁1/2

√
Lλ̄

+K3 log(n)
∥SNR−1∥2∞

λ̄

+K2
√︁
log(n)

αmax∥SNR−1∥∞
λ̄

+
Kαmax

λ̄

)︃2

≲
K9/2 log(n)

(︁
1
L∥SNR

−1∥22
)︁

√
nLλ̄

2 +
K7/2 log(n)∥SNR−1∥2∞√

nλ̄

+
K5/2

√︁
log(n)αmax∥SNR−1∥∞√

nλ̄
+
K3/2α2

max√
nλ̄

2 ,

where we have used the fact that each of the terms inside of the parentheses on the bound

for R6 is less than one, which was verified in the proof of Theorem 20 (note that these terms

in parentheses are simply the sinΘ upper bound).

Combining these, we obtain that with probability at least 1−O(n−10),

∥R4∥2,∞ + ∥R5∥2,∞ + ∥R6∥2,∞ ≲
K3
√︁

log(n)

n
√
Lλ̄

(︁ 1
L
∥SNR−1∥22

)︁1/2
+
K7/2 log(n)

(︁
1
L∥SNR

−1∥22
)︁

√
nLλ̄

2

+
K7/2 log(n)∥SNR−1∥2∞√

nλ̄
+
K5/2

√︁
log(n)αmax∥SNR−1∥∞√

nλ̄
+
αmax√
nλ̄

,

where we have used the fact that K3/2αmax

λ̄
≲ 1.
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For the terms R1 through R3, we observe that

∥R1∥2,∞ ≲
K

nLλ̄
∥
∑︂
l

L(E(l))(Y(l))⊤∥2,∞∥W∗ −U⊤ ˆ︁U∥;

∥R2∥2,∞ ≲ ∥
∑︂
l

L(E(l))(Y(l))⊤∥2,∞∥Σ−2U⊤ ˆ︁U−U⊤ ˆ︁Uˆ︁Σ−2∥;

∥R3∥2,∞ ≲
K

nLλ̄
∥
∑︂
l

L(E(l))(Y(l))⊤∥2,∞∥ sinΘ(ˆ︁U,U)∥.

Lemma 68 shows that with probability at least 1−O(n−10) that

∥U⊤ ˆ︁U−W∗∥ ≲

(︃
K2
√︁
log(n)

(︁
1
L∥SNR

−1∥22
)︁1/2

√
Lλ̄

+K3 log(n)
∥SNR−1∥2∞

λ̄

+K2
√︁

log(n)
αmax∥SNR−1∥∞

λ̄
+
Kαmax

λ̄

)︃2

;

∥Σ−2U⊤ ˆ︁U−U⊤ ˆ︁Uˆ︁Σ−2∥ ≲
K3
√︁
log(n)

(︁
1
L∥SNR

−1∥22
)︁1/2

nL3/2λ̄
2 +

K4 log(n)∥SNR−1∥2∞
nLλ̄

2

+
K3
√︁
log(n)αmax∥SNR−1∥∞

nLλ̄
2 +

K2αmax

nLλ̄
2 ;

∥
∑︂
l

L(E(l))(Y(l))⊤∥2,∞ ≲ K
√︁
Ln log(n)

(︁ 1
L
∥SNR−1∥22

)︁1/2
.

In addition, by Theorem 20, we have that

∥ sinΘ(ˆ︁U,U)∥ ≲ K2
√︁
log(n)

(︁
1
L∥SNR

−1∥22
)︁1/2

√
Lλ̄

+K3 log(n)
∥SNR−1∥2∞

λ̄

+K2
√︁
log(n)

αmax∥SNR−1∥∞
λ̄

+
Kαmax

λ̄
.
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Plugging these bounds in yields that

∥R1∥2,∞ ≲
K

nLλ̄
K
√︁
Ln log(n)(

1

L
∥SNR−1∥22)1/2

×
(︃
K2
√︁

log(n)

(︁
1
L∥SNR

−1∥22
)︁1/2

√
Lλ̄

+K3 log(n)
∥SNR−1∥2∞

λ̄

+K2
√︁

log(n)
αmax∥SNR−1∥∞

λ̄
+
Kαmax

λ̄

)︃2

≍
K4 log(n)

(︁
1
L∥SNR

−1∥22
)︁

L
√
nλ̄

2 +
K5 log3/2(n)

(︁
1
L∥SNR

−1∥22
)︁1/2∥SNR−1∥2∞√

nLλ̄
2

+
K4 log(n)αmax∥SNR−1∥∞

(︁
1
L∥SNR

−1∥22
)︁1/2

√
nLλ̄

2 +
K3
√︁

log(n)
(︁
1
L∥SNR

−1∥22
)︁1/2

αmax√
nLλ̄

2 ;

∥R2∥2,∞ ≲ K
√︁
Ln log(n)

(︁ 1
L
∥SNR−1∥22

)︁1/2
×
(︃
K3
√︁

log(n)
(︁
1
L∥SNR

−1∥22
)︁1/2

nL3/2λ̄
2 +

K4 log(n)∥SNR−1∥2∞
nLλ̄

2

+
K3
√︁

log(n)αmax∥SNR−1∥∞
nLλ̄

2 +
K2αmax

nLλ̄
2

)︃
≍
K4 log(n)

(︁
1
L∥SNR

−1∥22
)︁

√
nLλ̄

2 +
K5 log3/2(n)∥SNR−1∥2∞

(︁
1
L∥SNR

−1∥22
)︁1/2

√
nLλ̄

2

+
K4 log(n)αmax∥SNR−1∥∞

(︁
1
L∥SNR

−1∥22
)︁1/2

√
nLλ̄

2 +
K3
√︁

log(n)αmax

(︁
1
L∥SNR

−1∥22
)︁1/2

√
nLλ̄

2 ;

∥R3∥2,∞ ≲
K

nLλ̄
K
√︁
Ln log(n)

(︁ 1
L
∥SNR−1∥22

)︁1/2
×
(︃
K2
√︁

log(n)

(︁
1
L∥SNR

−1∥22
)︁1/2

√
Lλ̄

+K3 log(n)
∥SNR−1∥2∞

λ̄

+K2
√︁
log(n)

αmax∥SNR−1∥∞
λ̄

+
Kαmax

λ̄

)︃
≍
K4 log(n)

(︁
1
L∥SNR

−1∥22
)︁

L
√
nλ̄

2 +
K5 log3/2(n)

(︁
1
L∥SNR

−1∥22
)︁1/2∥SNR−1∥2∞√

nLλ̄
2

+
K4 log(n)αmax∥SNR−1∥∞

(︁
1
L∥SNR

−1∥22
)︁1/2

√
nLλ̄

2 +
K3
√︁

log(n)
(︁
1
L∥SNR

−1∥22
)︁1/2

αmax√
nLλ̄

2 .

We note that we have used the fact that

K2
√︁
log(n)

(︁
1
L∥SNR

−1∥22
)︁1/2

√
Lλ̄

+K3 log(n)
∥SNR−1∥2∞

λ̄
+K2

√︁
log(n)

αmax∥SNR−1∥∞
λ̄

+
Kαmax

λ̄
≲ 1,

as was verified in the proof of Theorem 20 (observe that this term matches the sinΘ upper
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bound, and hence is less than one by assumption). Consequently, since each term is the

same, we obtain

∥R1∥2,∞+∥R2∥2,∞ + ∥R3∥2,∞

≲
K4 log(n)

(︁
1
L∥SNR

−1∥22
)︁

L
√
nλ̄

2 +
K5 log3/2(n)

(︁
1
L∥SNR

−1∥22
)︁1/2∥SNR−1∥2∞√

nLλ̄
2

+
K4 log(n)αmax∥SNR−1∥∞

(︁
1
L∥SNR

−1∥22
)︁1/2

√
nLλ̄

2 +
K3
√︁
log(n)

(︁
1
L∥SNR

−1∥22
)︁1/2

αmax√
nLλ̄

2

≍
K4 log(n)

(︁
1
L∥SNR

−1∥22
)︁

L
√
nλ̄

2 +
K5 log3/2(n)

(︁
1
L∥SNR

−1∥22
)︁1/2∥SNR−1∥2∞√

nLλ̄
2

+
K3
√︁
log(n)αmax

(︁
1
L∥SNR

−1∥22
)︁1/2

√
nLλ̄

2 ,

where we have used the assumption that that K
√︁

log(n)∥SNR−1∥∞ ≲ 1, which follows

immediately the fact that θ
(l)
max∥θ(l)∥1
∥θ(l)∥2λ(l)min

≥ 1 and from Assumption 6.2, which requires that

K8 log(n)∥SNR−1∥2∞
θ
(l)
max∥θ(l)∥1
∥θ(l)∥2λ(l)min

≲ λ̄. Therefore, we have shown that

ˆ︁UW⊤
∗ −U =

∑︂
l

L(E(l))(Y(l))⊤UΣ−2 +RStage II,
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with

∥RStage II∥2,∞ ≲
K3
√︁
log(n)

n
√
Lλ̄

(︁ 1
L
∥SNR−1∥22

)︁1/2
+
K7/2 log(n)

(︁
1
L∥SNR

−1∥22
)︁

√
nLλ̄

2

+
K7/2 log(n)∥SNR−1∥2∞√

nλ̄
+
K5/2

√︁
log(n)αmax∥SNR−1∥∞√

nλ̄
+
αmax√
nλ̄

+
K4 log(n)

(︁
1
L∥SNR

−1∥22
)︁

L
√
nλ̄

2 +
K5 log3/2(n)

(︁
1
L∥SNR

−1∥22
)︁1/2∥SNR−1∥2∞√

nLλ̄
2

+
K3
√︁

log(n)αmax

(︁
1
L∥SNR

−1∥22
)︁1/2

√
nLλ̄

2

≍
K3
√︁
log(n)

nLλ̄
∥SNR−1∥2 +

K4 log(n)

L2
√
nλ̄

2 ∥SNR−1∥22 +
K7/2 log(n)√

nλ̄
∥SNR−1∥2∞

+
K5/2

√︁
log(n)

√
nλ̄

αmax∥SNR−1∥∞ +
αmax√
nλ̄

+
K5 log3/2(n)

L
√
nλ̄

2 ∥SNR−1∥2∥SNR−1∥2∞ +
K3
√︁

log(n)

L
√
nλ̄

2 αmax∥SNR−1∥22

=
K3
√︁
log(n)

nLλ̄
∥SNR−1∥2 +

K4 log(n)

L2
√
nλ̄

2 ∥SNR−1∥22

+
K7/2 log(n)√

nλ̄
∥SNR−1∥2∞

(︃
1 +

K3/2
√︁

log(n)

Lλ̄
∥SNR−1∥2

)︃
+
αmax√
nλ̄

(︃
1 +K5/2

√︁
log(n)∥SNR−1∥∞ +

K3
√︁

log(n)

Lλ̄
∥SNR−1∥22

)︃
≲
K3
√︁
log(n)

nLλ̄
∥SNR−1∥2 +

K4 log(n)

L2
√
nλ̄

2 ∥SNR−1∥22

+
K7/2 log(n)√

nλ̄
∥SNR−1∥2∞ +

αmax√
nλ̄

,

where the final inequality holds as long as

K3/2
√︁
log(n)

Lλ̄
∥SNR−1∥2 ≲ 1; (F.36)

K5/2∥SNR−1∥∞ ≲ 1 (F.37)

K3
√︁
log(n)

Lλ̄
∥SNR−1∥22 ≲ 1. (F.38)

We will verify these bounds now. First, Assumption 6.2 implies that

K8 log(n)θ
(l)
max∥θ(l)∥1

∥θ(l)∥22
(SNR−1

l )2 ≲ λ̄λ
(l)
min,
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as long as C in the assumption is sufficiently large. Observe that this immediately implies

equation (F.37) since θ
(l)
max∥θ(l)∥1
∥θ(l)∥22

≥ 1 and λ
(l)
min ∈ (0, 1) by assumption. For the other two

terms, by averaging this condition over l, we see that Assumption 6.2 implies

K8 log(n)

L
∥SNR−1∥22 ≲ λ̄

2
.

This implies (F.36) and (F.38).

Hence, we have shown so far that

∥RStage II∥2,∞ ≲
K3
√︁

log(n)

nLλ̄
∥SNR−1∥2 +

K4 log(n)

L2
√
nλ̄

2 ∥SNR−1∥22

+
K7/2 log(n)√

nλ̄
∥SNR−1∥2∞ +

αmax√
nλ̄

.

This holds cumulatively with probability at least 1−O(n−10). We now verify that the sum

of these terms is less than 1
16

√
nmax

. Since nmax ≤ n, it suffices to show that this upper

bound is at most 1
16

√
n
. By pulling out a factor of 1/

√
n it suffices to show that

K3
√︁
log(n)

√
nLλ̄

∥SNR−1∥2 +
K4 log(n)

L2λ̄
2 ∥SNR−1∥22 +

K7/2 log(n)

λ̄
∥SNR−1∥2∞ +

αmax

λ̄
≲ 1.

By similar manipulations as in verifying the bounds (F.36), (F.37), and (F.38), it is straight-

forward to check the condition above holds, except for the condition αmax

λ̄
≲ 1. Plugging in

the definition for αmax, we see that we require

1

λ̄
max
l

K2θ
(l)
max∥θ(l)∥1

λ
(l)
min∥θ(l)∥4

(︃
log(n)

θ
(l)
max

θ
(l)
min

+
1

λ
(l)
min

+

(︃
θ
(l)
max

θ
(l)
min

)︃1/2K5/2 log(n)

(λ
(l)
min)

1/2

)︃
≲ 1.

This is covered by Assumption 6.2. Therefore, this completes the proof.

497



APPENDIX F. PROOFS FROM CHAPTER 6

THIS PAGE INTENTIONALLY LEFT BLANK

498



Bibliography

Emmanuel Abbe. Community detection and stochastic block models: recent developments.

The Journal of Machine Learning Research, 18(1):6446–6531, 2017. 150, 152

Emmanuel Abbe, Jianqing Fan, Kaizheng Wang, and Yiqiao Zhong. Entrywise eigenvector

analysis of random matrices with low expected rank. The Annals of Statistics, 48(3):

1452–1474, June 2020. ISSN 0090-5364, 2168-8966. doi: 10.1214/19-AOS1854. 15, 31, 32,

60, 82, 94, 107, 110, 150, 152, 153, 194, 270, 286, 465

Emmanuel Abbe, Jianqing Fan, and Kaizheng Wang. An $\ell_p$ theory of PCA and

spectral clustering. The Annals of Statistics, 50(4):2359–2385, August 2022. ISSN 0090-

5364, 2168-8966. doi: 10.1214/22-AOS2196. 5, 15, 31, 32, 33, 35, 44, 60, 82, 95, 107, 153,

270

Joshua Agterberg and Jeremias Sulam. Entrywise Recovery Guarantees for Sparse PCA via

Sparsistent Algorithms. In Proceedings of The 25th International Conference on Artificial

Intelligence and Statistics, pages 6591–6629. PMLR, May 2022. ISSN: 2640-3498. ii, 82,

94, 153, 270, 360, 363, 376

Joshua Agterberg and Anru Zhang. Estimating higher-order mixed memberships via

$\ell_{2,\infty}$ tensor perturbation bounds. In preparation, 2022. ii

Joshua Agterberg, Minh Tang, and Carey Priebe. Nonparametric Two-Sample Hypothesis

Testing for Random Graphs with Negative and Repeated Eigenvalues. arXiv:2012.09828

[math, stat], December 2020a. ii, 31, 531

Joshua Agterberg, Minh Tang, and Carey E. Priebe. On Two Distinct Sources of Nonidenti-

499



BIBLIOGRAPHY

fiability in Latent Position Random Graph Models. arXiv:2003.14250 [math, stat], March

2020b. 128, 391, 393, 394, 422, 426

Joshua Agterberg, Zachary Lubberts, and Jesús Arroyo. Joint Spectral Clustering in Mul-

tilayer Degree-Corrected Stochastic Blockmodels, December 2022a. arXiv:2212.05053

[math, stat]. ii, 101

Joshua Agterberg, Zachary Lubberts, and Carey E. Priebe. Entrywise Estimation of Sin-

gular Vectors of Low-Rank Matrices With Heteroskedasticity and Dependence. IEEE

Transactions on Information Theory, 68(7):4618–4650, July 2022b. ISSN 1557-9654. doi:

10.1109/TIT.2022.3159085. ii, 60, 82, 94, 96, 97, 153

Edoardo M. Airoldi, David M. Blei, Stephen E. Fienberg, and Eric P. Xing. Mixed Mem-

bership Stochastic Blockmodels. Journal of Machine Learning Research, 9(65):1981–2014,

2008. ISSN 1533-7928. 81, 152

David Alvarez-Melis, Stefanie Jegelka, and Tommi S. Jaakkola. Towards Optimal Transport

with Global Invariances. In Kamalika Chaudhuri and Masashi Sugiyama, editors, Pro-

ceedings of Machine Learning Research, volume 89 of Proceedings of Machine Learning

Research, pages 1870–1879. PMLR, April 2019. 136, 141

Arash A. Amini and Zahra S. Razaee. Concentration of kernel matrices with application to

kernel spectral clustering. The Annals of Statistics, 49(1):531–556, February 2021. ISSN

0090-5364, 2168-8966. doi: 10.1214/20-AOS1967. 5, 31, 32, 52, 230, 231, 233

Arash A. Amini and Martin J. Wainwright. High-dimensional analysis of semidefinite relax-

ations for sparse principal components. Annals of Statistics, 37(5B):2877–2921, October

2009. ISSN 0090-5364, 2168-8966. doi: 10.1214/08-AOS664. 60, 63, 65, 72, 278

N. H. Anderson, P. Hall, and D. M. Titterington. Two-Sample Test Statistics for Measuring

Discrepancies Between Two Multivariate Probability Density Functions Using Kernel-

Based Density Estimates. Journal of Multivariate Analysis, 50(1):41–54, July 1994. ISSN

0047-259X. doi: 10.1006/jmva.1994.1033. 116, 117

500



Joshua Agterberg

T. W. Anderson. An Introduction to Multivariate Statistical Analysis. Wiley, July 2003.

ISBN 978-0-471-36091-9. Google-Books-ID: Cmm9QgAACAAJ. 59

Jesús Arroyo, Avanti Athreya, Joshua Cape, Guodong Chen, Carey E. Priebe, and Joshua T.

Vogelstein. Inference for Multiple Heterogeneous Networks with a Common Invariant

Subspace. Journal of Machine Learning Research, 22(142):1–49, 2021. ISSN 1533-7928.

150, 153, 159, 161, 170

Jesús D. Arroyo-Relión, Daniel Kessler, Elizaveta Levina, and Stephan F. Taylor. Network

classification with applications to brain connectomics. Annals of Applied Statistics, 13

(3):1648–1677, September 2019. ISSN 1932-6157, 1941-7330. doi: 10.1214/19-AOAS1252.

115

Avanti Athreya, Carey E Priebe, Minh Tang, Vince Lyzinski, David J Marchette, and

Daniel L Sussman. A limit theorem for scaled eigenvectors of random dot product graphs.

Sankhya A, 78(1):1–18, 2016. 162

Avanti Athreya, Donniell E. Fishkind, Minh Tang, Carey E. Priebe, Youngser Park,

Joshua T. Vogelstein, Keith Levin, Vince Lyzinski, Yichen Qin, and Daniel L. Sussman.

Statistical Inference on Random Dot Product Graphs: a Survey. Journal of Machine

Learning Research, 18(226):1–92, 2018. ISSN 1533-7928. 31, 116, 122, 152, 158

Avanti Athreya, Michael Kane, Bryan Lewis, Zachary Lubberts, Vince Lyzinski, Youngser

Park, Carey E. Priebe, and Minh Tang. Numerical tolerance for spectral decompositions

of random matrices. arXiv:1608.00451 [cs, math, stat], January 2020. 394, 414

Arnab Auddy and Ming Yuan. On Estimating Rank-One Spiked Tensors in the Presence of

Heavy Tailed Errors. IEEE Transactions on Information Theory, pages 1–1, 2022a. ISSN

1557-9654. doi: 10.1109/TIT.2022.3191883. 82

Arnab Auddy and Ming Yuan. Perturbation Bounds for (Nearly) Orthogonally Decompos-

able Tensors, January 2022b. arXiv:2007.09024 [cs, math, stat]. 81

Afonso S. Bandeira and Ramon van Handel. Sharp nonasymptotic bounds on the norm of

501



BIBLIOGRAPHY

random matrices with independent entries. The Annals of Probability, 44(4):2479–2506,

July 2016. ISSN 0091-1798, 2168-894X. doi: 10.1214/15-AOP1025. 12, 110, 447

Jess Banks, Cristopher Moore, Roman Vershynin, Nicolas Verzelen, and Jiaming Xu.

Information-Theoretic Bounds and Phase Transitions in Clustering, Sparse PCA, and

Submatrix Localization. IEEE Transactions on Information Theory, 64(7):4872–4894,

July 2018. ISSN 1557-9654. doi: 10.1109/TIT.2018.2810020. 60

Zhigang Bao, Xiucai Ding, Jingming Wang, and Ke Wang. Statistical inference for principal

components of spiked covariance matrices. arXiv:2008.11903 [math, stat], September 2020.

60, 66

Zhigang Bao, Xiucai Ding, and and Ke Wang. Singular vector and singular subspace dis-

tribution for the matrix denoising model. The Annals of Statistics, 49(1), February 2021.

ISSN 0090-5364. doi: 10.1214/20-AOS1960. 32, 33, 41

Marya Bazzi, Lucas GS Jeub, Alex Arenas, Sam D Howison, and Mason A Porter. A

framework for the construction of generative models for mesoscale structure in multilayer

networks. Physical Review Research, 2(2):023100, 2020. 150, 153, 155

Andrew C. Berry. The Accuracy of the Gaussian Approximation to the Sum of Independent

Variates. Transactions of the American Mathematical Society, 49(1):122–136, 1941. ISSN

0002-9947. doi: 10.2307/1990053. 56, 219

Quentin Berthet and Philippe Rigollet. Optimal detection of sparse principal components

in high dimension. Annals of Statistics, 41(4):1780–1815, August 2013. ISSN 0090-5364,

2168-8966. doi: 10.1214/13-AOS1127. 60

Rajendra Bhatia. Matrix Analysis, volume 169. Springer, 1997. ISBN 0-387-94846-5. 10,

11, 32, 34, 61, 68, 74, 269, 286, 294

Sharmodeep Bhattacharyya and Shirshendu Chatterjee. Spectral Clustering for Multiple

Sparse Networks: I. arXiv:1805.10594 [cs, math, stat], May 2018. 153

502



Joshua Agterberg

Sharmodeep Bhattacharyya and Shirshendu Chatterjee. Consistent recovery of communi-

ties from sparse multi-relational networks: A scalable algorithm with optimal recovery

conditions. In Complex Networks XI, pages 92–103. Springer, 2020. 153, 155, 170

Peter J. Bickel and Purnamrita Sarkar. Hypothesis testing for automated community detec-

tion in networks. Journal of the Royal Statistical Society: Series B (Statistical Methodol-

ogy), 78(1):253–273, 2016. ISSN 1467-9868. doi: 10.1111/rssb.12117. 116

Jérémie Bigot, Elsa Cazelles, and Nicolas Papadakis. Central limit theorems for

entropy-regularized optimal transport on finite spaces and statistical applications.

arXiv:1711.08947 [math, stat], November 2019. 141

Stéphane Boucheron, Gábor Lugosi, and Pascal Massart. Concentration inequalities using

the entropy method. The Annals of Probability, 31(3):1583–1614, July 2003. ISSN 0091-

1798, 2168-894X. doi: 10.1214/aop/1055425791. 415

Ed Bullmore and Olaf Sporns. Complex brain networks: graph theoretical analysis of struc-

tural and functional systems. Nature Reviews. Neuroscience, 10(3):186–198, March 2009.

ISSN 1471-0048. doi: 10.1038/nrn2575. 115

Edward T. Bullmore and Danielle S. Bassett. Brain Graphs: Graphical Models of the

Human Brain Connectome. Annual Review of Clinical Psychology, 7(1):113–140, 2011.

doi: 10.1146/annurev-clinpsy-040510-143934. 115

Bureau of Transportation Statistics. Air Carrier Statistics (Form 41 Traffic)- All Carriers.

available at https://www.transtats.bts.gov/DatabaseInfo.asp?QO_VQ=EEE&DB_URL=,

2022. 173

P. Bühlmann and S. van de Geer. Statistics for High-Dimensional Data: Methods, Theory

and Applications. Springer Series in Statistics. Springer Berlin Heidelberg, 2011. ISBN

978-3-642-20192-9. 61

Changxiao Cai, Gen Li, Yuejie Chi, H. Vincent Poor, and Yuxin Chen. Subspace estimation

from unbalanced and incomplete data matrices: $\ell_{2,\infty}$ statistical guarantees.

The Annals of Statistics, 49(2):944–967, April 2021a. ISSN 0090-5364, 2168-8966. doi:

503

https://www.transtats.bts.gov/DatabaseInfo.asp?QO_VQ=EEE&DB_URL=


BIBLIOGRAPHY

10.1214/20-AOS1986. 15, 31, 32, 33, 35, 43, 44, 60, 70, 82, 83, 94, 95, 110, 153, 154, 270,

313, 363, 373, 387

Changxiao Cai, Gen Li, H. Vincent Poor, and Yuxin Chen. Nonconvex Low-Rank Tensor

Completion from Noisy Data. Operations Research, 70(2):1219–1237, March 2022. ISSN

0030-364X. doi: 10.1287/opre.2021.2106. 81, 107

T. Tony Cai and Xiaodong Li. Robust and computationally feasible community detection in

the presence of arbitrary outlier nodes. The Annals of Statistics, 43(3):1027–1059, June

2015. ISSN 0090-5364, 2168-8966. doi: 10.1214/14-AOS1290. 116

T. Tony Cai and Anru Zhang. Rate-optimal perturbation bounds for singular subspaces with

applications to high-dimensional statistics. Annals of Statistics, 46(1):60–89, February

2018. ISSN 0090-5364, 2168-8966. doi: 10.1214/17-AOS1541. 10, 11, 13, 31, 37, 71, 312,

335

T. Tony Cai, Zongming Ma, and Yihong Wu. Sparse PCA: Optimal rates and adaptive

estimation. Annals of Statistics, 41(6):3074–3110, December 2013. ISSN 0090-5364, 2168-

8966. doi: 10.1214/13-AOS1178. 60, 70

T. Tony Cai, Xiao Han, and Guangming Pan. Limiting laws for divergent spiked eigenvalues

and largest nonspiked eigenvalue of sample covariance matrices. Annals of Statistics, 48

(3):1255–1280, June 2020. ISSN 0090-5364, 2168-8966. doi: 10.1214/18-AOS1798. 60

T. Tony Cai, Hongzhe Li, and Rong Ma. Optimal Structured Principal Subspace Estimation:

Metric Entropy and Minimax Rates. Journal of machine learning research, 22, January

2021b. 31

E. J. Candes and Y. Plan. Matrix Completion With Noise. Proceedings of the IEEE, 98(6):

925–936, June 2010. ISSN 0018-9219. doi: 10.1109/JPROC.2009.2035722. 67

Emmanuel J. Candes and Terence Tao. The Power of Convex Relaxation: Near-Optimal

Matrix Completion. IEEE Transactions on Information Theory, 56(5):2053–2080, May

2010. ISSN 1557-9654. doi: 10.1109/TIT.2010.2044061. 67

504



Joshua Agterberg

Joshua Cape. Orthogonal Procrustes and norm-dependent optimality. The Electronic Jour-

nal of Linear Algebra, 36(36):158–168, March 2020. ISSN 1081-3810. doi: 10.13001/ela.

2020.5009. 34, 35

Joshua Cape, Minh Tang, and Carey E. Priebe. The Kato–Temple inequality and eigenvalue

concentration with applications to graph inference. Electronic Journal of Statistics, 11(2):

3954–3978, 2017. ISSN 1935-7524. doi: 10.1214/17-EJS1328. 429

Joshua Cape, Minh Tang, and Carey E. Priebe. Signal-plus-noise matrix models: eigenvector

deviations and fluctuations. Biometrika, 106(1):243–250, March 2019a. ISSN 0006-3444.

doi: 10.1093/biomet/asy070. 32, 33, 43, 60, 74, 82, 153, 270, 273, 286, 294

Joshua Cape, Minh Tang, and Carey E. Priebe. The two-to-infinity norm and singular

subspace geometry with applications to high-dimensional statistics. Annals of Statistics,

47(5):2405–2439, October 2019b. ISSN 0090-5364, 2168-8966. doi: 10.1214/18-AOS1752.

14, 15, 32, 34, 60, 67, 70, 82, 94, 153, 270

P. J. Carrington, J. Scott, and S. Wasserman. Models and methods in social network analysis,

volume 28. Cambridge university press, 2005. 115

Vasileios Charisopoulos, Austin R Benson, and Anil Damle. Entrywise convergence of itera-

tive methods for eigenproblems. In H. Larochelle, M. Ranzato, R. Hadsell, M. F. Balcan,

and H. Lin, editors, Advances in Neural Information Processing Systems, volume 33, pages

5644–5655. Curran Associates, Inc., 2020. 60

Fan Chen and Karl Rohe. A New Basis for Sparse PCA. arXiv:2007.00596 [cs, stat], July

2020. 60, 63

Hao Chen and Jerome H. Friedman. A New Graph-Based Two-Sample Test for Multivariate

and Object Data. Journal of the American Statistical Association, 112(517):397–409,

January 2017. ISSN 0162-1459. doi: 10.1080/01621459.2016.1147356. 116

Pinhan Chen, Chao Gao, and Anderson Y. Zhang. Partial recovery for top-k ranking:

Optimality of MLE and SubOptimality of the spectral method. The Annals of Statistics,

50(3):1618–1652, June 2022. ISSN 0090-5364, 2168-8966. doi: 10.1214/21-AOS2166. 154

505



BIBLIOGRAPHY

Shuxiao Chen, Sifan Liu, and Zongming Ma. Global and Individualized Community Detec-

tion in Inhomogeneous Multilayer Networks. arXiv:2012.00933 [cs, math, stat], January

2021a. 153

Xiaohui Chen and Yun Yang. Hanson-Wright inequality in Hilbert spaces with application to

$K$-means clustering for non-Euclidean data. arXiv:1810.11180 [math, stat], July 2020.

256

Yuxin Chen, Jianqing Fan, Cong Ma, and Kaizheng Wang. Spectral method and regularized

MLE are both optimal for top-$K$ ranking. Annals of Statistics, 47(4):2204–2235, August

2019a. ISSN 0090-5364, 2168-8966. doi: 10.1214/18-AOS1745. 154

Yuxin Chen, Jianqing Fan, Cong Ma, and Yuling Yan. Inference and Uncertainty

Quantification for Noisy Matrix Completion. Proceedings of the National Academy of

Sciences, 116(46):22931–22937, November 2019b. ISSN 0027-8424, 1091-6490. doi:

10.1073/pnas.1910053116. 31, 67

Yuxin Chen, Yuejie Chi, Jianqing Fan, Cong Ma, and Yuling Yan. Noisy Matrix Completion:

Understanding Statistical Guarantees for Convex Relaxation via Nonconvex Optimization.

SIAM Journal on Optimization, 30(4):3098–3121, January 2020. ISSN 1052-6234. doi:

10.1137/19M1290000. 67, 82

Yuxin Chen, Chen Cheng, and Jianqing Fan. Asymmetry helps: Eigenvalue and eigenvector

analyses of asymmetrically perturbed low-rank matrices. The Annals of Statistics, 49(1):

435–458, February 2021b. ISSN 0090-5364, 2168-8966. doi: 10.1214/20-AOS1963. 32

Yuxin Chen, Yuejie Chi, Jianqing Fan, and Cong Ma. Spectral Methods for Data Science: A

Statistical Perspective. Foundations and Trends® in Machine Learning, 14(5):566–806,

2021c. ISSN 1935-8237, 1935-8245. doi: 10.1561/2200000079. 15, 17, 31, 32, 34, 35, 38,

53, 60, 61, 80, 82, 107, 152, 153, 201, 202, 270, 317, 445, 468, 471, 475, 486, 488

Yuxin Chen, Jianqing Fan, Cong Ma, and Yuling Yan. Bridging convex and nonconvex

optimization in robust PCA: Noise, outliers and missing data. The Annals of Statistics,

506



Joshua Agterberg

49(5):2948–2971, October 2021d. ISSN 0090-5364, 2168-8966. doi: 10.1214/21-AOS2066.

82, 107

Yuxin Chen, Jianqing Fan, Bingyan Wang, and Yuling Yan. Convex and Nonconvex Op-

timization Are Both Minimax-Optimal for Noisy Blind Deconvolution Under Random

Designs. Journal of the American Statistical Association, 0(0):1–11, July 2021e. ISSN

0162-1459. doi: 10.1080/01621459.2021.1956501. 82, 107

Chen Cheng, Yuting Wei, and Yuxin Chen. Tackling Small Eigen-Gaps: Fine-Grained

Eigenvector Estimation and Inference Under Heteroscedastic Noise. IEEE Transactions

on Information Theory, 67(11):7380–7419, November 2021. ISSN 1557-9654. doi: 10.

1109/TIT.2021.3111828. 32

Eric C. Chi, Brian R. Gaines, Will Wei Sun, Hua Zhou, and Jian Yang. Provable convex

co-clustering of tensors. The Journal of Machine Learning Research, 21(1):214:8792–

214:8849, January 2020. ISSN 1532-4435. 78, 80

Yuejie Chi, Yue M. Lu, and Yuxin Chen. Nonconvex Optimization Meets Low-Rank Matrix

Factorization: An Overview. IEEE Transactions on Signal Processing, 67(20):5239–5269,

October 2019. ISSN 1941-0476. doi: 10.1109/TSP.2019.2937282. 31, 38, 80, 82

Michael Conover, Jacob Ratkiewicz, Matthew Francisco, Bruno Gonçalves, Filippo Menczer,

and Alessandro Flammini. Political polarization on twitter. In Proceedings of the inter-

national AAAI conference on web and social media, volume 5(1), pages 89–96, 2011. 149

Marco Cuturi. Sinkhorn Distances: Lightspeed Computation of Optimal Transportation

Distances. arXiv:1306.0895 [stat], June 2013. 137

Anil Damle and Yuekai Sun. Uniform Bounds for Invariant Subspace Perturbations. SIAM

Journal on Matrix Analysis and Applications, 41(3):1208–1236, January 2020. ISSN 0895-

4798. doi: 10.1137/19M1262760. 32, 60

Alexandre d’Aspremont, Laurent El Ghaoui, Michael I. Jordan, and Gert R. G. Lanckriet.

A Direct Formulation for Sparse PCA Using Semidefinite Programming. SIAM Review,

49(3):434–448, January 2007. ISSN 0036-1445. doi: 10.1137/050645506. 60, 63

507



BIBLIOGRAPHY

Caterina De Bacco, Eleanor A Power, Daniel B Larremore, and Cristopher Moore. Commu-

nity detection, link prediction, and layer interdependence in multilayer networks. Physical

Review E, 95(4):042317, 2017. 153

Manlio De Domenico, Vincenzo Nicosia, Alexandre Arenas, and Vito Latora. Structural

reducibility of multilayer networks. Nature Communications, 6(1):6864, April 2015. ISSN

2041-1723. doi: 10.1038/ncomms7864. 99, 104

Lieven De Lathauwer, Bart De Moor, and Joos Vandewalle. On the best rank-1 and rank-(r

1, r 2,..., rn) approximation of higher-order tensors. SIAM Journal on Matrix Analysis

and Applications, 21(4):1324–1342, 2000. 87

Lijun Ding and Yudong Chen. Leave-one-out Approach for Matrix Completion: Primal and

Dual Analysis. arXiv:1803.07554 [cs, math, stat], June 2020. 82, 107

Xiucai Ding. High dimensional deformed rectangular matrices with applications in matrix

denoising. Bernoulli, 26(1):387–417, February 2020. ISSN 1350-7265. doi: 10.3150/

19-BEJ1129. 32, 33

Xiucai Ding and Qiang Sun. Modified Multidimensional Scaling and High Dimensional

Clustering. arXiv:1810.10172 [cs, math, stat], January 2019. 5, 32

Xiucai Ding and Fan Yang. Spiked separable covariance matrices and principal components.

The Annals of Statistics, 49(2):1113–1138, April 2021. ISSN 0090-5364, 2168-8966. doi:

10.1214/20-AOS1995. 66

Benjamin Draves and Daniel L. Sussman. Bias-Variance Tradeoffs in Joint Spectral Embed-

dings. arXiv:2005.02511 [math, stat], May 2020. 116, 138, 139

Benjamin Draves and Daniel L. Sussman. Bias-Variance Tradeoffs in Joint Spectral Embed-

dings, December 2021. arXiv:2005.02511 [math, stat]. 153

Xinjie Du and Minh Tang. Hypothesis Testing for Equality of Latent Positions in Random

Graphs. Technical Report arXiv:2105.10838, arXiv, March 2022. arXiv:2105.10838 [stat]

type: article. 22, 24, 26, 52, 179, 181

508



Joshua Agterberg

Noureddine El Karoui. The spectrum of kernel random matrices. The Annals of Statistics,

38(1):1–50, February 2010. ISSN 0090-5364, 2168-8966. doi: 10.1214/08-AOS648. 66

Noureddine El Karoui, Derek Bean, Peter J. Bickel, Chinghway Lim, and Bin Yu. On

robust regression with high-dimensional predictors. Proceedings of the National Academy

of Sciences, 110(36):14557–14562, September 2013. doi: 10.1073/pnas.1307842110. 82

Justin Eldridge, Mikhail Belkin, and Yusu Wang. Unperturbed: spectral analysis beyond

Davis-Kahan. In Algorithmic Learning Theory, pages 321–358, April 2018. 32, 429

Andreas Elsener and Sara van de Geer. Sparse spectral estimation with missing and cor-

rupted measurements. Stat, 8(1):e229, 2019. ISSN 2049-1573. doi: 10.1002/sta4.229.

65

Jianqing Fan and Runze Li. Variable Selection via Nonconcave Penalized Likelihood and its

Oracle Properties. Journal of the American Statistical Association, 96(456):1348–1360,

December 2001. ISSN 0162-1459. doi: 10.1198/016214501753382273. 61

Jianqing Fan, Weichen Wang, and Yiqiao Zhong. An $\ell_{\infty}$ Eigenvector Pertur-

bation Bound and Its Application. Journal of Machine Learning Research, 18(207):1–42,

2018. ISSN 1533-7928. 32, 60

Jianqing Fan, Yingying Fan, Xiao Han, and Jinchi Lv. Asymptotic Theory of Eigenvectors

for Random Matrices With Diverging Spikes. Journal of the American Statistical Asso-

ciation, 0(0):1–14, October 2020. ISSN 0162-1459. doi: 10.1080/01621459.2020.1840990.

32, 33, 43, 60

Jianqing Fan, Yingying Fan, Xiao Han, and Jinchi Lv. SIMPLE: Statistical inference on

membership profiles in large networks. Journal of the Royal Statistical Society: Series B

(Statistical Methodology), 84(2):630–653, 2022. ISSN 1467-9868. doi: 10.1111/rssb.12505.

22, 24, 26, 31, 52, 116, 153, 179, 181

Emily S. Finn, Xilin Shen, Dustin Scheinost, Monica D. Rosenberg, Jessica Huang, Mar-

vin M. Chun, Xenophon Papademetris, and R. Todd Constable. Functional connectome

509



BIBLIOGRAPHY

fingerprinting: identifying individuals using patterns of brain connectivity. Nature Neu-

roscience, 18(11):1664–1671, November 2015. ISSN 1546-1726. doi: 10.1038/nn.4135.

115

Laura Florescu and Will Perkins. Spectral thresholds in the bipartite stochastic block model.

In Conference on Learning Theory, pages 943–959, June 2016. ISSN: 1938-7228 Section:

Machine Learning. 33

Santo Fortunato and Mark EJ Newman. 20 years of network community detection. Nature

Physics, 18(8):848–850, 2022. 152

Nicolas Fournier and Arnaud Guillin. On the rate of convergence in Wasserstein distance

of the empirical measure. Probability Theory and Related Fields, 162(3):707–738, August

2015. ISSN 1432-2064. doi: 10.1007/s00440-014-0583-7. 410

G. W. Stewart and J.-G. Sun. Matrix pertubation theory. Academic Press, 1990. 61, 68, 286

Aditya Gangrade, Praveen Venkatesh, Bobak Nazer, and Venkatesh Saligrama. Efficient

Near-Optimal Testing of Community Changes in Balanced Stochastic Block Models. In

H. Wallach, H. Larochelle, A. Beygelzimer, F. d\textquotesingle Alché-Buc, E. Fox, and

R. Garnett, editors, Advances in Neural Information Processing Systems 32, pages 10364–

10375. Curran Associates, Inc., 2019. 141

Chao Gao, Zongming Ma, and Harrison H. Zhou. Sparse CCA: Adaptive estimation and

computational barriers. The Annals of Statistics, 45(5):2074–2101, October 2017. ISSN

0090-5364, 2168-8966. doi: 10.1214/16-AOS1519. 60

Chao Gao, Zongming Ma, Anderson Y. Zhang, and Harrison H. Zhou. Community detection

in degree-corrected block models. The Annals of Statistics, 46(5):2153–2185, October

2018. ISSN 0090-5364, 2168-8966. doi: 10.1214/17-AOS1615. 150, 152

Milana Gataric, Tengyao Wang, and Richard J. Samworth. Sparse principal component

analysis via axis-aligned random projections. Journal of the Royal Statistical Society:

Series B (Statistical Methodology), 82(2):329–359, 2020. ISSN 1467-9868. doi: 10.1111/

rssb.12360. 60, 63

510



Joshua Agterberg

Debarghya Ghoshdastidar, Maurilio Gutzeit, Alexandra Carpentier, and Ulrike von

Luxburg. Two-Sample Tests for Large Random Graphs Using Network Statistics.

arXiv:1705.06168 [stat], May 2017. 138, 139

Debarghya Ghoshdastidar, Maurilio Gutzeit, Alexandra Carpentier, and Ulrike von

Luxburg. Two-sample hypothesis testing for inhomogeneous random graphs. An-

nals of Statistics, 48(4):2208–2229, August 2020. ISSN 0090-5364, 2168-8966. doi:

10.1214/19-AOS1884. 116, 139

Nicolas Gillis and Stephen A. Vavasis. Fast and Robust Recursive Algorithmsfor Separable

Nonnegative Matrix Factorization. IEEE Transactions on Pattern Analysis and Machine

Intelligence, 36(4):698–714, April 2014. ISSN 1939-3539. doi: 10.1109/TPAMI.2013.226.

79, 81, 87, 88, 97, 383, 385

Edouard Grave, Armand Joulin, and Quentin Berthet. Unsupervised Alignment of Embed-

dings with Wasserstein Procrustes. In The 22nd International Conference on Artificial

Intelligence and Statistics, pages 1880–1890, April 2019. ISSN: 1938-7228 Section: Ma-

chine Learning. 141

Robert Everist Greene and Steven George Krantz. Function Theory of One Complex Vari-

able. American Mathematical Soc., 2006. ISBN 978-0-8218-3962-1. Google-Books-ID:

u5vhseYCcqkC. 73, 289

Arthur Gretton, Karsten M. Borgwardt, Malte J. Rasch, Bernhard Schölkopf, and Alexander

Smola. A Kernel Two-sample Test. J. Mach. Learn. Res., 13:723–773, March 2012. ISSN

1532-4435. 25, 116, 117, 125, 132, 133, 393, 407

Quanquan Gu, Zhaoran Wang, and Han Liu. Sparse PCA with Oracle Property. Advances

in neural information processing systems, 2014:1529–1537, 2014. ISSN 1049-5258. 60, 63,

65, 66, 69

Qiuyi Han, Kevin Xu, and Edoardo Airoldi. Consistent estimation of dynamic and multi-

layer block models. In Proceedings of the 32nd International Conference on Machine

Learning, pages 1511–1520. PMLR, June 2015. ISSN: 1938-7228. 150, 153, 159, 170

511



BIBLIOGRAPHY

Rungang Han, Yuetian Luo, Miaoyan Wang, and Anru R. Zhang. Exact Clustering in Tensor

Block Model: Statistical Optimality and Computational Limit. arXiv:2012.09996 [math,

stat], March 2021. 78, 80, 90, 91, 99, 100, 101, 178, 389

Xiao Han, Qing Yang, and Yingying Fan. Universal Rank Inference via Residual Subsam-

pling with Application to Large Networks. arXiv:1912.11583 [math, stat], July 2020. 52,

163

Nicholas J. Higham. Functions of Matrices. Other Titles in Applied Mathematics. Society

for Industrial and Applied Mathematics, January 2008. ISBN 978-0-89871-646-7. doi:

10.1137/1.9780898717778. 423

Peter D. Hoff, Adrian E. Raftery, and Mark S. Handcock. Latent Space Approaches to Social

Network Analysis. Journal of the American Statistical Association, 97(460):1090–1098,

2002. doi: 10.1198/016214502388618906. 116

P. W. Holland, K. B. Laskey, and S. Leinhardt. Stochastic blockmodels: First steps. Social

networks, 5(2):109–137, 1983. 116, 149, 150

Victoria Hore, Ana Viñuela, Alfonso Buil, Julian Knight, Mark I. McCarthy, Kerrin Small,

and Jonathan Marchini. Tensor decomposition for multiple-tissue gene expression ex-

periments. Nature Genetics, 48(9):1094–1100, September 2016. ISSN 1546-1718. doi:

10.1038/ng.3624. 80

R. A. Horn and C. R. Johnson. Matrix analysis. Cambridge university press, 2012. 61, 73,

436

Jiaxin Hu and Miaoyan Wang. Multiway Spherical Clustering via Degree-Corrected Tensor

Block Models. arXiv:2201.07401 [math, stat], January 2022. 90, 114

Ningyuan Huang, David W. Hogg, and Soledad Villar. Dimensionality reduction, regular-

ization, and generalization in overparameterized regressions. arXiv:2011.11477 [cs, stat],

November 2020a. 71

Sihan Huang, Haolei Weng, and Yang Feng. Spectral clustering via adaptive layer aggrega-

tion for multi-layer networks. arXiv:2012.04646 [cs, math, stat], December 2020b. 153

512



Joshua Agterberg

Lawrence Hubert and Phipps Arabie. Comparing partitions. Journal of Classification, 2(1):

193–218, 1985. 170

Jana Janková and Sara van de Geer. De-Biased Sparse PCA: Inference for Eigenstructure of

Large Covariance Matrices. IEEE Transactions on Information Theory, 67(4):2507–2527,

April 2021. ISSN 1557-9654. doi: 10.1109/TIT.2021.3059765. 26, 63, 65, 72

Jiashun Jin. Fast community detection by SCORE. The Annals of Statistics, 43(1), February

2015. ISSN 0090-5364. doi: 10.1214/14-AOS1265. 150, 152, 159, 162

Jiashun Jin, Zheng Tracy Ke, and Shengming Luo. Estimating network memberships by

simplex vertex hunting. arXiv:1708.07852 [stat], September 2019. 15, 31, 60, 114, 153,

154, 447, 453

Jiashun Jin, Zheng Tracy Ke, and Shengming Luo. Improvements on SCORE, Especially

for Weak Signals. Sankhya A, March 2021. ISSN 0976-836X, 0976-8378. doi: 10.1007/

s13171-020-00240-1. 152, 153, 154, 165, 167, 168, 169, 181, 185

Jiashun Jin, Zheng Tracy Ke, Shengming Luo, and Minzhe Wang. Optimal Estimation of

the Number of Communities. arXiv:2009.09177 [math, stat], January 2022. 157, 158, 163,

164

Bing-Yi Jing, Ting Li, Zhongyuan Lyu, and Dong Xia. Community detection on mixture

multilayer networks via regularized tensor decomposition. The Annals of Statistics, 49(6):

3181–3205, December 2021. ISSN 0090-5364, 2168-8966. doi: 10.1214/21-AOS2079. 17,

96, 104, 105, 110, 150, 153, 177

Iain M. Johnstone and Arthur Yu Lu. On Consistency and Sparsity for Principal Compo-

nents Analysis in High Dimensions. Journal of the American Statistical Association, 104

(486):682–693, June 2009. ISSN 0162-1459. doi: 10.1198/jasa.2009.0121. 31, 59, 60

Andrew Jones and Patrick Rubin-Delanchy. The multilayer random dot product graph,

January 2021. arXiv:2007.10455 [cs, stat]. 127, 153

Brian Karrer and Mark EJ Newman. Stochastic blockmodels and community structure in

networks. Physical Review E, 83(1):016107, 2011. 150, 152, 155, 156, 173

513



BIBLIOGRAPHY

Tosio Kato. Perturbation Theory for Linear Operators. Classics in Mathematics. Springer-

Verlag, Berlin Heidelberg, 2 edition, 1995. ISBN 978-3-540-58661-6. doi: 10.1007/

978-3-642-66282-9. 12

Zheng Tracy Ke and Jingming Wang. Optimal Network Membership Estimation Under

Severe Degree Heterogeneity, April 2022. arXiv:2204.12087 [math, stat]. 153, 154, 178

Zheng Tracy Ke, Feng Shi, and Dong Xia. Community Detection for Hypergraph Networks

via Regularized Tensor Power Iteration. arXiv:1909.06503 [math, stat], January 2020. 96,

110

Mikko Kivelä, Alex Arenas, Marc Barthelemy, James P Gleeson, Yamir Moreno, and Ma-

son A Porter. Multilayer networks. Journal of complex networks, 2(3):203–271, 2014.

150

Antti Knowles and Jun Yin. Anisotropic local laws for random matrices. Probabil-

ity Theory and Related Fields, 169(1):257–352, October 2017. ISSN 1432-2064. doi:

10.1007/s00440-016-0730-4. 66

Tamara G. Kolda and Brett W. Bader. Tensor Decompositions and Applications. SIAM

Review, 51(3):455–500, August 2009. ISSN 0036-1445. doi: 10.1137/07070111X. 83

Tamara Gibson Kolda. Multilinear operators for higher-order decompositions, volume 2.

United States. Department of Energy, 2006. 84

Vladimir Koltchinskii and Evarist Gine. Random matrix approximation of spectra of integral

operators. Bernoulli, 6(1):113–167, February 2000. ISSN 1350-7265. 33, 429

Vladimir Koltchinskii and Karim Lounici. Asymptotics and concentration bounds for bi-

linear forms of spectral projectors of sample covariance. Annales de l’Institut Henri

Poincaré, Probabilités et Statistiques, 52(4):1976–2013, November 2016. ISSN 0246-0203.

doi: 10.1214/15-AIHP705. 31, 42, 43

Vladimir Koltchinskii and Karim Lounici. Normal approximation and concentration of

spectral projectors of sample covariance. The Annals of Statistics, 45(1):121–157, February

2017. ISSN 0090-5364, 2168-8966. doi: 10.1214/16-AOS1437. 31, 32

514



Joshua Agterberg

Vladimir Koltchinskii and Dong Xia. Perturbation of linear forms of singular vectors under

gaussian noise. High Dimensional Probability VII, the Cargèse Volume, 2015. 82

Vladimir Koltchinskii and Dong Xia. Perturbation of Linear Forms of Singular Vectors Under

Gaussian Noise. In Christian Houdré, David M. Mason, Patricia Reynaud-Bouret, and

Jan Rosiński, editors, High Dimensional Probability VII, Progress in Probability, pages

397–423, Cham, 2016. Springer International Publishing. ISBN 978-3-319-40519-3. doi:

10.1007/978-3-319-40519-3_18. 31, 32, 288

Vladimir Koltchinskii, Karim Lounici, and Alexandre B Tsybakov. Nuclear-norm penaliza-

tion and optimal rates for noisy low-rank matrix completion. The Annals of Statistics, 39

(5):2302–2329, 2011. 388

Vladimir Koltchinskii, Matthias Löffler, and Richard Nickl. Efficient estimation of linear

functionals of principal components. The Annals of Statistics, 48(1):464–490, February

2020. ISSN 0090-5364, 2168-8966. doi: 10.1214/19-AOS1816. 31, 32, 42

Vladimir I. Koltchinskii. Asymptotics of Spectral Projections of Some Random Matrices

Approximating Integral Operators. In Ernst Eberlein, Marjorie Hahn, and Michel Ta-

lagrand, editors, High Dimensional Probability, Progress in Probability, pages 191–227,

Basel, 1998. Birkhäuser. ISBN 978-3-0348-8829-5. doi: 10.1007/978-3-0348-8829-5_11.

32

Piotr Koniusz and Anoop Cherian. Sparse Coding for Third-Order Super-Symmetric Ten-

sor Descriptors with Application to Texture Recognition. In 2016 IEEE Conference on

Computer Vision and Pattern Recognition (CVPR), pages 5395–5403, June 2016. doi:

10.1109/CVPR.2016.582. ISSN: 1063-6919. 80

Robert Krauthgamer, Boaz Nadler, and Dan Vilenchik. Do semidefinite relaxations solve

sparse PCA up to the information limit? Annals of Statistics, 43(3):1300–1322, June

2015. ISSN 0090-5364, 2168-8966. doi: 10.1214/15-AOS1310. 60

Can M Le and Elizaveta Levina. Estimating the number of communities by spectral methods.

Electronic Journal of Statistics, 16(1):3315–3342, 2022. 163

515



BIBLIOGRAPHY

William Leeb and Elad Romanov. Optimal Spectral Shrinkage and PCA With Heteroscedas-

tic Noise. IEEE Transactions on Information Theory, 67(5):3009–3037, May 2021. ISSN

1557-9654. doi: 10.1109/TIT.2021.3055075. 33

Jing Lei. A goodness-of-fit test for stochastic block models. The Annals of Statistics, 44(1):

401–424, February 2016. ISSN 0090-5364, 2168-8966. doi: 10.1214/15-AOS1370. 116

Jing Lei. Convergence and concentration of empirical measures under Wasserstein distance

in unbounded functional spaces. Bernoulli, 26(1):767–798, February 2020a. ISSN 1350-

7265. doi: 10.3150/19-BEJ1151. 411

Jing Lei. Network Representation Using Graph Root Distributions. Annals of Statistics,

2020b. 121, 122, 135, 140, 411

Jing Lei and Kevin Z. Lin. Bias-Adjusted Spectral Clustering in Multi-Layer Stochastic

Block Models. Journal of the American Statistical Association, 0(0):1–13, March 2022.

ISSN 0162-1459. doi: 10.1080/01621459.2022.2054817. 33, 150, 153, 159, 170, 177

Jing Lei and Alessandro Rinaldo. Consistency of spectral clustering in stochastic block

models. Annals of Statistics, 43(1):215–237, February 2015. ISSN 0090-5364, 2168-8966.

doi: 10.1214/14-AOS1274. 13, 31, 45, 46, 150, 152, 159, 162, 168, 170, 183, 185, 186, 220,

224, 439, 441

Jing Lei and Vincent Q. Vu. Sparsistency and agnostic inference in sparse PCA. Annals

of Statistics, 43(1):299–322, February 2015. ISSN 0090-5364, 2168-8966. doi: 10.1214/

14-AOS1273. 60, 63, 64, 65, 66, 69

Jing Lei, Kehui Chen, and Brian Lynch. Consistent community detection in multi-layer

network data. Biometrika, 107(1):61–73, March 2020. ISSN 0006-3444. doi: 10.1093/

biomet/asz068. 153, 177

Lihua Lei. Unified $\ell_{2\rightarrow\infty}$ Eigenspace Perturbation Theory for Sym-

metric Random Matrices. arXiv:1909.04798 [math, stat], September 2019. 31, 32, 60, 150,

286, 288, 289, 291

516



Joshua Agterberg

Keith Levin and Elizaveta Levina. Bootstrapping Networks with Latent Space Structure.

arXiv:1907.10821 [math, stat], July 2019. 117, 127, 135, 138, 139, 140, 411

Keith Levin, Avanti Athreya, Minh Tang, Vince Lyzinski, Youngser Park, and Carey E.

Priebe. A central limit theorem for an omnibus embedding of multiple random graphs

and implications for multiscale network inference. arXiv:1705.09355 [stat], June 2019.

116, 138, 153

Gen Li, Changxiao Cai, Yuantao Gu, H. Vincent Poor, and Yuxin Chen. Minimax

Estimation of Linear Functions of Eigenvectors in the Face of Small Eigen-Gaps.

arXiv:2104.03298 [cs, math, stat], April 2021. 32

Gongkai Li, Minh Tang, Nicolas Charon, and Carey Priebe. Central limit theorems for clas-

sical multidimensional scaling. Electronic Journal of Statistics, 14(1):2362–2394, January

2020a. ISSN 1935-7524, 1935-7524. doi: 10.1214/20-EJS1720. 5, 32

Tianxi Li, Elizaveta Levina, and Ji Zhu. Network cross-validation by edge sampling.

Biometrika, 107(2):257–276, 2020b. 163

Yezheng Li and Hongzhe Li. Two-sample Test of Community Memberships of Weighted

Stochastic Block Models. arXiv:1811.12593 [math, stat], November 2018. 32, 33, 116,

138, 139, 141, 394

Qiaohui Lin, Robert Lunde, and Purnamrita Sarkar. Higher-Order Correct Multiplier Boot-

straps for Count Functionals of Networks. arXiv:2009.06170 [math, stat], September

2020a. 117, 127, 139

Qiaohui Lin, Robert Lunde, and Purnamrita Sarkar. On the Theoretical Properties of the

Network Jackknife. arXiv:2004.08935 [math, stat], April 2020b. 117, 127, 139

Anna Little, Yuying Xie, and Qiang Sun. Exact Cluster Recovery via Classical Multidimen-

sional Scaling. arXiv:1812.11954 [math, stat], July 2020. 5, 32

Karim Lounici. Sparse Principal Component Analysis with Missing Observations. In Chris-

tian Houdré, David M. Mason, Jan Rosiński, and Jon A. Wellner, editors, High Dimen-

517



BIBLIOGRAPHY

sional Probability VI, Progress in Probability, pages 327–356, Basel, 2013. Springer. ISBN

978-3-0348-0490-5. doi: 10.1007/978-3-0348-0490-5_20. 31

Karim Lounici. High-dimensional covariance matrix estimation with missing observations.

Bernoulli, 20(3):1029–1058, August 2014. ISSN 1350-7265. doi: 10.3150/12-BEJ487. 31,

33

László Lovász. Large networks and graph limits, volume 60. American Mathematical Soc.,

2012. 116

Yue M. Lu and Gen Li. Spectral initialization for nonconvex estimation: High-dimensional

limit and phase transitions. In 2017 IEEE International Symposium on Information The-

ory (ISIT), pages 3015–3019, June 2017. doi: 10.1109/ISIT.2017.8007083. ISSN: 2157-

8117. 31

Robert Lunde and Purnamrita Sarkar. Subsampling Sparse Graphons Under Minimal As-

sumptions. arXiv:1907.12528 [math, stat], August 2019. 117, 127, 132, 139

Feng Luo, Yunfeng Yang, Chin-Fu Chen, Roger Chang, Jizhong Zhou, and Richard H

Scheuermann. Modular organization of protein interaction networks. Bioinformatics,

23(2):207–214, 2007. 149

Yuetian Luo and Anru R. Zhang. Tensor clustering with planted structures: Statistical

optimality and computational limits. The Annals of Statistics, 50(1):584–613, February

2022. ISSN 0090-5364, 2168-8966. doi: 10.1214/21-AOS2123. 80

Yuetian Luo, Rungang Han, and Anru R. Zhang. A Schatten-$q$ Matrix Perturbation

Theory via Perturbation Projection Error Bound. arXiv:2008.01312 [cs, math, stat],

November 2020. 32

Yuetian Luo, Garvesh Raskutti, Ming Yuan, and Anru R. Zhang. A Sharp Blockwise Tensor

Perturbation Bound for Orthogonal Iteration. arXiv:2008.02437 [cs, math, stat], June

2021. 81, 94, 330

518



Joshua Agterberg

Vince Lyzinski, Daniel L Sussman, Minh Tang, Avanti Athreya, and Carey E Priebe. Perfect

clustering for stochastic blockmodel graphs via adjacency spectral embedding. Electronic

journal of statistics, 8(2):2905–2922, 2014. 150, 154, 159, 168

Matthias Löffler, Anderson Y. Zhang, and Harrison H. Zhou. Optimality of spectral cluster-

ing in the Gaussian mixture model. The Annals of Statistics, 49(5):2506–2530, October

2021. ISSN 0090-5364, 2168-8966. doi: 10.1214/20-AOS2044. 5, 31, 32, 90, 178

Cong Ma, Kaizheng Wang, Yuejie Chi, and Yuxin Chen. Implicit Regularization in Non-

convex Statistical Estimation: Gradient Descent Converges Linearly for Phase Retrieval,

Matrix Completion, and Blind Deconvolution. Foundations of Computational Mathemat-

ics, 20(3):451–632, June 2020. ISSN 1615-3383. doi: 10.1007/s10208-019-09429-9. 31, 82,

107

Shujie Ma, Liangjun Su, and Yichong Zhang. Determining the number of communities in

degree-corrected stochastic block models. Journal of machine learning research, 22(69),

2021. 163

Zongming Ma. Sparse principal component analysis and iterative thresholding. Annals

of Statistics, 41(2):772–801, April 2013. ISSN 0090-5364, 2168-8966. doi: 10.1214/

13-AOS1097. 60, 63

P W MacDonald, E Levina, and J Zhu. Latent space models for multiplex networks with

shared structure. Biometrika, 109(3):683–706, September 2022. ISSN 1464-3510. doi:

10.1093/biomet/asab058. 153

Xueyu Mao, Purnamrita Sarkar, and Deepayan Chakrabarti. Estimating Mixed Member-

ships With Sharp Eigenvector Deviations. Journal of the American Statistical Association,

0(0):1–13, April 2020. ISSN 0162-1459. doi: 10.1080/01621459.2020.1751645. 31, 32, 60,

288

Xueyu Mao, Purnamrita Sarkar, and Deepayan Chakrabarti. Estimating Mixed Member-

ships With Sharp Eigenvector Deviations. Journal of the American Statistical Association,

519



BIBLIOGRAPHY

116(536):1928–1940, October 2021. ISSN 0162-1459. doi: 10.1080/01621459.2020.1751645.

81, 86, 87, 92, 152, 153, 379, 381, 382, 383

A. M. Mood. On the Asymptotic Efficiency of Certain Nonparametric Two-Sample Tests.

The Annals of Mathematical Statistics, 25(3):514–522, 1954. ISSN 0003-4851. 115

M. E. J. Newman. Modularity and community structure in networks. Proceedings of the

National Academy of Sciences, 103(23):8577–8582, 2006. 115

M. E. J. Newman, D. J. Watts, and S. H. Strogatz. Random graph models of social networks.

Proceedings of the National Academy of Sciences, 99(suppl 1):2566–2572, February 2002.

ISSN 0027-8424, 1091-6490. doi: 10.1073/pnas.012582999. 115

Majid Noroozi and Marianna Pensky. Sparse Subspace Clustering in Diverse Multiplex

Network Model, June 2022. arXiv:2206.07602 [cs, stat]. 153

Sean O’Rourke, Van Vu, and Ke Wang. Random perturbation of low rank matrices: Im-

proving classical bounds. Linear Algebra and its Applications, 540:26–59, March 2018.

ISSN 0024-3795. doi: 10.1016/j.laa.2017.11.014. 32, 429

Konstantinos Pantazis, Avanti Athreya, Jesus Arroyo, William N. Frost, Evan S. Hill, and

Vince Lyzinski. The Importance of Being Correlated: Implications of Dependence in Joint

Spectral Inference across Multiple Networks. Journal of Machine Learning Research, 23

(141):1–77, 2022. ISSN 1533-7928. 153

Subhadeep Paul and Yuguo Chen. Spectral and matrix factorization methods for consistent

community detection in multi-layer networks. The Annals of Statistics, 48(1):230–250,

February 2020. ISSN 0090-5364, 2168-8966. doi: 10.1214/18-AOS1800. 153, 159, 170, 177

Tiago P Peixoto. Efficient monte carlo and greedy heuristic for the inference of stochastic

block models. Physical Review E, 89(1):012804, 2014a. 170

Tiago P. Peixoto. The graph-tool python library. figshare, 2014b. doi: 10.6084/m9.figshare.

1164194. 170

520



Joshua Agterberg

Tiago P Peixoto. Inferring the mesoscale structure of layered, edge-valued, and time-varying

networks. Physical Review E, 92(4):042807, 2015. 153, 155, 170

Marianna Pensky and Yaxuan Wang. Clustering of Diverse Multiplex Networks.

arXiv:2110.05308 [stat], October 2021. 150, 153

Marianna Pensky and Teng Zhang. Spectral clustering in the dynamic stochastic block

model. Electronic Journal of Statistics, 13(1):678–709, January 2019. ISSN 1935-7524,

1935-7524. doi: 10.1214/19-EJS1533. 150

Carey E. Priebe, Youngser Park, Joshua T. Vogelstein, John M. Conroy, Vince Lyzin-

ski, Minh Tang, Avanti Athreya, Joshua Cape, and Eric Bridgeford. On a two-truths

phenomenon in spectral graph clustering. Proceedings of the National Academy of Sci-

ences, 116(13):5995–6000, March 2019. ISSN 0027-8424, 1091-6490. doi: 10.1073/pnas.

1814462116. 115

T. Qin and K. Rohe. Regularized spectral clustering under the degree-corrected stochastic

blockmodel. Advances in Neural Information Processing Systems, 2013. 157, 159, 168

Emile Richard and Andrea Montanari. A statistical model for tensor pca. In Advances in

Neural Information Processing Systems, pages 2897–2905, 2014. 82

Karl Rohe and Muzhe Zeng. Vintage Factor Analysis with Varimax Performs Statistical

Inference. arXiv:2004.05387 [math, stat], April 2020. 32, 60

Karl Rohe, Sourav Chatterjee, and Bin Yu. Spectral clustering and the high-dimensional

stochastic blockmodel. The Annals of Statistics, 39(4):1878–1915, August 2011. ISSN

0090-5364. doi: 10.1214/11-AOS887. 150, 152

Patrick Rubin-Delanchy. Manifold structure in graph embeddings. arXiv:2006.05168 [cs,

stat], June 2020. 122

Patrick Rubin-Delanchy, Joshua Cape, Minh Tang, and Carey E. Priebe. A statisti-

cal interpretation of spectral embedding: the generalised random dot product graph.

arXiv:1709.05506 [cs, stat], January 2020. 31, 116, 121, 122, 124, 392, 416, 417, 428

521



BIBLIOGRAPHY

Patrick Rubin-Delanchy, Joshua Cape, Minh Tang, and Carey E. Priebe. A statistical

interpretation of spectral embedding: The generalised random dot product graph. Journal

of the Royal Statistical Society: Series B (Statistical Methodology), n/a(n/a), 2022. ISSN

1467-9868. doi: 10.1111/rssb.12509. 25, 152, 158, 162, 448

Geoffrey Schiebinger, Martin J. Wainwright, and Bin Yu. The geometry of kernelized spectral

clustering. The Annals of Statistics, 43(2):819–846, April 2015. ISSN 0090-5364, 2168-

8966. doi: 10.1214/14-AOS1283. 5, 31, 32

Markus Schneider. Probability inequalities for kernel embeddings in sampling without re-

placement. In Artificial Intelligence and Statistics, pages 66–74, 2016. 403, 407

Evan Schwab, Benjamin D. Haeffele, René Vidal, and Nicolas Charon. Global Optimality in

Separable Dictionary Learning with Applications to the Analysis of Diffusion MRI. SIAM

Journal on Imaging Sciences, 12(4):1967–2008, January 2019. doi: 10.1137/18M121976X.

80

R.J. Serfling. Approximation Theorems of Mathematical Statistics. Wiley Series in Probabil-

ity and Statistics - Applied Probability and Statistics Section Series. Wiley, 1980. ISBN

978-0-471-02403-3. 117, 125

Vinesh Solanki, Patrick Rubin-Delanchy, and Ian Gallagher. Persistent Homology of Graph

Embeddings. arXiv:1912.10238 [math, stat], December 2019. 391, 394

Olaf Sporns and Richard F Betzel. Modular brain networks. Annual review of psychology,

67:613, 2016. 149

Bharath K. Sriperumbudur, Kenji Fukumizu, and Gert R. G. Lanckriet. Universality, Char-

acteristic Kernels and RKHS Embedding of Measures. Journal of Machine Learning

Research, 12(70):2389–2410, 2011. ISSN 1533-7928. 125

Prateek R. Srivastava, Purnamrita Sarkar, and Grani A. Hanasusanto. A Robust Spectral

Clustering Algorithm for Sub-Gaussian Mixture Models with Outliers. arXiv:1912.07546

[cs, math, stat], January 2021. 31

522



Joshua Agterberg

Liangjun Su, Wuyi Wang, and Yichong Zhang. Strong Consistency of Spectral Clustering

for Stochastic Block Models. IEEE Transactions on Information Theory, 66(1):324–338,

January 2020. ISSN 1557-9654. doi: 10.1109/TIT.2019.2934157. 150, 153, 154, 159, 164,

168

Pragya Sur and Emmanuel J. Candès. A modern maximum-likelihood theory for high-

dimensional logistic regression. Proceedings of the National Academy of Sciences, 116(29):

14516–14525, July 2019. doi: 10.1073/pnas.1810420116. 82

Pragya Sur, Yuxin Chen, and Emmanuel J. Candès. The likelihood ratio test in high-

dimensional logistic regression is asymptotically a rescaled Chi-square. Probability The-

ory and Related Fields, 175(1):487–558, October 2019. ISSN 1432-2064. doi: 10.1007/

s00440-018-00896-9. 82

Daniel L Sussman, Minh Tang, Donniell E Fishkind, and Carey E Priebe. A consistent

adjacency spectral embedding for stochastic blockmodel graphs. Journal of the American

Statistical Association, 107(499):1119–1128, 2012. 162

Gábor J. Székely and Maria L. Rizzo. Energy statistics: A class of statistics based on

distances. Journal of Statistical Planning and Inference, 143(8):1249–1272, August 2013.

ISSN 0378-3758. doi: 10.1016/j.jspi.2013.03.018. 116

Minh Tang. The eigenvalues of stochastic blockmodel graphs. arXiv:1803.11551 [cs, stat],

March 2018. 74, 273, 294

Minh Tang and Carey E. Priebe. Limit theorems for eigenvectors of the normalized Laplacian

for random graphs. The Annals of Statistics, 46(5):2360–2415, October 2018. ISSN 0090-

5364, 2168-8966. doi: 10.1214/17-AOS1623. 394, 417

Minh Tang, Daniel L. Sussman, and Carey E. Priebe. Universally consistent vertex classifi-

cation for latent positions graphs. The Annals of Statistics, 41(3):1406–1430, June 2013.

ISSN 0090-5364. doi: 10.1214/13-AOS1112. 122

Minh Tang, Avanti Athreya, Daniel L. Sussman, Vince Lyzinski, Youngser Park, and

Carey E. Priebe. A Semiparametric Two-Sample Hypothesis Testing Problem for Random

523



BIBLIOGRAPHY

Graphs. Journal of Computational and Graphical Statistics, 26(2):344–354, April 2017a.

ISSN 1061-8600. doi: 10.1080/10618600.2016.1193505. 116, 138, 394

Minh Tang, Avanti Athreya, Daniel L. Sussman, Vince Lyzinski, and Carey E. Priebe. A

nonparametric two-sample hypothesis testing problem for random graphs. Bernoulli, 23

(3):1599–1630, August 2017b. ISSN 1350-7265. doi: 10.3150/15-BEJ789. 139, 140, 147,

396, 398, 418, 419, 421

Minh Tang, Joshua Cape, and Carey E. Priebe. Asymptotically efficient estimators for

stochastic blockmodels: the naive MLE, the rank-constrained MLE, and the spectral.

arXiv:1710.10936 [stat], October 2017c. 74, 127, 270, 273, 294

Wei Tang, Zhengdong Lu, and Inderjit S Dhillon. Clustering with multiple graphs. In 2009

Ninth IEEE International Conference on Data Mining, pages 1016–1021. IEEE, 2009. 159

Joel A. Tropp. An Introduction to Matrix Concentration Inequalities. Foundations and

Trends® in Machine Learning, 8(1-2):1–230, May 2015. ISSN 1935-8237. doi: 10.1561/

2200000048. 202, 205

M. Udell and A. Townsend. Why Are Big Data Matrices Approximately Low Rank? SIAM

Journal on Mathematics of Data Science, 1(1):144–160, January 2019. doi: 10.1137/

18M1183480. 122

S.A. van de Geer. Empirical Processes in M-Estimation. Cambridge Series in Statistical and

Probabilistic Mathematics. Cambridge University Press, 2009. ISBN 978-0-521-12325-9.

421

A. W. van der Vaart. Asymptotic Statistics. Cambridge University Press, June 2000. ISBN

978-0-521-78450-4. Google-Books-ID: SYlmEAAAQBAJ. 2

Santosh Vempala and Grant Wang. A spectral algorithm for learning mixture models.

Journal of Computer and System Sciences, 68(4):841–860, June 2004. ISSN 0022-0000.

doi: 10.1016/j.jcss.2003.11.008. 5, 32

Roman Vershynin. High-Dimensional Probability: An Introduction with Applications in

Data Science. Cambridge Series in Statistical and Probabilistic Mathematics. Cambridge

524



Joshua Agterberg

University Press, 2018. doi: 10.1017/9781108231596. 1, 2, 34, 74, 85, 193, 200, 237, 244,

257, 311

Roman Vershynin. Concentration inequalities for random tensors. arXiv:1905.00802 [math],

June 2020. 256

J. T. Vogelstein, W. G. Roncal, R. J. Vogelstein, and C. E. Priebe. Graph Classification

Using Signal-Subgraphs: Applications in Statistical Connectomics. Pattern Analysis and

Machine Intelligence, IEEE Transactions on, 35(7):1539–1551, 2013. 115

Ulrike von Luxburg. A tutorial on spectral clustering. Statistics and Computing, 17(4):

395–416, December 2007. ISSN 1573-1375. doi: 10.1007/s11222-007-9033-z. 5, 32, 150

Vincent Q. Vu and Jing Lei. Minimax sparse principal subspace estimation in high dimen-

sions. The Annals of Statistics, 41(6):2905–2947, December 2013. ISSN 0090-5364. doi:

10.1214/13-AOS1151. 60, 62, 70

Vincent Q Vu, Juhee Cho, Jing Lei, and Karl Rohe. Fantope Projection and Selection: A

near-optimal convex relaxation of sparse PCA. In C. J. C. Burges, L. Bottou, M. Welling,

Z. Ghahramani, and K. Q. Weinberger, editors, Advances in Neural Information Process-

ing Systems 26, pages 2670–2678. Curran Associates, Inc., 2013. 60, 63, 70

Martin Wahl. A note on the prediction error of principal component regression.

arXiv:1811.02998 [math, stat], April 2019a. 288

Martin Wahl. On the perturbation series for eigenvalues and eigenprojections.

arXiv:1910.08460 [math, stat], October 2019b. 288

M. J. Wainwright. Sharp Thresholds for High-Dimensional and Noisy Sparsity Recovery

Using 1 -Constrained Quadratic Programming (Lasso). IEEE Transactions on Information

Theory, 55(5):2183–2202, 2009. doi: 10.1109/TIT.2009.2016018. 61

Martin J. Wainwright. High-Dimensional Statistics: A Non-Asymptotic Viewpoint, Febru-

ary 2019. ISBN: 9781108627771 9781108498029 Library Catalog: www.cambridge.org

Publisher: Cambridge University Press. 2, 72, 74, 278, 279, 424, 427

525



BIBLIOGRAPHY

Haifeng Wang, Jinchi Chen, and Ke Wei. Implicit Regularization and Entrywise Convergence

of Riemannian Optimization for Low Tucker-Rank Tensor Completion. Technical Report

arXiv:2108.07899, arXiv, November 2021. arXiv:2108.07899 [math] type: article. 81

Miaoyan Wang and Yuchen Zeng. Multiway clustering via tensor block models. In Advances

in Neural Information Processing Systems, volume 32. Curran Associates, Inc., 2019. 78,

100

Tengyao Wang, Quentin Berthet, and Richard J. Samworth. Statistical and computational

trade-offs in estimation of sparse principal components. The Annals of Statistics, 44(5):

1896–1930, October 2016. ISSN 0090-5364. doi: 10.1214/15-AOS1369. 60

Weichen Wang and Jianqing Fan. Asymptotics of empirical eigenstructure for high dimen-

sional spiked covariance. The Annals of Statistics, 45(3):1342–1374, June 2017. ISSN

0090-5364, 2168-8966. doi: 10.1214/16-AOS1487. 31

Y. X. Rachel Wang and Peter J. Bickel. Likelihood-based model selection for stochastic block

models. Annals of Statistics, 45(2):500–528, April 2017. ISSN 0090-5364, 2168-8966. doi:

10.1214/16-AOS1457. 163

Zhaoran Wang, Huanran Lu, and Han Liu. Tighten after Relax: Minimax-Optimal Sparse

PCA in Polynomial Time. Advances in neural information processing systems, 2014:3383–

3391, 2014. ISSN 1049-5258. 63

Tao Wu, Austin R Benson, and David F Gleich. General Tensor Spectral Co-clustering for

Higher-Order Data. In Advances in Neural Information Processing Systems, volume 29.

Curran Associates, Inc., 2016. 78, 80

Yihong Wu and Pengkun Yang. Optimal estimation of Gaussian mixtures via denoised

method of moments. The Annals of Statistics, 48(4):1981 – 2007, 2020. doi: 10.1214/

19-AOS1873. 90

Dong Xia. Confidence Region of Singular Subspaces for Low-Rank Matrix Regression. IEEE

Transactions on Information Theory, 65(11):7437–7459, November 2019. ISSN 1557-9654.

doi: 10.1109/TIT.2019.2924900. 32, 210

526



Joshua Agterberg

Dong Xia. Normal approximation and confidence region of singular subspaces. Electronic

Journal of Statistics, 15(2):3798–3851, January 2021. ISSN 1935-7524, 1935-7524. doi:

10.1214/21-EJS1876. 12, 32, 33, 37, 41, 42, 54, 210, 219, 288

Dong Xia and Ming Yuan. Statistical Inferences of Linear Forms for Noisy Matrix Comple-

tion. arXiv:1909.00116 [cs, math, stat], June 2020. 32, 41, 42, 60, 270, 273, 300

Dong Xia and Fan Zhou. The Sup-norm Perturbation of HOSVD and Low Rank Tensor

Denoising. Journal of Machine Learning Research, 20(61):1–42, 2019. ISSN 1533-7928.

82, 154

Fangzheng Xie. Euclidean Representation of Low-Rank Matrices and Its Statistical Appli-

cations. arXiv:2103.04220 [math, stat], March 2021. 31

Fangzheng Xie. Entrywise limit theorems of eigenvectors for signal-plus-noise matrix models

with weak signals, March 2022. Number: arXiv:2106.09840 arXiv:2106.09840 [math, stat].

60, 81, 92, 270, 383

Fangzheng Xie and Yanxun Xu. Efficient Estimation for Random Dot Product Graphs via

a One-step Procedure. arXiv:1910.04333 [math, stat], November 2020. 31

Fangzheng Xie, Joshua Cape, Carey E. Priebe, and Yanxun Xu. Bayesian Sparse Spiked

Covariance Model with a Continuous Matrix Shrinkage Prior. Bayesian Analysis, -1(-1):

1–25, January 2022. ISSN 1936-0975, 1931-6690. doi: 10.1214/21-BA1292. 31, 32, 60, 61,

63, 70, 74, 270, 273, 294

Jiaming Xu. Rates of Convergence of Spectral Methods for Graphon Estimation. In In-

ternational Conference on Machine Learning, pages 5433–5442. PMLR, July 2018. ISSN:

2640-3498. 122

Yuling Yan, Yuxin Chen, and Jianqing Fan. Inference for Heteroskedastic PCA with Missing

Data. arXiv:2107.12365 [cs, math, stat], July 2021. 15, 20, 44, 60, 70, 82, 96, 97, 107,

153, 270

Congyuan Yang, Carey E. Priebe, Youngser Park, and David J. Marchette. Simultaneous

Dimensionality and Complexity Model Selection for Spectral Graph Clustering. Journal

527



BIBLIOGRAPHY

of Computational and Graphical Statistics, 0(0):1–20, September 2020. ISSN 1061-8600.

doi: 10.1080/10618600.2020.1824870. 52

Fan Yang. Edge universality of separable covariance matrices. Electronic Journal of Proba-

bility, 24, 2019. ISSN 1083-6489. doi: 10.1214/19-EJP381. 66

Fan Yang. Linear spectral statistics of eigenvectors of anisotropic sample covariance matrices.

arXiv:2005.00999 [math, stat], May 2020. 66

Zhuoran Yang, Zhaoran Wang, Han Liu, Yonina C. Eldar, and Tong Zhang. Sparse Nonlinear

Regression: Parameter Estimation and Asymptotic Inference. arXiv:1511.04514 [cs, math,

stat], November 2015. 60

Yi Yu, Tengyao Wang, and Richard Samworth. A useful variant of the Davis–Kahan theorem

for statisticians. Biometrika, 102, April 2014. doi: 10.1093/biomet/asv008. 32, 61, 269

Ming Yuan and Cun-Hui Zhang. Incoherent Tensor Norms and Their Applications in Higher

Order Tensor Completion. IEEE Transactions on Information Theory, 63(10):6753–6766,

October 2017. ISSN 1557-9654. doi: 10.1109/TIT.2017.2724549. 110

Anderson Y. Zhang and Harrison H. Zhou. Minimax rates of community detection in stochas-

tic block models. The Annals of Statistics, 44(5):2252–2280, October 2016. ISSN 0090-

5364, 2168-8966. doi: 10.1214/15-AOS1428. 149

Anderson Y. Zhang and Harrison H. Zhou. Leave-one-out Singular Subspace Perturbation

Analysis for Spectral Clustering, May 2022. Number: arXiv:2205.14855 arXiv:2205.14855

[cs, math, stat]. 5, 82, 154, 178

Anru Zhang and Rungang Han. Optimal Sparse Singular Value Decomposition for High-

Dimensional High-Order Data. Journal of the American Statistical Association, 114(528):

1708–1725, October 2019. ISSN 0162-1459. doi: 10.1080/01621459.2018.1527227. 82, 389

Anru Zhang and Dong Xia. Tensor SVD: Statistical and Computational Limits. IEEE

Transactions on Information Theory, 64(11):7311–7338, November 2018. ISSN 1557-9654.

doi: 10.1109/TIT.2018.2841377. 82, 87, 90, 94, 95, 96, 110, 330

528



Joshua Agterberg

Anru R. Zhang, T. Tony Cai, and Yihong Wu. Heteroskedastic PCA: Algorithm, Optimality,

and Applications. Annals of Statistics, to appear, April 2021. 251, 253

Anru R. Zhang, T. Tony Cai, and Yihong Wu. Heteroskedastic PCA: Algorithm, optimality,

and applications. The Annals of Statistics, 50(1):53–80, February 2022. ISSN 0090-5364,

2168-8966. doi: 10.1214/21-AOS2074. 31, 33, 35, 36, 37, 44, 53, 96, 97, 251

Chenyu Zhang, Rungang Han, Anru R. Zhang, and Paul. M. Voyles. Denoising atomic

resolution 4D scanning transmission electron microscopy data with tensor singular value

decomposition. Ultramicroscopy, 219:113123, December 2020a. ISSN 0304-3991. doi:

10.1016/j.ultramic.2020.113123. 80

Yichi Zhang and Minh Tang. Perturbation Analysis of Randomized SVD and its Applications

to High-dimensional Statistics, March 2022. Number: arXiv:2203.10262 arXiv:2203.10262

[cs, math, stat]. 154

Yuan Zhang. Unseeded low-rank graph matching by transform-based unsupervised point

registration. arXiv:1807.04680 [cs, stat], July 2018. 141

Yuan Zhang and Dong Xia. Edgeworth expansions for network moments. arXiv:2004.06615

[cs, math, stat], April 2020. 117, 127, 139

Yuan Zhang, Elizaveta Levina, and Ji Zhu. Detecting Overlapping Communities in Networks

Using Spectral Methods. SIAM Journal on Mathematics of Data Science, 2(2):265–283,

January 2020b. doi: 10.1137/19M1272238. 31

Peng Zhao and Bin Yu. On Model Selection Consistency of Lasso. Journal of Machine

Learning Research, 7(90):2541–2563, 2006. ISSN 1533-7928. 61

Yunpeng Zhao, Elizaveta Levina, and Ji Zhu. Consistency of community detection in net-

works under degree-corrected stochastic block models. The Annals of Statistics, 40(4):

2266–2292, 2012. 152

Runbing Zheng and Minh Tang. Limit results for distributed estimation of invariant sub-

spaces in multiple networks inference and PCA. Technical Report arXiv:2206.04306,

arXiv, June 2022. arXiv:2206.04306 [math, stat] type: article. 153

529



BIBLIOGRAPHY

Yiqiao Zhong and Nicolas Boumal. Near-optimal bounds for phase synchronization. SIAM

Journal on Optimization, 28(2):989–1016, January 2018. ISSN 1052-6234, 1095-7189. doi:

10.1137/17M1122025. 32, 82, 107

Mu Zhu and Ali Ghodsi. Automatic dimensionality selection from the scree plot via the use

of profile likelihood. Computational Statistics & Data Analysis, 51(2):918–930, November

2006. ISSN 0167-9473. doi: 10.1016/j.csda.2005.09.010. 52, 101, 163

Ziwei Zhu, Tengyao Wang, and Richard J. Samworth. High-dimensional principal component

analysis with heterogeneous missingness. arXiv:1906.12125 [math, stat], June 2019. 31,

32

530



Vita

Joshua Agterberg received the Master of Science in Engineering degree in Applied Mathe-

matics and Statistics from Johns Hopkins University in 2018, and he received the Bachelor’s

of Business Administration degree in Actuarial Science and Mathematics from the Univer-

sity of Wisconsin-Madison in 2017. Joshua’s PhD studies have been supported through the

MINDS (Mathematical Institute of Data Science) Fellowship (awarded three times) and the

Charles and Catherine Counselman Fellowship (Fall 2019 - Spring 2023), and he is a recip-

ient of the Acheson J. Duncan Fund for the Advancement of Research in Statistics Travel

Award (twice), the IMS (Institute of Mathematical Statistics) Hannan Graduate Student

Travel Award, and the best presentation award at the Joint Statistical Meetings Student

Competition in Nonparametric Statistics for his work Agterberg et al. (2020a). He is a

Johns Hopkins Applied Mathematics and Statistics Teaching Fellow. In his free time when

he is not thinking about low-rank matrix models and high-dimensional statistics he enjoys

cycling, hiking, and reading fantasy novels.

531


	Abstract
	Acknowledgements
	Dedication
	List of Tables
	List of Figures
	Introduction
	High-Dimensional Low-Rank Matrix Models
	Primer on Matrix Perturbation Theory
	Probabilistic Bounds and Application to Matrix Denoising

	Entrywise Perturbation Bounds
	Entrywise Perturbation Bounds for Matrix Denoising

	Asymptotics and Distributional Theory
	Asymptotics for Matrix Denoising

	Statistical Inference
	Hypothesis Testing in Matrix Denoising

	Contributions of This Thesis
	Future Work


	Entrywise Estimation of Singular Vectors of Low-Rank Matrices with Heteroskedasticity and Dependence
	Introduction
	Related Work
	Notation

	Background and Methodology
	Main Results
	Comparison to Prior Work
	Application to Mixture Distributions

	Numerical Results
	Elliptical Versus Spherical Covariances

	Discussion
	Proof Architecture for Theorems 5 and 6

	Entrywise Bounds for Sparse PCA via Sparsistent Algorithms
	Introduction
	Notation

	Sparse PCA and Sparsistency
	Main Results
	Discussion
	Overview of the Proof of Theorem 9

	Estimating Higher-Order Mixed Memberships via 2 to Infinity Tensor Perturbation Bounds
	Introduction
	Related Work
	Notation and Preliminaries

	Main Results
	Estimation Procedure
	Technical Assumptions
	Estimation Errors
	Key Tool: 2 to Infinity Tensor Perturbation Bound
	The Cost of Ignoring Tensorial Structure

	Numerical Results
	Simulations
	Application to Global Flight Data
	Application to USA Flight Data
	Application to Global Trade Data

	Overview of the Proof of Theorem 11
	Discussion

	Nonparametric Two-Sample Hypothesis Testing for Random Graphs with Negative and Repeated Eigenvalues
	Introduction
	Motivating Example

	Preliminaries
	Setting
	A Kernel Estimator

	Hypothesis Testing With Negative and Repeated Eigenvalues
	Main Results
	Optimal Transport for Repeated Eigenvalues
	Relation to Previous Results

	Simulations
	Simulated Power Analysis

	Discussion

	Joint Spectral Clustering for Multilayer Degree-Corrected Stochastic Blockmodels
	Introduction
	Related Work
	Notation

	The Multilayer Degree-Corrected Stochastic Blockmodel
	DC-MASE: Degree-Corrected Multiple Adjacency Spectral Embedding
	Estimating the Number of Communities

	Main Results
	Misclustering Error Rate and Perfect Clustering for Multilayer Networks
	Spherical Clustering for Single Networks

	Simulation Results
	Analysis of US Airport Network
	Discussion
	Proof Ingredients and Proof of Theorem 16
	First Stage Characterization
	Second Stage Characterization I: sin(Theta) Bound
	Second Stage Characterization II: Asymptotic Expansion
	Proof of Theorem 16 and Theorem 17


	Proofs from Chapter 1
	Proofs of Matrix Denoising Results (Theorems 1, 2, and 3)
	Proofs of Auxiliary Lemmas
	Proof of Lemma 9
	Proof of Lemma 10
	Proof of Lemma 11
	Proof of Lemma 12


	Proofs from Chapter 2
	Proof of Theorem 7
	Proof of Theorem 8 
	Proof of Theorem 5
	Proof of Corollaries in Section 2.3.2
	Proofs of Lemmas in Section B.1
	Proof of Lemmas 1 and 13
	Proof of Lemma 15

	Proof of Lemmas in Section B.2
	Proof of Lemma 2

	Proof of Lemmas in Section B.3
	Proof of Auxiliary Lemmas

	Proofs from Chapter 3
	Proof of Theorem 9
	Preliminary Bounds
	Proof of Theorem 22
	Proof of Theorem 9

	Proofs of Intermediate Lemmas
	Proofs of Lemmas 4 and 5
	Proof of Lemmas 24 and 25
	Proof of Lemma 26
	Proof of Lemma 27
	Proof of Lemmas 28 and 29
	Proof of Lemma 30

	Background Material on Orlicz Norms, Concentration, and Subspace Perturbation

	Proofs from Chapter 4
	Proof of Theorem 11
	The Leave-One-Out Sequence
	Deterministic Bounds
	Probabilistic Bounds on Good Events
	Putting it all together: Proof of Theorem 11
	Initialization Bounds

	Proofs of Tensor Mixed-Membership Blockmodel Identifiability and Estimation
	Proofs of Proposition 2, Proposition 3, and Lemma 6
	Proof of Theorem 10
	Proof of Corollary 4

	Auxiliary Probabilistic Lemmas

	Proofs from Chapter 5
	Proofs of Main Results
	Proof of Theorems 13 and 14 and Corollaries 5 and 54
	Proofs of Propositions
	Proof of the Frobenius Concentration (Lemma 51)
	Proof of the Functional CLT (Lemma 52) and Related Lemmas
	Proofs of Auxiliary Lemmas

	More on the Discussion in Section 5.3.2

	Proofs from Chapter 6
	Proofs of Identifiability, Algorithm Recovery Results, and Theorem 18
	Proof of Theorem 15
	Proof of Proposition 9
	Proof of Lemma 7
	Proof of Lemma 8
	Proof of Theorem 18

	Proof of First Stage Characterization (Theorem 19)
	Preliminary Lemmas
	Proof of Theorem 19
	Proofs of Lemmas 61 and 63

	Proof of Second Stage sin(Theta) Bound (Theorem 20)
	Preliminary Lemmas: Spectral Norm Concentration Bounds
	Proof of Theorem 20

	Proof of Second Stage Asymptotic Expansion (Theorem 21)
	Preliminary Lemmas: l_{2,Infinity} Residual Concentration Bounds
	Proof of Theorem 21


	Vita

