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Abstract

In recent years, Deep Learning models have shown great potential in many areas,

including Computer Vision, Speech Recognition, Information Retrieval, etc. This

results in a growing interest in applying Deep Learning models in academia and

industry. Using Deep Learning models on a specific task requires training. With

the recent trends of the rapid growth of the size of the Deep Learning models and

datasets, training on a single accelerator can take years. To complete the training

within a reasonable amount of time, people start using multiple accelerators to speed

up training (i.e., distributed training). Using distributed training requires additional

communications to coordinate all accelerators. In many cases, communications become

the bottleneck of distributed training. In this thesis, we study and optimize the

communication overhead in distributed training.

In the first part of the thesis, we conduct measurement studies and what-if analyses

to understand the relationship between the network and communication overhead. We

design a trace-based simulation algorithm and test it with various network assumptions.

We found that the network is under-utilized, and achieving gradient compression ratios

up to hundreds of times is often unnecessary for data center networks.

The second part of the thesis optimizes the communication overhead of distributed

training without changing the semantics of the training algorithm. We design and

implement system MiCS that significantly reduces the communication overhead in

public cloud environments by minimizing the communication scale. The evaluation

shows that MiCS outperforms existing partitioned data-parallel systems significantly.
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In the last part of the thesis, we further improve the system performance of MiCS

for more challenging cases, e.g., long input sequences. We combine pipeline parallelism

with MiCS to further reduce the overhead of inter-node communications in MiCS.

Besides, we propose two memory optimizations to improve memory efficiency. System

MiCS has been adopted by several teams inside Amazon and is available at Amazon

SageMaker.
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Chapter 1

Introduction

The beginning part of the chapter covers the background of Deep Learning. We

first discuss what Deep Learning technique is and why it is useful (§1.1.1). §1.1.2

presents the general ways for applying Deep Learning models, including training

and inference process. Then, in the following subsection (§1.1.3), the background

of distributed training is covered. We describe the necessary steps for distributed

training to work and different ways of doing distributed training. We provide typical

computing clusters for training in §1.1.4. In §1.1.5, we present different metrics for

evaluating the performance of a Deep Learning training system.

In the later part of the chapter (§1.2), we describe the challenges of making

an efficient distributed training system. Specifically, we discuss the communication

overhead that can prevent the distributed training system from scaling efficiently with

the size of the computing cluster growing. And the memory constraints of a single

accelerator lead to excessive communications due to distributed model parameters

or computations. Lastly, we summarize the contributions of each chapter in the

remainder of the thesis (§1.3).
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1.1 Background

1.1.1 Deep Learning

Deep Learning (DL) is one type of Machine Learning method that uses artificial

neural networks (ANNs) to build the model. That is why DL is often also called

Deep Neural Networks (DNNs). Similar to other Machine Learning methods, a Deep

Learning model can be considered as mapping function f(x; θ), where the x is the

input data, θ is the learnable parameters of the model, and f is the structure of the

model that determines how to do computations for the x and θ. The structures of

the computations of DL models follow a multi-layer paradigm in which the outputs

of a certain computation are the inputs to other computations. The number of such

layered computations is considered the model’s depth. A DL model typically has tens

to hundreds [1–3], or even thousands [4] layered computations, which is the source for

the term “Deep” to distinguish DL from other Machine Learning methods. Figure 1-1

gives an example process of a DL model with layered computations that maps an

input image to a label. We call this mapping from the input to the output label the

DL inference process.

0 30 36 94

49 238 253 253

18 219 253 253

0 80 156 107

0

30

36

94

49

238

253

253

…
…

…

Data preprocessing

FlattenConverting to 2D matrix

Layered computations

𝜃!
(#)𝑥 + 𝜃%

(#)

= 𝑎(#)

𝑎(#)

ReLU 𝑎 #

= 𝑎(&)

𝑎(&)

Argmax 𝑎 &

= 𝑜

3

𝑜

𝑥

Figure 1-1. An example of layered computations; ReLU(·) = max(e, 0) is an elementwise
function.
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Since AlexNet [5] beats all other non-DL-based solutions on image classification

tasks in ImageNet Challenge 2012, the interest in applying DL models on Computer

Vision tasks (e.g., object detection, image segmentation, etc.) grows rapidly. And

this trend quickly spreads to other areas, including Machine Translation [6–8], Speech

Recognition [9–11], Natural Language Processing [1–3, 12], Game Playing [13–15],

Drug Design [16, 17], etc. Deep Learning models show great performance improvements

compared to other traditional methods on various tasks. Thus, academia and industry

put a lot of resources into adopting DL models for specific tasks. Consequently,

optimizing the performance of training is an important topic.

1.1.2 Deep Learning Training

For a DL model to be used for a specific task, the learnable parameters θ of a model

must be learned adaptively on one or more datasets using Backpropagation (BP)

algorithm. This tunning process is called Deep Learning training. With randomized

parameters θ and without the training process, a model can hardly produce meaningful

predictions. The output o in Figure 1-1 is such an example.

There are three phases in DL training: (1) forward pass; (2) backward pass; and (3)

updating parameters. In Figure 1-2, we colorize each different colors, blue for forward,

green for backward, and orange for updating parameters.

Forward. Different from the inference process shown in Figure 1-1, the forward

pass includes an additional computation to obtain the loss (i.e., error) to the label

of the ground truth. Here, we consider supervised training. For unsupervised or

semi-supervised setups, the training still gets the loss value at the end of the forward,

but the loss does not depend on labels from manual efforts. Instead, unsupervised

and semi-supervised training leverage the structure of the data. For example, the loss

calculation of unsupervised word embedding training [18] uses surrounding context

words of a word as positive labels, and uses randomly sampled words from the

3
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Figure 1-2. An example of Deep Learning training.

vocabulary as negative labels. No matter whether supervised or not, the forward pass

generates a loss value for successive backward computations.

Backward. The backward pass computes the gradients with respect to the learnable

parameters θ for the subsequent parameter updating phase to minimize the loss values.

The backward pass uses backpropagation algorithm [19–21] to obtain the gradients,

which is also a layered computation starting from the loss value. The backpropagation

algorithm uses the chain rule to compute the gradients of the current layer, e.g.,
∂Loss
∂a(2) = ∂Loss

∂o
∂o

∂a(2) . The gradients are used for updating the parameters to minimize

the loss values for subsequent iterations.

Updating parameters. In Figure 1-2, we use stochastic gradient descent (SGD)

method [19] for updating parameters. We scale the gradients with learning rate η.

There are different ways to update parameters. And a parameter updating method is

4



often called an optimizer. Different optimizers have different convergence impacts for

different training workloads [22–25]. And from a system research perspective, more

importantly, different optimizers have different memory footprints in training. For

example, the SGD optimizer only depends on the gradients of the current iteration for

updating. More recent optimizers maintain gradient information from past iterations

(e.g., Adam [26], LAMB [25]), which leads to a larger memory footprint for storing

those gradients in the past.

1.1.3 Distributed Training

The size of the DL models grows rapidly from several million parameters to hundreds

of billion parameters [2, 12, 27], because of the positive correlation between the size

of the model and the accuracy of the trained model. And the Internet generates a lot

of data that can be used for training DL models. With the end of Moore’s law for a

single chip, it can take years to train a DL model. Thus, training DL models with

distributed algorithms are becoming more and more popular.

Forward
𝐿𝑜𝑠𝑠("#$%)

Forward

Backward
∇'𝐿𝑜𝑠𝑠("#$%)

Backward
𝐿𝑜𝑠𝑠("#$()

Gradient synchronization

∇'
)*+,

∇'𝐿𝑜𝑠𝑠("#$() ∇'
)*+,

Updating 𝜃

Data partition 0

𝜃 ≔ 𝜃 − 𝜂∇'
)*+,

𝜃 ≔ 𝜃 − 𝜂∇'
)*+,

Updating 𝜃

Data partition 1

Sampling

Sampling

Node 0, GPU 0

Node 1, GPU 1
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Figure 1-3. Distributed training with conventional data-parallel strategy.

Figure 1-3 presents an example of distributed training with two GPUs using the

conventional data-parallel (DP) training strategy. The DP strategy assumes each

GPU has a complete replica of the model. At the beginning of the training, the first

GPU, GPU0, broadcasts the parameters of the model to other GPUs. Each GPU
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holds a unique partition of the dataset. As the data is partitioned to different GPUs,

the data-parallel training is thus coined. The data loading process randomly samples

data from the data partition stored locally on the compute node or stored on a shared

network storage system. The DP training proceeds on each GPU with independent

computation of forward and backward computations. Until the parameter updating

phase, there is a gradient synchronization (marked with the red box in Figure 1-3) to

guarantee all GPUs have the same gradients ∇sync
θ w.r.t. the parameters of the model

for updating. This way ensures that all GPUs work on the same set of parameters

for subsequent computations to avoid divergence of the model on different GPUs.

The gradient synchronization uses collective communications [28, 29] (i.e., all-reduce

operations) or parameter server [30, 31] to exchange gradients from different GPUs.

The communication of gradient synchronization typically requires cross-node network

communications. As you can imagine, this communication could be a bottleneck for

distributed training.

Distributed DP training is a widely adopted method [32–34] due to its simplicity

and generality, that users don’t need to modify the implementation of the model to

adopt distributed training. There are other distributed training methods to train the

model on multiple GPUs, including pipeline parallelism, tensor parallelism, etc. Unlike

data-parallel training, these strategies partition model computations onto multiple

GPUs. In order to distribute the model computations, these strategies need specific

ways to decompose computations from the model implementation, which requires

certain engineering efforts. We cover details about specific parallelism in Chapter 4

when we need them. The primary focus of this thesis is the communication overhead

of the data-parallel method. We describe the partitioned DP method that can train

models that cannot fit into a single GPU in Chapter 3.

Asynchronous training. The gradient synchronization shown in Figure 1-3 is

a synchronous operation. It works as a barrier for all GPUs to reach the same
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stage. Ideally, all GPUs reach the synchronization point at the same time. But the

computation time of forward and backward depends on the input data and the status

of the hardware. The gradient synchronization as the barrier makes all GPUs wait for

the slowest one to join the synchronization. This leads to idle time for those faster

GPUs. To avoid waiting for the slowest device, asynchronous training is proposed. In

asynchronous training, each GPU doesn’t have to wait for all other devices [35–37]

to exchange the most recent gradients. However, such asynchronous methods could

lead to convergence issues that affect the quality of the final model. Because some

of the GPUs can use staled parameters to proceed with the training. This behavior

alters the semantics of the training algorithm [38], and leads to uncertainty behavior

for the training algorithms. Thus, using synchronous training methods is the de facto

standard.

Synchronous training. When using gradient synchronization in training with

synchronous methods, it is not necessary to mean the gradient synchronization must

happen after completing the entire gradient computation of the backward. The

backward computation also follows a layered structure. The communication for

gradient synchronization can start as soon as the computations for particular layers

are completed. Thus, the communication can overlap with the backward computations.

The overlapping doesn’t affect the semantics of the training algorithms, because each

communication is still a synchronized operation that requires all GPUs to join. We

have more discussions and measurements in Chapter 2.

1.1.4 Training Clusters

Understanding the hardware setups of training clusters is essential to optimize the

training performance. There are different types of accelerators on the market, including

TPU [39], IPU [40], GPU [41–44], etc. The GPU accelerators are the most widely

available device for Deep Learning workloads [41, 43, 44]. This thesis focuses on
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GPU-based clusters in the public cloud.

A training cluster typically has multiple compute nodes. Each node of the training

cluster can have multiple GPUs. People prefer to use computing nodes with multiple

GPUs instead of single GPU nodes because of the cost efficiency. The economic cost of

renting the same amount of GPUs with multi-GPU cloud instances is the same as with

single GPU instances [43, 44]. Moreover, the multi-GPU instances have additional

features like extra SSD storage, fast GPU-to-GPU connections within each node, and

high-speed networks.
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Figure 1-4. Hardware setups of a GPU cluster.

A multi-GPU node typically uses NVLinks and NVSwitches [45] to connect GPUs

within the node. Figure 1-4 provides an example of a GPU cluster using p3dn.24xlarge

AWS instances [44]. In the cluster, each node has eight V100 GPUs. Eight GPUs

interconnect with each other using NVLinks. And each GPU connects to a CPU

through PCIe switches. The network interface controller (NIC) is also attached to a

PICe switch. NVLinks/NVSwitches can provide much higher intra-node bandwidth

than inter-node network bandwidth. For example, the uni-directional bandwidth of

intra-node GPU-to-GPU is 150 GB/s. In comparison, the uni-directional bandwidth

of the NIC is about 12 GB/s (100 Gbps). Other multi-GPU nodes [41, 43, 46] provide

similar configurations as the example case. Some of them provide multiple NICs
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for each node, in which case, each PCIe switch can have one or two NICs attached.

Attaching more NICs can provide more bandwidth for inter-node connections. While

in general, the bandwidth is still relatively low compared to intra-node connections.

One GPU typically has tens of dedicated memory, ranging from 16 GB to 80

GB [41–44, 46]. The memory space on a single GPU is adequate for holding the

entire model with hundreds of millions of parameters (e.g., ResNet-101, VGG-16,

BERT-small, etc.). But for large language models with billions of parameters, it is

not enough. For example, a transformer-based model [1–3] with 10 billion parameters

requires about 160 GB memory for merely holding the model states for training [26, 47].

To proceed the training, additional memory space is needed for intermediate results.

Thus, for large model training, multiple GPUs must be involved.

1.1.5 Evaluation Metrics

Evaluation metrics discussed in this thesis are not about the quality of DL models like

accuracy [48], ROC [49], BLEU [50], etc. Instead, we evaluate the performances from

the system perspectives, including training throughput, system scalability, and Ter-

aFLOP/s (TFLOPS) performance. The improvements of these metrics can reduce the

time cost for achieving a specific quality target of a model (i.e., time-to-accuracy [38]).

We present the definition for each evaluation metric. At the end of this subsection, we

provide the connections between time-to-accuracy and metrics used in this thesis.

Training throughput. The training throughput measures the number of data

samples processed by the system at per second granularity. For computer vision

models, the throughput is typically measured as the number of images per second.

For language models, we can use the number of sentences per second or the number of

tokens per second as the throughput, where each token is a word in a sentence. With

a fixed-sized cluster, the larger the throughput, the better the system’s performance.

Assume that achieving a given target of the model accuracy requires iterating the
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training dataset by n times. The throughput improvement reduces the time cost of

iterating the dataset by n times.

System scalability. The scalability measures how well the training system performs

when we increase the size of the cluster. Ideally, when we scale up the size of the cluster

with x% more accelerators, we expect the x% increase in the throughput. For example,

if we double the number of accelerators in the cluster, ideally, we expect that the

training throughput is doubled. This ideal case is called linear scalability. Typically,

linear scalability is difficult to achieve due to the overhead of synchronizations among

devices. Closing to the linear scalability implies the good performance of the system.

TFLOPS performance. As indicated by the name, the TFLOPS performance

measures the number of floating point operations per second. A larger TFLOPS

performance number means more training data can be processed within a second,

which implies less time for completing the training. To get the TFLOPS number,

we compute the total number of floating point operations (FLOPs) in training. It

includes computations of forward, backward, and parameter updating. Then we divide

the FLOPs number by the processing time (i.e., the time cost of completing the

forward, backward, and parameter updating). The TFLOPS performance can be

reflected in the training throughput. The TFLOPS number provides two additional

features different from the throughput metric. First, the TFLOPS performance gives

us an overview of the hardware saturation. It helps us to know how far we can go for

performance improvement before we hit the computing limitations of the hardware.

Second, the TFLOPS performance number is agnostic to DL models and input sizes.

Thus, it can be used to understand the system performance characteristics on different

training workloads (i.e., different models and different input sizes).

Relationship to time-to-accuracy metric. The time-to-accuracy (TTA) metric

measures the time cost for a model to reach a certain accuracy with a given training

configuration, which includes the model, the dataset for training, the optimizer
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algorithm, and other hyperparameters. For a given accuracy or other model quality

metric as the target, the less time to achieve, the better the system performance.

The TTA metric is needed to study the behavior changes of the training algorithm.

For example, the asynchronous training changes the semantic [38] of the standard

parameter updating (i.e., optimizer) algorithm. Another example is using lossy

compression for gradient synchronizations to reduce the synchronization cost, in which

the information exchanged with and without lossy compression is different. Such

changes require TTA check to imply that the changes do not introduce too many

behavior changes from the original training procedure. In comparison, if the system

optimization didn’t change the semantics of the original training procedure, then the

TTA check is not necessary. And the throughput and TFLOPS improvement are

equivalent to TTA improvement. Because for a given quality target with the training

configuration fixed (i.e., random states for model initialization, data loading order,

etc.), the number of iterations (equivalent to the number of computations) for the

training is determined. The throughput and TFLOPS improvement reduce time costs

for each iteration, which leads to less time to reach the given model quality target.

1.2 Challenges

There are many challenges in training with distributed setups, including data loading

stalls [51–53], computation efficiency challenges [54–56], inefficient job scheduling for

multi-tenant clusters [57, 58] etc. This thesis mainly focuses on challenges related to

the communication overhead of a single distributed training job. The remainder of

the section presents the details of some of the challenges.

Difficult to understand the communication overhead. For the conventional

data-parallel training shown in Figure 1-3, gradient synchronization is necessary and

requires all devices to exchange gradients of the model for each iteration. The gradient
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synchronization typically relies on collective communication, all-reduce, to complete

the synchronization. The communication transmits data sizes up to two times that

of the model’s gradients, ranging from several megabytes to gigabytes. The data

volume transmitted among devices is large. This means the time for transmitting

these data can take a long time. However, on the other hand, the communication can

overlap with the backward computations. This provides room to hide communication

overhead, but also complicates the problem for us to understand the exact overhead

of the communication. Besides, the transmission time of exchanging the gradient

is tightly related to the network bandwidth. The time cost can be modeled as the

data volume divided by the network bandwidth plus a latency factor for starting the

transmission. And the room (i.e., the computation time) for hiding the communication

time is relevant to the computation speed of the accelerator and the DL model. These

factors make it even harder to understand the actual overhead of communication for

different training workloads with different kinds of network environments.

Large model training has more communications. The gradient synchronization

of conventional data-parallel training can transmit a large volume of data. And it

assumes the model size is small enough to fit into a single device for training. For larger

models that cannot fit into a single device for training, additional communications are

required. When the memory requirement of a model exceeds the memory capacity on

a single device, the model must be distributed across multiple devices. There are many

ways to distribute the model to multiple devices. We cover these methods in relevant

chapters (Chapter 3 and Chapter 4). Conceptually, communication operations are

needed to coordinate the computations of forward and backward for the model. And

these are extra communications to the synchronization of multiple replications of

the model. For example, if a model requires two devices for training, and we have

four devices in the cluster. We can have two replications of the model to do the

computation independently on every two devices in the cluster, until the gradient
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synchronization. Extra communications among every two devices are needed for

computations. Moreover, these extra communications are often blocking operations

that cannot be hidden (detailed in §4.2.2).

Communication efficiency decreases as the size of the cluster grows. When

we scale up the cluster’s size, there are two main factors that lead to less efficient

communications among all devices. First, the collective communication algorithms’

latency increases with the cluster’s size. For a fixed length of the gradient message,

the communication time is longer for larger clusters. Second, in the public cloud

environment, a larger cluster has more chances to include distance nodes in the cluster.

Despite the locality preferences provided by cloud vendors, users don’t have explicit

control of the network topology of a cloud-based cluster. Thus, users cannot prevent

distant nodes from joining the cluster. Overall, synchronization among all devices

incurs non-trivial overhead.

Fragmented memory limits the efficiency of hiding communication overhead.

For training large models, reusing on-device memory space for different computations

is as important as distributing the model across multiple devices, because of the

limited memory on each device. Dynamically allocating and freeing memory space for

different usages (e.g., activation computation, gradient computations, etc.) generate

fragmented memory spaces that cannot be used as a large contiguous space for

subsequent computations. Later if the computation of training demands a large

contiguous memory buffer, but only fragmented spaces are available, the system will

stop with an out-of-memory error. To avoid out-of-memory errors that halt the

training, we can decrease the size of the inputs to let training go with fragmented

memory. However, a smaller input size reduces the time of computations of the

training, which leaves less space for hiding the communication overhead (more details

in Chapter 3 and 4). We can see that fragmented memory can indirectly affect

communication efficiency in training.
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1.3 Contribution

In this thesis, we study the overhead of communications in distributed training

systematically. And we optimize the communication operations for distributed training

in large-scale GPU clusters. We describe the detailed contributions in the following.

Systematic understanding of the communication overhead [59]. We systematically

measure and analyze the network performance for distributed training with data-

parallel strategies in cloud environments. We found that network bandwidth is

largely underutilized. Moreover, we conducted what-if analyses with profiled training

traces. We found if the network bandwidth can be fully utilized, the distributed

training can achieve near-linear scalability. This indicates that the data center network

bandwidth is often not the bottleneck for distributed training. Besides, we extend

the what-if analysis with different gradient compression ratios. Contrary to many

recent proposals for compressing the gradients hundreds of times smaller with lossy

compression algorithms, the analysis results show that only 2×–5× reduction of the

gradient is enough for widely available 10 Gbps networks in cloud platforms.

Optimizing the communication by minimizing the communication scale [60]. For

training very large models with billions of parameters, existing general-purpose solu-

tions often fail to perform well on cloud platforms due to excessive communication

overhead. We identify the root cause of the overhead and propose MiCS for reducing

the overhead. MiCS consists of three components that are centered around a core

principle of minimizing the communication scale. Specifically, we propose the concept

of partition groups to hold the model replication instead of partitioning a model

replica to all devices. This greatly improves network utilization, especially for large

clusters. We design a hierarchical communication strategy for lowering the volume of

the data transmitted among compute nodes. We use a customized synchronization

schedule to avoid the frequent synchronization step among all devices. We thoroughly
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examine our system’s performance on different models and clusters. MiCS achieves

up to 2.89× throughput improvement over other baselines.

Optimizing the communication with pipeline parallelism and memory optimizations.

MiCS or other existing partitioned data-parallel solutions rely on the efficient overlap-

ping between communications and computations. This condition can be compromised

when the free memory is close to the edge of out-of-memory failure. It is common

to see training a large model with a long input length. To address the inefficiency of

this kind of condition, we introduce MiCS-Pipe with a novel intra-stage partitioning

strategy, which uses pipeline parallelism to further reduce the cost of inter-node com-

munication of MiCS. Furthermore, we propose two memory optimizations to improve

the efficiency of memory utilization, i.e., the memory footprint and the fraction of

fragmented memory. The improved memory utilization allows us to use larger micro

batch sizes to provide more room for hiding the communication overhead or to reduce

memory re-organization costs. We evaluate the proposed methods on different models

with various input lengths. We compare the TFLOPS performances of MiCS-Pipe and

MiCS. The evaluation shows up to 2× improvement for a long input length of 4096.

The remainder of the thesis is organized as follows. Chapter 2 describes how

we conduct a systematic study of communication overhead in distributed training.

Chapter 3 presents the details of the proposed system MiCS. In Chapter 4, we detail

the extension to MiCS for even better performances. Chapter 5 discusses the open

issue and future work and concludes this thesis.
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Chapter 2

Is Network the Bottleneck of
Distributed Training?

Recently there has been a surge of research on improving the communication efficiency

of distributed training. However, little work has been done to systematically understand

whether the network is the bottleneck and to what extent.

In this chapter, we take a first-principles approach to measure and analyze the

network performance of distributed training. As expected, our measurement confirms

that communication is the component that blocks distributed training from linear

scale-out. However, contrary to the common belief, we find that the network is

running at low utilization and that if the network can be fully utilized, distributed

training can achieve a scaling factor of close to one. Moreover, while many recent

proposals on gradient compression advocate over 100× compression ratio, we show

that under full network utilization, there is no need for gradient compression in 100

Gbps network. On the other hand, a lower speed network like 10 Gbps requires only

2×–5× gradients compression ratio to achieve almost linear scale-out. Compared to

application-level techniques like gradient compression, network-level optimizations

do not require changes to applications and do not hurt the performance of trained

models. As such, we advocate that the real challenge of distributed training is for the

network community to develop high-performance network transport to fully utilize
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the network capacity and achieve linear scale-out.

2.1 Introduction

Deep Learning is a fundamental building block of modern Internet services, from

personalized recommendation and language translation to content understanding and

voice control. A Deep Neural Network (DNN) model is first trained on a dataset

to achieve high accuracy or other evaluation metrics and then deployed to target

platforms to serve requests from end-users. We focus on training in this chapter, which

is critical to generate high-quality models for deep learning applications.

DNN models are getting larger and deeper. The famous analysis from OpenAI [61]

shows that the amount of computing needed to train the state-of-the-art model doubles

every 3.4 months, while in comparison, the number of transistors on a chip only doubles

every 18 months even when Moore’s law is still effective. With the end of Moore’s

law, people have turned to specialized processors such as GPUs [62] and TPUs [63] to

scale up computation. Yet, compared to the fast-growing demand of DNN models,

the computing capability provided by a single chip is still limited.

As a result, training large DNN models are inevitably getting more and more

distributed by scaling out. The dream for every scale-out system is linear scalability.

That is, given that the throughput of a single device is T , the throughput of a system

with n devices should be nT . Let the throughput actually achieved by the system

with n devices be Tn. We define the scaling factor as

scaling factor = Tn

nT
. (2.1)

Linear scale-out requires the scaling factor to be 1 for any n.

Distributed training with data parallelism strategy includes multiple iterations.

Each iteration can be divided into a computation phase and a communication phase.

In the computation phase, each worker feeds a batch of data into the model, and
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performs a forward pass and then a backward pass of the model, to compute the

gradients for learnable parameters. In the communication phase, the workers exchange

their gradients, and compute the average to update the parameters via all-reduce

operations.

It is a common belief that the network bandwidth is the bottleneck that prevents

distributed training from scaling linearly. In particular, the computation phase is

embarrassingly parallel, as each worker processes its own batch independently. The

throughput of n workers is n times that of one worker for the computation phase, and

only the communication phase can slow down the training process.

In response to this, there has been a surge of research from machine learning

and systems communities on improving the communication efficiency of distributed

training in recent years [64–76]. These works are primarily done at the application

layer, assuming that the network has done its best to maximize communication

efficiency. Yet, little work has focused on systematically understanding whether the

network is the bottleneck and to what extent.

In this chapter, we take a first-principles approach to measure and analyze the

network performance of distributed training. We perform a measurement study on the

training throughput of several representative DNN models on AWS. Our measurements

show that the system can achieve a scaling factor of only 60% with 64 workers (eight

servers with eight GPUs each) for VGG16. As expected, the measurement confirms

that communication is the component that prevents distributed training from linear

scale-out. However, contrary to the common belief, we find that the network bandwidth

is not the bottleneck, because it is running at low utilization. While the network

provides up to 100 Gbps bandwidth for each server, the communication phase uses

no more than 32 Gbps for transferring gradients. We further confirm that the low

network utilization is not due to the CPU bottleneck. In fact, the CPU only runs at

14%–25% utilization in the communication phase.
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Then the natural question is what if the network can run at 100% utilization.

We take a white-box approach to get timing information of layer-wise computation

in model training. Based on the logging results, we perform a what-if analysis, in

which we control the network bandwidth and assume full bandwidth utilization. The

results of the analysis show that with full network utilization, distributed training can

achieve a scaling factor of over 99%. We further extend the what-if analysis with an

application-layer optimization—gradient compression. Based on further analysis, we

find that a compression ratio ranging from 2× to 5× is good enough for distributed

training to achieve a scaling factor of close to 100% in 10 Gbps network.

Compared to application-layer optimizations, we argue that network-layer optimiza-

tions should be prioritized for speeding up distributing training. First, network-layer

optimizations are transparent to the applications. They do not require any changes to

the applications or the training systems. Second, unlike lossy gradient compression in

the application layer, network-layer optimizations do not hurt training convergence

rate or model performance.

In conclusion, we make two major contributions. First, we perform a measurement

study to systematically measure and analyze the performance bottleneck of distributed

training. Contrary to the common belief, it unveils that the network speed is not the

problem, but the software implementation of the communication phase is. Second,

we perform a what-if analysis to evaluate the benefits of high-performance network

transport for distributed training. It reveals that merely optimizing the network

transport can already increase the scaling factor to close to 100%, and that additional

application-layer optimizations are only required in lower speed networks and we

do not need aggressive optimizing strategies claimed in past works [65, 77, 78]. As

such, we advocate that the real challenge is for the networking community to develop

high-performance network transport for distributed training to fully utilize the network

capacity and achieve linear scale-out.
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Open-source. The code is open-source and available at https://github.com/netx-

repo/training-bottleneck.

2.2 Profiling Training Performance

In this section, we describe an empirical study we performed to measure and analyze

the bottleneck in distributed training.

2.2.1 Profiling Setup

Training hardware. The experiments are conducted on Amazon Web Services

(AWS). We use Amazon EC2 p3dn.24xlarge instances with 8 GPUs (NVIDIA Tesla

V100), 96 vCPUs (2.5 GHz Intel Xeon P-8175M processor), 768 GB main memory,

256 GB GPU memory (32 GB for each GPU), and 100 Gbps network bandwidth. The

8 GPUs on each instance support NVLink for high-performance peer-to-peer GPU

communication. We vary the number of instances from 2 to 8 (i.e., from 16 GPUs to

64 GPUs) in the experiments to evaluate the scaling factor.

Training software. We use Horovod [32] as the distributed training framework.

Horovod is one of the most widely-used frameworks for distributed training. It

supports popular deep learning frameworks such as TensorFlow [79], PyTorch [80]

and MXNet [81]. It uses the all-reduce strategy for distributed training, which

performs an all-reduce operation among all workers after each iteration to compute

the average of the gradients for parameter update. Horovod uses a combination of

NCCL and MPI as the underlying layer to implement all-reduce. We use PyTorch

as the training framework for a single GPU, and use Horovod to scale it to multiple

GPUs. The software versions used in the experiments are Horovod 0.18.2, PyTorch

1.3.0, Torchvision 0.4.1, NCCL 2.4.8, cuDNN 6.6.0.64, and Open MPI 4.0.2. Horovod,

NCCL, and Open MPI use Linux kernel TCP.
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Workloads. We use three models in the experiments, i.e., ResNet50 [82], ResNet101 [82]

and VGG16 [83]. We choose these models because they are widely used in computer

vision and distributed training benchmarks. Also, they have representative charac-

teristics. Specifically, ResNet50, ResNet101, and VGG16 have small, medium, , and

large parameter sizes, respectively. The model sizes are 97 MB for ResNet50, 170 MB

for ResNet101, and 527 MB for VGG16. Besides, VGG16 has a layer with 400MB

parameters, while parameters in ResNet series are distributed more evenly. ImageNet

dataset [84] is used for experiments, and we fixed the batch size to 32 for each worker

involved in training.
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Figure 2-1. Scaling factor vs. number of servers involved.

2.2.2 What is the current scaling factor?

The first step is to understand the current scaling factor that can be achieved by an

off-the-shelf distributed training framework like Horovod. We use the throughput

of a single GPU (i.e., the number of images that can be processed by a GPU each

second) as the base throughput T . We vary the number of servers in the experiments.

For each case, we measure the total throughput that can be achieved by the servers

and compute the scaling factor based on Equation 2.1. Figure 2-1 shows the scaling

factor for each model under different numbers of servers. Remember that we use

p3dn.24xlarge instances, each of which contains 8 GPUs. So the figure shows the

scaling factor from 8 GPUs to 64 GPUs. The results indicate that the scaling factors
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for ResNet50, ResNet101 and VGG16 are 75.05%, 68.92%, and 55.99% for 2 servers,

74.24%, 66.28% and 63.01% for 4 servers, and 71.6%, 66.99% and 59.8% for 8 servers.

ResNet50 achieves better scaling factors than ResNet101 and VGG16 as it has a

relatively smaller model size to ease the communication burden. Nevertheless, for all

the three models, Horovod cannot achieve a scaling factor of more than 76% on AWS.

These results confirm that the current off-the-shelf distributed training framework

like Horovod cannot achieve linear scaling but with a significant gap.
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Figure 2-2. Computation time vs. number of servers.

2.2.3 Is computation the bottleneck?

Distributed training contains a computation component and a communication com-

ponent. To figure out why linear scaling cannot be achieved, we start with the

computation component. In the computation component, each worker feeds a batch

of labeled images to the neural network model and computes the gradients locally.

If the computation time for a worker to finish its batch increases with the number

of workers, then the computation component would be the bottleneck of distributed

training.

Figure 2-2 shows the computation time (for the forward and backward pass) for

the three models with different number of workers. The computation time keeps

almost the same, regardless of the number of workers. The time gap between single

GPU and multiple GPUs comes mainly from two factors. First, the runtime for the
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backward pass in distributed training not only includes backward operations but

also the all-reduce operations since they are asynchronous on GPU and overlapped.

Whereas, for the single GPU case, there is no all-reduce operation. Second, Horovod

injects a hook for each layer in the model during distributed training, which does not

exist in single GPU training. However, even considering this computation time gap

as an inevitable side effect, the scaling factor should still be bounded around 90%

instead of the measured 56%-75%, because the measured computation time increases

at most 15% in distributed training. Thus, we argue computation time difference here

is not a factor for distributed training not able to scale linearly.
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Figure 2-3. Scaling factor change with bandwidth (ResNet50).

2.2.4 Is network the bottleneck?

Now we turn to the communication component. Since the computation component

takes the same amount of time regardless of the number of servers, then the only

possibility is that the communication component is the bottleneck when the system

scales out. To see whether this is the case, we first measure the scaling factor with

different network bandwidths. As shown in Figure 2-3, the scaling factor for ResNet50

does increase when the network bandwidth increases. In the case of two servers, the

scaling factor grows from 13% to 68% when the bandwidth increases from 1 Gbps to

10 Gbps. This is understandable as with higher bandwidth, it takes less time for the

workers to exchange the same amount of data. The scaling factor is lower with more
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workers as they have more data to exchange, based on the all-reduce algorithm.

However, contrary to the common belief that the network is too slow to send

the gradients, Figure 2-3 shows that the lines plateau after 25 Gbps. This means

the system can not benefit from a faster network. To validate this, we measure

the network utilization of the servers by recording real time network throughput.

Figure 2-4 indicates that the servers do fully utilize the network at low bandwidth

(e.g., 1 Gbps), but they only use a small fraction of the bandwidth at high bandwidth

(e.g., 100 Gbps). This means merely adding bandwidth to make the network faster is

not useful for improving scaling factor after a certain point.
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(a) Network (Recv) utilization.
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(b) Network (Send) utilization.

Figure 2-4. Network bandwidth utilization.

One possibility for low utilization at high bandwidth is that the CPU might be the

bottleneck, as the experiments run Horovod over TCP and it is known that running

TCP at high speed like 100 Gbps is CPU-intensive. However, the computation of

distributed training is mostly done by GPUs, and most GPU instances are equipped
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Figure 2-5. CPU utilization.

with sufficient amount of CPUs (e.g., 96 vCPUs in a p3dn instance used by our

experiments). Figure 2-5 shows the CPU utilizations while training three models on

eight p3dn instances under five different network speeds. It confirms that the CPU

utilization is low, and thus CPU is not the bottleneck for saturating 100 Gbps network

bandwidth.

In conclusion, the measurement confirms that the communication component is

the bottleneck. But contrary to the common belief, it is not because the network is

too slow to send data. The root cause is the poor implementation of the network

transport that cannot fully utilize the available bandwidth for the communication

component.

2.3 What-If Analysis

Given the low network utilization, a natural question is what if the network can be fully

utilized. In this section, we perform a what-if analysis to evaluate the scaling factor

under full network utilization. Given the promise of many proposals on application-

layer optimizations, we also use what-if analysis to show what additional improvements

these proposals can bring if the network is fully utilized.
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(b) ResNet101.
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(c) VGG16.

Figure 2-6. Simulated scaling factor vs. measured scaling factors in different bandwidth.

2.3.1 What if network can be fully utilized?

We first perform a what-if analysis to see what scaling factors can be achieved if

the network is fully utilized. To do the what-if analysis, we need detailed logging

information first, then perform simulation based on the timing logs. We take the

white-box approach to directly add logging code to training scripts to retrieve detailed

timing information for what-if analysis. Specifically, we add hooks for parameters in

the model to get the gradient-computation-done time for different layers of the model.

For the simulation, we have two processes, backward process and all-reduce process.

Two processes communicate through a message queue. The backward process simulates

the backward computation which is based on the timing log of gradient-computation-

done. The backward process does not request all-reduce process right after backward
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Figure 2-7. Simulated scaling factor under 100 Gbps network; Red parts denote the gap
to simulated results.

computation done for a certain layer. Instead, it buffers gradients of several layers

for all-reduce. We use a heuristic buffering strategy, which refers to Horovod fusion

buffer [32]. Specifically, the backward process has a timeout window of 5 ms and a

gradients buffer size of 64 MB for batching gradients for the all-reduce operations. Once

the timeout criterion or buffer size limit is satisfied, it notifies the all-reduce process

for all-reduce operation. The all-reduce process uses Reduce-scatter with Allgather

procedures to complete all-reduce operation. The transition time is computed as

(2S(N −1)/N)/bw, where N is the number of workers/GPUs involved, S is the size for

all-reduce and bw is the network bandwidth. The cost of vector additions is estimated

as (N − 1) × AddEst(S/N), where AddEst(x) is the function for estimating the time

of element-wise adding of two vectors in the size x. To fairly estimate the vector

addition time cost, we first empirically evaluate time cost of vector-add with various

vector sizes on V100 GPU, and then use linear interpolation to get AddEst(x).

To get the scaling factor for a certain bandwidth and number of workers, we start

backward process and all-reduce process at the same time for simulation. For each

data batch, we denote the time for all-reduce process to complete as tsync, and denote

the time for backward computation tback, thus we can get the overhead for all-reduce

operation as toverhead = tsync−tback. Then, we can use processing time of a batch data on

single GPU, tbatch, to get the simulated scaling factor: fsim = tbatch/(tbatch + toverhead).

Figure 2-6 shows the scaling factors of the three models under different network
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Figure 2-8. Simulated scaling factor under different compression ratio.

speeds assuming the network is fully utilized, and compares them with the scaling

factors actually achieved by Horovod. We can see that under low network speeds

(i.e., 1 Gbps and 10 Gbps), the two lines are very close. This confirms the results in

Figure 2-4 that the network is fully utilized under low speeds, and also validates the

correctness of the what-if simulator. Under high network speeds (i.e., after 25 Gbps),

the two lines begin to diverge significantly. While the system can theoretically achieve

close to 100% scaling factor under 100 Gbps for ResNet50, ResNet101 and VGG16, in

practice it only achieves 75%, 67% and 60%, respectively.

We also use the what-if analysis to evaluate the scaling factors under different

numbers of workers assuming that the network is fully utilized. The results are shown

in Figure 2-7. Again, we see all of three models can achieve close to 100% scaling

factors when the network is fully utilized even for 64 GPUs. Overall, the what-if

analysis confirms that distributed training can benefit from high network bandwidth,

moreover the scaling factor can be improved to near 100% if the network is fully

utilized.

2.3.2 How useful are application-layer optimizations?

In this section our analysis targets a well-studied application-level optimization

technique—gradient compression. We keep other simulation steps the same as we

do in §2.3.1, but divide the time cost of gradients transmission by the compression
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ratio we choose. We use this setup for the simplicity. As one would imagine, the

compression could possibly reduce the vector-add cost (e.g. half-precision vector-add,

top-k percent gradients for all-reduce) to further boost the simulated scaling factor.

But as shown in Figure 2-8, the simplified simulation is good enough to justify the

claim we want to make, which is we probably would not need that high compression

ratio as advocated in past works [65, 78, 85]. The compression ratio 10× is large

enough for models like VGG16 to get scaling factor near 100% in 10 Gbps network,

which is commonly available at cloud platform like AWS, GCloud and Azure. As a

comparison, the results in 100 Gbps are also reported to indicate that compression is

not that useful in high-speed networks, which is the typical network configuration for

high-end GPU servers like aws-p3dn. In conclusion, gradient compression techniques

are useful in low-speed networks, but it is not necessary to have a large compression

ratio in contemporary network environments.

2.4 Discussion and Future Work

Rationale behind the findings. At first glance, our findings may be surprising,

indicating that the scaling factor can be close to 100% if the network is fully utilized.

These findings, however, are quite reasonable because of two important factors. First,

the network runs at high speed. Under 100 Gbps, it only takes 7.8 ms, 13.6 ms and

42.2 ms to transmit all parameters of ResNet50, ResNet101 and VGG16, respectively.

Second, there is a significant overlapping between computation and communication.

The all-reduce for the last layer can start as soon as the backward process has computed

the gradients of the last layer, without waiting for the entire backward process to

finish. This overlap is critical. In conclusion, combining the efficient communication

and the overlapping of computation and communication, the scaling factor can achieve

near 100%.
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Generality of the results. One essential question is how general are the results. The

results are based on three models (ResNet50, ResNet101 and VGG16), one particular

device (NVIDIA V100), and one training strategy (all-reduce). As part of our future

work, we plan to expand the measurement and analysis to more models (e.g., RNN-like

sequence models and BERT), more devices (different GPUs and other specialized

processors), and more training strategies (e.g., parameter server and asynchronous

training). While the actual numbers might differ, we expect that the conclusion would

stay the same. i.e., because of high-speed networks and the intrinsic overlap between

computation and communication, increasing the network utilization would result in

almost linear scaling.

Trade-off of application-layer optimizations. The what-if analysis indicates that

gradient compression in the application layer only provides meaningful improvements

at low network bandwidths. We argue that it is not particularly useful for distributed

training on the cloud or an on-premises cluster equipped with GPUs or TPUs. Those

machines are typically connected with high-speed networks to fully utilize the proces-

sors. It does not make sense to build a cluster for distributed training with expensive

specialized processors but a cheap, slow network.

The proper metric for scaling. We use throughput to compute the scaling factor.

Another proper metric is to use the convergence time, i.e., the time to train a model

to reach a certain accuracy threshold. Ideally, with n servers, the convergence time

should be cut by n times (i.e., 100% scaling factor). This metric might be the most

important metric cared by researchers and developers. We emphasize that network-

layer optimizations provide consistent performance on both metrics, as it reduces the

time to finish one iteration without changing the number of iterations needed to reach

a certain accuracy. Also, network optimizations are orthogonal to other techniques to

accelerate the training process [24]. Gradient compression, on the other hand, loses

gradient information due to lossy compression, and can prolong the convergence time,
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hurt the accuracy, and even end up not being able to converge.

What-if analysis for other approaches. Besides gradient compression, there

are other application-layer and system-layer optimizations. For example, ByteSched-

uler [64] orders the gradient transmission of different layers to better overlap with

forward computation; and SwitchML [66] uses a programmable switch to aggregate

gradients and reduce the communication size. These proposals all suggest significant

reduction on the training time. However, they are all compared to an off-the-shelf

distributed training framework like Horovod, which has a poor network transport

implementation. It would be interesting to apply the what-if analysis to evaluate what

additional improvements they can provide if the network can be highly utilized.

High-performance network transport for distributed training. There is always

an arms race between compute and network. When compute is improved, network

becomes the bottleneck. Our findings indicate that for today’s distributed training

systems, the network speed is not a problem, but the network transport implementation

for the communication component is. Compared to application-layer optimizations,

e.g. gradient compression, network-layer optimizations do not trade training time off

against model accuracy, and should be the first-order optimizations. As such, our

results are a call for the network community to develop high-performance network

transport to fully utilize modern high-speed networks and to achieve linear scale-out.

Recently, AWS has provided Elastic Fabric Adapter (EFA) as an efficient network

interface to bypass OS kernel for high-performance communication [86], and achieved

some encouraging scalability results by carefully tuning the training process [87].

Developing high-performance network transport with kernel-bypass technologies in

the context of distributed training is an interesting direction of future work.
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Chapter 3

MiCS: Minimizing the
Communication Scale for
Partitioned Data Parallel Training

Existing general purpose frameworks for gigantic model training, i.e., dense models

with billions of parameters, cannot scale efficiently on cloud environment with various

networking conditions due to large communication overheads. In this chapter, we pro-

pose MiCS, which Minimizes the Communication Scale to bring down communication

overhead. Specifically, by decreasing the number of participants in a communication

collective, MiCS can utilize heterogeneous network bandwidth, reduce network traffic

over slower links, reduce the latency of communications for maintaining high net-

work bandwidth utilization, and amortize expensive global gradient synchronization

overhead. Our evaluation on AWS shows that the system throughput of MiCS is up

to 2.89× that of the state-of-the-art large model training systems. MiCS achieves

near-linear scaling efficiency, which is up to 1.27× that of DeepSpeed. MiCS allows us

to train a proprietary model with 100 billion parameters on 512 GPUs with 99.4%

weak-scaling efficiency, and it is able to saturate over 54.5% theoretical computation

power of each GPU on a public cloud with less GPU memory and more restricted

networks than DGX-A100 clusters.
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3.1 Introduction

There is a growing body of research showing that large Deep Learning (DL) models

deliver superior accuracy in areas such as natural language processing (NLP) [3, 88],

speech recognition (SR) [89–91], and computer vision (CV) [92–94]. This has resulted

in a more than 1000× increase in the size of the DL models that are commonly

trained with many of them having several hundred billion parameters. The high

computational requirement associated with training DL models has led to effective

and simple parallelization approaches based on data parallelism (DP) [30–32, 79, 80].

However, many of these approaches cannot be applied for training gigantic DL models,

as their memory requirements exceed the amount of GPU memory.

A common way to train gigantic DL models is to use model-parallelism (MP) that

decomposes the computation across the devices by partitioning the neural network

architecture (i.e., the model). As a result of this network partitioning, the model states

(i.e., the memory storing the model parameters, gradients, and optimizer states) are

also partitioned across the devices, and as such it overcomes DP’s memory-related

limitations. Unfortunately, existing MP frameworks require users to substantially

modify the logic of their training code and add specific primitives [68, 88, 95–97].

In addition, many of the MP frameworks are specifically designed for certain types

of neural network architectures [88, 98] and cannot be directly used for arbitrary

architectures. However, the idea of partitioning the model states across different

devices is essential for enabling large model training and was recently incorporated

into DP by the development of ZeRO [99]. ZeRO, which is implemented in distributed

systems DeepSpeed [99] and FairScale [100], evenly partitions the model states across

the entire training cluster, enabling the training of very large models while retaining

DP’s simplicity, ease of use, and generality.

ZeRO was designed for clusters using nodes based on NVIDIA’s DGX-2 or DGX-
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A100 multi-GPU systems [47, 101]. These nodes are connected via high-bandwidth

low-latency InfiniBand leading to clusters whose intra- and inter-node GPU-to-GPU

bandwidth is nearly balanced (intra-node bandwidth is about 3× faster than inter-

node). ZeRO takes advantage of this balanced network to treat all GPU devices of the

cluster equivalently and to partition the model states across the entire cluster. As a

result, whenever during the forward or backward phase a parameter tensor is required

for the computations, a collective communication operation needs to be performed

that involves all devices of the entire cluster (§3.2.2). Training clusters in public

cloud environment are not always equipped with high-speed InfiniBand networks as

DGX nodes have. For example, cloud instances with V100 GPUs are typically paired

with 100Gbps networks [42–44, 102], in which case the bandwidth is less balanced

(intra-node bandwidth is about 24× faster than inter-node). In such scenarios, ZeRO

is not well suited. By treating these devices equivalently and not accounting for the

heterogeneous and hierarchical nature of the inter-node network, ZeRO fails to take

advantage of the faster intra-node networks. Moreover, by partitioning the model

states across the entire cluster, even when the model states can fit in the memory

of a subcluster, ZeRO unnecessarily incurs high communication cost of collective

communications, because of the low effective bandwidth caused by high algorithmic

latency. And the communication overhead of ZeRO grows larger as the size of the

cluster scales up (§3.2.3).

To surmount the aforementioned challenges, we propose MiCS, following a core

design principle: to reduce the number of communicating participants, i.e., communi-

cation scale, as much as possible. By minimizing the scale, MiCS reduces the latency

and the data volume transmitted over slow inter-node links. We design and implement

three components to realize the design principle for reducing communication overheads.

• Scale-aware model partitioning. Instead of using all devices as a single group for

holding the model states, MiCS divides all devices into partition groups. Each
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group holds a complete copy of the model states. Within each group, the model

states are partitioned. Thus most frequent parameter gatherings are operated at

the scale of each group (§3.3.2).

• Hierarchical communication strategy. Hierarchical communication allows us to

parallelize multiple inter-node collective communications and reduce the scale of

each collective communication. It reduces the aggregated traffic over the inter-node

links, thus leading to lower communication cost (§3.3.3).

• 2-hop gradient synchronization. Unlike ZeRO that synchronizes gradients over all

devices for each micro-step, MiCS only synchronizes gradients within the partition

group until the gradient accumulation boundary is reached. At the gradient

accumulation boundary, gradients are synchronized across the partition groups. As

a result, MiCS reduces the synchronization cost significantly by amortizing the cost

to multiple micro-steps. (§3.3.4).

Our thorough evaluation shows significant system throughput and scaling efficiency

improvement of MiCS on public clouds like AWS. On V100 GPU clusters with 100Gbps

network, the system throughput of MiCS is 2.89× larger than that of DeepSpeed, which

is the state-of-the-art DP framework for large model training. On A100 GPU clusters

with 40GB memory per GPU and 400Gbps networks, MiCS is up to 2.74× as fast as

DeepSpeed. Compared to Megatron-LM-3D, a state-of-the-art system specialized for

training Transformer models, MiCS achieves up to 30.1% better throughput. MiCS

gets near-linear (e.g., 99.4%) weak scaling efficiency in the cloud, which is up to 27%

better than DeepSpeed. MiCS has been deployed to train a proprietary model with

100 billion (B) parameters, saturating over 170 TeraFLOP/s (TFLOPS) per A100

GPU with activation checkpointing at the scale of 512 GPUs.

In summary, this chapter makes the following contributions.

• We identify the root problem—overwhelming communication overhead—that pre-
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vents DP-based model partitioning from efficiently scaling out on clusters with

100Gbps or 400Gbps network interfaces with relatively higher latency than Infini-

Band [103].

• We design and implement a system MiCS that minimizes the communication scale

to reduce the communication overhead.

• We evaluate MiCS thoroughly to justify the benefits of minimizing communication

scale on clusters with up to 512 GPUs.

3.2 Background and Motivation

In this section, we briefly review deep learning model training (§3.2.1) and how

existing works tackle the large model training challenges (§3.2.2), and discuss its major

limitation in the context of public clouds (§3.2.3). We then present the intuition that

motivates our design (§3.2.4).

3.2.1 Model Training

Deep learning model training process mainly consists of three phases, i.e., forward

computation, backward computation, and parameter updating. In order to train the

model faster, we can harness the computing power of multiple machines. A gradient

synchronization step is performed before updating the model parameters to ensure all

workers will use the same set of parameters to evaluate the incoming new training

samples.

Deep learning model training is memory consuming as it needs to hold the model

states including model parameters, gradients from backward computation, and op-

timizer states for parameter updating. Because of the limited on-device memory

resource, activation checkpointing and gradient accumulation are typically enabled.

Activation checkpointing discards the activation outputs from the forward phase and
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Figure 3-1. Forward and backward passes of ZeRO-3 Data Parallelism on a cluster with
four devices; for brevity, only the model parameter states are shown in the figure; “Comp.”:
compute, “Sync.”: synchronize, “param.”: parameter; communications are marked with
bold font; a two-layer model is used here for illustration purposes.

requires activation recomputation in the backward phase. Gradient accumulation

divides one large data batch into multiple small micro-batches to reduce the memory

footprint of storing activation outputs. However, for models with billions of parameters,

these two techniques alone are not sufficient. Many solutions targeting at gigantic

model training are thus proposed.

3.2.2 Gigantic Model Training

In this chapter, we use the term “gigantic model” to refer to those Deep Neural Network

models that consist of billions of densely connected parameters, which means both the

size of the model and the per-sample computation of the model, i.e., floating-point

operations (FLOPs), are “gigantic”. Nowadays, the commonly adopted models that

fall into this category are transformer-based models [1, 2, 47, 101, 104, 105] and latest

wide computer vision models [92].

Traditionally, developers use model-parallel (MP) distributed training for gigantic

model training. The basic idea is to distribute the model parameters and computations

across multiple devices for each training sample. Thus, the memory for storing model

states is also distributed across devices. This way of distributing computations

comes with issues. Tensor model parallelism as one MP method requires lots of
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communications during computation [88]. On the other hand, pipeline MP strategy is

advocated with smaller communication overheads, but it suffers from pipeline bubbles

and causes under-utilization. Besides, MP solutions are not directly compatible

with common frameworks like PyTorch or Tensorflow, and they require non-trivial

engineering effort from the user side. Lastly, some of the MP designs [98, 101] are

model-specific solutions, making them hard to generalize.

Compared to the MP solutions, ZeRO [47] powered data-parallel (DP) solutions

are general to various models and do not require model refactoring. ZeRO partitions

the model states onto all devices on the cluster to reduce the memory consumption on

each device. ZeRO has three different stages, corresponding to three different levels

of memory reduction: ZeRO-1 partitions optimizer states only; ZeRO-2 partitions

gradients and optimizer states; ZeRO-3 partitions all three states, i.e., parameters,

gradients and optimizer states, evenly across all devices on the training cluster. The

full-fledged ZeRO allows us to train the extremely large models when we have a

large enough cluster. However, we have to pay communication costs for gathering

model parameters during both forward and backward. Figure 3-1 illustrates the

forward and backward passes in ZeRO-3 powered DP, in which the parameters of

each layer are partitioned across all the ranks. Here we use the same convention in

the high-performance computing (HPC) community where we use a rank number to

identify a computing device. Before computing the activations or gradient for a layer,

all parameters of this layer are gathered back by all-gather communication. After

computing the gradients on each rank with its own part of the data, the gradients are

synchronized and partitioned across all ranks using reduce-scatter communication,

which aggregates gradients among all ranks and partitions the gradients at the same

time. The gradient partition is necessary for gigantic models with billions of parameters

due to the limited memory on each rank.

ZeRO-Offload [106] and ZeRO-Infinity [107] are two extensions to ZeRO-3. These
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Figure 3-2. Effective bandwidths measured with all-gather.

two systems offload model parameters, gradients, and optimizer states to CPU memory

and NVMe SSDs. Both systems suffer from the same communication overheads as

ZeRO-3, which will be discussed in the next subsection.

3.2.3 Communication Overhead

ZeRO’s model state partitioning mechanism results in the heavy use of collective

communication for gathering model states , which is demonstrated in Figure 3-1.

Specifically, ZeRO-3 transmits 3(n − 1)M/n bytes [47] in forward and backward

passes, where M denotes the size of the parameters of the model in bytes, n denotes

the number of devices. The transmitted data volume is as large as tens to hundreds

of gigabytes for models with tens to hundreds of billions of parameters. The cost

of transmitting these data crossing the entire cluster cannot be easily hidden via

pipelining the communication and computation. Our timeline measurement shows

that for a BERT model with 10B parameters, parameter gathering could take 2.85×

more time than computation in forward pass. Similar expensive communications also

exist in the backward computation and gradient synchronization, which hurts the

performance of ZeRO especially when the network bandwidth between devices is less

preferable.

There are two main factors that contribute to the costly communications when

using ZeRO-3 on the cloud. Firstly, at the hardware level, many of the available
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internode network bandwidths and latency of cloud-based GPU clusters are not as

good as DGX systems [43, 44, 102, 103]. Moreover, unlike on-premise clusters, the

network topology of cloud-based clusters is out of users’ control, which could negatively

impact the network performance [108, 109]. Secondly, at the algorithmic side, the

latency of collective algorithms for communication has a positive correlation with

the communication scale and the startup time for transmission [110]1. Therefore, as

the scale grows, the latency becomes more significant and hurts the performance of

communication at a large scale. In addition, previous studies [59] suggest that network

bandwidth may not be the performance bottleneck of distributed model training.

Based on our measurements, as the cluster size grows, we need larger message sizes

to saturate the bandwidth. Figure 3-2 shows that small-size message such as 128MB

obtains poor bandwidth utilization on 16 and 32 nodes.

In practice, we may not be able to always communicate large messages due to

the memory constraint. Instead, it is better to control the communication scale to

improve the bandwidth utilization, especially on the cloud with less favorable network

conditions.

3.2.4 Motivation

As mentioned in §3.2.3, the frequent communication among all devices significantly

hampers the training performance of ZeRO powered DP solutions. This motivates us

to design a new system that reduces the cost of communications while preserving the

generality and usability advantages. We found the communication overhead can be

effectively reduced by shrinking the communication scale, i.e., reducing the number of

participants in a collective communication. With the reduced communication scale,

the majority of communications are restricted to a smaller group of devices. This
1The latency of tree algorithms is bounded with ⌈log2(p)⌉α, and the ring algorithms have a

latency term 2pα, where p denotes the number of participants and α denotes the startup time for
transmission, §7.1.7 in [110]
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allows us to maintain high bandwidth utilization in communications for various sized

messages, as shown in Figure 3-2. In addition, because the transmitted data volume

is positively correlated to the number of participants, reducing the communication

scale reduces the data volume. We give detailed descriptions of our methodology in

the next section.

3.3 MiCS Design

MiCS is designed for training large models on the public cloud. The overarching goal

of MiCS’s design is to reduce the scale of communication. The reduced scale allows

us to exploit heterogeneous network bandwidth, and to reduce the network traffic

transmitted over slow links. To effectively reduce the communication scale, we propose

three components named small-scale model partitioning, hierarchical communication

and 2-hop gradient synchronization. For each of them, we explain the motivation, the

methodology, and the analysis of our design.

3.3.1 Notation

We define the notations used in this section as follows:

• n: Number of devices or ranks in the cluster.

• k: Number of devices on each computational node.

• M : Size of a model in bytes.

• p: Number of devices for holding a model replica.

• s: Number of micro-steps.

• Bg: Effective communication bandwidth among devices belonging to the group g.

We define the effective communication bandwidth as the bandwidth measured using
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Figure 3-3. Model training on n devices, with every 2 devices together holding a copy of
the model states. Each partition group maintains a copy of the entire model states, and
devices in a replication group hold the same part of model states.

collective communication. Effective communication bandwidth takes algorithm

latency into account. Thus it is smaller than the theoretical bandwidth of hardware

specification. For a fixed message size, when the number of nodes increases, the

effective bandwidth shrinks.

• C: Time cost.

3.3.2 Scale-aware Model Partitioning

Partitioning model states across all the devices causes significant communications

overheads during training. Such communication overheads scale with the number of

participants in a single collective communication (§3.2.3). To reduce the communica-

tion overheads, we consider distributing the model states over a subset of devices to

reduce the scale of the communication. A modern single computing device typically

has tens of gigabytes of memory, and tens of them provide sufficient memory for

a model with tens of billions of parameters. For example, a model with 10 billion

parameters takes about 160GB of memory when training with Adam optimizer using

mixed-precision. Partitioning the model states across 8 V100 (32GB) GPUs is already

more than enough. By using 8 V100 GPUs instead of all the devices for holding one

model states replica, we can effectively reduce the scale of communication. If 8 GPUs

are located on a single node, then we can leverage high-speed intra-node connections
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such as NVLink/NVSwitch to perform the most communications. Next, we give a

general form of model states partitioning in our system and provide an analysis of the

benefits.

In MiCS, we divide all the devices into multiple groups and partition the model

states within each group. Every group has the same number of devices and holds

a complete replica of the model states in training. We call these groups partition

groups. Each device is tagged with a local group rank. Devices with the same local

group rank form another type of group, named replication group, and they hold the

same part of the model states. In Figure 3-3, we give an example that the model

states are partitioned onto two devices. Thus every two devices with consecutive

rank numbers form a partition group. The devices ranked with odd numbers and

even numbers form two replication groups separately. During the training, when a

parameter tensor is needed for either the forward or backward computation, MiCS

invokes all-gather collective to gather the corresponding model parameters distributed

within each partition group. After the gradients are computed on each device, MiCS

uses all-reduce collective to aggregate the gradients, and then it partitions the gradients

within each partition group.

Now we give the performance analysis of our partitioning strategy in terms of the

cost of all-gather. We assume the iteration time is bounded by the communications,

which is true based on our measurements (§3.2.3). The time cost of ZeRO-3’s partition-

to-all strategy is Call = ((n − 1)M)/(nBall), where Ball denotes effective bandwidth

among all devices. The time cost of MiCS is CMiCS = ((p − 1)M)/(pBpart). Here we

assume all partition groups have the same intra-group bandwidth, and we denote this

bandwidth by Bpart. Because the value of function (x − 1)/x increases when x ≥ 1

and p ≤ n, we have the following inequality for the ratio of two costs.

Call

CMiCS
≥ Bpart

Ball
. (3.1)
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Figure 3-4. Differences between hierarchical communication and vanilla communication.

For models that can be partitioned to devices located on a single node, only local

high-speed NVLinks connections are used for all-gather. Based on the measurement

on 64 GPUs spread across 8 computational nodes, we get Bpart ≃ 128GB/s and

Ball ≃ 11GB/s. Thus, the cost ratio can be as large as 11.6. For the case where there

are 32 nodes in total and each partition group consists of 4 nodes, the cost ratio is

ranging from 2.7 to 4.9 based on our measurements presented in §3.2.3. For the model

states that can be partitioned within 4 nodes, we can expect about 63.6% to 91.3%

time reduction for parameter gathering with our partitioning strategy.

3.3.3 Hierarchical Communication Strategy

When the model size grows, it requires more devices to hold the model states for

the training. If the required devices span multiple computational nodes, inter-node

communication is needed for parameter gathering. We can reduce the transmitted

data volume over inter-node connections by reducing the scale. Assuming we want to

all-gather a message with size M among p participants, the data traffic transmitted

among participants is determined by (p − 1)M/p [110]. This means we can split

p participants into multiple small groups and perform independent communication

within each group. We consider GPUs spanning across multiple nodes as a two-

dimensional grid, in which we first aggregate the data across nodes in parallel and

then merge the local data on each node.
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For hierarchical communication to work properly, we first build communication

channels for devices. Assuming each computational node has k devices, MiCS builds k

communication channels for inter-node communication and a separate communication

channel for intra-node communication (Figure 3-4 (right)). As a comparison, vanilla

collective communication uses a single communication channel for devices spanning

across nodes (Figure 3-4 (left)). In Figures 3-4, we illustrate the idea using two

computational nodes, each of which has two devices, i.e., p = 4 and k = 2. Next, we

introduce how hierarchical communication works for inter-node communication.

MiCS uses a three-stage algorithm for hierarchical communication. In the first

stage, each device uses the inter-node communication channels to do all-gather with

the devices that have the same local rank on respective nodes. The inter-node all-

gather operations are executed in parallel. In the second stage, the data chunks are

rearranged to ensure correctness. In the third stage, we invoke batched intra-node

all-gather. In general, for the model states partitioned onto p devices spanning p/k

nodes, the number of batched all-gather calls is p/k in the third stage. An example of

the algorithm running across two nodes is given in Figure 3-5. In the following, we

explain why we have the second and third stages work as we described here.

The second and third stages are designed to fix the memory discontiguous issue.

Otherwise, we would get the wrong output. We use the model states partitioned to two

nodes with 4 GPUs for an explanation, shown in Figure 3-5. The final outputs of the

hierarchical communication algorithm should place data C0 and C1 in the adjacent

locations. However, the inter-node all-gather will gather C0 and C2 into a contiguous

memory. Thus, if we directly launch an all-gather collective primitive on the output

from the first stage, we will get the wrong memory layout [C0, C2, C1, C3], while the

correct one is [C0, C1, C2, C3]. To fix this, we add a data movement stage before

intra-node all-gather to rearrange the data chunks. Then in the third stage, we launch

p/k = 2 intra-node all-gather collectives in a batch, where each intra-node all-gather
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operation works on a subset of the data chunks. Launching multiple communications

in a batch requires new communication API implementation to get good performance,

which is detailed in §3.4.

The performance benefits of the hierarchical communication strategy depend on the

scale of the model states partitioning. Assume the model is partitioned onto p devices,

and p is divisible by k, where k is the number of devices on each computational node.

With the vanilla communication strategy, the inter-node data traffic is (p − 1)M/p.

Using the proposed hierarchical communication, the data volume transmitted over

inter-node connections is reduced to (p − k)M/p. In this way, the communication

volume over the slow inter-node links is reduced by

p − 1
p − k

. (3.2)

Given that p ≥ k ≥ 1, this ratio decreases monotonically and approaches 1 when p

increases. Thus, the improvement is less when we have to use more devices to hold

a model replica. In a typical setup, we would have k = 8. A 10B-50B parameter

model typically requires 8 ≤ p ≤ 64 number of workers for holding the model states.

In this case, we will obtain 11.1% to 46.6% data volume reduction with hierarchical

communication.

3.3.4 2-hop Gradient Synchronization

In the typical distributed training setting, we need to aggregate gradients across all

the devices [111]. Gradient aggregation is an expensive synchronization step and its

cost scales with the number of workers, detailed in §3.2.3. It ensures that all devices

work on the same model states.

To improve the training efficiency, more recent works advocate large-batch train-

ing [23–25, 111, 112]. However, due to the limited device memory, practitioners have to

resort to gradient accumulation that divides a large batch into multiple micro-batches
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Figure 3-5. Hierarchical communication stages; C* denotes a data chunk; the procedure
of Node 0 is shown for brevity.

and accumulates the gradient w.r.t. each micro-batch into a shared memory buffer. In

the standard data parallel setting, the gradient synchronization is only needed at the

accumulation boundary where all the gradients have been computed. However, ZeRO

requires additional gradient synchronization within each micro-step because of gradient

partitioning. Since each device is only responsible for holding a part of the gradient,

the gradient needs to be partitioned once it is computed. In order to avoid losing the

gradient information, gradients have to be aggregated before the partitioning. This

makes every gradient partitioning step become a global synchronization barrier among

all devices. Since MiCS only partitions the model states into a small group of devices,

we can restrict the gradient synchronization within the group for each micro-step

and delay the global gradient synchronization to the accumulation boundary. This

motivates the design of 2-hop gradient synchronization schedule without over-paying

communication costs.
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2-hop gradient synchronization performs gradient synchronization within each

partition group for each micro-step. Only at the gradient accumulation boundary,

global synchronization is performed among the devices that possess the same part

of the model. Figure 3-6 gives an example of a model partitioned onto two devices.

Every two consecutive ranks form a partition group. Ranks with odd number and even

number indices form two different replication groups, respectively. For illustration

purposes, we assume the number of gradient accumulation steps is s = 4. For each

micro-step, MiCS uses reduce-scatter to synchronize gradients within each partition

group. At the gradient accumulation boundary, an all-reduce operation is used within

each replication group for synchronization. An alternative synchronization schedule is

to use all-reduce for gradient synchronization at every micro-step and then partition

the gradient on each device. During the partitioning, each device only keeps the part

of the gradient that it is responsible for while discarding the rest. This alternative

schedule is the default one implemented in DeepSpeed. However, this scheme is

redundant and overpays the communication costs.

The performance benefits of the 2-hop gradient synchronization schedule depend

on the number of micro-steps and the effective communication bandwidths within

partition groups and replication groups. For simplicity, we assume that every partition

group has the same effective bandwidth Bpart, and bandwidth within each replication

group is Brepl. The time cost of 2-hop schedule is C2-hop = (sM(p − 1))/(pBpart) +

2M(n−p)/(nBrepl), while the time cost for the alternative schedule is Calt = 2sM(n−

1)/(nBall). We take the ratio of two costs, and simplify the ratio using inequalities

(p − 1)/p ≤ (n − 1)/n and (n − p)/n ≤ (n − 1)/n when n ≥ p ≥ 1. In the following

inequality, we can view the right-hand side as the lower bound for the improvement.

Calt

C2-hop
≥

2s
Ball

s
Bpart

+ 2
Brepl

. (3.3)

Assuming s = 4, which is a reasonable setup for large batch training [47, 88], and

assuming Ball = Bpart = Brepl for simplicity, we get the lower bound of the ratio at
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Figure 3-6. Gradient synchronization steps. A partition group consists of two nodes. The
intra-group synchronization happens in every micro-step, while the inter-group synchro-
nization only happens at gradient accumulation boundary.

4/3. This means at least 25% cost reduction by using the 2-hop schedule. Taking

heterogeneous bandwidth into consideration would further reduce the denominator on

the right-hand side and helps achieve more gains. We notice that when s = 1, under

the assumption that Ball = Bpart = Brepl, the 2-hop synchronization is sub-optimal

compared to the alternative schedule. However, given the heterogeneity of the effective

bandwidths in a large cluster, e.g., having Bpart ≃ Brepl > 1.5Ball (which is reasonable

based on our measurement in §3.2.3), the 2-hop schedule typically costs less. Therefore,

even for s = 1, in training large models with a large cluster, 2-hop is still preferred.

3.4 Implementation

The implementation of MiCS is based on DeepSpeed-v0.4.9 and PyTorch-v1.11. To

efficiently implement our design, we make the following optimizations.

Fine-grained synchronization. Both parameter gathering and gradient synchro-

nization involve a large number of communication kernel launches. Communication

and computation operations are typically executed asynchronously from each other

in their own CUDA streams. To maintain the data dependency correctly among
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these two types of operations, synchronization is required at proper position. The

synchronization mechanisms like device synchronization or stream synchronization

used in DeepSpeed-v0.5.6 operate in a coarse granularity and hence lead to sub-optimal

communication and computation overlapping, especially on lower bandwidth clusters.

For example, if a communication operation comm0 depends on the output from

computation operation comp0, and the comp0 is running with another computation

comp1 on the device, then using coarse-grained device synchronization would delay

comm0 until comp1 is completed. Instead, MiCS follows the good practice in existing

works, e.g., BytePS [30], that leverages much finer-grained wait_event, wait_stream

and record_stream operations for synchronization, which allow us to maintain the

relative order of computation and communication operations in different streams.

Using this mechanism, comm0 can kick off without waiting for comp1 to complete. In

addition, during the forward and backward passes, many complex decisions need to

be made, such as which parameters should be fetched, predicting which parameters

will be used next, which parameters may be reused soon and should be kept, and

which can be released. We observe that making these decisions on-the-fly creates

large computation and communication bubbles. We optimize this computation by

precomputing and caching the decisions. The same decisions are reused throughout

the training.

Coalesced communication APIs. MiCS’s hierarchical communication design intro-

duces multiple communications over small messages. One way to improve bandwidth

utilization is to batch communications. However, it is suboptimal to use existing

all_gather and reduce_scatter operators in PyTorch to implement batched com-

munication as we will have to explicitly use a custom interleaving scheme to copy

the tensors into a shared buffer. MiCS introduces two coalesced communication

APIs, all_gather_coalesced and reduce_scatter_coalesced. These APIs avoid

the redundant buffer allocation and memory copy in all-gather and reduce-scatter
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Table 3-I. Structure of language models. BERT 10B means BERT with 10 Billion
parameters, and similarly for other model names. We use a sequence length of 512 for
all the models. “H.S.”: hidden size, “Inter.”: Intermediate, “Atten.”: attention, “Vocab.”:
Vocabulary

Model H.S. Inter. size #layers #Atten. Vocab. size

BERT 10B 2560 10240 127 40 32008
BERT 15B 2560 10240 190 40 32008
BERT 20B 5120 20480 64 40 32008
BERT 50B 8192 32768 62 40 32008
RoBERTa 20B 5120 20480 62 40 50265
GPT2 20B 5120 20480 62 40 50265

API calls in PyTorch. MiCS leverages the group primitive in nccl to launch multiple

communication operations at once, without extra data movement or allocation.

Memory defragmentation. Like DeepSpeed, MiCS also requires frequent memory

allocation and deallocation operations as model states are frequently gathered and

scattered. This results in serious memory fragmentation when using the dynamic

allocation provided by PyTorch memory manager, causing out-of-memory errors

when we try to allocate large contiguous memory buffers. DeepSpeed allocates

contiguous memory buffers for holding gradients to mitigate the fragmentation issue.

But it does not consider the fragmentation problems caused by operations related

to partitioned parameters and gradients. MiCS’s memory management solves the

memory fragmentation issue in a more comprehensive way. MiCS pre-allocates large

contiguous memory buffers for holding partitioned parameters, partitioned gradients,

and temporary small buffers ahead of the training. During training, MiCS reuses these

buffers proactively, rather than relies on the memory management module in PyTorch.

3.5 Evaluation

In this section, we evaluate the following three aspects.

• Training performance: Does MiCS provide better throughput than the existing
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solutions?

• Effectiveness of the design: How does each component of the system affect the

performance?

• Fidelity: Is the system carefully implemented so that the training is converging

correctly?

Setups. We conduct all experiments on AWS. Unless specified otherwise, we use

Amazon EC2 p3dn.24xlarge instances for the evaluation. Each instance has 8 V100

(32GB) GPUs, which are interconnected via NVLink. The theoretical aggregated

GPU interconnect bandwidth within the instance is 300 GB/s. For the inter-node

communication, p3dn.24xlarge has a 100Gbps elastic fabric adaptor (EFA). In addition,

we have also evaluated our system on Amazon EC2 p4d.24xlarge instances, which have

8 A100 (40GB) GPUs and a 400Gbps EFA network. The software environment includes

CUDA-11.0, DeepSpeed-v0.5.6, PyTorch (customization from v1.11), Megatron-LM

(git-hash d416968), and nccl-v2.10.3.

Metric and workloads. We use system throughput and TFLOPS as our main

evaluation metrics. Unless specified otherwise, we use model variants based on the

BERT model [3]. We vary the number of transformer layers and the size of each layer

to get different model configurations. We also include two other popular language

models, RoBERTa [113] and GPT2 [1]. Table 3-I summarizes the detailed model

configurations. Other than language models, we also evaluate the performance for

training WideResNet to demonstrate the generality of our system. For the language

models, the Wikipedia-en corpus is used as the training dataset. We fix sequence

length to 512 for the training. For the WideResNet model, we use synthetic data with

images sized 3 × 224 × 224. By default, we use a micro-batch size of 8, global-batch

size of 8192, mixed-precision, and activation checkpointing in training.
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3.5.1 Performance

In this section, we demonstrate the performance advantages of MiCS. First, we show

the scalability of MiCS against DeepSpeed, which is the state-of-the-art (SOTA)

solution using DP with model states partitioning. The TFLOPS numbers are also

reported to show the computation utilization of each GPU. In §3.5.1.2, we evaluate

MiCS and DeepSpeed in a different network condition, i.e., 400Gbps network. In

§3.5.1.5 we provide performance numbers of the 100B model training on a large scale.

In §3.5.1.3, we show MiCS can outperform Megatron-LM-3D [101], which is a SOTA

design for transformer-based language models that uses DP and MP.

3.5.1.1 Scalability in 100Gbps Network
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(b) BERT 15B.
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Figure 3-7. Strong-scaling with different model sizes; × denotes “out-of-memory”; black
rectangular denotes the linear-scaling efficiency.

In this subsection, we report the throughput performance and strong-scaling

efficiency of MiCS and DeepSpeed in 100Gbps networks. The baselines include both

ZeRO-2 and ZeRO-3 in DeepSpeed. ZeRO-1 is excluded because it is not runnable for
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the smallest model we consider. ZeRO-Offload [106] and ZeRO-Infinity [107] are not

included, either. These two variants aim to utilize CPU memory and NVMe storage to

support large models, which are orthogonal to MiCS. Instead, we focus on minimizing

communication overhead to improve the training throughput. For both ZeRO-3 and

MiCS, we use micro-batch size 8. But for ZeRO-2 we use a smaller micro-batch size 4,

because ZeRO-2 does not perform parameter partitioning and uses more GPU memory

for the redundant model parameter replicas. We vary the number of computational

nodes from 2 (resp. 16 GPUs) to 16 (resp. 128 GPUs). For the partition group size,

we use the smallest number of nodes that allow us to train models with the selected

batch size, i.e., 1 node for BERT 10B, 2 nodes for BERT 15B and 20B, 8 nodes for

BERT 50B. All throughput numbers are averaged over 500 iterations.

As shown in Figure 3-7 and 3-8, the throughput of MiCS is significantly better

than that of DeepSpeed. Our performance numbers show that the throughput of MiCS

is up to 2.82× that of DeepSpeed for the BERT 15B model. MiCS achieves near-linear

or super-linear scalability in all experiments. Here we define the linear-scaling as

with respect to the smallest number of computational nodes that can hold the model

states with the targeted micro-batch size, e.g., for BERT 50B the linear-scaling is

with respect to 8 nodes. In most of the setups, ZeRO-2 has an out-of-memory (OOM)

problem. Next, we explain the rationale of our results.

The performance improvements are different with respect to the different charac-

teristics of the models. For the BERT 10B model, a single computational node has

enough GPU memory to hold the model states so that we can leverage fast intra-node

GPU interconnect to complete most of the communication. In this case, MiCS is 223%

faster than ZeRO-3. And, larger micro-batch size allows MiCS to further achieve

more gains over ZeRO-2. The performance gain of MiCS for BERT 15B is larger than

that for BERT 20B model. The difference is mainly due to the structural differences

between the two models. As listed in Table 3-I, BERT 15B has narrower transformers
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layer but a larger number of layers. The narrower model leads to smaller computation

and communication units, which allow finer grained overlapping of computation and

communication. In BERT 20B experiments, we observe super-linear scaling. This

is because we have to disable hierarchical communication on 16 GPUs due to the

memory constraint. The all-reduce overhead among replication groups is amortized by

multiple micro-batches (§3.3.4). The amortized overhead is relatively small, less than

1%, to the iteration time of each micro-step. Thus, MiCS can maintain near-linear

scalability.

To compare the computation utilization, we calculate the TFLOPS performance

based on system throughput. The TFLOPS numbers are shown in Figure 3-9. We

follow the equation in [101] to calculate the total TFLOPS.

F = 96T lLh2
(︄

1 + l

6h
+ V

16Lh

)︄
, (3.4)

where V denotes vocabulary size, l is the sequence length, h is the hidden size, L

refers to the number of layers, and T is throughput per second2. As we can see,

MiCS is better than ZeRO-3 by a large margin for all the model sizes. The maximum

gain we observe is 223.7%. For the BERT 10B model, we achieve about 42% of

the theoretical peak performance of V100. When the model size is over 10B, the

performance dropping is mainly because of the cross node partitioning, which causes

a larger communication overhead. However, the computation utilization we get is still

on par with the numbers reported by DeepSpeed ZeRO [47] and Megatron-LM [88]

on DGX-2 clusters, which have 800Gbps networking.

3.5.1.2 Scalability in 400Gbps Network

In this subsection, we evaluate MiCS on a GPU cluster with A100 GPUs and 400Gbps

network (Amazon EC2 p4d.24xlarge instances, 8 GPUs per instance). We use the
2The derivation process of the formula is in the appendix of the paper [101].
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BERT 15B and BERT 20B models for the evaluation, and we fix the micro-batch size

to 8 for all experiments. DeepSpeed ZeRO-3 is used as our baseline for comparison.

As shown in Figure 3-10, MiCS significantly outperforms DeepSpeed and achieves

near-linear scaling. The throughput of MiCS is up to 2.21× that of ZeRO-3. The

throughput gap enlarges as the scale of the cluster increases, demonstrating that

MiCS can maintain near-linear scaling efficiency. In BERT 15B case, when we scale

the cluster size from 16 GPUs to 64 GPUs, MiCS achieves 96.7% efficiencies with

respect to 16 GPUs. In contrast, DeepSpeed ZeRO-3 only achieves 85.3% for BERT

15B. Compared to the results in Figure 3-7b, the performance gains are lower mainly

because faster network bandwidth mitigates communication overheads.
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Figure 3-8. Strong-scaling with other language models; × denotes “out-of-memory”;
black rectangular denotes the linear-scaling efficiency.
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Figure 3-9. TFLOPS performance; BERT models with different sizes; × denotes “out-of-
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Figure 3-10. Throughput comparison in 400Gbps network.

3.5.1.3 Comparison to Megatron-LM-3D

We increase the number of layers to 128 while keeping the same hidden size and

intermediate size as the BERT 10B model. This is because the pipeline parallelism of

Megatron-LM-3D requires the number of layers to be divisible by the size of pipeline

parallelism. We use micro-batch size 8 and global-batch size 4096 for this experiment.

We follow the takeaways from Megatron-LM-3D [101] to tune the tensor parallel size

and pipeline parallel size for better performance. Specifically, we avoid using tensor

MP across nodes and use more pipeline MP than DP size if applicable. We report

three reasonable setups of Megatron-LM-3D, as listed in table 3-II. In the table, we

omit the DP size, because it depends on the size of the training cluster.

As shown in Figure 3-11a, the performance of Megatron-LM-3D is sensitive to

model parallel configurations. We always restrict the tensor MP size to be lower than

eight to make sure the tensor MP ranks only communicate through NVLink. But

Megatron-LM-3D is still sensitive to the tuning of the MP sizes, e.g., configuration

(3) is 38% better than configuration (1). This raises usability challenges to users. In

contrast, MiCS does not have such complicate configurations for different parallel

sizes, because of the simplicity of data parallelism. And MiCS is up to 31% faster

than the best results from Megatron-LM-3D. Our profiling shows the inefficiency

of Megatron-LM-3D is mainly due to timeline bubbles in pipeline parallelism and

communication overhead in tensor parallelism.

57



For some uncommonly structured models, Megatron-LM-3D could outperform

MiCS marginally. We conducted some experiments to evaluate system performance

with respect to the structural differences of models. The number of parameters of the

model is fixed to 10B. Figure 3-11b presents the throughput of Megatron-LM-3D and

MiCS, that are evaluated on a BERT model with wider transformer layers than a

regular BERT 10B model. Specifically, the model consists of 80 transformer layers.

The intermediate size of each transformer layer is equal to 8× hidden size. This kind

of wider structure is used in the evaluation of GSPMD [114]. Usually, the intermediate

size of a transformer layer is 4× that of the hidden size [47, 88, 101, 115]. The

number of transformer layers, 80, is chosen to match the size of the regular BERT 10B

model. The other training setups are the same as the previous experiment. In this

experiment, Megatron-LM-3D with configuration (3) is slightly better than MiCS. The

performance gaps are within 1.5%. For this specific setup, the wider structure produces

larger intermediate activations and requires more memory for each transformer layer.

Frequently allocating and releasing large memory chunks cause allocation failure and

retry at the PyTorch allocator side [116], which impacts the efficiency of overlapping

computation and communication in MiCS.

Table 3-II. Megatron-LM-3D configurations.

Configuration Tensor MP size Pipeline MP size
Megatron-LM-3D (1) 8 1
Megatron-LM-3D (2) 4 4
Megatron-LM-3D (3) 2 8

3.5.1.4 Performance on CV models

To show the performance improvements of MiCS generalize to other models, we report

the training throughput of WideResNet [92], a computer vision model, in Figure 3-11c.

We compare MiCS against DeepSpeed (ZeRO-3). Note that Megatron-LM-3D cannot

be applied to training this model. We scale up the size of WideResNet by enlarging
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16 32 64
Number of GPUs

0

50

100
Th

ro
ug

hp
ut

(S
am

pl
es

/s
ec

) Megatron-LM-3D (1)
Megatron-LM-3D (2)
Megatron-LM-3D (3)
MiCS

(b) BERT 10B, intermediate size = 8× hidden size.
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(c) WideResNet 3B; × denotes “no support”.

Figure 3-11. Performance Comparison to Megatron-LM-3D.

the width and number of blocks of the network. In our setup, the WideResNet model

has 3B parameters. It has 200 convolution layers, width factor 8, and its bottleneck

block configuration is [6, 8, 46, 6]. We fix batch size 8 for each GPU, and use

synthetic image data with size 224x224 for benchmarking. The training uses float32

and activation checkpointing is disabled. The model is not runnable under ZeRO-2

optimization. The system throughput of MiCS is up to 2.89× that of DeepSpeed

(ZeRO-3).

3.5.1.5 Case Study: 52B and 100B Model Training

MiCS has been deployed to train proprietary models in distribution. Our training

cluster consists of 128 A100 GPUs with 400Gbps networking. Our results show

that we can achieve 179 and 171 TFLOPS per GPU for 52B and 100B parameter

models, respectively. These are about 57% and 55% compute utilization of the
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peak half-precision performance of A100. The utilization results outperform the

TFLOPS performance reported from Megatron-LM-3D [101] on DGX A100 clusters

with 8 InfiniBand networking cards (1.6Tb/s) [117]. When we increase the number

of GPUs from 128 to 512, we can obtain 170 TFLOPS per GPU for the 100B

parameter model with 99.4% weak scaling efficiency, where the partition group size

is 128 GPUs. When the cluster size equals the partition group size (128 GPUs), the

performance improvements come from hierarchical communication and implementation

optimizations. In contrast, DeepSpeed ZeRO-3 only achieves 62 TFLOPS per GPU

for training a 100B parameter model on 512 GPUs with 72% weak-scaling efficiency.

In this experiment, the size of each micro-batch is 16 and the number of micro-steps

is 4. The TFLOPS performance of MiCS is 2.74× that of DeepSpeed ZeRO-3 on 512

GPUs.

3.5.2 Analysis of the Design

To understand the performance contribution of each component in MiCS, we conduct

ablation tests in this section. We divide our studies into three subsections. Each

subsection corresponds to one of the three components in §3.3. For each experiment,

we present the setups followed by detailed results and takeaways.

3.5.2.1 Analysis of Partition Group Size

As the scale-aware model partitioning uses partition groups for storing model states

replicas, it is natural to ask the relationship between the size of the partition group

and the end-to-end performance. In this experiment, we use BERT 10B model, fix the

micro-batch size to 8, and use 64 V100 GPUs in total. We vary the size of each group

from 8 GPUs to 64 GPUs. If we use all the 64 GPUs for partitioning the model states,

MiCS reduces to ZeRO-3. As shown in Figure 3-12, by increasing the partition group

size, the end-to-end throughput trends down obviously. The throughput of partition
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Figure 3-12. Throughput change w.r.t. partition group sizes.

group size 8 is 1.6× that of partition group size 64. Thus, it is preferable to partition

the model states into a smallest possible group.

3.5.2.2 Analysis of Hierarchical Communication

Hierarchical communication plays an important role for good performance because

it can reduce the transmitted data volume over the inter-node connections. In this

subsection, we conduct performance analysis quantitatively to show its importance.

We divide our experiments into two parts, micro-benchmark and end-to-end training

throughput. In both experiments, we report normalized performance to baselines, i.e.,

vanilla all-gather and DeepSpeed ZeRO-3.

In the micro-benchmark experiment, we measure the elapsed time of vanilla all-

gather and hierarchical all-gather operators for handling different message sizes. We

use two Amazon EC2 p3dn.24xlarge instances. We cap the message size at 256MB,

because a single parameter fetching typically gathers less data than it for better

overlapping of computation and communication. In Figure 3-13a, we can see that the

elapsed time of hierarchical communication operator is consistently lower than the

baseline. For message size 128MB, hierarchical communication only uses about 72.1%

of the time cost of vanilla all-gather.

For the end-to-end experiment, we use the BERT 15B model, which needs two

computational nodes (i.e.,16 GPUs) to hold the model states for the training. For
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Figure 3-13. Benefits of hierarchical all-gather.

models that can be held by a single computational node (i.e., 8 GPUs), the hierarchical

all-gather is not needed. We vary the cluster size from 16 to 128 GPUs and evaluate

MiCS with and without hierarchical communication. We normalize throughput

numbers to the results of DeepSpeed ZeRO-3. As shown in Figure 3-13b, MiCS with

hierarchical communication is consistently better than the case where hierarchical

communication is disabled. In particular, hierarchical communication improves the

end-to-end training throughput by 30.6% to 38%.

3.5.2.3 Analysis of Synchronization Scheduling

In this experiment, we report the throughputs of MiCS with 2-hop gradient synchro-

nization enabled and disabled. We use the BERT 10B model for the experiments and

fix the micro-batch size 8, global batch size 8192 for training. We partition model

states on 8 GPUs. When the 2-hop synchronization is disabled, the system uses an

alternative synchronization schedule that synchronizes the gradients across all devices

at the end of each micro-step, explained in § 3.3.4. We can see the performance

gaps between these two setups, Figure 3-14. When the cluster size increases to 128

GPUs, we get the max throughput gap. Numerical results indicate that the relative

improvement ranges from 11% to 24.9%, when 2-hop synchronization is enabled.
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Figure 3-14. Benefits of 2-hop gradient synchronization.

3.5.3 Other Optimizations

We conduct experiments to analyze the performance improvements by using the

optimization techniques described in §3.4. We use the BERT 10B model for the

evaluation. In the training, we use the default setup as mentioned at the beginning

of §3.5. When we turn off optimizations that are unique to MiCS and let the model

states be partitioned over all devices, MiCS reduces to ZeRO-3 with the optimization

techniques in §3.4, We denote it as “MiCS (ZeRO-3)”. For comparisons, we report the

throughput of DeepSpeed ZeRO-3.

Figure 3-15 shows the improvements of using the proposed system optimizations.

MiCS (ZeRO-3) achieves 54.1% better system throughput than DeepSpeed ZeRO-3

when the cluster scales up to 128 GPUs, while the scaling efficiency of DeepSpeed ZeRO-

3 drops when we scale out the cluster. In addition, MiCS still significantly outperforms

MiCS (ZeRO-3), demonstrating the superiority of minimizing the communication

scale.
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Figure 3-15. Improvements of implementation optimizations.
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3.5.4 Fidelity

In this section, we show that MiCS achieves consistent convergence as DeepSpeed,

which validates the correctness of our system. We provide the training loss curves

for training a 1.5B parameter model on the Wikipedia-en dataset. The model has

48 transformer layers, each of which is constructed with the hidden size 1,600 and

intermediate size 6,400. The global batch size is 512. And the micro-batch size is 8

(the number of gradient accumulation steps is 4). The loss validation process does not

aim to produce exactly the same loss as DeepSpeed but to ensure the convergence

behaviours are the same. We report the training losses on 1 million sequences. As

shown in Figure 3-16, MiCS provides the same convergence as DeepSpeed.
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Figure 3-16. Fidelity of the implementation.

3.6 Related Work

Data parallelism. PyTorch-DDP [80], Horovod [32], ps-lite [31], Tensorflow-DDP [79],

and BytePS [30] are distributed training frameworks using data parallelism. All of

them place complete model states on each GPU for training. Thus, the supported

model size is limited. Recently, ZeRO [47] has been proposed to address the memory

limitation issue of the traditional data-parallel strategy, by partitioning the model

states onto all GPUs. ZeRO-Offload [106] and ZeRO-Infinity [107] are two extensions

to ZeRO that explore the possibility to extend the memory to hold the model from
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GPU memory to CPU memory and NVMe, which are orthogonal to MiCS. MiCS

focuses on minimizing the communication overheads of the training system, addressing

the challenges not solved in ZeRO.

Other parallelisms. ColocRL [118] formulates the distributed training as a placement

optimization problem to maximize the throughput. FlexFlow [96] and OptCNN [119]

use heuristic search for parallel strategies including tensor MP and device placement

MP. Alpa [120] and Unity [56] use hierarchical search to jointly optimize within- and

between-device to look for a good parallel strategy. These systems do not explicitly

embed the memory constraints into their optimization objective, and are not directly

verified to train models at the scale that MiCS trained. Megatron-LM-3D [101],

GPipe [121], and DAPPLE [122] use pipeline parallelism to partition large mod-

els into multiple stages for the training in a synchronous manner. These solutions

have resource under-utilization problems due to pipeline bubbles. PipeMare [36],

PipeDream [68], and PipeDream-2BW [37] use asynchronous and bounded-staleness

training for efficient resource utilization which, however, can affect the convergence

quality [38, 123, 124]. The research direction of asynchronous methods are orthogonal

to MiCS. Currently, MiCS uses synchronous training and it does not suffer from

convergence issues. DLRM [98] and Megatron-LM [88] are specific designs for recom-

mendation models and transformers, respectively. DLRM partitions the embedding

table along row and column dimensions. Megatron-LM introduces tensor parallelism

to parallelize the tensor computation on multiple devices. Megatron-LM-3D [101]

integrates the pipeline parallelism into Megatron-LM for further scaling up the model

size. Pipeline parallelism, tensor parallelism, and the mixture of multiple parallelisms

require significantly additional efforts to program the customized model implementa-

tion and tune the hyper-parameters for high performance. MiCS is orthogonal to this

line of research. We compared MiCS against Megatron-LM-3D [101] in Section 3.5.1.3.

Communication optimizations. ByteScheduler [64] and P3 [125] overlap the com-
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putation with communication to hide the communication cost. SwitchML [126] and

ATP [127] use the programmable switches as gradient aggregation servers to reduce

the communication overheads. Lossy compression algorithms like 1bit-SGD [128] and

DGC [65] compress the data transmitted over the network to improve the system

performance. Those techniques are complementary to our system for further reducing

the communication overheads. Blink [129] leverages multiple communication channels

with optimized spanning trees to speed up the gradient synchronization. Plink [108]

discovers and explores the locality of the distributed training cluster for better per-

formance. Cloud Collective [109] reorders the ranks of cluster nodes to explore a

better topology. Blueconnect [130] decomposes all-reduce primitive with pipelined

reduce-scatter and all-gather. These techniques explore better locality or pipeline

multiple communication primitives to speed up the synchronization. MiCS reduces

communication overheads from a different perspective. In particular, our system

reduces communication costs by reducing the scale of communications. Varuna [131]

works on optimizing network jitter and instability among cheap “spot” instances [132]

to lower the training cost. The objective of Varuna is orthogonal to MiCS. In high-

performance computing, innovations [133–135] at the hardware level are critical to the

efficiency of communications. On the other hand, researchers explore the relationship

among collective communication algorithms, software implementations, and message

sizes to optimize each individual communication primitives [136, 137]. These efforts

are orthogonal to MiCS. Our system is built with GPU-aware library NCCL [28].

3.7 Discussion and Future Work

The optimality of the training throughput depends on the model structure, input

data, and hardware. For the models used in the evaluation, we do not prove that

MiCS is the optimal solution. MiCS is a pure data-parallel training system, which

admittedly covers a limited space of parallelism strategies. Thus, for some less common
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model structures, e.g., wider feedforward layer in transformer blocks, Megatron-LM-3D

could outperform MiCS in certain configurations marginally, shown in §3.5.1.3. It is

worth noting that adapting tensor model parallelism and pipeline parallelism requires

refactoring model implementations [47], thus is less favorable to practitioners. MiCS,

as a pure DP solution, achieves state-of-the-art performance in training standard

transformer-based models with billions of parameters and trades off performance for

lower complexity in some less common cases.

Despite the model states replications created in MiCS, our system does not require

additional hardware resources as compared to the existing ZeRO system. Partitioning

one model states replication across all devices, as the existing ZeRO system does,

underutilizes the memory of each device. As discussed in the first paragraph of §3.3.2,

the memory capacity of eight V100 (32GB) GPUs are large enough for holding model

states of a model with 10 billion (B) parameters. For a cluster with 16 or more V100

(32GB) GPUs, partitioning the 10B model to all devices consumes less than 32%

memory usage of each device for holding the model states. MiCS effectively leverages

these spare memory resources for lowering communication costs (§3.3). For models

that require all devices to hold the model states for training, MiCS still outperforms

the ZeRO system because of the hierarchical communication module (§3.3.3).

In MiCS, the memory consumption of each device is controlled by the size of the

partition group, which is configurable. MiCS uses a heuristic to pick the size for

holding the model states, which is mentioned in §3.5.1.1. Compared to prior large

model training systems, MiCS does not introduce extra issues in terms of system

practicability. For ZeRO systems, users have to figure out the smallest size of the

cluster for training, otherwise the system runs into out-of-memory issues. Similarly,

the Megatron-LM-3D system requires users to configure the number of pipeline stages

and the tensor parallelism size, so that the partitioned model components can fit into

each GPU in a cluster. In MiCS, the way to figure out the partition group size is the
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same as figuring out the smallest size of the cluster for training in ZeRO systems.

To automate the configuration search for large model training, an accurate estima-

tion of memory usage is needed. A profiling-based method can get relatively precise

memory usage statistics. But once the training processing runs into the out-of-memory

issue during configuration search, the dangling process can cause hanging and prevent

successive configurations from launching. Estimating memory consumption from

the model structure and input size is inaccurate due to the dynamic behavior of

the memory management module in PyTorch runtime. Addressing challenges from

estimating or predicting the memory usage of large models is beyond the scope of this

chapter, in which we focus on reducing the communication overheads in the ZeRO

DP algorithms. We leave the configuration search for MiCS as future work.

3.8 Conclusion

In this chapter, we present MiCS, a system that attains high training throughput and

near-linear scalability on the cloud by only using data parallelism. The overarching

goal of MiCS is to minimize the communication scale so as to reduce the expensive

communication overhead rooted in parameter gathering and gradient synchronization.

Specifically, we propose scale-aware model partitioning, hierarchical communication

strategy, and 2-hop gradient synchronization to achieve this goal. We evaluate MiCS

on various training workloads on large-scale clusters. MiCS outperforms DeepSpeed

ZeRO by up to 2.89× and demonstrates near-linear scaling efficiency in various training

setups.
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Chapter 4

Extending MiCS with Pipeline
Parallelism and Memory
Optimizations

In the last chapter, we present MiCS, which reduces the communication overhead

of ZeRO-3 partitioned data parallelism. Despite the simplicity of pure data-parallel

solution for large model training, it is challenging to keep the cross-node communication

efficient enough to hide most of the overhead. As shown in the evaluation section of

the last chapter, there are cases that MiCS cannot perform well due to less efficient

overlapping of communication and computation. We found it is especially true when

we train large models with data with long sequences, e.g., longer than 1,024.

This chapter presents intra-stage partitioning, which uses the MiCS strategy for

partitioning each stage of pipeline parallelism. We name the new strategy MiCS-Pipe.

Including pipeline parallelism allows us to keep the most frequent communications

within each node. Besides the proposed model partitioning strategy, we introduce

two memory optimizations to mitigate memory fragmentation and lower the memory

footprint. Memory optimizations enable us to use larger micro-batch sizes to better

utilize the computation resources and provide more room to hide the communication.
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4.1 Introduction and Motivation

Transformer-based models are shown to be effective not only in language modeling [1–

3, 113, 138], but also in computer vision [139–144], speech recognition [9, 145–147]

areas. It is a common building block for scaling up the size of the model to achieve

better prediction accuracy [2, 27, 148, 149]. Naturally, transformer-based training

workloads attract a lot of attention from research communities to optimize these

workloads.

Partitioned data-parallel systems, e.g., MiCS and DeepSpeed-ZeRO, perform

well for different kinds of models. But, for partitioned data-parallel systems to

work efficiently, the parameter gathering speed is required to be fast enough to

catch up with the computation speed. Considering the computation speed as the

throughput of consuming the corresponding parameters, we need this parameter-

consuming throughput to be lower than the parameter all-gathering throughput we

can achieve. Figure 4-1 gives an example of parameter-consuming throughput on an

NVIDIA A100 (40GB) GPU. We use a multi-layer perceptron (MLP) model with

two layers, commonly used in transformer-based models. We use different sequence

lengths and batch sizes for input data to obtain forward computation time. Then, we

divide the model’s size in bits with the forward time to get the parameter-consuming

throughput for each input.

As shown in Figure 4-1, for input sequences with a length of 4096, the batch size

needs to be larger or equal to two for the network of p4d.24xlarge instances to be

fast enough for cross-node parameter gathering. However, due to the limited memory

capacity, we can only use micro-batch 1 for training sequence length 4096 in many

cases. When that happens, the system cannot completely hide the communication

cost of cross-node parameter gathering with computation.

On the other hand, the limited memory space can make parameter gathering
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Figure 4-1. The throughput of parameter consuming, size(model)/Tcompute; MLP struc-
ture with hidden sizes: [8192, 4 × 8192, 8192]; “seq-len”: sequence length.

even more challenging. Figure 4-2 presents a case to illustrate the bubbles in the

parameter prefetching procedure. The prefetching process hides the communication

cost of gathering parameters for the following computations. But, the size of the

parameters for prefetching next is limited to avoid out-of-memory (OOM) errors. For

example, if the memory space for gathered parameters is 2 GB, and the parameters of

the current layer i take 1.5 GB, then only 0.5 GB space is left for prefetching layer

i + 1. The limited prefetching budget can lead to prefetching stalls (marked with a

red arrow in Figure 4-2). Bubbles in the communication further lead to computing

stalls because of the data dependency (marked with orange arrows in Figure 4-2).

Computation

Communication

… …

… …

Layer 𝑖 Layer 𝑖 + 1

Prefetching
(layer 𝑖 + 1)

Prefetching
(layer 𝑖 + 1)

Gap due to limited 
prefetching budget

Prefetching
(layer 𝑖 + 2)

Figure 4-2. Prefetching overhead due to memory constraints.

Other than the hardware limit of the memory capacity of each device, there are

two memory-related issues that prevent us from using larger micro-batch sizes to

increase the computation time for each parameter to hide the communication overhead

efficiently: memory fragmentation and temporal activations.
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Memory fragmentation. Fragmented memory blocks cannot be used for holding

parameters, temporal activations, or gradients, as these buffers demand contiguous

memory blocks. The pattern of memory allocation and releasing of partitioned data

parallelism can easily generate fragmented memory blocks. If a large memory-releasing

operation is followed with small allocations, then the release memory block is likely

to be broken into smaller ones. For example, after the gradient computation for the

weight parameters of a linear layer, the memory space of the weights can be released

and reused for successive gradient computations of bias parameters. In MiCS, we

implemented several optimizations to mitigate fragmentation due to the allocation of

partitioned parameters or gradients. But for training with long sequence inputs, we

can still observe up to about 15 GB of fragmented memory.

Temporal activations. Despite the activation checkpointing for each transformer

layer [101], the remaining activation buffers are still large for training gigantic models

with long sequences. When activation checkpointing is enabled for each transformer

layer, the output tensors of each layer are still kept in the memory (i.e., checkpointed

tensors). In MiCS, every GPU goes through the computation of the entire model.

Thus, the total memory of such output tensors can be calculated as lbsh, where l

denotes the number of transformer layers of the model, b is the batch size of the

data, s is the sequence length of the input data, and h denotes the size of hidden

dimension of the transformer layer. A large model with long sequences can easily

occupy several Gigabytes of memory. For example, when training with an input of

b = 1 and s = 2048, a model with l = 128 transformer layers of hidden size h = 8192

can consume 4 GB on each device.

Contributions. To address the communication challenges discussed above, we

propose MiCS-Pipe, which uses an intra-stage partitioning strategy that combines

the benefits of MiCS and pipeline parallelism to reduce the communication overhead

further. In addition to the new model partitioning strategy, we present two memory
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optimizations to mitigate the memory fragmentation and high memory footprint of

intermediate activations. The memory optimizations allow us to use larger micro-batch

sizes for training, which brings more room to hide the communication overhead as the

computation time becomes longer. Through the thorough examination of different-

sized models with different-sized input data, we validate the benefits of proposed

methodologies as extensions to MiCS.

4.2 Background

In this section, we first discuss the basic idea of pipeline parallelism. We then present

the concept of tensor parallelism, a common technique used in transformer-based

models. We also describe the reason not to choose tensor parallelism as the extension

to MiCS. In the last part of the section, we give an example of linearizing model

implementation for pipeline parallelism.

4.2.1 Pipeline Parallelism

Deep Learning models consist of multiple layers. With pipeline parallelism, every

several consecutive layers of the model are bundled as a pipeline stage. Each pipeline

stage is placed on a single accelerator. The number of pipeline stages is called pipeline

size. Figure 4-3 gives an example of a four-layer model with pipeline parallelism

of pipeline size 2. Ideally, the computation times of stages are evenly distributed

across the pipeline to avoid slowdown by the slowest stage. To achieve this, we

can evenly partition the number of transformer layers for transformer-based models.

For other models with asymmetric structures, more advanced stage partitioning

algorithms [68, 96, 122] are needed.

In training, a large data batch is split into multiple small micro-batches. Micro-

batches are fed into the first stage of the pipeline for forward computation. Each

micro batch’s outputs from a stage are sent to the subsequent stage. Each micro
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Stage 0

Device 0
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Figure 4-3. Model partitioning with pipeline parallelism; each pipeline stage has two
layers.

batch’s backward computations start from the pipeline’s last stage. Splitting a large

batch into multiple smaller ones improves the hardware utilization of devices in the

pipeline. There are different ways to execute forward and backward computation for

each micro-batch. For example, GPipe [121] performs forward computations for all

micro-batches, then starts backward for each batch. Other systems like PipeDream [68]

or Megatron-LM-3D [101] adopts 1-forward-1-backward (1F1B) schedule. We adopt

the 1F1B schedule when combining MiCS with pipeline parallelism. We defer the

discussion of different pipeline schedules to other papers [37, 68, 121, 150].

1 2 3 4 1 5 2 6 3 7 4 8 5 6 7 8 9 101112 9

1 2 3 4 1 2 5 3 6 4 7 5 8 6 7 8 9 101112 9 10

1 2 3 4 1 2 3 5 4 6 5 7 6 8 7 8 9 101112 9 10

1 1 2 2 3 3 4 4 5 5 6 6 7 7 8 8 9 9 10 10 11 11

Device 0

Device 1

Device 2

Device 3

Micro-batch forward Micro-batch backward Idle time

Iteration boundary

Figure 4-4. An example of pipeline execution schedule of 1F1B.

Figure 4-4 gives an example of execution of 1F1B schedule of pipeline parallelism.

The example assumes pipeline size four. A large batch is split into eight micro-

batches for execution in the pipeline. To maintain the same optimization semantics,

backward gradients for each micro-batch are accumulated to a gradient buffer. At

the end of each iteration, there is a pipeline flush to synchronize all devices, which

is marked with a black vertical bar in Figure 4-4. The synchronization guarantees

all stages with shared model parameters have the same gradients for updating with

the optimizer. We call this procedure as synchronized 1F1B pipeline schedule. In the
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synchronized 1F1B schedule, there is idle time for different devices, which are empty

cells in Figure 4-4. We call idle time pipeline bubbles and need to minimize these

bubbles. Using a large number of micro-batches for each pipeline can effectively reduce

these bubbles. The communication cost of pipeline parallelism is mostly due to the

communications from stage to stage. It is relatively small compared to other model

parallelism strategies [101]. And the stage communication cost can be overlapped

with computations, which reduces the overhead.

Linearizing model implementation. For pipeline parallelism to work properly

with the model implementation, we need to linearize our model implementation to let

the system know the boundary of the model. With the boundary information, the

system knows how to split the model into multiple stages for training. To linearize

the model, we need to make the outputs and inputs of a layer to a list object. And

the representation of the model is also in a list format. Figure 4-5 gives an example of

linearized BERT [3] model. As compared to data parallelism, the linearizing procedure

takes a certain amount of engineering effort to wrap the model implementation. But

the modification is relatively lightweight, as the main logic of the computation does

not require rework. In comparison, tensor parallelism can add more complexity when

transforming the model implementation, which is discussed in the next subsection.

4.2.2 Tensor Parallelism

Tensor parallelism is a specific model parallelism designed for transformer-based models.

The basic idea of tensor parallelism is partitioning the matrix of parameters onto

multiple devices and completing different parts of the computation on multiple devices.

A corresponding communication operation is added if the successive computation

depends on the data on multiple devices.

The multi-layer perceptron (MLP) block of a transformer block consists of two
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# conventional BertLayer implementation
class BertLayer(nn.Module):

def forward(self, hidden_states, masks):
...

(a) BERT layer implementation.

# wrapped for pipeline
class PipeBertLayer(BertLayer):

def forward(self, inputs):
super().forward(inputs[0], inputs[1])

(b) Wrapped BERT layer.

# origin model construction
class BertModel(nn.Module):

def __init__(self, config):
encoder_layers = []
for i in range(config.num_layers):

encoder_layers.append(
BertLayer(config))

self.encoder = nn.ModuleList(
encoder_layers) ...

model = BertModel(config)

(c) BERT model construction.

# linearized model construction
def get_model_layers(config):

layers = []
...
for i in range(config.num_layers):

layers.append(
PipeBertLayer(config))

...
return layers

model = get_model_layers(config)

(d) BERT layers construction.

Figure 4-5. Linearizing model implementation; left-side figures (i.e., Figure 4-5a and
4-5c) provide the conventional way of implementation; right-side figures (i.e., Figure 4-5b
and 4-5d) provide the gist of linearized implementation.

matrix multiplications, a non-linear transformation (GeLU), and a dropout masking:

Y = GeLU(XA), Z = Dropout(Y B), (4.1)

where A and B denote parameter matrix, Y is the intermediate outputs, Z is the final

output from the MLP block. In tensor parallelism, we can partition A into columns

to have A = [A1, A2]. This way allows us to distribute the computation of Y onto

multiple devices to get different parts of Y as the following:

[Y1, Y2] = [GeLU(XA1), GeLU(XA2)] (4.2)

We also partition the matrix B. Instead of partitioning along with column dimension,

B is partitioned in rows to allow part of the computation (i.e., Y1B1, Y2B2) to be

completed independently on two devices:

Y B = Y1B1 + Y2B2 = [Y1, Y2] ×
[︄
B1
B2

]︄
(4.3)

The final output Y B relies on the sum of both Y1B1 and Y2B2. Thus, an all-reduce

communication is needed to serve as an additional operation across devices. A similar

partition strategy is used for self-attention block in the transformer layer [88].
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Drawbacks of tensor parallelism. Recent works [56, 120] on partition strategy

search claim to rediscover the tensor parallelism strategy with minimizing the communi-

cation or computation time as the objective. It seems to indicate the optimality of the

tensor parallelism for transformer-based models. While as we can notice in the prior

explanation, tensor parallelism introduces communications that can not be hidden

because of the dependency on these communications. In comparison, communications

introduced in partitioned data parallelism can be hidden via prefetching.

4.3 Design

4.3.1 Overview

Model
Linearize Linearized 

Model

Training
config MiCS-Pipe

Data Iterator

Training 
Loop

Wrapped 
Model

Figure 4-6. Overview of MiCS-Pipe.

Figure 4-6 provides an overview of using MiCS-Pipe. The system takes linearized

model implementation as an input(i.e., a list of layers of the model, which is discussed

in § 4.2.1). With the user configuration for the training, MiCS-Pipe produces a

wrapped model for subsequent training.

Figure 4-7 presents a code example showing how the system’s workflow is reflected

in the implementation of training scripts. The upper part of Figure 4-7 initializes

the model. In the initialization phase, layers are evenly partitioned to the number
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of stages given by the configuration. For each rank, the system only initializes

the model states of the stage that belongs to the rank. With PipelineModule as

input, MiCS-Pipe then hooks necessary functions for gathering, partitioning, and

synchronizing the model states for the training procedure. The model.parameters()

function returns parameters of the pipeline stage of the current rank. In the training

loop, the train_batch function takes a data iterator and iterates multiple micro-

batches according to the training configuration (embedded in args). When launching

the training script, the configuration is specified in JSON format and is provided via

--config flag. For each micro-batch, MiCS-Pipe proceeds forward and backward passes

with required communications (e.g., for parameter gathering, gradient synchronization,

etc.). MiCS-Pipe adopts synchronized 1F1B [101] schedule for the pipeline execution.

# get the model in the form of a list of layers
model_layers = get_model_layers(model)
# partition the layers into multiple stages
model = PipelineModule(

layers=bert_model_layers, num_stages=args.num_stages,
)
# initialize the system engine for training
model, optimizer, _, _ = mics_pipe.initialize(args=args, model=model,

model_parameters=[p for p in model.parameters() if p.requires_grad]
)

# a training loop
data_iter = iter(data_loader)
for step_idx in range(0, max_steps):

# train_batch func includes forward, backward 
# and optimizer step 
loss = model.train_batch(data_iter=data_iter)
if rank0():

print(f'loss:{loss}')

Figure 4-7. A code example of using MiCS-Pipe.

In later subsections, we provide details of intra-stage partitioning and the necessary

communications in MiCS-Pipe, and analyze the cost of each communication.

4.3.2 Notation

We summarize the notations in this subsection.

• p: For MiCS-Pipe and Megatron-LM-3D, p denotes pipeline size.
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• t: For MiCS-Pipe, t denotes size of intra-stage partition size (§4.3.3); for Megatron-

LM-3D, t denotes the size of tensor parallelism.

• d: For MiCS-Pipe, d denotes the number of pipeline groups; for Megatron-LM-3D,

d denotes the data-parallel size; for MiCS d is the replication group size.

• n: Number of GPUs in a cluster; for MiCS-Pipe and Megatron-LM-3D, we require

p · t · d = n; for MiCS, we have p · d = n.

• k: Number of GPUs per compute node; typically we have t = k for MiCS-Pipe and

Megatron-LM-3D.

• G: Global batch size.

• b: Micro-batch size.

• m: The number of micro-batches per pipeline; for MiCS-Pipe, m = G
b

· 1
dt

; for

Megatron-LM-3D, m = G
b

· 1
d
.

• M : Size of a model in bytes.

• B: Effective communication bandwidth; Bintra: bandwidth within each compute

node; Binter: bandwidth across compute nodes.

4.3.3 Intra-Stage Partitioning

Partition topology. We assume the total number of GPUs is dividable by pt, where

p denotes the number of pipeline stages and t is the size of the partition group for

each pipeline stage. The rank number identifies each GPU. All the ranks are ordered

in ascending ways. From the first rank, every consecutive pt ranks forms a pipeline

group. A pipeline group holds a complete replication of the model states for training.

Within each pipeline group, from the smallest rank in the pipeline group, every t

consecutive ranks form a intra-stage partition group. Each of these partition groups
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Figure 4-8. Intra-Stage Partitioning and forward pass; each pipeline group has two
pipelines; each stage is partitioned onto two ranks.

holds the model states of a pipeline stage. And the ranks holding the same part of

the model states across multiple pipeline groups form replication groups.

In Figure 4-8, we give an example of Intra-Stage Partitioning for a model with four

layers. The example cluster consists of eight GPUs. We use the number of pipeline

stages p = 2 and intra-stage partition size t = 2 for illustration purposes. The leftmost

of the figure presents the initial status with the Intra-Stage Partitioning. Different

parts of the model states are colorized differently. Ranks with the same color scheme

form replication groups. For example, both rank 0 and rank 4 have the same part of

the model. Thus, ranks 0 and 4 form a replication group.

We assume that ranks within a partition group for holding the model states of

a single pipeline stage (e.g., rank 0 and rank 1 in the figure) reside closely and are

connected with high-speed connections. This is a practical assumption because large

model training typically uses multi-GPU instances like p3dn [44] or a2-highgpu-8g [102].
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Thus, communications for each pipeline stage go through high-speed intra-node

connections. Cross-stage communications use inter-node connections. We describe the

required communications operations in the next. For each communication operation,

we explain the purpose, analyze the cost, and compare the cost against MiCS or

Megatron-LM-3D.

All-gather within each stage. All-gather operations are used for gathering model

parameters for each pipeline stage. As shown in the right part of Figure 4-8, the

All-gather operations within the first stage are launched for forward computation of

the first layer. There is a prefetching all-gather when the computation for the first

layer is running. Unlike MiCS or ZeRO-3, MiCS-Pipe does not need hierarchical

communication for parameter gathering. Because ranks in the partition group for

each stage are interconnected with homogenous links in practice.

For a stage i, the total cost of the all-gather operation is 2(t − 1)M i
stage/(tBintra)

in forward and backward passes of each micro-batch. Thus, the all-gather cost

of the pipeline group is ∑︁i 2(t − 1)M i
stage/(tBintra) = 2(t − 1)M/(tBintra). When

activation checkpointing is enabled, this cost can range from 2(t − 1)M/(tBintra) to

3(t − 1)M/(tBintra) because of the additional checkpointing forward computation.

The parameters gathered in checkpointing forward can be reused by the successive

backward computation if the corresponding parameter is still alive. The total cost is

typically close to 2(t − 1)M/(tBintra). Because the allowed lifespan for a parameter

is larger than the size of a transformer block, backward after checkpointing forward

does not need to redo the parameter all-gathering. The liveness of the parameter is

controlled by a hyperparameter, which is empirically set to 1e9.

In cases where computations cannot fully hide the parameter gathering overhead

of MiCS for a given input and model, the MiCS-Pipe has advantages. There are two

factors contributing to the performance advantages. First, the data volume transmitted

in MiCS-Pipe is smaller than MiCS. Second, the connection is faster in practice. For
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training with the same model and inputs, MiCS require pt number of GPUs across

multiple compute nodes, which leads to the total all-gather cost r(pt − 1)M/(ptBinter),

where r denotes the uncertain ratio when the activation checkpointing is enabled. For

the same liveness configuration for all-gathered parameters, MiCS and MiCS-Pipe

have the same r and r ≥ 2. We take the ratio of the cost of MiCS-Pipe and MiCS,

then rearrange the form as follows.

(t − 1)/t

(pt − 1)/(pt) × Binter

Bintra

(4.4)

The left part of Equation 4.4 denotes the ratio of data volume transmitted of MiCS-

Pipe and MiCS, respectively. For a given hardware configuration, the t is fixed, while

the p grows up with scaling up the model size. Thus, when the model size scales

up, this ratio decreases, which implies less cost of MiCS-Pipe. The right part of 4.4

denotes the benefits of faster links. Typical cases for these benefits to contribute

to the end-to-end performance include training with long sequences and large wide

models, which is discussed in §4.1.

Reduce-scatter within each stage. Like MiCS and ZeRO-3, the reduce-scatter

operation synchronizes the gradients in the backward phase. As shown in Figure 4-9a,

the reduce-scatter is called independently within each pipeline group. Ranks holding

model states for the same pipeline stage are involved. By design, once a gradient

is computed, it is recorded into a bucket. Gradients within the bucket are then

synchronized with a coalesced reduce-scatter for communication efficiency. Similar

to the all-gather operations, the cost of the reduce-scatter of each pipeline group of

each micro-step is (t − 1)M/tBintra. Because the size of the gradients is equal to

the model’s size, and gradients are synchronized once. The benefit of MiCS-Pipe

in terms of gradients synchronization is the same as all-gather operations, shown

in Equation 4.4. The conditions for showing the end-to-end performance are also

similar to all-gather operations. One thing different from all-gather is that there
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is no prefetching mechanism for reduce-scatter. Thus, the overlapping efficiency of

reduce-scatter is not affected by the memory constraints that parameter gathering

has.
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Figure 4-9. Reduce-scatter and all-reduce in the backward pass.

All-reduce across pipeline groups. When the gradient accumulation boundary

is reached, the all-reduce operation is needed to synchronize the gradients across

pipelines. In other words, all-reduce for synchronization within each replication group.

Thus, all model states replications work on the same model states for the next iteration.

As shown in Figure 4-9b, ranks holding the same part of model states participate in

each all-reduce. All-reduce operations are batched as well for communication efficiency.

Besides, the all-reduce overlaps with gradient computation in the backward pass.

The cost of synchronizing replication groups in MiCS-Pipe is the same as MiCS.

Each rank holds gradients with size M
pt

for both MiCS and MiCS-Pipe. Because MiCS

need partition group size pt for holding model states. And the size of replication
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groups is d = n
pt

for both MiCS and MiCS-Pipe. Thus, for both MiCS and MiCS-Pipe,

each rank costs 2 (d−1)M
dptBinter

for all-reduce across pipeline groups of each rank.

All-reduce across stages. For model parameters that are shared across pipeline

stages, the gradients of these shared have to be synchronized with all-reduce before

the optimization step for parameter updating. In transformer-based models, the word

embedding layer is shared between the first and the last layer. Thus, the first and

last stages of the pipeline parallelism have to complete an all-reduce operation to

synchronize the gradients for the word embedding parameters, shown in Figure 4-10.

In Figure 4-10, ranks with the same relative order in the stage partition are

involved in this all-reduce operation. And all-reduce operations run independently. In

practice, ranks within each stage are located in the same compute node and share

the node’s bandwidth. Thus, the cost of this synchronization is v · h/Binter, where v

denotes the vocabulary size, h denotes the hidden size of the transformer block. This

is an additional cost compared to MiCS, but the cost is negligible concerning other

communications for synchronization. Because the size of embedding parameters is

relatively small considering the model size for large transformer-based models. For

example, a typical training configuration for GPT3-175B [2] uses hs = 12288 and

is trained with vocabulary size around 50,000. In this case, the size of embedding

parameters is about 0.35% of the model size. Moreover, this cost is amortized over

multiple micro-steps. The amortized cost of this communication can thus be ignored.

Point-to-Point (P2P) communication across stages. The P2P communications

(i.e., send and receive operations) is for sending activations in the forward pass and

receiving gradients in the backward pass. For transformer-based models, the data

volume transmitted across different stages is equal to bsh, where b is the size of each

micro-batch, h denotes the hidden size, and s denotes the length of textual inputs.

For the model partitioned into p stages, the total data transmitted across stages
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Figure 4-10. All-reduce across stages for shared weights in each pipeline.

for each micro-batch is (p − 1)bsh. It is much smaller than the size of the model

parameters (which is all-gathered for each micro-batch in MiCS, the model size is

roughly 13lh + 12lh2). Besides, the P2P communication can overlap with computation.

Thus, it has an even smaller impact on system performance. Empirically, the P2P

communication takes less than 10ms from stage to stage, while the computation time

of each pipeline stage takes hundreds to thousands milliseconds to complete.

Pipeline bubbles. MiCS-Pipe includes pipeline parallelism for partitioning model

states across compute nodes. Pipeline parallelism introduces pipeline bubbles in

training. Compared to MiCS, the pipeline bubbles are an additional cost. When the

benefit of reduced communication cost (i.e., from intra-stage all-gather and reduce-

scatter) of MiCS-Pipe is greater than the cost of pipeline bubbles, MiCS-Pipe performs

better than MiCS. It is specifically true for large model training with long sequence

inputs, where the efficiency of overlapping communication in MiCS is not good. We

have evaluation results shown in Figure 4-13.

As compared to the Megatron-LM-3D system, MiCS-Pipe has more pipeline bubbles.

If both MiCS-Pipe and Megatron-LM-3D are configured with the same pipeline size p,

and use t for tensor parallelism and intra-stage partition sizes. However, Megatron-LM-

3D has all-reduce communication overhead that cannot be hidden (§4.2.2). MiCS-Pipe

has less communication overhead due to the overlapping effect of intra-stage partition.
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The pipeline bubbles cost p−1
m

that of iteration time for each global batch of pipeline

parallelism running with 1F1B schedule1. For MiCS-Pipe, we have m = G
b

· 1
dt

. For

Megatron-LM-3D with the same pipeline size p and tensor parallel size t, we have

m = G
b

· 1
d
. The bubble fraction of Megatron-LM-3D is 1/t that of MiCS-Pipe. The

bubble cost is a reciprocal function of m. When m is not small, i.e., m ≥ 4, the

difference of pipeline bubbles between MiCS-Pipe and Megatron-LM-3D is not large.

And the gap can be compensated by the benefits of communication efficiency of

intra-stage partitioning. We provide empirical evidence in § 4.5.1.

4.3.4 Memory Optimizations

4.3.4.1 Memory Management for Parameter Gathering

The memory management module (“mem” in Figure 4-11) maintains a contiguous

memory block at the system initialization phase and uses managed memory block

to allocate memory buffers for reassembled parameters. During training, when a list

of partitioned parameters is needed for successive computation, the system launches

all-gather communication for these parameters, as described in § 3.2.2. Before the

all-gather could happen, the system has to allocate device memory for reassembled

parameters from all-gather call. Previously, this memory allocation step directly relied

on the PyTorch memory allocator. MiCS or DeepSpeed calls torch.empty function

for allocating required memory space. With memory management, the system first

tries to get the required memory space from the memory manager. If the memory

manager does not have enough free space, then we fall back to PyTorch’s memory

allocator.

Figure 4-11 shows the workflow of using memory management for parameter

gathering. The system first computes the required memory size based on the parameters

and the size of the partition group of parameters. Suppose the calculated size is
1The derivation is in Section 2.2.1 of the paper [101]
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Figure 4-11. Parameter gathering with memory management module; “mem” denotes
memory management; “cont.”: contiguous; “Defrag.”: Defragmentation.

smaller than the total free memory in managed memory. In that case, the system

further checks whether a contiguous memory buffer can satisfy the allocation size.

If no contiguous buffer is larger than the requested size, the memory management

module triggers defragmentation (“Defrag” in Figure 4-11). The defragmentation

procedure moves allocated buffers to the beginning part of the managed memory

buffer. After the defragmentation, the tail part of the managed memory becomes a

contiguous free block, where the new allocation happens.

Allocating memory from managed memory buffers can mitigate the memory

fragmentation issue. Most memory allocation for model parameters can go through

the managed memory buffer. Thus, even after parameter releasing using re-partitioning,

this contiguous memory block will not be broken into smaller blocks due to intermediate

allocation for activations and gradients by PyTorch runtime. This way reduces the

fragment memory blocks in PyTorch runtime. The reduced fragmentation leaves more

room for larger micro-batch size for saturating compute resources and avoiding memory

reorganization (i.e., cache flush) at PyTorch runtime, which hurts the performance.

The design of the memory management is non-intrusive to the underlying PyTorch
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runtime. The managed memory buffer is obtained through the PyTorch memory

allocation API, i.e., torch.empty, as well. Currently, memory management cannot

extend to manage allocations for temporal activations and gradients. The temporal

activation buffers are generated by user code that is out of the system’s control. For

gradients, the intermediate results or final gradient buffers are controlled by PyTorch

autograd engine, which is also not under our control.

The size of the managed buffer requires heuristic tuning. If the size of the managed

buffer is small, the failure of the allocation could be frequent, and more potential

defragmentation operations. It raises two issues. First, the allocation failure of memory

management increases the fragmentation in PyTorch runtime. It causes out-of-memory

errors that halt the training. Second, the defragmentation operations are expensive

to run. It slows down the training. Thus, we need to find a proper configuration for

managed buffer size. As the guideline, we use the maximum size of the live parameters,

a system configuration limiting the memory size for all-gathered parameters. Ideally,

we want all gathered parameters to reside in the managed memory without leaving

much space in training. But memory fragmentation also exists in the managed memory

buffer. And we want to avoid frequent defragmentation runs. Thus, the buffer size

should generally be larger than the maximum size of the live parameters. Empirically,

setting the size as 1.4–1.5× that of maximum live parameters works well.

4.3.4.2 Activation Offloading

Activation checkpointing is a commonly used technique to reduce memory consumption

for large model training. It discards the intermediate activations and recomputes them

at the backward phase. However, it cannot discard all of them. The output activations

for the checkpointed chunk are still saved for successive computations. Corresponding

buffers for these activations can take several gigabytes in training (§4.1).

The activation offloading is designed in conjecture with the activation checkpointing
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technique. As shown in Figure 4-12, the activation checkpointing is enabled with a

context manager wrapping outside the activation checkpointing block. The outputs

(e.g., hidden_states in Figure 4-12) from the checkpointing will be moved to CPU

memory. Without the activation offloading, this output resides in the GPU memory

for backward computation. In the backward, with the activation offloading, the system

knows when to bring the offloaded activations back to GPUs because the context

manager hooks data movement functionality into the PyTorch backward computation

graph. To avoid computation stall, the data movements are executed asynchronously.

And the system prefetches from CPU to GPU for the next few tensors. The prefetching

order is the reverse order of copying intermediate outputs from GPU to CPU because

of the execution order of backward propagation.

with activation_offloading.save_on_cpu():
# enumerate layers
while idx < num_layers:

# hidden_states is offloaded
hidden_states = checkpoint(

forward_func(idx), hidden_states, mask,
)
idx += 1

Figure 4-12. Example of activation offloading

Activation offloading allows us to increase the size of each micro-batch, which

can improve the saturation efficiency of computing resources. With a larger micro-

batch size, the computation time is longer. This provides more space for hiding the

parameter all-gathering and gradient reduce-scatter operations. Because the cost

of parameter all-gathering and gradient reduce-scatter is determined by the size of

the model parameters, which is fixed for different micro-batch sizes. The size of the

checkpointed outputs (bsh) of each transformer layer is much smaller than the size

of each transformer layer (13h + 12h2). For large model training, typically, we have

b ≤ 4 and s ≤ h. Thus, activation offloading has less overhead than offloading model

states [106, 107]. And it is more likely to be hidden by computations.
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4.4 Implementation

In this section, we present implementation details to make it efficient for our design.

Tracing across multiple micro-steps. Tracing the usage order of model parameters

allows us to prefetch parameters for subsequent computations. In MiCS or DeepSpeed,

the tracing is on per micro-batch granularity. The tracing records the execution order

of each parameter of a single micro-batch. Thus, at the end of executing micro-batch

i, the system doesn’t prefetch parameters for micro-batch i + 1, because the tracing

order does not include parameters for the next micro-batch i + 1. For MiCS, we can

fix this issue by replaying the single micro-batch tracing to get the order of the next

few parameters. However, this fix cannot work for MiCS-Pipe. MiCS-Pipe includes

pipeline parallelism. In pipeline parallelism, the execution order is determined by the

pipeline schedule. For the 1F1B schedule, the backward step of micro-batch i can be

followed with the backward computation of micro-batch i + 1, rather than the forward

computation of micro-batch i + 1. Thus, instead of reusing the first part of the trace

for prefetching the next micro-step, we record the tracing for multiple micro-batches

and end the tracing at the gradient accumulation boundary (i.e., the global step).

We still enable the tracing starting from the first forward computation and place the

tracing end signal right before the optimizer step.

Tracing across multiple micro-batches makes the tracing record longer than before.

It takes a longer time to go through the complete tracing. This can delay the launch

of successive computation kernels. Thus, we limit the look ahead steps for each

prefetching to avoid long delays.

Meta context for parameter counting. The system needs to know each layer’s

size to partition the model correctly. Due to the eager mode of PyTorch [80], the

system cannot obtain the size of each parameter until the system initializes the

parameter object. Thus, to count the size of the model, the system needs to initialize
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all parameters of the model. For large models with billions of parameters, initializing

the model parameters on a single GPU is not feasible due to limited on-device

memory. Initializing parameters on the CPU memory can resolve this issue, as

training instances typically have much more memory than a single GPU. While this

initialization procedure on the CPU can take tens of minutes for models with billions

of parameters. To reduce the time cost of the parameter counting phase, we wrap the

parameter initialization procedure with the “meta” context, which lets the initialization

procedure happen on a fake “meta” device [151]. Initialization on a “meta” device does

not introduce memory allocation or initialization. It is, thus, pretty fast. Initialing

parameter tensors on the “meta” device can provide the size of the parameter. Thus,

it is sufficient for parameter counting.

Batching point-to-point communications. A layer of a model implementa-

tion can accept multiple input tensors. Thus, when sending data from stage i

to stage i + 1 in pipeline parallelism, multiple tensors can be sent. Similarly,

the system expects to receive multiple gradient tensors for stage i. The sizes of

these crossing-stage tensors are small, which makes the launch overhead of send-

ing or receiving each tensor non-negligible relative to communication costs. We

batch multiple sending and receiving together using customized coalescing com-

munication operations to reduce the launch overhead. Specifically, we implement

isend_coalesced and irecv_coalesced APIs to replace multiple calls to ordinary

torch.distributed.send and torch.distributed.recv.

Output deallocation. The system needs to maintain the gradient function of the

outputs to reconstruct the backward graph but doesn’t need the data of the outputs.

Once sending out the activation to the next stage, we need the corresponding tensor

to backpropagate gradient computations. When receiving the gradients from the

next stage, the system attaches received gradients to the corresponding activation

output tensor to reconstruct the backward graph for continuing computation at the
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current stage. We notice that the gradients of the corresponding activation output are

computed at the next stage. Because the next stage has the activation outputs, which

are received from the current stage. To correctly attach gradients to the backward

graph, the grad_fn of the corresponding tensor is needed rather than the actual data

of the activation outputs. Thus, we can free the activation data after sending it out.

Speeding up on-path functions with just-in-time (JIT) compilation. With

improved communication efficiency of MiCS-Pipe, the launch overhead from the

CPU side becomes an important factor to consider, especially for those models has

deep structures. Functions for checking parameters for prefetching and releasing are

registered in the forward and backward hooks. These functions are called before or

after certain computations. Thus, we consider them as on-path functions, as they are

on the path of launching the actual computation tasks on accelerators. To reduce

the time cost of these on-path functions, we rewrite functions called frequently to

be compatible with torch.jit.script system. Optimized function logic includes

enumerating parameters, gradient accumulation for multiple tensors, etc. Thus, these

functions are compiled with JIT and executed by a more efficient domain-specific

interpreter in the runtime.

4.5 Evaluation

In this section, we evaluate two following aspects of the proposed methods.

• End-to-End performance. How well does MiCS-Pipe perform? Does it outperform

MiCS?

• Effect of memory optimizations. How well do memory optimizations perform? Do

these optimizations reduce memory fragmentation and bring performance benefits?

Setups. All of our results are evaluated with mixed-precision training on AWS cloud
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instances. We use p4d.24xlarge instances for our experiments. Each compute node

has 8 NVIDIA A100 (40GB) GPUs. On each node, 8 GPUs are interconnected with

NVLink and NVSwitch, which provide 600 GB/s bidirectional bandwidth. Each

node has 4 EFA network adapters. Each EFA network adapter provides 100 Gbps

network bandwidth. Unless specified otherwise, we use 16 nodes (128 GPUs) for our

evaluations. The software packages include Megatron-LM-3D (git-hash: 0bb597b),

PyTorch (customized from 1.12), NCCL (v2.12.12) with EFA network plugin (1.4.0aws),

and CUDA (11.6).

Metric and workloads. We use per GPU compute saturation (i.e., TFLOPS) as our

primary evaluation metric. This metric allows us to compare the system performance

across different workloads (e.g., different sizes of models or different input lengths).

Improving compute throughput directly reflects performance improvement for training

in terms of training throughput and training time reduction. We vary the size of

each transformer layer and the number of layers of the BERT model to get different

model variants for evaluation. The building block of GPT-style models is the same as

BERT models, which is the transformer layer. The evaluation results are general to

GPT-style models and other transformer-based models. We summarized the structure

of models in Table 4-I. We vary the sequence length of input data from 1024 to 4096

to examine the performance characteristic of systems. The longer the input is, the

more memory is required for each sample in training.

The TFLOPS performance of transformer-based models is calculated with the

following equation 2.

F = 96Tslh2
(︃

1 + s

6h
+ V

16lh

)︃
, (4.5)

where V denotes vocabulary size, s is the sequence length, h is the hidden size, l refers

to the number of layers, and T is throughput (samples per second).
2The derivation process of the formula is in the appendix of the paper [101].
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Table 4-I. Structure of language models. BERT 26B means BERT with 26 billion
parameters, and similarly for other model names. “H.S.”: hidden size, “Inter.”: Intermediate,
“Atten.”: attention heads, “Vocab.”: Vocabulary

Model H.S. Inter. size #layers #Atten. Vocab. size

BERT 26B 6720 26880 48 48 50000
BERT 52B 8192 32768 64 64 50000
BERT 104B 8192 32768 64 64 50000
BERT 146B 12288 49152 80 96 50000

Table 4-II. System configurations for different sized models.

Model System p t d

BERT 26B MiCS 32 NA 4
MiCS-Pipe 4 8 4
Megatron-LM-3D 4 8 4

BERT 52B MiCS 64 NA 2
MiCS-Pipe 8 8 2
Megatron-LM-3D 8 8 4

BERT 104B MiCS 128 NA 1
MiCS-Pipe 16 8 1
Megatron-LM-3D 16 8 1

BERT 146B MiCS 128 NA 1
MiCS-Pipe 16 8 1
Megatron-LM-3D 16 8 1

4.5.1 End-to-end Performance

In this section, we evaluate the system performance with various training setups.

Specifically, we compare the TFLOPS saturation of each GPU of MiCS, MiCS-Pipe,

and Megatron-LM-3D in training with input sequence lengths 1024, 2048, and 4096.

For each sequence length, we vary the global batch sizes. When evaluating the system

performance for a fixed global batch size, we tune the micro-batch size to get the

best performance for each system. The micro-batch size affects the pipeline bubble

overhead of MiCS-Pipe and Megatron-LM-3D. And, for different micro-batch sizes,

the efficiency of overlapping computation and communication in MiCS and MiCS-Pipe

are different. Also, the communication overhead of Megatron-LM-3D changes with
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varying sizes of micro-batch.

In summary, we have the following findings regarding the performance characteris-

tics of MiCS, MiCS-Pipe and Megatron-LM-3D:

• For long sequences, e.g., the sequence length of 4096, MiCS-Pipe outperforms MiCS

and Megatron-LM-3D by large margins, especially for larger models (BERT 104B).

• For shorter sequences, e.g., length 2048 and 1024, MiCS performs better in general.

• When the sequence length is relatively small, e.g., 1024, it is critical to use a large

global batch size for both MiCS and MiCS-Pipe.

Next, we present each case with detailed data and explanations.

Training with long sequences. Figure 4-13 shows performance numbers for

training BERT 52B and 104B models with sequences length 4096. The corresponding

configurations for each system are given in Table 4-II. After tuning the performance

with various micro-batch sizes, we use micro-batch size 1 for both MiCS and MiCS-

Pipe. And the micro-batch size is 2 for Megatron-LM-3D. We can see MiCS-Pipe has

clear performance advantages, especially for BERT 104B model. In which, MiCS-Pipe

achieves up to about 42% and 22.5% improvements to MiCS and Megatron-LM-3D,

respectively. For training BERT 52B model with global batch size 512, the MiCS

is better because it does not have pipeline bubbles. When increasing the global

batch size, the pipeline bubbles cost less. The MiCS-Pipe outperforms MiCS starting

from global batch size 1024. With the growing global batch size, the performance of

Megatron-LM-3D isn’t improved much because the pipeline bubbles are already small

for the smallest global batch size, 512. The pipeline bubble fractions are about 0.027

and 0.029, respectively to BERT 52B and BERT 104B models for Megatron-LM-3D.

The performance of MiCS drops when scaling model size from 52B to 104B, because

the communication overhead of MiCS grows larger due to the larger partition group
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size for the BERT 104B model.
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(b) BERT 104B.

Figure 4-13. Training uses sequence length of 4096 as input.

Training with shorter sequences. For shorter sequences, MiCS can use larger

micro-batch sizes for training, which makes more room to hide the communication

costs. Specifically, with the activation offloading technique enabled, MiCS can use

micro-batch size 4 for training with the sequence length 2048. For BERT 52B and

104B model, the corresponding performance number of MiCS is up to 35.4% and

19.4% better than Megatron-LM-3D and MiCS-Pipe respectively, shown in Figure 4-14.

If the activation offloading technique is disabled, MiCS can only use micro-batch

size 2 for training, which makes it unable to hide communication overhead well. In

this case, the performance of MiCS drops about 12% to 14%. And it makes MiCS

perform worse than that of MiCS-Pipe when the global batch size is larger than 1024.

We use micro-batch sizes 2 and 4 for MiCS-Pipe and Megatron-LM-3D respectively

for experiments of sequence length 2048. The micro-batch size for MiCS-Pipe and

Megatron-LM-3D is gradually increased from 1 for balancing the pipeline bubbles and

communication overhead. The largest gap between MiCS and MiCS-Pipe is when

the global batch size is 512. As the global batch size increases, the performance gaps

between MiCS-Pipe and MiCS get closer because of the pipeline bubble reduction.

For experiments using sequence length 1024, when the global batch size is larger

or equal to 1024, MiCS can use micro-batch size 8 to hide communication overhead
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sufficiently. We use micro-batch sizes 2 and 8 for MiCS-Pipe and Megatron-LM-3D,

respectively, after performance tuning. Shown in Figure 4-15, MiCS is up to 32.5%

and 42.3% with respect to MiCS-Pipe and Megatron-LM-3D. As the global batch

size increases from 1024 to 4096, the performance gaps among MiCS, MiCS-Pipe

and Megatron-LM-3D become smaller, due to the reduction of pipeline bubbles. The

performance gaps of the BERT 104B model are relatively smaller than that of the

BERT 52B model. The partition group size for BERT 104B model is larger (Table 4-

II), which leads to a larger communication overhead of MiCS. We can notice the

performance of MiCS is not that good for global batch size 512. It is due to the limited

micro-batch size we can use, which we discuss in the next.
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(a) BERT 52B.
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Figure 4-14. Training uses sequence length of 2048 as input.

Training with small global batch size. Though MiCS does not have pipeline

bubble overhead, it is still essential to have a large batch size for MiCS to hide the

communication effectively. When the input sequence length is relatively small. Shown

in Figure 4-15, when we increase the global batch size from 512 to 1024, there is

a big performance boost for MiCS. When using global batch size 512 on a cluster

with 128 GPUs, MiCS can use at most four samples for each micro-batch. This limit

the overlapping efficiency of MiCS, especially when the partition group size is large,

e.g., the BERT 104B model with a partition group size of 128 GPUs. Figure 4-15

shows that MiCS-Pipe is marginally better (about 1 TFLOPS better) for BERT 104B
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model when the global batch size is 512. With a global batch size equal to or larger

than 1024, MiCS can use micro-batch size 8 for training, which significantly improves

the efficiency of hiding overhead for cross-node parameter gathering and gradient

synchronization. Thus, it leads to a significant performance boost to MiCS.
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(a) BERT 52B.
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Figure 4-15. Training uses sequence length of 1024 as input.

4.5.2 Effect of Memory Optimizations

In this subsection, we study the effect of proposed memory optimization techniques

on both MiCS and MiCS-Pipe. We first present the reduced memory fragmentation.

Then, we show the performance impact of two memory optimizations on different

training workloads.

Fragmentation reduction. Figure 4-16 shows the results of fragmented memory

sizes with and without memory management for parameter all-gathering. We use

sequence length 1024 in the experiments and global batch size 512. We use micro-batch

sizes 4 and 2 for MiCS and MiCS-Pipe, respectively. The micro-batch size choices are

based on the performance tuning for the given global batch size 512.

The memory fragmentation is measured after parameters updating for each global

batch and averaged over 50 times. The fragmented memory size is calculated as

follows:

max_reserved − max_allocated, (4.6)
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where the “max_reserved” is the maximum reserved memory (via max_memory_reserved

from torch.cuda package) space by PyTorch, “max_allocated” denotes the maximum

memory allocated (via max_memory_allocated from torch.cuda package) out for

current training iteration. The gap between maximum allocated and maximum re-

served means the memory spaces cannot be allocated for computation but are already

reserved from GPU memory. The smaller the gap is, the better memory efficiency is.

In Figure 4-16, we see the fragmented memory is reduced with memory management.

Next, we show how such reduced memory fragments can potentially help to improve

training performance.
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Figure 4-16. Reduced memory fragmentation with memory management.

Performance impact. For the end-to-end performance experiments, we fixed the

sequence length to 2048 and used a global batch size 2048. As shown in the results from

the last subsection, the sequence length of 2048 does not introduce much efficiency in

hiding the communication overhead of MiCS. And the global batch size 2048 is large

enough for removing a large proportion of the pipeline bubble overhead of MiCS-Pipe.

Thus, we can fairly compare the effects of memory optimizations between these two

systems. We evaluated different combinations of memory optimization techniques on

different-sized models.

Memory optimization techniques provide spaces for potentially increasing micro-

batch sizes to hide the communication overhead more effectively. Throughout the

experiments, we increase the micro-batch sizes gradually to reach the edge cases where
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the training runs into out-of-memory issues. We show the performance is indeed

improved with larger micro-batch sizes enabled by proposed memory optimizations.

From the evaluation results, we have the following conclusions:

• For a very large model, both activation and memory management are important

because the memory usage of training is so close to running out of memory.

• Memory management for parameter all-gathering is more effective on MiCS-Pipe,

as the memory fragmentation issue is more significant.

• Activation Offloading techniques is more effective on MiCS.

Next, we present the evaluation results for different-sized models.

BERT 146B. Figure 4-17 presents the evaluation results for both MiCS and MiCS-

Pipe with different combinations of memory optimizations. For the BERT 146B

model training with the sequence length of 2048, MiCS fails to use micro-batch size

larger than one, even with the memory optimizations, shown in Figure 4-17a. Though

two optimizations reduce memory pressure (i.e., the free memory on each device is

increased by about 2 GB for MiCS), the saved space is still insufficient to let MiCS

use large micro-batch size for more efficient communication or reduce the frequency

of memory re-arrangements. And due to the overhead of activation offloading, the

performance is better when two optimizations are both disabled. Besides, the side

effect of memory management can lead to out-of-memory errors to MiCS. The managed

memory buffer reduces the memory space available to PyTorch runtime, and there are

memory space fragments within the managed memory buffer. It increases the memory

pressure at the PyTorch memory allocator side and causes allocation failure.

For MiCS-Pipe, Figure 4-17b shows significant improvements when both memory

optimizations are enabled. Especially when MiCS-Pipe uses memory management.

There is about a 33% performance drop if we only use activation offloading. When
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memory management is enabled, the number of memory rearrangement operations

(i.e., cache flush operation in PyTorch runtime) is reduced from more than 100 times

to about ten times. According to our measurement, if we use both optimization

techniques, the frequency of memory rearrangement further reduces to about three

times per iteration. Overall, with both optimizations enabled, MiCS-Pipe is about 2×

faster than MiCS, which implies the importance of the memory optimizations.
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Figure 4-17. BERT 146B; training performance; “[w/ | w/o] - [w/ | w/o]”: with or
without memory management, with or without activation offloading; “×”: out-of-memory.

BERT 104B and 52B. Figure 4-18 and Figure 4-19 present the evaluation results

of BERT 52B and BERT 104B models. The effect of memory optimizations for

these two models is similar. These two models have the same structure for each

transformer block, as shown in Table 4-I. The BERT 104B model doubles the number

of transformer layers, which doubles the partition group size (as listed in Table 4-II).

Activation offloading is more important when increasing micro-batch size from two

to four for MiCS. As shown in Figure 4-18a and Figure 4-19a, if the activation offloading

is disabled, we can not use micro-batch size four for training. Memory management

can improve by about 3 TFLOPS per GPU due to the frequency reduction of memory

reorganizations. When using micro-batch size two for training, the activation offloading

hinders the performance because there are no memory-related overheads at that time

(i.e., out-of-memory or frequent memory reorganizations).

For MiCS-Pipe (Figure 4-18b and Figure 4-19b), the memory optimization is
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critical to enable the training. Without memory management for parameter gathering,

MiCS-Pipe cannot train models even with micro-batch size one. This phenomenon

is consistent with the findings in the memory fragmentation measurements, shown

in Figure 4-16. The fragmented memory size of MiCS-Pipe is larger. As memory

management is designed for fragmentation reduction, it is reasonable to have memory

management be more effective on MiCS-Pipe.
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Figure 4-18. BERT 104B; training performance; “[w/ | w/o] - [w/ | w/o]”: with or
without memory management, with or without activation offloading; “×”: out-of-memory.
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Figure 4-19. BERT 52B; training performance; “[w/ | w/o] - [w/ | w/o]”: with or
without memory management, with or without activation offloading; “×”: out-of-memory.

BERT 26B. Figure 4-20 presents the results of a BERT 26B model to cover the

evaluation for relatively smaller transformer models. Because the width (i.e., the

hidden size and intermediate size) of the BERT 26B is relatively smaller than prior

models. The temporal memory blocks (e.g., activations and gradients) are relatively

smaller during training. It is relatively easier for the PyTorch memory allocator to
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handle. For MiCS training with micro-batch size four, we can observe fragmentation

reduction (about 1 GB) with memory management enabled. But the space is not large

enough for us to double the micro-batch size to eight for potential performance gain.

For MiCS-Pipe, using memory management allows us to use micro-batch size two for

training, which boosts performance by up to 5.3% for MiCS-Pipe. As shown in Figure 4-

20b, the activation offloading is not helpful. Because we didn’t observe memory

rearrangement or other memory-related issues when using memory management and

micro-batch size two for training. But when the memory management module is

disabled, the training with micro-batch size two runs into out-of-memory errors.

Although using activation offloading alone can provide some memory space (about 0.7

GB in the first stage of the pipeline), the system fails to scale the micro-batch size

from one to two.
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Figure 4-20. BERT 26B; training performance; “[w/ | w/o] - [w/ | w/o]”: with or
without memory management, with or without activation offloading.

4.6 Related Work

Pipeline parallelism. There are surge amounts of research to improve the ef-

ficiency of using pipeline parallelism for asynchronous and synchronous training.

Chimera [150] proposes bidirectional pipeline parallelism to reduce pipeline bubbles.

TeraPipe [152] proposes token-level pipeline parallelism within a single training se-

quence. PipeDream [68] uses asynchronous training with pipeline parallelism for
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better hardware utilization. PipeDream-2BW [37] reduces memory consumption of

asynchronous training with pipeline parallelism. PipeMare [36] aims to balance the

hardware utilization and statistical efficiency of asynchronous pipeline training. Bam-

boo [153] leverages pipeline bubbles for redundant computation to provide resilience

when training with preemptive instances. On the other hand, many works focus on

automating pipeline configurations for optimal performance. Related works include

but are not limited to Alpa [154], DAPPLE [122], etc. These works are orthogonal

to MiCS-Pipe. Instead of improving efficiency or finding the best configuration for

pipeline parallelism, MiCS-Pipe proposes intra-stage partitioning for each pipeline

stage to further reduce the communication overhead of MiCS for large model training

with long sequences.

Memory optimizations. To reduce the memory footprint of training DNN models,

many works are proposed. ZeRO-Offload [106] offloads model states and computations

of the optimizer to CPU for training large models on a single DGX-2 compute node.

ZeRO-Infinity [107] extends the idea of ZeRO-Offload to further offload model states

to NVMe storage with parallel reading/writing on multiple compute nodes for scaling

up model sizes to trillion parameters. vDNN [155] proposes a memory manager

for virtualizing GPU memory with CPU memory for training. SwapAdvisor [156]

optimizes the operator scheduling, memory allocation, and memory swapping decisions

jointly to support general DNN models. Capuchin [157] leverages the access pattern

of tensors to guide when and how to optimize memory. Harmony [158] combines CPU

memory swapping with pipeline parallelism for training computer vision models that

cannot fit into a single GPU. Superneurons [159] provides liveness analysis, unified

tensor pool, and cost-aware tensor recomputation to reduce the memory footprint.

These works focus on reducing the absolute memory footprint in training. The

proposed memory management module for parameter gathering targets on memory

fragmentation problem instead. Besides, prior works use CPU memory for offloading
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parameters and gradient tensors, which largely reduces the hardware utilization of

accelerators. As analyzed in §4.3.4.2, the proposed activation offloading is more

lightweight as compared to offloading parameters or gradients. Other than smart

offloading GPU memory to other storage systems, researchers also try to use sparse

matrix computations [160–164] to lower the memory requirement for training. And

recently, using tiled computation [165–167] for specific DNN models is also a trending

direction. These works are orthogonal to our methodologies and can complement our

techniques for further reducing the memory footprint.

4.7 Discussion and Future Work

MiCS-Pipe reduces the communication cost compared to MiCS. But MiCS-Pipe

introduces the overhead of pipeline bubbles. When the introduced overhead is more

significant than the benefits from the communication cost reduction, MiCS-Pipe is no

better than MiCS. Multiple factors influence the overhead of communication of MiCS,

including model structure, network bandwidths among compute nodes, prefetching

budget, and communication bucket sizes. The dynamic nature of the eager mode and

hook system of PyTorch makes it hard to estimate communication overhead before

the runtime. Thus, it is difficult to tell whether MiCS-Pipe can outperform MiCS

before running the system. To estimate the communication cost accurately, we need

a cost model that can model the behavior of MiCS and MiCS-Pipe with memory

constraints of the hardware and system configurations. Besides the communication

overhead estimation, we need to try different combinations of micro-batch sizes and

memory optimizations to improve end-to-end performance. It would be ideal for the

system to configure the micro-batch size by the system. We leave these as future work.
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4.8 Conclusion

With proposed intra-stage partitioning, we extend MiCS with pipeline parallelism

and propose MiCS-Pipe. MiCS-Pipe can further reduce communication overhead. In

addition to communication overhead reduction, we introduce two memory optimization

techniques memory management for parameter gathering and activation offloading.

The combination of these proposed methodologies enables MiCS-Pipe to achieve nearly

2× system throughput for a BERT 146B model training with input sequences with a

length of 2048. In evaluation, we thoroughly examine the trade-offs of newly proposed

techniques with various model sizes and input sequence lengths.
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Chapter 5

Conclusion

Communication is an important component of distributed Deep Learning training. It

can significantly affect the performance of distributed Deep Learning training. This

thesis studies the overhead of communications in distributed training and optimizes

communication operations for better performance of distributed training. In this

chapter, we summarize our contributions in §5.1, discuss future work in §5.2, and

conclude the thesis in §5.3.

5.1 Summary of Contributions

In this thesis, we propose efficient algorithms to analyze, and optimize the commu-

nication overhead in distributed Deep Learning training. We implement proposed

algorithms and evaluate them on realistic workloads. Our implementation of MiCS

has been deployed on multiple services [168–170] at Amazon.

Efficient algorithms and designs. In the project of understanding the com-

munication overhead, we propose a simulation-based what-if analysis algorithm for

understanding the relationship among network bandwidth, application level optimiza-

tions, and communication overhead. The proposed algorithm leverages profiled trace

to capture the computational behaviors (e.g., timelines of backward computations) of

the training, and simulates the distributed training process for different assumptions
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of the network. In the MiCS project, we propose a new scale-aware model partitioning

algorithm for partitioned data-parallel training. We optimize the cross-node commu-

nications with a novel hierarchical communication algorithm for parameter gathering

and propose a 2-hop gradient synchronization schedule to avoid frequent synchro-

nization among all devices in a cluster for reducing the overhead. In MiCS-Pipe, we

propose an intra-stage partitioning algorithm that combines the benefits of scale-aware

partitioning and pipeline parallelism to further lower the cross-node communication

overhead. Besides, we lower the memory usage with a designed memory management

module and offloading checkpointed activations.

Implementations and evaluations. We implement proposed algorithms and system

designs with thorough evaluations of our implementation as well as other state-of-the-

art solutions for comparison. In the project of measurement and analysis, we implement

an event-driven simulator for what-if analysis based on the design. Furthermore, we

measure and trace the existing distributed training systems. We conduct what-if

analysis with traced results and our simulator. We conclude that if the network is fully

utilized for high-speed 100 Gbps networks, we can achieve linear scalability for models

that are trainable with conventional data parallelism. In the MiCS project, we build

the system with customized PyTorch runtime and integrate it with the DeepSpeed

system. We evaluate the system with up to 512 GPUs and various-sized models with

up to 100 billion parameters. The evaluation shows that MiCS is up to 2.89× better

than the DeepSpeed, and achieves near-linear scalability. In MiCS-Pipe, we implement

the system on top of MiCS by including the implementation of intra-stage partitioning

and memory optimizations. The evaluation shows that MiCS-Pipe is up to 2× faster

than MiCS for input data with sequence lengths longer than 2048. And it is up to

22.5% better than the Megatron-LM-3D system, which uses pipeline parallelism with

tensor parallelism for training.
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5.2 Open Issues and Future Work

Distributed systems for training Deep Learning models are still a relatively new area,

especially for training with large foundation models [171] with billions or even trillions

of parameters. Our work attempt to understand and improve the performance of the

distributed training (e.g., scalability, throughput, etc.). It leaves some open issues and

future work as follows.

5.2.1 Asymmetric Partitioning of Model States

Currently, in both MiCS and MiCS, the model states (e.g., model parameters, gradients,

and optimizer states) are partitioned symmetrically. It means for partitioning a part of

the model to p devices, each device gets 1/p of the corresponding model states of the

part of the model. The symmetric partition has advantages in terms of communication

at the parameter updating phase. Each device has the right amount of optimizer

states and gradients for updating the corresponding parameters. Thus, no extra

communication is needed. While, using the optimizer states for parameter updating is

relatively infrequent as compared to forward and backward computations, especially

for training with multiple gradient accumulation steps. Thus, it is possible to store

the optimizer states somewhere with additional costs but provide more memory space

for more efficient forward and backward computations. Specifically, for example, we

can potentially partition the optimizer states to all n devices in the cluster, but leave

the model parameters and gradients partitioned on p devices (where p < n). In this

way, at the parameter updating phase, only 1/n parameters are updated instead of

1/p. The training process needs an additional communication pass to get (1/p − 1/n)

parameters get updated for the next iterations. We leave this kind of asymmetric

design as future work.
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5.2.2 Configuration Search

As noticed in Chapter 4, the MiCS-Pipe reduces the cross-node communication

overhead of MiCS, but it introduces pipeline bubble overhead. Thus, in cases where the

overhead reduction of cross-node communications cannot compensate for the overhead

of pipeline bubbles, MiCS can outperform MiCS-Pipe. This trade-off depends on

the structure of the model, the size of the model, the input size, and the hardware

setups (e.g., accelerators, networks). Balancing the trade-off is a complicated problem.

Besides, the memory optimizations can impact the performance negatively if the freed

memory space cannot help with the computation efficiency or overlapping efficiency.

To find best combination of optimizations and micro-batch sizes, users need to try

various setups. This process can be tedious and time-consuming. On the other hand,

the design of MiCS and MiCS-Pipe also needs users to figure out the minimum number

of devices for storing the model states, as other existing frameworks like DeepSpeed

do. These kinds of configuration search processes can be automated with a search

framework built on top of MiCS and MiCS-Pipe for better serving users with less

manual efforts of configuring the system.

5.2.3 Runtime Memory Management with Allocation Trace

We use proactive memory management for parameter gathering, partitioned param-

eters, and gradients to reduce the fraction of fragmented memory for more efficient

memory utilization. While, as shown in the fragmentation measurement experiment

(Figure 4-16), there are still several gigabytes of fragmented memory on each device

that haven’t been used for computations in training. The aggregation of fragmented

memory in a cluster can be as large as hundreds of gigabytes. The current implemen-

tation of the memory management is built on top of the underlying runtime PyTorch.

This means we have no control over the behavior of the memory allocation at runtime.

Specifically, there is no control for gradient buffers and activation buffers. Moreover,
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the both memory allocator in PyTorch runtime and the memory management module

in MiCS or MiCS-Pipe use heuristics for reusing buffers. It does have explicit control

of which memory spaces can be chunked into smaller ones for reuse or leave what it is

for future use, which causes fragmented memory (detailed in §4.1).

Despite the dynamic nature of reusing memory spaces, the order of memory

allocation and freeing is mostly fixed for each iteration, because commonly used models

(e.g., transformer-based models, convolutional models) don’t have data-dependent

control flow logics. As the allocation and freeing behavior are mostly fixed, the

allocator can potentially plan for each allocation with the order of memory operations

to minimize the fragmented spaces. The eager execution [172] of PyTorch runtime

poses challenges of capturing the memory behavioral trace (e.g., allocations) before

actually running the training. With the recent advancements [173, 174] in symbolic

tracing, we can get part of the model execution behavior without actually running

the model with real data. From the model execution behavior, we can infer the

memory allocation behavior and inform the memory allocator for memory planning

with fragmentation reduction as the objective.

5.3 Concluding Remarks

This thesis has (1) presented a measurement study with a new what-if analysis system

using profiled training trace for estimating the system scalability under different

network conditions; (2) designed and implemented a new distributed training system

named MiCS that can efficiently train Deep Learning models with billions of parameters

without refactoring model implementations; (3) developed a new model partitioning

strategy that can further reduce the inter-node communication overhead of MiCS

and two novel memory optimizations to improve the memory efficiency for better

overlapping communication and computation.
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This thesis aims to understand and optimize the communication overhead in

distributed training for performance improvements of existing distributed training

systems. We target the communication part for its importance in making distributed

training possible. Moreover, if not optimized, the communication can bottleneck

the training significantly. With the growing trends of adopting large Deep Learning

models (e.g., foundation models [171]), that require distributed training with large-

scale clusters, in more and more different domains recently, we believe it is a timely

topic to improve the training performance from a communication perspective, and

are excited about future research on designing large-scale training systems with less

manual efforts and more efficient memory management.
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