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Abstract

We provide an identifiability analysis for the learning problems (1) nonparametric learning of

kernels in operators and (2) unsupervised learning of observation functions in state space models

(SSMs). We show that in either case the function space of identifiability (FSOI) from the quadratic

loss functional is the closure of a system-intrinsic data-adaptive reproducing kernel Hilbert space

(SIDA-RKHS). We introduce a new method, the Data-Adaptive RKHS Tikhonov Regularization

method (DARTR). The regularized estimator is robust to noise and converges as data refines.

The effectiveness of DARTR is demonstrated through the following problems (1) nonparametric

learning of kernels in linear/nonlinear/nonlocal operators and (2) homogenization of wave prop-

agation in meta-material. We introduce a nonparametric generalized moment method to esti-

mate non-invertible observation functions in nonlinear SSMs. Numerical results shows that the

first two moments and temporal correlations, along with upper and lower bounds, can identify

functions ranging from piecewise polynomials to smooth functions. The limitations, such as non-

identifiability due to symmetry and stationary, are also discussed.
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Chapter 1

Introduction

In recent years, people have realized the potential of machine learning models in the scientific

discovery of hidden physical laws of complex systems. In material science people seek to find

material constitutive laws that best fit experimental data [63, 95] (Task A). Another example is

the inference of an unknown observation function in a latent dynamical system from unlabeled

data [27, 34, 45, 71] (Task B).

Task A can be formulated as learning a nonlocal operator that continuously maps the dis-

placement field to the loading field. Beyond material science, the learning of operators between

function spaces has broad applications in areas such as homogenization problems [60, 61, 97], fast

PDE solvers [51, 58, 68, 69], and control problems [40, 57]. Motivated by these applications, an

important inverse problem emerges: to learn the integral kernels in operators from data. Such

kernel functions are resolution-invariant and reveal the law of nonlocal interaction. However, de-

spite a long line of work on nonlocal models, there is limited theoretical characterization of the

underlying inverse problems, even in the linear setting. The contribution of this thesis is filling
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the gap by studying the linear inverse problem of nonparametric learning of kernels in operators.

Task B has been studied in many contexts including nonlinear system identification [9, 62],

data assimilation [54], filtering and smoothing recursions [13], albeit typically only when observa-

tions are in the form of one, or a small number of, long trajectories, and in the case of invertible

or smooth observations functions. State space models (SSMs) have been widely used to model

such complex dynamics. When the observation function is invertible, its unsupervised regression

is investigated by maximizing the likelihood for high-dimensional data [78]. However, in many

applications, particularly those involving complex real-world physical processes, the observation

functions are non-invertible or non-smooth. A case of particular interest in the present work is

when the observation function is non-invertible or non-smooth. We introduce a new approach, the

nonparametric generalized moment method, which does not require the invertibility and smooth-

ness of the observation function. By this method, identifying a observation function from unlabeled

data is equivalent to identifying a function-valued parameter in a operator that maps the gener-

alized moments of the hidden process to these of the observation process. We will also emphasize

the usefulness of many short trajectories (vs. few long trajectories), albeit both the theory and al-

gorithms that we consider are generally applicable in a wide range of regimes. This study provides

a first step in the unsupervised learning of latent dynamics from abundant unlabeled data.

Our goal is to infer such function-valued parameters in operators from data via nonparametric

regression, when there is limited information to derive a parametric form. Three challenges are

to be overcome. First, the function space of identifiability (FSOI) is yet to be specified properly,

without which the inverse problem is ill-defined in the sense that there are multiple estimators

fitting the data. Second, the estimator should converge in a proper function space as data resolution

refines/data size increases, in order that it can be applied to problems and simulation tasks with
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different grids or discretization methods and provides a guaranteed modeling accuracy. Third, the

estimator should be robust to imperfect data.

To overcome these challenges, we introduce an exploration measure ρ, and provide an identifia-

bility theory for the nonparametric learning of kernels in operators and the unsupervised learning

of observation functions in SSMs. The exploration measure ρ quantifies the exploration of the

kernel/observation function’s variable by data. With this measure, we have an ambient function

space L2(ρ) of learning. In either problems, the FSOI from the quadratic loss functional is the

closure of a system-intrinsic data-adaptive reproducing kernel Hilbert space (SIDA-RKHS); it can

be a proper subspace of L2(ρ). It is the first result on specifying a data-adaptive FSOI (see Lemma

3.2, 4.4 and Theorem 3.5, 4.3). It follows that the inverse problem is ill-defined beyond the FSOI

and is ill-posed in the FSOI (see details in Chapter 3.1 and 4.3). To overcome the ill-posedness

and to ensure the learning take place inside the FSOI, we introduce a novel data-adaptive RKHS

Tikhonov regularization (DARTR) method that uses the norm of the SIDA-RKHS (see Chapter

3.2). Finally, We validate the theory and the proposed algorithm on a number of benchmark prob-

lems, including various synthetic datasets and a real-world dataset. Numerical results in Chapter

3.3 show that the proposed algorithm in Chapter 3.2 provides stable and convergent estimations

of kernel in linear/nonlinear/nonlocal operators. The rates of convergence are robust to different

levels of white noise in data, while the common Tikhonov/ridge regularizers with l2 or L2-norm fail

this task. It also successfully learns a homogenized model for the wave propagation in a hetero-

geneous solid, revealing the unknown resolution-invariant governing laws from real-world data at

microscale (see Chapter 3.4). The identifiability analysis and the DARTR method are applicable

to general linear inverse problems that minimize quadratic loss functionals. It is particularly useful

when the data depends non-locally on the unknown function.
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1. Nonparametric learning of function-valued parameters

We consider the linear inverse problem of identifying function-valued parameters in operators in

the form of

Rϕ : X→ Y, Rϕ[u] = v, (1.1)

from data pairs

D = {(uk, vk)}Nk=1, (uk, vk) ∈ X× Y, (1.2)

where X and Y are Hilbert spaces. Our goal is to find a function-valued parameter ϕ in such

operator Rϕ that best fits the data pairs {(uk, vk)}Nk=1. The operator Rϕ can be either linear or

nonlinear in u. We assume that it depends linearly on ϕ.

We aim for an estimation of the function-valued parameter ϕ that (1) converges in a proper

function space to the true function as data mesh refines/data size increases in the synthetic setting

and (2) robust enough to treat imperfect data in order to be applicable in real applications.

In this thesis, we focus on the following two problems that can be reduced to the above general

learning problem.

Nonparametric learning of kernels in operators. In Chapter 2 – 3, we focus on such oper-

ators in the form of

Rϕ[u](x) =

∫︂
Ω

ϕ(|y|)g[u](x, y)dy, ∀x ∈ Ω, (1.3)

where Ω ⊂ Rd is a bounded connected open set, ϕ is a radial kernel, X = H1
0 (Ω) and Y = L2(Ω).

The functional g, which may depend on the derivatives of u, is assumed known and it specifies the

form of the operator.
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Unsupervised learning of observation functions in SSMs. In Chapter 4, we investigate

the unsupervised learning of non-invertible observation functions in nonlinear SSMs. With the

proposed nonparametric generalized moment method method in Chapter 4.2, identifying the ob-

servation function f∗ is equivalent to identifying a function-valued parameter ϕ in a operator Rϕ

that maps the generalized moments of the hidden process f(Xt) to these of the observation pro-

cess Yt. That is, we consider an operator in the form of Rϕ[u] = ξ(ϕ(u)), and we want to identify

the function-valued parameter ϕ from the known information ut = Xt and the empirical approx-

imations of the moments vt = ξ(Yt), t ∈ {t0, t1, · · · , tN}. For the sake of computation efficiency,

the generalized moment functional ξ is often chosen as low-order moments. Matching the first

moments yields to an operator Rϕ linear in ϕ

Rϕ[u] = E [ϕ(u)] , (1.4)

We will discuss matching second moments and temporal correlations in Chapter 1.4 and more

technical details will be presented in Chapter 4.2. In this and the next section, we only consider

matching the first moments in order to provide our main results on identifiability analysis from

the quadratic loss functionals.

Quadratic loss functionals. In either problems, we construct a variational estimator that

minimizes the mean square error,

ˆ︁ϕ = arg min
ϕ∈H

E(ϕ), where E(ϕ) =
1

N

N∑︂
k=1

∥Rϕ[uk]− vk∥2Y. (1.5)

The hypothesis space H is to be selected adaptive to data. Note that the loss functional E(ϕ)
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is quadratic in ϕ since the operator Rϕ depends linearly on ϕ. Thus, the minimizer of the loss

functional is the least square estimator. Suppose the hypothesis space Hn is the linear span of the

basis functions {ϕi}ni=1. Let ϕ ∈ Hn and write ϕ =
∑︁n

i=1 ciϕi. Noticing that Rϕ =
∑︁n

i=1 ciRϕi , we

can write the loss functional in (1.5) as

E(c) = E(ϕ) = c⊤Anc− 2c⊤bn + Cv
N , (1.6)

where Cv
N = 1

N

∑︁N
k=1⟨vk, vk⟩Y and the normal matrix An and vector bn are given by

An(i, j) =
1

N

N∑︂
k=1

⟨Rϕi [uk], Rϕj [uk]⟩Y, bn(i) =
1

N

N∑︂
k=1

⟨Rϕi [uk], vk⟩Y. (1.7)

The least square estimator is computed directly from the minimizer of the quadratic function

E(c): ˆ︁ϕHn =
n∑︂
i=1

ˆ︁ciϕi and ˆ︁c = A
−1

n bn, (1.8)

where A
−1

n is the inverse of An or Moore–Penrose pseudo-inverse when An is singular.

In nonparametric learning, it is often necessary to select a relatively large hypothesis space to

make the model flexible enough. However, the large hypothesis space often leads to a severely

ill-conditioned normal matrix An. Without proper regularization, the estimator often oscillates

largely from data to data due to overfitting. Thus, identifiability analysis and regularization is

crucial for obtaining noise-robust and convergent estimators.
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2. Identifiability

The main theme in the identifiability theory is to find the largest function space in which the loss

functional has a unique minimizer. This is a generalization of the uniqueness of minimizer of a

loss function in parametric inference (see [10, page 431] and [25]).

Definition 1.1 (Function space of identifiability). The function space of identifiability (FSOI) is

the largest subspace of L2(ρ) in which the true function ϕtrue is the unique minimizer of the loss

functional E with continuous noiseless data.

Finding the FSOI of the nonparametric learning of function-valued parameters in operators

is fundamentally different from that of the classical nonparametric regression. Recall that the

classical nonparametric regression learns a function Y = ϕ(X) from random samples {(Xi, Yi)}

from the joint distribution of (X, Y ). The FSOI in classical regression is L2(ρ) with ρ being the

distribution of X, and the optimal estimator is the conditional expectation. In nonparametric

learning of function-valued parameters in operators, the loss functional has a unique minimizer

in a Hilbert space if and only if its Fŕechet derivative is invertible in the Hilbert space; thus, the

main task is to find such function space [52, 56, 65].

We show that the function space of identifiability derived by the loss functional in (1.5) is the

L2(ρ)-closure of a system-intrinsic data-adaptive reproducing kernel Hilbert space. This space is

the image of the square root of the Fréchet derivative of the loss functional, which is a compact

operator. Therefore the inverse problem is ill-posed since it requires the inversion of a compact

operator.

More specifically, we show that the quadratic error functional of the form (1.5) in either prob-
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lems can be rewrite as

E(ϕ) = ⟨LGϕ, ϕ⟩Y − 2⟨ϕvN , ϕ⟩Y + Cv
N ,

where LG is a system-intrinsic data-adaptive compact and positive semi-definite integral operator

and ϕvN ∈ L2(ρ) is the Riesz representation of the bounded linear functional

⟨ϕvN , ψ⟩L2(ρ) =
1

N

N∑︂
k=1

⟨Rψ[uk], vk⟩Y, ∀ψ ∈ L2(ρ). (1.9)

The Fréchet derivative of E(ϕ) in L2(ρ) is ∇E(ϕ) = 2(LGϕ− ϕvN). The function space of identifia-

bility is H = span{ψi} with closure in L2(ρ), where {ψi} are eigenfunctions of the integral operator

LG with positive eigenvalues. Furthermore, the unique minimizer of E(ϕ) in H is ˆ︁ϕ = LG−1ϕvN if

ϕvN ∈ LG(L2(ρ)). When zero is an eigenvalue of LG, this function space is a proper subspace of

L2(ρ) and the loss functional has multiple minimizers in L2(ρ). Thus, the inverse problem is well-

defined only on H. In particular, if the data is perfect and generated from a true function ϕtrue,

we have ϕvN = LGϕtrue and ˆ︁ϕ = LG−1ϕvN = ϕtrue. The Fréchet derivative of E in the SIDA-RKHS

HG = LG1/2(L2(ρ)) with G as the reproducing kernel is ∇HGE(ϕ) = 2(LG2ϕ − LGϕvN). Its zero

leads to another estimator ˆ︁ϕ = LG−2LGϕvN if ϕvN ∈ LG(L2(ρ)).

In the unsupervised learning of observation function in SSMs, the proposed nonparametric

generalized moment method works well when the densities of the hidden process Xt vary appre-

ciably in time to yield a large FSOI, whose distance to the true observation function is small.

In this case, our algorithm 2 leads to a noise-robust and convergent estimator as the sample size

increases. When the hypothesis space is larger than the FSOI, the quadratic loss functional may

have multiple minimizers. The constraints of upper and lower bounds, as well as the quartic loss

functionals from matching the second moments and temporal correlations, can help identifying the
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observation function. However, identifiability may still not hold due to symmetry and/or station-

arity (see Section 3.2, Chapter 4). We analytically compute the reproducing kernels associated

with the SIDA-RKHSs when the hidden process Xt is the Brownian motion or the stationary

Ornstein-Uhlenbeck (OU) process (see Example 4.10 and Example 4.11 in Chapter 4.3).

3. Regularization

Regularization plays a crucial role in inverse and machine learning problems that aim to construct

robust generalizable model. Various regularization methods have been introduced to prevent over-

fitting in such ill-posed inverse problems. The idea is to add a penalty term to the loss functional:

Eλ(ϕ) = E(ϕ) + λR(ϕ), (1.10)

where R(ϕ) is a regularization term and λ is a hyperparameter which controls the impact of

the regularization. By adding a penalty term to the loss functional, regularization controls the

complexity of the model and prevents it from fitting noise in the data. Various penalty terms

have been proposed, including the Euclidean norm R(ϕ) = ∥c∥2 for ϕ =
∑︁n

i=1 ciϕi in classical

Tikhonov regularization [37, 88], the RKHS norm R(ϕ) = ∥ϕ∥2H with H being a reproducing

kernel Hilbert space with an artificial reproducing kernel, the total variation norm R(ϕ) = ∥ϕ′∥L1

in Rudin–Osher–Fatemi method or the L1 norm R(ϕ) = ∥ϕ∥L1 in LASSO.

Whereas each of these penalty terms has their specific reasoning and applications, none of them

take into account of the function space of identifiability by the loss functional (1.5), only in which

the inverse problem is well-defined. The major novelty of DARTR method is the construction of a

SIDA-RKHS, whose reproducing kernel is encoded in the loss functional. DARTR takes the norm
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of this RKHS as the the penalty norm of regularization, and ensures the regularized estimator lies

in the function space of identifiability.

Numerical results in Chapter 3.3 and 3.4 show that the DARTR method yields a noisy-robust

convergent estimator of the kernel as data resolution refines. The estimators regularized by SIDA-

RKHS norm are more accurate than those of regularized by the l2 or L2 norm when the regu-

larization hyperparameter λ is properly selected. The SIDA-RKHS regularizer robustly leads to

estimators converging at a consistent rate for all levels of noises for linear/nonlinear/nolocal oper-

ator, while the other two regularizers cannot. In comparison to regularization by l2 or L2 norm,

the additional computational cost is negligible.

Our regularization method is inspired by the kernel flow method that learns hyper-parameters

of the reproducing kernel [16, 35, 73], but our reproducing kernel is adaptive to the system and

the data.

4. Nonparametric generalized moment method

We consider the following state space model for processes (Xt, Yt) in R× R:

State equation: dXt = a(Xt)dt+ b(Xt)dBt, with a, b are known; (1.11)

Observation equation: Yt = f∗(Xt), with f∗ unknown. (1.12)

Here Bt is the standard Brownian motion, the drift function a(x) and the diffusion coefficient b(x)

are given, satisfying the linear growth and global Lipschitz conditions. We assume that the initial

distribution of Xt0 is given. Thus, the distribution of the state process (Xt) is known.

Our goal is to estimate the unknown observation function f∗ from data consisting of a large

10



ensemble of trajectories of the process Yt, denoted by {Y (m)
t0:tL
}Mm=1, where m indexes trajectories,

and t0 < · · · < tL are the times at which the observations are made. In particular, there are no

pairs (Xt, Yt) being observed, so in the language of machine learning this may be considered an

unsupervised learning problem.

We estimate the observation function f∗ by matching generalized moments, while constraining

the estimator to a suitably chosen finite-dimensional hypothesis space, whose dimension depends on

the number of observations. The estimator ˆ︁f minimizes the discrepancy between the the first two

moments and one-step temporal correlations of functionals of the process ˆ︁f(Xt) and the empirical

ones (computed from data) of Yt = f∗(Xt), with upper and lower pointwise constraints estimated

from data. Matching the first moments yields a quadratic loss functional, and matching the second

moments and temporal correlations yields two quartic loss functionals. We summarize the proposed

method in Algorithm 2. The algorithm is suitable for large sets of unlabeled data. Moreover, it

can deal with challenging cases when the observation function is nonlinear and non-invertible.

Numerical examples show the proposed algorithm can identify smooth/non-smooth functions and

tolerate considerable observation noise (see Chapter 4.4). The estimation error caused by the noise

is at the scale of the sampling error, which is negligible when the sample size is large.

The method we propose has several significant strengths: (1) the generalized moments do not

require the invertibility of the observation function; (2) low-order generalized moments tend to be

robust to additive observation noise; (3) generalize moments avoid the need of local constructions,

since they depend on the entire distribution of the latent and observed processes; (4) our nonpara-

metric approach does not require a priori information about the observation function, and it can

deal with both regular and piecewise regular functions; (5) the method is computationally efficient

because the moments need to be estimated only once, and the computation is can performed in
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parallel.

We note that the method we propose readily extends to multivariate state space models, with

the main statistical and computational bottlenecks coming from the curse of dimensionality in

the representation and estimation of a higher-dimensional observation function in terms of basis

functions.

5. Related work

Latent dynamical systems. The estimation of the unknown observation function and of the

latent dynamics from unlabeled data has been considered in [27, 34, 45, 71] and references therein.

Most classical approaches focus on estimating the parameters in the space-state model from a

single trajectory of the observation process, by expectation-maximization methods maximizing

the likelihood, or Bayesian approaches [9, 13, 28, 46, 62], with the recent studies estimating the

coefficients in a kernel representation [89] or the coefficients of a pre-specified set of basis functions

[87]. The recent work [94] estimates a slow manifold (and effective equations on it), image under

a nonlinear but invertible map of a latent space where slow and fast variables in a slow-fast

system of SDEs are independent and orthogonal, using short bursts of trajectories; see discussions

and references therein for motivations, applications and related works. Our framework combines

nonparametric learning [20, 33] with the generalized moment method, that is mainly studied in

the setting of parametric inference [76, 77, 85].

Nonlocal operators. Models with nonlocal operators have received increasing attention, since

they can describe physical phenomena involving nonlocal or long-range dependence that classical

differential operators fail to capture and provide a powerful model for a large class of complex

engineering and scientific applications including nonlocal and fractional diffusion [2, 3, 12, 17, 22,
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23, 84, 90, 93], homogenization problems [60, 97, 61, 95], fast PDE solvers [51, 57, 68, 69], control

problems [40, 69], subsurface transport [7, 47, 48, 80, 81], multi-agent systems with nonlocal

interaction [52, 66, 67], phase transitions [5, 15, 21], nonlocal network in machine learning [92,

59] and image processing [11, 29, 30, 38, 49, 64]. The inverse problem for nonlocal diffusion has

been studied in [43, 55] from a single solution. To discover nonlocal physical laws from data, a

parametric learning approach has been proposed in [95, 96], where the coefficients of Bernstein

polynomials are learnt with physics-based constraints and a Tikhonov regularization. Beyond the

linear nonlocal model and the regression methods, nonlocal operators were further combined with

neural networks, and nonlocal kernel networks were developed for learning maps between high-

dimensional variables in dynamical systems or function spaces [57, 58, 98]. An attractive feature

of these nonlocal kernel/operator learning methods is the generalizability among approximations

corresponding to different underlying levels of resolution and discretization. However, as seen in

[58, 95, 97, 98], none of them yield estimator convergence when trained on finer resolution, and the

test error may even increase, due to the ill-posedness of the inverse problem. In this work, we tackle

this issue by introducing a new regularization method based on a system-intrinsic data-adaptive

RKHS in a nonparametric learning approach.

Data-dependent function spaces. Data-dependent strategies have been explored in the con-

text of classical nonparametric regression, such as data-dependent hypothesis space with an l1

regularizer [82, 91] and data-dependent early stopping rule [79]. While all strategies achieve data-

dependent regularization, our DARTR method is tailored for the learning of kernels in operators,

for which the function space of identifiably places a fundamental role.

Bayesian perspective and Zellner’s g-prior. In a Bayesian perspective, the Tikhonov regular-

ization can be interpreted as a Gaussian prior distribution with a covariance matrix corresponding
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to the penalty term. In this perspective, our SIDA-RKHS norm coincides with the Zellner’s g-prior

[1, 6, 99] when the data has additive white noise.

Relation to classical regression. When the data {(uk, vk)}Nk=1 are scalars instead of functions

and the operator Rϕ(u) = ϕ(u), we get back to the classical regression problem [19, 33]. Our

data-adaptive RKHS reduces to the empirical L2(ρ) space with ρ being the distribution of data

{uk}, and the DARTR regulation reduces to the classical L2 Tikhonov/ridge regularization.

Relation to functional data analysis. The problem of learning kernel in operators can be

viewed as a problem in functional data analysis (see [39, 44]), where the data are samples from

distributions on function spaces. Our DARTR method is applicable to this setting. However, this

study focuses on the situation of limited deterministic data (with only a few pairs of data) and on

discovering an intrinsic low-dimensional kernel function.
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Chapter 2

The inverse problem of learning kernels

in operators

1. Introduction and related work

The learning of kernel functions in operators is such a problem: given data {(uk, vk)}Nk=1 in suitable

function spaces, we would like to learn the kernel function ϕ in the operator Rϕ(u) = f to best

fit the data. Such a need for learning operators between function spaces has become vital in

applications ranging from integral operators solving PDEs [31, 51, 57, 58], nonlinear operators in

mean-field equation of interacting particle systems [53, 66], homogenized nonlocal operators [61,

95, 97], just to name a few. Since there is often limited information to derive a parametric form,

the kernel has to be learnt in a nonparametric fashion. More importantly, the goal is a consistent

estimator that converges as data mesh refines and is robust to noise in data. Without proper

regularization, the estimator often oscillates largely from data to data due to overfitting. Thus,

regularization is crucial for the discovery of the best kernel.
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We present a data-adaptive RKHS Tikhonov regularization (DARTR) method for the linear

inverse problem of learning of kernels in operators from data. That is, the operator Rϕ(u), which

can be either linear or nonlinear in u, depends linearly on the kernel ϕ. We learn the kernel by

nonparametric regression that minimizes a loss functional of the mean square error. With DARTR,

our nonparametric regression algorithm produces an estimator that converges as the data mesh

refines and the rate of convergence is robust to different levels of white noise in data.

The major novelty of this method is the construction of a system (operator) intrinsic data-

adaptive (SIDA) RKHS, whose reproducing kernel is encoded in the loss functional. Additionally,

we introduce a novel exploration measure quantifying the exploration of the kernel by the data, and

it allows a unified framework to treat SIDA-RKHS with either discrete or continuous functions.

DARTR takes the norm of this RKHS as the the penalty norm of regularization, and ensures the

learning to take place in the function space of identifiability.

2. The inverse problem and the need of regularization

In this study, we focus on such operators in the form of

Rϕ[u](x) =

∫︂
Ω

ϕ(|y|)g[u](x, y)dy, ∀x ∈ Ω. (2.1)

where Ω ⊂ Rd is a bounded connected open set, ϕ is a radial function-valued parameter. Given

data

D = {(uk, vk)}Nk=1, (uk, vk) ∈ H1
0 (Ω)× L2(Ω), (2.2)

our goal is to find a function-valued parameter ϕ so that Rϕ best fits the data pairs {(uk, vk)}Nk=1

in the form (2.1).
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The functional g, which may depend on the derivatives of u, is assumed to be known and it

specifies the form of the operator. Examples are as follows: (see more details in Chapter 3.3)

• Rϕ is an integral operator with g[u](x, y) = u(x+ y) and ϕ is called an integral kernel.

• Rϕ is a nonlinear operator with g[u](x, y) = u′(x + y)u(x) and ϕ is called an interaction

kernel in mean-field equation of interacting particles.

• Rϕ is a nonlocal operator with g[u](x, y) = u(x+ y)− u(x) with ϕ called a nonlocal kernel.

These inverse problems share three common features: First, the pointwise values of the function

ϕ are undetermined from data, because the data depends on ϕ non-locally. Also, the support of ϕ

is unknown and is to be learnt from data. Second, the data are discrete and can be noisy. Thus,

the inverse problem has to overcome the numerical error in the approximation of integrals, as well

as the measurement error. Third, the inverse problem extends to a homogenization problem where

the operator aims to fit the data that are not generated from the equation (2.1). In this case, the

inverse problem has to overcome the model error to identify a best fit.

For simplicity of representation, in the next two sections on learning theory, we consider the

loss functional mainly for continuous data. All the arguments apply directly to discrete data by

replacing the integrals with Riemann sum or another numerical integrator.

We construct a variational estimator that minimizes the mean square error:

ˆ︁ϕ = arg min
ϕ∈H

E(ϕ), where E(ϕ) =
1

N

N∑︂
k=1

∫︂
Ω

|Rϕ[uk](x)− vk(x)|2dx, (2.3)

where the hypothesis space H is to be selected adaptive to data. Suppose the hypothesis space

H is Hn = span{ϕi}ni=1 with basis functions {ϕi}ni=1. Then for each ϕ =
∑︁n

i=1 ciϕi ∈ Hn, noticing
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that Rϕ =
∑︁n

i=1 ciRϕi , we can write the loss functional in (2.3) as

E(c) = E(ϕ) = c⊤Anc− 2c⊤bn + Cv
N , (2.4)

where Cv
N = 1

N

∑︁N
k=1

∫︁
Ω
|vk(x)|2dx and the normal matrix An and vector bn are given by

An(i, j) = ⟨⟨ϕi, ϕj⟩⟩, bn(i) =
1

N

N∑︂
k=1

∫︂
Ω

Rϕi [uk](x)vk(x)dx, (2.5)

where ⟨⟨·, ·⟩⟩ is the bilinear form defined by

⟨⟨ϕ, ψ⟩⟩ =
1

N

N∑︂
k=1

∫︂
Ω

Rϕ[uk](x)Rψ[uk](x)dx. (2.6)

The least square estimator is computed directly from the minimizer of the quadratic function E(c):

ˆ︁ϕHn =
n∑︂
i=1

ˆ︁ciϕi and ˆ︁c = A
−1

n bn, (2.7)

where A
−1

n is the inverse of An or Moore–Penrose pseudo-inverse when An is singular.

A major challenge is to find an optimal estimator capable of avoiding either under-fitting or

over-fitting, being robust with imperfect data and model error and in particular, converging in

synthetic tests when the data mesh refines. Unfortunately, this is an ill-posed inverse problem (see

Chapter 3.1) and the normal matrix An is often highly ill-conditioned or singular. As a result,

the estimator in (2.7) oscillates largely and fails to converge when the data mesh refines. In next

chapter, we introduce a regularization method, DARTR, based on the identifiability analysis. The

regularized estimator is accurate and robust to both numerical error due to discrete data and
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noise in data; the regularized estimator converges at a consistent rate as the data mesh refines,

outperforming two baseline regularizers using l2 and L2 norms, even after they take into account

the function space of identifiability by an additional projection.
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Chapter 3

Identifiability and Data-Adaptive RKHS

Tikhonov regularization (DARTR)

1. Identifiability analysis

We aim to find the function space on which the quadratic loss functional has a unique minimizer.

In other words, we seek the function space in which the Fréchet derivative of the loss functional is

invertible. Using the bilinear form ⟨⟨·, ·⟩⟩ in (2.6), we can rewrite the loss functional in (2.3) as

E(ϕ) =
1

N

N∑︂
k=1

∫︂
Rϕ[uk](x)2dx− 2

1

N

N∑︂
k=1

∫︂
Rϕ[uk](x)vk(x)dx+ Cf , (3.1)

where Cv
N = 1

N

∑︁N
k=1

∫︁
|vk(x)|2dx. However, there is no function space for ϕ yet. To start with, we

introduce two key elements: a data-adaptive exploration measure that leads to a default function

space of learning and an integral operator which plays a crucial role in our DARTR. Through-

out this section, we assume continuous data to simplify the notation. All the integrals will be
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numerically approximated from discrete data in the next section.

Assumption 3.1. The data D = {uk, vk}Nk=1 in (2.2) are continuous with compact support.

The exploration measure. We introduce first a measure that quantifies the exploration of the

independent variable of ϕ by the data. Given data in (2.2), we define an empirical measure

ρ(dr) =
1

ZN

N∑︂
k=1

∫︂
Ω

∫︂
Ω

δ(|y| − r) |g[uk](x, y)| dxdy, (3.2)

where Z =
∫︁∞
0

1
N

∑︁N
k=1

∫︁
Ω

∫︁
Ω
δ(|y| − r) |g[uk](x, y)| dxdydr is the normalizing constant. By def-

inition, this measure reflects the weight being put by the loss function on |y| through the data

{g[uk](x, y)}Nk=1.

The exploration measure plays an important role in the learning of the function ϕ. Its support

is the region inside of which the learning process ought to work and outside of which we have limit

information from the data to learn the function ϕ. Thus, it defines a default function space of

learning: L2(ρ).

An integral operator. The loss functional’s Fréchet derivative in L2(ρ) comes directly from the

bilinear form ⟨⟨·, ·⟩⟩ in (2.6). To see this, we rewrite the bilinear form as

⟨⟨ϕ, ψ⟩⟩ =
1

N

N∑︂
k=1

∫︂ [︃∫︂ ∫︂
ϕ(|z|)ψ(|y|)g[uk](x, z)g[uk](x, y)dydz

]︃
dx

=

∫︂ ∞

0

∫︂ ∞

0

ϕ(r)ψ(s)G(r, s)drds =

∫︂ ∞

0

∫︂ ∞

0

ϕ(r)ψ(s)G(r, s)ρ(dr)ρ(ds), (3.3)

where the second-to-last equation follows from a change of order of integration and a change of
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variables to polar coordinates with the integral kernel G given by

G(r, s) =
1

N

N∑︂
k=1

∫︂
|η|=1

∫︂
|ξ|=1

[︃∫︂
g[uk](x, rξ)g[uk](x, sη)dx

]︃
dξdη, (3.4)

for r, s ∈ supp(ρ) and G(r, s) = 0 otherwise. Here the last equality is a re-weighting by ρ with

G(r, s) =
G(r, s)

ρ(r)ρ(s)
, (3.5)

where, by an abuse of notation, we also use ρ(r) to denote the density of the probability measure

ρ defined in (3.2).

The next lemma shows that G defines a positive semi-definite integral operator.

Lemma 3.2 (The integral operator). Under Assumption 3.1, the integral kernel G is positive

semi-definite and the integral operator LG : L2(ρ)→ L2(ρ)

LGϕ(r) =

∫︂ ∞

0

ϕ(s)G(r, s)ρ(s)ds (3.6)

is compact and positive semi-definite. Further more, for any ϕ, ψ ∈ L2(ρ),

⟨⟨ϕ, ψ⟩⟩ = ⟨LGϕ, ψ⟩L2(ρ); (3.7)

Proof of Lemma 3.2. Recall that a bi-variate function G(r, s) is positive semi-definite if the sum∑︁m
i=1

∑︁m
j=1 cicjG(ri, rj) ≥ 0 for any (c1, . . . , cm) ∈ Rm and any {rj}mj=1 ⊂ Rd (see Appendix A.1).
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Using (3.4) and (3.5), we have

m∑︂
i=1

m∑︂
j=1

cicjG(ri, rj) =
1

N

N∑︂
k=1

∫︂
|η|=1

∫︂
|ξ|=1

[︄∫︂ m∑︂
i=1

m∑︂
j=1

cicj
g[uk](x, riξ)g[uk](x, rjη)

ρ(ri)ρ(rj)
dx

]︄
dξdη

=
1

N

N∑︂
k=1

∫︂
|η|=1

∫︂
|ξ|=1

⎡⎣∫︂ ⃓⃓⃓⃓⃓
m∑︂
i=1

ci
g[uk](x, riξ)

ρ(ri)

⃓⃓⃓⃓
⃓
2

dx

⎤⎦ dξdη ≥ 0.

Thus G is positive semi-definite. The operator LG is compact because G ∈ L2(ρ × ρ), which

follows from the fact that each uk is bounded (thus, G is also bounded). Also, since G is positive

semi-definite, so is LG. The equation (3.7) follows from (3.3).

The next lemma provides an operator characterization of the RKHS with G as the reproducing

kernel [4]. This RKHS is system(the operator Rϕ) intrinsic data adaptive (SIDA), and we refer it

as SIDA-RKHS. It is the data adaptive RKHS in our DARTR.

Lemma 3.3 (The SIDA-RKHS). Assume Assumption 3.1. Then the following statements hold.

(a) The RKHS HG with G as the reproducing kernel satisfies HG = LG1/2(L2(ρ)) and its inner

product satisfies ⟨ϕ, ψ⟩HG
= ⟨LG−1/2ϕ,LG−1/2ψ⟩L2(ρ) for any ϕ, ψ ∈ HG.

(b) The eigen-functions of LG, denoted by {ψi, ψ0
j}i,j with {ψi} corresponding to positive eigen-

values {λi} in decreasing order and {ψ0
j} corresponding to zero eigenvalues (if any), form

an orthonormal basis of L2(ρ) and λi converges to 0. Furthermore, for any ϕ =
∑︁

i ciψi, we

have

⟨⟨ϕ, ϕ⟩⟩ =
∑︂
i

λic
2
i , ∥ϕ∥2L2(ρ) =

∑︂
i

c2i , ∥ϕ∥2HG
=
∑︂
i

λ−1
i c2i , (3.8)

where the last equation is restricted to ϕ ∈ HG.
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(c) For any ϕ ∈ L2(ρ) and ψ ∈ HG, we have

⟨ϕ, ψ⟩L2(ρ) = ⟨LGϕ, ψ⟩HG
, ⟨⟨ϕ, ψ⟩⟩ = ⟨LG2ϕ, ψ⟩HG

. (3.9)

Proof of Lemma 3.3. Part (a) is a standard operator characterization of the RKHS HG (see Ap-

pendix A.1).

For Part (b), since the operator LG is symmetric positive semi-definite and compact as shown

in Lemma 3.2, the eigenfunctions are orthonormal and the eigenvalues decay to zero. The first

equation in (3.8) follows from (3.7) and the second equation follows from the orthonormality of

the eigenfunctions. At last, if ϕ ∈ HG, by the characterization of the inner product of HG in Part

(a), we have the third equation in (3.8).

The first equality in Part (c) follows from Part (a) and that LG−1/2 is self-adjoint, which imply

that ⟨LGϕ, ψ⟩HG
= ⟨LG1/2ϕ,LG−1/2ψ⟩L2(ρ) = ⟨ϕ, ψ⟩L2(ρ). The second equality in (3.9) follows from

the first equality and (3.7).

Remark 3.4. The space L2(ρ) can be a discrete vector space with the function ϕ defined only

on finitely many points {ri}ni=1 that are explored by the data. In this setting, the integral kernel

G in (3.4) becomes a positive semi-definite matrix in Rn, so does G in (3.5). Now the integral

operator LG is defined by the matrix G on the weighted vector space Rn and its eigenvalues are the

generalized eigenvalues of (G,B) with B = Diag(ρ(r1), · · · , ρ(rn)). As a result, the SIDA-RKHS

HG is the vector space spanned by the eigenvectors with nonzero eigenvalues. Furthermore, the

norms in (3.8) can be computed directly from the eigen-decomposition. Viewing them as piecewise

constant approximations of functions, these discrete approximation can be viewed as a special

implementation of the numerical algorithm in Chapter 3.2.
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The next theorem characterizes the function space of identifiability. Furthermore, it shows that

this inverse problem is ill-posed since the estimator requires the inverse of a compact operator.

Theorem 3.5 (Function space of identifiabilty). Suppose that Assumption 3.1 holds. Let ϕvN ∈

L2(ρ) be the Riesz representation of the bounded linear functional:

⟨ϕvN , ψ⟩L2(ρ) =
1

N

N∑︂
k=1

∫︂
Rψ[uk](x)vk(x)dx, ∀ψ ∈ L2(ρ). (3.10)

Then the following statements hold.

(a) The Fréchet derivative of E(ϕ) in L2(ρ) is ∇E(ϕ) = 2(LGϕ− ϕvN).

(b) The function space of identifiability is H = span{ψi} with closure in L2(ρ), where {ψi} are

eigenfunctions of LG with positive eigenvalues. Furthermore, the minimizer of E(ϕ) in H isˆ︁ϕ = LG−1ϕvN if ϕvN ∈ LG(L2(ρ)). In particular, if the data is perfect and generated from a

true function ϕtrue, we have ϕvN = LGϕtrue and ˆ︁ϕ = LG−1ϕvN = ϕtrue.

(c) The Fréchet derivative of E in HG is ∇HGE(ϕ) = 2(LG2ϕ−LGϕvN). Its zero leads to another

estimator ˆ︁ϕ = LG−2LGϕvN if ϕvN ∈ LG(L2(ρ)).

Proof of Theorem 3.5. From (3.7), we can write the loss functional in (3.1) as

E(ϕ) = ⟨LGϕ, ϕ⟩L2(ρ) − 2⟨ϕvN , ϕ⟩L2(ρ) + Cv
N .

Then we can compute the Fréchet derivative directly from definition and Part (a) follows.

For Part (b), first note that for any ϕvN ∈ LG(L2(ρ)), the estimator ˆ︁ϕ = LG−1ϕvN is the unique

zero of the loss functional’s Fréchet derivative in H, hence it is the unique minimizer of E(ϕ) in

H. In particular, when the perfect data is generated from ϕtrue, i.e. Rϕtrue [uk] = vk, by (3.7) and
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the definition of the bilinear form ⟨⟨·, ·⟩⟩ in (2.6), we have

⟨ϕvN , ψ⟩L2(ρ) = ⟨LGϕtrue, ψ⟩L2(ρ)

for any ψ ∈ L2(ρ). Thus, ϕvN = LGϕtrue and ˆ︁ϕ = LG−1ϕvN = ϕtrue. That is, ϕtrue ∈ H is the unique

minimizer of the loss functional E for perfect data. Meanwhile, note that H is the orthogonal

complement of the null space of LG, and E(ϕtrue + ϕ0) = E(ϕtrue) for any ϕ0 such that LGϕ0 = 0.

Thus, H is the largest such function space, and we conclude that H is the function space of

identifiability.

To prove Part (c), we further re-write the loss functional as

E(ϕ) =⟨LGϕ,LGϕ⟩HG
− 2⟨LG1/2ϕvN ,LG1/2ϕ⟩HG

+ Cv
N ,

which follows from (3.9) and the definition of ⟨·, ·⟩HG
. Thus, by definition, the Fréchet derivative

of E(ϕ) in the direction of ψ ∈ HG is

⟨∇HGE(ϕ), ψ⟩HG
= lim

ϵ→0

1

ϵ
[E(ϕ+ ϵψ)− E(ϕ)]

= 2⟨LGϕ,LGψ⟩HG
− 2⟨LG1/2ϕvN ,LG1/2ψ⟩HG

= 2⟨LG2ϕ− LGϕvN , ψ⟩HG
,

which gives the Fréchet derivative ∇HGE(ϕ).

Remark 3.6 (Regularization with the L2 and the SIDA-RKHS norms). In practice, due to the

discrete and/or noisy data, we often have ϕvN = LGϕtrue + ϕδ1 + ϕδ2, where the perturbation from

the true function is decomposed to ϕδ1 ∈ LG(L2(ρ)) and ϕδ2 ∈ LG(L2(ρ))⊥. Clearly, when ϕδ2 ̸= 0,
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the estimator ˆ︁ϕ = LG−1ϕvN does not exist and regularization is necessary. Next, we compare the

L2 and the SIDA-RKHS regularizers, i.e., consider the regularized loss functional with R(ϕ) being

λ∥ϕ∥2L2 and λ∥ϕ∥2HG
. Then, their minimizers are

ˆ︁ϕL2

λ = (LG + λI)−1ϕvN ,
ˆ︁ϕHG
λ = (LG2 + λI)−1LGϕvN .

Plugging in ϕvN = LGϕtrue + ϕδ1 + ϕδ2, we have

ˆ︁ϕL2

λ = ϕtrue + (LG + λI)−1(ϕδ1 − λϕtrue + ϕδ2),ˆ︁ϕHG
λ = ϕtrue + (LG2 + λI)−1(LGϕδ1 − λϕtrue).

A regularizer then selects the optimal λ to balance the errors,

∥ˆ︁ϕL2

λ − ϕtrue∥2L2(ρ) = ∥(LG + λI)−1(ϕδ1 + ϕδ2)∥2 + ∥(LG + λI)−1λϕtrue∥2,

∥ˆ︁ϕHG
λ − ϕtrue∥2L2(ρ) = ∥(LG2 + λI)−1LGϕδ1∥2 + ∥(LG2 + λI)−1λϕtrue∥2,

where the first term on the right hand side requires a large λ, whereas the second term requires a

small λ. Assuming that the errors are much smaller than the true signal ϕtrue, the optimal λ would

be small so that the second error is negligible. In this case, the bias in ˆ︁ϕL2

λ is about LG−1(ϕδ1)+λ
−1ϕδ2,

whereas the bias in ˆ︁ϕHG
λ is about LG−1(ϕδ1). Thus, when λ is small, the SIDA-RKHS regularized

estimator ˆ︁ϕHG
λ is more accurate than the L2 regularized estimator. To avoid amplifying the error

ϕδ2, a projection is necessary for the L2 regularizer, and we will compare the projected L2 regularizer

with the SIDA-RKHS regularizer at the end of Chapter 3.2.
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2. Algorithm: nonparametric regression with DARTR

Algorithm: nonparametric regression with DARTR. Based on the identifiability theory

in Section 3.1, we introduce next a nonparametric learning algorithm with Data Adaptive RKHS

Tikhonov Regularization (DARTR). We briefly sketch the algorithm in the following four steps,

whose details are presented in Appendix B.1.

1. Estimate the exploration measure ρ defined (3.2). We utilize the data to estimate the support

of the true kernel and the exploration measure ρ. The support of the true kernel lies in

[0, d(Ω)] with d(Ω) being the diameter of the domain Ω, and it is further confined from a

combination between the support of vk and the support of g[uk](x, y). Then, we constrain

the discrete approximation of ρ on the support of ϕ.

2. Assemble the regression matrices and vectors, which will be repeatedly used. We select a

class of hypothesis spaces Hn = span{ϕi}ni=1 with basis functions {ϕi} and with dimension

n in a proper range. Then, we compute the regression normal matrices and vectors, as well

as the basis matrix,

An(i, j) = ⟨⟨ϕi, ϕj⟩⟩, bn(i) = ⟨ϕvN , ϕi⟩L2(ρ), Bn(i, j) = ⟨ϕi, ϕj⟩L2(ρ). (3.11)

from data for each of these hypothesis spaces.

3. Find the best regularized estimator ˆ︁cλn and the corresponding loss value E(ˆ︁cλn) by DARTR

in Algorithm 1 for each triplet (An, bn, Bn).

4. Select the one with the smallest loss value E(ˆ︁cλn) from the estimators {ˆ︁cλn}n,.
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Input: The regression triplet (A, b,B) consisting of normal matrix A, vector b and basis matrix B as in

(3.11).

Output: SIDA-RKHS regularized estimator ˆ︁cλ0 and loss value E(ˆ︁cλ0).
1: Solve the generalized eigenvalue problem AQ = BQΛ, where Λ is the diagonal matrix of eigenvalues

and the matrix Q has columns being eigenvectors orthonormal in the sense that Q⊤BQ = I.

2: Compute the RKHS-norm matrix Brkhs = (QΛQ⊤)−1, using pseudo inverse when Λ is singular. We

refer to Appendix B.1 Remark B.1 on a computational technique to avoid the inverse matrix.

3: Use the L-curve method to find an optimal estimator ˆ︁cλ0 : select λ0 maximizing the curvature of the

λ-curve (log E(ˆ︁cλ), log(ˆ︁c⊤λBrkhsˆ︁cλ)), where the least squares estimator ˆ︁cλ = (A+λBrkhs)
−1b minimizes

the regularized loss function

Eλ(c) = E(c) + λc⊤Brkhsc with E(c) = c⊤Ac− 2c⊤b+ b
⊤
A

−1
b,

where the matrix inversion is a pseudo-inverse when it is singular.

Algorithm 1: Data Adaptive RKHS Regularization (DARTR).

In comparison to the classical nonparametric regression using only (An, bn), the novelty of our

algorithm is the data adaptive components, such as the exploration measure ρ, the basis matrix Bn

in L2(ρ) and the norm of the SIDA-RKHS for regularization. The computation of the SIDA-RKHS

norm is based on the generalized eigenvalues problem with the pair (An, Bn), whose eigenvalues

approximate the eigenvalues of LG in (3.6) and ˆ︁ψk = Qjkϕj approximates the eigenfunctions of LG
(see Theorem 3.7). The additional computational cost is only the generalized eigenvalue problem,

which can be solved efficiently.

Theorem 3.7. Let Hn = span{ϕi}ni=1 ⊂ L2(ρ) and let (An, Bn) be the normal and basis matrix

in (3.11). Assume that Hn is large enough so that LG(L2(ρ)) ⊂ Hn (which is true, for example
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when ρ is a discrete-measure on a discrete set S and {ϕn} are piecewise constant functions with

n = |S|). Then, the operator LG in (3.6) has eigenvalues (λ1, . . . , λn) solved by the generalize

eigenvalue problem

AnQ = BnΛQ, s.t., Q⊤BnQ = In, Λ = Diag(λ1, . . . , λn), (3.12)

and the corresponding eigenfunctions of LG are {ψk =
∑︁n

j=1Qjkϕj}.

Proof. Let ψk =
∑︁n

j=1Qjkϕj withQ⊤BnQ = In. Then, ψk is an eigenfunction of LG with eigenvalue

λk if and only if for each i,

⟨ϕi, λkψk⟩L2(ρ) = ⟨ϕi,LGψk⟩L2(ρ) =
n∑︂
j=1

⟨ϕi,LGϕj⟩L2(ρ)Qjk =
n∑︂
j=1

An(i, j)Qjk,

where the last equality follows from the definition of An in (3.11). Meanwhile, by the definition of

Bn we have ⟨ϕi, λkψk⟩L2(ρ) =
∑︁n

j=1Bn(i, j)λkQjk for each i. Then, Equation (3.12) follows.

Comparison with projected l2 and L2 regularizers. Our DARTR method differs from other

regularizers in its use of the SIDA-RKHS norm, which restricts the function to be in the function

space of identifiability. In the following, we compare it with the l2 and L2 regularizers that

apply regularization terms R(ϕ) = ∥ϕ∥2l2 =
∑︁

i c
2
i or R(ϕ) = ∥ϕ∥2L2 = c⊤Bnc. In fact, a direct

application of these two regularization terms would lead to problematic regularizers with largely

biased estimators when An is singular, i.e., when the function space of identifiability is a proper

subspace of L2(ρ), because the inverse problem is ill-defined on L2(ρ). Thus, in practice, one makes

a projection to the function space of identifiability (i.e., the image of An in computation) before

adding these regularization terms, and we call them projected l2 and L2 regularizers.
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Table 3.1: The SIDA-RKHS regularizer v.s. the projected l2, L2 regularizers.

l2 L2 SIDA-RKHS

R(ϕ) ∥c∥2 = c⊤c ∥c∥2Bn
= c⊤Bnc ∥c∥2HG

= c⊤Brkhsc

cλ cλ =
∑︁l

i=1
1

σi+λ
p⊤i bn cλ =

∑︁l
i=1

1
λi+λ

q⊤i bn cλ =
∑︁l

i=1
1

λi+λλ
−1
i

q⊤i bn

SVD An =
∑︁n

i=1 σipip
⊤
i , p

⊤
i pj = δij An =

∑︁n
i=1 λiqiq

⊤
i , q⊤i Bnqj = δij

P⊤AnP = Σ, P⊤P = I Q⊤AnQ = Λ, Q⊤BnQ = I

All regularizers estimate ϕ =
∑︁n

i=1 ciϕi from Anc = bn with basis matrix Bn (see (3.11)). The projected

l2 and L2 regularizers use only the non-zero eigenvalues {σi}li=1 and {λi}li=1 and their eigenvectors. Thus,

the projected l2 and L2 regularizers involve an additional step of projection to the function space of

identifiability, before adding the regularization term R(ϕ) to the loss function.

Table 3.1 compares our SIDA-RKHS regularizer with the projected l2 and L2 regularizers. We

note that there are the following connections:

• The L2 regularizer is a basis-adaptive generalization of the l2 regularizer. When Bn = I

(i.e., the basis {ϕi} are orthonormal in L2(ρ)), the two are the same. When Bn is not the

identity matrix (i.e., the basis {ϕi} are not orthonormal in L2(ρ)), which happens often, the

L2 regularizer takes it into account through the generalized eigenvalue problem.

• The SIDA-RKHS regularizer is an improvement over the L2 regularizer. When all the gen-

eralized eigenvalues are λi ≡ 1 (e.g., LG is an identity operator), the two are the same.

• The SIDA-RKHS regularizer restricts the learning to be in the function space of identifiability

by definition, while the other two regularizers may miss this important restriction.
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3. Numerical tests on synthetic data

We test our learning method on three types of operators: linear integral operators, nonlocal

operators and nonlinear operators. For each type of operators, we systematically examine the

method in the regimes of noiseless and noisy data, with kernels in and out of the SIDA-RKHSs.

Since the ground-truth kernel is known, we study the convergence of estimators to the true kernel

as the data mesh refines. Thus, the regularization has to overcome both numerical error and noise

in the imperfect data. All codes used will be publicly released on GitHub.

Comparison with baseline methods. On each dataset, we compare our SIDA-RKHS regular-

izer with two baseline regularizers using the projected l2 and L2 regularizers (denoted by l2 and

L2 in the figures below, respectively) defined in Table 3.1. All three regularizers use the same

L-curve method to select the hyper-parameter λ as described in Appendix B.2. They differ only at

the regularization norm. In numerical implementation with ϕ =
∑︁n

i=1 ciϕi, in a hypothesis space

Hn = span{ϕi}ni=1, the R(ϕ) terms for l2, L2 and SIDA-RKHS are computed as ∥ϕ∥2l2 =
∑︁

i c
2
i ,

∥ϕ∥2L2 = c⊤Bnc and ∥ϕ∥2HG
= c⊤Brkhsc with Bn = diag(ρ) and Brkhs specified in the DARTR

Algorithm 1.

Settings of synthetic data. We test two kernels for each type of operators:

• Truncated sine kernel. The truncated sine kernel is ϕtrue(x) = sin(2x)1[0,3](x). It represents

a kernel with discontinuity. Due to the nonlocal dependency of the operator on the kernel, this

discontinuity can cause global bias of the estimator in the inverse problem.

• Gaussian kernel. The kernel ϕtrue is the Gaussian density centered at 3 with standard deviation

0.75. It represents a smooth kernel whose interaction concentrated in the middle of its support.

The kernels act on the same set of function {uk}k=1,2 with u1 = sin(x)1[−π,π](x) and u2(x) =
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sin(2x)1[−π,π](x). When generating the data for learning, the integral Rϕ[uk] = vk is computed

by the adaptive Gauss-Kronrod quadrature method. This integrator is much more accurate than

the Riemann sum integrator that we will use in the learning stage. To create discrete datasets

with different resolutions, for each ∆x ∈ 0.0125 × {1, 2, 4, 8, 16}, we take values of {uk, vk}Nk=1 =

{uk(xj), vk(xj) : xj ∈ [−40, 40], j = 1, . . . , J}Nk=1, where xj is a point on the uniform grid with mesh

size ∆x. For the nonlinear operator, to avoid the inverse problem being ill-defined, we introduce

add an additional pair of data (u3, v3) with u3(x) = x1[−π,π](x) (see Section 3.2, Chapter 2 for

more details). In short, the discrete data {uk}k=1,2 are continuous functions and the discrete data

u3 is a piece-wise continuous function.

For each kernel, we consider both noiseless and noisy data with different noise levels by taking

values of noise-to-signal-ratio (nsr) in {0, 0.5, 1, 1.5, 2}. Here the noise is added to each spatial

mesh point, independent and identically distributed centered Gaussian with standard deviation σ,

and the noise-to-signal-ratio is the ratio between σ and the average L2 norm of vk.

Settings for the learning algorithm. When estimating the kernels from the discrete data, we

estimate the values of the kernel on the points S = {rj}Jj=1 with rj = j∆x, the support of the

empirical exploration measure ρ. When the data mesh refines, the size of this set increases. In view

of the algorithm in Chapter 3.2, such a discrete estimation uses a hypothesis space with B-spline

basis functions consisting of piece-wise constants with knots being the points in S. Thus, this

hypothesis space has the largest dimension with the basis matrix Bn in (3.11) being non-singular,

and there is no need to select the optimal dimension. In this setting, the regularizer is the only

source of regularization and there is no regularization from basis functions. Hence, this setting

highlights the role of the Tikhonov-type regularizers.

Performance assessment. We assess the performance of the regularizers by their ability to
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consistently identify the true kernels in the presence of numerical error (in the Riemann sum

approximation of the integrals due to discrete data) and noise (due to noisy data). We present

typical estimators, the L2(ρ) errors of the estimators as data mesh refines, as well as the statistics

(mean and standard deviation) of the rates of convergence that are computed from 20 independent

simulations.

Summary of main results. Our main finding are as follows.

• The SIDA-RKHS regularizer’s estimators are more accurate than those of the l2 and L2

regularizers when the regularization parameter is properly selected. However, multiple fac-

tors are involved in the selection of the parameter, ranging from the form of the operator,

the numerical approximation, the noise and the treatment of the singular or ill-conditioned

normal matrix. Thus, in addition to accuracy of the estimator, it is also important to also

compare the consistency of convergence rates for different levels of noise.

• The SIDA-RKHS regularizer robustly leads to estimators converging at a consistent rate for

all levels of noises for each operator, while the other two regularizers cannot.

• The rate of convergence of the SIDA-RKHS regularizer’s estimator from noisy data depends

on both the continuity of the kernel and the continuity of the discrete data: when the two

matches, the rate is close to 1; otherwise, the rate can are lower than 1, as shown in Table

3.2.

3.1. Linear integral operators We consider first the integral operator with kernel ϕ:

Rϕ[u](x) =

∫︂
Ω

ϕ(|y − x|)u(y)dy. (3.13)
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Table 3.2: Rate of convergence of the SIDA-RKHS regularizer’s estimators from noisy data.

Linear Integral Operator Nonlinear Operator Nonlocal Operator
Kernel Data continuity(C) Data continuity (D) Data continuity (C)

Truncated Sine (D) 0.29 0.94 0.29
Gaussian (C) 0.62 0.66 1.01

* Here “C” stands for continuous, and “D” stands for discontinuous. When the continuity of the kernel and

data matches, the rates are close to 1. The rates are the average of the mean rates for nsr ∈ {0.1, 0.5, 1, 2}
in the right columns of Figure 3.1-3.3. We do not report the rate for the l2 and L2 regularizers because

they do not have a consistent rate.

After a change of variables in the integral, it is the operator Rϕ in (2.1) with g[u](x, y) = u(x+ y).

Such kernels in operators arise in a wide range of applications, such as the Green’s function in

PDEs [24, 31] and convolution kernels in image processing [35], to name just a few.

For this operator, the exploration measure ρ (defined in (3.2)) is a uniform measure, since each

data g[uk] interacts with the kernel uniformly. Furthermore, since each g[uk] is continuous, the

reproducing kernel G in (3.4) is continuous on the support of ρ, thus the SIDA-RKHS consists of

continuous functions. As a result, we expect the algorithm to learn the smooth Gaussian kernel

better than the discontinuous truncated sine kernel.

The left column of Figure 3.1 shows the typical estimators by the three regularizers, in com-

parison of the true kernel, when ∆x = 0.05 and noise-to-signal-ratio nsr = 1. The exploration

measure ρ (in cyan color) is uniform for each kernel, and its support, estimated from the difference

between the supports of g[uk] and vk, is slightly larger than the support of the true kernel. All three

regularizers lead to accurate estimators. The RKHS regularizer’s estimators are closest to the true

kernel and this is further verified in the middle 3-column panel with ∆x = 0.05 add nsr = 1: for

the truncated sine kernel, all three estimators’ L2(ρ) errors are about 10−1; but for the Gaussian

kernel, the RKHS’s estimator has an error close to 10−3 while the other two regularizers’ error are

about 10−2.
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Figure 3.1: Linear integral operators with the truncated sine kernel and Gaussian kernel.

Left Column: typical estimators by the three regularizers, in comparison of the true kernel, superimposed

with the exploration measure ρ (in cyan color), when ∆x = 0.05 and noise-to-signal-ratio nsr = 1. Middle

3-Columns: convergence of estimators as the data mesh-size ∆x refines, along with values of the loss

function. Right Column: the mean and standard deviation of the convergence rates in 20 independent

simulations, with five levels of noise (with nsr ∈ {0, 0.1, 0.5, 1, 2}). Only the SIDA-RKHS regularizer’s

estimator consistently converges for all levels of noise, and its estimators are mostly more accurate than

those of the other two regularizers.

The middle 3-column panel of Figure 3.1 shows the convergence of the estimator’s L2(ρ) error

as the data mesh refines when nsr = 0.1 and nsr = 1, superimposed with the corresponding values

of the loss function. When nsr = 1, all three regularizers’ estimators converge for both kernels, at

rates that are close to the rates of the loss function, and their errors are comparable. However,

when nsr = 0.1, the RKHS regularizer continues to yield converging estimators, whereas the other

two regularizers have flat error lines even though the corresponding loss values keep decaying. In

particular, those flat error lines are above those errors for nsr = 1 with ∆x ≤ 0.025, i.e., when the

numerical error is small. Thus, these results demonstrate the importance to take into account the

function space of learning via SIDA-RKHS, particularly when the noise level is relatively low.

The right column of Figure 3.1 shows the mean and standard deviations of the rates of conver-

gence in 20 independent simulations. The RKHS regularizer has consistent rates of convergence
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for all levels of noises. The rates are close to 1 for the smooth Gaussian kernel. The rates are

below 0.5 for the discontinuous truncated sine kernel when the data is noisy and the rate is 1 when

the data is noiseless. On the other hand, the l2 and L2 regularizers fails to have consistent rates

when the noise level reduces. They present deceivingly higher rates than the RKHS regularizer

when nsr ∈ {0.5, 1, 2}, and the middle 3-column panel reveals the facts: they often have much

larger errors than the RKHS when ∆x = 0.2, thus leading to deceiving better rates even when

their errors remains large as ∆x decreases.

In short, the RKHS regularizer leads to estimators that converge consistently, at lower rates for

the discontinuous truncated sine kernel (which does not match the continuity of the data) and at

higher rates for the smooth Gaussian kernel (which match the continuity of the data), while the l2

and L2 regularizers cannot. Furthermore, RKHS regularizer’s estimators are often more accurate

than those of the other two regularizers.

3.2. Nonlinear operators Next we consider the nonlinear operator Rϕ with g[u](x, y) = ∂x[u(x+

y)u(x)]:

Rϕ[u](x) =

∫︂
Ω

ϕ(|y|)∂x[u(x+ y)u(x)]dy = [u ∗ ϕ(| · |)u]′(x). (3.14)

Such nonlinear operators arise in the mean-field equations of interaction particles [41, 53, 66, 72],

and the function ϕ is called an interaction kernel. More precisely, the mean-field equations are of

the form ∂tu = ν∆u + div(u ∗Kϕu) on Rd, where Kϕ(y) = ϕ(|y|) y
|y| . Here we consider only d = 1

and neglect the ratio y
|y| to obtain the above operator.

We add an additional pair of data (u3, v3) with u3(x) = x1[−π,π](x), so as to avoid the issue

that the value of [u ∗ ϕ(| · |)u](x) is under-determined from the data v(x) = [u ∗ ϕ(| · |)u]′(x) due

to the differential. Here we set the derivative of u3 to be u′3(x) = 1[−π,π](x). These derivatives are
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approximated by finite difference when learning the kernel from discrete data. Note that the u3

and its derivative have jump discontinuities. As a result, the reproducing kernel G in (3.4) also

has discontinuity, and the SIDA-RKHS contains discontinuous functions.
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Figure 3.2: Nonlinear operators with the truncated sine kernel and Gaussian kernel.

The SIDA-RKHS regularizer’s estimators are significantly more accurate than those of the l2 and L2

regularizers in the left column. The middle 3-column panel shows that the SIDA-RKHS regularizer leads

to consistently converging estimators as the data mesh refines, for both levels of noise, while the other

two regularizers have slower and less consistent error decay and their error lines flatten when the noise

level is nsr = 1. The right column shows that only the SIDA-RKHS regularizer has consistent rates for

all levels of noise, and the other two regularizers’ rates drops significantly when the noise level increases.

The left column of Figure 3.2 shows that the exploration measure ρ is non-uniform due to the

nonlinear function g[uk]. Its density is a decreasing function, suggesting that the data explores the

short range interactions more than the long range interaction. The RKHS regularizer’s estimators

significantly outperform theose of the other two regularizers, and they are near smooth and are

close to the true kernels. The l2 and L2 regularizers lead to largely oscillating estimators, suggesting

an overfitting. Note that the RKHS estimators also have oscillating parts, but they are only in the

region where the exploration measure has little weight, due to the limited data exploration. The

superior performance of RKHS regularizer is further verified in the middle 3-column panel with
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∆x = 0.05 add nsr = 1: its errors are much smaller than those of the other two regularizers.

The middle 3-column panel of Figure 3.2 shows that the RKHS regularizer’s error consistently

decreases as the data mesh refines. In contrast, the other two regularizers have slower and less

consistent error decay, in particular, their error lines flatten as the noise level increases.

The right column of Figure 3.2 shows that the RKHS regularizer has consistent rates of con-

vergence for all levels of noises, with all rates close to 1 for the truncated sine kernel, and slightly

above 0.5 for the Gaussian kernel. In comparison, the other two regularizers’ rates decrease as the

noise level increases, dropping to close zero when the noise level is nsr = 2.

In short, the RKHS regularizer’s estimators are more accurate than those of the l2 and L2

regularizers. More importantly, the RKHS regularizer consistently leads to convergent estimators,

maintaining similar rates for all levels of noises, at rates close to 1 for the truncated sine kernel

(which is discontinuous, matching the discontinuity of data) and at rates slightly above 0.5 for

the Gaussian kernel (which is smooth, not matching the discontinuity of data). The l2 and L2

regularizers have convergent estimators, but the rates of convergence drop when the noise level

increases.

3.3. Nonlocal operators At last, we consider nonlocal operators Rϕ with g[u](x, y) = u(x+y)−

u(x):

Rϕ[u](x) =

∫︂
Ω

ϕ(|y|)[u(x+ y)− u(x)]dy. (3.15)

Such nonlocal operators arise in various areas such as nonlocal and fractional diffusions [3, 12, 23].

It have been used to construct homogenized models for peridynamic [95, 96].

The left column of 3.3 shows typical estimators. The exploration measure ρ shrinks to zero near

the origin due to the difference g[u] = u(y) − u(x) and the continuity of u. All three regularizers
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Figure 3.3: Nonlocal operators with the truncated sine kernel and Gaussian kernel.

The left column shows that all regularizers lead to accurate estimators. The middle 3-column panel

shows that the SIDA-RKHS regularizer leads to converging estimators as the data mesh refines for two

levels of noise, though at a slow rate for the truncated sine kernel. The l2 and L2 regularizers have less

consistent error decay for different noise levels and different kernels. Overall, the SIDA-RKHS estimators

have smallest error mostly. The right column shows that only the SIDA-RKHS regularizer has consistent

rates for all levels of noise, and the other two regularizers’ rates drop significantly when the noise level

increases.

lead to accurate estimators, and the RKHS estimator is sightly closer to the true truncated sine

kernel than the other two estimators.

In the middle 3-column panel of 3.3, we observe again that the RKHS regularizer leads to

estimators converging as data mesh refines for both noise levels, even though the errors decay

slower than the loss function values. On the other hand, the l2 and L2 regularizers have inconsistent

error decay: the errors decreasing monotonically when nsr = 1, but the error lines oscillate when

nsr = 0.1 for the truncated sine kernel.

The right column of 3.3 further confirms the consistency of the RKHS regularizer’s rates and

the inconsistency of the l2 and L2-regularizers’ rates. When the data is noisy, the rates of the

RKHS regularizer are about 0.29 for the truncated sine kernel (which has a jump discontinuity,

not matching the continuity of the data) and about 1 for the Gaussian kernel (which is continuous,
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matching the continuity of the data). Meanwhile, the rates for the l2 and L2-regularizers are about

0.65 for the truncated sine kernel, and about 0.8 for the Gaussian kernel. We note again that

their better rates for the truncated sine kernel occur when their errors are larger than those of the

RKHS estimators. Moreover, when the data is noiseless, RKHS regularizer has rates close to 1 for

both kernels as desired, while the other two regularizers rates are not consistent.

4. Homogenization of wave propagation in meta-material

Figure 3.4: Wave propagation in a heterogeneous bar with ordered microstructure.

We seek a nonlocal homogenized model for the stress wave propagation in a one-dimensional

heterogeneous bar with a periodic microstructure. For this problem, the goal is to obtain an

effective surrogate model from high-fidelity (HF) datasets generated by solving classical wave

equation, acting at a much larger scale than the size of the microstructure. Differing from previous

examples, this problem has no ground-truth kernel. Therefore, we evaluate the estimator by
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measuring its effectiveness of reproducing HF data in applications that are subject to different

loading conditions with a much longer time from the problems used as training data.

For both training and validation purposes we use the HF dataset generated by the direct

numerical solver (DNS) introduced in [83], which provides exact solutions of velocities including

the appropriate jump conditions for the discontinuities in stress that occur at waves. Although

the DNS has high accuracy on wave velocity, it is not suitable for long-term prediction because it

requires the modeling of wave propagation through thousands of microstructural interfaces, which

makes the computational cost prohibitive. To accelerate the computation, we approximate the HF

model by a nonlocal model:

∂ttu(x, t)−Rϕ[u](x, t) = g(x, t), for (x, t) ∈ Ω× [0, T ], (3.16)

where Rϕ can be viewed as a nonlocal operator in the form of (3.15) with a kernel ϕ.

Experiment settings. We consider four types of data: three for training and one for validation

of our algorithm. Three types of training datasets are employed: In Type 1 dataset, the bar is

subject to an oscillating source g(x, t); In Type 2 dataset, a boundary velocity loading ∂tu(−50, t) =

cos(jt) is applied; In Type 3 dataset, all settings are the same as in Type 2, except that the cos(jt)

type loading is replaced by sin(jt). In all training datasets, we consider a relatively small domain

Ω = [−50, 50] and short time t ∈ [0, 2]. Two spatial resolutions, ∆x = 0.05 and ∆x = 0.025 are

considered, which we denote as the “coarse” and “fine” datasets, respectively.

With these three types of training datasets, we design three experiment settings to validate our

method:

• Coarse dataset 1: we train the estimator using “coarse” dataset of Types 1 and 2.

• Coarse dataset 2: we train the estimator using “coarse” dataset of Types 1 and 3. By comparing
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the learnt estimator from this setting with the result from the setting above, we mean to investigate

the sensitivity of the inverse problem with respect to the choice of datasets.

• Fine dataset: we train the estimator using “fine” dataset of Types 1 and 2. By comparing the

learnt estimator from this setting with the result from setting 1, we aim to check the convergence of

the estimator with increasing data resolution. Note that the problem might becomes more ill-posed

when decreasing ∆x. Therefore, proper regularization is expected to become more important.

Additionally, we create a validation dataset, denoted as Type 4 dataset, very different from the

training dataset. It considers a much longer bar (Ω = [−133.3, 133.3]), under a different loading

condition from the training dataset, and with a 50 times longer simulation time (t ∈ [0, 100]).

Therefore, the cross-validation error checks the generalizability of the estimators. Further details

of experiment settings can be found in Appendix B.3.

Results assessment. We present the learnt estimators in Figure 3.4. Since there is no ground-

truth kernel, we assess the performance of each estimator based on three criteria. Firstly, we report

in Figure 3.4(b) the prediction L2 error of displacement on the cross validation dataset at T = 100.

Secondly, we report in Figure 3.4(d) the resultant estimators the group velocity curves from our

model and compare them with the curves computed with DNS. These curves directly depicts how

much our surrogate model reproduces the dispersion properties in the heterogeneous material. At

last, the learnt model should provide a physically stable material model. To check this, we also

report the dispersion curve in 3.4(e). Its positivity indicates that the learnt nonlocal model is

physically stable.

Performance of the estimators. Comparing the three estimators in Figure 3.4(c), one can

see that only the SIDA-RKHS regularizer obtains consistent estimators in all three experiment

settings. The oscillatory estimators of regularizers with l2 or L2-norm verify the ill-posedness, and
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highlight the importance of using proper regularizers in nonlocal operator learning methods. The

dispersion curves in Figure 3.4(e) stress the importance of regularizer from another aspect of view:

our SIDA-RKHS regularizer provides physically stable material models in all settings, while the

regularizers with l2 or L2-norm may result in highly oscillatory and non-physical models.

We further examine the regularized estimator in terms of its capability in reproducing DNS

simulations through the prediction error of u on the cross validation dataset. When ∆x = 0.025,

it takes about 48 hours for the DNS simulation to generate one sample, while the homogenized

nonlocal model only requires less than 20 minutes. From Figure 3.4(b), we can see that when

∆x = 0.05, all three regularizers are robust and able to reproduce the DNS simulation with a

reasonable accuracy (∼ 20%). When we increase the data resolution to ∆x = 0.025, the estimated

nonlocal model from l2 regularizer becomes unstable, which again verifies our analysis: when

the data mesh refines, the kernel learning problem becomes more ill-posed and a good regularizer

becomes a necessity. Meanwhile, both the L2 and SIDA-RKHS regularizers lead to a more accurate

estimator, indicating a trend of convergence. On both datasets, the SIDA-RKHS regularizer

obtains the most accurate estimators.

5. Discussion and future directions

We have proposed the data-adaptive RKHS Tikhonov regularization (DARTR) method for the

nonparametric learning of kernel functions in operators. The DARTR method regularizes the least

squares regression by the norm of a SIDA-RKHS, which constraints the learning to the function

space of identifiability.

Our numerical tests on synthetic data suggests that DARTR has the following advantages: (1)

it is naturally adaptive to both data and the operator; (2) it is robust to numerical error due
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to discrete data and white noise in data, leading to estimators converging at a consistent rate

for different levels of noises; (3) it is computationally as efficient as classical nonparametric least

squares regression methods, requiring in addition only an exploration measure and a basis matrix

that come with negligible computational cost.

This study presents a preliminary introduction of the DARTR method. There are several

directions for further development and analysis of DARTR in general settings and applications:

1. Convergence analysis. We have obtained convergent regularized estimators, but a conver-

gence analysis is left as future work. The main difficulty to overcome is the complex combi-

nation of three factors: operator spectrum decay, the errors from numerical integration and

noise, and regularization.

2. Multivariate kernel functions. When the kernel is a multivariate function, sparse-grid rep-

resentation or sparse basis functions (sparse polynomials) become necessary. The regression

will face the well-known curse-of-dimensionality. A related issue is to select the optimal

dimension of the hypothesis space. Our identifiability theory remains valid. Thus, a fu-

ture direction is to utilize methods such as kernel-regression or neural networks and further

develop the SIDA-RKHS regularization.

3. Applications to Bayesian inverse problems. In a Bayesian perspective, the Tikhonov regular-

ization can be interpreted as a Gaussian prior with a covariance matrix corresponding to the

penalty term. In this perspective, our SIDA-RKHS norm coincides with the Zellner’s g-prior

([6, 99]) that uses A
−1

as prior covariance, because when the data has additive white noise

and when the basis functions are orthonormal in L2(ρ), we have Brkhs = A
−1

.

4. The DARTR method is applicable to general linear inverse problems that minimize a

quadratic loss functional.
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Chapter 4

Unsupervised learning of observation

functions in state space models

1. Introduction and related work

We consider the following state space model for processes (Xt, Yt) in R× R:

State equation: dXt = a(Xt)dt+ b(Xt)dBt, with a, b are known; (4.1)

Observation equation: Yt = f∗(Xt), with f∗ unknown. (4.2)

Here Bt is the standard Brownian motion, the drift function a(x) and the diffusion coefficient b(x)

are given, satisfying the linear growth and global Lipschitz conditions. We assume that the initial

distribution of Xt0 is given. Thus, the distribution of the state process (Xt) is known.

Our goal is to estimate the unknown observation function f∗ from data consisting of a large

ensemble of trajectories of the process Yt, denoted by {Y (m)
t0:tL
}Mm=1, where m indexes trajectories,
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and t0 < · · · < tL are the times at which the observations are made. In particular, there are

no pairs (Xt, Yt) being observed, so in the language of machine learning this may be considered

an unsupervised learning problem. A case of particular interest in the present work is when the

observation function f∗ is nonlinear and non-invertible. We will also emphasize the usefulness of

many short trajectories (vs. few long trajectories), albeit both the theory and algorithms that we

consider are generally applicable in a wide range of regimes.

We estimate the observation function f∗ by matching generalized moments, while constraining

the estimator to a suitably chosen finite-dimensional hypothesis space, whose dimension depends

on the number of observations, in the spirit of nonparametric statistics. We consider both first

and second moments, as well as temporal correlations, of the observation process. The estima-

tor minimizes the discrepancy between the moments over an hypothesis space, with upper and

lower pointwise constraints estimated from data. The method we propose has several significant

strengths:

• the generalized moments do not require the invertibility of the observation function f∗;

• low-order generalized moments tend to be robust to additive observation noise;

• generalize moments avoid the need of local constructions, since they depend on the entire

distribution of the latent and observed processes;

• our nonparametric approach does not require a priori information about the observation

function, and it can deal with both regular and piecewise regular functions;

• the method is computationally efficient because the moments need to be estimated only once,

and the computation is can performed in parallel.
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We note that the method we propose readily extends to multivariate state space models, with

the main statistical and computational bottlenecks coming from the curse of dimensionality in the

representation and estimation of a higher-dimensional f∗ in terms of basis functions.

Our framework combines nonparametric learning [20, 33] with the generalized moment method,

which is mainly studied in the setting of parametric inference [76, 77, 85]. We study the iden-

tifiability of the observation function f∗ from first-order moments, and show that the first-order

generalized moments can identify the function in the L2 closure of a system-intrinsic data-adaptive

reproducing kernel Hilbert space (SIDA-RKHS). As far as we know, this is the first result on the

function space of identifiability for nonparametric learning of observation functions in SSMs.

When the observation function is invertible, its unsupervised regression is investigated [78] by

maximizing the likelihood for high-dimensional data. However, in many applications, particu-

larly those involving complex dynamics, the observation functions are non-invertible, for example

they are projections or nonlinear non-invertible transformations (e.g.,f(x) = |x|2 with x ∈ Rd).

As a consequence, the resulting observed process may have discontinuous or singular probability

densities [32, 42]. In [71], it has been shown empirically that delayed coordinates with principal

component analysis may be used to estimate the dimension of the hidden process, and diffusion

maps [18] may yield a diffeomorphic copy of the observation function.

The remainder of the Chapter is organized as follows. We present the nonparametric generalized

moment method in Chapter 4.2. In Chapter 4.3 we study the identifiability of the observation

function from first-order moments, and show that the function spaces of identifiability are RKHSs

intrinsic to the state space model. We present numerical examples to demonstrate the effectiveness

and the limitations of the proposed method in Chapter 4.4. Chapter 4.5 summarizes this study

and discusses directions of future research.
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2. Algorithm: nonparametric regression based on generalized mo-

ments

Throughout this chapter, we focus on discrete-time observations of the state space model (4.1)

– (4.2), because in practice we observe data in discrete timestamps. We suppose that the data

is in the form {Y (m)
t0:tL
}Mm=1, with m indexing multiple independent trajectories, observed at the

vector t0 : tL of discrete times (t0, · · · , tL). The extension to continuous time trajectories is

straightforward.

2.1. Generalized moment method We estimate the observation function f∗ by the generalized

moment method (GMM), searching for an observation function ˆ︁f , in a suitable finite-dimensional

hypothesis space, such that the moments of functionals of the process ˆ︁f(Xt) are close to the

empirical ones (computed from data) of Yt = f∗(Xt).

We consider “generalized moments” in the form E [ξ(Yt0:tL)], where ξ : RL+1 → RK is a func-

tional of the trajectory Yt0:tL . The empirical generalized moments EM [ξ(Yt0:tL)] are computed from

data by Monte Carlo approximation:

E [ξ(Yt0:tL)] ≈ EM [ξ(Yt0:tL)] :=
1

M

M∑︂
m=1

ξ(Y
(m)
t0:tL

), (4.3)

which converges at the rate M−1/2 by the Central Limit Theorem, since the M trajectories are

independent. Meanwhile, since the distribution of the state process is known, for any putative

observation function f , we approximate the moments of the process (f(Xt))) by simulating M ′
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independent trajectories of the state process (Xt):

E [ξ(f(X)t0:tL)] ≈ 1

M ′

M ′∑︂
m=1

ξ(f(X)
(m)
t0:tL

) . (4.4)

Here, with some abuse of notation, f(X)
(m)
t0:tL

:= (f(X
(m)
t0 ), . . . , f(X

(m)
tL

)). The number M ′ can be

as large as we can afford from a computational perspective. The calculations above can be done

parallel over trajectories. Since M ′ can be chosen large – only subject to computational constraints

– we consider the error in this empirical approximation negligible and work with E [ξ(f(X)t0:tL)]

directly.

We estimate the observation function f∗ by minimizing a notion of discrepancy between these

two empirical generalized moments:

ˆ︁f = arg min
f∈H

EM(f), where EM(f) := dist (EM [ξ(Yt0:tL)],E [ξ(f(X)t0:tL)])2 , (4.5)

where f is restricted to some suitable hypothesis space H, and dist(·, ·) is a suitable distance

between the moments to be specified later. By the law of large numbers, EM(f) tends almost

surely to E(f) := dist (E [ξ(Yt0:tL)] ,E [ξ(f(X)t0:tL)])2.

It is desirable to choose the generalized moment functional ξ and the hypothesis space H

so that the minimization in (4.5) can be performed efficiently. We choose H to be a subset of

an n-dimensional function space, spanned by basis functions {ϕi}, within which we can writeˆ︁f =
∑︁n

i=1 ˆ︁ciϕi. We select the functional ξ so that the moments E [ξ(f(X)t0:tL)], for f =
∑︁n

i=1 ciϕi,

can be efficiently evaluated for all (c1, . . . , cn). To this end, we choose linear functionals or low-

degree polynomials, so that we only need to compute the moments of the basis functions once, and

use these moments repeatedly during the optimization process, as discussed in the next section.
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The selection of the hypothesis space is detailed in Chapter 4 Section 2.3.

2.2. Loss functional and estimator The generalized moments we consider include the first and

the second moments, and the one-step temporal correlation. We let

ξ(Yt0:tL) := (Yt0:tL , Y
2
t0:tL

, Yt0Yt1 , . . . , YtL−1
YtL) ∈ R3L+2.

The loss functional in (4.5) is then chosen in the following form: for weights w1, . . . , w3 > 0,

E(f) :=w1
1

L

L∑︂
l=1

⃓⃓
E[f(Xtl)]− E[Ytl ]|2⏞ ⏟⏟ ⏞

E1(f)

+w2
1

L

L∑︂
l=1

⃓⃓
E[f(Xtl)

2]− E[Y 2
tl

]
⃓⃓2

⏞ ⏟⏟ ⏞
E2(f)

+ w3
1

L

L∑︂
l=1

⃓⃓
E[f(Xtl)f(Xtl−1

)]− E[YtlYtl−1
]
⃓⃓2

⏞ ⏟⏟ ⏞
E3(f)

.

(4.6)

In principle, these weights are selected to balance the contributions of these terms, and we set

them according to data as detailed in (4.26).

Let the hypothesis space H be a subset of the span of a linearly independent set {ϕi}ni=1, which

we specify in the next section. For f =
∑︁n

i=1 ciϕi ∈ H, we can write the loss functionals E1(f) in

(4.6) as

E1(f) =
1

L

L∑︂
l=1

⃓⃓⃓⃓ n∑︂
i=1

ciE [ϕi(Xtl)]− E [Ytl ]

⃓⃓⃓⃓2
= c⊤A1c− 2c⊤b1 + b̃1, (4.7)
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where b̃1 := 1
L

∑︁L
l=1 E [Ytl ]

2, and the matrix A1 and the vector b1 are given by

A1(i, j) :=
1

L

L∑︂
l=1

E [ϕi(Xtl)]E [ϕj(Xtl)]⏞ ⏟⏟ ⏞
A1,l(i,j)

, b1(i) :=
1

L

L∑︂
l=1

E [ϕi(Xtl)]E [Ytl ]⏞ ⏟⏟ ⏞
b1,l(i)

. (4.8)

Similarly, we can write E2(f) and E3(f) in (4.6) as

E2(f) =
1

L

L∑︂
l=1

⃓⃓⃓⃓ n∑︂
i=1

cicj E [ϕi(Xtl)ϕj(Xtl)]⏞ ⏟⏟ ⏞
A2,l(i,j)

−E
[︁
Y 2
tl

]︁⏞ ⏟⏟ ⏞
b2,l

⃓⃓⃓⃓2
,

E3(f) =
1

L

L∑︂
l=1

⃓⃓⃓⃓ n∑︂
i=1

cicj E
[︁
ϕi(Xtl−1

)ϕj(Xtl)
]︁⏞ ⏟⏟ ⏞

A3,l(i,j)

−E
[︁
Ytl−1

Ytl
]︁⏞ ⏟⏟ ⏞

b3,l

⃓⃓⃓⃓2
.

(4.9)

Thus, with the above notations in (4.8)-(4.9), the minimizer of the loss functional E(f) over H is

ˆ︁fH :=
n∑︂
i=1

ˆ︁ciϕi , ˆ︁c := arg min
c∈Rn s.t.

∑︁n
i=1 ciϕi∈H

E(c), where

E(c) := w1[c
⊤A1c− 2c⊤b1 + b̃1] +

3∑︂
k=2

wk
1

L

L∑︂
l=1

⃓⃓
c⊤Ak,lc− bk,l

⃓⃓2
.

(4.10)

Here, with an abuse of notation, we denote E(
∑︁n

i=1 ciϕi) by E(c).

In practice, we approximate the expectations involving the observation process (Yt) by the

corresponding empirical means with data {Y (m)
[t1:tN ]}Mm=1, as in (4.3). Meanwhile, we approximate

the expectations involving the state process (Xt) by Monte Carlo as in (4.4), using M ′ trajectories.

We assume that the sampling errors in the expectations of (Xt), i.e. in the terms {Ak,l}3k=1, are

negligible, since the basis {ϕi} can be chosen to be bounded functions (such as B-spline polynomi-

als) and M ′ can be as large as we can afford. We approximate {bk,l}3k=1 by their empirical means
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{bMk,l}3k=1:

b1,l(i) = E [ϕi(Xtl)]E [Ytl ] ≈ E [ϕi(Xtl)]
1

M

M∑︂
m=1

Y
(m)
tl

=: bM1,l(i) ,

b2,l = E
[︁
|Ytl |2

]︁
≈ 1

M

M∑︂
m=1

|Y (m)
tl
|2 =: bM2,l ,

b3,l = E
[︁
Ytl−1

Ytl
]︁

≈ 1

M

M∑︂
m=1

Y
(m)
tl−1

Y
(m)
tl

=: bM3,l .

(4.11)

The estimator from data is

ˆ︁fH,M =
n∑︂
i=1

ˆ︁ciϕi, ˆ︁c = arg min
c∈Rn s.t.

∑︁n
i=1 ciϕi∈H

EM(c), where

EM(c) = w1[c
⊤A1c− 2c⊤b

M

1 +˜︁bM1 ] +
3∑︂

k=2

wk
1

L

L∑︂
l=1

⃓⃓
c⊤Ak,lc− bMk,l

⃓⃓2
,

(4.12)

where b
M

1 = 1
L

∑︁L
l=1 b

M
1,l and ˜︁bM1 = 1

LM

∑︁L
l=1

∑︁M
m=1

(︂
Y

(m)
tl

)︂2
.

The minimization of EM(c) can be performed with iterative algorithms efficiently since the

data-based matrices and vectors, A1, b
M

1 and {Ak,l, bMk,l}3k=2, only need to be computed once. The

main source of sampling error is the empirical approximation of the moments of the process (Yt).

We specify the hypothesis space in the next section and provide a detailed algorithm for the

computation of the estimator in Chapter 4 Section 2.4.

Remark 4.1 (Moments involving Itô’s formula). When the data trajectories are continuous in

time (or when they are sampled with a high frequency in time), we can utilize additional moments

from Itô’s formula. Recall that for f ∈ C2
b , applying Itô formula for the diffusion process in (4.1),

we have

f(Xt+∆t)− f(Xt) =

∫︂ t+∆t

t

∇f · b(Xs)dWs +

∫︂ t+∆t

t

Lf(Xs)ds,
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where the operator L is

Lf = ∇f · a+
1

2
Hess(f) : b⊤b. (4.13)

Hence, E [∆Ytl ] = E
[︁
Lf∗(Xtl−1

)
]︁

∆t + o(∆t), where ∆Ytl = Ytl − Ytl−1
. Thus, when ∆t is small,

we can consider matching the generalized moments

E4(f) =
1

L

L∑︂
l=1

⃓⃓⃓⃓
E
[︁
Lf(Xtl−1

)
]︁

∆t− E [∆Ytl ]

⃓⃓⃓⃓2
. (4.14)

Similarly, we can further consider the generalized moments E [Yt∆Yt] and Var(∆Yt) and the cor-

responding quartic loss functionals. Since they require the moments of the first- and second-order

derivatives of the observation function, they are helpful when the observation function is smooth

with bounded derivatives.

2.3. Hypothesis space and optimal dimension We let the hypothesis space H be a class of

bounded functions in span{ϕi}ni=1,

H := {f =
n∑︂
i=1

ciϕi : ymin ≤ f(x) ≤ ymax for all x ∈ supp(ρT )}, (4.15)

where the basis functions {ϕi} and density ρT are to be specified below, and the empirical bounds

ymin := min{Y (m)
tl
}L,Ml,m=1, ymax := max{Y (m)

tl
}L,Ml,m=1

aim to approximate the upper and lower bounds for f∗. Here the dimension n will be selected

adaptive to data to avoid under- and over-fitting, as detailed in Algorithm 4 in Appendix C.1. Note

that the hypothesis space H is a bounded convex subset of the linear space span{ϕi}ni=1. While
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the pointwise bound constraints are for all x, in practice, for efficient computation, we apply these

constraints at representative points, for example at the mesh-grid points used when the basis

functions are piecewise polynomials. One may apply stronger constraints, such as requiring time-

dependent bounds to hold at all times: ymin(t) ≤ ∑︁n
i=1 cifi(x) ≤ ymax(t) for each time t, where

ymin(t) and ymax(t) are the minimum and maximum of the data set {Y (m)
t }Mm=1.

Basis functions. We use B-spline basis {ϕi} consisting of piecewise polynomials for hypothesis

space H (see Appendix A.2 for details). To specify the knots of B-spline functions, we introduce

a density function ρLT , which is the average of the probability densities {ptl}Ll=1 of {Xtl}Ll=1:

ρLT (x) =
1

L

L∑︂
l=1

ptl(x)
L→∞−−−→ ρT (x) =

1

T

∫︂ T

0

pt(x)dt, (4.16)

when tL = T and max1≤l≤L |tl− tl−1| → 0. Here ρLT (and its continuous time limit ρT (x)) describes

the intensity of visits to the regions explored by the process (Xt). The knots of the B-spline

function are from a uniform partition of [Rmin, Rmax], the smallest interval enclosing the support

of ρLT . Thus, the basis functions {ϕi} are piecewise polynomials with knots adaptive to the state

space model which determines ρLT .

Dimension of the hypothesis space. It is important to select a suitable dimension of the

hypothesis space to avoid under- or over-fitting. We select the dimension in two steps. First, we

introduce an algorithm, Cross-validating Estimation of Dimension Range (CEDR), to estimate a

proper range of the dimension from the quadratic loss functional E1. This avoids the sampling

error amplification due to an unsuitably large dimension. The sampling error is estimated from

data by splitting the data into two sets. Then, we select the optimal dimension that minimizes
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the 2-Wasserstein distance between the measures of data and prediction. See Appendix C.2 for

details. Here we use the 2-Wasserstein distance because it is sensitive to small changes in ˆ︁f caused

by overfitting and it can be efficiently computed for large-sample datasets.

2.4. Algorithm We summarize the above method of nonparametric regression with generalized

moments in Algorithm 2. It minimizes a quartic loss function with the upper and lower bound

constraints, and we perform the optimization with multiple initial conditions (see Appendix C.1

for details).

Input: The state space model and data {Y (m)
t0:tL
}Mm=1 consisting of multiple trajectories of the observation

process.
Output: Estimator ˆ︁f .
1: Estimate the empirical density ρLT in (4.16) and find its support [Rmin, Rmax].
2: Select a basis type, Fourier or B-spline, with an estimated dimension range [1, N ] (by Algorithm 4),

and compute the basis functions using the support of ρLT , as described in Section 2.3, Chapter 4.
3: for n = 1 : N do
4: Compute the moment matrices in (4.8)-(4.9) and the vectors bMk,l in (4.11).
5: Find the estimator ˆ︁cn by optimization with multiple initial conditions. Compute and record the

values of the loss functional and the 2-Wasserstein distances.
6: Select the optimal dimension n (and degree if B-spline basis) that has the minimal 2-Wasserstein

distance in (C.5). Return the estimator ˆ︁f =
∑︁n

i=1 c
i
nϕi.

Algorithm 2: Estimating the observation function by nonparametric generalized moment meth-
ods

Computational complexity The computational complexity is driven by the construction of

the normal matrix and vectors and the evaluation of the 2-Wasserstein distances, which have

complexity of order O(n2LM) and O(nLM), respectively, for an overall complexity O(n2LM).

2.5. Tolerance to noise in the observations The generalized moment method can tolerate

large additive observation noise if the distribution of the noise is known. The estimation error
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caused by the noise is at the scale of the sampling error, which is negligible when the sample size

is large.

More specifically, suppose that we observe {Y (m)
t0:tL
}Mm=1 from the observation model

Ytl = f∗(Xtl) + ηtl , (4.17)

where {ηtl} is sampled from a process (ηt) that is independent of (Xt) and has moments

E[ηt] = 0, C(s, t) = E[ηtηs], for s, t ≥ 0. (4.18)

A typical example is when η being identically distributed independent Gaussian noise N (0, σ2),

which gives C(s, t) = σ2δ(t− s).

The algorithm 2 can be applied to the noisy data with only a few small modifications. First,

note that the loss functional in (4.6) involves only the moments E[Yt], E[Y 2
t ] and E[YtlYtl−1

], which

are moments of f∗(Xt). When Yt in (4.17) has observation noise specified above, we have

E[f∗(Xt)] = E[Yt]− E[ηt] = E[Yt];

E[f∗(Xt)f∗(Xs)] = E[YtYs]− E[ηtηs] = E[YtYs]− C(t, s)

for all t, s ≥ 0. Thus, we only need to change the loss functional to be

E(f) =w1
1

L

L∑︂
l=1

⃓⃓
E[f(Xtl)]− E[Ytl ]|2 + w2

1

L

L∑︂
l=1

⃓⃓
E[f(Xtl)

2]− E[Y 2
tl

] + C(t, t)
⃓⃓2

+ w3
1

L

L∑︂
l=1

⃓⃓
E[f(Xtl)f(Xtl−1

)]− E[YtlYtl−1
] + C(t, s)

⃓⃓2
.

(4.19)
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Similar to (4.12), the minimizer of the loss functional can be then computed as

ˆ︁fH,M =
n∑︂
i=1

ˆ︁ciϕi, ˆ︁c = arg min
c∈Rn s.t.

∑︁n
i=1 ciϕi∈H

EM(c), where

EM(c) = w1[c
⊤A1c− 2c⊤b

M

1 +˜︁bM1 ] + w2
1

L

L∑︂
l=1

⃓⃓
c⊤A2,lc− bM2,l + C(tl, tl)

⃓⃓2
+ w3

1

L

L∑︂
l=1

⃓⃓
c⊤A3,lc− bM3,l + C(tl, tl−1)

⃓⃓2
,

(4.20)

where all the A-matrices and b-vectors are the same as before (in (4.8) – (4.9) and (4.11)).

Note that the observation noise introduces sampling errors through bM1 , bM2,l and bM2,l, which are

at the scale O( 1√
M

). Also, note the A-matrices are independent of the observation noise. Thus,

the observation noise affects the estimator only through the sampling error at the scale O( 1√
M

),

the same as the sampling error in the estimator from noiseless data.

3. Identifiability analysis

In this section, we discuss the identifiability of the observation function by the loss functionals. We

show that E1, the quadratic loss functional based on the first-order moments in (4.7), can identify

the observation function in the L2(ρLT )-closure of a reproducing kernel Hilbert space (RKHS) that

is intrinsic to the state space model. In addition, the loss functional E4 in (4.14), based on the Itô

formula, enlarges the function space of identifiability. We also discuss, in Chapter 4 Section 3.2,

some limitations of the loss functional E in (4.19), which combines the quadratic and quartic loss

functionals: in particular, symmetries or sampling from a stationary measure may prevent us from

identifying the observation function when using only generalized moments.

We will specify such function spaces for E1, E4 and E1 + E4 in Chapter 4 Section 3.1. We note
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that these function spaces do not take into account the constraints of upper and lower bounds,

which generically lead to minimizers near or at the boundary of the constrained set. The loss

functional E2 and E3 can be viewed as additional constraints.

3.1. Identifiability by quadratic loss functionals We consider the quadratic loss functionals

E1 and E4, and show that they can identify the observation function in the L2(ρLT )-closure of

reproducing kernel Hilbert spaces (RKHSs) that are intrinsic to the state space model.

Assumption 4.2. We make the following assumptions on the state space model.

• The coefficients in the state space model (4.1) satisfy global Lipschitz conditions, and therefore

also a linear growth condition: there exists a constant C > 0 such that |a(x)−a(y)|+ |b(x)−

b(y)| ≤ C|x − y| for all x, y ∈ R, and |a(x)| + |b(x)| ≤ C(1 + |x|). We assume that

infx∈R b(x) > 0. Furthermore, we assume that X0 has a bounded density.

• The observation function f∗ satisfies supt∈[0,tL] E [|f∗(Xt)|2] <∞.

Theorem 4.3. Given discrete-time data {Y (m)
t0:tL
}Mm=1 from the state space model (4.1) satisfying

Assumption 4.2, let E1 and E4 be the loss functionals defined in (4.6) and (4.14). Denote pt(x) the

density of the state process Xt at time t, and recall that ρLT in (4.16) is the average, in time, of

these densities. Let L∗ be the adjoint of the 2nd-order elliptic operator L in (4.13). Then,

(a) E1 has a unique minimizer in H1, the L2(ρLT ) closure of the RKHS HK1 with reproducing

kernel

K1(x, x
′) =

1

ρLT (x)ρLT (x′)

1

L

L∑︂
l=1

ptl(x)ptl(x
′), (4.21)

for (x, x′) such that ρLT (x)ρLT (x′) > 0, and K1(x, x
′) = 0 otherwise. When the data is contin-

uous (L→∞), we have K1(x, x
′) = 1

ρT (x)ρT (x′)
1
T

∫︁ T
0
pt(x)pt(x

′)dt.
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(b) E4 has a unique minimizer in H4, the L2(ρLT ) closure of the RKHS HK4 with reproducing

kernel

K4(x, x
′) =

1

ρLT (x)ρLT (x′)

1

L

L∑︂
l=1

L∗ptl(x)L∗ptl(x
′), (4.22)

for (x, x′) such that ρLT (x)ρLT (x′) > 0, and K4(x, x
′) = 0 otherwise. When the data is contin-

uous, we have K4(x, x
′) = 1

ρT (x)ρT (x′)
1
T

∫︁ T
0
L∗pt(x)L∗pt(x

′)dt.

(c) E1 + E4 has a unique minimizer in H, the L2(ρLT ) closure of the RKHS HK with reproducing

kernel

K(x, x′) =
1

ρLT (x)ρLT (x′)

1

L

L∑︂
l=1

[ptl(x)ptl(x
′) + L∗ptl(x)L∗ptl(x

′)] , (4.23)

for (x, x′) such that ρLT (x)ρLT (x′) > 0, and K(x, x′) = 0 otherwise. Similarly, we have

K(x, x′) = 1
ρT (x)ρT (x′)

1
T

∫︁ T
0

[pt(x)pt(x
′) + L∗pt(x)L∗pt(x

′)]dt for continuous data.

In particular, f∗ is the unique minimizer of these loss functionals if f∗ is in H1, H4 or H.

To prove this theorem, we first introduce an operator characterization of the RKHS HK1 in the

next lemma. Similar characterizations hold for the RKHSs HK4 and HK .

Lemma 4.4. The function K1 in (4.21) is a Mercer kernel, that is, it is continuous, symmetric

and positive semi-definite. Furthermore, K1 is square integrable in L2(ρLT × ρLT ), and it defines a

compact positive semi-definite integral operator LK1 : L2(ρLT )→ L2(ρLT ):

LK1h(x′) =

∫︂
h(x)K1(x, x

′)ρLT (x)dx. (4.24)

Also, the RKHS HK1 has the operator characterization: HK1 = L1/2
K1

(L2(ρLT )) and {
√
λiψi}∞i=1 is

an orthonormal basis of the RKHS HK1, where {λi, ψi} are the pairs of positive eigenvalues and

corresponding eigenfunctions of LK1.
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Proof. Since the densities of diffusion process are smooth, the kernel K1 is continuous on the

support of ρLT and it is symmetric. It is positive semi-definite (see Appendix A.1 for a definition)

because for any (c1, . . . , cn) ∈ Rn and (x1, . . . , xn), we have

n∑︂
i,j=1

cicjK(xi, xj) =
1

L

L∑︂
l=1

n∑︂
i,j=1

cicj
ptl(xi)ptl(xj)

ρLT (xi)ρ
L
T (xj)

=
1

L

L∑︂
l=1

(︄
n∑︂
i=1

ci
ptl(xi)

ρLT (xi)

)︄2

≥ 0.

Thus, K1 is a Mercer kernel.

To show that K1 is square integrable, note first that ptl(x) ≤ max1≤k≤L ptk(x) ≤ LρLT (x) for

any x. Thus for each x, x′, we have

1

L

L∑︂
l=1

ptl(x)ptl(x
′) ≤ L2ρLT (x)ρLT (x′)

and K1(x, x
′) ≤ L. It follows that K1 is in L2(ρLT × ρLT ).

Since K1 is positive definite and square integrable, the integral operator LK1 is compact and

positive semi-definite. The operator characterization follows from Theorem A.3 in Appendix A.1.

Remark 4.5. The above lemma is only applicable to discrete-time observations because it uses the

bound K1(x, x
′) ≤ L. When the data is continuous in time on [0, T ], we have K1 ∈ L2(ρT×ρT ) if the

support of ρT is compact. Since pt is uniformly bounded above, pt(x) ≤ maxy∈R,s∈[0,T ] ps(y) < ∞,

it is a regular solution of a Fokker-Planck equation which is uniformly elliptic by Assumption 4.2.

Thus for each x, x′, we have

1

T

∫︂ T

0

pt(x)pt(x
′)dt ≤

⃓⃓⃓⃓
1

T

∫︂ T

0

pt(x)2 dt

⃓⃓⃓⃓1/2 ⃓⃓⃓⃓
1

T

∫︂ T

0

pt(x
′)2 dt

⃓⃓⃓⃓1/2
= ρT (x)1/2ρT (x′)1/2 max

y∈R,s∈[0,T ]
ps(y)
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by Cauchy-Schwartz for the first inequality. Then,

K1(x, x
′) =

1

ρT (x)ρT (x′)

1

T

∫︂ T

0

pt(x)pt(x
′)dt ≤ ρT (x)−1/2ρT (x′)−1/2 max

y∈R,s∈[0,T ]
ps(y).

It follows that K1 is in L2(ρT × ρT ):

∫︂ ∫︂
K2

1(x, x′)ρT (x)ρT (x′)dxdx′ ≤ |supp(ρT )| max
y∈R,s∈[0,T ]

ps(y)2 <∞.

When ρT has non-compact support, it remains to be proved that K1 ∈ L2(ρT × ρT ).

Proof of Theorem 4.3. The proof for (a)–(c) are similar, so we focus on (a) and only sketch the

proof for (b)–(c).

To prove (a), we only need to show the uniqueness of the minimizer, because Lemma 4.4 has

shown that K1 is a Mercer kernel. Furthermore, note that by Lemma 4.4, the L2(ρLT ) closure of

the RKHS HK1 is H1 = span{ψi}∞i=1, the closure in L2(ρLT ) of the eigenspace of LK1 with non-zero

eigenvalues, where LK1 is the operator defined in (4.24).

For any f ∈ H1, with the notation h = f − f∗, we have E[f(Xt)]− E[Yt] = E[h(Xt)] for each t

(recall that Yt = f∗(Xt)). Hence, we can write the loss functional as

E1(f) =
1

L

L∑︂
l=1

⃓⃓
E[f(Xtl)]− E[Ytl ]|2 =

1

L

L∑︂
l=1

⃓⃓
E[h(Xtl)]|2

=

∫︂ ∫︂
h(x)h(x′)

1

L

L∑︂
l=1

ptl(x)ptl(x
′)dxdx′

=

∫︂ ∫︂
h(x)h(x′)K1(x, x

′)ρLT (x)ρLT (x′)dxdx′ ≥ 0.

(4.25)

Thus, E1 attains its unique minimizer in H1 at f∗ if and only if E1(f∗ +h) = 0 with h ∈ H1 implies
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that h = 0. Note that the second equality in (4.25) implies that E1(f∗ + h) = 0 if and only if

E[h(Xtl)] = 0, i.e.
∫︁
h(x)ptl(x)dx = 0, for all tl. Then,

∫︁
h(x)ptl(x)

ptl (x
′)

ρLT (x′)
dx = 0 for each tl and x′.

Thus, the sum of them is also zero:

0 =

∫︂
h(x)

1

L

L∑︂
l=1

ptl(x)ptl(x
′)

ρLT (x′)ρLT (x)
ρLT (x)dx =

∫︂
h(x)K1(x, x

′)ρLT (x)dx

for each x′. By the definition of the operator LK1 , this implies that LK1h = 0. Thus, h = 0 because

h ∈ H1.

The above arguments hold true when the kernel K1 is from continuous-time data: one only has

to replace 1
L

∑︁L
l=1 by the averaged integral in time. This completes the proof for (a).

The proofs of (b) and (c) are the same as above except the appearance of the operator L∗.

Note that E4 in (4.14) reads E4(f) = 1
L

∑︁L
l=1 |E [Lf(Xtl)]− E [∆Ytl ]|2, thus, it differs from E1 only

at the expectation E [Lf(Xtl)]. By integration by parts, we have

E [Lf(Xs)] =

∫︂
Lf(x)ps(x)dx =

∫︂
f(x)L∗ps(x)dx

for any f ∈ C2
b . Then, the rest of the proof for Part (b) follows exactly as above with K1 and LK1

replaced by K4 and LK4 .

The following remarks highlight the implications of the above theorem. We consider only E1,

but all the remarks apply also to E4 and E1 + E4.

Remark 4.6 (An operator view of identifiability). The unique minimizer of E1 in H1 defined in

Theorem 4.3 is the zero of its Fréchet derivative: ˆ︁f = L−1
K1
LK1f∗, which is f∗ if f∗ ∈ H1. In fact,
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we can write the loss functional E1 as

E1(f) = ⟨f − f∗,LK1(f − f∗)⟩L2(ρLT ).

Thus, the Fréchet derivative of E1 in L2(ρLT ) is ∇E1(f) = LK1(f − f∗) and we obtain the unique

minimizer. Furthermore, this operator representation of the minimizer conveys two important

messages about the inverse problem of finding the minimizer of E1: (1) it is ill-defined beyond

H1, and in particular, it is ill-defined on L2(ρLT ) when LK1 is not positive definite; (2) the inverse

problem is ill-posed on H1, because the operator LK1 is compact and its inverse L−1
K1

is unbounded.

Remark 4.7 (Identifiability and normal matrix in regression). Suppose Hn = span{ϕi}ni=1 and

denote f =
∑︁n

i=1 ciϕi with ϕi being basis functions such as B-splines. As shown in (4.7)-(4.8),

the loss functional E1 is a quadratic function with normal matrix A1 = 1
L

∑︁L
l=1A1,l, A1,l = u⊤

l ul,

and ul = (E [ϕ1(Xtl)] , . . . ,E [ϕn(Xtl)]) ∈ Rn. Thus, the rank of the matrix A1 is no larger than

min{n, L}. Note that A1 is the matrix approximation of LK1 on the basis {ϕi}ni=1 in the sense that

A1(i, j) = ⟨LK1ϕi, ϕj⟩L2(ρLT ),

for each 1 ≤ i, j ≤ n. Thus, the minimum eigenvalue of A1 approximates the minimum eigenvalue

of LK1 restricted in Hn. In particular, if Hn contains a nonzero element in the null space of LK1,

then the normal matrix will be singular; if Hn is a subspace of the L2(ρLT ) closure of HK1, then the

normal matrix is invertible and we can find a unique minimizer.

Remark 4.8 (Convergence of estimator). For a fixed hypothesis space, the estimator converges

to the projection of f∗ in H ∩ H1 as the data size M increases, at the rate O(M−1/2), with the

error coming from the Monte Carlo estimation of the moments of observations. With data-adaptive
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hypothesis spaces, we are unable to prove the minimax rate of convergence as in classical nonpara-

metric regression, due to the lack of a coercivity condition [56, 67], since the eigenvalues of the

compact operator LK1 converge to zero. A minimax rate would require an estimate on the spectral

decay of LK1, which we leave for future research.

Remark 4.9 (Regularization using the RKHS). The RKHS HK1 can be further utilized to provide

a data-adaptive regularization norm in Tikhonov regularization (see Chapter 3.2).

Examples of the RKHS. We emphasize that the reproducing kernel and the RKHS are intrinsic

to the state space model (including the initial distribution). We demonstrate the kernels by

analytically computing them when the process (Xt) is either the Brownian motion or the Ornstein-

Uhlenbeck (OU) process. For simplicity, we consider continuous-time data. Recall that when the

diffusion coefficient in the state space model (4.1) is a constant, the second-order elliptic operators

L is Lf = ∇f · a+ 1
2
b2∆f , and its adjoint operator L∗ is

L∗ps = −∇ · (aps) +
1

2
b2∆ps,

where ps denotes the probability density of Xs.

Example 4.10 (1D Brownian motion). Let a = 0 and b = 1. Assume p0(x) = δx0, i.e., X0 = x0.

Then, Xt is the Brownian motion starting from x0 and pt(x) = 1√
2πt
e−

(x−x0)
2

2t for each t > 0. We

have ρT (x) = 1
T

∫︁ T
0
pt(x)dt = x−x0

T
√
π

Γ(−1
2
, (x−x0)

2

2T
) and

K1(x, x
′) =

1

ρT (x)ρT (x′)

1

T

∫︂ T

0

ps(x)ps(x
′)ds =

TΓ(0, (x−x0)
2+(x′−x0)2
2T

)

2(x− x0)(x′ − x0)Γ(−1
2
, (x−x0)

2

2T
)Γ(−1

2
, (x

′−x0)2
2T

)
,
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where Γ(s, x) :=
∫︁∞
x
ts−1e−tdt is the upper incomplete Gamma function. Also, we have

L∗ps(x) = ϕ2(s, x)ps(x), with ϕ2(s, x) =

(︃
1

s2
(x− x0)2 −

1

s

)︃
.

Thus, the reproducing kernel K4 in (4.22) and K in (4.23) from continuous-time data are

K4(x, x
′) =

1

ρT (x)ρT (x′)

1

T

∫︂ T

0

ϕ2(s, x)ϕ2(s, x
′)ps(x)ps(x

′)ds;

K(x, x′) =
1

ρT (x)ρT (x′)

1

T

∫︂ T

0

(1 + ϕ2(s, x)ϕ2(s, x
′))ps(x)ps(x

′)ds.

Example 4.11 (Ornstein-Uhlenbeck process). Let a(x) = θx and b = 1 with θ > 0. As-

sume p0(x) = δx0, i.e., X0 = x0. Then, Xt = e−θtx0 +
∫︁ t
0
e−θ(t−s)dBs. It has a distribution

N (e−θtx0,
1
2θ

(1 − e−2θt)), thus pt(x) = 1√
2πσt

exp(− (x−xt0)2
2σ2

t
), where xt0 := e−θtx0 and σ2

t := 1
2θ

(1 −

e−2θt). Computing the spatial derivatives, we have L∗ps(x) = 1
2

[︂
(x−xs0)2
σ4
s
− 1

σ2
s

]︂
ps(x)− (θxps(x))′ =

ϕ2(s, x)ps(x), where

ϕ2(s, x) :=

[︃
(x− x0)2

2σ4
s

− 1

2σ2
s

− θ +
θ

σ2
s

x(x− xs0)
]︃
.

The reproducing kernels K1 in (4.21), K4 in (4.22) and K in (4.23) are

K1(x, x
′) =

1

ρT (x)ρT (x′)

1

T

∫︂ T

0

ps(x)ps(x
′)ds;

K4(x, x
′) =

1

ρT (x)ρT (x′)

1

T

∫︂ T

0

ϕ2(s, x)ϕ2(s, x
′)ps(x)ps(x

′)ds;

K(x, x′) =
1

ρT (x)ρT (x′)

1

T

∫︂ T

0

(1 + ϕ2(s, x)ϕ2(s, x
′))ps(x)ps(x

′)ds.

In particular, when the process is stationary, we have K1(x, x
′) ≡ 1 and K4(x, x

′) = 0 because
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L∗ps = 0 when ps(x) = 2θ√
2π

exp(−θx2) is the stationary density.

3.2. Non-identifiability due to stationarity and symmetry When the hypothesis space H

has a dimension larger than the RKHS’s, the quadratic loss functional E1 may have multiple

minimizers. The constraints of upper and lower bounds, as well as the loss functionals E2 and E3,

can help identifying the observation function. However, as we show next, identifiability may still

not hold due to symmetry and/or stationarity.

Stationary processes. When the process (Xt) is stationary, we have limited information from

the moments in our loss functionals. We have E1(f) = |E [Yt1 ]− E [f(Xt1)]|2 with K1(x, x
′) ≡ 1,

so E1 can only identify a constant function. Also, the loss functional E4 is identically 0 because

L∗ps = ∂sps = 0 ⇔ E[Lh(Xs)] = 0 for any h ∈ C2
b .

In other words, the function space of identifiability with E1 + E4 is the space of constant functions.

Meanwhile, the quartic loss functionals E2 and E3 also provide limited information: they become

E2 =
⃓⃓
E[f(Xt1)

2]− E[Y 2
t1

]
⃓⃓2

and E3 = |E[f(Xt2)f(Xt1)]− E[Yt2Yt1 ]|2, the second-order moment and

the temporal correlation at a single pair of times.

To see the ensuing limitations, consider the finite-dimensional hypothesis space H in (4.15).

As in (4.12), with f =
∑︁n

i=1 ciϕi, the loss functional becomes

E(f) =c⊤A1c− 2c⊤b
M

1 + |E[Yt1 ]|2 +
3∑︂

k=2

⃓⃓
c⊤Ak,1c− bMk,1

⃓⃓2
,

where A1 is a rank-one matrix, and
∑︁3

k=2 |c⊤Ak,1c − bMk,1|2 only adds two additional constraints.
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Thus, E has multiple minimizers in a linear space with dimension greater than 3. One has to resort

to the upper and lower bounds in (4.15) for additional constraints, which lead to minimizers on

the boundary of the resulting convex set.

Symmetry. When the distribution of the state process Xt is symmetric, a moment-based loss

functional may not distinguish the true observation function from its symmetric counterpart.

More specifically, if a transformation r : R → R preserves the distribution, i.e., (Xt, t ≥ 0)

and (r(Xt), t ≥ 0) have the same distribution, then E[f(Xt)] = E [f ◦ r(Xt)] and E[f(Xt)f(Xs)] =

E [f ◦ r(Xt)f ◦ r(Xs)]. Thus, our loss functional will not distinguish f from f ◦ r. This is of course

reasonable: the two functions yield the same observation process (in terms of the distribution),

thus the observation data does not provide the information necessary for distinguishing f from

f ◦ r.

Example 4.12 (Brownian motion). Consider the standard Brownian motion Xt, whose distribu-

tion is symmetric about x = 0 (because the two processes (Xt, t ≥ 0) and (−Xt, t ≥ 0) have the

same distribution). Let the transformation be r(x) = −x. Then, the two functions f(x) and f(−x)

lead to the same observation process in distribution sense, thus they cannot be distinguished from

the observations.

4. Numerical results

We demonstrate the effectiveness and limitations of our algorithm using synthetic data in represen-

tative examples. The algorithm works well when the state space model’s densities vary appreciably

in time to yield a large function space of identifiability whose distance to the true observation

function is small. In this case, our algorithm leads to a convergent estimator as the sample size
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increases. We also demonstrate that when the state process (i.e., the Ornstein-Uhlenbeck process)

is stationary or symmetric in distribution (i.e., the Brownian motion), the loss functional can

have multiple minimizers in the hypothesis space, preventing us from identifying the observation

functions (see Section 4.3, Chapter 4).

4.1. Numerical setup

Data generation. The synthetic data {Y (m)
t0:tL
}Mm=1 with tl = l∆t are generated from the state

space model, which is solved by the Euler-Maruyama scheme with a time-step ∆t = 0.01 for

L = 100 steps. We will consider sample sizes M ∈ {⌊103.5+j∆⌋ : j = 0, 1, 2, 3, 4, ∆ = 0.0625} to

test the convergence of the estimator.

To estimate the moments in the A-matrices and b-vectors in (4.8)–(4.9) by Monte Carlo, we

generate a new set of independent trajectories {X(m)
tl
}M ′
m=1 with M ′ = 106. We emphasize that

these samples of X are independent of the data {Y (m)
t0:tL
}Mm=1.

Inference algorithm. We follow Algorithm 3 to search for the global minimum of the loss

functionals in (4.12). The weights for the Ek’s are wk = L
√
M/∥mY

k ∥, where ∥ · ∥ is the Euclidean

norm on RL, and for l = 0, 1, · · · , L− 1,

mY
k (l) =

1

M

M∑︂
m=1

(Y
(m)
tl

)k for k = 1, 2 and mY
3 (l) =

1

M

M∑︂
m=1

Y
(m)
tl

Y
(m)
tl+1

. (4.26)

For each example, we test hypothesis spaces, spanned by B-splines with degree in {0, 1, 2, 3},

with dimension in the range [1, N ], which is selected by Algorithm 4. We select the optimal

dimension and degree with the minimal 2-Wasserstein distance between the predicted and true
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distribution of Y . The details are presented in Appendix C.2.

Results assessment and presentation. We present three aspects of the estimator ˆ︁f :

• Estimated and true functions. We compare the estimator with the true function f∗,

along with the L2(ρLT ) projection of f∗ to the linear space expanded by the elements of H.

• 2-Wasserstein distance. We present the 2-Wasserstein distance (see (C.5) for definition)

between the distributions of Ytl = f∗(Xtl) and ˆ︁f(Xtl) for each time with training data and a

new set of randomly generated data of size 106. The new (test) data has Y
(m)
tl

= f∗(X
(m)
tl

),

i.e., the X’s and Y ’s are generated in pairs, while in the training data the X’s and Y ’s are

generated independently. This pairing can lead to an effect on the 2-Wasserstein distance,

which depends only on the empirical distribution of the samples, but such effect is negligible

in our experiments due to the large sample size.

• Convergence of L2(ρLT ) error. We test the convergence of the estimator in L2(ρLT ) as the

sample size M increases. The L2(ρLT ) error is computed by the Riemann sum approxima-

tion. We present the mean and standard deviation of L2(ρLT ) errors from 20 independent

simulations. The convergence rate is also highlighted, and we compare it with the minimax

convergence rate in classical nonparametric regression (see e.g., [33, 67]), which is s
2s+1

with

s − 1 being the degree of the B-spline basis. This minimax rate is not available yet for our

method, see Remark 4.8.
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4.2. Examples The state space model we consider is a stochastic differential equation with the

double-well potential

dXt = (Xt −X3
t )dt+ dBt, Xt0 ∼ pt0 (4.27)

where the density of Xt0 is the average of N (−0.5, 0.2) and N (1, 0.5). The distribution of Xt0:tL is

non-symmetric and far from stationary (see Figure 4.1(a)); we therefore expect that the quadratic

loss functional E1 provides a rich RKHS space for learning.

We consider three observation functions f(x) representing typical challenges: nearly invertible,

non-invertible, and non-invertible discontinuous, in supp(ρT ):

Sine function: f1(x) = sin(x);

Sine-Cosine function: f2(x) =2 sin(x) + cos(6x);

Arch function: f3(x) =
(︁
−2(1− x)3 + 1.5(1− x) + 0.5

)︁
1[0,1](x).

(4.28)

These functions are shown in Figure 4.2(a)–4.4(a). They lead to observation processes with dra-

matically different distributions, as shown in Figure 4.1(b-d).

The learning results for these three functions are shown in Figure 4.2–4.4. For each of these

three observation functions, we present the estimator with the optimal hypothesis space, the 2-

Wasserstein distance in prediction and the convergence of the estimator in L2(ρLT ).
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(a) Process (Xt) (b) Process  for sine function (Yt) f* = (c) Process  for sine-cosine(Yt) f* = (d) Process  for arch function (Yt) f* =

Figure 4.1: Empirical densities from the data trajectories of the state process (Xtl) in double-well
potential (4.27) and the observation processes Ytl = fi(Xtl).
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Figure 2: Learning results of Sine function f1pxq “ sinpxq with model (4.1).
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Figure 3: Learning results of Sine-Cosine function f2pxq “ 2 sinpxq ` cosp6xq with model (4.1).

-2 -1 0 1 2
x

0

0.2

0.4

0.6

0.8

1

f(x
)

Estimated
Projection
True

(a) Estimator with n “ 45, deg “ 0

0 20 40 60 80 100
Time step

0.044

0.0445

0.045

0.0455

0.046

0.0465

0.047

2-
W

as
se

rs
te

in
 d

is
ta

nc
e

Training data
New data

(b) Wasserstein distance

104 105 106

M

0.2

0.4

0.6

L2  e
rro

r

Test point
Slope = -0.17

(c) Convergence rate

Figure 4: Learning results of Arch function f3 with model (4.1).

The learning results for these three functions are shown in Figure 2–4. For each of these three ob-
servation functions, we present the estimator with optimal hypothesis space, the 2-Wasserstein distance
and the convergence of the estimator.

Sine function: Fig. 2a shows the estimator with degree-1 B-spline basis with dimension n “ 9 for
M “ 106, which is selected according the 2-Wasserstein distance. The L2ps⇢L

T q error is 0.0245 and the

16

Figure 4.2: Learning results of Sine function f1 with double-well potential (4.27).

Sine function: Figure 4.2(a) shows the estimator with degree-1 B-spline basis with dimension

n = 9 for M = 106. The L2(ρLT ) error is 0.0245 and the relative error is 3.47%. Figure 4.2(b) shows

that the 2-Wasserstein distances are small at the scale 10−3, in agreement with the sampling error

since we used 106 samples. Figure 4.2(c) shows that the convergence rate of the L2(ρLT ) error is

0.46. This rate is close to the minimax rate 2
5

= 0.4.
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Figure 3: Learning results of Sine-Cosine function f2pxq “ 2 sinpxq ` cosp6xq with model (4.1).
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Figure 4: Learning results of Arch function f3 with model (4.1).

low convergence rate and the large variance to the high-frequency component cosp6xq, which is harder
to identify from moments than than the low frequency component sinpxq.

Arch function: Fig. 4a shows the estimator with degree-0 B-spline basis with dimension n “ 45.
The L2ps⇢L

T q error is 0.0645 and the relative error is 14.44%. Fig. 4b shows that the Wasserstein distances
are small at the scale 10´2. Fig. 4c shows that the convergence rate of the L2ps⇢L

T q error is 0.17, less than
the would-be minimax rate 1

3 « 0.33.
Arch function with observation noise: To demonstrate that our method can tolerate large

observation noise, we present the estimation results from noisy observations of the Arch function, which
is the most difficult among the three examples. Suppose that the observation noise ⇠ in (2.17) is
iid N p0, 0.25q. Note that the average of E

“|Yt|2
‰

is about 0.2, so the signal-to-noise ratio is about
Er|Y |2s
Er⇠2s « 0.8. Thus, we have a relatively large noise. However, our method can identify the function

using the moments of the noise as discussed in Section 2.5. Fig. 5a shows the estimator with degree-1
B-spline basis with dimension n “ 24. The L2ps⇢L

T q error is 0.1220 and the relative error is 27.32%.
Fig. 5b shows that the Wasserstein distances are small at the scale 10´3. The Wasserstein distances is
approximated from samples of the noisy data Y “ ftruepXq ` ⇠ and the noisy prediction pY “ pfpXq ` ⇠.
Fig. 5c shows that the convergence rate of the L2ps⇢L

T q error is 0.14. The estimation is not as good as
the noise-free case because the noisy observation data lead to milder lower and upper bound restrictions
in (2.15). We emphasize that the tolerance to noise is exceptional for such an ill-posed inverse problem,
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(a) Estimator with n=13, deg=2 (b) Wasserstein distance (c) Convergence rate

Figure 4.3: Learning results of Sine-Cosine function f2 with double-well potential (4.27).
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Figure 3: Learning results of Sine-Cosine function f2pxq “ 2 sinpxq ` cosp6xq with model (4.1).
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Figure 4: Learning results of Arch function f3 with model (4.1).

The learning results for these three functions are shown in Figure 2–4. For each of these three ob-
servation functions, we present the estimator with optimal hypothesis space, the 2-Wasserstein distance
and the convergence of the estimator.

Sine function: Fig. 2a shows the estimator with degree-1 B-spline basis with dimension n “ 9 for
M “ 106, which is selected according the 2-Wasserstein distance. The L2ps⇢L

T q error is 0.0245 and the

16

(a) Estimator with n=45, deg=0 (b) Wasserstein distance (c) Convergence rate

Figure 4.4: Learning results of Arch function f3 with double-well potential (4.27).

Sine-Cosine function: Figure 4.3(a) shows the estimator with degree-2 B-spline basis with

dimension n = 13. The L2(ρLT ) error is 0.1596 and the relative error is 9.90%. The poor estimation

near boundary is due to the lack of observation data. Figure 4.3(b) shows that the 2-Wasserstein

distances are at the scale of 10−2. Figure 4.3(c) shows that the convergence rate of the L2(ρLT )

error is 0.26, less than the classical minimax rate 3
7
≈ 0.42. Note also that the variance of the L2

error does not decrease as M increases. In comparison with the results for f1 in Figure 4.2(a),
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we attribute this relatively low convergence rate and the large variance to the high-frequency

component cos(6x), which is harder to identify from moments than the low frequency component

sin(x).

Arch function: Figure 4.4(a) shows the estimator with degree-0 B-spline basis with dimension

n = 45. The L2(ρLT ) error is 0.0645 and the relative error is 14.44%. Figure 4.4(b) shows that the

2-Wasserstein distances are small, at the scale 10−2. Figure 4.4(c) shows that the convergence rate

of the L2(ρLT ) error is 0.17, less than the would-be minimax rate 1
3
≈ 0.33.

Arch function with observation noise: To demonstrate that our method can tolerate large

observation noise, we present the estimation results from noisy observations of the Arch function,

which is the most difficult one among the three examples. Suppose that the observation noise η in

(4.17) is iid N (0, 0.25). Note that the average of E [|Yt|2] is about 0.2, so the signal-to-noise ratio

is rather small, at E[|Y |2]/E[η2] ≈ 0.8. Nevertheless, our method can identify the function using

the moments of the noise as discussed in Chapter 4 Section 2.5. Figure 4.5(a) shows the estimator

with degree-1 B-spline basis with dimension n = 24. The L2(ρLT ) error is 0.1220 and the relative

error is 27.32%. Figure 4.5(b) shows that the Wasserstein distances are small, of order 10−3. The

Wasserstein distances are approximated from samples of the noisy data Y = ftrue(X) + η and of

the noisy prediction ˆ︁Y = ˆ︁f(X) + η. Figure 4.5(c) shows that the convergence rate of the L2(ρLT )

error is 0.14. The estimation is not as good as the noise-free case. One reason would be that the

noisy observation data lead to slightly lower and upper bound constraints in (4.15).

We consider this tolerance and robustness to noise to be quite surprising for such an ill-posed

inverse problem, and the main reason for it is the use of moments methods, which average the

noise so that the error occurs at scale O(1/
√
M).

We have also tested piecewise constant observation functions. Our method has difficulty in
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(a) Estimator with n=24, deg=1 (b) Wasserstein distance (c) Convergence rate

-2 -1 0 1 2
x

-0.5

0

0.5

1

1.5

2

f(x
)

Estimated
Projection
True

(a) Estimator n “ 24, deg “ 1

0 20 40 60 80 100
Time step

4

4.5

5

5.5

6

6.5

2-
W

as
se

rs
te

in
 d

is
ta

nc
e

10-3

Training data
New data

(b) Wasserstein distance

104 105 106

M

0.2

0.3

0.4

0.5

L2  e
rro

r

Test point
Slope = -0.14

(c) Convergence rate

Figure 5: Learning results of Arch function f3 with model (4.1) and i.i.d Gaussian observation noise.

identifying such functions, due to two issues: (i) the uniform partition often misses the jump dis-
continuities (even the projection of f˚ has a large error); and (ii) the moments we considered depend
on the observation function non-locally, thus, they provide limited information to identify the true
function from its local perturbations. We leave it for future research to overcome these difficulties
by searching the jump discontinuities and by introducing moments detecting local information.

4.3 Limitations

We demonstrate by examples the non-identifiability due to symmetry and stationarity.

Symmetric distribution Let the state model be the Brownian motion with initial distribution
Unifp0, 1q. The state process pXtq has a distribution that is symmetric with respect to the line
x “ 1

2 , i.e., the processes pXtq and p1 ´ Xtq have the same distribution. Thus, with the reflection
function Rpxq “ 1 ´ x, the processes fpXtq and f ˝ RpXtq have the same distribution, and the
observation data does not provide information for distinguishing f from f ˝ R. The loss functional
(2.4) has at least two minima.

Figure 6 shows that our algorithm finds the reflection of the true function f˚ “ sinpxq. The
hypothesis space H has B-spline basis functions with degree 2 and dimension 58. Our estimator is
close to f˚ ˝ Rpxq “ sinp1 ´ xq. Its L2ps⇢L

T q error is 1.1244 and its reflection’s L2ps⇢L
T q error is 0.0790.

Both the estimator and its reflection correctly predict the distribution of the observation process
pYtq.

Stationary process When the diffusion process pXtq is stationary, the loss functional (2.4) pro-
vides limited information about the observation function. As discussed in Section 3.2, the matrix
A1 has rank 1, and E2 “ 0 and E3 “ 0 lead to only two more constraints. The constraints from the
upper and lower bounds in (2.15) play a major role in leading to a minimizer at the boundary of
the convex set H.

Figure 7 shows the learning results with the stationary Ornstein-Uhlenbeck process dXt “
´Xtdt ` dBt and with the observation function f˚pxq “ sinpxq. The stationary density of pXtq is
N p0, 1

2q. Due the limited information, the estimator has a large L2ps⇢L
T q error, which is 0.2656 and

its prediction has large 2-Wasserstein distances oscillating near 0.1290.
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Figure 4.5: Learning results of Arch function f3 with double-well potential (4.27) and i.i.d Gaussian

observation noise.

identifying such functions, due to two issues: (i) the uniform partition often misses the jump

discontinuities (even the projection of f∗ has a large error); and (ii) the moments we considered

depend on the observation function non-locally, thus, they provide limited information to iden-

tify the true function from its local perturbations. We leave it for future research to overcome

these difficulties by searching the jump discontinuities and by introducing moments detecting local

information.

4.3. Limitations We demonstrate by examples the non-identifiability due to symmetry and sta-

tionarity.

Symmetric distribution. Let the state space model be the Brownian motion with initial dis-

tribution Unif(0, 1). The state process Xt has a distribution that is symmetric with respect to

the line x = 1
2
. Thus, the processes Xt and 1 − Xt have the same distribution. Thus, with the

reflection function r(x) = 1 − x, the processes f(Xt) and f ◦ r(Xt) have the same distribution,
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and the observation data does not provide information for distinguishing f from f ◦ r. The loss

functional (4.6) has at least two minima.

Figure 4.3 shows that our algorithm finds the reflection of the true function f∗ = sin(x). The

hypothesis space H has B-spline basis functions with degree 2 and dimension 58. Our estimator is

close to f∗ ◦ r(x) = sin(1− x). Its L2(ρLT ) error is 1.1244 and its reflection’s L2(ρLT ) error is 0.0790.

Both the estimator and its reflection correctly predict the distribution of the observation process

Yt.

Fig6

(a) Estimator with n=58, deg=2 (b) Wasserstein distance
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Figure 6: Learning results of f˚pxq “ sinpxq with the state model being Xt “ Bt`X0 where X0 „ Unifp0, 1q. Due
to the symmetry with respect to the line x “ 1

2 , the estimator pfpxq and its reflection pfp1´xq are indistinguishable
by the loss functional and they lead to similar prediction of the distribution of tYtl
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Figure 7: Learning results of f˚pxq “ sinpxq with stationary Ornstein-Uhlenbeck process. Due to limited
information from the moments, the estimator is inaccurate due to its reliance on the upper and lower bound
constraints.

is suitable for large sets of unlabeled data. Moreover, it can deal with challenging cases when the
observation function is non-invertible. We address the fundamental issue of identifiability from first-order
moments. We show that the function spaces of identifiability are the closure of RKHS spaces intrinsic to
the state model. Numerical examples show that the first two moments and temporal correlations, along
with upper and lower bounds, can identify functions ranging from piecewise polynomials to smooth
functions and tolerate considerable observation noise. The limitations of this method, such as non-
identifiability due to symmetry and stationarity, are also discussed.

This study provides a first step in the unsupervised learning of latent dynamics from abundant
unlabeled data. There are several directions calling for further exploration: (i) a mixture of unsupervised
and supervised learning that combines unlabeled data with limited labeled data, particularly for high-
dimensional functions; (ii) enlarging the function space of learning, either by construction of more
first-order generalized moments or by designing experiments to collect more informative data; (iii) joint
estimation of the observation function and the state model.
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Figure 4.6: Learning results of f∗(x) = sin(x) with the SSM being Xt = Bt +X0 where X0 ∼ Unif(0, 1).

Due to the symmetry with respect to the line x = 1
2 , the estimator ˆ︁f(x) and its reflection ˆ︁f(1 − x) are

indistinguishable by the loss functional and they lead to similar prediction of the distribution of Ytl .

Stationary process. When the state process Xt is stationary, the loss functional (4.6) provides

limited information about the observation function. As discussed in Section 3.2, the matrix A1

has rank 1, and E2 = 0 and E3 = 0 lead to only two more constraints. The constraints from the

upper and lower bounds in (4.15) play a major role in leading to a minimizer at the boundary of

the convex set H.

Figure 4.3 shows the learning results with the stationary Ornstein-Uhlenbeck process dXt =
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−Xtdt + dBt and with the observation function f∗(x) = sin(x). The stationary density of (Xt) is

N (0, 1
2
). Due to the limited information, the estimator has a large L2(ρLT ) error, which is 0.2656

and its prediction has large 2-Wasserstein distances oscillating near 0.1290.
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Figure 6: Learning results of f˚pxq “ sinpxq with the state model being Xt “ Bt`X0 where X0 „ Unifp0, 1q. Due
to the symmetry with respect to the line x “ 1

2 , the estimator pfpxq and its reflection pfp1´xq are indistinguishable
by the loss functional and they lead to similar prediction of the distribution of tYtl
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Figure 7: Learning results of f˚pxq “ sinpxq with stationary Ornstein-Uhlenbeck process. Due to limited
information from the moments, the estimator is inaccurate due to its reliance on the upper and lower bound
constraints.

is suitable for large sets of unlabeled data. Moreover, it can deal with challenging cases when the
observation function is non-invertible. We address the fundamental issue of identifiability from first-order
moments. We show that the function spaces of identifiability are the closure of RKHS spaces intrinsic to
the state model. Numerical examples show that the first two moments and temporal correlations, along
with upper and lower bounds, can identify functions ranging from piecewise polynomials to smooth
functions and tolerate considerable observation noise. The limitations of this method, such as non-
identifiability due to symmetry and stationarity, are also discussed.

This study provides a first step in the unsupervised learning of latent dynamics from abundant
unlabeled data. There are several directions calling for further exploration: (i) a mixture of unsupervised
and supervised learning that combines unlabeled data with limited labeled data, particularly for high-
dimensional functions; (ii) enlarging the function space of learning, either by construction of more
first-order generalized moments or by designing experiments to collect more informative data; (iii) joint
estimation of the observation function and the state model.
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(a) Estimator with n=58, deg=2 (b) Wasserstein distance

Figure 4.7: Learning results of f∗(x) = sin(x) with stationary Ornstein-Uhlenbeck process.

Due to limited information from the moments, the estimator is inaccurate due to its reliance on the upper

and lower bound constraints.

5. Discussions and conclusion

We have proposed a nonparametric learning method to estimate the observation functions in

nonlinear state space models. It matches the generalized moments via constrained regression. The

algorithm is suitable for large sets of unlabeled data. Moreover, it can deal with challenging cases

when the observation function is non-invertible. We address the fundamental issue of identifiability

from matching first-order moments. We show that the function spaces of identifiability are the

closure of RKHS spaces intrinsic to the state space model. Numerical examples show that the

first two moments and temporal correlations, along with upper and lower bounds, can identify

smooth/non-smooth functions and tolerate considerable observation noise. The limitations of this
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method, such as non-identifiability due to symmetry and stationarity, are also discussed.

This study provides a first step in the unsupervised learning of latent dynamics from abundant

unlabeled data. There are several directions calling for further exploration: (i) a mixture of

unsupervised and supervised learning that combines unlabeled data with limited labeled data,

particularly for high-dimensional functions; (ii) enlarging the function space of learning, either by

construction of more first-order generalized moments or by designing experiments to collect more

informative data; (iii) joint estimation of the observation function and the state space model.
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Appendix A

Preliminaries

1. A review of RKHS

We review the definitions and properties of positive semi-definite kernels. The following is a real-

variable version of the definition in [8, p.67].

Definition A.1 (Positive semi-definite function). Let X be a nonempty set. A function G :

X × X → R is positive semi-definite if and only if it is symmetric (i.e. G(x, y) = G(y, x)) and∑︁n
j,k=1 cjckG(xj, xk) ≥ 0 for all n ∈ N, {x1, . . . , xn} ⊂ X and c = (c1, . . . , cn) ∈ Rn. The function

ϕ is positive definite if the equality hold only when c = 0 ∈ Rn.

Theorem A.2 (Properties of positive semi-definite kernels). Suppose that k, k1, k2 : X × X ⊂

Rd × Rd → R are positive semi-definite kernels. Then

(a) k1k2 is positive definite. ([8, p.69])

(b) The inner product ⟨u, v⟩ =
∑︁d

j=1 ujvj is positive semi-definite ([8, p.73])

(c) f(u)f(v) is positive semi-definite for any function f : X → R ([8, p.69]).
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RKHS and positive integral operators. We review the definitions and properties of the

Mercer kernel, the reproducing kernel Hilbert space (RKHS), and the related integral operator,

see [20] for them on a compact domain [86] for them on a non-compact domain.

Let (X, d) be a metric space and G : X ×X → R be continuous and symmetric. We say that

G is a Mercer kernel if it is positive semi-definite. The RKHS HG associated with G is defined to

be closure of span{G(x, ·) : x ∈ X} with the inner product

⟨f, g⟩HG
=

n,m∑︂
i=1,j=1

cidjG(xi, yj)

for any f =
∑︁n

i=1 ciG(xi, ·) and g =
∑︁m

j=1 djG(yj, ·). It is the unique Hilbert space such that: (1)

the linear space span{G(·, y), y ∈ X} is dense in it; (2) it has the reproducing kernel property in

the sense that for all f ∈ HG and x ∈ X, f(x) = ⟨G(x, ·), f⟩G (see [20, Theorem 2.9]).

By Mercer Theorem, we can characterize the RKHSHG through the integral operator associated

with the kernel. Let µ be a nondegenerate Borel measure on (X, d) (that is, µ(U) > 0 for every

open set U ⊂ X). Define the integral operator LG on L2(X,µ) by

LGf(x) =

∫︂
X

G(x, y)f(y)dµ(y).

The RKHS has the operator characterization (see [20, Section 4.4] and [86]):

Theorem A.3. Assume that the G is a Mercer kernel and G ∈ L2(X ×X,µ⊗ µ). Then

1. LG is a compact positive self-adjoint operator. It has countably many positive eigenvalues

{λi}∞i=1 and corresponding orthonormal eigenfunctions {ϕi}∞i=1. Note that when zero is an

eigenvalue of LG, the linear space H = span{ϕi}∞i=1 is a proper subspace of L2(µ).
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2. {
√
λiϕi}∞i=1 is an orthonormal basis of the RKHS HG.

3. The RKHS HG is the image of the square root of the integral operator LG.

2. B-spline basis

The choice of hypothesis space is important for the nonparametric regression. One can use global

basis functions such as polynomials or Fourier basis when the function-valued parameter is known

in prior to be smooth. On the other hand, when the function-valued parameter may be dis-

continuous, local basis functions such as B-splines or wavelets improve the estimation. In all our

numerical experiments we choose the basis functions to be the B-splines, as we assume only limited

information about the function-valued parameter.

B-Spline basis functions. We briefly review the definition of B-spline basis functions and we

refer to [75, Chapter 2] and [70] for details. Given a nondecreasing sequence of real numbers,

called knots, (r0, r1, . . . , rm), the B-spline basis functions of degree p, denoted by {Ni,p}m−p−1
i=0 , are

defined recursively as

Ni,0(r) =

⎧⎪⎨⎪⎩ 1, ri ≤ r < ri+1

0, otherwise
, Ni,p(r) =

r − ri
ri+p − ri

Ni,p−1(r) +
ri+p+1 − r
ri+p+1 − ri+1

Ni+1,p−1(r).

Each function Ni,p is a nonnegative local polynomial of degree p, supported on [ri, ri+p+1]. At a

knot with multiplicity k, it is p − k times continuously differentiable. Hence, the differentiability

increases with the degree but decreases when the knot multiplicity increases. The basis satisfies a

partition unity property: for each r ∈ [ri, ri+1],
∑︁

j Nj,p(r) =
∑︁i

j=i−pNj,p(r) = 1.

We set the knots of the spline functions to be a uniform partition of the support of the explo-
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ration measure ρ. For any choice of degree p, we set the basis functions of the hypothesis space

H, contained in a subspace with dimension n = m− p, to be

ϕi(r) = Ni,p(r), i = 0, . . . ,m− p− 1.

Thus, the basis functions {ϕi} are piecewise degree-p polynomials with knots adaptive to data.
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Appendix B

1. Detailed nonparametric learning algorithm for learning kernels in

operators

We consider only discrete data {uk(xj), vk(xj)}Nk=1 in 1-dimensional and at equidistant mesh points

{xj = j∆x}Jj=0. The extension to multi-dimensional and non-equidistant cases is straightforward.

Step 1: Estimate the exploration measure and assemble regression data.

We first estimate the exploration measure and extract the regression data that can be used for

all hypothesis spaces by utilizing the regression structure and reading the data only once.

Let d(Ω) be the diameter of the set Ω. The discrete data set {uk(xj), vk(xj)}Nk=1 explores only

the variable r of ϕ in the set RJ
N = {rijk = |yi| ≤ d(Ω) : g[uk](xi, yj) ̸= 0 for some i, j, k}, the set of

all values explored by data with repetition. A discrete approximation of the exploration measure

ρ in (3.2) is

ρJN(dr) =
1

|RJ
N |

N∑︂
k=1

J∑︂
i,j=1

δ(|yi| − r)|g[uk](xj, yi)|. (B.1)

This measure ρJN uses only the information from uk and it does not reflect the information about
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the kernel in vk.

We may estimate the support of the kernel from data. We set the data-adaptive support of the

kernel to be [0, R0] with R0 defined by

R0 = 1.1 min{Rρ,max{|Lvi − Lui |, |Rv
i −Ru

i |}Ni=1}, (B.2)

where (Lui , R
u
i ) and (Lvi , R

v
i ) are the lower and upper bounds of the supports supp(uk) and supp(vk)

respectively, and Rρ is the maximum of the support of ρJN . That is, the support of the kernel lies

inside the support of the exploration measure, and it is the maximal interaction range indicated

by the difference between supports of uk and vk. Here the multiplicative factor 1.1 is an artificial

factor to enlarge the range, so that the supports of the basis functions will fully cover the explored

region.

Assemble regression data. Next, we assemble the regression data that will be used repeatedly,

thus saving the computational cost by orders of magnitude, particularly when the data size is large

with thousands of pairs (uk, vk). In order to compute the normal matrix A(i, j) = ⟨⟨ϕi, ϕj⟩⟩ for any

pair of basis functions, with the bilinear form defined in (3.3), we only need the integral kernel G.

In particular, when d = 1, the integral
∫︁
|η|=1

h(η)dη = h(η) + h(−η), therefore, we have

G(r, s) =
1

N

N∑︂
k=1

∫︂
Ω

(g[uk](x, r) + g[uk](x,−r)) (g[uk](x, s) + g[uk](x,−s)) dx (B.3)

for r, s ∈ supp(ρ). Similarly, to compute bn(i) in (3.11), which can be re-written as

bn(i) =
1

N

N∑︂
k=1

∫︂
Rϕi [uk](x)vk(x)dx =

∫︂ R

0

ϕi(r)g
v
N(r)dr, (B.4)
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we only need the function gvN defined by

gvN(r) =
1

N

N∑︂
k=1

∫︂
Ω

(g[uk](x, r) + g[uk](x,−r)) vk(x)dx. (B.5)

Let rk = k∆x for k = 1, . . . , ⌊ R
∆x
⌋, which are the mesh points of ϕ explored by the data. Then, all

the regression data we need in the original data (2.2) are

{︃
G(rk, rl), g

v
N(rk), ρ

J
N(rk), with k, l = 1, . . . , ⌊ R

∆x
⌋
}︃
, (B.6)

where G, gvN and ρJN are defined respectively in (B.3), (B.5) and (B.1).

Step 2: Select a class of hypothesis spaces and assemble regression matrices and

vectors.

We set a class of data-adaptive hypothesis spaces Hn = span{ϕi}ni=1 with their dimensions set

to range from under-fitting to over-fitting. The basis functions can be either global basis functions

such as polynomials and trigonometric functions, or local basis functions such B-spline polynomials

(see [70] and Chapter 2 of [75]). To set the range for n, we note that the mesh points of the kernel’s

independent variable explored by data are {k∆x : k = 1, . . . , ⌊ R
∆x
⌋}. Meanwhile, the basis function

should be linearly independent in L2(ρJN) so that the basis matrix

Bn = (⟨ϕi, ϕj⟩L2(ρJN ))1≤i,j≤n ∈ Rn×n (B.7)

is nonsingular. Thus, we set the range of n to be in ⌊ R
∆x
⌋ × [0.2, 1] such that Bn is nonsingular

while covering a wide range of dimensions. For example, when we use piecewise constant basis,

we can set n = ⌊ R
∆x
⌋ with ϕi(x) = δ(xi − x), and we get Bn = Diag(ρJN). Thus, we estimate
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the kernel as a vector of its values on the mesh points, with L2(ρJN) being a vector space with a

discrete-measure ρJN .

With these regression data, the triplet (An, bn, Bn) can be efficiently evaluated for any basis

functions using a numerical integrator to approximate the corresponding integrals. For example,

with Riemann sum approximation, we compute the normal matrix An and vector bn and the basis

matrix Bn as

An(i, j) = ⟨⟨ϕi, ϕj⟩⟩ ≈
∑︂
k,l

ϕi(rk)ϕj(rl)G(rk, rl))∆x
2,

bn(i) ≈
∑︂
k

ϕi(rk)g
v
N(rk))∆x,

Bn(i, j) ≈
∑︂
k

ϕi(rk)ϕi(rk)ϕj(rk)ρ
J
N(rk)∆x.

(B.8)

The triplet (An, bn, Bn) is all we need for regression with regularization in the next step.

Step 3: Regression with DARTR.

Our DARTR method uses the norm of the SIDA-RKHS, which is the function space of iden-

tifiability as discussed in Chapter 3.1. That is, our estimator is the minimizer of the regularized

loss in (1.10) with the regularization norm R(ϕ) = ∥ϕ∥2HG
defined in (3.8).

Computation of the RKHS norm In practice, we can effectively approximate the RKHS norm

∥ϕ∥2HG
using the triplet (An, bn, Bn). It proceeds in three steps. First, we solve the generalized

eigenvalue problem AnQ = BnQΛ, where Λ is a diagonal matrix of the generalized eigenvalues and

the matrix Q has columns being eigenvectors orthonormal in the sense that Q⊤BnQ = In. Here

these eigenvalues approximate the eigenvalue of LG in (3.6), and ˆ︁ψk =
∑︁

j Qjkϕj approximates the

eigenfunctions of LG. Then, we compute the square RKHS norm of ϕ =
∑︁

i ciϕi as

∥ϕ∥2HG
= c⊤Brkhsc, with Brkhs = (QΛQ⊤)−1, (B.9)
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where the inverse is taken as pseudo-inverse, particularly when Λ has zero eigenvalues.

With the RKHS-norm ready, we write the regularized loss for each function ϕ =
∑︁

i ciϕi as

Eλ(ϕ) = c⊤(An + λBrkhs)c− 2c⊤bn + Cv
N .

The regularized estimator is

ˆ︂ϕλ =
n∑︂
i=1

ciλϕi, cλ = (An + λBrkhs)
−1bn. (B.10)

Then, we select the hyper-parameter λ by the L-curve method (see Appendix B.2).

Remark B.1 (Least squares to avoid matrix inverse). The matrix inverses can cause numerical

issues when the normal matrix A is ill-conditioned or singular. Fortunately, the matrix inversions

in Brkhs and in solving (An +λBrkhs)cλ = bn can be avoided by using minimum norm least squares

solution. Note that this linear equation is equivalent to (B
−T/2
rkhs AnB

−1/2
rkhs + λI)˜︁cλ = B

−T/2
rkhs bn with

˜︁cλ = B
−1/2
rkhs cλ, where B

−T/2
rkhs is the transpose of the square root matrix B

−1/2
rkhs . Meanwhile, the

square root B
−1/2
rkhs = (QΛQ⊤)1/2 comes directly from (B.9). Thus, these treatments avoid the

matrix inversions and lead to more robust estimators.

We summarize the method in Algorithm 3.

87



Input: The data {uk, vk}Nk=1 = {uk(xj), vk(xj)}N,Jk,j=1 with xj = j∆x to construct the nonlocal model

Rϕ[u] = f .

Output: Estimator ˆ︁ϕ
1: Estimate the exploration measure ρJN from data as in (B.1), and estimate the support of the kernel

from data as in (B.2). Let R be the upper bound of the support.

2: Get regression data (G, gvN ) in (B.6).

3: Select a class of hypothesis spaces Hn = span{ϕi}ni=1 by selecting a type of basis functions, e.g.,

polynomials or B-splines, n in the range ⌊ R∆x⌋ × [0.2, 1].

4: For each n, compute (An, bn, Bn) as in (B.8) for Hn = span{ϕi}ni=1, using (G, gvN , ρ
J
N ) obtained above.

If the basis matrix Bn is singular, remove n from the range. For the (An, bn, Bn), find the best

regularized estimator ˆ︁cλn by DARTR in Algorithm 1, as well as corresponding loss value E(ˆ︁cλn).
5: Select the optimal dimension n∗ (and degree if using B-spline basis) that has the minimal loss value

(along with other cross-validation criteria if available). Return the estimator ˆ︁ϕ =
∑︁n∗

i=1 c
i
n∗ϕi.

Algorithm 3: Nonparametric learning of the nonlocal kernel with spare-aware regularization

2. Hyper-parameter by the L-curve method

We select the parameter λ by the L-curve method [36, 53]. Let l be a parametrized curve in R2:

l(λ) = (x(λ), y(λ)) := (log(E(ˆ︂ϕλ), log(R(ˆ︂ϕλ)),

where E(ˆ︂ϕλ) = c⊤λAncλ − 2c⊤λ bn − Cv
N , and R(ϕ) is the regularization term, for example, R(ˆ︂ϕλ) =

∥ˆ︂ϕλ∥2HG
= c⊤λBrkhscλ. The optimal parameter is the maximizer of the curvature of l. In practice,
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we restrict λ in the spectral range [λmin, λmax] of the operator LG,

λ0 = arg max
λmin≤λ≤λmax

κ(l(λ)) = arg max
λmin≤λ≤λmax

x′y′′ − x′y′′
(x′ 2 + y′ 2)3/2

, (B.11)

where λmin and λmax are computed from the smallest and the largest generalized eigenvalues of

(An, Bn). This optimal parameter λ0 balances the loss E and the regularization (see [36] for more

details). In practice, instead of computing the second order derivatives, we compute the curvature

by the reciprocal of the radius of the interior circle of three consecutive points1.

We note that the performance of these regularizers depends on the optimal regularization

strength λ0. In our tests, all regularizers can successfully select the optimal λ0 for most of the

time, and the SIDA-RKHS regularizer has the most well-shaped L-curve, which leads to the most

robust regularization (see Figure B.2 for typical L-curve plots).
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Figure B.1: Typical L-curve plots for the selection of the optimal regularization parameter λ0 for
the Gaussian kernel with ∆x = 0.05 and nsr = 1.
From left to right: the l2, L2 and SIDA-RKHS regularizers. All regularizers successfully select the
optimal λ0, and the SIDA-RKHS regularizer has the most well-shaped L-curve.

1Are Mjaavatten (2022). Curvature of a 1D curve in a 2D or 3D space (https://www.mathworks.com/
matlabcentral/fileexchange/69452-curvature-of-a-1d-curve-in-a-2d-or-3d-space), MATLAB Central
File Exchange.
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3. Detailed real-world dataset experiment settings

In this section we provide further experiment details for the real-world dataset studied in 3.4.

For both training and validation purposes we generate data using high-fidelity (HF) simulations

for the propagation of stress waves within the microstructure of the heterogeneous, linear elastic

bar. In the following, we use û to denote the HF solution, to distinguish the HF dataset from

the homogenized solution of (3.16). The HF-model is a classical wave equation: the displacement

û(x, t) satisfies, for (x, t) ∈ Ω× [0, T ] with Ω ⊂ R,

∂ttû(x, t)−RHF [û](x, t) = g(x, t), (B.12)

with a force loading term g(x, t), proper boundary conditions and initial conditions û(x, 0) = 0,

∂tû(x, 0) = 0. Considering the heterogeneous bar of two materials depicted in Figure 3.4, (B.12)

describes the stress wave propagating with speed c1 =
√︁
E1/ρ in material 1 and speed c2 =

√︁
E2/ρ

in material 2. We solve the HF-model (B.12) by the direct numerical solver (DNS) introduced in

[83]. The DNS employs the characteristic line method, which provides exact solutions of velocities.

For each grid point xj ∈ Ω at time step tn = n∆t, where ∆t is the time step size, with the calculated

exact velocity v̂(xj, t
n) and the estimated displacement from the last time step û(xj, t

n−1) we update

the HF displacement by

û(xj, t
n) = û(xj, t

n−1) + ∆tv̂(xj, t
n).

With the above procedure, we then consider various boundary velocity loading ∂tûi(x, t), x ∈ ∂Ω,

and force loading gi(x, t) scenarios, and solve for the corresponding HF displacement field ûi(x, t).

Resultant data pairs {ûi, gi}Ni=1 = {ûi(xj, tn), gi(xj, t
n) : j = 1, . . . , J}N,T/∆ti=1,n=0 are employed as the
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training and validation datasets. Discretization parameters for the DNS solver are set to ∆t = 0.01

and max ∆x = 0.01.

The homogenization problem is then to learn the kernel of the nonlocal operator Rϕ that

approximates the operator RHF from data {û, v} generated by RHF [û] = v, where v = ∂ttû − g.

Discretizing the time derivative in (3.16) with the central difference scheme, we obtain

1

∆t2
(ûn+1(x)− 2ûn(x) + ûn−1(x))− g(x, tn) := vn(x),

where ûn(·) := û(·, tn) denotes the solution at time tn. Given D = {ûni (x), vni (x)}N,T/∆ti=1,n=1, our goal

is to learn the kernel ϕ. The loss functional is

E(ϕ) =
∆t

NT

N∑︂
k=1

T/∆t∑︂
n=1

∥Rϕ[ûnk ]− vnk∥2L2(Ω). (B.13)

3.1. Settings on real-world data In the learning problem, we consider four types of data and

use the first three for training and the last one for validation of our algorithm. For all data we

set L = 0.2, ∆t = 0.02, E1 = 1, E2 = 0.25, ρ = 1, and the symmetric domain Ω = [−b, b]. The

estimated support of the kernel has a bound R = 1.65. Two spatial resolutions, ∆x = 0.05 and

∆x = 0.025 are considered, which we denote as the “coarse” and “fine” datasets, respectively.

Type 1 Oscillating source (20 samples in total).

b = 50, T = 2, g(x, t) = exp−( 2x
5jL

)2 exp−( t−0.8
0.8

)2 cos2(2πx
jL

), where j = 1, 2, · · · , 20.

Type 2 Plane wave with cos loading (11 samples in total).

b = 50, T = 2, g(x, t) = 0 and ∂tu(−50, t) = cos(jt), where the loading frequency j =

0.35, 0.70, · · · , 3.85.
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Type 3 Plane wave with sin loading (11 samples in total). b = 50, T = 2, g(x, t) = 0 and

∂tu(−50, t) = sin(jt), where the loading frequency j = 0.35, 0.70, · · · , 3.85.

Type 4 Wave packet (3 samples in total). b = 133.3, T = 100, g(x, t) = 0 and ∂tu(−b, t) =

sin(jt) exp (−(t/5− 3)2), for j = 1, 2, 3.

Notice that the validation dataset (Type 4 dataset) is under a different loading condition from the

training dataset, and with a much longer simulation time.
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Appendix C

1. Detailed nonparametric learning algorithm for learning observa-

tion functions in SSMs

1.1. Dimension of the hypothesis space. The choice of dimension n of hypothesis space is

important to avoid under- and over-fitting. We choose it by minimizing the 2-Wasserstein distance

between the empirical distributions of observed process (Yt) and that predicted by our estimated

observation function. We proceed in 2 steps: first we determine a rough range for n, and then

within this range we select the dimension with the minimal Wasserstein distance.

Step 1: We introduce an algorithm, called Cross-validating Estimation of Dimension Range

(CEDR), to estimate the range [1, N ] for the dimension of the hypothesis space, based on the

quadratic loss functional E1. Its main idea is to restrict N to avoid overly amplifying the estimator’s

sampling error, which is estimated by splitting the data into two sets. It incorporates the function

space of identifiability in Chapter 4 Section 3.1 into the SVD analysis [26, 36] of the normal matrix

and vector from E1.

The CEDR algorithm estimates the sampling error in the minimizer of loss functional E1
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through SVD analysis in three steps. First, we compute the normal matrix A1 and vector b1

in (4.8) by Monte Carlo; to estimate the sampling error in b1, we compute two copies, b and b′, of

b1 from two halves of the data:

b(i) =
1

L

L∑︂
l=1

E [ϕi(Xtl)]
2

M

⌊M
2
⌋∑︂

m=1

Y
(m)
tl

, b′(i) =
1

L

L∑︂
l=1

E [ϕi(Xtl)]
2

M

M∑︂
m=⌊M

2
⌋+1

Y
(m)
tl

. (C.1)

Second, we implement an eigen-decomposition to find an orthonormal basis of L2(ρLT ), the default

function space of learning. The matrix A1 is a representation of the integral operator LK1 in

Lemma 3.2 on H = span{ϕi}ni=1, and LK1 ’s eigenvalues are solved by the generalized eigenvalue

problem

A1u = λBu, where B = (⟨ϕi, ϕj⟩L2(ρLT )) (C.2)

(see [52, Theorem 5.1]). Denote the eigen-pairs by {σi, ui}, where the eigenvalues {σi} are non-

increasingly ordered and the eigenvectors are subject to normalization u⊤i Buj = δi,j. Thus, we have

A1 =
∑︁n

i=1 σiuiu
⊤
i (assuming that all σi’s are positive; otherwise, we drop those zero eigenvalues).

The least-squares estimators from b and b′ are c =
∑︁n

i=1
u⊤i b

σi
ui and c′ =

∑︁n
i=1

u⊤i b
′

σi
ui, respectively.

Third, the difference between their function estimators represents the sampling error (with ∆c =

c− c′)

g(n) :=∥ ˆ︁f − ˆ︁f ′∥2L2(ρLT ) = ∥
n∑︂
k=1

∆ckϕk∥2L2(ρLT ) =
n∑︂

i,j=1

∆ci⟨ϕi, ϕj⟩L2(ρLT )∆cj = ∆c⊤B∆c

=
n∑︂

i,j=1

u⊤i (b− b′)
σi

u⊤i Buj
u⊤j (b− b′)

σj
=

n∑︂
i=1

r2i ,

(C.3)

where ri =
|u⊤i (b−b′)|

σi
. The ratio ri is in the same spirit as the Picard projection ratio

|u⊤i b|
σi

in [36],
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which is used to detect overfitting. Note that the eigenvalues σi will vanish as n increases because

the operator LK1 is compact. Clearly, the sampling error g(n) should be less than ∥f∗∥2L2(ρLT )
, which

is the average of the second moments. Thus, we set N to be

N = max{k ≥ 1 : g(k) ≤ τ}, where τ =
1

LM

L,M∑︂
l=1,m=1

|Y (m)
tl
|2. (C.4)

We note that this threshold is relatively large, neglecting the rich information in g, a subject

worthy of further investigation.

Algorithm 4 summarizes the above procedure.

Input: The state space model and data {Y (m)
t0:tL
}Mm=1.

Output: A range [1, N ] for the dimension of the hypothesis space for further selection.

1: Estimate the empirical density ρLT in (4.16) and find its support [Rmin, Rmax].

2: Set n = 1 and g(n) = 0. Estimate the threshold τ in (C.4).

3: while g(n) ≤ τ do

4: Set n← n+ 1. Update the basis functions, Fourier or B-spline, as in Chapter 4 Section 2.3.

5: Compute normal matrix A1 in (4.8) by Monte Carlo. Also, compute b and b′ in (C.1).

6: Eigen-decomposition of A1 as in (C.2); return A1 =
∑︁n

i=1 uiσiu
T
i with u⊤i Buj = δi,j .

7: Compute the Picard projection ratios: ri =
|u⊤i (b−b′)|

σi
for i = 1, . . . , n and g(n) =

∑︁n
i=1 r

2
i .

8: Return N = n.

Algorithm 4: Cross-validating Estimation of Dimension Range (CEDR) for hypothesis space

Step 2: We select the dimension n and degree for B-spline basis functions to be the one

with the smallest 2-Wasserstein distance between the distribution of the data and that of the

predictions. More precisely, let µftl and µ
ˆ︁f
tl

denote the distributions of Ytl = f(Xtl) and of ˆ︁f(Xtl),
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respectively. Let Ftl and ˆ︁Ftl denote their cumulative distribution functions (CDF), with F−1
tl

andˆ︁F−1
tl

being their corresponding inverses. We compute Ftl from the data and ˆ︁Ftl from independent

simulations, approximate their inverses using quantiles, and consider the root mean squared 2-

Wasserstein distance

(︄
1

L

L∑︂
l=1

W2(µ
f
tl
, µ

ˆ︁f
tl
)2

)︄1/2

, with W2(µ
f
tl
, µ

ˆ︁f
tl
) =

(︃∫︂ 1

0

(F−1
tl

(r)− ˆ︁F−1
tl

(r))2dr

)︃ 1
2

. (C.5)

This method of computing the Wasserstein distance is based on an observation in [14], and it has

been used in [50, 74]. Recall that the 2-Wasserstein distance W2(µ, ν) of two probability measures

µ and ν over Ω with finite second order moments is defined as

W2(µ, ν) := inf
γ∈Γ(µ,ν)

(︃∫︂
Ω×Ω

|x− y|2dγ(x, y)

)︃1/2

,

where Γ(µ, ν) denotes the set of all measures on Ω × Ω with µ and ν as marginals. Let F and

G be the CDFs of µ and ν respectively, and let F−1 and G−1 be their quantile functions. Then

the L2 distance of the quantile functions d2(µ, ν) :=
(︂∫︁ 1

0
|F−1(r)−G−1(r)dr|2

)︂1/2
is equal to the

2-Wasserstein distance W2(µ, ν).

1.2. Optimization with multiple initial conditions With the convex hypothesis space in

(4.15), the minimization in (4.12) is a constrained optimization problem and it may have multiple

local minima. Note that the loss functional EM in (4.12) consists of a quadratic term and two

quartic terms. The quadratic term EM1 in (4.7), has a Hessian matrix A1 which is often not full

rank because it is the average of rank-one matrices by its definition in (4.8), in which case the

quadratic term has a valley of minima in the kernel of A1. The two quartic terms have valleys of
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minima at the intersections of the ellipse-shaped manifolds {c ∈ Rn : c⊤Ak,lc = bMk,l}Ll=1 for k = 2, 3.

Symmetry in the distribution of the state process will also lead to multiple minima (see Section

3.2 for more discussions, and the numerical examples).

To reduce the possibility of obtaining a local minimum, we search for a minimizer from multiple

initial conditions. We consider the following initial conditions: (1) the least squares estimator for

the quadratic term; (2) the minimizer of the quadratic term in the hypothesis space, which is

solved by least squares with linear constraints using ©MATLAB function lsqlin, starting from the

LSE estimator; (3) the minimizers of the quartic terms over the hypothesis space, which is found

by constrained optimization through ©MATLAB fmincon with the interior-point search. Among

the minimizers obtained from these initial conditions, we take the one leading to the smallest

2-Wasserstein distance.

2. Selection of dimension and degree of the B-spline basis

We demonstrate the selection of the dimension and degree of the B-spline basis functions of the

hypothesis space. As described in Chapter 4 Section 2.3, we select the dimension and degree in

two steps: we first select a rough range for the dimension by the Cross-validating Estimation of

Dimension Range (CEDR) algorithm; then we pick the dimension and degree to be the ones with

minimal 2-Wasserstein distance between the true and estimated distribution of the observation

processes.

The CEDR algorithm helps to reduce the computational cost by estimating the dimension

range for the hypothesis space. It is based on an SVD analysis of the normal matrix A1 and vector

b1 from the quadratic loss functional E1. The key idea is to control the sampling error’s effect

on the estimator in the metric of the function space of learning. The sampling error is estimated
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by computing two copies of the normal vector through splitting the data into two halves. The

function space of learning plays an important role here: it directs us to use a generalized eigenvalue

problem for the SVD analysis. This is different from the classical SVD analysis in [36], where the

information of the function space is neglected.

Fig8
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Figure 8: The selection of the dimension and the degree of B-spline basis functions in the case of Sine-Cosine
function. In (a), the 2-Wasserstein distance reaches minimum among all cases when the degree is 2 and the knot
number is 15, at the same time as the L2ps⇢L

T q error reaches the minimum. Figure (b) shows the cross-validating
error indicator g (defined in (B.3)) for selecting the dimension range N , suggesting an upper bound N “ 60 with
the threshold.

error as the dimension increases. A future direction is to extract the information, along with the decay
of the integral operator, to find the trade-off between sampling error and approximation error.

References
[AGS05] Luigi Ambrosio, Nicola Gigli, and Giuseppe Savaré. Gradient Flows: In Metric Spaces and

in the Space of Probability Measures. Lectures in Mathematics ETH Zürich. Birkhäuser,
Boston, 2005.

[BCR84] Christian Berg, Jens Peter Reus Christensen, and Paul Ressel. Harmonic analysis on semi-
groups: theory of positive definite and related functions, volume 100. New York: Springer,
1984.

[Bil13] Stephen A Billings. Nonlinear System Identification. John Wiley & Sons, Ltd, Chichester,
UK, 2013.

[CMR05] Olivier Cappé, Eric Moulines, and Tobias Rydén. Inference in Hidden Markov Models.
Springer Series in Statistics. Springer, New York ; London, 2005.

[CZ07] Felipe Cucker and Ding Xuan Zhou. Learning theory: an approximation theory viewpoint,
volume 24. Cambridge University Press, 2007.

[DNBK17] Omer Dror, Boaz Nadler, Erhan Bilal, and Yuval Kluger. Unsupervised Ensemble Regres-
sion. ArXiv170302965 Cs Stat, 2017.

[FGHO97] R. D. Fierro, G. H. Golub, P. C. Hansen, and D. P. O’Leary. Regularization by Truncated
Total Least Squares. SIAM J. Sci. Comput., 18(4):1223–1241, 1997.

23

Figure C.1: Selection of the dimension and degree of B-spline basis in the case of Sine-Cosine function.

In (a), the 2-Wasserstein distance reaches minimum among all cases when the degree is 2 and the knot

number is 15, at the same time as the L2(ρLT ) error reaches the minimum. Figure (b) shows the cross-

validating error indicator g (defined in (C.3)) for selecting the dimension range N , suggesting an upper

bound N = 60 with the threshold.

Figure C.2 shows the dimension selection by 2-Wasserstein distances and by the CEDR algo-

rithm for the example of Sine-Cosine function. To confirm the effectiveness of our CEDR algorithm,

we compute the 2-Wasserstein distances for all dimensions in (a), side-by-side with the CEDR sam-

pling error indicator g in (b) with relatively large dimensions {n = 75− deg| for deg ∈ {0, 1, 2, 3}.

First, the left figure suggests that the optimal dimension and degree are n = 13 and deg = 2, where

the 2-Wasserstein distance reaches minimum among all cases, and at the same time as the L2(ρLT )

error. For the other degrees, the minimum 2-Wasserstein distances are either reached before of af-

ter the L2(ρLT ) error. Thus, the 2-Wasserstein distance correctly selects the optimal dimension and
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degree for the hypothesis space. Second, (a) shows that the CEDR algorithm can effectively select

the dimension range. With the threshold in (C.4) being τ = 1.60, which is relatively large (repre-

senting a tolerance of 100% relative error), the dimension upper bounds are around N = 60 for all

degrees, and the ranges encloses the optimal dimensions selected by the 2-Wasserstein distance in

(b).

Here we used a relatively large threshold for a rough estimation of the range of dimension.

Clearly, our cross-validating error indicator g(k) in (C.3) provides rich information about the in-

crease of sampling error as the dimension increases. A future direction is to extract the information,

along with the decay of the integral operator, to control, both in theory and algorithmically, the

trade-off between sampling error and approximation error.
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