
DATA REPLICATION STRATEGIES IN CLOUD COMPUTING

A Thesis
Submitted to the Graduate Faculty

of the
North Dakota State University

of Agriculture and Applied Science

By

Yang Liu

In Partial Fulfillment of the Requirements
for the Degree of

MASTER OF SCIENCE

Major Department:
Computer Science

July 2011

Fargo, North Dakota

North Dakota State University
Graduate School

Title

DATA REPLICATION STRATEGIES

IN DISTRIBUTED SYSTEMS

By

YANG LIU

The Supervisory Committee certifies that this disquisition complies with North Dakota State
University's regulations and meets the accepted standards for the degree of

MASTER OF SCIENCE

North Dakota State University Libraries Addendum

To protect the privacy of individuals associated with the document, signatures have been
removed from the digital version of this document.

ABSTRACT

Liu Yang, M.S., Department of Computer Science, College of Science and Mathematics,
North Dakota State University, July 2011, Data Replication Strategies in Cloud
Computing. Major Professor: Dr. Weiyi Zhang.

Data replication is a widely used technique in various systems. For example, it can be

employed in large-scale distributed file systems to increase data availability and system

reliability, or it can be used in many network models (e.g. data grid, Amazon

CloudFront) to reduce access latency and network bandwidth consumption, etc. I study

a series of problems that related to the data replication method in Hadoop Distributed

File System (HDFS) and in Amazon CloudFront service. Data failure, which is caused

by hardware failure or malfunction, software error, human error, is the greatest threat to

the file storage system. I present a set of schemes to enhance the efficiency of the

current data replication strategy in HDFS thereby improving system reliability and

performance. I also study the application replication placement problem based on an

Original-Front sever model, and I propose a novel strategy which intends to maximize

the profit of the application providers.

iii

ACKNOWLEDGMENTS

First, I wish to express my sincere gratitude to my supervisor, Professor Weiyi Zhang,

for his patience, enthusiasm and encouragement. His logical way of thinking and his

knowledge have been of great value for me in these two years. I could not have

imagined having a better advisor for my Master's study.

Besides my advisor, I would like to thank all of my thesis committee members: Dr.

Kong Jun, Dr. Chao You, and Dr. Changhui Yan, for their insightful comments and

encouragement. I owe my deep gratitude to Dr. Jun Zhang for her valuable advice and

friendly help for my Master's thesis. I also want to thank my lab-mates in Visual

Computing And Advanced Network (ViCAN) Laboratory: Shi Bai, Farah Kanda and

Yashaswi Singh for all of your help in these two years.

Last but not the least, my deepest gratitude goes to my family for their unflagging love

and support throughout my life. And I also owe my deepest loving thanks to my bride

Xiaoqing Luo. Only six days after we got married I had to come back to the U.S.

Without her encouragement and understanding, it would have been impossible for me to

finish this work.

IV

TABLE OF CONTENTS

ABSTRACT .. iii

ACKNOWLEDGMENTS ... iv

LIST OF TABLES ... vii

LIST OF FIGURES ... viii

CHAPTER 1. INTRODUCTION ... 1

1.1 HDFS and MapReduce .. 3

1.2 Data Replication .. 4

1.2.1 Replication Factor ... 5

1.2.2 Replica Placement Strategy ... 5

1.3 Original-Front Server Model ... 6

1.4 Work Overview ... 7

CHAPTER 2. REPLICATION FACTOR DECISION .. 8

2.1 Introduction ... 8

2.2 Related Work .. 8

2.3 Replication Factor Decision Problem ... 9

2.4 Dynamic Replication Factor Decision Strategy .. 11

2.4.1 The First Phase ... 11

2.4.2 The Second Phase ... 13

2.5 Numerical Results ... 15

CHAPTER 3. REPLICA PLACEMENT POLICY .. 18

3.1 Introduction ... 18

3.2 Related Work .. 21

3.3 Replica Placement Policy .. 22

3.4 File Type Aware Replica Placement Strategy .. 24

3.4.1 DataNodes Evaluation with AHP .. 25

3.4.2 Roulette Wheel Selection (RWS) Method ... 28

3.5 Numerical Results ... 28

CHAPTER 4. APPLICATION REPLICA STRATEGY ON CLOUD-FRONT SERVER

... 32

V

'
4.1 Introduction ... 32

4.2 Related Work .. 34

4.3 Problem Statement .. 35

4.4 Proposed Solutions .. 37

4.4.1 OFS Model with Single Application .. 37

4.4.2 OFS Model with Multi-Applications ... 41

4.5 Numerical Results ... 45

CHAPTER 5. CONCLUSIONS .. 48

REFERENCES ... 50

vi

-,

LIST OF TABLES

I. Probability of Data Loss to each Importance Level ... 12

2. Saaty's Scale of Relative Importance .. 25

3. Pair-wise Comparison Matrix ... 26

4. Synthesized Matrix C ... 27

5. Illustration of the Evaluation of the DataNodes .. 27

6. Example of Algorithm 2 Multi-Apps H-MOAR ... 46

Vil

LIST OF FIGURES

1. Hadoop Distributed File System Architecture ... 3

2. Network Band/Disk Space Consumption Ratio ... 16

3. MMSE of Network Bandwidth/Disk Space Consumption 16

4. Replication Factor .. 17

5. MMSE of the CIR ofDNs .. 30

6. MMSE of the IIR ofDNs ... 31

7. MMSE of the SIR of DNs .. 31

8. Illustration for Original-Front Server Model ... 33

9. Algorithm I Single App H-MOAR ... 39

l 0. Illustration of Algorithm l Single App H-MOAR ... 40

11. Algorithm 2 Multi-Apps H-MOAR .. 42

12. Illustration of Algorithm 2 Multi-Apps H-MOAR .. 43

13. Profit of Application Providers ... 46

14. Satisfaction Ratio of Customers .. 47

15. Number of Deployed Front Servers .. 47

Vlll

CHAPTER 1. INTRODUCTION

Cloud computing, as the newest technology, might change the way we work and

the way we use hardware, software and the internet. From governments to public and

private organizations, cloud computing is significantly and fundamentally influencing

the IT landscape. Combining lots of technologies, such as distributed computing,

distributed file storage, virtualization, etc., cloud computing venders intend to provide

the computing and storage resource as a kind of utility, such as water and electricity, to

us. Amazon, one leader of the cloud computing providers, has found a commercial

model of cloud computing successfully. In this work, I study the data replication

strategies which have been used in two of the Amazon products, Amazon Elastic

MapReduce [15] and Amazon CloudFront [16], which are two commercial products

that have been launched by the department of Amazon Web Service. Briefly speaking,

Amazon Elastic MapReduce is a distributed computing framework which could support

the customers by processing vast amounts of data easily and cost-efficiently. Amazon

CloudFront service uses data replication technique to deliver the content to the clients

with low latency, and high data transfer speed by using a global network of edge

locations which is also named front servers.

Data replication is a widely used technique in various systems and networks for

distinct purposes. For example, data replication can be employed in large-scale data

storage system to protect the data from data loss; it can also be used in many network

models or web services to reduce access latency and increase data availability, such as

in Amazon CloudFront service or in Peer-to-Peer systems.

1

In Chapter 2 and Chapter 3, I study the data replication problem in the Hadoop

system which is one of the core platforms in Amazon Elastic Map Reduce. As a widely

used distributed storage system and distributed computing platform, Hadoop consists of

two major components: 1) Hadoop distributed file system (HDFS) [3], the primary

distributed storage system used by Hadoop; 2) MapReduce, a programming framework

developed by Google [2] for processing large amounts of data in parallel. To the best of

our knowledge, Hadoop system is employed by many big companies such as Yahoo!,

Facebook, Amazon, etc.

Hadoop Distributed File System is designed for running on large-scale lost-cost

commodity hardware. However, one of the greatest problems for the commodity

hardware is frequent and permanent hardware failure. Intending to alleviate permanent

data loss, in HDFS, data replication scheme is adopted.

Previous works have proved that, a delicately designed replica placement strategy

can not only improve the reliability of the file system, but also enhance the performance

of the MapReduce application in Hadoop system [7], [8]. However, the current data

replication policy in HDFS has a wide space for research studies. The replication factor

is decided by the users subjectively which could cause data redundancy or unsatisfied

reliability. Moreover, when the current replica placement strategy in HDFS selects

computers for storing the data, the condition of the computers have not been considered

sufficiently. Therefore, in Chapter 2 and 3, I intent to find a more efficient date

replication strategy which could improve system reliability and performance.

In Chapter 4, I focus on an application replication placement problem based on an

2

original-front sever model which is used by Amazon CloudFront [16].

1.1 HDFS and MapReduce

Intending to store and manage enormous data sets reliably and efficiently, Google

developed a distributed file system named Google File System [l] and a distributed

computing software model named MapReduce [2]. Based on Google File System and

MapReduce software framework, Apache Software Foundation develops the open

source project named Hadoop [5]. Fig. 1 illustrates the architecture of the Hadoop

Distributed File System.

~

ops ~_.,.-..,.,
Meta~data •

~ NameNode

~ Client

J
aY ---~-----

0 ·:·.· ~---~

01·:.:1
0 ••• • ••

1: ••• 1
Rack 1

00
~<S>

0 , '

Replication

Client

Fig. I Hadoop Distributed File System Architecture

~

Q DataNode

• Block file

~ Client

• • •
Rack 2

There are mainly two types of nodes in HDFS architecture operating m

3

master/slave model: a single NameNode and multiple DataNodes, where the NameNode

is in charge of the management of the file system metadata and namespace, and the

DataNodes are the physically container of the data. The files in HDFS can be very large,

typically from gigabytes to terabytes. Intending to provide high throughput access for

the clients, the files are first divided into sequences of blocks and stored on different

nodes. All blocks of a file are the same size (e.g. 64 MB, 128 MB or more) except the

last block. A single DataNode can host millions of blocks files. Data coherency issues

are solved by using a write-once-read-many access model in HDFS, which means once

a file is written down and closed, it cannot be changed. The NameNode maintains the

physical location of each block file on DataNodes and the namespace of the system.

The MapReduce framework adopts a master/slave model, in which there is a single

master named JobTracker and multiple slaves named TaskTracker. The master is in

charge of the schedule of the tasks on the slaves, while the slaves will perform the tasks

assigned by the master. In Hadoop system, because HDFS is running on the same set of

machines with MapReduce framework, the tasks are scheduled efficiently on the

DataNodes where data is already stored.

1.2 Data Replication

Because an HDFS instance may have thousands of commodity machines, hardware

failure happens frequently. Therefore, one of the core architectural targets ofHDFS is to

design an efficient scheme to protect data from data loss. The general idea of data

replication is to store multiple copies of the file in distinct locations; when one replica

or multiple replicas of a file fail, as long as there is still one replica of this file survived,

4

the rebuilding process can be initiated to create the copies of this file on other survived

nodes. The data replication policy which is used in HDFS needs to solve two problems:

1) how many replicas are necessary? 2) what is the best placement strategy for placing

these replicas?

1.2.1 Replication Factor

Replication factor does not only affect the reliability of the files, but also impact the

performance of the MapReduce applications in Hadoop. As shown in [5], when the

replication factor is changed from 3 to 2, the performance of the MapReduce

application is degraded. In contrast to the current replication factor scheme used in

HDFS, In Chapter 2, I propose a dynamic replication factor decision strategy that the

NameNode could calculate and dynamically adjust the replication factor for each file.

1.2.2 Replica Placement Strategy

A reasonable replica placement policy could reduce access latency, facilitate load

balancing, as well as saving network bandwidth consumption. At present, the files in

HDFS are replicated on multiple DataNodes with a rack-aware replica placement

policy [3], [5]. The computers in a large cluster which is running HDFS normally

spread across lots of racks. The communication between two nodes in different racks

could cost more network bandwidth compared to the consumption between two nodes

in the same rack. On the other side, the replicas spreading in multiple racks could

prevent data loss when the entire rack fails during some unexpected situations. The

current policy achieves the tradeoff between the network bandwidth utilization and the

reliability of the system. However, it does not fully consider the workload balancing of

5

the DataNodes. In Chapter 3, I propose a file type aware replica placement strategy for

improving the placement policy currently employed in HDFS.

1.3 Original-Front Server Model

The network model used in Amazon CloudFront service can be described as an

original-front server model. Data is initially stored on the original server, and the

replicas of the data are sent to the front servers which are located close to the customers.

In this model, the applications which are ordered by the customers are delivered to the

suitable front servers. Particularly, in our work, three parties are involved in this model:

1) cloud service vender, 2) application provider, and 3) application customer.

Application providers create the applications and put them on the original storage server

which is provided by the cloud service vender. Customers purchase the applications

from the application providers, and they always expect the applications could be

delivered with low latency. However, it is difficult for the original server to satisfy all

requests due to the long distance or the network congestion. As a consequence, the

provisioning time could be longer than the expected time. Intending to solve this

problem, data replication strategy is adopted by the cloud service vender.

The contribution of our work is in three respects. Firstly, comparing with the

current replication factor scheme used in HDFS, our dynamic replication factor decision

strategy could improve both the system reliability and resource utilization balancing.

Furthermore, the performance of the MapReduce application in Hadoop is enhanced

due to the suitable replication factor used by the system. Secondly, I present a file type

aware replica placement strategy which is operated in two steps. The first is to evaluate

6

the value of the DataNodes with Analytic Hierarchy Process. The second is to select the

DataNode by using the method of Roulette Wheel Selection. The analysis results show

that the resource unitization of the system tends to achieve balancing by using our new

strategy. Thirdly, based on the original-front server model, the application replication

problem is presented from a novel aspect which is to maximize the profit of the

application providers. Two efficient heuristic algorithms are proposed to solve this

problem.

1.4 Work Overview

In this work, I have three major topics. In Chapter 2, the replication factor decision

problem in HDFS is studied and a dynamic replication factor decision strategy is

proposed. In Chapter 3, I study the replica placement strategy in HDFS, and I propose a

file type aware replica placement strategy intend to achieve resource utilization

balancing. In Chapter 4, I study the application replication placement problem based on

an Original-Front sever model, and I propose a novel strategy which intends to

maximize the profit of the application providers.

All of the conclusions of these three problems are made in Chapter 5.

7

CHAPTER 2. REPLICATION FACTOR DECISION

2.1 Introduction

Data failure, which is caused by hardware failure or malfunction, software error, or

human error, is the greatest threat for any data storage system. In order to achieve data

reliability and durability, various redundancy schemes have been used in large-scale

data system. Data replication is one of the widely used schemes [I], [8], [9]. A data

replication policy essentially studies two major issues: 1) the replication factor and 2)

the replica replacement strategy.

As previously mentioned, the replication factor could be configured by the HDFS

users file to file subjectively. The default replication factor in HDFS is 3. If the users

realize that some files are more important than others, they would set the replication

factor of these files to a higher value. Not surprisingly, in this way whether replication

factor is adequate for the files or not depends on the experience of the users; in other

words, this strategy is too subjective to achieve high precision.

Traditionally, estimating the replication factor of a file is a tradeoff between space

consumption and reliability; whereas in Section 2.3 I analyze the replication factor

problem in HDFS from a novel aspect, and then in Section 2.4 I present a method to

calculate the replication factor dynamically and periodically.

2.2 Related Work

In [18], by using the particular measure of reliability of the storage system, named

probability of data loss during rebuilding process, the upper and lower bounds are

defined. The numerical results in [18] proved that this measurement is reasonable for

8

estimating the reliability of the system.

In [31], the authors proposed a dynamic content distribution system named

dissemination tree based on a peer-to-peer location service. The number of replicas and

the network bandwidth consumption are significantly reduced.

In [5], the authors show us replica placement in HDFS does not only affect the

reliability of the system, but also affect the MapReduce processing efficiency in the

Hadoop project. From the experiment results, we can see the MapReduce processing

rate is higher when the replication factor of the files is 3 than when the factor is 2.

2.3 Replication Factor Decision Problem

Given a large cluster deployed with HDFS, there are a single NameNode, and n

DataNodes mapped into k racks. By considering the availability and reliability of the

system, block files will be placed on multiple DataNodes. For the block file with r1

replicas, these replicas are distributed in rrout of n DataNodes when r1< n.

The determination of the reasonable replication factor requires an assumption: each

file has an assigned level of importance on a scale of 1 to 5. The levels have

corresponding probabilities of data loss. The probability of data loss of a file with r

replicas deployed on r DataNodes could mean the probability of all of the r DataNodes

fail before this file is successfully copied to an available DataNode.

The authors in [2] demonstrate the policy exploited by the MapReduce

programming framework in Hadoop for arranging map and reduce tasks. When the file

J; is requested for analysis by a MapReduce job, the Job Tracker [2] in Hadoop system

attempts to schedule map tasks on the DataNodes which hosted the block files of J;.

9

However, among these DataNodes, some of them may already have many other tasks

been scheduled. Due to the competition for CPU or memory, the processing time for

some of the new tasks becomes unacceptable probably. These tasks are marked as

"stragglers" [2]. The mechanism that has been used in MapReduce is these "straggler"

tasks would be rescheduled and processed on other DataNodes. For example, ifthere is

a block file bf; replicated on three DataNodes, but all three DataNodes are occupied

when the map task calls, bf; should be copied to another idle DataNode to complete the

operation. This process does not only increase the processing time, but also increases

network bandwidth consumption which is recognized as a scarce resource. Obviously, if

the file J; could have more replicas r1 > 3 distributed on different machines, for a single

block file, the probability that all r1 DataNodes are occupied simultaneously is less.

In contrast to the replication factor decision problems which address the tradeoff

between the reliability and disk space consumption, I do not only consider the reliability,

but also consider the tradeoff between the disk space consumption rate and the network

bandwidth consumption rate.

Given a file J;, if replication factor of J; is relatively low compared with the optimal

value, the disk space is saved, but on the other side, the transmission of J; among the

DataNodes may happens more. By contrast, if the replication factor is set to a relatively

high value, more disk space is occupied instead of network bandwidth consumption.

Therefore, our objective in this Chapter is to find the optimal replication factor to

satisfy the reliability requirement and achieve the resource utilization balancing.

10

...

2.4 Dynamic Replication Factor Decision Strategy

In this section, I propose a two-phase dynamic replication factor decision strategy.

Briefly speaking, in the first phase, the NameNode evaluates the replication factor for

each file based on the corresponding reliability requirement; in the second phase, at

each interval, the NameNode adjusts the replication factor for each file intend to

achieve resource utilization balancing.

2.4.1. The First Phase

Assuming that each DataNode fails independently, we get the following two

circumstances which could cause data loss:

1) The permanent failures occur simultaneously on r DataNodes. The files whose

replicas are all distributed among these r DataNodes, then these files are identified

as data loss.

2) Only one ofreplica out ofr is available, in the other words, (r-1) DataNodes which

host the replicas offileffail simultaneously. The DataNode DN, which hosts the last

replica of file f would rebuild this file by transferring it to the other available nodes.

Data loss could occur if DN; fails before the rebuild process is finished successfully.

The probability of the second condition is no less than the first condition, which means:

P{nl(r-1) nodesfailed} ?.P{r nodesfailed}

Where n is the event that data loss happens because the last DataNode which hosted f

failure before the rebuilding process finished.

The second condition has been studied in [18]. The replica placement model in our

work is the same as the de-clustered placement model mentioned in [18]. Hence I adopt

11

the results in [18] to calculate the replication factor which is able to satisfy the

reliability requirement. The probability of data loss during the rebuilding process is

bounded by the following function:

Anc 1 1 < r; < 2lnc _I_

b (n)o+k) - b (n)
r-1 b r-1

(2.4. l)

Where r;=P(n:l(r-1) nodesfailed},Ais the practical values of the failure rate, bis the

node rebuild bandwidth, c is the node capacity, and n is the amount of nodes.

From formula 2.4.1 we can see that if we try to make the practical reliability no less

than the expected reliability, we need to satisfy the upper bound of r; in formula 2.4.1

for calculating the replication factor. If each importance level has a corresponding value

of the probability of data loss, we can calculate the value of replication factor for each

importance level by using formula 2.4.1. Table I. shows us the practical probability of

data loss for each importance !eve I.

Table. 1 Probability of Data Loss to each Importance Level

Importance Level Probability of Data Loss

I 1*10-3

2 1 * 1 o-4

3 1*10-5

4 1 * 1 o-6

5 1 * 10-7

For instance, in a system, given the amount of DataNodes n= 100, storage capacity

of each node c= 12 TB, rebuild bandwidth available at each node b= 96 MB/s, mean time

to failure of a node }.,=1000 hours, if the importance level of the file f, is 3, which

means we expect that the probability of data loss of file f, r; Ji ~ 10-5
, replication factor

12

..

of J; can be set as 4. Because when r r, = 4, the upper bound of c; in formula (2.4.1)

equals to 2.38*10-6
, and 4 is the minimum number that can satisfy the expected

probability of data loss offileJ;.

2.4.2. The Second Phase

In the first step, the NameNode has calculated the replication factor of the files

independently according to the importance level. In the second step, I theoretically

analysis the replication factor based on the resource utilization balancing between disk

space and network bandwidth.

The resource utilization balancing is described as the tradeoff between the disk

space consumption rate and the network bandwidth consumption rate. The tradeoff can

be formulated as the following formula:

R f,
DS

Rr, =µ
NB

(2.4.2)

Where µ is a constant, R£. is the disk space proportion which is consumed by file J;,

and Rj8 denotes the network bandwidth proportion which is consumed by file J;.

Given a file J;, a fl is the amount of blocks of J;, bs is the size of each block, and

rfi is the current replication factor of J;, storage consumption rate ofJ; is calculated as:

Rr,
ns

aft x bs x rfl
(2.4.3)

n

Where LSDNJ is the amount of the storage space of the file system.
j=l

Let us introduce several important concepts in term of Map Reduce program based

on the data replication strategy. In HDFS, most CPU resources of the DataNodes are

13

consumed by map and reduce tasks for data analysis. For a DataNode DN,, if the CPU

utilization rate remains at high, it is rarely able to respond to new tasks during this

period. By using a practical threshold X, when the CPU utilization rate of the DataNode

DN; over X, we define this DataNode is in the occupied-status. Otherwise, it is defined

in idle-status. For simplicity, during interval T;n (e.g., one day or one week), the

probability that DN; has enough CPU resource to respond to new tasks is calculated as:

""""ff)N,
pDNi = ~ OCl'U

occu
T;n

Where t~~~; represents the time when DN, is in occupied -status.

(2.4.4)

Moreover, co;,· represents the times of file f, that called by the MapReduce jobs

during the interval Tm, The amount of the blocks off; which are transferred to the other

DataNodes to execute the map tasks in T;n is calculated as:

(2.4.5)

The network bandwidth consumption rate R~~ during T111 is calculated as:

Rr,
SB BxT

In

(2.4.6)

Combining the formula 2.4.3 with the formula 2.4.6, we get the following function:

ar, xbsxrr,
n

LSDN1
J=I

afi

""(pI>N,)'' xa/;. xbs
~ occu fi
k=I X µ

BxT,n
(2.4.7)

By using formula 2.4. 7, the replication factor of the file f, is calculated during the

time interval T;n, and then the NameNode will compare the value of rfi with the value

ofr calculated in the first phase. If rfi > r, then the replication factor of!, is adjusted to

14

rfl, otherwise, the replication factor off, will still be r.

2.5 Numerical Results

In this section, I evaluate the performance of our dynamic replication factor

decision strategy. Given a HDFS cluster with 100 DataNodes, there are 10000 new files

need to be uploaded to the cluster. Because the availability of the threshold of the

probability of data loss during rebuilding process has been proved in [18], we did not

evaluate the reliability of the system which is ensured by the first phase of the DRFD

strategy. I compared the performance of our Dynamic Replication Factor Decision

(DRFD) strategy and the Current Replication Factor (CRF) strategy in HDFS, in terms

of the ratio of the network bandwidth consumption rate and the disk space consumption

rate. I expect the ratio can achieve the constantµ as we set in different conditions. Fig.

2 illustrates that with the average CPU utilization rate of the system increasing, this

ratio keeps on the value we set approximately by using our strategy. In this simulation,

the value of the constantµ is 1. I also observe that the ratio is very far fromµ by using

the current replication factor strategy. It means that our DRFD strategy has a better

performance in terms of the resource utilization balancing. This conclusion can also be

proved by Fig. 3, in which the Y-axis is the Minimum Mean-Square Error (MMSE) of

the consumption rate of the network bandwidth and disk space.

Fig.4 shows that with the system gets busier, the average replication factor gets higher

by using our DRFD strategy. By contrast, the current replication factor strategy in

HDFS could not adjust the value dynamically.

15

0
.:,

~
C
0

a
E
:,
1/)
C

8
~
111 a.

Cl)

.I<:
1/)

i:S
::c:
'c
~
C
111 ca
~

I z

0.4

0.3

0.2

0.

-e- DRFD

-+- CRF=2
···· ·· • 1 -B- CRF=3

Average CPU Utilization Rate

Fig. 2 Network Band/Disk Space Consumption Ratio

1.4

0
-9-0RFD

"j --lt--cRF=2 ...
-B- CRF=3 C

0 ·a
E
:,
1/)
C

8
~ 0.8 111 a.

Cl)

.I<:
1/)

i:S 0.6 --.c
'c
'§
-0 0.4 C
111 ca

.I<: ...
0

~
Q)

z

0.6 0.65
Average CPU Utilization Rate

Fig. 3 MMSE ofNetwork Bandwidth/Disk Space Consumption

16

~
ro u.
C
0

~
a.
Q)

0::

16 -e- DRFD

-+- CRF=2
14 -e- CRF=3

0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65
Average CPU Utilization Rate

Fig. 4 Replication Factor

17

CHAPTER 3. REPLICA PLACEMENT POLICY

3.1 Introduction

The data replication policy needs to solve two problems: one is "how many replicas

are necessary", and the other is "what is the best placement policy for placing these

replicas". In Chapter 2, I have presented a dynamic strategy for estimating the

replication factor; in this Chapter, I propose a novel replica distribution policy for

improving the availability and the performance ofHDFS.

The current replica placement policy in HDFS is called rack-aware replica

placement policy. The nodes in a large cluster which is running HDFS normally spread

across lots of racks.

The communication between two nodes from different racks could cost more

network bandwidth compared with the nodes in the same rack. On the other side, the

replicas of a file spreading in multiple racks could prevent data loss when the entire

rack fails due to the unexpected situations. The following replica placement strategy is a

tradeoff between the network bandwidth utilization and the reliability of the system:

1) The first replica is deployed randomly on the DataNode DN1 in rack ra,.

2) The DataNode DN2 which is randomly chosen to host the second replica is also

in rack ra,. DN1 streams the replica to DN2.

3) The DataNode DN3 which is randomly chosen to host the third replica is in the

rack ra1. where (ii-J). The replica is streamed from DN2 to DN3

4) The subsequent replicas are randomly placed in the DataNodes and should

always obey the rule that no two replicas are placed in the same DataNode and

18

no more than two DataNodes host the same replica in the rack if there are

enough DataNodes.

This replica placement policy is a simple way for achieving the tradeoff between the

reliability and network bandwidth cost. However, the main issue in the whole procedure

is that the random selections are used frequently without considering the condition of

the selected DataNodes. As a consequence, unbalanced workload of the DataNodes

occurs in the cluster. Although HDFS develops a tool Balancer to balance disk space

usage when some DataNodes become full or new nodes join the cluster, it takes lots of

time and costs extra network bandwidth. Therefore, intending to overcome the

disadvantages of the current replica placement policy, I propose a file type aware

replica placement strategy for selecting the optimal candidate nodes for the coming

files.

By investigating the usages of the HDFS [19] [3], we find three main features:

l) HDFS is designed to store large-scale data reliably.

2) HDFS provides fast access to the data when a large number of clients launching

reading requests.

3) HDFS cooperates well with MapReduce framework to process complex data

analysis.

The types of the files stored in the HDFS have been studied in previous works [2], [3].

After analyzing the file types mentioned in these works, we recognize that the types can

be divided into three categories based on the computer resources they mainly

consumed:

19

L

1) Computing-type file

This type of file, such as crawled documents, web request log, etc. [2], needs to be

executed by MapReduce application to analysis different derived data, such as

inverted indices, graph structure of web documents, etc. The processing time of

many large-scale files can last for several hours even several days.

2) 1/0 throughput-type file

Some companies employ HDFS for storing streaming media files, such as videos

and figures, because HDFS provides high throughput access to the data. This type of

file does not occupied CPU resources, but it consumes lots of 1/0 throughput

resource of both the disk and the network. As a well designed distributed file system,

HDFS overcomes the 1/0 throughput bottleneck issue which occurs in the single

disk. For example, the 1/0 throughput of a standard SATA hard disk is 60 MB/S,

which has became a big bottleneck for the computer. HDFS could solve this

limitation by dividing the files into multiple block files and placing them on

multiple nodes. When the reading requests are coming, data can be accessed in

parallel from multiple nodes.

3) Storing-type file

For many companies, there are a vast amounts of data need to be stored reliably.

The data may rarely be operated. But the reliability of the storage system is very

important. In this situation, the main motivation to use HDFS is that HDFS could

provide low-cost storage space with high reliability and durability.

20

For a typical computer, we could separate its capacities into three types: computing

capacity, l/0 throughput capacity, and storage capacity. Correspondingly, different

types of files as I mentioned could primarily consume one of these three capacities of a

computer. Intending to utilize the computer resource reasonably, we should avoid the

unbalanced capacity consumption of the DataNodes. For example, if the storage idle

rate of a DataNode DN; is 10%, but the average CPU idle rate of DN; is 80%, it

indicates that there is a waste for DN,'s computing capacity. To avoid this situation, I

aim to utilize the various capacities of a single DataNode as balanced as possible. For

choosing the optimal DataNodes to host the block files, we should estimate the various

capacities of the DataNodes comprehensively. In this work, a powerful tool for analysis

of complex decision problems which called Analytic Hierarchy Process (AHP) is

applied for evaluating the DataNodes in terms of three capacities. Then the values of all

DataNodes are sent to the NameNode for decision making.

3.2 Related Work

Data replication is a widely used strategy to protect the data storage systems,

especially the large ones, from data loss. By reasonably deployed multiple replicas of a

file into different instances in the system, the lost data can be rebuilt quickly as long as

there is one available instance which hosts the data file.

In [3], the researchers state the current widely-used replica placement policy of

HDFS, and they also show the analysis reports collected from a cluster using HDFS to

manage 25 petabytes of enterprise data at Yahoo!

To defend against frequent failure in the large cluster, various approaches have been

21

l

l

adopted by different enterprises and distributed file systems. Such as Redundant Arrays

of Inexpensive Disks [11], which is well-known as a single disk failure tolerant

technology, has been used by some distributed files systems like PVFS [12] and Lustre

[14]. DiskReduce [15] is an application of RAID in HDFS to save storage capacity. In

other words, it is a modification of the HDFS to asynchronously replace replicas of

block files with RAID 5 and RAID 6 encodings.

However, to the best of our knowledge, RAID could only protect against failure

that happened on the disk, which denotes that if the machine becomes unavailable due

to some others reasons, the data hosted by this machine will be non-functional.

The Analytical Hierarchy Process (AHP) is a decision-aiding method developed by

Saaty [20]. AHP is most widely used in analyzing feasible alternatives when multiple

criteria need to be considered on a rational basis. Based on the judgment of the

decision-maker, which may be one people or a group, it aims at evaluate a set of

alternatives on a ratio scale [24].

3.3 Replica Placement Policy

In Chapter 2, I have studied the problem of how many replicas are necessary for a

single file. In this section, I study the problem that where these replicas should be

placed. The current replica placement policy in HDFS is considered to be a sound

policy in terms of reliability and network bandwidth consumption; however, it does not

achieve resource utilization balancing when arranging the files to the DataNodes due to

the random selection. Hence, I present a file type aware replica placement policy.

Comparing with the current policy used in HDFS, a major benefit of our new policy is

22

that the system could achieve resource utilization balancing which could further

improve the availability of the Map Reduce application.

With deploying a scalable distributed monitoring application called Ganglia

Monitoring System [17] in HDFS, the NameNode can gather the following information

of each DataNode periodically:

I) CPU idle rate R iw, ;
cpu

2) 1/0 idle rate Ri~, ;

3) Storage idle rateR~::.;

The average CPU idle rate R,~'; of all the DataNodes is calculated by:

(3.3.1)

Similarly, the average 1/0 idle rate Ri;f can be calculated by the formula 3.3.2 and the

average storage idle rate R;;;e could be calculated by the formula 3.3.3.

n
"Rrw,
£.... 110

R Avg _ .1=1
110 ----

n

n
"RDN,
L...i space

RAvg = _J=_I __
space

n

(3.3.2)

(3.3.3)

Our objective is to achieve resource utilization balancing which could further

improve the efficiency of the whole Hadoop system. Our objective in this section is

formulated as follows:

23

Object:

Subject to:

Min Max RDN, Avg DN, Avg DN, Avg {
2 2 2}

(cp11 - R,p11) + (Rl/0 - Rl/0) + (Rspace - Rspace)

{, RDN,
L.... '-PU

RAvg = ..;...i=_,_1 __
(,PU n

n

II "°' R'w, L..,. space
RAl-g = _i=_I -

space
n

i=J, ,n.

i=l, ,n.

i=l, ,n.

3.4 File Type Aware Replica Placement Policy

(3.3.4)

(3.3.5)

(3.3.8)

(3.3.8)

(3.3.8)

In this section, I adopt two powerful tools Analytical Hierarchy Process (AHP) [20]

and Roulette Wheel Selection (RWS) [30] to improve the candidate nodes selection

process. AHP is most widely used in analyzing feasible alternatives when multiple

criteria need to be considered on a rational basis. Here AHP is employed to evaluate the

DataNodes based on the three features we mentioned above: CPU idle rate, 1/0 idle

rate, storage idle rate. It is worth noticing that because HDFS utilizes a single-master

pattern, the computing resource of the NameNode is a kind of scarce resource. The

NameNode may process hundreds of thousands operations every second. Therefore, it is

unpractical for the NameNode to update the information of all DataNodes and execute

the AHP evaluation process frequently. This period can be set to one day or more.

24

3.4.1. DataNodes Evaluation with AHP

The perceived importance of multiple criteria is utilized by AHP as pairwise

comparisons on a scale of 1 to 9. Saaty's scale of relative importance is shown in Table.

2.

Table. 2 Saaty's Scale of Relative Importance

Intensity of relative importance Definition

1 Equal importance

3 Weak importance

5 Strong importance

7 Demonstrated importance

9 Absolute importance

2,4,6,8 Intermediate value between

For different file types, the importance of the capacities of the node is distinct. So

each DataNode has three distinct values evaluated by AHP in our work. For instance,

for a computing-type file, the DataNodes with low CPU utilization rate are reasonable

candidates. More specifically, we have three distinct evaluating criteria for each

DataNode by exploiting AHP. The three criteria which are considered are: CPU idle

rate; 1/0 idle rate; Storage idle rate.

By using AHP, we form a pairwise comparison matrix shown in Table. 3. The value

in the i row and j column evaluates the relative importance of the factor i compared

with factor j.

25

J_

Table. 3 Pair-wise Comparison Matrix

Criteria CIR IIR SIR

CIR
O)CIR O)CJR O)CIR

O)CIR O)JIR O)SIR

IIR
O)JJR O)JIR O)JIR

O)CJR O)JJR O)SIR

SIR
O)SIR O)SIR O)SIR

O)CIR 0)/IR OJ.WR

For example, when we need to choose the DataNodes for placing the

computing-type files, we might arrive at the following matrix:

3 5 [1000 3.000 50001
C=

I
= 0.333 1.000 3.000 - 3

3
1

0.200 0.333 1.000
-

5 3

For example, the value C12 = 3 in this matrix indicates that we think the CPU idle

rate is more important than the //0 idle rate in this scenario.

In Table. 4, we synthesize the pairwise comparison matrix C by dividing each

element in the matrix C by the amount value of its column. For instance, the value

0. 652 in the first row and first column is gained by
1

= 0.652; the value can
1+1/3+1/5

be found in the matrix C.

26

L

Table. 4 Synthesized Matrix C

Criteria CIR IIR SIR Weight

CIR 0.652 0.692 0.555 0.633

IIR 0.217 0.231 0.333 0.260

SIR 0.130 0.077 0.111 0.106

CIR is the CPU idle rate; IIR is the I/0 idle rate; SIR is the Storage idle rate.

The weight of the CIR, /JR and SIR in Table. 4 can be calculated by averaging the

value in each row, respectively. For example, the weight of CIR is calculated by

dividing the sum of the first row (0.652+0.692+0.555) by 3. In this example, the weight

of CIR, /JR and SIR are w = [0.633 0.260 0.106), respectively. Let us use an example

to demonstrate how to use AHP to evaluate the DataNodes in HDFS.

Assume all the information of the DataNodes in Table. 5 is collected by Ganglia

Monitoring System.

Table. 5 Illustration of the Evaluation of the DataNodes

CIR IIR SIR Value

DN1 0.70 0.63 0.51 0.682

DN2 0.63 0.52 0.43 0.598

ON3 0.35 0.34 0.84 0.381

ON4 0.91 0.80 0.13 0.798

For example, in Table. 5, the value of DN-1 is calculated as:

VvNJ = CIR DNJ * wcm + /JR DNJ * W11R + SIR DNJ * Wsm

= 0. 70*0.633 + 0.63*0.260 + 0.51*0./06 = 0. 798

The value of DN2. DN3, DN4 can be calculated in the same way, respectively.

27

L

3.4.2. Roulette Wheel Selection (RWS) Method

As I mentioned, it is unpractical for the NameNode to update the information of all

DataNodes and execute the AHP evaluation process for each writing request. This

period can be set to one day or more. However, if we always select the DataNode with

the greatest value in this period, this DataNode may suffer 1/0 throughput, CPU or

network congestion. Intending to solve this problem, I adopt a selection approach which

has been used in Genetic Algorithm called Roulette Wheel Selection (RWS). By using

AHP, DataNode DNi is evaluated a value which is represented by VoNi.· Moreover, for

further improving the efficiency of the roulette wheel selection, we do not put all of the

DataNodes in the process. There is a threshold band if VoN, < b, this DataNode will not

be a candidate in roulette wheel selection.

In roulette wheel selection, the probability that a DataNode DN, is selected PfDNi ,s

selected} is calculated as follows:

p _ d if-V,=DN.c,._i _
(UN, ,s se/ec1ed) - e n (3.3.10)

Ivf)Nj
J=I

As this formula shown us, the DataNode with higher value has more probability to

be selected by the NameNode. Hence, the files are prone to be distributed on the

DataNodes with relatively high idle resources in a long period.

3.5 Numerical Results

In this section, I evaluate the performance of our file type aware replica placement

strategy. Given 100 DataNodes, there are 10000 new files will be uploaded to the HDFS

system. For most of the DataNodes, the range of CIR, SIR and IIR is from 30% to 70%.

28

It is worth noting that, in this simulation, for I 0% DataNodes, the values of CIR, SIR

and /JR are all 100%, which means they are all new machines. In order to evaluate our

new strategy, we assume that all files' type can been identified by the NameNode.

Particularly, files consume resources of the DataNodes; if the file is computing-type file,

the consumption rate of the CPU is assumed to be 0.1% to 0.3%; and the consumption

rate of 1/0 throughput and disk space could be 0.01%-0.03% and 0.01%-0.05%,

respectively. If the file is //0 throughput-type file, these three consumption rate could be

0. 01%-0. 03%, 0.1%-0. 3% and 0. 01%-0. 05%, respectively. Similarly, when the file is

identified as storing-type file, these three consumption rate could be 0.01 %-0. 03%,

0.01%-0.03% and 0.1%-0.5%, respectively.

In this section, I compared the performance of our File type Aware Replica

Placement (FARP) strategy with the Current Replica Placement (CPR) strategy in

HDFS by using the Minimum Mean-Square Error (MMSE) of CIR, /JR and SIR. For

example, the value of MMSE of CIR indicates the difference of the CPU utilization rate

between the DataNodes. The value of MMSE reducing implies that the CPU utilization

rate of the DataNodes prone to balance.

Fig. 5 shows us the MMSE of CIR of the DataNodes that after uploading the files to

the system by executing our FARP strategy and by executing CPR strategy. As we

expected, by using FARP, when the number of files increase, the CPU utilization rates

of these JOO DataNodes tend to achieve balance; because the values of MMSE is

observed going down. By contrast, I observe that in Fig. 5, the values of MMSE of CIR

rarely change by using CPR strategy. It indicates that the CPR strategy does not

29

contribute on resource utilization balancing. The similar situations in terms of !IR and

SIR are observed in Fig. 6 and Fig. 7, respectively.

0.145c--,----,-----~-~---,----~-~-~---..,-------,

0.1 '-----~-~-~---~-~-~-~--~-~-~
0 1000 2000 3XlO 4000 9JOO 0000 7000 roJO 0000 10000

l\l.Jrrba" of Files

Fig. 5 MMSE of the CIR ofDNs

30

6
'ts
er::
V5

0.105'----.J..___ _ _L___ _ __L_ _ __.L__----'-------'--____JL.____.J..____-=n__ _ _J

0 1000 2000 3CXXJ 4000 5000 6CXX> 7000 8000 0000 10000
N.ntler of Files

Fig. 6 MMSE of the IIR ofDNs

~ 0.115~- ---------:---------- , ;
0.11 ~--- --------•--------

O.C95'------_L__-----'-----~-~-~-~--~-~-~-------'
O 1000 2000 3CXX) 4000 5000 6CXX> 7000 8000 0000 10000

N.ntler <:I Files

Fig. 7 MMSE of the SIR ofDNs

31

CHAPTER 4. APPLICATION REPLICA STRATEGY ON

CLOUD-FRONT SERVER

4.1 Introduction

Cloud computing opens a new area of supplement, consumption, and delivery

framework for IT services, and it involves over-the-Internet provision of dynamically

scalable and virtualized resources which is significant trends with the potential to

increase agility and lower costs of IT [22]. Virtual infrastructure cloud services (e.g.,

[21], [25]) are virtual hardware provider, where customers can deploy virtual servers

and run applications. The virtual server vendor which is an emerging cloud service is

the motivation of this topic. Cloud customers can order Applications which can be

delivered by the cloud providers on the cloud. Three characters are involved in this

model: 1) cloud service vender, 2) application provider, and 3) application customer.

Application providers develop the applications and put them on the original cloud

servers which are provided by the cloud providers. The customers purchase the

applications from the application providers. It is worth noting that customers always

expect the applications ordered can be delivered as fast as possible. However, it is

difficult for the original cloud server to provide all reservations in time due to the

limitation of the distance and network bandwidth. As a consequence, the provisioning

time of lots of reservations is much longer than expected.

To reduce the latency time, cloud service vender employs a original-front server

strategy (e.g., [21]), shown in Fig. 8.

32

Customer

Fig. 8 Illustration for Original-Front Server Model

There are two types of server in this OFS model: the original server and the front

server. All applications are stored in the original server initially, and when the

information of reservations is gathered by the original server, it needs to execute the

application replica placement strategy to distribute the replicas. We approximately

calculate the latency time for delivering the applications with the distance between the

front servers and customers. Because the front servers are located near to the customers

geographically and globally, the provisioning time can be reduced. Obviously, if the

applications are always routed to the nearest front servers for every customer who

makes the reservation, contents will be delivered with the best possible performance.

However, we notice that the application providers cannot achieve maximum profits

because they have to pay the cloud vender to use this service. For example, the expense

is e\ when the application provider puts the application k on front server j. If the

customers choose to use the front service to have low latency delivery, they have to pay
33

the application providers for using the advanced service. For example, when the

customer i makes the reservation of the application k, the cost for using the front service

is v'k. Hence, the profits of application providers are the income minus the payout. In

this Chapter, I assume that the replica of the application distribution strategy can be

decided by the application providers and be executed by the cloud vender. Obviously, if

application providers try to maximize their profit <l> total, they need to satisfy all their

customers with minimum front servers. We assume that if the expected latency time for

delivering the application k to the customer j is l'exp, there is at least one can deliver the

content to customer j in time. Our objective is to maximize the profit <l> totat for

application providers.

4.2 Related Work

How to provision the applications through cloud rapidly has been studied recently

[26], [24]. In paper [24], the authors studied a fundamental storage staging problem and

presented it as a scheduling problem with capacity constraints under two models:

continuous model and integral model.

Similar to replication placement, content distribution has been studied in the

context of web content through Content Distribution Networks [28], [29]. Some

Content Distribution Networks implementations introduce related job scheduling

problems. The scheduling problem for cache pre-filling is studied in [23]. Many content

distribution systems adopted web caching techniques [27], where frequently accessed

objects are stored near the customers. These techniques can reduce both access latency

and network traffic.

34

In could computing, virtual infrastructure cloud services (e.g., [21], [25]) are both a

virtual hardware provider and a virtual hosting premise, where customers can deploy

virtual servers and run applications. Cloud providers provide some special web services

for content delivery, such as Amazon CloudFront [21] which cooperates with other

Amazon Web Services to serve developers and businesses an easy way to distribute

content to end customer with high data transfer speeds, low latency, and no

commitments. With a global network of edge locations, Amazon CloudFront can deliver

your static and streaming content rapidly.

In this work, I target to maximize the profit <l> totat for application providers; and to

the best of our knowledge, this problem is rarely studied in the previous works.

4.3 Problem Statement

In this work, the Original-Front Server (OFS) model is adopted. We are given a set

of customers C = {c1, c2, ... ,c1}, a set of front servers F= {Ii, /2, ... ft} and a set of

applications K = {k1, k2, ... ,kn}, Multiple of applications can be ordered by a single

customer. For customer i, h, denotes the number of applications reserved by customer i;

and v~ denotes the expense that customer i orders application k with front service. For

the application providers, the expense is ek for putting the application k on front server j.

The price strategies for both the cloud venders and application providers are out of the

scope of this topic. Because the capacity and network bandwidth of each front server is

limited, we have the following constraints: a front server can only serve maximum £

customers at the same time. When customer i reserves application k, the expected

delivery time denotes by t;:P. If the provisioning time t;;~, is greater than t;~:, we

35

assume that customer i will cancel this reservation and the charge v~ is refunded.

Moreover, the reservation which is delivered in time is a satisfied reservation;

otherwise it is an unsatisfied reservation. When the customer i reserves multiple

applications, the ratio of the satisfied reservations and the unsatisfied reservations

N'
should not less than the thresho Id a; , a, ~ ,'alisfied ,es,rvalion ; otherwise, the customer will

N,msatisfied resermtion

cancel all of the reservations.

Definition. 1 (Eligible Front Server): For customer i, if the front server j can deliver the

reserved applications in time, then the front server j is called eligible front server to

customer i. In other words, if the latency time is no more than the expected delivery

time, t~;
0
~ t;~:, then the front server j is an eligible front server to customer i.

Definition. 2 (Maximum prOfit of Application Replication(MOAR)):Given a set of

customers C = {c1, c2, ... ,c1}, a set of applications K = {k1, k2, ... kn}, and a set of front

servers F = {/J, h, . ..fm}, for the application provider, the income Y,n is calculated as:

(4.3.1)

where s~ denotes that if the application provider provides reservation k to customer i

with front service. s~ can be determined by the following formula:

_ A ..r,.,yf 1,l i,J i,m]
x, -1nu..,.LXk , ... ,xk , ... ,xk (4.3.2)

t'·k
where x~·1 =[___.::Pk]xf(j,k), andf(j,k) is the decision variable which denotes ifthere is

t',),
pro

a replication of application k exists on front server j. If x, 2: 1, thens~ = I ; otherwise,

s{ = 0.

For the application provider, the payout is calculated as:

36

m n

Yo111 = LLeff(J,k) (4.3.3)
;=I k=I

Our objective is to maximize the total profit of the application provider:

t h, m n

Maximize Ia,[L v~s~]- LLeff(J,k) (4.3.4)
i=I k=I)=I k=I

4.4 Proposed Solutions

In this section, I study two different scenarios of application replication placement

and present two heuristic algorithms to solve the Maximum prOfit of Application

Replication (MOAR) problem in these two scenarios.

4.4.1 OFS Model with Single Application

We start with a special case where there is only one application provided in the

OFS model. Because there is only one application, the threshold a= 1 for all customers.

A tree network G is constructed in which the original server is the root of the tree.

The set of intermediate nodes V = {n1, n2, ... ,nm} denotes the front servers set, and the

set of leaf nodes / = {ll, 12 ... , lj} denotes the customers sets. (In the following, we use

front server and intermediate node interchangeably, as well as customer and leaf node.)

Let the set Di ={(h d'2, ... da} represents the leaves on intermediate node i, which also

means the customers who are routed to the front server f,. According to the geographical

location information, the eligible front servers of customer i who reserved application k

is calculated and represented by Wi ={w'1, w'2, ... w'p} where p is no more than the

number of front servers m.

When there are x customers are served by the front server j, the income of the

X

application provider in terms of server j is y 1
'" = L v~·1

• We use !J; to denote the ratio of
i=l

37

the income and the payment of front server j, and Q1 is calculated as:

(4.3.5)

Where riui = ef

In our solution, we assume the application replications have been deployed on all of

the front servers initially. Our H-MOAR algorithm, shown in Algorithm 1, first chooses

the node n1 with the minimum value Qmm in network G. Then, if the leaf on node n1 has

other eligible front nodes, it is transferred to one of these nodes which has the

maximum value Qmax- For example, leaf la has three eligible nodes n,, n2 and n3, and la

currently connected to node n,. According to Algorithm 1 in Fig. 9, if Qn2 ~ Q,,3, la

needs to be transferred to n2.But if leaf la does not have any other eligible node, la is

kept on the current node. After executing these steps, I recalculate the value Q 'n; for

node n1. If Q',,1 -:::.1, node n, and its present leaves are removed from network G; If Q',,;

~l, node n; is marked as pruned. Our algorithm continues to repeat this process on the

unpruned nodes until none unpruned nodes left. Based on our algorithm, these steps are

repeated iteratively until there is no leaf transfer occurs in G.

38

Ali:orithm 1 Single App H-MOAR(G)

1: Construct sets of intermediate nodes V , V', and V";

2: V f-{nl'n2 ,···,n;} ;V' f-V;V" f-,P;

3: for each leaf i in G do

4: Connect i to the node nnea which is nearest node to i;

5: end for
6: while V =1: V" do

7: Find the node n; with the minimum value n;;.n;

8: for each leaf l in the set Dn, do

9: if IW,I > 1 (E, is the set of eligible noedes of l) then

10: Transfer l to the node nmax which is the node with

The maximum value in set W, .

11: end if
12: end for

13: if n~ :2:: 1 then

14: Mark n as "pruned'';

15: else

16: Delete n,. and leaves in D' · 11,,

17: end if

18: Repeat step 6 to step 15; Move node n, to set V".

19: end while

Fig. 9 Algorithm 1 Single App H-MOAR

39

Let us use an example to illustrate Algorithm 1. In Fig. 1 O(a), I simply assume that

the payout of the application k on each front server is the same which is ek = 10, and the

income from each customer who uses front service is Vk = 5. Initially, leaves are

automatically routed to the nearest nodes, shown in Fig. I O(a). Following to Algorithm

I, in the first iteration, node N4 is selected due to nk -
5

which is the minimum .. ""'. -To

value in network G.

(a) The original network (b) Iteration I

(c) Iteration 2 (d) Iteration 3

Fig. 10 Illustration of Algorithm I Single App H-MOAR

From the set W19 = {N1, N4} which includes the eligible nodes of leaf /9, we choose

node N3 as a target node to transfer leaf /9, shown in Fig. I O(b). There is no leaf left on

node N.,after moving leaf /9 to N1. Hence, node N4 is deleted from the network, which

means the replication of application k will not be deployed on front server N4 . In the

second iteration, because n! = n:, = .!.2_, node N 3 is selected randomly. The sets of
2 "1 10

eligible front nodes of leaves /7, 18 and !9 are E,k = {N2, N3 }, E/ = {N3 }, E/ = {N1},
7 8 9

40

respectively. Only leaf / 7 is moved to node N2 in this iteration, shown in Fig. 10(c).

'k 10 .
Because ON = - ~ 1 which means N3 can be kept in the network and marked as

1 10

pruned. Fig. 10(d) illustrates the third iteration. The same situation happens on node N1.

Leaves !2 and /3 are transferred to N2, and the value of node N1 is n;; = 2- which
' 10

means N1 should be deleted from the network. At this time, the network achieves stable.

As a consequence, N1 and N3 are chosen as the front servers which are placed with

application replications k.

4.4.2. OFS Model with Multi-Applications

Now we need to generalize our approach to the scenario refers to multiple

applications. For the general network model, the number of applications is k. In this

multiple applications scenario, I present a multi-layers strategy which could separate the

MOAR problem into numbers of sub-problems. It is worth noting that in this

multi-layers OFS model, I aim to maximize the value of the whole network, not only in

the single layer. And I adopt a new variable (f) and (f) = 1
. ~ is calculated as:

/3 -a
I I

(4.3.6)

A set of tree networks Gmul ={g1, g2, ... gk} is constructed to demonstrate the multi-layers

model. Each tree network represents a layer, and only one application is considered in

each layer. Fig. 11 illustrates our Multi-application heuristic algorithm.

41

AI2orithm 2 Multi-Apps H-MOAR{G)

1: Construct sets of intermediate nodes V , V' , and V";

2: V f--{n? ,'4',· ··,nn; V' f--V; V" f--<p;

3: for each leaf i in Gq do

4: Connect i to the node nnea which is nearest node to i;

5: end for
6: while V -:t V" do
7: Find the node n with the minimum value

~x,q_,_·,_

(
vq l

L...,=1 /3 -a
o.m,n = I I where /3; is the

"x,q e},q
L...,=1 k

number ofremained applications to leaf i in all of the

layers;

8: for each leaf l in the set n:, where D,; is node n's

leaf set do

9: if lw;I > 1 then

Transfer l to the node nmax which is the node with

the maximum value in the set w; ;

11: end if
12: end for

13: if n~ ~ I then

14: Move n to set V";

15: else

16: Delete n and the leaves in n:;
17: end if
18: Repeat step 6 to step 15; Move node n to set V".

19: end while

Fig. 11 Algorithm 2 Multi-Apps H-MOAR

42

In the layer q, customer i has a set of eligible front server which represented by

W,.q - { ,.q i,q ,.q } F th fr t . th . . - w1 , w2 , ••• , wa , . or e on server J, e mcome 1s

. Ixq r ;.q = · vq a
m i=I 1k I

(4.3.7)

where x is the number of the customers connected to the front server j. The profit for the

application provider in layer q is

. . Lxq Lxq . <l>q = r1 ·q - y1 ·q = , vq a - , e 1 ·q
J ,n out i=I 1k I i=I k (4.3.8)

We use the following example to illustrate algorithm 2, shown in Fig. 12.

(a) The original network (b) Iteration

e..,=10
·········("'•• ..

\ N~:
"•

(c) Iteration 2 (d) Iteration 3

Fig. 12 Illustration of Algorithm 2 Multi-Apps H-MOAR

The value of a, fJ and rp of each leaf can be found in Table. 6. In layer q, we simply

assume that the payout for each front server is eZ = 10, and the income from each

q

customer can be calculated by y1·q = "x,q ~, where v! = I in this example.
,. L.i1=I /J. -a

I I

Algorithm 2 is implemented on each layer with considering the variable a . First, we

calculate the value n of each node, where n = 12
·
5 n =

1
0.3

w, 10 ' w, 10 '

43

~ = 2- . Hence, in the first iteration, node N4 which has the minimum value in
4 10

network Gq is selected. We choose node N3 as a target node to which leaf /9 can be

transferred. Because NJ is another eligible node of /9. We delete N4 after the transfer,

because no leaf left on N4, shown in Fig. 12(b). In iteration 2, we recalculate the value

for each node where QN = 12
·
5

, QN = l0.
3

, ~ = .!2_. Obviously, node N2 should
I 10 2 10 l 10

be selected. The sets of eligible nodes of leaves l-1, ls and h are F:i: = {N1, N2}, Ei~ =

{N2}, E,: = {N2, N3}, respectively. According to 2, leaf l-1 is transferred to node N1 and !6

is transferred to node N3 in this iteration, shown in Fig. 12(c).At this time value of node

N2 QN = 2- :s: 1 which means N2 should be deleted from Gq. Fig. 12(c) illustrates the
I 10

second iteration. In the third iteration, neither the leaves on node N1 nor the leaves on

node N3 have other eligible nodes, which means network~ achieve stable. As a result,

N1 and N3 are chosen to be distributed with application replications in this case. The

value of a, fJ and <p of each leaf can be found in Table. 6.

Table. 6 Example of Algorithm 2 Multi-Apps H-MOAR

Symbols Value Symbols Value Symbols Value

an 0.5 /311 0.9 <f>11 2.5

a,2 0.5 /3,2 0.8 <f>12 3.3

an 0.6 /3n 0.75 <f>n 6.7

a,4 0.6 /3,4 0.9 <f>14 3.3

a,s 04 /3,s 0.6 <f>1s 5

a,6 0.4 /3,6 0.9 <f>16 2

an 0.7 /3n 0.8 <f>11 10

a,s 0.7 /3,s 0.95 <f>1s 4

a,9 0.5 /3,9 0.7 <f>19 5

44

4.5 Numerical Results

In this section, I presented numerical results to evaluate the performances of our

solutions. I implemented our heuristic algorithm, which was denoted as H-MOAR in

the figures. For comparison, I also implemented the scenario without optimization

which aims to satisfy all the customers. This scenario was denoted as original

distribution in the figures. All our simulation runs were performed on a 2.8 GHz Linux

PC with 2G bytes of memory. I used different network topologies in a JOO x JOO sq.

units playing field to evaluate our proposed solutions. All the front servers and

customers were randomly distributed in the playing field.

In our simulation, the number of front servers was set to 20. The cost ef of

deploying an application on a front server was set to 20. The cost of customer by using

a particular application was set to 3. We also set the constraint £ that the number of

customers connected to one server less than 50 in our simulations. In our simulation, I

implemented the scenario of OFS model with single application. The scenario of OFS

model with multiple applications will be further studied and implemented in our future

work.

I tested the performances in terms of the profit of application providers, satisfaction

ratio of customers, and number of deployed front server of our solution, which were

shown in Fig. 12 and Fig. 13. Fig. 12 illustrated that H-MOAR always has a better

performance of profit. Another observation is that as the number of customers increased,

the profit also increased.

For the satisfaction ratio, both H-MOAR and Original Distribution have the similar

45

performance. The satisfaction ratio of Original Distribution is a little better than the one

ofH-MOAR, because the Original aims to satisfy all the requirements of the customers.

Fig. 14 shows us that, comparing to the original distribution, our H-MOAR protocol can

satisfy the near maximum number of customers with much less front servers.

To sum up, our simulations demonstrated that the H-MOAR protocol achieves similar

satisfaction ratio as the optimal solution, while increasing the profit of application

providers. Hence, the H-MOAR protocol is suitable for Original-Front Server

framework.

1600

1400

"' 1200 ...
Q)

"O ·s;
0 1000 ...

11..
Q..
Q..

< 800
'+-<
0 -t;:: 600 0 ...

A.

400

200

0

.1 ~~~OAD/ ······· j r·················

·································-·

······················

200 300 400
Number of Customers

~--···················

500

Fig. 13 Profit of Application Providers

46

600

Cll ...
Cl)

e
~
::,

1.2

U 0.8
.....
0
0

~ 0.6
c::
0 .B

<$:! 0.4
Cll -~

Cl)

0.2

0
200 300 400

Number of Customers

Fig. 14 Satisfaction Ratio of Customers

Number of Customers

Fig. 15 Number of Deployed Front Servers
47

500 600

CHAPTER 5. CONCLUSIONS

In this work, I have studied three major problems based on data replication

technique. In Chapter 2, I presented a replication factor decision problem in Hadoop

Distributed File System. In contrast to the replication factor problem from previous

works, I intend to satisfy both the reliability and achieve network and disk space

utilization balancing. There are two phases in our dynamic replication factor decision

policy. The first phase is to calculate the replication factor by using the concept that

probability of data loss during rebuilding process in [18]. The second phase is to adjust

the replication factor intend to achieve network and disk space utilization balancing,

which can further improve the performance of the system. After studying how many

replicas are necessary, I studied the replica placement problem for distributing the

replicas in Chapter 3. Our objective is to achieve resource utilization balancing. Our file

type aware replica placement strategy firstly uses the tool Analytic Hierarchy Process to

evaluate the value of the DataNodes, and then deploy the data by adopting a method

named Roulette Wheel Selection. The entire data replication strategy that I proposed in

this work, is the combination of the schemes in Chapter 2 and 3. Numerical results have

confirmed our theoretical analysis.

In Chapter 4, I studied another use of the data replication method based on

original-front server model. In this mode~ data replication is used to reduce access

latency and network bandwidth consumption. I studied a Maximum prO.fit Application

Replication (MOAR) problem, which seeks to provide an efficient strategy to maximize

the profit of the application providers. I proposed two heuristic algorithms which are

48

called H-MOAD and Multi-app H-MOAD to solve the MOAR problem. Our simulation

results show that the H-MOAD scheme can increase the profit of application providers.

49

REFERENCES
[l] S. Ghemawat, H. Gobioff, and S. Leung, "The Google file system," in Proc. of

ACM Symposium on Operating Systems Principles, Lake George, NY, Oct 2003,

pp 29--43 .

[2] J. Dean and S. Ghemawat, "MapReduce: Simplified Data Processing on Large

Clusters," in Proc. of the 6th Symposium on Operating Systems Design and
Implementation, San Francisco CA, Dec. 2004.

[3] K. Shvachko, H. Kuang, S. Radia, and R. Chansler, "The Hadoop Distributed File

System," Proceedings of IEEE MSST 2010, Incline Village, NV, USA, May 2010.

[4] K. V. Shvachko, "HDFS Scalability: The limits to growth," April 2010, pp. 6-16.

[5] "Apache Hadoop," http://hadoop.apache.org/hdfs/.

[6] M. K. McKusick, and S. Quinlan, "GFS: Evolution on Fast-forward," ACM Queue,
vol. 7, no. 7, New York, NY. August 2009.

[7] V. Venkatesan, I. Iliadis, X. Hu, R. Haas, and C. Fragouli, "Effect of Replica

Placement on the Reliability of Large-Scale Data Storage Systems," in Proc.

MASCOTS, 2010, pp. 79-88.

[8] J. R. Douceur and R. P. Wattenhofer, "Modeling Replica Placement in a

Distributed File System: Narrowing the Gap between Competitive Analysis and

Simulation," ESA 2001, Aug 2001.

[9] "Name-Node Memory Size Estimates and Optimization Proposal," August 6,

2007, https://issues.apache.org/jira/browse/HADOOP-1687.

[1 O] S. Weil, S. Brandt, E. Miller, D. Long, and C. Maltzahn, "Ceph: A Scalable,

High-Performance Distributed File System," Proceedings of OSDI '06: 7th
Conference on Operating Systems Design and Implementation (USENIX Associa
tion, 2006).

[l l]D. A. Patterson, G. Gibson, and R.H. Katz. "A case for redundant arrays of

inexpensive disks (raid)," ACMSIGMOD Rec., 17(3):109{116, 1988} .

[12] "Parallel Virtual File System," http://www.pvfs.org/.

[13] "The gLite File Transfer Service,"

http://egee-jral-dm.web.cern.ch/egee-jra 1-dm/FTS.

so

[14] B. Fan, W. Tantisiriroj, Lin Xiao, and Garth Gibson, "DiskReduce: RAID for

Data-Intensive Scalable Computing," PDSW 09 (4th Petscale Data Storage
Workshop Supercomputing).

[15] "Amazon Elastic MapReduce," http://aws.amazon.com/elasticmapreduce/.

[16] "Amazon CloudFront," http://aws.amazon.com/cloudfront/.

[17] "Ganglia Monitoring System," http://ganglia.sourceforge.net/.

[18]V. Venkatesan, I. Iliadis, X. Hu, R. Haas, and C. Fragoul~ "Effect ofReplica

Placement on the Reliability of Large-Scale Data Storage Systems", in Proc.

MASCOTS, 2010, pp.79-88.

[19] "Module 2: The Hadoop Distributed File System,"
http://developer.yahoo.com/hadoop/tutorial/module2.htm1.

[20] Saaty TL, "The analytic hierarchy process," New York, McGraw Hill, 1980.

[21] "Amazon Elastic Compute Cloud (EC2)," http://aws.amazon.com/ec2.

[22]M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. Katz, A. Konwinski, G. Lee, D.

Patterson, A. Rabkin, I. Stoica, and M. Zaharia, "Above the clouds: A Berkeley
view of cloud computing," University of California, Tech. Rep., 2009.

[23]R. Cohen, L. Katzir, and D. Raz, "Scheduling algorithms for a cache pre-filling

content distribution network," in INFOCOM, vol. 2, 2002, pp. 940-949.

[24] A. Epstein, D. H. Lorenz, E. Silvera, and I. Shapira, "Virtual Appliance Content
Distribution for a Global Infrastructure Cloud Service," in INFOCOM Proceedings

IEEE, Mar 2010.

[25] "Google App Engine," http://code.google.com/appengine.

[26] E. Kotsovinos, T. Moreton, I. Pratt, R. Ross, K. Fraser, S. Hand, and T. Harris,
"Global-scale service deployment in the Xeno Server platform," in Proceedings of

the First Workshop on Real, Large Distributed Systems (WORLDS '04), Dec. 2004.

[27]M. Rabinovich and 0. Spatschek, "Web caching and replication," Boston, MA,
USA, Addison-Wesley Longman Publishing Co., Inc., 2002.

[28]A. Vakali and G. Pallis, "Content delivery networks: Status and trends," IEEE
Internet Computing, vol. 7, no. 6, pp. 68-74, 2003.

51

[29]D. C. Verma, "Content Distribution Networks: An Engineering Approach," New

York, NY, USA, John Wiley & Sons, Inc. , 2002.

[30] 0. A. Jadaan, L. Rajamani, and C. R. Rao, "Improved selection operator for GA,"
Journal of Theoretical and Applied Information Technology, 4(4):269277, 2008.

[3I]Y. Chen, R.H. Katz, and J. Kubiatowicz, "Dynamic Replica Placement for
Scalable Content Delivery," in IPTPS OJ Revised Papers from the First

International Workshop on Peer to Peer Systems, 2002.

52

	BCS2_7705
	BCS2_7706
	BCS2_7707
	BCS2_7708
	BCS2_7709
	BCS2_7710
	BCS2_7711
	BCS2_7712
	BCS2_7713
	BCS2_7714
	BCS2_7715
	BCS2_7716
	BCS2_7717
	BCS2_7718
	BCS2_7719
	BCS2_7720
	BCS2_7721
	BCS2_7722
	BCS2_7723
	BCS2_7724
	BCS2_7725
	BCS2_7726
	BCS2_7727
	BCS2_7728
	BCS2_7729
	BCS2_7730
	BCS2_7731
	BCS2_7732
	BCS2_7733
	BCS2_7734
	BCS2_7735
	BCS2_7736
	BCS2_7737
	BCS2_7738
	BCS2_7739
	BCS2_7740
	BCS2_7741
	BCS2_7742
	BCS2_7743
	BCS2_7744
	BCS2_7745
	BCS2_7746
	BCS2_7747
	BCS2_7748
	BCS2_7749
	BCS2_7750
	BCS2_7751
	BCS2_7752
	BCS2_7753
	BCS2_7754
	BCS2_7755
	BCS2_7756
	BCS2_7757
	BCS2_7758
	BCS2_7759
	BCS2_7760
	BCS2_7761
	BCS2_7762
	BCS2_7763
	BCS2_7764

