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ABSTRACT 

Liu Yang, M.S., Department of Computer Science, College of Science and Mathematics, 
North Dakota State University, July 2011, Data Replication Strategies in Cloud 
Computing. Major Professor: Dr. Weiyi Zhang. 

Data replication is a widely used technique in various systems. For example, it can be 

employed in large-scale distributed file systems to increase data availability and system 

reliability, or it can be used in many network models (e.g. data grid, Amazon 

CloudFront) to reduce access latency and network bandwidth consumption, etc. I study 

a series of problems that related to the data replication method in Hadoop Distributed 

File System (HDFS) and in Amazon CloudFront service. Data failure, which is caused 

by hardware failure or malfunction, software error, human error, is the greatest threat to 

the file storage system. I present a set of schemes to enhance the efficiency of the 

current data replication strategy in HDFS thereby improving system reliability and 

performance. I also study the application replication placement problem based on an 

Original-Front sever model, and I propose a novel strategy which intends to maximize 

the profit of the application providers. 
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CHAPTER 1. INTRODUCTION 

Cloud computing, as the newest technology, might change the way we work and 

the way we use hardware, software and the internet. From governments to public and 

private organizations, cloud computing is significantly and fundamentally influencing 

the IT landscape. Combining lots of technologies, such as distributed computing, 

distributed file storage, virtualization, etc., cloud computing venders intend to provide 

the computing and storage resource as a kind of utility, such as water and electricity, to 

us. Amazon, one leader of the cloud computing providers, has found a commercial 

model of cloud computing successfully. In this work, I study the data replication 

strategies which have been used in two of the Amazon products, Amazon Elastic 

MapReduce [15] and Amazon CloudFront [16], which are two commercial products 

that have been launched by the department of Amazon Web Service. Briefly speaking, 

Amazon Elastic MapReduce is a distributed computing framework which could support 

the customers by processing vast amounts of data easily and cost-efficiently. Amazon 

CloudFront service uses data replication technique to deliver the content to the clients 

with low latency, and high data transfer speed by using a global network of edge 

locations which is also named front servers. 

Data replication is a widely used technique in various systems and networks for 

distinct purposes. For example, data replication can be employed in large-scale data 

storage system to protect the data from data loss; it can also be used in many network 

models or web services to reduce access latency and increase data availability, such as 

in Amazon CloudFront service or in Peer-to-Peer systems. 

1 



In Chapter 2 and Chapter 3, I study the data replication problem in the Hadoop 

system which is one of the core platforms in Amazon Elastic Map Reduce. As a widely 

used distributed storage system and distributed computing platform, Hadoop consists of 

two major components: 1) Hadoop distributed file system (HDFS) [3], the primary 

distributed storage system used by Hadoop; 2) MapReduce, a programming framework 

developed by Google [2] for processing large amounts of data in parallel. To the best of 

our knowledge, Hadoop system is employed by many big companies such as Yahoo!, 

Facebook, Amazon, etc. 

Hadoop Distributed File System is designed for running on large-scale lost-cost 

commodity hardware. However, one of the greatest problems for the commodity 

hardware is frequent and permanent hardware failure. Intending to alleviate permanent 

data loss, in HDFS, data replication scheme is adopted. 

Previous works have proved that, a delicately designed replica placement strategy 

can not only improve the reliability of the file system, but also enhance the performance 

of the MapReduce application in Hadoop system [7], [8]. However, the current data 

replication policy in HDFS has a wide space for research studies. The replication factor 

is decided by the users subjectively which could cause data redundancy or unsatisfied 

reliability. Moreover, when the current replica placement strategy in HDFS selects 

computers for storing the data, the condition of the computers have not been considered 

sufficiently. Therefore, in Chapter 2 and 3, I intent to find a more efficient date 

replication strategy which could improve system reliability and performance. 

In Chapter 4, I focus on an application replication placement problem based on an 
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original-front sever model which is used by Amazon CloudFront [16]. 

1.1 HDFS and MapReduce 

Intending to store and manage enormous data sets reliably and efficiently, Google 

developed a distributed file system named Google File System [l] and a distributed 

computing software model named MapReduce [2]. Based on Google File System and 

MapReduce software framework, Apache Software Foundation develops the open 

source project named Hadoop [5]. Fig. 1 illustrates the architecture of the Hadoop 

Distributed File System. 
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master/slave model: a single NameNode and multiple DataNodes, where the NameNode 

is in charge of the management of the file system metadata and namespace, and the 

DataNodes are the physically container of the data. The files in HDFS can be very large, 

typically from gigabytes to terabytes. Intending to provide high throughput access for 

the clients, the files are first divided into sequences of blocks and stored on different 

nodes. All blocks of a file are the same size (e.g. 64 MB, 128 MB or more) except the 

last block. A single DataNode can host millions of blocks files. Data coherency issues 

are solved by using a write-once-read-many access model in HDFS, which means once 

a file is written down and closed, it cannot be changed. The NameNode maintains the 

physical location of each block file on DataNodes and the namespace of the system. 

The MapReduce framework adopts a master/slave model, in which there is a single 

master named JobTracker and multiple slaves named TaskTracker. The master is in 

charge of the schedule of the tasks on the slaves, while the slaves will perform the tasks 

assigned by the master. In Hadoop system, because HDFS is running on the same set of 

machines with MapReduce framework, the tasks are scheduled efficiently on the 

DataNodes where data is already stored. 

1.2 Data Replication 

Because an HDFS instance may have thousands of commodity machines, hardware 

failure happens frequently. Therefore, one of the core architectural targets ofHDFS is to 

design an efficient scheme to protect data from data loss. The general idea of data 

replication is to store multiple copies of the file in distinct locations; when one replica 

or multiple replicas of a file fail, as long as there is still one replica of this file survived, 
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the rebuilding process can be initiated to create the copies of this file on other survived 

nodes. The data replication policy which is used in HDFS needs to solve two problems: 

1) how many replicas are necessary? 2) what is the best placement strategy for placing 

these replicas? 

1.2.1 Replication Factor 

Replication factor does not only affect the reliability of the files, but also impact the 

performance of the MapReduce applications in Hadoop. As shown in [5], when the 

replication factor is changed from 3 to 2, the performance of the MapReduce 

application is degraded. In contrast to the current replication factor scheme used in 

HDFS, In Chapter 2, I propose a dynamic replication factor decision strategy that the 

NameNode could calculate and dynamically adjust the replication factor for each file. 

1.2.2 Replica Placement Strategy 

A reasonable replica placement policy could reduce access latency, facilitate load 

balancing, as well as saving network bandwidth consumption. At present, the files in 

HDFS are replicated on multiple DataNodes with a rack-aware replica placement 

policy [3], [5]. The computers in a large cluster which is running HDFS normally 

spread across lots of racks. The communication between two nodes in different racks 

could cost more network bandwidth compared to the consumption between two nodes 

in the same rack. On the other side, the replicas spreading in multiple racks could 

prevent data loss when the entire rack fails during some unexpected situations. The 

current policy achieves the tradeoff between the network bandwidth utilization and the 

reliability of the system. However, it does not fully consider the workload balancing of 
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the DataNodes. In Chapter 3, I propose a file type aware replica placement strategy for 

improving the placement policy currently employed in HDFS. 

1.3 Original-Front Server Model 

The network model used in Amazon CloudFront service can be described as an 

original-front server model. Data is initially stored on the original server, and the 

replicas of the data are sent to the front servers which are located close to the customers. 

In this model, the applications which are ordered by the customers are delivered to the 

suitable front servers. Particularly, in our work, three parties are involved in this model: 

1) cloud service vender, 2) application provider, and 3) application customer. 

Application providers create the applications and put them on the original storage server 

which is provided by the cloud service vender. Customers purchase the applications 

from the application providers, and they always expect the applications could be 

delivered with low latency. However, it is difficult for the original server to satisfy all 

requests due to the long distance or the network congestion. As a consequence, the 

provisioning time could be longer than the expected time. Intending to solve this 

problem, data replication strategy is adopted by the cloud service vender. 

The contribution of our work is in three respects. Firstly, comparing with the 

current replication factor scheme used in HDFS, our dynamic replication factor decision 

strategy could improve both the system reliability and resource utilization balancing. 

Furthermore, the performance of the MapReduce application in Hadoop is enhanced 

due to the suitable replication factor used by the system. Secondly, I present a file type 

aware replica placement strategy which is operated in two steps. The first is to evaluate 
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the value of the DataNodes with Analytic Hierarchy Process. The second is to select the 

DataNode by using the method of Roulette Wheel Selection. The analysis results show 

that the resource unitization of the system tends to achieve balancing by using our new 

strategy. Thirdly, based on the original-front server model, the application replication 

problem is presented from a novel aspect which is to maximize the profit of the 

application providers. Two efficient heuristic algorithms are proposed to solve this 

problem. 

1.4 Work Overview 

In this work, I have three major topics. In Chapter 2, the replication factor decision 

problem in HDFS is studied and a dynamic replication factor decision strategy is 

proposed. In Chapter 3, I study the replica placement strategy in HDFS, and I propose a 

file type aware replica placement strategy intend to achieve resource utilization 

balancing. In Chapter 4, I study the application replication placement problem based on 

an Original-Front sever model, and I propose a novel strategy which intends to 

maximize the profit of the application providers. 

All of the conclusions of these three problems are made in Chapter 5. 
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CHAPTER 2. REPLICATION FACTOR DECISION 

2.1 Introduction 

Data failure, which is caused by hardware failure or malfunction, software error, or 

human error, is the greatest threat for any data storage system. In order to achieve data 

reliability and durability, various redundancy schemes have been used in large-scale 

data system. Data replication is one of the widely used schemes [I], [8], [9]. A data 

replication policy essentially studies two major issues: 1) the replication factor and 2) 

the replica replacement strategy. 

As previously mentioned, the replication factor could be configured by the HDFS 

users file to file subjectively. The default replication factor in HDFS is 3. If the users 

realize that some files are more important than others, they would set the replication 

factor of these files to a higher value. Not surprisingly, in this way whether replication 

factor is adequate for the files or not depends on the experience of the users; in other 

words, this strategy is too subjective to achieve high precision. 

Traditionally, estimating the replication factor of a file is a tradeoff between space 

consumption and reliability; whereas in Section 2.3 I analyze the replication factor 

problem in HDFS from a novel aspect, and then in Section 2.4 I present a method to 

calculate the replication factor dynamically and periodically. 

2.2 Related Work 

In [ 18], by using the particular measure of reliability of the storage system, named 

probability of data loss during rebuilding process, the upper and lower bounds are 

defined. The numerical results in [ 18] proved that this measurement is reasonable for 
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estimating the reliability of the system. 

In [31 ], the authors proposed a dynamic content distribution system named 

dissemination tree based on a peer-to-peer location service. The number of replicas and 

the network bandwidth consumption are significantly reduced. 

In [5], the authors show us replica placement in HDFS does not only affect the 

reliability of the system, but also affect the MapReduce processing efficiency in the 

Hadoop project. From the experiment results, we can see the MapReduce processing 

rate is higher when the replication factor of the files is 3 than when the factor is 2. 

2.3 Replication Factor Decision Problem 

Given a large cluster deployed with HDFS, there are a single NameNode, and n 

DataNodes mapped into k racks. By considering the availability and reliability of the 

system, block files will be placed on multiple DataNodes. For the block file with r1 

replicas, these replicas are distributed in rrout of n DataNodes when r1< n. 

The determination of the reasonable replication factor requires an assumption: each 

file has an assigned level of importance on a scale of 1 to 5. The levels have 

corresponding probabilities of data loss. The probability of data loss of a file with r 

replicas deployed on r DataNodes could mean the probability of all of the r DataNodes 

fail before this file is successfully copied to an available DataNode. 

The authors in [2] demonstrate the policy exploited by the MapReduce 

programming framework in Hadoop for arranging map and reduce tasks. When the file 

J; is requested for analysis by a MapReduce job, the Job Tracker [2] in Hadoop system 

attempts to schedule map tasks on the DataNodes which hosted the block files of J;. 
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However, among these DataNodes, some of them may already have many other tasks 

been scheduled. Due to the competition for CPU or memory, the processing time for 

some of the new tasks becomes unacceptable probably. These tasks are marked as 

"stragglers" [2]. The mechanism that has been used in MapReduce is these "straggler" 

tasks would be rescheduled and processed on other DataNodes. For example, ifthere is 

a block file bf; replicated on three DataNodes, but all three DataNodes are occupied 

when the map task calls, bf; should be copied to another idle DataNode to complete the 

operation. This process does not only increase the processing time, but also increases 

network bandwidth consumption which is recognized as a scarce resource. Obviously, if 

the file J; could have more replicas r1 > 3 distributed on different machines, for a single 

block file, the probability that all r1 DataNodes are occupied simultaneously is less. 

In contrast to the replication factor decision problems which address the tradeoff 

between the reliability and disk space consumption, I do not only consider the reliability, 

but also consider the tradeoff between the disk space consumption rate and the network 

bandwidth consumption rate. 

Given a file J;, if replication factor of J; is relatively low compared with the optimal 

value, the disk space is saved, but on the other side, the transmission of J; among the 

DataNodes may happens more. By contrast, if the replication factor is set to a relatively 

high value, more disk space is occupied instead of network bandwidth consumption. 

Therefore, our objective in this Chapter is to find the optimal replication factor to 

satisfy the reliability requirement and achieve the resource utilization balancing. 
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2.4 Dynamic Replication Factor Decision Strategy 

In this section, I propose a two-phase dynamic replication factor decision strategy. 

Briefly speaking, in the first phase, the NameNode evaluates the replication factor for 

each file based on the corresponding reliability requirement; in the second phase, at 

each interval, the NameNode adjusts the replication factor for each file intend to 

achieve resource utilization balancing. 

2.4.1. The First Phase 

Assuming that each DataNode fails independently, we get the following two 

circumstances which could cause data loss: 

1) The permanent failures occur simultaneously on r DataNodes. The files whose 

replicas are all distributed among these r DataNodes, then these files are identified 

as data loss. 

2) Only one ofreplica out ofr is available, in the other words, (r-1) DataNodes which 

host the replicas offileffail simultaneously. The DataNode DN, which hosts the last 

replica of file f would rebuild this file by transferring it to the other available nodes. 

Data loss could occur if DN; fails before the rebuild process is finished successfully. 

The probability of the second condition is no less than the first condition, which means: 

P{nl(r-1) nodesfailed} ?.P{r nodesfailed} 

Where n is the event that data loss happens because the last DataNode which hosted f 

failure before the rebuilding process finished. 

The second condition has been studied in [18]. The replica placement model in our 

work is the same as the de-clustered placement model mentioned in [18]. Hence I adopt 
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the results in [18] to calculate the replication factor which is able to satisfy the 

reliability requirement. The probability of data loss during the rebuilding process is 

bounded by the following function: 

Anc 1 1 < r; < 2lnc _I_ 

b ( n )o+k) - b ( n) 
r-1 b r-1 

(2.4. l) 

Where r;=P(n:l(r-1) nodesfailed},Ais the practical values of the failure rate, bis the 

node rebuild bandwidth, c is the node capacity, and n is the amount of nodes. 

From formula 2.4.1 we can see that if we try to make the practical reliability no less 

than the expected reliability, we need to satisfy the upper bound of r; in formula 2.4.1 

for calculating the replication factor. If each importance level has a corresponding value 

of the probability of data loss, we can calculate the value of replication factor for each 

importance level by using formula 2.4.1. Table I. shows us the practical probability of 

data loss for each importance !eve I. 

Table. 1 Probability of Data Loss to each Importance Level 

Importance Level Probability of Data Loss 

I 1*10-3 

2 1 * 1 o-4 

3 1*10-5 

4 1 * 1 o-6 

5 1 * 10-7 

For instance, in a system, given the amount of DataNodes n= 100, storage capacity 

of each node c= 12 TB, rebuild bandwidth available at each node b= 96 MB/s, mean time 

to failure of a node }.,=1000 hours, if the importance level of the file f, is 3, which 

means we expect that the probability of data loss of file f, r; Ji ~ 10-5
, replication factor 
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of J; can be set as 4. Because when r r, = 4, the upper bound of c; in formula (2.4.1) 

equals to 2.38*10-6
, and 4 is the minimum number that can satisfy the expected 

probability of data loss offileJ;. 

2.4.2. The Second Phase 

In the first step, the NameNode has calculated the replication factor of the files 

independently according to the importance level. In the second step, I theoretically 

analysis the replication factor based on the resource utilization balancing between disk 

space and network bandwidth. 

The resource utilization balancing is described as the tradeoff between the disk 

space consumption rate and the network bandwidth consumption rate. The tradeoff can 

be formulated as the following formula: 

R f, 
DS 

Rr, =µ 
NB 

(2.4.2) 

Where µ is a constant, R£. is the disk space proportion which is consumed by file J;, 

and Rj8 denotes the network bandwidth proportion which is consumed by file J;. 

Given a file J;, a fl is the amount of blocks of J;, bs is the size of each block, and 

rfi is the current replication factor of J;, storage consumption rate ofJ; is calculated as: 

Rr, 
ns 

aft x bs x rfl 
(2.4.3) 

n 

Where LSDNJ is the amount of the storage space of the file system. 
j=l 

Let us introduce several important concepts in term of Map Reduce program based 

on the data replication strategy. In HDFS, most CPU resources of the DataNodes are 
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consumed by map and reduce tasks for data analysis. For a DataNode DN,, if the CPU 

utilization rate remains at high, it is rarely able to respond to new tasks during this 

period. By using a practical threshold X, when the CPU utilization rate of the DataNode 

DN; over X, we define this DataNode is in the occupied-status. Otherwise, it is defined 

in idle-status. For simplicity, during interval T;n (e.g., one day or one week), the 

probability that DN; has enough CPU resource to respond to new tasks is calculated as: 

""""ff)N, 
pDNi = ~ OCl'U 

occu 
T;n 

Where t~~~; represents the time when DN, is in occupied -status. 

(2.4.4) 

Moreover, co;,· represents the times of file f, that called by the MapReduce jobs 

during the interval Tm, The amount of the blocks off; which are transferred to the other 

DataNodes to execute the map tasks in T;n is calculated as: 

(2.4.5) 

The network bandwidth consumption rate R~~ during T111 is calculated as: 

Rr, 
SB BxT 

In 

(2.4.6) 

Combining the formula 2.4.3 with the formula 2.4.6, we get the following function: 

ar, xbsxrr, 
n 

LSDN1 
J=I 

afi 

""(pI>N, )'' xa/;. xbs 
~ occu fi 
k=I X µ 

BxT,n 
(2.4.7) 

By using formula 2.4. 7, the replication factor of the file f, is calculated during the 

time interval T;n, and then the NameNode will compare the value of rfi with the value 

ofr calculated in the first phase. If rfi > r, then the replication factor of!, is adjusted to 
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rfl, otherwise, the replication factor off, will still be r. 

2.5 Numerical Results 

In this section, I evaluate the performance of our dynamic replication factor 

decision strategy. Given a HDFS cluster with 100 DataNodes, there are 10000 new files 

need to be uploaded to the cluster. Because the availability of the threshold of the 

probability of data loss during rebuilding process has been proved in [ 18], we did not 

evaluate the reliability of the system which is ensured by the first phase of the DRFD 

strategy. I compared the performance of our Dynamic Replication Factor Decision 

(DRFD) strategy and the Current Replication Factor (CRF) strategy in HDFS, in terms 

of the ratio of the network bandwidth consumption rate and the disk space consumption 

rate. I expect the ratio can achieve the constantµ as we set in different conditions. Fig. 

2 illustrates that with the average CPU utilization rate of the system increasing, this 

ratio keeps on the value we set approximately by using our strategy. In this simulation, 

the value of the constantµ is 1. I also observe that the ratio is very far fromµ by using 

the current replication factor strategy. It means that our DRFD strategy has a better 

performance in terms of the resource utilization balancing. This conclusion can also be 

proved by Fig. 3, in which the Y-axis is the Minimum Mean-Square Error (MMSE) of 

the consumption rate of the network bandwidth and disk space. 

Fig.4 shows that with the system gets busier, the average replication factor gets higher 

by using our DRFD strategy. By contrast, the current replication factor strategy in 

HDFS could not adjust the value dynamically. 
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CHAPTER 3. REPLICA PLACEMENT POLICY 

3.1 Introduction 

The data replication policy needs to solve two problems: one is "how many replicas 

are necessary", and the other is "what is the best placement policy for placing these 

replicas". In Chapter 2, I have presented a dynamic strategy for estimating the 

replication factor; in this Chapter, I propose a novel replica distribution policy for 

improving the availability and the performance ofHDFS. 

The current replica placement policy in HDFS is called rack-aware replica 

placement policy. The nodes in a large cluster which is running HDFS normally spread 

across lots of racks. 

The communication between two nodes from different racks could cost more 

network bandwidth compared with the nodes in the same rack. On the other side, the 

replicas of a file spreading in multiple racks could prevent data loss when the entire 

rack fails due to the unexpected situations. The following replica placement strategy is a 

tradeoff between the network bandwidth utilization and the reliability of the system: 

1) The first replica is deployed randomly on the DataNode DN1 in rack ra,. 

2) The DataNode DN2 which is randomly chosen to host the second replica is also 

in rack ra,. DN1 streams the replica to DN2. 

3) The DataNode DN3 which is randomly chosen to host the third replica is in the 

rack ra1. where (ii-J). The replica is streamed from DN2 to DN3 

4) The subsequent replicas are randomly placed in the DataNodes and should 

always obey the rule that no two replicas are placed in the same DataNode and 
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no more than two DataNodes host the same replica in the rack if there are 

enough DataNodes. 

This replica placement policy is a simple way for achieving the tradeoff between the 

reliability and network bandwidth cost. However, the main issue in the whole procedure 

is that the random selections are used frequently without considering the condition of 

the selected DataNodes. As a consequence, unbalanced workload of the DataNodes 

occurs in the cluster. Although HDFS develops a tool Balancer to balance disk space 

usage when some DataNodes become full or new nodes join the cluster, it takes lots of 

time and costs extra network bandwidth. Therefore, intending to overcome the 

disadvantages of the current replica placement policy, I propose a file type aware 

replica placement strategy for selecting the optimal candidate nodes for the coming 

files. 

By investigating the usages of the HDFS [ 19] [3], we find three main features: 

l) HDFS is designed to store large-scale data reliably. 

2) HDFS provides fast access to the data when a large number of clients launching 

reading requests. 

3) HDFS cooperates well with MapReduce framework to process complex data 

analysis. 

The types of the files stored in the HDFS have been studied in previous works [2], [3]. 

After analyzing the file types mentioned in these works, we recognize that the types can 

be divided into three categories based on the computer resources they mainly 

consumed: 
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1) Computing-type file 

This type of file, such as crawled documents, web request log, etc. [2], needs to be 

executed by MapReduce application to analysis different derived data, such as 

inverted indices, graph structure of web documents, etc. The processing time of 

many large-scale files can last for several hours even several days. 

2) 1/0 throughput-type file 

Some companies employ HDFS for storing streaming media files, such as videos 

and figures, because HDFS provides high throughput access to the data. This type of 

file does not occupied CPU resources, but it consumes lots of 1/0 throughput 

resource of both the disk and the network. As a well designed distributed file system, 

HDFS overcomes the 1/0 throughput bottleneck issue which occurs in the single 

disk. For example, the 1/0 throughput of a standard SATA hard disk is 60 MB/S, 

which has became a big bottleneck for the computer. HDFS could solve this 

limitation by dividing the files into multiple block files and placing them on 

multiple nodes. When the reading requests are coming, data can be accessed in 

parallel from multiple nodes. 

3) Storing-type file 

For many companies, there are a vast amounts of data need to be stored reliably. 

The data may rarely be operated. But the reliability of the storage system is very 

important. In this situation, the main motivation to use HDFS is that HDFS could 

provide low-cost storage space with high reliability and durability. 

20 



For a typical computer, we could separate its capacities into three types: computing 

capacity, l/0 throughput capacity, and storage capacity. Correspondingly, different 

types of files as I mentioned could primarily consume one of these three capacities of a 

computer. Intending to utilize the computer resource reasonably, we should avoid the 

unbalanced capacity consumption of the DataNodes. For example, if the storage idle 

rate of a DataNode DN; is 10%, but the average CPU idle rate of DN; is 80%, it 

indicates that there is a waste for DN,'s computing capacity. To avoid this situation, I 

aim to utilize the various capacities of a single DataNode as balanced as possible. For 

choosing the optimal DataNodes to host the block files, we should estimate the various 

capacities of the DataNodes comprehensively. In this work, a powerful tool for analysis 

of complex decision problems which called Analytic Hierarchy Process (AHP) is 

applied for evaluating the DataNodes in terms of three capacities. Then the values of all 

DataNodes are sent to the NameNode for decision making. 

3.2 Related Work 

Data replication is a widely used strategy to protect the data storage systems, 

especially the large ones, from data loss. By reasonably deployed multiple replicas of a 

file into different instances in the system, the lost data can be rebuilt quickly as long as 

there is one available instance which hosts the data file. 

In [3], the researchers state the current widely-used replica placement policy of 

HDFS, and they also show the analysis reports collected from a cluster using HDFS to 

manage 25 petabytes of enterprise data at Yahoo! 

To defend against frequent failure in the large cluster, various approaches have been 
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adopted by different enterprises and distributed file systems. Such as Redundant Arrays 

of Inexpensive Disks [ 11 ], which is well-known as a single disk failure tolerant 

technology, has been used by some distributed files systems like PVFS [12] and Lustre 

[14]. DiskReduce [15] is an application of RAID in HDFS to save storage capacity. In 

other words, it is a modification of the HDFS to asynchronously replace replicas of 

block files with RAID 5 and RAID 6 encodings. 

However, to the best of our knowledge, RAID could only protect against failure 

that happened on the disk, which denotes that if the machine becomes unavailable due 

to some others reasons, the data hosted by this machine will be non-functional. 

The Analytical Hierarchy Process (AHP) is a decision-aiding method developed by 

Saaty [20]. AHP is most widely used in analyzing feasible alternatives when multiple 

criteria need to be considered on a rational basis. Based on the judgment of the 

decision-maker, which may be one people or a group, it aims at evaluate a set of 

alternatives on a ratio scale [24]. 

3.3 Replica Placement Policy 

In Chapter 2, I have studied the problem of how many replicas are necessary for a 

single file. In this section, I study the problem that where these replicas should be 

placed. The current replica placement policy in HDFS is considered to be a sound 

policy in terms of reliability and network bandwidth consumption; however, it does not 

achieve resource utilization balancing when arranging the files to the DataNodes due to 

the random selection. Hence, I present a file type aware replica placement policy. 

Comparing with the current policy used in HDFS, a major benefit of our new policy is 
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that the system could achieve resource utilization balancing which could further 

improve the availability of the Map Reduce application. 

With deploying a scalable distributed monitoring application called Ganglia 

Monitoring System [17] in HDFS, the NameNode can gather the following information 

of each DataNode periodically: 

I) CPU idle rate R iw, ; 
cpu 

2) 1/0 idle rate Ri~, ; 

3) Storage idle rateR~::.; 

The average CPU idle rate R,~'; of all the DataNodes is calculated by: 

(3.3.1) 

Similarly, the average 1/0 idle rate Ri;f can be calculated by the formula 3.3.2 and the 

average storage idle rate R;;;e could be calculated by the formula 3.3.3. 

n 
"Rrw, 
£.... 110 

R Avg _ .1=1 
110 ----

n 

n 
"RDN, 
L...i space 

RAvg = _J=_I __ 
space 

n 

(3.3.2) 

(3.3.3) 

Our objective is to achieve resource utilization balancing which could further 

improve the efficiency of the whole Hadoop system. Our objective in this section is 

formulated as follows: 
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Object: 

Subject to: 

Min Max RDN, Avg DN, Avg DN, Avg { 
2 2 2} 

( cp11 - R,p11 ) + ( Rl/0 - Rl/0 ) + ( Rspace - Rspace) 

{, RDN, 
L.... '-PU 

RAvg = ..;...i=_,_1 __ 
(,PU n 

n 

II "°' R'w, L..,. space 
RAl-g = _i=_I -

space 
n 

i=J, ...... ,n. 

i=l, ...... ,n. 

i=l, ...... ,n. 

3.4 File Type Aware Replica Placement Policy 

(3.3.4) 

(3.3.5) 

(3.3.8) 

(3.3.8) 

(3.3.8) 

In this section, I adopt two powerful tools Analytical Hierarchy Process (AHP) [20] 

and Roulette Wheel Selection (RWS) [30] to improve the candidate nodes selection 

process. AHP is most widely used in analyzing feasible alternatives when multiple 

criteria need to be considered on a rational basis. Here AHP is employed to evaluate the 

DataNodes based on the three features we mentioned above: CPU idle rate, 1/0 idle 

rate, storage idle rate. It is worth noticing that because HDFS utilizes a single-master 

pattern, the computing resource of the NameNode is a kind of scarce resource. The 

NameNode may process hundreds of thousands operations every second. Therefore, it is 

unpractical for the NameNode to update the information of all DataNodes and execute 

the AHP evaluation process frequently. This period can be set to one day or more. 
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3.4.1. DataNodes Evaluation with AHP 

The perceived importance of multiple criteria is utilized by AHP as pairwise 

comparisons on a scale of 1 to 9. Saaty's scale of relative importance is shown in Table. 

2. 

Table. 2 Saaty's Scale of Relative Importance 

Intensity of relative importance Definition 

1 Equal importance 

3 Weak importance 

5 Strong importance 

7 Demonstrated importance 

9 Absolute importance 

2,4,6,8 Intermediate value between 

For different file types, the importance of the capacities of the node is distinct. So 

each DataNode has three distinct values evaluated by AHP in our work. For instance, 

for a computing-type file, the DataNodes with low CPU utilization rate are reasonable 

candidates. More specifically, we have three distinct evaluating criteria for each 

DataNode by exploiting AHP. The three criteria which are considered are: CPU idle 

rate; 1/0 idle rate; Storage idle rate. 

By using AHP, we form a pairwise comparison matrix shown in Table. 3. The value 

in the i row and j column evaluates the relative importance of the factor i compared 

with factor j. 
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Table. 3 Pair-wise Comparison Matrix 

Criteria CIR IIR SIR 

CIR 
O)CIR O)CJR O)CIR 

O)CIR O)JIR O)SIR 

IIR 
O)JJR O)JIR O)JIR 

O)CJR O)JJR O)SIR 

SIR 
O)SIR O)SIR O)SIR 

O)CIR 0)/IR OJ.WR 

For example, when we need to choose the DataNodes for placing the 

computing-type files, we might arrive at the following matrix: 

3 5 [1000 3.000 50001 
C= 

I 
= 0.333 1.000 3.000 - 3 

3 
1 

0.200 0.333 1.000 
-

5 3 

For example, the value C12 = 3 in this matrix indicates that we think the CPU idle 

rate is more important than the //0 idle rate in this scenario. 

In Table. 4, we synthesize the pairwise comparison matrix C by dividing each 

element in the matrix C by the amount value of its column. For instance, the value 

0. 652 in the first row and first column is gained by 
1 

= 0.652; the value can 
1+1/3+1/5 

be found in the matrix C. 
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Table. 4 Synthesized Matrix C 

Criteria CIR IIR SIR Weight 

CIR 0.652 0.692 0.555 0.633 

IIR 0.217 0.231 0.333 0.260 

SIR 0.130 0.077 0.111 0.106 

CIR is the CPU idle rate; IIR is the I/0 idle rate; SIR is the Storage idle rate. 

The weight of the CIR, /JR and SIR in Table. 4 can be calculated by averaging the 

value in each row, respectively. For example, the weight of CIR is calculated by 

dividing the sum of the first row (0.652+0.692+0.555) by 3. In this example, the weight 

of CIR, /JR and SIR are w = [ 0.633 0.260 0.106), respectively. Let us use an example 

to demonstrate how to use AHP to evaluate the DataNodes in HDFS. 

Assume all the information of the DataNodes in Table. 5 is collected by Ganglia 

Monitoring System. 

Table. 5 Illustration of the Evaluation of the DataNodes 

CIR IIR SIR Value 

DN1 0.70 0.63 0.51 0.682 

DN2 0.63 0.52 0.43 0.598 

ON3 0.35 0.34 0.84 0.381 

ON4 0.91 0.80 0.13 0.798 

For example, in Table. 5, the value of DN-1 is calculated as: 

VvNJ = CIR DNJ * wcm + /JR DNJ * W11R + SIR DNJ * Wsm 

= 0. 70*0.633 + 0.63*0.260 + 0.51*0./06 = 0. 798 

The value of DN2. DN3, DN4 can be calculated in the same way, respectively. 

27 



L 

3.4.2. Roulette Wheel Selection (RWS) Method 

As I mentioned, it is unpractical for the NameNode to update the information of all 

DataNodes and execute the AHP evaluation process for each writing request. This 

period can be set to one day or more. However, if we always select the DataNode with 

the greatest value in this period, this DataNode may suffer 1/0 throughput, CPU or 

network congestion. Intending to solve this problem, I adopt a selection approach which 

has been used in Genetic Algorithm called Roulette Wheel Selection (RWS). By using 

AHP, DataNode DNi is evaluated a value which is represented by VoNi.· Moreover, for 

further improving the efficiency of the roulette wheel selection, we do not put all of the 

DataNodes in the process. There is a threshold band if VoN, < b, this DataNode will not 

be a candidate in roulette wheel selection. 

In roulette wheel selection, the probability that a DataNode DN, is selected PfDNi ,s 

selected} is calculated as follows: 

p _ d if-V,=DN.c,._i _ 
( UN, ,s se/ec1ed) - e n (3.3.10) 

Ivf)Nj 
J=I 

As this formula shown us, the DataNode with higher value has more probability to 

be selected by the NameNode. Hence, the files are prone to be distributed on the 

DataNodes with relatively high idle resources in a long period. 

3.5 Numerical Results 

In this section, I evaluate the performance of our file type aware replica placement 

strategy. Given 100 DataNodes, there are 10000 new files will be uploaded to the HDFS 

system. For most of the DataNodes, the range of CIR, SIR and IIR is from 30% to 70%. 
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It is worth noting that, in this simulation, for I 0% DataNodes, the values of CIR, SIR 

and /JR are all 100%, which means they are all new machines. In order to evaluate our 

new strategy, we assume that all files' type can been identified by the NameNode. 

Particularly, files consume resources of the DataNodes; if the file is computing-type file, 

the consumption rate of the CPU is assumed to be 0.1% to 0.3%; and the consumption 

rate of 1/0 throughput and disk space could be 0.01%-0.03% and 0.01%-0.05%, 

respectively. If the file is //0 throughput-type file, these three consumption rate could be 

0. 01%-0. 03%, 0.1%-0. 3% and 0. 01%-0. 05%, respectively. Similarly, when the file is 

identified as storing-type file, these three consumption rate could be 0.01 %-0. 03%, 

0.01%-0.03% and 0.1%-0.5%, respectively. 

In this section, I compared the performance of our File type Aware Replica 

Placement (FARP) strategy with the Current Replica Placement (CPR) strategy in 

HDFS by using the Minimum Mean-Square Error (MMSE) of CIR, /JR and SIR. For 

example, the value of MMSE of CIR indicates the difference of the CPU utilization rate 

between the DataNodes. The value of MMSE reducing implies that the CPU utilization 

rate of the DataNodes prone to balance. 

Fig. 5 shows us the MMSE of CIR of the DataNodes that after uploading the files to 

the system by executing our FARP strategy and by executing CPR strategy. As we 

expected, by using FARP, when the number of files increase, the CPU utilization rates 

of these JOO DataNodes tend to achieve balance; because the values of MMSE is 

observed going down. By contrast, I observe that in Fig. 5, the values of MMSE of CIR 

rarely change by using CPR strategy. It indicates that the CPR strategy does not 
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contribute on resource utilization balancing. The similar situations in terms of !IR and 

SIR are observed in Fig. 6 and Fig. 7, respectively. 
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Fig. 5 MMSE of the CIR ofDNs 
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CHAPTER 4. APPLICATION REPLICA STRATEGY ON 

CLOUD-FRONT SERVER 

4.1 Introduction 

Cloud computing opens a new area of supplement, consumption, and delivery 

framework for IT services, and it involves over-the-Internet provision of dynamically 

scalable and virtualized resources which is significant trends with the potential to 

increase agility and lower costs of IT [22]. Virtual infrastructure cloud services (e.g., 

[21], [25]) are virtual hardware provider, where customers can deploy virtual servers 

and run applications. The virtual server vendor which is an emerging cloud service is 

the motivation of this topic. Cloud customers can order Applications which can be 

delivered by the cloud providers on the cloud. Three characters are involved in this 

model: 1) cloud service vender, 2) application provider, and 3) application customer. 

Application providers develop the applications and put them on the original cloud 

servers which are provided by the cloud providers. The customers purchase the 

applications from the application providers. It is worth noting that customers always 

expect the applications ordered can be delivered as fast as possible. However, it is 

difficult for the original cloud server to provide all reservations in time due to the 

limitation of the distance and network bandwidth. As a consequence, the provisioning 

time of lots of reservations is much longer than expected. 

To reduce the latency time, cloud service vender employs a original-front server 

strategy ( e.g., [21 ]), shown in Fig. 8. 
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Customer 

Fig. 8 Illustration for Original-Front Server Model 

There are two types of server in this OFS model: the original server and the front 

server. All applications are stored in the original server initially, and when the 

information of reservations is gathered by the original server, it needs to execute the 

application replica placement strategy to distribute the replicas. We approximately 

calculate the latency time for delivering the applications with the distance between the 

front servers and customers. Because the front servers are located near to the customers 

geographically and globally, the provisioning time can be reduced. Obviously, if the 

applications are always routed to the nearest front servers for every customer who 

makes the reservation, contents will be delivered with the best possible performance. 

However, we notice that the application providers cannot achieve maximum profits 

because they have to pay the cloud vender to use this service. For example, the expense 

is e\ when the application provider puts the application k on front server j. If the 

customers choose to use the front service to have low latency delivery, they have to pay 
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the application providers for using the advanced service. For example, when the 

customer i makes the reservation of the application k, the cost for using the front service 

is v'k. Hence, the profits of application providers are the income minus the payout. In 

this Chapter, I assume that the replica of the application distribution strategy can be 

decided by the application providers and be executed by the cloud vender. Obviously, if 

application providers try to maximize their profit <l> total, they need to satisfy all their 

customers with minimum front servers. We assume that if the expected latency time for 

delivering the application k to the customer j is l'exp, there is at least one can deliver the 

content to customer j in time. Our objective is to maximize the profit <l> totat for 

application providers. 

4.2 Related Work 

How to provision the applications through cloud rapidly has been studied recently 

[26], [24]. In paper [24], the authors studied a fundamental storage staging problem and 

presented it as a scheduling problem with capacity constraints under two models: 

continuous model and integral model. 

Similar to replication placement, content distribution has been studied in the 

context of web content through Content Distribution Networks [28], [29]. Some 

Content Distribution Networks implementations introduce related job scheduling 

problems. The scheduling problem for cache pre-filling is studied in [23]. Many content 

distribution systems adopted web caching techniques [27], where frequently accessed 

objects are stored near the customers. These techniques can reduce both access latency 

and network traffic. 
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In could computing, virtual infrastructure cloud services ( e.g., [21], [25]) are both a 

virtual hardware provider and a virtual hosting premise, where customers can deploy 

virtual servers and run applications. Cloud providers provide some special web services 

for content delivery, such as Amazon CloudFront [21] which cooperates with other 

Amazon Web Services to serve developers and businesses an easy way to distribute 

content to end customer with high data transfer speeds, low latency, and no 

commitments. With a global network of edge locations, Amazon CloudFront can deliver 

your static and streaming content rapidly. 

In this work, I target to maximize the profit <l> totat for application providers; and to 

the best of our knowledge, this problem is rarely studied in the previous works. 

4.3 Problem Statement 

In this work, the Original-Front Server (OFS) model is adopted. We are given a set 

of customers C = {c1, c2, ... ,c1}, a set of front servers F= {Ii, /2, ... ft} and a set of 

applications K = {k1, k2, ... ,kn}, Multiple of applications can be ordered by a single 

customer. For customer i, h, denotes the number of applications reserved by customer i; 

and v~ denotes the expense that customer i orders application k with front service. For 

the application providers, the expense is ek for putting the application k on front server j. 

The price strategies for both the cloud venders and application providers are out of the 

scope of this topic. Because the capacity and network bandwidth of each front server is 

limited, we have the following constraints: a front server can only serve maximum £ 

customers at the same time. When customer i reserves application k, the expected 

delivery time denotes by t;:P. If the provisioning time t;;~, is greater than t;~:, we 
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assume that customer i will cancel this reservation and the charge v~ is refunded. 

Moreover, the reservation which is delivered in time is a satisfied reservation; 

otherwise it is an unsatisfied reservation. When the customer i reserves multiple 

applications, the ratio of the satisfied reservations and the unsatisfied reservations 

N' 
should not less than the thresho Id a; , a, ~ ,'alisfied ,es,rvalion ; otherwise, the customer will 

N,msatisfied resermtion 

cancel all of the reservations. 

Definition. 1 (Eligible Front Server): For customer i, if the front server j can deliver the 

reserved applications in time, then the front server j is called eligible front server to 

customer i. In other words, if the latency time is no more than the expected delivery 

time, t~;
0 
~ t;~:, then the front server j is an eligible front server to customer i. 

Definition. 2 (Maximum prOfit of Application Replication(MOAR)):Given a set of 

customers C = {c1, c2, ... ,c1}, a set of applications K = {k1, k2, ... kn}, and a set of front 

servers F = {/J, h, . ..fm}, for the application provider, the income Y,n is calculated as: 

(4.3.1) 

where s~ denotes that if the application provider provides reservation k to customer i 

with front service. s~ can be determined by the following formula: 

_ A ..r,.,yf 1,l i,J i,m] 
x, -1nu..,.LXk , ... ,xk , ... ,xk (4.3.2) 

t'·k 
where x~·1 =[___.::Pk]xf(j,k), andf(j,k) is the decision variable which denotes ifthere is 

t',), 
pro 

a replication of application k exists on front server j. If x, 2: 1, thens~ = I ; otherwise, 

s{ = 0. 

For the application provider, the payout is calculated as: 
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Yo111 = LLeff(J,k) (4.3.3) 
;=I k=I 

Our objective is to maximize the total profit of the application provider: 

t h, m n 

Maximize Ia,[L v~s~]- LLeff(J,k) (4.3.4) 
i=I k=I )=I k=I 

4.4 Proposed Solutions 

In this section, I study two different scenarios of application replication placement 

and present two heuristic algorithms to solve the Maximum prOfit of Application 

Replication (MOAR) problem in these two scenarios. 

4.4.1 OFS Model with Single Application 

We start with a special case where there is only one application provided in the 

OFS model. Because there is only one application, the threshold a= 1 for all customers. 

A tree network G is constructed in which the original server is the root of the tree. 

The set of intermediate nodes V = {n1, n2, ... ,nm} denotes the front servers set, and the 

set of leaf nodes / = {ll, 12 ... , lj} denotes the customers sets. (In the following, we use 

front server and intermediate node interchangeably, as well as customer and leaf node.) 

Let the set Di ={(h d'2, ... da} represents the leaves on intermediate node i, which also 

means the customers who are routed to the front server f,. According to the geographical 

location information, the eligible front servers of customer i who reserved application k 

is calculated and represented by Wi ={w'1, w'2, ... w'p} where p is no more than the 

number of front servers m. 

When there are x customers are served by the front server j, the income of the 

X 

application provider in terms of server j is y 1
'" = L v~·1 

• We use !J; to denote the ratio of 
i=l 
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the income and the payment of front server j, and Q1 is calculated as: 

(4.3.5) 

Where riui = ef 

In our solution, we assume the application replications have been deployed on all of 

the front servers initially. Our H-MOAR algorithm, shown in Algorithm 1, first chooses 

the node n1 with the minimum value Qmm in network G. Then, if the leaf on node n1 has 

other eligible front nodes, it is transferred to one of these nodes which has the 

maximum value Qmax- For example, leaf la has three eligible nodes n,, n2 and n3, and la 

currently connected to node n,. According to Algorithm 1 in Fig. 9, if Qn2 ~ Q,,3, la 

needs to be transferred to n2.But if leaf la does not have any other eligible node, la is 

kept on the current node. After executing these steps, I recalculate the value Q 'n; for 

node n1. If Q',,1 -:::.1, node n, and its present leaves are removed from network G; If Q',,; 

~l, node n; is marked as pruned. Our algorithm continues to repeat this process on the 

unpruned nodes until none unpruned nodes left. Based on our algorithm, these steps are 

repeated iteratively until there is no leaf transfer occurs in G. 
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Ali:orithm 1 Single App H-MOAR(G) 

1: Construct sets of intermediate nodes V , V', and V"; 

2: V f-{nl'n2 ,···,n;} ;V' f-V;V" f-,P; 

3: for each leaf i in G do 

4: Connect i to the node nnea which is nearest node to i; 

5: end for 
6: while V =1: V" do 

7: Find the node n; with the minimum value n;;.n; 

8: for each leaf l in the set Dn, do 

9: if IW,I > 1 ( E, is the set of eligible noedes of l) then 

10: Transfer l to the node nmax which is the node with 

The maximum value in set W, . 

11: end if 
12: end for 

13: if n~ :2:: 1 then 

14: Mark n as "pruned''; 

15: else 

16: Delete n,. and leaves in D' · 11,, 

17: end if 

18: Repeat step 6 to step 15; Move node n, to set V". 

19: end while 

Fig. 9 Algorithm 1 Single App H-MOAR 
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Let us use an example to illustrate Algorithm 1. In Fig. 1 O(a), I simply assume that 

the payout of the application k on each front server is the same which is ek = 10, and the 

income from each customer who uses front service is Vk = 5. Initially, leaves are 

automatically routed to the nearest nodes, shown in Fig. I O(a). Following to Algorithm 

I, in the first iteration, node N4 is selected due to nk -
5 

which is the minimum .. ""'. -To 

value in network G. 

(a) The original network (b) Iteration I 

(c) Iteration 2 (d) Iteration 3 

Fig. 10 Illustration of Algorithm I Single App H-MOAR 

From the set W19 = {N1, N4} which includes the eligible nodes of leaf /9, we choose 

node N3 as a target node to transfer leaf /9, shown in Fig. I O(b ). There is no leaf left on 

node N.,after moving leaf /9 to N1. Hence, node N4 is deleted from the network, which 

means the replication of application k will not be deployed on front server N4 . In the 

second iteration, because n! = n:, = .!.2_, node N 3 is selected randomly. The sets of 
2 "1 10 

eligible front nodes of leaves /7, 18 and !9 are E,k = {N2, N3 }, E/ = {N3 }, E/ = {N1}, 
7 8 9 
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respectively. Only leaf / 7 is moved to node N2 in this iteration, shown in Fig. 10( c ). 

'k 10 . 
Because ON = - ~ 1 which means N3 can be kept in the network and marked as 

1 10 

pruned. Fig. 10( d) illustrates the third iteration. The same situation happens on node N1. 

Leaves !2 and /3 are transferred to N2, and the value of node N1 is n;; = 2- which 
' 10 

means N1 should be deleted from the network. At this time, the network achieves stable. 

As a consequence, N1 and N3 are chosen as the front servers which are placed with 

application replications k. 

4.4.2. OFS Model with Multi-Applications 

Now we need to generalize our approach to the scenario refers to multiple 

applications. For the general network model, the number of applications is k. In this 

multiple applications scenario, I present a multi-layers strategy which could separate the 

MOAR problem into numbers of sub-problems. It is worth noting that in this 

multi-layers OFS model, I aim to maximize the value of the whole network, not only in 

the single layer. And I adopt a new variable (f) and (f) = 1 
. ~ is calculated as: 

/3 -a 
I I 

( 4.3.6) 

A set of tree networks Gmul ={g1, g2, ... gk} is constructed to demonstrate the multi-layers 

model. Each tree network represents a layer, and only one application is considered in 

each layer. Fig. 11 illustrates our Multi-application heuristic algorithm. 
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AI2orithm 2 Multi-Apps H-MOAR{G) 

1: Construct sets of intermediate nodes V , V' , and V"; 

2: V f--{n? ,'4',· ··,nn; V' f--V; V" f--<p; 

3: for each leaf i in Gq do 

4: Connect i to the node nnea which is nearest node to i; 

5: end for 
6: while V -:t V" do 
7: Find the node n with the minimum value 

~x,q_,_·,_ 

( 
vq l 

L...,=1 /3 -a 
o.m,n = I I where /3; is the 

"x,q e},q 
L...,=1 k 

number ofremained applications to leaf i in all of the 

layers; 

8: for each leaf l in the set n:, where D,; is node n's 

leaf set do 

9: if lw;I > 1 then 

Transfer l to the node nmax which is the node with 

the maximum value in the set w; ; 

11: end if 
12: end for 

13: if n~ ~ I then 

14: Move n to set V"; 

15: else 

16: Delete n and the leaves in n:; 
17: end if 
18: Repeat step 6 to step 15; Move node n to set V". 

19: end while 

Fig. 11 Algorithm 2 Multi-Apps H-MOAR 
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In the layer q, customer i has a set of eligible front server which represented by 

W,.q - { ,.q i,q ,.q } F th fr t . th . . - w1 , w2 , ••• , wa , . or e on server J, e mcome 1s 

. Ixq r ;.q = · vq a 
m i=I 1k I 

(4.3.7) 

where x is the number of the customers connected to the front server j. The profit for the 

application provider in layer q is 

. . Lxq Lxq . <l>q = r1 ·q - y1 ·q = , vq a - , e 1 ·q 
J ,n out i=I 1k I i=I k (4.3.8) 

We use the following example to illustrate algorithm 2, shown in Fig. 12. 

(a) The original network (b) Iteration 

e..,=10 
·········("'•• .. 

\ N~: 
"• ...... .. 

( c) Iteration 2 ( d) Iteration 3 

Fig. 12 Illustration of Algorithm 2 Multi-Apps H-MOAR 

The value of a, fJ and rp of each leaf can be found in Table. 6. In layer q, we simply 

assume that the payout for each front server is eZ = 10, and the income from each 

q 

customer can be calculated by y1·q = "x,q ~, where v! = I in this example. 
,. L.i1=I /J. -a 

I I 

Algorithm 2 is implemented on each layer with considering the variable a . First, we 

calculate the value n of each node, where n = 12
·
5 n = 

1
0.3 

w, 10 ' w, 10 ' 
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~ = 2- . Hence, in the first iteration, node N4 which has the minimum value in 
4 10 

network Gq is selected. We choose node N3 as a target node to which leaf /9 can be 

transferred. Because NJ is another eligible node of /9. We delete N4 after the transfer, 

because no leaf left on N4, shown in Fig. 12(b). In iteration 2, we recalculate the value 

for each node where QN = 12
·
5

, QN = l0.
3

, ~ = .!2_. Obviously, node N2 should 
I 10 2 10 l 10 

be selected. The sets of eligible nodes of leaves l-1, ls and h are F:i: = {N1, N2}, Ei~ = 

{N2}, E,: = {N2, N3}, respectively. According to 2, leaf l-1 is transferred to node N1 and !6 

is transferred to node N3 in this iteration, shown in Fig. 12(c).At this time value of node 

N2 QN = 2- :s: 1 which means N2 should be deleted from Gq. Fig. 12(c) illustrates the 
I 10 

second iteration. In the third iteration, neither the leaves on node N1 nor the leaves on 

node N3 have other eligible nodes, which means network~ achieve stable. As a result, 

N1 and N3 are chosen to be distributed with application replications in this case. The 

value of a, fJ and <p of each leaf can be found in Table. 6. 

Table. 6 Example of Algorithm 2 Multi-Apps H-MOAR 

Symbols Value Symbols Value Symbols Value 

an 0.5 /311 0.9 <f>11 2.5 

a,2 0.5 /3,2 0.8 <f>12 3.3 

an 0.6 /3n 0.75 <f>n 6.7 

a,4 0.6 /3,4 0.9 <f>14 3.3 

a,s 04 /3,s 0.6 <f>1s 5 

a,6 0.4 /3,6 0.9 <f>16 2 

an 0.7 /3n 0.8 <f>11 10 

a,s 0.7 /3,s 0.95 <f>1s 4 

a,9 0.5 /3,9 0.7 <f>19 5 

44 



4.5 Numerical Results 

In this section, I presented numerical results to evaluate the performances of our 

solutions. I implemented our heuristic algorithm, which was denoted as H-MOAR in 

the figures. For comparison, I also implemented the scenario without optimization 

which aims to satisfy all the customers. This scenario was denoted as original 

distribution in the figures. All our simulation runs were performed on a 2.8 GHz Linux 

PC with 2G bytes of memory. I used different network topologies in a JOO x JOO sq. 

units playing field to evaluate our proposed solutions. All the front servers and 

customers were randomly distributed in the playing field. 

In our simulation, the number of front servers was set to 20. The cost ef of 

deploying an application on a front server was set to 20. The cost of customer by using 

a particular application was set to 3. We also set the constraint £ that the number of 

customers connected to one server less than 50 in our simulations. In our simulation, I 

implemented the scenario of OFS model with single application. The scenario of OFS 

model with multiple applications will be further studied and implemented in our future 

work. 

I tested the performances in terms of the profit of application providers, satisfaction 

ratio of customers, and number of deployed front server of our solution, which were 

shown in Fig. 12 and Fig. 13. Fig. 12 illustrated that H-MOAR always has a better 

performance of profit. Another observation is that as the number of customers increased, 

the profit also increased. 

For the satisfaction ratio, both H-MOAR and Original Distribution have the similar 
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performance. The satisfaction ratio of Original Distribution is a little better than the one 

ofH-MOAR, because the Original aims to satisfy all the requirements of the customers. 

Fig. 14 shows us that, comparing to the original distribution, our H-MOAR protocol can 

satisfy the near maximum number of customers with much less front servers. 

To sum up, our simulations demonstrated that the H-MOAR protocol achieves similar 

satisfaction ratio as the optimal solution, while increasing the profit of application 

providers. Hence, the H-MOAR protocol is suitable for Original-Front Server 

framework. 
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CHAPTER 5. CONCLUSIONS 

In this work, I have studied three major problems based on data replication 

technique. In Chapter 2, I presented a replication factor decision problem in Hadoop 

Distributed File System. In contrast to the replication factor problem from previous 

works, I intend to satisfy both the reliability and achieve network and disk space 

utilization balancing. There are two phases in our dynamic replication factor decision 

policy. The first phase is to calculate the replication factor by using the concept that 

probability of data loss during rebuilding process in [18]. The second phase is to adjust 

the replication factor intend to achieve network and disk space utilization balancing, 

which can further improve the performance of the system. After studying how many 

replicas are necessary, I studied the replica placement problem for distributing the 

replicas in Chapter 3. Our objective is to achieve resource utilization balancing. Our file 

type aware replica placement strategy firstly uses the tool Analytic Hierarchy Process to 

evaluate the value of the DataNodes, and then deploy the data by adopting a method 

named Roulette Wheel Selection. The entire data replication strategy that I proposed in 

this work, is the combination of the schemes in Chapter 2 and 3. Numerical results have 

confirmed our theoretical analysis. 

In Chapter 4, I studied another use of the data replication method based on 

original-front server model. In this mode~ data replication is used to reduce access 

latency and network bandwidth consumption. I studied a Maximum prO.fit Application 

Replication (MOAR) problem, which seeks to provide an efficient strategy to maximize 

the profit of the application providers. I proposed two heuristic algorithms which are 
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called H-MOAD and Multi-app H-MOAD to solve the MOAR problem. Our simulation 

results show that the H-MOAD scheme can increase the profit of application providers. 
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