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Abstract
The reported financial losses from railroad accidents since 2009 have been more than US$4.11 billion dollars. This consider-
able loss is a major concern for the industry, society, and the government. Therefore, identifying and ranking the factors that
contribute to financial losses from railroad accidents would inform strategies to minimize them. To achieve that goal, this
paper evaluates and compares the results of applying different non-parametric statistical and regression methods to 15 years
of railroad Class I freight train accident data. The models compared are random forest, k-nearest neighbors, support vector
machines, stochastic gradient boosting, extreme gradient boosting, and stepwise linear regression. The results indicate that
these methods are all suitable for analyzing non-linear and heterogeneous railroad incident data. However, the extreme gradi-
ent boosting method provided the best performance. Therefore, the analysis used that model to identify and rank factors
that contribute to financial losses, based on the gain percentage of the prediction accuracy. The number of derailed freight
cars and the absence of territory signalization dominated as contributing factors in more than 57% and 20% of the accidents,
respectively. Partial-dependence plots further explore the complex non-linear dependencies of each factor to better visualize
and interpret the results.
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Every year, railroads invest an average of 40% of their
revenue on capital expenditures, maintenance, and con-
dition monitoring (1). Despite those investments, the
high number of accidents falls far short of the goal of the
Federal Railroad Administration (FRA) (2) to reduce
rail-related accidents, injuries, and fatalities to zero. For
a decade before 2019, nearly 25,000 accidents caused 446
deaths, 5137 injuries, and more than US$4.11billion in
financial loss seasonally adjusted to 2018 dollars (3).
Class I railroads accounted for 78% of those accidents,
more than 72% of the resulting injuries and fatalities,
and 81% of the total financial loss. Figure 1 summarizes
the annual Class I railroad accidents and the financial
losses for the decade before 2019.

The consistently large number of accidents and the
injuries and fatalities they cause place a significant social
and economic burden on the industry, the environment,
and society. Therefore, it is vital to understand the domi-
nant accident causes to guide strategies and policies that

could minimize financial losses from accidents.
Subsequently, the goal of this paper is to apply data min-
ing (DM) and machine learning (ML) techniques to
15 years of Class I freight railroad accident data from
2004 to 2018 to reveal insights about the major factors
contributing to financial losses from Class I freight train
accidents.

FRA maintains historical data of railroad accidents in
three primary databases. These datasets contain greater
variety and have grown far beyond the ability of humans
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and commonly used software tools to capture, manage,
and process data within a ‘‘tolerable elapsed time’’ (4).
The available accident data are in non-uniform formats.
The data includes heterogeneity, variety, unstructured
features, missing values, incorrectly formatted values,
and redundancy (5, 6). Therefore, it is not possible to
apply standard statistical methods directly to the raw
data. Therefore, advanced techniques such as DM and
ML are necessary to prepare the data for processing.

DM is helpful in analyzing vast amounts of data by
using many different techniques to discover useful pat-
terns and relationships among features (7, 8). Kohavi (9)
specified that insight and prediction are the two primary
goals of DM. Insights identify patterns and trends that
are useful, whereas prediction leads to the identification
of a model that provides reliable forecasts based on new
input data. Many researchers have applied different
DM/ML methodologies to analyze factors that cause
accidents on roadways (10–12), at highway rail-grade
crossings (HRGCs) (13–18), and on railways (19, 20).
For instance, Sohn and Lee (12) compared the results of
neural network, Bayesian fusion, decision tree (DT),
bagging, and clustering models on Korean road accident
data. Their results indicate that clustering-based classifi-
cation works better than the other methods. Depair et al.
(11) also examined clustering techniques to identify
homogenous accident types. They used vehicle types as
the basis for segmentation and evaluated the relationship
to injuries caused by different segments.

Some researchers used DM techniques to analyze
road-related factors and linked them to accident severity.
Beshah and Hill (21) compared different DM models to
investigate the role of road-related factors in accident
severity in Ethiopia and concluded that k-nearest neigh-
bors (KNN) performed best. Mousa et al. (22) compared
the ability of tree-based ensemble methods to predict the
onset of lane changing maneuvers by using connected

vehicle data and found that the extreme gradient boost-
ing method (XGBM) performed best. The highest accu-
racy was 99.7%, and that was better than methods using
DTs, gradient boosting (GB), and random forest (RF)
ensemble methods.

Other related areas of research focused on HRGC
accidents. Hu et al. (16) evaluated the relationship
between crash frequency and the relevant attributes of
highway and railroad systems. Ghomi et al. (13) used
DM techniques to identify some of the main factors
associated with the injury severity of road users involved
in HRGC accidents. Kang and Khattak (17) investigated
the severity of HRGC accidents by clustering the data
using a combination of DM and statistical methods.
Brown (19) applied text mining to identify factors contri-
buting to railroad accidents. Mirabadi and Sharifian (20)
used association rule mining to reveal the relationships
and patterns in Iranian railway accident data. Many
other researchers have conducted studies that use other
analytical criteria to discover relationships between acci-
dent risk and contributing factors (8, 23–25).

All research that analyzed rail or road accidents using
DM techniques focused on identifying contributing fac-
tors that relate to attributes of the respective infrastruc-
ture. There is a gap in the research to identify and rank
risk factors in financial loss from railroad accidents.
Subsequently, the main contribution of this research is a
comparison of the ability of different non-parametric,
tree-based DM methods, and a regression model to iden-
tify the risk factors in financial loss by analyzing 15 years
of railroad Class I freight train accident data. The
authors then use the best predictive model to rank the
major factors based on their influence on financial loss.
This research extends previous work on railroad safety
in the following two ways:

1. it isolates factors that lead to financial losses;
2. it ranks the importance of the major contributors.

The remainder of the paper is structured as follows: the
next section introduces the models used to identify the
factors that influence financial loss. The section that fol-
lows describes the data structure, variables, data cleaning,
and data handling. After that, a section compares the
model outputs for selection, variable ranking, and the
marginal effect of the variables. The final section presents
concluding remarks and describes future work.

Model Development

This study used tree-based models (RF, stochastic GB,
and extreme GB), the k-nearest neighbor method, and
the support vector machine (SVM) to classify the data
according to the selected features or factors. In addition,

Figure 1. Class I railroad incidents from 2009 to 2018 and the
reported financial loss.
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stepwise linear regression (SLR) provided a baseline for
comparison because of its proven effectiveness in previ-
ous research (26, 27). The next sections provide basic
descriptions of the six models, all available from the caret
package of the R Project for Statistical Computing.

Model Regularization

Model regularization involves trading off training data
bias for a reduced variance on new data. This is achiev-
able by partitioning the data appropriately into develop-
ment and test sets. The former is used for cross-
validation while tuning the model, and the latter is used
to test the final regularized and tuned model (28).
Running the models with many different variations in
partitioning revealed that a 70/30 split between develop-
ment (training/validation) and testing datasets yielded
the lowest variance.

k-Nearest Neighbors Method

KNN is a supervised learning algorithm that uses a non-
parametric technique that does not require any assump-
tions on the underlying data distribution. This algorithm
predicts the class of an observation by searching through
the entire dataset to identify k other observations that
are most like it, and then takes the class associated with
the majority. The measure of similarity is based on one
of several available distance measures (29, 30). This anal-
ysis selects the Euclidean distance measure because it is
the most common.

Random Forest

Standard DTs split the dataset by selecting an attribute
and a threshold that maximizes the purity of the sub-
trees. The purity of a node increases as the class imbal-
ance of the dataset within that node increases. However,
this tree-splitting strategy results in trees that tend to
over-fit the data and subsequently fail to regularize by
exhibiting a high variance on new data. The RF
addresses the regularization issue by introducing two lev-
els of randomness—namely the random selection of
learning data and the random selection of decision attri-
butes for tree splitting. Such an adjustment results in bet-
ter performance than many other classifiers models, and
improves robustness against over-fitting (31, 32).

The RF learns an ensemble of trees by bootstrapping
the same dataset through random sampling with a
replacement, and then randomly selecting a predeter-
mined number of attributes for subsequent tree splitting
(32). The selected class of observation is the majority
vote from all trees created—also referred to as aggrega-
tion. Subsequently, the literature often refers to the

combined methods of bootstrapping and aggregation as
the bagging method. Bagging does not require tree prun-
ing for regularization, because averaging the results of
all bootstrapped samples reduces the variance (33).

Stochastic Gradient Boosting

The stochastic gradient boosting model (SGBM) is an
extension of the GB technique. Gradient refers to model
building optimization during the learning process.
Boosting refer to finding a more accurate hypothesis by
combining the predictions of many weak hypotheses
(learners), each of which is moderately accurate (34).
Most of the time, learners are non-linear models (deci-
sion or regression trees), and for such cases, the literature
refers to GB as ‘‘gradient tree boosting’’ (GTB). The
GTB algorithm builds an ensemble of weak prediction
models by adding a sequence of trees, with successive
trees grown on reweighted versions of the data. At each
stage, GTB generates a new tree from the residuals and
adds to the existing group of trees. The algorithm builds
the final ensemble with a weighted summation of the
individual learners.

Motivated by Breiman’s bagging phenomenon,
Friedman (35, 36) augmented the GB procedure and
incorporated randomness as part of the GB algorithm,
calling the resulting technique the SGBM. Friedman rec-
ommended that instead of using the entire dataset to per-
form the boosting, it is more appropriate to select a
random subsample from the training dataset at each step
of the boosting process. The base learner then uses this
randomly selected subsample.

Extreme Gradient Boosting

The XGBM extends the GB method for greater efficiency
and accuracy. Unlike the GB technique, the XGBM
implements an additional regularization to avoid over-
fitting by imposing additional control over model com-
plexity (22). The additional regularization term does not
depend on the randomness. Instead, the focus of this
additional term always remains on minimizing the model
complexities based on some leaves and the sum-of-square
scores of those leaves. For further reference, Bridgelall
(37) presents a detailed study on the XGBM.

Support Vector Machine

A SVM is a non-parametric statistical learning technique
that requires no assumption on the underlying data dis-
tribution. The concept is to separate data across a deci-
sion boundary (hyperplanes) determined by a small
subset of the data (feature vectors). The data subset that
supports the decision boundary is called the support
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vector (38). The SVM assumes that the multi-feature
data are linearly separable in the input space. However,
in practice, data points of different hyperplanes overlap,
which makes linear separability challenging (39). A ‘‘ker-
nel trick’’ overcomes the problem of the linearity restric-
tion on the decision boundary. The kernel trick uses a
transformation function to map the input vector into a
higher dimension space by introducing new parameters
(38). The ‘‘trick’’ part is that the SVM operates only on
the vectors in their ambient space, without actually trans-
forming the vector into a higher dimension. This analysis
uses the radial kernel. Bridgelall (37), Mountrakis et al.
(38), and Yoonsuh and Hu (40) explain the use of the
kernel trick in more detail.

Stepwise Linear Regression

SLR is the process of building a model by successively
removing or adding feature variables based on their rela-
tionship with the response variable. In other words, SLR
is a method of regressing multiple variables in multiple
stages. In each stage, the method removes or adds vari-
ables based on their correlation with the response variable.

Model Comparison

To minimize the potential for over-fitting or under-fit-
ting, the ML procedure incorporates a K-fold cross-
validation process with N repeats to identify the best
model parameters. As explained by Jhangiri and Rakha
(40), the K-fold algorithm segments the training data
randomly into K parts or folds of approximately equal
size. Subsequently, the algorithm builds a model from
the union of the remaining K–1 folds and evaluates the
model performance on the validation fold. The algo-
rithm repeats the cross-validation K times so that each
fold serves as the validation data exactly once. The algo-
rithm repeats the K-fold process N times to introduce
further randomization. The algorithm builds the final
model by using those parameters that produce the best
average performance across the K validations.

The K-fold cross-validation algorithm sets a uniform
random seed before training each model to ensure consis-
tency in the data partitions and repeats. Once trained, the
process adds all the models to a list for re-sampling. This
function verifies that the models are comparable and have
used the same training scheme (41, 42). Finally, the algo-
rithm evaluates the performance of the models by compar-
ing the mean absolute error (MAE), the root mean
squared error (RMSE), the mean absolute percentage
error (MAPE), and the R-squared metrics. The MAE is
the unweighted average of the absolute differences between
the predicted and actual observations. The RMSE is the
square root of the average of the squared differences

between the predicted and actual observations. The
MAPE is the average of the absolute percentage of predic-
tion errors. Therefore, the RMSE represents the average
magnitude of the error and the MAPE represents the mag-
nitude of percentage of the error relative to financial loss.
R-squared is a measure of the percentage of the variation
in the response variable that the model explains.

Data

FRA requires that railroads maintain and submit a
detailed report of all significant accidents or incidents asso-
ciated with railroad operations. FRA compiles these
reports in the railway equipment accident (REA) database
(25). This study used 15years of REA accident data from
all railroads reporting all types of accidents between 2004
and 2018 (3). This database records all accidents that
exceed a specified financial cost (the inflation-adjusted
2019 threshold was US$10,700) from damages to on-track
equipment, signals, tracks, track structures, and roadbeds
(43). However, there are some other significant financial
factors that are not considered while estimating the actual
financial damage from a rail accident. Such expenses
include delays, re-routing, emissions, cargo losses, first and
emergency responders, and other operating costs. Those
indirect expenses could add up to a significant amount
and could be included in the actual financial damage.
However, those indirect factors are often not reported or
available. Subsequently, this study uses Class I freight train
accident data for greater consistency in the analysis. The
data consists of more than 145 variables, such as the rail-
road identifier, accident location, speed, and other attri-
butes that attempt to describe the nature of the event. A
limitation of this database is that it may not capture all the
underlying factors that contributed to the level of financial
loss. However, the models are based only on the available
factors and are likely to expose dominant factors in caus-
ing financial loss.

Cleaning and Structuring

The data cleaning followed a three-step process. The first
step deleted variables that were not appropriate, such as
text narratives, dummy variables, and duplicate vari-
ables. The second stage removed variables such as ‘‘num-
ber of engineers’’ and ‘‘location’’ that did not support the
analysis objectives. The third stage modified some of the
FRA-structured default variables. Figure 2 presents a
flow chart explaining the variable selection process.
Restructuring of the default variables, also called feature
engineering, was performed as follows.

(1) TIMEHR—changed the specific hours and min-
utes of the incident from the standard 12-h,

302 Transportation Research Record 2677(2)



a.m.–p.m. format to a single variable in 24-h mil-
itary time format.

(2) P_CARSDMG—a new variable that is equal to
the percentage of cars carrying hazmat that were
damaged or derailed.

(3) TRKCLAS—changed the FRA track classes of
A–E to a numeric categorical variable for com-
patibility across the DM techniques used.

(4) TRKDNSTY—imputed missing values and
replaced zero values based on the maximum
reported for that county.

(5) Ospeed—restructured ‘‘train speed’’ as a catego-
rical variable over speed where the value is ‘‘1’’ if
the train was traveling faster than the track class
limit, and ‘‘0’’ otherwise.

(6) P_LocoDe—a new variable that contains the
percentage of locomotives derailed is estimated
using the same dataset.

(7) Tloco—a new variable that contains the total
number of locomotives is obtained using the
same dataset.

(8) Cause—changed the primary cause of an acci-
dent to a categorical variable with five classes
based on their alphabetic order. ‘‘1’’=mechani-
cal and electrical failure’’; ‘‘2’’=miscellaneous
causes not otherwise listed; ‘‘3’’= rack, roadbed,
and structures; ‘‘4’’= signal and communication;
and ‘‘5’’= train operation—human factors.

(9) EQATT—‘‘1’’ if someone was attending the
equipment and ‘‘0’’ otherwise.

(10) R_ Amount—a modified dependent variable
containing the total reported financial damage.
The modifications are as follows.
a. Time value normalization: adjusted the

total reportable damage from the variable
ACCDMG to the average consumer price
index seasonally adjusted amount of 2018.

b. The REA databases should include only
those accidents that exceed financial losses
of US$10,700. Therefore, this adjustment
deleted records with lower amounts
because such entries may be included in

Figure 2. Variable selection flow chart.
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error in the dataset and not represent most
accidents.

c. Further analysis was conducted using the
interquartile range (IQR) method to iden-
tify any outliers in the reported financial
loss variables. The distribution revealed
some variables within the 5-percentile and
beyond the 95-percentile that were
eliminated.

Handling Correlation and Missing Values

Missing values do not cause a problem for DT models
because the method imputes those values based on the
values of other observations that are in similar classes.

However, models such as linear regression (LR) can-
not use data that contain missing values, thereby making
the size of the dataset inconsistent for uniform compari-
son of models (28). Model comparison is most appropri-
ate between models that are fitted using the same set of
observations (28). Therefore, it is necessary to impute
missing values before fitting models for comparison
of performance. This analysis replaced missing values
using an approach based on KNN, referred to as
KnnImputation. The model identified ‘‘k’’ closest obser-
vations for each missing value based on the Euclidean
distance and computed the weighted average as the

missing value. Researchers observed that using k=10
provided a good trade-off of low computational cost and
low biases in the model estimates (44). Therefore, this
study also uses k=10 for imputing missing values

Highly correlated variables with the dependent vari-
able are redundant and do not contribute additional
information in the model (45). Therefore, the proce-
dure removed those variables that had a correlation
coefficient above a commonly selected threshold of
0.75 (46).

Dataset for Model Comparison

The final dataset contained 23 variables (Table 1) and
approximately 12,500 observations of freight train acci-
dents of Class I railroads.

Results and Discussion

Model Selection

Table 2 summarizes the evaluation metrics for the six
ML models and their respective training times, using 10-
fold cross-validations with three repeats. In general, the
ensemble tree-based models outperformed the other
models. Among tree-based ensemble methods, the
XGBM provided the best predictive capability based on
the lowest RMSE, MAE, and MAPE metrics, and the

Table 1. List of Variables and their Description

Variable Description Variable type

R_Amount Seasonally adjusted financial loss based on 2018 prices (dependent variable) Continuous
MONTH Month of the incident Categorical
DAY Day of the incident Categorical
TIME Time of the accident (military standard time) Continuous
TYPE Type of accident (1–13) Categorical
P_CARSDMG % of hazmat cars damaged or derailed Continuous
TEMP Temperature in degrees Fahrenheit Continuous
VISIBLTY Daylight period (1–4) Categorical
WEATHER Weather conditions (1–6) Categorical
Ospeed Boolean of train traveling over the speed limit Categorical
TONS Gross tonnage, excluding power units Continuous
EQATT Boolean for equipment attended by a human Categorical
TRKCLAS FRA track class (0–9) Categorical
TRKDNSTY Annual track density—gross tonnage in millions Continuous
POSITON1 Car position in train (first involved) Categorical
POSITON2 Car position in train (causing) Categorical
Tloco Total number of locomotives Categorical
P_LocoDe Percent of locomotives derailed Continuous
LOADF2 Number of derailed loaded freight cars Categorical
EMPTYF2 Number of derailed empty freight cars Categorical
CAUSE Primary cause of incident Categorical
TOTKLD Total killed for the railroad as reported Categorical
SIGNAL Type of territory—signalization Categorical

Note: FRA = Federal Railroad Administration.
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highest R-squared metric. On the other hand, tree-based
models required the maximum time for training.
Moreover, the RF required the longest time amongst all
of the six models. Therefore, the final model was selected
based on the model performance parameters and time
required to train the models, which is the XGBM.
Figure 3 provides a visualization of the MAE, RMSE,
and R-squared for all six models.

Variable Importance using the XGBM

After identifying the XGBM as the best model for the
data, the analysis focused on identifying the significant
contributors to the prediction accuracy. Table 3 sum-
marizes the results. The model ranked importance factors
with regard to gain, which is a measure of the average
gain in purity when splitting the training data for each
tree of the model (47). Therefore, the gain is proportional

Figure 3. Mean absolute error (MAE), root mean squared error (RMSE), R-squared, and model training time (in hours).
Note: XGBM = extreme gradient boosting method; RF = random forest; SVM = support vector machine; KNN = k-nearest neighbors; GBM = gradient

boosting model.

Table 2. Model Comparison Evaluation

Models Label MAE RMSE R2 MAPE Model running time (h)

GBM Gradient boosting model 87,131 139,295 0.46 32.74 7.6
KNN k-nearest neighbors 122,391 189,069 0.03 45.99 2.4
SVM Support vector machine 102,771 204,053 0.05 38.62 2.3
RF Random forest 88,939 143,402 0.45 33.42 10.3
STEPWISE Stepwise regression 95,392 149,052 0.40 35.84 1.5
XGBM Extreme gradient boosting method 85,989 137,646 0.46 30.97 6.2

Note: MAE = mean absolute error; RMSE = root mean squared error; MAPE = mean absolute percentage error.
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to its importance in generating predictions. The cover
and frequency provide additional indicators about the
importance of those variables in building the model dur-
ing training. Frequency is the percentage of time that the
model used the corresponding feature to split the training
data across all trees. The cover is the frequency weighted
by the number of training data observations involved
with those splits.

The results indicate that the number of loaded freight
cars derailed is most strongly associated with financial
losses from accidents by a proportional contribution of
57%. Territory signalization (SIGNAL) is the second
most strongly associated factor by a proportional contri-
bution of more than 20%. The number of empty freight
cars derailed is next, which improves the predictability
by more than 10%. Accidents on track Class 4 are the
next factor most associated with financial losses by a
proportional contribution of more than 6%. Table 3
summarizes the rank of the other variables.

Marginal Effect of Predictor Variables

Advanced ML models can significantly improve predic-
tions and classifications, but understanding the influence
of one or more predictor variables on the response variable
is not feasible even with these advanced models. Partial-
dependence plots (PDPs) can show the marginal effect of a
single attribute on the predicted outcome of a ML model
(4). The PDPs show the distinct impact of the most influ-
ential variables by marginalizing over the effects of all
other variables in the model (48). The process starts with
fitting the best performing ML model (the XGBM), fol-
lowed by using the partial-dependence functions in the
PDP package of R-studio with default parameter settings

to visualize the complex non-linear global relationship
between each factor and the predicted outcome.

Figure 4 shows that, except for the effects of the bin-
ary signal variable, the PDPs from the XGBM exhibit
non-linear patterns. The yhat (ŷ) variable actually does
not represent the predicted financial loss; instead, it rep-
resents the change in financial loss with the change in
value of each predictor variable.

Per the results, financial damage generally increased
with the number of derailed cars (LOADF2) and peaked
at 40. Non-signaled territories (SIGNAL=2) are associ-
ated with higher financial losses than with territories that
are signaled. The partial dependency on EMPTYF2 sug-
gests that financial losses tend to be most severe when 30–
40 empty cars derail. Financial loss generally increases
with track classification, and peaks for Class 7 tracks.
Trains that carry approximately 20,000 tons tend to more
significantly influence financial losses. Head-on collisions
(TYPE2) and rear-end collisions (TYPE3) are associated
with higher financial losses than other accident types.
Accident cause (CAUSE) category 5 (human factor
related) is associated with the highest financial losses.
P_LocoDe (percentage of locomotive derailed) exhibits a
stepwise increasing trend with financial losses. POSITON1
(car position in train first involved) and POSITON2 (caus-
ing car position in the train) from 125 to 135 are associ-
ated with the highest financial losses. These cars tend to be
toward the rear of a typical Class I train (49).

By month, financial losses tend to peak in the summer
and subside in the winter. In the U.S.A., grain harvesting
and grain shipping by rail generally peak in the summer.
Intuitively, peak demand leads to peak traffic with higher
carloads, which increases the risk of accidents. T_loco
shows that financial losses from accidents increases for

Table 3. Results of Variable Importance

Feature Description Gain Frequency Cover

LOADF2 # of derailed loaded freight cars 0.57459 0.2900 0.51493
SIGNAL1 Type of territory—signalization (mandatory) 0.20220 0.1700 0.05337
EMPTYF2 # of derailed empty freight cars 0.10124 0.1366 0.26967
TRKCLAS4 FRA track class 1–9 0.06536 0.1726 0.02682
TONS Gross tonnage, excluding power units 0.02092 0.0757 0.06610
TRKCLAS3 FRA track class 1–9 0.01018 0.0460 0.00454
TRKCLAS2 FRA track class 1–9 0.01008 0.0320 0.00698
TYPE3 Type of accident: 03 = rear-end collision 0.00599 0.0197 0.02691
P_LocoDe % of locomotive derailed 0.00370 0.0263 0.01545
CAUSE Contributing cause of incident 0.00233 0.0091 0.00182
POSITON1 Car position in train (first involved) 0.00194 0.0089 0.01257
POSITON2 Car position in train (causing) 0.00069 0.0043 0.00037
TRKDNSTY Annual track density—gross tonnage in millions 0.00062 0.0063 0.00033
MONTH12 Month of the incident 0.00014 0.0023 0.00012
Tloco Total number of locomotives 0.00001 0.0003 0.00001

Note: FRA = Federal Railroad Administration.
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trains that contained more than five locomotives. The
variable weather shows that, compared to other weather
conditions, snow is associated with a 0.03% increase in
financial losses from accidents.

It is essential to highlight that because of the limita-
tions in the knowledge provided by the data, the PDPs
might not represent the true relationship between each
variable and the predicted outcome. For instance, the
financial losses from derailed empty freight cars are
shown to be unchanged after 40 cars. Similarly, financial
losses appear to be insensitive to TRKDNSTY. These
problems could be the result of inconsistent data or miss-
ing data, which could be addressed by incorporating
more data in the future.

Conclusion

The primary objective of this study was to determine the
significant factors associated with Class I freight railroad
financial losses from railway accidents and to rank the
strength of those associations by using DM and ML
techniques. Data between 2004 and 2018 from the REA
database provided inputs for the analysis. To achieve the
primary objective of the study, a comparative analysis of
six ML algorithms determined the best model for the

dataset. Tree-based ensemble models generally per-
formed best. The XGBM proved to be the best model
for analyzing railroad accident data that is highly imbal-
anced. The XGBM identified the significant factors asso-
ciated with financial losses from railroad accidents. The
results indicated that LOADF2 (number of derailed
loaded freight cars), SIGNAL (type of territory signali-
zation), and EMPTYF2 (number of derailed empty
freight cars) were the top three factors with accuracy
gains of 57%, 20%, and 10%, respectively, in predicting
financial losses from railroad accidents. These results
demonstrate the effectiveness of applying DM and ML
techniques to high-volume and non-uniform data for-
mats. The results suggest that railroads should prioritize
safety investments that allow more trains to move freight
on a signalized infrastructure.

Future work will explore and evaluate additional exo-
genous contributors to railroad accidents using a similar
approach. The results will provide an opportunity to con-
duct a more comprehensive assessment of railroad acci-
dent contributors.
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