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a b s t r a c t

The problem of finding a utility function for a semiorder has been studied since 1956, when the notion
of semiorder was introduced by Luce. But few results on continuity and no result like Debreu’s Open
Gap Lemma, but for semiorders, was found. In the present paper, we characterize semiorders that
accept a continuous representation (in the sense of Scott–Suppes). Two weaker theorems are also
proved, which provide a programmable approach to Open Gap Lemma, yield a Debreu’s Lemma for
semiorders, and enable us to remove the open-closed and closed-open gaps of a set of reals while
keeping the threshold.

© 2023 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

In 1964 (and after a first attempt in 1954 that contained
n error that was subsequently corrected Debreu, 1954) Gerard
ebreu proved in his famous Debreu’s Open Gap Lemma that,
iven any subset S ⊆ R, there is a strictly increasing function
: S → R such that all the gaps of g(S) are open. This lemma
uickly became a key result on decision theory when dealing
ith transitive relations, since it is essential to characterize the
xistence of a continuous utility function of any continuous (and
epresentable) total preorder.

heorem 1.1 (Continuous Representation Theorem for Total Pre-
rders). A total preorder ≾ on a topological space (X, τ ) admits a
ontinuous utility function u (such that x ≾ y ⇐⇒ u(x) ≤

(y), x, y ∈ X) if and only if ≾ is τ -continuous and admits a utility
unction.

The importance of Debreu’s Open Gap Lemma settles on the
roof of the aforementioned Theorem. Given any utility u of a
-continuous total preorder on X , this lemma provides a strictly
ncreasing function g on u(X) such that g ◦ u is now a continuous
tility function of the total preorder (Bridges & Mehta, 1995;
ebreu, 1964; Ok, 2007).
However, there are several situations in which the indiffer-

nce associated to the preference of a decision maker fails to be
ransitive, as illustrated by Luce (1956) in his classical example of
offee and sugar (Luce, 1956). This example shows that a decision
aker may exhibit an intransitive behavior on similar alterna-

ives. This phenomenon has also been observed in psychological

E-mail address: asier.mugertza@unavarra.es.
ttps://doi.org/10.1016/j.jmp.2023.102754
022-2496/© 2023 The Author(s). Published by Elsevier Inc. This is an open access a
c-nd/4.0/).
experiments, and in particular, some of them show that the
agent does not distinguish alternatives until the difference of the
corresponding magnitude is greater than a certain just noticeable
difference (Amstrong, 1939, 1948; Fechner, 1860; Fishburn, 1970b,
1970c; Krantz, 1967; Pirlot & Vincke, 1997; Rubinstein, 1988;
Tversky, 1969; Weber, 1834). Intransitive behaviors have been
observed too when dealing with time preferences or with more
than one criterion (Manzini & Mariotti, 2006, 2012; Masatlioglu
& Ok, 2007).

In order to model these behaviors, in 1956 the notion of
semiorder was defined in Econometrica by R.D. Luce. Although
it is usually attributed to Luce, actually, it was first introduced
by Wiener (as well as the concept of interval order) (Fishburn
& Monjardet, 1992; Wiener, 1914, 1919). The notion of inter-
val order generalizes the idea of semiorder, and it was studied
exhaustively by Fishburn in the 1970’s (Fishburn, 1970a, 1970b,
1970c, 1973). The use of both relations was due to the need of
working with situations of intransitive indifference.

Since these relations give a better approach to those situations
in which the decision maker shows an intransitive behavior, con-
sumer preferences have been modeled by semiorders in the liter-
ature (Gilboa & Lapson, 1995; Jamison & Lau, 1973, 1977; Shafer,
1974; Sonnenschein, 1971). The structure of semiorder may ap-
pear too on time preferences or when working with more than
one criterion, as shown in Manzini and Mariotti (2006, 2012),
Masatlioglu and Ok (2007). Other applications of semiorders can
be found in Pirlot and Vincke (1997).

Due to that just noticeable difference or threshold associated
to semiorders, Scott and Suppes proposed to represent those
ordered structures by means of a utility function u and a constant
threshold k, which can be chosen as k = 1 without loss of
rticle under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-
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enerality (Scott & Suppes, 1958). Thus, for a given semiorder ≺

n X , a Scott–Suppes representation is defined by means of a single
unction u : X → R such that x ≺ y ⇔ u(x) + 1 < u(y), for every
, y ∈ X (Candeal & Induráin, 2010; Estevan, Gutiérrez García, &
nduráin, 2013b; Luce, 1956; Scott & Suppes, 1958; Vincke, 1980).
his pair (u, 1) is also known as unit representation (Bouyssou &
irlot, 2021a, 2021b).
The representability problem for the finite case was solved by

cott and Suppes in 1958, but the general case was not resolved
ntil the paper of Candeal et al. in 2010 (Candeal & Induráin,
010) (see also Candeal, Estevan, Gutiérrez-García, & Induráin,
012). In the meantime, Manders (1981) as well as Beja and
ilboa (1992) published important advances on the countably
nfinite case (Beja & Gilboa, 1992; Manders, 1981).

Although the Open Gap Lemma was formulated more than
0 years ago by Debreu (first in 1954 Debreu, 1954 and later in
964 Debreu, 1964), it was still unknown if this strictly increasing
unction g was existing on S ⊆ R when we also impose to
atisfy the geometrical condition x + 1 < y ⇔ g(x) + 1 <
(y), for every x, y ∈ S. This result would provide an answer to
he continuous representability (in the sense of Scott–Suppes) of
emiorders. Thus, there is no Continuous Representability Theorem
or intransitive relations (in particular, for semiorders).

Partial results related to the continuous representability of
emiorders (and, hence, to the possible existence of that func-
ion g , which may not exist) were presented by Estevan et al.
2013) (Debreu, 1964; Estevan, Gutiérrez García, & Induráin,
013a). An early work on continuous representations of
emiorders was presented by Gensemer in 1987 (Gensemer,
987). The finite case was solved by Estevan et al. (2013) in Can-
eal et al. (2012) (see Estevan, Schellekens, & Valero, 2017; Pirlot
Vincke, 1997, for instance, for studies on the finite case).
In the present paper we focus on semiorders and prove a char-

cterization of the existence of a continuous representation for
-bounded semiorders in the sense of Scott–Suppes. That is, a big
amily of semiorders – that also includes the bounded semiorders
that admits a continuous unit representation is characterized.
e call them reasonable semiorders, since the conditions satisfied
y them seem quite reasonable from a decision maker’s point
f view. As a result, we achieve a version of Debreu’s Open Gap
emma with a threshold, so that given a set S in R, now we know
hen a strictly increasing function exists such that x + 1 < y

f and only if g(x) + 1 < g(y) and satisfying that all the gaps
f g(S) are open. The sets that accept this function g are called
-sets. As commented before, the representability problem for
emiorders was finally solved by Candeal and Induráin (2010)
see also Candeal et al., 2012, as well as Bouyssou & Pirlot,
021a, 2021b), and the present paper almost completely closes
he continuity question.

In order to approach to the desired results and construct a
heorem such as Debreu’s Open Gap Lemma but for semiorders,
he concept of ϵ-continuity was successfully introduced as a
eneralization on the idea of continuity for semiorders (Estevan,
020). In the case of semiorders, there is an invariant threshold
in the representations (we may assume that k = 1) that

llows us to compare the length of each jump-discontinuity with
his value k = 1. Hence, it makes perfect sense to say that a
emiorder is r-continuous (with r > 0) if a unit representation
u, 1) exists such that the length of each jump-discontinuity is
ounded by this constant r . Then, we can approach the idea of
he usual continuity just letting r tend to 0. Through this idea
e are able to present two weaker results with the advantage
hat approximately continuous representations can be computed.
fter that, the new Debreu’s Open Gap Lemma with a threshold is
ntroduced.

For more details on this subject we suggest some readings
uch as Aleskerov, Bouyssou, and Monjardet (2007), Bridges and
 a

2

ehta (1995), Ok (2007), Pirlot and Vincke (1997). For those
otions related to the continuous representability of semiorders
nd ϵ-continuity, we recommend to read (Estevan, 2020).
The structure of the paper goes as follows: First, in Section 2,

he main concepts are presented, as well as some basic results
n continuous representability of total preorders. Then, in Sec-
ion 3, we focus on the special case of semiorders and recover
hose necessary conditions for the existence of a continuous unit
epresentation introduced in Estevan et al. (2013a). The image
ubset u(X) is studied for a given unit representation (u, 1) of
semiorder that satisfies the aforementioned necessary condi-

ions. In Section 4, the study is further explored in depth, the
oncept of ‘adjoint net’ is presented, improving those necessary
onditions. The implications of these enhanced conditions on the
ppearance of image set u(X) (for any unit representation (u, 1))
re described in a family of four theorems, by means of the so
alled ‘compression intervals’. Finally, in Section 5, the idea of
-continuity is presented and the continuous representability (in
he sense of Scott–Suppes) for I-bounded semiorders is charac-
erized, but before that, two weaker but more visible results are
roved. This characterization is then abstracted from the context
f semiorders, and presented just as a version of the Debreu’s
pen Gap Lemma but with additional component of a threshold. A
onstructive and programmable approach to Debreu’s Open Gap
emma ends the study.

. Preliminaries

In this section we have compiled basic concepts related to
emiorders, total preorders and continuity of functions. In the
econd and last subsection, we will focus on the continuous
epresentations of total preorders, more specifically on the gaps.

.1. Preliminaries on total preorders and continuity

Firstly, we introduce some definitions.

efinition 2.1. An asymmetric binary relation ≺ on X is said to
e a semiorder if the following two conditions are satisfied:
(1) (x ≺ y) ∧ (z ≺ t) ⇒ (x ≺ t) ∨ (z ≺ y), x, y, z, t ∈ X ,
(2) (x ≺ y) ∧ (y ≺ z) ⇒ (x ≺ w) ∨ (w ≺ z), x, y, z, w ∈ X .

A semiorder is said to be bounded if there are no strictly
ncreasing or decreasing infinite sequences, i.e., there is no se-
uence (xn)n∈N ⊆ X such that · · · ≺ xn+1 ≺ xn ≺ · · · ≺ x1 or
1 ≺ · · · ≺ xn ≺ xn+1 ≺ · · · . And it is said to be regular1 if
here are no strictly increasing or decreasing infinite sequences
xn)n∈N ⊆ X such that x ≺ · · · ≺ xn+1 ≺ xn ≺ · · · ≺ x1 or
1 ≺ · · · ≺ xn ≺ xn+1 ≺ · · · ≺ x, for some x ∈ X .
Due to condition (1), a semiorder is a particular case of an

interval order. Its symmetric complement is denoted by ≾, so that
a ≾ b ⇔ ¬(b ≺ a). The indifference relation ∼ associated to ≺ is
defined by a ∼ b ⇔ (a ≾ b)∧ (b ≾ a). It is well known that ≾ and
∼ may fail to be transitive (Fishburn, 1970b, 1970c; Luce, 1956;
Scott & Suppes, 1958).

A preorder ≾ on X is a binary relation which is reflexive and
transitive. An antisymmetric preorder is said to be an order. A
total preorder ≾ on a set X is a preorder such that if x, y ∈ X
then (x ≾ y) ∨ (y ≾ x) holds. In the case of preorders, it is well
known that the corresponding indifference is transitive, in fact,
it is an equivalence relation. Given a semiorder, we write x ≺

0 y
hen there exists z ∈ X such that x ≺ z ≾ y or x ≾ z ≺ y. It is
ell known that the corresponding reflexive binary relation ≾0

1 An equivalent condition was introduced by Beja and Gilboa (1992) as well
s by Manders (1981). See also section 5 in Bouyssou and Pirlot (2021a).
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i.e., x ≾0 y ⇐⇒ ¬(y ≺

0 x)) is a total preorder and it is called
he main trace of the semiorder.

A semiorder ≺ defined on X is said to be s-separable if there
s a countable subset D ⊆ X with the following property: for
very x, y ∈ X such that x ≺ y, there exist d1, d2 ∈ D such that
≺ d1 ≾0 y and x ≾0 d2 ≺ y (Candeal et al., 2012; Candeal &

nduráin, 2010).
The Scott–Suppes representation (also known as unit represen-

ation) is defined by means of a single function u : X → R and a
hreshold k = 1 such that x ≺ y if and only if u(x) + 1 < u(y),
or every x, y ∈ X (Bouyssou & Pirlot, 2021a, 2021b; Candeal &
nduráin, 2010; Estevan et al., 2013b; Luce, 1956; Scott & Suppes,
958; Vincke, 1980). When the set X is endowed with a topology
, the semicontinuity or continuity of the numerical represen-
ations (if any) is also studied (Campión, Candeal, Induráin, &
udaire, 2008; Gensemer, 1987).
The analogous problem related to the existence of a contin-

ous representation but now for total preorders was solved by
erard Debreu in 1964 (Debreu, 1964). For this purpose, a lacuna
f S ⊆ R was defined as a non-degenerate interval (that is, an
nterval that is not reduced to a single point) disjoint from S and
aving a lower bound and an upper bound in S, and a gap of S
s a maximal lacuna of S. Two gaps [a, b) and (c, d] (also for the
airs (a, b) and (c, d], [a, b) and (c, d), and (a, b) and (c, d)) are
aid to be adjacent whenever b = c. The famous Debreu’s Open
ap Lemma reads as follows (Debreu, 1964):

emma 2.2 (Open Gap Lemma). If S ⊆ R, then there is a strictly
ncreasing function g : S → R such that all the gaps of g(S) are open.

Given a representation u of a total preorder (that is, a function
: X → R such that x ≾ y ⇐⇒ u(x) ≤ u(y)), we will say that a
ap of u(X) ⊆ R is a bad gap2 if the function u is not continuous
t the inverse images of the end-points of the gap. Notice that,
ince u is increasing on X , the discontinuities are in fact jump-
iscontinuities. We will refer to the length of the bad gap as
he length of the jump-discontinuity. On the other hand, since the
umber of non degenerate and disjoint intervals contained in R
s, at most, countably infinite, so is the number of bad gaps.

We recover these results in the following theorem. Although
t is well-known, we will study it in more detail in Section 2.2.

heorem 2.3. Let ≾ be a continuous and representable3 total
reorder on (X, τ ). Let (u, 1) be a representation of ≾. Then, u has at
ost a countably infinite number of discontinuities (which are jump-
iscontinuities, and are points a ∈ X such that u(a) is an extreme of
open-closed or a closed-open gap).

The characterization of the existence a Scott–Suppes represen-
ation is known and it is made by means of s-separability and
egularity (Bouyssou & Pirlot, 2021a, 2021b; Candeal et al., 2012;
andeal & Induráin, 2010).

heorem 2.4. Let ≺ be a semiorder defined on X. Then, ≺ is
epresentable in the sense of Scott and Suppes if and only if it is
oth s-separable and regular with respect to sequences. Furthermore,
Scott–Suppes representable semiorder also admits a representation
u, 1) such that u also represents the main trace.

Although they are quite common in the literature of the field,
or the sake of completeness, we include some basic concepts and
esults related to continuity and semicontinuity.

2 The name bad gap was already used by G. B. Mehta in Mehta (1997).
3 The representability of a total preorder is characterized by means of perfect

separability (Bridges & Mehta, 1995). For the sake of simplicity, we will not dwell
on these representability questions.
3

Definition 2.5. Let ≺ be an asymmetric binary relation on (X, τ ).
iven a ∈ X , the sets L≺(a) = {t ∈ X : t ≺ a} and U≺(a) = {t ∈

X : a ≺ t} are called, respectively, the strict lower and upper
contours of a relative to ≺. We say that ≺ is τ -continuous (or just
continuous) if for each a ∈ X the sets L≺(a) and U≺(a) are τ -open.

We will denote the order topology generated by ≺ as τ≺, and
it is defined by means of the subbasis provided by the lower and
upper contour sets.

Let ≾ be a reflexive binary relation on (X, τ ). Given a ∈ X the
sets L≾(a) = {t ∈ X : t ≾ a} and U≾(a) = {t ∈ X : a ≾ t}
are called, respectively, the weak lower and upper contours of a
relative to ≾. We say that ≾ is τ -lower semicontinuous (τ -upper
semicontinuous) if for each a ∈ X the sets L≾(a) (resp. U≾(a)) are
τ -closed.

Definition 2.6. Let ≾ be a preorder defined on X . The upper
topology τu is obtained by choosing the closed sets to be the weak
lower contour sets (as well as their finite unions and infinite
intersections).

Dually, the lower topology τl is obtained by choosing the closed
sets to be the weak upper contour sets (as well as their finite
unions and infinite intersections).

Remark 2.7. If the binary relation ≾ is in fact a total preorder,
since X \L≾(x) = U≺(x) and X \U≾(x) = L≺(x) (for any x ∈ X), then
the upper topology τu can be defined by choosing the open sets
to be the strict upper contour sets (as well as their infinite unions
and finite intersections). Dually, the lower topology τl can be
defined by choosing the open sets to be the strict lower contour
sets (as well as their infinite unions and finite intersections).

Definition 2.8. We say that f : (X, τ ) → R is lower semicontinuous
at x0 if for every ϵ > 0 there exists a neighborhood U of x0 such
that f (x) > f (x0) − ϵ for all x ∈ U .

Dually, we say that f : (X, τ ) → R is upper semicontinuous at
x0 if for every ϵ > 0 there exists a neighborhood U of x0 such
that f (x) < f (x0) + ϵ for all x ∈ U .

We say that f is continuous at x0 whenever it is both lower
semicontinuous and upper semicontinuous at x0.

As usual, we say that f is continuous (also for lower semicon-
tinuity and upper semicontinuity) if it is continuous (resp., lower
semicontinuous and upper semicontinuous) at x for any x ∈ X .

For the sake of completeness we include the following char-
acterization for semicontinuity, although it is well known in
the literature (Bridges & Mehta, 1995; Dugundji, 1966; Engelkin,
1989).

Proposition 2.9. Let (X, τ ) be a topological space, x0 a point
in X and f : (X, τ ) → R a function. The following statements are
equivalent.

1. f is lower semicontinuous at x0.
2. f is continuous at x0 with respect to the upper topology on R.
3. For any ϵ > 0, f −1((f (x0)− ϵ, +∞)) is a neighborhood of x0.
4. limx→x0 inf f (x) ≥ f (x0).

We also include the dual of Proposition 2.9 for upper semicon-
tinuity.

Proposition 2.10. Let (X, τ ) be a topological space, x0 a point
in X and f : (X, τ ) → R a function. The following statements are
equivalent.

1. f is upper semicontinuous at x0.
2. f is continuous at x0 with respect to the lower topology on R.
3. For any ϵ > 0, f −1((−∞, f (x0)+ ϵ)) is a neighborhood of x0.
4. lim sup f (x) ≤ f (x ).
x→x0 0



A. Estevan Journal of Mathematical Psychology 113 (2023) 102754

a

2
p

t
f
a
i

P
w
p
i
n

δ

i

R
d
ϵ

3

s

Next proposition can be found in Dugundji (1966).

Proposition 2.11. Let (X, τX ) be a topological space. A function
f from (X, τX ) onto (R, τ≤) is upper semicontinuous (resp. lower
semicontinuous) if and only if {x ∈ X : f (x) < b} (resp. {x ∈ X :

f (x) > b}) is an open set for every b ∈ R. Alternatively, a function f
is upper semicontinuous (resp. lower semicontinuous) if and only if
all of its upper level sets {x ∈ X : f (x) ≥ b} (resp. {x ∈ X : f (x) ≤ b})
re closed, for every b ∈ R.

.2. A little review on continuous utility representations for total
reorders

The next Proposition 2.12 was proved in Estevan (2016), al-
hough this is a widely known result in the area, that may be
ound in more classical papers such as in Proposition 1 in Beardon
nd Mehta (1994) or in page 37 in Bridges and Mehta (1995), for
nstance.

roposition 2.12. Let ≾ be a total preorder defined on X endowed
ith the order topology τ≺. Given any representation u of the total
reorder, then u is continuous at all points of X, excluding inverse
mages of the end-points of the gaps (of u(X)) that are neither closed
or open, that is, excluding x ∈ X such that (u(x) = a, b] or

[b, u(x) = a) is a gap of u(X) ⊆ R.

As commented before, since u is increasing on X , the discon-
tinuities are in fact jump-discontinuities. Furthermore, since the
number of non degenerate and disjoint intervals contained in R
is, at most, countably infinite, so is the number of discontinuities.

Next corollary follows directly from Proposition 2.12 above .

Corollary 2.13. Let (X, τ ) be a topological space endowed with
a τ -continuous total preorder ≾. Any representation u of the total
preorder is continuous at all the points of X, excluding the inverse
images of the end-points of some gaps (of u(X)) that are neither
closed nor open, that is, excluding some x ∈ X such that (u(x) = a, b]
or [b, u(x) = a) is a gap of u(X) ⊆ R.

Definition 2.14. Let (X, τ ) be a topological space endowed with
a τ -continuous total preorder ≾. Given a representation u of the
total preorder, we will say that a gap of u(X) ⊆ R is a bad gap
if the function u is not continuous at the inverse images of the
end-point of the gap.

Remark 2.15. With definition above and using Corollary 2.13,
notice that given any representation u of a τ -continuous total
preorder on (X, τ ), then any closed or open gap ([a, b], (a, b) ⊆ R)
of u(X) is not a bad gap.

When working with continuous representations of contin-
uous total preorders, it is important to always keep in mind
Corollary 2.13, as well as the following proposition.

Proposition 2.16. Let (X, τ ) be a topological space endowed with a
τ -continuous total preorder ≾. Let u be a representation of ≾, x ∈ X
and ε > 0 such that (u(x), u(x) + ε] is a gap of u(X). If u fails to be
continuous at x then there exists a net (xi)i∈I in X convergent to x
and such that:

(i) u(x) + ϵ < u(xi) for all i ∈ I , in case u(x) is not the
right end-point of a gap of u(X). Thus, u fails to be upper
semicontinuous.

(ii) u(x) + ϵ < u(xi) for all i ∈ I , in case u(x) is the right end-
point of an open gap (b, u(x)) of u(X). Thus, u fails to be upper
semicontinuous.
 r

4

(iii) u(x) + ϵ < u(xi) for all i ∈ I , or u(xi) < u(x) − σ for all
i ∈ I , in case u(x) is the right end-point of a gap [u(x) −

σ , u(x)) of u(X). Thus, u fails to be upper semicontinuous,
lower semicontinuous or both (respectively).

Proof. (i) Since u is not continuous at x, there exists a net (xi)i∈I
in X convergent to x and such that (u(xi))i∈I does not converge to
u(x) in R. The latter means that there exists δ > 0 (we can take
δ < ε) and a subnet (u(xj))j∈J such that

u(xj) /∈ (u(x) − δ, u(x) + δ) for each j ∈ J. (1)

Since u(x) is not the right end-point of a gap of u(X) there
exists some y ∈ X such that u(x) − δ < u(y) < u(x) (in particular
y ≺ x).

Now using the fact that the total preorder ≾ is τ -continuous
we have that U≺(y) is an open neighborhood of x and since the
subnet (xj)j∈J converges to x it follows that it is eventually in
U≺(y), i.e. there exists j0 ∈ J such that xj ∈ U≺(y) for all j > j0.
Consequently,

u(x) − δ < u(y) < u(xj) for each j > j0. (2)

Since (u(x), u(x) + ε] is a gap of u(X), it follows from (1) and
(2) that u(x) + ϵ < u(xj) for all j > j0.
(ii) If u(x) is the right end-point of an open gap (b, u(x)) of u(X)
(thus, there is w ∈ X with u(w) = b), then x ∈ U≺(w) =

u−1(u(x), +∞) = U , and by the continuity of the total preorder,
U is open.

Since u is not continuous at x, there exists a net (xi)i∈I in X
convergent to x and such that (u(xi))i∈I does not converge to u(x)
in R. Thus, there exists δ > 0(we can take δ < ε) and a subnet
(u(xj))j∈J such that

u(xj) /∈ (u(x) − δ, u(x) + δ) for each j ∈ J. (3)

On the other hand, since (xi)i∈I converges to x, for any open
neighborhood V of x there is an index i0 such that xi ∈ V for any
i ≥ i0. Therefore, since U≺(w) = u−1(u(x), +∞) = U is open and
x ∈ U , we can state that for any open neighborhood V of x there
is an index i0 such that xi ∈ V ∩U , for any i ≥ i0. The latter means

u(xi) ≥ u(x) for each i ≥ i0. (4)

Since (u(x), u(x) + ε] is a gap of u(X), it follows from (3) and (4)
that u(xi) > u(x) + ε.
(iii) If for any open neighborhood V of x there exists xi ∈ V such
that xi ≺ x, that is, it holds that V ∩ L≺(x) ̸= ∅, then for any open
neighborhood Vi of x there exists xi ∈ Vi such that u(xi) ≤ u(x)−σ .
Therefore, u−1(u(x) −

σ
2 , +∞) is not open and, hence, u fails to

be lower semicontinuous at x. Thus, we can construct a net (xi)i∈I
converging to x such that u(xi) < u(x) − σ for all i ∈ I .

We reason dually if for any open neighborhood V of x there
exists xi ∈ V such that x ≺ xi.

Otherwise, x = {y ∈ X : y ∼ x} is open and, hence, u−1((u(x) −

, u(x) + δ)) = x is open for any 0 < δ < min{ϵ, σ }. Therefore, u
s continuous at x, arriving to a contradiction. □

emark 2.17. Proposition 2.16 for a gap [u(x) − ϵ, u(x)) can be
ually formulated. See Fig. 1 for an illustration of a gap [u(x) −

, u(x)).

. The special case of semiorders

Forthwith we collect a few concepts, results and those neces-
ary conditions for the existence of a continuous Scott–Suppes
epresentation which are available in literature (Bosi, Estevan,
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Fig. 1. Illustration of a discontinuity of a representation of a continuous total
preorder.

Gutiérrez-García, & Induráin, 2015; Bridges & Mehta, 1995; Es-
tevan, 2020; Estevan et al., 2013a). After that, in Section 5, we
will summarize these concepts in order to present some repre-
sentation theorems.

Given an interval order (e.g. a semiorder) on a set X , the
indifference ∼

0 associated to the main trace is an equivalence
relation. Furthermore, elements which are indistinguishable with
respect to the indifference ∼

0 play exactly the same role in the
order structure, and vice versa, that is, x ∼

0 y if and only if
x ≺ z ⇐⇒ y ≺ z} as well as {w ≺ x ⇐⇒ w ≺ y} (Bosi
t al., 2015).

efinition 3.1. Let ≺ be an interval order defined on a topological
pace (X, τ ). The topology τ is said to be compatible with respect
o the indifference of the main trace of ≺ (or compatible, for short)
f x ∼

0 y ⇒ (x ∈ O ⇐⇒ y ∈ O) holds true for every x, y ∈ X
and every τ -open subset O ∈ τ .

In particular, in the main case in which x ∼0 y ⇐⇒ x = y,
he topology is always compatible. We want to highlight that, if
e assume that the topology is compatible with the indifference
0, then τ -continuity of the main trace is in fact a necessary
ondition for the continuity of the function, as stated in Propo-
ition 3.2. And if we want to represent at the same time the
race, then its τ -continuity is, again, a necessary condition. This is
lso the case of the so-called regular representations, which assign
he same value to equivalent elements (Bouyssou & Pirlot, 2021a,
021b). Next proposition may be found in Bosi et al. (2015).

roposition 3.2. Let (X, τ ) be a topological space endowed with a
emiorder ≺. Assume that τ is compatible with respect to the indif-
erence of the main trace of ≺. Suppose also that ≺ is representable
n the sense of Scott and Suppes by means of a pair (u, 1) with u
continuous. Then, the total preorder ≾0 is τ -continuous.

For the proofs of the main theorems we use Corollary 2.13,
that guarantees that any representation u of a τ -continuous total
reorder on (X, τ ) is continuous at all the points of X , excluding
he inverse images of the end-points of some gaps (of u(X)) that
re neither closed nor open. Thus, when dealing with Scott–
uppes representations, τ -continuity of the main trace is required
n order to achieve continuity. This may seem a very demanding
ondition, but it is not really so, since, as Proposition 3.2 states,
hen working with compatible topologies, the τ -continuity of
he trace becomes a necessary condition for the existence of a
ontinuous representation. And these compatible topologies are
ot strange at all, since this compatibility condition is implicitly
atisfied in the most general cases such as when (△= {(x, y) ∈

× X : x ∼
0 y} = {(x, x) : x ∈ X}) or when working on the

uotient set X/ ∼
0. If we refuse to use compatible topologies,

hen the continuity of the trace may fail to be necessary, but
till sufficient, as shown in Corollary 5.17. Finally, it is worth
emembering that, if a semiorder in a compatible topological
pace accepts a continuous representation, then it is continuously
epresentable too with any other finer topology, compatible or
ot.
With respect to the continuous representability of semiorders,

he following necessary conditions were proved by Estevan et al.
2013a).
 i

5

Lemma 3.3. Let (X, τ ) be a topological space endowed with a
semiorder ≺. Assume that ≺ is representable in the sense of Scott
and Suppes by means of a pair (u, 1) with u continuous. Then the
ollowing properties hold true:

(a) The semiorder ≺ is τ -continuous.
(b) If a net (xj)j∈J ⊆ X converges to two points a, b ∈ X, then

a ∼
0 b.

(c) If a net (xj)j∈J ⊆ X converges to a ∈ X, and b, c ∈ X are such
that xj ≺ b ≾ a and also xj ≺ c ≾ a for every j ∈ J , then
b ∼

0 c.
(d) If a net (xj)j∈J ⊆ X converges to a ∈ X, and b, c ∈ X are such

that a ≾ b ≺ xj and also a ≾ c ≺ xj for every j ∈ J , then
b ∼

0 c.

When these necessary conditions (a)–(d) of Lemma 3.3 were
ntroduced, it was already known that they were not sufficient in
rder to guarantee the existence of a continuous Scott–Suppes
epresentation (see Estevan et al., 2013a for examples related
o these conditions). However, these conditions place signifi-
ant constraints on the appearance of a representation, as it is
hown in Fig. 2 and described in Proposition 3.4 and Proposi-
ion 3.5.4 Through this appearance we are able to recognize some
emiorders that fail to be continuously representable.

roposition 3.4. Let ≺ be a representable and τ -continuous
emiorder on (X, τ ). Let (u, 1) be a unit representation. Suppose that
here is a discontinuity at a point a such that [r, u(a)) or (u(a), r]
is a gap of S = u(X). Then, the length of the jump-discontinuity is
strictly smaller than 1.

Proof. Suppose that (u(a), r] is the corresponding gap. If the
length of the jump-discontinuity is at least 1, then for any 1 >
ϵ > 0 there exists an element b ∈ X with u(b) ∈ (r, r + ϵ) such
that, by condition (a), L≺(b) = u−1((−∞, u(a)]) is open and it
contains a. Therefore, for any net (xi)i∈I such that u(xi) > r it holds
that a ∈ L≺(b) as well as xi /∈ L≺(b) (for any i ∈ I). Thus, according
to Proposition 2.16 and Remark 2.17, we deduce that there is no
discontinuity at point a, arriving to the desired contradiction.

We argue dually for [r, u(a)). □

Proposition 3.5. Let ≺ be a representable semiorder on (X, τ )
satisfying conditions (a)–(d). Let (u, 1) be a unit representation such
that u also represents the trace.

Suppose that there is a discontinuity at a point a such that
[r, u(a)) is a closed-open gap of S = u(X). Then, the following holds
true:

(COl) [r − 1, u(a) − 1) ∩ S = ∅.
(COr ) [r + 1, u(a) + 1] ∩ S contains, at most, one point.

Dually, suppose that the discontinuity at a point a is such that
(u(a), r] is a open-closed gap of S = u(X). Then, the following holds
true:

(OCl) [r − 1, u(a) − 1] ∩ S contains, at most, one point.
(OCr ) [r + 1, u(a) + 1) ∩ S = ∅.

Proof. (COl): We argue by contradiction. If there was an element
u(b) ∈ [r − 1, u(a) − 1), then it would hold that u(b) < u(a) − 1,
thus b ≺ a. Since, by condition (a), U≺(b) is open, that implies
that (according to Proposition 2.16 and Remark 2.17) there is no
discontinuity at a, arriving at a contradiction.

(COr ): Suppose there is a gap [r, u(a)) such that u fails to be
continuous at a. Then, by Proposition 2.16 and Remark 2.17, there

4 This result was first presented in Estevan (2020). Nevertheless, we include
t here (as well as its proof) for the sake of completeness.
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Fig. 2. Illustration of a Scott–Suppes representation of a semiorder ≺ on X satisfying the necessary conditions (a)–(d), and such that u also represents the trace. If
is discontinuous at a = u−1(1), such that [0.5, 1) is a closed-open bad gap, then, by condition (a), there cannot be any point b ∈ X such that u(b) ∈ [−0.5, 0),

that is, u(X) ∩ [−0.5, 0) = ∅. Otherwise, U≺(b) = u−1([1, +∞)) would be open and, hence, there would be no discontinuity at a = u−1(1). Similarly, by condition (c)
here is, at most, one point b ∈ X such that u(b) = s ∈ [1.5, 2]. In this figure we also illustrate how we could modify u (lengthening proportionally the intervals,
hrough g) in order to avoid that discontinuity at a = u−1(1), but keeping the representation (i.e., such that x ≺ y if and only if g(u(x)) + 1 < g(u(y)), x, y ∈ X). For
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is a net (xi)i∈I in X , convergent to a and such that u(xi) < r < u(a)
for all i ∈ I . For any two points u(b), u(c) ∈ [r + 1, u(a) + 1],
it holds that u(xi) + 1 < r + 1 < u(b) ≤ u(a) + 1 as well as
u(xi) + 1 < r + 1 < u(c) ≤ u(a) + 1. Thus xi ≺ b and xi ≺ c for
any i ∈ I , as well as b ≾ a and c ≾ a. Hence, by condition (c), it
holds that b ∼

0 c and, since u also represents the trace ≾0, we
conclude that u(b) = u(c), that is u(X) ∩ [r + 1, u(a) + 1] has at
most one point.

We argue dually for (u(a), r]. □

Therefore, given any Scott-Suppes representation (u, 1) (such
that u also represents the trace) of a semiorder ≺ on X , if u(X)
fails to satisfy the appearance described in Propositions 3.5 and
3.4 (see Fig. 2), then ≺ cannot be continuously representable.

At this stage, it is important to notice that, as illustrated in
Fig. 2, a gap [r, u(a)) or (u(a), r] generated by a discontinuity
defines in turn two intervals [r −1, u(a)−1] and [r +1, u(a)+1]
(dually, [u(a) − 1, r − 1] and [u(a) + 1, r + 1] that must be
compressed to a point s ∈ R in order to construct a continuous
representation at point a. Furthermore, |u(a) − s| ≤ 1, that is, if
there is any b ∈ X such that u(b) is in these compression intervals,
then b ∼ a should be satisfied. This idea of compression intervals
will be explored in detail in the next section.

4. The ‘dragging’ effect of semiorders

Given a Scott–Suppes representation (u, 1) (such that u also
represents the trace) of a semiorder on X , in the previous section
we have studied the implications of a discontinuity of u at a point
x in the intervals contiguous to the image u(x). These implications
on u, that model the appearance of the image set u(X) ⊆ R, have
been collected in Proposition 3.5.

In the following lines we present some other conditions that
must be satisfied for the existence of a continuous Scott–Suppes
representation. They are described by means of n-adjoint nets.
Unlike the previous conditions (a)–(d), the consequences of these
new conditions may extend beyond the intervals contiguous to
the discontinuity, giving rise to what we will call the dragging
effect. Thus, if we want to make changes on the function in the
neighborhood of a point (but always keeping the representation),
these changes can have implications not only on the contiguous
intervals, but also on the successive ones.

The goal of the present section is to introduce these new nec-
essary conditions as well as their implications on a representation
6

(u, 1), in order to describe the appearance of the image set u(X) ⊆

R, as it was did in Proposition 3.5.
For the sake of completeness, we recover the concept of n-

adjoint nets, that was first presented in Estevan (2020).

Definition 4.1. Let (X, τ ) be a topological space endowed with a
semiorder ≺. Let (xj)j∈J and (yk)k∈K be two nets on X . We shall say
that these nets are adjoint nets, and we denote it by (xj) ⋞ (yk), if
one of the following conditions holds:

Condition 1: If neither of these nets is constant, then the
following two conditions both hold:

(1.i) for each j0 ∈ J there exists k0 ∈ K such that xj0 ≺ yk
for any k > k0,

(1.ii) for each k0 ∈ K there exists j0 ∈ J such that yk0 ≾ xj
for any j > j0.

Condition 2: If one (and only one) of the nets is constant, that
is yk = b for all k ∈ K or xj = b for all j ∈ J , where b is called
adjoint point, then any of the following conditions is satisfied:

(2.i) xj ≺ b for each j ∈ J and the net converges to a ∈ X such
that b ≾ a,

(2.ii) b ≺ yk for each k ∈ K and the net converges to a ∈ X such
that a ≾ b.

Analogously, for each n ∈ N we define the n-adjoint nets, and
we denote them by (xj) ⋞n (yk), if there exists a chain of length n
of adjoint nets: (xj) ⋞ (ai1 ) ⋞ ... ⋞ (ain−1 ) ⋞ (yk). For any m such
that −m ∈ N, we also say that (xj)j∈J and (yk)k∈K are m-adjoint
nets, and we denote them by (xj) ⋞m (yk) if (yk) ⋞−m (xj). The
following Fig. 3 tries to illustrate the idea of adjoint nets.

The following lemma shows the significance of n-adjoint nets,
ince they provide a rigid structure to the semiorder when deal-
ng with (continuous) representations, as illustrated in Fig. 4. It
as proved in Estevan (2020), but we include it here for the sake
f completeness.

emma 4.2. Let ≺ be a semiorder defined on a topological space
(X, τ ) and let (u, 1) be a continuous representation. If (xj)j∈J and
yk)k∈K are n-adjoint nets, then limj∈J u(xj) + n = limk∈K u(yk).

roof. We prove it by induction on n ∈ N. For n = 1, if (xj) ⋞ (yk)
nd none of them is a constant, then for any j0 ∈ J there exists
0 ∈ K such that xj0 ≺ yk for each k > k0, so u(xj0 )+1 < lim(u(yk))

for each j ∈ J . Hence, lim(u(x )) + 1 ≤ lim(u(y )).
0 j k
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Fig. 3. Illustration of adjoint nets by means of a representation (u, 1) of a semiorder on X . Here, the image of three nets are drawn: (u(xn))n∈N = (−0.5 −
1
n )n∈N in

green, (u(yn))n∈N = (0.5−
1
n )n∈N in red and (u(zn))n∈N = (1.5−

1
n )n∈N in yellow. In particular, it is assumed that (yn)n∈N converges to u−1(1) = a, thus, u is discontinuous

at point a ∈ X . According to Definition 4.1, the net (xn)n∈N is a 1-adjoint net of (yn)n∈N , as well as (yn)n∈N is 1-adjoint net of (zn)n∈N . Thus, (xn)n∈N ⋞2 (zn)n∈N . Notice
too that, according to Condition 2 of Definition 4.1, (yn)n∈N is a 1-adjoint net of the constant net (u−1(s))n∈N .
Fig. 4. Illustration of three adjoint nets by means of a representation (u, 1) of a semiorder on X . Here, the image of three nets are drawn: (u(yn))n∈N = (0.5−
1
n )n∈N

n red, (u(zn))n∈N = (1.5−
1
n )n∈N in yellow and (u(wn))n∈N = (2.5−

1
n )n∈N in green. Again, (yn)n∈N converges to u−1(1) = a, thus, u is discontinuous at point a ∈ X . Due

to the existence of these adjoint nets, (yn)n∈N ⋞ (zn)n∈N ⋞ (wn)n∈N , if we make changes on the interval (0, 0.5) in order to avoid the discontinuity on a = u−1(1), these
changes should be reproduced in the following intervals in order to keep the representation. In particular, if we stretch through g the interval [0, 0.5) in order to avoid
he jump discontinuity related to the gap [0.5, 1), such that now limn→∞ g(0.5−

1
n ) = 1, since (yn)n∈N ⋞ (zn)n∈N , it holds that limn→∞ g(u(yn)) = limn→∞ g(1.5−

1
n ) = 2

whenever g keeps the representation. The same phenomenon holds with (2.5 −
1
n )n∈N , thus, the changes made on [0, 1] due to the discontinuity of u at a = u−1(1)

ave implications on [2, 3] too.
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Similarly, for any k0 ∈ K there exists j0 ∈ J such that yk0 ≾ xj
for each j > j0, so u(yk0 ) ≤ lim(u(xj)) + 1 for each k0 ∈ K . Hence,
lim(u(yk)) ≤ lim(u(xj))+1. So we have proved that lim(u(xj))+1 =

lim(u(yk)).
If one of them is a constant net (suppose yk = b for all k ∈ K ),

then xj ≺ b for any j ∈ J and there exists lim(xj) ∈ X such that
b ≾ lim(xj). So it holds that lim(u(xj))+1 ≤ lim u(b) ≤ (u(xj))+1.
Hence, lim(u(xj)) + 1 = lim(u(yk)). Similarly if the case (2.ii) of
Definition 4.1 holds.

Now, suppose that the lemma is true for a fixed n ∈ N. If
(xj)j∈J and (yk)k∈K are two n+ 1-adjoint nets, there exists another
net (zr )r∈R such that (xj) ⋞n (zr ) ⋞ (yk). So, by the induction
hypothesis, it holds that lim(u(xj)) + n − 1 = lim(u(zr )) and
lim(u(zr )) + 1 = lim(u(yk)). Hence, it holds that lim(u(xj)) + n =

lim(u(yk)).
We proceed analogously if one of them is a constant net. □

Remark 4.3. In fact, as proved in the proof, for any two n-adjoint
nets (xj)j∈J and (yk)k∈K (connected by adjoint nets such that none
of them is constant) it holds that limj∈J u(xj) + n = limk∈K u(yk),
even without requiring continuity for u.

Remark 4.4. By Lemma 4.2, there may be pair of nets such
that their images converge to the same value on R when deal-
ing with continuous representations, even without requiring any
convergence condition on X .

For instance, given (wr )r∈R and (zs)s∈S two n-adjoint nets of
(xj)j∈J and (yk)k∈K , respectively, such that (xj)j∈J and (yk)k∈K con-
verge to the same point, it is proved that lim u(wr ) = lim u(zs) for
any continuous representation (u, 1).

Remark 4.4 motivates the following definition.

Definition 4.5. Let (X, τ ) be a topological space endowed with
a continuously representable (in the sense of Scott and Suppes)

semiorder ≺. Let (xj)j∈J and (yk)k∈K be two nets (one of them a

7

may be constant, i.e., yk = a for any k ∈ K ) in X . We shall say
that (xj)j∈J and (yk)k∈K SS-converge to each other (or that (xj)j∈J
SS-converges to a, for the constant case), and we denote it by
(xj)j∈J ↔ (yk)k∈K , if lim u(xj) = lim u(yk), for any continuous
epresentation (u, 1).

efinition 4.6. Let (X, τ ) be a topological space endowed with
semiorder ≺ and (u, 1) a representation. Let (xj)j∈J and (yk)k∈K

be two nets that SS-converge to each other. Then, the interval
[lim u(xj), lim u(yk)] is said to be a compression interval.

Two compression intervals [r1, t1] and [r2, t2] (with t1 < r2)
are said to be contiguous if r2 − r1 ≤ 1 and t2 − t1 ≤ 1.

roposition 4.7. Let (X, τ ) be a topological space endowed
ith a continuously representable semiorder ≺. Let (u, 1) be any
cott–Suppes representation and [r, t] a compression interval. Then,
r, t] ∩ u(X) contains at most one point. Furthermore, given two
ontiguous compression intervals [r1, t1] and [r2, t2] (with t1 < r2)
uch that s1 = [r1, t1]∩u(X) and s2 = [r2, t2]∩u(X), then s2 ≤ s1+1
s satisfied.

roof. If [r, t] is a compression interval associated to a repre-
entation (u, 1), assuming that it also represents the trace, then
here are two nets (xi)i∈I and (yj)j∈J in X with lim u(xi) = r and
im u(yj) = t and such that lim v(xi) = lim v(yj) for any contin-
ous Scott–Suppes representation (v, 1). Thus, for any b, c ∈ X
uch that r ≤ u(b) ≤ t and r ≤ u(c) ≤ t , since u and v also
epresent the trace, it holds that lim v(xi) ≤ v(b) ≤ lim v(yj) as
ell as lim v(xi) ≤ v(c) ≤ lim v(yj). Therefore, v(b) = v(c), that is,
∼

0 c and, hence, u(b) = u(c). So, we conclude that [r, t] ∩ u(X)
ontains at most one point.
Let [r1, t1] and [r2, t2] be (with t1 < r2) two contiguous

ompression intervals such that u(c1) = s1 = [r1, t1] ∩ u(X) and
(c2) = s2 = [r2, t2] ∩ u(X). Again, there are two pair of nets
xi)i∈I and (yj)j∈J and (wr )r∈R and (zl)l∈L in X with lim u(xi) = r1

nd lim u(yj) = t1 and with lim u(wr ) = r2 and lim u(zl) = t2
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Fig. 5. This figure shows a Scott–Suppes representation (u, 1) of a semiorder on X , such that u also represents the trace. There is a discontinuity at point a = u−1(1),
ince there is a sequence (xn)n∈N that converges to a ∈ X but (u(xn))n∈N = (0.5 −

1
n )n∈N fails to converge to u(a) = 1. It is assumed that the sequence (yn)n∈N also

converges to a = u−1(1). Thus, (xn)n∈N ↔ (yn)n∈N . There are two pairs of 2-adjoint nets, (xn)n∈N ⋞2 (wn)n∈N and (yn)n∈N ⋞2 (zn)n∈N , such that (xn)n∈N ⋞ (αn)n∈N ⋞ (wn)n∈N
and (yn)n∈N ⋞ (βn)n∈N ⋞ (zn)n∈N (with (αn)n∈N = (u−1(1.5 −

1
n ))n∈N and (βn)n∈N = (u−1(2 +

1
n ))n∈N). Thus, (xn)n∈N ↔ (yn)n∈N , (αn)n∈N ↔ (βn)n∈N and (wn)n∈N ↔ (zn)n∈N .

Therefore, [0.5, 1], [1.5, 2] and [2.5, 3] are compression intervals, so that they may contain an unique point and always satisfying that the pairs of points belonging
to contiguous intervals are indifferent.
Fig. 6. This figure shows a Scott–Suppes representation (u, 1) of a semiorder on X , such that u also represents the trace. There is a discontinuity at point a = u−1(1),
ince there is a sequence (xn)n∈N that converges to a ∈ X but (u(xn))n∈N = (0.5 −

1
n )n∈N fails to converge to u(a) = 1. It is assumed that the sequence (yn)n∈N also

converges to a = u−1(1). The nets (in red) (xn)n∈N ⋞1 (zn)n∈N are 1-adjoint nets, but also (xn)n∈N ⋞1 (u−1(s))n∈N . Thus, it also holds true that (zn)n∈N ↔ (u−1(s))n∈N , so
[0.5, 1] and [1.5, s] are compression intervals. Therefore, by condition (c), each interval [1.5, 2] and [2.5, s + 1] may contain – at most – one point of u(X), which
are (in this example) s and s1 , respectively. Finally, notice that according to the picture, [2.5, s1] is another compression interval.
T
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such that lim v(xi) = lim v(yj) and lim v(wr ) = lim v(zl)for any
continuous representation (v, 1).

By contradiction, assume that s1 + 1 < s2. Then, r1 + 1 =

lim v(xi) + 1 = v(c1) + 1 < v(c2) = lim v(wr ) = r2 and, hence,
xi ≺ wr for any i ∈ I and any r ∈ R. Therefore, r1 + 1 =

lim u(xi) + 1 < lim u(wr ) = r2, so, the compression intervals fail
to be contiguous. □

At this point, we are already able to introduce a conjecture just
in order to show the objective of the present work.

Conjecture 4.8. Let (X, τ ) be a topological space endowed with a
representable semiorder ≺ and let (u, 1) be any Scott–Suppes rep-
resentation. Then, the semiorder is continuously representable if and
only if, each compression interval contains at most one point, and
the pairs of points belonging to contiguous intervals are indifferent.

However, it remains to be clarified how to detect those com-
pression intervals, as we did in Lemma 3.3 and its corresponding
Proposition 3.5. For that purpose, Lemma 4.9 and a corresponding
family of four theorems are presented.

By means of the SS-convergence, we are able to generalize
those necessary conditions (a) − (d) for the existence of a con-
tinuous Scott–Suppes representation.5 Through these conditions

5 In fact, in Lemma 4.9, if the net (xj)j∈J or (yi)i∈I is the constant net defined
y the element a ∈ X , then we recover the results presented in Lemma 3.3.
 t

8

we identify the compression intervals (see Figs. 5, 6 and 7).
Furthermore, from this Lemma 4.9, Proposition 4.7 arises now as
a corollary.

Lemma 4.9. Let (X, τ ) be a topological space endowed with a
semiorder ≺. Assume that ≺ is representable in the sense of Scott
and Suppes by means of a pair (u, 1) with u continuous. Suppose
that the pair of nets (xj)j∈J , (yi)i∈I ⊆ X SS-converge to each other.
hen the following properties hold true:

(a) The semiorder ≺ is τ -continuous.
(b) If there are a, b ∈ X such that xj ≾0 b ≾0 yi and xj ≾0 a ≾0 yi

for any i ∈ I , j ∈ J , then a ∼
0 b.

(c) If there are b, c ∈ X such that xj ≺ b ≾ yi and also xj ≺ c ≾ yi
for every j ∈ J, i ∈ I , then b ∼

0 c. Furthermore, if there is
a ∈ X such that xj ≾0 a ≾0 yi for any i ∈ I , j ∈ J , then a ∼ b.

(d) If there are b, c ∈ X such that xj ≾ b ≺ yi and also xj ≾ c ≺ yi
for every j ∈ J, i ∈ I , then b ∼

0 c. Furthermore, if there is
a ∈ X such that xj ≾0 a ≾0 yi for any i ∈ I j ∈ J , then a ∼ b.

roof. The proof is reasoned as in the proof of Lemma 3.3
n Estevan et al. (2013a) but now, instead of argue on a net (xi)i∈I
hat converges to a point a (so that lim u(xi) = u(a)), we have two
ets (xi)i∈I and (yj)j∈J that SS-converge to each other (so, satisfying

hat lim u(xi) = lim u(yj)). □
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Fig. 7. This figure shows a Scott–Suppes representation (u, 1) of a semiorder on X , such that u also represents the trace. There is a discontinuity at point a = u−1(1),
ince there is a sequence (xn)n∈N that converges to a ∈ X but (u(xn))n∈N = (0.5 −

1
n )n∈N fails to converge to u(a) = 1. It is assumed that the sequence (yn)n∈N also

converges to a = u−1(1). The nets (in green) (yn)n∈N ⋞1 (wn)n∈N are 1-adjoint nets, but also (xn)n∈N ⋞1 (u−1(s))n∈N . Thus, since (xn)n∈N ↔ (yn)n∈N it also holds true
that (u−1(s))n∈N ↔ (wn)n∈N , so [0.5, 1] and [s, 2] are compression intervals. Therefore, by condition (c), each interval [1.5, 2] and [s + 1, 3] may contain – at most –
one point of u(X). Finally, notice that according to the picture, there are no more compression intervals.
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Throughout the paper, we shall refer to all these necessary
conditions (a)–(d) presented in Lemma 4.9 by (NC). We remark
these conditions cannot be reduced even when working on the
set X/ ∼

0, in that case the only difference is that a ∼
0 b means

a = b. In the following family of theorems we summarize the
structure of any (not necessarily continuous) unit representation
of a semiorder that satisfies the necessary conditions (NC).

In order to describe the appearance of a Scott–Suppes repre-
sentation of a semiorder that satisfies those necessary condition
(NC), we present a family of four theorems (we call them Gap
Theorems for semiorders) depending on:

Gap : The type of bad-gap we are focusing on:

(CO) A closed-open gap [r, u(a)).
(OC) An open-closed gap (u(a), r).

Side : Which side we are looking at:

(R) The right side: (u(a), +∞).
(L) The left side: (−∞, u(a)).

Starting from a gap [r, u(a)) generated by a discontinuity of
u at a ∈ X , we can differentiate three zones as we move away
(either to the right or to the left) from the gap. The stable zone,
where there are nets attached in connection with the gap that
cause the intervals [r + n, u(a) + n] and [r − n′, u(a) − n′

] (with
n = 1, 2, . . . and n′

= 1, 2, . . .) to compress to a point; the
inflection zone, where one of the attached nets ceases due to the
existence of a gap, but there are still compression intervals due
to the existence of a number of points, and finally the free zone,
where the discontinuity no longer has any effect (as regards to
the necessary conditions).

Theorem 4.10 (Closed-Open-Right Theorem). Let (u, 1) be a unit
representation of a semiorder ≺ on (X, τ ) that satisfies the necessary
conditions (NC), and S = u(X). Suppose that there is a discontinuity
at a point a ∈ X such that [r, u(a)) is a gap. Then:

Stable zone: If sup{u(x) : u(x) < r +n} = r +n and inf{u(x) : u(x) >
u(a) + n} = u(a) + n for any n ∈ {1, . . . ,m − 1} (for some m ∈ N)
or n ∈ N, then [r + n, u(a) + n] ∩ S may contain one point sn such
that sn ≤ sn−1 + 1.

Inflection zone: If there exists m such that sup{u(x) : u(x) < r +

m} = r + m − γl and inf{u(x) : u(x) > u(a) + m} = u(a) + m + γr ,
with γl, γr ≥ 0 and γl+γr > 0,6 then S∩[r+m−γl, u(a)+m+γr ]

contains at most one point sm.

6 In other words, with at least one of them different from 0.
9

• In case that point sm exists:
If γl = 0: Then [r + m + 1, sm + 1] ∩ S may contain one point

sm+1, and so on with the following intervals [r+n, sn+1] whenever
sn−1 ∈ S exists and sup{u(x) : u(x) < r + n} = r + n (with n > m),
until arrive to a possible m∗

∈ N such that [r+m∗, sm∗−1+1]∩S = ∅

or sup{u(x) : u(x) < r + n} < r + n. Then, the Inflection zone ends
at sm∗−1 + 1. If γr = 0: Then (sm + 1, u(a) + m + 1] ∩ S = ∅,
and so on with the following intervals (sn, u(a) + n] (m < n ∈ N),
henever sn = sm + (n − m) ∈ S exists as well as inf{u(x) : u(x) >

u(a) + n} = u(a) + n, until arrive to a possible m∗
∈ N such that

[sm∗ , u(a)+m∗
]∩S = ∅ or inf{u(x) : u(x) > u(a)+m∗

} > u(a)+m∗.
hen, the Inflection zone ends at u(a) + m∗.
If that point sm does not exist or γr and γl are both bigger than 0,

hen the Inflection zone ends at u(a) + m.

roof. If there is a discontinuity at a point a such that [r, u(a)) is
a gap, then there is a net (u(yi))i∈I converging to r in R and there
is another net (u(xj))j∈J (it may be constant, i.e. u(xj) = u(a) for
any j ∈ J) converging to u(a) in R.

First, in this Stable zone, notice that there exist n-adjoint
nets (with n < m) (zt )t∈T and (wr )r∈R with (yi) ⋞n (zt ) and
(xj) ⋞n (wr ) and such that they SS-converge to each other. Hence,
by Lemma 4.2, lim u(wr ) = u(a) + n and lim u(zt ) = r + n
nd, furthermore, [r + n, u(a) + n] is a compression interval. So,
ccording to Proposition 4.7, [r +n, u(a)+n]∩S may contain one
oint sn such that sn+1 ≤ sn+1, and this holds true for each n ∈ N
ith n < m.
Secondly, in the Inflection zone, for that m ∈ N such that

here exist γl, γr ≥ 0 (with at least one of them different from
) satisfying that sup{u(x) : u(x) < r + m} = r + m − γl or
nf{u(x) : u(x) > u(a) + m} = u(a) + m + γr , then from condition
c) of Lemma 4.9, it is deduced that S ∩ [a+mr − γl, b+mr + γr ]

ontains at most one point sm.
If that point sm = u(cm) exists and γl = 0, then there is a net

yj)j∈J such that lim u(yj) = r +m. Thus, notice that [r +m, sm] is
compression interval, since (yj)j∈J SS-converge to cm. Therefore,
he following intervals [r + n, sn + 1] are also compression inter-
als whenever sn−1 exists as well as sup{u(x) : u(x) < r+n} = r+n
s satisfied, and that holds true for any n > m until arrive to
possible m∗

∈ N such that [r + m∗, sm∗−1 + 1] ∩ S = ∅ or
up{u(x) : u(x) < r + m∗

} < r + m∗.
If that point sm = u(cm) exists and γr = 0, then there is
net (yj)j∈J such that lim u(yj) = u(a) + m. Thus, notice that

sm, u(a) + m] is a compression interval, since (yj)j∈J SS-converge
o cm. Therefore, the next interval [sm +1, u(a)+m+1] contains,
t most, the element image sm+1 = sm + 1 = u(cm+1) and, in case
t exists and inf{u(x) : u(x) > u(a) + m + 1} = u(a) + m + 1,
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Fig. 8. This figure shows a Scott–Suppes representation (u, 1) of a semiorder on X , such that u also represents the trace. There is a discontinuity at point a = u−1(1),
ince there is a sequence (xn)n∈N that converges to a ∈ X but (u(xn))n∈N = (0.5 −

1
n )n∈N fails to converge to u(a) = 1. It is assumed that the sequence (yn)n∈N also

converges to a = u−1(1). Since (xn)n∈N ↔ (yn)n∈N , [0.5, 1] is a compression interval. But, notice that according to the picture, there are no more compression intervals.
Fig. 9. Illustration of a Scott–Suppes representation of a semiorder ≺ on X satisfying the necessary conditions (a)–(d), and such that u also represents the trace. If
is discontinuous at a = u−1(2), such that [1.5, 2) is a closed-open bad gap, then, by condition (a), there cannot be any point b ∈ X such that u(b) ∈ [0.5, 1), that

s, u(X)∩ [0.5, 1) = ∅. If there is a point u(s1) = 1, then the interval [−0.5, 0] may contain at most the point u(s2) = 0. But, notice that if u(X)∩ [0.5, 1) = ∅, then it
s possible to construct a continuous Scott–Suppes representation even with the existence of a point u(s) in [−0.5, 0]. In this figure we also illustrate how we could
odify u (lengthening proportionally the intervals, through g) in order to avoid that discontinuity at a = u−1(2), but keeping the representation (i.e., such that x ≺ y

f and only if g(u(x)) + 1 < g(u(y)), x, y ∈ X). For that purpose, notice that the intervals [−0.5, 0) and [0.5, 1] must be compressed to a point.
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sm + 1, u(a) + m + 1] is again a compression interval. This
rgument is repeated until an integer m∗ > m such that the
oint sm∗ = sm∗−1 + 1 in S fails to exists or until inf{u(x) : u(x) >

(a) + m∗
} > u(a) + m∗. □

Fig. 9 is intended to facilitate the understanding of the follow-
ng theorem.

heorem 4.11 (Closed-Open-Left Theorem). Let (u, 1) be a unit
epresentation of a semiorder ≺ on (X, τ ) that satisfies the necessary
onditions (NC), and S = u(X). Suppose that there is a discontinuity
t a point a such that [r, u(a)) is a gap. Then:

table zone: If sup{u(x) : u(x) < r −n} = r −n and inf{u(x) : u(x) >

(a)−n} = u(a)−n for any n ∈ {1, . . . ,m−1} (for some m ∈ N) or
∈ N, then [r −n, u(a)−n]∩ S may contain one point sn satisfying

n + 1 ≥ sn−1 (in case sn−1 exists).

nflection zone: If there exists that m such that sup{u(x) : u(x) <

−m} = r−m−γl and inf{u(x) : u(x) > u(a)−m} = u(a)−m+γr ,
ith γl, γr ≥ 0 and γl +γr > 0, then S∩[r −m−γl, u(a)−m+γr ]

ontains at most one point sm.
In case that point sm exists:
If γl = 0: Then [r − m − 1, sm − 1) ∩ S = ∅, and so on with the

ollowing intervals ([r−n−1, sn −1]) (m < n ∈ N), whenever sn =

m − (n − m) ∈ S exists as well as sup{u(x) : u(x) < r − n} = r − n,
ntil arrive to a possible m∗

∈ N such that [r −m∗, sm∗ ] ∩ S = ∅ or
up{u(x) : u(x) < r − m∗

} < r − m∗. Then, the Inflection zone ends
t r − m∗.
If γr = 0: [sm −1, u(a)−m−1]∩S may contain one point sm+1,

and so on with the following intervals [sn, u(a)−n] whenever sn−1 ∈

S exists and inf{u(x) : u(x) > u(a)−n} = u(a)−n (with n > m), until
arrive to a possible m∗

∈ N such that [sm∗−1 −1, u(a)−m∗
]∩S = ∅

or inf{u(x) : u(x) > u(a) − m∗
} > u(a) − m∗. Then, the Inflection

zone ends at s ∗ − 1.
m −1

10
• If that point sm does not exist or γr and γl are both bigger than 0,
then the Inflection zone ends at u(a) − m.

Proof. If there is a discontinuity at a point a such that [r, u(a)) is
a gap, then there is a net (u(yi))i∈I converging to r in R and there
is another net (u(xj))j∈J (it may be constant, i.e. u(xj) = u(a) for
any j ∈ J) converging to u(a) in R.

First, in this Stable zone, notice that there exist n-adjoint
nets (with n < m) (zt )t∈T and (wr )r∈R with (zt ) ⋞n (yi) and
(wr ) ⋞n (xj) and such that they SS-converge to each other. Hence,
by Lemma 4.2, lim u(wr ) = u(a) − n and lim u(zt ) = r − n
and, furthermore, [r − n, u(a) − n] is a compression interval. So,
ccording to Proposition 4.7, [r −n, u(a)−n]∩S may contain one
oint sn such that sn+1+1 ≥ sn, and this holds true for each n ∈ N

with n < m.
Secondly, in the Inflection zone, for that m ∈ N such that

there exist γl, γr ≥ 0 (with at least one of them different from
0) satisfying that sup{u(x) : u(x) < r − m} = r − m − γl or
nf{u(x) : u(x) > u(a) − m} = u(a) − m + γr , then from condition
c) of Lemma 4.9, it is deduced that S ∩ [a−mr − γl, b−mr + γr ]

ontains at most one point sm.
If that point sm = u(cm) exists and γr = 0, then there

s a net (yj)j∈J such that lim u(yj) = u(a) − m. Thus, notice
hat [sm, u(a) − m] is a compression interval, since (yj)j∈J SS-
onverge to cm. Therefore, the following intervals [sn−1, u(a)−n]
re also compression intervals whenever sn−1 exists as well as
nf{u(x) : u(x) > u(a) − n} = u(a) − n is satisfied, and that holds
rue for any n > m until arrive to a possible m∗

∈ N such that
[sm∗−1 − 1, u(a) − m∗

] ∩ S = ∅ or inf{u(x) : u(x) > u(a) − m∗
} >

u(a) − m∗.
If that point sm = u(cm) exists and γl = 0, then there is a net

(yj)j∈J such that lim u(yj) = r −m. Thus, notice that [r −m, sm] is
a compression interval, since (yj)j∈J SS-converge to cm. Therefore,
the next interval [r−m−1, s −1] contains, at most, the element
m
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mage sm+1 = sm − 1 = u(cm+1) and, in case it exists and
up{u(x) : u(x) < r − m − 1} = r − m − 1, [r − m − 1, sm + 1] is
gain a compression interval. This argument is repeated until an
nteger m∗ > m such that the point sm∗ = sm∗−1 − 1 in S fails to
xists or until sup{u(x) : u(x) < r − m∗

} < r − m∗. □

The next two theorems are dually proved.

heorem 4.12 (Open-Closed-Left Theorem). Let (u, 1) be a unit
epresentation of a semiorder ≺ on (X, τ ) that satisfies the necessary
onditions (NC), and S = u(X). Suppose that there is a discontinuity
t a point a such that (u(a), r] is a gap. Then:

table zone: If sup{u(x) : u(x) < u(a) − n} = u(a) − n and
nf{u(x) : u(x) > r − n} = r − n for any n ∈ {1, . . . ,m − 1} (for
ome m ∈ N) or n ∈ N, then [u(a) − n, r − n] ∩ S may contain one
oint sn such that sn + 1 ≥ sn−1.

nflection zone: If there exists that m such that sup{u(x) : u(x) <

(a)−m} = u(a)−m−γl and inf{u(x) : u(x) > r−m} = r−m+γr ,
ith γl, γr ≥ 0 and γl +γr > 0, then S∩[u(a)−m−γl, r −m+γr ]

ontains at most one point sm.
In case that point sm exists:
If γr = 0: Then [sm−1, r−m−1]∩S may contain one point sm+1,

nd so on with the following intervals [sn − 1, r − n − 1] whenever
n−1 ∈ S exists and inf{u(x) : u(x) > r − n} = r − n (with n > m),
until arrive to a possible m∗

∈ N such that [r−m∗, sm∗−1−1]∩S = ∅

or inf{u(x) : u(x) > r − n} > r − n. Then, the Inflection zone ends
at sm∗−1 − 1. If γl = 0: Then [u(a) − m − 1, sm − 1) ∩ S = ∅,
and so on with the following intervals [u(a) − n, sn) (m < n ∈ N),
whenever sn = sm − (n − m) ∈ S exists as well as sup{u(x) : u(x) <

(a) − n} = u(a) − n, until arrive to a possible m∗
∈ N such that

u(a)−m∗, sm∗ ]∩S = ∅ or sup{u(x) : u(x) < u(a)−m∗
} < u(a)−m∗.

hen, the Inflection zone ends at u(a) − m∗.
If that point sm does not exist or γr and γl are both bigger than 0,

hen the Inflection zone ends at u(a) − m.

heorem 4.13 (Open-Closed-Right Theorem). Let (u, 1) be a unit
epresentation of a semiorder ≺ on (X, τ ) that satisfies the necessary
onditions (NC), and S = u(X). Suppose that there is a discontinuity
t a point a such that (u(a), r] is a gap. Then:

table zone: If inf{u(x) : u(x) > r +n} = r +n and sup{u(x) : u(x) <

(a)+n} = u(a)+n for any n ∈ {1, . . . ,m−1} (for some m ∈ N) or
∈ N, then [u(a)+n, r +n]∩ S may contain one point sn satisfying

n ≤ sn−1 + 1 (in case sn−1 exists).

nflection zone: If there exists that m such that inf{u(x) : u(x) >

+m} = r+m+γr and sup{u(x) : u(x) < u(a)+m} = u(a)+m−γl,
ith γl, γr ≥ 0 and γl+γr > 0, then S∩[u(a)+m−γl, r+m+γr , ]

contains at most one point sm.
• In case that point sm exists:

If γr = 0: Then (sm + 1, r + m + 1] ∩ S = ∅, and so on with
the following intervals (sn + 1, r + n + 1] (m < n ∈ N), whenever
sn = sm+(n−m) ∈ S exists as well as inf{u(x) : u(x) > r+n} = r+n,
until arrive to a possible m∗

∈ N such that [sm∗ , r +m∗
] ∩ S = ∅ or

inf{u(x) : u(x) > r + m∗
} > r + m∗. Then, the Inflection zone ends

at r + m∗.
If γl = 0: [u(a) + m + 1, sm + 1] ∩ S may contain one point

sm+1, and so on with the following intervals [u(a)+n, sn, ] whenever
sn−1 ∈ S exists and sup{u(x) : u(x) < u(a) + n} = u(a) + n (with
n > m), until arrive to a possible m∗

∈ N such that [u(a) +

m∗, sm∗−1 +1]∩S = ∅ or sup{u(x) : u(x) < u(a)+m∗
} < u(a)+m∗.

Then, the Inflection zone ends at sm∗−1 + 1.
If that point sm does not exist or γr and γl are both bigger than 0,

then the Inflection zone ends at u(a) − m.
11
5. Debreu’s open gap lemma with a threshold: Reasonable
semiorders

Although the necessary conditions (a)–(d) collected in
Lemma 3.3 may seem complicated or severe, they may make
perfect sense from a decision maker point of view. Condition (a)
(related to the continuity of the semiorder) means that (see Este-
van et al., 2013a) if a net of alternatives (xi)i∈I converges to a, then
there is no point b such that xi ≾ b ≺ a or a ≺ b ≾ xi, for all i ∈ I .
In other words, if a decision maker may approach an alternative
a by means of a sequence or net of alternatives (xi)i∈I such that,
in the limit, it is absolutely impossible to discern between them
(topologically speaking), then it cannot exist another alternative
b such that xi ≾ b ≺ a or a ≺ b ≾ xi, for all i ∈ I . Thus, a
coordination between topology and order is needed.

A similar situation holds with conditions (b), (c) and (d). Again,
it seems reasonable to think that, if a decision maker may ap-
proach an alternative a by means of a sequence or net of alterna-
tives (xi)i∈I , such that, in the limit, it is absolutely impossible to
discern between them, then it cannot exist another alternative
b such that xi ≺ b ≾ a or a ≾ b ≺ xi, for all i ∈ I .
Otherwise, there would be an incompatibility between the idea
of proximity between alternatives (i.e. the topological space) and
the preference of the decision maker. On the other hand, in this
last case we will admit the possible existence of an unique limit
or edge point b, since in that case, the existence of that unique
(and only one) point is not incompatible with the existence of a
continuous unit representation.

For instance, let us assume a customer interested in a car,
where the variables to consider are price and color. Let us also
assume that the price only affects the decision when the differ-
ence is greater than 50 euros. We may define then a sequence of
red cars {r1, r2, . . .} = (rn)n∈N with respective prices (20.000−

50
n ).

Thus, we may think that (rn)n∈N converges to the red car of 20.000
euros (denoted by r), as well as it seems reasonable to think that
there cannot be a blue car b such that rn ≾ b ≺ r . We may think
n a similar example with coffee, sugar and tea, in the spirit of
uce.
These remarks may be extended to the generalization made in

emma 4.9.
These remarks on those conditions motivate the following

efinition 5.1.

efinition 5.1. Let ≺ be a semiorder on a compatible topological
pace (X, τ ). If it satisfies conditions (a)–(d) of Lemma 4.9, then
e shall say that it is a reasonable semiorder, or R-semiorder for
hort. Otherwise, we say that it is a non-reasonable semiorder or
R-semiorder.

efinition 5.2. Let S be a subset of R and ≺ the usual semiorder
n S defined by x ≺ y if and only if x + 1 < y, for any x, y ∈ S.
e shall say that S is a reasonable set, or R-set for short, if ≺

atisfies conditions (a)–(d) of Lemma 4.9, that is, if S satisfies the
onditions described in the Gap Theorems. Otherwise, we say that
t is a non-reasonable set or a NR-set.

On the other hand, in order to simplify the proofs, in this
ection we shall argue on irreducible semiorders.

efinition 5.3. Let X be a nonempty set and ≺ a semiorder on
. We say that the semiorder is irreducible on X if there is no
artition A ∪ B of X such that a ≺ b for any a ∈ A and b ∈ B. This
oncept is also known as connected with respect to the indifference
the indifference relation of the semiorder) (Bouyssou & Pirlot,
021a, 2021b).
When ≾ is a total preorder, the pair (A, B) is also known as

rdered bipartition (Bouyssou & Pirlot, 2021a).
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efinition 5.4. Let X be a nonempty set and ≺ a semiorder on
. We say that the semiorder is I-bounded on X if there are no
nbounded irreducible components. Also, we shall say that a real
ubset S is I-bounded as long as its usual semiorder on S is also
-bounded.

We reduce our study to those semiorders since any other one
ay be studied and represented through its irreducible compo-
ents. In fact, given a representable semiorder ≺ on X such that
∪ B is a partition of X satisfying that a ≺ b for any a ∈ A

and b ∈ B, if we know two unit representation (u1, 1) and (u2, 1)
f (A, ≺) and (B, ≺) (respectively), then it is easy to construct a
epresentation (u, 1) on X as the following lemma shows.

emma 5.5. Let ≺ be a representable semiorder on X such that
∪ B is a partition of X satisfying that a ≺ b for any a ∈ A
nd b ∈ B. Given two unit representations (u1, 1) and (u2, 1) of
A, ≺) and (B, ≺) (respectively), then the following function u(x) =

u1(x) ; x ∈ A,

u2(x) + m ; x ∈ B, is a unit representation of ≺, where m =

up u1(A) − inf u2(B) + 2.
Furthermore, if u1 and u2 are continuous, then the function u is
continuous unit representation if and only if ≺ is τ -continuous.
hus, A and B must be open.

roof. Let us check that x ≺ y if and only if u(x) + 1 < u(y), for
ny x, y ∈ X . First, notice that, since a ≺ b for any a ∈ A and b ∈ B
nd the semiorder is representable (in particular, regular), it can
e concluded that u1(A) and u2(B) are bounded from above and
elow, respectively (otherwise we arrive to an absurd).
If x, y ∈ A or x, y ∈ B, then it is trivial. If x ∈ A and y ∈ B,

hen x ≺ y, so it is enough to see that u(x) + 1 < u(y). In
act, since u2(y) − inf u2(B) > 0 and sup u1(A) − u1(x) > 0,
t holds true that u(x) + 1 = u1(x) + 1 ≤ sup u1(A) + 1 <
up u1(A) + 2 + u2(y) − inf u2(B) = u(y), for any x ∈ A and any
∈ B.
Second, with respect to the continuity, notice that, since a ≺ b

or any a ∈ A and b ∈ B and the semiorder is representable, and
ence, regular, there exist two elements a ∈ A and b ∈ B such
hat A = L≺(b) and B = U≺(a).

On one hand, the right implication of this second part is obvi-
us, since τ -continuity is a necessary condition for the existence
f a continuous Scott–Supper representation. Thus, A and B are

open.
On the other hand, assume now that u1 and u2 are continuous

as well as (since the semiorder is τ -continuous) A and B are open.
s proved before, u is a unit representation, let us see that it is, in
act, a continuous representation. Given any x ∈ X and any open
eighborhood Ux ∈ τ of x, if x ∈ A then Vx = Ux ∩ A ⊆ A is

also an open neighborhood and, since u1 is continuous, it holds
that u−1(Vx) = u−1

1 (Vx) ∈ τ . Thus, u is continuous at point x. We
rgue dually if x ∈ B. Therefore, u is continuous and, hence, the
emiorder is τ -continuous.
This concludes the proof. □

Hence, in order to simplify the present work and to avoid
edundancies, from now, we shall assume that the semiorder
tudied is irreducible. Before we introduce our main results,
e recover the following concept and proposition introduced

n Estevan (2020).

efinition 5.6. Let (X, τ ) be a topological space and u : X → R a
eal function on X . Let I = [a, b] be a bounded interval of the real
ine. A subset C = u(X)∩ I is said to be a discontinuous Cantor set
f it satisfies the following properties:
(i) It has measure 0,

12
(ii) it has an infinite number of gaps,
(iii) every gap of C is a bad gap.

If there is a bounded interval I such that C = u(X) ∩ I is a
iscontinuous Cantor set, then we will say that u(X) contains a
iscontinuous Cantor set.
In the case S ⊆ R, in an abuse of notation, we also say that S

ontains a discontinuous Cantor set if i(S) contains a discontinu-
us Cantor set, where i is the inclusion function from (S, τ<) to
R, τ<).

emark 5.7. Notice that, given a discontinuous Cantor set C =

∩ u(X), then the sum of all the gaps of C is the length of the
nterval I .

The following Proposition 5.8 is already known Estevan (2020).

roposition 5.8. Let ≺ be a bounded semiorder on (X, τ ). Let (u, 1)
e a unit representation. Then, there exists a maximal length gap and
he gaps can be labeled in decreasing order {gn}n∈N of their length.

Since we will argue on the length of gaps, we will use the
oncept of ϵ-continuity, introduced in Estevan (2020) for the
irst time. The concept of ϵ-continuity generalizes the idea of
ontinuity for unit representations of semiorders and it is used
or the proof of one the main theorems of the present work, the
eak Theorem.

efinition 5.9. Let ≺ be a semiorder on (X, τ ). We shall say that
he semiorder is r-continuous (for a positive value r ∈ R) if there
xists a unit representation (u, 1) such that the length of each
ump-discontinuity is strictly smaller than this constant r .

A semiorder is ϵ-continuous if for any ϵ > 0 there ex-
sts a unit representation (uϵ, 1) such that the length of each
ump-discontinuity is strictly smaller than the value ϵ.

This concept is weaker than the usual continuity and it is
ssential for the proof of Theorem 5.11. In Estevan (2020) it is
hown that necessary conditions (NC) for the usual continuity
re not needed for the existence of an ϵ-continuous unit repre-
entation. Thus, if a semiorder has a continuous unit representa-
ion, then it is ϵ-continuous, however, there exist ϵ-continuous
emiorders that fail to be continuously representable. Further-
ore, there exist semiorders that fail to be r-continuously rep-

esentable, for a given r > 0 (with r ≤ 1) (Estevan, 2020).
Now, we are ready to present our main theorems. The proofs

f Theorems 5.10, 5.11 and 5.12 are included in Appendix A.
heorem 5.11 is just the continuity of Theorem 5.10.
First, we introduce the weakest one, which is interesting be-

ause the proof is constructive in a finite number of steps and,
ence, it is programmable. The proofs of Theorems 5.10 and 5.11
onsist of stretching segments of non-zero size to eliminate the
argest of the gaps. For this method to work, we must guarantee
hat after stretching these segments, no successive gaps of greater
r equal size will arise, moreover, the length of these will have
o tend to 0. To make this happen, it is necessary and sufficient
hat there are no discontinuous Cantor sets. However, in Theo-
em 5.12 the technique used is different, and instead of stretching
egments we use the Open Gap Lemma. Therefore, the absence of
antor sets is not required here.
Again, we assume that the topology is compatible with the

ndifference.

heorem 5.10 (The Weakest Theorem). Let ≺ be a Scott–Suppes
epresentable and bounded semiorder on a compatible topological
pace (X, τ ) and (u, 1) a unit representation. If ≺ is reasonable, the
ain trace is continuous and there is no discontinuous Cantor set
ontained in u(X), then it is ϵ-continuously representable.
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Furthermore, we may continue the finite process started in the
proof of Theorem 5.10, applying infinite steps in the proof. Hence,
it is possible to construct a sequence {un}n∈N of 1

n -continuous
nit representations that converges to a limit u. The following
heorem shows that this limit exists as well as it being, in fact,
continuous unit representation.

heorem 5.11 (The Weak Theorem). Let ≺ be a Scott–Suppes repre-
entable and bounded semiorder on a compatible topological space
X, τ ) and (u, 1) a unit representation. If ≺ is reasonable, the main
race is τ -continuous and there is no discontinuous Cantor set con-
ained in u(X), then ≺ is continuously representable.

Now, we present the Strong Theorem, where Debreu’s Open
ap Lemma is needed for the proof. Here, the absence of Cantor
ubsets is not required.

heorem 5.12 (The Strong Theorem). Let ≺ be a Scott–Suppes
representable and bounded semiorder on a compatible topological
space (X, τ ). The semiorder ≺ is reasonable and the main trace is
τ -continuous if and only if ≺ is continuously Scott–Suppes repre-
sentable.

By Lemma 5.5, Theorems 5.11 and 5.12 may be generalized to
I-bounded semiorders as follows.

Corollary 5.13 (The Weak Corollary). Let ≺ be a Scott–Suppes repre-
sentable and I-bounded semiorder on a topological space (X, τ ) and
(u, 1) a unit representation. Assume that there is no discontinuous
Cantor set contained in u(X). Then, the semiorder is reasonable and
the main trace is τ -continuous if and only if ≺ is continuously
representable.

Corollary 5.14 (The Strong Corollary). Let ≺ be a Scott–Suppes
representable and I-bounded semiorder on a compatible topological
space (X, τ ). Then, the semiorder is reasonable and the main trace
is τ -continuous if and only if ≺ is continuously representable.

Then, we could conclude the following result, which is directly
deduced from Theorem 5.12 and that we present as a Debreu’s
Open Gap Lemma with a Threshold.

Corollary 5.15 (Debreu’s Open Gap Lemma with a Threshold). Let S
be a subset of R. Then, there exists a ≺

0-strictly increasing7 function
g : S → R such that all the gaps of g(S) are open or closed, and
satisfying that x+ 1 < y ⇐⇒ g(x)+ 1 < g(y) if and only if S is a
R-set.

Proof. Let ≺ be the usual semiorder defined on S by x ≺ y if
and only if x + 1 < y, for any x, y ∈ S. Then, the inclusion
function i : S → R with the constant k = 1 is a Scott–Suppes
representation of ≺.

Let us focus on the right implication. First, here we assume
that if g is ≺

0-strictly increasing then it holds that {x ≺
0 y H⇒

g(x) < g(y)} as well as {x ∼
0 y H⇒ g(x) = g(y)}, x, y ∈ S. Thus,

g represents the trace. On the other hand, if all the gaps of g(S)
are open or closed, then this means (by Proposition 2.12) that g is
continuous with respect to the order topology τ≺0 generated by
the trace. And if x+ 1 < y ⇐⇒ g(x)+ 1 < g(y) is also satisfied,
then g is in fact a continuous Scott–Suppes representation of the
semiorder ≺ defined on S. Thus, by Lemma 4.9, we conclude that
S is a R-set.

Now, we focus on the left implication. Since conditions (a)–
(d) of Lemma 4.9 that define a R-set are given by means of the

7 Here, we assume that {x ≺
0 y H⇒ g(x) < g(y)} as well as {x ∼

0 y H⇒

g(x) = g(y)}, x, y ∈ S.
13
semiorder and its trace, notice that S is a R-set if and only S/ ∼
0

is a R-set. We denote by j the quotient function, that is, j(S) = S/
0. Thus, the semiorder ≺ defined on S/ ∼

0 by x ≺ y if and only
if x + 1 < y (for any x, y ∈ S/ ∼

0) is a reasonable semiorder.
Furthermore, notice that on the quotient S/ ∼

0 it holds that
x ≺

0 y if and only if x < y, x, y ∈ S/ ∼
0. Therefore, if we endow S/

0 with the order topology τ = τ≺0 generated by the trace, then
0 is trivially τ -continuous and – by Corollary 5.14 – there exists
continuous unit representation, let us call it (v, 1). Thus, since
also represents the trace, all the gaps of v(S/ ∼

0) are open or
losed (see Proposition 2.12) as well as x+1 < y ⇐⇒ v(x)+1 <

v(y) is satisfied, for any x, y ∈ S/ ∼
0. Then, g = v ◦ j. □

This section is closed with the following Representation Theo-
rem for Semiorders, now given as a corollary, and enunciated in
the spirit of Debreu’s Representation Theorem for Total Preorders.

Corollary 5.16 (First Continuous Representation Theorem for
emiorders).
Let S be the space of I-bounded semiordered sets endowed with

compatible topology. Then,

≺∈ S is a representable R-semiorder if and only if
≺∈ S is continuously representable.

As Corollary 5.17 shows, our results are still valid for any
topological space, however, without assuming the compatibility,
the continuity of the trace is a sufficient condition, but may fail to
be necessary (see Example 2 and Example 3 in Bosi et al., 2015).

Corollary 5.17 (Second Continuous Representation Theorem for
Semiorders). Let S be the space of I-bounded semiordered sets
endowed with a topology such that the main trace is continuous.
Then,

≺∈ S is a representable R-semiorder if and only if
≺∈ S is continuously representable.

Proof. Under the assumption of the continuity of the main trace,
the proof of Theorem 5.12 (as well as Theorem 5.11 when adding
the absence of Cantor sets) is still valid. For this proof we may also
reason on the quotient set X/ ∼

0, which satisfies the hypothesis
of the theorems, in particular, the quotient topology is always
compatible and the main trace is continuous as long as it is in
the initial space (X, τ ). □

6. Some applications of the present study

6.1. Continuous Scott–Suppes representability of semiorders

In the present work we focused on semiorders and, as a
byproduct, we achieved an Open Gap Lemma with a Threshold.
However, it is also possible to go the other way around, using
this new lemma for the construction of a continuous Scott–
Suppes representation. We collect these thoughts in the following
corollaries.

Corollary 6.1. Let ≺ be an I-bounded semiorder on (X, τ≺0 ), where
τ≺0 denotes the topology generated by the main trace. Then, there
xists a continuous unit representation (v, 1) of ≺ if and only if, for
any unit representation (u, 1), S = u(X) is a R-set.

In that case, there exists a function g such that (v = g ◦ u, 1) is
a continuous unit representation.

If the semiorder is defined on a compatible topological space
finer than τ≺0 , then there may be open-closed or closed-open
gaps where the function u of the unit representation does not
fail to be continuous. Thus, when checking the conditions of the
Gap Theorems for a subset u(X) ⊆ R, we have to interpret those
open-closed and closed-open gaps as those gaps of u(x) that imply
a discontinuity, i.e., bad gaps.
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orollary 6.2. Let ≺ be an I-bounded and Scott–Suppes repre-
sentable semiorder on a compatible topological space (X, τ ). Then,
there exists a continuous unit representation (v, 1) of ≺ if and only
if

(i) the main trace is τ -continuous,
(ii) for any (not necessarily continuous) unit representation (u, 1),

S = u(X) is a R-set.

If these conditions are satisfied, then there exists a function g such
hat (g ◦ u, 1) is a continuous unit representation.

.2. A constructive weak version of Debreu’s Open Gap Lemma

In the present work we also achieve as a byproduct a proof of
weak version of Debreu’s Open Gap Lemma. We referred to it as
eak because the absence of discontinuous Cantor set is assumed.
ut, it has a big remarkable benefit: the method is constructive,
nd finite when working with ϵ-continuity.
Although the notion of ϵ-continuity was defined for

emiorders, it may be generalized to other kinds of representa-
ions of orderings under some adequate hypothesis. For example,
n the case of total preorders or interval orders, assuming –
ithout loss of generality – that the infimum and supremum of
he representation are 0 and 1 -or any other values-, respectively.
ence, the length of the biggest jump-discontinuity may be
ompared with the diameter (or any other invariant) of the image
f the representation.

orollary 6.3. Let S be a subset of the extended real line R. Assume
that there is no discontinuous Cantor set contained in S. Then, there
exists a strictly increasing function g : S → R such that all the gaps
f g(S) are open or closed.
Furthermore, this function g may be built as a composition of a

amily (may be infinite) of linear 2-piecewise functions. As a matter
f a fact, for any ϵ > 0, this function g can be constructed (in a
inite number of steps) by a composition of a finite family of linear
-piecewise functions, satisfying that the length of the bad gaps of
(S) is less than ϵ.

Proof. First, since R is homeomorphic to [0, 1] (see Bridges &
ehta, 1995), without loss of generality we may assume that
⊆ [0, 1], with sup S = 1 and inf S = 0.
By Proposition 5.8, there is a maximal open-closed or closed-

open gap (we shall refer to them as bad gaps): G1. Let {δn}n∈N be
he sequence of lengths corresponding to the bad gaps {Gn}n∈N
ordered from biggest to smaller, see Proposition 5.8).

Now, focusing on G1, we will construct a function f1 on S that
ill remove this gap. We denote G1 by G1 = [a1, b1) or G1 =

a1, b1]. We define the following strictly increasing function:

1(x) =

{
x ·

1
1−δ1

; x ≤ a1,
(x − δ1) ·

1
1−δ1

; x ≥ b1,

Notice that f1 keeps the length of S, i.e. sup f1(S)−inf f1(S) = 1.
We repeat the process with the next gap, f1(G2), (we may denote
f1(G2) by [a2, b2) or (a2, b2].

Therefore, we may define the sequence {ln}n∈N of lengths
associated to the biggest bad gap after applying each functions
f1, . . . , fn on S, respectively, i.e. ln+1 denotes the length of the
biggest gap of fn◦· · ·◦ f1(S) which corresponds to fn◦· · ·◦f1(Gn+1).
This sequence is defined recursively as follows:

l1 = δ1

l2 = δ2 ·
1

1 − δ1
=

δ2

1 − l1

3 = δ3 ·
1

1 − δ
·

1
δ2

=
δ3

1 − δ − δ
=

δ3

(1 − l ) · (1 − l )
1 1 − 1−δ1
1 2 1 2

14
...

So, it may be proved by induction that the length of the biggest
gap after n − 1 steps is

ln =
δn

1 −
∑n−1

k=1 δk
=

δn

Πn−1
k=1 (1 − lk)

.

Thus, since there are no discontinuous Cantor sets, the sum∑
+∞

k=1 δk is strictly smaller than 1, and {δn}n∈N tends to 0 when
n tends to infinity, so we conclude that {ln}n∈N converges to 0
letting n tend to infinity.

Therefore, we have constructed a sequence of strictly increas-
ing functions {gn}n∈N, where gn = fn ◦ · · · ◦ f1, such that gn is
n-continuous, for a family of positive values {ϵn}n∈N such that ϵn
end to 0 when n increases. As a matter of fact, since the sequence
δn}n∈N is decreasing and converges to 0, notice that the sequence
f functions {gn}n∈N is a pointwise Cauchy sequence. To see that,
otice that – since {δn}n∈N is decreasing and converges to 0 – the
equence of functions {fn}n∈N converge to the identity function,
nd since gn+1 = fn+1◦gn, the Cauchy property is deduced. Hence,
he limit function g of {gn}n∈N exists.

Let us see that g is continuous as well as strictly increasing.
On one hand, for any ϵ > 0, there is nϵ ∈ N such that the

ength of the bad gaps of gn(S) are smaller than ϵ, for any n ≥ nϵ .
ence, the bad gaps of g(S) have no positive length, i.e. there are
o bad gaps in g(S).
On the other hand, g is still strictly increasing. To see that,

irst notice that if two point x, y ∈ S are in the same side of
gap, i.e. x, y ≤ a1 or x, y ≥ b1 for a gap G1 = [a1, b1) or
1 = (a1, b1], then after applying f1 the distance between x, y
ncreases such that d(f1(x), f1(y)) =

d(x,y)
1−δ1

, where 1 > δ1 > 0 is
the length of the gap. The distance between x and y is reduced
just in case x ≤ a1 and y ≥ b1 (or vice versa). In that case, it
holds that d(f1(x), f1(y)) =

1
1−δ1

·(d(x, y)−δ1). It can be proved that
after repeating this contraction process n times (i.e. after applying
function gn = fn ◦ · · · ◦ f1) the distance achieved is

d(gn(x), gn(y)) =
1

1 −
∑n

k=1 δk
· (d(x, y) −

n∑
k=1

δk).

In fact, we may argue by induction and assume that after n steps,
he distance is as described before. Hence, in the next step, for
+ 1, the distance would be

(gn+1(x), gn+1(y)) =
1

1 − ln+1
· (d(gn(x), gn(y)) − ln+1),

here ln+1 is the length of the biggest gap between gn(x) and
gn(y) and that comes from the transformation of the initial gap of
ength δn through the n previous steps. Hence, ln+1 is as described
efore, ln+1 =

δn+1
1−

∑n
k=1 δk

. Therefore, replacing ln+1 by δn+1
1−

∑n
k=1 δk

in
he equation:

(gn+1(x), gn+1(y))

=
1

1 −
δn+1

1−
∑n

k=1 δk

· (d(gn(x), gn(y)) −
δn+1

1 −
∑n

k=1 δk
).

Finally, after replacing the value d(gn(x), gn(y)) =
1

1−
∑n

k=1 δk
·

d(x, y)−
∑n

k=1 δk) and simplifying, we achieve the desired result:

(gn+1(x), gn+1(y)) =
1

1 −
∑n+1

k=1 δk
· (d(x, y) −

n+1∑
k=1

δk).

Thus, given any two points x < y in S, in the limit – i.e. after
applying function g – the distance between g(x) and g(y) is at
least, as big as

1∑
+∞

· (d(x, y) −

+∞∑
δk).
1 − k=1 δk k=1
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By hypothesis, there is no discontinuous Cantor set contained
in S, hence,

∑
+∞

k=1 δk is strictly smaller than d(x, y) (and, in par-
ticular, strictly smaller than 1). Thus, g(x) < g(y) for any x < y.
This concludes the proof. □

Remark 6.4. Given ϵ0 > 0, the previous proof can be limited
to a finite number of steps just in order to achieve ϵ0-continuity
through a constructive and finite process. This may be interesting
for programming purposes, as it is shown in Appendix B.

7. Concluding remarks

In the present paper we focused on semiorders and proved
a characterization of the existence of a continuous Scott–Suppes
representation for a big family of semiorders, that also includes
the bounded semiorders. A version of Debreu’s Open Gap Lemma
with a threshold is achieved, so that given a S in R, now we know
when a strictly increasing function g exists such that x + 1 < y
if and only if g(x) + 1 < g(y) and satisfying that now the gaps
are not bad gaps. Thus, we almost completely close a problem
that has been open since in 1956 the notion of a semiorder was
introduced by Luce (1956).

Some other proof for these results may exist, in particular,
by induction on the length of u(X) (that is, on the length of the
longest chain x1 ≺ x2 ≺ · · · ≺ xl) and aggregating continuous
representations u1 : (X1, τ|X1 ) → (R, τu) and u2 : (X2, τ|X2 ) →

(R, τu) of a semiorder on (X, τ ), with X = X1 ∪ X2, in the line
of Bouyssou and Pirlot (2021a, 2021b). However, it does not seem
easy at all to know how to make this aggregation.

The case of unbounded and irreducible semiorders remains to
be solved, which would bring the solution to the general case.
Thus, Conjecture 4.8 is open for the general case.

This work also includes a programming tool (which was used
by the author in order to check his calculations) that constructs
ϵ-continuous utilities for total preorders. It can be complemented
for semiorders in order to construct ϵ-continuous Scott–Suppes
representations.

Several applications of the results obtained are expected to be
published shortly.
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Appendix A. Proofs

Proof of Theorem 5.10

Proof. Let ≺ be a Scott–Suppes representable and bounded
semiorder on a compatible topological space (X, τ ), such that the
trace is τ -continuous. Let (u, 1) be a Scott–Suppes representation
such that u also represents the trace. By Proposition 5.8, there
is a maximal gap G1 that generates a discontinuity at a point a1.
et δ1 be the length of G1. By Corollary 2.13, G1 is of the form
u(a ), r] or [r, u(a )). Without loss of generality, we may suppose
1 1 b
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that G1 = [r, u(a1)) ⊆ (0, 1] with u(a1) = 1 and r = 1−δ1, where
1 > δ1 > 0 is the length of the jump-discontinuity (it would be
roved dually for (u(a1), r]), otherwise we should move the set
y a function t1(x) = x + 1 − u(a1).
Since u(X) is bounded, we may divide it in T unit subintervals,

uch that u(X) ⊆ I−M+1∪I−M+2∪· · ·∪I1∪· · ·∪IN , with M+N = T
nd such that [r, u(a1)) = [r, 1) ⊆ [0, 1] = I1.
Now, we focus on I1 = [0, 1], where the biggest gap G1 =

[r, u(a1)) was found, and we denote the decreasing family of the
engths of the bad gaps in I1 by (δ1n)n∈N. First, we will construct
piecewise function f 11 on R (that is strictly increasing on u(X))

hat will remove this gap G1 of length δ11 , and repeat the process
or the successive gap lengths δ11, . . . , δ

1
n0 , for some n0 ∈ N.8

After finishing the work on this subset I1, we will repeat the
rocess but now focusing on another unit interval Ii2 related to
he next biggest bad gap. We will denote the decreasing family of
he lengths of bad gaps in Ii2 (with respect to the initial function
) by (δi2n )n∈N, and so on, so that (δikn )n∈N denotes the decreasing
amily of the lengths of bad gaps in Iik , for each k = 1, . . . , T .

In case of a bad gap [k − δl, k + δr ) or (k − δl, k + δr ] which
s in the middle of two of those unit intervals Ik and Ik−1, we will
onsider it in our algorithm as two consecutive bad gaps [k−δl, k)
nd [k, k+ δr ) (dually, (k− δl, k] and (k, k+ δr ]), so that δl and δr
re elements of the sequences of lengths of (δk−1

n )n∈N and (δkn)n∈N,
espectively.

Coming back to I1, firstly, we define the corresponding sub-
unctions λ1

1, λ
1
2, λ

1
3 and c1, which are linear functions that will

e applied adequately in each threshold interval in order to keep
he rigid structure of the semiorder, that is, in order to achieve
nother unit representation (but now without the gap G1).
By the Gap Theorems, if [r + 1, u(a1)+ 1] or [r + 1, u(a1)+ 1)

is a gap, then u(X) ∩ [r + 2, u(a1) + 2] has at most one point
, and we will continue applying the reasoning corresponding to
he stable zone (see Fig. 5), until arriving to a mr ∈ N such that
(X) ∩ [r + mr − γ ′

l , u(a1) + mr + γ ′
r ] (with γ ′

l , γ
′
r ≥ 0 and, at

east, one of them positive) has at most one point (as explained
n the inflection zone, see Figs. 6, 7, 8, 10 and 11). We define the
ollowing expansion function:

1. λ1
1(x) = (x − n) ·

1
1−δ11

+ n, x ∈ [n, n + r], n ∈ N with
0 < n < mr (see Fig. 5),

2. λ1
2(x) = (x − n) · 1

1−δ11
+ n, x ∈ [1 + n + γ ′

r , 1 + n + r − γ ′

l ],
n ∈ N with n ≥ mr (see Figs. 6, 7 and 8),

3. λ1
3(x) = n + 1, x ∈ (n + r, n + 1), n ∈ N with 0 < n < mr

(see Fig. 5).

Remember that in [n+ r, n+ 1] (for 0 < n < mr ) there is – at
most – one point s (see the Gap Theorems), so λ1

3 does not imply
a contraction on u(X)∩ (n+ r, n+1). And the contraction function
on [r + n − γ ′

l , n + 1 + γ ′
r ], n ∈ N with n ≥ mr , that reduces the

length of this interval from δ11 + γ ′

l + γ ′
r to α′

l + α′
r . Here, if there

is no point s in [r + mr − γ ′

l ,mr + 1 + γ ′
r ], then the contraction

function is defined as follows (see Fig. 8):

1. c1(x) = (x− (r + n− γ ′

l )) ·
α′
l+α′

r
δ11+γ ′

l +γ ′
r
+ λ1

2(r + n− γ ′

l ), where

α′

l = −λ1
2(r + n − γ ′

l ) and α′
r = λ1

2(1 + n + γ ′
r ).

owever, if there is a point s in [r + mr − γ ′

l ,mr + 1 + γ ′
r ] (see

the Gap Theorems), then c1(x) is defined as follows (see Figs. 7, 6
and 11, respectively).:

8 Here, the superscript 1 relates the function f 11 (the first function of a family
f functions (f 1n )n∈N) as well as the family of gaps (δ1n )n∈N to the interval I1 . By

the way, notice that this function f 11 (as well as the upcoming functions f in) will
e continuous on R.
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Fig. 10. Illustration of a bad gap for the particular representation, where r = 0.5 and u(a) = 1 and without containing a point. The way in which the jump-
discontinuity may be avoided is illustrated too. Here notice that since there is no point s′ in [2.5, s + 1], we do not have to contract any interval to 3. Hence, we
may just proportionally identify the interval [2.5, 3 + γr ] with [3, g(3 + γr )]. We will continue applying this identifications in the successive intervals.
Fig. 11. Illustration of a bad gap for the particular representation where r = 0.5 and u(a) = 1. Since γl and γr both are strictly positive, the existence of a continuous
epresentation is compatible with the presence of points whose images are in [2.5, 3].
s

H
m

1. If δr = 0, then δl > 0 and (s + 1,mr + 2] ∩ u(X) = ∅. Then,
c11 (x) = (x − (r + mr − γ ′

l )) ·
α′
l

s−r−mr+γ ′
l

+ λ1
2(r + mr − γ ′

l ),
for any x ∈ [r + mr − γ ′

l , s
′
]. The interval (s,mr + 1] is

contracted to mr + 1.
For any n > mr , then we apply c11 (x) = (x − (r + n − γ ′

l )) ·
α′
l

1−r+γ ′
l

+ λ1
2(r + n − γ ′

l ), for any x ∈ [r + n − γ ′

l , n].

2. If δl = 0, then δr > 0 and [r + mr + 1, s + 1] ∩ u(X)
may contain a unique point smr+1. In case this point smr+1

exists, then, c12 (x) = (x − (s + 1)) ·
α′
r

n+1+γ ′
r−s + n for any

x ∈ [s + n − mr , n + γ ′
r ], n ≥ mr , and the interval

[r + n, s + n − mr ] is contracted to n + 1, for any n ≥ mr
with n < m∗

r , where m∗
r ∈ N is such that there is no point

in [r + m∗
r , sm∗

r −1 + 1] ∩ u(X).
Then, for n ≥ m∗

r , we apply c12 (x) = (x − (r + n + 1)) ·
α′
r

1+γ ′
r−r + n for any x ∈ [r + n, n + γ ′

r ]. If there is no point
s′, then m∗

r = mr + 1.
3. If δl > 0 and δr > 0, then we apply c11 (x) in [r + n− γ ′

l , s+
n − mr ] and c12 (x) in [s + n − mr , n + γ ′

r ], for any n ≥ mr .

We continue the proof through a dual study on the left side of
he gap.

By the Gap Theorems, if [r−1, u(a1)−1] or [r−1, u(a1)−1) is a
ap, then u(X)∩[r−2, u(a1)−2] has at most one point s (which is
n fact the adjoint point u(a1)−2 in case u(a1)−1 exists), and we
ill continue applying the reasoning corresponding to the stable
one, until arriving to aml ∈ N such that u(X)∩[r−ml−γl, u(a1)−
l+γr ] (with γl, γr ≥ 0 and, at least, one of them positive) has at
ost one point (as described in the inflection zone). The existence
f this bigger gap (which does not suppose – by hypothesis, since
he previous and smaller one G1 we supposed to be the biggest
a discontinuity) may allow the existence of elements on the

ollowing intervals [r − n, u(a ) − n] for n > m .
1 l
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So, now, we define the following expansion function on the left
ide of the gap (i.e., for x < r):

1. λ1
1(x) = (x + n) ·

1
1−δ11

− n, x ∈ [−n, r − n], n ∈ N with
0 ≤ n < ml.

2. λ1
2(x) = (x + n) ·

1
1−δ11

− n, x ∈ [−n + γr , r − n − γl], n ∈ N
with n ≥ ml.

3. λ1
3(x) = 1 − n, x ∈ (r − n, 1 − n), n ∈ N with 0 ≤ n < ml.

And a contraction function on [r − n − γl, u(a1) − n + γr ],
n ∈ N with n > ml, that reduces the length of this interval from
δ11 + γl + γr to αl + αr :

1. c1(x) = (x − (r − n − γl)) ·
αl+αr

δ11+γl+γ2
+ λ1

2(r − n − γl), where

αl = −λ1
2(r − n − γl) and αr = λ1

2(1 − n + γr ).

owever, if there is a point s = sm in u(X) ∩ [r − ml − γl, u(a1)−
l +γr ] (see the Gap Theorems), then c1(x) is defined as follows:

1. If δr = 0, then δl > 0 and [s − 1, 1 − (ml + 1)] ∩ u(X) may
contain a unique point sm+1. In case this point sm+1 exists,
then, c11 (x) = (x − (r − n − γl)) ·

αl
sn−(r−n)+γl

+ λ1
2(r − n − γl)

for any x ∈ [r − n − γl, sn], n ≥ ml, and the interval
[sn, 1 − n] is contracted to 1 − n, for any n ≥ ml with
n < m∗

l , where m∗

l ∈ N is such that there is no point in
[sm∗

l −1 − 1, 1 − m∗

l ] ∩ u(X).
Then, for n ≥ m∗

l , we apply c11 (x) = (x − (r − n − γl)) ·
αl

1+γl−r + λ1
2(r − n − γl) for any x ∈ [r − n − γl, 1 − n].

2. If δl = 0, then δr > 0 and [r − ml − 1, s − 1) ∩ u(X) = ∅.
Then, c12 (x) = (x − s) ·

αr
1−ml+γr−s + λ1

2(1 − ml − γ ′

l ), for any
x ∈ [s, 1 − ml + γr ]. The interval [r − m, s] is contracted to
1 − m.
For any n > ml, then we apply c12 (x) = (x−(r−n))· αr

1−r+γr
+

1 − n, for any x ∈ [r − n, 1 − n + γ ].
r
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3. If δl > 0 and δr > 0, then we apply c11 (x) for any x ∈

[r−n−γl, s−n+ml], and c12 (x) for any x ∈ [r−n, 1−n+γr ],
n ≥ ml.

Notice that, by the Gap Theorems, (r − n, 1 − n) ∩ u(X) (for
≤ n < ml) would contain at most one point, so λ1

3 does not
mply a contraction on (r − n, 1 − n) ∩ u(X).

We will argue similarly in the case of a bad gap of the form
1 = (u(a1), r], constructing the corresponding functions.
First, notice that the function applied are strictly increasing

n u(X). Secondly, notice that λ1
i (t) + 1 = λ1

i (t + 1) (for any
= 1, 2, 3) as well as c1k (t) + 1 = c1k (t + 1) (for any k = 1, 2)
or any t ∈ u(X). Finally, |u(x) − u(y)| ≤ 1 is satisfied if and
nly if |f 11 (u(x)) − f 11 (u(y))| ≤ 1, x, y ∈ X (see Figs. 5, 6, 7, 8, 10
nd 11). Hence, after applying this piecewise function f 11 on u(X),
nother unit representation (u1

1, 1) is achieved, but now without
he aforementioned gap G1.

By Proposition 5.8, the next biggest gap G2 in I1 – which length
ith respect to u is δ12 – is selected and we continue the process,
onstructing the corresponding function f 12 and achieving another
epresentation (u1

2, 1), where u1
2 = f 12 ◦ f 11 ◦ u = f 12 ◦ u1

1.
9

Let us see that, given any ϵ0 > 0, this process arrives to a
oint such that the representation (u1

n1 , 1) is ϵ0-continuous in
1 = [0, 1].

Let {δ1n}n∈N be the sequence of lengths corresponding to the
ad gaps {Gn}n∈N (ordered from bigger to smaller, see Proposi-
ion 5.8) associated to the initial function u of the unit represen-
ation (u, 1) on I1 = [0, 1]. Obviously, letting n tend to infinity, δ1n
ends to 0 (see Proposition 5.8). Furthermore, notice that, since
here is no discontinuous Cantor set contained in u(X), the sum

+∞

k=1 δ1k is strictly smaller than 1 (i.e. there exists r1 > 0 such
hat

∑
+∞

k=1 δ1k ≤ 1 − r1).
We denote the family of bad gaps in I1 corresponding to the

epresentation u1
1 = f 11 ◦u by {f1(Gn)}n∈N\{1} = {G1

n}n∈N. The length
f the biggest gap G1

1 corresponds to the possible expansion of the

ap G2 of u(X), thus, the length of the gap G1
1 is l2 =

δ12
1−δ11

. This will

e repeated again and again with each function f 12 , f 13 , . . . , f 1n1 .
Therefore, we are able to define the sequence {ln}n∈N of lengths

ssociated to the biggest bad gap of each representation (u1
n, 1) in

1. This sequence is defined recursively as follows:

1 = δ11

2 = δ12 ·
1

1 − δ11
=

δ12

1 − l1

3 = δ13 ·
1

1 − δ11
·

1

1 −
δ12

1−δ11

=
δ13

1 − δ11 − δ12
=

δ13

(1 − l1) · (1 − l2)

..

n =
δ1n

1 −
∑n−1

k=1 δ1k

=
δ1n

Πn−1
k=1 (1 − lk)

.

Thus, since (as said before) the sum
∑

+∞

k=1 δ1k is strictly smaller
than 1 and {δ1n}n∈N converges to 0, we conclude that {ln}n∈N tends
o 0 letting n tend to infinity.

Therefore, for any ϵ1 > 0 there is always a finite number
1 such that the length of the biggest bad gap on f 1n1 ◦ f 1n1−1 ◦

· · · ◦ f 11 (u(X) ∩ [0, 1]) is smaller than ϵ1 (we shall denote f 1 =

f 1n1 ◦ f 1n1−1 ◦ · · · ◦ f 11 and u1
= f 1 ◦ u). In the limit, we reduce the

measure of the union of bad gaps to 0, stretching 1
1−

∑
n∈N δ1n

times
the subset u(X) ∩ [0, 1].

9 Again, we keep the subscript 1 in u1 to refer to the first interval I .
2 1 f
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After achieving the desired result on [0, 1], we now choose
the next biggest gap (if it exists) which lies in Ii2 , for some i2 ∈

{−M+1, . . . ,N}. Again (because of translations) we may assume
that it is of the form [u1(a2) − δ21, u

1(a2)) ⊆ [0, 1] (or the dual
u1(a2), u1(a2)+δ21 ⊆ [0, 1])), where u1 now denotes the function
f 1 ◦ u = f 1n1 ◦ f 1n1−1 ◦ · · · ◦ f 11 ◦ u.

Now, we repeat the same process on [u1(a2) − 1, u1(a2)) as
before, achieving a family of functions that are applied on u1(X).
After that, the aforementioned bad gaps of the first interval I1 =

[0, 1] (where the biggest gap G1 = [r, u(a1)) was found) may
increase 1

1−
∑

n∈N δ1n
·

1

1−
∑

n∈N δ
i2
n

times, where now
∑

n∈N δ
i2
n is the

um of the length of the bad gaps in Ii2 with respect to the first
unction u. Hence, if the biggest discontinuity desired is ϵ0, we
hould choose the ϵ1 before smaller than ϵ0 · (1−

∑
n∈N δ1n) · (1−

n∈N δ
i2
n ). As a matter of fact, since each kth step may increase

he length of the gaps of the intervals corresponding to the steps
efore 1

1−
∑

n∈N δ
ik
n

times, we should choose the initial ϵ1 such that

1 < ϵ0 ·

T∏
k=1

(1 −

∑
n∈N

δ
ik
n ).

Once this second step has been completed, we have achieved
unit representation (u1,i2 , 1), where u1,i2 denotes the function

i2 ◦ f 1 ◦ u = f i2 ◦ u1 and f i2 is the function f i2ni2 ◦ f i2ni2−1 ◦ · · · ◦ f i21
constructed as before.

Thus, at the kth step the function f ik = f iknik ◦ f iknik−1 ◦ · · · ◦ f ik1
s constructed, achieving the representation (u1,i2,...,ik , 1), where
1,i2,...,ik = f ik ◦ u1,i2,...,ik−1 ). Since the semiorder is bounded, the
mage of X is contained in a bounded interval so, the process
nds up after a finite number T of steps, achieving a unit rep-
esentation (u1,i2,...,iT , 1) where the length of the biggest bad gap
s smaller than the desired value ϵ0 > 0. □

roof of Theorem 5.11

roof. By Theorem 5.10, the semiorder is ϵ-continuously repre-
entable. Hence, for any n ∈ N there exists a unit representation
un, 1) such that the length of the biggest gap is less than 1

n . As a
matter of a fact, given 1

n0
, in the previous proof we used a method

to construct a unit representation (un0 , 1) which is 1
n0
-continuous.

Hence, for 1
n0+1 , we may proceed analogously but now starting

the process from un0 .
Furthermore, this is a pointwise Cauchy sequence (with re-

spect to the supremum norm). To see this, first notice that we
are able to construct a new function un+1 from un just applying
the corresponding functions f 1, f i2 , . . . , f iT described in the proof
of Theorem 5.11, thus, un+1 = f iT ◦ f iT−1 ◦ · · · ◦ f 1 ◦ un. We denote
by fn the composition f iT ◦ f iT−1 ◦ · · · ◦ f 1 used in order to pass
from un to un+1 and fn ◦· · ·◦ f1 = Fn. Thus, un+1 = fn ◦un = Fn ◦u1.

So, ∥un+1 − un∥∞ = sup{un+1(x) − un(x)}x∈X is just

fn ◦un −un∥∞ = sup{fn(un(x))−un(x)}x∈X = sup{fn(r)− r}r∈un(X).

Now, remember that fn has been defined by means of the
inear functions λn

1, λn
2, λn

3 and cn (see the proof of Theorem 5.10).
he slopes of those linear functions depend on the lengths of
he gaps and, since the corresponding lengths (ln)n∈N converges
o 0 (as proved in the proof of Theorem 5.10), the slopes tend
o 1 when letting n tend to infinite. Thus, these linear functions
onverge to identity when n increases. Therefore, it holds true
hat limn→∞ sup{fn(r) − r}r∈un(X) = 0 and, we conclude that
un}n∈N is a pointwise Cauchy sequence of unit representations.

Therefore, the limit function v = limn→∞ un exists and is, in

act, a unit representation. To see that, first notice that x ≺ y if
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nd only if un(x) + 1 < un(y), for any n ∈ N, and then v(x) + 1 ≤

(y). Let us see that the strict inequality is also conserved for the
imit function u.

For any function fn applied on un(X), it holds that fn(un(x) +

) = fn(u(x))+1, for any x ∈ X . Therefore – and since fn is strictly
ncreasing on un(X) –, the condition of being a unit representation
s also satisfied by fn ◦ un = un+1. The only exception is the case
f the point s (in case it exits) of the interval Imr+1 = (r + mr −

l, u(a) + mr + γr ) and I−ml+1 = (r − ml − γl, u(a) − ml + γr )
f the inflection zone, where the image defined for this point s
oes not differ in 1 units with the image of the point s + 1, that
s, f ik(s) + 1 ̸= f ik(s + 1), (see Figs. 6 and 7). However, in that
ase we may find or define as a ghost10 a successor Suc(s) and an
ntecedent Ant(s) for that point s such that, Ant(s) ∼ s ∼ Suc(s)
nd f ik(Ant(s)) + 1 = f ik(s) = f ik(Suc(s)) − 1. For example, in Fig. 6,
= Ant(s) and s1 = Suc(s), whereas in Fig. 7, 1 = Ant(s) and the
lement 3 – which is a ghost, since it is not in u(X) – would play
he role of the antecedent of s.

Consequently, the only way for the inequality to be broken in
he limit, such that v(x) + 1 = v(y) with x ≺ y, is through the
ontraction of an entire subinterval (which is not contained in a
ad gap) to a point. Let us see now that this contraction to a point
s impossible.

First, notice that, in order to contract an interval to a point,
he number of contraction functions applied on the interval must
e infinite. Let J = [r, s] be a non degenerate interval defined by
wo points r, s ∈ u1(X) = R−{Gn}n∈R, where {Gn}n∈R denotes the
family of bad gaps of u1(X). Assume that (un)n∈N = (Fn ◦ u1)n∈N is
family of representations such that, for each n, there is a new
ontraction on Fn(J) when constructing Fn+1 = fn+1 ◦ Fn.
Let us focus first on the transformations carried out for the

first interval I1, that is, on function f 1.
Attending to the construction of f 1 = f 1n1 ◦ · · · f 11 , notice that

f a contraction function is applied on J by f 11 , then there is bad
ap [r1, u1(a1)) (or (u1(a1), r1]) with its corresponding inflection

zone Ik = (r1 + k − γl, u1(a1) + k + γr ) such that J ⊆ [r1 +

k + (m − k) − γl, u1(a1) + k + (m − k) + γr ], for some m ∈ N.
When applying f 12 , if f

1
1 (J) lies again in a contraction zone, then

there is bad gap [r2, u2(a2)) (or (u2(a2), r2]) with its corresponding
inflection zone Ik2 = (r2 + k2 − γl, u2(a2) + k2 + γr ) such that
f 11 (J) ⊆ [r2 + k2 + (m − k2) − γl, u2(a2) + k2 + (m − k2) + γr ].
Since the semiorder is bounded, the number of intervals Ik is
finite, and we may reduce our argument to the previous inflection
zone Ik = (r1 + k − γl, u1(a1) + k + γr ), such that f 11 (J) ⊆

f 11 ([r1 + m − γl, u1(a1) + m + γr ]). Thus, this second bad gap
[r2, u2(a2)) (or (u2(a2), r2]) lies in [u1(a1)−1, γr ] or in [r1 −γl, r1]
(see Fig. 12).

That is, the bad gaps needed to create contractions in the
same area must be contained in [u1(a1)− 1, γr ] or in [r1 − γl, r1].
Therefore, since there are no discontinuous Cantor sets, the sum
of their lengths is smaller than γ = γl + γr , thus,

∑
∞

k=2 δk < γ as
well as

∑
∞

k=1 δk < 1.
Again, we use notation (δn)n∈N for the length of those bad gaps

(Gn)n∈N involved in this contraction process. As far as the size of
the shrinkage is concerned, if we focus on the whole contracted
interval, in the first step its distances goes from L1 = γ + δ1 to
L2 =

γ

1−δ1
, as well as the length of the bad gap G2 goes from δ2

n u1(X) to l2 =
δ2

1−δ1
in f 11 (u1(X)). In a next step, the distances

2 is reduced to L3 =
L2−l2
1−l2

=
γ−l2(1−l1)
(1−l1)(1−l2)

=
γ−δ2

(1−l1)(1−l2)
, as well as

the length of the bad gap G3 goes from δ3 in u1(X) to l3 =
δ3

1−l2
in

f 12 (u1(X)). Thus, in the nth step, we have that

Ln =
γ −

∑n
k=2 δk∏n−1

k=1(1 − lk)
=

γ −
∑n

k=2 δk

1 −
∑n

k=1 δk
.

10 See Bouyssou & Pirlot, 2021a.
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Therefore, since
∑

∞

k=2 δk < γ as well as
∑

∞

k=1 δk < 1,
we deduce that, in the limit, the length Ln is not reduced to
a point, and since the transformations are proportional in the
whole interval, there is no subinterval contracted to a point. This
conclusion remains true when extended the process to the rest of
the intervals Ik, since the semiorder being bounded, this process
would be repeated a finite number T of times.

Thus, we conclude that v = limn→∞ un is a unit representation
too, as well as, since the length of the biggest gap of u is less than
1
n for any n ∈ N, it is also continuous. □

Remark A.1. The proof before may be more visually appealing
by putting it in the following form:

Let u1
n be the representation constructed by f 1n ◦ · · · ◦ f 11 ◦ u,

reducing the lengths of the bad gaps contained in I1. Then, we
may prove (as we did in the proof of Theorem 5.10) that (u1

n)n∈N
onverges to a representation u1, but now without those bad gaps
hat were contained in I1.

Now, we call u12
1 = u1 and repeat the argument on f 2n ◦ · · · ◦

2
1 ◦ u12

1 , achieving a representation u12, but now without those
ad gaps that were contained in I1 and I2.
Since the semiorder is bounder, the proof ends after T steps,

chieving a representation v = u12...T , but now without bad gaps,
hus, continuous.

roof of Theorem 5.12

roof. Let (u, 1) be a unit representation of the semiorder. We
ssume, without loss of generality, that u also represents the
otal preorder ≾0. We shall use function g of Debreu’s Open Gap
emma, which removes the bad gaps of S achieving another set
(S) of the same length but now without bad gaps (that is, the
unction g that, given a continuous total preorder and a utility
unction u, allows to construct a continuous utility function g ◦u).
his is needed in order to deal with the possible existence of
iscontinuous Cantor sets. However, the structure of the proof is
imilar to the proof of Theorem 5.11.
Since the semiorder is bounded, we may assume without loss

f generality that −M + w is the infimum of u(X) and N is the
upremum, where N,M ∈ N and w ∈ [0, 1). Let u(X) be the set
efined by [−M + w,N] \

⋃
n∈N Gn, where {Gn}n∈N is the family

f bad gaps of u(X).
By Proposition 5.8, there is a maximal gap G1 on u(X) of the

orm (u(a1), r] or [r, u(a1)). Without loss of generality (and with
he only purpose of simplify notation), we may suppose that
1 = [r, u(a1)) with u(a1) = 1 and r = u(a) − δ1, otherwise
e would move the set u(X).
First, we focus on I0 = [u(a1) − 1, u(a1)] = [0, 1]. Here,

e apply function g0
0 that removes the bad gaps of u(X) in I0,

returning a subset S = g0
0 (u(X)∩[0, 1]) free of bad gaps and such

that inf S = 0 and sup S = 1. Notice that given that biggest bad
gap G1 = [r, u(a1)) = [r, 1), by the Gap Theorems, there is no bad
gap containing 0. That is, there is no bad gap (s, t] or [s, t) with
s < 0 < t . Thus, inf{u(X)∩[0, 1]} = 0 and g0

0 is defined from 0 to
1 (with some possible gaps in the middle in addition to G1). The
changes made on I0 must be taking into account in I1 = [1, 2]
and I−1 = [−1, 0] (if they exist) in order to keep the semiorder
relation, so now we apply on I1 = [1, 2] and I−1 = [−1, 0] the
functions11 g1

0 and g−1
0 .

Before define g1
0 and g−1

0 , first notice that, by the Gap Theo-
rems, if [a, b) (dually (a, b]) is a bad gap in I0, then [a − 1, b − 1)

11 This notation is devoted to help on the understanding of the meaning of the
corresponding function. Hence, g1

0 makes reference to the function g0
0 (already

defined on I ) modified to be applied on I .
0 1
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Fig. 12. Illustration of two consecutive contractions on the same interval.
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respectively (a + 1, b + 1]) is a lacuna, so the same function g0
0

an be applied in I−1 (resp. I1), since there is no point u(x) in the
interval that could be removed. On the other hand, [a+1, b+1]∩
u(X) may contain a point s1 (see the Gap Theorems), this point s1
is identified with u(a)+1 = 2. Now, we are able to define g1

0 (x) =

g0(x − 1) + 1 (for any x ∈ I1 = [1, 2]) and g−1
0 (x) = g0(x + 1) − 1

(for any x ∈ I−1 = [−1, 0]). Notice that g1
0 and g−1

0 are defined
in the all set I1 ∩ u(X) and I−1 ∩ u(X), respectively, and that, as
matter of a fact, they are strictly increasing on u(X) ∩ I1 and

u(X) ∩ I−1, respectively. Thus, g0 ◦ u (where we refer now to g0
s the piecewise functions defined by g1

0 , g
0
0 and g−1

0 ) keeps the
emiorder relation on u−1([−1, 2]) ⊆ X .
Reasoning analogously on I2 and I−2 with g1

0 and g−1
0 , respec-

ively, we define the functions g1,2
0 and g−1,−2

0 on I2 and I−2,
nd so on, until arriving from the left to a ml ∈ N such that
(X) ∩ [r − ml − γl, u(a1) − ml + γr ] (with γl, γr ≥ 0 and, at

least, one of them positive) has at most one point, as explained
in the inflection zone (see the Gap Theorems as well as Figs. 4
and 5 for illustrations of the stable zone and Figs. 6, 7, 8, 10 and
11 for the inflection zone). Dually, from the right, until arriving
to mr ∈ N such that u(X) ∩ [r + mr − γ ′

l , u(a1) + mr + γ ′
r ] (with

′

l , γ
′
r ≥ 0 and, at least, one of them positive) has at most one

oint. Here we apply the corresponding functions g1,2,...,mr
0 and

−1,−2,...,−ml
0 . Before continuing to apply these functions in the
uccessive intervals I−n (n > ml) and In (n > mr ), yet first we
ave to make some modifications on the set.
At this point, first we focus on the right side u(X) ∩ [r + n −

′

l , u(a1)+n+γ ′
r ] (for any n > mr ). Assume that there exists that

oint s in u(X) ∩ [r + mr − γ ′

l , u(a1) + mr + γ ′
r ]. We distinguish

hree cases (as explained in the inflection zone, see Figs. 7, 6 and
1, respectively).

(a) If γ ′
r = 0 (see Fig. 7), then γ ′

l > 0 and [s+1, u(a1)+mr +1]
must be empty. In this case, we identify [r + n− γ ′

l , 1+ n)
with [r + n − γ ′

l , r + n).
(b) If γ ′

l = 0, then γ ′
r > 0 and [r + mr + 1, s + 1] may contain

one point smr+1. In this case we identify [s+n−mr , u(a1)+
n + γ ′

r ] with [u(a1) + n, u(a1) + n + γ ′
r ], n > mr with

n < m∗
r , where m∗

r ∈ N is such that there is no point in
[r + m∗

r , sm∗
r −1 + 1] ∩ u(X). For n ≥ m∗

r (see Fig. 10) we
identify [r+n, u(a1)+n+γ ′

r ] with [u(a1)+n, u(a1)+n+γ ′
r ].

(c) Otherwise, γ ′
r > 0 and γ ′

l > 0 (see Fig. 11) and we apply
both identifications described in (a) and (b). That is, we
identify [r +n− γ ′

l , s+n−mr ] with [r +n− γ ′

l , r +n] and
[s+ n−mr , u(a1)+ n+ γ ′

r ] with [u(a1)+ n, u(a1)+ n+ γ ′
r ],

with n > mr .

If there is no point s in u(X) ∩ [r + n − γ ′

l , u(a1) + n + γ ′
r ]

see Fig. 8, for instance), then we identify [r + n − γ ′, u(a ) + n)
l 1

19
ith [r + n − γ ′

l , r + n] in case γ ′

l > 0, otherwise we identify
r + n, u(a1) + n + γ ′

r ) with [u(a1) + n, u(a1) + n + γ ′
r ], for any

> mr .
Notice that these identifications conserve the semiorder struc-

ure, that is, if we denote by Id(u(x)) the identification made on
(x), then it holds that u(x)+1 < u(y) if and only if Id(u(x))+1 <

d(u(y)).
Now, we focus on the left side u(X)∩[r−n−γl, u(a1)−n+γr ]

for any n > ml). Assume that there is a point s ∈ u(X)∩[r −ml −

l, u(a1) − ml + γr ]. We distinguish three cases.

(a) If γr = 0, then γl > 0 and [s − 1, u(a1) − n − 1] may
contain at most one point sm. In this case, we identify
[r − n − γl, sn − 1) with [r − n − γl, r − n) for any n > ml
with n < m∗

l , where m∗

l ∈ N is such that there is no point
in [sm∗

l −1 − 1, 1 − m∗

l ] ∩ u(X). For n ≥ m∗

l we identify
[r − n − γl, 1 − n) with [r − n − γl, r − n).

(b) If γl = 0, then γr > 0 and [s − 1, u(a1) − ml − 1]
may contain at most one point s′. In this case we identify
[r − n, u(a1) − n + γr ] with [u(a1) − n, u(a1) − n + γr ], for
any n > ml.

(c) Otherwise, γr > 0 and γl > 0 and we apply both
identifications described in (a) and (b). That is, we identify
[r − n − γl, s − n + ml] with [r − n − 1 − γl, r − n] and
[s−n+ml, u(a1)−ml +γr ] with [u(a1)−n, u(a1)−n+γr ],
with n > ml.

If there is no point s in u(X) ∩ [r − ml − γl, u(a1) − ml + γr ],
hen we identify [r − n − γl, u(a1) − n) with [r − n − γl, r − n]
n case γl > 0, otherwise we identify [r − n, u(a1) − n + γr ) with
u(a1) − n, u(a1) − n + γ ′

r ], for any n > ml.
Now, we are able to successfully apply the corresponding

unctions g1,2,...,mr
0 and g−1,−2,...,−ml

0 on the successive intervals
I−n, I ′n (for n > ml and n′ > mr ), until arriving to the last intervals
[−M, −M+1] and [N−1,N]. Hence, we have applied on u(X) the
piecewise function g0 defined as g0(x) = g0

0 (x) if x ∈ I0, g0(x) =
1,...,k
0 (x) if x ∈ Ik (for any k = 1, . . . ,N), and g0(x) = g−1,...,−k

0 (x)
if x ∈ Ik (for any k = −1, . . . ,−M). We denote now by u0 the
function g0 ◦ u.12

By g0
0 all the bad gaps on [0, 1] have been removed and

then, through functions g1
0 , g

1,2
0 , . . . , g1,2,...,N

0 and g−1
0 , g−1,−2

0 , . . . ,

g−1,−2,...,−M
0 the changes made in [0, 1] have been reproduced

in I1, I2, . . . , IN and I−1, . . . , I−M in order to keep the semiorder
relation.

12 For further results, notice that this function g0 may be defined even on
unbounded semiorders.
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Fig. 13. Program’s output for a set of 1000 gaps, point 0.5 and r = 0.00001.
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Nevertheless, we have not removed the possible bad gaps in
0(u(X)) \ [0, 1], thus, the process continues but now focusing on
he biggest bad gap G0

1 of g0(u(X)).13
Again, without loss of generality, we may suppose that G0

1 =

[r, u0(a1)) with u0(a1) = 1 and r = u0(a1) − δ01 (it would
be proved dually for (u0(a1), r]), otherwise we should move the
set by a function t1(x) = x + 1 − u0(a1). Hence, we would
define again function g0

1 on G0
1 = [u0(a1) − 1, u0(a1)) and then

he corresponding functions g1
1 , g

1,2
1 , . . . , g1,2,...,N1

1 and g−1
1 , g−1,−2

1 ,
. . . , g−1,−2,...,−M1

1 (as we did before), constructing the piecewise
function g1.

Since the amount of intervals is finite, the process ends up
after applying a last piecewise function gT (where T = M + N)
defined by means of a family of functions g1

T , g
1,2
T , . . . , g1,2,...,NT

T
and g−1

T , g−1,−2
T , . . . , g−1,−2,...,−MT

T , achieving a continuous unit
representation.

The other implication is already proved by Proposition 3.2 and
Lemma 4.9. □

Appendix B. Python code

Here, in Fig. 13, we include a screenshot of a program written
by the author in Python (the code is available if desired) that,
given a real subset S ⊆ [0, 1] and a value r ≥ 0, reproduces a
finite amount of steps of the proof of Corollary 6.3 until achieve
a r-continuous representation (i.e., continuity in case r = 0).
By the way, it also gives the final value of an initial point x ∈

[0, 1], as well as it may show the outputs of each step (these
intermediate outputs are not necessary and do not appear in the
screenshot, but are useful to check the calculations of the proof
of Corollary 6.3).

In particular, Fig. 13 shows the answer for a set with 1000 gaps
(the description of this set is too long, so we cut the beginning of
the image), the point is 0.5 and r = 0.00001.
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