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Abstract
We obtain an asymptotic expansion of the hyperbolic umbilic catastrophe integral
�(H)(x, y, z) := ∫ ∞

−∞
∫ ∞
−∞ exp(i(s3 + t3 + zst +yt + xs))ds dt for large values of

|x | and bounded values of |y| and |z|. The expansion is given in terms of Airy functions
and inverse powers of x . There is only one Stokes ray at arg x = π .We use themodified
saddle point method introduced in (López et al. J Math Anal Appl 354(1):347–359,
2009). The accuracy and the asymptotic character of the approximations are illustrated
with numerical experiments.

Keywords Hyperbolic umbilic catastrophe integral · Asymptotic approximations ·
Modified saddle point method

Mathematics Subject Classification 33E20 · 41A60

1 Introduction

Catastrophe theory studies and classifies phenomena characterized by sudden shifts
in behavior arising from small changes in circumstances [24]. Catastrophe integrals
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[5, Chap. 36] appear in the description of many physical phenomena, specially those
related to wave propagation (see [10, 11, 15, 25, 27, 28] or references therein for a
detailed information). They also have an important mathematical application in the
uniform asymptotic approximation of oscillatory integrals [23]. They are oscillatory
integrals with several nearly coincident stationary phase or saddle points and they are
classified according to the number of free independent parameters that describe the type
of singularities arising in catastrophe theory and dimensionality of the integral. The
canonical integrals associated to cuspoid catastrophes (simple integrals) are defined
in the form [5, Eq. 36.2.4]

�K (x, y, z) :=
∫ ∞

−∞
exp (i�K (t; x)) dt,

with�K (t; x) := t K+2+∑K
m=1 xmt

m ([5, Eq. 36.2.1]). Themost interesting cases are
K = 1, contains only one free parameter, it is related to the fold catastrophe and has
two coalescing stationary points (Airy integral); K = 2, contains two free parameters,
it is related to the cusp catastrophe and involves three coalescing stationary points
(Pearcey integral), and K = 3, depends on three free parameters, corresponds to the
swallowtail catastrophe and involves four coalescing stationary points (swallowtail
integral). On the other hand, the most important canonical integrals related to umbilic
catastrophes (double integrals) are the elliptic umbilic catastrophe [5, Eqs. 36.2.2,
36.2.5],

�(E) (x, y, z) :=
∫ ∞

−∞

∫ ∞

−∞
exp

(
i(s3 − 3st2 + z(s2 + t2) + yt + xs)

)
ds dt,

and the hyperbolic umbilic catastrophe [5, Eqs. 36.2.3, 36.2.5],

�(H) (x) :=
∫ ∞

−∞

∫ ∞

−∞
exp

(
i(s3 + t3 + zst + yt + xs)

)
ds dt . (1)

Both, the elliptic umbilic catastrophe integral and the hyperbolic umbilic catastrophe
integral, depend on three free parameters and they are related to the elliptic and the
hyperbolic umbilic catastrophe, respectively. These are double-sheet caustic surfaces
that coalesce at a unique point corresponding to an umbilical point, an isolated point
in the elliptic umbilic, and a finite-angled corner in the hyperbolic umbilic [2]. The
catastrophes of internal dimension two, the so-called umbilics, have a directing role
in breaking phenomena in hydrodynamics (breaking of waves and breaking of jets).
In biology, they govern the morphology of engulfing phenomena like phagocytosis,
neurulation, etc., and, in reproduction, the emission and spreading of gametes [26].

Mathematically speaking, the canonical integrals associated to cuspoid and umbilic
catastrophes are oscillatory integrals with several nearly coincident stationary phase
or saddle points. They have physical applications in the description of surface gravity
waves [15, 28], optics, quantum mechanics, and acoustics (see [5, Sec. 36.14] and
references therein), playing a fundamental role in the uniform asymptotic approxima-
tion of oscillatory integrals. Current knowledge of these integrals, such as symmetries,
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bifurcation sets, zeros, convergent series expansions, differential equations, or leading-
order asymptotic approximations, among others, can be found in Chapter 36 of the
Digital Library of Mathematical Functions [5]. For the particular case of the hyper-
bolic umbilic catastrophe, the bifurcation set of codimension three is given by (see [5,
Eq. 36.4.12])

⎧
⎪⎪⎨

⎪⎪⎩

x = − 1

12
z2(exp (2τ) ± 2 exp (−τ)),

y = − 1

12
z2(exp (−2τ) ± 2 exp (τ )),

− ∞ ≤ τ < ∞,

where the+ sign labels the cusped sheet and the− sign labels the sheet that is smooth
for z �= 0 (see Fig. [5, Fig. 36.4.4]).

An important practical problem in dealing with these integrals is represented by
their numerical evaluation. Convergent expansions, methods based on the numerical
integration of certain differential equations, or complex contour quadrature techniques
are some of the techniques used so far (see [5, Sect. 36.15]). However, these techniques
are not useful, in general, for large values of the variables. For example, convergent
expansions may not include large values of the variables in the region of convergence
or the convergence of the series can be very slow, and complex contour quadrature
techniques are not usually well adapted to highly oscillatory integrals. Then, a more
efficient approach, such as the use of asymptotic expansions, is recommended, not only
for numerical computations but also from an analytic point of view. In recent papers,
complete asymptotic expansions of the Pearcey [17, 18] and swallowtail integrals [12–
14] have been derived. In this paper, we are concerned with the asymptotic analysis
of the hyperbolic umbilic catastrophe integral �(H) (x, y, z) given in (1).

The hyperbolic umbilic catastrophe integral has important applications in semiclas-
sical collision theory and in optics. More specifically, the hyperbolic umbilic describes
diffraction by a thin water-droplet lens with a circular boundary, hanging vertically
[3, Eq. 19], [7, 20]. It is used in the scattering theory: the two-dimensional problem of
atom-rigid rotor rotationally inelastic scattering [16] and atom-crystal scattering [1].
The hyperbolic umbilic also represents the optical pattern in the neighborhood of the
focus in the limit of vanishing wavelength [21, Eq. 2.1]. For more applications and
detailed information we refer to [3, 4, 8, 9, 21, 29] and references therein.

In [5, Eq. 36.11.8],we canfind the leading-order asymptotic of (1) along a symmetry
line

�(H) (0, 0, z) = 2π

z

(

1 − i√
3
exp

(
1

27
i z3

)

+ o (1)

)

, z → ±∞.

Berry and Howls calculated and displayed in [3] the Stokes surface for the diffraction
patterns of the hyperbolic umbilic singularities for x , y, and z real. The surface in
the full x , y, z space has two branches, smooth apart from finite-angled creases on
the complex whiskers and a cusped edge at the cusp line of the bifurcation set. In
[29], the authors propose two methods for the computation of the hyperbolic umbilic
catastrophe integral: the integration of various differential equations satisfied by this
function and a quadrature formula which evaluates the integral directly. This second
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method is based on a similar idea applied in [6] for the computation of the elliptic
umbilic catastrophe integral. Borghi proposes in [8] a computational approach based
on expanding a simple integral representation of �(H) (x, y, z) as a convergent power
series and the application of theWeniger transformation to avoid the slow convergence
of the series for non-small values of the control parameters x , y, and z. In spite of the
acceleration, the approximation fails for large values of the control parameters.

Then, in this paper, we analyze the asymptotic behavior of (1) for |x | large
and bounded values of |y|, |z|. It is worth noting that, because of the symmetry
�(H) (x, y, z) = �(H) (y, x, z), the approximation for large |x | and bounded |y|,
|z| solves the problem for large |y| and bounded |x |, |z|.

The standard saddle point method is difficult to apply to the families of catastrophe
integrals because of the complexity of the phase function (see Sections 2.2 and 2.4 for
further details). The modified saddle point method [19] simplifies the computations
considerably and permits a straightforward derivation of an asymptotic expansion.
It has been successfully applied to derive asymptotic expansions of some integrals
associated to cuspoid catastrophes [12–14, 17, 18]. The hyperbolic umbilic catas-
trophe integral is defined by a double integral (1), but it can be transformed into a
one-dimensional integral. Then, in this paper, we consider appropriate simple inte-
gral representations, and we apply the modified saddle point method [19] to obtain a
complete asymptotic expansion of �(H) (x, y, z).

In the following section, we analyze the asymptotic behavior of�(H) (x, y, z)when
|x | is large and |y|, |z| are bounded. We provide a complete and detailed application
of the method [19]. By symmetry arguments, the approximation is also valid for
large values of |y| and bounded values of |x | and |z|. In Section 3, some numerical
experiments show the accuracy and the asymptotic character of the approximation.
Throughout all the paper we use the principal argument argw ∈ (−π, π ] for any
complex number w and square roots are assumed to take their principal value.

2 An asymptotic expansion of9(H) (x, y, z) for large |x|
2.1 An appropriate integral representation and saddle points

We consider the integral representation of the hyperbolic umbilic catastrophe (1) given
in [5, Eq. 36.2.9],

�(H)(x, y, z) = 2π

31/3

∫ ∞ exp(π i/6)

∞ exp(5π i/6)
exp

(
i(u3 + xu)

)
Ai

(
zu + y

31/3

)

du, (2)

where the path of integration L := (∞ exp (5π i/6) , 0]∪[0,∞ exp (π i/6)) is depicted
in Fig. 1, and Ai(w) is the Airy function [22].

In order to apply the modified saddle point method [19], we consider the change of

variableu = s
( |x |

3

)1/2
in (2). Then
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Fig. 1 The path of integration in (2) is the union, at the origin t = 0, of two half straight lines that form an
angle ∓π/6 with the negative and the positive real axes, respectively

�(H)(x, y, z) = 2π

31/3

( |x |
3

)1/2 ∫ ∞ exp(π i/6)

∞ exp(5π i/6)
e

( |x |
3

)3/2
f (s)

Ai

⎛

⎜
⎝
z
( |x |

3

)1/2
s + y

31/3

⎞

⎟
⎠ ds,

where we have defined the phase function f (s) := i(s3 + 3eiθ s) and θ := arg x . This

phase function has two saddle points: s± := ±iei
θ
2 . We know that the asymptotically

relevant saddle points are those ones (only s+, only s−, or both) for which the integra-
tion path L can be deformed into a steepest descent path (or union of steepest descent
paths) that contains these points.

2.2 Steepest descent paths

On the one hand, the standard saddle point method requires the analytic expression of
the steepest descent paths of f (s) at the saddle points, expression that is not straight-
forward to obtain. On the other hand, we know from [19] that the asymptotic analysis
of the integral (2) does not require the computation of the steepest descent paths of the
complete phase function f (s) at the saddle points s±, but the steepest descent paths
of the main part of f (s) at s±, that may always be computed in a systematic and
straightforward manner, as they are nothing but straight lines [19].

At the two saddle points s±, the first non-vanishing derivative of f (s) is f ′′(s).
Then, denoting by φ± the phase of f ′′(s±), and by f±(s) the Taylor polynomial of
degree 2 of f (s) at the saddle point s±, f±(s) := f (s±) + f ′′(s±)(s − s±)2/2, we
have

φ− = θ

2
, φ+ = θ

2
± π, f±(s) = ∓2ei

3θ
2 ∓ 3ei

θ
2

(
s ∓ iei

θ
2

)2
. (3)
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Then, the phase function may be rewritten in the form

f (s) = f±(s) + i
(
s ∓ iei

θ
2

)3
. (4)

At every saddle point s±, themain part of f (s) is just the Taylor polynomial of degree
2 of f (s) at s±, f±(s). Then, at each saddle point s±, we have that the steepest descent
paths of f±(s) are the following straight lines through the saddle points [19]:

�+ =
{
iei

θ
2 + re−i θ

4 ,−∞ < r < ∞
}

, �− =
{
−iei

θ
2 + ire−i θ

4 ,−∞ < r < ∞
}

.

2.3 Deformation of the integration path

Following [19], the next step consists in the deformation of the integration path L to
a new path � appropriate for the asymptotic analysis: the path � must contain certain
portions�± of some of the two steepest descent straight lines�±. By Cauchy’s residue
theorem we can deform L → L2 ∪ � ∪ L1, where L1 and L2 are residual portions
of the original path L , and � is a portion of one or two appropriate steepest descent
paths �±. The precise form of the deformation of the original path L depends on θ

(−π < θ ≤ π ) and is given by

� =
{

�+ for |θ | < 2π/3,

�+ ∪ �− for |θ | ≥ 2π/3.
(5)

Figure 2 shows the form of the possible deformations of the path L according to
the two sectors for the angle θ detailed in (5). Therefore, after deformation of the
integration path,

�(H)(x, y, z) = 2π

31/3

( |x |
3

)1/2 ∫

L2∪�∪L1

e

( |x |
3

)3/2
f (s)

Ai

⎛

⎜
⎝
z
( |x |

3

)1/2
s + y

31/3

⎞

⎟
⎠ ds.(6)

2.4 Approximate computation of (6)

The next point in our analysis is the approximate computation of the right-hand side
of (6) when �, L1, and L2 are the paths described previously. The application of the
standard saddle point method at this step would require a change of variable difficult to
implement that it is not necessarywith themodified technique. Then, in the application
of our method, we must have into account the following observations:

• �( f (s)) is a decreasing function in both paths, L1 and L2, as |s| → +∞.
• �( f (s+)) and �( f (s−)) are depicted in Fig. 3 as functions of θ . As it can be
observed,
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Fig. 2 Precise form of the deformed path L1 ∪ � ∪ L2 according to the value of θ ∈ [0, π ]. In all figures,
�± are pieces of the respective steepest descent paths �±. The first five figures correspond to cases in
which the deformation of the original path includes a portion of the steepest descent path �+. The last 4
figures correspond to cases in which the original path can be deformed to a path that includes portions of
the steepest descent paths �+ and �−. The deformation for θ ∈ (−π, 0) is symmetric, with respect to the
imaginary axis, of the corresponding deformation for −θ ∈ [0, π ]

max{�( f (s+)),�( f (s−))} =

⎧
⎪⎨

⎪⎩

�( f (s+)) if π/3 < |θ | < π,

�( f (s−)) if |θ | < π/3,

�( f (s+)) = �( f (s−)) if |θ | = π/3, π.

(7)

• The difference between the integrals over the whole steepest descent paths �± and
the segments �± that make up � is exponentially small.

Then, from the above observations, we conclude that

�(H)(x, y, z) ∼
{

�+(x, y, z) if θ �= π,

�+(x, y, z) + �−(x, y, z) if θ = π,
(8)

with

�±(x, y, z) := 2π

31/3

( |x |
3

)1/2 ∫

�±
e

( |x |
3

)3/2
f (s)

Ai

⎛

⎜
⎝
z
( |x |

3

)1/2
s + y

31/3

⎞

⎟
⎠ ds. (9)
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Fig. 3 Real part of f (s+) (blue) and f (s−) (red) as a function of θ ∈ (−π, π ]

2.5 Computation of the integrals (9)

The last step in our analysis is the computation of the integrals (9) over the paths �±.
For that purpose, at every steepest descent path �±, we separate the phase function
f (s) in the form specified in (4), as the sum of the main part f±(s) plus a residual
term of order three

�±(x, y, z) ∼ 2π

31/3

( |x |
3

)1/2

e
∓2

( |x |
3

)3/2
ei

3θ
2

×
∫

�±
e
∓

( |x |
3

)3/2
3ei

θ
2

(

s∓iei
θ
2

)2

g±(x, y, z, s)ds, (10)

with

g±(x, y, z, s) := e
i
( |x |

3

)3/2
(

s∓ei
θ
2

)3

Ai

⎛

⎜
⎝
z
( |x |

3

)1/2
s + y

31/3

⎞

⎟
⎠ .

Introducing the change of variable s → u defined in the form s = iei
θ
2 + e−i θ

4√
3
u for

�+ and s = −iei
θ
2 − i e

−i θ
4√
3
u for �− in (10), we find

�±(x, y, z) ∼ 2π

34/3
|x |1/2
ei

θ
4

e∓2( x
3 )

3/2
w±

∫

�±
e
−

( |x |
3

)3/2
u2
g±(x, y, z, u)du, (11)

with w+ := 1, w− := −i , and
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g±(x, y, z, u) := eiw± |x |3/2
33

e−i 3θ4 u3Ai

⎛

⎜
⎜
⎝

z
( |x |

3

)1/2 (

±iei
θ
2 + w± e−i θ

4√
3
u

)

+ y

31/3

⎞

⎟
⎟
⎠ .

Consider now the Taylor expansion of g±(x, y, z, u) at u = 0,

g±(x, y, z, u) =
∞∑

n=0

|x | n2
(
w±e−i θ

4

)n
b±
n (x, y, z)un, (12)

where, for convenience, we have written the Taylor coefficients of g±(x, y, z, u) at

u = 0 in the form a±
n (x, y, z) := |x | n2

(
w±e−i θ

4

)n
b±
n (x, y, z). It can be checked that

g±(x, y, z, u) is a solution to the second-order differential equation in the variable u:

g′′±(x, y, z, u) − 2

9
iw∗±|x |3/2e−i 3θ4 u2g′±(x, y, z, u) − 1

81

[
±|x |e− θ

2 z2(3y ± i
√
3xz)

+w∗±|x |3/2e−i 3θ4 (z3 + 18i)u ± |x |3e−i 3θ2 u4
]
g±(x, y, z, u) = 0.

(13)

Introducing (12) in (13) and identifying the coefficients of eachpower un ,n = 0, 1, . . .,
we obtain that the sequence {b±

n (x, y, z)}n=0,1,2,... is the solution to the sixth-order
recurrence relation

81(n + 5)(n + 6)b±
n+6(x, y, z) − z2

(
3y ± i

√
3xz

)
b±
n+4(x, y, z)

− (z3 + 18i(n + 4))b±
n+3(x, y, z) − b±

n (x, y, z) = 0,
(14)

with initial values

b±
0 (x, y, z) = Ai

(
±i z

( x
3

)1/2 + y

31/3

)

,

b±
1 (x, y, z) = z

34/3
Ai′

(
±i z

( x
3

)1/2 + y

31/3

)

,

b±
2 (x, y, z) = 1

162
z2

(
3y + ±i

√
3xz

)
Ai

(
±i z

( x
3

)1/2 + y

31/3

)

,

b±
3 (x, y, z) = 1

1458

(

(3z3 + 54i)Ai

(
±i z

( x
3

)1/2 + y

31/3

)

+z3(32/3y ± i
6
√
3
√
xz)Ai′

(
±i z

( x
3

)1/2 + y

31/3

))

,

b±
4 (x, y, z) = 1

52488

(

z4
(
3y2 − xz2 ± 2i

√
3x yz

)
Ai

(
±i z

( x
3

)1/2 + y

31/3

)
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+z
(
z3 − 36i

)
Ai′

(
±i z

( x
3

)1/2 + y

31/3

))

,

b±
5 (x, y, z) = 1

2361960
z2

(
3y ± i

√
3xz

)
(

(
12z3 + 540i

)
Ai

(
±i z

( x
3

)1/2 + y

31/3

)

+ 6
√
3z3

(√
3y ± i

√
xz

)
Ai′

(
±i z

( x
3

)1/2 + y

31/3

))

.

Introducing the Taylor expansion (12) in (11), we find

�±(x, y, z) ∼ 2πw±
37/12

e∓2( x
3 )

3/2

x1/4

∞∑

n=0

(±1)nb±
2n(x, y, z)

�
(
n + 1

2

)

x
n
2

.

2.6 The resulting asymptotic expansion

Therefore, from (8) we finally derive the asymptotic expansion for large |x | of the
hyperbolic umbilic catastrophe integral in the form

�(H)(x, y, z) ∼

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

2π

37/12
e−2( x

3 )
3/2

x1/4

∞∑

n=0

b+
2n(x, y, z)

�
(
n + 1

2

)

x
n
2

, if θ �= π,

2π

37/12x1/4

∞∑

n=0

[
e−2( x

3 )
3/2
b+
2n(x, y, z)

−e2(
x
3 )

3/2
(−1)nib−

2n(x, y, z)
] �

(
n+ 1

2

)

x
n
2

, if θ = π,

(15)

with b±
2n(x, y, z) given in (14). In particular, the leading-order approximation is given

by

�(H)(x, y, z) ∼

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2π3/2

37/12
e−2( x

3 )
3/2

x3/4
Ai

(
y + i z

( x
3

)1/2

31/3

)

, if θ �= π,

2π3/2

37/12x3/4

[

e−2( x
3 )

3/2
Ai

(
y + i z

( x
3

)1/2

31/3

)

−ie2(
x
3 )

3/2
Ai

(
y − i z

( x
3

)1/2

31/3

)]

, if θ = π.

(16)

Observation. The expansion (15) is not a genuine Poincaré expansion, since the
coefficients b±

2n(x, y, z) depend on the asymptotic variable x . More precisely, from
the recurrence relation (14) and the first five coefficients bn , n = 0, 1, . . . , 5,
it can be shown that bn = O(x�n/2�/2)Ai

(
a
√
x + c

)
for n even, and bn =

O(x�n/2�/2)Ai′
(
a
√
x + c

)
for odd n, with a := ±3−5/6i z, c := 3−1/3y. Then,

although the asymptotic sequence b±
2n(x, y, z)/x

n
2 is not a genuine Poincaré sequence,
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its asymptotic order descents in the form of a sawtooth and the asymptotic series (15)
provides a good asymptotic approximation at any truncation of the number of terms.

3 Numerical experiments

Table 1 contains some numerical experiments for different values of x , y, and z,
showing the accuracy of the approximations (15) and their asymptotic character. The

Table 1 Relative errors in the approximation of �(H)(x, y, z) given in (2) by using (15) with the series
truncated after n terms

y = z = 1 y = 0.5ei
π
9 , z = 0.25

x n = 2 n = 4 n = 6 x n = 2 n = 4 n = 6

10 0.00516 0.00073 5.9e−5 10ei
π
6 0.00553 0.00021 1.6e−5

50 0.00029 1.7e−5 5.9e−7 50ei
π
6 0.00051 2.3e−6 7.3e−9

100 7.9e−5 3.1e−6 7.2e−8 100ei
π
6 0.00018 4.1e−7 4.9e−10

y = 0.6ei
π
4 , z = 0.8e−i π

6 y = 0.3i, z = −1.25i

x n = 2 n = 4 n = 6 x n = 2 n = 4 n = 6

10ei
π
2 0.00537 0.00043 2.0e−5 10ei

2π
3 0.00678 0.00143 0.00026

50ei
π
2 0.00043 1.2e−5 3.0e−7 50ei

2π
3 0.00064 2.4e−5 1.3e−6

100ei
π
2 0.00013 2.5e−6 3.9e−8 100ei

2π
3 0.00034 4.6e−6 1.4e−8

y = e−i π
4 , z = 0.5e−i π

3 y = 0.5ei
2π
3 , z = ei

π
2

x n = 2 n = 4 n = 6 x n = 2 n = 4 n = 6

10ei
5π
6 0.00594 0.00035 2.3e−5 10eiπ 0.00217 0.00038 4.5e−5

50ei
5π
6 0.00043 1.2e−5 3.0e−7 50eiπ 0.00034 1.7e−5 5.6e−7

100ei
5π
6 0.00051 4.9e−6 5.6e−9 100eiπ 0.00023 5.1e−6 7.8e−8

y = 1.5, z = 1.0 y = 0.3e−i π
3 , z = 0.8e−i π

3

x n = 2 n = 4 n = 6 x n = 2 n = 4 n = 6

10e−i π
4 0.00579 0.00104 0.00013 10e−i π

3 0.00563 0.00091 0.00012

50e−i π
4 0.00026 1.8e−5 7.4e−7 50e−i π

3 0.00051 1.8e−5 5.2e−7

100e−i π
4 4.4e−5 3.0e−6 8.1e−8 100e−i π

3 0.00018 3.5e−6 5.7e−8

y = e−i 2π3 , z = 1.2ei
π
2 y = 0.3e−i π

3 , z = 0.8e−i π
3

x n = 2 n = 4 n = 6 x n = 2 n = 4 n = 6

10e−i 5π9 0.00458 0.00031 8.1e−5 10e−i 7π9 0.00563 0.00091 0.00012

50e−i 5π9 0.00531 1.3e−5 6.7e−7 50e−i 7π9 0.00051 1.8e−5 5.2e−7

100e−i 5π9 9.8e−5 1.7e−6 7.6e−8 100e−i 7π9 0.00018 3.5e−6 5.7e−8

Different values of x , y, and z are considered
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computations have been carried out by using the symbolic manipulation programWol-
fram Mathematica 12.2. In particular, the “exac” value of �(H)(x, y, z) is computed
by means of numerical integration with the command “NIntegrate.”

We remark at this point that a general implementation of an algorithm of the modi-
fied saddle point method (mixing symbolic and numeric computations) is not possible,
since it strongly depends on the phase function of the integrand. The computation of
the saddle points and the steepest descent paths is quite handicraft and requires a
rigorous previous study.
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