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South Asian medical cohorts reveal strong
founder effects and high rates of
homozygosity

A list of authors and their affiliations appears at the end of the paper

The benefits of large-scale genetic studies for healthcare of the populations
studied are well documented, but these genetic studies have traditionally
ignored people from some parts of the world, such as South Asia. Here we
describe whole genome sequence (WGS) data from 4806 individuals recruited
from the healthcare delivery systems of Pakistan, India and Bangladesh,
combined with WGS from 927 individuals from isolated South Asian popula-
tions. We characterize population structure in South Asia and describe a
genotyping array (SARGAM) and imputation reference panel that are opti-
mized for South Asian genomes. We find evidence for high rates of repro-
ductive isolation, endogamy and consanguinity that vary across the
subcontinent and that lead to levels of rare homozygotes that reach 100 times
that seen in outbred populations. Founder effects increase the power to
associate functional variants with disease processes and make South Asia a
uniquely powerful place for population-scale genetic studies.

Founder effects and population bottlenecks reduce the number of
individuals from the past that contribute to present-day genetic
diversity. The shifts in allele frequencies that result have contributed to
many important genetic discoveries in studies of Icelandic, Ashkenazi,
Finnish, Amish, and other founder or bottlenecked populations1–4. The
historical events that have produced genetic drift in these populations
are recognizable, and the genetic consequences can be effectively
modeled. Studies of population structure in South Asia have described
patterns of genetic drift as founder effects5, but there is little historical
evidence that points to reductions in population size as a significant
factor in producing present-day population structure. Endogamy (i.e.,
marriages that are restricted to a particular group or caste) is however
well recognized in South Asia6 and can, through cultural forces for
reproductive isolation, produce founder effects by reducing effective
population size. In addition, consanguinity (i.e., marriages between
close relatives, also called inbreeding) is common inmany South Asian
groups7 and can be thought of as an extreme form of endogamy.

Endogamy, consanguinity, population migrations, and increasing
urbanization have all shaped South Asian populations in recent dec-
ades, and the degree to which the insights gained from previous stu-
dies of isolated population groups are relevant for studies involving

the general patient population in the healthcare delivery system is
unclear. An empirical description of population structure in patient
populations is a criticalfirst step in order to efficiently design and carry
out large-scale human genetic studies in South Asia. At the same time,
tools for accurate and economical genotyping, also necessary for
population-scale genotyping, have been lacking for South Asians. Used
together, a clear description of population structure and economical
genotyping tools can unlock the tremendous potential of human
genetics in South Asia for discoveries that illuminate disease processes
and allow the prediction of disease risk in South Asians.

In this study, we generate and analyze high-coverage whole-gen-
ome sequence data from 4806 individuals drawn from medical
cohorts in India, Pakistan, and Bangladesh, combined with 927 South
Asiangenomes fromdefinedpopulation/caste groups.We supplement
standard analyses of population structure with a more detailed
examination of endogamy and consanguinity, including the develop-
ment of a novel method for estimating an individual’s degree of
inbreeding based on the numbers and genetic lengths of autozygous
tracts. We then quantify the relative effects of consanguinity and
endogamy in increasing the numbers of rare homozygous variants and
show how increased frequencies of rare loss-of-function (LoF)
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mutations in particular subgroups could be exploited for follow-up
studies of particular mutations. This work highlights the unique
opportunities that the genetic structure of South Asian groups pro-
vides in facilitating genotype–phenotype studies, as well as the effects
of both geographic region and caste/ethnic subgroup on the under-
lying structure of genetic variation. Finally, we demonstrate the value
of our region-specific genomic resources by constructing and vali-
dating a South Asian polygenic risk score (PRS) for coronary artery
disease (CAD).

Results
The GAsP2 dataset
Wedivided samples from thehealthcaredelivery systemsof SouthAsia
(informally called “medical cohorts”) into three regional groups:
Pakistani (PKN), South Indian (SOI), and Bengali (BNG). To allow
comparisons with previous studies characterizing South Asian popu-
lation structure, we combined these samples with previously pub-
lished genomes8–13 and added newly sequenced genomes fromdefined
South Asian population groups to create the GenomeAsia Phase 2
(GAsP2) dataset. We then used a standard pipeline for read mapping
and variant calling, starting from the raw sequence data of all of the
samples. After standard quality control filters and the removal of one
individual from each first-degree relative pair, we obtained a set of
6442 high-coverage genomes (average 25×) for downstream analyses
(Supplementary Data 1). Of these, 5734 genomes were of South Asian
ancestry (5118 of which were sequenced for this study), with medical
cohort sizes of 1810, 1362, and 1634, respectively, for the Pakistani,
South Indian, and Bengali groups. Basic information on SNPs and allele
frequencies is available from the GenomeAsia consortium website
(https://www.genomeasia100k.org), while a computationally phased
version of the data can be used as a reference panel for imputation
using the Michigan Imputation Server (https://imputationserver.sph.
umich.edu/index.html). The estimated non-referencediscordance rate
for duplicate samples found in both the GAsP2 and 1000 Genomes
Project datasets is 1.61 × 10−4 (Supplementary Table 1).

Population structure
We used standard approaches such as FST, PCA

14, Admixture15, and
Uniform Manifold Approximation and Projection (UMAP)16 for quali-
tatively assessing population structure in our study (Fig. 1 and Sup-
plementary Figs. 1–4). In the UMAP plot of South Asian samples, we
find a clear distinction between Bengali, Pakistani, and South Indian
groups that roughlymirror geography (Fig. 1a).Whenwe further zoom
in on each of these three regions, we find that UMAP can separate
individuals into smaller caste and culture-based subgroups (Fig. 1b–d).
In particular, since our dataset includes genomes from both medical
cohorts (sampled from particular regions without regard to caste) and
focused sampling of genomes from identified caste and language
groups, we can sometimes reliably assign caste (Fig. 1d) or subgroup
(Fig. 1b) labels to patient genomes based solely on their genetic
makeup.

In Birbhum,West Bengal, wehave self-reported subgroup identity
(e.g., tribe, caste, and/or sub-caste) for over half of the individuals in
our study that were recruited through the healthcare delivery system.
Figure 1c shows that some self-reported subgroup identities form
distinct genetic clusters, such as the Santhal, Bayen, and Brahmin,
while others do not, like the Sadgope and Kayesthya. An admixture
plot of Birbhum and Bangladeshi samples with K = 4 provides a similar
picture (Fig. 1e), with Santhal, Bayen, and Kolu appearing to be well-
defined genetic groups, while most individuals from the other groups
are estimated to be admixed. The clustering of the Santhal, Bayen, and
Kolu reflects increased genetic drift due to some combination of iso-
lation, endogamy, and consanguinity. It is well established that
increased drift in founder populations can enable unique opportu-
nities for genetic research, and drift in South Asian populations

support the idea5,17 that this will prove true here as well. Among the
other population groups in our study, we note that there is a clear
distinction in Admixture estimates between Bangladeshis and general
caste individuals from Birbhum (who include a substantial number of
Bengali Muslims). Since Partition (between India and what was then
East Pakistan) happened too recently to cause systematic genetic dif-
ferences, our results suggest that either our Bangladeshi or our Birb-
hum Muslim samples (or both) are not representative of the Muslims
that were living in Bengal in the mid-twentieth century.

Endogamy and consanguinity
Endogamy and consanguinity lead to an excess of homozygous gen-
otypes over the expectations from randommating. We calculated the
ratio of the observed number of rare homozygous genotypes over the
expected number, binned by minor allele frequency (MAF), for South
Indian (SOI), Pakistani (PKN), and Bengali (BNG) samples (Fig. 2a). For
comparison with the patterns of genetic variation in an ostensibly
outbred population, we also included the same results for 1442 unre-
lated Taiwanese (TWN) genomes from the Taiwan Biobank18. For all
four groups, we observe an increasing excess of rare homozygotes
with smaller MAF. This pattern is strongest in the South Indian and
Pakistani groups, moderate in the Bengali group, and weak in the
Taiwanese, and reflects the relative strength of non-random mating
within each group.

Population bottlenecks that occurred in the distant past can
dramatically increase the rate of homozygosity, but with tract lengths
that decrease over the increasing numbers of intervening generations.
Endogamy and consanguinity also both produce excess homo-
zygosity, but in the latter, the excess homozygosity primarily occurs in
long tracts or runs of homozygosity (ROH). To determine the relative
effects of endogamy and consanguinity on patterns of homozygosity
within our South Asian cohorts, we developed a novel method for
estimating the degree of parental relatednessof an individual based on
the observed numbers and lengths of long (i.e., >10 cM) ROHs. The
method categorized an individual’s parents as second-degree relatives
(e.g., avuncular, such as uncle and niece), third-degree relatives (e.g.,
first cousins), fourth-degree relatives (e.g., first cousins once
removed), fifth-degree relatives (e.g., second cousins) or unrelated
(i.e., less related than second cousins). Both the proportion of indivi-
duals identified as outbred and the distribution of consanguineous
individuals across the remaining four categories show substantial
regional variation (Fig. 2b). In particular, there appears to be less
consanguinity and fewer closely related parental pairings on average
among the individuals in BNG (West Bengal and Bangladesh), com-
pared with the medical cohorts from SOI (South India) and PKN
(Pakistan). This presumably reflects systematic differences inmarriage
practices across the different regions. Endogamy is the result of in-
group mate choice rules that often use distinct patrilineal and matri-
lineal definitions of relatedness that do not align with the descriptions
of relatedness based on autosomal inheritance. Given that cultural
concepts of relatedness can differ between different endogamous
groups and areoftentimes closelyheld, it is perhaps not surprising that
self-reported consanguinity in the Birbhum samples is only modestly
correlated with genetic estimates of consanguinity (Supplemen-
tary Fig. 5).

To assess whether consanguinity can by itself explain the
observed excess of rare homozygotes, we stratified each regional
group into “inbred” and “outbred” subgroups (where the former
referred to individuals whose parents were estimated to be second- or
third-degree relatives). We then tabulated the increase in rare homo-
zygotes for each subgroup (Fig. 2c, d). We find that the inbred sub-
groups (Fig. 2c) have as much as 600 times higher levels of
rare homozygotes above random mating expectations, 4–10-fold
above the population group as a whole and 13–30 times the level seen
in the corresponding outbred subgroups. Interestingly, even in the
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outbredSouthAsian subgroups (Fig. 2d) levels of homozygosity canbe
as much as 3.8-fold higher than in TWN (Han Chinese from Taiwan)
individuals, presumably due to endogamy and the resulting enrich-
ment in distant parental relationships for the individuals in our dataset
which our methods were not able to identify.

Excess homozygosity caused by close parental relatedness is
structured in very long ROH. We tabulated the total length of each

individual’s genome contained in ROH longer than 1 cM, and plotted
the distribution of this sum across several South Asian groups,
along with HAN (Han Chinese from China) as an outbred population
for comparison (Fig. 2d, e). All of the South Asian groups have a tail
of individuals with more of their genomes in ROH tracts
longer than 1 cM (Fig. 2e). Individuals with a greater sum of ROH
tracts are correlated with those inferred to be consanguineous

Fig. 1 | Fine-scale population structure in the healthcare delivery system
reflects the geographical locations of the sample sources. UMAP was run on all
samples using the first 15 principal components. a In the South Asian subset,
samples cluster into three major groups by sample origins: Pakistan, South India,
and West Bengal and Bangladesh. The X-axis (UMAP1) was flipped so that the
similarity between the graphical position of the three populations and the map of
South Asia was apparent. b, c Samples with detailed locations or self-reported
group memberships are shown to segregate within Pakistan and South India clus-
ters. Among the samples from Pakistan and South India, some segregate with
recent immigrants (e.g., Bengalis and Gujaratis) and historical immigrants (e.g.,

Lambadas), reflecting the metropolitan nature of the recruitment centers.
d Samples from Birbhum District, West Bengal, have detailed self-reported group
membership information. Upper castes, scheduled castes, and scheduled tribes
clearly segregate, reflecting the historical reproductive isolation between these
groups. Bayen and Santhal are two notable population isolates. e ADMIXTURE
analysis of samples from the Birbhum District shows four major components.
Labels are self-reported group identities with “general” denoting a lack of specified
identity. PKN Pakistan, BLR Bangalore, MAA Chennai, COI Coimbatore, BAN Ban-
gladesh, BRB Birbhum District, West Bengal, LAM Lambada. For other 3-letter
codes, see Supplementary Data 1.
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(Fig. 2f and Supplementary Fig. 6) consistent with the idea that
recent inbreeding is correlated with the presence of additional
consanguinity loops involving more distant relatives.

Loss of function variants
To assess the potential functional effects of the high levels of endo-
gamy and consanguinity found within South Asia, we identified
putative loss of function (pLoF) variants in our dataset (seeMethods)
and focused on genes containing at least one pLoF variant at fre-
quency > 0.1% across the combined South Asianmedical cohorts (i.e.,
SAS). For comparison, we also used an analogous analysis pipeline to
identify genes containing pLoF variants in non-Finnish European
(NFE) individuals from the genome aggregation database19 (gno-
mAD). There aremore genes with pLoF variants with frequency >0.1%
found in South Asia than inNFE, andmost (~61%) of these genes are in
the set of pLoF-containing genes unique to SAS (Fig. 3a). To visualize
the frequencies and geographic distributions of these pLoF variants,
we constructed heat maps representing genes containing pLoF var-
iants, with warmer colors indicating higher minor allele frequencies
of pLoF variants. (The heat map scale is for the minor allele fre-
quencies in SAS and/or NFE.) Individual clusters are shown for each
set of pLoF-containing genes that are unique to or shared between
individual population groups (Fig. 3b). The large number of pLoF
genes that are not shared across all three South Asian medical
cohorts is consistentwith the idea that SOI, BNG, and PKNaredistinct
population groups, each of which having experienced genetic drift
pushing LoF and other functionally relevant alleles to higher fre-
quencies than is seen in outbred populations. We also show the same

heat maps for homozygous pLoF variants (i.e., human “knockouts”)
in Supplementary Fig. 7.

pLoF mutations are widely studied because they often have phe-
notypic effects that can easily be tied to the function of a specific gene
or pathway. We looked at three genes where LoFmutations are known
to affect serum lipid levels20–22 and verified that individuals inour study
that have pLoF variants in these genes have the expected effects on
measured LDL, triglyceride, and HDL levels (Fig. 3c).

A recognized benefit of studying South Asian populations is the
greater probability of identifying individuals homozygous for pLoF
alleles due to the excess homozygosity caused by endogamy and
consanguinity. To explicitly evaluate this potential in our dataset, we
tabulated the average numbers of rare (MAF < 0.01) homozygous pLoF
mutations per individual (i.e., those pLoF mutations most likely to be
deleterious), stratified by estimated degree of consanguinity (Fig. 3d).
As expected, increased consanguinity is associated with an increased
number of these rare, likely harmful mutations, similar to previous
findings (cf. Figure 1c in ref. 23). As the degree of consanguinity
increases, these mutations are more likely to be found in long ROH
caused by recent inbreeding (Supplementary Fig. 8).

The population structurewithin SouthAsiamakes the region ideal
for prospective studies of LoF mutations. Even rare pLoF variants
might have an appreciable frequency in particular regions or caste
groups, which would enable focused recruiting for follow-up func-
tional studies. To evaluate this, we displayed the distribution of indi-
viduals containing characterized LOF alleles on the UMAP plots
described previously (Fig. 3e and Supplementary Fig. 9). Character-
ization of ApoC3 LOF homozygotes has elucidated the physiological

Fig. 2 | Homozygosity and inbreeding across different cohorts. a Observed/
expected proportions of rare homozygotes, stratified by minor allele frequency
and population. The expected values assume random mating. b Stacked bar chart
showing the estimated degree of inbreeding for individuals in the South Asian
medical cohorts. c Same as in panel a but for “inbred” individuals (whose parents
are estimated to be third-degree relatives or more closely related) only. d Same as

in panel a but for “outbred” individuals (whose parents are estimated to be sixth-
degree relatives or more distantly related) only. e Ridgeplots showing the dis-
tribution across individuals of the total (genetic) length of the genome contained in
ROHs that are at least 1 cM in length. fRidgeplots showing the stratificationofpanel
e’s PKN plot into groups with different estimated degrees of inbreeding.
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basis by which ApoC3 acts to regulate serum triglycerides23. Within
South Asia, ApoC3 LOF carriers are found predominantly in Pakistani
subpopulations that cluster with individuals from Balochistan and
Sindh in the South of Pakistan (Figs. 1b and 3e).

The SARGAM genotyping SNP array
To optimize the effectiveness of future genotype-phenotype studies in
South Asia, we worked with Thermo Fisher to design a custom SNP

array (South Asian Research Genotyping Array for Medicine, or SAR-
GAM) that (i) prioritizes direct genotyping of known or putative
protein-altering variants present at a frequency of 0.1% or higher in
SAS populations, and (ii) is optimized for imputation of variants
(quantified by non-reference concordance rate) down to an SAS
minor allele frequency of 0.1%. To highlight the former feature, we
tabulated how many pLoF or presumed damaging mutations can
be directly genotyped by the most commonly used technology at
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present, Illumina’s GSA3 array and by the SARGAM array (Fig. 4a, b
and Supplementary Fig. 10). In Fig. 4a, b, each protein-coding gene is
representedby a square inanarrayof 19,600 squares,with each square
colored by the number of deleterious variants captured by each array
at each gene. The SARGAM array directly genotypes presumed
damaging mutations from the vast majority (74%, n = 14,713) of non-
readthrough (cf. https://www.ensembl.info/2019/02/11/annotating-
readthrough-transcription-in-ensembl/) protein-coding genes in
Ensembl (Fig. 4a), with a mean coverage of 3.5 mutations per gene
(n = 51,804). In contrast, the number of damaging mutations geno-
typed by the GSA3 array is much smaller (Fig. 4b), covering just 26% of
genes (n = 5100) with a mean coverage of 1.9 mutations per gene
(n = 9443). The SARGAM array therefore represents an inexpensive
method for simultaneously conducting many specific genetic tests,
while also allowing for standard human genetic applications (e.g.,
genome-wide association studies and/or PRS calculations).

Since the SARGAM array design utilized the observed patterns of
linkage disequilibrium in thousands of South Asian genomes, we
expected it to allow for more accurate imputation of untyped geno-
types in South Asian samples. To evaluate this, we compared imputa-
tion accuracy between the simulated SARGAM and GSA3 arrays and
found that both the SARGAM array and the GAsP2 reference panel
contribute to higher imputation accuracy (Fig. 4b). These results
reinforce the conclusion that the quality of available genomic resour-
ces is a significant factor that propagates existing disparities by limit-
ing the feasibility and power of large-scale human genetic studies in
non-European populations.

Polygenic risk scores and the genetic architecture of complex
traits
We demonstrate the clinical relevance of the improved genotyping
and imputation through an application of CADPRSs in an independent
South Asian cohort (1800 cases, 1163 controls) which were genotyped
on the GSA3 arrays24. We imputed the genotypes using the 1000
Genomes and GAsP2 panels and applied the ancestry-adjusted gen-
ome-wide PRS model from ref. 24. The results showed a marked
improvement in the predictive power of the PRS, with an improved
AUC (0.638 for GAsP2 vs. 0.595 for 1000Genomes). The odds ratios of
CAD for individuals in the top deciles (ninth–tenth) compared to those
in the middle deciles (fifth and sixth) are higher in the GAsP2-based
PRSs (OR9th = 1.67; OR10th = 2.43) as compared to the 1000 Genomes-
based PRSs (OR9th = 1.32; OR10th = 1.83; Fig. 4c). These improved ORs
are on par with those achieved for European samples with the appro-
priate imputation panel (HRC, UK10K, 1000 Genomes), GWAS, and
PRS model (UKB OR9th = 1.51; OR10th = 2.52; Fig. 4c). This improved
performance can be explained by the improved imputation accuracy
as well as the increased number of well-imputed variants (Supple-
mentary Table 2).

Discussion
South Asian populations provide a rich potential for human genetic
discovery that is largely unexplored. A population-scale genotyping
project in South Asia will open up opportunities to explore disease

genetics in ways that are impractical or infeasible in other populations.
Notably, the dramatically higher rate of homozygosity that is found in
parts of South Asia allows homozygous loss of function effects to be
studied for many genes that cannot realistically be accessed in outbred
populations such as those that predominate in Europe and East Asia19,25.
Traditionally, homozygous gene function has been explored through
family-based studies, often involving self-identified consanguineous
unions. Although this will continue to be an effective way to carry out
focused studies, a population-scale dataset in South Asia will facilitate
the identification of appropriate families and will also open up new
opportunities to consider homozygosity in population-based associa-
tion analyses. At the same time, this datasetwill provide theopportunity
to evaluate disease associations with a novel set of functional variants,
e.g., the unique and larger set of pLoF alleles with frequencies >0.1%
found in South Asians as compared to Europeans. The SARGAM geno-
typing array and the GAsP2 imputation reference panel allow South
Asian genotypes to be captured in an economical and effectivemanner.

Population-based genetic studies have been effectively carried
out within single coordinated healthcare delivery systems such as
national single-payer systems. South Asia provides a different set of
challenges and a different set of possibilities. In India in particular,
super-specialty hospitals, organized to deliver healthcare in a specific
disease area in a way that takes advantage of the economies of scale
presented by its large population base, predominate in certain mar-
kets. Thesehospitals can, in a disease-focused fashion, rival the scaleof
national general hospital systems of some countries. Thus while
national biobank systems do not exist in South Asia at present that
could provide a foundation for a broad cross-sectional evaluation of
the genetics of disease, the scale at which patients can be recruited
within specific disease areas will allow clinically relevant datasets to be
constructed to a total size that is unrealistic inmost parts of the world.
This, paired with the unique population structure of South Asia, pre-
sents a powerful set of opportunities for genetic discovery that will
improve healthy life span around the globe.

Methods
Our research was conducted in compliance with the ethical commit-
tees associated with each of the sampling sites. Specific details are
provided in Supplementary Note 1.

Samples
We utilized a combination of genomes from previously published
studies8–13, newly sequenced genomes from 1000 Genomes Project
samples, and newly sequenced genomes from several ongoing genetic
studies in South Asia. Further information on the samples is contained
in Supplementary Note 1 and Supplementary Data 1. Our study con-
tains 5118 previously unpublished South Asian genomes.

Sequencing, filtering, alignment, and variant calling
Illumina short reads were mapped to the reference genome (build
GRCh38) using BWA-MEM26. We then used GATK427 for base quality
score recalibration, indel realignment, duplicate removal, variant
quality score recalibration, variant discovery, and joint genotyping,

Fig. 3 | Loss of functionmutations. a Number of high confidence loss of function
genes found at a minimum of 0.1%MAF in their relative population for overall non-
Finnish European (NFE), NFE and not in SAS (NFE Unique), NFE and SAS (NFE and
SAS), SAS and not NFE (SAS Unique) and overall for SAS. b Loss of function gene
space by population. Each square represents a distinct gene and is colored by its
maximum AF within the relative group. Genes are separated by groups in which
they are found (from top to bottom and then left to right): NFE unique, NFE and
SAS, PKNunique, PKNandSOI, PKNandBNG, all of SAS (PKNandSOI andBNG), SOI
unique, BNG unique, and BNG and SAS. c Effects of pLoF variants on blood lipid
markers replicated the known biology: PCSK9 pLoFs associated with decreased
LDL, ANGPTL3 pLoFs associated with decreased triglycerides, and CETP pLoF

associated with increased HDL. Only samples from South India (Bangalore and
Chennai) were included.P valueswere calculatedusing theWilcoxon rank-sum test.
Box showsmedian andmiddle 50% of the distribution; whiskers show valueswithin
1.5 times the interquartile range from the first and third quartiles. d Mean number
of homozygous pLoF variants per individual, stratifiedbypopulation and estimated
degree of inbreeding. e APOC3 p.Arg19Ter alleles are found at a high frequency
among Balochi and Sindhi individuals from Southern Pakistan. Three of the self-
reported Balochis and Sindhis were heterozygous carriers, but a larger number of
carriers without self-reported identity were mapped to the same region on the
UMAP plot.
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using the GATK Best Practices recommendations28,29. We then
removed variants that were monomorphic or were not annotated as
PASS (i.e., not VQSRTrancheSNP99.90to100.00), and converted gen-
otype calls with genotype quality (GQ) score <20 to missing data.
Finally, we removed any variants with amissing genotype rate of >30%.
Note that this more permissive missing genotype cutoff was used
because of the presence of several hundred lower-coverage genomes
in our initial call set.Most of these genomeswere subsequently filtered
out during the sample QC process described below.

Comparison with 1000 Genomes Data
We downloaded genotype calls from the high-coverage 1000 Genomes
Project data from http://ftp.1000genomes.ebi.ac.uk/vol1/ftp/data_
collections/1000G_2504_high_coverage/working/20190425_NYGC_
GATK/. We then used the same filters as described above, except with a
genotype quality filter of ≥40. Then, for 22 individuals that were
sequenced independently but were contained in both our call set and
the 1000 Genomes Project (high-coverage) call set, we tabulated the
non-reference discordance rate of the filtered genotype calls in the two
datasets. Results are summarized in Supplementary Table 1.

Sample QC and identification of first-degree relative pairs
We used KING30 to identify close relatives in our data.We labeled pairs
of individuals as duplicates or first-degree relatives if the estimated

kinship coefficients were >0.4 and [0.177, 0.4] respectively. Note that
consanguinity should not affect the expected kinship coefficient for a
given level of relatedness, though it likely affects the variance.We then
removed samples in the following order:
1. All samples with duplicates from another population.
2. For remaining duplicate pairs in the same population, the indivi-

dual with more missing data.
3. Individuals that have more than one first-degree relative.
4. Individuals with genotype calls at <90% of all SNPs.
5. For the remaining first-degree relative pairs, the individual with

more missing data.

Removal of close relativeswas performed so that our cohortsmore
closely represented randomly sampled individuals from the population
for our analyses. Additional removal of second-degree relatives did not
qualitatively change any of our results (J.D.W., unpublished data). After
filtering, we retained 6442 genomes for downstream analyses.

Phasing
The collection of 6442 individuals described above was computa-
tionally phased using eagle231, with the default options (which includes
allowing eagle2 to impute sporadic missing genotypes). We used the
GRCh38-based genetic map provided with the eagle2 distribution for
the phasing. We also used the same workflow to construct a reference

Fig. 4 | Improved genotyping of South Asian genomes. a Gene space plot of all
protein-altering alleles that are directly genotyped using either the SARGAMor the
Illumina GSA3 arrays. Protein-coding genes of the human genome are depicted as
an array of 19,600 squares. Genes whose variants are genotyped are colored to
indicate the number of gene-specific variants that are genotyped. b Accuracy of
non-reference allele imputation expressed as the concordance rate and plotted
versus South Asian minor allele frequency. Array genotypes were modeled by
down-sampling from an independent dataset of 30× WGS data. Missing genotypes
were imputed using the indicated reference panels and the variant site accuracy of
non-reference alleles was calculated and graphed for variants imputed from the
two indicatedmodel array datasets. c Impact of imputation on polygenic risk score

(PRS) calculation. PRS were calculated using imputed genotypes from a CAD
case–control cohort of 2963 South Asian individuals genotyped using the Illumina
GSA3 array and using a SAS PRS model24. The individuals were divided into 10
groups based on deciles of PRS and odds ratios were calculated from the
case–control status of the individuals in each group. For comparison, a
case–control cohort of white Britons, matched for age and gender with the SAS
cohort, was selected from the UK Biobank dataset. PRS was calculated using a
European model; point estimates of the odds ratios are displayed as solid lines for
each PRS, and the corresponding 95% confidence intervals (using the empirical
variance based on the case/control counts in each decile) are shown as a
shaded area.
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panel consisting of only the South Asian medical cohorts, which was
used in the design of the SARGAM array.

Population structure (Fst, PCA, UMAP, and Admixture)
We used plink version 1.932 to conduct Principal Components analysis.
We filtered SNPs to have a MAF >0.01, and LD-pruned using an r2

threshold of 0.2.We then created PCAplots after removing the pruned
SNPswith the variant-weightsmodifier inplink1.9. These analyses were
performed separately for different groups of individuals after the
removal of first-degree relative pairs and low-coverage samples as
described above.

UMAP projection was performed using the protocol and script
published by Diaz-Papkovich et al.33. Fifteen principal components
were used to generate the two-dimensional UMAP projection. Based
on visualization and separation of known population groups in the
Birbhum Cohort, we chose the key parameter settings as follows:
number of neighbors (NN) of 15 and minimum distance (MD) of 0.5.

The ADMIXTURE15 analysis was performed using Version 1.3.0 of
the software (http://www.genetics.ucla.edu/software/admixture). We
usedSNPswithMAF>0.01,with a call rate >99.9%, andLD-prunedusing
a 50-SNP sliding window and variance inflation factor threshold of 2.
The number of components K was optimized to minimize the cross-
validation error using Chromosome 21. The optimal K for the Birbhum
Cohort was 4, but for the larger South Asian and global samples, the
cross-validation error continued to decrease even for a large K (K =40).
Thus,wechose topresent the results atK = 12which is the samenumber
of components used in the GenomeAsia 100K Pilot study13.

Weir and Cockerham weighted FST estimates were calculated
using VCFtools34 Version 0.1.17. Only MAF-filtered and LD-pruned
markers, as described above, were used. Samples that were related or
did not pass QC were excluded.

Rare homozygotes
For each population considered, we stratified variants according to the
MAF in the specific population and tabulated the number of rare
homozygotes and the expected number of rare homozygotes for each
MAF category, assuming random mating. We then further stratified
these results (Fig. 2c, d) by classifying some individuals as “inbred” (i.e.,
offspring of third-degree relatives or closer) or “outbred” (i.e., off-
spring of sixth-degree relatives or more distant), using the estimation
process described below.

Runs of homozygosity (ROH)
We used PLINK version 1.932 to identify ROH in our data. We used the
default parameter settings, except for the following:

--homozyg --homozyg-kb 500 --homozyg-window-snp 100
--homozyg-window-het 2 --homozyg-window-missing 20 --maf 0.001

We then converted the lengths of all ROHs into genetic distances,
using a genetic map first created by Adam Auton and downloaded
from the Beaglewebsite at https://bochet.gcc.biostat.washington.edu/
beagle/genetic_maps/

We required ROHs to have a minimum physical length of 500Kb
and aminimumgenetic distanceof 1 cM tobe included in our analyses.

Estimating the degree of inbreeding
We used a summary likelihood approach for estimating the degree of
inbreeding from an individual’s ROH tracts.We focused on the longest
ROHs to provide better power for distinguishing ROHs that arise due
to endogamy versus ones that arise due to very recent inbreeding.
Specifically, we tabulated (1) the number of ROHs longer than 10 cM,
and (2) the sum of the genetic lengths of the 10 longest ROHs for each
individual. Simulations suggest that these two summaries are slightly
more informative than other, similar summaries based on the number
or length of the longest ROH tracts (Supplementary Fig. 11). Con-
currently, we simulated the distribution of ROH lengths expected

under various degrees of inbreeding (see section directly below),
ranging from the offspring of second-degree relatives (e.g.,
uncle–niece) to theoffspringof sixth-degree relatives (e.g., half second
cousins). Then, for each individual, we estimated the probability of
observing the two ROH summaries (within 1% for the 10 longest ROHs)
as a function of the degree of inbreeding.We then assigned the degree
of inbreeding with the highest likelihood for each individual, treating
sixth-degree relatives to be “unrelated”.

Simulating expected ROH size distribution under inbreeding
We utilize the model of Clark35 for simulating the distribution of auto-
zygous segments expected under a specific degree of inbreeding.
Specifically, we assume that the genetic lengths of chromosomal seg-
ments inherited from particular paternal andmaternal ancestors follow
an exponential distribution with amean equal to 100 cM divided by the
total number of generations in the path from the proband back to the
particular ancestors. For example, for an individual whose parents are
first cousins, there are four paternal great-grandparents (and thus eight
total paternal autosomal chromosomes three generations ago) and
eight totalmaternal autosomal chromosomes that could be inherited at
any particular genomic location. Of the 8 × 8 =64 possible inheritance
patterns, four result in consanguinity. We model an autosome’s ances-
try as a series of blocks of ancestry, each with genetic length expo-
nentially distributed withmean 100/6 cM, and with each block having a
4/64= 6.25% chance of being autozygous.We use the genetic lengths of
chromosomes estimated from the original deCODE genetic map36, and
tabulate the number and size distribution of autozygous segments over
2 million simulations for each degree of consanguinity considered.

Loss of function variants
A list of high-confidence LoF variants, including frameshift, splice-site,
non-sense, start-loss, and stop-loss mutations, was obtained using the
following criteria:
1. The LoF variants should be predicted as high confidence from the

LOFTEE program37.
2. The LoF variants must fall within the high-confidence regions

defined by the Genome-In-a-Bottle38 consortium (version
– v.3.3.2).

3. The LoF variants cannot fall in segmental duplication regions of
the genome (genomicSuperDups) as defined by the UCSC Gen-
ome Browser.

4. The Ensembl/GENCODE transcript with the highest expression
among all the transcripts of the genewas retained. The expression
value was obtained from the GTEx (Genotype-Tissue Expression)
project (version 8) and averaged over all median tissue
expressions.

Burden test and association test
We analyzed a total of 2994 South Indian samples for which we had
exome or whole-genome sequence data as well as blood lipid level
measurements. Samples with extreme blood lipid values, defined as
values outside of Q1–1.5 IQR/sqrt(n) and Q3 + 1.5 IQR/sqrt(n), were
removed. Variant annotation was carried out using the Variant Effect
Predictor39 annotated against Ensembl v7540. We considered only the
LoF variants using the filters described above. Further, we removed
samples and variants with poor call rates (>5% no calls) and only kept
the variants with MAF <0.1. For each sample, we combined the LoF
variant dosages into a single burden within each gene and restricted
the analysis to genes with at least 3 LoF variant carriers. Association
analyses of quantitative traits were performed using linear regression
on the burden score with age and sex as covariates.

SARGAM array design
We partnered with Thermo Fisher Scientific to develop a custom
genotyping array using their Axiom platform. The SARGAM (South
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Asian Research Genotyping Array for Medicine) assays a total of
639,029 SNPs, including 515,921 variants chosen to optimize imputa-
tion accuracy as well as 102,752 putatively functional variants that had
a minor allele frequency of >0.1% in our medical cohorts. The
imputation-based SNPs were chosen using an algorithm similar to the
one described by Hoffmann et al.41, based on the South Asian medical
cohort phased reference panel described above. The initial list of
putative functional variants was obtained from a variety of sources,
including this project, gnomAD19, the UK Biobank42 and properly
consented MedGenome internal data.

We initially started with a larger list of 924,667 SNPs that were
assayed on two custom test arrays that were then used to genotype
960 individuals from theGAsP2 study for quality control purposes.We
removed SNPs that could not be genotyped accurately as well as low-
priority variants to arrive at the final SARGAM array design.

Imputation accuracy
We measure the performance of imputation in two complementary
manners: imputation r2 and non-reference site concordance with the
ground truth genotypes coming from 30× WGS data in 99 indepen-
dently collected samples from across India (see ref. 43 for data
description). Array genotypes weremodeled by sub-sampling the 30X
WGS data to the SARGAM and GSAv3 array markers. Imputation was
performed using Beagle5.044 with 1000 Genome Project Phase 3 and
this study as reference panels. The imputation r2 is an output from
Beagle44. Non-reference site concordance is the percentage of the
variants called that match the ground truth at the zygosity level.

Polygenic risk scores
South Asian samples. We used the genotype data of 1800 CAD cases
and 1163 controls assayed using the Illumina GSA3 array covering more
than 600,000 genome-wide markers23. All the samples had more than
95% of the markers successfully genotyped. We used Beagle5.044 to
impute all variants with minor allele count >4, using either the 1000
Genomes Project Phase 3 data or this study’s reference panel. The total
numbers of imputed variants were 24,154,211 and 24,969,892, respec-
tively. We used the markers reported by the CardiogramplusC4D
consortium45, and the methods described in ref. 23. to construct PRSs.

UK Biobank European samples. We selected 2910 samples from the
UK Biobank, comprising 1448 CAD cases and 1468 controls having
European ancestry. The cases were selected with ICD-9 codes of 410.X,
411.0, 412.X, 429.79 or ICD-10 codes of I21.X, I22.X, I23.X, I24.1, I25.2.
We used the imputed genetic data for the generation of PRSs. This
research was conducted using the UK Biobank Resource under
Application Number 42406.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Information on variants and population-specific allele frequencies is
available fromhttps://browser.genomeasia100k.org. Raw fastqfiles for
all Coriell samples are freely available from the SRA under NCBI Bio-
Project PRJNA476341. Request forms for access to individual-level vcf
files (for all newly generated genomes except those from PKN) are also
available from https://browser.genomeasia100k.org. Researchers
need toprovide abrief descriptionofwhat thedatawill be used for and
to agree to standard terms of use as required by the consent forms.
Individual-level data from the PKN samples are unavailable. Specifi-
cally, the IRB approval from the Center for non-Communicable Dis-
eases in Pakistan does not permit the sharing of individual-level
genetic data from the PKN samples due to concerns about privacy and
potential identifiability of study participants and their close relatives.

The SARGAM array is commercially available through MedGenome,
Inc. Pricing inquiries can be made to sargam-array@medgenome.com

Code availability
The code and workflow used for estimating the degree of con-
sanguinity from the patterns of ROH are available at https://github.
com/jd-wall/CALCROH.
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