
Theoretical Computer Science 971 (2023) 114063
Contents lists available at ScienceDirect

Theoretical Computer Science

journal homepage: www.elsevier.com/locate/tcs

A Java-like calculus with heterogeneous coeffects ✩

Riccardo Bianchini a, Francesco Dagnino a, Paola Giannini b,∗, Elena Zucca a

a DIBRIS, University of Genoa, Italy
b DiSSTE, University of Eastern Piedmont, Vercelli, Italy

a r t i c l e i n f o a b s t r a c t

Article history:
Received 9 January 2023
Received in revised form 29 June 2023
Accepted 4 July 2023
Available online 11 July 2023

Keywords:
Type systems
Operational semantics
Java-like languages

We propose a Java-like calculus where declared variables can be annotated by coeffects
specifying constraints on their use, e.g., affinity or privacy levels. Such coeffects are
heterogeneous, in the sense that different kinds of coeffects can be used in the same
program; combining coeffects of different kinds leads to the trivial coeffect. We prove
subject reduction, which includes preservation of coeffects, and show several examples.
In a Java-like language, coeffects can be expressed in the language itself, as expressions of
user-defined classes.

© 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the
CC BY-NC-ND license (http://creativecommons .org /licenses /by-nc -nd /4 .0/).

1. Introduction

Type-and-coeffect systems [21,8,2,12,13,19,9,10] are type systems where the typing judgment takes the form
x1 :r1 T1, . . . , xn :rn Tn � e : T , with r1, . . . , rn coeffects (also called grades, using the alternative terminology graded type sys-
tem) modeling how the corresponding variables are used in e. For instance, coeffects of shape r ::= 0 | 1 | ω trace when
a variable is either not used, or used at most once, or used in an unrestricted way, respectively, in the expression e. In
this way, functions, e.g., λx:int.5, λx:int.x, and λx:int.x + x, which have the same type in the simply-typed lambda calculus,
can be distinguished by adding coeffect annotations: λx:int[0].5, λx:int[1].x, and λx:int[ω].x + x. Other typical examples
are counting usages (coeffects are natural numbers), and privacy levels. Coeffects usually form a semiring, specifying
sum +, multiplication ·, and 0 and 1 constants, satisfying some natural axioms. Some kind of order relation is generally
required as well.

This approach has been exploited to a fully-fledged programming language in Granule [19], a functional language
equipped with a type-and-coeffect system, hence allowing the programmer to write function declarations as those above.
In Granule, different kinds of coeffects can be used at the same time, including naturals for counting usages, privacy levels,
intervals, infinity, and products of coeffects; however, the available coeffects are fixed once and for all.

In this paper, we aim at providing a similar support in Java-like languages, by allowing the programmer to write coeffect
annotations in variable declarations. As in Granule, heterogeneous coeffects can coexist in the same program. When com-
bining coeffects of different kinds, we take the simple solution that this leads to the trivial coeffect. (We will investigate in
future work how to provide a general form of combination, see the Conclusion.) This is formally modeled by a construc-
tion which, given a family of coeffect algebras, indexed over a set of kinds, returns a coeffect algebra where coeffects are
decorated by their original kind. We prove subject reduction, which includes preservation of coeffects.

✩ This article belongs to Section A: Algorithms, automata, complexity and games, Edited by Paul Spirakis.

* Principal corresponding author.
E-mail addresses: riccardo.bianchini@edu.unige.it (R. Bianchini), francesco.dagnino@dibris.unige.it (F. Dagnino), paola.giannini@uniupo.it (P. Giannini),

elena.zucca@unige.it (E. Zucca).
https://doi.org/10.1016/j.tcs.2023.114063
0304-3975/© 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://
creativecommons .org /licenses /by-nc -nd /4 .0/).

https://doi.org/10.1016/j.tcs.2023.114063
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/tcs
http://crossmark.crossref.org/dialog/?doi=10.1016/j.tcs.2023.114063&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:riccardo.bianchini@edu.unige.it
mailto:francesco.dagnino@dibris.unige.it
mailto:paola.giannini@uniupo.it
mailto:elena.zucca@unige.it
https://doi.org/10.1016/j.tcs.2023.114063
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

R. Bianchini, F. Dagnino, P. Giannini et al. Theoretical Computer Science 971 (2023) 114063
In a Java-like language, coeffects desired for a specific application could be expressed in the language itself. More in
detail, coeffect annotations could be expressions of coeffect classes, that is, classes providing methods corresponding to the
ingredients of a coeffect algebra. In this way, the programmer could write user-defined coeffects desired for a specific
application, rather than rely on a fixed set of coeffects as in Granule.

This paper is an improved version of [4]. The main improvement is the above mentioned formal construction (Section 4),
which makes it possible for the programmer to use in the same program different arbitrary coeffect algebras (an example
is given in Section 6), without caring about their combination, which is internally handled by the type system. In the
preliminary paper, instead, a coeffect class was not really implementing one coeffect algebra, since its methods, e.g., the sum,
had an argument of a generic Coeffect class, and the programmer had to add cases corresponding to coeffect arguments
of a different kind. Moreover, in the current paper coeffect classes are introduced as a specific feature which can be added
to the Java-like calculus, thus abstracting from language details allowing to implement such feature.

In Section 2 we define a Java-like calculus where variable declarations are annotated with coeffects, taken in an arbi-
trary coeffect algebra. In Section 3 we provide a type-and-coeffect system for the calculus, parametric on the underlying
coeffect algebra, and prove type and coeffects preservation. In Section 4 we show the construction of the coeffect algebra
of heterogeneous coeffects. In Section 5 we describe a slight extension of the calculus supporting the declaration of coeffect
classes, show the instantiation of the previous parametric type system to the case where coeffects are values of such coef-
fect classes, provide several examples, and outline an implementation in full Java. In Section 6 we provide a more extended
programming example using different kinds of coeffects. We discuss related work in Section 7, and, finally, we summarize
the contribution and outline further work in Section 8. The straightforward proof that the construction in Section 4 gives a
coeffect algebra is given in the Appendix.

2. Calculus

The calculus which we enrich by coeffect annotations, ranged over by r, s, t , is a variant of Featherweight Java [17] (FJ for
short), a functional subset of Java which is widely used as reference calculus to study properties and/or propose extensions
of Java-like languages.

We assume variables x, y, z, . . . which either are bound in the source code (method parameters, including the special
variable this, and local variables in blocks) or are free, that is, denote external resources. Moreover, we assume class names
C, D, field names f , and method names m, and the standard predefined class Object, root of the inheritance hierarchy. We
write es as metavariable for e1, . . . , en , n ≥ 0, and analogously for other sequences.

The syntax of expressions is given in Fig. 1. Standard FJ expressions are variable, field access, constructor invocation,
method invocation, and cast (here actually only downcast, see next section). In addition, we include a block expression,
relevant for our aims since the variable declaration specifies a coeffect annotation. The format of coeffect annotations is
inspired by that used in Granule [19]. Moreover, we add some other features mainly needed to write examples: abstract
classes, abstract and static methods, conditional, dynamic typecheck, and booleans with their (omitted) operations. Types
are either class names or the predefined primitive type boolean.

To be concise, the class table is abstractly modeled as follows, omitting its (standard) syntax:

• ≤ is the subtyping relation (the reflexive and transitive closure of the extends relation)
• fields(C) gives, for each class C, the sequence of fields with their types, assumed to have all distinct names
• mbody(C,m) gives, for each method m of class C, the parameters and body.

Reduction rules are given in Fig. 1. Since the language is functional, FJ configurations are expressions, and, in particular,
constructor invocations where all arguments are fully evaluated represent objects (instances of classes). Indeed, in FJ, each
class has exactly one constructor, with a sequence of arguments corresponding to the fields of the class.

Rule (ctx) is the standard contextual rule, where evaluation contexts E express the usual left-to-right evaluation strategy.
In rule (field-access), accessing a field of an object succeeds if the field is one of the fields of the object’s class. In this

case, the field access evaluates to the corresponding value.
Invocation of an instance and static method are modeled by rules (invk) and (st-invk), respectively. The sequence of pa-

rameters and the body of the method are retrieved from the class table, and the invocation is reduced to the body where
the parameters have been replaced by the corresponding arguments. In the case of an instance method, the implicit this
parameter is replaced by the receiver as well.

Rules (block), (if-true), and (if-false) are the standard rules for declaration of a local variable and conditional.
Rules (instof-true) and (instof-false) model the dynamic check that an object be an instance of (a subclass of) the specified

class. Finally, cast is modeled by rule (cast). A cast succeeds, hence can be removed, if the object to be reduced is an instance
of (a subclass of) the specified class. Otherwise, reduction is stuck (an alternative semantics could raise a dynamic error).

Differently from the original FJ semantics [17], rules are instantiated on open expressions, since otherwise the fact that
reduction preserves coeffects, in addition to types, would trivially hold. In other words, we model reduction of expressions
which refer to external resources. In particular, values are open as well, and a variable can be safely used as constructor or
method argument, whereas reduction is stuck when it is used as receiver.
2

R. Bianchini, F. Dagnino, P. Giannini et al. Theoretical Computer Science 971 (2023) 114063
Fig. 1. Calculus.

3. Parametric type-and-coeffect system

In type-and-coeffect systems, the typing judgment has shape � � e : T , where � is a (type-and-coeffect) context, that is,
a (finite) map from variables to pairs of a coeffect and a type, written � = x1 :r1 T1, . . . , xn :rn Tn . We write dom(�) for the
(finite) domain of �. Equivalently, � can be seen as the pair of a coeffect context and a type context, mapping variables to
coeffects and types, respectively, with the same (finite) domain. We assume that coeffects form a coeffect algebra, specifying
partial order � with binary join ∨, sum +, multiplication ·, zero coeffect 0, and one coeffect 1, satisfying some axioms. That is,
as detailed in Definition 4.1 in Section 4, they should form a semiring with sum and multiplication monotonic with respect
to the partial order, and 0 should be the least element.

Our definition is a slight variant of others proposed in literature [8,13,18,2,12,1,19,9,22]. In particular, the partial order
models overapproximation in the usage of resources, and allows flexibility, for instance we can have different usage in the
branches of an if-then-else construct. The fact that the zero is the least element means that, in particular, overapproximation
can add unused variables, making the calculus affine.

The typical example of coeffect algebra is the affinity algebra, which is used to track whether a variable is unused (0),
used at most once (1), or used in an unconstrained way (ω). The partial order and the operations are defined in a pretty
intuitive way, as shown below.

0 � 1 � ω

+ 0 1 ω

0 0 1 ω

1 1 ω ω
ω ω ω ω

· 0 1 ω

0 0 0 0
1 0 1 ω

ω 0 ω ω
3

R. Bianchini, F. Dagnino, P. Giannini et al. Theoretical Computer Science 971 (2023) 114063
As customary in type-and-coeffect systems, in typing rules contexts are combined by means of some operations, which
are, in turn, defined in terms of the corresponding operations on coeffects (grades).

More precisely, we define

Partial order ∅ � ∅ (x :r T, �) � (x :s T, �) if r � s and � � �

� � (x :r T, �) if x /∈ dom(�) and � � �

Binary join ∅ ∨ � = � (x :r T, �) ∨ � = x :r T, (� ∨ �) if x /∈ dom(�)

(x :r T, �) ∨ (x :s T, �) = x :r∨s T, (� ∨ �)

Sum ∅ + � = � (x :r T, �) + � = x :r T, (� + �) if x /∈ dom(�)

(x :r T, �) + (x :s T, �) = x :r+s T, (� + �)

Scalar multiplication r · ∅ = ∅ r · (x :s T, �) = x :r·s T, (r · �)

As the reader may notice, these operations on type-and-coeffect contexts can be equivalently defined by lifting the corre-
sponding operations on coeffect contexts, which are the pointwise extension of those on coeffects, to handle types as well.
In this step, the sum and the join operators becomes partial since a variable in the domain of both contexts is required
to have the same type.

In the following, we assume the standard precedence of multiplication over sum.
The type-and-coeffect system for the calculus introduced in the previous section relies on the type information extracted

from the class table, which, again to be concise, is abstractly modeled as follows:

• ¬abs(C) means that C is a non-abstract class
• mtype(C,m) gives, for each method m of class C, its enriched method type, including coeffect annotations, that is, of

shape:
– either r0, Tr1

1 . . . Trn
n → T

– or Tr1
1 . . . Trn

n → T , meaning that the method is static.

In a well-typed class table, we expect the following conditions to hold:

(t-meth) mtype(C,m) = r0,Tr1
1 . . . Trn

n → T and ¬abs(C) implies
mbody(C,m) = (x1 . . . xn, e) and
this :r0 C, x1 :r1 T1, . . . , xn :rn Tn � e : T

(t-st-meth) mtype(C,m) = Tr1
1 . . . Trn

n → T implies
mbody(C,m) = (x1 . . . xn, e) and
x1 :r1 T1, . . . , xn :rn Tn � e : T

(t-inh-fields) C ≤ D implies fields(D) is a prefix of fields(C)

(t-inh-meth) C ≤ D and mtype(D,m) = r0,Tr1
1 . . . Trn

n → T imply
mtype(C,m) = s0,Ts1

1 . . . Tsn
n → T ′

with T ′ ≤ T, si � ri for i ∈ 0..n

Conditions (t-meth) and (t-st-meth) express that method bodies should conform to method types. Condition (t-inh-fields) ex-
presses that fields are inherited, and, together with the assumption that they have distinct names, that there is no field
hiding. Finally, condition (t-inh-meth) expresses that methods are inherited, cannot be overloaded, and can be overriden with
a more specific return type, and the more restrictive coeffects. Note that this condition only concerns instance methods,
indeed static methods are not inherited.

In Fig. 2, we describe the typing rules, which are parameterized on the underlying coeffect algebra.
In the subsumption rule (t-sub), both the coeffect context and the type can be made more general. This means that

variables can get less constraining coeffects. For instance, assuming again affinity coeffects, an expression which can be
typechecked assuming to use a given variable at most once (coeffect 1) can be typechecked with no constraints (coeffect ω).

In rule (t-var), the given variable is used exactly once, and no other variable is used. In rules (t-field-access) and (t-new),
coeffects of the subterms are summed.

In rule (t-invk), the coeffects of the arguments are summed, after multiplying each of them with the join (least upper
bound) of the coeffect annotation of the corresponding parameter, and the one coeffect. This guarantees to take into account
the coeffects of the initialization expression for parameters not used in the body, as needed in type-and-coeffect systems
for call-by-value calculi (see the end of Example 3.1 below). The rule uses the auxiliary function mtype mentioned before,
which returns an enriched method type, where the types of the parameters and of this have coeffect annotations. Rule
(t-st-invk) is the analogous rule for static methods.

In rule (t-block), the coeffects of the initialization expression are multiplied by the join of the coeffect annotation of the
variable, and the one coeffect, and then summed with those of the body. Analogously to method invocation, the join with
the one coeffect is needed when the variable is not used in the body. Note that the variable is used in the body accordingly
with the annotation written by the programmer.
4

R. Bianchini, F. Dagnino, P. Giannini et al. Theoretical Computer Science 971 (2023) 114063
Fig. 2. Parametric type-and-coeffect system.

In rule (t-if), the join operator is applied to the contexts of the two branches. The result is a context where each variable
has a coeffect which is greater (less constraining) than those in the two branches. This guarantees that, regardless of which
branch will be executed, each variable will have the right amount of resources. Then, the coeffects of this context are
summed with those in the context of the guard. Note that we could have equivalently given a rule where the same context
is imposed for the two branches, since this can be obtained by subsumption; however, in the instantiation in Section 5, this
more effective version of the rule corresponds to the fact that the join context is computed through a user-defined method.

Rules (t-instof), (t-cast), (t-true) and (t-false) are straightforward, apart that we only allow downcast. This is just to avoid the
well-known (orthogonal) problem [17] that subject reduction is not preserved by allowing upcast as well. Also note that,
as in the original FJ paper, the standard formulation of progress does not hold, since failure of a downcast is for simplicity
modeled by a stuck computation. This is not an issue, since here we are only interested in subject reduction.

Example 3.1. We illustrate the use of the type-and-coeffect system on a simple class table, assuming the affinity coeffects
0 (unused), 1 (used at most once), ω (no constraints) introduced before. Here they occur as annotation of this, written
between the method name and the list of parameters. In the examples, for brevity, we omit the stylized constructor and
extends Object, required in the original FJ paper [17].

class Pair{A fst; A snd;}
class A{

A drop [0] () {new A()}
A identity [1] () {this}
Pair duplicate [ω] () { new Pair(this,this)}

}

Let us see some examples of how the type system works. The above declarations correspond to have:

mtype(A,drop) = 0, ε → A
mtype(A,identity) = 1, ε → A
mtype(A,duplicate) = ω, ε → Pair

To check that, e.g., the method duplicate is well-typed, we have to typecheck the method body, and then verify the
condition (t-meth) at page 4. A type derivation for the method body is as follows:
5

R. Bianchini, F. Dagnino, P. Giannini et al. Theoretical Computer Science 971 (2023) 114063
(t-var)

this :1 A � this : A (t-var)

this :1 A � this : A
(t-new)

this :ω A � new Pair(this,this) : Pair
so the condition of rule (t-meth) holds. Analogously we can see that the other two methods are well-typed.

To see an example of ill-typed method, assume, e.g., that the expression new Pair(this, this).fst was the body of
method identity. Indeed, we would have a similar derivation:

(t-var)

this :1 A � this : A (t-var)

this :1 A � this : A
(t-new)

this :ω A � new Pair(this,this) : Pair
(t-field-access)

this :ω A � new Pair(this,this).fst : A
However, this :ω A� this :1 A does not hold, so we cannot apply rule (t-sub), and condition (t-meth) does not hold.
A call of duplicate can be typed as shown below:

(t-var)

x :1 A � x : A (t-var)

y :1 A � y : A
(t-new)

x :1 A,y :1 A � new Pair(x,y) : Pair
(t-field-access)

x :1 A,y :1 A � new Pair(x,y).fst : A
(t-invk)

x :ω A,y :ω A � new Pair(x,y).fst.duplicate() : Pair
since mtype(A,duplicate) = ω, ε → Pair, ω = ω ∨ 1, and ω = ω · 1.

Finally, we show an example motivating the need for the join with 1 in rules (t-invk), (t-st-invk), and (t-block). For instance,
this prevents to derive the judgment y :0 A � {Pair[0] x = y.duplicate; new A()} : A, incorrectly stating that the vari-
able y is not used, whereas it is used in the initialization expression of x. The join with 1 would be not needed in a
call-by-name calculus.

Our main technical result is subject reduction (Theorem 3.5), expressing, as customary in type-and-coeffect systems, that
not only the type, but also the coeffects are preserved by reduction. By subsumption, this means that the type can become
more specific, and the coeffects more constraining, as illustrated by the example below:

e = if (true) new Pair(x, new A())else (Object)new Pair(x, x)

x :ω A � e : Object
e −→ e′ = new Pair(x, new A())

x :1 A � e′ : A

The proof of Theorem 3.5 uses the standard lemmas of inversion for expressions and contexts (Lemmas 3.2 and 3.3), and
substitution (Lemma 3.4).

Lemma 3.2 (Inversion).

1. If � � x : T, then x :1 T ′ � � with T ′ ≤ T.
2. If � � e.fi : T, then �′ � e : C, and fields(C) = T1 f1; . . . Tn fn;, i ∈ 1..n, with �′ � � and Ti ≤ T.
3. If � � new C(e1, . . . , en) : T, then �i � ei : Ti for all i ∈ 1..n, ¬abs(C), and fields(C) = T1 f1; . . . Tn fn;, with �1 + . . . + �n � �

and C ≤ T.
4. If � � e0.m(e1, . . . , en) : T, then �0 � e0 : C, and �i � ei : Ti for all i ∈ 1..n, and mtype(C,m) = r0, Tr1

1 . . . Trn
n → T ′ , with

s0 · �0 + . . . + sn · �n � �, where si = ri ∨ 1 for all i ∈ 0..n, and T ′ ≤ T.
5. If � � C.m(e1, . . . , en) : T, then �i � ei : Ti for all i ∈ 1..n, and mtype(C,m) = Tr1

1 . . . Trn
n → T ′ , with s1 · �1 + . . . + sn · �n � �,

where si = ri ∨ 1 for all i ∈ 1..n, and T ′ ≤ T.
6. If � � {T1[r] x = e1; e2} : T, then �1 � e1 : T1 and �2, x :r T1 � e2 : T2 , with s · �1 + �2 � �, where s = r ∨ 1, and T2 ≤ T.
7. If � � if (e) e1 else e2 : T, then �′ � e : boolean, �1 � e1 : T ′ and �2 � e2 : T ′ , with �′ + (�1 ∨ �2) � � and T ′ ≤ T.
8. If � � e instanceof C : T, then T = boolean and �′ � e : D, with �′ � �.
9. If � � (C)e : T, then �′ � e : D, and C ≤ D, with C ≤ T, and �′ � �.

Proof. By cases on typing rules. �
Lemma 3.3 (Context Inversion). If � � E[e] : T, then �′, x :r T ′ � E[x] : T and � � e : T ′ for some �′, �, x /∈ dom(�), r and T ′ such that
�′ + r · � � �.
6

R. Bianchini, F. Dagnino, P. Giannini et al. Theoretical Computer Science 971 (2023) 114063

:

Proof. By straightforward induction on the structure of E using Lemma 3.2. �
Lemma 3.4 (Substitution). If � � e′ : T ′ and �, x :r T ′ � e : T then � + r · � � e[e′/x] : T.

Proof. By straightforward induction on the derivation of �, x :r T ′ � e : T . �
Theorem 3.5. If � � e : T and e −→ e′ , then � � e′ : T.

Proof. We proceed by induction on reduction rules.

(CTX) We have E[e] −→ E[e′] and e −→ e′ . From � � E[e] : T , by Lemma 3.3, we have �′, x :r T ′ � E[x] : T and � � e : T ′
with x /∈ dom(�) and �′ + r · � � �. By induction hypothesis we derive � � e′ : T ′ . Then, by Lemma 3.4, we get
�′ + r · � � E[e′] : T since E[x][e′/x] = E[e′]. Finally, the thesis follows by rule (t-sub).

(FIELD-ACCESS) We have new C(v1, . . . , vn).fi −→ vi and fields(C) = T1 f1; . . . Tn fn; with i ∈ 1..n. From � � new C(v1, . . . , vn).fi :
T , by Lemma 3.2(2), we have �′ � new C(v1, . . . , vn) : D and fields(D) = T ′

1 f ′
1; . . . T ′

m f ′
m; and fi = f ′

k , for some
k ∈ 1..m, with �′ � � and T ′

k ≤ T . By Lemma 3.2(3), we know that C ≤ D and � j � v j : T j for all j ∈ 1..n, with
�1 + . . . + �n � �′ . By condition (t-inh-fields), we get m ≤ n and T ′

j f ′
j; = T j f j;, for all j ∈ 1..m, hence, in particular,

i = k ≤ m and Ti = T ′
k . Therefore, we have �i � vi : Ti and, since Ti = T ′

k ≤ T and �i � �1 + . . . + �n � �′ � �, we get
the thesis by rule (t-sub).

(INVK) We have new C(vs).m(v1, . . . , vn) −→ e[new C(vs)/this][v1/x1 . . . vn/xn] and mbody(C,m) = (x1 . . . xn, e). From
� � new C(vs).m(v1, . . . ,vn) : T , by Lemma 3.2(4), we have �0 � new C(vs) : D and �i � vi : Ti for all i ∈ 1..n,
and mtype(D,m) = r0, Tr1

1 . . . Trn
n → T ′ , with s0 · �0 + . . . + sn · �n � �, where si = ri ∨ 1 for all i ∈ 0..n, and T ′ ≤

T . By Lemma 3.2(3), we have C ≤ D and ¬abs(C), hence, by (t-inh-meth), we get mtype(C,m) = t0, Tt1
1 . . . Ttn

n →
T ′′ with T ′′ ≤ T ′ and ti � ri for i ∈ 0..n. Then, by condition (t-meth), we also get this :t0 C, x1 :t1 T1, . . . , xn :tn

Tn � e : T ′′ . By iteratively applying Lemma 3.4 to all variables this, x1, . . . , xn , we get t0 · �0 + . . . + tn · �n �
e[new C(vs)/this][v1/x1 . . . vn/xn] : T ′′ . Since ti � ri � si for all i ∈ 0..n, we have t0 · �0 + . . . + tn · �n � s0 · �0 +
. . . + sn · �n � � and T ′′ ≤ T ′ ≤ T . Then, by rule (t-sub), we get the thesis.

(ST-INVK) Analogous to (invk).
(BLOCK) We have {T1[r] x = v; e′} −→ e′[v/x]. From � � {T1[r] x = v; e′} : T , by Lemma 3.2(6), we have �1 � v : T1, and

�2, x :r T1 � e′ : T ′ , with s · �1 + �2 � �, where s = r ∨ 1, and T ′ ≤ T . By Lemma 3.4 and by (t-sub), we derive
s · �1 + �2 � e′[v/x] : T ′ . Since s · �1 + �2 � � and T ′ ≤ T , by rule (t-sub) we get the thesis.

(IF-TRUE) We have if (true) e1 else e2 −→ e1. From � � if (true) e1 else e2 : T , by Lemma 3.2(7), we have �′ � true :
boolean, �1 � e1 : T ′ and �2 � e2 : T ′ , with �′ + (�1 ∨ �2) � � and T ′ ≤ T . We have �1 � �1 ∨ �2, so, since
�1 � �1 ∨ �2 � �′ + (�1 ∨ �2) � � and T ′ ≤ T , by rule (t-sub) we derive � � e1 : T .

(IF-FALSE) Analogous to (if-true).
(INSTOF-TRUE) We have new C′(e1, . . . , en) instanceof C −→ true with C′ ≤ C. From � � new C′(e1, . . . , en) instanceof C

T , by Lemma 3.2(8), we have T = boolean and �′ � new C′(e1, . . . , en) : D, with �′ � �. By (t-true) we have
∅ � true : T . Since ∅ � �, by rule (t-sub) we derive � � true : T .

(INSTOF-FALSE) Analogous to (instof-true).
(CAST) We have (C)new C′(v1, . . . ,vn) −→ new C′(v1, . . . ,vn) with C′ ≤ C. From � � (C)new C′(v1, . . . ,vn) : T , by

Lemma 3.2(9), we have �′ � new C′(v1, . . . ,vn) : D, and C ≤ D, with �′ � � and C ≤ T . By Lemma 3.2(3) we have
�i � vi : Ti for all i ∈ 1..n, ¬abs(C′), and fields(C′) = T1 f1; . . . Tn fn;, with �1 + . . . + �n � �′ and C′ ≤ D. By rule
(t-new) we derive �1 + . . . + �n � new C′(v1, . . . ,vn) : C′ . Since �1 + . . . + �n � �′ � � and C′ ≤ C ≤ T , by rule (t-sub)

we derive � � new C′(v1, . . . ,vn) : T . �
4. Combining coeffect algebras

We formally define coeffect algebras and related notions, and a construction which, given a family of coeffect algebras,
returns a unique coeffect algebra of heterogeneous coeffects.

Definition 4.1 (Coeffect algebra). A coeffect algebra is a tuple R = 〈|R|,�,+, ·,0,1〉 such that:

• 〈|R|, �〉 is a partially ordered set, with binary joins ∨;
• 〈|R|, �, +, 0〉 is a partially ordered commutative monoid;
• 〈|R|, �, ·, 1〉 is a partially ordered monoid;

and, moreover, the following axioms are satisfied:

• r · (s + t) = r · s + r · t and (s + t) · r = s · r + t · r, for all r, s, t ∈ |R|;
• r · 0 = 0 and 0 · r = 0, for all r ∈ |R|;
7

R. Bianchini, F. Dagnino, P. Giannini et al. Theoretical Computer Science 971 (2023) 114063
• 0 � r, for all r ∈ |R|.

Essentially, a coeffect algebra is a partially ordered semiring, that is, a semiring together with a partial order relation on
its underlying set, making addition and multiplication monotonic with respect to it and having the zero as its least element.
The partial order relation is assumed to have binary joins; that is, for any pair of coeffects r, s, there is a coeffect, denoted
r ∨ s, such that r � (r ∨ s) and s � (r ∨ s), that is, it is an upper bound for r and s, and, for each other upper bound t ,
(r ∨ s) � t , that is, it is the least upper bound (join). Without this property, typing rules (t-invk), (t-st-invk), (t-block), and (t-if)

in Fig. 2 should be expressed in a non-algorithmic way, relying on the existence of some upper bound. A homomorphism of
coeffect algebras f : R → S is a monotone function f : 〈|R|, �R〉 → 〈|S|, �S〉 between the underlying partial orders, which
preserves binary joins and the semiring structure, that is, it has to satisfy the following equations:

• f (r ∨R s) = f (r) ∨S f (s), for all r, s ∈ |R|;
• f (0R) = 0S and f (r +R s) = f (r) +S f (s), for all r, s ∈ |R|;
• f (1R) = 1S and f (r ·R s) = f (r) ·S f (s), for all r, s ∈ |R|.

Coeffect algebras and their homomorphisms form a category denoted by CoeffAlg .
The following example presents two coeffect algebras which will play an important role.

Example 4.2.

1. The semiring N = 〈N, ≤, +, ·, 0, 1〉 with the natural order and the usual arithmetic operations is a coeffect algebra.
2. The trivial semiring T , whose carrier is a singleton set |T | = {∞}, the partial order is the equality, addition and

multiplication are defined in the trivial way and 0T = 1T = ∞, is a coeffect algebra.

It is easy to see that, given a coeffect algebra R, if 0 = 1, then R is isomorphic to T . Indeed, for all r ∈ |R|, we have
r = 1 · r = 0 · r = 0, hence the underlying set of R is a singleton and so it is isomorphic to T .

Consider a coeffect algebra R. Then, we can define functions ιR : |N | → |R| and ζR : |R| → |T | as follows:

ιR(n) =
{

0R if n = 0

ιR(m) +R 1R if n = m + 1
ζR(r) = ∞

That is, ιR maps a natural number n to the sum in R of n copies of 1R , while ζR maps every element of R to ∞. Both
these functions give rise to homomorphisms ζR : R → T and ιR : N → R. This fact for ζR is straightforward, and for ιR
is proved in Proposition 4.3 below. Moreover, ιR is the unique homomorphism from N to R, and, conversely, ζR is the
unique homomorphism from R to T . In other words, in the terminology of category theory, N and T are, respectively, the
initial and final object in the category CoeffAlg of coeffect algebras with their homomorphisms. This property is important
in the construction of a unique coeffect algebra of heterogeneous coeffects from a family of coeffect algebras, as described
in the following.

Proposition 4.3. The following facts hold:

1. N is the initial object in CoeffAlg ;
2. T is the terminal object in CoeffAlg .

Proof. Item 2 is straightforward as the singleton set is a terminal object in the category of sets and functions. Towards a
proof of Item 1, let f : N →R be a coeffect algebra homomorphism and note that, since n = 1 + · · · + 1 (n times), for all
n ∈ N , and f preserves sums and the unit, we get f (n) = f (1) +R · · · +R f (1) = 1R +R · · · +R 1R (n times). That is,
we have f (n) = ιR(n), for all n ∈ N . Therefore, to conclude, we just have to show that the map ιR is a coeffect algebra
homomorphism. The fact that ιR(0) = 0R and ιR(1) = 1R is immediate. The fact that ιR(n + m) = ιR(n) +R ιR(m) and
ιR(n · m) = ιR(n) ·R ιR(m) follows from a straightforward induction on n, using distributivity and nullity properties of the
coeffect algebra R. In order to prove monotonicity, consider n ≤ m and proceed by induction on m − n. If m − n = 0, then
n = m and so the thesis is trivial. If m −n = k +1, we have m −(n +1) = k, then by induction hypothesis we get ιR(n +1) �R
ιR(m). Since ιR(n + 1) = ιR(n) +R ιR(1) and 0R �R ιR(1), we get ιR(n) = ιR(n) +R 0R �R ιR(n) +R ιR(1) �R ιR(m),
as needed. Finally, to prove that ιR preserves binary joins, note that n ∨ m in N is either n or m as either n ≤ m or m ≤ n.
Let us assume n ≤ m hence n ∨m = m, the other case is analogous. By monotonicity of ιR , we have ιR(n) �R ιR(m), hence
ιR(n) ∨R ιR(m) = ιR(m) = ιR(n ∨ m), as needed. �

We describe now a construction which, given a family of coeffect algebras, returns a unique coeffect algebra of heteroge-
neous coeffects. The fact that the construction actually gives a coeffect algebra is modularly expressed by some lemmas and
a main theorem; all proofs are in the Appendix.
8

R. Bianchini, F. Dagnino, P. Giannini et al. Theoretical Computer Science 971 (2023) 114063
In the following, we assume a set of kinds K including Nat and Triv and a K-indexed family of coeffect algebras (Rk)k∈K
such that RNat = N and RTriv = T . For each k ∈ K , we abbreviate by ιk and ζk , respectively, the homorphisms ιRk and ζRk

defined above.

Heterogeneous coeffects The set of heterogeneous coeffects is defined as |H| = {k:r | r ∈ |Rk|}. That is, they are all those of
the coeffect algebras in the family, each one paired with its original kind.

Coeffects counting occurrences (natural numbers) and the trivial coeffect are assumed to be always included for the
following reasons. The 1 in the coeffect algebra of heterogeneous coffects will be Nat:1, that is, that of natural numbers.
Such coeffect is assigned to any occurrence of a variable, see rule (t-var) in Fig. 2. This means that bottom-up computations
of coeffects always start by counting occurrences; when a coeffect needs to be combined with another, this is always
possible since natural numbers can be mapped into coeffects of any kind, with the ιk homomorphism. On the other hand,
apart from natural numbers, the result of combining coeffects of different kinds will always be the trivial coeffect.

Partial order The partial order �H on |H| is defined as follows:

(�H 1) k:r �H k:s iff r �k s, k �= Triv

(�H 2) k:r �H Triv:∞ for all k and r

(�H 3) Nat:n �H k:s iff ιk(n) �k s, k �= Nat,Triv

where �k is the partial order of algebra Rk . Here and in the following, we emphasize in grey conditions which are only
added to have non-overlapping cases, otherwise we should prove well-definedness.

The partial order on coeffects of the same kind is preserved; coeffects of different kinds are uncomparable, with two
exceptions: the trivial coeffect is an upper bound of any other, and a natural number is a lower bound of a coeffect of a
certain kind if the same holds for its image in such kind, obtained through the unique homomorphism.

Lemma 4.4. 〈|H|, �H〉 is a partially ordered set.

We define the binary join operator ∨H as follows:

(∨H1) k:r ∨H k:s = k:(r ∨k s)

(∨H2) k1:r ∨H k2:s = ∞ if k1 �= k2, k1 �= Nat,k2 �= Nat

(∨H3) k:r ∨H Nat:n = k:(r ∨k ιk(n)) if k �= Nat

(∨H4) Nat:n ∨H k:r = k:(ιk(n) ∨k r) if k �= Nat

where ∨k is the binary join of algebra Rk . That is, the join of coeffects of the same kind is that in their coeffect algebra;
the join of coeffects of different kinds is the trivial coeffect, apart from natural numers which can be mapped into coeffects
of any kind.

Lemma 4.5. For all k1:r, k2:s, k3:t ∈ |H|:

1. k1:r �H k1:r ∨H k2:s, k2:s �H k1:r ∨H k2:s
2. k1:r �H k3:t, k2:s �H k3:t implies k1:r ∨H k2:s �H k3:t

Sum and multiplication We define the sum operator +H as follows:

(+H1) k:r +H k:s = k:(r +k s)

(+H2) k1:r +H k2:s = ∞ if k1 �= k2, k1 �= Nat,k2 �= Nat

(+H3) k:r +H Nat:n = k:(r +k ιk(n)) if k �= Nat

(+H4) Nat:n +H k:r = k:(ιk(n) +k r) if k �= Nat

where +k is the sum of the coeffect algebra Rk . The definition is similar to that of the join operator.
9

R. Bianchini, F. Dagnino, P. Giannini et al. Theoretical Computer Science 971 (2023) 114063
Lemma 4.6. 〈|H|, �H, +H, Nat:0〉 is a partially ordered commutative monoid.

We define the multiplication operator ·H as follows:

(·H1) k:r ·H k:s = k:(r ·k t) if k:r,k:s �= Nat:0

(·H2) k1:r ·H k2:s = ∞ if k1 �= k2, k1 �= Nat,k2 �= Nat

(·H3) k:r ·H Nat:n = k:(r ·k ιk(n)) if n �= 0, k �= Nat

(·H4) Nat:n ·H k:r = k:(ιk(n) ·k r) if n �= 0, k �= Nat

(·H5) Nat:0 ·H k:r = k:r ·H Nat:0 = Nat:0

where ·k is the multiplication of the coeffect algebra Rk . The definition is analogous to those of the join and sum operators,
except that the result of multiplying by Nat:0 should be Nat:0, rather than being obtained mapping 0 in the kind k of the
other argument, which would produce the 0 of that kind.

Lemma 4.7. 〈|H|, �H, ·H, Nat:1〉 is a partially ordered monoid.

Theorem 4.8. H = 〈|H|, �H, +H, ·H, Nat:0, Nat:1〉 is a coeffect algebra.

5. User-defined coeffects

We describe now an extension of the calculus supporting user-defined coeffects, reported in Fig. 3.

Fig. 3. Syntax with user-defined coeffects.

The only differences with the previous syntax are emphasized in grey: we include a non-annotated block, and in the
annotated version the coeffect is in turn an expression of the calculus, notably a value, as detailed below.

We take a stratified approach, where the class table consists of two parts.

Standard class table The first part is a standard FJ class table, without coeffect annotations. Classes declared in this class
table can be coeffect classes, that is, classes implementing methods corresponding to the ingredients of a coeffect algebra. In
the calculus, we assume a predicate coeff(C) holding when C is a coeffect class. In the explicit syntax of the class table used
to write examples, we will add a coeffect modifier before class. We assume that, if coeff(C) holds, then:

mtype(C,leq) = 	, C → boolean
mtype(C,join) = 	, C → C
mtype(C,sum) = 	, C → C
mtype(C,mul) = 	, C → C
mtype(C,zero) = → C
mtype(C,one) = → C

where, in the standard class table, we use 	 to denote that the method is an instance method.
We assume the following predefined coeffect classes:

abstract coeffect class Nat {
Nat join(Nat x){if (this.leq(x)) x else this}
static Nat zero(){new Zero()}
static Nat one(){new Succ(Nat.zero())}
}

class Zero extends Nat {
10

R. Bianchini, F. Dagnino, P. Giannini et al. Theoretical Computer Science 971 (2023) 114063
boolean leq(Nat x){true}
Nat sum(Nat x){x}
Nat mult(Nat x){this}

}

class Succ extends Nat {
Nat pred;
boolean leq(Nat x){
if (x instanceof Zero) false
else pred.leq(((Succ) x).pred)

}
Nat sum(Nat x){new Succ(pred.sum(x))}
Nat mult(Nat x){pred.mult(x).sum(x)}

}

coeffect class Triv {
boolean leq(Triv t){true}
Triv join(Triv t){this}
Triv sum(Triv t){this}
Triv mult(Triv t){this}
static Triv zero(){new Triv()}
static Triv one(){new Triv()}

}

Annotated class table The second part is a class table where coeffect annotations are (closed) values; we use the meta-
variable v̂ rather than v to suggest that they are expected to be coeffect values, that is, values of (a subclass of) a coeffect
class. Coeffect annotations could be generalized to be arbitrary expressions; here we use this simpler assumption to make
the presentation lighter. We will write �coeff v̂ : C to abbreviate ∅ � v̂ : C and coeff(C), where these are judgments in the
standard class table, and �coeff v̂ if �coeff v̂ : C for some C, that is, v̂ is a coeffect value.

In this class table, we have that the enriched method type, returned by function mtype, is of shape:

• either v̂0, Tv̂1
1 . . . Tv̂n

n → T

• or Tv̂1
1 . . . Tv̂n

n → T , meaning that the method is static.

The class table is stratified in the sense that the second part can use classes declared in the first part (the standard class
table), but not conversely. Notably, as said above, coeffect annotations in the second class table are values typechecked in
the standard part; moreover, standard classes can be used in the annotated class table assuming everywhere an implicit
trivial annotation, that is, new Triv().

For a given class table, the parametric type system defined in Fig. 2 is instantiated taking the coeffect algebra of hetero-
geneous coeffects obtained with the construction in Section 4, starting from the following family of coeffect algebras:

• the kinds are the names of declared coeffect classes (including the predefined Nat and Triv)
• for each kind (coeffect class), the elements of the carrier are the corresponding coeffect values, and the partial order

and the operations are derived from methods, as will be detailed in the following.

Note that, since overloading is prevented by assumption (t-inh-meth), a coeffect class cannot be extended by another
coeffect class. Hence, the coeffect class of each coeffect value is uniquely determined.

Also note that a coeffect value v̂ such that �coeff v̂ : C corresponds to a kinded coeffect C:v̂ as abstractly defined in
Section 4. Accordingly with this remark, we will abbreviate new Zero() and new Succ(new Zero()) by Nat:0 and Nat:1,
respectively.

The typing rules obtained by this instantiation are all reported, for reader’s convenience, in Fig. 4. Points where it is
made explicit that coeffects are values of the calculus are emphasized in grey. In particular, note that the one coeffect of
the heterogeneous coeffect algebra is Nat:1, and that, in rule (t-block), it must be checked that the annotation is actually a
coeffect value.

Provided that code defining coeffects is terminating (see below), the typing rules directly lead to a typechecking algo-
rithm. Indeed:

• the type of an expression, if any, can be computed in the standard way, notably subsumption can be replaced by explicit
subtyping conditions for arguments in rules (t-new), (t-invk), and (t-st-invk), and initialization expression in rule (t-block),
and for arguments/result in conditions (t-meth) and (t-st-meth)

• the coeffects can be computed bottom-up, starting from the rules for variable and constants, also thanks to the
fact that, when an upper bound of coeffects is required, as in rule (t-if) and side conditions of rules (t-invk), (t-st-
11

R. Bianchini, F. Dagnino, P. Giannini et al. Theoretical Computer Science 971 (2023) 114063
Fig. 4. Type-and-coeffect system with user-defined coeffects.

invk), and (t-block), it is computed by using the join operator; subsumption can be analogously replaced by explicit
subtyping conditions on coeffect contexts for initialization expression in rule (t-block), and for arguments/result in
conditions (t-meth) and (t-st-meth).

Example 5.1 (Affinity). Affinity coeffects could be implemented as follows:

abstract coeffect class Affinity {
Affinity join(Affinity x){if (this.leq(x)) x else this}
static Affinity zero(){new ZeroA()}
static Affinity one(){new One()}
}

class ZeroA extends Affinity {
boolean leq(Affinity x){true}
Affinity sum(Affinity x){x}
Affinity mult(Affinity x){this}

}
class One extends Affinity {

boolean leq(Affinity x){!(x instanceof ZeroA)}
Affinity sum(Affinity x){
if (x instanceof ZeroA) this else new Omega()

}
Affinity mult(Affinity x){x}

}
class Omega extends Affinity {

boolean leq(Affinity x){x instanceof Omega}
Affinity sum(Affinity x){this}
Affinity mult(Affinity x){
if (x instanceof ZeroA) x else this

}
}

and the previous Example 3.1 becomes as follows:
12

R. Bianchini, F. Dagnino, P. Giannini et al. Theoretical Computer Science 971 (2023) 114063
class Pair {A fst; A snd;}
class A {

A drop [new ZeroA()] () {new A()}
A identity [new One()] () {this}
Pair duplicate [new Omega()] () { new Pair(this,this)}

}

Example 5.2 (Privacy levels). The following coeffect class Privacy provides a way to specify the privacy level of data. In this
case, the coeffects form a three point lattice: Public, Private and Irrelevant with zero being Irrelevant, one being
Private and order Irrelevant�Private�Public. Sum is the join and multiplication is defined by r1 · r2 =Irrelevant
if either r1 =Irrelevant or r2 =Irrelevant, otherwise r1 · r2 = r1 ∨ r2.

abstract coeffect class Privacy {
Privacy join(Privacy x){if (this.leq(x)) x else this}
Privacy sum(Privacy x){this.join(x)}
static Privacy zero(){new Irrelevant()}
static Privacy one(){new Private()}
}

class Irrelevant extends Privacy {
boolean leq(Privacy x){true}
Privacy mult(Privacy x){this}

}
class Private extends Privacy {

boolean leq(Privacy x){!(x instanceof Irrelevant)}
Privacy mult(Privacy x){this.join(x)}
}

}
class Public extends Privacy {

boolean leq(Privacy x){x instanceof Public}
Privacy mult(Privacy x){this.join(x)}

}

Example 5.3 (Pairs). The following example shows that the programmer can also define coeffect classes constructed by com-
bining other coeffect classes. The class APPair implements coeffects which are pairs of affinity coeffects and privacy levels.

coeffect class APPair {Affinity left; Privacy right;
boolean leq(APPair p){
this.left.leq(p.left)&&this.right(p.right)

}
APPair join(APPair p){
new APPair(this.left.join(p.left),this.right.join(p.right))

}
APPair sum(APPair p){
new APPair(this.left.sum(p.left),this.right.sum(p.right))

}
APPair mult(APPair p){
new APPair(this.left.mul(p.left),this.right.mul(p.right))

}
static APPair zero(){
new APPair(Affinity.zero(),Privacy.zero()

}
static APPair one(){
new APPair(Affinity.one(),Privacy.one())

}
}

In full Java, where a coeffect class could be expressed as a class implementing a certain generic interface, as described later,
we could even define a generic class implementing pairs of arbitrary coeffects.

Following the stratified approach, we expect typechecking to be performed in two steps:

1. The standard class table, containing declarations of coeffect classes, is typechecked by the standard compiler.
13

R. Bianchini, F. Dagnino, P. Giannini et al. Theoretical Computer Science 971 (2023) 114063
2. Code containing coeffect annotations written in Java is typechecked accordingly to the type-and-coeffect system in
Fig. 4, where the underlying coeffect algebra is obtained by composing, with the construction described in Section 4,
the user-defined coeffect algebras, whose operations are computed by executing user-defined methods in such class, as
detailed below.

Recall that, with the usual notations and terminology of reduction relations, −→	 denotes the transitive and reflexive
closure of −→	 , and e′ is a normal form of e if e −→	 e′ and there is no e′′ such that e′ −→ e′′ . It is easy to see that the FJ

reduction relation is deterministic, hence the normal form of e, if any, is unique. However, there can be no normal form at
all, since the reduction of e could be non-terminating. We assume that methods leq, join, sum, mult, zero, and one in
coeffect classes always terminate, so that the notation nf(e) for the normal form of e in the definitions below is well-defined.
Then, operations on coeffects of kind C, that is, coeffect values of class C, are defined as follows:

Leq v̂1 �C v̂2 = nf(v̂1.leq(v̂2))

Join v̂1 ∨C v̂2 = nf(v̂1.join(v̂2))

Sum v̂1 +C v̂2 = nf(v̂1.sum(v̂2))

Multiplication v̂1 ·C v̂2 = nf(v̂1.mul(v̂2))

Zero 0C = nf(C.zero())

One 1C = nf(C.one())

Note that the unique homomorphism ιC from the initial coeffect algebra to the coeffect algebra implemented by C
turns out to be computed using the zero, one, and sum methods, as follows, where ιC(n) is the coeffect of class C
corresponding to n:

ιC(Nat:0) = nf(C.zero()) ιC(Nat:1) = nf(C.one())

ιC(new Succ(n)) = nf(ιC(n).sum(C.one()))

For the whole process to work correctly, the following are responsabilities of the programmer:

• Code defining coeffects should be terminating, since, as described above, the second typechecking step requires to exe-
cute code typechecked in the first step.

• Coeffect classes should satisfy the required axioms, e.g., the sum derived from sum methods should be commutative
and associative. The same happens, for instance, in Haskell, when one defines instances of Functor or Monad.

Implementations could use in a parametric way auxiliary tools, notably a termination checker to prevent divergence in
methods implementing grade operations, and/or a verifer to ensure that they provide the required properties.

We end this section outlining how the approach could be implemented in full Java. We omit access modifiers to make
the code lighter.

In the calculus, we abstractly modeled coeffect classes as classes required to implement certain methods. In the full Java
language, such requirement could be imposed by defining the following generic interfaces:

interface Coeffect<T extends Coeffect<T>> {
boolean leq(T x);
T join(T x);
T sum(T x);
T mult(T x);

}

interface CoeffectFactory<T extends Coeffect<T>>{
T zero();
T one();

}

For instance, the implementation of affinity coeffects would become as follows, with subclasses as before:

abstract class Affinity implements Coeffect<Affinity>{
Affinity join(Affinity x){
if (this.leq(x)) x else this

}
}

class AffinityFactory implements CoeffectFactory<Affinity>{
Affinity zero(){new ZeroA()}
Affinity one(){new One()}

}

14

R. Bianchini, F. Dagnino, P. Giannini et al. Theoretical Computer Science 971 (2023) 114063
Fig. 5. Some auxiliary classes.

Fig. 6. Channels.

Note that the implementation, as expected, depends on the features of the target language; for instance, in Scala we
would likely use case classes, and, turning to a different paradigm, in Haskell we could express Coeffect as a typeclass,
and coeffect algebras as its instances.

6. A programming example

We show a more significant programming example, which illustrates how different kinds of coeffects can be helpful in
the same program; indeed it uses the coeffect classes Affinity and Privacy defined before. In this code we omit curly
brackets when the body of a block is a block in turn, and we use sequences, which can be encoded as blocks where the
local variable is unused.

The example illustrates a client-server application in which a client sends some data to a server using a session-based
approach. We take inspiration from the encoding of sessions into the π -calculus with variants and linear I/O types of [11].
In our framework, where the zero coeffect is the least element, linear types are approximated as affine types. We assume
to have some classes implementing the data and messages exchanged, see Fig. 5.

In Fig. 6 are the classes implementing affine input and output channels over which we can send a message and some
private data. The affinity of the input and output channels is expressed by annotating the receiver of the send and receive
methods with new One() of the Affinity coeffects. The send method of the class OutPrivChannel takes as input, in
addition to the message and the data to be sent, an output channel that will be used, by whoever is receiving the message,
to continue the interaction, that is, to send back a message. On the channels only private data can be sent. This is enforced
by the annotation new Private() of the parameter data. The new One() annotation of the parameter cont asserts that
the argument must be an affine channel. The method rcv of the class InPrivChannel returns a triple containing a message,
a data and an output channel that will be used, by whoever receives the message, to continue the conversation.

The class Server of Fig. 7 implements a server which waits on a channel for a triple whose message should be either
NextData or Stop.
If the server receives NextData, then, after creating a pair of input and output channels, it sends to whoever sent the triple
(by using the output channel received) a triple containing the message new OK(), no data and the output channel created.
Then, after processing the received data, the server continues the interaction by waiting on the input channel just created,
which is paired with the output channel sent. This is done by the recursive call main(inCh).
If the server receives Stop, then it stops returning new OK() (we use this message also to signal that the protocol ended
successfully).
If the server receives any other message, then it stops returning new KO(), meaning failure of the exchange. Note that the
server receives the initial message from the client on the channel which is the parameter of the method. After receiving the
message, the channel cannot be used any longer.
15

R. Bianchini, F. Dagnino, P. Giannini et al. Theoretical Computer Science 971 (2023) 114063
Fig. 7. The server.

Fig. 8. The client.

Fig. 9. Starting the protocol.

The class Client of Fig. 8 implements a client of the previous server.
If the client wants to send more data to the server, after creating a new pair of input and output channels, it sends, on the
channel it was given, a triple consisting of the message NextData, a new data and the created output channel. Then the
client waits to receive a message on the input channel paired with the one sent. If the received message is OK, meaning
that the server correctly processed the sent data, then the client starts again using the channel received from the server.
This is done by the recursive call main(ch1). If the received message is KO, meaning that the server could not process the
sent data, then the client stops returning new KO().
If the client does not want to send more data to the server, then it stops returning new OK().

The computation of the server and the client is started, see Fig. 9, by creating a pair of input and output channels and
sending the output channel to the client and the input channel to the server. The fact that the channels are affine ensures
that they will be used to realise the wanted binary session. Here we assume to have a parallel composition operator.
16

R. Bianchini, F. Dagnino, P. Giannini et al. Theoretical Computer Science 971 (2023) 114063
7. Related work

Our work has been inspired by Granule [19], a functional language equipped with graded modal types, where different
kinds of coeffects (grades) can be used at the same time, including naturals for exact usage, security levels, intervals, infinity,
and products of coeffects.

We owe to Granule the overall objective of exploiting coeffects in a programming language, pursued here in a different
paradigm, and the idea of allowing different kinds of coeffects to coexist. Concerning this latter objective, in this paper
we push forward the Granule approach, since we do not want the available coeffects to be fixed, but definable by the
programmer. To this aim we define the coeffect algebra of heterogeneous coeffects in Section 4. The solution offered by this
construction is rudimentary, in the sense that combination of coeffects of different kinds always leads to the trivial coeffect,
apart from natural numbers which can be properly combined with others through their embedding. On the contrary, by
relying on the fact that the available coeffects are known in advance, Granule can provide ad-hoc combinations. However,
our approach has the important advantage to be modular, in the sense that combination of several coeffect algebras is shown
to produce a coeffect algebra, allowing us to reuse the general meta-theory, e.g., to prove soundness, rather than providing
an ad-hoc proof. The simple construction of this paper is a first step towards more flexible definitions, as discussed in the
next section.

Other practical programming languages incorporating (a variant of) coeffects are Idris 2 [7] and Linear Haskell [3]. The
first is a dependently typed functional language implementing an instance of quantitative type theory [2], thus serving also
as a proof assistant. Differently from Granule and this paper, Idris 2 uses just a single semiring of coeffects consisting of 0,
1 and ω, as the main goal is to identify code not needed at runtime. The second adds to Haskell first-order linearly typed
functions and data structures. Function types are annotated with the multiplicity (a natural number) of the argument that
they require to produce their output. In our setting this would be using as coeffects the semiring of natural numbers. We
conjecture that, with a construction similar to the one we propose in this paper, Linear Haskell could support user-defined
coeffects. As mentioned before, they would be, rather than values of a (subclass of) a coeffect class as in our calculus, values
of instances of a predefined Coeffect typeclass offering the ingredients of coeffect algebras.

Turning now to the literature on coeffects in general, the notion was firstly introduced by [20] and further analyzed
by [21]. In particular, [21] develops a generic coeffect system which augments the simply-typed λ-calculus with context
annotations indexed by coeffect shapes. The proposed framework is very abstract, and the authors focus only on two opposite
instances: structural (per-variable) and flat (whole context) coeffects, identified by specific choices of context shapes.

Most of the subsequent literature on coeffects focuses on structural ones, for which there is a clear algebraic description
in terms of semirings. This was first noticed by [8], who developed a framework for structural coeffects for a functional lan-
guage. Many advances have then been made to combine coeffects with other programming features, such as computational
effects [12,19,10], dependent types [2,9,18], and polymorphism [1]. Other graded type systems are explored in [2,13,1], also
combining effects and coeffects [12,19]. In all these papers, the process of tracking usage through grades is a powerful
method of instrumenting type systems with analyses of irrelevance and linearity that have practical benefits like erasure of
irrelevant terms (resulting in speed-up) and compiler optimizations (such as in-place update).

In [18] and [22] it was observed that contexts in a structural coeffect system form a module over the semiring of grades,
even though they do not use this structure in its full generality, restricting themselves to free modules, that is, to structural
coeffect systems. Recently, [6] shows a significant non-structural instance, namely, a coeffect system to track sharing in the
imperative paradigm.

8. Conclusion

We proposed a Java-like calculus supporting, in variable declarations, coeffect annotations, allowing to express how
variables should be used. We formally defined the type system and proved subject reduction, which includes preservation
of coeffects, and provided several examples. Moreover, we have shown that coeffects can be heterogeneous, in the sense that
different kinds of coeffects can be used in the same program, and they do not need to be fixed once and for all. Indeed, we
provided a formal construction leading to a unique coeffect algebra, where, roughly, combining coeffects of different kinds
gives the trivial coeffect. Finally, we proposed an extension of the calculus where programmers are able to define their own
classes implementing coeffect algebras, so that coeffect annotations are themselves expressions of the calculus, similarly to
what happens with user-defined Java exceptions.

In further work [5], we investigated three further developments of the contribution presented in this paper. First of all,
the coeffect algebra of heterogeneous coeffects defined in Section 4 is constructed taking the simplest choice, corresponding
to assume that the programmer “does not know” how to combine coeffects of different kinds. In [5], we designed a more
general framework where, depending on some additional parameters, a coeffect algebra of heterogeneous coeffects can be
constructed in many ways. Then, a limitation of the proposal in this paper is that, whereas it is possible to specify how a
variable should be used (e.g., a parameter should be used at most once in a method’s body), it is not possible to do the
same for the result of an expression (e.g., the result of a method). The variant of the calculus in [5], equipped with graded
modal types, which are types annotated with coeffects (grades) [8,19,10], also similar to types annotated with modifiers or
capabilities [16,15,14], overcomes this limitation. Finally, the soundness theorem proved in this paper states that coeffects
are preserved, but does not express the fact that coeffects actually overapproximate the usage of resources, since the latter
17

R. Bianchini, F. Dagnino, P. Giannini et al. Theoretical Computer Science 971 (2023) 114063
is not modeled in the standard reduction semantics. To this end, we developed in [5] an instrumented semantics keeping
track of resource consumption, as done in [9].

Coeffects considered in this paper are structural, in the sense that they are expressed and computed on a per-variable
basis. However, in some cases the coeffect, expressing how an expression uses external resources, cannot be captured by
just assigning independent scalar coeffects to single variables, but should be assigned to the whole context [21]. In our
work, this would correspond to allow a “global” annotation in a method’s signature.

Moreover, expressive power could be added by allowing variables in coeffect annotations, so to specify, e.g., that a
variable should be used no more than a certain number computed at runtime. This approach would require first the study
of dependent coeffects on the foundational side, which, to the best of our knowledge, has not been done yet.

On the more applicative side, we could investigate how the proposal scales to realistic subsets of Java, and possible
implementations. As mentioned, an interesting point is that implementations could use in a parametric way auxiliary tools.
The application of the approach to different paradigms, e.g., in Haskell as sketched before, is also an interesting direction.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have
appeared to influence the work reported in this paper.

Acknowledgements

This work was partially funded by the MUR project “T-LADIES” (PRIN 2020TL3X8X) and has the financial support of the
University of Eastern Piedmont.

Appendix A. Proofs of Section 4

Proof of Lemma 4.4. We have to prove that �H is reflexive, transitive and antisymmetric.
Reflexivity. Let k:r ∈ |H|. Since �k is reflexive, we have r �k r. By (�H 1) we get k:r �H k:s.
Transitivity. Let k1:r, k2:s, k3:t ∈ |H| and k1:r �H k2:s and k2:s �H k3:t . We split cases on the definition of k1:r �H k2:s.

(�H 1) k1 = k2 and k2 �= Triv
If k2 = k3 then, by transitivity of �k1 and (�H 1), we can conclude k1:r �H k3:t . If k3 = Triv then k1:r �H k3:t
holds by (�H 2). If k2 = Nat and k3 �= Nat, then we have ιk3 (s) �k3 t . Since ιk3 is an homomorphism, r �Nat s
implies ιk3 (r) �k3 ιk3 (s), so by transitivity of �k3 we have ιk3 (r) �k3 t . By (�H 3), we can conclude k1:r �H k3:t .

(�H 2) k2 = Triv
In this case we know that k3 = Triv, so k1:r �H k3:t by (�H 2).

(�H 3) k1 = Nat and k2 �= Nat
We have ιk2 (r) �k2 s. If k2 = k3 then, by transitivity of �k2 , we have ιk2 (r) �k2 t and, by (�H 3), k1:r �H k3:t . If
k3 = Triv then we have the thesis by (�H 2).

Antisymmetry. Let k1:r, k2:s ∈ |H| and k1:r �H k2:s and k2:s �H k1:r. Then it must be k1 = k2. Therefore the thesis
follows by the antisymmetry of �k1 and (�H 1). �
Proof of Lemma 4.5. Proof of Item 1. We split cases on the definition of k1:r ∨H k2:s.

(∨H1) k1 = k2
The thesis follows since �k1 has this property.

(∨H2) k1 �= k2, k1 �= Nat, k2 �= Nat
We have k1:r ∨H k2:s = Triv:∞, so, by (�H 2), we have the thesis.

(∨H3) k1 �= Nat, k2 = Nat
The thesis follows by (∨H3), (�H 3) and since �k1 has this property.

(∨H4) k1 �= Nat, k2 = Nat
The proof is similar the one above.

Proof of Item 2. We split cases on the definition of k1:r �H k3:t .

(�H 1) k1 = k3 and k1 �= Triv
If k1 = k2 then the thesis follows since �k1 has this property. If k2 = Nat then we know k1:r ∨H k2:s = k1:(r ∨k1

ιk1 (s)). By (�H 1) we have r �k1 t and by (�H 3) we have ιk1 (s) �k1 t . By these considerations we know r ∨k1

ιk1 (s) �k1 t and so by (�H 1) we have the thesis.
(�H 2) k3 = Triv:∞

The thesis follows from (�H 2).
18

R. Bianchini, F. Dagnino, P. Giannini et al. Theoretical Computer Science 971 (2023) 114063
(�H 3) k1 = Nat and k3 �= Nat, Triv
If k2 = Nat we have k1:r ∨H k2:s = Nat:(r ∨Nat s). By (�H 3) we have ιk3 (r) �k3 t and ιk3 (s) �k3 t , so we know
ιk3 (r) ∨k3 ιk3 (s) �k3 t . Since ι is an homomorphism, ιk3 (r) ∨k3 ιk3 (s) = ιk3 (r ∨Nat s), so by (�H 3) and (∨H1) we
have the thesis. The proof for the case k2 = k3 is analogous to the proof for the case k1 = k3, k1 �= Triv and
k2 = Nat. �

Proof of Lemma 4.6. We have to prove that +H is commutative, associative and monotonic with respect to �H and that
Nat:0 is the identity of +H . In particular, given k1:r, k2:s, k3:t:

Commutativity. k1:r +H k2:s = k2:s +H k1:r. We split cases on the definition of k1:r +H k2:s.

(+H1) k1 = k2

The thesis follows since +k1 is commutative.
(+H2) k1 �= k2, k1 �= Nat.k2 �= Nat

The thesis follows since k1:r +H k2:s = ∞ and k2:s +H k1:r = ∞.
(+H3) k1 = Nat, r = n, k2 �= Nat

We have k1:r +H k2:s = Nat:n +H k2:s = k2:(ιk2 (n) +k2 s). By commutative property of +k2 we have k2:(ιk2 (n) +k2

s) = k2:(s +k2 ιk2 (n)) = k2:s +H Nat:n.
(+H4) k2 = Nat, s = n, k1 �= Nat

Analogous to the case above.

Associativity. (k1:r +H k2:s) +H k3:t = k1:r +H (k2:s +H k3:t). We split cases on the definition of k1:r +H k2:s.

(+H1) k1 = k2

If k2 = k3 the thesis follows from the associativity of +k2 . If k3 �= k2, k3 �= Nat, k2 �= Nat then we have the thesis
since (k1:r +H k2:s) +H k3:t = k1:(r +k1 s) +H k3:t = Triv:∞ and k1:r +H (k2:s +H k3:t) = k1:r +H Triv:∞ = Triv:∞.
If k1, k2 = Nat and k3 �= Nat we have (k1:r +H k2:s) +H k3:t = Nat:(r +Nat s) +H k3:t = k3:(ιk3 (r +Nat s) +k3 t). Since
ι is an homomorphism, k3:(ιk3 (r +Nat s) +k3 t) = k3:((ιk3 (r) +k3 ιk3 (s)) +k3 t) and by the associativity of k3 we have
k3:((ιk3 (r) +k3 ιk3 (s)) +k3 t) = k3:(ιk3 (r) +k3 (ιk3 (s) +k3 t)) = Nat:r +H k3:(ιk3 (s) +k3 t) = Nat:r +H (Nat:s +H k3:t). If
k3 = Nat and k1 �= Nat the proof is analogous.

(+H2) k1 �= k2 and k1, k2 �= Nat
If k3 �= k1, k3 �= k2 and k3 �= Nat, then the thesis follows since (k1:r +H k2:s) +H k3:t = k1:r +H (k2:s +H k3:t) =
Triv:∞. If k3 = k1 then (k1:r +H k2:s) +H k3:t = Triv:∞ +H k3:t = Triv:∞ = k1:r +H (k2:s +H k3:t) = k1:r +H Triv:∞.
If k2 = k3 then (k1:r +H k2:s) +H k3:t = Triv:∞ +H k3:t = k1:r +H (k2:s +H k3:t) = k1:r +H k2:(s +k2 t) = Triv:∞. If
k3 = Nat then (k1:r +H k2:s) +H k3:t = Triv:∞ +H k3:t = Triv:(Triv:∞ +Triv ιTriv(t)) = Triv:∞.

(+H3) k1 = Nat, k2 �= Nat
If k3 = k2 then (k1:r +H k2:s) +H k3:t = k2:(ιk2 (r) +k2 s) +H k3:t = k2:((ιk2 (r) +k2 s) +k2 t). By associativity of +k2

we have k2:((ιk2 (r) +k2 s) +k2 t) = k2:(ιk2 (r) +k2 (s +k2 t)) = k1:r +H (k2:s +H k3:t). If k3 �= k2 and k3 �= Nat then we
have (k1:r +H k2:s) +H k3:t = k2:((ιk2 (r) +k2 s) +H k3:t = Triv:∞. We also have k1:r +H (k2:s +H k3:t) = k1:r +H
Triv:∞ = Triv:∞. If k3 = Nat then (k1:r +H k2:s) +H k3:t = k2:(ιk2 (r) +k2 s) +H k3:t = k2:((ιk2 (r) +k2 s) +k2 ιk2 (t)) =
k2:(ιk2 (r) +k2 (s +k2 ιk2 (t))) = k1:r +H (k2:s +H k3:t).

(+H4) k2 = Nat, k1 �= Nat
Analogous to the case above.

Monotonicity. If k1:r �H k2:s and k3:t �H k4:u then k1:r +H k3:t �H k2:s +H k4:u. We split cases on the definition of
k1:r �H k2:s.

(�H 1) k1 = k2 and k1, k2 �= Triv
If k2 = k3 = k4 we have by (�H 1) r �k1 s and t �k1 u, so we have the thesis by the monotonicity of +k1 with
respect to �k1 and (�H 1). If k3 = k4 and k2 �= k4 then we have k2:s +H k4:u = ∞, so, by (�H 2) we have
the thesis. If k4 = Triv by (�H 2) and since k2:s +H k4:u = ∞ we have the thesis. If k3 = Nat and k4 �= Nat and
k4 = k1 then, by (�H 1) we have r �k2 s and ιk2 (t) �k2 u. By the monotonicity of +k2 with respect to �k2 we have
r +k2 s �k2 ιk2 (t) +k2 u and so, by (�H 1), (+H1) and (+H4), we have the thesis. If k3 = Nat and k4 �= Nat and
k4 �= k1 then by k2:s +H k4:u = ∞ and (�H 2) we have the thesis.

(�H 2) k2 = Triv:∞
Since k2:s +H k4:u = ∞ by (�H 2) we have the thesis.

(�H 3) k1 = Nat and k2 �= Nat
If k1 = k3 = Nat and k4 = k2 then we have ιk2 (r) �k2 s and ιk2 (t) �k2 u, so by monotonicity of +k2 with respect
to �k2 we have ιk2 (r) +k2 s �k2 t +k2 u. By (�H 1), (+H4) and (+H1) we have the thesis. The other cases are
analogous as the cases in which k3 = Nat and k4 �= Nat.
19

R. Bianchini, F. Dagnino, P. Giannini et al. Theoretical Computer Science 971 (2023) 114063
Identity element. k:r +H Nat:0 = Nat:0 +H k:r = k:r for all k:r ∈ |H|. If k = Nat then Nat:0 +H k:r = Nat:0 +H Nat:r =
Nat:(0 +Nat r) = Nat:r = k:r. If k �= Nat then Nat:0 +H k:r = k:(ιk(0) +k r) = k:r since ιk(0) = 0k and 0k +k r = r. �
Proof of Lemma 4.7. We have to prove the same properties as Lemma 4.6, except commutativity. Since ·H is defined simi-
larly to +H we can ignore the cases already covered in the previous proof and consider only the additional cases of ·H:

Associativity. (k1:r ·H k2:s) ·H k3:t = k1:r ·H (k2:s ·H k3:t). We consider only one possible definition of k1:r ·H k2:s:

(·H5) k1:r = Nat:0 or k2:s = Nat:0 or k3:t = Nat:0
We consider only k1:r = Nat:0, the other cases are similar. We have k1:r ·H k2:s = Nat:0 by (·H5). Again by (·H5)

we have Nat:0 ·H k3:t = Nat:0. Since k1:r ·H (k2:s ·H k3:t) = Nat:0 for all k2, k3, s, t we have the thesis.

Monotonicity. If k1:r �H k2:s and k3:t �H k4:u then k1:r ·H k3:t �H k2:s ·H k4:u. The only interesting case is when
k1:r = Nat:0 or k3:t = Nat:0. We consider only the first case, the other is analogous. We have k2:s ·H k4:u = k′:r′ for a given
r′, k′ . We also have that 0k′ �k′ r′ and ιk′ (0) = 0k′ , so, by (·H5) and (�H 3) we derive k1:r ·H k3:t = Nat:0 �H k2:s ·H k4:u,
that is, the thesis.

Identity element. k:r ·H Nat:1 = Nat:1 ·H k:r = k:r for all k:r ∈ |H|. The proof is analogous to the +H case. �
Proof of Theorem 4.8. We have to prove the properties listed in Definition 4.1. We already proved that 〈|H|, �H〉 is a
partially ordered set with binary joins ∨H , that 〈|H|, �H, +H, Nat:0〉 is a partially ordered commutative monoid and that
〈|H|, �H, ·H, Nat:1〉 is a partially ordered monoid. It has remained to prove:

Distributivity. k1:r ·H (k2:s +H k3:t) = k1:r ·H k2:s +H k1:r ·H k3:t and (k2:s +H k3:t) ·H k1:r = k2:s ·H k1:r +H k3:t ·H k1:r,
for all k1:r, k2:s, k3:t ∈ |H|. We prove only left-distributivity, right-distributivity is analogous. We split cases on the definition
of k2:s +H k3:t .

(+H1) k2 = k3
If k1 = k2 and k1:r, k2:(s +k2 t) �= Nat:0 we have the thesis since ·k1 distributes over +k1 . If k1 �= k2 and k1, k2 �= Nat
we have k1:r ·H (k2:s +H k3:t) = k1:r ·H k2:(s +k2 t) = Triv:∞ and k1:r ·H k2:s +H k1:r ·H k3:t = Triv:∞ +H Triv:∞ =
Triv:∞. If k1 = Nat, r �= 0 and k2 �= Nat we have k1:r ·H (k2:s +H k3:t) = k1:r ·H k2:(s +k2 t) = k2:(ιk2 (r) ·k2 (s +k2 t)).
We have k2:(ιk2 (r) ·k2 (s +k2 t)) = k2:((ιk2 (r) ·k2 s) +k2 (ιk2 (r) ·k2 t)) = k2:(ιk2 (r) ·k2 s) +H k2:(ιk2 (r) ·k2 t) = k1:r ·H k2:s +H
k1:r ·H k3:t . If k2 = Nat, s, t �= 0 and k1 �= Nat, the proof is analogous. If k1:r = Nat:0 we have k1:r ·H (k2:s +H k3:t) =
Nat:0 by (·H5) and k1:r ·H k2:s +H k1:r ·H k3:t = Nat:0 +H Nat:0 = Nat:0. If k2:(s +k2 t) = Nat:0 we know that
k2:s = Nat:0 and k3:t = Nat:0. We also have k1:r ·H (k2:s +H k3:t) = Nat:0 by (·H5) and k1:r ·H k2:s +H k1:r ·H k3:t =
Nat:0 +H Nat:0 = Nat:0.

(+H2) k2 �= k3 and k2, k3 �= Nat
If k1:r �= Nat:0 we have k1:r ·H (k2:s +H k3:t) = k1:r ·H Triv:∞ = Triv:∞. We know k1:r ·H k2:s +H k1:r ·H k3:t =
k′:s′ +H k′′:t′ . We know that necessarily k′ �= k′′ and k′, k′′ �= Nat, so k′:s′ +H k′′:t′ = Triv:∞. If k1:r = Nat:0 we have
k1:r ·H (k2:s +H k3:t) = Nat:0 and k1:r ·H k2:s +H k1:r ·H k3:t = Nat:0 +H Nat:0 = Nat:0.

(+H3) k2 �= Nat and k3 = Nat
if k1 = k2 we have k1:r ·H (k2:s +H k3:t) = k1:(r ·k1 (s +k1 ιk1 (t))) and so by (·H1) and (+H1) and since ·k1 and +k1

have the required property, we have the thesis. If k1 = Nat and r �= 0, then k1:r ·H (k2:s +H k3:t) = k2:(ιk2 (r) ·k2 (s +k2

ιk2 (t))). By (·H1), (+H1), (·H3), (+H3) and since ·k2 and +k2 have the required property, we have the thesis. If
k1:r = Nat:0 by (·H5) we have k1:r ·H (k2:s +H k3:t) = Nat:0 and by (·H5) we have k1:r ·H k2:s +H k1:r ·H k3:t =
Nat:0 +H Nat:0 = Nat:0, that is, the thesis. If k1 �= k2 and k1 �= Nat we have k1:r ·H (k2:s +H k3:t) = k1:r ·H (k2:s′).
By (·H2) we have k1:r ·H (k2:s′) = Triv:∞. We also known by (·H2) that k1:r ·H k2:s +H k1:r ·H k3:t = Triv:∞ +H
Triv:∞ = Triv:∞.

(+H4) k2 = Nat and k3 �= Nat
Similar to the case above.

Zero element. k:r · Nat:0 = Nat:0 · k:r = Nat:0, for all k:r ∈ |H|. By definition in (·H5).
Nat:0 is minimum element. Nat:0 �H k:r for all k:r ∈ |H|. We know that for all kinds k, for all its elements r, it holds

0k �k r. We know that ιk(0) = 0k so by (�H 3) we have Nat:0 �H k:r. �
References

[1] Andreas Abel, Jean-Philippe Bernardy, A unified view of modalities in type systems, Proc. ACM Program. Lang. 90 (2020) 1.
[2] Robert Atkey, Syntax and semantics of quantitative type theory, in: Anuj Dawar, Erich Grädel (Eds.), IEEE Symposium on Logic in Computer Science,

LICS 2018, ACM, 2018, pp. 56–65.
[3] Jean-Philippe Bernardy, Mathieu Boespflug, Ryan R. Newton, Simon Peyton Jones, Arnaud Spiwack, Linear Haskell: practical linearity in a higher-order

polymorphic language, Proc. ACM Program. Lang. 2(POPL) (2018) 5:1–5:29.
[4] Riccardo Bianchini, Francesco Dagnino, Paola Giannini, Elena Zucca, A Java-like calculus with user-defined coeffects, in: Ugo Dal Lago, Daniele Gorla

(Eds.), ICTCS’22 - Italian Conf. on Theoretical Computer Science, in: CEUR Workshop Proceedings, vol. 3284, 2022, pp. 66–78, CEUR-WS.org.
20

http://refhub.elsevier.com/S0304-3975(23)00376-6/bib60D7CB787B59F90A023B52B95EC11273s1
http://refhub.elsevier.com/S0304-3975(23)00376-6/bibBEDDE4E6F35AF494EC48F8DFD5F268FEs1
http://refhub.elsevier.com/S0304-3975(23)00376-6/bibBEDDE4E6F35AF494EC48F8DFD5F268FEs1
http://refhub.elsevier.com/S0304-3975(23)00376-6/bib3BA300176E8DE7CD06129B53DDB64B43s1
http://refhub.elsevier.com/S0304-3975(23)00376-6/bib3BA300176E8DE7CD06129B53DDB64B43s1
http://refhub.elsevier.com/S0304-3975(23)00376-6/bib82FE958D39D97E06ED90FE5A06A268E8s1
http://refhub.elsevier.com/S0304-3975(23)00376-6/bib82FE958D39D97E06ED90FE5A06A268E8s1

R. Bianchini, F. Dagnino, P. Giannini et al. Theoretical Computer Science 971 (2023) 114063
[5] Riccardo Bianchini, Francesco Dagnino, Paola Giannini, Elena Zucca, Multi-graded featherweight Java, in: European Conference on Object-Oriented
Programming, ECOOP 2023, LIPIcs, Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2023, in press.

[6] Riccardo Bianchini, Francesco Dagnino, Paola Giannini, Elena Zucca, Marco Servetto, Coeffects for sharing and mutation, Proc. ACM Program. Lang.
6(OOPSLA2) (2022) 870–898.

[7] Edwin C. Brady, Idris 2: quantitative type theory in practice, in: Anders Møller, Manu Sridharan (Eds.), European Conference on Object-Oriented
Programming, ECOOP 2021, in: LIPIcs, vol. 194, Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2021, pp. 9:1–9:26.

[8] Aloïs Brunel, Marco Gaboardi, Damiano Mazza, Steve Zdancewic, A core quantitative coeffect calculus, in: Zhong Shao (Ed.), European Symposium on
Programming, ESOP 2013, in: Lecture Notes in Computer Science, vol. 8410, Springer, 2014, pp. 351–370.

[9] Pritam Choudhury, Harley Eades III, Richard A. Eisenberg, Stephanie Weirich, A graded dependent type system with a usage-aware semantics, in:
Proceedings of ACM on Programming Languages, 5(POPL), 2021, pp. 1–32.

[10] Ugo Dal Lago, Francesco Gavazzo, A relational theory of effects and coeffects, Proc. ACM Program. Lang. 6(POPL) (2022) 1–28.
[11] Ornela Dardha, Elena Giachino, Davide Sangiorgi, Session types revisited, in: Danny De Schreye, Gerda Janssens, Andy King (Eds.), PPDP’12, ACM, 2012,

pp. 139–150.
[12] Marco Gaboardi, Shin-ya Katsumata, Dominic A. Orchard, Flavien Breuvart, Tarmo Uustalu, Combining effects and coeffects via grading, in: Jacques

Garrigue, Gabriele Keller, Eijiro Sumii (Eds.), ACM International Conference on Functional Programming, ICFP 2016, ACM, 2016, pp. 476–489.
[13] Dan R. Ghica, Alex I. Smith, Bounded linear types in a resource semiring, in: Zhong Shao (Ed.), European Symposium on Programming, ESOP 2013, in:

Lecture Notes in Computer Science, vol. 8410, Springer, 2014, pp. 331–350.
[14] Colin S. Gordon, Designing with static capabilities and effects: use, mention, and invariants (pearl), in: Robert Hirschfeld, Tobias Pape (Eds.), European

Conference on Object-Oriented Programming, ECOOP 2020, in: LIPIcs, vol. 166, Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020, pp. 10:1–10:25.
[15] Colin S. Gordon, Matthew J. Parkinson, Jared Parsons, Aleks Bromfield, Joe Duffy, Uniqueness and reference immutability for safe parallelism, in: Gary

T. Leavens, Matthew B. Dwyer (Eds.), ACM Symp. on Object-Oriented Programming: Systems, Languages and Applications 2012, ACM, 2012, pp. 21–40.
[16] Philipp Haller, Martin Odersky, Capabilities for uniqueness and borrowing, in: Theo D’Hondt (Ed.), European Conference on Object-Oriented Program-

ming, ECOOP 2010, in: Lecture Notes in Computer Science, vol. 6183, Springer, 2010, pp. 354–378.
[17] Atsushi Igarashi, Benjamin C. Pierce, Philip Wadler, Featherweight Java: a minimal core calculus for Java and GJ, in: ACM Symp. on Object-Oriented

Programming: Systems, Languages and Applications 1999, ACM, 1999, pp. 132–146.
[18] Conor McBride, I got plenty o’ nuttin’, in: Sam Lindley, Conor McBride, Philip W. Trinder, Donald Sannella (Eds.), A List of Successes That Can Change

the World - Essays Dedicated to Philip Wadler on the Occasion of His 60th Birthday, in: Lecture Notes in Computer Science, vol. 9600, Springer, 2016,
pp. 207–233.

[19] Dominic Orchard, Vilem-Benjamin Liepelt, Harley Eades III, Quantitative program reasoning with graded modal types, in: Proceedings of ACM on
Programming Languages, vol. 110, 2019, p. 1.

[20] Tomas Petricek, Dominic A. Orchard, Alan Mycroft Coeffects, Unified static analysis of context-dependence, in: Fedor V. Fomin, Rusins Freivalds, Marta
Z. Kwiatkowska, David Peleg (Eds.), Automata, Languages and Programming, ICALP 2013, in: Lecture Notes in Computer Science, vol. 7966, Springer,
2013, pp. 385–397.

[21] Tomas Petricek, Dominic A. Orchard, Alan Mycroft, Coeffects: a calculus of context-dependent computation, in: Johan Jeuring, Manuel M.T. Chakravarty
(Eds.), ACM International Conference on Functional Programming, ICFP 2014, ACM, 2014, pp. 123–135.

[22] James Wood, Robert Atkey, A framework for substructural type systems, in: Ilya Sergey (Ed.), European Symposium on Programming, ESOP 2022, in:
Lecture Notes in Computer Science, vol. 13240, Springer, 2022, pp. 376–402.
21

http://refhub.elsevier.com/S0304-3975(23)00376-6/bib779E43E5CD90376DF324BE416F79CCE6s1
http://refhub.elsevier.com/S0304-3975(23)00376-6/bib779E43E5CD90376DF324BE416F79CCE6s1
http://refhub.elsevier.com/S0304-3975(23)00376-6/bib3618BB2CD21794266D1921F15A0ABBF3s1
http://refhub.elsevier.com/S0304-3975(23)00376-6/bib3618BB2CD21794266D1921F15A0ABBF3s1
http://refhub.elsevier.com/S0304-3975(23)00376-6/bibA805ACDE290AFB9F7E030046F3843BDCs1
http://refhub.elsevier.com/S0304-3975(23)00376-6/bibA805ACDE290AFB9F7E030046F3843BDCs1
http://refhub.elsevier.com/S0304-3975(23)00376-6/bib1C4A610884370C313190FEE0153D43F1s1
http://refhub.elsevier.com/S0304-3975(23)00376-6/bib1C4A610884370C313190FEE0153D43F1s1
http://refhub.elsevier.com/S0304-3975(23)00376-6/bib0FC50A21ADE1C07D9A11237F8D365EA5s1
http://refhub.elsevier.com/S0304-3975(23)00376-6/bib0FC50A21ADE1C07D9A11237F8D365EA5s1
http://refhub.elsevier.com/S0304-3975(23)00376-6/bib92B171189188590BC6F66EA89BF2D614s1
http://refhub.elsevier.com/S0304-3975(23)00376-6/bib76EA2606CB512A2D99FF6BD3F140C358s1
http://refhub.elsevier.com/S0304-3975(23)00376-6/bib76EA2606CB512A2D99FF6BD3F140C358s1
http://refhub.elsevier.com/S0304-3975(23)00376-6/bib7C5E18C2E12CA552F8DB29D69D0A325As1
http://refhub.elsevier.com/S0304-3975(23)00376-6/bib7C5E18C2E12CA552F8DB29D69D0A325As1
http://refhub.elsevier.com/S0304-3975(23)00376-6/bibF6E5F7DF1E2821C073F206B117111F6Fs1
http://refhub.elsevier.com/S0304-3975(23)00376-6/bibF6E5F7DF1E2821C073F206B117111F6Fs1
http://refhub.elsevier.com/S0304-3975(23)00376-6/bib4EF4E12ED56FFD164B350EF1B2FDA6BAs1
http://refhub.elsevier.com/S0304-3975(23)00376-6/bib4EF4E12ED56FFD164B350EF1B2FDA6BAs1
http://refhub.elsevier.com/S0304-3975(23)00376-6/bib9EAC1DAD516FF11FBA6EC49FB4B019A3s1
http://refhub.elsevier.com/S0304-3975(23)00376-6/bib9EAC1DAD516FF11FBA6EC49FB4B019A3s1
http://refhub.elsevier.com/S0304-3975(23)00376-6/bib21300946D20C8CF50212208A5722E079s1
http://refhub.elsevier.com/S0304-3975(23)00376-6/bib21300946D20C8CF50212208A5722E079s1
http://refhub.elsevier.com/S0304-3975(23)00376-6/bib0B028646A4FC3439089CCEB2B1CD583Es1
http://refhub.elsevier.com/S0304-3975(23)00376-6/bib0B028646A4FC3439089CCEB2B1CD583Es1
http://refhub.elsevier.com/S0304-3975(23)00376-6/bib5D7620926B3938FA940F8E3CFB0D3471s1
http://refhub.elsevier.com/S0304-3975(23)00376-6/bib5D7620926B3938FA940F8E3CFB0D3471s1
http://refhub.elsevier.com/S0304-3975(23)00376-6/bib5D7620926B3938FA940F8E3CFB0D3471s1
http://refhub.elsevier.com/S0304-3975(23)00376-6/bib8DF15E81443D91E18417A01FD6DEB7EEs1
http://refhub.elsevier.com/S0304-3975(23)00376-6/bib8DF15E81443D91E18417A01FD6DEB7EEs1
http://refhub.elsevier.com/S0304-3975(23)00376-6/bibAB05B2E97D4B623FCF102D52AF2F2BEEs1
http://refhub.elsevier.com/S0304-3975(23)00376-6/bibAB05B2E97D4B623FCF102D52AF2F2BEEs1
http://refhub.elsevier.com/S0304-3975(23)00376-6/bibAB05B2E97D4B623FCF102D52AF2F2BEEs1
http://refhub.elsevier.com/S0304-3975(23)00376-6/bibDA6631EB932AC5A9D2F7DEA63408DFBDs1
http://refhub.elsevier.com/S0304-3975(23)00376-6/bibDA6631EB932AC5A9D2F7DEA63408DFBDs1
http://refhub.elsevier.com/S0304-3975(23)00376-6/bibD2662B9706553F0DB31429069CEAA328s1
http://refhub.elsevier.com/S0304-3975(23)00376-6/bibD2662B9706553F0DB31429069CEAA328s1

	A Java-like calculus with heterogeneous coeffects
	1 Introduction
	2 Calculus
	3 Parametric type-and-coeffect system
	4 Combining coeffect algebras
	5 User-defined coeffects
	6 A programming example
	7 Related work
	8 Conclusion
	Declaration of competing interest
	Acknowledgements
	Appendix A Proofs of Section 4
	References

