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Abstract. To reduce carbon emission, the transportation sector evolves
toward replacing internal combustion vehicles by electric vehicles (EV).
However, the limited driving ranges of EVs, their long recharge dura-
tion and the need of appropriate charging infrastructures require smart
strategies to optimize the charging stops during a long trip. These chal-
lenges have generated a new area of studies that were mainly directed
to extend the classical Vehicle Routing Problem (VRP) to a fleet of
commercial EVs. In this paper, we propose a different point of view, by
considering the interaction of private EVs with the related infrastruc-
ture, focusing on a highway trip. We consider a highway where charging
stations are scattered along the road, and are equipped with multiple
chargers. Using Fluid Stochastic Petri Nets (FSPN), the paper compares
different decision policies when to stop and recharge the battery to max-
imize the probability of a car to reach its destination and minimize the
trip completion time.

Keywords: Electric Vehicle, Charging infrastructure, Battery charge
decision policy, Fluid Stochastic Petri Nets

1 Introduction

According to the Fuel Report 2021 of the International Energy Agency [1] the
transport sector is responsible for around 60% of total oil demand. Inside the
transport sector, oil was the predominant energy source, providing 92% of final
energy over the past decade [2]. A major way to limit carbon emission in the
transport sector is to replace internal combustion engine vehicles (ICEV) by
electric vehicle (EV), and many countries are introducing new regulations and
incentives to push the market toward this goal.

Between the two EV technological alternatives: hybrid electric vehicle (HEV)
and battery electric vehicle (BEV), we consider, in the present paper, only BEV
which are exclusively powered from rechargeable batteries mounted inside the
vehicle. From the carbon emission point of view, BEVs have the following benefits
as compared to ICEVs [3].
⋆ Research partially supported by CNIT (Consorzio Nazionale Interuniversitario per

le Telecomunicazioni).
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– They reduce oil consumption, and greenhouse gas emissions, improving air
quality.

– They operate with minimal noise.
– Can be charged from a wide range of different primary (renewable) energy

sources, reducing kilometric cost.

On the other hand, their high cost of acquisition, limited driving ranges, the
need for specific charging infrastructure, and long recharge duration limit the
penetration of EV in the market.

The appearance of BEVs in the private as well in the commercial sector poses
new challenges for their use and for the new infrastructures they need. These
challenges have generated a new area of studies denoted as green logistic [4].
The major effort in this direction was to extend the classical Vehicle Routing
Problem (VRP) to a fleet of commercial EVs and is referred to as Electric Vehicle
Routing Problem (EVRP) [5]. The present paper, however, assumes a different
point of view, considering a flow of private vehicles traveling along a highway
and we study the performability of the system formed by the BEVs and the
related infrastructure.

More specifically, we consider a long stretch of a highway with a flow of
cars, both BEVs and non-BEVs, driving on it. A number of charging stations
is scattered along the road and each charging station has one or more chargers.
The problem of optimizing the siting and sizing of the charging infrastructure
has been the object of recent research [6,7], but we assume here that the stations
are already located and their positions are parameters to feed the model. We
tag and follow a particular BEV that enters the highway at the beginning of the
stretch and drives up to the end. We study the probability that the tagged car
arrives at the end of its itinerary and the distribution of the time to complete
the itinerary. The battery of the BEVs discharges as a function of the time, the
speed of the car and the driven kilometers, while for the charging we adopt the
non-linear function discussed in [8].

We model the system by means of a Fluid Stochastic Petri Net (FSPN) [9],
in which the battery is represented by a fluid place with one input and one
output fluid transition representing the charging and the discharging process,
respectively.

The time that the tagged car takes to drive the segment between two suc-
cessive service stations is a generally distributed random variable with a know
mean (determined by the average speed of the car). The BEVs arriving at a
charging station queue up for charge, and we assume, in the present formula-
tion, that their arrival and service times are exponentially distributed. When the
tagged driver arrives at a charging station she must decide whether to stop and
recharge or go on. This decision depends on the level of the battery, the presence
and the length of a queue at the station and the distance to the next station or
to the destination. Different decision policies are considered and analyzed, also
in view of a possible experimentation on autonomous EVs. The FSPN is solved
analytically using Matlab, and a number of numerical experiments are presented
to compare different decision policies.
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The paper is organized as follows. In Section 2 we summarize the state of
the art, in Section 3 the characteristics of the charging infrastructure and of the
flow of cars are described. Section 4 illustrates the FSPN model, with the charg-
ing decision policies. The subsequent Section 5 sketches the numerical solution
through a semi-discretization approach. Section 6 reports the numerical results
and in Section 7 a discussion on the model and hints for future work close the
paper.

2 State of the art

The diffusion of EVs is limited, especially in Italy with respect to other countries
(Germany, France), also as a consequence of the scarcity of charging stations
along the road network, and to their uneven distribution in the national territory.
Although the technological innovation continuously increases the driving range of
EVs, planning the charging stops is still a critical issue due to the long charging
times. The seminal paper of Erdogan & Miller-Hooks [5] has first introduced
the EVRP, considering different alternative-fuel vehicles (not only powered by
electricity but also by GPL, hydrogen, natural gas etc.) for which the charging
stations are not widespread on the territory. The paper generated a huge interest
in the scientific community, and many extensions have been proposed and studied
in the following years, as documented in two recent survey papers [10,11].

Hybrid vehicles, which can switch from the electric propulsion to a traditional
fuel have been addressed in [12]. Schneider et al., [13] introduced the EVRP
with Time Windows (EVRPTW) in which customers must be visited within a
prefixed time-window. The concept of partial recharges to the EVRPTW was
introduced in [14], while in [15] a non-linear charging function is considered.
In [16], charging stations with limited capacity are addressed for the first time,
and a maximum number of vehicles that can simultaneously access the station
is strictly imposed. Instead, in [17], vehicles are allowed to access the station
and queue up if all the charging slots are busy, so that service may start when
the queue becomes empty. All the above mentioned papers deal with decision
problems faced by the usage of commercial EVs in freight distribution. In the
present paper, we look at the problem under a different perspective considering
a private BEV driver, immersed into a flow of private vehicles, who has to cover
a given trip and must decide where and when to stop to recharge her vehicle to
maximize the probability of completing the trip minimizing the total trip time.
We introduce, in this paper, a performability view on the interaction between
the EVs and the charging infrastructure [18], since we combine the evaluation
of the driver trip time with the evaluation of the probability that the trip fails
and the car does not complete its itinerary. The key element in the interaction
between EVs and the infrastructure is the discharging and charging process of
the battery. The flow intensity of the vehicles, the traffic conditions on the road
and the queue length in front of a station are non-deterministic phenomena that
can be represented by a stochastic model. To combine in a single framework
the continuous variation of the charging level of the battery in time and the
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randomness in the traffic condition, we model the system by means of a Fluid
Stochastic Petri Net (FSPN) [9,19,20] where the battery is represented by a fluid
place whose fluid level is the charge, the time to travel the highway between two
successive service stations is a random variable with general distribution and the
queue at a station is a M/M/γ if the station has γ parallel chargers.

FSPNs were introduced in [19] and further extended in [20]. FSPNs evolve
the stochastic Petri nets framework [21] by introducing as new primitives the
continuous places, which contain a fluid quantity, and the fluid arcs, which con-
nect timed transitions to fluid places and determine the flow in and out to the
fluid places. The basic FSPN formalism was enriched in [9] by introducing fluid
impulses that increment the fluid level by a discrete quantity whose intensity
depends both on the fluid levels and on the discrete marking of the net. FSPNs
have a graphical representation that helps building the model, and then from
the graphical representation we can derive the fluid stochastic equations that
describe the underlying stochastic marking process. In general, the solution of
these equations is a challenging task. Steady-state solution of FSPN models,
with dependency on discrete places only, has been proposed in [20] using spec-
tral decomposition. In the same paper, transient analysis has also been described
using upwind semidiscretization. FSPNs have been successfully used in the lit-
erature to study systems in several technological areas, but we are not aware of
applications in the field of EV routing.

3 The infrastructure and the EV

To be concrete, we consider, the Italian motorway A14 from Bologna to Taranto
(743 km), which we display in Figure 1 with the real allocation of the service
stations. The portion of highway between two charging stations is called segment.
Table 2 in Appendix shown the location of the service stations along A14 Bologna
to Taranto. We assume that each service station is equipped (or will be equipped
in the near future) with a charging point with a number γ of parallel chargers
and that all the chargers provide the same power, so that the charging profile is
the same for all the EVs in all chargers.

Along the highway runs a flow of cars, composed by BEVs and non-BEVs and
by the tagged BEV that we follow from the beginning of the trip up to the end.
The other BEVs in the flow may compete for the charging points, generating
possible queues at the stations when the tagged car arrives for charge. The
non-BEV cars are not explicitly modeled, but their presence is reflected on the
average speed of the car flow including the tagged BEV. The time that the tagged
BEV takes to complete one segment is a random variable whose distribution may
change in each road segment. The distribution of the driving time to complete
a segment is modeled by a shifted Erlang distribution whose parameters (shift,
expected value and number of stages) are input data (see Section 4) that may
depend on the traffic conditions in the segment. In this way, we allow to model
fluctuations or congestion in the traffic flow in specific segments of the highway.
Each station is provided with γ parallel chargers and we assume that the BEVs
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Fig. 1: The A14 from Bologna to Taranto with the actual position of the service
stations. We assume that in each service station there is an EV charging point

arrive at the station according to a Poisson process of known parameter. In
the present study, we assume also that all the BEVs and all the chargers have
the same characteristics; furthermore we do not model the level of the residual
charge of the vehicles joining the queue, hence, even if the charging profile has
a nonlinear behavior (see Section 4.1), we approximate the charging time of
the non-tagged BEVs at a station with an exponential distribution of known
parameter, so that the queue in front of the station becomes a M/M/γ.

4 Fluid Stochastic Petri Net: The Scenario

Figure 2 shows the FSPN of the considered scenario. Following the customary
notation for FSPNs [9, 20], the set of places P is partitioned in a set of discrete
places Pd and a set of continuous places Pc. Discrete places are drawn as single
circles and may contain a discrete number of tokens, while continuous places are
depicted by two concentric circles and contain a continuous quantity called fluid.
The model of Figure 2 contains a single fluid place β representing the battery
whose fluid level, ranging in the interval 0 ≤ β ≤ B, is the charge measured in
km.
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The set of transition T is partitioned into a set of timed transitions TE , a set
of immediate transitions TI and a set of fluid transitions TF . Timed transitions
are drawn as a rectangle and are assigned a random firing time with known
distribution, immediate transitions are represented by a thin bar and fire in zero
time, while fluid transitions are represented by double rectangles and connect the
fluid places. In Figure 2, the timed transition SEGMENT(ϕ) (in gray) is assigned
a general distribution, while transitions EMP_Q and FREE, representing the
queue of BEVs at a station, have an exponentially distributed firing time. B_UP
and B_DOWN are the fluid transitions modeling the charge and discharge of
the battery, respectively,

The set of arcs A is partitioned into two subsets Ad and Ac: the former is
a subset of (Pd × T ) ∪ (T × Pd) representing the discrete arcs and are drawn
as single arrows, the latter is a subset of (Pc × TF ) ∪ (TF × Pc) representing
the fluid arcs and are drawn as double arrows. In Figure 2, the fluid arc from
B_UP to β continuously adds fluid (charge) when enabled, while the fluid arc
from β to B_DOWN continuously removes fluid when enabled. Inhibitor arcs,
represented with dashed lines ending by a small circle, have the usual meaning
of preventing a transition to fire when the input place contains a number of
tokens (or a fluid level) greater or equal to the weight. In Figure 2, there are
two inhibitor arcs: from place ϕ to transition AVAIL_SLOT which may fire only
when place ϕ contains less than K tokens and from fluid place β to transition
FAIL which may fire when the fluid level is less than the weight l(ϕ). Finally,
impulse arcs, which connect fluid places to discrete transitions, add or remove a
finite amount of fluid during the firing event. In Figure 2, the only impulse arc
is from place β to transition SEGMENT(ϕ), and removes a fluid quantity l(ϕ)
when the transition fires.

Let mi = [#pi, i ∈ Pd] be the discrete marking of the FSPN and let x be the
vector of the fluid levels in the continuous places. The complete state of the fluid
Petri net is given by the pair M = (mi,x) which evolves in time, generating the
stochastic marking process M(τ) = {(mi,x), τ ≥ 0}. The evolution of each fluid
level x depends both on a continuous component determined by the instanta-
neous flow rates assigned to fluid arcs and a discrete component determined by
fluid impulses transferred to (or removed from) the fluid place when the impulse
transition fires [9].

Place N represents the tagged car initiating segment ϕ, with ϕ = 1, ...,K,
counted in place ϕ. The total number of segments to be traveled is hence denoted
by K. Transition SEGMENT(ϕ) represents the completion of segment ϕ and
the arrival at the charging station at the end of the segment. Such transition
is characterized by a state-dependent shifted-Erlang firing time, expressed by
Equation (1), where s is the number of exponential stages, t0 the shift and ψ
the rate parameter.

f(t) =

 ψs(t− t0)
s−1e−ψ(t−t0)

(s− 1)!
t ≥ t0

0 t < t0

(1)
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Fig. 2: Fluid Stochastic Petri Net model of the considered scenario.

Let lϕ be the length of segment ϕ, vmax the maximum speed allowed for the car,
and vave the average speed on the segment. t0 and ψ are defined as follows:

t0 =
lϕ
vmax

; ψ =
s

lϕ

(
1

vave
− 1

vmax

) (2)

The distribution (1) starts at t0, which is the traveling time when the segment
is driven at the maximum speed vmax, and the expected value is E[t] =

lϕ
vave

as
required by the definition of vave. From Equations (2), the parameters t0 and ψ
of the distribution (1) are derived assigning vmax and vave, while the number of
stages s is assigned independently.

The coefficient of variation cv is lower than the corresponding non-shifted
Erlang with same order s:

cv =
1√
s

(
1− vave

vmax

)
(3)

4.1 The Battery level

In the control screen of most EVs, the battery level is conventionally measured
and displayed in kilometers. The battery is consumed during the firing time of
transition SEGMENT(ϕ) (when a token is in place N) according to distribution
in (1), and charges when a token is in place F. Battery charging and discharging
are modeled by fluid transitions B_UP and B_DOWN, respectively. The dis-
charge is a function of the length lϕ of segment ϕ, the average speed of the car
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Fig. 3: The non linear charging profile

dβ

dt
=


rc ; β < σ1B

rc ·
σ3 − β/B

σ3 − σ1
; σ1B ≤ β < σ2B

0 ; β ≥ σ2B
(4)

and of the power supplied to support services such as air conditioning and mu-
sic playing (converted in equivalent km), which is a function of the time spent
to drive segment ϕ. The rate of consumption of the battery increases almost
linearly with the average speed [22] beyond a cruise speed of around 50 km/h.

For each segment we could assign a value for vmax and vave to define the
distribution of the time to drive the segment. However, in the present paper we
keep the same values of vmax and vave for all the segments, but we show how
the model reacts modifying these values. The random time to drive a segment is
given by t0 (the time to drive the segment at the maximum speed), augmented
by the deviation given by the Erlang component (the series of s exponential
stages) (Equation 1). During this period, the battery level β reduces at a rate
r(t, i) = −rb to account for the services. At the end of the last Erlang stage,
transition SEGMENT(ϕ) fires and a fluid impulse lϕ, reduces the battery level
to account for the completion of segment ϕ.

When a token is in place F, the battery charges according to a non-linear
model inspired by the work in [8]. The recharge model is given by Equation
(4), where rc is the initial constant recharge rate and σi are the parameters
needed to define the non-linear behavior. Figure 4 gives the corresponding non
linear charging profile. As soon as the capacity σ2B is reached, immediate tran-
sition RESUME fires, putting a token in place N to prepare for driving the next
segment. Whenever the battery level β becomes zero or negative, due to the
reduction at rate rb or to the effect of the negative impulses, the immediate
transition FAIL is triggered causing the mission to fail. This is modeled with the
inhibitor arc of weight lϕ that connects β to FAIL.

When transition SEGMENT(ϕ) fires and ϕ = K (last segment), transition
AVAIL_SLOT is disabled, immediate transition SUCCESS fires and the tagged
car successfully completes its itinerary. If ϕ <K transition AVAIL_SLOT fires



Performability Analysis of an Electric Vehicle Charging System 9

and place Q becomes marked, the tagged BEV must take the decision whether to
continue, or to stop and recharge. This decision is performed inside the element
of the CHARGING STATION box of Figure 2, and depends on the current
battery level β, on the position of the car ϕ, on the state of the queue and on
the implemented stopping decision policy.

We have modeled the queue at the charging stations as a M/M/γ and we
have computed its state probabilities. We define p(Wait) the probability that
the chargers are busy and there is a queue in front, p(NoQueue) the probability
that the chargers are busy, but there are no cars in the queue, and p(Free) the
probability that there are empty slots. Such probabilities can be computed from
the queue length distribution πQ(n) using the conventional formula [23]:

ρ =
λ

γµ
, πQ(n) =


πQ(0)

n!
· (γρ)n n < γ

πQ(0)γ
γρn

γ!
n ≥ γ

(5)

πQ(0) =

[
(γρ)γ

γ!

1

1− ρ
+

γ−1∑
k=0

(γρ)k

k!

]−1

(6)

p(Free) =
γ−1∑
n=0

πQ(n), p(NoQueue) = πQ(γ), p(Wait) = 1− πF − πZ (7)

where λ is the arrival rate of BEVs at the station and 1/µ is the average time to
recharge. The resulting values, together with the chosen stopping decision policy,
are then used to compute the firing probabilities of the four immediate transi-
tions CONTINUE, WAIT_QUEUE, WAIT_SLOT and CHARGE, as detailed
in Section 4.3.

4.2 Stopping Decision Policies

In the present paper, we take into account only the waiting and service times
due to the queue and we neglect the overhead in exiting the highway, pulling
up to a charger, plug in, and then reentering the highway. This overhead can be
easily introduced in the FSPN of Figure 2 by adding an extra timed transition
if the car decides to stop at a station.

We experiment different stopping decision policies where each policy j is
characterized by three functions that return the probability of stopping depend-
ing on the current battery level β, and the distance of the next charging stations
(derived from the segment ϕ): i) if there are free slots u[j]f (β, ϕ) (token in place

F), ii) if the slots are busy, but there are no cars queuing, u[j]z (β, ϕ) (token in
place Z) and iii) if there are already other cars queuing for a charging facility to
become free u[j]w (β, ϕ) (token in place W).

We have tested five different stopping policies:
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1. Stop only when absolutely needed: stop only if the remaining battery
level is not enough to reach the next charging station. This policy is imple-
mented with the following functions:

u
[1]
f (β, ϕ) = 1(β < lϕ+1)

u[1]z (β, ϕ) = 1(β < lϕ+1)

u[1]w (β, ϕ) = 1(β < lϕ+1)

where 1(•) is the indicator function that returns 1 if proposition • is true, 0
otherwise.

2. Blind probabilistic stopping: stop at any station, independently of the
queue, with a given probability p:

u
[2]
f (β, ϕ) = p

u[2]z (β, ϕ) = p

u[2]w (β, ϕ) = p

3. Informed probabilistic stopping: stop at any station, with a given high
probability pe if there is at least an empty slot, or with a lower probability
pw if there is to wait:

u
[3]
f (β, ϕ) = pe

u[3]z (β, ϕ) = pw

u[3]w (β, ϕ) = pw

4. Avoid waiting: We define a safety threshold of η km. Whenever the battery
level β is such that (β < η), stop if there is at least a free charger, otherwise
retry at the next station. However, if the remaining battery level is less than
the length of the next segment, stop anyway.

u
[4]
f (β, ϕ) = 1(β < η)

u[4]z (β, ϕ) = 1(β < lϕ+1)

u[4]w (β, ϕ) = 1(β < lϕ+1)

5. Skip long queues: This policy relaxes the previous one, by allowing the
car to stop with probability p, even if all chargers are busy, but there are no
other cars in the queue.

u
[5]
f (β, ϕ) = 1(β < η)

u[5]z (β, ϕ) = p · 1(β < η)

u[5]w (β, ϕ) = 1(β < lϕ+1)

Of the proposed policies, the first three are just for comparison purpose, since
they are not realistic; the ones on which this work really focuses are the last two.
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4.3 Computing Decision Policy Probability

As transition AVAIL_SLOT fires depositing a token in place Q four immediate
competing transitions are enabled determining the next move of the tagged car.
The weights of the four immediate transitions are a function of the state of the
queue and the stopping policy j and are computed as:

wCONTINUE = (8)

p(Free)(1− u
[j]
f ) + p(NoQueue)(1− u[j]z ) + p(Wait)(1− u[j]w )

wWAIT_QUEUE = p(Wait)u[j]w (9)

wWAIT_SLOT = p(NoQueue)u[j]z (10)

wCHARGE = p(Free)u[j]f (11)

In Equations (8) to (11) the dependencies on β and ϕ have been omitted
to simplify the presentation. If there is a queue of cars already waiting to be
served the waiting time is modelled by transition EMP_Q(γ), which, according
to queuing theory [24], is exponentially distributed with rate:

qEMP_Q(γ) = γµ− λ (12)

If all slots are full, but there are no other cars in the queue, the waiting time
represented by transition FREE(γ), is exponentially distributed with rate:

qFREE(γ) = γµ (13)

When a token arrives in place F, the charging of the battery begins. If,
instead, the decision is to continue, the immediate transition CONTINUE fires,
moving the tagged BEV to the next segment.

5 Solution Equation

Since there is only one fluid place with fluid level β, the stochastic marking
process of the FSPN of Figure 2 can be written as (see Section 4) M(t) =
{(mi, β), t ≥ 0}. The non exponential distribution of transition SEGMENT(ϕ)
is modeled with a phase-type approach, and the discrete marking mi includes
both the s stages of the shifted Erlang distribution and the state of the queue.

Then, let us define πi(t, β) as the probability density of finding the system
in state mi with fluid level β at time t, qij as the transition rates from state
mi to state mj and dij as the fluid impulse transferred to the fluid place at the
transition firing from state mi to state mj . In our case, qij corresponds either
to the rates of the Erlang stages given in Equation (2), to the rates given in
Equations (12) or (13), or to a Dirac’s delta on the fluid component to represent
the battery level dependent jumps caused by either end of charging or failure.
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The fluid impulse terms are dij = −lϕ for the transitions at the end of the Erlang
stages, and dij = 0 otherwise.

The transient behavior of the model illustrated in Section 4 follows the system
of partial differential equations:

∂πi(t, β)

∂t
− ∂ (r(t, i, β) · πi(t, β))

∂β

=
∑

mj∈Md,mj ̸=mi

qjiπi(t, β + dij) , ∀mi ∈ Md. (14)

We apply a semi-discretization of (14) in the coordinate direction β using a
first-order upwind method [20]. Since the fluid place of the battery is bounded
at a maximum level B, its fluid level can be discretized at a finite number of
equidistant points βi = i∆β with 0 ≤ i ≤ ⌊ B

∆β ⌋, where ∆β is the size of the
discretization interval of the battery level.

From the semi-discretization we obtain the linear system of ordinary differ-
ential equations:

dπ̃(t)

dt
= π̃(t)(Q̃+ W̃ ), (15)

where π̃(t) is the vector of the probabilities that the system is in a discrete
marking at different points of the discretized fluid range, Q̃ is the state transition
matrix representing the discrete part of the net and W̃ is the discretization of the
space derivative multiplied by the flow rates; more details can be found in [20].

Such equations can be integrated and solved by any standard method. In
particular, we resorted to the ode23() function of Matlab to implement the
proposed scheme with adaptive step size integration with∆X = 5 km or∆X = 2
km. Solution required between 20 s to 10 min on a standard MacBook Pro 2016
laptop.

Table 1: Model parameters
Param. Description Value
γ Num. charging slots 2
s Erlang stages 4
vmax Maximum speed 130 km / h
vave Average speed 100 km / h
λ Electric cars arrival rate 1 car / h
B Battery capacity (km) 250 km
rb Basic energy consumption (km/h) 10 km / h
rc Charging rate (km / h) 200 km / h
σ1, σ2, σ3 Parameters of the charging model 0.68, 0.995, 1.0
η Threshold for the battery level 80 km
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6 Numerical Results

We fix the number of slots to γ = 2 for every charging station. To study how
the model captures the evolution of the system, we start focusing on policy 4),
assigning a threshold η = 80 km. Figure 4 shows the main state probabilities:
charging, waiting, success and failure. On Figure 4 we have also reported the
average battery percentage β̄(t) at time t, and the average number of segments
ϕ̄(t) already driven at time t, where ϕ(i) is the highway segment corresponding
to state mi. The two quantities β̄(t) and ϕ̄(t) are expressed in Equation (16)
and are conditioned on the fact that the tagged BEV reaches its destination,
and on the probability that it is still traveling at time t. Let us call πdest(t) the
probability that the car has succesfully reached its destination at time t, and
πfail(t) the probability that the car has run out of battery while traveling on a
segment. Then we have:

β̄(t) =
1

B

[∑
i

∫ B

β=0

β πi(t, β) dβ

]
(1− πdest(t)− πfail(t))

−1

ϕ̄(t) =
1

K

[∑
i

∫ B

β=0

ϕ(i)πi(t, β) dβ

]
(1− πdest(t))

−1 (16)

From the plot, it is possible to visualize when the car stops, and how long it has
to wait for charging the battery. It is interesting to note that the probability
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Fig. 4: States evolution: a) success probability, charging probability, average bat-
tery percentage and average number of segments driven at time; b) waiting prob-
ability and failure probability

of charging the battery becomes negligible as the probability of reaching the
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destination becomes higher. The "staircase" trend of "Ave. Battery" and "Ave.
segment" curves, observable at time t < 2h, is due to the embedded process
behavior. In particular to the impulsive battery level reduction lϕ that occurs at
discrete times when the vehicle reaches the next service station, modeled by the
firing of transition SEGMENT(ϕ) in Fig 2.

We then start comparing the various policies, showing the probability of un-
successful arrival at destination in Figure 5a), and the trip duration distribution
conditioned on a successful arrival in Figure 5b). Policy 2), which stops the car at
every charging point, has basically no probability of failing, but it experiences an
extremely long trip duration. Conversely, policy 1) that stops the car only when
absolutely needed has the worst reliability. Its response time is not one of the
best either, since it stops independently on the queue at the station where the
battery level becomes too small. Policy 3), as expected, places itself between the
two. The more advanced policies 4) and 5) have a much shorter traveling time,
but policy 5), which anticipates the recharge, shows a lower failure probability
than policy 4).
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Fig. 5: a) Failure probability and b) conditioned success probability, as function
of time for the 4 considered policies

Figure 6a) shows the average battery level as a function of time. for the
different decision policies. Policies 2) and 3) induce frequent stops and recharges
and the battery power is not well exploited since the charge is almost always
at the maximum level. Policy 1) depletes the battery almost completely before
charging. For Policies 4) and 5) (whose curves are almost indistinguishable) the
battery depletion and then the stops to charge are well visible; the two policies
perform an early charge, more or less in the same station.

Figure 6b) for the only Policy 4) shows the effect on the battery cycles of
the speed of the car. The increased average speed has two competing effects.
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Fig. 6: a) Average battery level versus time for the considered policies and b)
Average battery level versus average speed for Policy 4)

The battery depletion rate increases almost linearly with the speed [22], but
since driving a segment takes a shorter time, also the battery consumption due
to the services (AC, sound, etc.) is lower. The combined effect in Figure 6b)
shows that at increased speed the recharge must be done more frequently. The
curves in Figure 6b) have been obtained by setting vmax = 140 km/h and vave =
100, 115, 130 km/h.

As explained in Section 4.2, Policies 4) and 5) require a safety threshold η
to decide their stopping interval. Figure 7 shows the average trip time and the
failure probability for policies 4) and 5) under different thresholds η ∈ [20 . . . 120]
km. While the failure probability increases as the margin decreases, as expected,
the average trip time has a non-linear and non-monotonic behavior, even if it
tends to increase with η. This tendency is motivated from the fact that by
stopping earlier there is a higher chance of requiring an additional stop. Non-
monotonic behavior is instead caused by the non uniform position of service
stations along the road. In some cases, increasing the margin can have a positive
effect: arriving at a station with a larger remaining battery capacity decreases
the stopping time. If this does not increase the required number of stops, it
has the effect of reducing the traveling time. By combining both measures with
appropriate goal-dependent weights, the proposed model can thus be used to
find the value of η which gives the best trade-off between traveling speed and
failure probability depending on the position of the charging points along the
trip.

7 Conclusions

This paper has explored a new line of research by analyzing a system composed
by electric vehicles, immersed in a traffic flow, on a real highway, and their
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interaction with the related charging infrastructure. The balance between the
probability of successfully completing the itinerary versus the time required to
complete the trip, that is influenced by the number of stops and the state of
the queue at the charging stations, has been examined under different charging
decision policies. The described system has been modeled and analyzed using
stochastic fluid models, and in particular, Fluid Stochastic Petri Nets. Although
results are still preliminary, the paper shows the appropriateness of the consid-
ered technique for studying the performance and the reliability of the proposed
system.

The model is predisposed to be extended in different directions. More realistic
traffic condition, in which the speed of the car flow can be modulated according
to the traffic intensity, and the battery depletion rate is sensitive to the speed
of the tagged BEV. The incorporation of chargers with different characteristics
that modify the nonlinear charging profile of the battery. The inclusion of the
probability of the charging station to be up or down, and the adaptation of
the stopping decision policies. Further the decision policy can benefit by the
availability of system level controllers (i.e., an app) that informs the driver of
unavailable or free slots along the way.

The model investigated in this paper can be proposed as a building block for
an optimization strategy aimed at finding the best policy parameters for a given
road. Further, the analysis of charging decision policies can provide suitable
algorithms to be implemented on board, mainly in view of the possible new
generation of autonomous EVs.
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Appendix

In Table 2 the location of the service stations along A14 Bologna to Taranto is
shown. In particular: the name of the service stations (column 2), the length of
the segments (column 3) together with the progressive distances from the start
(column 4) and to the end (column 5).

Table 2: Location of service stations along A14 Bologna to Taranto
Station Distances [km]

ϕ Name segment from start to end
0 Bologna 0 0 743.4
1 La Pioppa 2.3 2.3 741.1
2 Sillaro 35.1 37.4 706
3 Santerno 22.1 59.5 683.9
4 Bevano 30 89.5 653.9
5 Rubicone 21.8 111.3 632.1
6 Montefeltro 22.3 133.6 609.8
7 Foglia 25.3 158.9 584.5
8 Metauro 27.3 186.2 557.2
9 Esino 22.5 208.7 534.7

10 Conero 30.3 239 504.4
11 Chienti 24.9 263.9 479.5
12 Piceno 26.9 290.8 452.6
13 Tortoreto 32.9 323.7 419.7
14 Vomano 16.6 340.3 403.1
15 Torre Cerrano 22.8 363.1 380.3
16 Alento 30.8 393.9 349.5
17 Sangro 34.9 428.8 314.6
18 Trigno 29.8 458.6 284.8
19 Torre Fantine 15 493.5 269.8
20 S.Trifone 19.9 517.51 249.9
21 Gargano 48.73 542.23 201.17
22 Le Saline 44.94 587.17 156.23
23 Canne Battaglia 33.19 620.36 123.04
24 Dolmen Di Bisceglie 24.05 644.41 98.99
25 Murge 27.03 671.44 71.96
26 Le Fonti 26.18 697.5 45.78
27 Taranto 36.78 743.4 0
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