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ABSTRACT

The SN transport equation is popularly used to describe the distribution of neutrons in many

applications including nuclear reactors. The topic of this research is a non-linear acceleration

method for accelerating convergence of the scalar flux when the SN equation is solved iteratively.

The SN angular flux iterate is used to compute average direction cosines in each octant. These

direction cosines define a vector in each octant that may not have a unit length. Nonetheless, these

eight average directions are used to form an S2-like equation that serves as the low-order equation

in a nonlinear acceleration scheme. The acronym NL-S2 will be used to denote this non-linear

S2-like equation. This method is investigated for use accelerating k-eigenvalue calculations and in

this case, a k-eigenvalue can be converged on the low order system. NL-S2 is simple to discretize

consistently with the SN equation and when this is done the scalar flux solution for the NL-S2

equation is the same as that for the SN equation.

A primary motivation for this investigation of NL-S2 acceleration is that an SN style sweeper

might be effective for inverting the NL-S2 “streaming plus collision” operator. However, the NL-S2

system, while looking similar to an S2 equation, has some significant differences. For any mesh

other than one consisting entirely of rectangles or rectangular cuboids, the NL-S2 system will have

many cyclic dependencies coupling cells. The NL-S2 method has been investigated in a number

of other works, however all previous investigations focused either on one-dimensional problems

or two-dimensional problems using a structured mesh. In this work, several methods for using

an SN style sweeper were investigated for the NL-S2 system. It is found that modifications can

be made to the NL-S2 linear system that drastically reduce the amount of off-diagonal matrix

coefficients. The modified NL-S2 system is equivalent to the original at convergence of the scalar

flux solution. An SN style sweeper is shown to be effective for this modified NL-S2 streaming plus

collision operator. Acceleration of k-eigenvalue calculations is investigated for the well known

two-dimensional C5G7 benchmark as well as a C5G7 like three-dimensional problem. A pincell

problem containing a large void in the center is also investigated and NL-S2 acceleration is found

ii



to not be significantly impacted by the void. Our results indicate that NL-S2 acceleration is an

effective alternative to traditional diffusion-based methods.
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1. INTRODUCTION AND BACKGROUND

The topic of this dissertation is a non-linear acceleration method applicable to solving the SN

transport equation. The SN transport equation is introduced in the next section. Acceleration is

reviewed in general in Section 1.2. This review is not exhaustive, but meant simply to provide

some basis for describing the benefits and drawbacks of the different methods and why the specific

method investigated in this dissertation may be worth pursuing. The acceleration method investi-

gated in this dissertation is a simple “weighted flux” method where angular integrals of the angular

flux are performed over parts of the unit sphere. The specific name NL-S2 is used for the method

throughout this work. The NL-S2 method has been investigated in a number of other works, how-

ever all previous investigations focused either on one-dimensional problems or two-dimensional

problems using a structured mesh. The previous investigations are reviewed in Section 1.3.2.1.

1.1 Introduction to the SN Transport Equation

The linear Boltzmann equation is a useful description for the transport of particles that do

not interact with each other. For example, it is useful for describing neutrons traveling through a

medium such as a reactor or a radiation shield. In this situation, it is possible that any one neutron

may collide with another neutron, but this type of interaction is so unlikely to occur compared

to the neutron either traveling out of the reactor or shield, or colliding with some atom in the

reactor or shield, that neutron neutron scattering can be ignored. Additionally, the approximation

is made that the neutron can be accurately modeled as a particle. This approximation is useful

for many applications since the typical energy ranges of interest correspond to a small enough

wave length that the particle approximation is appropriate. With these approximations made, the

transport equation can be derived by constructing a conservation equation in phase space where the

phase space is the number of neutrons traveling in a particular direction at a particular speed [1].

The derivation is not discussed further here, instead the integro-differential form of the transport

equation is simply stated below.
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The mono-energetic transport equation with isotropic cross-sections and a fixed source is

shown below where H is the problem domain and ∂H− is the portion of the problem domain

such that ~n(~r) · ~Ω < 0 where ~n(~r) is the outward surface normal for the surface of the domain. ~Ω

is the unit direction vector, ψ(~r, ~Ω) is the angular flux, σt(~r) is the total interaction cross section,

σs(~r) is the scattering cross section, q(~r) is a volumetric source, and g(~r, ~Ω) is a specified flux

value at the inflow portion of the boundary. The convention used here is that
∫

4π
dΩ = 4π. Note

the case of energy dependence and also anisotropic scattering will be discussed later.

~Ω · ∇ψ(~r, ~Ω)+σt(~r)ψ(~r, ~Ω) =
σs(~r)

4π
φ(~r) +

q(~r)

4π
inH /∈ ∂H−

ψ(~r, ~Ω) = g(~r, ~Ω) on ∂H−

φ(~r) =

∫
4π

ψ(~r, ~Ω)dΩ

(1.1)

There are several methods to create an equation discrete in direction which can be solved

numerically to approximate the solution of Eq. 1.1. The SN or discrete ordinates approximation

will be discussed. An angular quadrature rule is selected and the scalar flux is defined as shown in

Eq. 1.2. The SN equations are formed by replacing the continuous angular flux in Eq. 1.1 with the

value at the discrete directions which leads to Eq. 1.3 The operator Lm introduced in Eq. 1.3 will

be referred to as the “streaming plus collision” operator. Additionally, ψ(~r, ~Ωm) will subsequently

be written simply as ψm.

φ =
M∑
m=1

wmψm

ψm = ψ(~Ωm)

(1.2)

Lm ψm =
σs
4π
φ+

q

4π

Lm = ~Ωm · ∇+ σt

(1.3)
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1.2 Solving the SN Transport Equation Iteratively

In practice, solving Eq. 1.3 is difficult due to the coupling of the equations through the scatter-

ing source written on the rhs of the equation which depends on the scalar flux. The linear system

to be solved for any particular spatial discretization of Eq. 1.3 grows as more directions are used in

the angular quadrature set and so the linear system can be very large for many practical problems.

There are many techniques for solving large linear systems iteratively with computers and many

of these methods can be implemented in parallel on a large number of processors. However, the

character of the SN transport equation makes finding a generally effective linear solver difficult.

When there is no scattering or the amount of scattering is low, the equation has a hyperbolic char-

acter and becomes like many decoupled advection-reaction equations and when in addition to this,

as the total cross section becomes small, the equations become purely advective. As the scattering

cross section becomes large, the importance of the advective character of the equation decreases

and the equation instead becomes diffusive.

Many practical problems will consist of heterogeneous materials and the system may contain

some regions where streaming of neutrons is important, and other regions where the scattering

source dominates any streaming. As an example, multigrid methods are commonly used for a

variety of problem types, have very good parallel scalability, and research effort has been made

towards applying these techniques to the transport equation. For example, in [2] a multigrid method

was developed and applied to two dimensional problems with uniform meshes using the corner

balance discretization. The method was shown to be effective for certain problems, but showed

degraded effectiveness for heterogeneous problems. The difficulties in finding a generally effective

solver for Eq. 1.3 in addition to the potentially very large size of the linear system mean that some

additional technique is generally required beyond simply trying to solve the equation as written

with some iterative linear solver. Two such techniques will be discussed next.

The technique referred to as source iteration iteration will be discussed first. Source iteration is

a technique commonly used to break the dependency between the right and left hand side of Eq. 1.3.

This technique is shown in Eq. 1.4 for the fixed source problem where n is an iteration index. The
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scattering source is simply lagged and this technique is actually just Richardson iteration. To

update the scalar flux iterate from φn to φn+1, M independent equations of the form shown in

Eq. 1.4 are solved. Source iteration is also relevant when solving the k-eigenvalue equation as

will be discussed later. The M independent equations that are solved to compute φn+1 from φn

are simply advection equations where the constant ~Ωm takes the place of a flow velocity vector

and ψm takes the place of a quantity that is advected in the flow field. There are many different

effective and scalable solvers for these types of equations. A method referred to as sweeping will

be used in this dissertation for solving Eq. 1.4 as discussed in Section 2.2. This same type of solver

is investigated for use solving the NL-S2 equations as discussed in Section 2.3.1.

Lmψn+1
m =

σs
4π
φn +

q

4π

φn+1 =
M∑
m=1

wmψ
n+1
m

(1.4)

The number of iterations required to converge source iteration increases as the ratio c = σs
σt

,

called the scattering ratio, increases. To see the reason for this, note that the scalar flux solution

iterate φn can be thought of as the solution considering all particles which have scattered up to n

times and so it is clear that in an infinite medium where particles cannot be lost due to leakage,

as c → 1 the number of iterations to converge source iteration goes to infinity as particles can

scatter infinitely many times. Techniques meant to address this issue as well as generally accelerate

convergence are discussed in the next section.

More sophisticated techniques for solving Eq. 1.3 based on Krylov subspace methods are fre-

quently used instead of source iteration. Such methods involve finding an approximate solution x̃

of Ax = b within the n dimensional space span{b, Ab,A2b, ..., An−1b} where n is generally much

less than the dimension of the matrix, otherwise storing too many vectors requires too much com-

puter memory for the method to be practical. GMRES is one such method [3]. There are several

ways GMRES could be applied to the transport equation, but only one method, which is common

today, will be discussed here. The method described here was first discussed in [4] and further
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analyzed in [5]. For the purpose of introducing the specific GMRES method, assume that some

spatial discretization has been applied. Spatial discretization of Eq. 1.3 is discussed in detail in

the next chapter. Consider L = {L0, L1, ..., Lm} which is a row vector of the operators Lm which

are the spatially discrete versions of the operator Lm shown in Eq. 1.3. Also consider an operator

P which operates on the angular flux vector of unknowns and integrates the vector to produce the

scalar flux and S being the operator which acts on the scalar flux and outputs the scattering source.

Then the spatially discrete SN equation can be written as (L− SP )Ψ = qv where Ψ is by

Ψ =



[ψ1]

[ψ2]

...

[ψM ]


with [ψm] being the column unknowns for angular flux ψ(~Ωm). For simplicity, qv is written as

a source vector for angular flux instead of an isotropic source. Now applying PL−1 to the SN

transport equation results in

(I − SPL−1)φ = PL−1qv (1.5)

Because only the action of matrices are required as part of GMRES, L−1 does not need to be

constructed, instead only the action of L−1 is needed. An efficient matrix free way of computing

L−1 is discussed in Section 2.2. GMRES can be thought of as an acceleration method as discussed

in [5] where each scalar flux iterate is computed by considering information from all previous

scalar flux iterates compared with simple source iteration where the next scalar flux iterate is based

only on the previous iterate. In general, preconditioning is still desirable and used to accelerate

convergence of GMRES. An additional benefit to GMRES is that some preconditioning methods

that become ineffective when used with source iteration remain effective when used as part of a

krylov method as discussed in Section 1.3.1. GMRES will also be used to solve the NL-S2 equation

as discussed in Section 2.4.
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To make the discussion in the section more complete, it is noted that there are other forms for

the transport equation besides that shown in Eq. 1.1 which are more commonly solved using algo-

rithms such as multigrid methods. These forms involve second order derivatives, see for example

[6] for the so called self-adjoint angular flux equation. Eq. 1.1 is called the first order transport

equation and the primary reason it is the subject of this dissertation is that there are spatial dis-

cretizations for which the first order form of the transport equation can be solved using matrix free

algorithms. One such specific type of discretization which will be used throughout this dissertation

is described in the next chapter. For more information on recent work related to the development

scalable efficient solvers for the second order form of the transport equation see [7].

1.3 Accelerating Convergence of the Scattering Source

There are many linear and non-linear techniques to increase the effectiveness of source itera-

tion. A good review is given by Adams and Larsen [8]. Essentially all of these techniques involve

projecting the original problem into a subspace either with dependence on fewer directions or no

angular dependence. This is referred to as the low-order problem. The linear acceleration methods

involve calculating a correction which is an estimate for the scalar flux error after one or more

source iterations and then adding this correction to the scalar flux. At convergence and assum-

ing compatible discretization between the transport solve and the low order solve, the correction

calculated is zero and the resulting scalar flux solution is the same as that calculated by transport.

With non-linear acceleration methods, a scalar flux is calculated from the low order problem.

The low order equation contains terms which depend non-linearly on the transport equation. For

some non-linear acceleration methods, the scalar flux solution from the low order system will be

different from the accelerated SN transport solution and these may both be different from the unac-

celerated SN transport solution. However, for the fully consistent NL-S2 acceleration investigated

here, the low order scalar flux solution will be the same as the high-order scalar flux solution and

these are both the same as the unaccelerated solution. The NL-S2 acceleration method is discussed

further in Section 1.3.2.1. Although the subject of this dissertation is a non-linear method, popular

linear and non-linear methods are reviewed next for completeness.
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1.3.1 Linear Acceleration Methods

Two linear techniques will be reviewed briefly in this section. The first method discussed Diffu-

sion Synthetic Acceleration (DSA). This method is specifically reviewed because of its popularity

and effectiveness for certain problems. Transport Synthetic Acceleration (TSA) is discussed next

primarily because this method has some of the same potential benefits that NL-S2 has, specially it

is simple to discretize the low order equation consistently with the SN system and also the same

linear solver that is used to invert the SN streaming plus collision operator can be used for the low

order system.

An important fact relevant to the development of DSA is that when the angular flux is linearly

anisotropic, that is of the form ψ(~r, ~Ω) = a(~r) +~b(~r) · ~Ω, the scalar flux solution of the transport

equation is given by Eq. 1.6 which is clearly a diffusion equation.

∇ · ~J(~r) + σa(~r)φ(~r) = qv(~r)

~J(~r) = − 1

3σt
∇φ

(1.6)

As for what this means physically, it can be shown through asymptotic analysis that the solution

to the transport equation is approximately the solution to the diffusion equation when the total

cross section and the scattering ratio (σs/σt) are large [9]. The importance of this is that these are

the conditions under which source iteration will converge slowly. There are many techniques for

solving a diffusion equation and these can be employed to speed up convergence of the scalar flux

using DSA. The historical development of DSA is covered in the review by Adams and Larsen [8]

and several implementations are possible. One specific implementation is reviewed here and some

items relevant to the overall performance of DSA are briefly discussed.

For simplicity, consider the linear system Ax = b. The residual equation Ae = r where e is

the error and r = b − Ax̃ is the residual where x̃ is some guess for the solution vector x. Starting

with the guess x̃, the residual equation can be solved for the error to give x = x̃ + e. Of course

solving the residual equation is as difficult as solving the original linear system, however, if some
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other linear system existed which was close to A but easier to invert, then an approximate residual

equation could be solved to get an approximate error and this could be used to update a solution

iterate like xn+1 = xn + ẽ where Bẽ = r with B being close to A in some sense but easier to

invert. The idea can be applied towards accelerating convergence of source iteration. Starting with

a scalar flux iterate φn, a new scalar flux iterate can be computed φn+1/2. The residual in this case

is simply rn+1/2 = φn+1/2 − φn. An approximate residual equation is solved using the diffusion

approximation Dẽn+1/2 = rn+1/2 where D is the diffusion operator. The next scalar flux iterate is

then computed φn+1 = ẽn+1/2 + φn+1/2.

An important aspect of the historical development of DSA reviewed by Adams and Larsen

[8] was the realization that consistent spatial discretization between the SN system and diffusion

system was important for the overall stability and effectiveness of the acceleration scheme. To

summarize why this is notable in one sentence, this fact adds some level of complexity to devel-

oping DSA because the discontinuous spatial discretizations commonly used for the first order SN

equation are often not easily applied to diffusion equations. Adams and Larsen [8] review the

historical development of consistent discretizations and also nearly consistent discretizations, the

motivation for the later being that a DSA spatially discretized in a manner close to consistent may

be only marginally less effective than the fully consistent scheme in terms of spectral radius, but

may be much easier to solve numerically. The first work to derive a fully consistent DSA scheme

for discontinuous discretization on a general three-dimensional mesh of tetrahedrals [10] resulted

in a low order system having 16 unknowns on each tetrahedral and was relatively complex to solve.

In that work, they solved a real world problem and compared the fully consistent method derived

with some partially consistent methods and found that one of the partially consistent methods

became unstable while a different partially consistent method required more iterations overall to

converge, but was easier to solve and thus faster overall for the specific problem investigated. The

use of discontinuous finite elements for elliptic problems has been investigated in various works

and more recently these ideas were applied towards developing a partially consistent DSA method

which involves solving a symmetric positive definite linear system and was shown be be uncondi-
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tionally stable for triangular meshes [11] and this was extended to meshes of arbitrary polyhedrons

in [12].

When voids are present, that is σt = 0, a problem with Eq. 1.6 becomes apparent, namely the

diffusion coefficient becomes large as σt → 0 and is undefined for a void. A linear DSA scheme

compatible with voids that involves a modified diffusion coefficient is presented in [13] and the

references therein include past work to develop methods with modified diffusion coefficients in

or near void regions. In [14] the approach is taken to only apply DSA to optically thick regions

and thus this method also does not suffer issues related to an ill defined diffusion coefficient in

void regions. More generally, it has been documented that DSA can become divergent for strongly

heterogeneous problems in multiple dimensions when using DSA with source iteration. However,

this problems can be largely mitigated by using DSA as a preconditioner for krylov iteration instead

of source iteration as described in [15].

The purpose of the previous discussions are to highlight that while DSA is effective for acceler-

ating convergence in many situations, there are some complexities related to consistent discretiza-

tion and handling voids. As discussed in the next chapter, consistently discretizing the NL-S2

equations is simple. Additionally, voids do not cause any numerical difficulty, however, if strongly

heterogeneous material configurations couple with thick cells leads to negative angular fluxes, then

some treatment is required otherwise then NL-S2 systems may be ill posed. This is discussed in

Section 2.5. Additionally, it is shown in Section 3.1.2 that NL-S2 acceleration can suffer con-

vergence issues for strongly heterogeneous problems although a simple solution is shown in that

section.

The previous discussion in this section regarding the residual equation is also applicable to

Synthetic Transport Acceleration (TSA). Instead of approximately solving the residual equation

using a diffusion approximation, the first order SN equation can be used but with fewer directions

in the angular quadrature set than is used when computing the residual. This method is specially

discussed in this work because TSA has several potential benefits in common with NL-S2. First

the same matrix free linear solver discussed in Section 2.2 which is commonly used for the SN
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equation can be used both for TSA and potentially for NL-S2 acceleration. Also, as discussed pre-

viously, it can be difficult to implement a spatial discretization when using DSA that is consistent

with the spatial discretization used for the SN equation. However, it is trivial to consistently dis-

cretize the TSA equation since it is an SN equation and, as is discussed in Section 2.3, consistently

discretizing the NL-S2 system is also trivial. TSA is discussed in [16] where conjugate gradient is

employed to solve the lower order SN equation.

1.3.2 Non-linear Acceleration Methods

Non-linear methods of accelerating the convergence of iterative solutions to the SN have in

common with linear methods that they rely on an “low order” equation with dependence on fewer

directions that the SN equation or no angular dependence. These methods include in the low order

system a term with a non-linear dependence on the angular flux SN equation and this non-linear

term typically encompasses information about the shape of the scalar flux solution which could

otherwise not be included in the low order equation. Whereas linear methods generally require

that the low order system be consistently or close to consistently discretized with the SN spatial

discretization, it is simpler to use a low order system that is not consistently discretized when using

nonlinear methods. The scalar flux is computed from the low order system, and so, for example,

one might want to use a more accurate spatial discretization for the low order system and use a less

accurate discretization for the SN system since it is only used as input to the non-linear terms in

the low order equation. In this work, the low order system investigated is discretized consistently

with the SN equation.

Some fundamental ideas underlying the nonlinear methods relevant to this dissertation are

presented by Anistratov and Gol’din [17]. The ideas presented in that work are relevant to this

dissertation because the method investigated here can be thought of as belonging to a family of non-

linear acceleration methods that involve a low order equation where the nonlinear terms depending

on the transport equation are developed by taking moments of the transport equation. What is

referred to as NL-S2 acceleration in this dissertation involves taking the zeroth moments of the

transport equation over different parts of the angular domain. NL-S2 is discussed in more detail in
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the next section. This method was first developed for acceleration of a time dependent transport

calculation in one-dimensional spherical coordinates [18] and also in [19] where a more general

form of the method was used for steady state transport in slab geometry.

NL-S2 and closely related methods will be discussed specifically in the next section. Before

that discussion, non-linear diffusion like methods are summarized to compare them with the DSA

discussion in the previous section. Quasi-diffusion is most closely related to the method discussed

in the next section. Another method commonly referred to as non-linear diffusion acceleration

(NDA) can be summarized as a method using a drift-diffusion equation where a drift vector has

been added so that the scalar flux from the low order NDA equation is the same as the SN solu-

tion. A review of NDA development as well as a formulation for discontinuous discretization is

included in [20]. Again, these diffusion based methods require some special treatment for prob-

lems with voids. For NDA, a method similar to that mentioned previously for linear DSA in [13]

was presented in [21].

1.3.2.1 NL-S2 Acceleration

The NL-S2 method investigated is derived by first partitioning the unit sphere into octants.∫
Ωk
dΩ is the integral over the kth octant and the partial range scalar flux will be written using

Φ instead of φ to avoid confusion with scalar flux. The partial range scalar flux over octant k

is defined as ΦΩk
(~r) =

∫
Ωk
ψ(~Ω, ~r)dΩ. The general scheme for NL-S2 acceleration of source

iteration is shown in Eq 1.7 where, for simplicity, the equations below are written with continuous

angular dependence where L = ~Ω ·∇+σt. In the scheme shown, one transport solve is performed

and then φn+1 is computed from the NL-S2 equation.
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Lψn+1/2 =
q

4π
+
σs
4π
φn

~M
n+1/2
Ωk

=

∫
Ωk

~Ωψn+1/2dΩ∫
Ωk
ψn+1/2dΩ

(∇ · ~Mn+1/2
Ωk

+ σt)Φ
n+1
Ωk

=
2

π
q +

2

π
σsφ

n+1

φn+1 =
8∑
k

Φn+1
Ωk

(1.7)

Solving for φn+1 obviously involves solving for the eight partial range scalar flux values. As

written in Eq. 1.7, the lhs and rhs of the NL-S2 equation are coupled. Solving the coupled equation

will generally be difficult for multidimensional problems. The difficulty is not as severe as for

the SN equation since there are only eight average directions instead of however many directions

are in the SN quadrature set (many more than eight in general), but to make the computation

of φn+1 practical, source iteration must be used on the NL-S2 equation. As the scattering ratio

increases close to one, source iteration on the lower order system will converge slowly. However,

a lower order iteration can still be much faster than an SN iteration and thus even if the total

number of iterations required to converge to a scalar flux is not reduced, the calculation may still

be accelerated if the bulk of the iterations can be shifted to the low order system.

Both source iteration and GMRES are investigated for solving Eq. 1.7. Source iteration is

discussed in this section for simplicity. Solving the NL-S2 equation is discussed in detail in sections

Section 2.3.1. The term “streaming plus collision operator” will be used again to refer to the left

hand side of the NL-S2 source iteration equation shown in Eq. 1.8. Whether the term “streaming

plus collision” operator is meant to refer to the SN equations or the NL-S2 equations, that is ~Ω ·

∇ + σt or ∇ · ~MΩk
+ σt, will be specified if there is any ambiguity. Eq. 1.8 is obviously similar

to the SN source iteration equation. Several different options exist for picking an initial guess for

the source iteration shown in Eq. 1.8. One obvious choice would be to use φn+1/2 from the initial

SN iteration shown in Eq. 1.7. This generally is a good choice for an initial guess. One potential

complication involves the situation where negative angular fluxes result from the SN solve which

is discussed in detail in Section 2.5.
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(∇ · ~Mn+1/2
Ωk

+ σt)Φ
j+1
Ωk

=
2

π
q +

2

π
σsφ

j

φj+1 =
8∑
k

Φj+1
Ωk

(1.8)

The introduction in this section thus far has not involved spatial discretization. In the next

chapter, the spatial discretization used in the SN equation will be introduced. Following this, the

specific NL-S2 formulation investigated is also introduced in the next chapter. The primary idea of

the formulation is summarized here. The coefficients for the spatially discretized SN equations are

simply averaged and these averages become the coefficients for the NL-S2 equations. Thus, there is

no need to discuss a spatial discretization of Eq. 1.7 since it follows directly from the formulation.

A very similar methodology was used by Adams [22] where in addition to taking moments over

direction, a spatial moment was used and the resulting non-linear S2 like equation had unknowns

only on cell edges. Although the method presented in [22] was easily generalized to multiple di-

mensions, multidimensional problems and unstructured meshes were not investigated. The NL-S2

formulation used in this work only uses moments in angle and so as shown in Section 2.3, average

coefficients must be stored for all volumetric terms as well as face terms. This formulation is in

some ways simpler. But the primary novelty of the work presented in this dissertation is an in-

vestigation into the effectiveness of using an SN style sweeper for solving the NL-S2 equation for

complicated two-dimensional and three dimensional unstructured meshes and the simple technique

discussed in Section 2.3.2 to increase the efficiency of the sweep solver.

Eq. 1.7 actually shows a specific example of a more general method where the average direction

~Mk,n+1/2 could be computed using some weight function. As shown in the equation, this weight

function is simply one. Use of different weight factors are discussed in [23] where slab geometry

is investigated and a weight of |µ|α is investigated with α ∈ [0, 1] and µ being the direction

cosine and this idea was expanded upon in [24] with a weight factor of 1 + β|µ|α. The idea of

generally weighted moment methods was investigated further for two-dimensional problems using

a uniform mesh in [25]. In this work, the low order equation was discretized independently of the
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transport equation using a lumped bilinear discontinuous finite element discretization while the

needed transport equation input was approximated using the method of short characteristics with

parabolic interpolation.

1.4 k-Eigenvalue Calculations

The mono-energetic k-eigenvalue equation with isotropic cross-sections is shown in Eq. 1.9.

Power iteration can be used to calculate the k-eigenvalue. Given iteration values for φm and km,

power iteration can be summarized by Eq. 1.10. To solve for ψm+1 in the first part of this equa-

tion, source iteration would generally be used. Each power iteration requires solving the transport

equation to obtain an updated scalar flux iterate.

Lψ =

(
1

k

1

4π
νσf +

σs
4π

)
φ (1.9)

Lψn+1 − σs
4π
φn+1 =

1

4π

νσf
kn

φn

kn+1 =

∫
V
φn+1dV∫
V
φndV

kn
(1.10)

Instead of attaining a scalar flux solution iterate from the SN equations, the scalar flux and k-

eigenvalue can be converged on the low order system as shown in Eq. 1.11. Note that in this

equation, the iteration indices n + 1 are written on the scalar flux and the k-eigenvalue meaning

that a k-eigenvalue iterate is solved for using the low order equation.

Lψn+1/2 =

(
1

4π

νσf
kn

+
σs
4π

)
φn

∇ ·
(
~M
n+1/2
Ωk

+ σt

)
Φn+1

Ωk
=

(
1

4π

νσf
kn+1

+
σs
4π

)
φn+1

(1.11)

The low order system can be solved with power iterations. Source iteration would also gener-

ally be employed as an inner iteration on the streaming plus collision operator when solving the

low order system. The scheme shown in Eq. 1.11 is applicable to solving energy dependent trans-

port eigenvalue problems. In that case, source iteration can be used as a inner iteration to converge
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the within group low order equation while lagging k and the scattering source from other groups.

1.4.1 Energy Dependence

The energy dependent transport equation is of interest to this work as the k-eigenvalue prob-

lems investigated in chapter 5 will use the multigroup transport equation. The energy dependent

transport equation is shown below in the fixed source form for simplicity.

~Ω · ∇ψ(~r, ~Ω, E)+σt(~r, E)ψ(~r, ~Ω, E) =
1

4π

∫ ∞
0

σs(~r, E
′ → E)φ(~r, E ′)dE ′ +

q(~r, E)

4π

φ(~r, E) =

∫
4π

ψ(~r, ~Ω, E)d~Ω

(1.12)

A common technique for discretizing the energy dependence of this equation is the multigroup

treatment where the energy domain of interest for the calculation is divided into G intervals. A

common scheme used is to number the intervals starting from 0 at the highest energy. For any

energy interval Eg to Eg−1

ψg(~r, ~Ω) =

∫ Eg−1

Eg

ψ(~r, ~Ω, E)dE

φg(~r) =

∫ Eg−1

Eg

φ(~r, E)dE

The multigroup cross sections are defined through use of a weighting spectrum f(E), which ideally

is equal to the energy dependent scalar flux or angular flux

σx,g(~r) =

∫ Eg−1

Eg
σx(~r, E)f(E)dE∫ Eg−1

Eg
f(E)dE

The multigroup equation for group g is
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Lm,gψm,g(~r) =
G∑

g′=1

1

4π
σs,g′→gφg′(~r) +

qg(~r)

4π

The scattering source now couples all directions and energy groups. Source iteration is relevant to

this energy dependent case

Lm,gψn+1
m,g (~r) =

σs,g(~r)

4π
φng (~r) + qs,g(~r) +

qg(~r)

4π
(1.13)

where qs,g(~r) is a source from scattering of particles from any energy g′ into group g. If qs,g(~r) is

also lagged, then Eq. 1.13 is analogous to the monoenergetic transport equation and can be solved

for φn+1
g as shown in Eq. 1.4. After converging the inner within group iteration, the value of qs,g(~r)

for each g can be calculated and this process repeated until convergence.

1.5 Anisotropic Scattering

A more general anisotropic scattering source includes a scattering cross section with a depen-

dence on direction. Consider the monoenergetic case, then a general scattering source for ψ(~Ω)

can be written as

qgeneral(~Ω) =

∫
4π

ψ(~Ω′)σs

(
~Ω′ → ~Ω

)
dΩ′

However, the scattering cross section in practice depends only on ~Ω′ · ~Ω and this feature allows for

the anisotropic scattering cross section to be represented by an expansion of spherical harmonics

as follows where Y m
` is the spherical-harmonic function of degree ` and order m

qgeneral(~Ω) =
∞∑
`=0

+∑̀
m=−`

2`+ 1

4π
σ`φ

m
` Y

m
` (~Ω)

φm` =

∫
4π

ψ(~Ω)Y m
` (~Ω)dΩ
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and σ` is shown below where ξs ≡ ~Ω′ → ~Ω in the scattering frame. ξs is related to the cosine

with the z-axis, ξ, in the lab frame as well as the lab frame azimuthal angle, ω, by the following

ξs = ξξ′ +
√

(1− ξ2)(1− ξ′2) cos(ω′ − ω)

σ` = 2π

∫ +1

−1

σs(ξs)P
0
` (ξs)

Problems with anisotropic scattering will be investigated as part of the proposed work. NL-S2

acceleration for these problems will be implemented by only accelerating the scalar flux. Higher

moments are simply lagged and treated as an additional source when performing source iteration

to converge a NL-S2 solution. This is shown below where φm,n` is the scalar flux moment m or

order ` at iteration index n. Results exploring the effectiveness of this are presented in Section 4.3.

In general, this will become less effective as the anisotropic scattering becomes more significant.

Lψn+1/2 =
q

4π
+

L∑
`=0

+∑̀
m=−`

2`+ 1

4π
σ`φ

m,n
` Y m

` (~Ω)

~Mk,n+1/2 =

∫
Ωk
~Ωψn+1/2dΩ∫

Ωk ψn+1/2dΩ

∇ ·
(
~Mk,n+1/2φk,n+1

)
+ σtφ

k,m+1 =
2

π
q+

2

π
σsφ

n+1 +
L∑
`=1

+∑̀
m=−`

2`+ 1

4π
σ`φ

m,n+1/2
` Y m

` (~Ω)

(1.14)
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2. NL-S2 FOR DG DISCRETIZED SN TRANSPORT

To this point, the equations presented have been continuous in space. This chapter introduces

the spatially discrete SN equation. The spatial discretization of the SN equation is important since

the NL-S2 equation investigated in this work will be consistently discretized. The spatially discrete

NL-S2 equation will be introduced after the SN equation.

This chapter also discusses solving the spatially discretized equations. The idea of a sweep

solver is introduced and its use for the SN equation is discussed. Its potential use for the NL-S2

equation is discussed as well. A method is introduced in this chapter to modify the NL-S2 system

to make the sweep solver more effective. Since this section introduces the consistently discretized

NL-S2 equations, this chapter also includes a discussion of a situation where the consistently dis-

cretized NL-S2 equations may not be solvable, that is when negative angular flux solutions are

present in which case an inconsistent NL-S2 system is used.

2.1 DG Discretization

The upwind discontinuous Galerkin (DG) finite element method (FEM) will be used for spatial

discretization in this work. This method was introduced for the purpose of solving the SN transport

equation in [26] and initially analyzed in [27]. This first analysis arrived at an error estimate of hk

on general meshes and hk+1 for structured meshes although it was noted that the numerical results

showed better convergence for general meshes than that arrived at from the analysis. The error

estimate was improved further for hk+1/2 in [28] for general meshes. The is a commonly used

linear discretization.

The DG Discretization will be introduced in this section using the spatially discretized version

of Eq. 1.4 which shows the source iteration method for solving the SN equation. Consider that

the problem domain H is covered by a triangulation H =
∑H

h Th where Th is a mesh element.

The term triangulation and triangles are used here and subsequently to refer to a general mesh of

elements covering the domain, the mesh elements may be triangles or other shapes. Consider that
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ψn+1
m (~r) is approximated by a function ψ̃n+1

m (~r) in the space V (Th), such as the space of polyno-

mials of degree less than k, which are continuous within a triangle Th. No continuity condition is

enforced between triangles. The weak form of Eq. 1.1 is formulated by multiplying the equation

by a test function v ∈ V (Th) and then integrating over the problem domain. Integration by parts

is used resulting in Eq. 2.1. The solution ψ̃n+1
m (~r) is determined by finding the function which

satisfies Eq. 2.1 for all v(~r) ∈ V (Th). Note that the scattering source contribution dependent on

the previous iterate of the scalar flux φn as shown in Eq. 1.1 is written below in Eq. 2.1 simply as

qnt so this term is meant to included the scattering source as well as any volumetric fixed source.

Also note that the same equation applies for problems with anisotropic scattering or with a lagged

fission source simply by changing qnt to account for these in which case the source may become a

function of angle in addition to just space as written below.

H∑
Th

{∫
h

[
σtv(~r)ψ̃n+1

m (~r)− ψ̃n+1
m (~r)~Ωm · ∇v(~r)

]
dh+

∫
∂h

ψ̂n+1
m (~r)~Ωm · ~n(~r)v(~r)ds

}
=

∫
H

qnt (~r)vj(~r)dh

(2.1)

The above equation is applicable in two or three spatial dimensions with
∫
h
dh being an integral

over the volume or area of the triangle in two or three dimensions and
∫
∂h
ds is an integral over

the surface area or perimeter of the triangle with ~n(~r) being the outward pointing normal. The

term including
∫
H
dh is an integral over the whole domain covered by the triangulation. The term∫

∂h
ψ̂m(~r)~Ωm · ~n(~r)v(~r)ds is not straight forward due to the discontinuity at the the border of each

triangle, the treatment of this integral is described succinctly in [29] for the closely related problem

of linear advection (identical in form to the SN equation except that ~Ωm is replaced by a vector

specifying the velocity of the unknown at each point). Formally applying integration by parts leads

to ψ̂ being equal to the average value of ψ̃ at the discontinuity, that is 1
2
{ψ̃m(~r∂h+ε)+ψ̃m(~r∂h−ε)}

where ε is a small positive number. This definition leads to a method which is only stable in a

L2(H) norm. Additionally, using this definition for ψ̂ means that the solution for each triangle in

the mesh depends on all of its neighbors and so to solve the equation requires inverting a matrix
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using some general method like Gaussian elimination. For a large mesh, Gaussian elimination

is not computationally practical and this linear system would need to be solved iteratively. The

“upwind” flux can be used for ψ̂ instead which leads to a method that is L∞ stable and also block

lower triangular. This means the equation can be solved in a matrix free method, by visiting each

triangle in the mesh in a specific order and inverting a small dense matrix to solve Eq. 2.2 in

each triangle. This is simply inverting the block diagonals followed by forward substitution. The

upwind DG discretized SN equation is shown below

∫
h

{
σtv(~r)ψ̃n+1

m (~r)− ψ̃n+1
m (~r)~Ωm · ∇v(~r)

}
dh+

∫
∂h

ψ̃∗,n+1
m (~r)~Ωm · ~nv(~r)ds

=

∫
h

qnt (~r)vj(~r)dh

(2.2)

where the upwind flux ψ̃∗m(~r) is shown below. In this definition, consider a face belonging to cell

T1 with outward normal ~n1(~r) that either boarders another cell T2 with outward normal, that is an

internal face, or is part of the problem domain and thus an external face. Then the upwind unknown

is defined as follows

ψ̃∗m(~r) =


ψ̃1
m(~r), if ~Ω · ~n1(~r) > 0

ψ̃2
m(~r), if ~Ω · ~n1(~r) < 0 and internal face

gm(~r), if ~Ω · ~n1(~r) < 0 and external face

A second formulation equivalent to Eq. 2.2 is shown in Eq. 2.3 and is sometimes presented

in literature. This second formulation can be found from applying integration by parts again to

Eq. 2.2, that is use integration by parts to arrive at Eq. 2.1, apply the upwind flux stabilization to

this, and then use integration by parts again to arrive at Eq. 2.3
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∫
h

(
~Ωm · ∇ψ̃m(~r) + σtψ̃m(~r)− q(~r)

4π

)
v(~r)dh+∫

∂h− /∈∂H−
~n · ~Ωm(ψ̃m(~r)− ψ̃∗m(~r))v(~r)ds+∫

∂h−∈∂H−
~n · ~Ωm(ψ̃m(~r)− gm(~r))v(~r)ds = 0

(2.3)

where ∂h− is defined to be the portion of the cell boundary such that ~n(~r) · ~Ωm < 0 where ~n(~r) is

the outward normal of the face and ψ̃∗m(~r) is the upwind flux as defined earlier.

To generate an equation that can be solved practically, the standard finite element procedure

is followed which is to consider only a subspace vh ∈ V (Th) instead of considering all functions

v ∈ V (Th). Additionally, these functions vh ∈ V (Th) will be chosen so that they are non-zero only

over individual triangles so that the linear system representing the equation to be solved will be

sparse. The standard Galerkin procedure is that the solution is also approximated in this subspace,

ψ̃m(~r) =
∑I

i ψm,ivi(~r), where ψ̃m(~r) is the approximate solution. ψm,i are the coefficients to be

solved for by enforcing Eq. 2.4 on every triangle where the upwind flux is defined in the same

manner discussed above. There are many possible choices for the test and basis function space vh.

Some specific examples are discussed in the next section.

∫
h

{
σtvi(~r)ψ

n+1
m,j uj(~r)− ψn+1

m,j uj(~r)
~Ωm · ∇vi(~r)

}
dh+

∫
∂h

ψn+1
m,∗ u∗(~r)~n · ~Ωmvi(~r)ds

=

∫
h

qnv (~r)vj(~r)dh :∀ vi, uj
(2.4)

Some specific examples of DG discretizations are introduced next to facilitate discussion of the

DG NL-S2 acceleration implemented in this dissertation. The specific example of two dimensional

problems with linear functions defined on triangular mesh elements are discussed first for simplic-

ity. The basis functions used in this dissertation are actually the so called PWLD basis functions

[38] and these will be investigated on quadrilaterals and triangles in two dimensions as well as

hexahedrals in three dimensions, but the ideas presented more simply for linear basis function on

triangles below are generally applicable. The basis functions are defined on a reference right trian-
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gle in a natural coordinate system, defined by coordinates (ζ, η), where the two legs of the triangle

have length one. The linear basis functions N1(ζ, η), N2(ζ, η), N3(ζ, η) are written below and also

plotted in Figure 2.1.

N1 = 1− ζ − η

N2 = ζ

N3 = η

(2.5)

0
0.5

1 0
0.5
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0
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1
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0
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0
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1
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Figure 2.1: Transformation from the normal x,y coordinate system to the reference coordinate
system

The triangles used to create a mesh can be of a general shape. The triangular elements can

be transformed from the Cartesian coordinate system used for the mesh to a reference coordinate

system as shown in Eq 2.6 so that the integrals required to build the finite element system can be

written in terms of the reference coordinate system. This is illustrated in Figure 2.2
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Figure 2.2: Transformation from the Cartesian x,y coordinate system to the reference coordinate
system

The finite element method being described here is isoparametric meaning that the location of

the unknowns corresponds with the geometric points used to describe the geometry, that is the

vertices of the triangle. The nodes of each triangle in the domain are numbered in a counter-

clockwise sense and then the Cartesian x, y coordinates for element e can be written in terms of

the reference basis as shown in Eq. 2.6 below.

x = xe1 + c3ζ − c2η

y = ye1 − b3ζ + b2η

(2.6)

The integrals in the weak formulation of the problem are transformed and evaluated on the ref-

erence coordinate system. The integral over the volume
∫
h
dh is transformed to reference element∫

h
dh =

∫
ĥ
|J |dĥ where |J | is the determinant of the Jacobian matrix, dh is the differential volume

of the original element, and dĥ is the differential volume of the reference element. The Jacobian

matrix for the specific example being discussed here in two dimensions is given by

J =

∂x∂ζ ∂x
∂η

∂y
∂ζ

∂x
∂η

 (2.7)

The term “Jacobian” is usually used to refer to the determinant of the Jacobian matrix, written here

as |J |. For the specific example of linear basis functions on triangles, transforming the integral of
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a function over a triangular element h to the reference element becomes:

∫ ∫
h

f(x, y)dxdy =

∫ 1

0

∫ 1−η

0

f(x(ζ, η), y(ζ, η))|J |dζdη

The divergence operator applied to the test function must also be transformed to the reference ele-

ment. For the specific example of triangular elements discussed here, that is given by∇x,yv(x, y) =

J−1∇ζ,ηv̂(ζ, η) where the gradient operator is a column vector

∇ζ,η =

 ∂
∂ζ

∂
∂η


and v̂ will be used to denote the test or basis functions in the reference coordinate system.

With an appropriate Jacobian matrix, the same procedure applies for transformation of x, y, z

to a reference coordinate system x̂, ŷ, ẑ. From Eq. 2.6 and based on the definition of the Jacobian

matrix show in Eq. 2.7, it follows that for the simple example case of linear basis functions on

triangular elements the coefficients of the Jacobian matrix are constants for each triangular element.

In general, the Jacobian matrix can be a non-constant function of the reference coordinates and

Cartesian coordinates.

Surface integrals are also needed on each element. The following equalities [30] relate coordi-

nates between ζ and η to x and y.

d~ζ =

∂x∂ζ
∂y
∂ζ

 dζ d~η =

∂x∂η
∂y
∂η

 dη
This can be used for the simple example case of triangle with linear elements discussed here. For
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example on the face where η is constant

~n1,2d`1→2 =


∂x
∂ζ

∂y
∂ζ

0

×


0

0

1

 dζ

where ~n1,2 is the outward normal and d`1→2 is a differential length of side 1,2 of the triangle

(Figure 2.2). In this case, the result is simply ~n1,2d`1→2 = ~n1,2L1,2dζ where L1,2 is the length of

side 1,2 and the same procedure leads to a similar equality for the two other sides. Additionally,

the same procedure applies to other basis functions and in three dimensions.

The spatially discretized version of Eq. 2.2 can be written in terms of matrix elements. The

specific formulation of the integrals for triangles can be determined from the definitions provided

previously, but the integrals are written in a form below that is generally applicable to different

basis functions and in different dimensions with the appropriate interpretation of the integrals.

Mi,j =

∫
ĥ

ûj v̂i|J |dĥ

Si,j =

∫
ĥ

−ûj∇T
x̂,ŷ,ẑv̂i(J

−1)T |J |dĥ

F ĥ,k
i,j =

∫
Fk
ĥ

ûj v̂idsk

(2.8)

In Eq. 2.8 sk is the outward normal for reference element face number k. F k
ĥ

is meant to denote

face k of triangle ĥ.

2.1.1 Precomputed Local FEM Matrices and Their Important to Efficient Solves

For each triangle in the mesh, the coefficients in the matrices M , S, and F defined in Eq. 2.8

can be computed and stored as part of an initial step before beginning the solve for any angular

flux values. In practice, the coefficients of these matrices are computed using a quadrature formula.

Even when the form of the integrals is simple, using quadrature has the advantage that a generic

piece of program logic can compute the value of these coefficients for a variety of different basis

functions instead of having to program in analytical results for different possible basis functions
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that might be used. In this dissertation, only elements with straight faces are considered, that

is elements where the surface normal is constant and so the form of F of interest here is F ĥ,k
i,j =∫

Fk
ĥ

~nkγûj v̂idswhere ds is a differential length or area along the face k of the reference element, ~nk

is the normal for the face of the element in the actual coordinate system, and γ is some constant.

With these definitions Eq. 2.4, which is to be enforced within each triangle in the mesh, can be

written as AmΨ = q(t,m) where Ψ is the column vector consisting of the ψ̃n+1
m,j values for the

element. The superscriptm is not meant to mean a power but instead denotes that these coefficients

are defined for the SN angular flux direction ~Ωm. The source q(t,m) is written simply as a source of

angular flux. The coefficients of Am and values of the rhs vector q(t,m) are defined as follows:

Ami,j = σtMi,j + ~Ωm · Si,j +
∑

~nk·~Ωm>0

~Ωm · F k
i,j

qt,i,m =
∑
j

(qv,j,m + qns,j,m)Mi,j −
∑

~nk·~Ωm<0

∑
j∗

~Ωm · F k
i,j∗ψ

n+1
j∗

(2.9)

In any finite element computation, the values of M , S, and F obviously need to be computed.

In the case of solving the DG discretized SN equation with source iteration, the equation is solved

in a matrix free way element by element as described in the previous section. Therefore, the

values of M , S, and F could be computed each time they are needed to solve for the angular flux

within an element. As discussed in Section 1.2, solving the SN equation in multiple dimensions

typically involves a large number of unknowns. Since M , S, and F do not depend on ~Ω or energy

in an energy dependent calculation, the M , S, and F matrices can be computed once at the start

of the calculation for each cell, stored, and then used for each SN direction. This is a balance

between computational speed and memory footprint. Obviously even more time could be saved

by example storing ~Ωm · Si,j for each element and each m instead of just S, but for anything

more than a small number of directions, this usually is prohibited by memory limits. A further

efficiency can be realized for multi-group calculations. In that case, ~Ωm·Si,j and
∑

~nk·~Ωm>0
~Ωm·F k

i,j

can be computed once for each direction and then these contributions to the FEM matrices used

for each energy group without having to recompute them. This amortizes the cost of these two
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computations over all of the energy groups and lowers the computational cost per unknown. These

two techniques are used by the SN sweeper in Chi-Tech [31].

2.2 Solving the DG Discretized SN Equation with Sweeping

The linear systems arising from discretizing the streaming plus collision operator (the left hand

side) of Eq. 1.4 are logically block lower triangular for many commonly used spatial discretiza-

tions including DG discretizations. Logically block lower triangular as used here means that the

matrix for the linear system, if formed, may not be block lower triangular, but that there is a per-

mutation such that the matrix is block lower triangular. For example, the upwind DG finite element

discretization discussed in the previous section on a two-dimensional mesh with no concave cells

would result in a logically block lower triangular matrix for each of the SN equations with any

angular quadrature set.

Sweeping refers to a matrix free method for directly inverting the logically lower triangular

systems with forward substitution. It directly inverts the streaming plus collision operator. The

key to inverting the streaming plus collision operator in a matrix free manner is that the cells in

the mesh must be visited in the order which leads to a block lower triangular system. This idea is

illustrated in Figure 2.3 for a uniform mesh of 9 cells and one particular direction. This ordering

of cells will be referred to as the sweep ordering. The yellow cells in the figure have all upwind

information they need to compute their angular flux solutions. Once the angular flux solution is

computed in the yellow cells, their downwind neighbors can compute their solution in the next

stage. As seen in this figure, the yellow cells appear to “sweep” across the mesh hence the term

sweep is generally used to describe solving the SN equations in this manner. The term “sweep”

in this dissertation will generally be used to mean solving all the directions in the SN quadrature

set, not just a single direction. The ordering of cells leading to a block lower triangular system

can be different for each direction when the mesh is unstructured. When the mesh is uniform, all

directions pointing in the same octant will have the same sweep ordering, but directions pointing

in different octants will have different orderings.

There are multiple reasons to implement sweeping for solving the SN transport equation. As
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Figure 2.3: Depiction of the first three stages in solving for a particular flux direction ~Ω1 on a
uniform mesh with “upwind” discretization. The flux in the yellow cells are being solved for in
the shown stage and the solution in the green cells has already been computed. The process is
continued until all cells are green. The same idea applies to any other direction ~Ωm although the
order that cells are solved in may be different.

mentioned above, the method is matrix free. Secondly, if you have a lower triangular system,

forward substitution will generally be the most efficient way to solve the system. Lastly, although

inversion of the block lower triangular system is generally a serial process, the sparse nature of

the linear systems arising from most discontinuous FEM spatial discretizations used for the SN

equation allows for parallelism of the forward substitution. Parallel implementation of sweepers

is discussed in more detail in the next section. Sweeping is discussed specifically in this section

because this algorithm will be used to solve the NL-S2 system in addition to the SN system. As

mentioned in the introduction, a significant potential advantage of NL-S2 acceleration over other

techniques is that the NL-S2 equations can potentially be solved using sweeps, eliminating the

need to use a different type of linear solver for the low order system.

The sweep ordering required among the cells to invert the streaming plus collision operator can

be represented as a directed graph. The vertices of the graph represent the cells and arrows point

from a cell that has outgoing angular flux to the cell that depends on that flux. The graphs are useful

because there are many common algorithms for representing and manipulating directed graphs

using computers and so they are important for actually computing the proper sweeper ordering.

This idea is explained through several specific examples.

28



Figure 2.4 shows a uniform mesh consisting of a 3x3 grid of square elements. Consider the

example of the three directions ~Ω1, ~Ω2, ~Ω3 shown in the figure which all point in the same octant.

The angular flux solution in each cells depends on its neighbor cells solution through the upwind

fluxes and this information is represented as a directed graph in Figure 2.5. An example graph for

directions ~Ω10, ~Ω11, ~Ω12 is shown in Figure 2.6. Some simple ideas about how this type of graph

can be constructed and used to determine a sweep ordering will be discussed next. This is only a

brief overview since the use of these algorithms are common and they were already implemented

in Chi-Tech for solving the SN equation. Considerations specific to using these algorithms as part

of solving the NL-S2 equations are discussed in Section 3.3.

To construct the directed graph graph for any particular angular flux direction, a data structure

can first be created that has a vertex for each element in the mesh and includes the ability for each

vertex to store which other vertices it is connected to through an outgoing arrow and also those it is

connected to through an incoming arrow. The directed graph can then be constructed by iterating

through the entire mesh cell by cell in the following way. For each cell, each face is considered

and a dot product is taken between the outward face normal and the angular flux direction of

interest. If the dot product is positive, then the neighboring element is added to a list of elements

or vertices in the graph to which the current vertex is connect by an outgoing arrow. If the the dot

product is negative, then the neighboring element is added to a list of vertices to which the current

vertex is connect by an incoming arrow. In the case of a uniform mesh like the simple example

shown, the directed graph created in this way will be acyclic meaning there are no cycles in the

graph. Additionally, for all unstructured meshes investigated in this work, for example that two

dimensional mesh shown in Figure 3.1 or the three dimensional extruded mesh used in Section 4.2,

the directed graph used to compute a sweep ordering will be acyclic. Cycles in the directed graph

are discussed further in Section 2.2.2. For the purposes of the discussion in this section, the graph

being acyclic simply means it can be used to determine a sweep ordering without additional steps

being required to resolve cyclic dependencies in the graph.

The directed graph once constructed can be used to determine a sweep ordering in the following
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way. First an empty list is initialized to which vertices will be added in a specific order. This will be

called the sweep ordering list. Next, the vertices of the graph are all visited and any vertex which

has zero vertices in its list of vertices on which it has an incoming dependency is added to the sweep

ordering list of vertices. In the simple case of the uniform mesh shown, this search will obviously

find only a corner element, for example, in the directed graph constructed for ~Ω1, ~Ω2, or ~Ω3, only

element C1 will be added to the sweep ordering list in this first step. More than one element

may in general be added to the sweep ordering list in this first step when an unstructured mesh

is used and/or the domain being meshed in not a simple rectangular or cubic shape. For each

vertex that was added to sweep ordering list, the following procedure is performed. Each vertex

that is connected to a vertex in the sweep ordering list and is connected by an arrow going from

the vertex in the sweep ordering list to the connected vertex is visited. The count of incoming

dependencies for this connected vertex is decremented by one. After decrementing, if the total

number of incoming dependencies is zero, this connected vertex is added to the sweep ordering

list. For the specific example of the directed graphs for either ~Ω1, ~Ω2, or ~Ω3, vertices C2 and C4

will be visited based on vertex C1 initially being the sweep ordering list. Both C2 and C4 have one

incoming dependency so when this total is decremented, the new total is zero and both of these

vertices will be added to the sweep ordering list. Note that multiple vertices can be added to the

sweep ordering list during the step where connected vertices are visited. So a number is stored

which is the current position in the sweep ordering list, that is the position of the current vertex

in the list for which its connected vertices are being visited. For the example of an acyclic graph

being discussed here, the sweep ordering list will always contain new vertices for which to visit

other connected vertices up until all vertices have been added to the sweep ordering list.

The next few steps of the algorithm are followed for the example shown below of the uniform

mesh for completeness. At this point, the sweep ordering list contains vertices C1, C4, and C2.

The order of vertices C2 and C4 in the list is arbitrary other than that they both come after C1. Say

C4 was added to the list before C2. Then the current position of vertices in the sweep ordering list

will be increased by one (operations are complete for vertex C1) and C4 will be the next vertex.
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Note the current position is the second vertex in the list, but there are three total vertices in the list

(C1, C4, C2). The vertices connected to C4 will now be visited and their total number of incoming

dependencies will be decremented by one. This leads to C7 being added to the sweep ordering list.

C5 is not added to the list as its total number of incoming dependencies after decrementing is still

one. The current position in the sweep ordering list is then increased by one to the next vertex in

the list, C2. Its two connected vertices are visited. These include C5 which already had one value

decremented from its total number of incoming dependencies and after this total is decremented

again, the new total is zero and so C5 is added to the sweep ordering list. C3 is also visisted and it

only has one incoming dependency so after decrementing this, C3 is added to the sweep ordering

list. The current position in the sweep ordering list is increased and this processes continues until

all vertices in the graph have been added to the sweep ordering list. The sweep ordering list then

contains a list of mesh elements in the order in which they will be visited during a sweep to invert

the SN streaming plus collision operator. The algorithm discussed here is a specific usage of the

“breadth first search” algorithm [32] which is a common graph algorithm with many applications.

2.2.1 Parallel Sweeping

Parallel implementation of the sweeping algorithm is discussed in this section for several rea-

sons. First, the parallel scalability of sweeps is an important reason for implementing the algorithm

to solve the SN equations. Secondly, although parallel scalability of sweeping applied to the NL-S2

equation is not a specific topic of this dissertation, the three-dimensional problem investigated in

Section 4.2 is too large to be run on a single processor and so some discussion of the parallel

implementation is required. Some basic ideas are introduced in this section and specific parallel

implementations relevant to this work are discussed.

For the multigroup SN transport equation, many possible parallel algorithms are possible to try

and make use of multiple processors to speed solution time or to run a larger problem in the same

amount of time as a smaller problem. A good review of early research into solving the transport

equation in parallel is given by Zerr [33]. Some parallel paradigms involve each processor having

a copy of the mesh and being able to solve for unknowns in the whole domain simultaneously.

31



C1

C4

C7

C2

C5

C8

C3

C6

C9

~Ω1, ~Ω2, ~Ω3

~Ω10, ~Ω11, ~Ω12

Figure 2.4: The grid depicts a 2D domain
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For example, in a multigroup problem, one could use the same number of processors as there

are energy groups and have each processor perform a sweep solve with the intergroup scattering

source lagged. A limitation of this methodology and similar ideas is that there are typically many

more processors available than energy groups and that the memory requirement for each processor

to have an full copy of the spatial mesh is too large to be practical for many three dimensional

problems of interest. The solution to this is that the spatial mesh and associated unknowns must be

distributed across the processors such that each processor owns only a portion of the entire mesh.

A simple example of a distributed mesh is depicted in Figure 2.7. The grid of larger black

squares with Px written in the center with x being an integer represent the processor domain for

processor Px and the lighter grid of squares within these larger squares represents the problem mesh

owned by processor Px. Processor Px does not know about the mesh or associated unknowns for

processor Py since each processor has its own distinct memory other processor doe not have access

to. For one processor to know about the unknowns that another processor owns, the two processors

must pass messages back and forth. Obviously, many meshes of interest are unstructured. The

potential complexity introduced by unstructured meshes is briefly discussed in the next section,

however the structured mesh and structured mesh partitioning shown in Figure 2.7 is sufficient to

discuss the concepts of parallel sweeps that are relevant to this dissertation.

An important reason to implement a sweep solver for the solving the SN equations is that in

addition to being efficient, the algorithm exhibits excellent parallel scalability in practice. This

is not necessarily obvious since performing forward substitution of a lower triangular matrix is

in general a serial process. An additional complexity of parallel sweeps involves sweep front

collisions which are described in [34]. To summarize here with a specific example, consider again

the distributed mesh shown in Figure 2.7. First note that the order in which processors must work

to invert the streaming plus collision operator for a specific direction, that is the sweep ordering

of the processors, can be represented again as a directed graph. The graph can be constructed and

used in a manner similar to the described in the previous section. An example directed graph is

shown in Figure 2.8. When using a parallel sweep solver, the four processors owning a corner
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domain; processors P1, P3, P7, and P9, can start sweeping while the other five processors must

wait for these four to finish solving a direction and communicate to them their flux solution. After

P1 and P7 finish solving for whichever direction they started with, as an example, P4 will get

messages from both these processors and will have to pick from two directions. After processors

P4, P2, P6, and P8 each pick a direction to solve for, processor P5 will get messages from four

processors and must pick some order in which to work on the four directions. As processor P5

works on directions a queue builds up of work.

The first work to show that sweeps could be scalable on a large scale was [35] but the issue of

sweep front collisions were not explicitly studied. The issue of sweep front collision was explicitly

considered in [34] and this work showed they are not a problem in practice preventing sweeps

from being a scalable algorithm. Parallel sweeps show a theoretical growth in solve time for weak

scaling that behaves like O(Pˆ1/d +M) where P is the number of processors, M the number of di-

rections, and d the spatial dimension of the problem. The theoretical growth in solve time growing

polynomialy with the number of processors is not ideal. Other popular methods for solving linear

systems such as multigrid methods have scaling laws where the solution time grows logarithmicaly

with the number or processors. Despite this, parallel sweeps are in practice highly scalable. The

theoretical scaling law shows that when M is large, that is there are many directions in the angular

quadrature set, increasing the number of processors will have a small impact on parallel efficiency

initially. For structured meshes, parallel sweeps have been shown to have good efficiency out to

hundreds-of-thousands of processors [36] and are among the fastest methods available.

Other parallel algorithms that still allow for the use a distributed mesh are also possible. One

that is relevant to this work is a block-jacobi like iteration. The blocks in this case are the processor

domains, that is the entire linear system accounted for by the section of mesh owned by a processor

minus only the incoming angular fluxes which are owned by a neighboring processor. Instead of

determining a processor ordering in which to solve so that the streaming plus collision operator is

inverted, all of the processors can begin working simultaneously where the information each pro-

cessor needs from its neighbor is simply lagged first at an initial guess and then after all processors
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Figure 2.8: The dependencies among cells
shown to the left for directions ~Ω1, ~Ω2, ~Ω3

can be represented by the directed graph
shown here

have completed one solve and communicated, at the next iterate. This is iteratively solving a block

lower triangular system in the example covered in this section, but the reason to do this instead

of forward substitution is the increased parallel efficiency (all of the processors can begin work

immediately with no waiting) and also the ease of implementation since solves do not have to be

scheduled in a particular order. Despite these benefits, block-jacobi like parallel implementations

have the same problem as simple jacobi iteration, including degraded effectiveness as the linear

system grows in size and poorer convergence rates as the diagonal dominance of the linear system

decreases. For an analysis of this method for the case of transport, see [37]. A block-jacobi like

parallel implementation is tested in Section 4.2.

2.2.2 Cyclic Dependencies

The directed graph shown in Figure 2.8 representing the dependencies among the processors in

Figure 2.7 for solving the SN equations for ~Ω1, ~Ω2, ~Ω3 is acyclic. The graphs shown in Figure 2.5

and Figure 2.6 are also acyclic. This means that starting at any vertex, there are no paths that lead

back to the vertex. A cycle is a path that contains at least one edge and starts and ends with the

same vertex. A path is a sequence of vertices in the order in which they can be reached form start
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to finish by following connecting edges. A graph with no cycles is acyclic. A example of a graph

with a cycle is shown in Figure 2.10 where the cycle is {C1,C2,C1}. This graph represents the

dependencies among the four cells shown in Figure 2.10 for the direction shown in the figure. In

this figure, cells C1 and C3 consist of 5 sides each sharing two of these sides. For the angular

flux direction shown, cell C1 has its two exterior faces as inflow boundaries, these are given by the

boundary condition, but one of the internal faces shared with cell C3 is also an inflow boundary.

The other internal face shared between these two cells is is an inflow boundary for cell C3. Thus

cell C3 depends on cell C1, but cell C1 depends on cell C3 and this is presented as a cycle in the

graph shown. This is a very simple example, but it is similar to the type of cyclic dependency that

will be encountered when examining the NL-S2 equations on unstructured meshes.

The idea of cycles is also relevant to parallel sweeps. The simple example partitioning shown

in Figure 2.7 is obviously easily applied to a structure mesh. But if a mesh is unstructured, the

partitioning among processors, even if a regular portioning grid is used, will have jagged edges.

This means that a graph with a cycle like that shown in Figure 2.10 might express the dependen-

cies among the processors as the domain partitions may look similar to the cell shapes shown in

Figure 2.9.

~Ω

C1 C2

C3 C4

Figure 2.9: Schematic of discretization
which leads to a parallel “cycle” for the di-
rection shown

C1

C2

C3

C4

Figure 2.10: The directed graph related to
mesh shown
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2.3 DG Discretization NL-S2

The main idea of the NL-S2 formulation investigated in this dissertation is that the coefficients

for the SN linear systems are simply integrated and averaged over part of the unit sphere. This is

discussed generally in Section 1.3.2.1 where the averages are defined, that is the NL-S2 equation

will consist of eight partial range scalar fluxes that must be solved for and the scalar flux is simply

the sum of these eight partial range values. Since the NL-S2 formulation is rather simple, there

is not much additional information to state beyond the overview of the DG discretized SN system

already provided. Despite the relative simplicity, the averaging process is discussed first to show

clearly that the NL-S2 scalar flux solution is the same as the SN solution. The NL-S2 linear system

is then examined further with some specific examples that illustrate some points important to the

use of an SN sweeper for solving the NL-S2 equations.

As discussed in the previous sections, the SN streaming plus collision operators are usually

inverted in a matrix free way by visiting each element in mesh in the proper order and solving the

linear system shown in Eq. 2.4 in each element. But the DG discretized NL-S2 system will first

be written as one large linear system to make it clear that when angular flux is converged to the

solution of the SN equation, the scalar flux from the NL-S2 system is the same as the scalar flux

from the transport equation. Consider a matrix Bm with coefficients defined by Eq. 2.9 plus the

face flux terms shown on the rhs of Eq. 2.9. That is Ami,j and
∑K

~nk·~Ωm<0
~Ωm ·F k

i,j∗ where
∑K

~nk·~Ωm<0

is the sum over all inflow faces for each mesh element and is the term that encompasses coupling

between the unknowns in each cell. Matrix B is a block diagonal matrix with blocks defined by

diag{B0, B1, ..., BM} where the block Bm is the matrix for SN direction m just defined.

Next, consider the vector Ψ where the unknowns are written such that {Ψm} is a column vector

of the spatial unknowns for angular flux direction m and {qm} is the column vector of fixed source

values plus scattering source for direction m for each spatial point. Since the correct angular flux

solution is assumed to be known, the source as written simply includes the correct scalar flux and

associated scattering source. Note that as before, q is written as a source of angular flux instead of
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scalar flux for convenience.

Ψ =



{Ψ1}

{Ψ2}
...

{Ψm}
...

{ΨM}


, q =



{q1}

{q2}
...

{qm}
...

{qM}


Finally consider a matrix W = diag{WΩ1 ,WΩ2 , ...,WΩ8} where WΩn is a matrix of size I

rows and I ∗ Nm columns where Nm is the number of directions from the angular quadrature set

that point in octant N and I is the total number of spatial unknowns. This matrix W multiplies the

angular flux vector of unknowns Ψ and this produces a vector Φ which is defined to be the partial

range scalar fluxes for each of the eight octants as shown below where {Φn} is a column vector of

the unknowns for the partial range scalar flux in octant n.

Φ =



{Φ1}

{Φ2}
...

{Φ8}


Next, a matrix Bn(Ψ) is defined by the following non-linear coefficients where Bm

i,j are the

coefficients from the linear system defined above

Bn
i,j(Ψ) =

∑~Ωm|~Ωm∈Ωn

m wmB
m
i,jψj,m∑~Ωm|~Ωm∈Ωn

m wmψj,m

where
∑~Ωm|~Ωm∈Ωn

m is a summation over all directions m from the SN angular quadrature set

that point in octant n denoted with the symbol Ωn. Note that BΨ will be used to mean ma-

trix B multiplied with vector Ψ while B(Ψ) will be used to denote a matrix B with coeffi-
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cients that have a non-linear dependence on Ψ. Consider a block diagonal matrix B(Ψ)c =

diag{B1(Ψ), B2(Ψ), ..., B8(Ψ)} where the matrices making up the blocks are those just defined.

Then the NL-S2 can be written as B(Ψ)Φ = Wq where Φ = Wψ. This is obviously the exact

same linear system as WBΨ = Wq.

2.3.1 Sweeping the NL-S2 Equations

Some features of the NL-S2 linear system relevant to the use of a SN style sweeper as a solver

are introduced next by two specific examples. Both examples are two dimensional structured

meshes, one structured quadrilaterals and the other structured triangles. It will be apparent that

in the case of structured quadrilaterals, the NL-S2 linear system have an obvious similarity to the

SN equation. However, for any type of mesh other than this, as seen in the example of structured

triangles, couplings between cells exist in the NL-S2 equation which do not exist in SN system and

this has implications for the performance of a sweep solver.

Consider the mesh shown in Figure 2.11 with five square mesh cells. To show the NL-S2

system for this type of mesh can be solved in same way that the SN equations are, the linear
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systems associated with solving for the partial range scalar flux in quadrant 1 are written below.

The first linear system written below is for the left cell, denoted with nodes numbered with L. In

this system, the coefficients Ami,j are those defined in Eq. 2.9. The F k,m
i,j coefficients are defined

in Eq. 2.8 where the m superscript in this case is meant to indicate that the coefficient is from a

system where the outward normal is constant and so the contribution to the finite element system

of the flow area is written as F k,m
i,j = F k

i,j · ~Ωm. The k subscript indicates the relevant outward

normal where k is written as the two nodes that makeup the face. The equations are written for the

first source iteration after the SN solver has computed the iterate Ψn+1/2 and the initial guess for

the scattering source is based on this iterate hence the total source is written simply as qn+1/2
t . Note

that
∑

j q(t,j,m)Mi,j from Eq. 2.9 will simply be written as qn+1/2
(t,i,m). After the next iterate of partial

range scalar flux values are computed, the scattering source is obviously updated. The boundary

condition is written simply as some source of angular flux and this is the gm value written below.

The summation
∑Ω1

m is a summation of all directions m where ~Ωm points in quadrant 1.

The important point in writing the first linear system is that ~Ωm ·~nk > 0 for all directions point-

ing in octant 1 for faces 1L2L and 2L3L. This system can be solved as written to determine the next

iterate values for the partial range scalar fluxes in quadrant 1, that is Φn+1
0L,Ω1

,Φn+1
1L,Ω1

,Φn+1
2L,Ω1

,Φn+1
3L,Ω1

.

The linear system to be solved for the bottom square in Figure 2.11 (nodes labeled with B) is not

written below, but is obviously similar to that written for the left mesh square. After the unknowns

in the left and bottom cell are solved for, the unknowns in the center cell can be determined by

solving the second linear system written below. The unknowns for the cells below and to the left

of the center cell appear on the right hand side and have already been solved for. This is analogous

to how an SN solve would progress through a structured mesh.
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∑Ω1
m wmAm

0L,0Lψ
n+1/2
0L,m∑Ω1

m wmψ
n+1/2
0L,m

∑Ω1
m wmAm

0L,1Lψ
n+1/2
1L,m∑Ω1

m wmψ
n+1/2
1L,m

∑Ω1
m wmAm

0L,2Lψ
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2L,m∑Ω1

m wmψ
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2L,m

∑Ω1
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m wmψ
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m wmAm
1L,0Lψ

n+1/2
0L,m∑Ω1
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∑Ω1
m wmAm

1L,2Lψ
n+1/2
2L,m∑Ω1

m wmψ
n+1/2
2L,m

∑Ω1
m wmAm

1L,3Lψ
n+1/2
3L,m∑Ω1

m wmψ
n+1/2
3L,m∑Ω1

m wmAm
2L,0Lψ

n+1/2
0L,m∑Ω1

m wmψ
n+1/2
0L,m

∑Ω1
m wmAm

2L,1Lψ
n+1/2
1L,m∑Ω1

m wmψ
n+1/2
1L,m

∑Ω1
m wmAm

2L,2Lψ
m
2L,m∑Ω1

m wmψ
n+1/2
2L,m

∑Ω1
m wmAm

2L,3Lψ
n+1/2
3L,m∑Ω1

m wmψ
n+1/2
3L,m∑Ω1

m wmAm
3L,0Lψ

n+1/2
0L,m∑Ω1

m wmψ
n+1/2
0L,m

∑Ω1
m wmAm

3L,1Lψ
n+1/2
1L,m∑Ω1

m wmψ
n+1/2
1L,m

∑Ω1
m wmAm

3L,2Lψ
n+1/2
2L,m∑Ω1

m wmψ
n+1/2
2L,m

∑Ω1
m wmAm

3L,3Lψ
n+1/2
3L,m∑Ω1

m wmψ
n+1/2
3L,m





Φn+1
0L,Ω1

Φn+1
1L,Ω1

Φn+1
2L,Ω1

Φn+1
3L,Ω1



=



∑Ω1

m wm

(
q
n+1/2
t,0L,m −

(
F 0L3L,m

0L,0L + F 0L1L,m
0L,0L

)
gm0L − Fm

0L,1Lg
m
1L − Fm

0L,3Lg
m
3L

)
∑Ω1

m wm

(
q
n+1/2
t,1L,m − Fm

0L,1Lg
m
0L − F

0L1L,m
1L,1L gm1L

)
∑Ω1

m wmq
n+1/2
t,2L,m∑Ω1

m wm

(
q
n+1/2
t,3L,m − Fm

0L,3Lg
m
0L − F

0L3L,m
3L,3L gm3L

)


(2.10)



∑Ω1
m wmAm

0,0ψ
n+1/2
0,m∑Ω1

m wmψ
n+1/2
0,m

∑Ω1
m wmAm

0,1ψ
n+1/2
1,m∑Ω1

m wmψ
n+1/2
1,m

∑Ω1
m wmAm

0,2ψ
n+1/2
2,m∑Ω1

m wmψ
n+1/2
2,m

∑Ω1
m wmAm

0,3ψ
n+1/2
3,m∑Ω1

m wmψ
n+1/2
3,m∑Ω1

m wmAm
1,0ψ

n+1/2
0,m∑Ω1

m wmψ
n+1/2
0,m

∑Ω1
m wmAm

1,1ψ
n+1/2
1,m∑Ω1

m wmψ
n+1/2
1,m

∑Ω1
m wmAm

1,2ψ
n+1/2
2,m∑Ω1

m wmψ
n+1/2
2,m

∑Ω1
m wmAm

1,3ψ
n+1/2
3,m∑Ω1

m wmψ
n+1/2
3,m∑Ω1

m wmAm
2,0ψ

n+1/2
0,m∑Ω1

m wmψ
n+1/2
0,m

∑Ω1
m wmAm

2,1ψ
n+1/2
1,m∑Ω1

m wmψ
n+1/2
1,m

∑Ω1
m wmAm

2,2ψ
m
2,m∑Ω1

m wmψ
n+1/2
2,m

∑Ω1
m wmAm

2,3ψ
n+1/2
3,m∑Ω1

m wmψ
n+1/2
3,m∑Ω1

m wmAm
3,0ψ

n+1/2
0,m∑Ω1

m wmψ
n+1/2
0,m

∑Ω1
m wmAm

3,1ψ
n+1/2
1,m∑Ω1

m wmψ
n+1/2
1,m

∑Ω1
m wmAm

3,2ψ
n+1/2
2,m∑Ω1

m wmψ
n+1/2
2,m

∑Ω1
m wmAm

3,3ψ
n+1/2
3,m∑Ω1

m wmψ
n+1/2
3,m





Φn+1
0,Ω1

Φn+1
1,Ω1

Φn+1
2,Ω1

Φn+1
3,Ω1



=



∑Ω1

m wmq
n+1/2
t,0,m −

∑Ω1
m wmF

30,m
0,1L ψ

n+1/2
1L,m∑Ω1

m wmψ
n+1/2
1L,m

Φn+1
1L,Ω1

−
∑Ω1

m wmFm
0,2Lψ

n+1/2
2L,m∑Ω1

m wmψ
n+1/2
2L,m

Φn+1
2L,Ω1∑Ω1

m wmq
n+1/2
t,1,m −

∑Ω1
m wmFm

1,3Bψ
n+1/2
3B,m∑Ω1

m wmψ
n+1/2
3B,m

Φn+1
3B,Ω1

−
∑Ω1

m wmF 01
1,2Bψ

n+1/2
2B,m∑Ω1

m wmψ
n+1/2
2B,m

Φn+1
2B,Ω1∑Ω1

m wmq
n+1/2
t,2,m∑Ω1

m wmq
n+1/2
t,3,m −

∑Ω1
m wmF

03,m
3,2L ψ

n+1/2
2L,m∑Ω1

m wmψ
n+1/2
2L,m

Φn+1
2L,Ω1

−
∑Ω1

m wmFm
3,1Lψ

n+1/2
1L,m∑Ω1

m wmψ
n+1/2
1L,m

Φn+1
1L,Ω1

−
∑Ω1

m wmF
01,m
0,3B ψ

n+1/2
3B,m∑Ω1

m wmψ
n+1/2
3B,m

Φn+1
3B,Ω1

−
∑Ω1

m wmFm
0,2Bψ

n+1/2
2B,m∑Ω1

m wmψ
n+1/2
2B,m

Φn+1
2B,Ω1



(2.11)

41



Next consider the mesh shown in Figure 2.12 which includes three triangles. This could rep-

resent a structured mesh consisting of triangles or part of an unstructured mesh. The important

difference between the previous example is that the faces between cells are not aligned with the

coordinate axes. For example, again considering quadrant 1, for a general SN quadrature set, the

value of ~Ωm ·~nk for face 01 will be positive for some directions pointing in quadrant 1 and negative

for other directions pointing in this quadrant. To continue this specific example, the linear system

for the NL-S2 system for quadrant 1 is shown below. This system can be solved for the partial

range scalar fluxes in quadrant 1, that is Φn+1
0L,Ω1

,Φn+1
1L,Ω1

,Φn+1
2L,Ω1

. The linear system for the next two

cells, C2 and C3, is written as the second linear system below. The linear system for these two

cells is not block triangular as it would be for the SN equation. To solve this linear system directly,

cells C2 and C3 must be solved together. If using the sweep solver as it would be used for the SN

equation, only one cell would be solved at a time and so either cell C2 or cell C3 would be solved

first with the required flux solution from the other cell lagged at a previous value. Then the other

cell could be solved and the solution iterate updated.
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Figure 2.12: The grid depicts a 2D domain discretized with 3 triangular cells;
C1, C2, and C3. The unknowns applicable to an example discontinuous dis-
cretization are represented in the figure by labeled open circles
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Figure 2.13: The depen-
dencies among cells shown
above for directions ~Ω1, ~Ω2

can be represented by the di-
rected graph shown here
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Figure 2.14: The depen-
dencies among cells shown
above for directions ~Ω3, ~Ω4

can be represented by the di-
rected graph shown here
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Figure 2.15: The directed graph showing cell dependencies for the NL-S2 equation of octant one,
with reference to Figure 2.12, which includes directions ~Ω1, ~Ω2, ~Ω3, ~Ω4
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(2.13)

For the mesh shown in Figure 2.12, cells C2 and C3 are coupled for four of the octants in

the NL-S2 system, but will have no coupling in the other four octants, but cells C1 and C2 are

coupled in these other four octants but not the four that C2 and C3 are coupled in. So for this

mesh of structured triangles and likely for a generally unstructured mesh, the cyclic dependencies

connecting cells will be spread out among the NL-S2 directions with faces that are coupled in some
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octants necessarily not being couples in others. However, it is pointed out here that it is possible

to consider a mesh where all the faces may be connected in cyclic dependencies in two quadrants

and have no cyclic dependencies in the other quadrants. Such a mesh is depicted in Figure 2.16.

Figures 2.17 and 2.18 show the directed graphs resprenting the cell dependencies for the SN di-

rections in the caption and Figure 2.19 shows the possible dependencies among cells in the NL-S2

equations for quadrants 1 or 3. It is possible that a sweeper solver will exhibit significantly differ-

ent convergence properties when used for a mesh like that shown in Figure 2.12 compared to when

used for a generally unstructured mesh. This is investigated briefly in Section 3.1.2.3 and at least

for that sample problem, the sweep solver is still effective for a skewed mesh like that shown.

Based on the previous discussion, it is clear that for most meshes of interest, a sweeper will

not exactly invert the NL-S2 streaming plus collision operator like it would for the SN streaming

plus collision operator, that is the NL-S2 streaming plus collision operator is not block lower tri-

angular while the SN streaming plus collision operator is. As discussed in Section 2.2.2, the SN

streaming plus collision operator may not be block lower triangular in general, but for all of the

meshes investigated in this dissertation, it is. Section 3.1 shows an example of a relatively simple

unstructured mesh. Even for the simple mesh investigated in that section, the NL-S2 system has

many cells connected to their neighbor in cyclic dependencies. Two different methods for using

an SN style sweeper with the NL-S2 system are investigated in this dissertation as documented in

Section 3.1.2. These two different methods of sweeping the NL-S2 system are described next.

When the NL-S2 streaming plus collision operator is not lower triangular, the sweep solver will

be like a guass-seidel iteration and so some portion of the unknowns must be lagged. This is true

for either of the two methods for using a sweep solver next described. The first method is to form

a directed graph representing the dependencies among the cells. As discussed above and shown in

Section 2.2.2 for an example problem, this graph will contain many cycles for most meshes but the

cycles will mostly contain two vertices. These cycles could be broken simply by removing one of

the two edges in the cycle and the edge that is removed could be chosen randomly or by following

some rule like the edge pointing to the vertex with the lower numbering is removed. A simple
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Figure 2.16: The grid depicts a 2D domain discretized with 5 diamond shaped
cells; C1, C2, C3, C4, and C5. Also shown for discussion purposes are four
unit directions from any arbitrary angular quadrature set.
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Figure 2.17: The depen-
dencies among cells shown
above for directions ~Ω1, ~Ω2

can be represented by the di-
rected graph shown here
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Figure 2.18: The depen-
dencies among cells shown
above for directions ~Ω3, ~Ω4

can be represented by the di-
rected graph shown here
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Figure 2.19: The directed graph showing cell dependencies for the NL-S2 equation of quadrant
one, with reference to Figure 2.16, which includes directions ~Ω1, ~Ω2, ~Ω3, ~Ω4
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method for breaking these two vertex cycles is used in this dissertation. The edges are broken

based on the effective flow area in the NL-S2 system across the face in either direction. This is

explained by a specific example. Consider again the example of the triangular mesh in Figure 2.12

for which the directed graph for the NL-S2 streaming plus collision operator for quadrant 1 would

generally by that shown in Figure 2.15. The cycle {C2,C3,C2} must be resolved, that is either

cell C2 or C3 must be solved first lagging information from the other cell. The following weights

for the two edges are computed and the edge with the lesser weight is removed. For example, if

wC2→C3 < wC3→C2 then cell C3 is solved before cell C2 with the required flux information from

cell C2 lagged. Then cell C2 is solved for. wC2→C3 and wC3→C2 are defined below.

wC2→C3 =

Ω1∑
~Ωm·~n01>0

wm~Ωm · ~n01

(
ψ
n+1/2
0,m + ψ

n+1/2
1,m

)
(2.14)

wC3→C2 = −
Ω1∑

~Ωm·~n01<0

wm~Ωm · ~n01

(
ψ
n+1/2
0R,m + ψ

n+1/2
2R,m

)
(2.15)

The second methodology investigated for picking a sweep ordering is to simply use the sweep

paths for an S2 quadrature set in the SN equation. This methodology is obviously simpler than the

previously described method. However, computing sweep paths is not usually an expensive part

of the simulation compared to performing the sweeps and converging the scalar flux so the impact

of using a S2 sweep path versus trying to compute the sweep path by consider the actual average

NL-S2 direction on the overal solve time should be small. More importantly however, is that

when solving a multigroup problem, the NL-S2 average directions for each of the energy groups

will generally be different and this will lead, in general, to different sweep paths for each energy

group. This causes problems when considering the general computing performance notion of data

locality. If there is a different sweep path for each energy group, the entire mesh must be traversed

from the starting cell to the final cell for group one and this then repeated for each energy group.

This involves the CPU loading things relevant to each cell like total cross section and geometric
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information the number of times there are energy groups. If an S2 sweep path was used instead,

the entire mesh is traversed only once and thus the CPU loads relevant cell information only once.

The results in Section 3.1.2 show that there is little difference between the two sweeping methods

in terms of iterative convergence and so for the multigroup k-eigenvalue calculations presented

in Chapter 4, the simpler and more performant method of using a linear S2 sweep path is used.

Additionally, the idea presented in the next section for reducing coupling between cells, which is

similar to the cycle breaking methodology described in this section, has a much greater impact on

iterative convergence rates.

2.3.2 Reducing Cyclic Dependencies in the NL-S2 Equations

As discussed in the previous section and further investigated in Section 3.1, the NL-S2 system

generated from simply averaging the DG discretized SN system will, for everything but meshes

consisting only of rectangles or rectangular parallelepiped shapes, in general be different from

the SN system in that it won’t be block lower triangular. This section discusses a modification

to the NL-S2 system that can be made with the goal of reducing coupling between neighboring

cells, or said a different way, removing some of the off-diagonal coefficients in the NL-S2 linear

system. There are several reasons to do this. First, when there is a cyclic dependency between

cells, as discussed in the previous section, some of the unknowns in the NL-S2 system must be

lagged. The use of GMRES for solving the NL-S2 system is discussed in the next section and

this technique is used exclusively for the k-eigenvalue calculations presented in Chapter 4. As

discussed in the next section, the amount of information which must be lagged has an impact on

the memory requirements for the GMRES solver and it is generally desirable to have less lagged

information. Beyond the memory requirements, the amount of lagged information also impacts

the convergence rates of both GMRES and simple source iteration.

The technique described in this section is simple and when used for the NL-S2 system, still

results in a NL-S2 system that produces the same scalar flux solution as the SN system. However,

until convergence of the flux, that is when the average directions used in the NL-S2 system are

not based on the exact angular flux solution, the linear system resulting from using this technique
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will be different from the original. First consider the NL-S2 system written in Eq. 2.13 when

the partial range currents are the correct solution. After matrix vector multiplication, the lhs of

the first equation can be written as shown in Eq. 2.16 where again the coefficients Ai,j and F k
i,j

are defined in Eq. 2.9 and the coefficients denoted Ci,j are simply the portion of Ai,j equal to

σtMi,j + ~Ωm · Si,j . In the equation below, F k
i,j can be written as the surface normal ~n01 times some

constant, that is F k
i,j = Fi,j~n01, since only faces with a constant surface normal are being considered

here. In Eq 2.16, this constant is the same for several couplings, F0,0 = F0,0R and F0,1 = F0,2R

which should be apparent considering linear basis functions on the triangles shown in Figure 2.15.

These coefficients being equal to each other is written in the final equality where F(0,0)=(0,0R) and

F(0,1)=(0,2R) are factored out. The point of writing this equation is to show clearly that the net flow

between cells is what appears in the NL-S2 equation when the solution is converged as seen by

the
∑Ω1

~Ωm·~n01<0
wm~Ωm · ~n01ψ2R,m +

∑Ω1

~Ωm·~n01>0
wm~Ωm · ~n01ψ1,m term and the

∑Ω1

~Ωm·~n01<0
wm~Ωm ·

~n01ψ0R,m +
∑Ω1

~Ωm·~n01>0
wm~Ωm · ~n01ψ0,m term.
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∑Ω1

m wmA
m
0,0ψ0,m∑Ω1

m wmψ0,m

Φ0,Ω1 +

∑Ω1

m wmA
m
0,1ψ1,m∑Ω1

m wmψ1,m

Φ1,Ω1 +

∑Ω1

m wmA
m
0,2ψ2,m∑Ω1

m wmψ2,m

Φ2,Ω1+∑Ω1

~Ωm·~n01<0
wmF

01,m
0,0R ψ0R,m∑Ω1

m wmψ0R,m

Φ0R,Ω1 +

∑Ω1

~Ωm·~n01<0
wmF

01,m
0,2R ψ2R,m∑Ω1

m wmψ2R,m

Φ2R,Ω1 =

Ω1∑
m

wmA
m
0,0ψ0,m +

Ω1∑
m

wmA
m
0,1ψ1,m +

Ω1∑
~Ωm·~n01<0

wmF
01,m
0,0R ψ0R,m +

Ω1∑
~Ωm·~n01<0

wmF
01,m
0,2R ψ2R,m

=

Ω1∑
m

wmC
m
0,0ψ0,m +

Ω1∑
~Ωm·~n01>0

wm~Ωm · F 01
0,0ψ0,m +

Ω1∑
m

wmC
m
0,1ψ1,m+

Ω1∑
~Ωm·~n01>0

wm~Ωm · F 01
0,1ψ1,m +

Ω1∑
~Ωm·~n01<0

wm~Ωm · F 01
0,0Rψ0R,m +

Ω1∑
~Ωm·~n01<0

wm~Ωm · F 01
0,2Rψ2R,m

=

Ω1∑
m

wmC
m
0,0ψ0,m +

Ω1∑
m

wmC
m
0,1ψ1,m+

F(0,0)=(0,0R)

 Ω1∑
~Ωm·~n01<0

wm~Ωm · ~n01ψ0R,m +

Ω1∑
~Ωm·~n01>0

wm~Ωm · ~n01ψ0,m

+

F(0,1)=(0,2R)

 Ω1∑
~Ωm·~n01<0

wm~Ωm · ~n01ψ2R,m +

Ω1∑
~Ωm·~n01>0

wm~Ωm · ~n01ψ1,m


(2.16)

It should be clear that the following manipulation can be made which will results in an equation

equivalent to Eq 2.16. Net quantities are computed as shown in Eq. 2.17. If J01,Ω1

0/0R,net ·~n01 > 0, then

the coefficient in the NL-S2 system
∑Ω1

m wmAm
0,0ψ0,m∑Ω1

m wmψ0,m
is replaced with

∑Ω1
m wmCm

0,0ψ0,m∑Ω1
m wmψ0,m

+
F0,0J

01,Ω1
0/0R,net

·~n01∑Ω1
m wmψ0,m

and
∑Ω1

~Ωm·~n01<0
wmF

01,m
0,0R ψ0R,m∑Ω1

m wmψ0R,m
is replaced with zero. Or if J01,Ω1

0/0R,net · ~n01 < 0, then the coefficient in

the NL-S2 system
∑Ω1

m wmAm
0,0ψ0,m∑Ω1

m wmψ0,m
is replaced with

∑Ω1
m wmCm

0,0ψ0,m∑Ω1
m wmψ0,m

and
∑Ω1

~Ωm·~n01<0
wmF

01,m
0,0R ψ0R,m∑Ω1

m wmψ0R,m
is re-

placed with
F0,0RJ

01,Ω1
0/0R,net

·~n01∑Ω1
m wmψ0R,m

. Similarly, if J01,Ω1

1/2R,net · ~n01 > 0, then the coefficient in the NL-S2 sys-

tem
∑Ω1

m wmAm
0,1ψ1,m∑Ω1

m wmψ1,m
is replaced with

∑Ω1
m wmCm

0,1ψ1,m∑Ω1
m wmψ1,m

+
F0,1J

01,Ω1
1/2R,net

·~n01∑Ω1
m wmψ1,m

and
∑Ω1

~Ωm·~n01<0
wmF

01,m
0,2R ψ2R,m∑Ω1

m wmψ2R,m
is

replaced with zero. Or if J01,Ω1

1/2R,net ·~n01 < 0, then the coefficient in the NL-S2 system
∑Ω1

m wmAm
0,1ψ1,m∑Ω1

m wmψ1,m

is replaced with
∑Ω1

m wmCm
0,1ψ1,m∑Ω1

m wmψ1,m
and

∑Ω1
~Ωm·~n01<0

wmF
01,m
0,2R ψ2R,m∑Ω1

m wmψ2R,m
is replaced with

F0,2RJ
01,Ω1
1/2R,net

·~n01∑Ω1
m wmψ0R,m

.
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J01,Ω1

0/0R,net =

Ω1∑
~Ωm·~n01>0

wmψ0,m
~Ωm +

Ω1∑
~Ωm·~n01<0

wmψ0R,m
~Ωm

J01,Ω1

1/2R,net =

Ω1∑
~Ωm·~n01>0

wmψ1,m
~Ωm +

Ω1∑
~Ωm·~n01<0

wmψ2R,m
~Ωm

(2.17)

If both J01,Ω1

0/0R,net · ~n01 and J01,Ω1

1/2R,net · ~n01 have the same sign, then the linear system for the

unknowns in cells C2 and C3 will be block lower triangular. Otherwise, the situation which exists

is depicted Figure 2.20 where one arrow could represent J01,Ω1

0/0R,net and the other arrow J01,Ω1

1/2R,net.

The reason to use this treatment on the NL-S2 system is to reduce coupling between neighboring

cells. If all of these substitutions resulted in block triangular systems, then the NL-S2 system

could be swept in the same way the SN equations are swept, that is the streaming plus collision

operator for this modified system will be inverted by the sweep. Even when coupling remains

between cells, in general the coupling should be small since the situation depicted in Figure 2.20

should exist in practice when the net flow is near zero, changing from a small positive value to

small negative value with respect to one of the cells. However, the treatment discussed above was

written assuming the solution is known, in general it is of course not since the scalar flux is being

solved for using the NL-S2 system for acceleration. When only an angular flux iterate is known,

net flows can still be computed like shown in Eq. 2.18. The same procedure can be used with these

net flows, that is based on the sign of the net flow with the face normal, coefficients in the NL-S2

linear system are replaced as described above. However, the linear system is now different after

the coefficients are changed and the partial range scalar flux solution will be different. But again,

once the solution is converged, the solution from the linear system after making the substitutions

described above is the same as that from the system with no substitutions made. So there is a

potential balance between substituting coefficients in the linear system to improve the convergence

rate of GMRES or source iteration by increasing the effectiveness of the sweeper, versus potentially

causing poorer acceleration because of the use of an inconsistent linear system (until convergence).
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Figure 2.20: This figure shows the situation which could exist after computing a net flow with
reference to the sample problem discussed in this section and the four SN directions shown in
Figure 2.12. With the red arrows representing the net flow, at one spatial location, the net flow is
into cell C2 and at the other location it is into cell C3.

This is investigated further in Sections 3.1 and 3.1.2 where it is found that for several different

problems run in two and three dimensions, computing net flows and substituting coefficients in the

linear system significantly improves overall acceleration and the impact of using an inconsistent

linear system is very small. That is the inconsistency for the problems investigated in the next

chapter appear always to be small.

J01,Ω1

0/0R,net =

Ω1∑
~Ωm·~n01>0

wmψ
n+1/2
0,m

~Ωm +

Ω1∑
~Ωm·~n01<0

wmψ
n+1/2
0R,m

~Ωm

J01,Ω1

1/2R,net =

Ω1∑
~Ωm·~n01>0

wmψ
n+1/2
1,m

~Ωm +

Ω1∑
~Ωm·~n01<0

wmψ
n+1/2
2R,m

~Ωm

(2.18)

2.4 GMRES for Solving the NL-S2 System

The use of GMRES was introduced in Section 1.2. In that section, the operator L−1 was used

and GMRES requires the action of this operator. For all of the meshes investigated in this work,

there are no cyclic dependencies among cells for the SN system. Some situations where cyclic

dependencies will be present in the SN equations are reviewed in Section 2.2.2. However, as dis-

cussed above, the NL-S2 system will generally have many cyclic dependencies among neighboring
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cells and even after the technique of using net flows between cells is implemented, there will still

generally be some cycles. Ignoring the complexity of cycles for the moment, for example if the

NL-S2 system is used on a uniform mesh of rectangles or right rectangular prisms, then the dis-

cussion about using GMRES for solving the SN equations can easily be generalized to the NL-S2

system. Analogous operators to P , L, S used in Eq. 1.5 can be defined for the NL-S2 equations

and then Eq. 1.5 can be used for solving the NL-S2 system.

When some solution data must be lagged, then one sweep solve no longer equates to L−1 since

L−1 is inverting the streaming plus collision operator, but when data is lagged, the operator is not

inverted, the sweeper is instead like one guass-seidel iteration. Consider the system LΨn+1 = bn

where b is the rhs of the source iteration equation, that is the vector including the lagged scattering

source. This equation could apply to the SN equations or the NL-S2 equation depending on the

definition of the streaming plus collision operator L and the definition of b. When there are cyclic

dependencies in the streaming plus collision operator, then the following is relevant L = Lbl + U

where Lbl is the block lower triangular portion of L and U is the portion of the matrix above the

block lower triangular portion. The action of a sweep can be written as:

Ψ`+1 = L−1
bl (bn − UΨ`) (2.19)

A new iteration index ` is introduced because the streaming plus collision operator is no longer

directed inverted but must be solved iteratively. The converged solution of Eq. 2.19 is Ψn+1.

In Eq. 1.5, GMRES was formulated around the scalar flux vector, however it can obviously

be formulated around the angular flux vector. For the specific case being discussed here where

the streaming plus collision operator is not block lower triangular, the following equation can be

written which incorporates L−1
bl

(I − L−1
bl (SP − U))Ψ = L−1

bl qv (2.20)

The point of this is that the action of L−1
bl can easily be computed by a sweep. If this formulation
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were used for the SN system, storing multiple krylov vectors that have a size equal to the unknown

vector containing all angular flux directions would require large amounts of memory. If this for-

mulation is used for solving the NL-S2 equations, the memory impact is not as great since the size

of the NL-S2 solution vector is equivalent to an SN sytem with only eight directions. Because the

NL-S2 system may have many cyclic dependencies, the GMRES formulation shown in Eq. 2.20 is

simpler to implement and this is done in this dissertation, that is the entire NL-S2 solution vector

is used.

2.5 Negative Angular Flux Values

The angular flux solution for a situation where flux is incident into a region with absorption

cross section, ignoring scattering or other sources, is exponential attenuation. If the interaction

cross section is large, the exponential attenuation can be rapid enough that it is difficult to accu-

rately capture the solution using linear finite element. The mesh must be highly refined. If the

mesh is not highly refined where the flux solution has rapid exponential attenuation, the angular

flux solution from the finite element system will result in some negative solution values. These

negative solution values are not necessarily a problem, in one sense they simply indicate the mesh

is not refined enough to accurately capture the flux solution in regions where these negative values

are present. Additionally, it is possible that only some of the angular flux solutions will be negative

and that the scalar flux solution will still be positive. However, negative angular flux solutions can

lead to an ill-posed NL-S2 linear system which can’t be solved.

Revisiting the definition of the average NL-S2 direction for octant k for the angular flux iterate

n + 1/2, shown below, it is clear that if all the angular flux values averaged are positive, then

~Mk,n+1/2 points in octant k unless the angular flux is everywhere zero in the octant in which case

the average direction is simply the null vector.

~M
n+1/2
Ωk

=

∫
Ωk

~Ωψn+1/2dΩ∫
Ωk
ψn+1/2dΩ

If there are negative angular flux values in the octant, then the magnitude of ~Mk,n+1/2 is not

54



bounded. Additionally, ~Mk,n+1/2 may not actually point in octant k. This can lead to a poorly

conditioned NL-S2 system which can’t be solved.

There are many possible techniques which might be employed to resolve the issues caused by

negative angular flux solutions. A simple technique will be used in this dissertation. The absolute

value of angular flux solutions, abs(ψm), is always used when computing average directions. This

technique may not be optimal, but is simple to implement and leads to a NL-S2 system which is

always well posed. When this simple technique is used, the scalar flux solution from the NL-S2

system will be different from the SN scalar flux. It is noted that techniques could be developed

whose aim would be to replicate the SN solution in the NL-S2 system. However, since the SN

solution has negative angular fluxes, it’s not clear what the value is of trying to replicate the SN

solution since the negative angular fluxes indicate that the mesh is not refined sufficiently. For the

SN solution to be meaningfully accurate, any negative solution values should be small and thus

there should be little difference between the consistent NL-S2 system and the system constructed

using abs(ψm) other than that the system constructed using absolute values will be solvable. If

the NL-S2 solution is very different from the SN solution, that might indicate that the negative

angular flux solutions are large and thus the solution is not accurate. It is possible that some

other technique for handling negative angular flux solutions other than simply using the absolute

value could lead to a NL-S2 acceleration scheme that is more stable. Again however, if negative

angular flux solutions are large enough to cause instability in the overall acceleration scheme, the

mesh likely needs to be refined further to get a meaningfully accurate answer. More investigation

into handling negative angular fluxes with NL-S2 acceleration is certainly an area for continued

research. Since the converged scalar flux solution from the NL-S2 system will not be the same

as that from the SN system when negative angular fluxes are present and absolute values of the

angular flux are used, the criteria for determining convergence will be based on the NL-S2 scalar

flux.
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2.6 NL-S2 Program Implementation

A program using the Chi-Tech library [31] was created as part of this work to investigate the

effectiveness of NL-S2. As mentioned previously, the spatial discretization used throughout this

work is the so called Piece-wise Linear Discontinuous (PWLD) [38] basis functions and the results

presented should be applicable for other DG discretizations with properties similar to PWLD, for

example muli-linear elements on quadrilaterals or hexehedrals.

As discussed in Section 2.1.1, the SN solver can be implemented such that the solve becomes

more efficient as more energy groups are added. In addition to this, product quadrature sets such

as the type used exclusively in this work will have groups of directions that all have the same polar

angle. For a two-dimensional mesh or extruded three-dimensional mesh, all directions with the

same polar angle will have the same sweep path. Thus, a sweep path can be computed for each of

the azimuthal angles used in the product quadrature set and then when each cell is solved for in the

sweep path, all the directions with the same polar angle can be solved for. This does not reduce the

amount of flops needed in the computation, but it can improve performance with better memory

access patterns. When each cell is visited, data such as the total cross section for the cell and

the precomputed parts of the local finite element system need to only be accessed from memory

once to compute the solution for all angular flux unknowns in the cell that have the same polar

angle. The point of discussing these items it to emphasize that the total time required to solve the

SN equations does not generally increase linearly with the number of energy groups or directions

being solved for. The increases in efficiency as more energy groups are solve and the possibility of

solving multiple directions using the same sweep path mean the solve can become more efficient

and thus the increase in time is sublinear.

For the NL-S2 equations, the average directions will generally be different for each energy

groups and so computing the NL-S2 analogy of S outside of a loop over energy groups is not

possible. The NL-S2 equations could be constructed in several different ways and two different

implementations will be discussed next, these two implementations demonstrating some perfor-

mance considerations important to this dissertation. First, the average directions could be stored
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at each unknown location as well as the average outflow direction on each face with any outflow

for a particular octant. These average directions could then be used with the precomputed parts for

the local FEM system discussed in Section 2.1.1 to compute the local FEM system solved for the

partial range scalar flux unknowns. However, this will generally lead to poorer real acceleration

results than one would expect simply by comparing the number of unknowns in the NL-S2 system

versus the SN system. This is primarily because the contribution from S times the average direc-

tion to the local FEM system must be computed for each energy group compared to ~Ωm · S only

needing to be computed once and so if average directions are stored and used to build the local

FEM matrix each time a cell is visited, more flops are required for a NL-S2 multigroup calculation

than would be required for an S2 calculation to build the local FEM matrices.

Instead of just storing average directions and average outflows and using these to compute the

NL-S2 local FEM matrix each time a cell is visited, the local FEM matrices can be built and stored

beforehand. This obviously requires more memory than simply storing the average directions,

however, since there are only eight partial range scalar fluxes for each energy group, the memory

requirements may still be low enough that this method is useful. If the local FEM matrices are

precomputed and stored, then they can also be factored with LU factorization once after the average

directions have been computed and these LU factored matrices used with either source iteration

or GMRES to converge the scattering source (and a k-eigenvalue iterate for eigenvalue problems).

This was implemented code the code used in Chapter 4.
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3. NL-S2 FIXED SOURCE ACCELERATION PERFORMANCE RESULTS

A major potential benefit to NL-S2 acceleration is that the same liner solver used to invert

the SN streaming plus collision operator may be effective for inverting the NL-S2 streaming plus

collision operator as well. For uniform meshes, it is clear as discussed in Section 2.3.1 that a

sweeper is an effective method for solving the NL-S2 equations since the NL-S2 has the same block

lower triangular structure as the SN equations, but for any other type of mesh, the presence of many

simple cycles connecting neighboring cells may render a sweep solver ineffective. The topic of this

chapter is NL-S2 acceleration of fixed source problems with unstructured and structured meshes

in two and three dimensions. The investigation into fixed source acceleration is in some ways a

prerequisite for the investigation of accelerating k-eigenvalue calculations which is documented

in the next chapter. If there were fundamental issues preventing NL-S2 from being useful for

fixed source acceleration with unstructured meshes, it’s hard to imagine how it would be useful for

accelerating k-eigenvalue calculations on unstructured meshes. Additionally, many of the results

presented in this section are for tests performed on simpler meshes than the C5G7 benchmark mesh

investigated in the next chapter, which allowed for more simulations to be performed.

In addition to focusing on unstructured meshes, results are also presented in this chapter for

problems with significantly inhomogeneous material configurations, particularly problems with

cross sections rapidly changing from opaque to vacuum. As discussed in Section 1.2, one poten-

tial motivation for using NL-S2 acceleration instead of other methods for certain problems is that

NL-S2 acceleration might be robust for problems with vacuum while implementing a robust diffu-

sion based acceleration method may be more difficult for such problems. The results in this section

show that NL-S2 can fail to converge for some problems, although this issue can be resolved by

performing more than one SN sweep on the outer iteration.

Note that the simple technique for handling negative angular fluxes discussed in Section 2.5

is used for the heterogeneous problems investigated in this section. Lastly note that all results

presented in this section use a guass-chebeychev product quadrature for the SN equations. The
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results presented in this chapter show that NL-S2 acceleration is in general robust and that the

sweeper is an effective linear solver for inverting the NL-S2 streaming plus collision operator for a

variety of problems.

3.1 Reducing Cyclic Dependencies in the NL-S2 Equations

As discussed in Section 2.3.1, for non-orthogonal meshes, the NL-S2 system will have cyclic

dependencies among mesh cells that must be handled before the streaming plus collision operator

can be inverted, either directly or as part of an iterative process, by a transport sweep. Reducing

the number of cyclic dependencies may be useful for several reasons. The convergence of the

iterative solve may improve and secondly, the computational costs may be reduced by decreasing

the amount of computations at cell faces and also decreasing the amount of NL-S2 flux data which

must be stored. A potentially useful method to reduce the number of cyclic dependencies is to

compute a net flow as described in Section 3.1. To summarize the method presented in that section,

faces that connect cells in a cyclic dependency have both inflow and outflow with respect to one

of the faces. These flows are replaced by the net flow. Doing this results in the same linear system

when the partial range scalar flux values are exact, otherwise this new linear system using net flows

across faces is different.

The extent of cyclic dependencies for a specific problem with an unstructured mesh are visu-

alized in this section along with the effect of using net flows to reduce cyclic dependencies. In

general, this technique does not remove all cyclic dependencies and it is even possible there would

be no decrease in cyclic dependencies although such a case seems unlikely for any practical prob-

lem. The mesh shown in Figure 3.1 is discussed first with a homogeneous material configuration,

that is the cross section for both region zero and one are set to the same values. The mesh is used

with reflecting boundaries along the left and bottom axes, that is the x=0 and y=0 axes. Figure 3.3

depicts the cyclic dependencies in the NL-S2 streaming plus collision equation by lines connecting

points where the points mark cells and are placed at the cell centroids and the blue lines represent a

cyclic connection across the face, that is both inflow and outflow with respect to one of the cells in

the simple cycle. The cyclic dependencies are shown for quadrant 1 and quadrant 2. This example
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demonstrates that even for a relatively simple homogeneous problem, the use of an unstructured

mesh will lead to a considerable amount of cyclic dependencies. Note this figure was generated

by examining the face flows after the first acceleration iteration, that is one SN sweep has been

performed, the scattering source on the NL-S2 was converged, a second SN sweep was performed,

and then the face flows were examined. The amount of cyclic dependencies are similar for other

iterations. After replacing flows across faces with net flows, the number of cycles is reduced to

zero for this particular problem.

Figure 3.4 shows the same result discussed in the previous paragraph, but this time for the

inhomogeneous material configuration described in the caption of the figure. In this figure, in

addition to the blue lines representing the cyclic dependencies before replacing flows with net flow,

thicker red lines mark in cycles that remain after this procedure. As opposed to the homogeneous

problem, some cycles remain after replacing all flows with net flows. The purpose of Figure 3.3

and Figure 3.4 was to provide a visual demonstration of the potential usefulness of the net face

flow technique for reducing the amount of cyclic dependencies. Clearly, the amount of cyclic

dependencies is reduced, in the next sections, the impact this technique has on convergence and

performance is investigated in detail.
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Figure 3.1: Unstructured mesh with two ma-
terials. The blue-green region inside circle
in the upper right portion of the square is
region 0 and the yellow region outside the
circle will be referred to as region 1

Figure 3.2: Extruded unstructured mesh

3.1.1 Directly Inverting the Streaming Plus Collision Operator

Using net flows across faces to reduce cyclic dependencies could affect convergence of the

source iteration in several ways. If the number of cyclic dependencies are decreased significantly,

the convergence of source iteration may improve because less unknowns must be lagged during a

sweep. The convergence could also suffer because the linear system after using net flows is not

consistent with the original linear system until the partial range currents are completely converged

to the solution. Because cyclic dependencies are present, the streaming plus collision operator will

be inverted iteratively if a sweep solve is used. The additional complication of sweeping the NL-S2

system is discussed in the next section. In this section a direct solver is used to invert the stream-

ing plus collision operator and the impact of solving the NL-S2 streaming plus collision operator

without any treatment versus solving the system after canceling flows across faces to compute a

net flow is investigated for source iteration problems. The source iteration procedure is to start
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with an initial scalar flux guess of zero, invert the SN streaming plus collision operator to compute

angular fluxes and use these to update the scalar flux iterate and compute average directions for

Quadrant 1

Quadrant 2

Figure 3.3: Mesh cell centroids from Figure 3.1 are marked with black dots. The cells connected
by simple cycles are connected in this figure with a blue line and simple cycles remaining after
computing a net flux are connected with a thicker red line. Results generated for a fixed source
problem with σt = 0.1 and scattering ratio of 0.1
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Quadrant 1

Quadrant 2

Figure 3.4: Mesh cell centroids from Figure 3.1 are marked with black dots. The cells connected
by simple cycles are connected in this figure with a blue line and simple cycles remaining after
computing a net flux are connected with a thicker red line. Results generated for a fixed source
problem with σt0 = 0.1 with a scattering ratio of 0.1, q0 = 1.0 and σt1 = 1.0 with a scattering ratio
of 0.5, q1 = 0.0
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the NL-S2 equation followed by converging the NL-S2 scalar flux to a relative maximum relative

difference of 1e-6 and then begin another iteration inverting the SN streaming plus collision oper-

ator using the NL-S2 scalar flux for the scattering source. This is repeated until convergence of the

scalar flux measured by the maximum relative pointwise change. Inverting the SN streaming plus

collision operator to compute average directions for the NL-S2 equation will be referred to as an

outer iteration and the inner iterations are the iterations to converge to a scalar flux solution using

the NL-S2 equation.

Table 3.1 shows the impact of canceling face flows for the homogeneous problem on the total

number of outer iterations (total number of SN streaming plus collision operator inversions) and

the total number of inner iterations (total number of NL-S2 streaming plus collision operator in-

versions) to converge a scalar flux value. The result shown in the table is for a homogeneous cross

section of σt = 5 cm−1 and a uniform fixed source and reflecting boundaries along the x=0 and

y=0 axes. Values of σt = 0.1 cm−1 and σt = 1.0 cm−1 were also tested and for these values, there

was no difference for any of the scattering ratios tested between using the consistent NL-S2 system

or replacing flows across faces with net flows. For σt = 5 cm−1, there is very little difference in

convergence characteristics for high scattering ratios and the convergence characteristics are the

same for smaller scattering ratios. An additional test was performed by refining the mesh shown

in Figure 3.1 uniformly twice and then repeating the test. In that case, there was no difference

when using net flows for any of the cross section values tested. A problem with inhomogeneous

cross sections was also tested. With reference to Figure 3.1, region 0 is set to a void with no source

and total cross section values of 0.1 and 1.0 are tested in region 1 with scattering ratios of 0.1,

0.2, 0.4, 0.8, and 0.9. These values were tested for the mesh shown in the figure and for a refined

once uniformly and then refined again uniformly. For all of these heterogeneous tests, there was

no difference in total iteration counts.

A three dimensional problem could be created from Figure 3.1 by extruding it. The nature of

cyclic dependencies should be similar to the two dimensional problem because the faces parallel

to the x-y plane in the extruded mesh cannot have cyclic dependencies. An extruded mesh is also
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Table 3.1: Comparison of total SN source iterations and the total number of NL-S2 source iterations
to converge a scalar flux solution when using a direct solver to invert the NL-S2 streaming plus
collision operator for the scattering ratios shown for a homogeneous problem with σt = 5 cm−1

and uniform volumetric source using the mesh shown in Figure 3.1

Scattering
Ratio

Cycle
Treatment

Outer
Iterations

Inner
Iterations

0.1
Nothing 3 12
Net Flow 3 12

0.2
Nothing 3 17
Net Flow 3 17

0.4
Nothing 4 31
Net Flow 4 31

0.8
Nothing 5 139
Net Flow 6 142

0.9
Nothing 6 307
Net Flow 7 312

0.95
Nothing 7 706
Net Flow 7 707

used for the three dimensional k-eigenvalue calculation presented in Section 4.2. Here, a simple

three dimensional problem is considered which is not extruded. The purpose of this is demonstrate

that similar results are seen as the two dimensional results even when faces are not parallel to

the x-y plane. The three dimensional mesh is structured but consists of tetrahedrals as shown in

in Figure 3.5 and so cycles are present in the NL-S2 system. Both homogeneous problems and

inhomogeneous problems are discussed, obviously for the homogeneous problems, the banded

material configuration shown in the figure is not used.

The potential importance of using net-flows on faces in the NL-S2 system is more apparent

for this three-dimensional problem. Each of the eight NL-S2 has an average of 4,300 cyclic de-

pendencies that must be handled by lagging fluxes. After canceling flows across faces, there are

only an average of 90 cyclic dependencies. Despite the difference in total cycles, Table 3.2 shows

that when a direct solver is used to invert the NL-S2 streaming plus collision operators, there is

no difference in convergence between using the exact NL-S2 system or the net flow system for the

65



homogeneous problems tested. Table 3.3 shows test results for the inhomogeneous configuration

described in the table caption. This test result shows a small difference between leaving the cyclic

dependencies in the system and canceling them.

The purpose of this section was to demonstrate that using a net flow can drastically reduce the

number of cycles and that the inconsistency introduced by doing this does not have any significant

negative impact on convergence of source iteration for some representative problems. This results

is further enforced in Chapter 4 where net flows are used for eigenvalue calculations in two and

three dimensions and good results in terms of convergence are attained. Also of interest is how

using a net flow impacts the convergence of source iteration when a sweep solver is used. This idea

is explored further in the next section where a sweep solver is used to invert the NL-S2 streaming

plus collision operator instead of the direct linear solver used in this section.

Figure 3.5: The three dimensional extruded mesh tested. The mesh consists of 5760 tetrahedrals
and has a banded inhomogeneous material configuration.
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Table 3.2: Comparison of total iterations (SN solves) and the total number of NL-S2 iterations
to converge source iteration for the scattering ratios shown for a homogeneous problem using the
mesh shown in Figure 3.5 for a homogeneous problem, that is with both material regions set to the
same value.

Scattering
Ratio

Total SN Iterations
No Cancellation

Total NL-S2 Iterations
No Cancellation

Total SN Iterations
Cancellation

Total NL-S2 Iterations
Cancellation

0.1 3 12 3 12
0.2 3 17 3 17
0.4 4 32 4 32

Table 3.3: Comparison of total SN source iterations and the total number of NL-S2 iterations to
converge source iteration for the banded problem with the mesh shown in Figure 3.5 with σt1 = 0.0,
q1 = 0.0 and σt1 = 1.0, q1 = 1.0 with scattering ratio 0.95

Total SN Iterations
No Cancellation

Total NL-S2 Iterations
No Cancellation

Total SN Iterations
Cancellation

Total NL-S2 Iterations
Cancellation

10 918 12 999

3.1.2 Using a Sweeper to Solve the nls2 Equations

The same problems investigated in the previous section are again used in this section except

that a sweeper is used to invert the NL-S2 streaming plus collision operator instead of a direct

solver. For unstructured meshes, one sweep solve is like a guass-siedel iteration since the NL-S2

system will not generally be block lower triangular. The performance of two different methods

for picking a sweep ordering are investigated in this section. The first method, described in more

detail in Section 2.3.1 is to build a directed graph representing the dependencies among cells in the

NL-S2 system and then use graph algorithms to remove edges from this graph until it is acyclic,

the acyclic graph then giving the sweep ordering. The second method discussed in Section 2.3.1 is

to pick a sweep path not based on the average directions that will be used in the NL-S2 equation,

but instead use a sweep path computed for the fixed S2 direction pointing in the respective octant.

To distinguish between these two methods when discussing them in this section, the sweeper using
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a sweep path developed by considering the actual average directions in the NL-S2 system will be

referred to simply as the sweeper and the sweeper using a S2 sweep path regardless of the actual

average diction will be referred to as the sweeper using a linear S2 sweep path.

3.1.2.1 Two-Dimensional Unstructured Mesh

Table 3.4 shows differences in total iteration counts to converge a scalar flux solution when

using a sweeper to solve the NL-S2 equations using source iteration for the problem described in

the table caption. Compared to the results shown in the previous section, there is now a significant

difference in the total iteration counts between either solving the consistent NL-S2 system or re-

placing flows across faces with net flows. Some general trends are that there is less of a difference

between the consistent NL-S2 system and the system using net flows when the total cross section is

larger. Results are shown for the mesh in Figure 3.1 and a fine mesh that is refined twice uniformly

from the mesh shown. When using net flows, the total iteration counts do not increase between

the coarse mesh and the fine mesh, however, when using the consistent NL-S2 system, the total

number of iterations required to converge to a scalar flux solution does increase significantly. Note

also that the total number of outer iterations required does not change appreciably between the

two methods. This make sense given that the previous section showed little difference between the

fully consistent system and the system using net flows in addition to the fact that both methods

were testing by converging the maximum difference in successive scalar flux iterates to a fixed

value. Table 3.5 shows differences in total iteration counts to converge a scalar flux solution when

using a sweeper with an S2 sweep path to solve the NL-S2 equations using source iteration for the

problem described in the table caption. The results are similar between the two types of sweepers.

Again, there is a significant performance difference between solving the consistent NL-S2 equation

and solving the version using net flows.

Tables 3.6 and 3.7 again show differences in iteration counts to converge to a scalar flux solution

for the two different sweeper methods and source iteration but this time for the inhomogeneous

problem described in the table caption. Similar to the results for homogeneous problems, there is

a significant performance increase when using net flows in the NL-S2 system. Also similar to the
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results for the homogeneous problems is that there are only insignificant differences between the

two methods for using the sweep solver.

Table 3.8 shows results for the same problem for the results in Table 3.4 except that GMRES is

used to solve the NL-S2 system instead of source iteration. As expected, the number of iterations

required to converge a scattering source is lower when using GMRES compared to source itera-

tions. Only results for the sweeper using a S2 sweep path are shown because as seen in previous

results, there are no significant differences between the two sweeper types when using GMRES.

Again, there is a significant performance increase when using net flows across faces, but the per-

formance gain is less than in the case of using source iteration to solve the NL-S2 equations.

3.1.2.2 Three-Dimensional Unstructured Extruded Mesh

The effectiveness of the two sweeper methods as well as the impact of using net flows in the

NL-S2 system was investigated for the three-dimensional extruded mesh shown in Figure 3.2 as

well as a version of this mesh that was uniformly refined once. Table 3.9 shows total sweeps

required to converge a scalar flux solution when using a sweeper that considers the actual average

NL-S2 average direction and Table 3.10 shows the same result when using a sweeper with an S2

sweep path. The trends seen for the two dimensional mesh are again apparent in the extruded three

dimensional mesh results.

3.1.2.3 Two-Dimensional Skewed Structured Mesh

As discussed previously, an unstructured mesh will generally have many faces connected by

cyclic dependencies, but a face connected this way will be so for average directions in two quad-

rants and will not be so connected for others. For an unstructured mesh, the distribution of cyclic

dependencies among the quadrants should be relatively random. As discussed in Section 2.3.1, it is

possible for a skewed mesh to have every face connected to its neighbor in a cyclic dependency in

two quadrants even though the mesh itself is still structured. Such a mesh is shown in in Figure 3.6a

and Figure 3.6. Table 3.11 shows total inner and outer iterations to converge a scalar flux solution

for the inhomogeneous material configuration listed in the table caption. As expected based on the
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Table 3.4: Comparison of total SN solves and the total number of NL-S2 iterations to converge a
scalar flux solution when using a sweeper to solve the NL-S2 equations using source iteration for
a homogeneous problem with the scattering ratios shown and a uniform volumetric source. The
coarse mesh used is shown in Figure 3.1 and the fine mesh has been refined uniformly twice.

Total
Cross

Section

Scattering
Ratio

Cycle
Treatment

Outer
Iterations

Coarse
Mesh

Inner
Iterations

Coarse
Mesh

Outer
Iterations

Fine
Mesh

Inner
Iterations

Fine
Mesh

σt=0.1

0.1
Nothing 3 46 3 136
Net Flow 3 13 3 13

0.2
Nothing 3 51 3 151
Net Flow 3 17 3 17

0.4
Nothing 4 74 3 208
Net Flow 4 28 4 28

0.8
Nothing 6 142 4 382
Net Flow 6 65 6 65

0.9
Nothing 6 176 6 443
Net Flow 7 83 7 83

0.95
Nothing 6 193 6 483
Net Flow 7 93 7 93

σt=5.0

0.1
Nothing 3 14 3 23
Net Flow 3 12 3 12

0.2
Nothing 3 20 3 27
Net Flow 3 17 3 16

0.4
Nothing 4 34 4 43
Net Flow 4 31 4 30

0.8
Nothing 5 147 5 181
Net Flow 6 142 6 139

0.9
Nothing 6 326 6 393
Net Flow 7 312 6 293

0.95
Nothing 6 697 6 806
Net Flow 7 660 7 624

previous results, there is again a significant performance difference when using net flows across

faces. One difference between these results and those for the unstructured two-dimensional mesh

investigated in Section 3.1.2.1 is that in this case, when many faces are nearly aligned with the

vector <
√

2
2
,
√

2
2
> instead of random faces in an unstructured meshes, for some material config-

urations, the use a sweeper computed for the actual average directions does result in significant
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Table 3.5: Comparison of total SN solves and the total number of NL-S2 iterations to converge
a scalar flux solution when using a sweeper with an S2 sweep path to solve the NL-S2 equations
using source iteration for a homogeneous problem with the scattering ratios shown and a uniform
volumetric source. The coarse mesh used is shown in Figure 3.1 and the fine mesh has been refined
uniformly twice.

Total
Cross

Section

Scattering
Ratio

Cycle
Treatment

Outer
Iterations

Coarse
Mesh

Inner
Iterations

Coarse
Mesh

Outer
Iterations

Fine
Mesh

Inner
Iterations

Fine
Mesh

σt=0.1

0.1
Nothing 3 46 3 136
Net Flow 3 19 3 36

0.2
Nothing 3 51 3 151
Net Flow 3 21 3 39

0.4
Nothing 4 74 4 209
Net Flow 4 30 4 49

0.8
Nothing 6 143 6 386
Net Flow 6 65 6 88

0.9
Nothing 7 178 6 448
Net Flow 7 84 7 105

0.95
Nothing 7 195 6 488
Net Flow 7 94 7 115

σt=5.0

0.1
Nothing 3 14 3 23
Net Flow 3 12 3 12

0.2
Nothing 3 20 3 27
Net Flow 3 17 3 16

0.4
Nothing 4 34 4 43
Net Flow 4 31 4 30

0.8
Nothing 5 147 5 181
Net Flow 6 142 6 139

0.9
Nothing 6 326 6 393
Net Flow 7 312 6 293

0.95
Nothing 6 697 6 805
Net Flow 7 660 7 624

performance differences compared to using the S2 path sweeper. However, the mesh shown in

Figure 3.6 is likely not representative of a mesh that would be encountered in practical use and so

the performance difference in this case between using a linear S2 sweep path versus accounting for

the actual average direction is interesting, but probably not important.
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Table 3.6: Comparison of total SN solves and the total number of NL-S2 iterations to converge a
scalar flux solution when using a sweeper to solve the NL-S2 equations with source iteration for a
problem with σt,0 = 0.0 and σt,1 = 1.0 with the scattering ratios shown and qv,0 = 0.0, qv,1 = 1.0.
The coarse mesh used is shown in Figure 3.1 and the fine mesh has been refined uniformly twice.

Scattering
Ratio

Cycle
Treatment

Outer
Iterations

Coarse
Mesh

Inner
Iterations

Coarse
Mesh

Outer
Iterations

Fine
Mesh

Inner
Iterations

Fine
Mesh

0.1
Nothing 3 30 3 86
Net Flow 3 12 3 14

0.2
Nothing 4 41 4 118
Net Flow 4 19 4 22

0.4
Nothing 5 60 5 177
Net Flow 5 35 5 40

0.8
Nothing 9 242 10 495
Net Flow 9 183 10 186

0.9
Nothing 12 546 12 933
Net Flow 13 443 13 438

Table 3.7: Comparison of total SN solves and the total number of NL-S2 iterations to converge a
scalar flux solution when using a sweeper with an S2 sweep path to solve the NL-S2 equations with
source iteration for a problem with σt,0 = 0.0 and σt,1 = 1.0 with the scattering ratios shown and
qv,0 = 0.0, qv,1 = 1.0. The coarse mesh used is shown in Figure 3.1 and the fine mesh has been
refined uniformly twice.

Scattering
Ratio

Cycle
Treatment

Outer
Iterations

Coarse
Mesh

Inner
Iterations

Coarse
Mesh

Outer
Iterations

Fine
Mesh

Inner
Iterations

Fine
Mesh

0.1
Nothing 3 30 3 89
Net Flow 3 12 3 19

0.2
Nothing 4 41 4 122
Net Flow 4 19 4 26

0.4
Nothing 5 60 5 178
Net Flow 5 35 5 43

0.8
Nothing 9 242 10 496
Net Flow 9 183 10 188

0.9
Nothing 12 546 12 933
Net Flow 13 442 13 441
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Table 3.8: Comparison of total SN solves and the total number of NL-S2 iterations to converge a
scalar flux solution when using a sweeper with an S2 sweep path to solve the NL-S2 equations using
GMRES for a homogeneous problem with the scattering ratios shown and a uniform volumetric
source. The coarse mesh used is shown in Figure 3.1 and the fine mesh has been refined uniformly
twice.

Total
Cross

Section

Scattering
Ratio

Cycle
Treatment

Outer
Iterations

Coarse
Mesh

Inner
Iterations

Coarse
Mesh

Outer
Iterations

Fine
Mesh

Inner
Iterations

Fine
Mesh

σt=0.1

0.1
Nothing 3 31 3 66
Net Flow 3 19 3 28

0.2
Nothing 3 35 4 80
Net Flow 3 21 5 36

0.4
Nothing 4 44 4 103
Net Flow 4 26 4 40

0.8
Nothing 6 69 6 163
Net Flow 6 41 6 59

0.9
Nothing 7 80 7 185
Net Flow 7 47 7 66

0.95
Nothing 7 86 7 199
Net Flow 7 49 8 72

σt=5.0

0.1
Nothing 3 14 3 18
Net Flow 3 12 3 12

0.2
Nothing 3 16 3 20
Net Flow 3 14 3 14

0.4
Nothing 4 22 4 27
Net Flow 4 19 4 20

0.8
Nothing 5 46 5 59
Net Flow 5 39 6 46

0.9
Nothing 6 71 6 92
Net Flow 7 64 6 66

0.95
Nothing 7 116 6 136
Net Flow 7 100 7 97
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Table 3.9: Comparison of total SN sweeps and the total number of NL-S2 sweeps to converge a
scalar flux solution when using a sweeper to solve the NL-S2 equations using source iteration for
a homogeneous problem with the scattering ratios shown and a uniform volumetric source. The
coarse mesh used is shown in Figure 3.2 and the fine mesh has been refined uniformly once.

Total
Cross

Section

Scattering
Ratio

Cycle
Treatment

Outer
Iterations

Coarse
Mesh

Inner
Iterations

Coarse
Mesh

Outer
Iterations

Fine
Mesh

Inner
Iterations

Fine
Mesh

σt=0.1

0.1
Nothing 3 41 3 62
Net Flow 3 12 3 13

0.2
Nothing 3 49 3 77
Net Flow 3 16 3 16

0.4
Nothing 4 67 4 107
Net Flow 4 24 4 24

0.8
Nothing 5 109 5 168
Net Flow 6 52 6 53

0.9
Nothing 6 131 6 202
Net Flow 6 64 6 64

0.95
Nothing 6 140 6 215
Net Flow 6 69 7 70

σt=1.0

0.1
Nothing 3 15 3 18
Net Flow 3 12 3 12

0.2
Nothing 3 20 3 23
Net Flow 3 17 3 17

0.4
Nothing 4 35 4 38
Net Flow 4 31 4 31

0.8
Nothing 5 155 5 164
Net Flow 6 147 6 143

0.9
Nothing 6 349 6 364
Net Flow 6 327 7 321

0.95
Nothing 6 729 6 750
Net Flow 7 693 7 666
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Table 3.10: Comparison of total SN sweeps and the total number of NL-S2 sweeps to converge
a scalar flux solution when using a sweeper with an S2 sweep path to solve the NL-S2 equations
with source iteration for a homogeneous problem with the scattering ratios shown and a uniform
volumetric source. The coarse mesh used is shown in Figure 3.2 and the fine mesh has been refined
uniformly once.

Total
Cross

Section

Scattering
Ratio

Cycle
Treatment

Outer
Iterations

Coarse
Mesh

Inner
Iterations

Coarse
Mesh

Outer
Iterations

Fine
Mesh

Inner
Iterations

Fine
Mesh

σt=0.1

0.1
Nothing 3 40 3 63
Net Flow 3 18 3 24

0.2
Nothing 3 49 3 77
Net Flow 3 21 3 26

0.4
Nothing 4 67 4 107
Net Flow 4 27 4 33

0.8
Nothing 5 111 5 168
Net Flow 6 55 6 62

0.9
Nothing 6 132 6 203
Net Flow 6 66 6 72

0.95
Nothing 6 141 6 217
Net Flow 6 71 7 79

σt=1.0

0.1
Nothing 3 14 3 18
Net Flow 3 12 3 12

0.2
Nothing 3 20 3 23
Net Flow 3 17 3 17

0.4
Nothing 4 35 4 38
Net Flow 4 31 4 31

0.8
Nothing 5 155 5 164
Net Flow 6 147 6 143

0.9
Nothing 6 349 6 364
Net Flow 6 327 7 321

0.95
Nothing 6 729 6 750
Net Flow 7 693 7 666
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(a) Skewed structured mesh of 108×108 cells
with edge length 50 cm and banded material con-
figuration. The blue-green region (first from bot-
tom) will be denoted as region 1 and the yellow
region (second from bottom) will be denoted as
region 2

(b) Zoomed image of the lower corner of the
mesh shown in Figure 3.6a to show mesh detail.

Figure 3.6: Two-dimensional meshes investigated in this section

Table 3.11: Comparison of total SN source iterations and the total number of NL-S2 source iter-
ations to converge a scalar flux solution when using a sweeper to solve the NL-S2 equations with
source iteration for a problem with σt,0 = 0.0 and σt,1 = 1.0 with the scattering ratios shown and
qv,0 = 0.0, qv,1 = 1.0. The coarse mesh used is shown in Figure 3.6a and the fine mesh has been
refined uniformly twice.

Scattering
Ratio

Cycle
Treatment

Outer
Iterations
Sweeper

Inner
Iterations
Sweeper

Outer
Iterations
S2 Path
Sweeper

Inner
Iterations
S2 Path
Sweeper

0.1
Nothing 4 152 4 158
Net Flow 4 17 4 63

0.2
Nothing 5 193 5 194
Net Flow 5 27 5 70

0.4
Nothing 6 256 6 271
Net Flow 6 44 6 96

0.8
Nothing 9 634 10 639
Net Flow 10 188 10 203
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3.2 Acceleration on Structured Meshes

The investigations documented in this section use a mesh of cubes or squares and these meshes

are potentially interesting to separate because, as discussed in Section 2.3.1, there will not be any

cyclic dependencies between cells in the NL-S2 system. The tests documented with a uniform

mesh that has a banded material configuration as shown in Figure 3.8 are useful because they

isolate the difficultly of strongly heterogeneous cross sections, specifically opaque regions adjacent

to transparent regions, from the difficulty of cyclic dependencies in the linear NL-S2 system. Note

that the material configuration shown in Figure 3.8 contains significant voided region, in fact it is

half void.

As discussed in Section 2.6, the computational performance of an algorithm such as the NL-S2

acceleration investigated in this dissertation can depend significantly on details of the code imple-

mentation. Performance results based on cpu time are shown in Chapter 4 and it is reasonable

to expect that the code could be made faster with future effort. To present results that are not as

sensitive to specific code implementation details, the metric shown in Eq. 3.1 is used to describe

acceleration speedup throughout this chapter and the next. In this equation, M is the number of

directions in the SN quadrature set. The number of SN sweeps in the numerator is the number of

sweeps to converge the scattering source when only the SN or high order equation is used, that is

there is no acceleration, and in the denominator, the SN sweeps is the number required to update

the average directions for the NL-S2 solve. The value of 8 in denominator follows from there being

8 octants and thus 8 streaming plus collision equations to invert (while there are M such equations

in the SN system). Obviously in two-dimensions, symmetry can be exploited and only half of the

directions actually need to be solved for. This applied to both the SN equation and the NL-S2

equation so Eq. 3.1 is simply written with M and 8 instead of M/2 and 4. In summary, this equa-

tion is meant to take the effort for the unaccelerated SN solve and divide that by the effort for the

accelerated solve. It is emphasized that this is an ideal speedup value which might be approached

as the efficiency of the NL-S2 code implementation approaches that of the SN solver with an un-

derstanding that whether this ideal speedup can be reached depends on details such as the number
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of directions and energy groups for the problem being solved in addition to code implementation

details.

ideal speed up =
Sn sweeps×M

NL-S2 sweeps× 8 + Sn sweep to update avg directions×M
(3.1)

Figure 3.7: Structured three dimensional
banded mesh

Figure 3.8: Structured mesh of 72×72 cells
with edge length 50 cm and banded material
configuration. The blue-green region (first
from bottom) will be denoted as region 1 and
the yellow region (second from bottom) will
be denoted as region 2

3.2.1 Two-dimensional Mesh

This section presents NL-S2 acceleration results for both homogeneous problems and a banded

material configuration. With reference to Figure 3.8, one of the material bands is made a void, and

the other material band some non-void with a specified σt, c (scattering ratio), and fixed volumet-

ric source. Figure 3.9 shows acceleration results for three different quadrature sets and for four

different convergence criteria on the inner iteration. The solid lines are results for a homogeneous

problem and the dashed lines are for a heterogeneous banded material configuration where σt,1 and
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c is the material for one band and other band is void. The inner iteration is how tightly the scat-

tering source is converged for the NL-S2 system before an SN sweep is performed to update the

average directions. The tolerance in this case means that the relative maximum difference of the

scalar flux is reduced by the tolerance times the value on the first iteration. For the homogeneous

problems with a uniform mesh, the solution should not change significantly as quadrature sets with

more directions are used. The primary impact is obviously that the acceleration improves as the

SN sweep becomes more expensive.

A general trend shown in these plots is that looser converge of the inner iteration leads to better

acceleration. What convergence tolerance leads to the best acceleration is of course problem de-

pendent in general. The acceleration is not sensitive to the inner convergence criteria over a certain

range, there is a small difference in the results for relative tolerance of 0.1 to 1.0e-3 while the toler-

ance of 1e-6 is significantly less efficient. Fine grain results for inner tolerance convergence are not

presented, the purpose of presenting these results is to present evidence that the inner convergence

tolerance does not need to be tuned to a precise value to achieve reasonable acceleration.

Acceleration is less effective for the banded material configuration than the homogeneous prob-

lem. Additionally, note that for some problems using the S4 quadrature set (32 directions), an ac-

celeration of zero is shown. This means that the acceleration did not converge. If two SN sweeps

are performed instead of one when computing average directions, then these cases do converge,

however, the acceleration is still poor. NL-S2 of acceleration of an SN problem with only 32 direc-

tions is not of much practical interest, the more important result shown in Figure 3.8 is that NL-S2

does still accelerate converge for a problem that contains significant voids and strong discontinu-

ities in cross sections.

3.2.2 Three-dimensional Mesh

For homogeneous problems with three-dimensional uniform meshes, the same general trends

discussed in the previous section for two dimensional meshes are again apparent. Specially, as

the the number of directions in the SN quadrature set is increased, the ideal acceleration of NL-S2

acceleration is also increased. As such, only results for one SN quadrature set containing 288
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Figure 3.9: Ideal acceleration using the mesh in Figure 3.8 where homogeneous cross section
results are shown with solid lines and a banded material configuration is shown with the dotted
lines where one band has the cross section described and the other is a void. The meaning of Inner
Rel Tol is described in Section 3.2.1
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directions is shown in Figure 3.10.
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Figure 3.10: Ideal acceleration using the mesh in Figure 3.7 with homogeneous cross sections. The
meaning of Inner Rel Tol is described in Section 3.2.1

3.3 Acceleration on Unstructured Meshes

Performance results are presented for NL-S2 acceleration with an unstructured mesh in this

section. Based on the results presented in Section 3.3, only the sweeper using the linear S2 sweep

path is investigated in this section. Additionally, all results are for calculations where the NL-S2

system has been modified to use a net flow accross each face as described in Section 2.3.2.

3.3.1 Two-dimensional Mesh

Results for both a homogeneous problem and a problem with an opaque region and a void

region are shown in Figure 3.11. With reference to Figure 3.1, region 1, that is the region outside

the circle is opaque having the varying cross sections described in the plots and the region inside

the circle, region 2 is a void. Compared to the results for a structured mesh, that is comparing

with Figure 3.9, the ideal acceleration results are poorer. The sweep no longer directly inverts the
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NL-S2 streaming plus collision operator, but some data must be lagged and so a decrease in the

effectiveness of the acceleration scheme is expected, although the decrease is small enough that

the overall NL-S2 acceleration is still effective. For the heterogeneous results shown in Figure 3.11

with the dotted lines, more cases have an acceleration of zero meaning that the acceleration scheme

did not converge to a scalar flux. This convergence problem for these strongly heterogeneous cases

can be avoided by performing more than one SN sweep in the outer iteration, that is when the

average directions are computed.

Figure 3.12 shows the same result as Figure 3.9 except that two SN sweeps are used in the outer

iteration where the average directions are computed instead of one. This adds some additional

expense to the overall NL-S2 acceleration scheme, but using two sweeps results in most test cases

converging. If more sweeps are used, all cases can be made to converge, but the acceleration

for these cases is obviously poor. The purpose of these results was to demonstrate that NL-S2

acceleration can still be effective for problems with voids without needing any special changes to

the algorithm. The test cases presented here are not exhaustive, but provide some evidence that

NL-S2 should be useful for accelerating more complex problems such as the k-eigenvalue tests

presented in the next chapter and that using more than one sweep in the outer iteration may be

useful for problems with heterogeneous materials.

3.3.2 Three-dimensional Mesh

For homogeneous problems with the three-dimensional extruded unstructured mesh, the same

general trends discussed in the previous section for two dimensional meshes are again apparent.

Specially, as the the number of directions in the SN quadrature set is increased, the idea accel-

eration of NL-S2 acceleration is also increased. As such, only results for one SN quadrature set

containing 288 directions is shown in Figure 3.13.
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Figure 3.11: Ideal acceleration using the mesh in Figure 3.12 where homogeneous cross sections
are shown with solid lines and a heterogeneous material configuration is shown with the dotted
lines where inside the circile is a void and the region outside the circle has the cross section listed
in the figure legend. The meaning of Inner Rel Tol is described in Section 3.2.1
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Figure 3.12: Ideal acceleration using the mesh in Figure 3.12 where homogeneous cross sections
are shown with solid lines and a heterogeneous material configuration is shown with the dotted
lines where inside the circile is a void and the region outside the circle has the cross section listed
in the figure legend. Two SN sweeps instead of one is used when computing the average direction
for the heterogeneous results. The meaning of Inner Rel Tol is described in Section 3.2.1

84



0.0 0.2 0.4 0.6 0.8 1.0
Scattering Ratio

2

4

6

8

10

Id
ea

l S
pe

ed
up

 In
ne

r 
It

er
Re

l T
ol

=
1e

-0
1

t = 0.1
t = 1.0

0.0 0.2 0.4 0.6 0.8 1.0
Scattering Ratio

2

4

6

8

10

Id
ea

l S
pe

ed
up

 In
ne

r 
It

er
Re

l T
ol

=
1e

-0
2

t = 0.1
t = 1.0

0.0 0.2 0.4 0.6 0.8 1.0
Scattering Ratio

2

4

6

8

10

Id
ea

l S
pe

ed
up

 In
ne

r 
It

er
Re

l T
ol

=
1e

-0
3

t = 0.1
t = 1.0

0.0 0.2 0.4 0.6 0.8 1.0
Scattering Ratio

2

3

4

5

Id
ea

l S
pe

ed
up

 In
ne

r 
It

er
Re

l T
ol

=
1e

-0
6

t = 0.1
t = 1.0

Figure 3.13: Ideal acceleration on an unstructured extruded mesh with homogeneous cross sec-
tions. The meaning of Inner Rel Tol is described in Section 3.2.1
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4. NL-S2 ACCELERATION OF K-EIGENVALUE CALCULATIONS

The previous chapter showed that NL-S2 acceleration can be effective for fixed source problems

with unstructured extruded three dimensional meshes, especially when the technique to reduce cou-

pling between mesh cells in the NL-S2 system, which is described in Section 2.3.2, is used. In this

chapter, the additional complexity of an eigenvalue calculation is added. This chapter shows that

the results and conclusions from the previous section are valid for the acceleration of k-eigenvalue

calculations as well. K-eigenvalue calculations are reviewed in Section 1.4. The problems investi-

gated in this section use considerably larger and more complicated unstructured meshes than in the

previous chapter. The well known 2D C5G7 benchmark problem is investigated in this chapter as

well as three other k-eigenvalue problems which are based on the C5G7 benchmark, but have been

modified to test specific items like acceleration in the presence of anisotropic scattering and also

voids. All results presented in this section use a guass-chebeychev product quadrature for the SN

equations. For quick reference, the S6 quadrature set has 72 directions, S8 has 128, S10 has 200,

and S12 has 288 directions.

4.1 Two-Dimensional C5G7 Benchmark

The C5G7 benchmark is a popular problem for testing the effectiveness of a method for hetero-

geneous lattice calculations. C5 refers to the fifth test configuration proposed in [39] and later a 7

energy group problem based on this configuration was proposed in [40]. The benchmark problem

has only isotropic scattering and the multigroup cross sections are provided. Although the problem

is heterogeneous, diffusion based acceleration techniques have been shown to be effective for this

problem. The benchmark is based on light water reactor assemblies and thus the scalar flux is

generally diffusive and there are no voids to potentially cause difficulties implementing a diffusion

based acceleration method.

Although it is expected that diffusion based methods can be implemented so that they are

faster than NL-S2, there are several reasons the C5G7 benchmark is still a useful test to present
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NL-S2 results for. Firstly, the ability to use a sweep solver for the low order system may still be

useful for problems similar to the C5G7 benchmark in a code where an efficient diffusion based

solver has not been implemented. Secondly, this is a well known multigroup problem with cross

sections already developed. Finally, this heterogeneous four assembly problem is meshed with an

unstructured meshing algorithm (using the gmsh program) and so this is a good test of NL-S2 on

an unstructured mesh. The previous chapter included investigations of fixed source acceleration

on unstructured meshes, but the meshes included fewer elements than those investigated in this

chapter. The C5G7 mesh used in this section is unstructured and contains 454,491 quadrilaterals.

The results in this section indicate that a sweep solver is still effective for a considerably more

complex mesh than was investigated in the previous chapter. The material configuration for the

benchmark is shown in Figure 4.1. The mesh itself is too refined to show the detail in the figure.

Results for the SN k-eigenvalue value solution are presented in Table 4.1. The eigenvalue was

computed by converging the relative change of successive iterations to within 1e-6. Power iteration

was used with GMRES to solve the transport equation with a lagged fission source, that is the

inner iteration as shown in Eq. 1.10. The scattering source was not fully converged between power

iterations, but the normalized residual was decreased by two orders of magnitude between each

update to the lagged k-eigenvalue. The total number of Krylov iterations indicates the total number

of times a solution is approximated in a Krylov space and so gives an indication of, for example,

how many times vectors are orthogonalized. As discussed in Section 1.2, the implementation

of GMRES involves sweeps to compute the action of an operator. Each iteration, a sweep is

performed and in addition to this, each time an iteration is started to converge a scattering source, a

sweep is performed to computed a right hand side as shown in Eq. 1.5. The reference [41] MCNP

k-eigenvalue for this benchmark is 1.18655 which is only 30 pcm different from the S12 result

shown in Table 4.1. This indicates that mesh used in this Section is refined enough to produce an

accurate answer.

The NL-S2 acceleration of the k-eigenvalue calculation was implemented in a relatively simple

way. There are three levels of iteration, an outer iteration where one or more SN sweeps are
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performed to compute average directions and an inner iteration consisting of two levels, the outer

of these levels being where the k-eigenvalue is computed and the inner iteration being where the

scattering source is converged for a fixed k-eigenvalue. Note that when performing the SN sweep,

the eigenvalue is lagged at the previous value calculated in the inner NL-S2 iterations or at the

initial guess during the start of the calculation. Simple power iteration is again used to compute

a k-eigenvalue. The methodology used for convergence criteria is as follows. After an outer

iteration where the SN sweep is performed and average directions computed, inner iterations are

performed until the difference between successive k-eigenvalue iterations is reduced by one order

of magnitude compared to the first difference. On the inner most iteration, where the NL-S2

scattering source is converged for a lagged k-eigenvalue, the GMRES solve is performed until

the relative residual is reduced by two orders of magnitude after which a new k-eigenvalue iterate

is computed. For example, after the SN sweep has been performed, the NL-S2 iterations begin

with the previous k-eigenvalue, call this iterate k0. With this k-eigenvalue, the scattering source is

converged to the level described previously and then a new k-eigenvalue iterate is computed, call

this k1. A relative difference is computed k0
diff = abs(k0−k1)

k1 . This iterative scheme is repeated

until kndiff < 0.1 ∗ k0
diff after which time the outer most iteration begins again by performing one

or more SN sweeps to compute updated average directions. The iterations are terminated when the

relative difference between successive eigenvalue iterates is less than 1e-7. This iterative scheme

is simple and likely not optimal. But if a better criteria is implemented for determining levels of

convergence for each iteration level, the acceleration results presented in this chapter should only

be improved.

Results for the performance of NL-S2 acceleration are shown in Table 4.2 and Table 4.3. The

difference between these two results is that for those shown in Table 4.2, two SN sweeps are used

on the outer iteration while for the results in Table 4.3, only a single sweep is used. The acceleration

results when using two sweeps in the outer iteration are more stable while the acceleration when

using only one sweep shows degradation when more directions are used in the SN quadrature set.

The reported ideal speedup was computed using Eq. 3.1 which is based only on the number of
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NL-S2 sweeps compared to the SN sweeps. Some reasons why the actual speedup from the NL-S2

code is less than the ideal speedup are discussed in Section 2.6.

Figure 4.1: Image showing the C5G7 material configuration. Note that the left edge (x=0 axis) and
bottom edge (y=0 axis) are reflecting boundaries.

Table 4.1: Eigenvalue results for the unaccelerated SN solver

Quadrature k-eigenvalue Total SN Sweeps Krylov Iterations
S6 1.185820 481 424
S8 1.18605 471 415
S10 1.18706 471 415
S12 1.18685 470 414
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Table 4.2: Eigenvalue and performance for the NL-S2 system when using two SN sweeps in the
outer iteration

Quadrature NLS2
k-eigenvalue SN Sweeps NLS2

Sweeps
Krylov

Iterations
Ideal

Speedup
Actual

Speedup
S6 1.185842 14 886 785 2.16 1.67
S8 1.186073 14 1028 913 3.67 2.23
S10 1.187077 14 1041 925 5.96 2.98
S12 1.186880 14 1064 945 8.31 3.86

Table 4.3: Eigenvalue and performance for the NL-S2 system when using one SN sweep in the
outer iteration

Quadrature NLS2
k-eigenvalue SN Sweeps NLS2

Sweeps
Krylov

Iterations
Ideal

Speedup
Actual

Speedup
S6 1.185810 6 554 487 3.53 2.58
S8 1.185990 9 698 613 5.44 3.12
S10 1.187080 21 1122 973 5.17 2.51
S12 1.186870 35 1572 1345 4.80 2.15

4.2 Three Dimensional Single Assembly Test Problem

A three dimensional test problem is presented in this section which has similarities to the three-

dimensional C5G7 benchmark, but uses a single assembly and is shorter overall than the bench-

mark problem. This smaller problem is used instead of the full three dimensional C5G7 benchmark

so that the problem can be run on a small number of processors, specifically not more than sev-

eral hundred. Figure 4.4 shows the material configuration of the test problem investigated in this

section. The single assembly problem uses the same MOX assembly from the C5G7 benchmark.

Additionally, this problem is also topped with water and has three reflecting boundaries similar

to the three dimensional C5G7 benchmark. The geometry is 100 cm tall with the top 10 cm of

this consisting of water. The two dimensional mesh structure shown Figure 4.2 was extruded into

147 layers and the three-dimensional extruded mesh used consists of 5,380,000 hexahedrals along

with 17,640 prisms. It is noted also that the two dimensional mesh structure shown Figure 4.2 was
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simply extruded for the full 100 cm height of the test problem, that is into the water region were

all mesh cells were simply set to water. The 147 levels are shown in Figure 4.3 to help visual the

level of mesh refinement. Note the top of the problem, the water region, has slightly taller cells

which was done so more refinement was available where the solution is changing more rapidly and

fission is occurring.

The calculation was performed in parallel since the large problem size makes running on a sin-

gle processor impractical. Figure 4.2 shows an x-y cut of the three dimensional mesh tested in this

section. The apparent construction lines in this image which form a 2x5 grid are the partitioning

lines. As discussed in Section 2.2.1, there are in general several possible ways to setup a parallel

computation when using a parallel sweeper. To avoid the complication of having to lag angular

flux solutions at processor boundaries, a structured partitioning is used along with the unstructured

mesh as shown in the image. The lack of balance between the processor domains is a result of

simplifying the process of creating the mesh, the partitioning cut lines do not pass through fuel

rods, only between them. Each processor was given 7 of the 147 layers stacked on one region from

the 2x5 grid shown in Figure 4.2 requiring the problem to be run on 210 processors.

As discussed in Section 2.2.1, the scalability of a parallel sweep solve for the NL-S2 system

will be worse because the SN system will generally have many more directions than the NL-S2

system. However, parallel implementations of sweeper to solve the NL-S2 system are not meant

to be a focus of this dissertation and the parallel implementation of the NL-S2 is likely not ideal.

As such, results are presented for only two different parallel implementations of the NL-S2 solver.

First, a traditional SN style sweeper where the processor domains wait to get the most recent

solution data was implemented and tested, that is something equivalent to a forward substitution

of the block lower triangular matrix where the blocks are the processor domains. Note this sweep

produces the exact same iterative convergence rate for the scattering source and fission source as

if the problem were solved in serial. Secondly, the parallel sweep that is like a processor domain-

wise block jacobi iteration was also implemented and tested. This type of parallel sweeper was

reviewed briefly in Section 2.2.1. To quickly summarize the important point, flux information is
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simply lagged at processor boundaries and so each processor can begin calculations immediately

without waiting on data from its neighbor, the trade off for the increased parallel efficiency being

that the convergence rates for the scattering source will decrease as more processors are used.

An SN k-eigenvalue solution was calculated using the same procedure described in the previous

section. The SN solution as well at information about total effort to converge to a solution is shown

in Table 4.4. Cross sectional cuts through the three dimensional problem showing the scalar flux

solution for the each of the 7 energy groups are shown in Figures 4.5 through 4.11.

The NL-S2 solution results for the sweeper lagging no data at processor boundaries is shown

in Table 4.5. The ideal speedup result for this three-dimensional problem are considerably bet-

ter than the results shown in Table 4.2 for the two-dimensional C5G7 problem. This is partly do

to the slower convergence of the SN solve only in three-dimensions. Considerably more power

iterations are required to converge a k-eigenvalue for the three dimensional problem than the two-

dimensional problem and the impact of this can be seen in the large number of SN sweeps taken

to converge to a solution in Table 4.4. The relatively low number of NL-S2 sweeps taken, similar

to the number taken in two-dimensions, indicates that the sweeper is still a highly effective linear

solver for the NL-S2 system in three-dimensions and the overall acceleration capability does not

degrade. However, the sweeper, at least as currently implemented, is not an effective way of solv-

ing the NL-S2 equation in parallel. Although the ideal speedup is over 15, the actual speedup is

less than 1 meaning that the NL-S2 calculation actually took longer than the SN solve. However,

the high ideal speedup and good iterative performance of the sweeper for the NL-S2 equations

motivates future work to find more scalable ways of solving the NL-S2 equations. Table 4.6 shows

NL-S2 acceleration results using the processor domain-wise block jacobi style sweeper. As ex-

pected, the number of NL-S2 sweeps increases significantly. Even for this problem run on only

210 processors, four times more sweeps are required with this style sweeper. The ideal speedup is

considerably lower and the although the actual speed is improved.
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Figure 4.2: x-y plane of the three-dimensional test problem showing the mesh detail which is
extruded and the structured mesh partitioning used to make the distributed mesh for parallel com-
putation. The different colors show different material regions.
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Figure 4.3: x-z plane of the three-dimensional test problem showing the extruded level of refine-
ment.
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Table 4.4: Eigenvalue results for the unaccelerated SN solver

Quadrature k-eigenvalue Total SN Sweeps Krylov Iterations
S12 0.953244 766 685

Table 4.5: Eigenvalue and performance for the NL-S2 system when using the correct sweep order-
ing among processors, that is the same style of sweeper used for the SN system

SN Sweeps
Outer

Iteration

NLS2
k-eigenvalue SN Sweeps NLS2

Sweeps
Krylov

Iterations
Ideal

Speedup
Actual

Speedup

2 0.953373 16 1048 949 16.98 0.72
3 0.953354 18 935 847 17.42 0.81

Table 4.6: Eigenvalue and performance for the NL-S2system for the S12 SN quadrature shown for
both two and three SN sweeps per outer iteration when using a domain wise block-jacobi style
parallel implementation

SN Sweeps
Outer

Iteration

NLS2
k-eigenvalue SN Sweeps NLS2

Sweeps
Krylov

Iterations
Ideal

Speedup
Actual

Speedup

2 0.953397 14 3955 3844 6.347 2.03
3 0.953399 18 3913 3803 5.854 1.95
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Figure 4.4: Material configuration for the
three-dimensional problem investigated in
this section shown as a x-y plane cut and
an y-z plane cut. The single assembly has
the same materials and layout as the MOX
assembly in the C5G7 benchmark. Three
of the boundaries are set to reflecting con-
ditions, the other vacuum

Figure 4.5: Scalar flux solution for group 0
shown as x-y cuts at several elevations
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Figure 4.6: Scalar flux solution for group 1
shown as x-y cuts at several elevations

Figure 4.7: Scalar flux solution for group 2
shown as x-y cuts at several elevations
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Figure 4.8: Scalar flux solution for group 3
shown as x-y cuts at several elevations

Figure 4.9: Scalar flux solution for group 4
shown as x-y cuts at several elevations
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Figure 4.10: Scalar flux solution for group 5
shown as x-y cuts at several elevations

Figure 4.11: Scalar flux solution for group 6
shown as x-y cuts at several elevations

4.3 C5G7 with Anisotropic Scattering Modification

Acceleration of anisotropic scattering with NL-S2 is discussed in Section 1.5 where a simple

method is described that involves accelerating only the scalar flux. The effectiveness of such a

technique will of course decrease as higher order scattering terms become more important. In

this section, NL-S2 is investigated for a k-eigenvalue problem with anisotropic scattering. The

problem investigated in this section is meant to be representative of the amount of anisotropic

scattering which would be encountered in reactor applications.

The same C5G7 problem described in Section 4.1 is again used here except that the cross

section for water has been modified to included anisotropic scattering. The multigroup energy

boundaries were taken from Table 12 in [42] and NJOY was used to develop the scattering cross
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sections. P3 scattering was used with weighting spectrum option 5, that is the epri-cell lwr spec-

trum. The mesh used for the test in this section was coarser than that used in the C5G7 benchmark

section this time consisting of 145,799 quadrilaterals. The same problem was using the determin-

istic transport code Griffin to verify the correctness of the k-eigenvalue calculation in chi-tech with

anisotropic scattering (the correct 2D C5G7 benchmark result already verified the code related to

k-eigenvalue calculations for problems with isotropic scattering). The same mesh was used, but

the linear discretization used was bilinear instead of the PWLD discretization used to generate the

chi-tech results. Simple power iteration was used with the parallel sweeper in Griffin [43]. The

computed k-eigenvalue computed from Griffin was the same for the same S8 quadrature used to

generate the corresponding chi-tech result.

The same iterative procedures described in Section 4.1 for calculating a k-eigenvalue with

power iteration were again used in here for this problem with anisotropic scattering except that

the anisotropic contribution to the scattering source was held constant during the NL-S2 power

iterations and the higher flux moments beyond the scalar flux were updated only on the outer most

iteration where the SN sweep is performed to update average directions. The SN results are shown

in Table 4.7 and the corresponding NL-S2 results are shown in Table 4.8. The point of the results

in this section is simply do demonstrate that using a relatively simple technique, NL-S2 can still be

used to accelerate problems with a representative level of anisotropic scattering.

Table 4.7: Eigenvalue results for the unaccelerated SN solver

Quadrature k-eigenvalue Total SN Sweeps Krylov Iterations
S8 1.240960 842 799
S10 1.241569 820 778
S12 1.241531 1115 1056
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Table 4.8: Eigenvalue and performance for the NL-S2 system for the problem with anisotropic
scattering and using two SN sweeps on the outer most iteration

SN Quadrature NLS2
k-eigenvalue SN Sweeps NLS2

Sweeps
Krylov

Iterations
Ideal

Speedup
Actual

Speedup
S8 1.240962 26 3505 3352 3.63 1.17
S10 1.241572 26 3354 3208 5.57 1.71
S12 1.241530 26 3358 3212 10.49 3.30

4.4 C5G7 Based Problem with Void

In this section, a pincell type problem with a large void in the center is investigated. The pincell

is based on the C5G7 configuration. A 6x6 grid of UO2 pins from the C5G7 is taken and the center

pin is replaced with a square void as shown in Figure 4.12. A similar test problem was constructed

in [44]. The impact of reflecting boundaries on the sweeper was not discussed before this point,

but is relevant for the pincell problem. For the pin cell problem depicted in Figure 4.12 all of

the boundaries are reflecting, the presence of reflecting boundaries does impact the convergence

of the solver because all boundaries are reflecting. To perform the transport sweep, angular flux

information must be lagged at some boundary. The determination of what boundary information

to lag is a graph problem, the same idea discussed in Section 2.2.2 where edges must be removed

for the graph to make is acyclic is relevant. Since boundary information is lagged, the streaming

plus collision operators are no longer exactly inverted by the sweeper. The specific mesh used to

generate the results in this section is not that shown in Figure 4.12, but a version of this mesh that

was refined uniformly three times. The mesh used contained 165,632 quadrilaterals.
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Figure 4.12: A modified C5G7 like pin cell problem with a square void in the middle. The wa-
ter and UO2 cross sections are those from the isotropic C5G7 benchmark. All boundaries and
reflecting. Mesh shown is a coarse version of the mesh used so that mesh detail in visible in image.

This same problem was run with Griffin and as mentioned in the section presenting C5G7

anisotropic scattering results, bilinear discretization was used with Griffin instead of the PWLD

discretization. The same k-eigenvalue was calculated with Griffin as chi-tech. k-eigenvalue cal-

culation results for the SN solver are shown in Table 4.9. Compared to the results shown for

two-dimensional C5G7 or the three-dimensional C5G7 like problem, far fewer power iterations

are required to converge a k-eigenvalue for this problem and this is reflected in the small number

of SN sweeps shown in Table 4.9.

The NL-S2 acceleration results are shown in Table 4.10 and Table 4.11 for two SN sweeps and

three SN sweeps used on the outer iteration respectively. For this problem, using only one sweep

on the outer iteration results in poor convergence, specially the acceleration did not converge in

a reasonable number of iterations. However, the results presented in the two tables indicates that

when more than one sweep is used on the outer iteration, the NL-S2 acceleration is not signifi-
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cantly affected by the void. The ideal speedups shown in these tables are low, however, this is

simply the result of the problem being easy to solve with the SN solver. That is few iterations are

required with simply using power iteration with the SN sweeper only. If the problem required more

power iterations to converge, the NL-S2 acceleration effectiveness should increase. The scalar flux

solution from the SN solve with S12 quadrature is shown in Figures 4.13 through 4.19.

Table 4.9: Eigenvalue results for the unaccelerated SN solver

Quadrature k-eigenvalue Total SN Sweeps Krylov Iterations
S6 1.33235 72 67
S8 1.33222 70 65
S10 1.33321 73 68
S12 1.33282 72 67

Table 4.10: Eigenvalue for the NL-S2 system with 2 sweeps per NL-S2 iteration

SN Quadrature NLS2
k-eigenvalue SN Sweeps NLS2

Sweeps
Krylov

Iterations
Ideal

Speedup
Actual

Speedup
S6 1.33235 18 409 361 1.28 0.57
S8 1.3222 18 406 359 1.95 0.82
S10 1.33321 16 352 312 2.55 1.19
S12 1.33282 18 407 360 2.89 1.40
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Table 4.11: Eigenvalue for the NL-S2 system with 3 sweeps per NL-S2 iteration

SN Quadrature NLS2
k-eigenvalue SN Sweeps NLS2

Sweeps
Krylov

Iterations
Ideal

Speedup
Actual

Speedup
S6 1.33235 27 351 315 1.26 0.60
S8 1.3222 27 354 318 1.65 0.85
S10 1.33321 27 352 316 2.32 1.25
S12 1.33282 27 354 318 2.54 1.42
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Figure 4.13: Scalar flux solution for group 0 Figure 4.14: Scalar flux solution for group 1

Figure 4.15: Scalar flux solution for group 2 Figure 4.16: Scalar flux solution for group 3
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Figure 4.17: Scalar flux solution for group 4 Figure 4.18: Scalar flux solution for group 5

Figure 4.19: Scalar flux solution for group 6
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5. CONCLUSIONS AND FUTURE WORK

The NL-S2 equations investigated in this dissertation have a relatively simple formulation since

they are consistently discretized and derived by integrating the discretized SN equations over par-

tial ranges of the unit sphere. A big potential benefit to NL-S2 acceleration is that an SN style

sweeper might be effective for inverting the NL-S2 “streaming plus collision” operator. However,

the NL-S2 system, while looking similar in some ways to an SN system with S2 quadrature has

some significant differences. For any mesh other than one consisting entirely of rectangles or rect-

angular cuboids, the NL-S2 system will have many cyclic dependencies coupling cells. In this

dissertation, several methods for using an SN style sweeper were investigated for the NL-S2 sys-

tem. It was found that modifications could be made to the NL-S2 linear system that drastically

reduce the amount of off-diagonal matrix coefficients. The modified NL-S2 system is equivalent to

the original at converge of the scalar flux solution. An SN style sweeper was found to be highly ef-

fective for this modified NL-S2 streaming plus collision operator for all problems tested including

problems with large voids and relatively complicated unstructured two-dimensional meshes and

three-dimensional extrusions of these meshes.

Although an SN style sweeper was found to be effective for inverting the NL-S2 streaming plus

collision operator, the implementation used in this dissertation was not efficient in parallel. Sweep-

ers for the SN system can be highly efficient in parallel partly because there are many directions

to work on when solving the SN equation. However, there are only eight directions when using

the sweeper for the NL-S2 equations. For the three-dimensional k-eigenvalue calculation investi-

gated in this dissertation, the ideal speedup for NL-S2 acceleration was very good. But the actual

speedup was less than 1 because the problem was solved using several hundred processors. The

parallel efficiency of methods for solving the NL-S2 equations on many processors is an area for

future research. NL-S2 was found to still accelerate both fixed source problems and k-eigenvalue

problems with voids. As with other nonlinear methods, stability issues were demonstrated for

problems with strongly heterogeneous cross sections, specifically a thick opaque region connected
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to a void, however, these stability problems are easily handled by performing two or three SN

sweeps on the outermost iteration instead of one. Using two or three SN sweeps on the outermost

iteration can lead to a faster overall solve as well, for example, using two SN sweeps on the outer-

most iteration was found to lead to a faster overall solve than using just one SN sweep for the 2D

C5G7 benchmark problem investigated.

Two iterative methods were investigated in this dissertation for converging the scattering source

in the NL-S2 system, source iteration and GMRES. GMRES was found to be effective, but only a

sweep preconditioner (L−1) for GMRES was investigated in this dissertation for solving the NL-S2

equations. This method can be slow to converge for problems with significant scattering. Better

preconditioning is an area for future research and it is noted that methods which are generally too

expensive in terms memory requirements to be practical might be viable for preconditioning the

NL-S2 equation because there are fewer unknowns in this system. More sophisticated precondi-

tioning should lead to more efficient convergence of NL-S2 scalar flux iterates and so the ideal

acceleration results presented in this dissertation are not a limit, but can be improved with further

research.
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