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ABSTRACT

Development of truly predictive models for plasma physics phenomena continues to pose a

significant challenge to the research community. Recent interest in data-driven modeling and data

assimilation have arisen in the plasma physics community to provide an alternative to predictive

models or to directly solve for uncertain physics. The focus of this doctoral research is the devel-

opment of a state estimation technique that uses experimental measurements to improve plasma

physics models by either improving the solutions of lower-fidelity, faster running models or by

estimating unknown or uncertain physics. This dissertation demonstrates that the simple class of

Kalman filtering can provide significant insight to plasma modeling. Test cases begin with the

canonical Lorenz chaotic attractor and a driven-damped harmonic oscillator to demonstrate the

fidelity of the estimation technique as increasingly sparse measurement data are used. Then, the

EKF is applied to global plasma models to demonstrate that physical states including the electron

temperature, absorbed electron power, and reaction rate coefficients can be estimated with physi-

cal relevance. Additionally, test cases including complex models, measurement signals relating to

multiple states, and multiple estimates being sought, simultaneously, are examined. Finally, this

dissertation extends the EKF into a single spatial dimension. After two general test cases are used

to demonstrate how the filter can be applied in one spatial dimension for representative cases of

drift and diffusion processes, the conclusion of the dissertation focuses on the challenges of ap-

plying the EKF to a one-dimensional fluid model of a Hall effect thruster to study the anomalous

component of electron mobility.
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1. INTRODUCTION AND LITERATURE REVIEW

The beginning is perhaps more difficult than anything else, but keep heart...

- Vincent Van Gogh, The Hague, Jan. 1837

Plasma physics exists across natural phenomena and engineering devices, from lightning strikes

to spaceflight. As the fourth state of matter, plasmas consist of superheated, ionized gases that ex-

ist in a variety of conditions, from high temperature fusion reactor plasmas (>100 eV) to low

temperature material processing (<10 eV). High temperature plasmas are largely studied on the

scale of astrophysics and fusion. More commonly, high temperature plasmas exist in the solar

core [5] and nuclear fusion reactions [6]. On the lower temperature scales, plasma can be used

for materials processing [7], low earth orbit propulsion and station-keeping [8], and long-duration

satellite propulsion systems [9]. Low temperature plasma research began with the development of

light bulbs, filaments, and probing equipment. This translates to the modern day usage of neon

signs, and display screens such as televisions as well as applications in the semiconductor indus-

try [10] and medical fields [11]. Regardless of begin high or low temperature, the resulting plasma

is an amalgamation of phenomena occurring across a spectrum of timescales and length scales.

Furthermore, the plasma contains both electromagnetic and gas characteristic properties that pro-

vide crucial insight to the behavior of the plasma. Such complex physics play into a variety of

undesired and poorly understood phenomena across plasma applications that hinder the ability to

develop predictive models of such behavior.

1.1 Plasma Processing

Plasmas are used across the materials and processing industry for a multitude of applications

including microelectronics [12], plasma surface treatments [13], and film deposition [14]. Plasmas

have been used to scrub carbon fiber nanotubes for water filtration [15], they can etch sensitive

Part of this chapter is reprinted with permission from "A data-driven approach to model calibration for nonlinear
dynamical systems" by C. M. Greve, K. Hara, R. S. Martin, D. Q. Eckhardt, and J. W. Koo, 2019, Journal of Applied
Physics, 125, 244901, COPYRIGHT 2019 by AIP Publishing.
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materials for the semiconductor industry [10], and they can be used for processing and bathing of

materials [16]. These plasmas are commonly generated as inductively coupled plasmas (ICPs) or

capacitively coupled plasmas (CCPs). Regardless of the method of plasma generation, plasma pro-

cessing is the result of a careful balance between plasma chemistry, plasma physics, and surface

chemistry. Some experimental results can be obtained using Langmuir probes and more intri-

cate laser-induced fluorescence, but these diagnostics equipment are limited in scope and resolu-

tion [17].

Inductively coupled plasmas use electromagnetic induction to generate oscillating magnetic

fields that interact with initiated ions and electrons to produce further ionization in suitable gases.

They are considered a type of radio frequency discharge, operating on scales of 0.1 to 100 MHz and

exist in three configurations, planar, cylindrical, and half-toroidal. The electrode exists as a length

of flat metal wound in a coil, a helical spring, or a toroidal solenoid cut along the major diameter

into two equal portions, depending on the configuration. A time-varying electric field is supplied

to the coil to induce a time-varying magnetic field [18]. ICPs are often found in detection systems

such as mass spectrometers and are low pressure plasma sources that operate continuously or in

modulation [7]. The scalability of such systems allows for wide experimental testing, but suffers

from high density, stray capacitive coupling, and non-uniformity [19]. Conversely, the ability to

place the electrodes outside of the reaction chamber creates discharges that are relatively free of

contamination.

Capacitively coupled plasmas operate when two electrodes are placed parallel within a cham-

ber, with one electrode grounded and the other attached to a radio-frequency (RF) power supply.

The power supply creates an electric field between the electrodes, ionizing atoms and releasing

electrons that are accelerated by the RF field and help to further ionize the gas. Substrates can be

placed on either plate for etching or the plasma can be used as a precursor for the deposition of a

thin film. The ions accelerated across the plasma sheath help to drive chemical reactions between

radical particles and surface materials which form stable chemicals [20]. Due to the nonlinearity

in CCPs, the sheath structures are more complex than those of traditional DC sheaths and drive the

2
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Figure 1.1: An inductively coupled plasma schematic.

development of analytical models to understand the dynamics of these sheaths [10]. These plasmas

suffer from a lack of independent control over ion flux and energy, uniformity problems at high

density, edge effects, and local plasma resonances.

Figure 1.2: A capacitively coupled plasma schematic.

While both ICP and CCP processes have been used extensively for the past few decades, a

variety of challenges still face both technologies. In many instances, using either technique for ion

etching is still not refined for use with various bulk materials or complex multilayer structures. The
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complex gas mixtures used in a variety of etching processes can lead to unevenness in the forma-

tion of trenches due to secondary etching [21]. Additionally, similar processes can result in uneven

wall structures of etched profiles or even tips of microtrenches where locally high electric fields

can accumulate. Other sources of concern with such types of industrial plasmas lie in plasma hys-

teresis during pulsed operation and mode transitions during plasma operation as well as the effects

of electron avalanche which occur when a strong enough electric field causes indirect ionization

by collisions, producing an increasing number of secondary electrons [22]. Typical operating pres-

sures range from 100 mTorr to 1 Torr while frequencies operate on the scale of 1MHz supplied

by voltages of 10 V to 1 kV. These plasmas can transition to a collisionless mode, where the ex-

act mechanisms involved in such electron heating remain unknown [23]. Differential charging of

etched materials is also a major concern as such effects can deviate ion trajectories and distort the

desired etched profile [24]. Coupling between sheath thickness and applied power increases the

complexity of changing incident ion energy.

1.2 Plasma Propulsion

Plasma is also at the forefront of spacecraft propulsion technologies. These plasmas span

the entire range of temperatures, from the low temperature pulsed plasma thrusters and micro-

propulsion units such as electrosprays to the high temperature fission/fusion devices including

magnetoplasmadynamics and nuclear propulsion [8, 25]. Plasma-based propulsion can fit into

electrothermal systems that employ electrical currents or radiation to directly heat propellant, elec-

trostatic systems that accelerate ionized propellant through an electric field without magnetization

of ions, and electromagnetic systems that use electromagnetic forces to accelerate plasmas. So-

called electric propulsion is any device that accelerates a gas by electronically heating it or through

the application of electromagnetic forces. Unlike chemical propulsion, whose energy is created

from the chemical reaction occurring in the combustion chamber, electric propulsion systems rely

on energy from external power sources including solar panels, nuclear reactors, and radioisotope

thermoelectric generators [26]. These thrusters have created great interest in the propulsion com-

munity due to their lesser energy limitation resulting from the use of such external power sources
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as well as their improved propulsion performance such as specific impulse. Thus, these thrusters

are ideal for missions requiring strict control over thrust profiles or those that travel distances that

allow for continuous operation of the thruster to reach high velocities.

Some of the most significant parameters of space propulsion include the thrust output and spe-

cific impulse. Specific impulse is characterized by the exhaust speed of the propellant divided by

the gravitational acceleration constant, g. This can be alternatively written as engine thrust divided

by propellant mass flow rate. Chemical propulsion devices commonly used to escape a planet’s

gravitational field can produce high thrust levels, but typically have specific impulses limited to

< 500 s due to the high propellant flow rates and the maximum temperature of the combustion

reaction. In comparison, electric propulsion can operate with specific impulse values ranging 1000

- 10,000 s, which reduces fuel consumption and consequently increases the payload fraction, e.g.

the ratio of the weight of payload to the launch weight of the spacecraft. The high specific impulse

enables these thrusters to be used for events such as interplanetary missions, station-keeping of

satellites in orbit, and orbit raising maneuvers but the low thrust requires the thrusters to operate in

excess of 10,000 hours.

The Hall effect thruster (HET) is one of the most well-known plasma propulsion devices used

in modern in-space flight operations. These thrusters operate with high specific impulses (≈1600

s) and better efficiencies than many other electric propulsion devices using pure noble gas propel-

lants. Hall effect thrusters are of great advantage to space technologies due to their variable thrust

capabilities, long thruster operations, low propellant mass, and assumed scalability for different

mission objectives. These devices have seen thousands of flights in low earth orbit, most recently

with the fleet of SpaceX Starlink satellites and the successful ThrustMe flight of an iodine-based

system. Beyond the confines of low earth orbit, a gridded ion thruster, a neighbor to the HET,

was used on the NASA DAWN mission while a true HET was used on the MARCO satellites that

flew past Mars with the Perseverance rover. A Hall effect thruster is planned to be used on the

upcoming Psyche mission by NASA. Additionally, the upcoming Lunar Gateway mission will use

a set of HETs on the Propulsion and Power Unit.
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Figure 1.3: A Hall effect thruster schematic.

A simple schematic of such a thruster is provided in Fig. 1.3 that shows the direction of the

electric and magnetic fields, resulting E × B azimuthal direction, and main components of the

thruster. The thruster is comprised of an annular channel with either an externally or internally

mounted cathode; in this case, the cathode is internally mounted. As seen in the schematic, HETs

consist of an anode which supplies a positive potential and is commiserate with the location of

propellant injection, a cathode that emits electrons both to neutralize the plasma as it exits the

thruster channel and to supply electrons to the channel, and electrically charged coils to generate

the magnetic field. A radial magnetic field is applied in the annular channel, which reduces the

Larmor radius of the electrons in the channel. As the electrons have a long mean free path, the

resulting azimuthal drift is generated, effectively trapping the electrons in the channel and main-

taining an electric field in the axial direction. Thus, injected neutral gas collides with the trapped

electrons, ionizing it in the channel and accelerating the resulting ions due to the potential gradient.

Multiple variations of the HET exist based on channel material and channel length depending on

the manufacturer and mission requirements.

As the future of spaceflight continues to grow, the need for improvements to thruster perfor-

mance, scaling of thrusters, and increased lifespans drive the goals of the research community. As

previously mentioned, the complex nature of plasma physics creates challenges to reaching these

goals. The wide range of time and length scales in the particle behaviors are also present across
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the variety of plasma oscillations occurring in the thruster. While some of these oscillations have

been observed experimentally, such as low-frequency breathing modes and azimuthally rotating

spokes, the underlying causes of these oscillations are more challenging to resolve [27, 28, 29].

This is in part due to the limitations of current experimental diagnostic tools and in part due to a

lack of understanding of the underlying phenomena. Furthermore, electron dynamics operate at

such small time scales that they are nearly impossible to track experimentally with the state-of-the-

art diagnostic technologies, yet are crucial to the operation of these thrusters. Known phenomena

includes wall collisions [3, 30, 29, 31], the resulting secondary electron emission (SEE) from such

collisions [30, 31], and inexplicably high levels of diffusion in the presence of magnetic fields

[32, 33, 34, 35]. These processes are notable because they lead to one of the common lifespan

limiters: erosion of the thruster channel to the point where the magnetic coils and pole pieces are

exposed to the plasma. Recent advances by NASA Jet Propulsion Laboratory (JPL) have created

a magnetically shielded HET whose magnetic field lines are created in such a way to prevent such

high levels electron interaction with the wall [36, 37]. Nonetheless, the dynamics of the electrons

remain uncertain.

Because of the staunch time commitment required to physically test a thruster for its entire lifes-

pan, computational models have been designed to study thruster performance with the hope of both

extrapolating the results to determine the thruster lifespan and failure modes while also attempt-

ing to develop truly predictive models that can shape the design and scaling of future thrusters.

The kinetic, small-scale nature of plasma transport and dynamics need to be better understood to

correctly characterize the behavior of these plasmas. Furthermore, the behavior of these plasma

devices operating in space compared to in ground test facilities must be better characterized to gain

a thorough understanding of the effects of test facilities. The main focus of this dissertation will

be towards improving Hall effect thruster simulations.

1.3 Plasma Modeling

Modeling enables the investigation of phenomena and locations where experimental testing

is difficult or impossible, less expensive trade studies for new concepts and designs, and further
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understanding of the physical phenomena that may not be able to be experimentally measured.

The challenge of these models is how to represent phenomena that is poorly understood or simply

unknown to the community in such a way as to improve understanding.

The complexity of plasma creates numerous opportunities to study interesting physical phe-

nomena. Models of increasing fidelity and complexity have been created to study the different

effects of plasma behavior in continued attempts to further understanding of plasma physics. As

an example, the number of dimensions studied in a given computational model affects the types of

studies being performed. Global models serve to track volume-averaged quantities for quick re-

sults and qualitative trends rather than quantitative solutions [38, 39, 40]. One-dimensional models

have given insight into electron mobility parameters as they change across domains [31, 41]. Two-

dimensional models serve as the current standard in state-of-the-art Hall effect thruster models, as

they provide some of the most detailed solutions and have been used to study electron drift insta-

bilities [42, 43, 44, 45]. Three-dimensional models have been pursued to study plume interactions

and particle transport, but are so computationally expensive they have not become common to date

[46, 47].

Similarly, the mathematical description of the plasma physics can affect the phenomena being

studied. Different numerical approaches, such as particle-based or a fluid continuum, can be used

to study different time and length scales within plasma processes. A select sample of mathematical

descriptions are provided with brief descriptions below:

• Particle-in-Cell (PIC): These models trace the equations of motion for each macroparticle

being followed in the simulation as

dxj
dt

= vj, (1.1a)

dvj
dt

= aj, (1.1b)

where each particle j can use the time derivative of its position x to obtain its velocity v
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and similarly use the velocity derivative to obtain the acceleration a. Common techniques

use a leapfrog propagation method (second order) to update the locations and velocities

without numerical errors [48]. Macroscopic quantities are obtained by sampling, though

their use can lead to noise in the simulation due to the use of discrete numbers of particles to

represent more continuous behavior [8]. Such numerical effects can be reduced by increasing

the number of macroparticles, but this also increases the computational cost and does not

entirely remove the effects of statistical noise. Additionally, the collisions occurring within

the plasma are tracked as probabilities within each set of equations of motion. These particle-

based models are used to capture nonequilibrium effects in a plasma.

• Grid-Based Direct Kinetic (DK): This method follows the ionization and charge exchange

in discretized phase space where the kinetic equations are solved directly rather than by the

equations of motion. The use of discretized velocity distribution functions to calculate colli-

sion integrals eliminates the statistical noise found in the PIC simulations. This method uses

collisionless Boltzmann equations and common computational fluid dynamics (CFD) ad-

vection methods for propagation such as finite difference schemes and Weighted Essentially

Non-Oscillatory (WENO) schemes [49]. Work by Hara uses finite volume approximations

and Monotonic Upstream-centered Scheme for Conservation Laws (MUSCL) schemes [50].

Though memory requirements can be large for this method, its main source of error comes

as a truncation error of the higher order terms in a Taylor expansion of the propagation

equations, improving simulation results immensely. Recently, fully kinetic simulations have

been used to study near-wall transport, plasma-wave scattering, and plasma turbulence due

to kinetic instabilities as potential causes of the anomalous electron transport [31, 41, 51].

• Fluid (Continuum) Approaches: These models solve the moments of the Boltzmann equa-

tions and treat each particle species as a fluid continuum, eliminating the statistical noise

present in the PIC methods and vastly reducing the computational cost of the direct-kinetic

(DK) approach. They are commonly used for equilibrium or near-equilibrium flows. For an
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ionized plasma that tracks both collisions and an electromagnetic field, the conservation of

mass, momentum, and energy equations can be written as

∂n

∂t
+∇ · (n−→u ) = S, (1.2a)

∂

∂t
(mn−→u ) +∇(mn−→u .−→u + p) = q(

−→
E +−→u ×

−→
B ) +∇τ +

−→
R, (1.2b)

∂

∂t
(nε) +∇ · (n−→u ε+ p−→u ) = ∇ ·

−→
Q + qn−→u ·

−→
E + Selas − Sinelas + Φ, (1.2c)

where m is the mass, n is the number density, −→u is the mean velocity, S is the source or

sink term, p is the pressure, τ is the viscous stress,
−→
R is the collisional friction, ε is the mean

energy,
−→
Q is the conductive heat flux, Φ is the energy dissipation function due to viscous

stress, and the subscripts elas and inelas refer to the energy loss due to elastic and inelastic

collisions, respectively. The Euler equations treat the right hand side of the above equations

as zero while the Navier-Stokes equations retain the viscous terms and heat conduction. In

plasma simulations, electromagnetic forces are typically assumed greater than viscous terms

while kinetic energy is greater than thermal energy. Further explanation of these equations is

provided in Refs. 8 and 50 which discusses the closure problem of fluid equations for terms

such as the pressure in the momentum equation. Recent work has determined that kinetic

energy cannot be neglected due to a strong ExB drift in Hall effect thrusters.

• Hybrid: In these models, fluid descriptions are often used for particles assuming a Maxwellian

energy distribution, often electrons, while PIC methods are used to model the particles in the

high-energy tail of the Maxwellian, heavy species, to supplement collisional information. A

quasi-neutral assumption is required for the transport equation to calculate the electric field

or one must use Poisson’s equation to deduce it. These models are highly popular due to

their reduced computational cost, seeing such models as Hall2De and HPHall [42, 43, 52].

Other models have seen wave-riding effects where ions become trapped in potential wells,

been used to study cathode effects, and azimuthally rotation spokes [53, 54, 55, 56, 32]. The
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use of PIC methods can introduce numerical oscillations into the results, but recent studies

with hybrid-DK simulations have been performed to mitigate these oscillations [57].

Many of the challenges faced by the plasma community have been realized not just by compar-

ing real-time operational data to ground test data, but also by comparing experimental and com-

putational results. Electron mobility has been discovered as a historically irreconcilable difference

between experimental and computational results from erosion rates and spatial density profiles

[58, 59]. Facility effects have not been quantified in such a way as to include them in computa-

tional models including potential electrical coupling with the facility walls, backsputtering of wall

materials, and background pressure effects [60, 61]. Even simply taking reliable measurements

of small scale phenomena is not possible with the state-of-the-art modeling techniques [8]. Thus,

a truly predictive model continues to elude the community. While one method of combating this

quandary is to develop a higher-fidelity model, including any potential numerical noise sources

and increased computational costs of such a model, another approach is available.

Using a lower-fidelity model, experimental data can be continually supplied to the model to

improve the state of the system. This technique can be used to supplement lower-fidelity models

to achieve better quantitative results or with higher fidelity models to determine unknown states or

parameters of interest, uncovering uncertain physics. The use of experimental data concurrently

with computational models is a process known as data-driven modeling, model-data fusion, or data

assimilation.

1.4 Data-Driven Modeling

Data-driven modeling spans all manner of computational practices from state estimation to

machine learning and artificial intelligence and can be classified as either offline or online mod-

eling. The supplementation of data can assist classification programs, function approximations,

correlation studies, and optimization, amongst others, assuming the existence of considerable and

sufficient data describing the system. Artificial neural networks have been used to track film growth

during plasma etching processes [62], to estimate sputtered particle distributions for incident ion
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energy distributions [63], and to predict deposition yield in plasma spray processes [64]. Sparse

regression techniques have been used to develop a functional form of turbulent transport coeffi-

cients in plasma processes [65]. Dynamic mode decomposition has become common in the fluids

community for the information it provides regarding flow dynamics [66].

While many data-driven methods yield arbitrary, black-box programs that create a relation

between inputs and outputs, a subset of data-driven modeling relies on physics-based conserva-

tion laws to create more physics-attuned solutions. Physics-informed neural networks have been

used to solve supervised learning tasks while respecting physical laws given by nonlinear partial

differential equations [67]. More recently, time-embeddings have been used to converge to un-

known input parameters for constant or time-averaged quantities in dynamical systems [68]. To

understand some of the associated benefits and detractors associated with the methods listed, a

discussion of offline and online modeling is presented.

1.4.1 Offline

Offline modeling refers to any method that uses iterative testing to optimize the relation be-

tween inputs and outputs or a set of initial conditions for a model. These iterations are performed

using sets of test data, or training data, that are used to train the algorithm towards correct relations

that can then be applied to datasets of interest. Most common are any form of neural network,

mode decomposition, sparsity reducing algorithms, and symbolic techniques. These methods have

largely seen applications in image processing and parameter estimation for unknown physical pro-

cesses. Theory-guided machine learning and physics-informed neural networks have been used

to study plasma phenomena as well [69, 67]. More recent work has used low-dimensional repre-

sentations of physical models to study plasma phenomena either as functional forms [65], mode

decomposition [66], or time-embedded phase space plots [68].

The general premise of an offline method is presented in Fig. 1.4. The model is run with a set

of values for the unknown input parameters, ~β, to produce a trial solution, ~xtrial. The generated

data are compared to the reference solution, ~xref , and the discrepancy, ε, between ~xtrial and ~xref

is calculated. If the discrepancy, or often called the cost function, is large, a new set of input
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Figure 1.4: An example of an offline data-driven modeling method that relies on the minimization
of a cost function.

parameters is determined by the optimization scheme and the calculations are performed again.

This iterative cycle continues until a convergence criterion uniquely specified for the given problem

is met, i.e., ε ≤ ε0, where ε0 is a user-defined convergence criterion. When the minimum cost

function is found, it can be considered that an (approximately) optimal set of input parameters

which capture the dynamics of the reference solution is obtained.

The three main concerns regarding this data-driven model approach follow directly from Fig.

1.4. The first is what measure should be used to accurately represent the time-dependent system

output of the trial and reference solutions (~xtrial and ~xref). The second is two-fold: What serves

as an appropriate cost function metric between the two discretized solutions (the comparison)

and what convergence criterion, ε0, is appropriate. The third is what optimization algorithm best

searches the domain and enables complete automation of the optimization process (the iteration).

For neural networks these questions become how many nodes and hidden layers should be allowed

to exist in the model while for sparse regression and mode decomposition the number of resulting
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equations becomes a key question of the model creation.

Work performed prior to this dissertation focused on the development of a phase-space model

representation for offline data-driven modeling. A chosen output signal, Fig. 1.5(a), is mapped

against itself at an earlier time, Fig. 1.5(b), and subsequently binned as a probability distribution

function, Fig. 1.5(c). The Wasserstein Metric, or Earth Mover’s Distance (EMD), is used to mea-

sure the difference between two probability distribution functions as a single value. Optimization

algorithms developed by Sandia National Laboratories [70] are used to iterate through possible pa-

rameter sets to find an optimal solution that minimizes the EMD. An interface developed by Stellar

Science LLC and the Air Force Research Laboratory called the Galaxy Simulation Builder [71] is

used to set the optimization program and coordinate with remote computing systems. This calibra-

tion method was shown to recover the reference solution parameters to high levels of accuracy for

a variety of nonlinear, dynamic, chaotic computational models. The static, or steady-state, solution

generated by this method is useful but limited in its abilities compared to the intricacies of dynamic

oscillations in plasma physics.

Figure 1.5: An example of the phase-space representation and data comparison model. (a) The
time-dependent signal of interest. (b) The phase space representation of the original signal, mapped
to two dimensions. (c) The discretized phase space representation to generalize the amount of time
the system spends in a region of space.
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1.4.2 Online

In comparison, online modeling refers to any estimation technique that operates directly on the

system of interest, learning the system relations as it propagates. This approach enables estimation

to be performed without knowledge of the entire measurement signal, e.g., the estimation can

be performed as measurement data is collected. The most common type of algorithm for this

technique is the suite of Kalman filters. These filters range from simple linear filters to more

robust particle-based probability filters. Other techniques involve weighted least squares, least

median of squares, Bayesian approaches, and generalized maximum-likelihood estimators. The

main advantage of any recursive technique is that supplemental data is supplied to the model as

it arrives to allow for continuous improvements in the system estimation. Thus, the filter is able

to run without knowledge of the entire state of the system at any given time. These estimation

techniques often cycle between a prediction and correction phase, using the difference between the

current predicted values and newly arrived measurements to correct the system.

The general premise of an online estimation technique is presented in Fig. 1.6. The model

is run with the known operating parameters of the system and with some initial guess for any

unknown states, x̂. As the system propagates forward in time, measurement data, ỹ, is supplied

continuously or discretely to the model. As a measurement signal arrives, the temporal propagation

is paused while the system uses some form of mathematical structure to update the system states

from the propagated value (-) to the updated value (+) using the most recent measurement update.

Using the improved states, the model returns to the propagation phase, cycling between these two

modes until the simulation ends or no further measurement data is available.

Online state estimation is host to its own particular set of challenges. Because they operate in

real-time with a physics-based model, these systems are more susceptible to failure. Certain oper-

ating conditions often require manual tuning to ensure filter success, increasing the time required

to setup the system. Additionally, there are associated computational costs with each estimation

technique which are incurred with each run of a simulation compared to a reduced order model

being run after training. These algorithms also run the risk of finding an incorrect system state
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Figure 1.6: An example of an online data-driven modeling method that relies on a predictor-
corrector scheme.

based on the known measurements with no inbred method to check the physical reality of the final

solution, unlike the cost function of the offline method.

1.5 Problem Statement and Outline

The future of in-space propulsion is dependent on increasing the capabilities of propulsion

devices to reach higher thrust levels while also reducing lifespan limiting phenomena. At the re-

quired rate of innovation, many of these advances need to be made computationally to prevent

tens of thousands of hours of testing and exorbitant facility operation costs. Computational ad-

vances are being made to create a truly predictive thruster model that can be accurately used to

determine lifespan limiters, thrust profiles, and new design configurations to scale thruster capa-

bilities or investigate phenomena difficult to experimentally measure. Many of these processes

in plasmas are related to the high-frequency, short timescale dynamics of electrons. Not only do

these processes inform the motion of the electrons as related to thruster erosion, electron mobility,

and electron emission from the walls, but also the electron dynamics can affect the overall sys-

tem behavior. Without experimental data to compare, it is difficult to determine the appropriate

high-order physics to include in a model.

Recent advances in computational capability have allowed for the study of data-driven models
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which can supplement existing, imperfect models with experimental or on-orbit data to better cor-

relate the computational models to the true physics. The model can be configured to approximate

certain processes of interest from general terms that encompass the effects of numerous processes

to more targeted applications to study particular dynamics, Previous work performed in the pursuit

of a Master of Science degree used an offline technique based on phase space representations of

data to optimize static input conditions of a Hall effect thruster model. In this dissertation, a state

estimation technique from the suite of Kalman filters that can estimate time-varying states and

parameters is developed for plasma physics applications, with the goal of ultimately applying it to

Hall effect thruster models.

The remainder of the dissertation is laid out as follows. Chapter II provides a detailed overview

of the particular Kalman filter used in this work as well as a discussion of further extensions to the

filter. Chapter III presents two simple verification test cases based on known simplistic problems,

the Lorentz attractor and the driven-damped harmonic oscillator. These studies are performed to

test the filter with sparse measurement signals and chaotic systems. Chapter IV studies a series of

global plasma chemistry models that range from simple two-equation xenon models studying low-

frequency plasma oscillations to more nonlinear pulsed argon plasma operations. These studies

increase the complexity of the propagation model as well as the incoming measurement signals to

gain further understanding of the EKF operation given more complex physics. Chapter V extends

the Kalman filter into one spatial dimension, studying linear advection and heat conduction models

to approximate solving electron mobility coefficients in HETs. In the last section of Chapter V,

initial estimation attempts with a one-dimensional fluid HET model are presented to discuss the

remaining challenges of this work. Lastly, Chapter VI presents a summary of the presented work

and considerations for future research.

17



2. METHOD

Do let us go on quietly, examining all things and holding fast to that which is good,

and trying always to learn more that is useful, and gaining more experience.

- Vincent Van Gogh, Amsterdam, Apr. 1878

2.1 Kalman Filters

Kalman filtering has seen wide use since the first Apollo missions where Stanley F. Schmidt

is typically credited with famously utilizing the filter as part of the navigation systems [72]. The

original filtering method is attributed to Rudolf E. Kálmán and Richard S. Bucy though many other

researchers including Stratonovich, Thiele, and Swerling have been understood to have developed

similar types of filters [73]. Schmidt is generally credited with the first implementation of the

Kalman filter in its traditional two-part application [74].

The suite of Kalman filters are recursive algorithms that move between prediction and correc-

tion phases to continually improve estimates of the internal state of dynamic systems using noisy

measurements. Both the states and their associated errors are run through this cycle, continually

generating a priori (before correction) and a posteriori (after correction) sets of data. The filter is

capable of effectively handling uncertainties in the noisy measurements as well as some uncertain-

ties related to the approximations in the equations that describe the system evolution. The recursive

nature of the filter, described later in this chapter, adds to the appeal of the filter by requiring only

the most recent estimate to update the new states rather than the entire history of the system states,

saving immensely on memory requirements.

The original version of the filter was developed for linear problems as an optimal filter, though

since its creation many applications have required the creation of a nonlinear version. The non-

linear extensions of the simple Kalman filter have been used to advance data integrity [75], noise

Part of this chapter is reprinted with permission from "Real-time state estimation of low-frequency plasma os-
cillations in Hall effect thruster" by C.M. Greve, M. Majji, and K. Hara, 2021, Physics of Plasmas, 28, 093509,
COPYRIGHT 2021 by AIP Publishing.
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mitigation [76], and state estimation [77]. These filters have found use in electrical and electron-

ics engineering for x-ray tomography [78], physics for ionosphere modeling and gravitational

waves [79], computer science and robotics for movement tracking and sensor fusion [80], indus-

trial engineering for supply chain optimization and fault diagnosis [81], and navigation for GPS

autonomy [82].

Perhaps the most useful aspect of a Kalman filter is the freedom allowed with any unknown or

uncertain states of interest in the system. Because the filter is expected to use the incoming mea-

surement signals to update the state vector, the states can automatically be assumed to be corrected

with every measurement update. Also, because the filter tracks the uncertainty of each state in the

system, the propagation equation for any unknown or uncertain physics can be imperfect. In the

simplest case, the propagation equation of an unknown state can be considered piecewise constant

for all time, i.e., d/dt = 0, such that the state is only changed by the discrete measurement updates.

This particular propagation may not be suitable for every case of an unknown state in a system,

but demonstrates how an imperfect mathematical representation of a state can be used in a Kalman

filter due to the measurement correction.

2.1.1 State Space Setup

Kalman filtering is a wide field of stochastic state estimation techniques given a system model

and state measurement update. The following derivations are specifically for the continuous-

discrete extended Kalman filter where discrete time measurement data are supplied to a continuous

propagation scheme.

A general dynamical system can be written using a state vector x(t) as

ẋ(t) = f(x(t), t) +G(t)ω(t), (2.1)

where f is the dynamic model function of the state variables, G(t) is the process noise gain matrix,

and ω(t) is the process noise with covariance Q(t) = E[ωωT ] where E[] is the expectation. The

expectation refers to the summation of all possible values of a state, and is considered to represent
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the product of probability of an event occurring and the value of the actual observed occurrence.

Assuming that the state estimation noise characteristics are described by a Gaussian distribution

function, the state estimation is fully described with discrete linear measurements

ỹk = hxk + νk, (2.2)

where ỹ is the measurement, h is the observation matrix, ν is the zero-mean measurement noise

with covariance Rk = E[νkν
T
k ], and subscript k denotes the discrete time where the new measure-

ment data are acquired and the Kalman update is performed. The initial state is a random vector

with a known mean, denoted by µ0, and covariance, denoted as P0 = E[(x0 − µ0)(x0 − µ0)T ].

2.1.2 Extended Kalman Filter

The extended Kalman filter (EKF) is predicated on the following assumptions: randomness can

be considered caused by primary random sources exciting states, these primary sources are inde-

pendent, zero-mean gaussian random processes, and the dynamic systems are linear [73]. Because

this is the nonlinear extension to the original Kalman filter, this particular filter the linearization of

the system dynamics and measurement equations around the current estimate after each state prop-

agation. For this reason, the EKF is sub-optimal, but has proven effective in practice for systems

that are slightly nonlinear.

Figure 2.1 shows a schematic of the continuous-discrete EKF, which is analogous to a predictor-

corrector method. A physics-based model is used to continuously propagate the state estimates and

associated covariances, while discrete measurement data are used to correct the state and covari-

ance. The predictor step corresponds to temporal evolution of the state vector from x̂+
k−1 to x̂−k

and the corrector step updates x̂−k to x̂+
k , where superscript (−) and (+) indicate the estimation

before and after the measurement updates, respectively, and subscript k denotes the time step at

which measurement data are obtained. Further detail about the derivations of this filter can be

found throughout literature [77].
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Figure 2.1: A visual representation of the continuous-discrete EKF process over two measurement
data points. The model continuously propagates forward until such a time that measurement data
arrive and a discontinuous correction is applied to the system.

2.1.2.1 Propagation

Given a discrete stochastic system model and initial conditions, the Kalman filter propagates

all states in a system as

˙̂x(t) = f(x̂(t), t), (2.3)

where f is the nonlinear system model. For the purposes of generating a general propagation, the

previous time step, t = k − 1, and next time step, t = k, will be used in the following derivation.

This function can be expanded using a Taylor series and written as

f(x̂k−1) = f(x̂+
k−1) +

∂f

∂x|x̂+
k−1

(xk−1 − x̂+
k−1) +H.O.T., (2.4)

where the higher order terms (H.O.T.s) are neglected. Note that the partial derivative of f with

respect to the states can be written as a Jacobian matrix F (x̂+
k−1) ≡ ∂f/∂x|x̂k−1

. Thus, the

equation can be rewritten as

f(x̂+
k−1) = f(x̂+

k−1) + F (x̂+
k−1)ek−1,

21



where ek−1 contains the residual error of the system, xk−1 − x̂+
k−1.

The expectation of both sides of the previous equation can be taken to yield

E[f(x̂k−1)] ≈ f(x̂+
k−1) + Fk−1E[ek−1],

where E[ek−1] = 0. thus, the time dependent equation for the state vector is simply

˙̂x−k = f(x̂+
k−1). (2.5)

The expression created from the Taylor series expansion can be substituted into the forecast

error equation, the difference between the true solution and the current estimate as

e−k = xk − x̂−k

= f(xk−1) + ωk−1 − f(x̂+
k−1)

= Fk−1ek−1 + ωk−1,

(2.6)

where the representation of x is based upon that of Eq.(2.1). This error equation can be substituted

into the error covariance definition as

P−k = E[e−k e
−T
k ]

= Fk−1E[ek−1e
T
k−1]F T

k−1 + E[ωk−1ω
T
k−1]

= Fk−1P
+
k−1F

T
k−1 +Qk−1,

(2.7)

to create the propagation equation for the error covariance where Q(t) is the process noise covari-

ance, i.e., the power spectral density of the model uncertainty associated with the physical model.

The process noise covariance is a concept that comes from the imperfection of the linearized model

with respect to the actual physics. In the absence of a newly arrived measurement data, the filter
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continues to propagate, causing covariances to grow.

2.1.2.2 Update

When a measurement becomes available, the filter breaks out of the propagation loop and

moves into the correction scheme.

Starting with the measurement equation, the observation function h can be expanded by a

Taylor series as

h(x) = h(x̂−) +
∂h

∂x|x̂−
(x− x̂−) +H.O.T.

where the partial derivative can be denoted as Hk(x̂
−
k ) ≡ ∂h/∂x|x̂−

k
and the higher order terms

are neglected. The expectation can again be taken on both sides as

E[h(x)] ≈ h(x̂−) +HkE[e−k ], (2.8)

where E[e] = 0 as before.

If the goal is to approximate the best unbiased estimate, one way is to assume there is some

linear combination of both the state and measurement through some unknown form, a, as

x̂+
k = a+Kkỹk, (2.9)

with the unbiased condition of

0 = E[xk − x̂+
k ]

= E[(x−k + e−k )− (a+Kkh(xk) +Kkνk)]

= x̂−k − a−KkE[h(xk)]

a = x̂−k −KkE[h(xk)],

(2.10)

where the term Kk indicates the Kalman gain, a weighting function that will be described later in

this section.
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This relation can be substituted into the linear combination, Eq. (2.9), to obtain

x̂+
k = x̂−k +Kk(ỹk − E[h(xk)]), (2.11)

which can be combined with the equation for the expectation of h given in Eq. (2.8) to obtain

x̂+
k ≈ x̂

−
k +Kk(ỹk − h(x̂−k )), (2.12)

which is the complete update equation for the state vector.

The error of this estimate can be written as

ek = xk − x̂+
k = f(xk−1) + ωk−1 − x̂−k −Kk(ỹk − h(x̂−k ))

= f(xk−1)− f(x̂+
k−1) + ωk−1 −Kk(h(xk)− h(x̂−k + νk)

= F (x̂+
k−1)ek−1 + ωk−1 −Kk(Hk(x̂

−
k )e−k + νk)

= F (x̂+
k−1)ek−1 + ωk−1 −KkHk(x̂

−
k )(F (x̂+

k−1)ek−1 + ωk−1)−Kkνk

= (I −KkHk(x̂
−
k ))F (x̂+

k−1)ek−1 + (I −KkHk(x̂
−
k ))ωk−1 −Kkνk.

(2.13)

This definition of the error estimate can be substituted into the definition of the covariance

matrix and simplified as

Pk ≡ E[eke
T
k ]

= (I −KkHk(x̂
−
k ))F (x̂+

k−1)Pk−1F
T
k−1(x̂+)(I −KkHk(x̂

−
k ))T

+ (I −KkHk(x̂
−
k ))Qk−1(I −KkHk(x̂

−
k ))T +KkRkK

T
k

= P−k −KkHk(x̂
−
k )P−k − P

−
k Hk(x̂

−
k )TKT

k +KkHk(x̂
−
k )P−k Hk(x̂

−
k )TKT

k +KkRkK
T
k .

(2.14)

The optimal value of Kk can be found by minimizing the trace of the covariance matrix with
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respect to K such that

0 =
∂tr(Pk)

∂Kk

= −(Hk(x̂
−
k )P−k )T − P−k Hk(x̂

−
k )T + 2KkHk(x̂

−
k )P−k Hk(x̂

−
k )T + 2KkRk,

(2.15)

which can be solved for K to obtain

Kk = P−k H
T
k (x̂−k )

[
Hk(x̂

−
k )P−k H

T
k (x̂−k ) +Rk

]−1
, (2.16)

which is the well-recognized Kalman gain equation. This gain serves the same purpose as that in a

proportional-integral-derivative (PID) controller, directing the filter how to weight the significance

of newly arrived measurement data compared to the current prediction. The Kalman gain acts

as a weighting factor to correct the states and covariances. It implies that if the a priori error

covariance is smaller than the measurement noise covariance, the gain will be small and the filter

will rely more on the predicted values. Conversely, a larger gain would mean that the measurement

noise is smaller than the predicted noise, thus causing the filter to adopt the measurement values.

Substituting this Kalman gain equation back into the posterior covariance equation, Eq. (2.14),

yields

P+
k = (I −KkHk(x̂

−
k ))P−k − (I −KkHk(x̂

−
k ))P−k Hk(x̂

−
k )TKT

k +KkRkK
T
k

= (I −KkHk(x̂
−
k ))P−k − (P−k Hk(x̂

−
k )T −KkHk(x̂

−
k )P−k Hk(x̂

−
k )T −KkRk)K

T
k

= (I −KkHk(x̂
−
k ))P−k − [P−k Hk(x̂

−
k )T −Kk(Hk(x̂

−
k )P−k Hk(x̂

−
k )T +Rk)]K

T
k

= (I −KkHk(x̂
−
k ))P−k − [P−k Hk(x̂

−
k )T − P−k Hk(x̂

−
k )T ]KT

k

= (I −KkHk(x̂
−
k ))P−k ,

(2.17)

which is the final form of the update equation for the covariance matrix. Note that the measurement

does not have to directly correlate to the states. Instead, the measurement may be some combina-
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tion of states or simply an equation involving a single state, captured in the basis function Hk. The

filter returns to the propagation phase until a new measurement signal becomes available.

2.2 Physics-Informed Constraints

State and parameter estimation necessitates robust and efficient calculations that take physical

and mathematical constraints into account. For instance, the time intervals of measurement acqui-

sition may not be equal, as indicated in Figure 2.1, or the estimated state and variance may become

unphysical without any constraints on the filter.

In the EKF, two key ad hoc parameters are the process noise covariance,Qk−1, which is applied

to the system in the continuous covariance propagation equation (Eq. (2.7)), and the measurement

noise covariance, Rk, which is used in the discrete measurement update (Eq. (2.17)). These pa-

rameters are instrumental in the fidelity of the estimation as well as the robustness of the filter

against nonlinearities or sparse measurements. While Rk is usually quantified from measurement

instrument uncertainties, the core ability of the EKF relies on the choice of Qk−1, which describes

the imperfection of the model with respect to the physics.

Furthermore, filter divergence, where the solution tends far from the measured quantities or

the filter never completes, can be caused by a multitude of uncertainties in both the filter and

the nonlinear model [83]. The nature of the linearization used in this filter typically requires the

initial guess of the estimator to be close to the true solution to initially prevent the filter from

diverging [77]. Then, selected initial covariances must be large enough to allow the system to

provide a state estimation within the confidence bound. Note that for the remainder of this chapter,

the subscripts for Rk and Qk−1 will be dropped when discussing the variable within the text as

alternate subscripts may be used in equations for clarity.

2.2.1 Design of the Process Noise Covariance

The extended Kalman filter is almost entirely reliant on two ad hoc parameters. The first of

these is the process noise covariance, Q, which quantifies the uncertainties in the physics-based

model, whether from an incomplete model or numerical uncertainties. The chosen Q can specif-
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ically be seen as the higher-order terms that are truncated when selecting the nonlinear dynam-

ical model, i.e., the difference between the true nonlinear dynamics and the model, as shown in

Eq. (2.1). Some of the most common practices for designing this matrix involve guess-and-check

methods, adaptive solutions, neural network training, and continuous white noise approximation.

Many studies have performed manual searches for a process noise covariance value that returns

the desired performance from the filter [84] by applying machine learning to find optimal values of

the noise covariances [63, 64] or by using an adaptive Kalman filter [85, 86, 87]. These methods

not only require additional computational cost and involve complex models, but also fail to impose

any constraints on the filter to ensure robust performance. Quadrature methods have been used

to minimize the effects of linearization error, leading to solutions such as the unscented Kalman

filter. Other studies have attempted to constrain the estimates of the filter based on equality or

inequality constraints known by the user for a given system [88, 89, 90]. Adaptive techniques that

use dynamic noise covariances (particularly Q) are a common approach, e.g., scaling factors [91].

This work proposes the imposition of physical and mathematical constraints on the process

noise covariance. This covariance value is allowed to vary in time to more realistically account for

time-dependent, fluctuating noise sources. The filter is thus designed to ensure that the variances

Pmm (m ∈ N ) are non-zero, positive values while also adding a constraint to prevent unwanted

solutions such as negative values of states, including density and temperature.

The process noise covariance is related to the uncertainty associated with the imperfection of

the physics-based model. Equation (2.7) is where the linearization of nonlinear dynamics is taken

into account, using the Jacobian matrix of the nonlinear physics-based model. This suggests that

the process noise covariance is directly correlated with the truncated higher-order terms of the

nonlinear dynamics. For simplicity, the relationship between the process noise variance and the

state variance can be written as

(Pmm)−k+1 − (Pmm)+
k = Qk→k+14t, (2.18)

where m denotes the unknown variance element, the superscripts denote the predicted (−) and
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corrected (+) values, and Qk→k+1 and 4t = tk+1 − tk are the process noise covariance and the

time step between two consecutive measured data, respectively (note that Qk→k+1 is assumed to

be constant between tk and tk+1). The choice of Q is critical as the system uncertainty must

increase when the data acquisition is infrequent since the propagated uncertainties are likely to

be accumulated over time. However, a large variance could result in a negative solution for one

or more state estimates, potentially violating some physical constraints, e.g., density, temperature,

and pressure must be positive at all times. In the proposed EKF model, Q is monitored to satisfy

the mathematical constraint, i.e., the variances must be non-negative, and prevent divergence of

the filter estimation. This is done by setting the unknown state covariance as constant at all times

tk+1 and solving Eq. (2.18) for Q. Further information regarding the constraints placed on these

noise covariances are provided in the following section in the context of the first testcase.

When the original EKF with a fixed ad hoc signal process covariance is used, the uncertain-

ties at the unknown state, P−mm, are dependent on the time interval, as discussed in Eq. (2.18).

On one hand, it is correct that the covariance, i.e., uncertainty, must increase and the Kalman

gain consequently approaches unity for the measured state, Kll → 1, as the time interval of mea-

surement update increases. Since the estimation from the model accumulates uncertainties, the

experimental data are trusted more than the predictions of the physics-based model. However,

a large system covariance means that the state variable could be negative during the continuous

prediction phase, which will violate the physical constraints depending on the problem of inter-

est. Alternatively, if the system variance approaches zero, the Kalman gain approaches zero, i.e.,

Kll = (R/Pll + 1)−1 → 0, accounting for a finite measurement noise. This approach to zero

indicates that the EKF trusts the prediction over the measurement. But, a frequent data acquisition

should not mean that the model prediction is more correct than the measurement. Since the defini-

tion of the signal process noise is due to the imperfection of the model with respect to the physical

data, i.e., G(t)ω(t) = ẋ(t) − f(x, t), Q may be affected by the noisy measurement. Hence,

even if the time integral of data acquisition is small, it could be more physical to account for a

finite system uncertainty before the measurement update. In other words, the uncertainty of the
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prediction may not be dependent on how frequent the Kalman update is performed and therefore

should have some independency from the size of the measurement time step. By addressing this

concern, the PC-EKF is therefore a robust way to incorporate physics for both smaller and larger

data acquisition time intervals.

2.2.2 Design of the Measurement Noise Covariance

The secondary ad hoc parameter is the measurement noise covariance, R. The physical phe-

nomena are experimentally measured using sensors or other measurement diagnostics equipment

that have some inherent uncertainties, typically supplied by the manufacturer. As with the process

noise covariance, ideally the errors assumed by manufacturers would be suitable values for this

covariance. This may not always be the case, or the solutions may perform better is allowed to

adapt and change in time.

Using the same requirements of non-zero, positive covariance values, the measurement noise

covariance can be updated in two manners.

For any given measurement, the uncertainties associated with data acquisition must be evalu-

ated, i.e., ν(t) in Eq. (2.2). As shown in Eqs. (2.12) and (2.17), the Kalman gain is reduced in the

presence of a large measurement noise, leading to adopting the predicted estimate, x̂−, compared

to the measurement, ỹk. Statistical uncertainties of an instrument are defined by a noise distri-

bution that is defined for a set of measurement conditions. In the EKF approach, such noise is

assumed to be Gaussian with a certain amplitude.

One can evaluate the constraints associated with the time-dependent measurement noise, σR,

applied to the measurement signal, x1, through the R11-component in this testcase as R11 = σ2
R.

The Kalman gain for the case where the measurement is the first element in the state vector x̂, i.e.

Hk =

[
1 0 0

]
for all time, k, is given by
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Kk =


P−11 P−12 P−13

P−21 P−22 P−23

P−31 P−32 P−33




1

0

0


R11 +


1

0

0


T 

P−11 P−12 P−13

P−21 P−22 P−23

P−31 P−32 P−33




1

0

0



−1

=


P−11

P−21

P−31

 1

R11 + P−11

.

(2.19)

The covariance update equation, in Eq. (2.17), can be written as

P+
k =




1 0 0

0 1 0

0 0 1

−

K1

K2

K3


[
1 0 0

]

P−11 P−12 P−13

P−21 P−22 P−23

P−31 P−32 P−33.

 . (2.20)

The variance P+
33 term, using the Kalman gain from Eq. (3.4), can be written as

P+
33 = P−33 −

P−13P
−
31

R11 + P−11

. (2.21)

Note that Pij = Pji, where i 6= j, due to the symmetry in the system covariance matrix. It is

immediately evident that the variance corrected by the measurement will always be less than the

predicted variance because the second term on the right-hand side in Eq. (2.21) is positive. In other

words, the measurement is used to reduce the uncertainty of the estimate, i.e. P+
k < P−k . However,

the standard deviation, and thus the variance, of each state, i.e. Pii, must be a positive value at all

times. Therefore, P+
ii > 0 is a condition that must be satisfied.

In addition, without any constraints on R11, there could be a case where P+
33 becomes negative

as can be seen from Eq. (2.21), and cause the failure of the EKF. Noting that the measurement noise

itself may be uncertain, one can satisfy a positive system variance by adjusting the Kalman update.

For instance, if R11 is infinitely large, namely, the measurement uncertainty is large, P+
33 = P−33,

the measurement is not trusted and the prediction from the physics-based model is adopted. On

the other hand, if the measurement error is small, i.e. R11 is small, there could be a situation where

P+
33 becomes negative, which can make the EKF unstable. To keep P+

33 positive, the measurement
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noise, R11, is designed to be adjusted (when needed) as follows:

R11 ≥
(
P−13

)2

P+
33 − Pmin

− P−11, (2.22)

where the Pmin is a user-defined value for the minimum allowed unknown state covariance which

increases R11 to keep P+
33 > 0. Note that this minimum variance value is imposed on the vari-

ance of the unknown state, Pmm, where m is the index corresponding to the unknown state, i.e.

min(P+
mm) = Pmin.

Alternatively, the measurement noise covariance can be assumed as some percentage of the

corresponding state, calculated at each measurement update phase.

2.3 Extensions of the Kalman Filter

Further extensions of the Kalman filter exist to better handle nonlinear systems. Within the

EKF framework, the filter can be applied in the modal space, with a finite element approach,

or with a finite difference approach. Beyond the EKF exists the iterated extended Kalman filter

(IEKF) which acts exactly as the EKF, except that it iterates through multiple state estimates to

ensure an optimal update is reached. This is performed by tracking the difference between update

values, stopping the iteration once the solution no longer changes. This filter has been shown to

act identically to the EKF unless further modifications are made, such as using the maximum a

posteriori (MAP) criterion or a quasi-Newton technique. There are also unscented Kalman fil-

ters (UKF) which uses a deterministic sampling technique known as the unscented transformation

(UT) to pick a minimal set of sample points (called sigma points) around the mean that are then

propagated through the equations to determine a new mean and covariance estimate. While more

robust against nonlinearities, this filter can face difficulties with diverging sigma points as well as

increased computational cost. The ensemble Kalman filter (EnKF) replaces the covariance matrix

with a sample covariance. The EnKF is a particular type of particle filter, assuming that all prob-

ability distribution functions are Gaussian. Ensemble Kalman filters represent the distribution of

the system state using a collection of state vectors, called an ensemble, and replace the covariance
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matrix by the sample covariance computed from the ensemble. The ensemble is operated with as

if it were a random sample, but the ensemble members are really not independent. Each extension

has its merits, but as the EKF appears suitable for this research, the added computational time of a

more robust filter was found unnecessary.
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3. ZERO-DIMENSIONAL VERIFICATION

I now consider myself to be at the beginning of the beginning of making something

serious.

- Vincent Van Gogh, Etten, Dec. 1881

The study of zero-dimensional models is a broad topic of research as nearly every physical

system can be reduced to a simple, time-dependent model. For smooth dynamical systems, these

models often appear as attractors or predator-prey models. Computational research communities

have long used these simplified models as initial test cases for proving new methods or modeling

approaches due to the commonality of these models as well as the wealth of information that can be

learned from them. For some global models, studies of phase shifts and oscillation amplitudes can

provide significant understanding of how well an applied system, such as a data-driven model, can

recreate the results. Other models, such as chaotic attractors, are often used to demonstrate the abil-

ity to filter noise or to track system states without learning some assumed, repeated pattern. This

chapter presents three simple test cases to demonstrate the capabilities of the physics-constrained

EKF presented in the previous chapter. These test cases are used to benchmark against an original

EKF where the ad hoc noise covariances remain constant, study the effects of sparse measurement

updates, and demonstrate the abilities of the constrained EKF to estimate unknown states in plasma

physics applications.

3.1 Lorenz System

The Lorenz system was first developed in the early 1960s and is attributed to work performed

by Edward Lorenz. The original intention for the system was to develop a simplified mathematical

model for atmospheric convection to study meteorological events. In particular, the Lorenz system

models a two-dimensional layer of fluid that is uniformly warmed from below and heated from

Part of this chapter is reprinted with permission from "Real-time state estimation of low-frequency plasma os-
cillations in Hall effect thruster" by C.M. Greve, M. Majji, and K. Hara, 2021, Physics of Plasmas, 28, 093509,
COPYRIGHT 2021 by AIP Publishing.
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above by tracking the rate of convection and temperature variation in both horizontal and vertical

directions. The system can be shown to never cross the same point in space more than once

(deterministic) as it orbits around one or more attractor points at fixed locations in space. the

system is non-periodic because the system will switch attractors in an unpredictable manner. The

intrigue of this system is that use of the same three constant parameters with imperceptibly different

input parameters will yield different solution trajectories as time advances due to the chaotic nature

of the system. Thus, this system is unpredictable over time although its general dynamics can be

assumed based on the known attractor points of the system. Since its development, these equations

have seen similar application in fields of lasers [92], DC motors [93], chemical reactions [94], and

the Malkus waterwheel [95].

The Lorenz system is used in this dissertation to study the convergence properties of the

physics-constrained EKF (PC-EKF) in comparison with the original EKF where fixed ad hoc

noise covariances are used. To demonstrate the capabilities of the EKF models, a self-verification

test case is created where a time-dependent solution obtained from a particular calculation of the

physics-based model is taken as a reference solution, which is provided in the EKF models as the

measurement data, ỹ. Quantitative assessments of the filters are made by comparing the refer-

ence solution and the calculated solution obtained from the EKF models before applying them to

plasma dynamical models. Two tests conducted in this section include: (i) to test how the EKF

models handle added noise (random fluctuation) in the measurement for the state and parameter

estimation and (ii) to test how the EKF models handle sparse measurement dataset, i.e., when

the Kalman update is conducted at a lower frequency. These capabilities play an important role

in application of the filters to physical systems with measurement uncertainties and limited data

acquisition compared to the dynamics of interest.

3.1.1 The Lorenz Equations

The Lorenz system serves as a common test case for chaotic nonlinear system studies due to

its non-periodic yet deterministic nature. Extensive literature can be found on the derivation of the

system, its applications, and testing, so only a brief discussion of the equations is provided [68, 96,
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97, 98]. The Lorenz equations are given as

dX

dt
= σL(Y −X), (3.1a)

dY

dt
= X(ρL − Z)− Y, (3.1b)

dZ

dt
= XY − βLZ, (3.1c)

where, for this work, X , Y , and Z are spatial positions of the system that vary in time, t, and

σL, ρL, and βL are constant parameters that govern the overall shape and location of the attractor

lobes. The values σL = 10, ρL = 28, and βL = 8/3 are used across literature to produce the

well-recognized butterfly attractor solution of the Lorenz equations [68] and will be used in this

study for consistency.

3.1.2 Simulation Setup

Figure 3.1 shows a comparison of (a) a smooth Lorenz system without noise, (b) a dataset

sampled using a time interval of 0.01 with added noise, and (c) a sparse dataset using a time

interval of 0.1 with added noise. The latter two cases are used in this study to estimate σ̂L using

both the original EKF and PC-EKF models. A low frequency data acquisition can result in the lack

of defined attractor lobes or any coherent structure to the Lorenz system Because the shape of the

attractor is specific to the unknown parameter of interest, this loss of definition can be detrimental

to the estimation of the dynamical system, particularly with sparse data.

In Ref. 68, the development of an inverse problem to obtain all three parameters was demon-

strated using an offline estimation technique based on a first Wasserstein metric cost function. Re-

cent work by Dubois et. al. uses a recurrent neural network to predict solutions multiple time steps

ahead of the current state without requiring the calculation of error statistics such as in Kalman

filters [99]. Sparse regression techniques have also been used to estimate the states of the Lorenz

system [100].

35



(b) (c)

X XY YYX

(a)
40

30

20

10

Z

40

30

20

10

Z

40

30

20

10

Z

10 0 -10 1020
-20-100 10 0

-10 1020

-20-100 10 0 -10 1020

-20-100

Figure 3.1: A comparison of Lorenz solutions for (a) the original data without noise, (b) 100
samples per unit time measurement data with noise, and (c) 10 samples per unit time measurement
data with noise. The random noise has a maximum value of 1.

The present study is performed to investigate whether the physics-constrained EKF can esti-

mate the input parameter σL, given different data acquisition frequencies. The input parameter σL

is included as a component in the state variable vector of the EKF such thatx =

[
X Y Z σL

]T
.

This state vector leads to the following Jacobian matrix

F (x(t), t) =



−σL σL 0 (Y −X)

ρL − Z −1 −X 0

Y X −βL 0

0 0 0 0


, (3.2)

where the unknown state σL is considered piecewise constant during the continuous propagation

phase.

The X state calculated using a complete Lorenz model with σL = 10 and added white noise

is used as the measurement signal, ỹk, to estimate the state variables. In both EKF models, σL

is taken into account within the state vector so its uncertainty, i.e., variance, can be propagated

in time. For this study, we assume that we do not know the underlying dynamics associated with

the unknown parameter, σL. Thus, σL is assumed piecewise constant, i.e., dσL/dt = 0, during

the continuous propagation phase of the EKF. This condition means that the σL estimate is only
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updated based on the newly arrived measurement data during the Kalman update.

This test case creates a reference solution using the coefficients (σL, ρL, βL) = (10, 28, 8/3)

with initial condition (X, Y, Z) = (10, 10, 10). The goal of this test case is to estimate the value

of the σL parameter using the X state with added noise as the measurement data. This test case

is chosen to demonstrate the ability of the solver to estimate an input parameter of the system that

cannot be observed by experimental data. Hence, it serves as a self-verification test. Artificial

random fluctuations with maximum amplitude of 1 are added to the reference solution of X , i.e.,

ỹ = Xref + ν where ν is a random number between 0 and 1, to test the whether the filter handles

to handle noisy data.

Both the reference solution and the estimation are run for 20 dimensionless units of time using

a fourth-order Runge-Kutta solver and time step of 0.01 unless otherwise stated. Because the σL

parameter is assumed constant during the continuous prediction phase, all of the σL elements in the

Jacobian matrix are treated as zero in the model prediction equations while the derivatives of the

other three state are taken into account. The estimate initial conditions are set using values that are

not identical to the reference solution, namely, (X̂, Ŷ , Ẑ, σ̂L) = (15, 3, 6, 20), while the diagonal

variance values are initialized to Pmm = 10, with the non-diagonal components equal to zero.

3.1.2.1 Physics-Constrained EKF Setup

Based on the discussion presented in the previous chapter, the variance of the unknown state,

P−mm,k+1, where m = 4 corresponds to the desired unobserved input parameter σL, is set as a

constant, P0, so that Q, the model error covariance, can vary in time. This is equivalent to adapting

theQ value at every prediction stage between two consecutive measurement updates, as can be seen

from Eq. (2.18). As discussed in the previous chapter, setting P0 only affects the final propagation

time step covariance value before new measurement data arrive, i.e., P−k . This particular variance

term will be updated by the Kalman update and allowed to grow during the continuous propagation.

The constant P0 value is set to give an upper limit to how much the uncertainty is allowed to grow.

One can evaluate the constraints associated with the time-dependent measurement noise, σR,

applied to the measurement signal, X , as R = σ2
R. As the measured state for this test case directly
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relates to the first component of the state vector, the corresponding basis function can be written

as Hk =

[
1 0 0 0

]
. Solving Eqs. (2.16) and (2.17) leads to the following relation for the

unknown state covariance:

P+
44 = P−44 −

P−14P
−
41

R + P−11

. (3.3)

It is immediately evident that the variance corrected by the measurement will always be less than

the predicted variance because the second term on the right-hand side in Eq. (3.3) is positive due

to the symmetry of the covariance matrix and a positive-definite variance. In other words, the

measurement is used to reduce the uncertainty of the estimate, i.e., P+
k < P−k . However, the

standard deviation, and thus the variance, of each state, i.e., Pmm, must be a positive value at all

times. Therefore, P+
mm > 0 is a condition that must be satisfied.

Noting that the measurement noise itself, σR, may be uncertain, one can satisfy a positive

system variance by adjusting the Kalman update. For instance, if R is infinitely large, the mea-

surement is not trusted and the prediction from the physics-based model is adopted, causing little,

if any, change to the current state and covariance estimates. On the other hand, if the measurement

error is small, i.e., R is small, any of the state variances, Pmm, could be over-corrected and become

negative as can be seen from Eq. (3.3). This potential flip in variance sign is not only ill-posed, but

indicates that the EKF is unstable. To keep these diagonal terms positive, especially those related

to the unknown states, P+
44 in this test case, the measurement noise covariance, R, is designed to

be adjusted at any point in time as follows.

The Kalman gain for the case where the measurement is the first element in the state vector x̂,

i.e. Hk =

[
1 0 0 0

]
for all time, k, is given by
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Kk =



P−11 P−12 P−13 P−14

P−21 P−22 P−23 P−24

P−31 P−32 P−33 P−34

P−41 P−42 P−43 P−44





1

0

0

0




Rk +



1

0

0

0



T 

P−11 P−12 P−13 P−14

P−21 P−22 P−23 P−24

P−31 P−32 P−33 P−34

P−41 P−42 P−43 P−44





1

0

0

0





−1

=



P−11

P−21

P−31

P−14


1

Rk + P−11

.

(3.4)

The covariance update equation, in Eq. (2.17), can be written as

P+
k =





1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1


−



Kk,1

Kk,2

Kk,3

Kk,4


[
1 0 0 0

]




P−11 P−12 P−13 P−14

P−21 P−22 P−23 P−24

P−31 P−32 P−33 P−34

P−41 P−42 P−43 P−44.


. (3.5)

The variance P+
44 term, using the Kalman gain from Eq. (3.4), can be written as

P+
44 = P−44 −

P−14P
−
41

Rk + P−11

. (3.6)

Note that Pij = Pji, where i 6= j, due to the symmetry in the system covariance matrix. It is

immediately evident that the variance corrected by the measurement will always be less than the

predicted variance because the second term on the right-hand side in Eq. (3.6) is positive. In other

words, the measurement is used to reduce the uncertainty of the estimate, i.e. P+ < P−. However,

the standard deviation, and thus the variance, of each state, i.e. Pii, must be a positive value at all

times. Therefore, P+
ii > 0 is a condition that must be satisfied. This equation can be rewritten as

R ≥
(
P−14

)2

P+
44 − Pmin

− P−11, (3.7)

where the Pmin is a user-defined value for the minimum allowed unknown state covariance. Setting

a minimum, positive, value for this unknown variance increases the measurement noise uncertainty
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to ensure P+
44 > 0. Note that this minimum variance value is imposed on the variance of the

unknown state, Pmm, where m is the index corresponding to the unknown state, i.e., min(P+
mm) =

Pmin. As this is a value to ensure positivity, Pmin can simply be set as some desired value based on

general intuition, removing the necessity to tune an ad hoc parameter while creating a more robust

estimation setup.

As both the original EKF and the physics-constrained extended Kalman filter (PC-EKF) will

be used for this test case, the initial measurement noise covariance, R, is set to 3 and the initial

process noise covariance, Q, is set to 15. For the physics-constrained EKF, P0 = 10 for P−44 and

the minimum covariance value introduced in Eq. (3.7) is set to Pmin = 0.1.

3.1.3 Results

Figure 3.2 shows the temporal evolution of the PC-EKF state estimates (X̂, Ŷ , Ẑ) with their

corresponding uncertainties, calculated from the variances from the system covariance matrix,

compared to the reference solutions (Xref , Yref , Zref) using a measurement frequency of 10 sam-

ples per unit time, shown in Fig. 3.1(c). Note that the dark red line is the estimated solution of

interest while the pink shade denotes the uncertainty bounds. The reference solutions are overlaid

in the black dashed line. The small variance bounds indicate a high level of confidence in the

filter dynamics and can be seen to remain small throughout most of the estimation. Looking at

Fig. 3.2(a), the short transient time between the larger initial variance values to the smaller adap-

tive variances is clearly visible. This reduction in variance is indicative of the filter finding the

measurement dynamics. This short transient time despite sparse, noisy measurement data further

evidences the robustness of the PC-EKF for estimating system dynamics. Note that the slight bal-

looning of the uncertainty between the time units 2 and 3 corresponds to a poorer estimation of the

measured state during that time, i.e., x̂X is farther from the reference solution than at other times

during the simulation.

Figure 3.3 shows the PC-EKF estimation of the input parameter σL, as it is updated over time

for two different cases where the measurement data arrive frequently at 100 samples per time

unit (as shown in Fig. 3.1(b)) and where the measurement data are sparse at only 10 samples per
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Figure 3.2: The estimation results and reference solutions for the Lorenz system state variables (a)
X , (b) Y , and (c) Z run using a measurement frequency of 10 samples per unit time, corresponding
to the dataset shown in Fig. 3.1(c). The reference solution Xref , Yref , and Zref (black dash) is
overlaid with the estimate X̂ , Ŷ , and Ẑ (red) and corresponding uncertainty bounds (pink).

time unit (as shown in Fig. 3.1(c)). The estimate of σ̂L fluctuates in time due to the continued

measurement updates performed by the filter and is shown to never settle into a true, steady-state

condition. This is due to the assumed measurement noise and system noise used by the Kalman

filter updated compared to the true amount of noise in the measurement. After the initial transient

period during the first 1-2 time units, the solution oscillates near the true value of the estimate

and the true reference solution is always within the uncertainty bounds. The time-averaged σ̂L

approaches the correct σL,ref = 10 with the high frequency measurement case averaging to 9.4648

and the low frequency case averaging to 9.2385. It is to be noted that due to the chaotic nature

of the Lorenz system, the time-averaged σ̂L varies dependent on the initial condition, particularly

when the measurement data are sparse. This led the original EKF to fail, which is discussed shortly.

Figure 3.4 shows the effects of data acquisition on the performance and robustness of both the

original EKF and the physics-constrained EKF models by comparing the root mean square (RMS)

errors of the unknown state, σ̂L. As discussed in Fig. 3.3, the time-averaged σ̂L can vary with

sparse data based on a different measurement acquisition frequency, the initial condition, and the

measurement noise due to the chaotic nature of the Lorenz system. The results presented in this

figure use identical initial conditions with randomly applied, normally distributed noise in the exact

state, X , to create the measurement. Due to this random noise, no two runs are identical despite

identical initial conditions. For this reason, multiple tests are run to remove the variation in solution
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Figure 3.3: The σL parameter estimation results for (a) 100 samples per unit time, correspond-
ing to Fig. 3.1(b), and (b) 10 samples per unit time data acquisition frequencies, corresponding to
Fig. 3.1(c). The reference solution (black dash) is overlaid with the estimate (red) and the uncer-
tainty bounds (pink).

caused by the sensitivity of the system to the incoming measurement [68]. The presented RMS

error of the time-averaged σ̂L reflects the average of 15 individual tests at each data acquisition

frequency. The second half of the estimation, i.e., t ∈ [10, 20], is used to calculate these averages

to remove the effects of the initial transient period.

It can be seen from Fig. 3.4 that both the original EKF and PC-EKF perform well when the

measurement data stream is fully resolved in time. The original EKF is shown to produce lower

RMS error values for the majority of successful runs compared to the PC-EKF, demonstrating the

abilities of this filter. However, it is notable that the original EKF becomes unstable at lower data

acquisition frequency, i.e., with sparse data. As the time steps between consecutive measurement

updates become larger, the uncertainties during the continuous prediction phase become unphys-

ical, causing the propagation phase to fail. Once the simulation fails for as many as one out of

every five runs, the results are no longer plotted, which is the case for the original EKF model

results. These failures occur when the estimate reaches an unphysical value and causes the EKF

to diverge. It is important to note that the choices of R and Q in the original EKF model are not

altered between cases, thus becoming non-optimal and largely affecting the performance of the
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Figure 3.4: The root-mean-square error of the time-averaged σ̂L value obtained from 15 separate
runs for the PC-EKF (black circle) and original EKF (red diamond). The EKF solutions are not
shown below a measurement frequency of 5 since a finite number of runs failed while the PC-EKF
exhibits robust state estimation with sparse data.

filter [84, 85]. Were these values to be varied, the EKF may perform more robustly with sparse

measurements at the cost of added testing and user-interfacing with the code. In many settings,

these ad hoc parameters are tuned by the user to achieve optimal performance.

Contrary to the original EKF, the PC-EKF maintains physical consistency due to its bounded

uncertainty terms, leading to a wider allowable measurement frequency range before the measure-

ments are too sparse to obtain reasonable results. The robustness of the PC-EKF is demonstrated,

i.e., there are no failed simulations with a wide range of initial conditions and Kalman update

frequencies since the physics and mathematical constraints are unconditionally satisfied. This is

especially significant for physics applications where low-frequency data acquisition may lead to

sparse data for high-frequency phenomena of interest. Since the PC-EKF parameters, P0 and Pmin,

are not optimized for the system, this discussion does not include a detailed analysis of the ac-

curacy of the estimates. Overall, the time-averaged σ̂L showed good agreement with the true σL,

completing the verification of the EKF model to a dynamic problem.
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3.2 Driven-Damped Harmonic Oscillator

Further verification of the physics-constrained extended Kalman filter (PC-EKF) is performed

using a simple nonlinear problem to illustrate its ability compared to analytical theory. Here,

the driven-damped harmonic oscillator is employed [101]. This type of global model tracks the

steady-state oscillation of one or more states based on a dynamic input to the system. The har-

monic oscillator problem is widely used because it represents a system that will experience a

restoring force when displaced from its equilibrium position. The driven-damped description in-

dicates that the system studied includes a frictional force which damps the oscillations and would

cause the oscillations to decrease over time without the inclusion of a time-dependent driving term

to continuously supply energy to the system.

3.2.1 Oscillator Equations

Consider a system that can be written as,

∂x1

∂t
+ αx1 = x1x2z, (3.8a)

∂x2

∂t
+ γ(x2 − x2,int) = −x1x2z, (3.8b)

where x1 and x2 are the states, t is the time, α and γ are constants, and x2,int is the constant value

of the x2 quantity. The driver of the system, z, is assumed to be:

z = z0 [1 + A cos(ωrt)] , (3.9)

where z0 is the mean value of the oscillation, A is the amplitude of the oscillation, and ωr is a

constant driving frequency.
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3.2.2 Simulation Setup

This work uses the system described above with the developed physics-constrained extended

Kalman filter. The filter is run without a priori measurement noise, i.e. σR = 0, to demonstrate

a clean, baseline condition to assess the numerical sensitivities of the filter given the available

analytical analysis that can be performed with harmonic oscillators. Note that the previous case,

the Lorenz system, includes a random measurement noise.

Studies using multistep neural networks to solve supervised learning tasks while respecting

physical laws given by nonlinear partial differential equations [102]. Mendible et. al. have used

dynamic mode decomposition and a deep Koopman embedding to study rotating detonation waves

whose dynamics can, in part, be described using harmonic oscillators [103].

The state vector given to the filter is written as x =

[
x1 x2 z

]T
. To demonstrate the capa-

bility of the PC-EKF, x1,ref(t) is used as the measurement data ỹ, from which the estimate of the

input parameter ẑ(t) is obtained as well as the state estimations of x̂1(t) and x̂2(t). This allows

for an assessment of the errors associated with the state estimation with respect to the reference

solutions, ε = qref − q̂, where q = x1, x2, z. The unknown z state is considered piecewise constant

for the propagation phase, indicating that it will only change due to the Kalman update.

The reference solution is generated using an initial condition of (x1, x2, z) = (0.009, 0.1, 725),

constants α = 100 and γ = 1, a frequency of ωr = 2π, and x2,int = 1. A small amplitude of

A = 0.02 is chosen with z0 = 725. The continuous prediction of the EKF is performed using a

fourth-order Runge-kutta scheme for a normalized time of twenty units with a time step size of

0.001.

The measurement data are used in the EKF with different sampling frequency to investigate

the effects of the data acquisition quality on the EKF estimation. For these results, the initial

conditions of the estimated x̂1, x̂2, and ẑ quantities are x̂1 = 0.0085, x̂2 = 0.08, and ẑ = 800. The

corresponding initial variance values are set to (P11, P22, P33) = (1, 1, 4) while Pij = 0 for i 6= j.
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3.2.2.1 Physics-Constrained EKF Setup

From Eqs. (3.8a) and (3.8b), the Jacobian matrix for the continuous propagation of the system

covariance can be written as

F (x(t), t) =


x2z − α x1z x1x2

−x2z −x1z − γ −x1x2

0 0 0

 , (3.10)

where the unknown parameter, z, is assumed piecewise constant during the continuous propagation

stage, and therefore has no derivatives.

As in Sec. 3.1, the process noise covariance is not going to be set as a constant value. Instead,

for this three-equation system, the variance of the unknown state, P−mm,k+1 where m = 3 corre-

sponds to the desired unknown driving parameter z is set as a constant, P0. For the measurement

noise covariance, R is designed to be adjusted as follows:

R ≥
(
P−13

)2

P+
33 − Pmin

− P−11, (3.11)

where the Pmin is a user-defined value for the minimum allowed unknown state covariance which

increases R to keep P+
33 > 0. Note that this minimum variance value is imposed on the vari-

ance of the unknown state, Pmm, where m is the index corresponding to the unknown state, i.e.

min(P+
mm) = Pmin. The constant variance value from Eq. (2.18) is set as P0 = 95, 000. Although

it was not used in this testcase, the minimum Pmm value, Pmin, where m = 3, is set to 0.1 for the

simulation.

3.2.3 Results

Figure 3.5 shows the reference solution obtained by solving the driven-damped harmonic oscil-

lation equations, Eqs. (3.8) and (3.9), overlaid with the estimation results and 3σ variance bounds

obtained from the PC-EKF using a measurement frequency of 250 Hz. The results presented in
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this figure correspond to the corrected (+) values of the filter. Due to the lack of added noise to

the measurement vector, the measurement noise variance remains zero, R = 0, for the entirety

of the estimation process. The lack of noise simplifies this test case to investigate the PC-EKF

solely depending on the quality of the data acquisition while also further reducing the uncertainty

bounds of the states. The transient time for the EKF to achieve a state estimate synchronized with

the actual states lasts only a few oscillation cycles. As with the Lorenz system estimate for the

unknown σL state, the unknown z uncertainty bounds are shown to remain constant throughout the

simulation due to the P0 set by the PC-EKF.

(a)

(b)

(c)

x 1
x 2

z

Figure 3.5: An example of the reference solution, xref , in black dashed line, overlaid with the
updated, (+), estimates of the physics-constrained extended Kalman filter (PC-EKF) estimation
solution, x̂, in the red solid line. The 3σ variance bounds are shown in the pink shade. These
figures present (a) x1, (b) x2, and (c) z.

Since the reference solutions for all quantities in the system are pre-calculated and unaffected

by noise, Fig. 3.6 shows the system error (e.g. residual) at every point in time calculated as the

difference between the reference solution and the most recent estimation. A 3σ bound, where σ
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is equivalent to the standard deviation, σi = (P+
ii )1/2 for i = 1, 2, 3, is used both to generate a

region of confidence for the estimation and to set a variance bound on the error. It can be seen

from Fig. 3.6 that the error remains bounded for all time, even during the initial transient time of

the system, for both of the unknown estimates, x̂2 and ẑ. Note that because the measurement noise

is set to zero, the variance of the x̂1 estimate, i.e. P11, becomes zero after the first Kalman update.

This is because the Kalman gain for the x1 state, i.e. K1 in Eq. (3.4), becomes 1, indicating that the

EKF model fully accepts the measurement as x̂1. Despite the initially large set variance in ẑ, the

standard deviation settles to 23, the standard deviation of the x̂2 estimate quickly settles to 0.0022

which can be seen as a very narrow bound.
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Figure 3.6: The corresponding residual error (black solid) for each of the three updated state values,
i.e. x̂+, plotted with their 3σ bounds (pink shade) for (a) x1, (b) x2, and (c) z.

3.2.3.1 Comparison against Theory

Having determined that the PC-EKF can estimate the driven-damped harnonic oscillator within

narrow error bounds given sufficient measurement data and reasonable initial conditions, an ana-
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lytical analysis of the filter results is now presented. Because a small A value is chosen, the

harmonic oscillation remains sinusoidal throughout the simulation. Under this condition, the lin-

ear perturbation theory can be used to obtain the exact solution for the dynamical system, allowing

for a verification of the EKF model. Characteristics specific to this system include the amplitude

and phase of the x1-, x2-, and z-state oscillations as calculated from driven-damped harmonic

oscillator theory and the estimation results [104]. For a larger A value, the oscillation becomes

non-sinusoidal, i.e. the dynamics are nonlinear, making the linear perturbation analysis invalid.

Using z0, the equilibrium (time-averaged) values of the x1 and x2 states (denoted by subscript

0) can be calculated as

x1,0 = −γ
α

(
α

z0

− x2,int

)
, (3.12a)

x2,0 =
α

z0

. (3.12b)

Applying a linear perturbation theory of the form v = v0 + v′ to both state variables, i.e. v

can be either x1 or x2, in conjunction with the equilibrium solution from Eqs. (3.12a) and (3.12b)

leads to two second-order equations of similar form. The general second-order equations can be

written as

v̈ + νdv̇ + ω2
0v = ω2

0 [M0,v cos(ωrt) +N0,v sin(ωrt)] , (3.13)

where νd = γz0x2,int/α is the damping frequency, ω0 = (γz0x2,int − γα)1/2 is the natural (har-

monic) frequency of the system, and M0,v and N0,v are the amplitude of the forced oscillation,

which have a different form depending on the state variables. For the x1-state, these forced

oscillation amplitudes are M0,x1 = Aγ/z0 and N0,x1 = −Aωr/z0. For the x2-state, they are

M0,x2 = −Aα/z0 and N0,x2 = Aωr/z0.

Given the second-order differential equation, assuming a linear perturbation, presented in

Eq. (3.13), the amplitude and phase can be written as
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vAMP =
ω2

0√
(ω2

0 − ω2
r)

2 + (νdωr)2

√
M2

0,v +N2
0,v, (3.14)

and

tanφv =
M0,vνdωr +N0,v(ω

2
0 − ω2

r)

M0,v(ω2
0 − ω2

r)−N0,vνdωr
, (3.15)

respectively. Here, vAMP is the amplitude and φv is the phase shift angle between the select quan-

tity v = x1, x2 and the driving function z. The amplitude and phase of the estimated variables are

calculated by taking the Fourier transform. To study the effect of different data acquisition frequen-

cies, some user-defined number of data points are skipped during the creation of the different mea-

surement datasets. The measurement intervals are kept equidistant, i.e. constant ∆t = tk+1 − tk,

for simplicity. Increasing intervals between measurements corresponds to decreasing the acquisi-

tion frequency where Kalman updates are performed since the measurement frequency is 1/∆t.

The highest measurement frequency corresponds to the case where measurement updates are per-

formed at every time step used to generate the reference solution. For this study, the reference

solution is obtained using a time step that resolves one oscillation cycle with 1000 time steps.

Table 3.1 shows the analytical results of the oscillation amplitude for various data acquisition

frequencies. Since the Kalman gain has Kk = 1 due to Rk = 0, the amplitude of the estimate

x̂+
1 should be identical to the reference solution x1,ref . The error of the amplitude for x1-state

originates from the error associated with the amplitude calculation using a fast Fourier transform

(FFT). It can be seen that the x1 amplitude error is less than 0.1 % regardless of the sparsity of the

measurement data.

Given the errors associate with the FFT calculation, it is remarkable to see that the error of

the x̂2 and ẑ estimate amplitudes are relatively small (ε < 5 %) for the range of measurement

frequencies studied. Once the frequency drops to 10 samples per oscillation or fewer, the PC-EKF

does not have enough resolution in the measurement to fully capture the system dynamics and the

error begins to increase as the frequency decreases. It can therefore be recommended that 20-40
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measurement data per cycle are needed to capture this oscillation signal with high accuracy. A

negative sign on the relative error in Table 3.1 indicates that the estimate has a larger amplitude

than the reference value.

Table 3.1: Sensitivity study of sparse data by comparison of the reference and estimated amplitude
of the oscillation with their relative errors. The reference solutions are given in the parenthesis of
the column headers. The relative errors are calculated as (x1,exact − x̂1)/x1,exact.

Measurement
x1,AMP (εx1) x2,AMP (εx2) zAMP (εz)

Frequency (1.86780×10−4) (2.9415×10−3) (14.5)
1000 1.8680×10−4 (-0.011%) 2.9418×10−3 (-0.009%) 14.4961 (0.027%)
500 1.8680×10−4 (-0.011%) 2.9418×10−3 (-0.009%) 14.4961 (0.027%)
250 1.8680×10−4 (-0.011%) 2.9413×10−3 (0.008%) 14.4964 (0.025%)
200 1.8680×10−4 (-0.011%) 2.9413×10−3 (0.008%) 14.4966 (0.023%)
125 1.8680×10−4 (-0.011%) 2.9418×10−3 (-0.009%) 14.4975 (0.017%)
100 1.8680×10−4 (-0.011%) 2.9418×10−3 (-0.009%) 14.4984 (0.011%)
80 1.8671×10−4 (0.038%) 2.9426×10−3 (-0.037%) 14.5036 (-0.025%)
50 1.8680×10−4 (-0.011%) 2.9417×10−3 (-0.006%) 14.5051 (-0.035%)
40 1.8680×10−4 (-0.011%) 2.9414×10−3 (0.004%) 14.5097 (-0.067%)
20 1.8679×10−4 (0.005%) 2.9364×10−3 (0.174%) 14.5326 (-0.225%)
10 1.8679×10−4 (0.005%) 2.8210×10−3 (4.098%) 14.2168 (1.953%)

The x̂2 and ẑ results can provide better insight into the capabilities of the PC-EKF. The results

shown in Figs. 3.7(a) and 3.7(b) are a proof of the convergence of the EKF model to the exact

solution, in the absence of measurement noise. This illustrates that such state estimation methods

can be of use to understand physical phenomena. The errors of x̂2 and ẑ do not show a monotonic

trend, as shown in Figs. 3.7(a) and 3.7(b), but the absolute values of the errors are within 0.3%

of the reference solution when 20 or more measurement updates are performed per oscillation

period. The overestimation seen at some points in both of the unobserved states is likely due

to the piecewise constant assumption for the ẑ estimate in the present PC-EKF model. The zref

is a continuous time-dependent function, while ẑ is considered to be a state (parameter) that is

constant in time between the measurement updates in the EKF model. The constant ẑ during the

continuous update results in a phase lag for the estimate x̂1 and x̂2 in comparison to z(t) and leads
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to a discrepancy in the amplitude estimation.
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Figure 3.7: (a) The estimated x̂2-amplitude (circle) of the driven-damped harmonic oscillator as it
is affected by the data acquisition, i.e. measurement, frequency of the PC-EKF compared to the
theoretical solution (dashed line). Convergence is observed such that as more detailed measure-
ment signals are given to the filter, the original physics are more clearly resolved. (b) The estimated
ẑ-amplitude (circle) of the driven-damped harmonic oscillator compared to the theoretical solution
(dashed line).

Table 3.2 shows the phase of the oscillations for the same measurement frequencies used to

study the amplitude. Since the phase is calculated from 0 to 2π, the absolute error of the phase lag,

ε = qexact− q̂ where q = x1, x2, z, is used instead of the relative error. The phase lag φ21 = φ2−φ1

denotes the difference between the x̂2 and x̂1 phases where φ2 and φ1 are the phase lag of x̂2 and

x̂1 with respect to the input function, ẑ. Similar to the x̂1 amplitude results, the phase of the x̂1

signal is almost identical to that of the reference solution. The x̂2 and ẑ quantities exhibit near-

monotonically changing values dependent on the measurement frequency. As both the x̂1 and x̂2

phases are calculated with respect to the ẑ phase, the phase lag between the x̂2 and x̂1 phases is

shown to more clearly demonstrate the data trends.

Figure 3.8 shows the absolute error of the phase lag between x̂2 and x̂1 and the ẑ-state phase

from Table 3.2. When the frequency of data acquisition, i.e. Kalman update, increases, the absolute
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Table 3.2: Sensitivity study of sparse data by comparison of the reference and estimated phase
angles given in radians. The reference solutions are provided in parenthesis in the column headers.
The input zref is a cosine function shown in Eq. (7), thus the exact phase lag is 0. The exact phase
lags for x1 and x2 are derived from Eq. (3.15).

Measurement
φ1 φ2 φz φ21 = φ2 − φ1 (εφ21)

Frequency (-1.3353) (0.01490) (0) (1.350215)
1000 -1.3353 0.01494 1.84×10−3 1.350218 (-3.00×10−6)
500 -1.3353 0.01494 3.64×10−3 1.350217 (-2.00×10−6)
250 -1.3353 0.01494 7.22×10−3 1.350212 (3.00×10−6)
200 -1.3353 0.01493 9.00×10−3 1.350206 (9.00×10−6)
125 -1.3353 0.01490 1.43×10−2 1.350172 (4.30×10−5)
100 -1.3353 0.01486 1.78×10−2 1.350130 (8.50×10−5)
80 -1.3350 0.01478 2.12×10−2 1.349826 (3.89×10−4)
50 -1.3353 0.01426 3.44×10−2 1.349533 (6.80×10−4)
40 -1.3353 0.01362 4.22×10−2 1.348892 (1.39×10−3)
20 -1.3353 0.00453 7.29×10−2 1.339796 (1.04×10−2)
10 -1.3353 -0.53921 5.52×10−2 1.281367 (6.88×10−2)

error of the phase lag between x̂2 and x̂1 is shown to approach zero. This indicates that the x̂1 and

x̂2 phases are individually approaching their exact phases with regards to the reference solution

(see Table 3.2). In particular, the phase of ẑ and the phase lag between the x̂1 and x̂2 states,

φ21, show a nearly monotonic trend, approaching the exact solution which can be obtained from

Eq. (3.13). By taking the log-log plot, the slope of the errors denote the order of accuracy, i.e.

ε ∝ (∆t)p. The slopes of φ21 and φz are estimated to be p = 3.05 ± 0.13 and p = 0.93 ± 0.017,

respectively. All of the phase and amplitude results demonstrate convergence of the PC-EKF as

the measurement frequency increases.

As a larger time interval between consecutive data acquisitions is used, the measurement fre-

quency decreases and the correction data becomes more sparse. Furthermore, as the number of

data points used to resolve an oscillation decreases, the finer details of the oscillation cannot be

captured. This causes the amplitude to decrease and the phase angle to shift. It is observed from the

present PC-EKF model that the amplitude of the estimated state becomes smaller as the data acqui-

sition becomes more sparse, although the time-averaged value of the oscillations are still estimated
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Figure 3.8: (a) The absolute error of the phase lag between x̂2 and x̂1 and (b) the ẑ estimate phase
for different measurement frequencies. Note that the last two points, i.e. measurement frequency
of 500 and 1000 samples per unit time, in Fig. 3.8(a) are not shown since the absolute errors are
negative as shown in Table 3.2.

well for all three states. While the high-frequency oscillations may be underresolved, the ability

to capture time-averaged values is of significant importance for robust estimation with sparse data.

In some cases, physics occurs at small scales that experimental measurement may not be able to

resolve it, e.g. electron turbulence, or the particular dynamics of a system are simply too chaotic

to be resolved. In these cases, being able to robustly capture even just the time-averaged quantities

could be of immense benefit to the scientific community to inform computational models.

3.3 Xenon Oscillations

Having demonstrated the added robustness of the physics-constrained EKF as well as the con-

vergence of the estimates towards the reference solution given sufficient measurement data, the

PC-EKF is applied to the time-dependent discharge plasma of a Hall effect thruster. For this study,

the discharge current measurement data is used to estimate the electron temperature using two

different, simple global model representation of the thruster. The focus of this investigation is to

directly demonstrate the capabilities of the PC-EKF for plasma physics research applications.

As mentioned in the introduction, Hall effect thrusters (HETs) are plasma-based electric propul-
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sion (EP) devices that can be used for orbit raising and station keeping of in-space satellites. The

low-temperature magnetized plasmas in HETs exhibit various types of oscillations due to the mul-

tiscale and multiphysics nature of the flow. The plasma flow is inherently three-dimensional and

is affected by the complex physical phenomena including plasma instabilities, turbulence, plasma-

material interactions, collisions and radiation, and reactions [54]. These include so-called self-

organized propagating structures at low-frequencies [105]. While there have been experimental

and computational efforts to study these self-organizing structures [106, 107, 108, 109, 41, 30],

the mechanisms of such remain poorly understood. Another key physical process is the anomalous

electron transport across the magnetic field lines, which determines the resistivity of the plasma

flow, affecting the ionization and acceleration mechanisms [8].

Data-driven modeling has begun to permeate the Hall effect thruster community. Recent work

by Jorns et. al. has studied the creation of low-dimensional representations of physical models

to study plasma phenomena as functional forms [65] while others have looked to forms of mode

decomposition [66, 110]. Work performed before this dissertation studied time-embedded phase

space plots to optimize input conditions for a Hall effect thruster model [68]. Work has also

been performed to study the application of deep recurrent neural networks to supplement PIC

simulations to better predict thruster dynamics in a one-dimensional model [111].

3.3.1 0D Ionization Oscillation Model - 3 Equation

To simplify the plasma oscillations that are driven by the electron dynamics, a zero-dimensional

(0D) global model can be considered that accounts for the domain as a single spatial unit. The

time-dependent volume-averaged number densities can be solved, taking into account various vol-

umetric reactions (e.g., ionization, recombination, etc.) and particle fluxes to the surface as loss

mechanisms. For this work, singly charged ions and direct ionization from ground state to the

ionized state are considered. The interaction between ion and neutral number densities is cap-

tured as a function of time driven by the time-dependent electron temperature [112], using a set

of first-order nonlinear differential equations that describe the interaction between two entities, cf.

Lotka-Volterra model [113, 114]. In Ref. 112, it was proposed that the plasma oscillations are
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unconditionally damped in the absence of any electron temperature fluctuation. While the ioniza-

tion oscillations may be due to other mechanisms, such as the 1D advective nature of the plasma

flow [115, 116], the 0D global model shows that one possible mechanism for the ionization oscilla-

tion is for the electron temperature to vary in time, similar to a driven-damped harmonic oscillator.

The true physical system is affected by multidimensional processes which could also be coupled

with an EKF to investigate plasma phenomena such as electron transport [28].

The volume-averaged ion and neutral continuity equations can be written as

dNi

dt
+
NiUi
Lch

+
2NiUi,w
R4

= NiNnξion, (3.16a)

dNn

dt
+

(Nn −Nint)Un
Lch

= −NiNnξion, (3.16b)

where N is the number density, U is the mean velocity, subscripts i and n denote ion and neutral

atoms, respectively, Nint is the number density of neutral particles injected from the anode, Ui,w =

(eTe/Mi)
1/2 is the ion acoustic speed which contributes to ion diffusion to the wall, Te is the

electron temperature in electron-volts, Mi is the mass of an ion, Lch is the channel length, and

R4 is the channel width. Here, Ui = (eVD/Mi)
1/2, where Vd is the discharge voltage and e is the

elementary charge. The ionization rate coefficient ξion, whose unit is m3/s, is given as

ξion =

[
AT 2

e +B exp

(
−C
Te

)](
8eTe
πme

)1/2

, (3.17)

where A = −1× 10−24, B = 6.386× 10−20, C = 12.13, and me is the electron mass [4].

3.3.2 Simulation Setup

This testcase uses the measurement data of the discharge current oscillation of a SPT-100 Hall

effect thruster. The time-dependent discharge current of several operating modes of the SPT-100

is measured by Gascon, Dudeck, and Barral in Ref. 3. The operation metrics for each mode are

given in detail in the referenced work, as well as the defining characteristics of each operation
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mode, which vary with mass flow rate, discharge voltage, and magnetic field strength [117, 118].

For this test case, four different discharge oscillation modes are chosen from Ref. 3 to estimate the

electron temperature using the PC-EKF model. Their relevant operating conditions are provided

in Table 3.3.

Table 3.3: The initial conditions used for the filter estimate for each of the four test cases taken
from Ref. 3. Cases I, II, and IV use borosil for the channel walls while case III uses alumina.

Case I II III IV
Vd(V ) 70 125 200 275
〈Id〉 2.73 4.42 4.82 3.97

N̂i(m−3) 1.5×1017 1.5×1017 1.5×1017 1.5×1017

N̂n(m−3) 9×1018 9×1018 7×1018 7×1018

T̂e(eV ) 18 18 30 30

For the EKF, the state variables are taken as x =

[
Ni Nn Te

]T
. Note that Te is considered to

be constant during the continuous prediction stage, but is corrected at every measurement update.

Here, time-dependent ion number density data, Ni, are calculated from the discharge current and

used as the measurement data, ỹ. The ion number density is calculated by assuming a beam

utilization efficiency, which is the ratio of ion current, Ii, to the total discharge current Id, as

ηb = Ii/Id. The measurement data can be obtained as ỹ = Ni = ηbĨd/(UieAc), where Ac is the

thruster channel area, which can be calculated from the thruster geometry using Lch = 2.5 cm and

R∆ = 1.5 cm, and Ĩd is the measured discharge current. As discussed in Ref. 3, the discharge

current is measured at a rate of 200 kHz. It is to be noted that the 0D model assumes a unitary

value for the plasma properties, while the plasma is inhomogeneous in the actual HETs. Thus,

while ηb = 0.12−0.2 is used for this present study, these values do not match other literature. This

is considered acceptable for this dissertation because the purpose of this study is to demonstrate

the capability of the EKF model rather than obtain perfectly accurate estimates.

The initialized value for the estimated ion number density, N̂i, is taken from the mean value

of the measurement data. We can make educated guesses for the other states based on this ion
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number density and assumed operating conditions of the thruster. The initial variances, Pmm, are

set assuming that the initial density estimate is inaccurate. Here, Pmm = (1× 1034, 1× 1036, 10) is

considered for the initial condition. A data acquisition frequency of 200 kHz is assumed as that is

the rate at which the original data was obtained, although some step sizes are not constant within

each solution. The mass flow rate is 5 mg/s and the average neutral velocity is assumed to be

400 m/s based on previous studies in Ref. 119 that show neutral atom velocity acceleration by the

channel exit.

3.3.2.1 Physics-Constrained EKF Setup

Based on the state vector described above, the Jacobian matrix for this system of equations is

written as,

F (x(t), t) =


−Ui/Lch − 2Ui,w/R∆ +Nnζion Niζion −2/R∆∂Ui,w/∂Te +NnNi∂ζ/∂Te

−Nnζ −Un/Lch −Niζ −NnNi∂ζ/∂Te

0 0 0

 ,
(3.18)

where the partial derivatives of Ui,w and ζ with respect to Te can be written as

∂Ui,w
∂Te

=
1

2

√
ech
TeMi

and
∂ζ

∂Te
=

√
8echTe
πme

(
2ATe +BC

exp(−C
Te

)

T 2
e

)
+

1

2
(AT 2

e +B exp(
−C
Te

))

√
8ech
Teπme

.

The noise covariance matrices are initialized as Q = 1×107 and Rk=0 = 1×1015. For the PC-

EKF, a minimum covariance value is set to Pmin = 0.1 and a fixed variance for the input variable

is fixed at P0 = 18 for P−33, the variance of the unknown state variable, (see Eq. (2.18)) to ensure
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that the state estimates satisfy the physical and mathematical constraints.

3.3.3 Results

Figures 3.9 and 3.10 depict the measurement signal and corresponding estimated state time

histories for four different thruster discharge modes, Vd = 70, 125, 200, and 275 V, to demon-

strate the robustness of the PC-EKF at handling different frequencies and amplitudes of plasma

oscillations. All cases run without any failure using the PC-EKF for a variety of initial conditions

and data acquisitions. Despite faster data acquisition rates, the estimation results were unchanged,

and so are not presented within this dissertation. The estimates of the neutral number density and

electron temperature exhibit trends that are consistent with the physics. For instance, a decrease

in neutral atom density follows an increase in ion density when an ionization event occurs. This

ionization is driven by the increase in electron temperature, which can be seen in all four cases.

Previous work in Ref. 104 discusses the phase lag between the neutral, plasma, and electron tem-

perature signals. Note that when using the original EKF with fixed ad hoc noise covariances, some

cases fail without meticulous attention to detail in initializing the filter, particularly for the cases

where the oscillation amplitude is large and the time between measurement acquisitions vary. As

the robustness of the PC-EKF in comparison to the original EKF is discussed in Sec. 3.1, here,

only the results with PC-EKF are presented.

Case A, as shown in Fig. 3.9(a), is the operation mode at very low discharge voltage, Vd = 70 V.

Gascon et al. showed that the operation mode below this voltage is often unsteady [3]. In fact, the

neutral number density, shown in Fig. 3.9(a3), exhibits a relatively repeatable oscillation up to

0.6 ms, where the neutral number density then increases despite the same level of ion density at

t > 0.6 ms. This transition is due to the incoherent ion density fluctuation, shown in Fig. 3.9(a2)

after 0.6 ms where the signal becomes more akin to a steady-state value perturbed by noise than

being dominated by a low frequency, low amplitude oscillation. The PC-EKF model provides

intriguing insights in terms of the change in electron temperature required to sustain the plasma.

At t < 0.6 ms, the time-averaged Te is approximately 18 eV, while it becomes 16 − 17 eV at

t > 0.6 ms as the discharge current trace amplitude reduces. The required time-averaged electron
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temperature is higher in the presence of a low-frequency oscillation and gives evidence that the PC-

EKF is able to detect and estimate mode transitions based on a discharge current oscillation trace.

This is a significant ability as mode transitions have been studied in detail with computational

models [8]. The ability to use data-driven modeling to gain additional insight into mode transitions

would be invaluable to the community, where much data-driven modeling to date has focused on

steady-state operation conditions.

Figure 3.9(b) shows Case B where larger-amplitude oscillations are observed at very low fre-

quencies (5 kHz) that can be considered to ‘loop’ or ‘circuit’ oscillations [29], caused by effects

of the thruster circuitry. Due to the large amplitude of the oscillations, the original EKF with

fixed measurement and process noise covariances struggled to return good estimates of the system.

Either the system estimates oscillate wildly outside of the variance bounds or the filter estimate

diverges before the simulation was complete. It is possible that there exists some perfect combi-

nation of initial variance values and initial conditions that enable the original EKF to estimate this

system well, but part of this research is to develop a robust model that does not require such fine

turning. In comparison, the PC-EKF captures state estimates that are consistent with the physics.

The electron temperature (see Fig. 3.9(b4)) is highly nonsinusoidal and consequently the neutral

atom density (see Fig. 3.9(b3)) decreases substantially by the burst of the ionization. The PC-EKF

is able to estimate a nonlinear oscillatory mode where the oscillations are multi-frequency and

non-sinusoidal, which is a promising feature for the plasma oscillation studies.

Figure 3.10(a) shows Case C where the breathing mode oscillations in the range of 20-25 kHz

are present. The nonsinusoidal oscillation comes from the moderately large-amplitude oscillation

of the electron temperature, which is considered the forcing, or driving, function of this system.

Coherent oscillations in ion density, neutral atom density, and electron temperature are observed

in this operation mode. These large fluctuations cause issues for the original EKF, similar to those

in Case B, where the filter returns poor estimates of a few oscillation peaks, exceeding beyond the

variance bounds, before ultimately failing. Conversely, the PC-EKF is shown to remain within its

confidence bounds and nearly capture the dynamics of the discharge current. The fluctuations of
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Figure 3.9: Results of the constrained EKF using the 0D ionization oscillation model for various
Hall effect thruster operation modes. Here, (a) Vd = 70 V, Case I, and (b) Vd = 125 V, Case
II. The measurement discharge current (a1, b1), estimated ion number density (a2, b2), estimated
neutral number density (a3, b3), and estimated electron temperature (a4, b4) are shown, respec-
tively. All estimated values (red) are given with their ±3σ confidence bounds (pink) except for
the electron temperature which is shown with a σ confidence bound. The calculated ion number
density measurement is denoted by the black dashed line in the ion number density plots.
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the electron temperature are out of phase with the measurement data, lagging by approximately a

half phase. Some of this lag can be attributed to the simplicity of the model used to describe these

dynamics.

Figure 3.10(b) shows Case D, a near-steady-state operation of the thruster that is mainly marked

by random noise. This case does not exhibit a large-amplitude low-frequency oscillation but is not

perfectly steady-state either. Such features can be clearly observed in the ion density, neutral den-

sity, and electron temperature estimates. Despite the nonsinusoidal higher frequency oscillations

in this discharge current trace, the estimates still capture the dynamics well.

3.3.4 0D Ionization Oscillation Model - 6 Equation

Having performed a series of studies using the three equation, predator-prey model formulation

of the xenon Hall thruster model, the same measurement signals were estimated using a more

complex six equation global model. This work is based on an extended model using Ref. 120

and Ref. 8 that includes three excited states of xenon. A spatially-averaged model that tracks the

oscillating number densities of various particle species can be written as,

∂Ni

∂t
− NiUi

Lch
= kD(Te)NeNn,g + ks,m(Te)Nn,mNe + ks,r(Te)Nn,rNe + ks,∗∗(Te)Nn,∗∗Ne, (3.19a)

∂Nn,g

∂t
+

(Nn,g −Nint)Un
Lch

= −kD(Te)Nn,gNe − ke,m(Te)Nn,gNe − ke,r(Te)Nn,gNe

−ke,∗∗(Te)Nn,gNe +Nn,rνm0,

(3.19b)

∂Nn,m

∂t
+
Nn,mUn
Lch

= ke,m(Te)Nn,gNe +Nn,∗∗νml − ks,mNn,mNe, (3.19c)

∂Nn,r

∂t
= ke,r(Te)Nn,gNe +Nn,∗∗νml − ks,r(Te)Nn,rNe −Nn,rνm0, (3.19d)

∂Nn,∗∗

∂t
= ke,∗∗(Te)Nn,gNe − ks,∗∗Nn,∗∗Ne − 2Nn,∗∗νml, (3.19e)
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Figure 3.10: Results of the constrained EKF using the 0D ionization oscillation model for various
Hall effect thruster operation modes similar to Fig. 3.9. Here (a) Vd = 200 V, Case III, and (b)
Vd = 275 V, Case IV. The measurement discharge current (a1, b1), estimated ion number density
(a2, b2), estimated neutral number density (a3, b3), and estimated electron temperature (a4, b4)
are shown.
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where N and U are the spatially-averaged number density and mean velocity, the subscripts i, g, m,

r, and ** denote ion, ground, metastable (3P2), radiative (3P1), and higher electronically excited

atoms, respectively, Ne denotes the number desnity of electrons, Nint is the number density of

neutral particles injected at the anode, Ui,w = (echTe/mi)
1/2 is the ion acoustic speed, ech is

the elementary charge of a particle, Te is the electron temperature, mi is the mass of a xenon

ion, and Lch is the channel length. This model assumes quasineutrality such that Ne = Ni for

the simulation. The spontaneous emission frequency ν is followed with the subscript (ml) for

the deexcitation from Xe** to the metastable and radiative states and the subscript (m0) for the

deexcitation from the radiative state to the ground state. The reaction rate coefficients, k, are

based on a series of curve-fit functions of electron temperature applied to data from Ref. 8 where

the subscripts describe the reaction occurring. Here, the subscript D denotes direct ionization,

s followed by m, r, or ∗∗ denotes stepwise ionization to one of the tracked excited states, and e

followed by m, r, or ∗∗ denotes excitation to one of the tracked excited states. The two functional

forms used to perform the curve fits are written as

k1 = A
exp(B/Te)√

Te

√
8echTe
πme

, (3.20a)

k2 = (A+BTe)
expC/Te√

Te

√
8echTe
πme

, (3.20b)

where A, B, and C are coefficients determined from the curve fit for each reaction rate and me

is the mass of a xenon atom. The radiative and doubly excited excitation reaction rates use the

k1 form while all of the stepwise ionizations, direct ionization, and metastable excitation reaction

rates use the k2 form. A detailed presentation of these curve fits are presented in Appendix A.

3.3.5 Simulation Setup

As in the previous study, Te is considered unknown and constant during the continuous predic-

tion stage, but is corrected at every measurement update. The EKF uses the 0D ionization model

shown in Eqs. (3.19a) - (3.19e) to propagate the particle number densities. Here, time-dependent
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ion number density data, Ni, are calculated from the discharge current provided in Ref. 3 and used

as the measurement data, ỹ. The beam utilization efficiency is treated the same as before.

The initialized value for the estimated ion number density, N̂i, is taken from the mean value

of the measurement data. Using assumed ratios between particle number density sizes, the corre-

sponding electron temperature can be calculated and all states given physically realistic initializa-

tion points. The initial variances, Pii (i = 1...6), are set as Pii = (1× 1033, 1× 1036, 1× 1034, 1×

1026, 1× 1028, 10). The mass flow rate is 5 mg/s and the average neutral velocity is assumed to be

400 m/s. The noise covariance matrices are initialized as Qk=0 = 1× 107 and Rk=0 = 1× 1015.

3.3.5.1 Physics-Constrained EKF Setup

The state vector of this model can now be written as x =

[
Ni Nn Nm Nr N∗∗ Te

]T
.

This leads to the significantly more complex Jacobian matrix of
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where the ∂RHS/∂Te is the partial derivative of each term involving a reaction rate coefficient, k

with respect to Te.

The mathematical constraint in Eq. (2.18) is used to maintain a positive covariance value at

all times. A minimum covariance value is set to Pmin = 0.1 (see Eq. (3.11)) and a fixed variance

for the unknown quantity, Te, is fixed at P0 = 18 for P−66 (see Eq. (2.18)) to ensure that the state

estimates satisfy the previously discussed mathematical constraints.

3.3.6 Results

Figures 3.11 and 3.12 show the true discharge current solution with the resulting estimated

states in relation to their uncertainty bounds. These bounds are calculated assuming a 3σ standard

deviation, where σ =
√
Pii (i = 1...6). As these are the same cases as two of the four shown

above, the impact of the excited states on the resulting estimates can be briefly mentioned. By

including excited and metastable states in the model, there can be a greater distinction between

fully and partially ionized particles in the model. Thus, the number density of neutrals can be seen

to decrease slightly. The electron temperature estimates are largely unchanged by the increased

fidelity of the model, indicating that using data-driven modeling can account for missing physics

in lower-fidelity simulations.

The breathing mode shown in Fig. 3.11 is now solved using a beam ionization efficiency of

42% and reveals a coherent oscillation in all of the number densities, and an electron temperature

with a time-averaged value of 18.9 eV compared to the 20.2 eV steady-state value estimated with

the 3-state model using the same beam ionization efficiency (note that this is a different result

than those presented in the previous section). Due to the highly oscillatory nature of this mode,

the confidence region can be seen to fall into negative values for the ions, radiative state, and

higher electronically excited state, more noticeably than in the 3-state model. While this could

be considered unphysical, this is a result of the mathematics of the EKF rather than the physics.

No conditions were placed on the variances to maintain strictly positive confidence bounds when

subtracted from the estimate, though the variances themselves remain positive for all time. This

could be added as an additional constraint to the EKF or the solutions could be presented with
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only a 2σ uncertainty bound. Additionally, smaller noise covariances could reduce the size of the

uncertainty bounds but may cause issue with the overall estimation.
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Figure 3.11: The breathing mode estimation solutions (red) shown with their 3σ confidence bounds
(pink) for all state parameters in the system. The confidence bounds crossing zero are a result of
the mathematics of the system without any positive-definite constraint in relation to the estimate.
(a) The ion number density estimate and measurement (black dash). (b) Neutral (ground state)
number density. (c) Metastable neutral state. (d) Radiative neutral state. (e) Electronically excited
neutrals. (f) Electron temperature.

Figure 3.12 shows the stable discharge oscillation case from Ref. 3. As seen in the previous

section, the random noise present in this operating mode are noticeable in all of the estimates after

the initial transient period of the filter. Here, the electron temperature is estimated as 18.9 eV

for a beam utilization efficiency of 57%. The significantly smaller oscillations in this data result

in confidence bounds that do not cross zero, unlike in Fig. 3.11. As before, the neutral number

density has a lower time-averaged value than the 3-state solution due to the inclusion of excited

and metastable states.
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Figure 3.12: The steady-state estimation solutions (red) shown with their 3σ confidence bounds
(pink) for all state parameters in the system. (a) The ion number density estimate and measurement
(black dash). (b) Neutral (ground state) number density. (c) Metastable neutral state. (d) Radiative
neutral state. (e) Electronically excited neutrals. (f) Electron temperature.

These Hall effect thruster test cases demonstrate the ability of the filter to estimate an unknown

electron temperature in a physically consistent manner. This is a significant indication that an

extended Kalman filter can be used for plasma applications where electron dynamics are of interest.

Even though a limit has been found regarding how sparse of a measurement can be used to capture

the complete dynamics of a signal, every solution has demonstrated that the time-averaged value

of the filter estimates are physically consistent. Considering how little is known regarding electron

dynamics and parameters such as electron mobility, even a result that shows an unknown electron

dynamic varying in time without the precise high frequency oscillations of the dynamics would be

a significant contribution to the research community.
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4. ZERO-DIMENSIONAL PLASMA PROCESSING MODELS

For the great doesn’t happen through impulse alone, and is a succession of little

things that are brought together.

- Vincent Van Gogh, The Hague, Oct. 1882

Numerous research studies have developed zero-dimensional (0D) models to compare with

experimental data and higher-dimensional models to demonstrate qualitative agreement of plasma

processes that can provide useful, quick first-order approximations [38, 39, 40] These models

employ the reaction rate coefficients for electron collisions, calculated by integrating collisional

cross sections over an assumed energy distribution, as well as transport and diffusion into and out

of the discharge region. Global models neglect the complexities that arise from spatial variations

and encompass a large number of reactions. The results are not expected to yield accurate values

of plasma parameters but rather to track overall trends and relations between different parameters

at relatively low computational cost. The key challenge to these models is how best to simplify

a system that can rely on spatial variation and dimensions. Furthermore, the input power supply,

list of included reactions, and the shape of energy distributions can all play significant roles in

simulation outcomes and must be carefully considered in these models.

4.1 Argon Global Model

Inductively coupled plasmas (ICPs) are low-pressure plasma sources that can operate as a

steady-state or pulsed plasma dependent on the constant or modulated nature of the input power.

Due to the scalability and simplicity of the setup of these sources, ICPs are widely studied for

fundamental plasma phenomena. In this section, the capabilities of the PC-EKF are demonstrated

with a ramped input power source for an argon ICP to estimate the absorbed input power. Then,

Part of this chapter is reprinted with permission from "Estimation of plasma properties using an extended Kalman
filter with plasma global models" by C.M. Greve and K. Hara, 2022, Journal of Physics D: Applied Physics, 55,
255201, COPYRIGHT 2022 by IOP Publishing.
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the PC-EKF is used to estimate reaction rate coefficients to study the limitations of the filter when

tasked with estimating more hidden physics.

4.1.1 The Plasma Global Model

For any plasma discharge, tracking the ion (NAr+), neutral (NAr), and single excited state

(NAr∗) number density fluctuations can provide a wealth of information about the overall plasma.

The particle balance equations are given by summing the reaction rates for different generation

and loss processes of a given species. In particular, these processes are often a factor of a reaction

rate coefficient, k, which reflects how likely a given chemical reaction, such as ionization, colli-

sions, or excitation, will occur for a given electron temperature. These rate coefficients typically

come from publicly available databases, though each database uses a unique method of calcu-

lating or measuring the rate coefficient of interest, leading to differences in coefficients between

databases [121, 122]. With such non-standardized and imperfect calculation and extrapolation

methods, inherent uncertainties exist within each rate coefficient due to measurement error or ap-

proximations in theoretical estimation.

For this study, a pure argon model described by 11 reactions as well as inflow and outflow of

the ground state species is used, as shown in Table 4.1. The reaction rates are taken from various

sources that assume a Maxwellian distribution of electrons [123, 124, 125]. The decision to use so

few reactions was made to keep the both the physics-based model and PC-EKF simple for better

understanding of the resulting estimates.

In Table 4.1, NAr,0 is the reference argon neutral number density based on the assumed oper-

ating gas temperature, the diffusion coefficient of excited state species to the wall (i.e., quenching)

is given by

D[Ar∗] =
3

16Ntot

(2πkBTg/Mr)
1/2

πσ12Ω12

, (4.1)

the ambipolar diffusion coefficient is considered for ion diffusion to the walls, given by
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Table 4.1: A list of argon reactions included in the model and their corresponding rate coefficients
where Te is the electron temperature in eV.

Reaction Type Rate Coefficient Reference
e + Ar → Ar + e Elastic k1 = 3.9× 10−7 exp[−4.6/(Te + 0.5)] cm3/s [122]
e + Ar → Ar∗ + e Excitation k2 = 2.5× 10−9T 0.74

e exp(−11.6/Te) cm3/s [39]
e + Ar → Ar+ + e + e Ionization k3 = 2.3× 10−8T 0.68

e exp(−16/Te) cm3/s [124]
e + Ar∗ → Ar + e Superelastic k4 = 4.3× 10−10T 0.74

e cm3/s [39]
e + Ar∗ → Ar+ + e + e Multistep Ionization k5 = 6.8× 10−9T 0.67

e exp(−4.4/Te) cm3/s [124]
Ar∗ → Ar Radiation Trapping k6 = 1× 105(NAr,0/NAr) s−1 [126]
e + Ar+ → Ar∗ Radiative Recomb. k7 = 4.3× 10−13T−0.63

e cm3/s [127]
e + e + Ar+ → Ar∗ + e Collisional Rad. Recomb. k8 = 1.95× 10−27T−4.5

e cm6/s [128]
Ar∗ + Ar∗ → Ar+ + Ar + e Penning Ionization k9 = 1.2× 10−9 cm3/s [129]
Ar+ (→ wall) → Ar Ion Neutralization k10 = D[Ar+]/Λ

2 s−1 [130]
Ar∗ (→ wall) → Ar Metastable Quenching k11 = D[Ar∗]/Λ

2 s−1 [130]

D[Ar+] =

(
1 +

Te
Ti

)
µ0

N0

Ntot

kBTi
e

, (4.2)

and Λ is the diffusion length calculated as 1/Λ2 = (π/L)2 + (2.405/R)2 assuming a cylindrical

plasma discharge. Here, Ntot is the total particle number density, Tg is the gas temperature in

Kelvin, Ti is the ion temperature in Kelvin, Mr is the reduced mass between species j and the

neutral species, σ12 is the Lennard-Jones radius, Ω12 is the non-deal correction factor (taken as 1

for this work), µ0 is ion mobility at standard temperature and pressure, N0 is the gas density at

standard temperature and pressure, e is the elementary charge, and L and R are the length and

radius of the simulated geometry, respectively.

Based on the reactions included in this model as described in Table 4.1, the volume-averaged

equations can be written as

∂NAr

∂t
= −k2NeNar −K3NeNar + k4NeNAr,m + k6NAr,m + k9N

2
Ar,m + k10NAr+

+k11NAr,m + Γin,Ar − Γout,Ar,

(4.3a)
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dNAr,m

dt
= −k4NeNAr,m − k5NeNAr,m − k6NAr,m − 2K9N

2
Ar,m − k11NAr,m

+k2NeNAr + k7NeNAr+ + k8N
2
eNAr+ ,

(4.3b)

dNAr+

dt
= −k7NeNAr+ − k8N

2
eNAr+ − k10NAr+ + k3NeNAr + k5NeNAr,m + k9N

2
Ar,m, (4.3c)

where the variable Γ, the particle flux, tracks the inflow and outflow of the neutral species and

Ne is the number density of electrons which under quasineutral conditions is equal to the number

density of ions, i.e., Ne ≈ Ni. These volume-averaged rate equations can be used to simulate the

dynamic plasma behavior and determine the state of the plasma at any time based on a driving

electron temperature equation. The electron temperature evolution can be solved from a power

balance equation as,

d

dt

(
3

2
nekBTe

)
=
Pabs

V
−

∑
j=elastic

Rj∆εj −
∑

j=inelastic

Rj∆εj, (4.4)

where ne is the electron number density, kB is the Boltzmann constant, Te is the electron tempera-

ture in Kelvin, Pabs is the absorbed input power, V is the system volume, Rj are the reaction rates

for each process, and ∆εj are the associated electron energy loss terms. Electron energy losses to

the surface are not directly accounted for in this model as the estimation results are expected to

contain information about this physical process.

4.2 Simulation Setup

A self-verification study is performed using a time-dependent reference solution generated by

providing a power ramp and subsequent constant input power to the electron temperature equation.

The resulting ion flux at every point in time can be calculated for use as the measurement data in

the PC-EKF. The plasma global model, Eqs. (4.3) and (4.4), combined with Table 4.1 constitute the

physics-based model in Eq. (2.1) within the EKF framework. The reference solution is generated

with a power ramp from 0 W to 100 W for 200 µs and then held at 100 W for the remainder of

the simulation. the pressure is set as 50 mTorr, the flowrate is 300 sccm, and the GEC reference
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cell chamber geometry has a radius of 40 cm and an axial height of 3 cm. The gas temperature is

set equal to the ion temperature at 300 K. The physics-based model is solved using a time step of

100 ns, and a data acquisition frequency, i.e., the frequency of the discrete Kalman update, of 100

kHz.

The incoming measurement (ỹ) is the ion flux density, calculated as

ΓAr+ = NAr+

√
eTe
mAr

, (4.5)

where e is the elementary charge, Te is the electron temperature in electron-volts, and mAr is the

argon mass assuming Bohm condition.

4.2.1 Physics-Constrained EKF Setup

The state vector for this system contains the three particle species number densities, the electron

temperature, and the unknown state of interest. For the following studies, the unknown state will

include the absorbed electron power, one reaction rate coefficient, or two reaction rate coefficients.

Using the case of the unknown absorbed electron power, the state vector can be constructed as

x = [NAr+ NAr NAr∗ Te Pabs]
T .

This state vector, combined with the equations given in Sec. 4.2.2, leads to the following Jaco-

bian matrix for the covariance propagation equation:
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F (x(t), t) =



−k7Ne − k8N2
e − k10 k3Ne

k11 −k2Ne − k3Ne

k7Ne + k8N
2
e k2Ne

0 1/Ne(2/(3ech))(k1Neε1ech − k2Neε2ech − k3Neε3ech)

0 0

k5Ne + 2k9NAr,m ∂RHS/∂Te

k6 + 2k9NAr,m + k10 ∂RHS/∂Te

− k4Ne − k5Ne − k6 − 4k9NAr,m − k11 ∂RHS/∂Te

1/Ne(2/(3ech))(−k4Neε4ech − k5Neε5ech) 1/Ne(2/(3ech))(−∂Ktot/∂Te − dNe/dt)

0 0

0

0

0

1/Ne(2/(3echV ))

0


,

(4.6)

where ∂RHS/∂Te refers to the time derivative of the right hand side of each equation where time

derivatives of each reaction rate coefficient are taken, ε are the threshold energies of each reaction,

and ∂Ktot/∂Te is the partial derivative of the first five reaction rates in Table 4.1, i.e., k1− k5, with

respect to electron temperature.

The initial variances are P̂mm = (1× 1030, 1× 1034, 1× 1030, 10, 50), where m = 1, 2, 3, 4, 5,

while all off-diagonal terms (covariances) are initially set to zero. The noise covariance values are

initialized as Q = 1 × 107 and R = 1 × 1015, but are immediately updated by the physics-based

constraints using values of Pmin = 0.01 and P0 = 50 for this test case.

4.2.2 Self-Verification with Unknown Absorbed Electron Power

The incoming measurement, ỹ = ΓAr+ , is a function of two state variables, NAr+ and Te, as

shown in Eq. (4.5). This test demonstrates how the PC-EKF can use a convolution of more than

one state as a single measurement signal and correctly decompose the parts of the measurement

75



signal. Note that the xenon Hall effect thruster plasma global model in Sec. 3.1 considers the ion

density as the measurement signal, a signal that corresponds to an exact state of interest in the

system. The key intrigue in this new setup is that there are infinite possibilities for the plasma

system that would return the measured ion flux density, but only one that estimates the complete

plasma dynamics. This is of particular interest looking towards future plasma physics applications

where measurements such as discharge current are commonly available [3], yet comprise numerous

plasma parameters that could convolute the application of the PC-EKF.

Figure 4.1 depicts the estimated ion flux, ion number density, electron temperature, and ab-

sorbed electron power states (solid red line) compared to the reference solutions (dashed black

line) for the case of an unknown ramped input power. The initial oscillations shown in the electron

temperature estimate, Fig. 4.1(c), are caused by the transient nature of the state estimates while

the PC-EKF searches for the true dynamics of the system. The electron temperature is estimated

at a reasonable order of magnitude and is shown to decrease with an increase in absorbed power.

Simultaneously, the ion number density is shown to increase as the input power increases. Having

access to the full state of the reference solution, the exact ion flux solution can be plotted against

the estimate in Fig. 4.1(a). The PC-EKF provides an accurate estimation of the unique plasma

properties based on the ion flux measurement dataset and physics-based model without a priori

knowledge of the electron power input. Furthermore, the only information given to the PC-EKF

regarding the relation of the two states observed through the measurement signal is comprised in

the observation vector H , where the partial differential equations of the ion flux with respect to

each state is given.

A similar study is performed assuming that one of the reaction rate coefficients is unknown in

the system while the absorbed electron input power is known, with the same ion flux measurement

signal. Despite reaction rate coefficients being considered hidden parameters in plasma chemistry

models, the PC-EKF is able to obtain a reasonable estimate for the coefficient of interest, as demon-

strated in Fig. 4.2. As the solution is nearly identical to the absorbed electron input power results,

these studies are not discussed in greater detail. Instead, the more interesting case of estimating
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Figure 4.1: The EKF estimates (red solid line) using an ion flux reference dataset (black dashed
line) as the measurement to estimate the unknown absorbed electron power. (a) The measured and
estimated argon ion flux. (b) The estimated ion number density with 3σ uncertainty bounds (pink
shade). (c) The estimated electron temperature with 3σ uncertainty bounds. (d) The reference and
estimated input power time history with 3σ uncertainty bounds.

more than one unknown, simultaneously, is discussed below.

4.2.3 Simultaneous Estimation of Two Unknown Reaction Rate Coefficients

Having demonstrated that the filter can estimate relevant plasma parameters individually, the

PC-EKF is used to estimate two unknowns simultaneously to determine the effectiveness of the

filter under increased uncertainty in the model. The additional unknown state is added to the end

of the state vector with all equations and matrices being modified to follow suit. The process

noise covariance, Q, becomes a 2-by-2 matrix whose diagonal entries relate to each unknown state

such that the constraint equations from Sec. 2.2 are solved separately for each entry in Q. This

requires two separate Pmin values which are set as Pmin,1 = 1 × 10−32 and Pmin,2 = 1 × 10−34.

The measurement noise covariance are set using a P0 condition of P0,1 = 1 × 10−28 and P0,2 =

1× 10−32.

For the following results, the excitation (k2 in Table 4.1) and multistep ionization (k5) rate

coefficients are used as the unknown states, indicating that no dynamics related to these two rate
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Figure 4.2: The EKF estimates (red solid line) using an ion flux reference dataset (black dashed
line) as the measurement to estimate the excitation reaction rate coefficient, k2. (a) The measured
and estimated argon ion flux. (b) The estimated electron temperature with 3σ uncertainty bounds.
(c) The reference and estimated excitation reaction rate coefficient with 3σ uncertainty bounds.

coefficients are known by the physics-based global model; they are assumed piecewise constant

during the continuous propagation phase. The filter is run using the same geometry and operating

conditions as in Sec. 4.2.2, with the initialized covariance matrix written as P̂mm = (1× 1030, 1×

1034, 1× 1030, 10, 1× 10−32, 1× 10−30) for m = 1, 2, 3, 4, 5, 6 with all other terms equal to zero.

The ion flux density, as shown in Eq. (4.5), serves as the incoming measurement signal.

Before analyzing the results, it is pertinent to note that for the given model under the specified

conditions, the excitation reaction rate coefficient is one of the most significant processes in the

model, rivaled only by the ionization process. In comparison, all other reactions in the model

occur at such a low rate their rate coefficients need not be perfectly matched to recreate the ion flux

measurement.
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Figure 4.3 shows the resulting estimates from the PC-EKF under the conditions provided above.

Due to the greater significance of the excitation reaction to the overall state of this global plasma

model, it can be seen that the excitation rate (k2) is estimated more accurately than the multi-

step ionization (k5). After analyzing the data, the multistep ionization reaction rate coefficient

was found to not be updated by the incoming experimental data at any time. Subsequent stud-

ies demonstrated that the PC-EKF gives preference to the dominant reactions, properly estimating

those unknown reaction rates compared to less significant states when multiple unknowns exists

in the system, explaining why only one unknown was estimated well by the filter. Despite the

poor multistep ionization reaction rate estimate, the electron temperature is shown to be estimated

at nearly the same steady-state value as in Fig. 4.1. Thus, despite the multistep ionization rate

coefficient never being updated by the PC-EKF, the overall solution of the filter can be trusted.

(a)

(c) Excitation 

(b)

(d) Multistep Ionization

+

Figure 4.3: Estimation of the (a) ion flux, (b) electron temperature, (c) excitation rate coefficient,
and (d) multistep ionization rate coefficient for a global argon ICP model using the physics-
constrained EKF. As in Fig. 4.1, the 3σ uncertainty bounds (pink shade) are overlaid with the
estimate (red solid line) and reference solution (black dashed line).
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These observations provide an important consideration for future usage of the EKF model for

plasma systems with multiple unknowns. If the filter can recognize the significant reactions for

a given operating condition, the EKF technique could be used to develop reduced-order models

that ignore or approximate less critical processes. These less sensitive states and parameters could

be identified in real time by tracking the Kalman gain terms of the filter, which indicate how

large of an update is performed on each individual state, to understand which processes are not

necessary for certain operating conditions or dynamics of interest. Following this notion, further

tests were run to determine if it were possible for the PC-EKF to update more than one unknown

state or if it would always update the more significant state. Figure 4.4 shows a similar case

where both the elastic and superelastic collision rate coefficients are estimated. It is immediately

evident that the PC-EKF updates both unknown states, as well as all other states in the state vector

without violating any physical laws. The increased transient time for the filter to find a steady-state

solution, or even match the reference dynamics, is likely indicative of the increased challenge and

uncertainty regarding two equally significant unknown parameters in the system.

Notably, the EKF failed for the particular case when both the excitation (k2) and ionization (k3)

rate coefficients are unknown in the physics-based model, meaning that they are not propagated

during the continuous prediction phase. These reaction rate coefficients are the two most critical

processes in the plasma generation for this particular simple model. Without knowledge of these

two processes, the filter is unable to find a viable solution due to the inability of the physics-based

model to propagate forward in time despite a variety of initial conditions for the unknown reaction

rates. It is unlikely that future studies will include physics-based models missing such fundamental

or critical processes. Nevertheless, this theory indicates that cases where the EKF cannot run may

be useful to determine the required fidelity of the physics-based model.

4.2.4 Pulsed Mode Experimental Study with Unknown Driving Absorbed Electron Power

Operating a plasma in pulsed-mode can alleviate some undesirable effects in plasma process-

ing applications, such as sputtering, wafer erosion, and silicon notching due to insulator charg-

ing [131], as pulsing the plasma creates new control variables [1, 132]. Global models using an
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(a) Ion Number Density (b) Electron Temperature
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Figure 4.4: Estimation of the (a) ion number density, (b) electron temperature, (c) elastic collisions
rate coefficient, and (d) superelastic collisions rate coefficient for a global argon ICP model using
the physics-constrained EKF. As in Fig. 4.1, the 3σ uncertainty bounds (pink shade) are overlaid
with the estimate (red solid line) and reference solution (black dashed line).

assumed absorbed power value report large discrepancies, up to factors of five, between the cal-

culated and measured plasma density [133]. Hence, while qualitative agreement with experiments

can be obtained with these global models, some plasma properties may not be in quantitative agree-

ment. This indicates that the input to the existing models may be incomplete, such as the power

absorption to the electrons. This parameter is a priori not known, as the RF power from the circuit

is used not only for electron heating, but also for volume and surface chemistry, radiation, heating

of materials and components, and ion acceleration [134]. Data-driven modeling can be useful for

estimating such hidden or inaccessible properties due to the inclusion of real-time measurement

data and the ability to generalize unknown states to estimate the effects of more than one process

in a single variable.

The physics based model used for this study is identical to the argon global model developed

for the previous tests. The state vector is taken as x =

[
NAr+ NAr NAr∗ Te Pabs

]
where the

unknown state is again the electron absorbed input power, Pabs. As with all previous cases, the
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electron absorbed input power is only corrected during every measurement update and is assumed

constant during the physics-based propagation. The initial state variances are P̂mm = (1×1030, 1×

1034, 1×1030, 10, 5) form = 1, 2, 3, 4, 5 with off-diagonal terms set to zero while the measurement

noise covariances are initialized as Q = 1 × 107 and R = 1 × 1015. The measurement signal

frequency is 50 MHz for all cases. The physics-constrained variables are initialized as Pmin = 0.01

and P0 = 1 and the geometry is that of the GEC reference cell discussed in the previous section.

This PC-EKF includes an additional constraint such that the absorbed power estimate is con-

strained to zero if the measurement updates result in a negative value. This constraint ensures a

consistent physics-based model as a negative absorbed power causes the physics-based model to

diverge. The previous constraints on the PC-EKF only require the variances of the unknown state

to meet a positive-definite condition to enable estimates of states that may physically be negative.

Because a negative input power is detrimental to this particular model, a specific additional con-

straint could be included. Such constraints on the updated solutions may be required in future

studies to ensure physical relevance of more complex plasma models.

The measurement signal is the time-dependent argon electron number density for two cycles of

the pulsed mode as it steadily operates from Ref. 1 which is treated as the ion number density due

to a quasineutral assumption for the plasma. Reference 1 does not specify all operating conditions

of the experiment, so a flowrate of 10 sccm is assumed in the following results. The experimental

data from Ref. 1 are extracted using an online digitizer. This extraction results in slight numerical

inaccuracies in the reference data, but still allows the demonstration of the PC-EKF.

As mentioned during the setup of the argon ICP model, the electron temperature equation does

not take the energy loss of electron losses to the wall into account. Though this decision is made to

keep the equations relatively simple for the PC-EKF, the resulting absorbed input power estimate

can be seen to account for these physical processes not explicitly included in Eq. (4.4). The

estimates provided by the EKF are considered the effective absorbed input power as opposed to

the true absorbed input power and are expected to be lower than the true value due to the missing

physical processes.
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4.2.4.1 Effects of Power Inputs on Plasma Estimates

Figure 4.5 shows the estimates for ion number density, electron power absorption, and electron

temperature for three peak power cases, 165 W, 190 W, and 290 W, using the same frequency

pulse (10 kHz) and duty cycle (30%) based on the reported experimental results in Ref. 1. Note

that peak power refers to the RF power supplied to the induction coil, which is different from the

power absorbed by the electrons.

The resulting estimates of the absorbed electron input power are presented in Figs. 4.5(a2),

(b2), and (c2). With an increase in peak power, there is an evident increase in the estimated

absorbed electron power. For all cases, the initial electron (ion) density is low at the time when

the measurement data begins. As ionization occurs, the electron density increases and causes an

increase in absorbed power as the plasma is generated. During the on phase, the power absorption

reaches some maximum value and begins to decay, likely due to the physical notion that once the

plasma is formed and the ions are accelerated to the walls, the input power is used more for ion

acceleration than electron heating. Additionally, the higher RF peak power values lead to faster

saturation during the on phase. It is evident that the PC-EKF is able to estimate the pulsed nature

of the absorbed electron power input using a single measurement datastream without a priori

knowledge of the pulsed nature of the discharge. The PC-EKF is shown to recognize that the

absorbed power needs to be near-zero within one measurement timestep of the experimental data.

Figures. 4.5(a1), (b1), and (c1), demonstrate that the plasma density estimates are in good

agreement with the measurements. Note that the decay rate during the afterglow phase when the

power is turned off is slightly underpredicted by the PC-EKF as shown by the ion density being

estimated slightly higher than the measurement data. This underprediction of the rate of decay is

likely caused by the electron temperature estimates, as shown in Figs. 4.5(a3), (b3), and (c3). The

electron temperature first increases to approximately 3 eV, consistent with the increase in absorbed

electron power. As the plasma density continues to increase, the electron temperature is nearly

constant until the absorbed electron power begins to decrease in the on phase. The electron tem-

perature decreases to approximately 2.5 eV still during the on phase as the absorbed electron power
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Figure 4.5: Comparison of absorbed electron power over the course of two pulses in the ICP based
on Ref. 1 with a duty cycle of 30% and a pulse repetition frequency of 10 kHz. The peak pow-
ers are (a) 165 W, (b) 190 W, and (c) 290 W, respectively. (1) The original ion number density
measurements (black dashed line) with the resulting estimates (solid red line), (2) the estimated
absorbed power trends with the 3σ uncertainty bounds (pink shade), and (3) the electron tempera-
ture estimates with their 3σ uncertainty bounds.

is transferred to accelerating ions. Immediately after the electron power absorption is estimated

to be zero by the PC-EKF, the electron temperature estimate reduces to about 1.5 eV. It is notable

that the similar off phase electron temperature values lead to similar decay rates in the plasma for

the same duty cycle. The electron temperature oscillates during the off phase in the present EKF

model as a numerical artifact caused by the additional positive constraint placed on the PC-EKF

update. The power off phase shows a noticeable increase in the uncertainty bounds for the electron

temperature. Such an increase in uncertainty illustrates the difficulty the filter has in finding the

true zero-power operation mode.

84



Analyzing the absorbed power estimates reveals a discrepancy between the peak powers pro-

vided in the referenced work and the estimated power absorbed by the plasma. The absorbed power

estimated by the PC-EKF is approximately only one-third of the reported peak power from Ref. 1.

Other computational studies have attributed low absorbed power rates to capacitive coupling in

the plasma, ion acceleration under the coil, resistive power loss, and other processes [134]. Some

studies comparing experimental and computational results note that correction is needed to achieve

quantitative agreement in the models to ensure accurate physical dynamics are being described by

the model [133]. Other studies cite power dissipation caused by well-known sources including

exciting or ionizing neutral particles by electron collisions and the transfer of kinetic energy to the

wall from electrons and ions [135, 136].

4.2.4.2 Effects of the Duty Cycle on State Estimates

The effect of duty cycle on the PC-EKF estimates for a peak power of 300 W and a pulse

frequency of 10 kHz are presented at 10%, 30%, 50%, and 70% in Ref. 1. All four cases are used

with the PC-EKF in this section.

Figure 4.6 continues to demonstrate good estimation performed by the PC-EKF. The power off

periods are oscillatory, as when studying the effect of peak RF power, caused by the filter searching

for a non-zero solution. These oscillations can be seen to damp over time as the off periods increase.

In the second pulse of Fig. 4.6(a3), the filter shows a drop in estimated electron temperature toward

the end of the off phase, which indicates an absorbed power estimate that finds a steady, zero-value

solution. In other cases, the filter finds a slightly positive value for the absorbed electron power or

does not have sufficient time to relax to a non-oscillatory solution.

As the duty cycle increases, the filter fails to capture the afterglow phase as accurately as

with the shorter duty cycles, possibly due to the inability to find a non-oscillatory absorbed power

estimate before the next pulse begins. Note that the plasma density at the exact moment when the

RF power is turned on is lower for the shorter duty cycle cases due to the operating condition of

the background gas for each different case. This results in a larger absorbed electron power for

the plasma to be generated. This can be seen from Figs. 4.6(a2), b(2), (c2), and (d2) where the
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Figure 4.6: The effect of the duty cycle on the pulsed plasma dynamics. Here, duty cycles of (a)
10%, (b) 50%, and (c) 70% are studied based on experimental data from Ref. 1 with a peak power
of 300 W and a pulse frequency of 10 kHz. (1) The ion number density measurements (black
dashed line) compared to the estimated values (red solid line), (2) the corresponding absorbed
electron power estimates with their 3σ uncertainty bounds (pink shade), and (3) the electron tem-
perature estimates and their 3σ uncertainty bounds.

maximum power absorption decreases as the duty cycle increases. The maximum electron power

absorption is estimated to be 160 W for the 10% duty cycle case while it only reaches 100 W for the

70% duty cycle case. A higher ion density value during the off phase requires less absorbed electron

power to setup the plasma, hence why the peaks drop in magnitude as the duty cycle increases but

the steady plateau absorbed power once the ions are being accelerated is approximately constant

between test cases.

4.2.4.3 Effects of the Pulse Frequency on State Estimates

The PC-EKF is applied to study the effect of varying pulse frequency while the peak power is

held constant at 300 W with a 50% duty cycle [1] for three different frequencies.

Figure 4.7 once again shows that the filter estimates the pulsed mode using the time-dependent

experimental data of the plasma density. Shorter pulses return less accurate estimates of the plasma
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density during the power off phase, seen in Figs. 4.7(a1), (b1), and (c1), and consistent with the

results shown in Figs. 4.5 and 4.6. The peak absorbed electron power in Figs. 4.7(a2), (b2), and

(c2) is seen to decrease with a shortened pulse length due to the increase in initial ion number den-

sity between cases, although the steady absorbed power value for the sustained plasma condition

remains the same. For the case of Fig. 4.7(a3), the power estimate damping towards a zero condi-

tion leads to a further decrease in the electron temperature while the other two cases, Figs. 4.7(b3)

and (c3), do not exhibit this trend. Also note that as the pulse frequency increases, the uncertainty

bounds of the electron temperature do not grow as large during the off phase of the pulse. This is

largely due to the shorter time between non-zero power estimates, allowing the filter to maintain

better confidence in the solution over time.

4.3 Argon-Oxygen Global Model

The use of gas mixtures in plasma processing applications can provide added stability across

a range of operating conditions. Thus, the PC-EKF model is applied to an 80/20 argon-oxygen

plasma global model using rate coefficients from literature [137, 138, 139, 140] and experimental

data from Ref. 2. This testcase will demonstrate the PC-EKF with a significantly more complex

model than has been tested up to this point in the dissertation. The physics-based model uses the

argon global model developed in Sec. 4.2.2 with twenty-five oxygen reactions and three oxygen-

argon reactions. These new reactions introduce the neutral state, O, vibrationally excited state

of diatomic oxygen, O2(v), electronically excited state of diatomic oxygen, O∗2, diatomic oxygen

ion, O+
2 , and monoatomic negative oxygen ion, O−, to the physics-based model and state vector.

Note that the oxygen species and reactions are not complete [141] as the focus of this study is

to demonstrate the capabilities of PC-EKF. Increasing the fidelity in the physics-based model is

reserved for future work.

Tests estimating various reaction rate coefficients and the absorbed electron power input were

performed using the argon-oxygen model to ensure that the added complexity did not noticeably

hinder the performance of the PC-EKF but are not presented as part of this dissertation. Instead,

this section investigates the effects of supplying different combinations of unknown states and mea-
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Figure 4.7: Effects of the pulse frequency on the pulsed plasma dynamics. Here, frequencies of
(a) 5 kHz, (b) 10 kHz, and (c) 20 kHz are studied based on experimental data from Ref. 1 with
a constant peak power of 300 W and a 50% duty cycle. (1) The ion number density measure-
ments (black dashed line) compared to the estimated values (red solid line), (2) the corresponding
absorbed electron power estimates with their 3σ uncertainty bounds (pink shade), and (3) the elec-
tron temperature estimates with their 3σ uncertainty bounds.

surement signals to the PC-EKF. Due to the mixed gas nature of this test, the PC-EKF is essentially

tasked with estimating two streams of information simultaneously, one for the argon portion of the

plasma and one for the oxygen portion. This adds new complexity to the physics-based model and

reveals an example of when including a second measurement signal can significantly improve the

system estimates.

4.3.1 Simulation Setup

The argon-oxygen model is constructed using the argon reactions given in Table 4.1 with the

addition of the oxygen and oxygen-argon reactions provided in Table 4.2. For the neutral oxygen
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wall recombination reactions, the sticking coefficient is set as β = 0.05.

Table 4.2: A list of oxygen and argon-oxygen reactions included in the model and their corre-
sponding rate coefficients where Tg is the gas temperature in K, D is the wall diffusion coefficient
as described in Sec. 4.2.2, and β is the sticking coefficient. [*] uses detailed balance to determine
the reaction rate coefficient.

Reaction Type Rate Coefficients Reference
e + O2 → O2 + e Elastic k12 = 4.79× 10−8T 0.5

e cm3/s [137]
e + O2 → O + O + e Dissociation k13 = 6.86× 10−9 exp(−6.29/Te) cm3/s [138]
e + O2 → O + O + e Dissociation k14 = 3.49× 10−9 exp(−5.92/Te) cm3/s [138]
e + O2 → O + O− Dissociative Attachment k15 = 1.07× 10−9T−1.39

e exp(−6.26/Te) cm3/s [138]
e + O2 → O2(v) + e Vibrational Excitation k16 = 2.80× 10−9 exp(−3.72/Te) cm3/s [139]
e + O2 → O2(v) + e Vibrational Excitation k17 = 1.28× 10−9 exp(−3.67/Te) cm3/s [139]
e + O2 → O∗2 + e Electronic Excitation k18 = 1.37× 10−9 exp(−2.14/Te) cm3/s [138]
e + O2 → O+

2 + e + e Ionization k19 = 2.34× 10−9T 1.03
e exp(−12.3/Te) cm3/s [138]

e + O2(v) → O2 + e Superelastic k20 = 2.80× 10−9 exp(−3.53/Te) cm3/s [*]
e + O2(v) → O+

2 + e + e Ionization k21 = 2.34× 10−9T 1.03
e exp(−12.11/Te) cm3/s [139]

e + O2(v) → O + O + e Dissociation k22 = 6.86× 10−9 exp(−6.10/Te) cm3/s [138]
e + O2(v) → O + O + e Dissociation k23 = 3.49× 10−9 exp(−5.73/Te) cm3/s [138]
e + O2(v) → O + O− Dissociative Attachment k24 = 1.07× 10−9T−1.39

e exp(−6.26/Te) cm3/s [140]
e + O∗2 → O2 + e Superelastic k25 = 2.06× 10−9 exp(−1.162/Te) cm3/s [138]
e + O∗2 → O+

2 + e + e Ionization k26 = 2.34× 10−9T 1.03
e exp(−11.32/Te) cm3/s [138]

e + O∗2 → O + O + e Dissociation k27 = 6.86× 10−9 exp(−5.31/Te) cm3/s [140]
e + O∗2 → O + O + e Dissociation k28 = 3.49× 10−9 exp(−4.94/Te) cm3/s [139]
e + O∗2 → O + O− Dissociative Attachment k29 = 1.07× 10−9T−1.39

e exp(−6.26/Te) cm3/s [140]
O− + Ar+ → O + Ar Ion-ion Neutralization k30 = 3× 10−7 cm3/s [142]
O− + O+

2 → O2 + O Ion-ion Neutralization k31 = 2.6× 10−8(300/Tg)
0.44 cm3/s [138]

e + O+
2 → O + O Dissociative Recombination k32 = 2.2× 10−8T−0.5

e cm3/s [137]
Ar+ + O2 → O+

2 + Ar Charge Exchange k33 = 4.9× 10−11(300/Tg)
0.78 cm3/s [138]

Ar∗ + O2 → O + O + Ar Dissociative Quenching k34 = 1.0× 10−10 cm3/s [138]
O+

2 (→ wall) → O2 Ion Neutralization k35 = D[O+
2 ]/Λ

2 s−1 [138]
O∗2 (→ wall) → O2 Metastable Quenching k36 = D[O∗

2 ]/Λ
2 s−1 [138]

O2(v) (→ wall) → O2 Vibrational Quenching k37 = D[O2(v)]/Λ
2 s−1 [138]

O (→ wall) → (β/2)O2 Recombination k38 = D[O]/Λ
2 s−1 [138]

→ (1− β)O

The same GEC reference cell geometry is used from the previous section and similar operating

conditions are considered, though the inflow and outflow quantities are split between the neutral

and metastable argon and diatomic oxygen species for this testcase. Ion flux data for the total flux,

and argon ion, diatomic oxygen, and monoatomic negative oxygen species reported experimentally

in Ref. 2 are used as the measurement signal, for continuous operation at 30 mTorr and 100 W.
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4.3.1.1 Physics-Constrained EKF Setup

The PC-EKF is provided a state vector with either 11 or 12 entries, dependent on the study,

to include all species in the model, the electron temperature, and unknown state(s), i.e., x =

[NAr+ NAr NAr∗ NO2 NO2(v) NO∗
2
NO+

2
NO NO− Te ξ]

T . Additional unknown states can be

included by appending them to the end of the state vector. Initialized quantities for the various

covariances are set as follows: the model error covariance is Q = 1× 1012, the measurement error

covariance is R = 1× 1015, and the covariance matrix diagonal entries are P̂mm = (1× 1034, 1×

1036, 1×1034, 1×1040, 1×1036, 1×1036, 1×1032, 1×1040, 1×1032, 15, 5) form = 1, 2, 3, ..., 11.

4.3.2 Results

The initial studies revealed that the PC-EKF was unable to find a physically consistent solution

for the low pressure cases below 10 mTorr. Based on recent PIC/MCC simulations [143], it was

determined that the rate of ions diffusing to the wall may be influenced by the plasma profile,

whose nonuniformity is not captured by the volume-averaged 0D model. Further literature review

suggests that ion diffusion to the wall depends on the area of the sheath [39], total gas density [144],

and wall temperature [145], which change with the variation of total gas pressure and electron

temperature. Reference 146 also demonstrates that different internal pressures can exist between

the argon and oxygen populations by studying how plasma conditions change with different partial

pressures of O2. Thus, an effective wall diffusion factor is added to the physics-based plasma

global model to account for the inhomogeneity of the plasma flow in the ICP source. This is done

by creating a constant multiplied by the assumed wall diffusion (ion neutralization) reaction rate

equation assuming a uniform plasma profile such that

k11 = αAr+
D[Ar+]

Λ2
, (4.7)

and

k35 = αO+
2

D[O+
2 ]

Λ2
, (4.8)
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where αAr+ and αO+
2

are the effective ion diffusion factor for Ar+ and O+
2 , respectively. The PC-

EKF is written to estimate the effective ion wall diffusion factors, αAr+ and αO+
2

, as the unknown

state(s).

4.3.2.1 Effects of the Measurement Signal

Initial studies attempted to only use one measurement signal to inform the state of the entire

system, as well as only studying a single effect wall diffusion coefficient. As can be seen in

Fig. 4.8, which compares the solutions if only one ion flux is used or both. When only the argon

ion flux is provided to the EKF, as seen by the teal solid line in Fig. 4.8, the EKF will properly

capture that measurement at the cost of all other estimates. The oxygen ion flux can be seen to

severely underestimate the true amount of ion flux over time, Fig. ??(a). This is caused by the

EKF not having sufficient information to correctly update all states of interest in the model due

to the limited interaction of the two species. Conversely, using both ion flux measurement signals

with only the argon effective wall diffusion term yields a better overall estimate where both fluxes

are closer to the measurement signal, but neither flux is seen to match the measurement signals.

The addition of the second ion flux measurement is also shown to increase the transient time it

takes the filter to settle into a steady-state operation compared to the one measurement signal. It

is decided that the EKF needs to have greater control over the physics-based model to improve the

estimates and match both measurement signals, so the effective wall diffusion for oxygen is added

as an unknown.

4.3.2.2 Effects of Multiple Unknowns

Having demonstrated the improved results of using more than one measurement signal, this

physics-based model is now used to demonstrate how adding more controllable parameters to the

PC-EKF can improve the overall simulation results. The necessity of using an ion diffusion factor

for both argon and diatomic oxygen introduces a test case where two unknowns of equal signif-

icance to the system exist, but are not of such high significance that the model cannot propagate

forward in time without them, unlike the ionization and excitation reaction rate coefficients in
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Figure 4.8: Effect of using one measurement signal (teal line) compared to two measurement
signals (red dot) for the effecting argon wall diffusion coefficient in the argon/oxygen global model.
The EKF estimates are shown for (a) diatomic oxygen flux, (b) argon flux, (c) electron temperature,
and (d) the effective argon wall diffusion term. The true flux reference solutions are shown in black
dash.

Table 4.3: List of Argon-Oxygen EKF Cases

Case Measurement Unknown(s) Fixed Values
I ΓAr+ , ΓO+

2
αAr+ αO+

2
= 1

II ΓAr+ , ΓO+
2

αO+
2

αAr+ = 1

III ΓAr+ , ΓO+
2

αAr+ , αO+
2

-

Sec. ??. Thus, the ability of the filter to estimate one, the other, or both unknown ion diffusion

factors is presented in this section as demonstrated by the different test cases in Table 4.3. Each

case uses the ion flux measurement signals of both argon and oxygen to inform the filter, but the

estimation varies from searching only for the argon or oxygen effective wall diffusion terms to

both coefficients simultaneously.

Figure 4.9 compares the results of the cases listed in Table 4.3. Case I, i.e., when αAr+ is
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allowed to be updated by the PC-EKF but αO+
2

= 1 is assumed to be constant, demonstrates

reasonable estimates for the electron temperature, Fig. 4.9(e) and the argon ion wall diffusion

factor, αAr+ , Fig. 4.9(c). As a consequence of assuming that αO+
2

= 1, the oxygen ion flux, ΓO+
2

is

noticeably underestimated due to an artificially increased diffusion to the wall. Stated alternatively,

no controllable oxygen process exists for the PC-EKF that enables the state estimation to agree

with the oxygen ion flux data. This is due to the lack of correlation between argon and oxygen

in this model with only three reactions providing information on the interaction between species.

The underprediction of the oxygen flux causes the filter to find a higher operating condition of the

argon ion flux to create a physically-consistent solution, as shown in Figs. 4.9(a) and (b).

Case II, i.e., when αAr+ = 1 is constant and αO+
2

is treated as a time-varying unknown that

can be updated by the PC-EKF, reproduces the oxygen ion flux, ΓO+
2

, to high levels of accuracy

as shown in Fig. 4.9(b). The argon ion flux is largely overestimated as shown in Fig. 4.9(a). The

estimated electron temperature, Fig. 4.9(e), lies outside of the uncertainty bounds for Case III,

considered the most correct solution. This indicates a significant divergence from the true state

of the measured system as the uncertainty bounds constitute 99.7% of the values within a normal

distribution and the Case II results lie outside of such bounds. By comparing Cases I and II, it is

evident that being able to estimate the dominant processes in such a mixed-gas system continues

to be significant to correctly estimating the overall state of the plasma. Despite the Case I results

poorly matching the ion flux values for both species, the state estimates for all states of interest

are significantly closer to those of Case III, as shown in Figs. 4.9(c-e). This is because argon ion

density is significantly larger than that of the oxygen species and therefore carries greater influence

over the state of the system.

Case III, i.e., when both αAr+ and αO+
2

are considered unknown, estimates both ion fluxes

in good agreement with the measurement data, Figs. 4.9(a) and (b). This result indicates that

allowing both species of plasma to be controlled by the PC-EKF can improve the overall estimate

of the system. Note that the electron temperature is approximately 3.5 eV, as shown in Fig. 3(e).

This is higher than the pure argon case in Sec. 4.2.2 and consistent with other literature that note
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Figure 4.9: Estimating the effective ion wall diffusion factors, αAr+ and αO+
2

, in the argon-oxygen
global model for the cases shown in Table 4.3. (a) Estimated argon ion flux density. (b) Estimated
oxygen ion flux density. Measurement data are taken from Ref. 2. (c) Estimated argon ion wall
diffusion factor. (d) Estimated oxygen ion wall diffusion factor. (e) Estimated electron temperature.
(f) The atomic oxygen number density estimate shown for 5 ms to illustrate that the EKF reaches a
steady state. Note that the results in (a-e) focus on the initial 1 ms transient for a clear comparison
between the three cases.

mixed-gas plasmas require higher power levels to maintain an ionized plasma [147].

The results for each case presented in this section reach a steady state solution if the simulation

is run for 5 ms as shown in Fig. 4.9(f), due to the slow relaxation time for oxygen processes [148],

but are not shown for every plasma parameter to better present the transient portion of the filter-

ing process. The atomic oxygen number density is chosen for this figure to demonstrate how the

steady-state value is consistent with trends seen in pure-oxygen configurations in literature [148].

Case III shows that the effective ion wall diffusion factor reaches 2.203 and 0.624 for argon and

oxygen ions, respectively, at steady state, validating the theory that an oxygen wall diffusion coef-

ficient equal to one was too large and resulted in too much depletion of the oxygen plasma. The

difference in wall diffusion factors between species indicates that the spatial profile of the argon

and oxygen ion densities are not identical within the chamber. Reference 149 shows the existence

of a variation in the plasma density profile between argon and oxygen ions using a computational
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model for different operating conditions of argon-oxygen plasmas than those presented in this

section.

Over these studies, the extended Kalman filter is demonstrated to reach different estimate pro-

files dependent on the number of measurements and number of unknowns in the system. Put

another way, the controllability given to the EKF regarding the physics of the system can greatly

improve or greatly hinder the resulting estimates. This study demonstrates that using two ion flux

measurement signals and allowing the effective wall diffusion factors of both diatomic oxygen and

argon ions to be estimated yields the most accurate estimates based on the available experimental

data.
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5. ONE-DIMENSIONAL TEST CASES

...don’t become a slave to the model...take a model and study it, for otherwise your

inspiration won’t take on material form.

- Vincent Van Gogh, The Hague, Nov. 1882

Having verified the EKF with zero-dimensional models, gaining understanding of its abilities

and limitations, the filter is extended for application with one-dimensional models. Significantly

less literature exists regarding the use of an EKF with one-dimensional systems, though a handful

of oceanography papers were found as part of this study. In the oceanography studies, the EKF

is typically applied to a coarse spatial grid that tracks a low number of states in each cell [150].

Considering the thought experiment of a domain with ten cells tracking three states in each cell, it

is immediately evident that such an approach can quickly lead to filters tracking tens and hundreds

of states, increasing computational cost. This can be problematic for plasma simulations that

typically have hundreds of cells and numerous states of interest within each individual cell.

Before approaching the challenge of maintaining low computational costs as the systems be-

ing studied become more complex, an understanding of how to utilize the EKF in one spatial

dimension is necessary. One-dimensional plasma models have been widely used to study plasma

phenomena across all manner of applications. These models provide insight to how plasma den-

sities and velocities are distributed across the computational domain. The collisional nature of

plasma inherently leads to location-determined physics occurring, unable to be captured by global,

zero-dimensional models. While plasma dynamics are inherently multi-dimensional in nature, the

bulk of the phenomena of interest can be tracked using a single spatial dimension. For HETs,

this is often the axial direction, using the assumption of azimuthal symmetry and providing con-

trived values to account for radial differences if required. A number of one-dimensional models

have been developed in the plasma physics community to study device-scale physics in Hall effect

thrusters, carbon arc discharges, and plasma distributions in inductively and capacitively coupled
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plasmas.

For this section, three one-dimensional test cases are presented. First a linear advection prop-

agation scheme is used to estimate the initial condition of the domain, recreating work done in

Ref. 150. Then, a heat conduction problem is created to analyze the ability of the filter to estimate

diffusion coefficients in different regions of the domain. Lastly, initial applications and challenges

of the state estimation technique to a Hall effect thruster model are discussed.

5.1 Linear Advection

Advection is the transport of a substance or quantity by the bulk motion of a fluid, carrying

the properties of the fluid with it. This motion is described by a partial differential equation that

governs the motion of a conserved scalar field as it is advected by a known velocity vector field.

One particular oceanography study first demonstrated the use of the EKF with the reconstruc-

tion of a sinusoidal advection model Ref. 150. A true solution is developed for a simple wave

propagation study with periodic boundary conditions. The EKF is constructed using a first-order

upwind linear advection propagation scheme and provided a constant, zero-value initial condition

for the domain. Two measurement signals, measuring the values of two different cells within the

domain, are taken from the true solution to inform the state update of the EKF method. Using only

these two measurement locations, the EKF is shown to reconstruct the initial domain within a few

time steps. Due to the clarity with which the original study was presented, said study is recreated

to gain familiarity with the one dimensional EKF application. To ensure that similar results are

obtained to the study performed in Ref. 150, the original EKF will be used for this chapter, without

the constraints previously developed as part of this dissertation. Thus, only constant values for Q

and σR will be discussed in this chapter.

5.1.1 Simulation Setup

Propagation of a domain can be solved exactly to generate a measurement solution for a code-

to-code verification study. This work studies the pure advection of y given a constant velocity

c.
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The initial condition is set using a sinusoidal distribution of w0 = sin(2πx/λ) where λ = L/2

is the wavelength equal to half the domain and x is the cell location. The exact solution is solved

assuming a constant propagation speed of c = 1 resulting in the exact solution of

w = sin(2π(x− t)/λ) (5.1)

where x = n∆x is the position, n is the cell number, ∆x = 0.25 is the cell width, and t is the

current time, for 60 time units. The domain consists of 100 cells, x ∈ [0, 30], and the solution is

solved on the cell centers. The system uses ∆t = 0.06 to solve the true solution over the course of

four oscillations.

Upwind methods are one of a number of types of numerical discretization schemes for solving

hyperbolic partial differential equations. The name comes from the theory where spatial difference

are skewed in the direction from which the flow originates. The first-order approximation in both

time and space creates a low-fidelity propagation solution that can lose information about the

original state of the system over time. In particular, the partial differential equation of advection

can be written as

wt = −cwx, (5.2)

which can be solved exactly over a period of four oscillations. These propagation schemes rely on

a stability condition based on the idea that the time step of the system must be smaller than the

time taken for the wave to travel across a cell width. This stability condition is commonly called

the Courant-Friedrichs-Lewy (CFL) stability criterion. This stability condition can be written as

c∆t

∆x
≤ 1. (5.3)

A first-order upwind propagation scheme is used to propagate every cell in the domain as

wk+1
n − wkn

∆t
= −cwn − wn−1

∆x
, (5.4)
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where k indicates the time step and n the cell index.

5.1.2 EKF Setup

Unlike all previous applications of the EKF, here the system is attempting to estimate the initial

condition based on known propagation equations. To accomplish this task, the covariance matrix

becomes critical for informing the first few updates. To this end, the covariance matrix is set based

on a correlation of cells in the nearby region using a user-defined scaling factor. Each cell is given

a variance of one along the diagonal of the covariance matrix initially, while all cross-covariances

are given a correlation based on the function

Pij = exp(−(r/re)
2), (5.5)

where r is the location with respect to the reference point, ∆x, and re is the user-defined folding

scale, the width of influence for a particular point. The wider the region, the more Gaussian the

cross variances are in shape. The effect of this parameter is shown in Fig. 5.1 where difference

scale lengths, re, are plotted together for the initial covariance values surrounding the two mea-

surement points. From this figure, it can be seen how a larger folding scale will affect more nearby

states, possibly enabling a shorter transient time before the filter is able to recover the original state

of the system.

The EKF is provided measurement data at x = 5 and x = 20 every 5 continuous model time

steps, ∆tm = 0.6 units. Thus, as the system propagates, the EKF receives more information

about the initial waveform, populating the initial condition as the system advects. Even though

the measurements are perfect in this particular problem, the EKF is told to assume some error

covariance for both measurement points, with the second measurement being given twice as high

an error variance as the first. The states provided to the EKF include the solution for every cell,

i.e., x̂ = [w1, w2, w3, ..., wn]. Thus, the Jacobian equations can be written as

∂wk+1
n

∂wkn
=
−c
∆x

, (5.6a)
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Figure 5.1: Example of the initialized covariance values across the domain for different re folding
scale values. The presented results represent the summed values for the covariances related to both
measurement locations to depict how the Kalman gain would be structured in each case.

∂wk+1
n

∂wkn−1

=
c

∆x
, (5.6b)

for the central portion of the domain. The boundary conditions supplement what would be values

w0 and w101 with the cell on the opposite side of the domain due to the assumed periodic structure.

As noted at the beginning of the chapter, the process noise covariance and measurement noise

covariance are taken as user-defined constants in an effort to better match the literature reference

rather than applying the physics-informed method developed earlier in this dissertation. A study

on the effects of Q and σR will be performed as part of this test case, so no particular values are

presented here. The re folding scale is set as re = 3 for all solutions in this section.

5.1.3 Reconstructing the Initial Domain

The original literature, Ref. 150, that studied this case presents results at 1, 4, and 11 time

steps to show how the estimate improves over time. As the chosen EKF setup for this work is

not perfectly identical to the published study, a comparison of results will not be made. Instead, a

presentation of the results from this study is given. For this first study, the process noise covariance

is set as Q = 0.01 and the measurement noise is considered σR,1 = 0.1 and σR,2 = 0.2 for the two

measurements at x = 5 and x = 20, respectively.
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The solution and corresponding covariance are presented after the first EKF update in Fig.

5.2(a). Immediately evident is the difference in amplitude height for each of the two measurement

locations. This is a direct result of the difference in assumed error variance for the two mea-

surement points while the width reflects the cross correlation between off-diagonal terms of the

covariance matrix as demonstrated in Fig. 5.1. Examining the covariance solutions of the diagonal

terms of the matrix, the variances of each state, it is evident that the errors are reduced in the near

region of the measurements.

Figure 5.2(b) shows the same set of solutions after five update steps. Now that the initial

wave structure has propagated a noticeable amount, the estimates are seen to approach the form

and amplitude of the reference solution. The errors can be plotted to demonstrate a continued to

decrease as the filter gains additional insight into the true solution, i.e., as more measurement data

become available. Because of the propagation direction from left to right based on the upwind

advection scheme used in this study, i.e., c > 0, the measurement information has propagated

downstream. Notably, the errors have also propagated downstream. Thus, the errors downstream

of the measurement location will be smaller than those upstream.

Figure 5.2(c) shows the solution state after 20 measurement updates. Plotting the errors reveals

that they are regularly oscillating between certain minimum values immediately after the Kalman

filter update and maximum values immediately before the update. Due to the selected propagation

scheme and model noise, the errors will always increase during the continuous propagation phase

while they are reduced during the measurement update phase. As the model errors have decreased,

the Kalman gain amplitudes have decreased, indicating that the EKF is beginning to trust the model

more heavily than the incoming measurements.

Figure 5.2(d) shows the solution after 55 update steps, which corresponds to one oscillation.

This solution is nearly identical to Fig. 5.2(c) in terms of the visual closeness of the solution to the

reference solution as well as the shape and size of the error bounds. While first-order advection

schemes are known to be dissipative, the EKF estimates do not show such an effect. This is

caused by the continued information supplied to the EKF as measurement data continue to arrive
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after the initial domain has been constructed. The minimal reduction in amplitude height over the

course of this simulation gives evidence to how the EKF can be used to generate more reliable and

physically consistent solutions with low fidelity models in addition to estimating unknown states

and parameters.

Figure 5.2: The EKF estimates (red solid line) using the reference dataset (black dashed line) at
two locations as the measurement to reconstruct the initial domain. (a) The initial condition of the
EKF and reference solution. (b) The estimated domain after 5 update steps with 3σ uncertainty
bounds (pink shade). (c) The estimated domain after 20 update steps with 3σ uncertainty bounds.
(d) The estimated domain after 55 update steps with 3σ uncertainty bounds.

Having determined that the EKF can, indeed, be used to reconstruct a sinusoidal domain using

a linear advection propagation scheme, further studies were performed to analyze the effect of the

process and measurement noises on the final estimates. The process noise measurement accounts

for inaccuracies in the physics-based model as it propagates forward in time. Figure 5.3 presents

four different cases of process noise values for the same measurement noise of 0.05 and 0.1 at

locations x = 5 and x = 20, respectively. The case of no process noise measurement, Q = 0, is

shown in Fig. 5.3(a). Due to the lack of error assumed in the model, the solution is seen to not
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reach the full oscillation height of the true solution. In addition, the uncertainty bounds are hardly

noticeable, and, at times, imaginary values. The error in the estimates can be calculated using the

L2 norm which is written as

|x| =

√√√√ n∑
k=1

|xl|2,

for any vector x. This solution yields a L2 norm of 3.48821, mainly due to its inability to repli-

cate the full oscillation amplitude. Figure 5.3(b) shows the case where Q = 0.1 to indicate some

slight error in the propagation model. Even with such a low value, the estimate can be seen to

significantly improve. The L2 norm becomes 0.729884 and the uncertainty bounds clearly encap-

sulate the true solution across the entire domain. Further increasingQ = 1 enlarges the uncertainty

bounds in Fig. 5.3(c). Here, the bounds are sufficiently large to indicate that the errors are smallest

at the measurement locations and increase the further away from the measurement a cell is located.

The sharp increase of the errors just to the right of the measurement locations indicates that the

Kalman gain only reflects a small width of update that is directly influenced by the measurement

location. The increase in uncertainty moving to the right of the measurement location demonstrates

how the EKF grows more uncertain the longer it propagates or the further from a measurement the

solution is located. The L2 norm is equal to 0.719381, indicating that the filter is continuing to

improve its solution with the increased process noise error. The final panel, Fig. 5.3(d), demon-

strates a process noise covariance set equal to Q = 10. The uncertainty bounds are shown to be

very large and the solution only improves minimally compared to that of Q = 1 with a L2 norm

equal to 0.718288.

Studying the process noise covariance yields a similar change in solution results. Figure 5.4

demonstrates how the error bounds in the near region of the measured values grow with an in-

creased uncertainty in the measurement. For this study, the process noise covariance is set as

Q = 0.1 for all four cases. In Fig. 5.4(a), no measurement noise is considered. Thus, the uncer-

tainty bounds are shown to nearly disappear at the measurement location. As some measurement

noise is assumed, as in Fig. 5.4(b), slight increases in the uncertainty can be noted. Further in-
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Figure 5.3: The EKF estimate (red solid line) using the reference dataset (black dashed line) at
the final update for different process noise covariance values, Q, using the 3σ uncertainty bounds
(pink shade). (a) Q = 0, (b) Q = 0.01, (c) Q = 1, and (d) Q = 10.

creasing the measurement error by an order of magnitude demonstrates a significant increase in

uncertainty near the measurement locations. Because the measurement noise at x = 20 is consid-

ered twice as much as that at x = 5, the uncertainty bounds at x = 20 are noticeably larger in

Fig. 5.4(c). With large enough measurement errors, the uncertainty at the location of the measure-

ment can become nearly as large as the uncertainty throughout the remainder of the domain, as

demonstrated in Fig. 5.4(d). Due to the increase in measurement uncertainty for a test case with

no measurement error, the L2 norm is seen to increase from 0.718166 in Fig. 5.4(a) to 0.878925 in

Fig. 5.4(d).

Changing the folding scale changes the initial growth and development of the solution and

covariance bounds, but does not affect the final results. Further parameter sweeps were not con-

sidered as part of this study as the goal was simply to replicate the solutions of previous work

[150] and gain a general understanding of how the estimates are affected by the noise covariances.

Note that the cells that do not correspond to a measurement location in this model will never see

a reduction in uncertainty. These results can be improved by using spectral diversity applying the
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(a) 𝜎R = 0, 0 (b) 𝜎R = 0.01, 0.02

(c) 𝜎R = 0.1, 0.2 (d) 𝜎R = 0.2, 0.4

Figure 5.4: The EKF estimate (red solid line) using the reference dataset (black dashed line) at
the final update for different measurement noise values, σR, using the 3σ uncertainty bounds (pink
shade). The process noise Q is set as Q = 1.(a) σR = 0, 0. (b) σR = 0.01, 0.02 (c) σR = 0.1, 0.2
(d) σR = 0.2, 0.4

process noise in the modal space. This allows for a cell-to-cell mapping that benefits from con-

straints on the physics and only the considered parameters, rather than updating every element in

the domain. This is reserved for future work as the application of state estimation techniques to

one-dimensional systems is considered with greater detail.

5.2 One-Dimensional Thermal Conduction

In seeking a simple one-dimensional problem that better reflects a Hall effect thruster model,

a thermal conduction test case is developed. Thermal conduction studies the transfer of internal

energy by particle collisions and electron motion over some region of space. Heat flows from hot-

ter areas to colder areas, indicated in this study by higher values dissipating as they are diffused

towards the lower-value cells. The quantification of the ease with which a particular medium con-

ducts heat is termed the thermal conductivity, κ. This material property is imperative to modeling

how the system conducts heat, but is a relatively hidden parameter in the set of equations, much

like electron mobility in Hall effect thruster models. Studies have been previously performed using
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the EKF to estimate thermal conductivity parameters in other literature [151].

The general thermal conduction equation can be written as

ut = κuxx, (5.7)

where κ is the conductivity parameter and the subscripts t and x indicate partial derivatives with

respect to time and space, respectively. The double xx subscript indicates a second derivative in

space.

5.3 Simulation Setup

The initial condition for this thermal conduction case over 100 cells that discretize the domain

from 0 to 1 is set as a discontinuous pulse in the center of the domain, occupying ten cells on either

side of center such that

if(x < 0.4||x > 0.6)→ u = 0,

if(0.39 < x < 0.61)→ u = 1.

(5.8)

For this work, the system is propagated as first order forward in time and second order in space

using a central differencing scheme as shown below

unk+1 − unk
∆t

= κ
un+1
k − 2unk + un−1

k

∆x2
. (5.9)

This simple solution is entirely dependent on the form of the conductivity coefficient provided

over time for each cell in the system as well as the boundary conditions. The thermal conductivity

coefficient can be treated as a single constant, multi-region values, or as time-dependent solutions.

For this work, both Neumann and Dirichlet boundary conditions are employed depending on the

test case. These conditions either specify the slope of the boundary cells with the domain, or the

value of the boundary cells, respectively.
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5.3.1 EKF Setup

The EKF can be constructed similarly to the linear advection case. The initial condition given

to the EKF is a zero-value domain with some guess for the initial thermal conductivity coefficient

or coefficients. Again, an original EKF model is used with fixed values of Q and σR. The state

vector consists of the solution at every cell as well as the conductivity coefficient.

Using the propagation equation given in Eq. (5.7) and the state vector of every cell value and

thermal conductivity coefficient, the Jacobian equations are written as

d

dun
=
−2κ

∆x2
, (5.10a)

d

dun+1

=
κ

∆x2
, (5.10b)

d

dun−1

=
κ

∆x2
, (5.10c)

d

dκ
=
un+1 − 2un + un+1

∆x2
. (5.10d)

Neumann boundary conditions are set and thus present slightly modified versions of these equa-

tions at the first and last cells in the domain using only the existent adjacent cell to the left or right

of the boundary cell, depending on which boundary is in question.

The covariance matrix is constructed the same way as for the linear advection test case us-

ing a set re folding scale to initialize the matrix. As the number of measurements increases, the

Kalman gain uses the summation of the different measurement signals to generate the solution.

The propagation is ensured to meet the Von Neumann condition as κ∆t/∆x2 ≤ 1/2 to ensure

a stable solution. The EKF uses a time step of ∆t = 2.5 × 10−5 with a measurement signal of

∆tm = 2.5× 10−4.

5.3.2 Estimating Thermal Conductivity Coefficients

The simplest test case involves treating the domain from x ∈ [0, 1] as a single region with one

thermal conductivity coefficient. A parameter sweep was performed to compare the solutions using
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only one or two measurement locations, as well as varying those measurement locations, as shown

in Fig. 5.5. The solution is run for 0.35 units of time with a cell width of 0.01 and propagation time

step of ∆t = 2.5× 10−5. The initialized domain is set to zero everywhere and κ0 = 0.9. As with

the linear advection case, constant values for the process noise and measurement noise covariances

are set as Q = 1 and σR = 0.01. The folding scale is set at re = 0.01.

For the single measurement signal case, Fig. 5.5(a), the estimated domain is noted to favor

and shift its peak towards that measured location. While only results using locations on the left

hand side of the domain are presented, the trend was confirmed to continue as the measurement

signals were placed further to the right hand side of the domain. This shift is the cause for uneven

boundary conditions in nearly all cases presented, despite the uniform initial pulse and subsequent

diffusion evident in the true solution. As expected, as the number of measurements increases, the

overall estimate of the domain improves, as seen in Fig. 5.5(b). There is little discernible difference

between the estimates for different measurement locations. Even when the measurement locations

favor one side of the domain, such as x = 0.45, 0.5, the overall estimate of the domain is very

close to the true solution.

(a) One (b)  Two

(a) One (b)  Two

x = 0.31, 0.7
0.41, 0.6
0.45, 0.5
0.45, 0.56
0.5, 0.7
True

0.1
0.3
0.4
0.45
0.5
0.55
0.6
True

x = 0.31, 0.7
0.41, 0.6
0.45, 0.5
0.45, 0.56
0.5, 0.7
True

True
0.1
0.3
0.4
0.5

Figure 5.5: The EKF estimates for (a) one and (b) two measurement signals to estimate a single
thermal conductivity coefficient, κ. The true solution is indicated by the black solid line.
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Comparing the transient estimated values of the thermal conductivity coefficient reveals two

key trends. The first is that the transient time where the filter searches for the correct estimate

is significantly faster when using two measurement signals compared to one. The solutions in

Fig. 5.6(a) can be seen to change over two-thirds of the total simulation time. In comparison, the

estimates in Fig. 5.6(b) are seen to change very little after the first 0.002 time units. The second

trend is that while the final estimates for the single measurement case show a very narrow standard

deviation between different measurement locations, apart from the x = 0.1 measurement, the two

measurement case has a discernibly wider spread of final estimates. Yet, the solutions in Fig. 5.5(b)

when two measurement signals are used demonstrate better agreement with the reference diffusion

solution in every case. The difference in estimate results can be attributed to the additional er-

ror incurred by starting the domain from a zero-valued condition whereas the reference solution

starts from a discontinuous pulse. In this case, the second measurement is used by the EKF to

compensate for the lack of knowledge regarding the initial condition of the domain as opposed to

improving the estimate of the unknown thermal conductivity coefficient.

(a) One (b)  Two

(a) One (b)  Two

x = 0.31, 0.7
0.41, 0.6
0.45, 0.5
0.45, 0.56
0.5, 0.7
True

0.1
0.3
0.4
0.45
0.5
0.55
0.6
True

x = 0.31, 0.7
0.41, 0.6
0.45, 0.5
0.45, 0.56
0.5, 0.7
True

True
0.1
0.3
0.4
0.5

Figure 5.6: The EKF estimates for (a) one and (b) two measurement signals to estimate a single
thermal conductivity coefficient, κ. The true solution is indicated by the black solid line. The
numbers in the legend indicate the measurement locations
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The L2 error norms for each measurement test case can also be plotted to compare the nu-

merical accuracy of the final solutions. It is immediately evident from Fig. 5.7 that the estimates

provided two measurement signals produce smaller errors than the estimates provided only one

measurement signal. The two measurement cases are plotted based on the first measurement sig-

nal location, but due to the existence of two cases with a measurement at x = 0.45, one of these

cases is plotted at the location x = 0.56. This study confirms the notion that increasing the number

of measurement signals can improve the overall estimation of a system. Initial results using three

measurement signals demonstrated only slight improvement in the thermal conductivity coefficient

estimates.

(a) One (b) Two

L2
 N

or
m

0.16

0.14

0.12

0.1

Figure 5.7: The L2 error norms for (a) one and (b) two measurement signals for estimating the
domain and thermal conductivity coefficient. The two measurement cases are plotted based on the
first measurement signal location, but due to the existence of two cases with the first measurement
location at x = 0.45, one solution is plotted at the location x = 0.56.

The final study using a single thermal conductivity coefficient tracks the effect of refining the

grid for one, two, and three measurement locations, shown in Fig. 5.8. The time history of the L2

error norm is plotted for these cases to demonstrate how the overall estimation process is affected

by the refinement of the grid. Identical measurement locations were used for this test case. The

finer grid required a smaller time step to meet the CFL condition, set as ∆t = 5 × 10−6 for a
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cell width of ∆x = 0.005. All other operating conditions were kept the same between all plotted

cases. It is noted that due to the doubling in size of the matrices, there is an exponential increase in

computational cost for such this test case. While the 100 cell case runs in approximately 5 minutes,

the 200 cell case takes nearly 2.5 hours. This is caused by the increased number of operations

required for a matrix with 10,000 cells compared to a matrix with 40,000 elements. Furthermore,

it is noted that the finer grid solutions do not reach as low of error values as the coarse grid. While

the physics-based model can be better captured with a finer grid due to a reduction in error, the

EKF solution does not share this trend. With more cells to match, the EKF is shown to perform

worse for the finer grid in all cases because of the greater reliance on the cross-covariance terms

to transfer information to other cells. This increase in the number of unknown cells with the same

number of measurement locations requires an examination of the observability of the system to

determine an appropriate number of measurements. Significantly, the single measurement case for

the fine grid case did not produce feasible results, instead finding a wildly oscillating solution. For

this reason, it is not plotted in this figure.
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Figure 5.8: A comparison of the L2 error norms for different numbers of measurements. The solid
lines indicate the results for 100 cells while the dotted lines indicate 200 cells. One (black), two
(red), and three (blue) measurement locations are used by the EKF to estimate the true solution of
the domain, corresponding to the nm column of the legend.

111



Having thoroughly studied the applications of the EKF with a one-region case, a new reference

solution is created that consists of two regions, each with a different thermal conductivity coeffi-

cient. The domain is bisected in the middle, u50, for the following studies. While not shown as

part of this study, the EKF was tested given a single measurement location and a single estimated

conductivity coefficient at various points in the domain for a reference solution based on two ther-

mal conductivity coefficients. Based on the location of the measurement signal, either in the high

κ region or the low κ region, the EKF is able to recover estimates of the thermal conductivity coef-

ficient in the corresponding region to the correct order of magnitude. While this is valuable insight

to how the filter operates, this also indicates the necessity for a sufficient number of measurement

signals to fully capture the unknowns of the system.

Estimating two thermal conductivity coefficients with two measurement signals is demon-

strated in Fig. 5.9. Here, both the domain estimates, Fig. 5.9(a), and κ estimates, Fig. 5.9(b),

are shown. Representative cases of a good and a poor estimate are presented to demonstrate how

widely the results can vary. The most significant cause of the poor estimation for the x = 0.3, 0.7

case is due to the incorrect initial condition for the domain. If the same test is run with a correct

initial pulse rather than a zero initial condition, the resulting estimate is significantly closer to the

reference solution of κ1 = 0.7 and κ2 = 0.07. The solution with both measurement conditions

inside of the initial pulse reveals a significant improvement in the overall estimation due to the

immediate information regarding the initial condition of the domain available to the EKF. Though

the larger κ value on the left hand side of the domain is overestimated, the smaller κ is estimated

more accurately. Still, this test case yields a L2 error norm of 1.0099.

The final case considered for this test case was the inclusion of a source term for the conduction

model. The model now reads

du

dt
=
d2u

dx2
+Qs, (5.11)

where the last term on the right, Qs, is a source term. The source term is included as a pulse for

this study, such that a repeatable oscillation is generated in the model. A condition is set in the
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(a) Diffusion Estimate (b)  𝜅 Estimate

0.3, 0.7
0.4, 0.6

Figure 5.9: The estimation results for (a) the diffusing solution and (b) the κ estimates for two
unknowns and two measurement signals. The κ = 0.7 value true solution corresponds to the left
hand side of the domain, while the κ = 0.07 value is used for the right hand side of the diffusion
solution. Note that both plots use the same legend.

reference heat diffusion model such that

if u50 < 0.6→ Qs = 0.001, if u50 > 0.8→ Qs = 0, (5.12)

can be used to inform the value of the source term. Note that the value of the source term is set

using these if-conditions until the alternate condition is met. Thus, once u50 is less than 0.6, until

u50 is greater than 0.8, the source term is set as Qs = 0.001. To achieve a repeatable oscillation,

the boundary conditions were changed from Neumann to Dirichlet to keep the boundary values

at a zero. Measurement signals are supplied for x = 0.45, 0.55 as it was discovered in previous

studies that two measurement signals improved the overall accuracy of the estimate.

Figure 5.10(a) shows the value of the central cell in the domain to demonstrate effect of the

source term, in red, compared to the sourceless diffusion case shown, in black. Note that the

pulsed solution is perfectly repeated in each oscillation, but is only shown with one tenth of the

original data in this figure, leading to an incomplete figure. Figure 5.10(b) compares the estimate

of a single thermal conductivity coefficient, applied across the entire domain, for both the constant

diffusion and the pulsed source term cases. The pulsed solution is seen to overestimate the true
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thermal conductivity value of 0.7 as time continues, while the sourceless estimate has reached a

near steady-state condition notably closer to the true solution. These results are the first indication

that time-dependent oscillations affecting spatial distributions may be of concern in future appli-

cations of the extended Kalman filter. As the system has no knowledge of the pulse prior to the

arrival of measurement data, the EKF attempts to account for the oscillations by altering the ther-

mal conductivity coefficient. This incorrect assignment of the causation of the source term to a

change in the thermal conductivity coefficient requires further study to determine whether certain

limitations could be put on the EKF to improve the estimate.
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Figure 5.10: The estimation results for κ in an oscillating thermal conduction test case (red) in
comparison to the sourceless case (black). (a) The value of the central cell in the domain, u50. (b)
The κ estimate.

The final goal of this study was to determine whether the boundary location between the two

coefficients, i.e., where it changes, can be estimated. At a quick glance, there is no mathematical

representation of this boundary location in the system of equations; it only exists as an if-statement

in the physics-based model. For this reason, there are no Jacobian (covariance) terms that relate

this boundary condition to the other states in the model. As the EKF is predicated on the cross-

correlation of terms to inform the Kalman gain, the gain contains no update for the boundary term.

Thus, with the current setup of the EKF, it is determined that estimation of the boundary between
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solutions is not within the scope of this work.

5.4 Quasineutral Drift-Diffusion Model

Hall effect thruster research has improved tremendously over the last few decades, experimen-

tally and computationally. Russia first experimented on HETs successfully in the 1960s, begin-

ning with Morozov and leading to works by Smirnov and Zubkov, amongst many [152, 153]. A

few decades later saw successful modeling work by Lentz and Fife that included effects such as

quasineutrality, Bohm diffusion across magnetic field lines, fixed magnetic fields, and Maxwellian

electrons [154]. Fife generated a model that tracked heavy particles with a PIC method while elec-

trons were modeled as a fluid continuum [42]. Over the next two decades, leading to the present,

experiments and models have seen vast improvement. New diagnostic tools such as laser-induced

fluorescence [155], Laser Thomson scattering [51], and optical emission spectroscopy [156] have

improved experimental measurements and enabled the study of smaller timescale phenomena.

Each technique has its own advantages and disadvantages but collectively, these measurement

techniques still fall short of reliably quantifying the high-speed, fast scale electron phenomena

in the plasma discharge. Computationally, Fife’s work has been extended and explored over the

last two decades. Boeuf further studied the existence of breathing modes [28]. Koo and Boyd

studied electron mobility coefficients and thruster erosion [32]. Hara used a hybrid direct-kinetic

model to study mode transitions and a fluid model to study ionization oscillations [53, 157]. Oth-

ers have used PIC models to analyze the length scales and frequencies needed for transport [41].

Throughout all of these studies, a few key challenges have been studied and identified.

Thruster erosion of channel walls has long been a leading factor in lifespan limitation [30].

This erosion is caused both by ion bombardment and possibly electron bombardment, which can

be affected by the shape of the wall’s decay over time [158, 159]. Secondary electron emission

has been studied and revealed to influence the charge exchange [30]. The assumed electron bom-

bardment has led to numerous studies of plasma oscillations and electron mobility. Recent work

on magnetically-shielded HETs that use a refined magnetic field shape to help detatch the particles

from the walls [160].
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Electron mobility across magnetic field lines is still imperfectly modeled in state-of-the-art

models [8]. This is often noted by a high electron current towards the thruster anode and higher

electron densities noted experimentally compared to computational simulations [161]. Many forms

of causation have been studied from electron-ion and electron-wall collisions to plasma oscillations

near the exit [41, 65, 162]. As these dynamics are faster than reliable experimental data acquisition

techniques, there is an added challenge to ensuring this phenomenon is correctly addressed in

a model. Many state-of-the-art models rely on a Bohm mobility parameter and time-averaged

quantities.

The third challenge is the simple difference between ground testing and flight performance, of-

ten termed facility effects [163]. A number of undesired effects have been noted to exist within the

confines of a vacuum chamber, including back-sputtering of wall materials onto the thruster [164],

electric charing of the walls [165], and changing background pressure in the chamber as the thruster

runs [166]. Each of these affect thruster performance and give further need to develop new test

methodologies or improve the computational modeling capabilities.

The Hall effect thruster used in this section is based on a one-dimensional quasineutral drift-

diffusion (QDD) fluid model [167]. This model uses a quasineutral assumption for the plasma, a

drift-diffusion approximation for the electrons, and accounts only for singly charged ions. Being

based on a fluid approximation of Hall effect thruster operation, the conservation equations for

mass, momentum, and energy can initially be written as

∂n

∂t
+∇ · (nu) = S, (5.13a)

∂

∂t
(mnu) +∇(mnu.u+ p) = q(E + u×B) +∇τ +R, (5.13b)

∂

∂t
(nε) +∇ · (nuε+ pu) = ∇ ·Q+ qnu ·E + Selas − Sinelas + Φ, (5.13c)

where n is the number density, u is the bulk velocity, ε is the mean energy, S is the source for

particle density, p is the pressure tensor,R is the momentum transfer due to collisions, q is the heat

flux vector, and Selas, Sinelas, and Φ are energy exchange due to various types of collisions.
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For the ion continuity equation, the S source term can be written as Sion = neνion to directly

account for the effects of ionization where νion = nnkion is the ionization frequency based on the

neutral number density nn and ionization rate coefficient, kion. This rate coefficient is obtained

from tabulated data generated by BOLSIG+ in the model [168].

For the drift-diffusion approximation, the conservation of momentum equation for electrons,

assuming an axial direction, can be simplified by assuming that the transient and inertial terms are

neglected since the model assumes electrons are at steady-state within the ion characteristic time

and move at low Mach numbers. The resulting electron flux becomes

neue = −ne ¯̄µ ·
(
E +

1

ene
∇pe

)
, (5.14)

where ne is the electron number density, ¯̄µ is the electron mobility tensor, and pe is the electron

pressure. The electron pressure is considered isotropic and follows the ideal gas law. This leads to

a one spatial dimension, two velocity dimension pair of equations to capture the electron transport

as

Γe,x = neue,x = −µe,⊥
(
neE⊥ +

1

e

∂pe
∂x ⊥

)
, (5.15a)

Γe,y = neue,y = neue,xΩ, (5.15b)

where the cross-field electron mobility is considered to be µe,⊥ = µ⊥,clas + µ⊥,ano, the classical

contribution to mobility is µ⊥,clas = e/meνm(1 + Ω2)−1, the anomalous contribution to mobility is

µ⊥,ano = α/B, the Hall parameter is defined as Ω = ωB/νm,e based on the electron gyrofrequency

ωB = qB/me, the momentum transfer collision frequency is νm, and α is an empirical coefficient

for the anomalous electron transport. Note that the ideal gas law can be used to rewrite pe =

nekBTe where kB is the Boltzmann constant and Te is the electron temperature in K.

The quasineutral assumption results in the use of a charge conservation equation to solve the

electrostatic electric field. This equation can be written by taking the difference between the ion

and electron conservation equations and assuming only electron-impact ionization from the ground
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state neutral atom to singly charged ions to arrive at the form

∂σ

∂t
+∇ · (eniui − eneue) = 0, (5.16)

where σ = e(ni − ne) is the charge density, n is the density of ions (subscript i) and electrons

(subscript e), and u is the bulk velocity of ions and electrons dependent on the subscript. Note

that the quasineutral assumption leads to σ = 0 and can be coupled with the charge conservation

equation via the electron flux, Eq. (5.14), to derive an equation for the potential as

∂Γe,x
∂x

=
∂

∂x

(
µe,⊥ne

∂φ

∂x
− µe,⊥

e

∂pe
∂x

)
=
∂Γi,x
∂x

, (5.17)

which provides a second-order partial differential equation for the electrostatic potential, φ, written

in the cross-field direction. Note that the electric field is E = −∇φ and the ideal gas law still

applies. This equation can be solved using a tridiagonal matrix solver with Dirichlet and Neumann

boundary conditions.

A further consequence of the quasineutral assumption is that the anode sheath is unable to be

resolved by the model. Different studies have developed sheath boundary models to handle these

simulations, and this work uses an ion-attracting, electron-repelling sheath that assumes a half-

Maxwellian distribution of electrons. Using this information, the sheath potential at the anode can

be calculated at every time step by

− Γi,a +
1

4
ne,a

√
8kBTe,a
πme

exp

(
− eVa
kBTe,a

)
=
jd
e
, (5.18)

where jd is the net current density and Va is the anode sheath potential used as a boundary condition

of Eq. (5.17). The second boundary condition assumed φ = 0 at the quasineutral electron-injection

plane at the cathode. The model interface quantities at the anode are denoted with a subscript a

and are solved by extrapolating the values from the cell centers.

The elastic energy loss is negligible in HET discharge plasmas as the electron temperature is

typically larger than 5 eV where inelastic collisions become the dominant electron energy loss
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mechanisms. Thus, an alternative to Eq. (5.13c) for calculating the electron energy is to solve

the internal energy equation. Subtracting the energy equation obtained from the conservation of

momentum from the total energy equation, Eq. (5.13c), yields

∂

∂t

(
3

2
nekBTe

)
+∇ ·

(
5

2
nekBTeue + qe

)
= ∇pe · ue +meneνm|ue|2 − Sloss, (5.19)

which includes heating due to collisional drag. This equation is solved using a second-order im-

plicit Crank-Nicolson scheme to integrate the left hand side in time while the right hand side is

solved explicitly. For the model used in this dissertation, a tridiagonal solver is used to solve Eq.

(5.19).

Pressure can be solved in a coupled fashion with momentum to reduce numerical oscillations

in the model. Assuming quasineutrality, ne = ni, the electric field can be shown to be dependent

on the ion density, leading to a nonlinear coupling between the electron pressure contribution of

the density equation with the inviscid flux in the ion momentum equation. For this coupling, the

ion momentum equation is written for non-magnetized, collisionless ions as

∂(niui)

∂t
+∇

(
niuiui +

pi
mi

)
=

e

mi

niE.

This ion momentum equation can be written by substituting

E =
ue
µ⊥
− 1

eni
∇(nikBTe),

to obtain

∂(niui)

∂t
+∇

(
niuiui +

pi + pe
mi

)
= − eniue

miµ⊥
, (5.20)

a modified ion momentum equation for the electron-pressure coupled method. Note that the right

hand side is a function ofue but recovers the electric field in the region where the effect of diffusion
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flux is negligible. This direct coupling enables a smooth estimation of the electron pressure using

standard inviscid flux calculations as described in the next paragraph. It is also noted that the

equation agrees with the physics of the ion acoustic waves.

A Steger-Warming scheme is used to evaluate the left hand side of the ion conservation equa-

tions based on the inviscid Euler formulation. This scheme employs flux vector splitting by eval-

uating the positive and negative eigenvalues of the Jacobian matrix obtained from a general Euler

equation. Cell-centered conservative quantities are reconstructed such that every cell interface con-

sists of two values for each quantity. As this is not part of the work performed for this dissertation,

further detail of the method can be found in Ref. 167.

5.4.1 Simulation Setup

The QDD model is solved on a coarse grid of 100 cells for a total time of 5 ms with a time

step of ∆t = 4 ns. Due to the nature of data collection in the original QDD model, a code-to-code

verification measurement signal does not exist for the first 2.8 ms of the simulation. Thus, the

model is run without the EKF for that length of time before the first measurement signal arrives.

During this time, the electron mobility parameter is allowed to propagate as it would normally in

the QDD model. At such a time when measurement data begins to arrive, the electron mobility pa-

rameter is held constant during QDD propagation phase and only updated during the measurement

update phase. Measurement data includes a constant and sinusoidal discharge current trace created

in MATLAB as well as the discharge current data taken from Ref. 3. For each measurement data,

the measurement signal arrives every 5 µs.

The electron temperature at the anode and thruster exit is set as 3 eV. The discharge voltage

is 300 V. The magnetic field is set as 151.2 × 10−4 Tesla. The thruster geometry is based on the

well-known Stationary Plasma Thruster (SPT) 100 thruster with an inner radius of 0.0345 m, an

outer radius of 0.05 m, the anode located at the left hand boundary of the domain, the channel exit

at 0.025 m, and the domain exit at 0.05 m. The mass flowrate is assumed to be 5 mg/s while the

inlet velocity is set at 270 m/s. The ion temperature is set to 0.095 eV, initially. The model assumes

no secondary electron emission from the walls.
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5.4.2 Estimating Electron Mobility with an Extended Kalman Filter

Initial efforts to incorporate the extended Kalman filter with the QDD model led to unphysical

results. The original setup of the state vector and propagation scheme included the ion and neutral

number density, electron temperature, and axial electron velocity as states to be estimated. The

electron velocity was updated by the measurement data, and then was used to solve for the electron

mobility using the relation

ue = −µ⊥
(
E +

1

echne

∂pe
∂x

)
, (5.21)

and solving for the anomalous contribution to the electron mobility separate from the EKF update

equations using the approximation

µ⊥ ≈
mνeff
eB2

, (5.22)

based on the assumption that the Hall parameter, Ω, is large, e.g., ωc � νeff .

The original QDD model is solved for every time step as it is originally written and docu-

mented. The covariance matrix uses a simplified set of equations based on the predator-prey work

performed in Ref. 169 to calculate the Jacobian matrix. This prevented the use of complex equa-

tions in the Jacobian matrix based on the true relation of the states in the QDD representation. To

aid in the simplification of the EKF model, rather than attempting to handle covariance matrices

for 400 states all at once, e.g., four states for each of the one hundred cells in the domain, each cell

is estimated with an individual state vector and covariance matrix. The results are stored in large

memory banks to be called when needed, resulting in one hundred individually-run EKFs within

the simulation.

The discrepancies between the simplified global model equations used in the covariance matrix

and the full quasineutral drift-diffusion model led to a plethora of numerical artifacts within the

estimation setup. Switching between local and global trends requires particular consideration with

weighting schemes and physical constraints beyond those of the EKF. Additional attempts to in-
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clude more streamlined calculations of the electron mobility and different physical considerations

in the model showed little improvement in the unphysical solutions being returned by the EKF.

5.4.3 Estimating Electron Mobility with a One-Equation Correction Scheme

The difficulties of applying the EKF as originally intended to a Hall effect thruster model

prompted an attempt to verify that a simpler version of an inverse problem would be feasible for

this application. Having the QDD model as well as numerous discharge current signal traces, the

decision was made to create a true inverse problem between the discharge current and the electron

mobility parameter. Using the relation

Id = ech(niui − neue), (5.23)

the electron velocity can be substituted by Eq. (5.21) and rewritten to calculate the electron mo-

bility parameter. Using the assumption that the discharge current is the same for every cell in the

domain, this inverse equation can then be solved for every individual cell of interest as

µ⊥ =
( Id
Ainlet

− echniui)
echni(E + ∂pe

∂x
)
, (5.24)

based on a measurement signal arriving every 0.5 µs. The electron mobility is solved on the

cell-interfaces using Eq.(5.24) and a simple averaging scheme is used to translate the solved cell-

interface values to the required cell-center values. The same averaging scheme is also used to

calculate the interface values for the ion number density and ion velocity before solving for the

electron mobility. No other states are updated in the QDD model, requiring the system to adjust

to changes in electron mobility between two measurement data. Once the update scheme begins,

the QDD model no longer propagates the electron mobility parameter, further forcing the physics-

based model to adjust to the calculated mobility parameter.

The results of numerous studies indicate that numerical artifacts are seen to arise from the

simple averaging scheme used in the model to transition between cell-center and cell-interface val-

ues. When supplying a constant measurement signal, the discharge current is shown to oscillate
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Figure 5.11: Example of how imperfections in double-point precision of the steady-state mobility
solution changes the overall simulation results from (a) a steady-state condition to (b) a small
amplitude oscillation.

around the desired solution due to the resulting non-constant mobility in time, as demonstrated in

Fig. 5.11. Simple tests studying the transition from cell-center to cell-interface revealed numer-

ical instabilities that caused oscillations, small in amplitude, to arise from the otherwise steady-

state condition demonstrated in Fig. 5.11(a). After one averaging from cell-center to cell-interface

and back, the reconstructed cell-center values do not match the original steady-state mobility to

double-point precision and lead to a noticeable change in the discharge current, Fig. 5.11(b). The

sensitivity of the QDD model to such minute changes in the electron mobility is the first indication

of the litany of challenges that would be uncovered.

The fallout of this realization is that this particular setup for the electron mobility update is still

too complex of a task. Using this knowledge, the scheme is changed to update specific regions of

the domain while others are held constant, as shown in Fig. 5.12. Initial attempts of this selective

update scheme follow the spirit of the three-region electron mobility model proposed in Ref. 33

that has become widely accepted. By selecting the region allowed to be updated, the results are

intended to examine where the sensitive regions of the mobility profile exist. Starting by updating

the channel, Fig. 5.12(b), the electron mobility values quickly begin to oscillate with large dis-
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continuities that cause the entire simulation to fail due to the resulting negative discharge current

values. These oscillations can be traced to the electric field, which is based on the gradient of

the potential, φ. As the oscillations are noted to start in the near-anode region before growing,

the understanding is that further considerations need to be made within the near-anode region of

the domain. The two immediate factors to be considered are the application of an ion-attracting,

electron-repelling sheath at the anode as well as the possible existence of nonmagnetized ions near

the anode.

Moving to the exit of the channel, reveals a limited diffusion of the selected cells over the

course of the simulation, Fig. 5.12(c). Much like the simple case of transferring values from

cell-center to cell-interface and back, the resulting discharge current again demonstrates a small

amplitude oscillation over the course of the correction scheme. When the plume is solved for, a

discernible attempt to diffuse the value of the electron mobility parameter is visible in the time-

dependent history of the parameter. This is noted in the difference of values after x = 0.03 m

in Fig. 5.12(a) and Fig. 5.12(d) where the plume-updated values are notably lower than those

of the steady-state mobility profile. Further testing revealed that this diffusion trend is followed

when both the entire domain after x = 0.023 m is allowed to be updated. This diffusion does find a

steady-state condition for the electron mobility value, but the discharge current remains oscillatory.

As fewer cells are kept constant within the channel, the updates cells are seen to diffuse further.

Although the discharge current trace is kept considerably constant in all of the cases presented in

this section, there are still remaining questions about the lack of a true steady-state solution using

the inverse problem.

The continually diffusing or oscillatory solutions recovered by this one-equation correction

scheme indicate that further consideration is required to maintain better physical relevance for this

estimation process.
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Figure 5.12: A selection of electron mobility solutions using the one-equation update. (a) The
original, steady-state solution of the electron mobility. (b) The electron mobility if only channel
cell values are updated, i.e., x < 0.02 m. (c) The electron mobility if only exit cells are updated,
i.e., 0.02 < x < 0.03 m. (d) The electron mobility is only the plume cells are updated, i.e.,
x > 0.035 m.
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6. CONCLUSIONS

For my part I know nothing with any certainty, but the sight of the stars makes me

dream.

- Vincent Van Gogh, Arles, July 1888

6.1 Summary

The complex interactions of plasma phenomena are known to greatly influence the behavior

and performance of low-temperature plasma applications. Several numerical methods have been

developed to study the detail of such physics to varying degrees of fidelity. One approach to com-

batting the increasing computational costs of high fidelity models is to use available experimental

data as supplementary information to create a data-driven model. In this dissertation, a physically-

constrained extended Kalman filter is developed for use with plasma physics models.

The development of the original EKF is presented to demonstrate the benefits of the physical

constraints added in this work. Verification tests are performed using a chaotic Lorenz attractor

and a driven-damped harmonic oscillator. The estimated results are shown to be in good numerical

agreement with the reference solution physics. Studies with sparse measurements are used to

demonstrate how the estimates change as less information is provided. The physically-constrained

filter is shown to saturate at a certain order of magnitude of error as the measurements continue to

become sparse. The filter is also shown, through an amplitude and phase study, to converge to the

true dynamics with increasing measurement signal frequency for cases without measurement noise.

Overall, these studies were also used to demonstrate the robustness of the physically-constrained

EKF compared to the original EKF in the face of sparse measurement signals.

Further tests are run using experimental Hall effect thruster discharge current data with a sim-

plified global xenon model. A two-species predator-prey model driven by the electron temperature

fluctuations is used to demonstrate the physical relevance of the filter estimates. In particular, the

dynamics of the incoming discharge current measurement signal are found in all states estimated
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by the EKF. The filter is presented with two slightly different physics-based models to demonstrate

the effect of the propagation model on the overall estimate. The inclusion of electronically excited

states is shown to decrease the estimated electron temperature, as expected. The filter is demon-

strated with different Hall effect thruster operation cases that range near steady-state operation to

the highly oscillatory breathing mode operation. The physics-constrained EKF is demonstrated to

robustly capture every case, unlike the original EKF that was unable to find a viable solution for

the breathing mode oscillations.

The physics-constrained EKF is then applied to three plasma chemistry test cases of increasing

complexity. Verification tests are performed using a global pure argon chemistry model to study

the ability of the EKF to estimate more than one unknown at a time. The filter is shown to recog-

nize the significance of different unknowns, giving preference to the more important states in the

model. This preference is noticed in which states the EKF corrects over time, and which it does

not alter. Cases are shown where unknown states of equal significance are both updated as well

as a particular case where the physics-based propagation is so poorly defined that the system fails

before the first measurement update. The filter shows the capability to estimate reaction rate coef-

ficients, which are less obvious states in a system compared to the electron temperature. Having

verified the model, experimental data from a pulsed inductively coupled plasma test are provided

to the filter to determine the driving effective electron input power. A variety of peak powers, duty

cycles, and pulse frequencies are studied. Results demonstrate that not only can the filter recognize

a power on versus power off phase based on the provided ion number density measurement, but

also the filter recognizes the difference in effective power required to generate the plasma versus

sustain it. Physical relationships between the background ion density values and peak effective

input power are shown to be consistent across test cases. It is further shown that only about one-

third of the supplied power is estimated to be absorbed by the plasma in these models, likely due

to the multitude of efficiency loss mechanisms at work within these plasma systems coupled with

the use of a zero-dimensional model. Finally, an argon-oxygen plasma chemistry model is devel-

oped. Assuming that the electron power input is constant, the effective ion wall diffusion rates are
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considered the unknown parameters to sufficiently capture the experimental data. Studies within

this model indicate the benefits towards using a measurement signal for each element to capture a

significant portion of the physics so that the EKF is correctly informed. Additionally, allowing the

EKF more control over the state of the model is shown to improve the estimates of the system.

Having sufficiently tested the PC-EKF with global models, the EKF was expanded for use

with models over one spatial dimension. An initial recreation of a linear advection propagation

of a sinusoidal wave found in the literature is performed. This study is used to demonstrate that

the initial domain of a system can be reconstructed using an EKF. An added benefit provided by

the EKF is that so long as measurement data continues to be supplied to the EKF, the advection

(dissipation) of the solution over time caused by using a first-order upwind propagation scheme is

compensated for by the EKF. This exemplifies how the EKF can be used to improve the solutions

of low-fidelity and low-dimensional systems.

A heat diffusion solution using a varying number of diffusion regions is also studied. This

particular case is reflective of estimating an electron mobility coefficient in a Hall effect thruster

that drives the motion of electrons within the system. The diffusion coefficient is an underlying

parameter such as the mobility coefficient, and is as significant to the system. A variety of para-

metric studies changing the measurement locations, number of measurements, number of regions,

grid refinement, and measurement frequency are performed to gain a better understanding of how

the EKF behaves to improve future analysis with a true Hall effect thruster application.

Lastly, a series of initial studies using the extended Kalman filter and a one-equation inverse

problem are applied to a fluid Hall effect thruster model using a quasineutral drift-diffusion for-

mulation. The key assumptions made for this study include magnetized electrons near the anode,

constant discharge current across the entire domain, and the ability of the QDD model to relax to a

set electron mobility profile. This work demonstrates the sensitivity of the model to the profile of

the electron mobility parameter, revealing effects of slight changes in the electron mobility values

in the resulting discharge current. The select update ranges demonstrate that it is possible to use

an inverse-problem type update without causing the simulation to fail if the channel profile is held
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constant. Although the inverse problem returns diffusive solution for the electron mobility profile,

adding a second updated quantity to the system or creating new physical constraints are promis-

ing options for improvement. Furthermore, as other studies stress the limitations of the extended

Kalman filter, investigation of alternate state estimation techniques is reserved for future work.

6.2 Future Work

6.2.1 Improving the Physical Constraints

The present physical constraints are designed to ensure a positive-definite condition for the co-

variance of the unknown state. While these constraints remove the tight restrictions of the previous

ad hoc parameters, they do still require some manual tuning, especially for the measurement noise

covariance, R. Though this value can typically be set based on the known measurement error of

the incoming data, there is more than one case where the assumed noise has to be set greater than

the true noise to achieve close accuracy in the estimation. Also, because of the structure of the

constraint, the condition is rarely met that requires an update to R. Thus, a new constraint on the

measurement noise may be advisable to reduce the manual tuning required.

While the physics-based constraints developed as part of this dissertation focus on ensuring

positive uncertainty bounds to prevent simulation failure, little work has been performed to develop

physics-based constraints relevant to plasma physics. The purely numerical scheme of the extended

Kalman filter leaves a significant gap for the inclusion of plasma physics knowledge that is more

inherent to the state estimation technique.

6.2.2 Increasing Complexity

The physics-based models used throughout this dissertation are intentionally kept simple aside

from the Hall effect thruster model. Particularly, the models have not estimated a sizable number

of states to study the computational cost of the PC-EKF. The short simulation times of test cases

such as the Lorenz system or a linear advection scheme require so little computational time that

tracking the time spent on the EKF functions can be misleading. There is also a balance to be found

between the complexity of the physics-based model compared to the extended Kalman filter. For
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many of the cases in this dissertation, the EKF requires a larger number of equations to be solved

than the physics-based model. Knowing this to be the case, time readouts were not included in any

of the presented studies due to a disproportionate balance between the physics-based models and

the filtering processes. Furthermore, some of the models in this dissertation were developed using

MATLAB, which is a non-compiled language and operates much slower than languages such as

C++. The application of the EKF to various systems can be investigated to determine if a balance

exists between how many EKF equations are required and the physics-based model in a form of a

scalability test.

6.2.3 Adding Detail to Zero Dimensional Hall Effect Thruster Model

The zero-dimensional Hall effect thruster model presented in this dissertation is based on a sim-

plified predator-prey representation of ion and neutral number densities from Ref. 112. Though this

model has been successfully utilized to describe the breathing mode oscillations observed in HETs,

it fails to account for radial diffusion and neglects the dynamic behavior of electron temperature

and velocity. A more representative set of equations would include an electron momentum equa-

tion that details various source terms for the physical processes and includes an electron velocity

term. This additional equation enables the inclusion of an electron mobility parameter that can be

estimated.

An alternative option is to shift the focus of the zero-dimensional model to include an electrical

circuit. Even a simple resistor, inductor, and capacitor circuit can be included to develop a system

of equations relating the thruster operation to the electrical circuit of the vacuum chamber. Such

models are growing in popularity due to the realization that the behavior of thrusters in ground

testing may not be the same as that observed during in-space operations. By adding detail to the

Hall thruster physics-based model, past experimental work that has studied the coupling of HET

discharge plasmas and the electrical configuration of the test facility can be introduced to the HET

model through the EKF to study the effects on the physical processes [165, 60, 170].
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6.2.4 Complex Plasma Chemistry Models

Having demonstrated that the EKF can be used to study reaction rate coefficients in a pure argon

and mixed argon-oxygen inductively coupled plasma source, further research can be conducted

with this knowledge. The gas mixtures can become more complex, including more reactions and

states, while the number of unknowns or available measurement signals can be varied. Many

reaction rates used in state-of-the-art models are either extrapolated from similar processes of other

gasses or are set as constant values based on educated guesses. The EKF method can be applied in

any number of these cases to verify the assumed reaction rate coefficients and improve confidence

in these models.

6.2.5 Correlation Between Number of Regions and Number of Measurements

As the one-dimensional studies are presented, a general rule found is to have at least one

measurement per region of interest to sufficiently capture the profile of the unknown estimates.

Studying an increased grid refinement and more regions also proved to be increasingly challenging

when the initial condition of the domain is set to a zero-value condition. It is likely that future Hall

effect thruster studies would have a non-zero, yet possibly incorrect, initial condition. This may

lead to better overall estimates despite still being an incorrect initial condition because it is less for

the filter to correct with only a finite number of measurement signals.

6.2.6 Estimation of Multi-Region Boundary Location

One study that is mentioned in this dissertation focuses on estimating not only the values of

the thermal conductivity coefficient in multiple regions, but also estimating the location of the

boundary between regions. As noted in the text, this boundary exists as an if-statement in the

physics-based models and therefore is not a visible quantity for the EKF to estimate. It is possible

that an equation can be constructed to calculate this boundary within the physics-based model such

that it can be estimated by the EKF.
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6.2.7 Estimating Electron Mobility

The EKF propagation scheme used to track the covariances of the one-dimensional Hall effect

thruster is a highly simplified global model approach to the physics being captured by the fluid

model. This decision is made to simplify the error propagation as the global model propagation

is expected to have larger errors than the fluid model, yet this creates a disconnect between the

uncertainties and the states, which leads to imperfect measurement updates.

To better estimate the electron mobility, a higher-fidelity model should be developed for the

Jacobian matrix used in the covariance matrix propagation scheme. This higher-fidelity model

could still be a global model approach, but should account for more detailed physics in the sys-

tem. Wall sheath interactions should be reintroduced to the energy balance equation. Secondary

electron emission can also be included. If the desire is to continue using a global model approach,

further interactions can be accounted for in the model to include reactions beyond ionization and

excitation. Additional ions and excited states can also be included in the model.

6.2.8 Estimation of Other Phenomena

While this dissertation studies the use of the PC-EKF for electron mobility coefficients in a Hall

thruster simulation, the filter can be used to study any number of physical phenomena. Instabilities

and oscillations, fluctuating electric fields, facility background pressure effects, and modeling of

the electrical circuit are only a handful of phenomena that can be studied using a Hall effect thruster

model and the PC-EKF. Additionally, any assumed parameters within the simulation can be treated

as unknown parameters to study whether their assumed values are valid.

These results indicate that further consideration must be taken into the setup of this problem.

The idea to use an update in the mobility parameter may be insufficient to dictate the state of the

system overall, as cited by some observability concerns related to extended Kalman filters [77].

A more stringent averaging technique may be required to reduce numerical artifacts in the model

as values are transitioned from cell-center to cell-interface. Specific, physical limitations may be

required in the near-anode region to mitigate the oscillations that arise based on considerations
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such as the anode sheath potential [112]. Isolating the mobility further into its anomalous and

classical components may also alleviate some of the numerical discrepancies caused by updating

the entire mobility value.

6.2.9 Alternate State Estimation Techniques

The goal of this dissertation is to develop a real-time state estimation technique for use with

plasma physics applications. In particular, an extended Kalman filter has been presented and tested

with a variety of simplified plasma physics models to demonstrate its capabilities as an estimation

method that simultaneously captures the uncertainties of the system. Widely noted in literature

are the limitations, computational cost, and challenges of applying the EKF to complex and highly

nonlinear systems. While the creation of a pair of physics-based constraints has helped mitigate

some of the challenges of applying the EKF to sensitive systems, there are alternative options to

the EKF.

Within the Kalman filtering family exist both a particle filter known as the ensemble Kalman

filter (EnKF) as well as a deterministic sampling approach called the unscented Kalman filter

(UKF). Both filters remove the need to capture a covariance matrix to study the uncertainties of a

system, eliminating all associated challenges with that representation. By using either a population

of random points or carefully selected sample points, the values can be propagated through the

true nonlinear system and capture higher order accuracy (compared to the EKF accuracy which is

only first-order accurate). Though the EnKF is known to be computationally expensive, the UKF

typically operates under a similar computational complexity to the EKF.

Outside of the Kalman filter, estimation techniques such as Gaussian collocation, Monte-Carlo

based particle filters, and even physics-constrained neural networks. In a general collocation

method, the state and control are discretized at a set of appropriately chosen points in the time inter-

val of interest. The continuous-time optimal control problem is transcribed to a finite-dimensional

nonlinear programming problem which is solved using available software. In a Gaussian quadra-

ture orthogonal collocation method, the state is approximated using a basis of either Lagrange

or Chebyshev polynomials, and the dynamics are collocated at points associated with a Gaussian
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quadrature. Monte Carlo particle filters represent the posterior distribution of the state variables by

a system of particles, instead of a state vector, which evolves as new measurements arrive. In prac-

tice, large numbers of particles may be required to provide viable solutions. Physics-constrained

neural networks, or deep learning, methods incorporate the governing equations of the physical

model in the loss/likelihood functions of the learning framework to generate solutions or rela-

tionships between inputs and outputs that remain physically relevant. All of these methods, as

well as numerous others, have been documented in literature, though very few for plasma physics

phenomena.
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APPENDIX A

CURVE FITTING XENON RATE COEFFICIENTS

The xenon reaction rates can be found as tabulated data the BOLSIG+ database [168]. A fitting

function was developed in MATLAB to fit resulting curves based on the functional forms presented

in this section.

Using the equational form for the excitation reaction rate coefficient from Ref. 4, the radiative

excitation and ** excitation reaction rates can be determined. Using the general equation form,

a
exp(b/Te)√

Te

√
8eTe
πme

, (A.1)

the resulting coefficients from the curve fitting process are shown in Table A.1.

Table A.1: The curve fit coefficients for excitation reaction rates based on the excitation equation
given in Ref. 4.

Reaction a b Order of Magnitude
Radiative Excitation 41.0105 -13.0080 10−21

** Excitation 81.6125 -8.4280 10−21

The equational form for ionization is written as

(a+ bTe + cT 2
e ) exp(d/Te)

√
8eTe
πme

, (A.2)

based on the equation provided in Ref. 4. This equation is used to fit the direct ionization rate

coefficient data using the coefficients provided in Table A.2.

The final functional form used is based on the ionization reaction rate equation used above, but

includes an exponential term such that the form becomes
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Table A.2: The curve fit coefficients for the direct ionization reaction rate based on the ionization
equation given in Ref. 4.

a b c d Order of Magnitude
6.9383 -0.03014 6.7079× 10−5 -12.3028 10−20

(a+ bT ce +
d

Te
+ e exp(− Te

y∆ε
))

√
8echTe
pime

(A.3)

This form is used to create curve fits for both the stepwise ionization and the metastable excita-

tion reaction rates. The resulting coefficients are presented in Table A.3. Note that the coefficient

e is different than the elementary charge of particles, ech.

Table A.3: The curve fit coefficients for stepwise ionization and metastable excitation reaction
rates based on a modified ionization equation.

Reaction a b c d e g Order of Magnitude
Stepwise Ionization 0.04192 −3.4567× 10−9 0.2803 -421.2596 −2.1090× 10−8 5.5788 10−21

Metastable Excitation 0.002359 −1.6635× 10−7 1.4954× 10−4 -23.7056 −1.6747× 10−10 3.6978 10−21
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