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ABSTRACT

Computer Vision and Sensor Fusion for Autonomous Vehicles

Abd-Allah El-Attar1, Abdelwahid Eltayeb2, and Ahmad Al-Khateeb3

Department of Electrical Engineering1,2,3

Texas A&M University

Research Faculty Advisor: Dr. Hussein Alnuweiri
Department of Electrical and Computer Engineering

Texas A&M University

Cars, particularly manually-driven cars, are one of the most commonly used modes of trans-

portation today. However, millions of people are either killed or left with disabilities annually due

to road traffic accidents caused by human error or sensor failures. Despite that, a lot of people seem

reluctant to look into alternatives to manually driven vehicle transportation. This is understandable

as driving cars has been the trustworthy mode of transportation for many years, and it is widely

used in everyday life around the world. However, technological advances in the fields of machine

learning and cyber-physical systems contributed to the emergence of nearly or fully autonomous

vehicles, or driverless cars, as a true viable alternative for the current human-controlled driving

mode. The technology still has a long way to go, mainly because the advances in vision and depth

measurement sensors such as LIDARs can not achieve the levels of safety needed to make fully

autonomous cars. Progress on this front is being made every day, and it seems inevitable that they

will be readily available in the near future. Our team aims to further investigate the application of

Computer Vision and sensor fusion to achieve independent self-driving without external guides.

To accomplish this, we combine a depth camera with a LiDAR to provide better coverage of the
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surroundings and allow more accurate detection and thus accurate avoidance of obstacles. We are

mounting the vision system on a model driverless car and using the vision data to guide the car

control system. A computer vision algorithm will be run by the NVIDIA Jetson Nano to deter-

mine what course of action the car should take. The final prototype should be capable of driving

at a reasonable speed without colliding with any objects and making decisions such as braking or

turning when necessary.
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NOMENCLATURE

SAE Society of Automotive Engineers

CV Computer Vision

AV Autonomous Vehicle

YOLO You Only Look Once

LiDAR Light Detection And Ranging

ROS Robot Operating System

VESC Vedder Electronic Speed Controller
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1. INTRODUCTION

Car accidents are one of the most dangerous risks many commuters face every day. This is

the case for both pedestrians and passengers. Every year the lives of approximately 1.35 million

people are cut short as a result of road traffic accidents, with up to 50 million people suffering

injuries and many of those sustaining a disability as a result of their injury. In fact, road traffic

injuries are the leading cause of death for children and young adults aged 5-29 years, as per the

World Health Organization. [1] This is precisely why self-driving cars are becoming more of a

reality every day, along with the fact that another major selling point is the comfort it provides to

its passengers. Unfortunately, current self-driving technology is not quite complete and cannot be

unequivocally trusted to take the wheel. Ideally, autonomous vehicles will be able to reduce car

accidents significantly by eliminating its largest cause: driver error. However, true self-driving cars

have a long way to go, even though they are starting to emerge as the more feasible option over

normal manually-driven cars in many ways, as there is still the question of how safe it is to trust

the vehicle with the life of a passenger or that of a pedestrian. The fatalities they have caused are

not helping that case, as there have been quite a few incidents involving self-driving cars in the past

that have cost people their lives. The race to reliable and truly autonomous vehicles has started,

and thus different approaches to achieving this are being researched, developed, and tested.

To distinguish between the different degrees of automation in vehicles, the Society of Automo-

tive Engineers (SAE) developed a classification system that defines the degree of driving automa-

tion a car and its equipment may offer, called the SAE Levels of Autonomous Driving, ranging

from levels zero to five. The driving automation spectrum begins with vehicles without this tech-

nology and ends with entirely self-driving vehicles. Here is a brief description of each level of

autonomy:

• Level 0: No automation. Full-time performance by driver

• Level 1: Driving Assistance. System can control either lateral (steering) or longitudinal
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(acceleration, braking) motion but not both. Examples: Adaptive Cruise Control, or Lane

Keeping Assistance

• Level 2: Partial Automation. System can control both lateral and longitudinal motion, but

driver must always pay attention

• Level 3: Conditional Automation. Same as Level 2, but also includes automated object and

event detection response. It does not require constant driver attention, but the driver must be

instantly ready to take control when the system experiences a failure

• Level 4: High Automation. Same as Level 3, but if the system fails it can automatically

handle the emergency without a need for immediate driver control. So there are virtually no

safety concerns if the driver is sleeping etc.

• Level 5: Full Automation. The vehicle will be able to autonomously drive in any condition

without human interaction. There would not be a need for pedals or a steering wheel.

The objective of this project is to work towards levels 3 and 4, which requires accurate and

reliable sensing. To get an accurate perception of the environment, multiple sensors can be used

simultaneously. [2] Each type of sensor has its advantages, and thus using a variety of them helps

compensate for the shortcomings of the others. For example, cameras can be used in conjunction

with range sensors (LiDAR, SONAR, or RADAR) to achieve better coverage in different envi-

ronments. The main goal of this project is to increase the accuracy of perception and obstacle

avoidance in autonomous vehicles so that they are able to maintain a good estimate of depth, ac-

celerating or decelerating whenever required. With this project, we hope to achieve an efficient

computer vision and sensor fusion system. The implementation of such a system in real life on a

larger scale, if successful, can significantly reduce the fatalities caused by autonomous vehicles,

which in turn would contribute to the mitigation of the stigma surrounding autonomous vehicles.

1.1 Proposed Solution

Our project hopes to find a combination of sensors (including LiDAR) and cameras to

create a computer vision system that can accurately detect and avoid obstacles. The onboard
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computer (Nvidia Jetson Nano) will run the computer vision algorithm and decide what course

of action the car should take. The final prototype is expected to be able to drive at a reasonable

speed without crashing into any obstacles, while making decisions such as breaking or turning

in a reasonable time (comparable to the average driver). With this project, we hope to achieve an

efficient computer vision and sensor fusion system that can guide an autonomous vehicle prototype

without any trouble. If implemented on a larger scale, such as system could potentially significantly

reduce the fatalities caused by autonomous vehicles.

7



2. LITERATURE REVIEW

Even though autonomous vehicles are seen as a viable next step in transportation, they face

many challenges in public and governmental acceptance. To achieve our objective of increasing

the trust of the public in such vehicles, we need to understand the background of this field, the

progress being made on this front, and what contributions can be made. Therefore, we take a look

in this section at the relevant literature to gain a better understanding of what projects such as

this one entail and how some similar projects are being implemented. By doing this, we can find

out how our project can be different and what it can do to improve. The relevant literature was

collected through resources such as the IEEEXplore database and Google Scholar. This enables us

to learn more about what we can do to gain an edge, overcome the difficulties that other projects

might have faced, and perhaps take the necessary steps that will make our project stand out and

contribute to the field of autonomous vehicles.

2.1 Related Works

Many attempts have been made throughout history to construct an autonomous vehicle that

can operate without the assistance of a human driver, such as Leonardo da Vinci’s self-propelled

cart and Dickmann’s VaMP self-driving car using 4D vision technology. However, a significant

contribution to the initiative is that of the Defense Advanced Research Projects Agency’s (DARPA)

Autonomous Land Vehicle (ALV) project, which uses advanced sensors and is capable of travelling

autonomously at high speeds. Between 2004 and 2007, DARPA launched a number of competi-

tions, which prompted studies into the potential of self-driving cars. Following that, Google began

creating its own self-driving car, and other businesses such as Tesla, Uber, and NVIDIA soon

followed suit. [3]

Sensors detect the properties of an environment or changes to an environment and are es-

sential for correctly perceiving the environment. When sensors are used in perception, there are

different comparison metrics taken into account by sensors, such as resolution, the field of view,
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and dynamic range. A commonly used sensor for perception is the LiDAR. LiDAR stands for

Light Detection and Ranging. This device uses light pulses to detect ranges. It works on nearly the

same principles as RADAR, which is Radio Detection and Ranging. There are several varieties of

LiDARs available, including 3D and spinning 2D LiDARs. By generating millions of data points

per second, LiDAR sensors provide high precision and accuracy in object detection and recogni-

tion in Advanced Driver Assistance Systems (ADAS), creating a 3D point cloud reconstruction of

the surrounding area. With a high data rate, LiDAR provides positional accuracy and precision.

The bulkiness of LiDARs and the cost of employing them for ADAS applications are two major

drawbacks. An alternative for this is the stereo camera sensor, which is a passive reflective device

composed of two cameras. It can be used for 3D reconstruction of the environment, which reduces

the need for the more expensive LiDAR. [3]

Cameras are an appealing choice for self-driving vehicles due to their relatively low price

and range of potential applications. With two different points of view, it is possible to extract depth

information by using stereo matching. [2] This method, along with Computer Vision, can help

predict the distance and motion of objects detected in the scene. This means that cameras alone

can prove to be very useful, but they cannot be fully depended on. Calibrating a multiple-camera

set up to help establish a 3D representation can be challenging and typically requires a considerable

amount of tweaking. In [4] Geiger et al. proposes a solution to automate the calibration of a system

of cameras and sensors with relative ease.

The main purpose of cameras in such implementations is obstacle detection. The stereo

camera initially generates a left image and a right image. After that, the two images are rectified.

Given the extrinsic and intrinsic properties of the systems, rectification is a technique of comput-

ing the image transformation that turns epipolar lines collinear that are parallel to the horizontal

axis. The disparity map is calculated using the camera characteristics extracted from the rectified

pictures. The pixel-wise depth can be computed using the disparity map, which calculates the dis-

parity between the left and right camera images. This implementation is vital in obstacle detection

training, as is the case with Amara et. al’s work where the algorithm is trained to detect a total of
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six classes, which are pedestrian, vehicle, bicyclist, cow, bus and dog classes. [3]

Information obtained through the camera used in autonomous vehicles could also use im-

age recognition algorithms for Unmanned Ground Vehicles (UGVs) used to prevent accidents by

measuring the distance between the vehicle itself and the vehicle in front of it, as per Mohamed

et. al. [5] It may also be used to recognize lanes and prevent the vehicle from leaving its lane

by measuring the distance between the car’s wheels and the lane it was in. Furthermore, the au-

tomated driving system can respond appropriately to road signs by identifying them. [5] In the

application of autonomous vehicles, after collecting the sensor and other perception data, it needs

to be processed and used to guide the vehicle. This is basically where the “brain” of the vehicle

comes in. In prototypes, certain computers are used for such purposes, such as NVIDIA’s Jetson

products, the Xavier or TX2.

A project was done in Misr International University where a prototype self-driving car was

designed and built. [6] Their prototype was relatively small with a Raspberry Pi as the central pro-

cessor of the system, along with an Arduino UNO in charge of motion and a L298N motor driver.

The prototype had three main systems: depth perception using disparity maps, lane detection, and

anomaly detection. [6] The video feed from one of the cameras gets put through multiple filters

to reduce noise and prepare for edge detection and then a Hough Transform is used to identify the

lane lines and the Raspberry Pi decides on the if the car needs to turn or change its speed based

on its location and rotation in relation to the lane lines for lane detection. The project also utilizes

two cameras with slightly different perspectives to generate a disparity map and thus a depth map.

This requires some calibration beforehand, which is vital for good results when using two separate

cameras rather than a single stereo camera. Furthermore, an accelerometer and gyroscope are used

to detect anomalies in the car’s motion. The accelerometer is used to measure the force exerted on

the car and the gyroscope is used to measure the orientation of the car and its angular velocity. This

information is valuable to determine the state of the car, and possibly road surface, such as road

bumps, inclines, and other anomalies. [6] Based on their tests the disparity map proved to be very

effective and worked well in both indoor and outdoor conditions. The anomaly detection system
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proved to have a 98.6% success rate in detecting anomalies. It is reported that the prototype per-

formed as well as expected after some tweaking, with all tests being perfectly satisfactory. There

is a lack of information on some of the technical details of the prototype and its performance, but

judging from the design it seems to move at a relatively slow speed and is tested on a similarly

small track. Therefore, the system might not be able to function as well at higher speeds, similar to

those reached in other projects. It is only an assumption, but a lot of the components would have

to be upgraded such as the Raspberry Pi for real-time processing at higher speed. [6]

Another project done on a larger scale was in the Worcester Polytechnic Institute in Mas-

sachusetts, USA. [7] The focus was to implement a miniature autonomous racer car, with a 1/10

scale, similar to our project. Actually, a great deal of the project was also on the technical aspects

of the vehicle’s motion: continuous variable transmission, speed control etc. The autonomous

aspect of this project narrows down to implementing adaptive cruise control (ACC), trajectory

generation, and a trajectory tracking controller. The ACC was achieved using some algorithms in

combination with filtered LiDAR data to speed up or slow down depending on the readings for the

region directly ahead of the car. The design also called for localization which was determined us-

ing Gmapping based on LiDAR data and odometry data calculated from the depth image produced

by the Zed stereo camera, which does not seem to be used for any other purpose. Some of the main

components of the project are: a Hokuyo UST-10X LiDAR, a NVIDIA TX2 as the main processor,

a Zed depth camera for mainly odometry, and Teensy 3.2 boards used for low-level motor control.

[7] Overall, the prototype seems to be effective based on the project’s results, especially as a base

for an ambitious goal. It is concluded that the car can generate a smooth trajectory and follow it

smoothly with very small error, and ACC is implemented well with the absolute error smaller than

10 cm and angle smaller than 10 degrees. [7] Still, the prototype suffered from some issues. Dur-

ing implementation, the prototype was getting unreasonably heavy and the original acrylic base

material was relatively fragile therefore it was replaced with ABS, but this necessitated the use of

a PD controller to effectively control the speed. There were also some errors in localization due to

incorrect odometer data from the zed camera, as it is not a consistent method to obtain odometry,
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but they had more success with it compared to measuring the RPM of the car’s shafts. Also, the

racing motor used could not be run at slow speeds and thus it would suddenly turn on and off

when the car is following a slow moving object, which would lead to violating the safe distance.

The LiDAR tended to overheat after long runtime, and the car seemed to have issues with driving

perfectly straight. [7]

2.2 Analysis

Despite the advancements in research done in the literature cited, there are a number of

aspects that are overlooked. In [3], what Amara et. al fails to consider what might occur if the ve-

hicle is not able to detect other objects like walls or cones, with the number of categories identified

by the algorithms particularly limited and quite specific and no mention of any other obstacles that

can be avoided. On the other hand, there is the algorithm mentioned in [5], where it is capable of

detecting lanes, vehicles, and road signs with no mention of any perception of pedestrians or any

other objects. Perception in autonomous vehicles is a very big issue that needs to be solved.

There are similarities observed in various criteria when looking at the projects of MIU and

WPI, which is not surprising as all of the projects, in one way or the other, are working towards the

same objective which is essentially to increase trust in self-driving cars. Despite being mentioned

in the context of race cars, the technology used in the WPI prototype conforms with what a standard

autonomous vehicle prototype should use, validating its similarities with our project.

The WPI project has the most expensive prototype since it is designed to be an autonomous

race car. Meanwhile, on the other end of the spectrum is the MIU prototype which is fairly simplis-

tic based on its materials and the type of processor used. We anticipate that our prototype will be

the most efficient one in that it optimizes the use and cost of its materials while still maintaining a

good design, since we plan on using certain materials that are considered to be in the median range

in terms of cost and performance. Therefore, it is estimated that the projected cost of a real vehicle

based off of our prototype could be considered decent compared to how much a self-driving car on

the market could usually cost, taking into consideration its design and its cost. In simple terms, our

project aims to be a middle ground, cost effective solution with a reasonable price and good tech-

12



nology. Examining this literature enables us to learn more about our project and the possibilities

for advancement and what sort of issues might arise.

While the general performance parameters of autonomous vehicles should not be taken

lightly, the topic that requires more focus is perception in such vehicles. That is because inaccurate

perception is the leading cause of accidents in autonomous vehicles. For example, the first death

of a Tesla driver occurred when he collided with a truck while driving on autopilot. The car failed

to detect the truck trailer as an impediment because of its “white color against a brightly lit sky”

and “high ride height” despite it being the driver’s responsibility to keep an eye on the road and

not let the car drive fully alone. In another incident, a woman named Elaine Herzberg was the

first pedestrian fatality reported involving an Uber self-driving test car. [8] These cases are just

a drop in the ocean in terms of the incidents that have occurred and a hint of what is to come if

more extensive research into increasing the accuracy of the perception of autonomous vehicles is

not done.

13



3. METHODS

In this section, we will take a look at the system architecture of the design and explain how

the different components are configured and how they come together so they can be implemented

into the final design. Next, we will examine the standards and constraints of the design so that we

gain an understanding of the criteria that may be adhered to in order to make the project successful

and feasible. After that, we will look at the system design overview that outlines exactly what the

expected outcome of the project is and what it entails.

The design we are building for this project is called an F1/10 vehicle. These vehicles are

1/10 scale RC-based models of regular cars. These models are usually used for racing competi-

tions. However, they can also be used to implement, verify, and test algorithms that can ultimately

be applied to full-scale driverless automobiles due to their real autonomous car-like architecture.

This project is one of them. Not only is it cheaper to use a model automobile instead of a real one,

but because they can be produced on a 1/10 scale, all of the scenarios explored are considerably

more manageable. Furthermore, all collisions involving a model automobile are likely to be far

less serious than in real scenarios. This enables us to achieve our objectives more effectively, and

at a rapid pace. It also helps us understand where mistakes might occur, and with little to no chance

of casualties.

3.1 Components

The main components used to build the car comprise a car, an embedded computing board,

LiDAR, and a depth camera. The car used is a Traxxas Slash 4X4 RTR 4WD Brushed Short Course

Truck, the computing board is an NVIDIA Jetson Nano Developer Kit, the LiDAR is a Hokuyo

10LX, and the camera is a Intel RealSense D435i Depth Camera. We will now take a look at how

each component was configured.

14



3.1.1 Car

The main use of the car is as a platform on top of which the other components will be

mounted so that it can then utilize the components to run so that we can test the computer vision

and sensor fusion system. We first start by setting up the lower level chassis. The way this is done is

that all the original components within the car are disassembled, except for the motor and servo, to

make way for the new components. After that, the autonomy elements are mounted onto the upper

level chassis, which is essentially a laser cut platform deck. The elements mounted on top of the

upper level chassis include a VESC 6 MkV Vedder Electronic Speed Controller, antenna standoffs,

and cables, which are then be connected to the NVIDIA Jetson Nano, also mounted on the upper

level chassis, and then finally, the powerboard and LiDAR. [9] As for the Intel RealSense D435i

Depth Camera, it will be mounted on top of a 3D printed bracket. The bracket will be screwed

onto the upper level chassis so that it is the highest point in the car, and the camera will then be

screwed onto the top. This is done so that no other component on the car obstructs the camera’s

vision.

3.1.2 NVIDIA Jetson Nano

The Jetson Nano requires 5V to power on, and this could be supplied in two ways: using a

micro USB connection or a barrel jack connection. For testing the Nano, the micro USB method

was most used, although the maximum current that could be provided to the computer would only

be 2A. When more power is needed, and when the Nano is fitted into the platform, a barrel jack

connection is used to power the computer through the power board.

Using Python, the appropriate Machine learning (ML) Computer Vision platforms, such as

OpenCV, TensorFlow, and other ML libraries, are used to manipulate the autonomy elements of

the car through the Jetson Nano, which is connected to the LiDAR and Depth Camera. The Nano

is also connected to the VESC controller to control the car.
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Figure 3.1: NVIDIA Jetson Nano

It is worth mentioning that the targeted onboard computer was another, more powerful

NVIDIA product, the Jetson Xavier. However, its lack of availability and constant price hikes led

the team to work with the Jetson Nano, shown in Figure 3.1, instead to keep the cost of the design

as moderate as possible.

3.1.3 LiDAR

Figure 3.2: Hokuyo UST-10LX LiDAR

16



The Hokuyo UST-10LX LiDAR, shown in Figure 3.2, is an accurate way to measure dis-

tances from the car to objects up to 10 meters away with millimeter accuracy. Before being able

to use the Hokuyo sensor, however, some setup was required for the LiDAR’s connections to be

compatible with the other components. The LiDAR has 6 total wires bound to a connector, two of

which are the power wires and should be isolated to power the system. The wires were separated

from the connector using a wire cutter, and the 4 control wires are taped back using electrical tape.

The 2 power wires, which were the brown and blue wires for 12/24V and GND (ground) respec-

tively, are stripped from their leads and powered directly from a bench power supply or a power

board when fixed on the vehicle.

The sensor must be configured with the correct network settings to be able to communicate

with the computer, so a new network connection must be made. By setting the IP address to

192.168.0.15, the subnet mask to 255.255.255.0, and the gateway to 192.168.0.1, the LiDAR can

be utilized with the factory connection settings. Since some models might have severely outdated

firmware, an update is necessary before any connection is established. Hokuyo’s Smart Updater

tool was used to update the firmware, but since it can only operate in a Windows operating system,

a laptop was used to install the update. After setting up the network settings for Windows, the

LiDAR was recognized and its firmware was updated.

The next step in the LiDAR’s setup includes the installation of the Robot Operating System

(ROS) libraries responsible for controlling the car and visualizing the output of the LiDAR. The

ROS version used is the ROS Melodic package, which is compatible with the Jetson Nano’s

operating system, Ubuntu 18.04 (Bionic). After troubleshooting and fixing an issue with the

python_catkin package, required to build a work space for ROS, the Nano system was success-

fully able to run ROS on the terminal by executing the ‘roscore’ command. The result of running

’roscore’ is shown below in Figure 3.3.
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Figure 3.3: Terminal with ‘roscore’ command running

LiDAR data is then collected by opening a new terminal and running ’rosrun urg_node urg_node

_ip_address = “192.168.0.10”’, this command establishes the connection with the sensor and the

Nano starts receiving data from the LiDAR.

3.1.4 Depth Camera

Figure 3.4: Intel D435i Depth Camera

The Intel D435i depth camera used, shown in Figure 3.4, is a versatile and crucial com-

ponent of the system. The D435i has an IR projector and three camera lenses: one RGB imager
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and two IR imagers used to produce the depth map. The D435i model, specifically, has an Inertial

Measurement Unit (IMU) that can detect motion and rotation in 6 degrees of freedom.

In the project, the depth camera was used in a variety of ways. There are three different

perception methods that utilize the camera. For the first one, the RGB frame obtained from the

camera is fed through the YOLO object detection algorithm to detect all major identifiable objects

in the frame, such as persons or cars. Then by comparing the position of those objects in the image

with the depth map generated from the depth camera, the distance to that object is identified.

Furthermore, this allows tracking the object by considering its change in position and thus also

motion between frames.

The second method considers using the depth camera to generate a simple map similar to

those produced by a Radar or LiDAR. In the sense that only the distances measured on the same

horizontal plane as the camera are considered. This method allows for an accurate perception of

obstacles at the height of the camera, and thus generally the car, without any complications from

dealing with three dimensions, such as floors and overhanging objects like traffic lights/tunnels.

The readings of the depth map are taken at exactly the halfway point of the depth image width.

This functions similar to the LiDAR used but with worse performance. Still, the depth camera

provides very accurate results, especially within about 6 meters, and its readings can be used to

reinforce the data from the LiDAR. Furthermore, it will be mounted at a different height than

the LiDAR, and thus it would provide a similar but different perspective on the environment. This

approach introduces a significant amount of valuable data without being computationally intensive.
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Figure 3.5: Calibration Depth Image

The third method focuses on the identification of anomalies directly ahead of the car at close

range. The shortcomings of the LiDAR, and even the second method involving the depth camera,

is that it does not detect everything in the car’s path. They only perceive obstacles large/tall enough

to show up on their plane of detection. Still, there are many potential obstacles to the car that could

be small or short enough to go undetected by the LiDAR and even by the other methods using the

depth camera. This is why short-range anomaly detection is needed. This detection is done based

on a pre-determined depth map, as seen in Figure 3.5. Essentially, a depth map of an empty open

floor is first captured by the camera. The data of that depth map will be taken as the ground truth of

an empty, obstacle-free floor. Then during the operation of the AV system, the car will constantly

compare the current depth map input to that of the previously captured depth map. Based on the

variance from the original empty scene, it is possible to determine if there are anomalies in the

car’s path. As any significant change in the depth map will be detected. This method is not limited

to detecting objects in the car’s path, but it could also identify sudden changes in elevation, such as

a drop-off that otherwise cannot be detected by the car’s systems. However, this scan is only done

for the lower portion of the image, as it requires accurate measurements that are only guaranteed in

close-range. Otherwise, the variance of the measurements at further distances would constantly set
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off the system. An example of the depth anomaly detection method running can be seen in Figure

3.6. The closer than expected anomalies are highlighted in blue, while the sudden drop-off at the

edge of the table is highlighted in red.

Figure 3.6: Depth Anomaly Detection Example

3.2 Standards and Constraints

While there are no established standards that fit this kind of autonomous vehicle project,

there are other standards that can be followed to ensure that the project can be as successful as

possible. One of these standards is the camera setup for computer vision algorithms, and according

to this survey of other CV projects [9], the most used setup is the USB 3.0 setup as it provides wide

compatibility and speeds, as well as it being the recommended method for the Intel depth camera

used in this project.

As for technical constraints, the equipment used in the design of the car each have their

advantages and disadvantages that had to be considered before being purchased. The Hokuyo

UST-10LX LiDAR is a compact sensor, and its size is an attractive feature when platform size is

limited. However, its small size comes with sacrifices in technology, as for example, the LiDAR’s

scan angle covers 270 degrees. [10] Since our project is on a small scale, the accurate range of the

scanner can be relatively small. The UST-10LX can measure up to 10 meters with ± 40mm. [10]

As for the Jetson Nano, the size of the computer was compatible with the mount chosen for

the platform, but compared to other Jetson products, the Nano falls short of the average computa-
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tional power. For example, the Jetson Nano has a 128-core GPU [11], while the more advanced

Jetson Xavier NX has a 384-core GPU. [12] The Nano has enough processing power for our pur-

poses of computer vision and decision-making, and in addition to its lower cost compared to the

Jetson Xavier NX, it was a worthwhile compromise for this project.

The Intel camera comes with a depth frame to measure distances from the lens, but accord-

ing to tests done by the team (discussed later), the depth image is only reliable from 5 meters or

less. This is far too short to accurately detect distances while the car is moving at any reasonable

speed, and so the LiDAR’s data can be given priority for farther ranges.

The constraints of the components on top of the car need to also be examined to ensure

that it will work as expected. First, there is the LiDAR, which possesses a scan angle of 270

degrees and can obtain measurement data in a wide field of view up to a distance of 10 meters with

millimeter resolution. It has a maximum detection distance of 30m. Next, there is the Jetson Nano

which offers good performance, particularly in terms of speed and accuracy, for its cost, given how

it is considerably cheaper than its counterpart, the Jetson Xavier, and its size is suitable for our

purpose. After that, we have the Intel depth camera, which has an effective range of up to 5 meters

and also has a built-in IMU (inertial measurement unit), which is suitable for our purposes because

it provides an extra set of data allowing for better dense reconstruction.

In terms of software, there also some constraints that need to be taken into consideration,

particularly with the computer vision algorithm. The algorithm used is called YOLO (You Only

Look Once), and is trained to recognise a wide variety of objects and people. If a higher-quality

image is fed into the algorithm, more objects might be detected, but the processing speed of each

image would decrease dramatically. Since the objective of the project is to have a similar reaction

time to human drivers, speed and accuracy are paramount, and so a balance between image quality

and accuracy must be found.

3.3 System Design Overview

The final design should, in simple terms, be able to take input from the camera and LiDAR

and run them through the computer vision (CV) algorithm to detect obstacles and identify objects
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from the input. The computer and its driving algorithm then make a decision whether to continue,

decelerate or accelerate, or steer based on output of the CV algorithm. The goals of this project

are to make the autonomous car be able to detect all obstacles in its range with enough accuracy

to identify obstacles and avoid them, while making decisions in a time comparable to that of the

average human driver.

To achieve this goal, the CV algorithm used is the YOLOv5 algorithm, and it will be fed

the images from the depth camera and use them to identify people or obstacles to be avoided. As

for the LiDAR, an algorithm will be developed to take its input along with the depth information

from the depth camera and output a heat map that can tell the decision making algorithm how far

the obstacles are and if the car is approaching a wall.

The computer used to process the CV, depth, and decision making algorithms is the Nvidia

Jetson Nano. While more powerful models of the Jetson family exist, the Nano offers admirable

power for its size, and because of weight and size restrictions in the vehicle, the Nano was the best

fit for the project. Since it will be connected to many of the other components in the vehicle, it

must be properly powered and ventilated in case the computer starts operating at full load.
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Figure 3.7: Autonomous Vehicle Prototype

As shown in Figure 3.7, the vehicle serves as the platform for all the electronic components

and the wiring, making it the most important decider of the limiting factors such as weight and

size. The Traxxas car chosen has an engine powerful enough to go over 30km/h assuming all its

parts are attached. Since the project does not require much of the car’s original accessories to be

attached, the maximum weight that can be loaded on the car increases. The motor used is also

relatively small but powerful, which allows for more components to be placed in the vehicle’s

platform. The VESC controller will be used to control the car, and will be the interface between

the electronic components and the vehicle.
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4. FUNCTIONAL MODELING

In this section the upper level and detailed functional modeling of our design will be demon-

strated and discussed. Functional modeling is an approach used to gain a better understanding of a

project by looking at an overview of the system being designed and what it entails. The outcome

of this procedure is an overall view of the system to be able to effectively clarify any ambiguous

notions about the design while also being able to analyze and understand the different aspects of

the project. In addition, this process also enables the team to see what could be done to improve

the project or what it might be missing.

4.1 Upper Level Functional Model

Figure 4.1: Upper level functional model

Figure 4.1 shows the upper level functional model of our proposed design. The black box 

part of the model, which indicates the system, is the car that will be designed to autonomously 

drive around. The input to the system is the computer vision algorithm, the depth map obtained 

from the camera used, and the data obtained from the LiDAR. These parameters enable the car to 

navigate its way around its environment. At the output, the design is expected to avoid different 

obstacles that it encounters and accelerate or decelerate depending on the circumstances it is faced 

with.
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4.2 Detailed Functional Model

Figure 4.2: Detailed functional model

As shown in Figure 4.2, the LiDAR and the depth camera are the two data sources that will 

be taken as input for the car to make decisions. The depth camera is also used to acquire RGB 

data for the computer vision system which will also be taken into account for the decision making
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process. The decision making is mainly handled by ROS, which is run on the Jetson Nano. Finally,

the motion decisions are transferred down to the VESC board, which will then handle the speed

control for the motor and the signals sent to the steering servo.

4.2.1 System Operating Procedure

The ROS platform will receive all the input streams from the sensors and process them.

Using python programs with the rospy module, the data is analyzed and composited together and

ultimately make the decisions on where the car should go. These decisions will be based on

autonomous driving algorithms, such as Follow the Gap. This algorithm focuses on avoiding ob-

stacles by always heading towards the widest opening. This algorithm would be mainly dependent

on the LiDAR data but also on the stereo camera, specifically the second method that utilizes the

stereo camera explained earlier in (Section 3.1.4), as it functions in a similar fashion to the LiDAR.

Furthermore, any objects detected by the CV algorithm and any anomalies detected by the anomaly

detection function will be considered in the system’s decision-making process. The results from

the CV and anomaly detection algorithms will be interfaced with ROS through rospy. Using all this

information, the system decides the actions that need to be taken to minimize the chance of collid-

ing with an obstacle and sends the high-level decisions on acceleration/deceleration and steering

angle to the VESC board. The VESC would then handle the speed control and provide the appro-

priate current to the motor. At the same time, it will send the signals to the servo motor to set the

steering angle as desired.

4.2.2 Additional Features

Based on this model, it is possible to add many additional features by developing more ROS

programs without making any changes to the physical design. The only potential change would be

to upgrade from the Jetson Nano to a more powerful NVIDIA computer to better handle the extra

processing required.

Using computer vision any lanes in the path of the vehicle would be detected, and decisions

will be made to keep the car in a lane. Unlike the other sub-functions in our model, lane detection
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can only rely on the camera, therefore the process used must have a high reliability as sensor fusion

cannot be used to verify the data entering the system and help justify the right decision. There are

many approaches to lane detection using computer vision. Many of which rely on the Hough

Transform. [6][13] First, some filters will need to be applied to the camera feed to improve the

input for the lane detection algorithm, such as grayscale and Gaussian filters to reduce noise and

smooth frame transitions. Then a Hough Transform is applied to extract features and determine

the position of the lanes. It is also possible to use Convolutional Neural Networks (CNN) such

as YOLO to detect the lanes similar to how object detection is done. [14] YOLO especially is

quick and yields useful results in real-time detection. It may not be the best option for efficient

lane detection, but it is an attractive choice given that the team is already planning to use YOLO

for object/obstacle detection. Lane detection is an area that might be pursued in the future, but the

main focus will remain on obstacle detection with the current design.
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5. RESULTS

5.1 Depth Camera

The accuracy of the depth camera’s distance measurement was tested. This was done by

placing a uniform box at various distances ranging from 50cm to 6m in a well-lit room. The

distance to that box was estimated using the depth map generated by the depth camera. The results,

shown in Figure 5.1, verified that the camera’s effective range ends at approximately 6 meters, and

that it has very good accuracy in close-range.

Figure 5.1: Accuracy of distance measurement from depth camera

Two more observations were made. The depth camera consistently overestimated the dis-

tance during the accuracy test. The variation in the estimated distance to the object was always

significantly lower than the error for that estimated distance. Therefore, it should be possible to

compensate for the error in the distance measurement by subtracting the expected error for that
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specific distance. More testing would need to be performed to accurately apply this, especially in

different conditions. An easier and safer solution is to make the car behave more conservatively

when encountering long-range data from the depth camera. Finally, a similar test was conducted

in low-light conditions and it was found that the percentage error dropped by around half for the

same distances used in the first test.

5.2 LiDAR

To visualize the data, the command ‘rviz’ can be run and a map of the LiDAR data will be

displayed. By clicking the Add buttons, selecting LaserScan in the topics menu, and typing ‘laser’

in the map frame, the visualization of what the LiDAR can see will be displayed. Figure 5.2 shows

an example of what can be seen using ’rviz’, where the red and dark blue lines reflect objects closer

to the sensor, and green and cyan lines reflect objects further away from the LiDAR.
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Figure 5.2: LiDAR map showing distances

Another program that can be used to visualize the LiDAR’s data is URGBenriPlus, and it

helps in better visualizing the scanning angle of the sensor. The program is installed, and with the

correct Ethernet settings for the LiDAR connections, the program recognises the sensor with its

default IP address.
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Figure 5.3: URGBenriPlus LiDAR Map

The LiDAR’s blind spot of 90◦ can be seen in Figure 5.3. The red lines on the right side

represent the sensor detecting objects close to it, and the lines on the top left that extend beyond

the window show that there is no object obstructing the path of the LiDAR. By using both URG-

BenriPlus and the rviz ROS module to visualize the LiDAR’s output, the scanning angle can be

adjusted to not strain the sensor and cause it to overheat.
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6. CONCLUSION & FUTURE WORK

While autonomous vehicles seem to be the future of transportation, they are not reliable or

safe enough for mass adoption. Our project aims to use a sensor fusion and computer vision system

and implement it in a 1/10 scale car. We aim to achieve this by designing and building a mini au-

tonomous vehicle prototype that will utilize both a depth camera and a LiDAR sensor. The project

faced many compatibility issues when ordering replacement parts as those found in F1TENTH’s

bill of materials were either out of stock or overpriced to a point that they exceeded the budget.

Given these issues, the project was set back a few times to wait for parts to make modifications

to the platform or mount, and so some of the later tasks on schedule were not completed. One of

these tasks was to use ROS to autonomously control the car, and to implement tests on the LiDAR

to ensure that the best scanning angle and frequency are being used. There were some issues with

installing and configuring the ROS packages on the Jetson Nano, and after they were solved, the

team was able to start working on the movement code using ROS tutorials. Having already begun

the implementation of the software aspects and assembly, the team is on track to set up and test

the main sensors to successfully implement the prototype. This implementation, if successful, can

then make way for future projects to take place, as many additional methods can be added with the

current prototype, without needing to change the hardware. In fact, the team was considering to

add some of these methods if there was extra time left after the main goal was achieved.

The main focus of the methods was to have the prototype act like a typical human driver,

following road rules. One method is lane detection. As detailed earlier, it can be implemented

by using the RGB camera feed, at the cost of some extra processing. Another feature would be

stopping by stop signs. By training the object detection model on stop signs (or miniature stop

sign props), it should be possible to have the car stop by any stop sign props near its path for a

few seconds. It will then only start again when the path is clear. This should all be possible to

implement with the current state of the prototype, but the system’s performance may suffer, as the
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Nano is reaching its limits. Therefore, the Jetson Nano could be upgraded to the Jetson Xavier,

which was originally the choice for this project. Other implementations can also include adding

more sensors, so that there are alternative navigation approaches, or other directions in which the

vehicle can travel instead of just moving forward. This could be done by adding new sensors, such

as ultrasonic sensors which were once considered by the team.
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