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ABSTRACT

We claim that given restrictions over multiple Banach Spaces (and usually one Hilbert Space)

with a common arbitrary defining variable constant, we can attain a unique numerically ordered

regular value of any n-dimensional Sym∗(n, R) with dimension 1 using methods of Optimization.

Through this, we hope to assist in constraint based research in infinite dimensions in the field

of Differential Geometry.

We will, throughout this paper, study the existence and uniqueness of a two variable solu-

tion towards a Foundation for this regular value formulation of X ∈ Diagonalized Sym∗(n, R) ⊂

Sym∗(n, R) ⊂ M(n, R), briefly study the equivalence of two formulations that we conjecture un-

der further restrictions on our variable m represent the same Foundation aforementioned, and look

over several numerical examples to accompany our study.
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NOMENCLATURE

Banach Space A complete vector space with a norm.

Hilbert Space A vector space with an inner product such that the inner prod-
uct of an element with itself is the respective Banach norm
squared.

Sym∗ The set of Symmetric Positive Definite Matrices where a
Symmetric Matrix holds the same values on it’s upper tri-
angle as it’s lower triangle reflected across the diagonal. A
Positive Definite Matrix is then a matrix such that every one
of it’s Eigenvalues is greater than zero, i.e. xTAx > 0 for all
A ∈ Sym∗ and x arbitrary.

DSym∗ Diagonalized Symmetric Positive Definite Matrices, where
the only values (positive) therein are the Eigenvalues ordered
from least to greatest along the diagonal.

`1 Banach Space of sequences whose series is absolutely con-
vergent; i.e.,

∑∞
n=1 |xn| <∞.

`2 Hilbert Space of square-summable sequences whose squared
series is absolutely convergent, i.e.,

∑∞
n=1 |xn|2 <∞.

`p Banach Space of p-power-summable sequences whose p-
power series is absolutely convergent, i.e.,

∑∞
n=1 |xn|p <∞.

ΨA The ordered matrix obtained through a column by column
stack of Eigenvectors of A ordered in accordance to their rel-
ative size.

∆ Delta is the symbol used to represent the product of all the
coordinates divided by the radius in spherical polar coordi-
nates, i.e.

∏n
i=1

xi

r
.

Ω Omega is the symbol used to represent the sum of all the co-
ordinates divided by the radius in spherical polar coordinates,
i.e.
∑n

i=1
xi

r
.
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Φi Phii is the symbol used to represent the sum of all the coor-
dinates taken to the ith power divided by the radius to the ith

power in spherical polar coordinates, i.e.
∑n

i=1

(
xi

r

)i
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1. INTRODUCTION AND SETUP

1.1 Setup, Questions, & Justification

Firstly, we should understand what the definition of a diagonalized Sym∗(n, R) is: In order to

calculate our regular value we must apply two fundamental constraint first. Namely, the following,

det(X) =
n∏

i=1

xi = 1 where xi represents diagonal elements of X (1.1)

and

0 < x1 ≤ · · · ≤ xn. (1.2)

What then constitutes a regular value of Sym∗(n, R) (positive [or negative] definite symmetric

matrices)? Are Sym∗(n, R) matrices diagonalizable?[1] Furthermore, how should we define the

diagonalization function over Sym∗(n, R)? Why do positive (negative) definite Symmetric Matrices

necessitate positive (or negative) real valued eigenvalues?

1.1.1 Differential Geometry Intro

To start things off here, we must define a function from Sym∗(n, R) to DSym∗(n, R) in the

following manner

Φ : Sym∗(n,R) −→ DSym∗(n,R) where Φ(A) = Ψ−1A AΨA = ΨT
AAΨA. (1.3)

Here ΨA is the ordered matrix obtained through the Eigenvectors of A ordered in accordance to

their relative size. An eigenvector x, as is commonly known, is a vector such that Ax = λx for

eigenvalues λ, or for our purposes, xi, where the matrix making up ΨA is a column by column

stack of these eigenvectors.

1



Differential Geometry Grunt Work — Regularity

For A ∈ Sym∗(n, R) and B ∈ TASym∗(n, R), we have, for α : (−ε, ε) −→ Sym∗(n, R) given

by t 7−→ A+ tB,

dΦA(B) = (Φ ◦ α)′(t)

∣∣∣∣
t=0

=
[
(Ψ∗(t))

T (A+ tB)Ψ∗(t)
]′ ∣∣∣∣

t=0

(1.4)

= (Ψ′∗(t))
TAΨ∗(t)+(Ψ∗(t))

TAΨ′∗(t)+(Ψ′∗(t))
T tBΨ∗(t)+(Ψ∗(t))

TBΨ∗(t)+(Ψ∗(t))
T tBΨ′∗(t)

∣∣∣∣
t=0

= (Ψ′∗(0))TAΨ∗(0) + (Ψ∗(0))TAΨ′∗(0) + (Ψ∗(0))TBΨ∗(0)

= ΨT
BAΨA + ΨT

AAΨB + ΨT
ABΨA (1.5)

Differential Geometry Grunt Work — Lie Algebra

So the Lie Algebra over DSym∗(n, R), which we’ll denote by dsym∗(R+
n ) ∼= dΦI(R) ∼=

kerdΦI , is then defined as

ΨT
BIΨI + ΨT

I IΨB + ΨT
I BΨI = 0

=⇒ B = −ΨIΨ
T
B −ΨBΨT

I = −(ΨT
B + ΨB) (1.6)

and the question arises as to what significance this holds and how diagonal matrices with determi-

nant one (or possibly negative one in association with negative definite symmetric matrices with

odd dimension) arise as regular values.

1.1.2 Differential Geometry Justification

We begin by taking the inverse of the det◦Φ function by first writing them separately as follows

det−1 : R −→ Sym(n,R)

Φ−1 : DSym∗(n,R) −→ Sym∗(n,R) where Φ−1(D) = ΨAΦ(A)ΨT
A

2



where the inverse is then

Φ−1 ◦ det−1 : R −→ Sym∗(n,R). (1.7)

Given that the determinant must be 1 (or -1) we are attempting to determine whether

(det ◦ Φ)−1(1) and (det ◦ Φ)−1(−1) (1.8)

in the case of odd negative definite symmetric matrices constitutes a Submanifold. Here, I will

argue graphically via 2 Dimensional substrata that it deterministically does.

1.1.3 Differential Geometry Justification — Graph

Figure 1.1: Here we see a 2 Dimensional basic representation that provides a basis primarily for the
intersection of the conditions

∏n
i=1 xi = 1 and x1 ≤ . . . ≤ xn where the second condition is graph-

ically ornamental but important to visualize; so, then, we see with this graphical representation that
(given the Sym(n, R) determinants are dense in the real numbers) every local neighborhood of the
Submanifold that represents this intersection is a regular value. This extends to n Dimensions and
Submanifolds therein.

3



2. OPTIMIZATION PROBLEM DERIVATION AND EXPOSITION

2.1 Optimization Problem Intro

2.1.1 Introduction to Optimization

We then start by delineating the number of Dimensions comprising our solution we’re working

with as some finite positive real Rn. Each variable, in turn, will presuppose one of the n diago-

nals of our DSym∗(n, R) matrix. We now, for a change of pace, define our constraints over this

Inequality that allows us to choose n ∈ N and m ∈ R+ and retrieve a unique (Claim!) n-sized list

of Banach spaces that generate a working and functional solution.

2.1.2 Setup for Optimization

These constraints are defined as follows: These enumerable spaces will then be Banach spaces

`p with integers p such that 1 ≤ p ≤ n−2 represents an exhaustive list of all integers represented in

our first constraint problem. Alternatively, we may use Optimization methods to arrive at the same

result (Conjecture!) using ulterior methods of Optimization and Banach spaces `q with integers q

such that 1 ≤ q ≤ n − 1 represents a similar exhaustive list of integers represented in our second

presented constraint problem.

2.2 Problem Statement

2.2.1 Optimization Problem (Weak)

Because we do not have preference for specific components and they are all symmetric, without

loss of generality, we may assume we have numerically ordered x = {xi}ni=1 ∈ R+
n such that

0 < x1 ≤ . . . ≤ xn

n∏
i=1

xi = 1

{
‖x‖p`p = m

1
n−p

}n−3

p=1

‖x‖n−2`n−2 ≤
√
m (2.1)

Notably, a special case here where we do not need the last inequality is in our 3 Dimensional case,

and therefore omit the inequality there as it is unnecessary. We say that a point x ∈ R+
n is feasible

4



if it satisfies the above ordering, product constraint, and Banach constraints, and that

J(x) := J(x1, . . . , xn) = x1 (2.2)

in association with previously given ordering constraints and

x∗ = arg min
x feasible

J(x) (2.3)

is a solution to our problem for m
1

n−1 ≥ n then we have a unique set for each m. And what we

will attempt to show is whether there is a uniquely defined solution as we had claimed there was

for each m.

2.2.2 Optimization Problem (Strong)

Alternatively, we can have the following formulas for x = {xi}ni=1 ∈ R+
n such that for 0 <

x1 ≤ . . . ≤ xn as before

n∏
i=1

xi ≥ 1

{
‖x‖q`q ≤ m

1
n−q

}n−2

q=1

(2.4)

are convex as the intersection of convex sets and we are seeking to minimize the distance to

‖x‖`n−1 = m for m
1

n−1 ≥ n. (2.5)

Conjecture 1 (Weak and Strong Equivalence). These 2 problems, weak and strong, are equivalent.

Proof. Possibly foolish. Left to the reader’s discretion.

5



2.3 Justification and Equivalence of Optimization Problems

2.3.1 Justification

Something that may be concerning at this point is whether the sets in both Optimization Prob-

lems retain some nonempty intersection over the feasible sets. Namely over

n∏
i=1

xi = 1

{
‖x‖p`p = m

1
n−p

}n−3

p=1

‖x‖n−2`n−2 ≤
√
m (2.6)

n∏
i=1

xi ≥ 1

{
‖x‖q`q ≤ m

1
n−q

}n−2

q=1

(2.7)

we have that x1 + · · ·+ xn = m
1

n−1 and for 2 ≤ p < n− 2 as well that xp1 + · · ·+ xpn = m
1

n−p . As

I will discuss in the next several sections, for the second problem, we have intersection.

2.3.2 Equivalence

This intersection happens because at the boundary of the convex set, we have algebraically that

‖x‖p`1 − ‖x‖
p
`p = m

p
n−1 −m

1
n−p = m

p(n−p)
(n−1)(n−p) −m

n−1
(n−1)(n−p) > 0 (2.8)

iff p(n− p) > n− 1 iff n > p+ 1 which is one of our conditions for p. This proves that the `1 and

`p spaces all intersect. In order to complete the proof, we’ll need to compute whether arbitrary p

and q spaces intersect for p < q. So we take

‖x‖pq`p − ‖x‖
pq
`q = m

q
n−p −m

p
n−q = m

q(n−q)
(n−p)(n−q) −m

p(n−p)
(n−p)(n−q) > 0 (2.9)

iff q(n− q) > p(n− p) iff (q − p)n > q2 − p2 iff n > q + p. This is true for 2 < q, p ≤ n− 2. As

it turns out, I conjecture without proof that (2.6) and (2.7) are equivalent and provide equations

(2.8) and (2.9) as proof. Here, we have then established existence of the first problem (2.6).

6



2.4 Convexity

2.4.1 Introduction to Convexity

In this and the following slides, we would like to show rigorously that the set defined by

F (x) =

{
x ∈ Rn :

n∏
k=1

xk ≥ 1, 0 < x1, · · · , xn

}
is convex. (2.10)

To do this, we let f(x) =

{
x ∈ Rn :

1∏n
k=1 xk

, for 0 < x1, · · · , xn
}
. (2.11)

To show that f(x) is convex, we only have to show that its second derivative is a symmetric positive

definite matrix at any point x = (x1, · · · , xn)T , with 0 < x1, · · · , xn.

2.4.2 Convexity Formulas

We then have the following identities

fxi
=

−1

x2i
∏

k 6=i xk
(2.12)

fxixj
=

1

x2ix
2
j

∏
k 6=i,j xk

=
1∏n

k=1 x
3
k

xixj
∏
k 6=i,j

x2k (2.13)

fxixi
=

2

x3i
∏

k 6=i xk
=

2
∏

k 6=i x
2
i∏n

k=1 x
3
k

(2.14)

∇2f(x) =
1∏n

k=1 x
3
k


[
xixj

∏
k 6=i,j

x2k

]
1≤i,j≤n

+ diag

(∏
k 6=i

x2k

) (2.15)

2.4.3 Convexity Exposition

For any vector x = (x1, · · · , xn)T ∈ Rn with x 6= θ, we have that

xT∇2f(x)x =
1∏n

k=1 x
3
k

{
xT

[
xixj

∏
k 6=i,j

x2k

]
x+ xTdiag

(∏
k 6=i

x2k

)
x

}
(2.16)
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=
1∏n

k=1 x
3
k


(

n∑
i=1

xi

n∏
k=1

xk

)2

+
n∑

i=1

x2i
∏
k 6=i

x2k

 > 0, (2.17)

since
∏n

k=1 x
2
k > 0 and x 6= θ. Thus f(x) is convex. Then ∀ r > 0, the set

{
x ∈ Rn :

n∏
k=1

xi ≥ r, 0 < x1, · · · , xn

}
=

{
x ∈ Rn : f(x) ≤ 1

r
, 0 < x1, · · · , xn

}
(2.18)

is closed and convex, even though this convex set is unbounded, since all other balls defined by

Banach norms in (2.7) are closed, bounded, and convex.

We also note that the point x = (1, . . . , 1) satisfies all the inequality constraints in (2.7) with∏n
k=1 xi = 1, ‖x‖q`q ≤ m

1
n−q for all q = 1, . . . , n − 2 and m ≥ nn−1. We conclude that the

feasible set defined by inequalities in (2.7) is a closed and bounded convex set and therefore a

compact set. Next we note that the objective function J(x) = ‖x‖n−1`n−1 is continuous thus attains

its minimum at the feasible set: That is, we have established the existence of the second alternate

problem.
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3. NUMERICAL EXAMPLES DISCRETELY SOLVED IN THREE AND BRIEFLY

SKETCHED IN FOUR DIMENSIONS

3.1 Three Dimensional Discrete Solution — Introduction

3.1.1 Three Dimensional Figure

Figure 3.1: Here, we can clearly see a delimited solution for a three Dimensional Basis of regular
values of the Diagonalization process with respect to the Special Orthogonal group, with x, y, and
z solution pairs marked in orange in direct correspondence with the solution below.

3.1.2 Three Dimensional Intuition

In order to study whether there is a unique solution, we prove the particular case for 3 dimen-

sions first to get some idea of the intuition behind this concept. We note that in this archetypal

simple case, we have, ~x = (x, y, z) given 0 < x ≤ y ≤ z,

xyz = 1 x+ y + z =
√
m ≥ n x∗ = arg min

~x feasible
x (3.1)
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and we would like to find an ordered ~x such that such a unique functional solution exists at the

extremum. So we then take

x = r sin(ϕ) cos(θ) y = r sin(ϕ) sin(θ) z = r cos(ϕ) (3.2)

as our spherical polar coordinates and find that

r3(sin2(ϕ) cos(ϕ) sin(θ) cos(θ)) = r3∆ = 1 so that r3 =
1

∆
(3.3)

r(sin(ϕ) cos(θ) + sin(ϕ) sin(θ) + cos(ϕ)) = rΩ =
√
m so that r =

√
m

Ω
(3.4)

We then find that we have r =
1

∆
1
3

=

√
m

Ω
.

This gives us 2 systems of equations (3.3) and (3.4) with three variables r, ϕ, and θ (remember

that m is given arbitrarily as a defining constant of our inequality) under our previous condition

that one of the variables must attain a minimum. Without loss of generality, we again assume the

set is ordered as 0 < x ≤ y ≤ z and take x to be the variable we are minimizing.

3.2 Three Dimensional Discrete Solution — Solution

3.2.1 Three Dimensional Solution — part 1

We then use some hand-drawn calculations as follows

x+
1

xz
+ z =

√
m (3.5)

and taking the derivative with respect to z we have,

x′ − x′z + x

x2z2
+ 1 = 0 (3.6)

10



or

x′(z) =

x
(xz)2
− 1

1− z
(xz)2

=
x(1− xz2)
z(x2z − 1)

=
D1

D2

= 0. (3.7)

This must then either mean that x′(z) maintains an extremum when either D1 = 0 or D2 = 0

rendering x′(z) = 0 and x′(z) as undefined respectively. We start with the second case, namely

D2 = 0, or

x2z = 1 =⇒ x =

√
1

z
and y =

√
1

z
(3.8)

via plug and play since y = 1
xz

here. Now, taking

2

√
1

z
+ z =

√
m (3.9)

we can solve for a cubic polynomial equation of z and x represented as a function of z as follows

z
3
2 −
√
mz

1
2 + 2 = 0 (3.10)

with A = 1, B = 0, C =
√
m, and D = 2, and using Wolfram Alpha over cubic systems of

equations, we find the solution to this problem to then be x = y = 1√
z

and

z =


(√

3m
3
2 − 81− 9

) 2
3

+ 3
√

3
√
m

3
2
3

3

√√
3m

3
2 − 81− 9


2

(3.11)

where we take m under the constraints previously discussed to retain a permissible answer.

3.2.2 Three Dimensional Solution — part 2

We then move on to the first case, namely D1 = 0, or

xz2 = 1 =⇒ x =
1

z2
and y = z (3.12)
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via plug and play since y = 1
xz

here. Now, taking

1

z2
+ 2z =

√
m (3.13)

we can solve for a cubic polynomial equation of z and x represented as a function of z as follows

2z3 −
√
mz2 + 1 = 0 (3.14)

with A = 2, B =
√
m, C = 0, and D = 1, and using Wolfram Alpha over cubic systems of

equations, we find the solution to this problem to then be x = 1
z2

and

z =
1

6

 m

3

√
m

3
2 + 6

√
3
√
m

3
2 − 27− 54

+
3

√
m

3
2 + 6

√
3

√
m

3
2 − 27− 54 +

√
m

 (3.15)

where we take m under the constraints previously discussed to retain a permissible answer. Now

the only way to rigorously test whether either of these answers is our answer is to compare them

to one another graphically as follows in Figure 3.2.

This completes our proof of uniqueness with respect to a three dimensional regular value of our

Diagonalized Symmetric Positive Definite Matrix given some arbitrary chosen defining constant.

Of course, we will consider more general cases for Rn.

3.3 Four Dimensional Solution — Introduction

3.3.1 Four Dimensional Introduction

In a similar method as previously applied, within an understandably weaker form of discrete

solution, under a four-dimensional split in our Diagonalized Symmetric Positive Definite Matrices,

we have the three equations initially separate from the Weierstrass Maximization Theorem[2] as

follows,

xyzw = 1 x+ y + z + w = 3
√
m ≥ 4 x2 + y2 + z2 + w2 =

√
m. (3.16)
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Figure 3.2: Here, we can directly compare the two answers and find that only when x′(z) is unde-
fined do we have an answer based on our constraint such that x∗ is minimized and z∗ is maximized
by their direct relationship. When x′(z) = 0, we in fact achieve a maximum x∗ and a minimum z∗

such that 0 < x∗ ≤ y∗ ≤ z∗.

Taking spherical polar coordinates again, we retain the following equations

x = r sin(ϕ) cos(θ) cos(φ) y = r sin(ϕ) cos(θ) sin(φ) (3.17)

z = r sin(ϕ) sin(θ) w = r cos(ϕ). (3.18)

The first and second equations then become

r4 sin3(ϕ) cos(ϕ) cos2(θ) sin(θ) cos(φ) sin(φ) = r4∆ = 1 (3.19)

and

r(sin(ϕ) cos(θ) cos(φ) + sin(ϕ) cos(θ) sin(φ) + sin(ϕ) sin(θ) + cos(ϕ)) = rΩ = 3
√
m. (3.20)
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3.4 Four Dimensional Solution — Existence and Uniqueness

3.4.1 Four Dimensional Existence

The second equation then simplifies r to

r2 =
√
m (3.21)

which then translates the system into

Ω12 =
1

∆
= m, (3.22)

which is a system of three equations (3.19), (3.20), and (3.21) with four unknowns r, ϕ, θ, and φ. If

you also consider the minimality of our smallest variable x using the aforementioned Optimization

method utilizing compactness and the Weierstrass Maximization Theorem[2], then we clearly have

Existence of our Solution in Four Dimensions.

3.4.2 Four Dimensional Uniqueness

Taking y = y(x,w) and z = z(x,w), we have

x2 + y2(x,w) + z2(x,w) + w2 =
√
m. (3.23)

Taking the derivative d
dw

(3.23) such that x = x(w) we obtain the result

2xx′ + 2y(x,w)(yx(x,w)x′ + yw(x,w)) + 2z(x,w)(zx(x,w)x′ + zw(x,w)) + 2w = 0 (3.24)

=⇒ x′(x+ y(x,w)yx(x,w) + z(x,w)zx(x,w)) + y(x,w)yw(x,w) + z(x,w)zw(x,w) + w = 0

x′ = −y(x,w)yw(x,w) + z(x,w)zw(x,w) + w

x+ y(x,w)yx(x,w) + z(x,w)zx(x,w)
=
E1

E2

= 0, (3.25)

which either results in E1 = 0 with x′ = 0 or E2 = 0 with x′ as undefined.
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Solving E1 = 0 for x = x(w) then plugging it into (3.23) we have that

x2(w) + y2(x(w), w) + z2(x(w), w) + w2 =
√
m. (3.26)

Solve it for w∗1, then x∗1 = x1(w
∗
1), y∗1 = y1(x

∗
1, w

∗
1), z∗1 = z1(x

∗
1, w

∗
1). For x′ not defined we solve

E2 = 0 for x = x2(w), then plug it in to (3.23) to return the equation

x2(w) + y2(x(w), w) + z2(x(w), w) + w2 =
√
m. (3.27)

Again, solve it for w∗1, then x∗1 = x1(w
∗
1), y∗1 = y1(x

∗
1, w

∗
1), z∗1 = z1(x

∗
1, w

∗
1). Comparing x∗1 with

x∗2, the smaller feasible value will be the minimum x-value.

3.4.3 Four Dimensional Conjecture

Conjecture

Conjecture 2 (Four Dimensions).

arg maxw∗ =⇒ arg minx∗ = x(w∗)

and arg minx∗ =⇒ arg maxw∗ = w(x∗)

with y∗ = z∗ for n = 4.

This completes our sketch of a complete proof of uniqueness with respect to a four dimensional

regular value of our Diagonalized Symmetric Positive Definite Matrix given some arbitrary chosen

defining constant. But how does it behave when the dimension is greater than or equal to five? Is

the solution still unique?
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4. NUMERICAL REASONING WITH RESPECT TO FIVE AND NINE DIMENSIONS

4.1 Five Dimensional Optimization

4.1.1 Five Dimensional Optimization — Introduction

We start by looking at a similar case to the Four Dimensional case, but in Five Dimensions.

This leaves us with the following equations, with different variables for the sake of clarity, with

0 < a ≤ b ≤ c ≤ d ≤ e

abcde = 1 a+ b+ c+ d+ e = 4
√
m a2 + b2 + c2 + d2 + e2 = 3

√
m (4.1)

a3 + b3 + c3 + d3 + e3 ≤
√
m x∗ = arg min

x feasible
a (4.2)

We look again at this series of equations within the confines of polar coordinates, and immediately

notice that

r2 = 3
√
m =⇒ r = 6

√
m =⇒ m = r6 giving us a fixed radius. (4.3)

This gives us one less variable to worry about through a direct normative relationship between the

radius r and our given variable m.

4.1.2 Five Dimensional Optimization — Variables

We then take several known functional formulas, for context, as follows

∆ = sin4(θ1) cos3(θ2) cos2(θ3) cos(θ4) cos(θ1) sin(θ2) sin(θ3) sin(θ4) (4.4)

Ω = sin(θ1) cos(θ2) cos(θ3) cos(θ4) + sin(θ1) cos(θ2) cos(θ3) sin(θ4)

+ sin(θ1) cos(θ2) sin(θ3) + sin(θ1) sin(θ2) + cos(θ1) (4.5)

16



Φ =
(

sin(θ1) cos(θ2) cos(θ3) cos(θ4)
)3

+
(

sin(θ1) cos(θ2) cos(θ3) sin(θ4)
)3

+
(

sin(θ1) cos(θ2) sin(θ3)
)3

+
(

sin(θ1) sin(θ2)
)3

+
(

cos(θ1)
)3 (4.6)

4.1.3 Five Dimensional Optimization — Problem

We then arrive at the following equations naturally given our initial conditions and an easily

verifiable conversion to polar coordinates:

r5∆ = 1 (4.7)

rΩ = m
1
4 = r

3
2 =⇒ Ω = r

1
2 (4.8)

r3Φ ≤ m
1
2 = r3 =⇒ Φ ≤ 1 (4.9)

Since we’ve already narrowed down a relationship for r in terms of m, we are only left with four

angular variables. The equation Φ = 1 leaves us with three dependent angular variables, of our

choosing. Furthermore, the two equations Ω2 = ∆−
1
5 = r with fixed r gives us a single angular

variable that is dependent.

We can then take the maximum over e or the minimum over a in order to yield the same result.

Given polar coordinates

a = r sin(θ1) cos(θ2) cos(θ3) cos(θ4) b = r sin(θ1) cos(θ2) cos(θ3) sin(θ4) (4.10)

c = r sin(θ1) cos(θ2) sin(θ3) d = r sin(θ1) sin(θ2) e = r cos(θ1) (4.11)

and since three of these angles are given by our pre-disclosed formulas, we only need to focus on a

single angle. Suppose that angle is θ1 for our purposes. Then we can presume beyond a reasonable

doubt that our conclusion holds and our claim is correct. Namely, that our solution is unique!
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4.2 Nine Dimensional Optimization

4.2.1 Nine Dimensional Optimization — Introduction

We then attempt to find a unique solution to a nine Dimensional system to further prove our

point. Skipping past the usual introduction and referring to earlier parts of my Thesis for reference

to our fundamental form, we have the following functional variables given that our radius r is

fixed by the normative Hilbert space and our angular variables are given by {φi}8i=1 and omitted

for clarity.

4.2.2 Nine Dimensional Optimization — Variables

(cost or sins for integers t, s is meant to represent t or s consecutive trig functions with incre-

mentally differing angular variables where cosr or sinu still represents appropriate exponentials)

∆ = sin8 cos7 cos6 cos5 cos4 cos3 cos2 cos

cos sin sin sin sin sin sin sin (4.12)

Ω = sin cos7 + sin cos6 sin + sin cos5 sin + sin cos4 sin

+ sin cos3 sin + sin cos2 sin + sin cos sin + sin2 + cos (4.13)

Φi =
(

sin cos7
)i

+
(

sin cos6 sin
)i

+
(

sin cos5 sin
)i

+
(

sin cos4 sin
)i

+
(

sin cos3 sin
)i

+
(

sin cos2 sin
)i

+
(

sin cos sin
)i

+
(

sin2

)i
+
(

cos
)i (4.14)

for integers 3 ≤ i ≤ 7.

4.2.3 Nine Dimensional Optimization — Problem

We then have the following intuitive equations using the previously defined functional variables

∆, Ω, and
{

Φi

}7
i=3

:

r9∆ = 1 rΩ = 8
√
m r2 = 7

√
m

{
riΦi = m

1
n−i

}6

i=3
r7Φ7 ≤ m

1
n−7 (4.15)
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which when simplified leads us to

r = ∆−
1
9 = Ω

4
3 = 14

√
m =

{
Φ

n−i

14−in+i2

i

}6

i=3
≥ Φ

n−7
63−7n

7 . (4.16)
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5. CONCLUSION

5.1 General Solution — Introduction

This then, like clockwork, perspires into eight known equations over nine unknowns. We can

then assume the Optimization function which minimizes our smallest Banach space’s (with respect

to our Geometric Integral) size. With this, we have proven uniqueness once again, which leads us

to our motivation for a formal generalized solution to induce uniqueness. Our general solution

is complete with n − 4 given Φi equations and two Ω and ∆ equations with one more equation

marginalizing our resultant r in an effort toward normalisation with respect to our choice of m.

The following is a completion of, and thereby a display of, the final form of our solution which

renders a replete set of regular values for our diagonalized Special Orthogonal Matrix with just

two input variables, dimension n and arbitrary m within bounds.

5.2 General Solution

For 3 ≤ i ≤ n− 3, we have

∆−
1
n = r (5.1)

Ω
n−1
n−3 = r (5.2)

2(n−2)√m = r (5.3){
Φ

n−i
(2−i)n+i2−4
i

}
i

= r (5.4)

Φn−2 ≤ 1 (5.5)

Along with our minimization this should yield uniqueness!
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