
TOWARD SUSTAINABLE RECOMMENDATION SYSTEMS

A Dissertation

by

JIANLING WANG

Submitted to the Graduate and Professional School of
Texas A&M University

in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

Chair of Committee, James Caverlee
Committee Members, Shuiwang Ji

Ricardo Gutierrez-Osuna
Irina Gaynanova

Head of Department, Scott Schaefer

May 2022

Major Subject: Computer Science

Copyright 2022 Jianling Wang

ABSTRACT

Recommendation systems are ubiquitous, acting as an essential component in online platforms

to help users discover items of interest. For example, streaming services rely on recommendation

systems to serve high-quality informational and entertaining content to their users, and e-commerce

platforms recommend interesting items to assist customers in making shopping decisions. Further-

more, the algorithms and frameworks driving recommendation systems provide the foundation for

new personalized machine learning methods that have wide-ranging impacts.

While successful, many current recommendation systems are fundamentally not sustainable:

they focus on short-lived engagement objectives, requiring constant fine-tuning to adapt to the dy-

namics of evolving systems, or are subject to performance degradation as users and items churn

in the system. In this dissertation research, we seek to lay the foundations for a new class of

sustainable recommendation systems. By sustainable, we mean a recommendation system should

be fundamentally long-lived, while enhancing both current and future potential to connect users

with interesting content. By building such sustainable recommendation systems, we can continu-

ously improve the user experience and provide a long-lived foundation for ongoing engagement.

Building on a large body of work in recommendation systems, with the advance in graph neural

networks, and with recent success in meta-learning for ML-based models, this dissertation focuses

on sustainability in recommendation systems from the following three perspectives with corre-

sponding contributions:

• Adaptivity: The first contribution lies in capturing the temporal effects from the instant shift-

ing of users’ preferences to the lifelong evolution of users and items in real-world scenarios,

leading to models which are highly adaptive to the temporal dynamics present in online

platforms and provide improved item recommendation at different timestamps.

• Resilience: Secondly, we seek to identify the elite users who act as the “backbone” recom-

mendation systems shape the opinions of other users via their public activities. By investi-

ii

gating the correlation between user’s preference on item consumption and their connections

to the “backbone”, we enable recommendation models to be resilient to dramatic changes

including churn in new items and users, and frequently updated connections between users

in online communities.

• Robustness: Finally, we explore the design of a novel framework for “learning-to-adapt”

to the imperfect test cases in recommendation systems ranging from cold-start users with

few interactions to casual users with low activity levels. Such a model is robust to the

imperfection in real-world environments, resulting in reliable recommendation to meet user

needs and aspirations.

iii

DEDICATION

To my family and my love.

iv

ACKNOWLEDGMENTS

First and foremost, I am sincerely grateful to my advisor Dr. James Caverlee who generously

guided me throughout this journey, and carefully protected my curiosity and research interests

with his support and encouragement. Besides, I would like to thank the rest of my dissertation

committee, Dr. Shuiwang Ji, Dr. Ricardo Gutierrez-Osuna and Dr. Irina Gaynanova, for their

continuous advice and support during my Ph.D.

In addition, many thanks to all my collaborators, labmates and colleagues in the past five years.

At Texas A&M, I was fortunate to be a member of Infolab and the helpful discussions with my

labmates was a strong boost to my research. Another big part of my Ph.D. time was my internships.

I would like to thank Dr. Eser Kandogan for his mentorship in IBM, and Dr. Ainur Yessenalina

and Alireza Roshan-Ghias for their help and guidance during my internship at Amazon. Also, I am

grateful to Dr. Liangjie Hong who offered me the intern opportunity at Etsy and gave me absolute

freedom for my research project. Besides, I would like to thank my host Dr. Ya Le at Google Brain

for her support and thought-provoking hours of discussions, and thank Dr. Bo Chang, Dr. Yuyan

Wang and other team member for their help and inspiration in the summer. Also, I want to express

my thank to Dr. Minmin Chen, Dr. Zhiyuan Cheng and Dr. Ed Chi for their support and valuable

suggestions about my career.

Also, I would like to thank all the reviewers to the papers I have submitted and every notification

letter I have received. I would have quit my Ph.D. without my first paper acceptance from WSDM

in 2019. Thanks to the incredible trip to Australia which marked a turning point point in my PhD

journey and gave me lots of inspiration and courage. Additionally, I want to sincerely thank my

buddy Kaize Ding for his criticism, his encouragement and his tremendous impact on my Ph.D.

Foremost, I would like to express my special thanks to my parents, who create me a safe

haven all the time. I would not be here without their endless love, support, and sacrifice. At the

bittersweet end to a consequential period of my life, let me also give a round of applause to myself.

v

CONTRIBUTORS AND FUNDING SOURCES

Contributors

This work was supported by a dissertation committee consisting of Professor James Caverlee

[advisor], Professor Shuiwang Ji and Professor Ricardo Gutierrez-Osuna of the Department of

Computer Science and Engineering and Professor Irina Gaynanova of the Department of Statistics.

Chapter 3 is conducted partially based on the work done while the student was interning at Etsy.

Chapter 5 is conducted partially based on the work done while the student was interning at Google

Brain. All work conducted for the dissertation was completed by the student independently.

Funding Sources

Graduate study was supported by NSF grants IIS-1841138.

vi

TABLE OF CONTENTS

Page

ABSTRACT . ii

DEDICATION . iv

ACKNOWLEDGMENTS . v

CONTRIBUTORS AND FUNDING SOURCES . vi

TABLE OF CONTENTS . vii

LIST OF FIGURES . ix

LIST OF TABLES. xi

1. INTRODUCTION. 1

1.1 Motivation and Challenges . 1
1.2 Dissertation Contributions . 3
1.3 Dissertation Overview . 4

2. BACKGROUND . 6

2.1 Modeling Foundation . 6
2.2 Inference Objective . 7

2.2.1 Rating-based Objective. 7
2.2.2 Pairwise Ranking-based Objective . 8

2.3 A Dynamic Setup – Sequential Recommendation . 9

3. ADAPTIVITY: BALANCING INSTANT CHANGE AND LIFELONG EVOLUTION . . . 11

3.1 Introduction. 11
3.2 Motivation . 12
3.3 Occasion Signals and Preference Shifting in Recommendation Systems 15

3.3.1 Related Work . 17
3.3.2 Methodology. 18
3.3.3 Experiment. 23

3.4 Long-term Evolution and Short-term Correlation in Recommendation Systems 30
3.4.1 Related Work . 33
3.4.2 Methodology. 34
3.4.3 Experiment. 39

vii

3.5 Conclusion and Future Work . 46

4. RESILIENCE: IDENTIFYING THE RESILIENT RECOMMENDER “BACKBONE” . . . 48

4.1 Introduction. 48
4.2 Motivation . 50

4.2.1 Related Work . 52
4.3 Methodology . 53

4.3.1 Problem Setting and Notation. 53
4.3.2 “Backbone” Opinion Elicitation . 54
4.3.3 “Backbone” Opinion Diffusion . 57

4.4 Experiment . 61
4.5 Conclusion and Future Work . 67

5. ROBUSTNESS: LEARNING FROM IMPERFECT ENVIRONMENTS 69

5.1 Introduction. 69
5.2 Learning-to-adapt for Cold-start Users. 69

5.2.1 Related Work . 71
5.2.2 Methodology. 72
5.2.3 Experiment. 76

5.3 Learning-to-augment for Casual Users. 80
5.3.1 Motivation . 82
5.3.2 Related Work . 84
5.3.3 Methodology. 85
5.3.4 Experiment. 91

5.4 Conclusion and Future Work . 98

6. CONCLUSION AND FUTURE RESEARCH OPPORTUNITIES . 100

REFERENCES . 103

viii

LIST OF FIGURES

FIGURE Page

3.1 Users’ shopping preferences are dynamic and can reflect reoccurring occasions
(festivals, holidays, seasonal activities). 12

3.2 The reasons an infant’s items shopper changes his/her shopping behaviors. 13

3.3 (a) The overlap of monthly Bestsellers in Amazon decreases as the time gap grows
larger (i.e., from 1 month to 5 years). (b) The neighboring books (books with large
co-occurrence) on Goodreads are changing as time goes on. 14

3.4 Example of Occasion-driven Purchases. 16

3.5 Attention Module. 18

3.6 The proposed Occasion-Aware Recommendation (OAR) model. 22

3.7 Similarity between different calendar days.. 28

3.8 The average preferences predicted by OAR.. 29

3.9 The attention weights by different components in OAR.. 30

3.10 The meaning of an item at a certain time period can be revealed by the correlations
defined by user interactions in the short term. And the meaning of an item can
change over time and change across users. Such dynamics can help to uncover the
preference patterns of users. 31

3.11 The structure of HyperRec. 35

3.12 Performance comparison with various time granularity under HIT@1/NDCG@1. . . . 45

3.13 Performance comparison for users with different lifespans. 46

4.1 The opinions from Key Opinion Leaders (KOLs) can diffuse to their followers and
items they comment. Furthermore, these opinions diffuse in the community via
both direct and multi-hop connections between users and items. 49

ix

4.2 (a) Coverage: The percentage of users following at least one of the top (key) opin-
ion leaders. More than 95% of users follow at least one of the Top-500 accounts.
(b) Books read by users are more similar to books with higher ratings from key
opinion leaders they are following. (c) While leaving a similar number of implicit
feedback, key opinion leaders prefer to show their opinions on items via explicit
interactions (reviews, ratings, self-defined tags). 51

4.3 Translation-based Embedding with Elite Opinions. 55

4.4 Graph Neural Recommendation Incorporating the Influence of the “Backbone”. 56

4.5 Visualization of Elite Opinions in Goodreads. 67

5.1 Overview of the proposed Meta Transitional Learning (MetaTL) Model. 73

5.2 Comparison for different model variants w.r.t. K in Movie. 79

5.3 Comparison for different model variants w.r.t. K in Book. 79

5.4 A recommendation system always performs worse on casual users than on core
users, indicating the difficulty of making recommendations for casual users. 80

5.5 Comparison of interest continuity (i.e., the similarity of items consumed consecu-
tively) for different user groups. 83

5.6 Data from core users is helpful for training a model for casual users. Furthermore,
randomly dropping part of the interactions from core users can further improve the
performance on casual users. 84

5.7 The proposed model-agnostic “Learning to Augment” framework – L2Aug. 86

5.8 Performance on core user recommendation on Amazon_CDs with NDCG. 96

5.9 Performance on core user recommendation on Amazon_CDs with HT. 96

5.10 L2Aug is easily extended to support more actions (i.e., substitute) with improved
casual user recommendation. 97

5.11 Online test for List-wise Recommendation with List Size=1. 98

5.12 Online test for List-wise Recommendation with List Size=4. 98

x

LIST OF TABLES

TABLE Page

3.1 Dataset Statistics.. 24

3.2 Comparison of Different Models. ∗ indicates that the improvement of the best
result is statistically significant compared with second best result with p < 0.01.. 27

3.3 Ablation Test Results for OAR. 28

3.4 Statistics of the datasets. 40

3.5 Comparison of Different Models. ∗ indicates that the improvement of the best
result is statistically significant compared with the next-best result with p < 0.01. . . . 42

3.6 Results for Ablation Test under HIT@1/NDCG@1. (-) denotes removing the spe-
cific component. 44

4.1 Dataset Statistics.. 62

4.2 Comparing Models on top-K Recommendation in Goodreads. All the results are
in percentage. ∗ indicates that the improvement of the best result is statistically
significant compared with other methods for p < 0.05. 64

4.3 Comparing Models on top-K Recommendation in Epinions. All the results are
in percentage. ∗ indicates that the improvement of the best result is statistically
significant compared with other methods for p < 0.05. 64

4.4 Ablation Analysis of GoRec (K=10). All the results are in percentage. 66

5.1 Dataset Statistics.. 76
5.2 Comparison of Different Models under K = 3. The improvement of MetaTL is

statistically significant compared with the next-best model with p < 0.05 77

5.3 Summary statistics for the datasets. 91

5.4 Performance on casual user recommendation of various models on different datasets
with K=5. 94

5.5 Performance on casual user recommendation of various models on different datasets
with K=10.. 95

xi

1. INTRODUCTION

1.1 Motivation and Challenges

Recommendation systems are ubiquitous. For example, e-commerce platforms recommend

interesting items to assist customers in making shopping decisions. The recommender systems

of many streaming services such as YouTube serve as conduits to high-quality informational and

entertaining content. Smart home devices can make recommendations for events, alarm clocks,

and home automation. Indeed, recommendation systems have became the essential components

in many online platforms to alleviate the severe information overload issue by connecting users

with the items of interest (e.g. products, services or social content). Furthermore, the algorithms

and frameworks driving recommendation systems provide the foundation for new personalized

machine learning methods that have wide-ranging impacts.

A key objective for recommendation systems is in predicting users’ preferences on item con-

sumption in the future. Generally, users leave feedback on items through different interactions

such as ratings, views, clicks or purchases, which can be distilled to reveal their preferences. By

leveraging such historic feedback, a variety of recommendation systems [1, 2, 3, 4, 5] have been

proposed on top of collaborative filtering to model the compatibility between users and items, and

show great success in providing personalized item recommendation. Grounded on the recent ad-

vances in deep learning techniques, many neural models that can mine the complex patterns and

relationships from graph-structure or sequential interaction data have been developed to capture

more informative representations of users and items in recommendation systems [6, 7, 8, 9].

While successful, many current recommendation systems are fundamentally not sustainable:

they focus on short-lived engagement objectives, and could suffer from performance degradation

in many real-world scenarios characterized by the presence of constant change and imperfection.

In this dissertation, we identify three challenges to sustainability:

• Online dynamics present in the platforms, ranging from instant shifting to long-term evo-

1

lution. In the short-term, intrinsic user behavior may be shifted instantly by occasions or

special events, leading to interactions that deviate from historic preferences and are not re-

lated to recent actions. Meanwhile, users and items display dynamics in their evolution over

time: A fantasy reader may progress from the young adult Harry Potter novels to the grit-

tier Game of Thrones. Similarly, items themselves evolve in how they are perceived; for

example, iPhone 8 was an up-to-date device at the time it was released but became a budget

choice after the new generation came out. Without a long-lived foundation, a recommen-

dation system would require constant fine-tuning to adapt to these dynamics of evolving

systems.

• Dramatic changes exist in real-world scenarios, e.g., users joining and leaving the commu-

nity, churn in new items and frequent updates of user relationships, which limit the power of

item recommendation. However, even in such changing environments, users are constantly

influenced by a small group of “backbone” individuals – Key Opinion Leaders (KOL), who

can shape their views, and further impact what items they buy, what media they consume,

and how they interact with online platforms [10, 11]. For example, the KOLs on Instagram

and Pinterest could influence shopping decisions by highlighting new fashion trends while

KOLs on Yelp and TripAdvisor could guide customer restaurant selection by providing ex-

planatory information (like photos and reviews) for restaurants . Such a “backbone” and its

influence are ignored in current recommendation frameworks.

• Imperfect situations occur and can subvert models which rely on perfect assumptions. Pre-

vious research usually assumes that users have interacted with a few items they are inter-

ested in, from which the recommendation systems can extract their preferences on item con-

sumption. However, this perfect assumption may not hold in real-world environments. For

example, in many real-world scenarios, recommenders may face difficulty in dealing with

cold-start users who have only limited interactions with the system, leading to inherently

long-tailed interaction data. A model trained predominantly on interaction data from users

2

with high-activity levels often fail to capture the activity patterns of users with low-activity

levels. Failure to handle these imperfect situations (e.g., cold-start, low-activity level user)

will push users away from the platforms with unreliable recommendations.

1.2 Dissertation Contributions

In this dissertation research, we seek to lay the foundations for a new class of sustainable rec-

ommendation systems. By sustainable, we mean a recommendation system should be fundamen-

tally long-lived, while enhancing both current and future potential to connect users with interesting

content. By building such sustainable recommendation systems, we can continuously improve the

user experience and provide a long-lived foundation for ongoing engagement. Concretely, this

dissertation focuses on sustainability from three perspectives: adaptivity, resilience and robust-

ness. Inspired by efforts to balance static latent factors with temporal dynamics, with the advance

in graph neural networks, and with recent success in meta-learning for ML-based models, this

dissertation makes three unique contributions toward sustainable recommendation systems:

• Adaptivity. To continuously improve the user experience, a recommendation system should

be highly adaptive to the temporal dynamics present in these platforms, capable of balancing

both the instant shift in user engagement with the lifelong evolution of users and items.

Our initial trial focuses on the preference shifting caused by both instant and long-term

reoccurring occasions. Based on the observed patterns of shopping occasions and how they

can change users’ behaviors from both a global and a personal perspective, we propose a

novel next-item recommendation system which models a user’s default, intrinsic preference,

as well as two different kinds of occasion-based signals that may cause users to deviate

from their normal behavior. Next, we focus on capturing the change of item semantics over

time and across users while modeling users’ long-term evolution. With the assumption that

the meaning of an item can be revealed by the correlations defined by user interactions in

the short term, we present a novel recommendation framework empowered by sequential

hypergraphs to distill the short-term item correlations and uncover the long-term dynamic

3

user preferences.

• Resilience. For ongoing engagement, a recommendation system should be resilient to dra-

matic changes including churn in new items and users, and frequently updated connections

between users in online communities. We seek to identify the “backbone” of recommenda-

tion systems. In the dissertation, we focus on the impact of the small groups of key opinion

leaders (KOLs) who are often positioned importantly in the platform (with large numbers

of followers) and can wield an outsize influence in the community. With our data analy-

sis in several changing online environments, we observe that KOLs are able to constantly

guide their followers’ preferences and shape how users view the items. Thus, by identifying

the “backbone” KOLs and their influence to the online systems, we propose to improve the

recommendation to users by carefully eliciting opinions from KOLs and incorporating them

into the collaborative signal diffusion process.

• Robustness. A long-lived recommendation system should be robust to the imperfection

(i.e., cold-start, low-activity level) in real-world environments, providing reliable recom-

mendation to meet users’ actual needs and aspirations. Firstly, we explore the challenging

problem of sequential recommendation for cold-start users with only minimal logged in-

teractions without relying on auxiliary information. We present a novel “learning-to-learn”

paradigm to model the transition patterns of users, which can make fast adaption for cold-

start users in inferring their sequential interactions. Secondly, we center around the research

problem of distilling informative transition patterns from core users and efficiently adapt to

casual users with low activity level in the platforms. We propose a model-agnostic frame-

work to automatically learn a data augmentation policy using REINFORCE and improve the

recommendation system using generated augmented data.

1.3 Dissertation Overview

This dissertation presents my research studies about how to learn a recommendation system

to continuously improve the user experience and provide a long-lived foundation for ongoing en-

4

gagement. In chapter 2, we give a brief background introduction on model-based recommendation

systems. The remainder of this dissertation is organized as follows:

• Chapter 3. Adaptivity: Balancing Instant Change and Lifelong Evolution. In this chap-

ter, we first introduce the challenges and conduct a data analysis over evolution in real-world

systems. Then we will present two models based on the motivation: (i) an Occasion-Aware

Recommender system aim to model the repeated personal occasion signals with attention

layers, while modeling the global occasion signals by memorizing the temporal trends of

shopping behaviors; and (ii) a novel end-to-end framework with sequential Hypergraphs to

enhance next-item Recommendation, which can generate dynamic item embeddings incor-

porating the short-term correlations between items. The effectiveness of both models are

evaluated through experiments on datasets from the e-commerce sites Amazon and Etsy and

the information curation platform Goodreads.

• Chapter 4. Resilience: Identifying the Resilient Recommender “Backbone”. In this

chapter, we start from the data analysis to explore the relationships among users, items and

key opinion leaders within real-world online platforms, and uncover the importance of ex-

plicitly modeling the influence of KOLs in recommendation systems. Then we elaborate

the design of our a novel end-to-end graph-based neural model – GoRec to incorporate the

influence of KOLs for recommendation. Specifically, GoRec is able to elicit elite opinions

from KOLs and model their diffusion in the community.

• Chapter 5. Robustness: Learning from Imperfect Environments. In this chapter, we will

first discuss the learning-to-learn framework for improving recommendations for users with

only a few interactions (cold-start) in sequential recommendation. Then, motivated by this

data-driven analysis, we demonstrate the gap between users of high-activity level and users

of low-activity level and how it could degrade the recommendation performance. Finally,

we propose a model-agnostic learning-to-augment framework to mitigate this particular im-

perfect situation by bridging the gap between users of different activity levels.

5

2. BACKGROUND

In this chapter, we introduce the foundational model of personalized recommendation systems,

the loss function and evaluation metrics for different recommendation objectives, and a dynamic

setup of recommendation systems focusing on sequential user interactions.

2.1 Modeling Foundation

The principle of generating personalized recommendation is to predict the compatibility be-

tween users and items, from which the items with high compatibility to a user can make up the

unique recommendation list for the user. Thus, we can define a recommendation model as:

ŷu,i = fθ(u, i), (2.1)

in which ŷu,i denotes the predicted compatibility of user u on item i, and θ represents the set of

model parameters.

The design of a successful recommendation system relies on the selection of the function fθ.

Collaborative Filtering (CF) is the basic foundation for many personalized recommendation sys-

tems. Generally, it encompasses techniques for making recommendation to users based on some-

one with the similar tastes to themselves. As one of the most effective variants of matrix factoriza-

tion (MF) [12], latent factor model-based recommendation has attracted lots of attention due to the

Netflix Prize. The high level idea of latent factor models is to approximate compatibility between

a user and an item with the dot product of the corresponding latent factor vectors. Given that vu

and vi denote the latent factor vector for user u on item i, a latent factor model will calculate the

compatibility via

ŷu,i = vTu vi, (2.2)

in which the bias terms are modeled with a constant padded into the latent factors [13]. Most of

the widely-adopted recommendation frameworks [13, 12, 7] can be regarded as a generalization of

6

the latent factor model. A key question for us is how to learn informative latent factors for both

users and items to model their compatibility accurately.

2.2 Inference Objective

Recommendation models are trained on users’ feedback interactions in history (i.e., training

samples) and aim to accurately infer the future interactions. In many online platforms, there exist

both explicit feedback signals (e.g., ratings and thumbs ups/downs) which can directly reveal the

preference levels of users and implicit feedback signals (e.g., views, clicks, purchases) which

indirectly reflects users’ preference.

2.2.1 Rating-based Objective

One line of research focuses on extracting users’ preference from the explicit feedback and

formulate recommendation as a rating prediction problem.

Loss Function. With the rating-based objective, ŷu,i is used to predict the explicit rating user u left

on item i. During the training process, the objective is to minimize the rating prediction error for

all the training samples. The Mean Squared Error (MSE) loss function is calculated Strain within

the set of training samples and can be denoted as

∑

Strain

(ru,i − ŷu,i)2. (2.3)

Evaluation Metrics. To examine the test performance, we usually adopt Root Mean Square Error

(RMSE) to evaluate our recommendation system, which is widely used in related work for user-

item rating prediction and recommendation [14, 15]. For item and user pairs (i, u) in test set Stest,

we denote the ground truth rating as riu and the predicted rating as ŷu,i. Then RMSE is calculated

as: √
1

|Stest|
∑

(i,u)∈Stest

(ru,i − ŷu,i)2. (2.4)

And smaller RMSE means the rating prediction is more accurate.

7

2.2.2 Pairwise Ranking-based Objective

Compared to the explicit ratings, implicit feedback is widely available and much easier to col-

lect, which can help to alleviate the data sparsity issue in recommendation systems. With the

historic implicit feedback (i.e., views), we can assume that if user u views item i, then u is in-

terested in i. However, if u does not view item j, we cannot conclude that u is not interested in

j because it is also possible that u is unaware of j. Hence, to overcome this implicit feedback

challenge, we usually adopt the pairwise ranking-based objective and assume that the user prefers

the positive item i over all other non-viewed items.

Loss Function. With the pairwise-ranking based objective, we usually pair each of the positive

user-item pair with a negative item, which can be sampled from the non-viewed items. Suppose

that user u has already viewed item i and hasn’t viewed j yet, we assume u prefers i over j and

construct a tuple in the form of (u, i, j). As in Bayesian Personalized Recommendation (BPR)

[4], the goal is to maximize the gap between the ground truth positive user-item pair and negative

sampled pairs with the loss function as follows:

∑

(u,i,j)∈Strain

− lnσ(ŷu,i − ŷu,j) + λ||θ||2. (2.5)

where ||θ||2 is a regularization term and σ(·) is the Sigmoid function. Meanwhile, the cross-entropy

loss can also be adopted for the pairwise-ranking based objective with the following loss function:

`(θ) =
∑

(u,i,j)∈Strain

− [log(σ(ŷu,i)) + log(1− σ(ŷu,j))] . (2.6)

Evaluation Metrics. Under the implicit feedback setup and ranking-based objective, the recom-

mendation consists of the items with the Top-K predicted scores ŷ. We adopt the Precision, Recall,

F1 score and NDCG of Top-K recommendation as metrics. Let Iu represent the set of items with

implicit feedback by user u in test data and RecKu is the Top-K recommendation for u. Then for

8

user u, we have:

Recall@K =
|Iu ∩ RecKu |
|Iu|

Precision@K =
|Iu ∩ RecKu |

K

Precision@k represents the percentage of correctly predicted items among the Top-k recommen-

dations, and Recall@k represents the fraction of relevant items which are discovered by the Top-k

recommendations. We also consider both recall and precision with their harmonic mean with the

F1 score,

F1@k =
2 · Precision@k ·Recall@k
Precision@k +Recall@k

.

In addition, to gain more insights on the rankings of the Top-K recommendation, NDCG is also

widely adopted in evaluating a recommendation system. NDCG is the ratio between discounted

cumulative gain (DCG) and ideal discounted cumulative Gain (IDCG):

DCG@K =
K∑

i=1

reli
log2(i+ 1)

IDCG@K =

|REL|∑

i=1

reli
log2(i+ 1)

,

in which reli denotes the relevance score the recommendation with rank i. If the recommendation

is in the test set, then reli = 1, otherwise, reli = 0. |REL| represents the size of the test set. Then

NDCG is calculated as:

NDCG@K =
DCG@K

IDCG@K
.

2.3 A Dynamic Setup – Sequential Recommendation

Instead of treating users as static, sequential recommendation aims to capture the sequential

patterns from historical user interactions and infer the interesting items based on users’ dynamic

preferences. Early works propose to leverage Markov chains (MC) to model the transition among

items and predict the subsequent interaction [16, 17]. To handle more complex sequential signals,

grounded on the recent advances of deep learning techniques, many neural models that can pro-

duce informative representations of users’ interaction sequences have been developed to obtain the

9

dynamic user states in sequential recommendation. There are lots of efforts on Recurrent Neural

Networks (RNNs) to investigate users’ sequential interactions [6, 9, 18, 19]. As an extension to

GRU4Rec [6], which directly generates the session embeddings with a Gated Recurrent Neural

Network (GRU), GRU4Rec+ [19] develops a new class of loss functions for the Top-K recommen-

dation problem. Meanwhile, Convolutional Neural Networks (CNN)-based recommenders also

show superior performance. Caser [20] is built on top of the 2D convolutional sequence embed-

ding model and NextitNet [21] investigates 1D CNNs with the dilated convolution filters for better

performance. With its success in handling the textual data, self-attention layer (transformer) [22] is

adopted in SASRec [23] and Bert4Rec [24] to generate dynamic user embedding based on their in-

teraction sequences. More recently, Graph Neural Networks have been exploited in [25, 26, 27] to

encode the contextual information for more accurate user modeling in sequential recommendation.

Problem Definition. We use U = {u1, u2, ..., u|U|} and I = {i1, i2, ..., i|I|} to denote the set of

|U| users and the set of |I| items on the platform. Given the sequence of items that user u has

interacted with in chronological order Su = [iu1 , i
u
2 , . . . , i

u
p , . . . , i

u
n], where iup represents the pth

item u interacted with, the objective of a sequential recommendation model is to infer the next

interesting item iun+1 for user u.

Time-dependent Sequential Recommendation. Additionally, we will need the timestamp in-

formation while exploring the temporal dynamics in the real-world systems. Under such a time-

dependent sequential recommendation setup, let T = {t1, t2, ..., tM} be the set of timestamps,

which can be days, weeks or months in a calendar year. We sort the set of products user u has

purchased in chronological order as Lu = ((iu1 , t
u
1), (iu2 , t

u
2), ..., (iu|Lu|, t

u
|Lu|)). Each pair (iun, tun),

n ∈ [1, |Lu|] denotes that user u purchases product pun at time tun. In real-world applications, we

want to predict what a user want to purchase when he/she starts a (shopping) session at a future

timestamp and the goal of time-dependent sequential recommendation is to generate a list of top-k

interesting items for user u at a future timestamp tu|Lu|+1.

10

3. ADAPTIVITY: BALANCING INSTANT CHANGE AND LIFELONG EVOLUTION1

3.1 Introduction

A sustainable recommendation system should be highly adaptive to the temporal dynamics

present in a platform, capable of balancing both the instant shift in user engagement with the

lifelong evolution of users and items. To handle the complex situation where user preferences

can develop and change along time, recent efforts have focused on modeling users in a dynamic

manner, which can adjust the recommendation based on the sequential behaviors of users [28,

29]. They either rely on the sequential transition between recent purchases [16, 30] or model

the intrinsic preferences of users with different neural structures based on their historic sequential

behaviors [20, 21, 23]. However, these models may lead to poor predictive power in dynamic

real-world scenarios with both instant shifting and long-term evolution.

In this chapter, we will motivate the challenge of adaptivity by showing evidence of different

occasions that may instantly shift users’ preferences and the dynamic patterns of items from both

short-term and long-term perspectives. Based on the observed phenomenons, we discuss our efforts

on two different framework: (i) an occasion-aware recommender system aim to model the repeated

personal occasion signals with attention layers, while modeling the global occasion signals by

memorizing the temporal trends of shopping behaviors; and (ii) a novel end-to-end framework with

sequential hypergraphs to enhance next-item Recommendation, which can generate dynamic item

embeddings incorporating the short-term correlations between items. We showcase the experiment

results of the proposed framework following their methodology explanation respectively.

1Reprinted with permission from “Time to Shop for Valentine’s Day: Shopping Occasions and Sequential Recom-
mendation in E-commerce” by Jianling Wang, Raphael Louca, Diane Hu, Caitlin Cellier, James Caverlee and Liangjie
Hong, 2020. Proceedings of the 13th International Conference on Web Search and Data Mining. Copyright 2020
by ACM; “Next-item Recommendation with Sequential Hypergraphs” by Jianling Wang, Kaize Ding, Liangjie Hong,
Huan Liu and James Caverlee, 2020. Proceedings of the 43rd international ACM SIGIR conference on research and
development in information retrieval. Copyright 2020 by ACM.

11

3.2 Motivation

To motivate the problem, we conduct an initial investigation with data sampled from three

online platforms – the e-commerce sites Amazon and Etsy and the information sharing platform

Goodreads. We will show evidence of both instant shifting and long-term dynamics existing in

those real-world environments.

Valentine’s
Day

Mother’s
Day

Father’s
Day

Thanksgiving Christmas

(a) (b)

Time-sensitive Most Popular V.S. General Most Popular

Figure 3.1: Users’ shopping preferences are dynamic and can reflect reoccurring occasions (festi-
vals, holidays, seasonal activities).

Shopping Occasions and Instant Preference Shifting. In the public Amazon dataset [31], we can

roughly infer users’ shopping occasions or intentions with keywords that were mentioned in the

reviews. Thus we summarize the occurrences of different keywords over different calendar months

and show several examples in Figure 3.1 of possible occasion influences and how they change with

time. For example, in the summer, users are likely to look for sandals instead of sweaters, while

floral items are more popular in the spring and summer. As for gifting, we find that people tend

to purchase for their mothers for Mother’s Day (happening in May) or for Christmas. While

approaching Father’s Day, purchases peak in June, at which time people tend to purchase gifts for

their fathers. We can conclude that users have changing preferences within a year for different

12

occasions (festivals, holidays, seasonal activities) and crowds of users tend to purchase related

items during similar occasions. This analysis shows that capturing shopping trends as a function

of time and season is useful for understanding purchase preference. We can detect occasion-based

shopping trends from crowd behavior.

Figure 3.2: The reasons an infant’s items shopper changes his/her shopping behaviors.

In addition, there may be occasions which may or may not be related to trending behavior, but

can reoccur for individual users. For example, a user may look for birthday gifts for a parent every

year as the birthday is approaching. These reoccurring occasions may lead to similar shopping

behaviors across years, which we define as personal occasions. We want to explore the patterns

of these personal occasions and whether they are traceable. In Figure 3.2, we focus on users who

purchase items for “infants/newborns/toddlers” in more than 50% of their transactions. We can

assume that “buying products for infants” is their intrinsic preference for shopping, which are

not related to occasions. Then, we summarize the tags/occasions of their “abnormal” purchases,

e.g. the transactions without any infants items. While deviating from their intrinsic preference,

these users tend to shop for Father’s Day around June and Valentine’s in January. Those occasions

may reoccur each year and influence their purchase preference at a similar timestamp each year.

Additionally, we find that preparation time for different occasions can vary. Users tend to start

shopping for Christmas earlier than Valentine’s or Father’s Day. From a personal perspective,

13

each user can deviate instantly from their intrinsic preference and desire for different occasions. It

is important to capture these personal occasion signals and adjust the recommendation when the

reoccurring occasions is approaching.

The Dynamic Patterns of Items Along Time. Then, we retrieve the Bestsellers (i.e., products

ranked in the top 1% of purchases) on Amazon in each month from 2001 to 2005. We then

calculate the Jaccard Similarity between the list of Bestsellers of each month with the Bestsellers

after 1 month, 2 months, 3 months, 8 months, 1 year or more. In Figure 3.3 (a), as illustrated by

the blue line, the intersection of Bestsellers between consecutive months is only around 30%. And

there is little overlap between the list of Bestsellers after a gap of 6 months (with Jaccard similarity

less than 10%). While the popularity of an item can reflect how the community views the item, the

change in the list of Bestsellers along time indicates that the meaning of items in the community

can change along time.

The bestsellers (top 1% of products) change dramatically More than 50% of the items becomes inactive shortly Neighboring items change temporallyMore than 50% of the items becomes inactive shortly

(a) (b) (c)(a) (b)

Figure 3.3: (a) The overlap of monthly Bestsellers in Amazon decreases as the time gap grows
larger (i.e., from 1 month to 5 years). (b) The neighboring books (books with large co-occurrence)
on Goodreads are changing as time goes on.

Finally, we turn to the items in Goodreads, a platform in which users share their thoughts on

14

books. Each user has a sequence of items that the user has interacted with via rating, tagging or

commenting in chronological order. We split the sequences of items the users have interacted with

based on the timestamps (by year) and train different item embedding models with sequences in

different years. Following the idea in [32, 33, 18], we adopt word2vec [34] to generate embeddings

of books based on the co-occurrence of items (i.e., books read by a user consequently). Based on

these embeddings, we find the Top-10 neighbors of each book in different years. Then we calculate

the Jaccard similarity between neighbors of each book in 2012 with its neighbors in 1 to 5 years

later and show the average results in Figure 3.3 (b). We find that the similarity between neighbors

in 2012 and 2013 for books is 40% and the similarity keeps decreasing as the time gap become

larger. That is, the relationships between items are changing along time and the variations are

larger the longer the time gap.

In summary, it is important to capture the reoccurring occasion signals that can instantly change

users’ preference for continuously improving personalized recommendation. Meanwhile, as rela-

tionships between items are changing from the long-term perspective, leading to the change in the

semantic meanings of items, we are motivated to exploit the short-term correlations between items

while modeling their dynamic patterns for a sustainable recommendation recommendation.

3.3 Occasion Signals and Preference Shifting in Recommendation Systems

Most sequence-based recommendation models aim to predict a user’s next actions (e.g. next

purchase) based on their past actions. These models either capture users’ intrinsic preference

(e.g. a comedy lover, or a fan of fantasy) from their long-term behavior patterns or infer their

current needs by emphasizing recent actions. in e-commerce, users’ shopping decisions can also

be influenced by different occasions that lead to behavior which is not related to their recent actions

or long-term intrinsic preferences. For example, a user who buys a pair of sandals in June would not

want to be recommended an item for “Summer vacation” during the user’s next shopping session in

December. A “boho” style lover may purchase clothes or accessories that match her style, however,

she may occasionally purchase a birthday gift for a friend whose style is not “boho”. Previous

works assuming that users’ actions are coherent or change smoothly along time can not handle

15

such scenarios where users’ behaviors can also be driven by different occasions. As illustrated in

Figure 3.4, a mom who frequently buys clothing for her infant will look for Christmas decorations

near Christmas. A buyer who routinely purchases crochet supplies may purchase a birthday gift

for her son every year. User behavior in E-commerce is not always related to their recent actions or

long-term intrinsic preferences, as assumed by many previous sequential recommendation systems.

Figure 3.4: Example of Occasion-driven Purchases.

Concretely, an occasion is a particular time or instance of an event that causes or triggers

a purchase. There are global occasions which happen at the same time for a large number of

users; examples include festivals or celebrations (like Christmas, Valentines’ Day, Mother’s Day)

or seasonal events (like buying a snowboard in the Winter and a surfboard in the Summer). These

global occasions are able to encourage or lead to similar shopping decisions for crowds of users.

On the other hand, there are also personal occasions, which may happen at different timestamps

for different users; examples include birthdays (for themselves or friends) and anniversaries. Those

occasions usually occur in a periodic and repeated pattern for a specific user.

It is important to exploit the linkage between different occasions and shopping behaviors in

e-commerce, so that we can: (i) recommend more time or season-aware candidates (like recom-

mending a surfboard in the Summer while recommending snowboard in the Winter), which may

alleviate the cold-start problem; (ii) reduce the noise in modeling users’ intrinsic preferences since

occasion-driven purchases (like gifts for others) may show different patterns compared to normal

16

purchases from the same users; (iii) recommend relevant items to the user for upcoming reoccur-

ring occasions. (Though the user may not purchase the exact same item for a reoccurring event,

like consecutive Mother’s Days events, the items purchased for Mother’s Day previously will likely

be related.)

There are several key challenges with using occasion signals in recommendation systems: (i)

Are there traceable patterns distinguishing different occasions that we can use to holistically model

a user’s preference? (ii) Can we capture reoccurring shopping trends based on large crowd behav-

ior? (iii) Can we model a flexible time-window for when occasions may reoccur? (iv) Can we

properly balance a user’s intrinsic preference versus the impact of a particular occasion in order to

accurately predict their next purchase? Solutions to these challenges lead to a novel recommenda-

tion framework.

Contributions. Building on top of related efforts on modeling temporal effects and dynamic

user modeling in E-commerce, in Section 3.3.2, we propose to model the repeated personal oc-

casion signals with attention layers, while modeling the global occasion signals by memorizing

the temporal trends of shopping behaviors. With a gating component, we balance global and local

effects of different occasions and propose OAR – an Occasion-Aware Recommender system for

e-commerce while centering around each user’s intrinsic preferences. In Section 3.3.3, we conduct

extensive experiments on real-world datasets from Etsy and Amazon and find that the proposed

OAR outperforms the state-of-the-art approach in sequential recommendation.

3.3.1 Related Work

There are works which have been done on dynamic user modeling considering the temporal

effects. The work in [35] proposes to divide the long time series into slices and training for different

latent representations at each slice in TimeSVD++ [35]. Utilizing the explicit time stamp, in [9,

18], they use parallel RRN structure to model the dynamics of users and items simultaneously. The

work in [28] explores how users’ shopping decisions can be influenced by the life-stage along time,

and proposes to select corresponding recommendation model after labeling consumer’s life-stage.

While focusing on the sequential behavior patterns of users in e-commerce, there are previous

17

works assuming that a user would behave centering around the intense shopping intent and tend to

interact with the exact same items repeatedly [36, 37]. RepeatNet [38] predicts the probability of

being repeated for a user at each timestamp, and then decide whether to recommend from the pur-

chased items or new items. In [39], they model the repeat consumption of different products with

Hawkes Process and integrate the resulting signals into Collaborative Filtering to generate recom-

mendations. However, these models can not be generalized to many shopping platforms where a

user seldom purchases the exact same item repeatedly (like clothes, accessories and books).

There are also works trying to capture both the long-term dynamics and short-term effects

simultaneously building on top of hierarchical structures. HRNN [40] consists of a two-layer

hierarchical RNN, which learns the representation for each short-term session with a lower layer

RNN and then aggregates the resulting outputs from the same user with a higher layer RNN. The

work of [41] achieves a similar goal with hierarchical attention layers. HPMN [29] is proposed

to model the periodic patterns of users with a hierarchical recurrent memory network. Although

these methods can model the dynamic users preferences, they do not take the influence of different

occasions into consideration.

3.3.2 Methodology

Keys ValuesQueries

… ……

Attention
Weights Outputs

q
<latexit sha1_base64="BWkoXlOkYejmq6A3DcUbfxqunms=">AAAB8XicbVDLTgJBEOzFF+IL9ehlIjHxRHbRRI9ELx4xkUcEQmaHWZgwO7vO9BrJhr/w4kFjvPo33vwbB9iDgpV0UqnqTneXH0th0HW/ndzK6tr6Rn6zsLW9s7tX3D9omCjRjNdZJCPd8qnhUiheR4GSt2LNaehL3vRH11O/+ci1EZG6w3HMuyEdKBEIRtFK9x3kT+gH6cOkVyy5ZXcGsky8jJQgQ61X/Or0I5aEXCGT1Ji258bYTalGwSSfFDqJ4TFlIzrgbUsVDbnpprOLJ+TEKn0SRNqWQjJTf0+kNDRmHPq2M6Q4NIveVPzPaycYXHZToeIEuWLzRUEiCUZk+j7pC80ZyrEllGlhbyVsSDVlaEMq2BC8xZeXSaNS9s7KldvzUvUqiyMPR3AMp+DBBVThBmpQBwYKnuEV3hzjvDjvzse8NedkM4fwB87nDx2HkTQ=</latexit>

o
<latexit sha1_base64="MdMM0CCP6gkS6I9FmEsJNlSQy9E=">AAAB8XicbVBNS8NAEJ34WetX1aOXxSJ4KkkV9Fj04rGC/cA2lM120y7dbMLuRCyh/8KLB0W8+m+8+W/ctjlo64OBx3szzMwLEikMuu63s7K6tr6xWdgqbu/s7u2XDg6bJk414w0Wy1i3A2q4FIo3UKDk7URzGgWSt4LRzdRvPXJtRKzucZxwP6IDJULBKFrpoYv8CYMwiye9UtmtuDOQZeLlpAw56r3SV7cfszTiCpmkxnQ8N0E/oxoFk3xS7KaGJ5SN6IB3LFU04sbPZhdPyKlV+iSMtS2FZKb+nshoZMw4CmxnRHFoFr2p+J/XSTG88jOhkhS5YvNFYSoJxmT6PukLzRnKsSWUaWFvJWxINWVoQyraELzFl5dJs1rxzivVu4ty7TqPowDHcAJn4MEl1OAW6tAABgqe4RXeHOO8OO/Ox7x1xclnjuAPnM8fGn2RMg==</latexit>

k1
<latexit sha1_base64="vpeHugvKEkgkR/0j0altVfMTXNo=">AAAB83icbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeiF48V7Ac0pWy2m3bpZhN2J2IJ/RtePCji1T/jzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVjDdZLGPdCajhUijeRIGSdxLNaRRI3g7GtzO//ci1EbF6wEnCexEdKhEKRtFKvo/8CYMwG0/7Xr9ccavuHGSVeDmpQI5Gv/zlD2KWRlwhk9SYrucm2MuoRsEkn5b81PCEsjEd8q6likbc9LL5zVNyZpUBCWNtSyGZq78nMhoZM4kC2xlRHJllbyb+53VTDK97mVBJilyxxaIwlQRjMguADITmDOXEEsq0sLcSNqKaMrQxlWwI3vLLq6RVq3oX1dr9ZaV+k8dRhBM4hXPw4ArqcAcNaAKDBJ7hFd6c1Hlx3p2PRWvByWeO4Q+czx9BnZHS</latexit>

k2
<latexit sha1_base64="MYieos1SHUd3AQE445MyTQ0XbWo=">AAAB83icbVBNS8NAEN3Ur1q/qh69LBbBU0mqoMeiF48V7Ac0pWy2k3bpZhN2J2IJ/RtePCji1T/jzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVHJo8lrHuBMyAFAqaKFBCJ9HAokBCOxjfzvz2I2gjYvWAkwR6ERsqEQrO0Eq+j/CEQZiNp/1av1xxq+4cdJV4OamQHI1++csfxDyNQCGXzJiu5ybYy5hGwSVMS35qIGF8zIbQtVSxCEwvm988pWdWGdAw1rYU0rn6eyJjkTGTKLCdEcORWfZm4n9eN8XwupcJlaQIii8WhamkGNNZAHQgNHCUE0sY18LeSvmIacbRxlSyIXjLL6+SVq3qXVRr95eV+k0eR5GckFNyTjxyRerkjjRIk3CSkGfySt6c1Hlx3p2PRWvByWeOyR84nz9DIZHT</latexit>

k3
<latexit sha1_base64="jAR3sPEfMoURVaK7hqHc6/mT8KA=">AAAB83icbVBNS8NAEN3Ur1q/qh69LBbBU0laQY9FLx4r2FZoStlsJ+3SzSbsTsQS+je8eFDEq3/Gm//GbZuDtj4YeLw3w8y8IJHCoOt+O4W19Y3NreJ2aWd3b/+gfHjUNnGqObR4LGP9EDADUihooUAJD4kGFgUSOsH4ZuZ3HkEbEat7nCTQi9hQiVBwhlbyfYQnDMJsPO3X++WKW3XnoKvEy0mF5Gj2y1/+IOZpBAq5ZMZ0PTfBXsY0Ci5hWvJTAwnjYzaErqWKRWB62fzmKT2zyoCGsbalkM7V3xMZi4yZRIHtjBiOzLI3E//zuimGV71MqCRFUHyxKEwlxZjOAqADoYGjnFjCuBb2VspHTDOONqaSDcFbfnmVtGtVr16t3V1UGtd5HEVyQk7JOfHIJWmQW9IkLcJJQp7JK3lzUufFeXc+Fq0FJ585Jn/gfP4ARKWR1A==</latexit>

kL
<latexit sha1_base64="XeR3m7IUyoUIUJ0yLNPrDRZNyDQ=">AAAB83icbVA9SwNBEJ3zM8avqKXNYhCswl0UtAzaWFhEMB+QC2Fvs5cs2ds7dufEcORv2FgoYuufsfPfuEmu0MQHA4/3ZpiZFyRSGHTdb2dldW19Y7OwVdze2d3bLx0cNk2casYbLJaxbgfUcCkUb6BAyduJ5jQKJG8Fo5up33rk2ohYPeA44d2IDpQIBaNoJd9H/oRBmI0mvbteqexW3BnIMvFyUoYc9V7py+/HLI24QiapMR3PTbCbUY2CST4p+qnhCWUjOuAdSxWNuOlms5sn5NQqfRLG2pZCMlN/T2Q0MmYcBbYzojg0i95U/M/rpBhedTOhkhS5YvNFYSoJxmQaAOkLzRnKsSWUaWFvJWxINWVoYyraELzFl5dJs1rxzivV+4ty7TqPowDHcAJn4MEl1OAW6tAABgk8wyu8Oanz4rw7H/PWFSefOYI/cD5/AGqJke0=</latexit>

vL
<latexit sha1_base64="I0VC8gBrQq8yWNyo+yFpgT4wz1Y=">AAAB83icbVBNS8NAEJ3Ur1q/qh69BIvgqSRV0GPRiwcPFewHNKFstpt26WYTdifFEvo3vHhQxKt/xpv/xm2bg7Y+GHi8N8PMvCARXKPjfFuFtfWNza3idmlnd2//oHx41NJxqihr0ljEqhMQzQSXrIkcBeskipEoEKwdjG5nfnvMlOaxfMRJwvyIDCQPOSVoJM9D9oRBmI2nvfteueJUnTnsVeLmpAI5Gr3yl9ePaRoxiVQQrbuuk6CfEYWcCjYtealmCaEjMmBdQyWJmPaz+c1T+8wofTuMlSmJ9lz9PZGRSOtJFJjOiOBQL3sz8T+vm2J47WdcJikySReLwlTYGNuzAOw+V4yimBhCqOLmVpsOiSIUTUwlE4K7/PIqadWq7kW19nBZqd/kcRThBE7hHFy4gjrcQQOaQCGBZ3iFNyu1Xqx362PRWrDymWP4A+vzB3tWkfg=</latexit>

v1
<latexit sha1_base64="LBrO2AG9JVSYbXOTEEaiIcFSFcM=">AAAB83icbVBNS8NAEN34WetX1aOXxSJ4KkkV9Fj04rGC/YCmlM120i7dbMLupFhC/4YXD4p49c9489+4bXPQ1gcDj/dmmJkXJFIYdN1vZ219Y3Nru7BT3N3bPzgsHR03TZxqDg0ey1i3A2ZACgUNFCihnWhgUSChFYzuZn5rDNqIWD3iJIFuxAZKhIIztJLvIzxhEGbjac/rlcpuxZ2DrhIvJ2WSo94rffn9mKcRKOSSGdPx3AS7GdMouIRp0U8NJIyP2AA6lioWgelm85un9NwqfRrG2pZCOld/T2QsMmYSBbYzYjg0y95M/M/rpBjedDOhkhRB8cWiMJUUYzoLgPaFBo5yYgnjWthbKR8yzTjamIo2BG/55VXSrFa8y0r14apcu83jKJBTckYuiEeuSY3ckzppEE4S8kxeyZuTOi/Ou/OxaF1z8pkT8gfO5w9SapHd</latexit>

v2
<latexit sha1_base64="aZYsu15SPJ5E+sMT1cDcJ3BeBvA=">AAAB83icbVBNS8NAEJ34WetX1aOXxSJ4KkkV9Fj04rGC/YCmlM120y7dbMLupFhC/4YXD4p49c9489+4bXPQ1gcDj/dmmJkXJFIYdN1vZ219Y3Nru7BT3N3bPzgsHR03TZxqxhsslrFuB9RwKRRvoEDJ24nmNAokbwWju5nfGnNtRKwecZLwbkQHSoSCUbSS7yN/wiDMxtNetVcquxV3DrJKvJyUIUe9V/ry+zFLI66QSWpMx3MT7GZUo2CST4t+anhC2YgOeMdSRSNuutn85ik5t0qfhLG2pZDM1d8TGY2MmUSB7YwoDs2yNxP/8zophjfdTKgkRa7YYlGYSoIxmQVA+kJzhnJiCWVa2FsJG1JNGdqYijYEb/nlVdKsVrzLSvXhqly7zeMowCmcwQV4cA01uIc6NIBBAs/wCm9O6rw4787HonXNyWdO4A+czx9T7pHe</latexit>

v3
<latexit sha1_base64="22jywEjQYStxJ5VhI3BqGrGrjow=">AAAB83icbVBNS8NAEJ3Ur1q/qh69BIvgqSStoMeiF48V7Ac0oWy2m3bpZhN2J8US+je8eFDEq3/Gm//GbZuDtj4YeLw3w8y8IBFco+N8W4WNza3tneJuaW//4PCofHzS1nGqKGvRWMSqGxDNBJeshRwF6yaKkSgQrBOM7+Z+Z8KU5rF8xGnC/IgMJQ85JWgkz0P2hEGYTWb9er9ccarOAvY6cXNSgRzNfvnLG8Q0jZhEKojWPddJ0M+IQk4Fm5W8VLOE0DEZsp6hkkRM+9ni5pl9YZSBHcbKlER7of6eyEik9TQKTGdEcKRXvbn4n9dLMbzxMy6TFJmky0VhKmyM7XkA9oArRlFMDSFUcXOrTUdEEYomppIJwV19eZ20a1W3Xq09XFUat3kcRTiDc7gEF66hAffQhBZQSOAZXuHNSq0X6936WLYWrHzmFP7A+vwBVXKR3w==</latexit>

↵q1
<latexit sha1_base64="KHLFA9dJh8UXBjlmeG4gSSqYavE=">AAAB8nicbVBNS8NAEN3Ur1q/qh69LBbBU0mqoMeiF48V7Ae0oUy2m3bpZhN3J0IJ/RlePCji1V/jzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVjDdZLGPdCcBwKRRvokDJO4nmEAWSt4Px7cxvP3FtRKwecJJwP4KhEqFggFbq9kAmI+hnj960X664VXcOukq8nFRIjka//NUbxCyNuEImwZiu5yboZ6BRMMmnpV5qeAJsDEPetVRBxI2fzU+e0jOrDGgYa1sK6Vz9PZFBZMwkCmxnBDgyy95M/M/rphhe+5lQSYpcscWiMJUUYzr7nw6E5gzlxBJgWthbKRuBBoY2pZINwVt+eZW0alXvolq7v6zUb/I4iuSEnJJz4pErUid3pEGahJGYPJNX8uag8+K8Ox+L1oKTzxyTP3A+fwBTE5FH</latexit>

↵q2
<latexit sha1_base64="iTEZbT2BAe/Lm+3dV9kMoHumgPI=">AAAB8nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeiF48V7Ae0oWy2m3bpZhN3J0IJ/RlePCji1V/jzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVjDdZLGPdCajhUijeRIGSdxLNaRRI3g7GtzO//cS1EbF6wEnC/YgOlQgFo2ilbo/KZET72WNt2i9X3Ko7B1klXk4qkKPRL3/1BjFLI66QSWpM13MT9DOqUTDJp6VeanhC2ZgOeddSRSNu/Gx+8pScWWVAwljbUkjm6u+JjEbGTKLAdkYUR2bZm4n/ed0Uw2s/EypJkSu2WBSmkmBMZv+TgdCcoZxYQpkW9lbCRlRThjalkg3BW355lbRqVe+iWru/rNRv8jiKcAKncA4eXEEd7qABTWAQwzO8wpuDzovz7nwsWgtOPnMMf+B8/gBUmJFI</latexit>

↵qL
<latexit sha1_base64="kkjpS9t58amNksFaPDZ+g+H+llA=">AAAB8nicbVA9SwNBEJ3zM8avqKXNYRCswl0UtAzaWFhEMB9wOcLcZpMs2ds9d/eEcORn2FgoYuuvsfPfuEmu0MQHA4/3ZpiZFyWcaeN5387K6tr6xmZhq7i9s7u3Xzo4bGqZKkIbRHKp2hFqypmgDcMMp+1EUYwjTlvR6Gbqt56o0kyKBzNOaBjjQLA+I2isFHSQJ0PsZo93k26p7FW8Gdxl4uekDDnq3dJXpydJGlNhCEetA99LTJihMoxwOil2Uk0TJCMc0MBSgTHVYTY7eeKeWqXn9qWyJYw7U39PZBhrPY4j2xmjGepFbyr+5wWp6V+FGRNJaqgg80X9lLtGutP/3R5TlBg+tgSJYvZWlwxRITE2paINwV98eZk0qxX/vFK9vyjXrvM4CnAMJ3AGPlxCDW6hDg0gIOEZXuHNMc6L8+58zFtXnHzmCP7A+fwBfBqRYg==</latexit>

↵q3
<latexit sha1_base64="HjnYOqDG+9mWsRnkxKGgT7/tGPs=">AAAB8nicbVBNS8NAEN3Ur1q/qh69LBbBU0laQY9FLx4r2FZoQ5lsN+3STTbuToQS+jO8eFDEq7/Gm//GbZuDtj4YeLw3w8y8IJHCoOt+O4W19Y3NreJ2aWd3b/+gfHjUNirVjLeYkko/BGC4FDFvoUDJHxLNIQok7wTjm5nfeeLaCBXf4yThfgTDWISCAVqp2wOZjKCfPdan/XLFrbpz0FXi5aRCcjT75a/eQLE04jEyCcZ0PTdBPwONgkk+LfVSwxNgYxjyrqUxRNz42fzkKT2zyoCGStuKkc7V3xMZRMZMosB2RoAjs+zNxP+8borhlZ+JOEmRx2yxKEwlRUVn/9OB0JyhnFgCTAt7K2Uj0MDQplSyIXjLL6+Sdq3q1au1u4tK4zqPo0hOyCk5Jx65JA1yS5qkRRhR5Jm8kjcHnRfn3flYtBacfOaY/IHz+QNWHZFJ</latexit>

S
o
ftm

a
x

Figure 3.5: Attention Module.

Preliminary: Attention Mechanism. To provide accurate recommendation, our goal is to under-

stand how to aggregate the purchase record of a user in the past to infer the user’s preferences in

a future timestamp. The neural attention mechanism [22] can be applied to capture the correlation

18

between the target query (recent purchased items or the future timestamp for prediction) and the

context contents (purchase history). For different types of attention modules, the input usually

consists of a Query, and Key-Value pairs. The goal is to map the query with a set of key-value pairs

to generate the output (as shown in Figure 3.5). An attention module can be divided into two steps.

The first step entails computing the relationship/similarity scores between the query and a set of

keys, which are used as the attention weights to aggregate the corresponding set of values [22].

Mathematically, given the input query q and a set of key-value pairs P = {(kl, vl) | l ∈ [1, L]}, the

resulted output o is calculated as:

o =
L∑

l=1

αqlvl, where αql =
exp(s(q,kl))∑L
l=1 exp(s(q,kl))

(3.1)

where s(·, ·) is the similarity scoring function used to calculate the correlation between a query and

a key. Based on our analysis in Section 3.2, we propose to make use of the attention mechanism

for computing user profiling by taking different types of occasion signals into consideration, in

addition to their intrinsic preferences. Next, we will explain the details of each component in our

OAR model (in Figure 3.6) through a discussion on the design for query, key-value pair and the

appropriate weight scoring function to answer the following questions:

• RQ1: How to utilize the correlation between recent and historic purchased items to identify

a user’s intrinsic preferences which are mainly driven by a user’s personal taste and self-

desire?

• RQ2: How to model and predict user preferences for reoccurring personal occasions by

tracing their personal shopping history?

• RQ3: How to memorize the crowd behavior at different time periods and perform dynamic

mapping to aggregate the relevant global occasion signals?

• RQ4: How can we fuse intrinsic user preferences and different types of occasion signals to

obtain a complete user profile that will inform what to recommend next?

19

RQ1: Intrinsic Preference Modeling. Users’ intrinsic preferences on items are comparatively

stable or change smoothly [42]. Thus previous works in recommendation usually model users in

a static way with collaborative filtering-based methods [12, 43, 5, 13], or in a dynamics way by

capturing the behavior patterns with the chronological order of user-item interactions via Markov

Chains [16], RNNs [40, 6, 9], and CNNs [20, 21]. Recently, self-attention [22], has demonstrated

its effectiveness in sequential recommendation by capturing both the long-term semantics and

relevant items with the recent interactions [23]. In a similar way, we try to model users’ dynamic

intrinsic preferences based on the correlation between the most recent purchase and the personal

historic purchases.

Given the sequence of products user u has purchased Pu =(iu1 , iu2 , ..., iu|Pu|) in chronological

order, we use the combination miud
= eiud + xd to represent the item at position d (the dth item

in the sequence). Here, eiud is the embedding for item iud and xd is the positional embedding of

position d, which is used to retain the order information. Self-attention [22] is designed to match a

sequence against itself and thus uses the same objects as the queries, keys and values. In our case,

we will map the query item pud to the sequence of items (iu1 , iu2 , ..., iud), which have been purchased

by u no later than iud . Before calculating the attention weights and aggregation, we conduct linear

projections for each miud
, iud ∈ Pu with matrices WQ, WK , WV to generate embedding m̂Q

iud
=

miud
WQ, m̂K

iud
= miud

WK , m̂V
iud

= miud
WV for queries, keys and values correspondingly. Thus, we

have:

Query : m̂Q
iud

Scoring : s(q,kj) =
qkTj√
D

(Key, Value) : (m̂K
iu1
, m̂V

iu1
), (m̂K

iu2
, m̂V

iu2
), ..., (m̂K

iud
, m̂V

iud
)

(3.2)

Here we adopt the scaled dot-product to calculate the score between keys and queries. D

denotes the dimension of the embedding. The output oIu,tud+1
based on the most recent item iud can

represent the dynamic intrinsic preference of user u after purchasing iud , and will be used to infer

the user’s next purchase at tud+1.

RQ2: Personal Occasion Elicitation. Users can deviate from their intrinsic preferences because

of some personally reoccurring occasions. For each user, the shopping behaviors driven by the

20

same personal occasions are likely to fall into a small time window. For example, a user will

often purchase a birthday gift two to three weeks in advance of the birthday. Thus while predict-

ing a user’s preference, we also need to elicit the personal occasion signal by tracing the user’s

previous shopping behavior in the neighboring days. In this component, we want to map the up-

coming timestamp (query) with the timestamps of the user’s previous purchases (keys) and the

corresponding items (values). Given the Lu = ((iu1 , t
u
1), (iu2 , t

u
2), ..., (iu|Lu|, t

u
|Lu|)), we use ttud to

denote the embedding of timestamp tud . As in modeling intrinsic preference with attention mech-

anism, the time embedding for queries or keys will be multiplied with the matrices WQ′ and WK′

respectively, with t̂Q
′

tud+1
= ttud+1

WQ′ and t̂K
′

tud
= ttud WK′ . We also apply linear projection for the item

embedding with WV ′ to generate the embedding for values. While predicting for u at a future time

tud+1, the personal occasion preference can be obtained with the attention operation below:

Query : t̂Q
′

tud+1
(Key, Value) : (̂tK

′

tu1
, êV

′

iu1
), (̂tK

′

tu2
, êV

′

iu2
), ..., (̂tK

′

tud
, êV

′

iud
)

We use the same similarity function s(·, ·) as in Equation 3.2. While generating the output oPu,tud+1
,

items which were purchased a long time ago but within a small time window with the query’s

upcoming timestamp can also get high attention from the model. In this way, OAR can capture

personally reoccurring occasions.

RQ3: Global Occasion Memorization. By only tracing the personal purchase history, the model

is still unable to predict upcoming global occasions. However, these occasion signals can be cap-

tured from the behaviors of the crowd from a neighboring time period in the past. Under a global

occasion, the crowd of users tends to have similar purchases, like shopping for costumes before

Halloween or green shirts near St Patrick’s day. We aim to memorize the shopping behaviors of the

crowd under different global occasions, which can be used to enrich the preference representation

of individual users when a certain occasion is coming. Following a similar idea as in the key-value

memory network [44], we use the timestamps as keys and pair each of the keys with a memory slot

to represent preferences of the crowd at the timestamp.

21

…

+ + +
Item Embedding

Positional
Embedding

+ …

Values

Query

Item Embedding …

Timestamp
Embedding

…

Time Key
Embedding

Memory Slots

Query

Query

Self-Attention

Personal Occasion Next
Shopping

Query
Keys

Item
Embedding

x

Predicted
Preference

…

… Global Occasion

Gated Output

Timestamp
Embedding

User Embedding

Global
Occasion

Memorization

Personal
Occasion
Elicitation

Intrinsic
Preference
Modeling

Shopping History

Gating Layer

Intrinsic Preference

Figure 3.6: The proposed Occasion-Aware Recommendation (OAR) model.

Let T = {t1, t2, ..., tM} denote the set of embedding for each timestamp. We use t̂i, i ∈

[1,M], which is the projected version of the embedding for timestamp t̂i = tiWK′′ , to be the key.

Furthermore, we set a separate memory slot ri, i ∈ [1,M] to store global behaviors. Given a query

timestamp, we will multiply its embedding ttud+1
with matrix WQ′′ to get t̂Q

′′

tud+1
. Then we want to

map it with all the key-value memory slots to get the corresponding global occasion representation.

We still use scaled dot-product as the similarity scoring function s(·, ·) and:

Query : t̂Q
′′

tud+1
(Key, Value) : (̂t1, r1), (̂t2, r2), ..., (̂tM , rM)

The output oGtud+1
of the attention operation can be the representation of global occasions at tud+1.

RQ4: Gating Layer. Lastly, we discuss how to balance a user’s intrinsic preferences with occasion

signals for personalization? Here we turn to an attention (gating) layer which can control how we

assign different weights to each of the components we have developed in the previous sections.

The query will be a user-timestamp pair because the status for a user at different timestamps will

be different. For example, there are users who have strong personal desire for handcrafted supplies

and seldom purchase other items on a site like Etsy. Or users may tend to be influenced by their

surroundings in December but may stick to their own intrinsic preference in June. While predicting

22

for user u at timestamp tud+1, with embedding u and tud+1 for u and tud+1:

Query : u||tud+1 Scoring : s(q,kj) = aT tanh(W[q||kj])

(Key, Value) : (oIu,tud+1
, oIu,tud+1

), (oPu,tud+1
, oPu,tud+1

), (oGtud+1
, oGtud+1

)

in which || denotes concatenation, and a and W represent the transform vector and matrix, respec-

tively, for this additive attention operation. Thus we get the output ou,tud+1
, which can be used to

accurately represent u’s preference at future timestamp tud+1.

Prediction and Loss. After generating ou,tud+1
as the complete representation of a user’s current

status, we can predict the preference score on item iwith ȳ
tud+1

u,i = oTu,tud+1
ei. We modify the pairwise

loss in Equation 2.5 to maximize the gap between the ground truth positive user-item pair and

negative sampled pairs given the timestamp. The loss function is:

L =
∑

(u,t,i,j)∈D

− lnσ(ȳtu,i − ȳtu,j) + λ||θ||2 (3.3)

where ||θ||2 is a regularization term and σ(·) is the Sigmoid function. Each element (u, t, i, j) in

the training data set D is generated by combining the ground truth interaction pair (u, t, i), which

means u purchased i at t, with a negative sampled item j that u did not purchase at time t.

3.3.3 Experiment

Datasets. To avoid data leakage while modeling the crowd behaviors in the global occasion com-

ponent, we split the datasets for training and testing with a cutting time. We only use data before

the cutting date to train the model. In both datasets, we keep users who purchased at least twice

after the cutting time, so that we can use the first purchase of each user after the cutting date as a

validation case and the second purchase as a test case. The detailed information is summarized in

Table 3.1. In the experiments, we consider each day in the calender year as a timestamp, that is

t1 ∈ T means the first day in a year (January 1).

We conduct experiments on two real-world datasets from e-commerce platforms: (i) Etsy: the

23

Dataset #Users #Items #Purchases Density
Cutting
Time

Amazon 84,191 100,946 1.0M 0.0124% 2013/8/1
Etsy 118,668 80,214 5.3M 0.0561% 2018/1/1

Table 3.1: Dataset Statistics.

purchase data ranges from November 2006 to December 2018 in Etsy. We filter out users with

fewer than 5 purchases before the cutting time. To examine the long-term effects, we keep only

users who are active for at least two years, requiring that the time gap between their last purchase

and their first purchase be larger than 365 days; (ii) Amazon: we test over a public Amazon review

dataset [31], containing product reviews from May, 1996 to July, 2014. We treat each review as a

purchase record and use the time they input the review to approximate the purchase time. We filter

out users who purchased fewer than 5 items before the cutting time.

Baselines. We compare the proposed OAR with the following baseline methods:

• MP: Most Popular. It ranks all the products based on their overall popularity and recom-

mends the most popular products.

• MF-BPR: Matrix Factorization with Bayesian Personalized Ranking [4]. This model pre-

dicts user’s preference on a product based on the multiplication between their latent factors

(MF) and is optimized with Bayesian personalized ranking (BPR) loss.

• Fossil: Fusing Similarity Models with Markov Chains [17]. It improves the method of fac-

torizing personalized Markov Chain (FPMC) with item similarity-based algorithm (FISM)

to capture the long-term and short-term dynamics of users simultaneously.

• GRU4Rec+: Recurrent Neural Networks with Top-k Gains [19]. It is similar to GRU4Rec

[6] in utilizing GRU model to capture the sequential patterns, but with a modified loss func-

tion and sampling strategy to achieve better performance in the Top-K recommendation task.

• TCN: A Simple Convolutional Generative Network for Next Item Recommendation [21].

24

This is an improved dilated convolution neural network (CNN) modeling both short and

long-range item dependencies in a sequence to recommend the next item.

• HPMN: Lifelong Sequential Modeling with Hierarchical Periodic Memory Network [29].

It capture the multi-scale sequential patterns of users in e-commerce with a hierarchical

and periodical updating mechanism. It is able to model users’ periodic behavior patterns

appearing in both long-term or short-term.

• SARec: Self-attentive sequential recommendation [23] With the self-attention layers, this

model is able to balance the long-term effect of a sequence and from recent products.

Overall Model Comparison. We summarize the best performance of all the baseline models

and the proposed model in Table 3.2. We can see that OAR achieves the best performance under

different metrics in both datasets. It gains 7.62% and 6.06% MRR improvement in Etsy and

Amazon compared with the state-of-the-art.

Compared with the basic general MP, we can see that MF-BPR which represents users and

items with static latent factors can achieve a 177.43% and 39.67% improvement on average in

Etsy and Amazon. Then by introducing the Markov Chains to capture the transition of users

among different items, we find that Fossil works better than MF in Etsy but performs worse in

Amazon. Presumably it is because the Amazon data is extremely sparse and results in an unstable

factorized Markov Chains component in Fossil.

Comparing the recent neural-based sequential models, we find that GRU4Rec+ works slightly

better than TCN, which is based on dilated CNN. And HPMN utilizing hierarchical multi-layer

memory networks outperforms GRU4Rec+ in both data, which proves that there are periodic pat-

tern in users’ shopping behaviors. However, HPMN model assumes that the period of shopping

behavior is constant for all the users along the time and thus lack of flexibility to handle the real-

world scenarios. We find that SARec, which is utilizing self-attention to model users’ intrinsic

preference, works even better than HPMN. This shows that attention mechanisms are a good fit

for modeling sequential behaviors. And by carefully eliciting the occasion signals and combining

25

them with the intrinsic preferences, OAR achieves the best performance in the next-item prediction

via an accurate user model.

Evaluation of OAR. To examine whether each component in OAR achieves its goal and to under-

stand how it contributes to the recommendation, we analyze their impacts with an ablation test (in

Table 3.3).

The Global occasion component (G), in which we set up a certain number of memory slots to

record the crowd behavior in different occasions, does not provide personalized recommendation

individually. It can outperform the general Most Popular (MP) model by 17.17% and 4.89% in

Etsy and Amazon, which demonstrates that it can capture the temporal global occasion signals

hidden in the crowd behavior. Additionally, we can infer that the users in Etsy are more likely

to follow the temporal global trends in shopping. Both Intrinsic and Personal components can

provide personalized next-item recommendation. In Intrinsic (I), it maps the most recent purchase

to the items purchased before to infer the “relevant” items in the future. While in Personal (P), the

main idea is to trace back to the previous behaviors in the related time periods. We can see that

P performs slightly better than I, which means that in e-commerce, it is important to predict the

shopping occasion and pay more attention to the items purchased around similar occasions while

inferring the next purchase. While combining the I and G or I and P, we can see the joint models

can improve each of the individual components. Thus we find that in e-commerce platforms, it is

necessary to take the occasion signals into consideration while making recommendations.

To examine the impact of the gating component, which is designed for a personalized and

temporal-aware fusing of intrinsic preference and the occasion signals, we replace it with a simple

addition layer. That is we use the addition among oIu,tud+1
, oPu,tud+1

and oGtud+1
as a representation of

user u at time tud+1 while removing the Gating Layer. We find that there is a large drop in recom-

mendation quality, which supports the assumption that the influence of different occasions does

vary for different users at different timestamps. Thus, it is important to take the personalization

and temporal information into consideration simultaneously while utilizing the occasion signals.

26

M
od

el
E

ts
y

A
m

az
on

N
D

C
G

H
R

M
R

R
N

D
C

G
H

R
M

R
R

K
=5

K
=1

0
K

=5
K

=1
0

K
=5

K
=1

0
K

=5
K

=1
0

M
P

0.
15

31
0.

19
19

0.
23

04
0.

35
11

0.
16

73
0.

21
29

0.
25

09
0.

30
20

0.
41

99
0.

21
95

M
F-

B
PR

0.
45

19
0.

50
01

0.
59

47
0.

74
34

0.
43

76
0.

26
63

0.
30

12
0.

36
19

0.
46

98
0.

26
68

Fo
ss

il
0.

49
46

0.
53

54
0.

55
11

0.
76

30
0.

47
46

0.
21

60
0.

24
83

0.
29

67
0.

39
69

0.
22

21
T

C
N

0.
51

99
0.

57
26

0.
66

98
0.

80
59

0.
50

90
0.

26
32

0.
30

29
0.

36
64

0.
48

93
0.

26
50

G
R

U
4R

ec
+

0.
53

46
0.

57
71

0.
68

30
0.

81
36

0.
51

26
0.

27
63

0.
31

69
0.

38
28

0.
50

87
0.

27
70

H
PM

N
0.

54
80

0.
58

83
0.

69
62

0.
82

01
0.

52
45

0.
28

20
0.

32
16

0.
38

81
0.

51
09

0.
28

19
SA

R
ec

0.
56

65
0.

60
47

0.
71

02
0.

82
78

0.
54

33
0.

30
09

0.
33

85
0.

40
85

0.
52

51
0.

29
84

O
A

R
0.

60
78

*
0.

64
15

*
0.

74
25

*
0.

84
62

*
0.

58
47

*
0.

32
00

*
0.

35
80

*
0.

43
01

*
0.

54
76

*
0.

31
65

*

Ta
bl

e
3.

2:
C

om
pa

ri
so

n
of

D
iff

er
en

tM
od

el
s.
∗i

nd
ic

at
es

th
at

th
e

im
pr

ov
em

en
to

ft
he

be
st

re
su

lt
is

st
at

is
tic

al
ly

si
gn

ifi
ca

nt
co

m
pa

re
d

w
ith

se
co

nd
be

st
re

su
lt

w
ith

p
<

0.
01

.

27

Model
Etsy Amazon

NDCG@5 MRR NDCG@5 MRR
Global (G) 0.1816 0.1953 0.2238 0.2294
Intrinsic (I) 0.5665 0.5433 0.3009 0.2984
Personal (P) 0.5791 0.5582 0.3069 0.3047

I + G 0.5885 0.5642 0.3099 0.3063
I + P 0.5916 0.5677 0.3136 0.3108

Remove Gate 0.5859 0.5618 0.3074 0.3039
OAR 0.6078 0.5847 0.3200 0.3165

Table 3.3: Ablation Test Results for OAR.

Figure 3.7: Similarity between different calendar days.

Case Study – Temporal Information and Occasions. To examine whether the proposed model

is able to capture the occasions by linking the neighboring time periods to the relevant occasions,

we plot out the attention weights (or similarity scores) between each timestamp (in Figure 3.7).

Near the diagonal (similarity between the exact same timestamp), we can see there are many dark

regions, indicating the strong correlation between nearby time periods. For some of the regions,

the dark color diffuses to a large area (like around March and April), meaning that the occasions at

that time have a continuous lasting influence. Since the occasion calendar is a loop, there is high

correlation between dates in December and dates in January, which results in the dark region at

28

the left bottom and right top corner. Thus we find that OAR is capable in modeling the occasion

signals along time.

Case Study – Visualization of Occasion-driven Purchases in Etsy. To explore whether OAR

captures the occasion signals to adjust the recommendation at different timestamps, we predict

users’ preferences on several items every day in the test year. We calculate and plot out the average

predicted preference scores for all the users in Figure 3.8. We find that the preferences for the

hooded scarf drop down when the weather gets warmer and increases in Fall and Winter time,

while the preferences for shorts are in a totally opposite pattern. And for the Christmas decoration

tab (red line), the preferences on it reach the peak in early December but drop down rapidly after

Christmas, meaning the product is sensitive to the occasion. However, for items which are fit for

occasions that can happen all year round (like birthdays), the average preference on it is flat during

the year.

Figure 3.8: The average preferences predicted by OAR.

Case Study – How Occasion Signals compensate the intrinsic preference.

We show the results for an Etsy user as an example (in Figure 3.9) to examine how the occasion

signals supplement the intrinsic preference for improved recommendation. In intrinsic preference

modeling, a high score will be assigned to the most recent purchase (shorts for the 6-month) and

items relevant to that (baby’s clothing). Thus, while predicting for August 31 with the intrinsic

29

Figure 3.9: The attention weights by different components in OAR.

preference individually, we will keep recommending similar items. However, in personal occasion

elicitation, it traces the history and assigns high score to items which are purchased in the related

time windows. So that in this case, though the user purchased lots of baby clothing, by capturing

the occasion signals, the “leather bag for man” purchased on August 29 two years ago still receives

high attention. We can see that OAR is able to recall the purchase for the leather bag and thus

recommend some related items for the upcoming occasion.

3.4 Long-term Evolution and Short-term Correlation in Recommendation Systems

In Section 3.3, we focus on modeling the instant preference shifting cased by different occa-

sions and events. Motivated by Section 3.2, in this section, we turn to handling the critical issue in

designing a sustainable recommendation system – how items are treated in models aiming to infer

the dynamic user preferences with sequential user interactions. Specifically, for a certain time pe-

riod in next-item recommendation, we adopt the view that the meaning of an item can be revealed

by the correlations defined by user interactions in the short term. As shown in Figure 4.1, the

iPhone 8 was purchased together with several other up-to-date devices at the time it was released

(like a Nintendo Switch) in 2017, indicating that it was a hot new technology item at that time.

Once a new version is released in 2019 like the iPhone 11, the iPhone 8 becomes a budget choice

since it may be purchased with other devices that are also budget-priced (e.g., the Lite version of

the Nintendo Switch or early generation AirPods). In the same way, we can infer that the bouquet

purchased by User A was for a wedding since she also purchased items typically associated with

weddings. To capture these changes in item semantics, we propose to model such short-term item

30

Figure 3.10: The meaning of an item at a certain time period can be revealed by the correlations
defined by user interactions in the short term. And the meaning of an item can change over time
and change across users. Such dynamics can help to uncover the preference patterns of users.

correlations in a hypergraph [45, 46], in which each hyperedge can connect multiple nodes on a

single edge. In this regard, while each node in the hypergraph denotes an item, a hyperedge can

connect the set of items a user interacts with in the short time period altogether.

However, it is non-trivial to extract expressive item semantics from the item-correlation hyper-

graph. On the one hand, the item correlations encoded by the hyperedges are no longer dyadic

(pairwise), but rather triadic, tetradic or of a higher-order. Such complex relationships cannot

be handled by conventional methods since they only focus on pairwise associations; on the other

hand, the item semantics could propagate over multiple hops. For example, in Figure 1 (Sept 2019),

though not purchased by the same user, the iPhone 8 is also related to the Apple Lightning cable

with a 2-hop connection to it. Thus it necessitates a design to effectively exploit the hypergraph

for learning expressive item semantics.

Furthermore, how to capture the dynamic meanings of items is another challenge for next-item

recommendation, since the semantics of an item can change over time and across users. And such

change can help to uncover the preference patterns of users. As illustrated in Figure 1, User C

purchasing the iPhone 8 in 2017 gives evidence that User C chases the latest devices; whereas

User D purchasing the iPhone 8 in 2019 indicates that User D is looking for a deal. Although the

item is the same in both cases, the fundamental semantics of the iPhone 8 have changed. Even at a

31

single timepoint, an item can carry different meanings to different users. For example, a bouquet

of flowers for User B in Figure 1 can reflect home decoration, whereas the same bouquet for User

A can reflect a wedding. Though there are previous works in next-item recommendation treating

items as dynamic [47, 18, 9], they usually model the variation of an item as a function of time.

How to capture the aforementioned two perspectives – change over time and change across users

– is vital for high-quality next-item recommendations, but still remains to be explored.

To tackle the aforementioned challenges, we propose HyperRec, a novel end-to-end framework

with sequential Hypergraphs to enhance next-item Recommendation. To untangle the short-term

correlations at different time periods, HyperRec truncates the user interactions based on the times-

tamp to construct a series of hypergraphs. With a hypergraph convolutional network (HGCN),

HyperRec is able to aggregate the correlated items with direct or high-order connections to gener-

ate the dynamic embedding at each time period. To model the influence of item embeddings in the

past time periods, we develop a residual gating layer to combine the dynamic item embeddings of

the previous time period with the static item embeddings to generate the input for the HGCN. With

change happening both over time and across users, the resulting embeddings from the HGCN will

be fed into a fusion layer to generate the final representation for each specific user-item interac-

tion incorporating both the dynamic item embedding and short-term user intent. In personalized

next-item recommendation, the dynamic user preferences can be inferred from the sequence of

interactions from the user. Thus we use a self-attention layer to capture the dynamic user patterns

from the interaction sequences. While predicting a user’s preference on an item, both the static and

the most recent dynamic item embedding are considered.

Contributions. We develop a novel next-item recommendation framework with sequential hyper-

graphs to generate dynamic item embeddings incorporating the short-term correlations between

items. Two of the unique aspects of the framework are a residual gating layer to control the resid-

ual information from the past, and a fusion layer to encode each interaction with both the dynamic

item embedding and short-term user intent for sequential pattern modeling. With extensive ex-

periments on datasets covering different online platforms including ecommerce websites (Amazon

32

and Etsy) and an information sharing community (Goodreads), the proposed model outperforms

state-of-the-art models in providing Top-K next-item recommendation.

3.4.1 Related Work

There is an increasing attention on exploiting graph structures for various recommendation

scenarios with the recent advance in neural graph embedding algorithms [48, 49, 50, 51, 52]. Many

of these works make use of the high-order connections in a static graph to generate enriched latent

representations for users or items. In social recommendation, social connections between users

can be investigated with GNN to model the propagation of user preference in social networks [53,

54, 55]. Differently, PinSage [48] proposes to generate item embeddings on a graph constructed

with item-item connections, which can be applied for downstream recommendation. In addition,

there are also works focusing on the user-item interaction graph [56, 7] in which they construct a

static graph connecting users and items based on their interaction. However, these methods are not

designed for capturing the sequential patterns in recommendation systems.

To model the temporally dynamic patterns and predict for future behaviors, Session-based

Temporal Graph (STG) [57] is proposed to connect users, items and sessions in a graph. With

random walk process starting from different type of nodes (user/session), it is able to model users’

long-term and short-term preferences for recommendation. The work of [58] consists of an RNN

to capture dynamic user behaviors and a graph attention layer to model the social influence on a

static user-user graph. SR-GNN [25] proposes to construct various graphs of items with session

sequences and use GNN to extract item co-occurrences from those session graphs. It generates

next-click prediction based on attentive aggregation of item embedding in a session.

As a generalization of the ordinary graph in which each hyperedge can encode the correlations

among various numbers of objects, hypergraph has been adopted to unify various types of contents

for context-aware recommendation. In terms of modeling the correlations among various types

of objects, there are early efforts [59, 60, 61, 62] in applying hypergraphs to assist conventional

collaborative filtering for incorporating context information. In [59], in order to integrate both the

social relationships and music contents for music recommendation, they propose to use hypergraph

33

to model the relations among various types of objects (e.g., users, groups, music tracks, tags,

albums) in music social communities. Similarly, the work of [60] models the correlations among

readers, articles, entities and topics with a hypergraph for personalized news recommendation.

These methods are designed based on the properties of the specific communities and can not be

easily generalized to the task of next-item recommendation.

3.4.2 Methodology

Since the items purchased by a user in a short time period are correlated, it is vital to define

appropriate connections among them. While users may interact with various numbers of items, the

conventional graph structure usually only supports pairwise relations between items and is not fit

for this case. Thus, we propose to model such short-term correlations with a hypergraph [45, 46],

in which multiple items can be connected with one hyperedge. For the example in Figure 4.1, the

hypergraph for Sept 2017 consists of 7 nodes (items) with 3 hyperedges. The three items purchased

by User A are linked together by one hyperedge. Furthermore, besides the direct connections in

the hypergraph, the high-order connections between items can also hint on their correlations. For

example, in Figure 1 (Sept 2019), though not purchased by the same user, the iPhone 8 is also

related to the Apple Lightning cable with a 2-hop connection. With a hypergraph convolutional

network (HGCN), we can exploit both the direct and high-order connections to extract the short-

term correlations between items. Meanwhile, an item should not be treated as discrete at different

time periods, since its features in the past can hint on its features in the future. For example,

although the iPhone 8 has fundamentally changed in meaning from 2017 to 2019 in Figure 4.1,

the representation in 2019 should inherit some of the characteristics of the iPhone’s representation

in 2017. In the following, with hypergraph as a principled topology structure, we will discuss

about how to effectively generate such dynamic item representations considering both the item

correlations in the short term and the connections among different time periods.

Short-term Hypergraphs. To capture the item correlations for different time periods, we can split

the user-item interactions into multiple subsets based on the timestamps. Let G = {Gt1 ,Gt2 , ...,

GtQ} represent a series of hypergraphs. Gtn = (V tn , E tn , Wtn , Htn) is constructed based on all

34

…

1

3 4

2
0

1

3 4

2
0

1

3 4

2
0

Layer L
HGCN

Residual
Gating

…

1

3 4

2
0

1

3 4

2
0

HGCN

Residual
Gating 1

3 4

2
0

1

3 4

2
0

HGCN

…

…

Layer L

8

70

5
6

Layer L
70

9
6

3 4

Dynamic
User

Modeling

Dynamic
Item

Embedding

Static
Item

Embedding

t1 t2

…

Fusion Layer

…

Self-attention

Predicted
Scorex

+
Dynamic

Item
Embedding

Dynamic
Item

Embedding

Dynamic
User

Preference

Sequential
Hypergraphs

tn

Figure 3.11: The structure of HyperRec.

the user-item interactions happening during time period tn. V tn ⊂ I represents the set of nodes

in Gtn , that is all the items with interactions in tn. And E tn ⊂ U denotes the set of hyperedges,

which is similar as all the users who have interactions during tn. Each Gtn ∈ G is associated with

an incidence matrix Htn of size |V tn| × |E tn|. It is also associated with a matrix Wtn , which is a

diagonal matrix with W tn
εε representing the weight of the hyperedge ε. In this work, we let all the

hyperedges share the same weights and let W tn
εε = 1,∀ε ∈ E tn . When υ ∈ V tn is incident with

edge ε during time period tn (i.e., user ε purchased υ at tn), we have H tn
υε = 1, otherwise H tn

υε = 0.

Dtn and Btn are the diagonal degree matrices for vertex and hyperedge correspondingly, in which:

Dtn
υυ =

|Etn |∑

ε=1

W tn
εε H

tn
υε Btn

εε =

|Vtn |∑

i=1

H tn
iε

At different time periods, there will be a different set of user-item interactions, leading to hyper-

graphs with changing topology. We aim to extract the item semantics from each of the short-term

hypergraphs by capturing item correlations.

Hypergraph Convolution Network (HGCN). At each time period, we aim to exploit the correla-

tions among items for their temporally dynamic embeddings, in which the correlated items should

be close with each other for the short time period. To achieve that, an item should aggregate in-

35

formation (i.e., latent representations) from all its neighboring items (i.e., items with connection

to it). This naturally fits the assumption of the convolution operation [63, 46, 64, 48] that more

propagation should be done between connected items. Given that nodes in V tn have a set of initial

latent representation Xtn,0 = [xtn,01 , xtn,02 , ..., xtn,0|Vtn |], the convolution operation can be defined as:

xtn,1i = τ(

|Vtn |∑

υ=1

|Etn |∑

ε=1

H tn
iε H

tn
υεW

tn
εε xtn,0υ P0)

in which τ(·) represents the activation function (ReLu in our experiment). P0 represents the train-

able weight matrix between the initial and the 1th layer. This convolution operation will encode

each hyperedge with all the nodes connected to it and then output the embedding for each node by

aggregating information of all the hyperedges it is on. We can formulate this convolution process

into a matrix form as:

Xtn,1 = τ(HtnWtnHtnTXtn,0P0)

To prevent numerical instabilities caused by stacking multiple convolutional layers, we need to add

in symmetric normalization. Then we end up with:

Xtn,1 = f(Xtn,0,Htn ,Wtn|P0)

= τ(Dtn−1/2HtnWtnBtn−1HtnTDtn−1/2Xtn,0P0)

(3.4)

Here f(·) is used to denote the operation for one hypergraph convolutional layer to update each

node with its one-hop neighbors. We can stack multiple convolution layers to recursively aggregate

the information from high-order neighbors in the hypergraph. In such a hypergraph convolutional

network (HGCN), The output from the Lth layer can be calculated as:

Xtn,L = f(Xtn,(L−1),Htn ,Wtn|P(L−1))

The resulting Xtn,L from layer L can inherit embeddings from previous layers to capture the prop-

agation of item correlations in the hypergraph. While at different time periods, the topology of

36

hypergraphs is changing, leading to dynamic item embeddings reflecting the short-term correla-

tions at different time periods.

Residual Gating. While items are changing, there is still linkage between their features at different

timestamps. Some characteristics of an item will retain from the last time period to the next

time period. For example, items may have some intrinsic features that change smoothly or are

unchanged at all times. In order to propagate the residual information from the previous time

periods to the future, we introduce a residual gating to generate the initial embedding of each node

by combining the set of dynamic embeddings for t1,..., tn−1 with the static embedding. The initial

embedding of item i at tn can be calculated as:

xtn,0i = gxt<n,L
i + (1− g)ei, g =

ezTRσ(WRxt<n,L
i)

ezTRσ(WRxt<n,L
i) + ezTRσ(WRei)

in which WR and zR is the transformation matrix and vector for the gate. σ(·) is the tanh function.

We use xt<n,L
i to denote the dynamic embedding from the most recent hypergraph before tn for

item i. If item i doesn’t appear in any previous hypergraph, we ignore the residual component and

let xtn,0i = ei. The value g calculated with the gating function is used to control the percentage of

residual information that will be retained. With this residual gating, we connect the hypergraph

sequentially, leading to the major component of HyperRec – the sequential hypergraphs (as in

Figure 4.4). At each time period, each item will be initialized from both the static item embedding

and residual information from the past. And then the HGCN can incorporate the short-term item

correlations to generate the expressive dynamic item embedding.

Short-term User Intent. As introduced in Figure 4.1, the short-term user intent can be inferred

from all the items the user has interacted with in a certain time period. This naturally falls into the

definition of the hyperedge which accounts for all the items a user has interacted with in the short-

term altogether. Thus moving one step forward, we can aggregate the dynamic node embedding

on each hyperedge to infer each user’s short-term intent with the following operation

Utn = τ(Btn−1/2HtnTDtn−1/2Xtn,LPL) (3.5)

37

The resulting matrix Utn = [utn1 ,u
tn
2 ,..., utn|Etn |] can be regarded as an assembly of short-term user

intents at tn.

Fusion Layer. Then we want to incorporate both the dynamic item embedding and the short-term

user intent for a more expressive representation of each interaction in the sequence. We propose

the fusion layer as below to generate the representation of the interaction between user u and item

i at tn:

etni,u = αuutnu + αdxtn,Li + (1− αd − αu)ei

αu =
ezT σ(WF utn

u)

ezT σ(WF utn
u) + ezT σ(WF xtn,L

i) + ezT σ(WF ei)

αd =
ezT σ(WF xtn,L

i)

ezT σ(WF utn
u) + ezT σ(WF xtn,L

i) + ezT σ(WF ei)

(3.6)

in which ei and xtn,Li is the static and dynamic item embedding correspondingly, and utnu is the

vector in the matrix generated by Equation 3.5 to indicate the short-term user intent at tn. WF and

z is the transformation matrix and vector correspondingly. To avoid the overfitting problem, during

training, for interactions happening at the same timestamp as what we want to predict, we feed in

utn−1
u and xtn−1,L

i to the fusion layer while generating etni,u.

Self-attention. With the superior performance of self-attention layer (i.e., Transformer) in next-

item recommendation compared with CNN, RNN and Markov Chains-based models (as shown

in [23]), we adopt self-attention as the basic model to capture the dynamic pattern in interaction

sequences. etni,u can be treated as embedding for interaction between i and u at tn.

Assume that we have a sequence of items user u has interacted with in chronological order

Lu = ((iu1 , t
u
1), (iu2 , t

u
2), ..., (iu|Lu|, t

u
|Lu|)). To represent the kth interaction, we also take the position

k into consideration. We use ouk = et
u
k
iuk ,u

+ pk to represent the interaction, in which pk is the

positional embedding of position k to characterize the order information.

Given embedding sequence (ou1 , ou2 , ..., ou|Lu|), self-attention [22] is designed to generate the

aggregation based on the similarities (attention scores) between the last element ou|Lu| and each

38

element in the sequence. Then the attention score between ou|Lu| and ouj can be calculated as:

att(ou|Lu|, o
u
j) =

(WQou|Lu|)
T (WKouj)√
d

in which WQ and WK are transformation matrices and d is the dimension of the embedding. Then

the attentive aggregation can be calculated as:

d
tu|Lu|
u =

|Lu|∑

j=1

att(ou|Lu|, o
u
j)(WV ouj) (3.7)

where WV is a transformation matrix. Then the generated d
tu|Lu|
u can represent the dynamic prefer-

ence of user u after interacting with the sequence of items in |Lu| at tu|Lu|.

Preference Prediction. While predicting the preference of users for items, we should take both

the dynamic item embedding and the static item embedding into consideration:

ȳ
tn+1

u,i = dt<n+1
u

T
(xt<n+1,L
i + ei) (3.8)

in which dt<n+1
u and xt<n+1,L

i denotes the most recent dynamic user preference and dynamic item

embedding generated before tn+1. To train the model, we adopt Equation 3.3 defined in Section

3.3.2 as our loss function.

3.4.3 Experiment

In this section, we conduct experiments to evaluate the performance of the proposed HyperRec

over datasets sampled from three online platforms (Goodreads, Amazon and Etsy). Besides its

overall performance in next-item recommendation, we further investigate the design of HyperRec

via ablation tests and parameter analysis. In addition, we also examine whether HyperRec can

capture both the long-term and short-term patterns in the platforms based on its recommendation

to users with various lifespans.

Data Similar to Section 3.3.3, we formulate the sequential recommendation problem under leave-

39

Dataset # Users # Items # Interactions Density
Cutting

Timestamp
Amazon 74,823 64,602 1,475,092 0.0305% Jan 1, 18

Etsy 15,357 56,969 489,189 0.0559% Jan 1, 18
Goodreads 16,884 20,828 1730,711 0.4922% Jan 1, 17

Table 3.4: Statistics of the datasets.

one-out setting and split the train-test data following the real-world scenario. To explore the gener-

alization of the proposed model, we sample data from three different online platforms. Besides the

datasets (e.g., Amazon and Etsy) used in Section 3.3.3, we also introduce the Goodreads dataset. It

is collected from a book reading community – Goodread, in which users can tag, rate, and write re-

views on books. We treat different types of interactions equally as implicit feedback on items. We

keep users who interacted with more than 5 books before 2017 and at least 2 books in 2017. This

dataset is denser than both Amazon and Etsy since the items (i.e., books) in such an information

sharing platform are more stable and less likely to be replaced by new items as in ecommerce plat-

forms (e.g., products can be replaced by upgraded models). Summary statistics of these datasets

are in Table 3.4.

Baselines. Following are the baseline methods we adopt in our experiments.

• TransRec: Translation-based recommendation [30]. TransRec models the transitions be-

tween different items in the interaction sequences with user-specific translation operations.

• GRU4Rec+: Recurrent Neural Networks with Top-k Gains [19]. As an improved version of

GRU4Rec [6], this model adopts a GRU to model sequential user behaviors with a new class

of loss functions designed for improving Top-K gains.

• TCN: A Simple Convolutional Generative Network for Next Item Recommendation [21].

This baseline improves the typical CNN-based next-item recommendation models with masked

filters and stacked 1D dilated convolutional layers for modeling long-range dependencies.

• HPMN: Lifelong Sequential Modeling with Personalized Memorization [29]. HPMN is pow-

40

ered by a hierarchical periodic memory network to capture multi-scale sequential patterns of

users simultaneously, and thus can combine recent user behaviors with long-term patterns.

• HGN: Hierarchical Gating Networks for Sequential Recommendation [65]. This method

contains a feature gating and an instance gating to hierarchically select the features and

instance of items for user modeling while making next-item recommendation.

• SASRec: Self-attentive Sequential Recommendation [23]. It adopts the self-attention layer

to capture the dynamic patterns in user interaction sequences. It can be treated as a sim-

plified version of the dynamic user modeling component in HyperRec to use the static item

embeddings to represent each interaction.

• BERT4Rec: Sequential Recommendation with Bidirectional Encoder Representations from

Transformer [24]. This baseline utilizes a bi-directional self-attention module to capture the

context information in user historical behavior sequences from both left and right sides.

Overall Model Comparison. We compare HyperRec with the baselines and the results are re-

ported in Table 3.5. Under all the evaluation metrics, HyperRec can significantly outperform all

the baselines in each of the datasets, which demonstrates its effectiveness in improving next-item

recommendation in realistic settings where items evolve over time.

As a pioneer for personalized next-item recommendation, TransRec can provide promising

improvement compared with simply recommending the most popular items. However, TransRec

treats users as a linear translation between consecutive items they purchase, which limits the model

in dealing with the realistic problems that both users and items are changing. With the development

of neural networks in capturing dynamic patterns in sequential data, there are lots of recent efforts

in adopting these neural structure for next-item recommendation. HPMN consists of hierarchical

memory networks to create lifelong profiles for users, in which each layer of the memory network

is designed to capture periodic user preferences with a specific period. We find that HPMN out-

performs TransRec by more than 30% in Amazon but appear to be weak on Etsy and Goodreads.

41

M
et

ri
cs

D
at

as
et

s
Tr

an
sR

ec
H

PM
N

T
C

N
G

R
U

4R
ec

+
B

E
R

T
4R

ec
H

G
N

SA
SR

ec
H

yp
er

R
ec

Im
pr

ov
.

N
D

C
G

@
1/

H
IT

@
1

A
m

az
on

0.
05

33
0.

07
71

0.
07

83
0.

09
83

0.
10

11
0.

10
12

0.
10

51
0.

12
15
∗

20
.0

3%
E

ts
y

0.
42

01
0.

37
46

0.
38

16
0.

39
16

0.
43

38
0.

43
79

0.
44

77
0.

47
25
∗

7.
90

%
G

oo
dr

ea
ds

0.
21

74
0.

22
29

0.
20

69
0.

23
60

0.
23

66
0.

24
47

0.
26

43
0.

28
78

*
17

.6
2%

N
D

C
G

@
5

A
m

az
on

0.
12

02
0.

16
63

0.
16

48
0.

19
89

0.
20

10
0.

19
81

0.
20

41
0.

22
64
∗

12
.6

0%
E

ts
y

0.
54

95
0.

50
96

0.
51

20
0.

53
07

0.
55

53
0.

56
98

0.
57

13
0.

59
46
∗

4.
37

%
G

oo
dr

ea
ds

0.
37

52
0.

38
47

0.
35

93
0.

40
35

0.
40

73
0.

41
63

0.
43

26
0.

46
24
∗

11
.0

7%

H
IT

@
5

A
m

az
on

0.
18

67
0.

25
43

0.
24

99
0.

29
63

0.
29

72
0.

29
18

0.
30

01
0.

32
72
∗

10
.0

8%
E

ts
y

0.
66

78
0.

63
00

0.
63

10
0.

65
66

0.
66

50
0.

68
85

0.
68

16
0.

70
47
∗

2.
35

%
G

oo
dr

ea
ds

0.
52

34
0.

53
58

0.
50

09
0.

55
81

0.
56

43
0.

57
47

0.
58

65
0.

62
06
∗

7.
98

%

M
R

R
A

m
az

on
0.

13
57

0.
17

80
0.

17
77

0.
20

73
0.

20
94

0.
20

70
0.

21
20

0.
23

28
∗

11
.1

9%
E

ts
y

0.
53

28
0.

49
20

0.
49

74
0.

51
31

0.
54

11
0.

55
19

0.
55

55
0.

57
80
∗

4.
73

%
G

oo
dr

ea
ds

0.
36

24
0.

37
07

0.
34

95
0.

38
67

0.
38

96
0.

39
79

0.
41

46
0.

44
18
∗

11
.0

2%

Ta
bl

e
3.

5:
C

om
pa

ri
so

n
of

D
iff

er
en

tM
od

el
s.
∗i

nd
ic

at
es

th
at

th
e

im
pr

ov
em

en
to

ft
he

be
st

re
su

lt
is

st
at

is
tic

al
ly

si
gn

ifi
ca

nt
co

m
pa

re
d

w
ith

th
e

ne
xt

-b
es

tr
es

ul
tw

ith
p
<

0.
01

.

42

Building on top of 1D dilated convolution layers, TCN shows its strength in modeling the short-

term behaviors and outperforms HPMN in ecommerce for Etsy. It does not seem to be a good fit

for scenario like Goodreads in which the long-term preferences are significant. As an advanced

version of GRU4Rec targeting Top-K recommendation, in Amazon and Goodreads, GRU4Rec+

can improve TCN and HPMN by conducting dynamic user modeling with GRU and adopting a

loss function tailored to RNN-based models for Top-K recommendation. The newly proposed

HGN is equipped with a novel feature-gating and an instance gating to enhance the short-term user

modeling, and thus can outperform the aforementioned baselines. Both SASRec and Bert4Rec

employ a self-attention layer to model the sequential user patterns. In BERT4Rec, by randomly

masking items in the user sequences, it is able to train a bidirectional model for recommendation.

However, it does not bring in huge improvement as in the original BERT applications for natural

language processing since the right-to-left patterns in sequences are not necessarily informative for

predicting dynamic user preferences.

Compared with the state-of-the-art, HyperRec can achieve its largest improvement in Amazon

than in other datasets. The reason might be that HyperRec is able to fully extract the item charac-

teristics from extremely sparse user-item interactions with the Hypergraph topology. Meanwhile,

the outstanding performance of HyperRec in both ecommerce and information sharing platforms

demonstrates that it can be generalized to various online scenarios.

Evaluation of HyperRec. We report the results of our ablation tests in Table 3.6. For fair compar-

ison, results are all achieved with granularity of time periods to be 12-months and HGCN contain-

ing 2 layers when there are hypergraphs in the models. First of all, HyperRec can achieve the best

performance compared to any of its variants for all the datasets, indicating the effectiveness of its

design.

To evaluate the effectiveness of the hypergraph structure, in (3), we assign each user and each

item with different latent embeddings at different time periods as the dynamic item embeddings

and short-term user intents. That is, instead of exploiting the short-term item correlations with

a hypergraph as in HyperRec, we use these time-dependent embeddings to encode the change in

43

the platforms. We find that there is a huge drop in performance. In Amazon and Goodreads, the

performance of (3) is even worse than that of (2) which uses static item embeddings. One reason

is that the user-item interactions at each time period are too sparse to sufficiently train the time-

dependent embedding directly. But hypergraph with HGCN is able to fully extract the effective

correlations between items from the multi-hop connections at each time period.

Architecture Amazon Etsy Goodreads

(1) HyperRec 0.1215 0.4712 0.2809

(2) Static Item Embedding 0.1051 0.4477 0.2643

(3) Replace Hypergraph 0.0978 0.4588 0.2576

(4) (-) Residual 0.1169 0.4591 0.2626

(5) (-) Dynamic Item Embedding 0.1131 0.4646 0.2789

(6) (-) Short-term User Intent 0.1147 0.4616 0.2709

(7) (-) Dynamic in Prediction 0.1151 0.4703 0.2746

Table 3.6: Results for Ablation Test under HIT@1/NDCG@1. (-) denotes removing the specific
component.

Case Study – Change of Time Granularity. An important parameter which can control how

sensitive HyperRec is to the change over time is the granularity of the time period. Thus in Figure

3.12, we show the performance of the proposed model by varying the granularity from 1 month

to 18 months. When the granularity is small, we find that the model cannot achieve the best

performance since the interactions are extremely sparse and not sufficient for building up a set

of expressive item embeddings. While enlarging the granularity, we find that the performance

of HyperRec is increasing in all the datasets. In Amazon, it reaches the best performance when

the granularity is set to be 12-months. However, for Etsy, the optimized granularity is smaller

since the products sold on Etsy (i.e., hand-crafted items) are in higher volatility than products on

44

Amazon. In Goodreads, the optimized granularity is around 6-months, which is smaller than that

for the other datasets since there are more interactions for each time period in Goodreads for the

dynamic item embedding. If we further enlarge the granularity, the performance will decrease

since it underestimates the change of items and may introduce noise to the model.

1 3 6 12 18

0.106

0.108

0.110

0.112

0.114

0.116

0.118

0.120

0.122

Hi
t R

at
e/

ND
CG

@
1

Amazon

1 3 6 12 18
0.465

0.466

0.467

0.468

0.469

0.470

0.471

0.472

Etsy

1 3 6 12 18
0.273

0.275

0.278

0.280

0.283

0.285

0.288

0.290
Goodreads

Granularity of Time Periods (Months)

Figure 3.12: Performance comparison with various time granularity under HIT@1/NDCG@1.

Case Study – Different User Groups. To further explore the performance of the proposed model

in both long-term and short-term scenarios, we compare HyperRec with the top-2 baselines, HGN

and SASRec, for users with various lifespans in the platforms (in Figure 3.13). Here, we calculate

the time gap between the last interaction and the first interaction for each user as his/her lifespan in

the platform. We find that HGN works better than SASRec for users with a short lifespan (less than

one year), while SASRec can outperform HGN in modeling the users who are active for longer

time in the platforms. However, we find that HyperRec significantly outperforms the baselines for

users with both short and long lifespans. And it can achieve comparatively larger improvement

for users with longer lifespans, indicating that HyperRec is superior in capturing the long-term

patterns while taking the short-term correlations into consideration.

45

<1 1~2 2~3 3~4 4~5 5~6 6~7 7~8 8~9 9~10 >100.00

0.05

0.10

0.15

0.20

0.25
M

ea
n

Re
cip

ro
ca

l R
an

k
(M

RR
)

Amazon
HGN SASRec HyperRec

<1 1~2 2~3 3~4 4~5 5~6 6~7 >70.0

0.1

0.2

0.3

0.4

0.5

0.6
Etsy

<1 1~2 2~3 3~4 4~5 5~6 6~7 7~8 8~9 >90.0

0.1

0.2

0.3

0.4

Goodreads

Lifespan of Users (Years)

Figure 3.13: Performance comparison for users with different lifespans.

3.5 Conclusion and Future Work

In this chapter, to enable a recommendation systems to be sustainable and highly adaptive to

the temporal dynamics present in these platforms, we make several contributions on balancing the

instant shift in user engagement with the lifelong evolution of users and items.

On one hand, shopping decisions can be influenced by different occasions, leading to pur-

chases that instantly deviate from a user’s intrinsic preferences. Over Amazon and Etsy, we gain

insights into the traceable patterns of personal and global occasion signals. We propose to utilize

different attention mechanisms to elicit different occasion signals for recommendation. Through

experiments, we find the proposed Occasion-Aware Recommender model can outperform the state-

of-the-art model in two real-world e-commerce datasets.

On the other hand, we explore the dynamic meaning of items in real-world scenarios and

propose a novel next-item recommendation framework empowered by sequential hypergraphs to

incorporate the short-term item correlations for dynamic item embedding. With the stacking of

hypergraph convolution networks, a residual gating and the fusion layer, the proposed model is

able to provide more accurate modeling of user preferences, leading to improved performance

compared to the state-of-the-art in predicting user’s next action for both ecommerce (Amazon and

Etsy) and information sharing platform (Goodreads).

In the future, we are interested in introducing more context information to characterize the

46

occasions explicitly and provide explainable recommendations and investigating how to transfer

the dynamic patterns across platforms or across domains for an improved predictive performance.

47

4. RESILIENCE: IDENTIFYING THE RESILIENT RECOMMENDER “BACKBONE”1

4.1 Introduction

A sustainable recommendation system should be resilient to the dramatic change in a commu-

nity, e.g., users joining and leaving the community, churn in new items and frequent updates of user

relationships. However, even in changing environments, users may be influenced by a small group

of “backbone” individuals – Key Opinion Leaders (KOL), who can shape their views, and further

impact what items they buy, what media they consume, and how they interact with online platforms

[10, 11]. For example, KOLs on Instagram and Pinterest could influence shopping decisions by

highlighting new fashion trends [66, 67, 68], while KOLs on Yelp and TripAdvisor could guide

customer restaurant selection by providing explanatory information (like photos and reviews) for

restaurants [69, 70]. Previous research has shown the effectiveness of modeling KOLs in different

learning tasks, such as public sentiment analysis [71] and social event detection [72]. However, the

effect of these “backbone” users in recommendation systems remains largely unexplored, which

motivates us to develop a novel recommendation system by explicitly capturing the influence from

the “backbone” – KOLs to the whole platform.

Despite the importance of investigating the influence of KOLs in recommendation systems,

however, it is a non-trivial task due to two major challenges: (i) Elicitation: Compared to regular

users, KOLs tend to express their opinions on items explicitly rather than leave implicit feedback.

More important, such explicit interactions are inherently multi-relational: on the one hand, KOLs

are able to express their opinions via different ways (e.g., review, rating or tagging); On the other

hand, the opinions from KOLs could have distinct meanings (e.g., tag “fantastic” and tag “terri-

ble” are semantically different). However, it is unclear that how to extract the elite opinions of

KOLs from such multi-relational data. (ii) Diffusion: In online communities, KOLs are able to

guide their followers’ preferences and shape how users view the items. For example, users tend to

1Reprinted with permission from “Key Opinon Leaders in Recommendation Systems: Opinion Elicitation and
Diffusion” by Jianling Wang, Kaize Ding, Ziwei Zhu, Yin Zhang and James Caverlee, 2020. Proceedings of the 13th
International Conference on Web Search and Data Mining. Copyright 2020 by ACM.

48

Key Opinion Leaders:

Users:

Items:

Implicit Feedback:
(Read, viewed)

Explicit Feedback:
(Rating, Review, Tag) Follow

A

q

B

w

Elite Opinion Graph

User-item Interaction Graph

Influence

P

Figure 4.1: The opinions from Key Opinion Leaders (KOLs) can diffuse to their followers and
items they comment. Furthermore, these opinions diffuse in the community via both direct and
multi-hop connections between users and items.

purchase makeup products with the recommendation of Beauty-KOLs they are following; a book

which was tagged as “For Teens” by KOLs could attract many teenager readers. Meanwhile, pre-

vious research [73, 7] has shown that user preferences on items could diffuse through high-order

connectivity (e.g., in Figure 1, the latent preference of user A can possibly diffuse via the transitive

path A −→ q −→ B −→ w, to items that he/she hasn’t interacted with). Therefore, the influence

from KOLs will also be propagated to those non-direct followers in the community. In this regard,

another challenge centers around how to model this elite opinion diffusion process for improved

recommendation?

To tackle the aforementioned challenges, in this work, we propose GoRec: a novel end-to-end

Graph-based neural model to incorporate the influence of KOLs for Recommendation. Specifi-

cally, we introduce a translation-based embedding method to elicit the opinions of KOLs, in which

the elite opinions are regarded as different types of translations from KOLs to items. In this way,

we are able to extract the embeddings for both KOLs and items, and use them to enrich the initial

user/item embeddings in the user-item interaction graph. In order to model the diffusion process of

elite opinions, our model employs multiple Graph Neural Network (GNN) layers to learn the final

user/item embeddings following the neighborhood aggregation strategy [48, 52]. As such, the final

embeddings enriched with the elite opinions from KOLs can be decoded to accurately infer users’

49

preferences on all the items.

Contributions. In this chapter, with the data-driven analysis, we explore the relationships among

users, items and key opinion leaders within real-world online platforms, and uncover the impor-

tance of explicitly modeling the influence of the “Backbone” KOLs in recommendation systems.

We develop a novel end-to-end item recommendation framework - GoRec, which is able to elicit

elite opinions from KOLs and model their diffusion in the community. Meanwhile, we onduct

extensive experiments on two real-world scenarios including Goodreads (a book sharing commu-

nity) and Epinions (an ecommerce review sharing platform). We find that the proposed GoRec

model outperforms the state-of-the-art by 10.75% and 9.28% on average in Top-K recommenda-

tion. Meanwhile, we find that a small set of KOLs is sufficient to hint on the preferences of a huge

amount of users in the community and thus benefit the recommendation system.

4.2 Motivation

To gain insight into the relationships among the recommendation “Backbone”, users and items,

we start our discussion with an initial exploration into the Goodreads community. Goodreads is a

book-based platform with about 80 million registered users in which users can manage their own

book reading habits and also connect with other readers [74]. Users on Goodreads leave lots of

implicit feedback, which can be treated as positive signals while inferring users preferences [3, 2]

(e.g. a user read both “Harry Potter” and “Twilight” probably likes paranormal fiction). However,

a user who has not read a book (and hence, left no implicit feedback) may not because she doesn’t

like it but just not knows about the book. Goodreads are also shaped by explicit feedback, which

conveys positive or negative opinions on items explicitly, e.g., text reviews, numerical ratings, or

semantic tagging. Aside from the bidirectional “friendship”, users on Goodreads can unidirection-

ally follow other users from whom they can receive activity updates. One of the key features of

Goodreads is that some users are experts who provide detailed reviews and highlight new releases,

and thus are followed by many other users. In our initial analysis, naturally, we ranked all the

accounts based on their numbers of followers and treat the top accounts as KOLs [75, 76].

50

Explicit
Feedback

Figure 4.2: (a) Coverage: The percentage of users following at least one of the top (key) opinion
leaders. More than 95% of users follow at least one of the Top-500 accounts. (b) Books read by
users are more similar to books with higher ratings from key opinion leaders they are following.
(c) While leaving a similar number of implicit feedback, key opinion leaders prefer to show their
opinions on items via explicit interactions (reviews, ratings, self-defined tags).

A small number of key opinion leaders (KOLs) can provide sufficient coverage. Before

exploiting the influence of KOLs, we want to examine whether the top accounts that we treat as

KOLs can provide sufficient coverage for the regular users in Goodreads. In Figure 4.2(a), we

check the percentage of users following at least one of the KOLs (what we refer to as coverage)

by changing the number of top accounts that we consider as KOLs. We find that while considering

only the top-500 KOLs, there are more than 95% of the users following at least one of these KOLs.

In other words, the patterns and behaviors of just the top accounts (the KOLs) can potentially have

wide-reaching impact on the community. We can conclude that a small number of key opinion

leaders (KOLs) can provide sufficient coverage. Next, focusing on the top-500 KOLs, we explore

whether there are patterns in their opinions and how their opinions can diffuse to the community.

Users are shifted by the KOLs they are following. To examine whether the explicit opinions

from KOLs can influence what their followers read, we represent each user with a simple binary

vector over all books, in which a “1” indicates that the user has left implicit feedback on this book.

We use five different binary vectors for each KOL to represent books with different ratings (1 to 5)

from the KOL. In Figure 4.2(b), we list the similarities between books read by users and books with

different ratings from KOLs they are following. We find that the set of books a user read are more

51

similar to the books receiving high ratings from KOLs they follow, while having little overlapping

(similarity) with books with low ratings (1 or 2) from the KOLs they follow. We conclude that the

explicit opinions of KOLs could directly influence what their followers consume.

Compared to ordinary users, KOLs tend to express opinions on items explicitly. In Figure

4.2(c), we compare the numbers of different kinds of feedback from regular users and KOLs in

Goodreads. We find that ordinary users and KOLs leave implicit feedback on a similar number

of books (that is, they mark a book as “read” or “to read”), indicating that both are active in their

use of Goodreads, presumably for managing their own book collections. However, we do find that

KOLs tend to leave more reviews, ratings and tags; that is, KOLs are more engaged in explicitly

sharing their opinions on books. KOLs appear to be capable of providing specialized expertise and

high-quality opinions in the community. These elite opinions (including reviews, ratings and tags)

are public on the item pages and can influence how the community views or defines the items,

illustrating a possible way of how these elite opinions diffuse in the community. In this work, we

will focus on explicitly modeling the influence of KOLs in recommendation system with opinion

elicitation and diffusion.

4.2.1 Related Work

There is a growing interest in incorporating various auxiliary information into recommendation

to deal with the challenge of sparse interactions between users and items. One direction is to extract

content information of items to enrich the latent representations, like visual features from images

[77, 78], topical information from text descriptions [79, 80] or audio features from multimedia

[81].

On the other hand, there are also works on transferring semantic knowledge learned from the

relational graph of many knowledge bases (e.g., DBpedia, YAGO, Freebase) for item recommen-

dation [82, 83, 80]. KTUP [82] and MKR [83] combine the tasks of item recommendation and

Knowledge Graph (KG) completion, and thus transfer information of entities to items. However,

there are challenges in utilizing the KG in recommendation systems. Update and maintenance of

the semantic databases highly depends on the contributors. It takes effort to find the correct map-

52

ping between items and entities in the KG. An incorrect mapping will introduce noise and hurt the

recommendation. Thus, in our work, instead of relying on externally managed KGs, we focus on

eliciting elite opinions from KOLs in the community itself, to characterize items and users.

4.3 Methodology

With these observations in mind, we propose GoRec, a novel graph-based recommendation

system enhanced with the influence of KOLs in the community. Our design is structured around

the challenges we are faced with: (i) Elicitation: How can we elicit the elite opinions of KOLs

from the multi-relational data? (ii) Diffusion: How to model the diffusion process of elite opinions

in the community for improved recommendation?

4.3.1 Problem Setting and Notation

Task. In this work, we aim to provide Top-K recommendation from a candidate set of M items

I = {i1, i2,..., iM} to a set of N users U = {u1, u2,..., uN}. For each user u, we use a binary

vector yu = {yu1, yu2, ..., yuM} to indicate the implicit feedback u left on all the items. That is, if

u interacted with item i, then yui = 1. And yui = 0 means u has not left any feedback on i.

User-item Interaction Graph. Based on the (implicit) interactions between users and items, we

can construct a bipartite graph G = (V ,W) in which the set of nodes V = U ∪ I consists of all

the users and items. The edge (u, i) ∈ W denotes that user u has implicit feedback on item i.

Similarly, we can construct an adjacency matrix A ∈ {0, 1}N×M for graph G by concatenating the

feedback vector of each user, that is A = [y1, y2, ..., yN]T .

Elite Opinion Graph. We use L = {l1, l2,..., lP} to represent the set of key opinion leaders (KOLs)

we investigate while constructing the elite opinion graph Go. The explicit opinions can be different

rating levels, words mentioned in the reviews or tags. We consider Q different types of explicit

opinions O = {o1, o2,..., oQ} for the graph. Thus based on the explicit feedback from KOLs to

items, we can harvest many opinion triplets. Each triplet is denoted as (l, o, i) representing kol l

left opinion o on item i. And we construct a directed graph Go composed of these kol-opinion-item

triplets.

53

User-KOL Following. To explore how the elite opinions from KOLs directly influence their fol-

lowers, we use Fu ⊂ L to represent the set of KOLs followed by user u ∈ U. And we let

U
⋂

L = ∅.

4.3.2 “Backbone” Opinion Elicitation

First, we start by eliciting the opinions from KOLs toward improving the quality of recom-

mendation. Recall that KOLs leave explicit opinions on items via reviews, ratings and tags. These

opinions constitute a large scale of multi-relations from KOLs to items. As analogous to the data

structure of knowledge graph, the resulted elite opinion graph Go consists of many valid opinion

triplets. For example, a triplet (l1, Review: wizard, Harry Potter) denotes that KOL l1 mentions

the word wizard in a review for item Harry Potter. As shown in Figure 4.3, we can also construct

these opinion triplets based on ratings or tags provided by KOLs, and get triplets like (l1, Rate: 5,

Harry Potter) or (l1, Tag: fiction, Harry Potter).

Our goal is to generate effective embedding for both items and KOLs in a continuous vector

space while preserving the multi-relations (opinions) between them. In the below, we will list three

features of Go followed by the corresponding design we propose in the opinion elicitation process:

Feature 1. Multiple relations: Opinions come with distinct meaning, e.g., tag “fantastic” and

“terrible” are semantically different.

Translation from KOL to Item. Adopting the similar idea in multi-relational graph embedding

[84, 85, 86, 87], we treat opinions as translations from KOLs to items. That is, given a valid

opinion triplet (kh, or, it), we want to ensure that the embedding of item it is close to the embedding

of KOL kh plus the embedding of opinion or. Let s(kh, or, it) denote the scoring function for

the translation operation, with which larger value means better translation. Given all the valid

(positive) and negative opinion triplets, the objective is to maximize the translation score for all the

positive triplets while minimizing that for the negative triplets. We formalize this objective into a

54

Translation

.

Dynamics Mapping Matrix

.

KOL Opinion Item

Elite
Opinion
Triplets

l1 Review: wizard

Rate: 5
Tag: romance

Review: upset

Rate: 4

…
…

lP

l2 …

i1
i2…

KOL Opinion Item

iM

Tag: relaxed

Translation
-based
Opinion

Elicitation

Embedding

Projection

Dynamics Mapping Matrix

Projection

+

Figure 4.3: Translation-based Embedding with Elite Opinions.

task of minimizing the marginal loss below:

Lop =
∑

(kh,or,it)∈Go

∑

(kh,or,it
′)∈G−o

[γ + s(kh, or, it
′)− s(kh, or, it)]+ (4.1)

in which [·]+ , max(0, ·) and γ denotes the margin the model used to separate the valid (positive)

triplets and negative triplets. Here the negative triplet (kh, or, it
′) ∈ G−o indicates that kh wouldn’t

attach opinion or on it′. Thus while generating the negative samples, we randomly select it′ from

the subset of items that kh has left feedback on excluding or.

Feature 2. Many-to-Many relations: On one hand, the connections between KOLs and items are

not always one-to-one. On the other hand, KOLs can endow opinions with their personal attitudes.

For example, each KOL has his/her own criteria for tagging a book with “BestOf2019”.

Dynamic Mapping Matrix. To handle the Many-to-Many relations, a common strategy is to project

KOLs and items to an opinion-specific space before the translation operation. Additionally, to cope

with the various meanings of the same opinion, while doing projection, we adopt a dynamic map-

ping matrix [87] which is determined by both the opinion and the KOL (or item). In our case, each

kol, item and opinion is represented by two vectors. One vector acts as its latent representations,

55

KOLs

Items

KOLs

Items cyu

…

x(L)
u

Opinion Elicitation

Elite Opinion Graph

Fusing

Fusing

Preference Inference

Follow

Personalized
Attention

Identify

Lookup

Opinion Diffusion

Graph Neural Networks

i1

i2
u1

u2

u3

i3

i4

…

i1

i2
u1

u2

u3

i3

i4

i1

i2
u1

u2

u3

i3

i4

Layer 1 Layer 2 Layer L

i1

i2
u1

u2

u3

i3

i4

i1

i2
u1

u2

u3

i3

i4

i1

i2
u1

u2

u3

i3

i4

i1

i2
u1

u2

u3

i3

i4

i1

i2
u1

u2

u3

i3

i4

i1

i2
u1

u2

u3

i3

i4

ReLU ReLU

…

… …

xu

xi

Figure 4.4: Graph Neural Recommendation Incorporating the Influence of the “Backbone”.

while the other vector is used to construct the mapping matrix (as in Figure 4.3). Given a triple

(kh, or, it), we will initialize dense vectors keh, kth, oer, otr, iet , itt. First we will construct the mapping

matrices for kh and it on opinion or with vectors kth, itt and otr:

Mrh = otrk
t
h
T

+ I Mrt = otri
t
t
T

+ I

in which I denotes the identity matrix. Mrh is used to transfer keh to the space of or and Mrt is for

transferring iet . Thus we get the projected representation of kh and it under opinion or with:

k⊥h = Mrhkeh i⊥t = Mrtiet

The score function s(·) used to evaluate the translation distance for triple (kh, or, it) is represented

as:

s(kh, or, it) = −‖k⊥h + oer − i⊥t ‖2 (4.2)

in which we use L2-norm to calculate the distance empirically. Larger s(kh, or, it) means kh and

it are close to each other with translation or, i.e, it is more likely that kh attaches opinion or to it.

56

Feature 3. Preference Signals: KOLs have preferences on the items they would interact with,

e.g., a romantic book lover may seldom leave any feedback on horror novels.

Personalized Ranking Model A typical assumption is that the items with feedback from the user

are preferred than those without. We also want to capture these (implicit) preference signals while

modeling both KOLs and items. Following the basic idea in matrix factorization, we use the

multiplication between keh and iet , that is p(kh, it) = keh
T iet , to capture the preference of kh on

it. Then given the positive pair (kh, it) representing kh has left feedback on it and negative pair

(kh,it′) meaning kh has not left feedback on it′, we adopt Bayesian Personalized Ranking (BPR)

[4] to maximize the difference of preference scores between the positive pair and the negative pair.

With δ(·) denoting the Sigmoid function, the objective function to model these preference signals

is:

LBPR =
∑

(kh,it,it
′)∈S

− ln δ(p(kh, it)− p(kh, it′)) (4.3)

Each element in the training data set S is generated by combining the ground truth interaction pair

(kh, it) with item it
′ that KOL kh hasn’t left any feedback on.

Joint Tasks. During the opinion elicitation, we combine the task of modeling explicit opinions

and extracting preference signals from the elite opinions graph Go, leading to the following loss

function:

LGo = Lop + βLBPR (4.4)

Here β is used to adjust the weight of pairwise loss in capturing the preference signals. By mini-

mizing this joint loss LGo , we will get the set of embeddings Ke = {ke1,ke2, ...,keP} for KOLs and

Ie = {ie1,ke2, ..., ieM} for items, which inherit both the explicit information and preference signals

in the elite opinion graph Go.

4.3.3 “Backbone” Opinion Diffusion

As explained in Section 4.2, the opinions from KOLs can influence their followers and items

they comment, and thus make up part of their features. Besides the implicit user-item interactions,

57

these elite opinions should also be exploited while modeling users preferences. In what follows,

we will start from enriching the initial user/item embeddings with elite opinions. Then we will

explain how to model the elite opinion diffusion process with graph neural networks.

Fusing Layer (Users). Each user is associated with an embedding eUu ∈ Rd to represent the

initial interest, which can be derived from his/her one-hot index with a fully-connected dense

layer. Since users are directly influenced by whom they follow, aggregating the embeddings of

KOLs whom the user is following can hint on the user preferences on items. However, we know

that a particular KOL can have different levels of influence on different users. Building on the

recent development of attention mechanisms [88, 22], we can model the dynamic (personalized)

linkage between users and KOLs. We have the set of embeddings from Section 4.3.2 for the set

of P KOLs k = {ke1,ke2, ...,keP}. Given that Fu is the set of KOLs that u is following and eUu is a

trainable dense representation for u, the weight of KOL p’s influence on user u can be calculated

as:

αup =
edup∑
j∈Fu

eduj
, dup = zTReLu(WA[kep‖eUu] + bA)

Here || represents the concatenation operation. WA and bA is the weight matrix and bias for the

attention layer. z is a transformation vector. Then we aggregate the embeddings of all KOLs the

user follows with the attentive weights:

nu =
∑

j∈Fu

αujkej

Thus nu can be used to characterize influence of elite opinions to user u from whom he/she follows.

Lastly, we fuse nu with the initial embedding of u with the following operation:

xu = ReLu(WU [nu‖eUu])

where WU is a transformation matrix, and the output xu will be treated as cornerstone for the

opinion diffusion.

58

Fusing Layer (Items). Similarly, each item will start with a trainable dense representation eIi ∈

Rd, which is associated with its index. Since the KOLs can influence how the whole community

view an item, we want to complement eIi with the KOL-defined features iei of item i which we elicit

from the opinions of KOLs. Thus we adopt the similar fusion operation to generate the enriched

representation of item i:

xi = ReLu(WI [iei‖eIi])

in which WI is a transformation matrix and iei is the embedding gained from Section 4.3.2 for item

i.

Opinion Diffusion with GNNs. As suggested by [73, ?], user preferences on items could diffuse

through high-order connectivity, thus the elite opinions from KOLs will also be propagated to

those non-direct followers in the community. In this dissertation, we propose to model this opinion

diffusion process by virtue of Graph neural networks (GNNs) [56, 48, 89, 90].

The core idea of GNNs is that each layer learns the node embeddings by aggregating the fea-

tures of neighbors. At the initial GNN layer of our model, for user u and item i, given the sets of

neighborsNu andNi which are directly connected with u and i correspondingly, we formulate the

message passing on the edge (u, i) from i to u as:

c(1)i→u =
1√
|Nu||Ni|

W(0)
U xi (4.5)

Here, xi is the representation of i with influnce from KOLs and W(0)
U denotes a trainable transform-

ing matrix for users at layer 0. The term 1/
√
|Nu||Ni| is a normalization constant between u and

i. And then we need to sum up all the message passed to u to generate its representation x(1)
u :

x(1)
u = τ(

∑

i∈Nu

c(1)i→u)

where τ(·) is the activation function and we choose ReLu in this work empirically. Similarly, we

59

can generate the representation of item i at this layer with:

x(1)
i = τ(

∑

u∈Ni

c(1)u→i) = τ(
∑

u∈Ni

1√
|Nu||Ni|

W(0)
I xu)

After generating the x(1)
u and x(1)

i from the first GNN layer, we can further capture the high-

order diffusion by stacking multiple GNN layers. Specifically, at the Lth layer, we will have:

x(L)
u = τ(

∑

i∈Nu

c(L)i→u) = τ(
∑

i∈Nu

1√
|Nu||Ni|

W(L−1)
U x(L−1)

i)

x(L)
i = τ(

∑

u∈Ni

c(L)u→i) = τ(
∑

u∈Ni

1√
|Nu||Ni|

W(L−1)
I x(L−1)

u)

Note that x(L)
u at layer L inherits embeddings of users and items from previous layers. That is how

we capture the diffusion of opinions in multiple-order user-item connectivity with GNNs.

Preference Inference With what we have reached so far, our final step is to infer user u’s pref-

erence on all the items. That is the probability that these items are connected with u. Following

the similar idea as in Graph Auto-encoder [91, 51] and Autorec [5] - a basic autoencoder for rec-

ommendation, we use a fully-connected layer to recover the graph structure (user-item interaction

graph) from the output of the encoder (the stack of GNN layers). That is, for u, we will decode

x(L)
u to reconstruct his/her feedback vector yu:

ŷu = δ(Vx(L)
u + b′)

where V and b′ are the weight matrix and bias term correspondingly. And δ(·) represents the

Sigmoid function. The objective is to minimize the reconstruction loss Lre between ŷu and yu:

Lre =
∑

u∈U

||yu − Su · ŷu||2 (4.6)

where Su is a binary masking vector with 1 indicating items that we want to consider while calcu-

60

lating the reconstruction loss for u. Since the feedback usually is extremely sparse, as in [92, 13],

we don’t consider all the 0s in yu while calculating the loss. We allocate 1 on all the items that u

has left implicit feedback on (positive) and also on some randomly selected items without feedback

(negative) in Su. And we combine the tasks of opinion elicitation and diffusion jointly, then the

objective function of our final model (GoRec) becomes:

L = Lre + λLGo

Thus we reach our GoRec model (in Figure 4.4) which combines both tasks end-to-end with a

hyper-parameter λ to balance the tasks.

Prediction: The reconstructed vector ŷu will be used to infer user’s preference on all the items, in

which larger value means higher probability that the user is interested in the item. We will rank

those predictions to generate the Top-K recommendations to users.

4.4 Experiment

In this section, we will evaluate the performance of the proposed GoRec model on two real-

world datasets:

Dataset. We test GoRec and the baselines on both Goodreads and Epinions (summarized in Table

4.1). Empirically, we select the Top-500 accounts in the communities as KOLs. There is no

overlapping between ordinary users and KOLs. We split the user-item interaction data with ratio

6:1:3 for training, validation and testing:

• Goodreads. We randomly sample 2 million user IDs and crawl all their interactions with

books and their following information until November 2018. We filter out inactive users

with fewer than 5 interactions on books. While constructing the opinion triplets, we utilize

the reviews, ratings and tags provided by KOLs. For each review, we handle it with pre-

processing, tokenization, and stop word removal to extract the words. Each unique word,

rating level (1 to 5), or tag is treated as one type of opinion, based on which we construct the

opinion triplets.

61

• Epinions. This is a public dataset with user reviews and unidirectional user-user relations

[93]. Epinions is a review site on which users can write and read reviews for products.

In Epinions, a user can “trust” another user, which is treated as the “follow” signal in this

platform. By analyzing the “trust” relationships between users, we can see similar patterns as

shown in Figure 4.2 for Goodreads. We keep active users leaving no less than 5 feedback. We

ranked all the accounts based on the numbers of their followers and select the top accounts

as KOLs. For KOLs, we treat all the reviews and ratings as explicit opinions. And we use

the same method as in Goodreads to construct the opinion triplets. For users, we treat all

their interactions with items as implicit feedback.

#User #Item
User-item

Feedback

User-KOL

Feedback

Opinion

Triplet

Goodreads 15,324 36,645 1.831,826 167,054 2.8M

Epinions 6,334 8,015 81,965 63,939 0.1M

Table 4.1: Dataset Statistics.

Baselines. We compare the proposed GoRec with the following baseline methods:

• ItemPop: This model ranks items based on their popularity and recommends the most pop-

ular items.

• BPRMF: Bayesian Personalized Ranking [4]. It estimates user’s preference on an item

with the multiplication between their latent factors (MF). It is optimized with the Bayesian

personalized ranking (BPR) loss [4] based on user-item interactions.

• CDAE: Collaborative Denoising Autoencoder [13]. This model is a generalization of col-

laborative filtering and matrix factorization. It models user-item interactions with the basic

Autoencoder structure and an additional user node.

62

• NGCF: Neural Graph Collaborative Filtering [7]. It models user-item interactions with

GNNs and concatenates the embeddings from different GNN layers to balance the multi-

order connectivity in a bipartite graph. It is optimized with BPR loss.

Somewhat similar to our idea of incorporating the influence of KOLs is exploiting semantic

knowledge for recommendation. Below are methods originally proposed to enhance recommen-

dation with knowledge graph (KG). By treating the opinion triplets in the same way as the fact

triplets in a KG, they can also consider the interactions between user, KOLs and items for recom-

mendation:

• MKR: Multi-Task Feature Learning [83]. This model proposes to utilize the cross&compress

unit to combine recommendation with the task of KG embedding. It aims to optimize AUC.

• KTUP: Unifying KG Learning and Recommendation [82]. It performs item recommenda-

tion and knowledge completion simultaneously. It enhances the basic BPRMF by transfer-

ring embeddings for relations and entities learned from KG completion.

• CKE: Collaborative Knowledge Base Embedding for Recommender Systems [80]. It pro-

poses to combine knowledge of items from multiple resources to enhance recommendation.

It uses TransR [86] to construct embeddings for the structural knowledge.

Overall Model Comparison We summarize the results of Top-K recommendation at K=5 and

K=10 in Table 4.2 and 4.3. And ∆ represents the improvement of GoRec over the best baseline

methods. GoRec achieves the best performance under different K for both communities on all the

metrics (Precision, Recall, F1 and NDCG).

Starting from ItemPop of recommending the most popular items, with matrix factorization,

BPRMF can improve ItemPop by 56.61%. Then, NGCF extends BPRMF by concatenating the

embedding generated from multiple GNN layers and achieves 8.13% and 4.82% improvement

on Goodreads and Epinions, which shows the significance of paying attention to the high-order

connectivity between users and items in recommendation.

63

Model
Goodreads

k=5 k=10
Precision Recall F1 NDCG Precision Recall F1 NDCG

ItemPop 16.95 2.31 4.07 17.78 13.82 3.54 5.64 15.61
BPRMF 27.58 4.27 6.13 28.50 24.99 7.27 8.99 27.03
NGCF 29.02 4.53 6.41 30.23 26.02 7.57 9.28 28.41
CDAE 30.52 4.67 6.69 31.85 27.58 7.94 9.82 30.04
MKR 21.80 2.70 4.29 21.43 19.50 4.32 6.28 20.11
KTUP 28.70 4.22 6.14 29.76 26.08 7.23 9.14 28.16
CKE 30.99 4.43 6.50 32.38 27.82 7.46 9.58 30.28

GoRec 34.61* 5.06* 7.50* 35.88* 31.09* 8.58* 11.02* 33.61*
∆(%) 11.68 8.35 12.11 10.81 11.75 8.06 12.21 10.99

Table 4.2: Comparing Models on top-K Recommendation in Goodreads. All the results are in
percentage. ∗ indicates that the improvement of the best result is statistically significant compared
with other methods for p < 0.05.

Model
Epinions

k=5 k=10
Precision Recall F1 NDCG Precision Recall F1 NDCG

ItemPop 2.90 2.62 2.75 3.58 2.36 4.15 3.01 3.94
BPRMF 4.33 3.57 3.48 5.04 3.64 6.02 4.01 5.64
NGCF 4.73 4.04 3.86 5.53 3.82 6.33 4.21 6.03
CDAE 5.02 4.15 4.04 5.94 4.16 6.91 4.60 6.57
MKR 4.80 3.94 3.92 4.86 3.10 5.46 3.55 4.97
KTUP 4.51 3.79 3.67 5.26 3.87 6.38 4.29 5.94
CKE 4.98 4.27 4.08 5.96 4.13 6.86 4.57 6.58

GoRec 5.45* 4.68* 4.47* 6.50* 4.43* 7.62* 4.97* 7.16*
∆(%) 8.56 12.77 9.55 9.06 6.49 10.27 8.75 8.81

Table 4.3: Comparing Models on top-K Recommendation in Epinions. All the results are in per-
centage. ∗ indicates that the improvement of the best result is statistically significant compared
with other methods for p < 0.05.

64

Comparing GoRec with the baseline models which are designed to enhance the recommenda-

tion utilizing the semantic information from knowledge graphs (MKR, CKE and KTUP), we can

see GoRec outperforms all of them, which indicates the proposed model is a good fit for elicit-

ing the elite opinions and incorporating them to infer user preferences. Among those models, we

find that MKR performs worst because it is designed to optimize the AUC and thus may not be a

good fit for the Top-K recommendation task. KTUP improves BPRMF by transferring embeddings

learned from the relational structured data. And we can see it outperforms BPRMF by 2.14% and

5.59% in recommendation for Goodreads and Epinions, which shows the effectiveness of treating

the opinion triplets similar as the fact triplets in structured knowledge graph. In CKE, it encodes

the structured data with TransR [86], which can provide more flexibility and is more powerful in

handling the many-to-many relationships between KOLs and items.

Diffusion via High-order Connectivity. In Table 4.4, Compared to the basic autoencoder for

recommendation (Autorec) [5], GARec comprises multiple GNN layers to encode also the high-

order connectivity of users and items. The collaborative denoising Autoencoder (CDAE) [13] is an

advanced version of Autorec with an additional embedding vector to characterize user preferences.

In GARec, we use GNN layers to capture multi-order connectivity in the user-item interaction

graph and a fully-connected layer to reconstruct the feedback vector. We find that by taking the

high-order connectivity into consideration, GARec can outperform CDAE by 4.46% and 1.47%

in Goodreads and Epinions correspondingly. Thus we can conclude that it is necessary to model

the high-order proximity between users and items in a sparse scenario. The proposed structure is

capable in capturing the opinions and signals diffusion in the community, leading to improved item

recommendation.

Fusing Elite Opinions into Diffusion Process. KOLs can directly influence their followers, start-

ing from which their opinions diffuse in the whole community. As shown in Table 4.4, while

modeling user preferences, GARec+User extends GARec by fusing the initial user embedding

with the attentive aggregation of all the KOLs the user is following, and thus outperforms GARec

in both Goodreads and Epinions. This confirms the importance of capturing and modeling the

65

Goodreads Epinions
F1 NDCG ∆(%) F1 NDCG ∆(%)

CDAE 9.82 30.04 - 4.60 6.57 -
GARec 9.99 32.20 4.46 4.70 6.62 1.47

GARec+User 10.75 32.72 9.20 4.87 7.00 6.21
GARec+Item 10.69 32.80 9.02 4.90 6.91 5.84

GoRec 11.02 33.61 12.05 4.97 7.16 8.51

Table 4.4: Ablation Analysis of GoRec (K=10). All the results are in percentage.

influence of KOLs to their followers in such a direct process. Additionally, KOLs can change

how the community views an item by publishing reviews, ratings and tags. In this way, they add

community-specific/KOL-defined features to items. In GoRec, we model this process with a fusing

layer to enrich the initial embeddings of items. Thus extending from GARec, we add in the item

embeddings generated from elite opinion elicitation, and then end up with GARec+Item. We find

that in both Goodreads and Epinions, by modeling the influence of KOLs on how users view the

items, we can further improve the quality of our recommendations. Also we find that the improve-

ment from GARec+User is larger than that of GARec+Item, which indicates that the influence

from whom the user is following is more direct and more significant. And the combination of both

diffusion processes leads to even better improvement in both communities.

Visualization of Elite Opinions. Finally, we want to gain insight into the elite opinions we obtain

with the translation-based embedding model in Section 4.3.2. Based on the opinions embedding

oer from Equation 4.2, how do the KOLs in Goodreads view or define items in several ambiguous

book genres? A tag left by the KOL indicates the genre to which the KOL believes the book should

belong. Thus in Figure 4.5, after deducing their dimensions with t-SNE [94], we plot the embed-

dings for 5 ambiguous tags (“Tag: nonfiction”, “Tag: mystery”, “Tag: horror”, “Tag: paranormal”,

“Tag: historical”) and the neighboring elite opinion words (in black). This figure indicates how the

Goodreads community defines these genres. We find that in Goodreads, “Sherlock”, “detective”

or “hacker” related contents are likely to be categorized as Mystery. Books talking about “diet”,

“biography” or life of “youtubers” are nonfiction. KOLs describe horror contents and paranormal

66

contents closely which cover topics like “zombie”, “ghost”, “werewolf” and “reaper”. And the

Goodreads community pays attention to “historic” books for various countries like Scotland and

Germany.

psych
audiobooks

biography

youtubers
inspirational

dietnonfiction anxiety
informativememoirbios

autobiography
essay
pakistan

september

theology

unpublished
cuba

economics

lebanon
hacker

forensics
puzzle
sherlock serial

afterlife

police
detective

whodunnit investigation
abduction

sociologyamnesia
scandinavian

predictable
psycho

fanfiction
yoga

apocalypse

celtic
scary buffy goblinapocalyptic terror

zombie
koontz

hugo

edwardian
morocco

bildungsroman
ukraine

iran
germany

austria

wwii wwi
europe

francetudorengland

highlandscottish
outlander

scotlandhighlander
victorian

victoriana
regency

gothic romania

cliche
georgia

goosebump
bedtime brazil

vampbdbtwilight
supernatural

werewolf
necromancer

paranormalhalloween
reapergore

ghost

weres
urban sookieoccult

vintage

historical

mention
tag

paranormal

horror

mystery

nonfiction

Figure 4.5: Visualization of Elite Opinions in Goodreads.

4.5 Conclusion and Future Work

Toward a sustainable recommendation system which can be resilient to dramatic changes in

online communities, we investigate the influence of the “Backbone” – a small group of well-

known individuals (KOLs), who can shape our views, and further impact what items we buy, what

media we consume, and how we interact with online platforms We propose a novel recommenda-

tion system to provide improved item recommendation by taking the influence of the “Backbone”

into consideration while exploiting user preferences. It is able to elicit the elite opinions from

key opinion leaders with a translation-based embedding method. Meanwhile, building upon mul-

tiple GNN layers, the proposed framework can efficiently model the opinion diffusion process.

Through experiments on Goodreads and Epinions, the proposed model outperforms state-of-the-

art approaches in Top-K recommendation.

In the future, we are interested in further exploring how the influence of the “Backbone” can

67

be transferred cross-platform. We also want to develop a flexible model to support some newly-

emerging types of opinions (like video blogs).

68

5. ROBUSTNESS: LEARNING FROM IMPERFECT ENVIRONMENTS1

5.1 Introduction

A sustainable system should be robust to the imperfection (i.e., cold-start, low-activity level

users) in real-world environments, providing reliable recommendation to meet users’ actual needs

and aspirations. Previous research usually assumes that recommender systems can be trained on

an abundant amount of clean user-item interactions. Such an assumption may not hold in the real-

world environment which is imperfect, leading to an unstable performance in the recommendation

systems. For example, the emergence of cold-start users with only limited interactions will degrade

the predictive power of traditional recommender systems trained on users with abundant interac-

tions. It is essential for a sustainable recommendation system to learn from imperfect situations

and rapidly adapt to the real-world environment.

In this section, we will discuss our efforts on learning from two type of imperfect situations:

(i) cold-start users: we explore the challenging problem of sequential recommendation for cold-

start users with only minimal logged interactions without relying on auxiliary information. We

present a novel “learning-to-learn” paradigm to model the transition patterns of users, which can

make fast adaption for cold-start users in inferring their sequential interactions; (ii) casual users:

we center around the research problem of distilling informative transition patterns from users and

efficiently adapt to casual users with low-activity level in the platforms. We propose a model-

agnostic framework to automatically learn a data augmentation policy using REINFORCE and

improve the recommendation system using generated augmented data.

5.2 Learning-to-adapt for Cold-start Users

In many real-world scenarios, sequential recommenders may face difficulty in dealing with

new users who have only limited interactions with the system, leading to inherently long-tailed

1Reprinted with permission from “Sequential Recommendation for Cold-start Users with Meta Transitional Learn-
ing” by Jianling Wang, Kaize Ding and James Caverlee, 2021. Proceedings of the 44th International ACM SIGIR
Conference on Research and Development in Information Retrieval. Copyright 2021 by ACM.

69

interaction data [95]. Ideally, an effective recommendation system should be able to recommend

items to new users who have only a few interactions with items. However, most existing sequential

recommenders are not designed to handle such cold-start users due to the difficulty of character-

izing user preferences with limited data. Since new users may migrate away from the platform

if they receive poor recommendations initially, how to capture the preference of these cold-start

users becomes a critical question for building a satisfactory recommendation service.

Though quite a few cold-start recommendation methods have been proposed, most require

side information [96, 97, 98] or knowledge from other domains [99, 100, 101] during training,

and commonly treat the user-item interactions in a static way. In contrast, cold-start sequential

recommendation targets a setting where no additional auxiliary knowledge can be accessed due

to privacy issues, and more importantly, the user-item interactions are sequentially dependent. A

user’s preferences and tastes may change over time and such dynamics are of great significance in

sequential recommendation. Hence, it is necessary to develop a new sequential recommendation

framework that can distill short-range item transitional dynamics, and make fast adaptation to those

cold-start users with limited user-item interactions.

In this work, we propose a new meta-learning framework called MetaTL for tackling the prob-

lem of cold-start sequential recommendation. In order to improve the model generalization ca-

pability with only a few user-item interactions, we reformulate the task of cold-start sequential

recommendation as a few-shot learning problem. Different from existing methods that directly

learn on the data-rich users, MetaTL constructs a pool of few-shot user preference transition tasks

that mimic the targeted cold-start scenarios, and progressively learns the user preferences in a

meta-learning fashion. Moreover, we build the proposed framework on top of a translation-based

architecture, which allows the recommendation model to effectively capture the short-range tran-

sitional dynamics. This way the meta-learned sequential recommendation model can extract valu-

able transitional knowledge from those data-rich users and make fast adaptation to cold-start users

to provide high-quality recommendations.

Contributions. In this section, we explore the challenging problem of sequential recommenda-

70

tion for cold-start users without relying on auxiliary information and propose to formulate it as

a few-shot learning problem. A novel meta-learning paradigm – MetaTL is proposed to model

the transition patterns of users, which can make fast adaption for cold-start users in inferring their

sequential interactions. With extensive experiments on three real-world datasets, we verify the

effectiveness of the proposed MetaTL in cold-start sequential recommendation and shows that it

can bring in 11.7% and 5.5% improvement compared with the state-of-the-art in sequential recom-

mendation and cold-start user recommendation.

5.2.1 Related Work

Meta-learning represents a line of research aims to learn a model which can adapt and gen-

eralize to new tasks and new environments with a few training samples. To achieve the goal

of “learning-to-learn”, there are three types of different approaches. Metric-based methods are

based on a similar idea to the nearest neighbors algorithm with a well-designed metric or distance

function [102], prototypical networks [103, 104] or Siamese Neural Network [105]. Model-based

methods usually perform a rapid parameter update with an internal architecture or are controlled

by another meta-learner model [106]. As for the optimization-based approaches, by adjusting the

optimization algorithm, the models can be efficiently updated with a few examples [107, 108, 109].

In this work, we explore how to design an effective approach to handle the cold-start sequential

recommendation for short sequences.

Under the complete cold-start setting with no historic interaction available for new users or

items, previous works usually learn a transformation between the auxiliary information with the

well-trained latent factors [81, 110, 97]. Under the incomplete cold-start setting, Dropoutnet uti-

lizes Dropout layer to simulate the data missing problem [111]. Meanwhile, meta-learning has

been applied to train a model tailored for cold-start cases. To solve the user cold-start prob-

lem, MetaRec [112] proposes a meta-learning strategy to learn user-specific logistic regression.

There are also methods including MetaCF [113], Warm-up [114] and MeLU [96], adopting Model-

Agnostic Meta-Learning (MAML) methods to learn a model to achieve fast adaptation for cold-

start users. However, none of them are designed with the dynamics of user preferences in mind (as

71

is the case in sequential recommendation).

5.2.2 Methodology

In this section, we introduce the details of the proposed MetaTL. In essence, the design of

MetaTL aims to answer the following research questions:

• RQ1: How to enable the model to transfer knowledge from data-rich users to cold-start

users?

• RQ2: How do we capture the short-range transition dynamics in user-item interaction se-

quences? and

• RQ3: How to optimize the meta-learner for making accurate recommendations for cold-start

users?

Problem Setup. We follow the sequential recommendation setup as explained in Section 2.3.

Given the sequence of items [iu1 , i
u
2 , . . . , i

u
p , . . . , i

u
n] that user u has interacted with in chronological

order, the model aims to infer the next interesting item iun+1. Specifically, in the cold-start recom-

mendation task, we train the model on Utrain, which contains users with various numbers of logged

interactions. Then given u in a separate test set Utest, Utrain ∩ Utest = ∅, the model can quickly

learn user transition patterns according to the K initial interactions and thus infer the sequential

interactions. Note that the size of a user’s initial interactions (i.e., K) is assumed to be a small

number (e.g., 2, 3 or 4) considering the cold-start scenario.

Few-shot Sequential Recommendation (RQ1). Meta-learning aims to learn a model which can

adapt to new tasks (i.e., new users) with a few training samples. To enable meta-learning in se-

quential recommendation for cold-start users, we formulate training a sequential recommender as

solving a new few-shot learning problem (i.e., meta-testing task) by training on many sampled

similar tasks (i.e., the meta-training tasks). Each task includes a support set S and a query set

Q, which can be regarded as the “training” set and “testing” set of the task. For example, while

constructing a task Tn, given user uj with initial interactions in sequence (e.g., iA
uj−→ iB

uj−→ iC),

72

we will have the a set of transition pairs {iA
uj−→ iB, iB

uj−→ iC} as support and predict for the query

iC
uj−→?.

How can we generate a pool of meta-training tasks from data-rich users to mimic the targeted

cold-start scenarios? Assume that we are focusing on predicting for cold-start users with K ini-

tial interactions and want to predict for their K + 1th interactions. To construct a meta-training

task, firstly, we will randomly select a user uj from Utrain and also randomly sample K + 1 in-

teractions from the user’s logged interactions. With the K + 1 interactions ordered chronologi-

cally (i1, i2, ..., iK , iK+1), we will have i1
uj−→ i2, i2

uj−→ i3, ..., iK−1
uj−→ iK in the support set and

iK
uj−→ iK+1 for the query.

…

?

i1

i2 i3

i8i5 i6

i7i9

Ttest

✓

✓
0
1

✓
0
2

✓
0
3

✓
0
test

i4

i1

i3…

…i2i7i9 i1 i4
…

u1

ug

T1

i5 i6
i6 i4

i4
i8

S1 Q1

i7 i8 i1 i8

…

T2

S2 Q2

i6 i8
i1

i1
i8 i3

u2
T3

S3 Q3

i2 i3i1
i2 i3 i9

QtestStest

i7 i8 i1
i1 ?

ut

Tp
Sp Qp

i6i2

i2
i7

i7i9

u1u1u1

u1u1u1

u2 u2 u2

ut ut ut

ug ugug

✓

M
eta-Training

M
eta-Testing

SGDGradient Descent

Randomly sample a
meta-training task

Utrain

Utest

Figure 5.1: Overview of the proposed Meta Transitional Learning (MetaTL) Model.

Meta transitional Learner (RQ2). Our goal is to gain the capability of learning the transition

patterns to help predict the next interactions for a new user with only a few initial interactions.

Firstly, for a task Tn sampled from user uj , we want to retrieve the transitional dynamics with

73

the transition pairs in support set Sn. Let ih
uj−→ it denote a transition pair and ih and in as the item

embedding. Following [115], then we can use a simple MLP network to represent the transitional

information with item ih and item it,

th,t = σ
(
W(ih||it) + b

)
(5.1)

in which W and b is the trainable transform matrix and bias vector correspondingly. σ(·) denotes

the Sigmoid activation function.

Since there are multiple transition pairs in a support set Sn for the current task Tn, we need

to aggregate the transitional information from all the pairs to generate the final representation trn.

As a straightforward solution, we take the average of all the transitional information from each

transition pair in the support set Sn:

trn =
1

|Sn|
∑

(ih
uj−→it)∈Sn

th,t, (5.2)

in which |Sn| denotes the size of Sn. After generating trn, we need a scoring function to eval-

uate its effectiveness in characterizing the transition pattern of the user. Following the idea in

translation-based recommendation [30], a user can be viewed as the translation (or transition) be-

tween two consecutive items in the interaction sequence. Thus if trn is effective in characterizing

the transition pattern of a transition pair in Sn (i.e., ih
uj−→ it), the translation ih + trn should be

close to ih. That is to say, the score s(ih
uj−→ it) = ‖ih + trn − ih‖2 will have a small value. Then

we calculate the marginal loss based on all the transition pairs in support Sn as:

LSn =
∑

(ih
uj−→it)∈Sn

[γ + s(ih
uj−→ it)− s(ih

uj−→ i′t)]+ (5.3)

in which [·]+ , max(0, ·) and γ denotes the margin. Here i′t is a negative items without interaction

from uj .

74

Optimization and Fast Adaptation (RQ3). Next, we explain the procedure to optimize the model

so that it can learn the transition pattern for new users with just a few interactions. We denote the

meta model as a parameterized function fθ with parameters θ. Since we hope that the model can

obtain a small value in LSn , we update the model fθ by minimizing the LSn with one gradient step:

θ′n = θ − α∇θLSn(fθ), (5.4)

in which α is the task-learning rate. Note that we can extend this to perform multiple-step gradient

updates based on Equation (5.4).

After updating θ to be θ′n with the support set Sn, we can generate the updated trn with fθ′n . We

evaluate its performance on the query setQn with loss LQn , which can be calculated following Eq.

(5.3) with transition pair inQn. Our goal is to determine the θ that can work as a good initialization

for each task. That is, it can minimize the loss on query sets across multiple meta-training tasks,

θ = min
θ

∑

Tn∼p(T)

LQn(fθ′n), (5.5)

in which p(T) is the distribution of meta-training tasks and can be obtained by randomly sampling

meta-training tasks. To solve this equation, we can perform optimization via stochastic gradient

descent (SGD), such that:

θ ← θ − β∇θ
∑

Tn∼p(T)

LQn(fθ′n), (5.6)

where β is the meta step size.

When testing on a new user utest, we will firstly construct the support set Stest based on the

user’s initial interactions. With Eq. (5.4), the model fθ is fine-tuned with all the transition pairs in

Stest and updated to fθ′test , which can be used to generate the updated trtest. Given the test query

io
utest−−→?, the preference score for item ip (as the next interaction) is calculated as −‖io + trtest −

ip‖2.

75

Users # Items
Avg. Length
of Sequences

Splitting
Timestamp

Electronics 22,685 20,712 15.26 1/1/2014
Movie 26,933 18,855 28.97 1/1/2014
Book 90,892 58,250 27.81 1/1/2017

Table 5.1: Dataset Statistics.

5.2.3 Experiment

In this section, we report our experiments over multiple datasets to evaluate the performance

of the proposed model in cold-start sequential recommendation.

Datasets. We adopt three public real-world datasets: Electronics is adopted from the public Ama-

zon review dataset [31], which includes reviews ranging from May 1996 to July 2014 on Amazon

products belonging to the “Electronics” category. Movie is similarly drawn from the “Movie” cat-

egory of the same Amazon review dataset. For both, we treat a user review as an interaction. Book

is scraped from Goodreads, a book platform for users to tag, rate and review books. We treat all

these interactions on items equally.

For all of the datasets, we filter out items with fewer than 10 interactions. We split each

dataset with a corresponding cutting timestamp T , such that we construct Utrain with users who

have interactions before T and construct Utest with users who start their first interactions after T .

Summary statistics of the datasets can be found in Table 5.1. When evaluating few-shot sequential

recommendation for a choice of K (i.e., the number of initial interactions), we keep K interactions

as initialization for each user in Utest and predict for the user’s next interactions.

Baselines. Aside from a standard matrix factorization method (BPR-MF) [4], we compare the

proposed MetaTL model with two categories of widely used recommendation models for Top-N

recommendation: (i) Sequential recommendation baselines utilize different methods to capture

the sequential patterns in the interaction sequences of users. TransRec [30] embeds items into

a “transition space” and learns a translation vector for each user. GRU4Rec [6], TCN [21] and

SASRec [23] rely on Gated Recurrent Units, the simple convolutional generative network, and the

76

self-attention layers to learn sequential user behaviors, respectively. BERT4Rec [24] adopts the

bi-directional transformer to extract the sequential patterns and it is the state-of-the-art for sequen-

tial recommendation; (ii) Cold-start baselines include methods focusing on providing accurate

recommendations for cold-start users with limited information. MeLU [96] learns a user prefer-

ence estimator model based on Model-Agnostic Meta-Learning (MAML), which can be rapidly

adapted for cold-start users. We modify MeLU as in [113] to fit for the case without auxiliary

information. MetaCF [113] learns a collaborative filtering (CF) model which can quickly adapt to

new users. We adopt the version on top of NGCF [7] for better performance.

Overall Model Comparison. We compare the performance of MetaTL and the baseline models

under K = 3 and report the results in Table 5.2. The best performing method in each column is

boldfaced, and the second best method is marked with †. MetaTL achieves the best performance

under different evaluation metrics in all of the datasets, illustrating the effectiveness of MetaTL in

providing accurate sequential recommendation for cold-start users with limited interactions.

Electronics Movie Book

Hit@1 MRR Hit@1 MRR Hit@1 MRR

BPR-MF 0.066 0.123 0.025 0.083 0.043 0.098

TransRec 0.183 0.296 0.208 0.321 0.335 0.454

GRU4Rec 0.185 0.301 0.189 0.309 0.330 0.466

TCN 0.182 0.303 0.186 0.314 0.349 0.489

SASRec 0.193 0.318 0.211 0.345 0.347 0.488

BERT4Rec 0.200 0.323 0.220 0.351 0.369 0.513

MeLU 0.172 0.265 0.168 0.289 0.318 0.423

MetaCF 0.210† 0.330† 0.234† 0.365† 0.398† 0.528†

MetaTL 0.224 0.352 0.258 0.380 0.420 0.555

Table 5.2: Comparison of Different Models under K = 3. The improvement of MetaTL is statis-
tically significant compared with the next-best model with p < 0.05

77

Starting from the simplest collaborative filtering (BPR-MF), we find that it performs weakly

since it ignores the dynamic patterns in the user interaction sequences and fails to learn effective

embeddings for cold-start users. TransRec also becomes ineffective in learning translation em-

beddings for cold-start users since there is insufficient data to update the embeddings. Then we

compare the performance of various neural models for sequential recommendation. We can see

that GRU4Rec and TCN perform the worst. SASRec and BERT4Rec (utilizing transformers to

extract the sequential patterns) work better since they are able to aggregate the items with attention

scores and thus obtain more informative representations for users with limited interactions.

MeLU and MetaCF are both meta-learning based methods for providing cold-start recommen-

dations. Since MeLU requires side information for both users and items, we treat their historic

interactions as the side information as in [113]. Alas, MeLU is unable to obtain satisfying results

since it designed for scenarios with abundant auxiliary user/item information which is absent in

this case. Meanwhile we find that MetaCF can achieve the second-best performance for sequential

recommendation, illustrating the importance of fast adaption in cold-start scenario. It still falls be-

hind the proposed MetaTL since it is unable to learn the transition patterns for cold-start sequential

recommendation.

Evaluation of MetaTL. To further evaluate the effectiveness of the proposed MetaTL model, we

compare it with its variants and some of the baselines under different K values (i.e., the number of

initial interactions) in Figure 5.2 and 5.3. Note that MetaTL– is the simplified version of MetaTL

by removing the MAML optimization step. BERT4Rec is the state-of-the-art sequential recom-

mendation method and MetaCF is the strongest cold-start baseline from our original experiments

(and illustrates the performance of CF with meta-learning).

In both datasets, BERT4Rec loses the prediction power on sequences consisting of only a few

items and thus performs weakly in the cold-start sequential recommendation task. Even without

the fast adaptation learning module, MetaTL– can outperform BERT4Rec since it is carefully de-

signed to learn the transition patterns on extremely short sequences. However, it still falls behind

MetaCF, which demonstrates the necessity of training a model with fast adaptation in cold-start

78

scenarios. With the well-designed optimization steps and meta transitional learner, the proposed

MetaTL can further improve MetaTL– and outperform both the state-of-the-art methods in se-

quential recommendation and cold-start user recommendation with different numbers of initial

interactions.

K=2 K=3 K=40.25

0.30

0.35

0.40

0.45
M
RR

BERT4Rec MetaTL-- MetaCF MetaTL

Figure 5.2: Comparison for different model variants w.r.t. K in Movie.

K=2 K=3 K=40.45

0.50

0.55

0.60

0.65

M
RR

BERT4Rec MetaTL-- MetaCF MetaTL

Figure 5.3: Comparison for different model variants w.r.t. K in Book.

79

5.3 Learning-to-augment for Casual Users

Besides the cold-start users, a recommendation systems would also come into trouble when

faced with users with low-activity level, e.g., the users visit the platforms occasionally but with a

few interactions. It is also essential for a sustainable recommendation system to generate robust

recommendation to these imperfect test cases (i.e., low-activity level users).

Users coming to the online platform are often heterogeneous in activity levels. There usually

exists a set of core users who visit the platform regularly and consistently, while others are casual

users who tend to visit the platform occasionally. The heterogeneity in activity levels can lead to

distinct transitional patterns between these two groups of users [116, 117]. As shown in Figure

4.5(a), consecutively interacted items are less concentrated, and of lower similarity in casual users

than core as they come to the platform less frequently.

Sequential recommenders trained predominantly on interaction data from core users often fail

to capture the activity patterns of casual users and, as a result, provide less satisfactory recommen-

dations for casual users. As shown in Figure 5.4, the self-attention based recommender (SASRec

[23]) performs significantly worse on casual users than on core users in all sequence lengths. How

to improve the recommendation for casual users without sacrificing the performance on core users

is a critical challenge for building satisfactory recommendation services for all.

≤ 3 4 5 6 7 8 9 10 11 12 13 14 ≥ 15
Length of Sequence

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

Hi
t R

at
e@

20
 (%

)

Core Users
Casual Users

Figure 5.4: A recommendation system always performs worse on casual users than on core users,
indicating the difficulty of making recommendations for casual users.

80

Existing methods such as cold-start recommendation [110, 97, 111, 118] or cross-domain ap-

proaches [119, 120, 121, 122, 123], mainly focus on addressing the data scarcity, but fail to handle

the activity disparity between different types of users in the system. Although there are often more

casual users than core users on the platforms, they left much fewer interactions in total compared

to the core users. How to distill informative transition patterns from core users and efficiently adapt

to casual users is the main research question we aim to tackle here. Inspired by the recent advances

in data augmentation techniques [124, 125, 126, 127], we set out to generate augmented data se-

quences from core users to mimic the behavior patterns of casual users. While many augmentation

techniques have been studied for continuous inputs such as images [128, 129], augmentation on

user activity data consisting of sequential discrete item IDs is still under-explored. Meanwhile,

compared with core users that tend to leave consistent and informative interaction sequences, ca-

sual users usually have noisier and more diverse behavior sequences as shown in Figure 5.4. It is an

open question to find an effective data augmentation method to generate augmented sequences that

inherit informative transition patterns from core users and improve casual user recommendations.

To tackle the aforementioned challenges, we propose a model-agnostic “Learning to Augment”

framework – L2Aug, which bridges the gap between casual and core users for sequential recom-

mendation systems. Specifically, we develop a data augmentor which decides on a series of aug-

mentation actions on the input sequence to generate augmented data sequences. From the “Learn-

ing to Augment” perspective, this data augmentor is trained to conduct effective data augmentation

to maximize the performance of the target model (i.e., recommender). Framing this as learning a

data augmentation policy, the data augmentor (agent) generates context/state and chooses the aug-

mentation action. Meanwhile, the target model is updated with the augmented data sequences, and

its performance improvement on a meta validation set is used as the reward to guide the learning

of the augmentation policy. Through alternating between the data augmentation step using the rec-

ommender performance as the reward, and improving the recommender with the augmented data,

the two modules reinforce each other and progressively improve both the data augmentation and

recommendation quality. As a result, this builds an adaptive recommendation system, which can

81

distill informative transition patterns from core users and adapt to casual users with dramatically

different interaction patterns.

Contribution. In this section, through the data analysis, we investigate the disparity between core

and casual users in their transitional patterns within the interaction sequences, and study the feasi-

bility of bridging the gap between sequential recommendation for core and casual users from the

data augmentation perspective. Then we propose a model-agnostic framework L2Aug to learn a

data augmentation policy using REINFORCE and improve the recommendation system using gen-

erated augmented data. We evaluate L2Aug, on top of various SOTA sequential recommendation

models, on four real-world datasets, and show that it outperforms other treatment methods and

achieves the best recommendation performance on both core and casual users.

5.3.1 Motivation

In this section, we conduct an initial investigation with data sampled from the public Amazon

review dataset [31], to explore the distinct behavior patterns between casual and core users, and

then examine the feasibility of applying data augmentation in bridging the gap between them.

Firstly, to investigate the interest continuity in item consumption history of different users, we

compute the correlation between consecutive items in their interaction sequences. We apply the

bag-of-words model on item descriptions to obtain the item embeddings and then calculate the

cosine similarity between the embeddings of consecutive items in the interaction sequences. In

Figure 5.5, we can observe that the consecutive items consumed by core users are more similar.

It confirms our hypothesis that core and casual users behave differently and the interests of casual

users are less concentrated compared with core users.

82

−0.2 0.0 0.2 0.4 0.6
Cosine Similarity of Consecutive Items in User Sequences

0

5

10

15

20

Pe
rc

en
ta

ge
 (%

)

Augmented Users
Core Users
Casual Users

Figure 5.5: Comparison of interest continuity (i.e., the similarity of items consumed consecutively)
for different user groups.

Next, as interaction sequences of core users tend to be longer and denser than those of casual

users, the most straightforward approach for data augmentation is to randomly drop part of the

interactions from core users. We adopt this approach in this initial investigation and train a SAS-

Rec model [23] with the augmented data. In Figure 5.6, we visualize the performance for casual

user recommendation by varying the percentage of dropped interactions. When the dropping per-

centage is equal to 0, none of the interactions from core users is dropped, thus the recommender

is trained on the original data from both core and casual users. On the contrary, when the drop-

ping percentage is equal to 1.0, all interactions from the core users are dropped, meaning that the

recommender is trained only on the original data from casual users. It can be observed that the

recommender system achieves improved performance on casual users when we start to drop inter-

actions from the core users, which suggests that the synthetic data can help improve casual user

recommendation. However, as the dropping percentage increases, discarding too much informa-

tion negatively impacts casual user recommendation. These observations motivate us to search for

more fine-grained and controlled augmentation policies.

83

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Dropping Percentage

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

6.0

Hi
t R

at
e@

20
(%

)

1 − AverageLengthofCasualUsers
AverageLengthofCoreUsers

Train on both the original data
from casual and core users

Only train on the original
data from casual users

Casual Users

Figure 5.6: Data from core users is helpful for training a model for casual users. Furthermore,
randomly dropping part of the interactions from core users can further improve the performance
on casual users.

As shown in Figure 5.4, the self-attention based recommender (SASRec [23]) performs sig-

nificantly worse on casual users than on core users in all sequence lengths. How to improve the

recommendation for casual users without sacrificing the performance on core users is a critical

challenge for building satisfactory recommendation services for all.

5.3.2 Related Work

Several research topics in recommender systems are related to improving casual user recom-

mendations. [130] define the focused learning problem and propose to find different optimal so-

lutions for different user groups through hyperparameter optimization and a customized matrix

factorization objective. There are other efforts trying to learn multiple recommendation models

and then select the best performing one from the pool for each user [131, 132]. Another line of

research focuses on domain transfer and improving the recommendation for users who have very

few observed interactions [133]. Most of these works rely on side information or contextual data

[96, 97, 100, 101]. [95] proposes to learn the transferable parameters between data-rich head users

and data-ill tail users, leading to an improved recommendation for both groups. On the contrary,

we aim to bridge the gap between users who visit more frequently and users who casually visit the

84

service via data augmentation.

Data augmentation is a widely adopted strategy for training deep neural models [134, 135] in

computer vision [124, 125], speech [126, 136] and natural language processing [127, 137]. The

idea is to generate more diverse data samples to improve model robustness. While most of the

early work manually designs dataset-specific augmentation strategies or implementations, recent

attention has been paid to automating the process of generating effective augmentation for the

target dataset. Generative Adversarial Networks (GANs) have been commonly used to gener-

ate additional data by learning the distribution of the training data under the MinMax framework

[138, 139, 140, 141]. As an alternative to GAN-based methods, AutoAugment [124] automatically

searches for the best augmentation policy using reinforcement learning. However, there is still a

research gap between generating additional images or textual data and augmenting sequential user

interaction data; the latter is still understudied. Recently, CL4Rec [142] proposes to construct dif-

ferent views of an interaction sequence with simple data augmentation using the contrastive loss,

resulting in a more robust recommendation system. We focus on learning to generate effective aug-

mented interaction sequences that mimic the patterns of casual users while inheriting informative

transition patterns of core users.

5.3.3 Methodology

In this section, we elaborate on the design of L2Aug, organized around two guiding research

questions: 1) How to perform data augmentation on sequential data to support various operations

(e.g., remove, keep or substitute) on items within the sequence? 2) How to learn an effective data

augmentation policy to achieve the goal of improving causal user recommendation?

Problem Formulation. In this work, the users on the platform can be partitioned into two groups:

casual users Ucasual and core users Ucore based on their activity levels (i.e., the frequency they

visit the platform), s.t. Ucasual ∩ Ucore = ∅ and Ucasual ∪ Ucore = U . Note that each item is

mapped to a trainable embedding vector associated with its unique ID. In this work, we do not

consider any auxiliary information for users and items. We follow the sequential recommendation

setup as discussed in Section 2.3. Given the sequence of items that user u has interacted with

85

in chronological order Su = [iu1 , i
u
2 , . . . , i

u
p , . . . , i

u
n], where iup represents the pth item u interacted

with, the objective of the sequential recommendation model (target model) fθ is to infer the next

interesting item iu,n+1 for user u.

Framework Overview. We propose L2Aug, illustrated in Figure 5.7, to learn the data augmen-

tation policy for improving casual user recommendation. There are two main components in the

design: a recommender to make sequential recommendations and a data augmentor to generate

synthetic interaction sequences by applying the learned data augmentation policy on the input se-

quences. These two components are alternately trained. Specifically, for each batch of sequences

sampled from Score, the data augmentor learns to take a series of augmentation actions (e.g., re-

move, keep or substitute) so the generated synthetic sequences can improve the performance of

the recommender. Framing this as learning a data augmentation policy, the data augmentor (agent)

generates context/state and chooses the augmentation action. Meanwhile, the target model is up-

dated with the augmented data sequences and its performance improvement on a meta validation

set is used as the reward to guide the training of the augmentor. Through alternating between

the data augmentation step using the recommender performance as the reward, and improving the

recommender with the augmented data, the two modules reinforce each other and progressively

improve both the data augmentation and recommendation quality.

…i1 i3 in…i1 i3 in…i1 i3 in

Reward

Update

Augmentor

Augmented Data
Sequences

Recommender

Meta
Validation Set

f✓ f✓0

Evaluate

sub-sample

⇡#

Scasual

Score

Smeta

Performance
Improvement

i1 i2 in

FNN

a1 a2

Action Sampling

+i1 p1 i2 p2+ i t pt+

…
…

FNN FNN…

at

Self-attention
Layer

i4i3

i1 in…i3

Input Sequence

Output Sequence

…i1 i2 i3 i4 in…i1 i2 i3 i4 in…i1 i2 i3 i4 in
Interaction Sequence of

Core Users

?i7 i8 i1…i2

Interaction Sequence of
Casual Users

rt

Figure 5.7: The proposed model-agnostic “Learning to Augment” framework – L2Aug.

86

Learning Augmentation Policy. Our goal is to learn a discrete sequential data augmentation

policy for maximizing the performance of recommendation systems on casual users. Inspired by

preliminary studies in Section 5.3.1, we set out to generate augmented (synthetic) data sequences

to mimic the behavior patterns of casual users by editing the core user sequences. For each batch of

interaction sequences sampled from Ucore, we consider as a data augmentation task that generates

the synthetic sequences by taking a series of editing actions from {keep, drop, replace, ...} for

items in the input sequences sequentially. Since the data augmentation process is non-diffentiable,

we adopt the policy learning framework described below to enable the training:

• Context/State: Let Su denote an interaction sequence from Ucore. When encountering item

iuk in sequence Su, a vector hk that encodes the subsequence Su[1:k] is regarded as the context

or state representation. The detailed model to obtain the state vector will be discussed later.

• Action: For simplicity, we use two actions – “Keep” and “Drop”. The model could be

extended to support multiple actions (i.e., more than two). At step k, for item iuk in sequence

Su, we need to decide on the action auk ∈ {0, 1} to keep or drop item iuk when generating the

augmented sequence from sequence Su. Note that auk = 0 indicates dropping the item and

auk = 1 means to keep it.

• Meta Valication Set (Umeta): To guide the training of the data augmentor, from the set of N

casual users Ucasual, we randomly sample a small subset ofM users (M � N) and construct

the meta validation set Umeta with their interaction sequences. During the training process,

the performance of the target model on Umeta is computed as the reward for learning the

augmentation policy.

• Reward: The reward function aims to guide the agent to learn the augmentation policy in

order to maximize the performance of the target model. Each batch of the augmented se-

quences is used to train the target model and leads to a performance change of the target

model, which can be regarded as the reward to the data augmentor. In offline settings, it

can be the update of recommendation performance on Umeta measured by offline metrics

87

(e.g., NDCG, Hit rate and Mean Reciprocal Ranking). In online settings where we can sim-

ulate user response on counterfactual recommendations, the reward can be the user response

returned by the environment (e.g., engagement, rating or conversion). More details about

the metrics can be found in Section 2.2. In our experiments, we use the performance gain

on both NDCG and Hit Rate as the reward for offline experiment, and use the change of

simulated rating as the reward for online experiment. Following [143, 144, 145], the policy

network for data augmentation is updated on a delayed reward received after feeding the

generated augmented data to the recommender.

Data Augmentor. Since most of the existing data augmentation methods are designed for contin-

uous feature spaces [128, 129], they are not fit for handling sequence data consisting of discrete

item IDs in our case. We propose the Data Augmentor, which generates a synthetic sequence

by encoding the input sequence as the context/state representations, and deciding on the editing

actions on the input sequence.

Given a sequence of interacted items Su = [iu1 , . . . , i
u
k , . . . , i

u
t] for a core user u ∈ Ucore, the

Data Augmentor needs to decide on the editing action on each item. To make the decision on each

item iuk , the agent needs to encode the subsequence Su[1:k], which in turn requires a representation

of each item. We encode two pieces of information in the individual item representation: the item

content itself and its position. In other words, for each item iuk in Su, we have ek = ik + pk. Here,

ik is the embedding for item iuk and pk is the positional embedding of position k, which is used to

retain the order information.

With the individual item representation, any sequential embedding model including RNN,

Bidirectional-RNN or Transformers [22, 146] can be used to encode the subsequence Su[1:k] to pro-

duce a context/state representation. In this work, we adopt the self-attention model [22] to produce

the state hk. Self-attention [22] is designed to match a sequence against itself and thus uses the

same objects as the queries, keys, and values. We will transform the position-aware embeddings

with WQ, WK , and WV to generate the query vectors, key vectors, and value vectors, correspond-

ingly. Then we can generate the state representation for each item iuk by encoding its correlation

88

with other items in the sequence via:

hk =
∑

j≤k

σkjWV ej and σkj =
S(WQek,WKej)∑
j≤k S(WQek,WKej)

, (5.7)

in which the function S(·, ·) is used to denote the similarity score between two elements. In partic-

ular, we use the Scaled Dot-Product Attention [23, 22] to calculate the scores: S(a,b) = aTb/
√
D,

where D is the dimension size and used for normalization when calculating the similarity scores.

Once obtaining each individual context/state representation hk, the agent produces a policy πk over

the action space A through

πϑ(·|hk) = Softmax(WA · hk). (5.8)

Here WA ∈ R|A|×|h| is a trainable weight matrix. We use ϑ to denote all the parameters involved

in building the augmentation policy network. Each dimension in πϑ,k represents the probability of

a specific action at step k. The agent then decides on the editing action for the item by sampling

with the probabilities.

Augmentation Policy Optimization. To optimize for the data augmentation policy, we aim to

maximize expected rewards on improved recommendation quality, which can be defined as:

J(ϑ) = max
ϑ

Eπϑ [rt] , (5.9)

where rt is the reward computed as the improvement in recommendation performance when feed-

ing the augmented data generated from input batch t. In Algorithm 1 line 12, we use the Hit Rate

HT to evaluate the recommendation performance and the difference of the two as the reward. Note

that Hit Rate can be replaced with any performance metrics or their combination. We update the

parameters ϑ via policy gradient:

ϑ← ϑ+ α∇ϑJ̃(ϑ), (5.10)

89

Algorithm 1: L2Aug Training Process
Input: Training sequences Score, Smeta, Scasual and the pre-trained recommendation system fθ,

update frequency z
Output: A fine-tuned recommendation system fθ

1 Random initialize the data augmentor πϑ and i = 0.
2 while not converge do
3 Sample B samples SB from Score
4 // Augmentation by Data Augmentor
5 for u = 1→ B do
6 for k = 1→ |su| do
7 Compute the state representation for the kth item
8 Sample the augmentation action

9 Obtain the augmented sequence

10 // Augmentation Policy Optimization
11 Fine-tune fθ with the batch of augmented sequences to get fθ′
12 Calculate the reward rt = HT(fθ′ ,Smeta)− HT(fθ,Smeta)
13 Update πϑ according to Eq. (5.10) and (5.11)
14 // Replay and Update the Recommender
15 if i mod z == 0 then
16 Sample B samples Strain from Score
17 Generate synthetic samples Dsyn from Strain with πϑ
18 Sample B samples S ′train from Scasual and Score
19 Update the recommender fθ with Ssyn and S ′train
20 i← i+ 1

21 return The fine-tuned recommendation system fθ

in which α is the learning rate. With the obtained rewards, the gradient can be computed by:

∇ϑJ̃(ϑ) = rt
∑

u∈SB

|Su|∑

k=1

∇ϑ log πϑ(au,k|hk), (5.11)

Details of the training process are shown in Algorithm 1. Note that the same meta reward over

the batch is assigned to all the augmentation decisions taken within the batch. In essence, the

obtained reward based on recommendation improvement computed on the meta validation set is

used to guide the learning of the data augmentation policy. The augmented sequences in return are

used to further improve the performance of the recommender. During the training process, the data

augmentor and recommender system can reinforce each other, and progressively improve the data

90

augmentation and recommendation quality.

Replay. To ensure that the model still achieves satisfying performance on core users, we adopt

the replay strategy [147] to avoid forgetting. Besides the synthetic sequences, the recommendation

system is also updated with the original data sequences from core users, leading to a recommender

that has improved performance on casual users without sacrificing the performance on core users.

5.3.4 Experiment

Datasets. To examine the performance of the proposed method, we conduct experiments on four

real-world datasets. Table 5.3 shows the summary statistics for each dataset. Amazon_CDs is

adopted from the public Amazon review dataset [31], which includes reviews spanning May 1996

– July 2014 on products belonging to the “CDs and Vinyl” category on Amazon. Similarly, Ama-

zon_Books and Amazon_Movies are from two of the largest categories – “Books” and “Movies”

of the same Amazon review dataset. To further investigate the performance in other application

scenarios, we include another public dataset from an idea-sharing community – Goodreads, on

which users can leave their reviews and ratings on books [148]. For all the datasets, all the items

the user has interacted with (reviewed) form the user interaction sequence Su. We use the aver-

age time gap between their consecutive interactions to differentiate between casual and core users:

core users are those with average time gaps of less than 30 days; others are labeled as casual users.

Table 5.3: Summary statistics for the datasets.

Items
Casual

Users

Core

Users

Avg. #

Interactions

Amazon_CDs 22,685 2,176 1,022 23.75

Amazon_Books 17,443 11,083 3,457 31.71

Amazon_Movies 11,079 10,020 2,808 14.06

Goodreads 65,864 11,836 5,017 130.03

91

Baselines. As the proposed method is model agnostic, we apply it to various sequential recom-

mendation models and compare its performance with other model-agnostic treatment methods to

examine its effectiveness. We select three major sequential recommendation models – GRU4Rec

[6], SASRec [23] and NextItNet [21], which are built on top of Gated Recurrent Units (GRU),

self-attention layers and stacked 1D dilated convolutional layers to capture the sequential patterns

in user interaction sequences respectively. They are widely used in many applications and serve as

the foundation for many advanced recommender systems.

Since there are no previous works focusing on improving casual user recommendations, for

each sequential recommendation model, we compare the proposed L2Aug with the following treat-

ment methods which are proved to alleviate the performance gap between different user groups.

• Random: It randomly drops the interactions of core users to obtain the synthetic data, which

are combined with the original data (both core & casual users) for training the recommender.

• Focused Learning [130]: It treats the casual users Ucasual as the focused set and performs a

grid search for the best performing hyperparameters (i.e., the regularization) for improving

recommendation accuracy on the focused set.

• Adversarial Reweighting [149]: It plays a minimax game between a recommender and an

adversary. The adversary would adversarially assign higher weights to regions where the

recommender makes significant errors, in order to improve the recommender’s performance

in these regions.

Overall Model Comparison for Casual User Recommendation. We summarize the average

performance of different baseline methods on all of the datasets in Table 5.4 and 5.5. When com-

bined with various sequential models, the proposed L2Aug outperforms all of the other treatment

methods and achieves the best recommendation for casual users. In the following, we present more

in-depth observations and analyses:

• The simplest treatment of randomly dropping part of the interactions from core users helps to

improve casual user recommendations compared to the model trained on original data. This

92

observation verifies the hypothesis that data augmentation can help bridge the gap between

core and casual users.

• By learning a recommendation model with a special focus on casual users, the focused learn-

ing treatment can help improve model performance on casual users. Meanwhile, since rec-

ommenders tend to make inaccurate predictions on casual users, adversarial reweighting can

guide the recommender to improve its performance on casual users, leading to more accurate

recommendations for them.

• In general, the proposed L2Aug significantly outperforms all the baseline treatments on im-

proving casual user recommendations for various widely-used sequential recommendation

models. Take the Amazon_CDs dataset as an example, we find that L2Aug achieves 9.59%,

6.58%, and 9.90% improvements for NDCG@5 with GRU, NextItNet and SASRec, re-

spectively, compared against the best performing baseline treatment. We can conclude that

L2Aug is effective in solving the challenging problem of improving casual user recommen-

dations.

Overall Model Comparison for Core User Recommendation. Besides the performance on ca-

sual users, we also report the recommendation performance on core users in Amazon_CD in Figure

5.8 and 5.9, measured by NDCG@5 and HT@5. Although focused learning improves the recom-

mendation on casual users, it loses its prediction power on core users. The adversarial reweighting

treatment, aiming at improve challenging data samples rather than specific user groups, improves

core user recommendations in some cases, but not always. In contrast, the proposed L2Aug im-

proves core user recommendations with various sequential recommendation models and outper-

forms all the other baseline treatments. Importantly, similar patterns are also observed in other

datasets. These results showcase its effectiveness in bridging the gap between recommendation for

casual users and core users, leading to overall recommendation improvement.

93

Ta
bl

e
5.

4:
Pe

rf
or

m
an

ce
on

ca
su

al
us

er
re

co
m

m
en

da
tio

n
of

va
ri

ou
s

m
od

el
s

on
di

ff
er

en
td

at
as

et
s

w
ith

K
=5

.

M
et

ho
d

A
m

az
on

_C
D

s
A

m
az

on
_B

oo
ks

A
m

az
on

_M
ov

ie
s

G
oo

dr
ea

ds
N

D
C

G
@

5
(%

)
H

T
@

5
(%

)
N

D
C

G
@

5
(%

)
H

T
@

5
(%

)
N

D
C

G
@

5
(%

)
H

T
@

5
(%

)
N

D
C

G
@

5
(%

)
H

T
@

5
(%

)

G
R

U
0.

64
±

0.
04

1.
05
±

0.
09

0.
66
±

0.
04

1.
10
±

0.
04

1.
11
±

0.
07

1.
81
±

0.
08

1.
32
±

0.
06

2.
09
±

0.
08

w
/R

an
do

m
0.

66
±

0.
06

1.
13
±

0.
11

0.
71
±

0.
03

1.
15
±

0.
05

1.
22
±

0.
01

1.
95
±

0.
12

1.
44
±

0.
13

2.
29
±

0.
14

w
/F

oc
us

ed
0.

69
±

0.
03

1.
17
±

0.
08

0.
74
±

0.
02

1.
19
±

0.
04

1.
28
±

0.
06

2.
08
±

0.
07

1.
43
±

0.
05

2.
37
±

0.
11

w
/A

dv
er

sa
ri

al
0.

73
±

0.
02

1.
24
±

0.
06

0.
73
±

0.
03

1.
20
±

0.
05

1.
34
±

0.
05

2.
23
±

0.
06

1.
46
±

0.
04

2.
21
±

0.
08

w
/L

2A
ug

0
.8
0
±
0
.0
3

1
.3
7
±
0
.0
7

0
.7
5
±
0
.0
2

1
.2
5
±
0
.0
3

1
.4
3
±
0
.0
4

2
.3
5
±

0
.0
5

1
.5
3
±
0
.0
3

2
.4
5
±
0
.0
5

N
ex

tI
tN

et
1.

12
±

0.
16

1.
69
±

0.
18

0.
97
±

0.
03

1.
56
±

0.
06

1.
30
±

0.
05

2.
13
±

0.
09

2.
05
±

0.
11

2.
97
±

0.
13

w
/R

an
do

m
1.

17
±

0.
18

1.
88
±

0.
20

1.
08
±

0.
05

1.
71
±

0.
07

1.
45
±

0.
08

2.
26
±

0.
09

2.
13
±

0.
10

3.
11
±

0.
16

w
/F

oc
us

ed
1.

22
±

0.
15

2.
07
±

0.
16

1.
13
±

0.
04

1.
68
±

0.
03

1.
47
±

0.
06

2.
42
±

0.
08

2.
25
±

0.
09

3.
32
±

0.
13

w
/A

dv
er

sa
ri

al
1.

52
±

0.
11

2.
39
±

0.
13

1.
15
±

0.
04

1.
75
±

0.
05

1.
58
±

0.
06

2.
56
±

0.
08

2.
42
±

0.
06

3.
43
±

0.
11

w
/L

2A
ug

1
.6
2
±
0
.0
9

2
.4
4
±
0
.1
0

1
.2
4
±
0
.0
5

1
.8
7
±
0
.0
4

1
.7
1
±
0
.0
5

2
.7
4
±

0
.0
7

2
.5
1
±
0
.0
7

3
.6
2
±
0
.1
0

SA
SR

ec
1.

83
±

0.
10

2.
77
±

0.
16

1.
13
±

0.
05

1.
78
±

0.
06

1.
72
±

0.
05

2.
71
±

0.
08

2.
29
±

0.
07

3.
49
±

0.
10

w
/R

an
do

m
1.

85
±

0.
15

2.
81
±

0.
18

1.
21
±

0.
05

1.
86
±

0.
07

1.
76
±

0.
11

2.
73
±

0.
12

2.
36
±

0.
11

3.
54
±

0.
19

w
/F

oc
us

ed
1.

88
±

0.
14

2.
90
±

0.
13

1.
24
±

0.
03

1.
94
±

0.
05

1.
81
±

0.
09

2.
83
±

0.
11

2.
42
±

0.
10

3.
60
±

0.
14

w
/A

dv
er

sa
ri

al
1.

92
±

0.
13

3.
03
±

0.
14

1.
23
±

0.
02

1.
93
±

0.
03

1.
88
±

0.
06

2.
86
±

0.
10

2.
45
±

0.
08

3.
72
±

0.
11

w
/L

2A
ug

2
.1
1
±
0
.1
1

3
.2
6
±
0
.1
3

1
.3
1
±
0
.0
4

1
.9
9
±
0
.0
4

1
.9
5
±
0
.0
5

3
.0
0
±

0
.0
8

2
.7
1
±
0
.0
9

3
.9
3
±
0
.1
0

94

Ta
bl

e
5.

5:
Pe

rf
or

m
an

ce
on

ca
su

al
us

er
re

co
m

m
en

da
tio

n
of

va
ri

ou
s

m
od

el
s

on
di

ff
er

en
td

at
as

et
s

w
ith

K
=1

0.

M
et

ho
d

A
m

az
on

_C
D

s
A

m
az

on
_B

oo
ks

A
m

az
on

_M
ov

ie
s

G
oo

dr
ea

ds
N

D
C

G
@

10
(%

)
H

T
@

10
(%

)
N

D
C

G
@

10
(%

)
H

T
@

10
(%

)
N

D
C

G
@

10
(%

)
H

T
@

10
(%

)
N

D
C

G
@

10
(%

)
H

T
@

10
(%

)

G
R

U
0.

84
±

0.
07

1.
74
±

0.
13

0.
92
±

0.
03

1.
87
±

0.
05

1.
56
±

0.
06

3.
22
±

0.
11

1.
81
±

0.
07

3.
61
±

0.
12

w
/R

an
do

m
0.

91
±

0.
12

1.
92
±

0.
16

0.
99
±

0.
04

2.
02
±

0.
03

1.
67
±

0.
08

3.
34
±

0.
15

1.
94
±

0.
10

3.
84
±

0.
20

w
/F

oc
us

ed
0.

93
±

0.
06

1.
91
±

0.
14

1.
03
±

0.
03

2.
06
±

0.
05

1.
77
±

0.
06

3.
59
±

0.
13

1.
91
±

0.
09

3.
89
±

0.
15

w
/A

dv
er

sa
ri

al
0.

96
±

0.
04

1.
97
±

0.
13

0.
99
±

0.
04

2.
02
±

0.
04

1.
75
±

0.
08

3.
51
±

0.
14

1.
93
±

0.
08

3.
68
±

0.
13

w
/L

2A
ug

1
.0
3
±
0
.0
3

2
.1
1
±
0
.1
0

1
.0
5
±
0
.0
4

2
.1
6
±

0
.0
3

1
.8
6
±
0
.0
5

3
.6
5
±
0
.1
0

1
.9
9
±
0
.0
7

3
.9
6
±
0
.1
1

N
ex

tI
tN

et
1.

59
±

0.
17

2.
87
±

0.
20

1.
29
±

0.
05

2.
55
±

0.
08

1.
79
±

0.
07

3.
66
±

0.
16

2.
52
±

0.
12

4.
44
±

0.
18

w
/R

an
do

m
1.

57
±

0.
18

3.
10
±

0.
24

1.
34
±

0.
07

2.
53
±

0.
09

2.
05
±

0.
13

4.
10
±

0.
18

2.
66
±

0.
16

4.
74
±

0.
19

w
/F

oc
us

ed
1.

45
±

0.
12

2.
80
±

0.
19

1.
47
±

0.
05

2.
74
±

0.
06

1.
92
±

0.
11

3.
80
±

0.
14

2.
69
±

0.
15

4.
73
±

0.
17

w
/A

dv
er

sa
ri

al
1.

85
±

0.
11

3.
44
±

0.
15

1.
48
±

0.
04

2.
77
±

0.
05

2.
11
±

0.
09

4.
20
±

0.
11

2.
89
±

0.
07

4.
90
±

0.
13

w
/L

2A
ug

2
.1
1
±
0
.1
2

3
.9
5
±
0
.1
4

1
.5
5
±
0
.0
3

2
.8
6
±

0
.0
5

2
.2
2
±
0
.0
8

4
.3
2
±
0
.0
9

2
.9
8
±
0
.0
8

5
.1
0
±
0
.1
5

SA
SR

ec
2.

38
±

0.
14

4.
49
±

0.
21

1.
60
±

0.
07

3.
24
±

0.
12

2.
26
±

0.
11

4.
41
±

0.
19

3.
02
±

0.
15

5.
77
±

0.
19

w
/R

an
do

m
2.

25
±

0.
15

4.
03
±

0.
26

1.
61
±

0.
06

3.
13
±

0.
14

2.
34
±

0.
13

4.
48
±

0.
18

3.
05
±

0.
15

5.
68
±

0.
21

w
/F

oc
us

ed
2.

47
±

0.
11

4.
73
±

0.
18

1.
66
±

0.
04

3.
32
±

0.
09

2.
45
±

0.
10

4.
83
±

0.
14

3.
02
±

0.
12

5.
47
±

0.
17

w
/A

dv
er

sa
ri

al
2.

35
±

0.
16

4.
37
±

0.
21

1.
62
±

0.
03

3.
12
±

0.
10

2.
43
±

0.
11

4.
54
±

0.
16

3.
15
±

0.
10

5.
93
±

0.
21

w
/L

2A
ug

2
.6
1
±
0
.1
2

4
.8
7
±
0
.1
9

1
.6
9
±
0
.0
3

3
.3
8
±

0
.0
8

2
.4
4
±
0
.0
8

4
.5
3
±
0
.1
1

3
.3
2
±
0
.1
1

5
.8
6
±
0
.1
5

95

GRU4Rec NextItNet SASRec0.5

1.0

1.5

2.0

2.5

3.0

3.5

ND
CG

@
5

(%
)

Original
Random
Focused
Reweight
L2Aug

Figure 5.8: Performance on core user recommendation on Amazon_CDs with NDCG.

GRU4Rec NextItNet SASRec1

2

3

4

5

HT
@

5
(%

)

Original
Random
Focused
Reweight
L2Aug

Figure 5.9: Performance on core user recommendation on Amazon_CDs with HT.

Flexibility in Expanding the Action Space. Recall that, so far, the augmentation policy can take

two actions: “keep” and “drop”. In this section, we examine the feasibility of expanding the action

space of L2Aug, which makes the augmentor more versatile. As an initial study, we consider the

“substitute” action, which replaces an item with its most correlated item. We adopt the inverse

user frequency (i.e., |N(i) ∩ N(j)|/
√
|N(i)||N(j)|) [150, 151] to define the correlation between

two items (i.e., i and j), in which N(i) is the set of users interacted with item i. Figure 5.10

shows that adding the “substitute” action leads to higher recommendation performance on casual

users; it also takes more epochs for the model to converge. Similarly, the proposed L2Aug can

96

also be extended to support other actions like “reorder” and “insert”. Based on the observation, it

can be conjectured that the proposed framework is capable of handling various editing actions for

sequential data augmentation.

0 25 50 75 100 125 150 175
Epoch

2.50

2.75

3.00

3.25

3.50

3.75

4.00

4.25
Te

st
in

g
ND

CG
@

5
(%

)
w/ Substitute
Drop, Keep

Figure 5.10: L2Aug is easily extended to support more actions (i.e., substitute) with improved
casual user recommendation.

Flexibility in Online Setup. The experiments so far are in offline settings, taking the observed user

response on recommendations provided by the system as the ground-truth. Offline experiments

have the drawback that we are not able to observe user response on counterfactual recommenda-

tions, i.e., items that were not shown to the users. To further evaluate the capability of the proposed

model for real-world applications, we also conduct online experiments with simulation. We follow

[152] to set up the online simulation environment. Given the user’s historical interactions and any

recommendation candidate, it simulates the user response based on memory matching. This allows

us to evaluate models on real-time responses (i.e., ratings) obtained from the simulator instead of

relying on offline metrics. In the online experiment, we adopt the public MovieLen 100K dataset

and split it into 7 : 3 for training and testing, respectively. We treat users of the top 30% visiting

frequency as core users and the rest as casual users. In Figure 5.11 and 5.12, DQN [153] is the deep

Q-learning method and LIRD [152] is the state-of-the-art for list-wise recommendation. We use

97

them as the recommenders (i.e., target model) in the L2Aug framework. Combined with L2Aug,

both achieve improved performance on casual and core user recommendation under different list

sizes, which further corroborates the efficacy of L2Aug under different recommendation scenarios.

Casual Users Core Users

2.6

2.8

3.0

3.2

3.4
Av

er
ag

e
Re

wa
rd

DQN
DQN w/ L2Aug
LIRD
LIRD w/ L2Aug

Figure 5.11: Online test for List-wise Recommendation with List Size=1.

Casual Users Core Users

3.6

3.8

4.0

4.2

4.4

Av
er

ag
e

Re
wa

rd

DQN
DQN w/ L2Aug
LIRD
LIRD w/ L2Aug

Figure 5.12: Online test for List-wise Recommendation with List Size=4.

5.4 Conclusion and Future Work

To enable a recommendation systems to be sustainable and robust to the imperfection in real-

world environments, in this section, we firstly propose a novel framework MetaTL to improve

98

sequential recommendation for cold-start users. To enable the fast adaptation to cold-start users,

we reformulate our task as a few-shot learning problem and adopt meta-learning for solving the

problem. Powered by a translation-based architecture, the model is able to capture the transition

patterns from the transition pairs. Meanwhile, given a pool of few-shot user preference transition

tasks that mimic the targeted cold-start scenarios, MetaTL learns a model which can be adapted

to new users with just a few interactions in a meta-learning fashion. With experiments on three

real-world datasets, the proposed MetaTL can bring in significant improvement compared with the

state-of-the-art methods.

Secondly, we focus on the imperfection introduced by casual users, who visit the service oc-

casionally but may leave a few interactions. To bridge the gap between recommendation for core

users and casual users, we propose a model-agnostic framework L2Aug to learn the data augmenta-

tion policy and improve the recommendation system with the generated data. With experiments on

four real-world public datasets, the proposed L2Aug can outperform other treatment methods and

improve casual user recommendation without sacrificing the recommendation for core users. Fur-

thermore, L2Aug is flexible in supporting multiple augmentation actions and different experimental

(i.e., offline and online) setups.

In the future, we are interested in extending the model to learn the order of multiple transitional

pairs. We are also interested in extending the “learning to augment” concept to other application

scenarios (e.g., cross-domain, cold-start) for improving the robustness and adaptivity of different

recommendation systems. Moreover, we are interested in extending our augmentation policy from

the bandit setup studied here to the reinforcement learning setup, where the agent chooses editing

actions depending on its previous decisions.

99

6. CONCLUSION AND FUTURE RESEARCH OPPORTUNITIES

Recommendation systems have become indispensable in everyone’s daily life and alleviate the

severe information overload issue by helping users find items of interest (e.g. products, services

or social content). In this dissertation, we aim to lay the foundations for a new class of sustain-

able recommendation systems. By sustainable, we mean a recommendation system should be

fundamentally long-lived, while enhancing both current and future potential to connect users with

interesting content. Concretely, we focus on sustainability from three perspectives: adaptivity,

resilience and robustness. Inspired by efforts to balance static latent factors with temporal dy-

namics, with efforts to model users over time, and with recent success in Graph Neural Networks

and Meta-learning, we make three unique contributions toward sustainable recommendation sys-

tems: (i) we develop recommendation models which are highly adaptive to the temporal dynamics

present in platforms via balancing both the instant shift in user engagement with the lifelong evolu-

tion of users and items; (ii) by capturing the influence from the “backbone” – key opinion leaders

to the communities, we enable recommendation systems to be resilient to dramatic changes in-

cluding churn in new items and users, and frequently updated connections between users in online

communities; and (iii) we explore the problem of training a robust recommendation system under

imperfect environments and propose a learning-to-learn cold-start user recommendation system

and a learning-to-augment framework for improving casual user recommendation.

Though we have seen the great success in recommendation systems for improving the user ex-

perience and provide a long-lived foundation for ongoing engagement, there still many challenges

that have not been appropriately addressed. With respect to future work, we are quite interesting

in the following directions:

• Privacy-preserving Recommendation Systems. The social and ethical concerns raised by

recommendation systems are increasingly attracting attention. In particular, privacy leak-

age is a critical problem since it can lead to damaging outcomes, e.g., a malicious attacker

100

can infer the victim’s political affiliation or health condition via recommendations on TV

shows or medical items, and further abuse the private information for financial benefits

[154, 155, 156]. This leakage could be due to factors like: (i) the output of a collaborative

filtering-based recommendation systems usually encodes other users’ sensitive interactions

and profile information; and (ii) the recommendation systems themselves may be untrust-

worthy and engage in malicious behaviors. To protect users against private-attribute infer-

ence attacks, we can potentially frame the problem as an attribute isolation and decoupling

problem. In order to prevent the sensitive information from being leaked by the malicious

recommendation systems, federated learning can be a privacy-guarantee solution since it

facilitates distributed collaborative learning while keeping all the training data on (personal)

devices.

• Anomaly Detection Meets Recommendation Systems. Recommendation systems are highly

vulnerable to noise or outliers. For example, there may be fake feedback left by fraudulent

users and mistaken interactions made by normal users, and such information may hurt the

training process and then result in unreliable recommendations. There are lots of recent ef-

forts on detecting anomalies or outliers from graph-structured data or time-series data [157].

While recommendation systems aim to predict the desired interactions, the deviation of the

observed situation from the desired pattern is what many anomaly detection methods rely

on to measure the degree of abnormality. Therefore, it would be reasonable to combine the

task of training a recommendation system and detecting anomalies (e.g., irregular behaviors

or abnormal users), leading to a framework which can accurately detect the anomalies in the

platform and generate robust recommendations jointly.

• Lifelong and Continual Learning Recommendation Systems. Learning continuously by

accumulating the knowledge learned in the past and using the knowledge to help learn more

and learn better, remains a key obstacle to achieving human-level intelligence for many ML-

based models including recommendation systems. To achieve this goal, lifelong and con-

101

tinual learning, referred to as the continuous learning ability of an AI algorithm throughout

its lifespan, attracts lots of attention recently [158, 159, 160]. With the continuous streams

of information along time and across platforms existing in many real-world applications, we

are interested in endowing recommendation systems with such a “lifelong” and “continual”

learning capacity. Specifically, it can lead to solutions to these research problems: (i) how

to apply real time updates (i.e., retrain) on complex neural recommendation models in an

online fashion? (ii) how to support transfer learning in recommendation systems without

catastrophic forgetting, but also foreknowledge of task similarity? and (iii) how to fine-tune

the recommendation models across sessions to emphasize the need in the current session

while also remembering the shareable goal?

102

REFERENCES

[1] D. W. Oard, J. Kim, et al., “Implicit feedback for recommender systems,” in Proceedings of

the AAAI workshop on recommender systems, 1998.

[2] Y. Koren, “Factorization meets the neighborhood: a multifaceted collaborative filtering

model,” in CIKM, 2008.

[3] Y. Hu, Y. Koren, and C. Volinsky, “Collaborative filtering for implicit feedback datasets.,”

in ICDM, 2008.

[4] S. Rendle, C. Freudenthaler, Z. Gantner, and L. Schmidt-Thieme, “Bpr: Bayesian personal-

ized ranking from implicit feedback,” in UAI, 2009.

[5] S. Sedhain, A. K. Menon, S. Sanner, and L. Xie, “Autorec: Autoencoders meet collaborative

filtering,” in WWW, 2015.

[6] B. Hidasi, A. Karatzoglou, L. Baltrunas, and D. Tikk, “Session-based recommendations

with recurrent neural networks,” arXiv preprint arXiv:1511.06939, 2015.

[7] X. Wang, X. He, M. Wang, F. Feng, and T.-S. Chua, “Neural graph collaborative filtering,”

in SIGIR, 2019.

[8] R. Ying, R. He, K. Chen, P. Eksombatchai, W. L. Hamilton, and J. Leskovec, “Graph con-

volutional neural networks for web-scale recommender systems,” in KDD, 2018.

[9] C.-Y. Wu, A. Ahmed, A. Beutel, A. J. Smola, and H. Jing, “Recurrent recommender net-

works,” in WSDM, 2017.

[10] L. R. Flynn, R. E. Goldsmith, and J. K. Eastman, “Opinion leaders and opinion seekers:

Two new measurement scales,” Journal of the academy of marketing science, 1996.

[11] A. Shoham and A. Ruvio, “Opinion leaders and followers: A replication and extension,”

Psychology & Marketing, vol. 25, no. 3, pp. 280–297, 2008.

103

[12] X. He, L. Liao, H. Zhang, L. Nie, X. Hu, and T.-S. Chua, “Neural collaborative filtering,” in

WWW, 2017.

[13] Y. Wu, C. DuBois, A. X. Zheng, and M. Ester, “Collaborative denoising auto-encoders for

top-n recommender systems,” in WSDM, 2016.

[14] Y. Koren, “Collaborative filtering with temporal dynamics,” Communications of the ACM,

2010.

[15] Y. Koren, R. Bell, and C. Volinsky, “Matrix factorization techniques for recommender sys-

tems,” Computer, 2009.

[16] S. Rendle, C. Freudenthaler, and L. Schmidt-Thieme, “Factorizing personalized markov

chains for next-basket recommendation,” in WWW, 2010.

[17] R. He and J. McAuley, “Fusing similarity models with markov chains for sparse sequential

recommendation,” in ICDM, 2016.

[18] J. Wang and J. Caverlee, “Recurrent recommendation with local coherence,” in WSDM,

2019.

[19] B. Hidasi and A. Karatzoglou, “Recurrent neural networks with top-k gains for session-

based recommendations,” in CIKM, 2018.

[20] J. Tang and K. Wang, “Personalized top-n sequential recommendation via convolutional

sequence embedding,” in WSDM, 2018.

[21] F. Yuan, A. Karatzoglou, I. Arapakis, J. M. Jose, and X. He, “A simple convolutional gener-

ative network for next item recommendation,” in WSDM, 2019.

[22] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Ł. Kaiser, and

I. Polosukhin, “Attention is all you need,” in NeurIPS, 2017.

[23] W.-C. Kang and J. McAuley, “Self-attentive sequential recommendation,” in ICDM, 2018.

[24] F. Sun, J. Liu, J. Wu, C. Pei, X. Lin, W. Ou, and P. Jiang, “Bert4rec: Sequential recommen-

dation with bidirectional encoder representations from transformer,” 2019.

104

[25] S. Wu, Y. Tang, Y. Zhu, L. Wang, X. Xie, and T. Tan, “Session-based recommendation with

graph neural networks,” in AAAI, 2019.

[26] J. Wang, K. Ding, L. Hong, H. Liu, and J. Caverlee, “Next-item recommendation with

sequential hypergraphs,” in SIGIR, 2020.

[27] C. Ma, L. Ma, Y. Zhang, J. Sun, X. Liu, and M. Coates, “Memory augmented graph neural

networks for sequential recommendation,” in AAAI, 2020.

[28] P. Jiang, Y. Zhu, Y. Zhang, and Q. Yuan, “Life-stage prediction for product recommendation

in e-commerce,” in KDD, 2015.

[29] K. Ren, J. Qin, Y. Fang, W. Zhang, L. Zheng, W. Bian, G. Zhou, J. Xu, Y. Yu, X. Zhu,

et al., “Lifelong sequential modeling with personalized memorization for user response pre-

diction,” in SIGIR, 2019.

[30] R. He, W.-C. Kang, and J. McAuley, “Translation-based recommendation,” in RecSys, 2017.

[31] J. McAuley, C. Targett, Q. Shi, and A. Van Den Hengel, “Image-based recommendations on

styles and substitutes,” in SIGIR, 2015.

[32] Z. Cheng, J. Shen, L. Zhu, M. S. Kankanhalli, and L. Nie, “Exploiting music play sequence

for music recommendation.,” in IJCAI, 2017.

[33] M. Grbovic, V. Radosavljevic, N. Djuric, N. Bhamidipati, J. Savla, V. Bhagwan, and

D. Sharp, “E-commerce in your inbox: Product recommendations at scale,” in KDD, 2015.

[34] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean, “Distributed representations

of words and phrases and their compositionality,” in NeurIPS, 2013.

[35] Y. Koren, “Collaborative filtering with temporal dynamics,” in KDD, 2009.

[36] A. Anderson, R. Kumar, A. Tomkins, and S. Vassilvitskii, “The dynamics of repeat con-

sumption,” in TheWebConf, 2014.

[37] R. Bhagat, S. Muralidharan, A. Lobzhanidze, and S. Vishwanath, “Buy it again: Modeling

repeat purchase recommendations,” in KDD, 2018.

105

[38] P. Ren, Z. Chen, J. Li, Z. Ren, J. Ma, and M. de Rijke, “Repeatnet: A repeat aware neural

recommendation machine for session-based recommendation,” in AAAI, 2019.

[39] C. Wang, M. Zhang, W. Ma, Y. Liu, and S. Ma, “Modeling item-specific temporal dynamics

of repeat consumption for recommender systems,” in TheWebConf, 2019.

[40] M. Quadrana, A. Karatzoglou, B. Hidasi, and P. Cremonesi, “Personalizing session-based

recommendations with hierarchical recurrent neural networks,” in RecSys, 2017.

[41] H. Ying, F. Zhuang, F. Zhang, Y. Liu, G. Xu, X. Xie, H. Xiong, and J. Wu, “Sequential

recommender system based on hierarchical attention networks,” in IJCAI, 2018.

[42] H. Li, Y. Ge, D. Lian, and H. Liu, “Learning user’s intrinsic and extrinsic interests for point-

of-interest recommendation: A unified approach.,” in IJCAI, 2017.

[43] B. M. Sarwar, G. Karypis, J. A. Konstan, J. Riedl, et al., “Item-based collaborative filtering

recommendation algorithms.,” WWW, 2001.

[44] A. Miller, A. Fisch, J. Dodge, A.-H. Karimi, A. Bordes, and J. Weston, “Key-value memory

networks for directly reading documents,” arXiv preprint arXiv:1606.03126, 2016.

[45] S. Agarwal, K. Branson, and S. Belongie, “Higher order learning with graphs,” in ICML,

2006.

[46] Y. Feng, H. You, Z. Zhang, R. Ji, and Y. Gao, “Hypergraph neural networks,” in AAAI, 2019.

[47] H. Dai, Y. Wang, R. Trivedi, and L. Song, “Recurrent coevolutionary latent feature pro-

cesses for continuous-time recommendation,” in Proceedings of the 1st Workshop on Deep

Learning for Recommender Systems, 2016.

[48] T. N. Kipf and M. Welling, “Semi-supervised classification with graph convolutional net-

works,” arXiv preprint arXiv:1609.02907, 2016.

[49] W. Hamilton, Z. Ying, and J. Leskovec, “Inductive representation learning on large graphs,”

in NeurIPS, 2017.

106

[50] P. Veličković, G. Cucurull, A. Casanova, A. Romero, P. Lio, and Y. Bengio, “Graph attention

networks,” arXiv preprint arXiv:1710.10903, 2017.

[51] K. Ding, J. Li, R. Bhanushali, and H. Liu, “Deep anomaly detection on attributed networks,”

in SDM, 2019.

[52] K. Ding, Y. Li, J. Li, C. Liu, and H. Liu, “Feature interaction-aware graph neural networks,”

arXiv preprint arXiv:1908.07110, 2019.

[53] W. Fan, Y. Ma, Q. Li, Y. He, E. Zhao, J. Tang, and D. Yin, “Graph neural networks for social

recommendation,” in WWW, 2019.

[54] L. Wu, P. Sun, Y. Fu, R. Hong, X. Wang, and M. Wang, “A neural influence diffusion model

for social recommendation,” arXiv preprint arXiv:1904.10322, 2019.

[55] J. Wang, K. Ding, Z. Zhu, Y. Zhang, and J. Caverlee, “Key opinion leaders in recommenda-

tion systems: Opinion elicitation and diffusion,” in WSDM, 2020.

[56] R. v. d. Berg, T. N. Kipf, and M. Welling, “Graph convolutional matrix completion,” arXiv

preprint arXiv:1706.02263, 2017.

[57] L. Xiang, Q. Yuan, S. Zhao, L. Chen, X. Zhang, Q. Yang, and J. Sun, “Temporal recom-

mendation on graphs via long-and short-term preference fusion,” in KDD, 2010.

[58] W. Song, Z. Xiao, Y. Wang, L. Charlin, M. Zhang, and J. Tang, “Session-based social

recommendation via dynamic graph attention networks,” in WSDM, 2019.

[59] J. Bu, S. Tan, C. Chen, C. Wang, H. Wu, L. Zhang, and X. He, “Music recommendation by

unified hypergraph: combining social media information and music content,” in MM, 2010.

[60] L. Li and T. Li, “News recommendation via hypergraph learning: encapsulation of user

behavior and news content,” in WSDM, 2013.

[61] Y. Zhu, Z. Guan, S. Tan, H. Liu, D. Cai, and X. He, “Heterogeneous hypergraph embedding

for document recommendation,” Neurocomputing, vol. 216, pp. 150–162, 2016.

107

[62] D. Yang, B. Qu, J. Yang, and P. Cudre-Mauroux, “Revisiting user mobility and social rela-

tionships in lbsns: a hypergraph embedding approach,” in WWW, 2019.

[63] S. Bai, F. Zhang, and P. H. Torr, “Hypergraph convolution and hypergraph attention,” arXiv

preprint arXiv:1901.08150, 2019.

[64] J. Atwood and D. Towsley, “Diffusion-convolutional neural networks,” in NeurIPS, 2016.

[65] C. Ma, P. Kang, and X. Liu, “Hierarchical gating networks for sequential recommendation,”

in KDD, 2019.

[66] M. De Veirman, V. Cauberghe, and L. Hudders, “Marketing through instagram influencers:

the impact of number of followers and product divergence on brand attitude,” International

Journal of Advertising, 2017.

[67] L. V. Casaló, C. Flavián, and S. Ibáñez-Sánchez, “Influencers on instagram: Antecedents

and consequences of opinion leadership,” Journal of Business Research, 2018.

[68] Y. Zhang and J. Caverlee, “Instagrammers, fashionistas, and me: Recurrent fashion recom-

mendation with implicit visual influence,” in CIKM, 2019.

[69] T. Tucker, “Online word of mouth: characteristics of yelp. com reviews,” Elon Journal of

Undergraduate Research in Communications, vol. 2, no. 1, pp. 37–42, 2011.

[70] L. Zhu, G. Yin, and W. He, “Is this opinion leader’s review useful? peripheral cues for online

review helpfulness,” Journal of Electronic Commerce Research, vol. 15, no. 4, p. 267, 2014.

[71] R. Neves-Silva, M. Gamito, P. Pina, and A. R. Campos, “Modelling influence and reach in

sentiment analysis,” Procedia CIRP, vol. 47, pp. 48–53, 2016.

[72] W.-T. Hsieh, T. Ku, C.-M. Wu, and S.-c. T. Chou, “Social event radar: a bilingual context

mining and sentiment analysis summarization system,” in Proceedings of the ACL 2012

System Demonstrations, pp. 163–168, Association for Computational Linguistics, 2012.

[73] J.-H. Yang, C.-M. Chen, C.-J. Wang, and M.-F. Tsai, “Hop-rec: high-order proximity for

implicit recommendation,” in RecSys, 2018.

108

[74] M. Thelwall and K. Kousha, “Goodreads: A social network site for book readers,” JASIST,

no. 4, pp. 972–983, 2017.

[75] S. Wu, J. M. Hofman, W. A. Mason, and D. J. Watts, “Who says what to whom on twitter,”

in WWW, 2011.

[76] Y. Yang, J. Tang, C. W.-k. Leung, Y. Sun, Q. Chen, J. Li, and Q. Yang, “Rain: Social

role-aware information diffusion.,” in AAAI, 2015.

[77] R. He and J. McAuley, “Vbpr: visual bayesian personalized ranking from implicit feed-

back,” in AAAI, 2016.

[78] W. Niu, J. Caverlee, and H. Lu, “Neural personalized ranking for image recommendation,”

in WSDM, 2018.

[79] G. Karamanolakis, K. R. Cherian, A. R. Narayan, J. Yuan, D. Tang, and T. Jebara, “Item

recommendation with variational autoencoders and heterogeneous priors,” in Proceedings

of the 3rd Workshop on Deep Learning for Recommender Systems, pp. 10–14, 2018.

[80] F. Zhang, N. J. Yuan, D. Lian, X. Xie, and W.-Y. Ma, “Collaborative knowledge base em-

bedding for recommender systems,” in KDD, 2016.

[81] A. Van den Oord, S. Dieleman, and B. Schrauwen, “Deep content-based music recommen-

dation,” in NeurIPS, 2013.

[82] Y. Cao, X. Wang, X. He, Z. Hu, and C. Tat-seng, “Unifying knowledge graph learning and

recommendation: Towards a better understanding of user preference,” in WWW, 2019.

[83] H. Wang, F. Zhang, M. Zhao, W. Li, X. Xie, and M. Guo, “Multi-task feature learning for

knowledge graph enhanced recommendation,” in WWW, 2019.

[84] A. Bordes, N. Usunier, A. Garcia-Duran, J. Weston, and O. Yakhnenko, “Translating em-

beddings for modeling multi-relational data,” in NeurIPS, 2013.

[85] Z. Wang, J. Zhang, J. Feng, and Z. Chen, “Knowledge graph embedding by translating on

hyperplanes,” in AAAI, 2014.

109

[86] Y. Lin, Z. Liu, M. Sun, Y. Liu, and X. Zhu, “Learning entity and relation embeddings for

knowledge graph completion,” in AAAI, 2015.

[87] G. Ji, S. He, L. Xu, K. Liu, and J. Zhao, “Knowledge graph embedding via dynamic mapping

matrix,” in ACL, 2015.

[88] J. Chen, H. Zhang, X. He, L. Nie, W. Liu, and T.-S. Chua, “Attentive collaborative filtering:

Multimedia recommendation with item-and component-level attention,” in SIGIR, 2017.

[89] X. Tang, Y. Li, Y. Sun, H. Yao, P. Mitra, and S. Wang, “Robust graph neural network against

poisoning attacks via transfer learning,” in arXiv preprint arXiv:1908.07558, 2019.

[90] Y. Sun, S. Wang, X. Tang, T.-Y. Hsieh, and V. Honavar, “Node injection attacks on graphs

via reinforcement learning,” in arXiv preprint arXiv:1909.06543, 2019.

[91] T. N. Kipf and M. Welling, “Variational graph auto-encoders,” NIPS Workshop on Bayesian

Deep Learning, 2016.

[92] Z. Zhu, J. Wang, and J. Caverlee, “Improving top-k recommendation via joint collaborative

autoencoders,” in WWW, 2019.

[93] J. Tang, H. Gao, and H. Liu, “mtrust: discerning multi-faceted trust in a connected world,”

in WSDM, 2012.

[94] L. v. d. Maaten and G. Hinton, “Visualizing data using t-sne,” Journal of machine learning

research, vol. 9, no. Nov, pp. 2579–2605, 2008.

[95] J. Yin, C. Liu, W. Wang, J. Sun, and S. C. Hoi, “Learning transferrable parameters for

long-tailed sequential user behavior modeling,” in KDD, 2020.

[96] H. Lee, J. Im, S. Jang, H. Cho, and S. Chung, “Melu: Meta-learned user preference estimator

for cold-start recommendation,” in KDD, 2019.

[97] J. Li, M. Jing, K. Lu, L. Zhu, Y. Yang, and Z. Huang, “From zero-shot learning to cold-start

recommendation,” in AAAI, 2019.

110

[98] Z. Zhu, S. Sefati, P. Saadatpanah, and J. Caverlee, “Recommendation for new users and new

items via randomized training and mixture-of-experts transformation,” in SIGIR, 2020.

[99] N. Mirbakhsh and C. X. Ling, “Improving top-n recommendation for cold-start users via

cross-domain information,” in TKDD, 2015.

[100] S. Kang, J. Hwang, D. Lee, and H. Yu, “Semi-supervised learning for cross-domain recom-

mendation to cold-start users,” in CIKM, 2019.

[101] Y. Bi, L. Song, M. Yao, Z. Wu, J. Wang, and J. Xiao, “Dcdir: A deep cross-domain recom-

mendation system for cold start users in insurance domain,” in SIGIR, 2020.

[102] O. Vinyals, C. Blundell, T. Lillicrap, D. Wierstra, et al., “Matching networks for one shot

learning,” in NeurIPS, 2016.

[103] J. Snell, K. Swersky, and R. Zemel, “Prototypical networks for few-shot learning,” in

NeurIPS, 2017.

[104] K. Ding, J. Wang, J. Li, K. Shu, C. Liu, and H. Liu, “Graph prototypical networks for

few-shot learning on attributed networks,” in CIKM, 2020.

[105] G. Koch, R. Zemel, and R. Salakhutdinov, “Siamese neural networks for one-shot image

recognition,” in ICML deep learning workshop, 2015.

[106] A. Santoro, S. Bartunov, M. Botvinick, D. Wierstra, and T. Lillicrap, “Meta-learning with

memory-augmented neural networks,” in ICML, 2016.

[107] A. Nichol, J. Achiam, and J. Schulman, “On first-order meta-learning algorithms,” in arXiv

preprint arXiv:1803.02999, 2018.

[108] C. Finn, P. Abbeel, and S. Levine, “Model-agnostic meta-learning for fast adaptation of

deep networks,” in ICML, 2017.

[109] K. Ding, Q. Zhou, H. Tong, and H. Liu, “Few-shot network anomaly detection via cross-

network meta-learning,” in The Web Conference, 2021.

111

[110] Z. Gantner, L. Drumond, C. Freudenthaler, S. Rendle, and L. Schmidt-Thieme, “Learning

attribute-to-feature mappings for cold-start recommendations,” in ICDM, 2010.

[111] M. Volkovs, G. Yu, and T. Poutanen, “Dropoutnet: Addressing cold start in recommender

systems,” in NeurIPS, 2017.

[112] M. Vartak, A. Thiagarajan, C. Miranda, J. Bratman, and H. Larochelle, “A meta-learning

perspective on cold-start recommendations for items,” in NeurIPS, 2017.

[113] T. Wei, Z. Wu, R. Li, Z. Hu, F. Feng, X. He, Y. Sun, and W. Wang, “Fast adaptation for

cold-start collaborative filtering with meta-learning,” ICDM, 2020.

[114] F. Pan, S. Li, X. Ao, P. Tang, and Q. He, “Warm up cold-start advertisements: Improving

ctr predictions via learning to learn id embeddings,” in SIGIR, 2019.

[115] M. Chen, W. Zhang, W. Zhang, Q. Chen, and H. Chen, “Meta relational learning for few-

shot link prediction in knowledge graphs,” in EMNLP, 2019.

[116] F. Buttle, Customer relationship management. Routledge, 2004.

[117] M. Chen, Y. Wang, C. Xu, Y. Le, M. Sharma, L. Richardson, S.-L. Wu, and E. Chi, “Values

of user exploration in recommender systems,” in RecSys, 2021.

[118] Y. Zheng, S. Liu, Z. Li, and S. Wu, “Cold-start sequential recommendation via meta learner,”

in AAAI, 2020.

[119] F. Zhu, Y. Wang, C. Chen, J. Zhou, L. Li, and G. Liu, “Cross-domain recommendation:

challenges, progress, and prospects,” in IJCAI, 2021.

[120] M. M. Khan, R. Ibrahim, and I. Ghani, “Cross domain recommender systems: a systematic

literature review,” in CSUR, 2017.

[121] Y. Ganin, E. Ustinova, H. Ajakan, P. Germain, H. Larochelle, F. Laviolette, M. Marchand,

and V. Lempitsky, “Domain-adversarial training of neural networks,” in JMLR, 2016.

[122] C. Zhao, C. Li, R. Xiao, H. Deng, and A. Sun, “Catn: Cross-domain recommendation for

cold-start users via aspect transfer network,” in SIGIR, 2020.

112

[123] T. Kim, M. Cha, H. Kim, J. K. Lee, and J. Kim, “Learning to discover cross-domain relations

with generative adversarial networks,” in ICML, 2017.

[124] E. D. Cubuk, B. Zoph, D. Mane, V. Vasudevan, and Q. V. Le, “Autoaugment: Learning

augmentation strategies from data,” in CVPR, 2019.

[125] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with deep convolu-

tional neural networks,” in NeurIPS, 2012.

[126] T. Ko, V. Peddinti, D. Povey, and S. Khudanpur, “Audio augmentation for speech recogni-

tion,” in Interspeech, 2015.

[127] J. Wei and K. Zou, “Eda: Easy data augmentation techniques for boosting performance on

text classification tasks,” EMNLP, 2019.

[128] T. Chen, S. Kornblith, M. Norouzi, and G. Hinton, “A simple framework for contrastive

learning of visual representations,” in ICML, PMLR, 2020.

[129] K. He, H. Fan, Y. Wu, S. Xie, and R. Girshick, “Momentum contrast for unsupervised visual

representation learning,” in CVPR, 2020.

[130] A. Beutel, E. H. Chi, Z. Cheng, H. Pham, and J. Anderson, “Beyond globally optimal:

Focused learning for improved recommendations,” in TheWebConf, 2017.

[131] M. Luo, F. Chen, P. Cheng, Z. Dong, X. He, J. Feng, and Z. Li, “Metaselector: Meta-learning

for recommendation with user-level adaptive model selection,” in TheWebConf, 2020.

[132] M. Ekstrand and J. Riedl, “When recommenders fail: predicting recommender failure for

algorithm selection and combination,” in RecSys, 2012.

[133] B. Wang, M. Qiu, X. Wang, Y. Li, Y. Gong, X. Zeng, J. Huang, B. Zheng, D. Cai, and

J. Zhou, “A minimax game for instance based selective transfer learning,” in KDD, 2019.

[134] M. D. Ekstrand, A. Chaney, P. Castells, R. Burke, D. Rohde, and M. Slokom, “Simurec:

Workshop on synthetic data and simulation methods for recommender systems research,” in

RecSys, 2021.

113

[135] Q. Wen, L. Sun, F. Yang, X. Song, J. Gao, X. Wang, and H. Xu, “Time series data augmen-

tation for deep learning: A survey,” arXiv preprint arXiv:2002.12478, 2020.

[136] X. Cui, V. Goel, and B. Kingsbury, “Data augmentation for deep neural network acoustic

modeling,” in TASLP, 2015.

[137] S. Kobayashi, “Contextual augmentation: Data augmentation by words with paradigmatic

relations,” in NAACL-HLT, 2018.

[138] M. Gao, J. Zhang, J. Yu, J. Li, J. Wen, and Q. Xiong, “Recommender systems based on gen-

erative adversarial networks: A problem-driven perspective,” Information Sciences, 2021.

[139] D.-K. Chae, J.-S. Kang, S.-W. Kim, and J. Choi, “Rating augmentation with generative

adversarial networks towards accurate collaborative filtering,” in TheWebConf, 2019.

[140] A. Antoniou, A. Storkey, and H. Edwards, “Data augmentation generative adversarial net-

works,” arXiv preprint arXiv:1711.04340, 2017.

[141] D. Croce, G. Castellucci, and R. Basili, “Gan-bert: Generative adversarial learning for ro-

bust text classification with a bunch of labeled examples,” in ACL, 2020.

[142] X. Xie, F. Sun, Z. Liu, S. Wu, J. Gao, B. Ding, and B. Cui, “Contrastive learning for se-

quential recommendation,” 2021.

[143] Z. Yao, J. R. Peddamail, and H. Sun, “Coacor: Code annotation for code retrieval with

reinforcement learning,” in TheWebConf, 2019.

[144] K. Zhang, C. Xiong, Z. Liu, and Z. Liu, “Selective weak supervision for neural information

retrieval,” in TheWebConf, 2020.

[145] K. Ding, D. Li, A. H. Li, X. Fan, C. Guo, Y. Liu, and H. Liu, “Learning to selectively learn

for weakly-supervised paraphrase generation,” in EMNLP, 2021.

[146] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural computation, vol. 9,

no. 8, pp. 1735–1780, 1997.

114

[147] D. Rolnick, A. Ahuja, J. Schwarz, T. P. Lillicrap, and G. Wayne, “Experience replay for

continual learning,” arXiv preprint arXiv:1811.11682, 2018.

[148] M. Wan and J. McAuley, “Item recommendation on monotonic behavior chains,” in RecSys,

2018.

[149] P. Lahoti, A. Beutel, J. Chen, K. Lee, F. Prost, N. Thain, X. Wang, and E. H. Chi, “Fairness

without demographics through adversarially reweighted learning,” in NeurIPS, 2020.

[150] G. Salton and M. J. McGill, Introduction to modern information retrieval. mcgraw-hill,

1983.

[151] J. S. Breese, D. Heckerman, and C. Kadie, “Empirical analysis of predictive algorithms for

collaborative filtering,” arXiv preprint arXiv:1301.7363, 2013.

[152] X. Zhao, L. Zhang, L. Xia, Z. Ding, D. Yin, and J. Tang, “Deep reinforcement learning for

list-wise recommendations,” 2019.

[153] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wierstra, and M. Ried-

miller, “Playing atari with deep reinforcement learning,” arXiv preprint arXiv:1312.5602,

2013.

[154] B. Mobasher, R. Burke, R. Bhaumik, and C. Williams, “Toward trustworthy recommender

systems: An analysis of attack models and algorithm robustness,” TOIT, 2007.

[155] V. Nikolaenko, S. Ioannidis, U. Weinsberg, M. Joye, N. Taft, and D. Boneh, “Privacy-

preserving matrix factorization,” in CCS, 2013.

[156] X. Meng, S. Wang, K. Shu, J. Li, B. Chen, H. Liu, and Y. Zhang, “Personalized privacy-

preserving social recommendation,” in AAAI, 2018.

[157] G. Pang, C. Shen, L. Cao, and A. V. D. Hengel, “Deep learning for anomaly detection: A

review,” in CSUR, 2021.

[158] B. Liu, “Learning on the job: Online lifelong and continual learning,” in AAAI, 2020.

115

[159] A. A. Rusu, N. C. Rabinowitz, G. Desjardins, H. Soyer, J. Kirkpatrick, K. Kavukcuoglu,

R. Pascanu, and R. Hadsell, “Progressive neural networks,” arXiv preprint

arXiv:1606.04671, 2016.

[160] G. I. Parisi, R. Kemker, J. L. Part, C. Kanan, and S. Wermter, “Continual lifelong learning

with neural networks: A review,” Neural Networks, 2019.

116

	ABSTRACT
	DEDICATION
	ACKNOWLEDGMENTS
	CONTRIBUTORS AND FUNDING SOURCES
	TABLE OF CONTENTS
	LIST OF FIGURES
	LIST OF TABLES
	Introduction
	Motivation and Challenges
	Dissertation Contributions
	Dissertation Overview

	BACKGROUND
	Modeling Foundation
	Inference Objective
	Rating-based Objective
	Pairwise Ranking-based Objective

	A Dynamic Setup – Sequential Recommendation

	Adaptivity: Balancing Instant Change and Lifelong Evolution
	Introduction
	Motivation
	Occasion Signals and Preference Shifting in Recommendation Systems
	Related Work
	Methodology
	Experiment

	Long-term Evolution and Short-term Correlation in Recommendation Systems
	Related Work
	Methodology
	Experiment

	Conclusion and Future Work

	Resilience: Identifying the Resilient Recommender ``Backbone''
	Introduction
	Motivation
	Related Work

	Methodology
	Problem Setting and Notation
	``Backbone'' Opinion Elicitation
	``Backbone'' Opinion Diffusion

	Experiment
	Conclusion and Future Work

	Robustness: Learning from Imperfect Environments
	Introduction
	Learning-to-adapt for Cold-start Users
	Related Work
	Methodology
	Experiment

	Learning-to-augment for Casual Users
	Motivation
	Related Work
	Methodology
	Experiment

	Conclusion and Future Work

	Conclusion and Future Research Opportunities
	REFERENCES

