
DEVELOPING AN INTEGRATED GUIDANCE AND CONTROL SYSTEM FOR REACTIVE

FREE-FLYER MANEUVERING

A Thesis

by

MICHAEL C. MCCARTHY

Submitted to the Graduate and Professional School of
Texas A&M University

in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

Chair of Committee, Gregory Chamitoff
Committee Members, Srinivas Vadali

Daniel Selva
Nancy Currie-Gregg

Head of Department, Ivett Leyva

May 2022

Major Subject: Aerospace Engineering

Copyright 2022 Michael C. McCarthy

ABSTRACT

The use of highly autonomous free-flying spacecraft has been investigated for potential utility

in future human spaceflight endeavors. In general, ’free-flyer’ robots are small, self-sufficient

spacecraft that operate near the exterior of larger space structures, such as the International Space

Station, and are designed to provide support during various operations. Free-flyer designs and

concepts often include a large degree of autonomy to provide mission support with little operational

overhead.

One of the building blocks of autonomous free-flyer behavior is safe and reliable point-to-point

maneuvering during proximity operations. This thesis explores the development and simulation of

an integrated guidance and control (G&C) system to enable safe free-flyer point-to-point maneu-

vering in proximity to larger space structures, including the avoidance of collision and jet plume

impingement. The foundation for this system is an existing trajectory planning method introduced

by Roger [1]. This method represents the free-space as a discrete harmonic potential field and uses

the resulting field gradient as a condition for generating collision-free trajectories that efficiently

account for natural dynamics. A real-time guidance process is built around this method that can

manage an internal model of the environment based upon obstacle mapping data and react quickly

to dynamic obstacles. A linear-programming jet selection technique is implemented to fulfill six

DOF velocity impulse commands using a free-flyer’s RCS propulsion system, and additionally is

augmented to include jet plume impingement avoidance functionality. Finally, an attitude con-

troller process was developed and implemented to enable the free-flyer to reach and track a desired

attitude during translational maneuvers.

To verify the system’s capabilities, a test-bed simulation was developed using the SpaceCRAFT

platform, specifically utilizing it’s modular, asynchronous architecture. In a set of four maneuver-

ing tests set in distinct obstacle environments, the G&C system demonstrated the ability to ma-

neuver the free-flyer to the goal state along collision-free trajectories. In three of the test cases,

the plume avoidance strategy results in a large reduction in the accumulated plume cost (36-54%).

ii

Overall, these simulation results demonstrate that the system enabled point-to-point maneuvering

for a reference free-flyer design, and support its feasibility and practicality.

This work represents a somewhat unique approach to free-flyer autonomous maneuvering in

that it departs from a trajectory planning, or offline-online paradigm. Instead, this approach relies

on the refinement of an internal model of the environment and the resulting potential field to per-

form reactive path-finding. This approach results in better overall flexibility when the free-flyer

lacks knowledge of the position, geometry, and motion of nearby obstacles. In the future, the inte-

gration of Simultaneous Localization and Mapping (SLAM) and 3D mapping algorithms will help

to further verify the feasibility of this approach. Other future improvements include integrating

more robust methods of dynamic obstacle avoidance and automated positioning and scaling of the

potential field grid.

iii

DEDICATION

To my wonderful parents, sister, and fiancée for their endless love and support.

iv

ACKNOWLEDGMENTS

I would like to start by expressing my deep gratitude to Dr. Gregory Chamitoff for his men-

torship and support over the last several years. Working with Dr. Chamitoff in both my graduate

and undergraduate studies has exposed me to countless opportunities and broadened my horizons

as a student far beyond what I had previously imagined for myself. Additionally, I would like to

collectively thank the current and former students of the ASTRO Center, for all of their ambitious

work on the SpaceCRAFT platform and related projects as well as for making the lab such a great

place to learn and innovate.

The work presented in this thesis was performed during a difficult time for many around the

world. The COVID-19 pandemic continues to fundamentally change the structure of everyday life,

especially with the rise of remote-work. This thesis work was completed almost entirely remotely,

and therefore I would like to thank my committee members and academic advisors for their time

and their flexibility in these circumstances.

Finally, I would like to thank my fiancée Nicole and my family for their encouragement and

for keeping me grounded in this long, and sometimes difficult process. Only because of this love

and support was I able to achieve my goals.

v

CONTRIBUTORS AND FUNDING SOURCES

Contributors

This work was supported by a thesis committee consisting of Professor Gregory Chamitoff

acting as advisor and Professors Srinivas Vadali and Daniel Selva of the Department of Aerospace

Engineering and Professor Nancy Currie-Gregg of the Department of Industrial and Systems En-

gineering.

The SpaceCRAFT simulation software used to produce the results presented in this thesis was

developed by the students of the Texas A&M ASTRO Laboratory, including the author, under the

guidance of Professor Gregory Chamitoff. All other work conducted for the thesis was completed

by the student independently.

Funding Sources

During the research activities presented in this document, financial support was provided through

Teaching Assistantships in the Department of Aerospace Engineering and research grants and con-

tracts from the ASTRO Laboratory.

vi

NOMENCLATURE

ASTRO Admissible Subspace Trajectory Optimizer

AERCam Autonomous Extravehicular Robotic Camera

COTS Commercial Off-the-Shelf

CW Clohessy-Wiltshire

DOF Degrees of Freedom

EVA Extravehicular Activities

FOV Field of View

GIM Gradient Impulse Maneuvering

GN&C Guidance, Navigation, and Control

G&C Guidance and Control

ISS International Space Station

JSC Johnson Space Center

LQR Linear Quadratic Regulator

LTI Linear-Time-Invariant

LVLH Local-Vertical-Local-Horizontal

NASA National Aeronautics and Space Administration

PFG Potential Field Guidance

RCS Reaction Control System

RRT Rapidly-exploring Random Trees

SLAM Simultaneous Localization and Mapping

SPHERES Synchronized Position Hold, Engage, Re-orient Experimen-
tal Satellites

VR Virtual Reality

vii

TABLE OF CONTENTS

Page

ABSTRACT . ii

DEDICATION . iv

ACKNOWLEDGMENTS . v

CONTRIBUTORS AND FUNDING SOURCES . vi

NOMENCLATURE . vii

TABLE OF CONTENTS . viii

LIST OF FIGURES . xi

LIST OF TABLES. xiv

1. INTRODUCTION . 1

1.1 Robotic Free-Flyers . 1
1.1.1 Past Missions and Designs. 2
1.1.2 Future Mission Concepts . 4

1.2 Major Challenges . 5
1.2.1 Collision Avoidance. 5
1.2.2 Jet Plume Impingement . 6
1.2.3 Real-Time Operation. 7

1.3 Research Objectives . 7
1.4 Outline of Thesis . 9

2. BACKGROUND AND LITERATURE REVIEW .. 10

2.1 Free-Flyer Dynamics . 10
2.1.1 Relative Orbital Motion. 10
2.1.2 Impulsive Maneuvers . 12
2.1.3 Rotational Motion . 13

2.2 Path-Finding Concepts . 14
2.2.1 Reactive Path-Finding . 15
2.2.2 Configuration Space Representations . 16
2.2.3 Free-Space Graphs and Grids . 16
2.2.4 Potential Fields . 17

2.3 Applications of Path-Finding to Proximity Operations . 20

viii

2.3.1 Trajectory Planning Methods . 20
2.3.2 Reactive Proximity Operations . 22

2.4 Discussion . 23

3. REACTIVE GUIDANCE WITH HARMONIC POTENTIAL FIELDS . 25

3.1 Artificial Harmonic Potential Field Generation . 25
3.1.1 Discretization and Relaxation . 25
3.1.2 Trilinear Interpolation. 27
3.1.3 Potential Gradient . 28

3.2 Field-Based Reactive Guidance . 30
3.2.1 Gradient Implusive Maneuvering . 31
3.2.2 Gradient-Velocity Control Law. 31

3.3 Potential Field Management . 33
3.3.1 Internal Obstacle Model . 34
3.3.2 Evasion Mode . 35

3.4 Final Guidance Process . 35

4. INTEGRATED GUIDANCE AND CONTROL SYSTEM .. 37

4.1 Attitude Controller . 37
4.1.1 Attitude Error as Axis-Angle Parameters . 37
4.1.2 Axis-Angle Deadband Control Law. 38
4.1.3 Final Attitude Controller Logic . 40

4.2 Jet Selection and Firing Manager . 41
4.2.1 Jet Selection as a Linear Programming Problem . 41
4.2.2 Processing Input ∆V Commands . 42
4.2.3 Output Jet Firing Commands and Execution . 43

4.3 Plume Impingement Avoidance . 44
4.3.1 Plume-Fuel Optimal Jet Selection . 44
4.3.2 Plume Cost Function . 45
4.3.3 Integration of Plume Cost Calculations . 46

4.4 Integrated System . 47

5. FREE-FLYER TEST-BED SIMULATION . 49

5.1 SpaceCRAFT/UE4 Simulation Software . 50
5.1.1 Components of a SpaceCRAFT Simulation . 51
5.1.2 Simulation Non-Determinism . 51
5.1.3 UE4 Integration . 52

5.2 Test-Bed Simulation Architecture . 52
5.2.1 Physics Propagation. 53
5.2.2 Obstacle Representation . 54

5.3 Simulated Obstacle Mapping . 55
5.3.1 Optimizing Raycast Execution . 56

5.4 Reference Free-Flyer . 58

ix

5.4.1 Design and Properties . 59
5.4.2 Default G&C System Parameters . 59

6. RESULTS. 62

6.1 Point-to-Point Maneuvering Tests. 62
6.2 Maneuvering Test 1 . 63
6.3 Maneuvering Test 2 . 66
6.4 Maneuvering Test 3 . 69
6.5 Maneuvering Test 4 . 72
6.6 Obstacle Mapping Performance . 75
6.7 Plume Impingement Avoidance Performance . 78
6.8 Discussion . 81

6.8.1 Obstacle Avoidance Behavior . 81
6.8.2 Attitude Control Behavior . 82
6.8.3 Plume Impingement Avoidance Behavior . 83

7. SUMMARY AND CONCLUSIONS . 85

7.1 Conclusion . 85
7.2 Future Work . 87

REFERENCES . 89

APPENDIX A. TEST-BED SIMULATION SCREENSHOTS. 93

x

LIST OF FIGURES

FIGURE Page

1.1 AERCam Sprint (Source: NASA) [2]. 2

1.2 Mini AERCam (Source: NASA) [2] . 3

1.3 Thesis methodology chapter Venn diagram . 9

2.1 The Local-Vertical-Local-Horizontal coordinate frame (LVLH) . 11

2.2 Reactive path-finding in the presence of artificial sources and sinks 15

2.3 Visualization of a 2D potential field generated using a potential function similar to
electrostatic potential . 18

2.4 Visualization of a 2D harmonic potential field satisfying Laplace’s equation 20

3.1 Gradient impulse maneuvering vs. path of steepest descent. 32

3.2 2D example of how the choice of βmax affects the resulting path . 33

3.3 Reactive guidance process logical flow . 36

4.1 Attitude controller logic flow. 40

4.2 Jet selection and manager logic flow. 43

4.3 Geometry for plume cost function evaluation . 46

4.4 Plume cost function contours given a unit thrust vector . 47

5.1 Screenshot taken during a free-flyer test-bed simulation run . 49

5.2 Test-bed simulation software architecture . 53

5.3 An example structure rendered in UE4 . 54

5.4 Point-cloud to obstacle grid conversion example using data obtained from a lidar
sensor . 56

5.5 Screenshot of the obstacle mapping functionality with visualized raycasts 58

5.6 Thirty-two jet array used by the reference free-flyer . 59

xi

6.1 The four maneuver testing obstacle environments . 63

6.2 Test 1 final trajectory and obstacle model . 64

6.3 Test 1 guidance parameters . 65

6.4 Test 1 attitude quaternion components . 65

6.5 Test 1 vehicle body axis rates . 65

6.6 Test 2 final trajectory and obstacle model . 67

6.7 Test 2 guidance parameters . 67

6.8 Test 2 attitude quaternion components . 68

6.9 Test 2 vehicle body axis rates . 68

6.10 The rotating arm obstacles in the Ship obstacle environment . 69

6.11 Test 3 final trajectory and obstacle model . 70

6.12 Test 3 guidance parameters . 71

6.13 Test 3 attitude quaternion components . 71

6.14 Test 3 vehicle body axis rates . 71

6.15 The orbiting dynamic obstacles in the Asteroids obstacle environment. 72

6.16 Test 4 final trajectory and obstacle model . 73

6.17 Test 4 guidance parameters . 73

6.18 Test 4 attitude quaternion components . 74

6.19 Test 4 vehicle body axis rates . 74

6.20 Test 1 obstacle mapping progression. 76

6.21 Test 2 obstacle mapping progression. 76

6.22 Test 3 obstacle mapping progression. 77

6.23 Test 4 obstacle mapping progression. 77

6.24 Test 1 plume avoidance performance and related parameters . 79

6.25 Test 2 plume avoidance performance and related parameters . 79

xii

6.26 Test 3 plume avoidance performance and related parameters . 80

6.27 Test 4 plume avoidance performance and related parameters . 80

A.1 A screenshot of the test-bed simulation visualization during Test 1. 93

A.2 A screenshot of the test-bed simulation visualization during Test 1. 94

A.3 A screenshot of the test-bed simulation visualization during Test 2. 94

A.4 A screenshot of the test-bed simulation visualization during Test 2. 95

A.5 A screenshot of the test-bed simulation visualization during Test 2. 95

A.6 A screenshot of the test-bed simulation visualization during Test 3. 96

A.7 A screenshot of the test-bed simulation visualization during Test 3. 96

A.8 A screenshot of the test-bed simulation visualization during Test 4. 97

A.9 A screenshot of the test-bed simulation visualization during Test 4. 97

A.10 A screenshot of the test-bed simulation visualization during Test 4. 98

A.11 A screenshot of the test-bed simulation visualization during Test 4. 98

xiii

LIST OF TABLES

TABLE Page

1.1 Key System Capabilities . 8

4.1 Integrated G&C system processes . 48

5.1 Key test-bed simulation capabilities . 50

5.2 Position, boresight direction, and thrust for reference free-flyer RCS system 60

5.3 Reference free-flyer properties . 61

5.4 Integrated G&C system parameters used during simulation testing 61

6.1 Point-to-point maneuvering test definitions . 62

6.2 Maneuvering and plume avoidance performance summary . 81

xiv

1. INTRODUCTION

Modern human spaceflight is made possible due to the extensive preparation, planning, train-

ing, verification, and validation needed to make sure a mission is successful. Each stage of a

mission is carefully analyzed and rehearsed beforehand such that any risks, uncertainty, or unex-

pected failures can be avoided. During the mission, large teams of operators, flight controllers,

and support engineers, along with the crew themselves, coordinate to achieve mission objectives

safely. This operational overhead is a large barrier to increasingly complex mission operations.

As humans seek to expand their presence beyond Earth in ambitious ways, larger space vehicles,

stations, and other structures will be built on-orbit, which will require ever-greater operational

demands.

For future missions with unprecedented operational challenges, more autonomous technologies

will need to be developed and relied upon. Tasks once relegated entirely to the crew will need to be

fully or partially automated. This thesis seeks to develop G&C methods to enhance the practicality

of one such autonomous technology of significant interest: the robotic free-flyer.

1.1 Robotic Free-Flyers

The free-flyer concept has received attention from both industry and academia for the past

couple of decades for its potential to assist with human spaceflight operations. Generally, a free-

flyer is an unmanned and untethered robot that can operate in zero gravity through the use of its

own on-board propulsion system and is typically intended to operate inside or near the exterior of

large space structures like the International Space Station. Free-flyer designs often feature some

level of autonomous behavior, through the use of on-board computers, sensors, and actuators. This

behavior most often includes the ability to navigate the local environment autonomously such that

the robot can reach and hold a desired position without extensive maneuver planning by operators.

Free-flyer propulsion systems generally consist of an array of small thrusters or even ducted fans

in an internal pressurized environment [3]. A free-flyer’s size, shape, and payload depend on the

1

specific application.

1.1.1 Past Missions and Designs

There have been several past projects developing the concept of free-flying robotic space ve-

hicles. NASA’s AERCam Sprint was a small free-flying robotic satellite flight tested on STS-87

in 1997 [4]. Sprint aimed to test the viability of a free-flyer for the role of providing robotic in-

spection and remote viewing capabilities to assist with extravehicular operations. The AERCam

Sprint was flown remotely by an astronaut inside the shuttle, who could view the vehicle from the

orbiter window and had access to the robot’s camera feed. This test flight was successful and sup-

ported the further use of free-flyers for inspection operations. In a later project, the Mini AERCam

was developed to expand on the functionality of its precursor and included automated navigation,

point-to-point and hold maneuvering, and a considerable reduction in size [5]. With these advanced

functionalities, Mini AERCam aimed to provide a wide variety of operational services, including

close-up component inspection, anomaly detection, photogrammetry, and sensor positioning [5].

Mini AERCam was integrated and tested, but never flown.

Figure 1.1: AERCam Sprint (Source: NASA) [2]

2

Figure 1.2: Mini AERCam (Source: NASA) [2]

More recently, the Seeker free-flyer inspector vehicle was developed by JSC as a low-cost

effort to continue the development of more advanced autonomous vehicle inspection systems.

Seeker’s design featured a GN&C system comprised entirely of COTS components, capable of

point-to-point maneuvering and relative position holding [6]. Seeker was flown and tested during

the Cygnus NG-11 mission, and demonstrated several of it’s autonomous inspection capabilities

successfully.

While extravehicular operations have been the driving focus of the free-flyer concept, several

projects have investigated the use of free-flyers inside large spacecraft, such as the ISS. For exam-

ple, the SPHEREs project developed a small set of intravehicular free-flyers that were flown to the

ISS to serve as a test-bed for formation flying and autonomous maneuvering algorithms [7]. More

recently, the Astrobee free-flyers were delivered to the ISS to assist crew with the completion of

tasks and procedures and serve as a next-generation platform for free-flying robotics research [8].

Other intravehicular free-flyers have been proposed for use as robotic astronaut assistants, such as

the AAR-2 design detailed in [3].

3

1.1.2 Future Mission Concepts

All of the previous free-flyer concepts and designs were quite small and featured payloads

intended to assist crew in operations such as EVA and vehicle inspection. The Mini AERCam,

AERCam Sprint, and Seeker vehicle payloads were notably all cameras, so that they could perform

inspection and remote viewing tasks. Mini AERCam and Seeker also featured autonomous maneu-

vering capabilities on some level with the intent of working towards more complex autonomous

behavior [5], [6].

There is significant operational potential for autonomous free-flyers, especially for the con-

struction and maintenance of future space stations and other habitable orbital structures. Au-

tonomous free-flyers could be deployed to conduct or assist with procedures and tasks normally

performed by the crew during EVAs, such as repair procedures or component installations. For

example, a free-flyer outfitted specifically for performing repairs could maneuver autonomously to

a specific area, anchor itself to the structure, and perform repair tasks with its payload of tools and

manipulators. Another complex task suitable for autonomous free-flyers would be the execution of

routine vehicle scanning and anomaly detection, where a free-flyer is deployed to conduct a health

survey of the habitable structure using its on-board cameras and sensors. Such a task, if performed

by the crew during EVA or using manually controlled robotics, would take significant time to plan

and execute. A free-flyer with autonomous maneuvering capabilities could perform these types of

scans routinely.

Some of these complex tasks will likely require future free-flyer designs to carry larger, more

complex payloads than the cameras and sensors carried by existing designs such as Mini AERCam

and Seeker. To support larger payloads, free-flyers will need to have larger structures and propul-

sion systems as a result. This would increase the risks of operating free-flyers in close proximity

to habitable structures, including the risk of vehicle collision or the impingement of free-flyer RCS

jets on structural components. The mitigation of these risks is an important aspect of making future

free-flyer mission concepts more operationally feasible.

4

1.2 Major Challenges

The problem of designing, building, and operating free-flyers with the previously discussed

autonomous capabilities presents a multitude of engineering challenges to overcome. While dif-

ferent free-flyer applications will require distinct design choices, the common thread among future

mission concepts is the need for autonomous point-to-point maneuvering capabilities. Therefore,

regardless of the specific application, the development of a G&C system that can meet the unique

challenges of free-flyer operations and mitigate key risks is critical.

1.2.1 Collision Avoidance

The flight domain of the free-flyer is characterized by extremely close proximity to larger

space structures with potentially complex geometry. The ISS is the current obvious example of

such an environment, where the various modules, truss sections, and docked vehicles create a very

complex structural environment to navigate. Besides purely structural elements, the ISS also has

many external components that are particularly vulnerable, including solar arrays, radiator panels,

communication antennas, and scientific instrumentation. Some of these components, such as solar

arrays and antennas, may be moving independently from the structure. It is likely that future space

stations will have these same vulnerable structural features.

Extensive navigation of this structural environment is an essential, and unique aspect of free-

flyer operations. During more typical proximity operations the extent of close-proximity maneu-

vering is minimized. For example, when a visiting spacecraft docks to the ISS, it first performs

maneuvers at a safe distance from the station to attain a position that is lined up for the final ap-

proach. This eliminates the risk of collision for large maneuvers, but can be relatively time and

fuel inefficient. For most applications, free-flyers are required to fly in close-proximity to the struc-

ture. Therefore, safe and robust collision avoidance is an essential aspect of free-flyer autonomous

maneuvering.

5

1.2.2 Jet Plume Impingement

A vehicle operating in close proximity to an orbital structure or large spacecraft usually relies

on its RCS thrusters for both translational and attitude control. When a spacecraft fires its RCS

jets the resulting rocket exhaust plumes can impinge upon nearby surfaces creating a multitude of

problems. Jet plume impingement is an area of significant research both in the modelling of jet

plumes and in schemes to reduce and minimize impingement.

One of the most significant consequences of jet plume impingement is the potential to im-

part momentum onto nearby structures or vehicles. During a variety of proximity operations,

jet plume impingement on nearby vehicles can affect their motion such that operations like ren-

dezvous, docking, or payload retrieval become impossible [9]. This was a large consideration for

the Space Shuttle orbiter, whose various RCS thrusters posed significant risk of plume impinge-

ment during proximity operations with the ISS. Although smaller, modern cargo spacecraft like

Northrop Grumman’s Cygnus are subject to similar considerations, where risk of plume impinge-

ment to nearby vehicles or even components of the same vehicle can cause undue disturbances

[10]. Large plume impingement forces can also cause damage to delicate components such as

solar panels and radiators, due to structural loads that exceed the design specifications.

Besides disturbance forces, plume impingement can also cause damage to components through

heating and surface contamination. For combustion based RCS thrusters, heating and thermal

issues due to plume impingement of high temperature rocket exhaust can lead to component or

structural failure [11]. For an even broader category of RCS thrusters, expelled gasses and reactants

can cause surface contamination components such as solar arrays, cameras, and other instruments.

Existing free-flyer designs and concepts have all been small, and therefore the risk of plume im-

pingement from their miniaturized propulsion systems is limited. Many of the plume impingement

effects are negligible or nonexistent for these small free-flyers. For example, the Mini AERCam

free-flyer design included a pressurized xenon gas propulsion system, which poses no risk of undue

heating to nearby structures [5].

For future free-flyer designs and operations, the increase in size and mass of free-flyer robots

6

will require larger propulsion systems. Therefore, free-flyer control systems will need to incorpo-

rate techniques to actively reduce the occurrence and severity of plume impingement.

1.2.3 Real-Time Operation

During typical proximity operations, vehicle maneuvering is subject to extensive pre-flight de-

sign and analysis. During autonomous flight, the desired trajectories are loaded into and executed

by the vehicle’s GN&C system. Large deviations from the intended trajectory, due to some distur-

bance or unplanned event, would require a new trajectory to be defined.

For the conceptual free-flyer operations discussed previously, this kind of uncertainty is the

rule, rather than the exception. For maximum utility, free-flyers should be able to respond to new

commands generated by mission operators or crew members in real time. Additionally, free-flyers

need the ability to react to moving structural components, crew members performing EVA, or

even other free-flyers. These capabilities require guidance that includes path-finding or trajectory

planning algorithms.

Highly automated guidance algorithms can be very computationally expensive. This highlights

a major constraint for realizing advanced free-flyer autonomous behavior. Any applied algorithms

must be feasibly implementable on a free-flyer’s flight computers for real-time operation and,

therefore, are limited by the available computational power and memory.

1.3 Research Objectives

The objectives of this thesis are to both design and test a new G&C system suited to the specific

challenges of autonomous free-flyer maneuvering. To guide the design of this system, a set of

key capabilities have been identified. These capabilities are outlined in Table 1.1. To test the

proposed system, a real-time simulation will be developed to simulate a free-flyer vehicle in an

orbital obstacle environment.

7

Capability Description

Point-to-Point Maneuvering The system must enable the vehicle to maneuver
from an initial position and orientation to a desired
position and orientation.

Structural Collision Avoidance To ensure operational safety the system must be able
to achieve vehicle trajectories that reliably avoid col-
lision with nearby static obstacles and structures.

Dynamic Object Collision Avoidance The system must be able to avoid collision with
nearby non-structural entities, such as other vehicles
or crew undergoing EVA, which generally have un-
known motion.

Generalized RCS Control The system must be capable of vehicle control using
on/off jet firing commands for a general vehicle RCS
configuration.

Plume Impingement Avoidance The system needs to incorporate methods to reduce
the occurrence of jet plume impingement on nearby
structures and components.

Implementation Feasibility The system processes must be structured and devel-
oped to be computationally feasible on flight hard-
ware in real-time.

Real-Time Operation The system should should provide vehicle guidance
commands and perform optimization real-time, with
no predictive elements or dependence on trajectory
planning.

Table 1.1: Key System Capabilities

8

1.4 Outline of Thesis

The structure of this thesis is outlined in this section. First, in Chapter 2, the dynamics of prox-

imity operations and path-finding concepts will be reviewed. Also in this chapter, related works

that apply path-finding concepts to proximity operations or similar problems will be explored.

The next three chapters will develop the methodology of this thesis. Figure 1.3 visualizes the

structure of these chapters in a Venn diagram. First a guidance technique that can enable free-flyer

autonomous maneuvering is introduced in Chapter 3. Next, Chapter 4 develops other functional

components needed to build an integrated G&C system around this guidance method. This includes

developing processes to handle rotational motion, perform jet selection, and optimize for jet plume

impingement avoidance. Lastly, Chapter 5 details the design of the test-bed simulation developed

to assess the behavior and performance of the G&C system.

Figure 1.3: Thesis methodology chapter Venn diagram

9

2. BACKGROUND AND LITERATURE REVIEW

2.1 Free-Flyer Dynamics

The dynamics of free-flyer flight are common to any vehicle involved in proximity operations.

These translational and rotational dynamics are nonlinear. For free-flyer operations, however, cer-

tain simplifications can be applied to both translational and rotational motion with minimal inaccu-

racy. These simplified models provide a basis for both analysis and simulation of free-flyer G&C

systems.

2.1.1 Relative Orbital Motion

Spacecraft translational motion during proximity operations is governed by the nonlinear rela-

tive motion that exists between two orbiting satellites. For satellites in close proximity following

circular orbits, this relative motion can be modelled by the linear Clohessy-Wiltshire (CW) differ-

ential equations developed in [12]. The CW equations (2.1a), (2.1b), and (2.1c) describe the rela-

tive position and velocity between two satellites with respect to a Local-Vertical-Local-Horizontal

(LVLH) reference frame centered at one of the satellites, usually designated the target.

ẍ = 2ω0ż + ux (2.1a)

ÿ = −ω2
0y + uy (2.1b)

z̈ = −2ω0ẋ+ 3ω2
0z + uz (2.1c)

An LVLH reference frame is shown in Figure 2.1. The LVLH axes are defined as follows: the

z-axis points directly downwards towards the body, the y-axis is orthogonal to the orbital plane,

and the x-axis completes the right-handed triad. The LVLH frame is not an inertial frame and

rotates as the target vehicle orbits, the effect of which is accounted for in the equations through the

parameter ω0, or the angular rate of the target vehicle’s orbit. Lower, faster orbits will have more

10

dramatic relative motion dynamics than higher, slower orbits.

Figure 2.1: The Local-Vertical-Local-Horizontal coordinate frame (LVLH)

The CW equations represent a linear-time-invariant (LTI) system, whose analytical solution

can be used to describe the unforced relative motion of one satellite with respect to the target. The

translational state vector x(t) = [x, y, z, ẋ, ẏ, ż]T can be described at any future time using the state

transition matrix Φ(t, t0) and an initial state x(t0) as shown in equation (2.2).

x(t) = Φ(t, t0)x(t0) (2.2)

11

ϕ(t, t0) =

1 0 6(ω0∆t− sin (ω0∆t)) 4 sin (ω0∆t)−3ω0∆t
ω0

0 2(1−cos (ω0∆t)
ω0

0 cos(ω0∆t) 0 0 sin(ω0∆t)
ω0

0

0 0 4− 3 cos(ω0∆t) 2(cos(ω0∆t)−1)
ω0

0 sin(ω0∆t)
ω0

0 0 6ω0(1− cos(ω0∆t) 4 cos(ω0∆t)− 3 0 2 sin(ω0∆t)

0 −ω0 sin(ω0∆t) 0 0 cos(ω0∆t) 0

0 0 3ω0 sin(ω0∆t) −2 sin(ω0∆t) 0 cos(ω0∆t)

where ∆t = t− t0 (2.3)

From the state transition matrix (2.3), the resulting sinusoidal motion is apparent. This ma-

trix leads to a more intuitive understanding of what kind of motion to expect for a given relative

position.

2.1.2 Impulsive Maneuvers

Using equations (2.2) and (2.3) together yields the unforced motion of a satellite with re-

spect to the target. Vehicle control during proximity operations is commonly achieved using small

impulsive maneuvers to keep the spacecraft moving along a desired trajectory. The short firing

intervals of a spacecraft’s RCS thrusters can be approximately modeled as an impulse, resulting in

an instantaneous change in velocity. Therefore, vehicle trajectories in proximity operations can be

accurately modelled as a series of unforced motion curves, punctuated by instantaneous impulsive

maneuvers.

The state transition matrix Φ can be partitioned such that equation (2.2) becomes (2.4), where

r(t) = [x, y, z]T and v(t) = [ẋ, ẏ, ż]T are the relative position and velocity vectors, respectively.

r(t)

v(t)

 =

Φ11 Φ12

Φ21 Φ22

r(t0)

v(t0)

 (2.4)

Given a goal time and position, t1 and r(t1), equation (2.4) can be rearranged to solve for the

12

velocity required at time t0.

v(t0) = Φ−1
12 (r(t1)− Φ11r(t0)) (2.5)

The difference between the current velocity, and the velocity given by equation (2.5) gives the

impulsive ∆V needed to achieve the goal position r(t1) at time t1. This maneuvering scheme is

called impulsive maneuvering, and provides a basic method of point-to-point maneuvering during

proximity operations.

2.1.3 Rotational Motion

The rotational motion of a free-flyer can be modelled using rigid body rotational dynamics.

Euler’s equations of rotational motion are shown in (2.6).

τ = IBω̇ + ω × (IBω) (2.6)

Where τ is the external torque acting on the body and ω is the body’s angular velocity. The

components of this equation are expressed with respect to a coordinate frame fixed to the vehicle,

and located at its center of mass. IB is the inertia tensor of the vehicle expressed in this body

frame.

IB =

Ixx Ixy Ixz

Iyx Iyy Iyz

Izx Izy Izz

B

(2.7)

If the body-fixed coordinate frame is aligned with the vehicle’s principal axes, IB becomes

diagonal and the rotational equations can be expressed as the system (2.9a), (2.9b), and (2.9c).

Ixxω̇x = (Izz − Iyy)ωzωy + τx (2.8a)

Iyyω̇y = (Ixx − Izz)ωxωz + τy (2.8b)

Izzω̇z = (Iyy − Ixx)ωyωx + τz (2.8c)

From this system of equations, the effect of coupling between the principal inertia components

13

is apparent. For a vehicle with principal inertia components that are equal in value, the system

reduces to the following set of linear equations.

Ixxω̇x = τx (2.9a)

Iyyω̇y = τy (2.9b)

Izzω̇z = τz (2.9c)

Such a simplification is not applicable to a majority of spacecraft designs. However, some pre-

viously developed free-flyers had spherical structures that could have roughly equal inertia com-

ponents. It is likely that this could be the case for futuristic free-flyer designs as well, such that

this simplification would become useful.

The integration of any of the above forms of Euler’s rotational equations will yield the response

of the vehicle’s angular velocity ω, due to any external torques. From there, the angular velocity

can be used to integrate the rotational state of the vehicle using rotational kinematics.

2.2 Path-Finding Concepts

Path-finding is a fundamental problem of autonomous robotics, and has been solved in innu-

merable ways for an equally innumerable number of applications. Path-finding problems, at their

core, concern the movement of an object from an initial state to a goal state along a collision-

free path. There is a wide spectrum of sophistication involved in path-finding algorithms, and the

best choice varies for different applications. Even for the specific problem of path-finding during

proximity operations, there have been a wide variety of approaches and solutions, each with their

own advantages and drawbacks. This section aims to introduce some general concepts related to

path-finding that are utilized in this work. A more in-depth review of path-finding methods and

concepts is given in [1].

14

2.2.1 Reactive Path-Finding

Among the many approaches to the problem of robotic path-finding, reactive path-finding

methods tend to be among the simplest. In reactive path-finding, an object’s path or motion re-

sponds directly to obstacles in real-time based on some rules or conditions. An example of a

simple reactive path-finding method is side-stepping. In side-stepping, an object moves directly

towards the goal position. If the object encounters an obstacle, it takes steps in the direction per-

pendicular to the goal direction until it is clear of obstruction. This behavior is repeated until the

object reaches the goal position. While this algorithm is simple and effective in some situations, it

is limited by the fact that it can become stuck in concave obstacles. Also, side-stepping brings the

object into direct contact with the outer surface of obstacles in its path, which is undesirable for

many applications where collision-avoidance is a priority.

There are other reactive methods that place more emphasis on avoiding collision with obstacles.

In one method, attractive or repulsive forces are assigned to the goal and the obstacles, respectively.

Similar to a positively charged particle in an electrostatic field, the object will be attracted to the

goal while being repelled by nearby obstacles. This method produces smooth continuous paths

from the start to the goal, with good clearance from obstacles, as illustrated in Figure 2.2. To apply

this method to actual robotics, these attractive or repulsive forces are virtual, and the resultant

force must be applied by the robot’s control system. This approach forms the basic principles of

path-finding using potential fields, which is covered in more detail in Section 2.2.4.

Figure 2.2: Reactive path-finding in the presence of artificial sources and sinks

15

2.2.2 Configuration Space Representations

Another class of path-finding methods are those that transform the problem into the configu-

ration space to generate path-finding solutions, as initially introduced by [13]. The configuration

of an object is defined as the set of parameters that accurately describe its state relative to the

obstacles in the environment. The configuration space is therefore the set of all possible object

configurations. In the configuration space, obstacle boundaries are defined and used to separate

free and occupied regions. Solutions to path-finding problems can then be found by searching

for a sequence of configurations, i.e. a path, through free-space that connects the initial and goal

positions.

The dimensionality of a problem’s configuration space depends on the number of object DOF

that are relevant to path-finding. For a robotic arm with two joints, the configuration space is 2D.

For a free-flyer maneuvering around space structures there are six DOF, but it is useful in most

cases to only consider the three translational DOF for path-finding, which results in a 3D configu-

ration space. In general, a configuration space approach to path-finding becomes more difficult for

each additional DOF considered, so it is best to use the simplest possible representation.

2.2.3 Free-Space Graphs and Grids

Once a problem has been transformed into the configuration space, there are many different

approaches to searching the free-space for path solutions. While continuous path solutions can

be found in some cases, most path-finding methods discretize the free-space into a mathematical

graph of configuration nodes, connected by free-space links. This approach was taken by Lozano-

Pérez in an algorithm that can find a collision-free path for a 2D object among a field of polyhedral

obstacles [13]. This problem was transformed into the configuration space by picking a reference

point on the object and "growing" the polyhedral obstacles such that the free-space contains all

safe positions of the reference point. The vertices of the newly grown obstacles, which are also

polyhedrons, were then connected in a structure called a visibility graph. The graph nodes are

connected through free-space, and so a path solution can be found by moving the object node to

16

node until it reaches the goal configuration. Search methods, such as Dijkstra’s algorithm [14], can

be applied to such graphs to find the shortest distance (or other performance criteria) between any

two nodes.

In another early work utilizing a configuration space approach, Brooks [15], [16] generated

a similar node graph by mapping the free-space regions between obstacles as generalized cones.

The cone center-lines and intersections were used to define a node graph, which was then searched

using the heuristic A* search algorithm [17] for increased efficiency.

Another method of discretizing the free-space is to define an evenly spaced grid of nodes, which

spans a subset of the configuration space excluding regions occupied by obstacles. This approach

avoids the challenge of deriving graph nodes from the free-space through analytical techniques,

but creates a computationally difficult search for optimal solutions.

2.2.4 Potential Fields

Another large class of path-finding methods are those that use potential fields to generate so-

lutions. In section 2.2.1, a method for reactive path-finding based on the idea of attractive and

repulsive forces was introduced. In that method, the net force acting on the object is a function of

its proximity to obstacles and the goal position. If a scalar field could be defined such that its gradi-

ent at any position returned the same net force, the result would be a potential field. Potential fields

are used in path-planning problems to represent obstacles in the configuration space. Obstacles are

defined as areas of high potential, while the goal position is defined as the global minimum. To

generate a path from any initial position to the goal position, an object needs only to descend the

potential gradient, producing smooth path solutions with wide clearance from obstacles.

A potential function gives a closed-form formula for directly computing the potential values at

a particular point in a configuration space. A simple potential function analogous to electrostatic

potential is shown by equation 2.10.

ϕ(r) =
∑
i

δ

δ + |ri − r|
+ α|rg − r|2 (2.10)

17

Where ri is the nearest point on the surface of obstacle i and rg is the position of the goal

point. δ and α are scaling constants. Using this equation, the potential field shown in Figure

2.3 was generated. Potential functions like equation (2.10) are useful because they allow for the

direct computation of the potential value and gradient at any location in free-space. For example,

Rimon-Kodishek [18] introduced "navigation functions" that include controller constraints, which

are used directly to create a bounded-torque feedback controller for robotic path-planning.

Figure 2.3: Visualization of a 2D potential field generated using a potential function similar to
electrostatic potential

Potential functions such as (2.10) are prone to the creation of local minima, causing the object

to sometimes converge to the incorrect configuration as shown by path a in Figure 2.3. In [19], an

18

attempt to eliminate local minima in certain cases through the augmentation of the potential field is

outlined. This solution, however, only applies for local minima caused by the goal position being

in close proximity to obstacle boundaries.

A better method for dealing with local minima is to use harmonic potential fields. Harmonic

potential fields are scalar fields that satisfy Laplace’s equation (2.11), a partial differential equation

used to model several natural phenomena including incompressible fluid flow and steady-state

temperature distributions.

∇2ϕ =
∂2ϕ

∂x2
+

∂2ϕ

∂y2
+

∂2ϕ

∂z2
= 0 (2.11)

Harmonic potential fields are useful for robotic path-finding problems, because they guarantee

a single, global minimum. In [20], harmonic potential functions derived from a panel representa-

tion of obstacles was applied to path-finding for a planar mobile robot and a three DOF manipu-

lator. An example of a harmonic potential field is shown in Figure 2.4 which represents the same

configuration space as the field shown in Figure 2.3. In this example, the formation of local minima

is avoided in the harmonic field.

Some path-finding methods have used potential fields for representation of obstacles, but with-

out relying on gradient descent to produce solutions. The method introduced in [21] uses potential

functions to represent a field of obstacles, and computes minimum-potential valleys that connect

larger regions of free-space. These valleys form a node graph, similar to those described in 2.2.3,

which is then searched for an optimal path solution. This method differs from a gradient descent

method in that no attractive potential is assigned at the goal node.

19

Figure 2.4: Visualization of a 2D harmonic potential field satisfying Laplace’s equation

2.3 Applications of Path-Finding to Proximity Operations

Close-proximity maneuvering between two spacecraft is a challenging dynamics and controls

problem with 6 DOF. Traditionally, proximity operations have required extensive manual trajec-

tory design and analysis before flight. To aid in trajectory design and enable more autonomous

maneuvering, there has been much research into applying path-finding concepts to proximity oper-

ations. This section aims to explore some of these works and how they relate to the specific needs

of the free-flyer problem.

2.3.1 Trajectory Planning Methods

For most spaceflight operations, trajectory design and execution are distinct and separate pro-

cesses. Usually, trajectories are designed and analyzed well in advance of a mission and then

executed by a vehicle’s GN&C system during flight. This separation of trajectory planning and

20

execution has been preserved in many path-finding algorithms applied to proximity operations.

These algorithms, categorized here as trajectory planning methods, are useful because they allow

for the integration of complex constraints to generate optimal trajectories. In some cases, these

trajectory planner algorithms are fast enough for real-time use.

Two early trajectory planner algorithms developed in [22] and [23] use A* to generate optimal

6 DOF trajectories. In these algorithms, nodes that represent the vehicle state are iteratively ex-

panded by taking small velocity increments, propagating the resulting trajectory, and estimating the

costs associated with each node. A* is used to select the nodes with the lowest estimated cost and

direct the search to the goal node. In [22], the resulting trajectories are fuel-optimal and account

for constraints such as obstacles, jet failures, or keep-out regions. [23] builds off of this approach,

and includes jet plume impingement constraints to produce fuel-plume optimal trajectories. The

resulting trajectories are followed by a 6 DOF autopilot.

These A*-based algorithms are exploring the admissible space using a discrete set of nodes.

Another algorithm called the Admissible Subspace Trajectory Optimizer (ASTRO) instead takes

a continuous approach. ASTRO performs polynomial optimization in the presence of a flexible

variety of constraints, including static and dynamic obstacles, path constraints, and actuator per-

formance. ASTRO generates an admissible initial trajectory satisfying the boundary conditions

and iteratively refines the trajectory towards an optimal or sub-optimal solution with the remaining

time. Trajectory following is then delegated to an inner-loop controller. In [24], this algorithm is

developed and tested in a true six DOF environment on the ISS using the SPHERES test-bed. [25]

applies ASTRO to path planning for space-based robots and quadcopters, integrating additional

techniques for localization and mapping of nearby obstacles.

Many more recently developed trajectory planning algorithms explore free-space using random

sampling methods. One such algorithm is developed in [26], where a sampling method based on

Rapidly-exploring Random Trees (RRT), called RRT*, is used to find optimized trajectories in the

presence of an impressive number of constraints. Essentially, the algorithm takes random samples

from the configuration space, and evaluates the cost due to various constraints including obstacle

21

avoidance, camera FOV, plume impingement, and control feasibility. The algorithm directs the

sampling towards the more unexplored parts of the configuration space as it progresses. As the

extent of sampling increases, the likelihood of finding a solution increases along with its overall

quality. A similar algorithm is developed in [27], where random sampling based upon sphere

expansion is used to construct a graph of the free-space. This graph is searched for the shortest

path, and sequential convex programming is then used to generate a trajectory along this path that

is locally optimal. Yet another algorithm is developed in [28] that uses random node sampling

paired with machine learning to classify free-space "neighborhoods", from which a trajectory is

generated. This particular algorithm is applied to quadcopters, and so an additional trajectory

smoothing step is used.

2.3.2 Reactive Proximity Operations

Trajectory planner methods can generate optimal or near-optimal trajectories while consid-

ering a large variety of constraints. The main drawback of these algorithms is that re-planning

of the trajectory could be required when a vehicle experiences unmodelled disturbances or the

environment changes in an unexpected way. This weakness is especially apparent for free-flyer

operations, where the ability to maneuver flexibly in the face of uncertainty has much utility. Also,

it is desirable for a free-flyer to respond quickly to new position and orientation commands given

in real-time, but trajectory planning algorithms require a complete solution to be found before ex-

ecution is started. Some of the algorithms explored in the previous section, such as ASTRO [24],

are likely fast enough for real-time use, but a more direct way to achieve flexible maneuvering is

to develop algorithms that utilize reactive path-finding techniques such as potential fields.

One such algorithm is developed in [29] combining the use of potential functions with an

LQR controller. This method produces a feedback controller with automatic obstacle avoidance,

and is applied to the control of multiple spacecraft simultaneously and tested using SPHERES on

the ISS. In [30], convex potential functions based on quaternion components are used to develop

a feedback controller for spacecraft reorientation. These potential functions are used to enforce

practical attitude constraints such as protecting sensitive instruments from sunlight exposure or

22

maintaining a communications linkage.

The integration of potential functions into feedback algorithms allows for fast and flexible

maneuvering, but there are large drawbacks to this approach. First of all, feedback controllers that

use the simpler potential functions can be susceptible to the formation of local minima. Secondly,

these controllers do not account for the natural dynamics in the resulting control output, a flaw

shared by many of the trajectory planning algorithms as well.

One method that addresses both of these drawbacks is developed in a thesis by Roger [1]. In this

method, a trajectory planner is developed that builds a discrete harmonic potential field to represent

the free-space in which the free-flyer can maneuver. The potential field gradient is then used as

a condition for the generation of new velocity impulses. This method, called gradient impulsive

maneuvering (GIM) does not suffer from local minima, and allows the natural dynamics to take

over when the vehicle is moving in the direction of the goal. In the original work, this method is

applied as a trajectory planner for an inspector free-flyer, but could be adapted for real-time use as

a reactive path-finding method.

2.4 Discussion

At the core of the proposed free-flyer G&C system is the need for a robust and flexible path-

finding algorithm. The related works covered in this chapter provide several potential approaches,

but none that achieve all of the key capabilities on their own. The trajectory planning methods

produce optimal trajectories with the inclusion of many constraints, but can lack flexibility in the

face of uncertainty or are computationally infeasible for real-time use. Likewise, the reactive

techniques introduced allow for flexible control, but struggle to handle more complex constraints

and do not produce optimal trajectories. The technique by Roger [1] strikes an interesting balance

between trajectory planning and reactive path-finding. The discrete artificial potential field utilized

in this technique provides the information needed to navigate from any point in free space, within

a subset of the configuration space, to the goal position. The descent of this potential field from

any particular position produces a trajectory.

In Roger’s work, potential field generation and descent using GIM is integrated into a trajec-

23

tory planning software tool, taking advantage of simplifications such as perfect, impulsive control

and linearized dynamics. Instead, in this thesis the technique developed by Roger is adapted into

a real-time free-flyer guidance process. To do this, the potential field is generated live and up-

dated continuously to reflect new information about the environment. GIM is then applied as a

control law, allowing the free-flyer to descend the potential field using its RCS propulsion system.

This guidance process is then integrated into a broader G&C system that can handle jet selection,

perform plume impingement avoidance, and control rotational DOF.

24

3. REACTIVE GUIDANCE WITH HARMONIC POTENTIAL FIELDS

The key challenge of autonomous free-flyer maneuvering is the need for robust collision avoid-

ance with nearby space structures, spacecraft, or other obstacles. The technique developed by

Roger [1] was selected in Chapter 2 as the foundation for a guidance process that can provide this

capability. This chapter seeks to review the theory behind this technique and integrate it into a

process for real-time free-flyer guidance.

3.1 Artificial Harmonic Potential Field Generation

The guidance technique employed in this thesis is reliant on the ability to generate artificial

harmonic potential fields that represent the free-flyer’s obstacle environment with respect to the

goal position. Environmental obstacles, such as structural components of nearby spacecraft, are

represented as volumetric areas of high potential. The goal position is represented as the global

minimum of the field. To generate these artificial potential fields, Laplace’s equation (2.11) is

solved over a subset of the configuration space.

3.1.1 Discretization and Relaxation

Analytical solutions for Laplace’s equation, especially in the presence of complex geometry,

are infeasible to find. Instead of attempting to solve for the potential field analytically, this ap-

proach applies the numerical solutions outlined in [31].

To generate numerical solutions to Laplace’s equation, a subspace of the configuration space

is discretized into an evenly-spaced grid. This grid defines a control volume that encompasses

a free-flyer’s operational area. For proximity operations, no natural boundary exists to limit the

extent of relative motion between two vehicles. Therefore, this control volume must be sufficiently

large enough to not overly constrain potential path-finding solutions. The control volume is fixed

with respect to an LVLH reference frame originating at the target spacecraft or space structure.

Structural components rigidly attached to the target will therefore become fixed obstacles in the

discrete grid. Other structures not fixed to either the target or the free-flyer itself will become

25

dynamic obstacles from a guidance perspective.

The discrete form of Laplace’s equation is the difference equation shown in (3.1). To generate

a harmonic potential field, this equation must be satisfied at every point in the discrete grid.

(
ϕi+1,j,k − ϕi,j,k

∆x2
− ϕi,j,k − ϕi−1,j,k

∆x2

)
+(

ϕi,j+1,k − ϕi,j,k

∆y2
− ϕi,j,k − ϕi,j−1,k

∆y2

)
+(

ϕi,j,k+1 − ϕi,j,k

∆z2
− ϕi,j,k − ϕi,j,k−1

∆z2

)
= 0

(3.1)

For a fixed distance ∆x = ∆y = ∆z = h between grid nodes in all directions, the discrete

form of Laplace’s equation can be rearranged into equation (3.2).

ϕi,j,k =
1

6
(ϕi+1,j,k + ϕi,j+1,k + ϕi,j,k+1 + ϕi−1,j,k + ϕi,j−1,k + ϕi,j,k−1) (3.2)

Therefore, to satisfy Laplace’s equation, the potential value at a particular node must be equal to

the average value of all the adjacent nodes.

A numerical method called relaxation is used to generate discrete solutions to Laplace’s equa-

tion, and is described in detail in [31] and applied in [1]. In relaxation, each grid node’s potential

is initialized to a constant high value, often one. The grid node nearest to the goal position, is

assigned a low potential value, conventionally zero. Then, equation (3.2) is applied to each free-

space node in the grid. This calculation is carried out over the entire grid iteratively so that the low

potential value at the goal spreads out over the entire grid. The potential values at each node will

converge to satisfy the discrete form of Laplace’s equation. Grid nodes that represent geometric

boundaries of any obstacles are fixed to the highest potential value. Therefore, these "obstacle

nodes" will define areas or volumes of high potential, and will affect the final shape of the poten-

tial field. Additionally, the external nodes of the grid are also fixed to the highest potential value

such that the walls of the control volume act as high potential boundaries. The result is a discrete

26

harmonic potential field, where the obstacles and control volume boundaries are represented as

areas of high potential and the goal node is the global minimum.

Relaxation can be computationally expensive, especially for large, three-dimensional fields

with tightly packed nodes. Therefore, the size of the control volume and the granularity of the grid

must be carefully chosen such that the method remains computationally feasible.

Another consideration for this method is the numerical precision of the grid. Even for a fully

converged numerical solution, potential values far from the goal node rapidly approach the high-

est potential value. Therefore, to avoid numerical error, the use of double precision numbers is

required to preserve the small differences between adjacent nodes that are far from the goal. Large

numbers of iterations using relaxation may be required for the discrete potential field values to

converge with low numerical error.

3.1.2 Trilinear Interpolation

The major disadvantage of using discrete potential fields is that potential values and gradients

are only defined at grid nodes. For free-flyer G&C, motion through the configuration space is

smooth and continuous. To use discrete potential fields in a continuous manner, trilinear interpo-

lation can be used to estimate the potential value at points in-between grid nodes.

Every point within the control volume at coordinates xyz will be contained in a grid cell defined

by the lowest indices of the nearby grid nodes, ijk. Equation (3.3) defines the potential value at

point xyz in grid cell ijk.

27

ϕ(x, y, z)i,j,k = ϕi,j,k · (i+ 1− x)(j + 1− y)(k + 1− z)

+ ϕi+1,j,k · (x− i)(j + 1− y)(k + 1− z)

+ ϕi,j+1,k · (i+ 1− x)(y − j)(k + 1− z)

+ ϕi,j,k+1 · (i+ 1− x)(j + 1− y)(z − k)

+ ϕi+1,j+1,k · (x− i)(y − j)(k + 1− z)

+ ϕi+1,j,k+1 · (x− i)(j + 1− y)(z − k)

+ ϕi,j+1,k+1 · (i+ 1− x)(y − j)(z − k)

+ ϕi+1,j+1,k+1 · (x− i)(y − j)(z − k)

(3.3)

The value of the potential will vary linearly between the values of the 8 nodes that define each

cell, providing a close approximation of a continuous potential field over the same space. The

above equations represent the case where the distance between any two nodes is unity (h = 1).

3.1.3 Potential Gradient

Path-finding methods based on potential fields rely on the calculation of the local gradient. Just

like the scalar potential, the gradient vector needs to be defined continuously over the configuration

space. To achieve this, partial derivatives of the above trilinear interpolation method can be used to

estimate the potential gradient at any point xyz, within cell ijk. These partial derivatives are shown

in equations (3.4), (3.5), and (3.6). Equation (3.7) defines the final gradient vector.

28

∂ϕ

∂x
(x, y, z)i,j,k =− ϕi,j,k · (j + 1− y)(k + 1− z)

+ ϕi+1,j,k · (j + 1− y)(k + 1− z)

− ϕi,j+1,k · (y − j)(k + 1− z)

− ϕi,j,k+1 · (j + 1− y)(z − k)

+ ϕi+1,j+1,k · (y − j)(k + 1− z)

+ ϕi+1,j,k+1 · (j + 1− y)(z − k)

− ϕi,j+1,k+1 · (y − j)(z − k)

+ ϕi+1,j+1,k+1 · (y − j)(z − k)

(3.4)

∂ϕ

∂y
(x, y, z)i,j,k =− ϕi,j,k · (i+ 1− x)(k + 1− z)

− ϕi+1,j,k · (x− i)(k + 1− z)

+ ϕi,j+1,k · (i+ 1− x)(k + 1− z)

− ϕi,j,k+1 · (i+ 1− x)(z − k)

+ ϕi+1,j+1,k · (x− i)(k + 1− z)

− ϕi+1,j,k+1 · (x− i)(z − k)

+ ϕi,j+1,k+1 · (i+ 1− x)(z − k)

+ ϕi+1,j+1,k+1 · (x− i)(z − k)

(3.5)

29

∂ϕ

∂z
(x, y, z)i,j,k =− ϕi,j,k · (i+ 1− x)(j + 1− y)

− ϕi+1,j,k · (x− i)(j + 1− y)

− ϕi,j+1,k · (i+ 1− x)(y − j)

+ ϕi,j,k+1 · (i+ 1− x)(j + 1− y)

− ϕi+1,j+1,k · (x− i)(y − j)

+ ϕi+1,j,k+1 · (x− i)(j + 1− y)

+ ϕi,j+1,k+1 · (i+ 1− x)(y − j)

+ ϕi+1,j+1,k+1 · (x− i)(y − j)

(3.6)

∇ϕ(x, y, z) =

[
∂ϕ
∂x

∂ϕ
∂y

∂ϕ
∂z

]T
(3.7)

3.2 Field-Based Reactive Guidance

The previous section gives a straightforward method of generating artificial potential fields that

relate the obstacle environment to the goal position. A free-flyer could use this information in a

variety of ways during maneuvering.

In general, the most direct way to use the potential field is to follow the path of steepest descent.

To do this, infinitesimally small steps are taken in the direction of the gradient until the minimum is

reached such that the resulting path is a smooth curve that bends around obstacles while approach-

ing the goal point. Analogously, in incompressible fluid flow, steepest descent curves are shown as

streamlines, where fluid elements descend the flow potential while bending around obstructions.

In this application, a free-flyer could generate a trajectory connecting the current and goal state

in a similar manner. While this would be a valid trajectory, the free-flyer’s control system would

need to use its RCS jets to cancel the natural relative dynamics and follow the desired smooth,

continuous curve. This is generally not an efficient way to maneuver during proximity operations

where fuel is a limited resource and excessive jet firings risk undue plume impingement.

30

3.2.1 Gradient Implusive Maneuvering

Instead of using the path of steepest descent, gradient impulsive maneuvering (GIM), as intro-

duced in [1], is applied here as a real-time control law. In the simplest version of GIM, the vehicle

tracks the value of the potential at its current position. When the potential value begins to increase,

a velocity impulse ∆v is generated that redirects the vehicle along the gradient of steepest de-

scent, as given by equation (3.8). The parameter c is chosen to scale the magnitude of the resulting

velocity.

∆v = −c
∇ϕ

|∇ϕ|
− v (3.8)

This method provides a way to guarantee the descent of the potential field, while allowing

the natural dynamics to take over when the vehicle is approaching the goal. Figure 3.1 compares

a path-finding solution generated using GIM with the path of steepest descent. This field was

generated and interpolated using the processes described in the previous section.

The translational ∆v requests that GIM produces are assumed to be applied impulsively. As

long as this assumption is true, the method is guaranteed to converge to the goal from any valid

starting point.

In a real free-flyer, the RCS jets are non-impulsive and imperfect. The use of a real propulsion

system will therefore produce a kinematic response that deviates from the ideal impulse requested

by GIM. Since the potential field provides a path to the goal from any starting point in free-space,

the method should handle potential deviations and uncertainty robustly.

3.2.2 Gradient-Velocity Control Law

Using GIM as described so far, ∆v impulse requests are generated on an as-needed basis when

the potential value begins to increase, as given by the condition (3.9).

ϕk > ϕk−1 (3.9)

31

Figure 3.1: Gradient impulse maneuvering vs. path of steepest descent.

By strictly adhering to this condition, the vehicle can drift significantly from the most direct path to

the goal given by steepest descent. In some cases, this results in near collisions with the structure,

which is undesirable given certain safety requirements or plume impingement considerations.

This condition can be replaced by a stricter one that limits the maximum angle β between the

steepest gradient direction and the free-flyer’s velocity vector (3.10).

v

|v|
· ∇ϕ

|∇ϕ|
< cos (βmax) (3.10)

βmax therefore limits the extent of drift from the path of steepest descent. If βmax = 90◦,

then this condition becomes equivalent to the original GIM condition (3.9). If βmax = 0, then the

condition stipulates that the velocity always be aligned with the gradient direction, which results

in the vehicle following the path of steepest descent. In between these extremes, the choice of

this parameter involves a trade-off between shorter trajectories with wide clearance of obstacles

32

Figure 3.2: 2D example of how the choice of βmax affects the resulting path

and longer trajectories that more efficiently take advantage of the natural dynamics. Figure 3.2

shows a 2D example how the choice of βmax affects the resulting trajectory. The best choice of

this parameter depends upon the specific needs of a particular free-flyer mission concept.

3.3 Potential Field Management

Once the potential field is generated, the information it encodes about the environment and

the goal position is static. To allow for guidance that can react to new information about nearby

obstacles, the potential field will need to be either augmented or regenerated. Methods for aug-

menting a potential field exist, but can introduce local minima which defeats the purpose of using

harmonic potential fields. In this case, an approach for regenerating the potential field periodically

33

was developed.

The process to generate the potential field relies on two distinct pieces of information:

• Information about nearby structures and other obstacles, both static and dynamic, which are

represented as obstacle nodes in the field

• A commanded goal position, which is used to designate a grid node as the goal node

If either piece of information changes, the resulting potential field becomes outdated, and will

require the regeneration of the field values.

3.3.1 Internal Obstacle Model

To facilitate potential field generation, a system for managing an internal model of obstacles

was implemented in the guidance process. So far, it has been assumed that the free-flyer has

perfect knowledge of its own position and the position and geometry of all surrounding obstacles.

In practice, this will not generally be true unless this information is derived externally and explicitly

given to the free-flyer before or during flight. When this information is not available, a free-flyer

must instead detect the surrounding environment utilizing its on-board sensors for both 3D obstacle

mapping and localization. The specifics of these topics are beyond the scope of this thesis, but are

explored in the navigation of obstacles for both quad-rotors and space-based robots in [25].

A free-flyer’s internal model of the environment, which is used to generate artificial potential

fields as previously described, is called the internal obstacle model. The internal obstacle model

is an occupancy grid with the same dimensions as the discrete potential grid. In this occupancy

grid, each node in the discrete grid is associated with a binary value that denotes if the grid is

free or occupied by an obstacle. This internal model is updated as part of the guidance process,

responding to new visibility information from the free-flyer’s line-of-sight.

As visibility information is received, grid nodes within close proximity to detected obstacle

geometry are designated as obstacle nodes. Obstacle nodes that are visible and were once occupied

by detected geometry are removed from the model if it is determined that they are no longer

occupied. In this manner, obstacle nodes are added and removed from the internal model. This

34

allows the guidance process to remember previously mapped obstacle data that may be obstructed

but also to prune obstacle data that is no longer accurate due to the potential movement of dynamic

obstacles. Details on the processes used to simulate this part of the guidance process are given in

Section 5.3.

3.3.2 Evasion Mode

The choice of the speed parameter c in equation (3.8) and the maximum angle βmax in equation

(3.10) impact the free-flyer’s ability to avoid dynamic obstacles. For a mostly static environment,

it is likely more desirable for the free-flyer to move at lower speeds and have a larger value of

βmax, since this approach is generally more fuel efficient. This, however, is a bad combination of

behavior for avoiding dynamic obstacles, where higher speed and sensitivity to the local gradient

is necessary.

It is therefore useful to implement a logic for selecting the appropriate values of these parame-

ters depending on the situation. Such logic was implemented into the guidance process by defining

two separate modes, guidance mode and evasion mode. Guidance mode is simply the default for

general-purpose free-flyer maneuvering, and uses a lower speed c and a higher βmax angle. When

a dynamic obstacle nears the free-flyer, evasion mode is activated increasing the speed c and de-

creasing βmax to bolster collision avoidance behavior.

The specific condition for switching to evasion mode is given in equation (3.11). The free-flyer

can compute the relative position rnodei of obstacle nodes in its internal model, and can therefore

define a minimum keep-out-sphere radius RKOS under which evasion mode is activated.

min |rnodei| < RKOS (3.11)

3.4 Final Guidance Process

To summarize the developments of this chapter, the free-flyer reactive guidance solution has

three primary functions:

1. Generate ∆v impulse requests conditionally based upon the instantaneous velocity and the

35

direction of the local field gradient

2. Continuously receive external visibility information and update the internal obstacle model

accordingly

3. Periodically regenerate the potential field based upon the updated obstacle model and posi-

tion command

An overview of the complete reactive guidance process, as implemented in the broader G&C

system, is shown in Figure 3.3

Figure 3.3: Reactive guidance process logical flow

36

4. INTEGRATED GUIDANCE AND CONTROL SYSTEM

The guidance method described in Chapter 3 enables a vehicle to safely maneuver to a goal

position in the presence of nearby obstacles. This method produces ideal ∆v impulse commands

to apply to the vehicle. Of course, any real propulsion system is non-impulsive, and so these ∆v

commands must be converted into finite-time jet firing commands. Also, on its own the guidance

method does not account for rotational maneuvering in any way.

To explore the efficacy of the guidance method developed in Chapter 3, it needed to be incor-

porated into a broader G&C system, which is the topic of this chapter. This system handles the

fulfillment of both ∆v and ∆ω requests through jet selection and performs additional functions

such as attitude control and plume impingement avoidance.

4.1 Attitude Controller

A free-flyer’s rotational degrees of freedom are not addressed by the reactive guidance method

alone. To enable rotational maneuvers, an attitude controller based on the general phase-plane

controller described in [32] was incorporated into the broader G&C system.

This attitude controller runs as a separate process from translational guidance and generates

change in angular velocity, or ∆ω requests in response to angular error between the current and

desired attitude. The controller has two distinct modes; slew mode and limit-cycle mode. Slew

mode is used when the free-flyer is far from the desired attitude, and a high rate of convergence

is desired. Limit-cycle mode is applied when the angular error is within the allowable deadband,

where much smaller corrections are applied to maintain the desired attitude.

4.1.1 Attitude Error as Axis-Angle Parameters

Given the current and desired vehicle attitude expressed as unit quaternions q and qd, respec-

tively, the error quaternion is given by equation (4.1).

qϵ = qc ◦ qd (4.1)

37

qϵ describes the transformation from the current vehicle body frame, to the desired vehicle

body frame orientation. To express the attitude error in a more intuitive form, the components of

qϵ can be converted into an axis-angle representation.

q =

s
v

 =

 cos (θ
2
)

e sin (θ
2
)

 (4.2)

Using the relation given by equation (4.2), the angular error (4.4) and error axis (4.5) can be

derived from the error quaternion (4.3). These error parameters describe the single axis rotation

needed to transform the current vehicle body frame to the desired vehicle body frame.

qϵ = [sϵ,vϵ]
T (4.3)

θϵ = 2arccos (sϵ) (4.4)

eϵ =
vϵ

sin θϵ
2

(4.5)

To perform these calculations, care must be taken to handle the singularities that exist when

θϵ = 0 or θϵ = π, resulting in a division by zero. As θϵ tends to zero, eϵ becomes undefined and

can be set to any default value. In this particular application, this occurs when the vehicle perfectly

achieves the desired attitude. In the control law definition that follows, the error parameters are

only used when the vehicle is outside the allowable angular error deadband, and therefore no issues

with singularities are encountered.

4.1.2 Axis-Angle Deadband Control Law

The attitude controller developed in this section is based upon the generalized control law

described by [32]. Given a general state x, a desired state xd, and their rates, the general control

law is given by Equation (4.6).

38

∆ẋ = c unit(xd − x) + (ẋd − ẋ) (4.6)

In this control law, xd − x is the error between the current and desired state. The output of

this control law is the rate change ∆ẋ that will reduce the state and rate error simultaneously. The

parameter c is the speed of convergence picked by the control system designer.

For simple attitude control, the control law output is a change in angular velocity, or ∆ω,

expressed in the vehicle body frame. Using the axis-angle error representation, a new form of the

control law is described by Equation (4.7).

∆ω = ceϵ + (ωd − ω) (4.7)

To reach and hold the desired orientation, the desired angular velocity is set to zero: ωd = 0.

The control law then becomes Equation (4.8).

∆ω = ceϵ − ω (4.8)

Therefore, the impulse ∆ω describes the change in angular velocity needed to cancel out the

current angular velocity ω and direct the new angular velocity along the error axis eϵ. This control

law is applied when the angular error θϵ exceeds an angular deadband threshold θdb. The resulting

impulse command drives the vehicle towards the desired orientation.

The angular speed parameter c is chosen based on the desired speed of convergence. When the

vehicle is very far from the desired orientation, a higher speed of convergence is ideal. Alterna-

tively, when the vehicle is very near the desired orientation, it is ideal that the vehicle limit-cycle

with minimal speed within the deadband threshold.

To enable the switching between convergence speeds, another deadband threshold was defined

as θb = θdb − b, which is another concept derived from the general control law introduced by [32].

The control law (4.8) is applied when θϵ exceeds the inner deadband threshold. The angular speed

c is then chosen based on whether θϵ exceeds the outer deadband θdb. The parameter b defines

39

the distance between the inner and outer deadband. Since attitude control in a real system is non-

impulsive, b is chosen to provide an angular buffer for limit-cycle firings to be performed before

the outer deadband threshold is reached.

4.1.3 Final Attitude Controller Logic

Figure 4.1: Attitude controller logic flow

The complete attitude controller process is shown in the diagram shown in Figure 4.1. Two

additional conditions for generating a new ∆ω command were included in the final controller

logic. After determining that the angular error has exceeded the deadband threshold, the controller

also checks that the angular error is increasing in magnitude. The controller then also checks

that a previously generated ∆ω command is not currently being applied. These two conditions

prevent the attitude control from flooding the jet selection process with excessive ∆ω requests in

the non-zero time it takes to apply control torque.

40

4.2 Jet Selection and Firing Manager

The reactive guidance method of Chapter 3 and the attitude controller outlined in this chapter

produce ∆v and ∆ω requests, respectively, on an as-needed basis. To process these requests,

produce jet firing commands, and manage the execution of firing commands, a "jet manager"

process was implemented into the free-flyer G&C system.

This jet manager utilizes a specific jet selection algorithm described in [33]. This algorithm

takes a six-dimensional, combined ∆V rate change vector (4.9) and produces an optimal firing

command consisting of up to 6 jets.

∆V = [∆v,∆ω]T (4.9)

This algorithm was chosen over simpler jet selection schemes, such as minimum angle or dot

product algorithms, because it can produce optimal solutions with a modifiable cost function. As

shown later on, this functionality was used to produce plume-fuel optimal jet firings.

4.2.1 Jet Selection as a Linear Programming Problem

To solve for the optimal firing command, jet selection is formulated as an optimization problem

solvable by linear programming.

For J jets, minimize

z =
J∑

j=1

cjtj (4.10)

Subject to

∆V =
J∑

j=1

tjaj (4.11)

tj ≥ 0 ∀j (4.12)

41

The cost function is defined in equation (4.10). For each jet j, tj is the resulting firing time

and cj is an arbitrary cost weighting. If the cost weightings of all the jets in a given configuration

are equal, the minimization of this cost function produces a fuel-optimal solution. As explored

in later sections, the jet cost weighting can be utilized to include other constraints, such as plume

impingement, into the optimization.

The six-dimensional acceleration vector aj is the translational and rotational acceleration re-

sulting from the firing of a particular jet. The acceleration vector for jet j is defined in equation

(4.13).

aj =

 F j/m

I−1(rj × F j)

 (4.13)

In this equation, F j is the thrust vector associated with jet j in the body frame position defined by

rj . The constraints (4.11) and (4.12) enforce that the resulting jet firing commands must perfectly

satisfy the ∆V request with non-negative firing times.

Simplex method, as outlined in [33], can be used to solve this optimization problem. Simplex

method is an iterative algorithm that can convert any basic feasible solution of a linear program-

ming problem into another basic feasible solution of a lower cost. This algorithm is applied until

the optimal basic feasible solution is found. It can be shown that an optimal basic feasible solution

to this problem is indeed an optimal feasible solution [33].

4.2.2 Processing Input ∆V Commands

The reactive guidance and attitude controller processes generate their respective rate change

requests on an as-needed basis. Since these processes are independent and run asynchronously, the

jet manager must constantly check for new ∆v or ∆ω requests.

When a new request is received, the jet manager immediately incorporates that request into a

brand new firing command. If a previous firing command is still being executed, the residual ∆V

vector that has yet to be full-filled is calculated and added to the incoming request.

∆V = ∆V r +∆V new (4.14)

42

The residual ∆V is found by multiplying the acceleration vector of each jet by the positive differ-

ence between its firing time and the time elapsed since the command began execution. An outline

of the jet manager process is shown in Figure 4.2.

∆V r =
J∑

j=1

aj max(tj − tcmd, 0) (4.15)

Figure 4.2: Jet selection and manager logic flow

4.2.3 Output Jet Firing Commands and Execution

The jet selection algorithm produces a six-dimensional vector, tjets, which represents the firing

times for each jet in the basis set Bjets of optimal jets. For a particular input, if the optimal solution

requires fewer than six jets, the remaining firing times will be equal to zero in tjets. The jet manager

removes these zero time jets from the final firing command.

43

Realistic RCS propulsion systems are also limited by their minimum on-time. Therefore, in the

formation of output firing commands, any jets with a firing time less than the minimum on-time in

the jet selection output are removed.

When an output firing command is generated, the jet manager sends it to the firing execution

loop. The command execution time, tcmd, is initialized to zero and increased each loop by the

time between updates. The value of tcmd then determines which jets of a particular command are

still firing, and the instantaneous list of firing jets is sent to the propulsion system. The update

frequency of this loop dictates the temporal resolution of firing command execution.

4.3 Plume Impingement Avoidance

One of the key capabilities of the integrated G&C system is the incorporation of plume im-

pingement avoidance functionality. To do this, plume impingement severity information is inte-

grated directly into the jet selection process. This severity information can be approximated for

each of the free-flyer’s RCS jets using the position of each jet and available information about

surrounding obstacles.

4.3.1 Plume-Fuel Optimal Jet Selection

The cost function given in equation (4.10) can be rewritten in vector form as (4.16).

z = cT t (4.16)

c is a vector of jet cost weightings and t is a vector of jet firing times, both of length J , the total

number of jets. Given a jet configuration in which all jets have the same fuel consumption rate, a

minimum firing time solution corresponds to a minimum fuel solution. The general cost weighting

array c can be used to introduce other constraints on the optimization.

To incorporate plume avoidance into the jet selection optimization, the cost array c was used to

weight the jets according to their potential for plume impingement with nearby structures and ve-

hicles. The cost weighting is calculated using a plume cost function, which calculates the potential

severity of plume impingement for each jet based on known information about nearby obstacles

44

and the jet’s position and direction relative to those obstacles.

The result is an optimization process that produces plume-fuel optimal jet commands. Jets

corresponding to relatively large plume costs will have their firing time reduced or eliminated in

comparison to the fuel optimal solution. Instead, jet selection relies more heavily on alternative jet

combinations to fulfill incoming impulse commands.

4.3.2 Plume Cost Function

In general, a plume cost function calculates the severity of plume impingement for a potential

jet firing at the instantaneous relative position between a jet and nearby obstacles. The specific

function applied by [23] was chosen for implementation (4.17).

cj =
N∑
i=1

wiF (θi, tj, sij) (4.17)

In this equation F (θi, tj, sij) is a function that calculates the impingement of jet j on structural

point i. wi is a cost weighting of structural point i. Structural points are points within a structural

component that are assumed to represent the structural geometry well. The total plume cost of jet

j is the sum of its impingement cost on every structural point. This function is given by equation

(4.18).

F =
|tj|2 cos4 θi

|sij|2
(4.18)

In this plume function, tj is the thrust vector for jet j, sij is the relative position of structural

point i with respect to jet j, and θi is the off-axis angle of structural point i with respect to the

thrust axis. This relative geometry is visualized in Figure 4.3.

This plume cost function models the approximate shape of jet flow field iso-pressure curves,

as detailed in [23]. For a particular structural point and jet combination, the plume firing cost falls

off quickly as the structural point moves away from the thrust axis due to the cos4 θ term. The cost

also decreases quadratically as the relative distance between the jet nozzle and the structural point

increases. Contours of the plume function F are shown in Figure 4.4.

45

Figure 4.3: Geometry for plume cost function evaluation

4.3.3 Integration of Plume Cost Calculations

The plume cost function (4.17) quantifies the potential severity of plume impingement for

each jet given the instantaneous relative position between the vehicle and all other obstacles. The

relative position between the vehicle and obstacles will change as the free-flyer maneuvers towards

the goal position. Additionally, the orientation of the free-flyer will change the relative direction

of each jet with respect to any obstacles. Therefore, the jet cost array c will need to be updated to

reflect accurate plume impingement information before each jet firing.

The computation of jet firing costs has the potential to be computationally expensive. For each

jet, the plume cost function must be evaluated for every structural point. For integration into the

broader G&C algorithm, the computation of jet firing costs can be carried out as an asynchronous

process. Therefore, when the guidance logic requests a new ∆V , the jet selection computation can

take the most recent jet firing costs to use in the optimization. This avoids the need to wait for a

potentially expensive computation during firing command generation.

The structural points used in the plume cost function can come from any source. For free-flyer

operations, the position and weightings of these points must be either given to the free-flyer from

46

Figure 4.4: Plume cost function contours given a unit thrust vector

stored data, or detected during operation. In this G&C system, the guidance process is already

responsible for receiving visibility information and constructing an internal model of nearby ob-

stacles. For simplicity, the discrete plume process uses the available obstacle nodes from guidance

to use as structural points. The cost weightings wi of these structural points, which are used in

equation (4.17), are all set to be equal in value. This is done because the guidance process is given

no additional information about the sensitivity of structural components to plume impingement.

4.4 Integrated System

Together, this chapter and Chapter 3 develop the theory behind an integrated free-flyer G&C

system that fulfills the key capabilities outlined in Chapter 2. The final G&C system consists of

four processes running asynchronously. These four processes are referred to simply as Guidance,

Attitude Controller, Jet Manager, and Plume Avoidance. The inputs and outputs of these processes

are outlined in Table 4.1.

47

Process Input Output

Guidance Vehicle translational state, posi-
tion command, and object map-
ping information

∆v impulse commands and ob-
stacle model

Attitude Controller Vehicle rotational state and atti-
tude command

∆ω impulse commands

Plume Avoidance Vehicle state and obstacle model Plume cost array

Jet Manager ∆v and ∆ω impulses, plume
cost array

Jet firing commands

Table 4.1: Integrated G&C system processes

48

5. FREE-FLYER TEST-BED SIMULATION

To test and verify the capabilities of the free-flyer G&C system described in Chapters 3 and 4,

a real-time simulation of free-flyer proximity operations was designed and developed. This sim-

ulation was built on the SpaceCRAFT simulation platform [34], taking advantage of its modular,

asynchronous architecture and the powerful visualization tools of the Unreal Engine 4 game engine

[35]. Figure 5.1 shows an action screenshot taken during a real-time test-bed simulation run.

The test-bed simulation allowed for broad variability in the design of test cases and was de-

signed to offer completely generalized modelling of the free-flyer problem. This includes config-

urable obstacle environments, free-flyer jet configurations, vehicle properties, and, of course, G&C

system parameters. The test-bed simulation’s key capabilities are outlined in Table 5.1.

Figure 5.1: Screenshot taken during a free-flyer test-bed simulation run

49

Capability Description

Physics Propagation The relative translational and rotational vehicle dynamics are
propagated numerically, with control force and torque in-
puts.

Asynchronous Processes Individual processes run in parallel, which avoids undesir-
able effects of having control systems, physics, and other
utility processes running on a single thread.

UE4 Integration Integration with Unreal Engine 4 provides high-fidelity ren-
dering of the simulation state in real-time, as well as access
to other optimized functionality such as collision detection
and raycasts.

Configurable Obstacle Envi-
ronments

Various obstacle configurations and environments can be
loaded into the simulation, and can include both static and
dynamic obstacles.

Configurable Vehicle and
Control Parameters

Vehicle design parameters, such as mass properties, jet con-
figurations, and control system parameters are fully config-
urable for testing and design iteration.

Data Logging The simulation performs data logging within each process
for post-simulation analysis and plot generation.

Table 5.1: Key test-bed simulation capabilities

5.1 SpaceCRAFT/UE4 Simulation Software

The SpaceCRAFT simulation platform was designed and developed by the students at the

ASTRO center at Texas A&M University under the guidance of Professor Gregory Chamitoff.

The SpaceCRAFT project began development with the goal of providing a unique platform for

real-time space mission simulation with strong VR support.

The SpaceCRAFT platform has matured considerably since its conception in 2016, and has

developed an array of useful features and functionality for the development of sophisticated simu-

lations. Simulation development with SpaceCRAFT is primarily done in C++, although alternative

language APIs exist. SpaceCRAFT supplies a simulation development environment that is com-

parable to NASA’s TRICK, but with a greater focus on real-time simulations and high-fidelity

visualization. SpaceCRAFT’s asynchronous architecture, ease of model implementation, and inte-

50

gration with UE4 motivated its selection for this work.

5.1.1 Components of a SpaceCRAFT Simulation

SpaceCRAFT simulations are built upon the interactions of a few fundamental components.

The most basic SpaceCRAFT object is the entity, which can represent any object in the simulation.

Entities have parameters attached to them, which can represent any data owned by an entity. To

illustrate, a vehicle sensor can be represented in a simulation as its own entity, with parameters that

describe its properties as well as any input or output data it owns.

The last fundamental component is the system, which implements any simulation process or

model that acts on entities and their parameters. Systems can also have their own instance pa-

rameters which are available outside of any entity ownership. Systems are user defined C++

code models, which are supplied and built as external packages. Each system has an init()

and update() function that is called by the main SpaceCRAFT executive. For each system,

init() runs once at simulation start-up and update() runs at a user defined frequency. Sys-

tems run asynchronously and provide the interaction between entities and their parameters that cre-

ate the overall simulation state. SpaceCRAFT performs the time-keeping, data-synchronization,

and update() scheduling for the user.

To define a simulation, .json configuration files are used to specify entities and parameters,

include system files, and attach systems to specific entities. Therefore, simulation development is

reduced to the definition of the simulation configuration file and system programming.

5.1.2 Simulation Non-Determinism

As a result of SpaceCRAFT’s asynchronous architecture, simulations are often non-deterministic.

This is a common issue among software that utilizes some degree of parallel programming [36].

Each time a SpaceCRAFT simulation is run, the various system update() calls and other opera-

tions will occur in a different order due to small timing differences. This results in non-determinism

when these operations touch data shared by other processes. The test-bed simulation described in

the chapter has many different processes operating on shared data, and therefore is highly non-

51

deterministic. This does not reduce the validity of the individual simulation processes, but did

affect the way that the simulation test-bed was used to generate results for this thesis.

5.1.3 UE4 Integration

Another important aspect of SpaceCRAFT is its streamlined integration with UE4. The Space-

CRAFT platform includes functionality to give UE4 objects and classes access to simulation en-

tities and their parameters. This enables high-fidelity simulation rendering, as well as access to

functionality that UE4 specializes in, such as user input and collision detection.

The architecture of the SpaceCRAFT platform includes both a client and server. The platform-

specific UE4 client connects with the parameter server, which maintains a key-mapped list of all

simulation entities and parameters. The server also manages the initialization and update schedul-

ing for any systems during a particular simulation. Notably, the server can run simulations inde-

pendently of the UE4 client, as long as those simulations do not depend on return data from the

client.

5.2 Test-Bed Simulation Architecture

The architecture of the test-bed simulation software is outlined in Figure 5.2. This architec-

ture consists of several discrete processes that read and write data to the SpaceCRAFT parameter

server. These processes fall into a several categories, which are designated by color as shown in

the diagram’s legend.

On the left side of this diagram are all the SpaceCRAFT systems that drive the simulation. A

subset of these systems, shown in blue, are the systems belonging to the free-flyer G&C algorithm.

These four systems correspond directly to the processes described in Table 4.1.

There are three other systems included in the simulation besides the ones that implement the

G&C algorithm. The Data Monitor system is a SpaceCRAFT utility, and provides real-time moni-

toring of server parameters. The other two systems, FF_Physics and FF_Structure, are responsible

for modelling the environment of proximity operations for the free-flyer G&C system to interact

with.

52

Figure 5.2: Test-bed simulation software architecture

On the right side of Figure 5.2 are all of the UE4 classes used to create a real-time visual-

ization of the simulation. The classes StructureBP and FreeFlyerBP drive the rendering of static

meshes used to represent the free-flyer vehicle and structure, respectively. These visual functions

do not affect the state of the simulation. The ObjecctMappingSensorBP class drives the creation

of simulated visbility data, which is detailed in Section 5.3.

5.2.1 Physics Propagation

One of the primary functions of the test-bed simulation is to model the dynamic response of

the free-flyer due to the control output of the G&C algorithm. To accomplish this, the physics

propagation system FF_Physics was implemented to handle vehicle state propagation and output.

The vehicle dynamics are modelled by the differential equations introduced in 2.1. For trans-

lational motion, the linearized form of the relative orbital motion equations are used. Rotational

motion, however, is modelled by nonlinear equations of rigid body dynamics and quaternion kine-

matics. For simplicity, a basic Runge-Kutta 4th order numerical integration method is applied to

53

Figure 5.3: An example structure rendered in UE4

both translational and rotational equations [37]. The vehicle control accelerations are determined

directly as the sum of the acceleration components of each jet that is currently firing. The current

control force and torque vectors are output by FF_JetManager.

During each update(), FF_Physics propagates the vehicle state forward by a fixed timestep,

computes any derived states and transformations, and outputs the updated state data to the Space-

CRAFT parameter server. This system also logs the state information for post-simulation analysis.

5.2.2 Obstacle Representation

In the test-bed simulation, the structural environment that the free-flyer attempts to navigate is

user-defined. These environments are composed of three fundamental 3D shapes; spheres, boxes,

and cylinders. By translating, rotating, and scaling these basic shapes, a variety of complex ob-

stacles can be constructed. To define a structure or obstacle field, the user supplies a .json file

which defines a structural configuration in terms of these basic components. An example of a

complex structure composed of these simple components in the test-bed simulation is shown in

Figure 5.3.

The structural configuration is initialized by the FF_Structure system and output to the param-

eter server. The components of a structure are static by default, but additional functionality exists

54

to specify the motion of dynamic obstacles. Each update(), FF_Structure propagates the state

of any dynamic obstacles according to structure-specific motion models and outputs the new states

to the parameter server.

5.3 Simulated Obstacle Mapping

The reactive guidance process handles updates to the free-flyer’s inertial obstacle model and

potential field data, as discussed in Section 3.3. The inclusion of this functionality was intended

to demonstrate that the proposed guidance method is still effective when the free-flyer receives

information about only obstacles within its line-of-sight.

The work needed to implement 3D mapping algorithms is extensive, and requires the virtual

modelling of sensors such as lidar or Red-Green-Blue-Depth (RGBD) cameras. Such topics are

outside the scope of this thesis. To simulate obstacle mapping without actually implementing

mapping algorithms and camera models, an analogous method of generating the output of a 3D

mapping algorithm was needed. This output is referred to as visibility data.

To generate this visibility data, UE4’s raycasts were used. Raycasts, also referred to as line-

traces, detect collisions with rendered objects along a line segment. Each raycast returns a boolean

collision flag as well as additional collision data, such as distance from the raycast origin to the

point of collision.

To generate visibility data, each node in the potential field grid is tested with a raycast that

originates at the instantaneous position of the free-flyer. If a raycast collides with a rendered

obstacle, the collision distance is compared to the expected distance between the vehicle and the

node. If the collision distance is less than the expected distance, then the node is obstructed from

the vehicle’s line-of-sight. If the collision distance is roughly similar to the expected distance,

then the node is detected. Finally, if the distance exceeds the true distance, or no collision occurs,

then the node was undetected. Given this data, the guidance process adds detected nodes to the

internal obstacle model. If a previously detected node is suddenly undetected, it is removed from

the internal model. Otherwise, undetected or obstructed nodes do not affect the internal model.

By checking all grid points in this manner, the resulting visibility data is essentially analogous

55

Figure 5.4: Point-cloud to obstacle grid conversion example using data obtained from a lidar sensor

to the output of a typical 3D mapping algorithm. For example, a 3D mapping algorithm could uti-

lize lidar or RGBD camera data to detect points on the surface of nearby obstacles. The collection

of these points is a point-cloud, which can be processed further into a triangulated surface mesh

representing an obstacle. Although the point-cloud data does not naturally conform to the potential

field grid used in the proposed guidance process, it is a simple calculation to determine obstacle

nodes from point-cloud data as shown in Figure 5.4.

3D mapping algorithms are often able to refine the surface mesh over time given additional

sensor data. If surface geometry is detected behind or inside the existing surface mesh, then mesh

vertices can be moved or deleted. The function of such a mapping algorithm in practice is analo-

gous to the simulated mapping that takes place in the test-bed simulation.

5.3.1 Optimizing Raycast Execution

The simulated obstacle mapping approach described so far requires every grid point to be tested

with a raycast during a single detection pass. For a 50x50x50 grid resolution, this requires 125,000

raycast computations. This computational expense makes this approach infeasible as described,

and resulted initially in very poor performance during real-time simulations. To fix this issue,

56

several optimizations were implemented to improve the performance for this functionality of the

test-bed simulation.

First, a method was determined to reduce the overall number of grid points that need to be

tested, without changing the resulting visibility data. From the structure configuration, the true set

of existing obstacle nodes can be determined. Then the following is asserted: a raycast test to a

grid point that has never been an obstacle node will result in no detection by definition. Therefore,

only nodes that are currently or have previously been obstacle nodes are tested by raycast. This

drastically cuts down on the total number of line traces that need to be performed for a typical

structural configuration.

A second method for improving performance was also implemented. As developed previously,

the guidance process updates the potential field values at a relatively low frequency. Due to this

low frequency, the computational demand for a large set of raycasts can be spread out over several

computational ticks, or updates. Instead, the raycast process can occur in batches of a fixed size. As

long as the total number of raycasts can be accomplished between potential field update intervals,

the resulting visibility data is not fundamentally affected.

The implementation of these optimizations has made this process of simulating object mapping

data feasible for real-time simulation. A screenshot of this process in action is shown in Figure

5.5. It is important to emphasize that these performance challenges and the solutions discussed

in this section do not have implications for the G&C system developed in this thesis. Simulation

of obstacle mapping data, and the associated computational challenges are aspects of the test-bed

simulation alone.

57

Figure 5.5: Screenshot of the obstacle mapping functionality with visualized raycasts

5.4 Reference Free-Flyer

The G&C system designed in this thesis is intended to provide effective maneuvering regardless

of the design of a particular free-flyer. This is not without limitation, as it is assumed that the free-

flyer design includes an RCS propulsion system with an array of jets, as opposed to a "turn-and-

burn" design. It is also assumed that the free-flyer has relatively balanced dimensions and inertial

properties. Within these limitations, a large variety of potential free-flyer designs are compatible.

The G&C system is intended to be tuned to a specific free-flyer design by tweaking certain control

parameters. Variations in both the vehicle design and control system parameters will affect overall

system performance.

To test the G&C system and verify that it meets the desired key capabilities, the simulation

results need to reflect the performance of the system implemented for a real free-flyer design that

could be viable for the future mission concepts developed in Section 1.1.2. To standardize the

approach to testing, a reference free-flyer design was developed for the test-bed simulation. The

G&C parameters were chosen through iterative simulation testing to fit the reference free-flyer’s

design. The following sections outline the reference design and system parameters that are used to

58

generate the simulation results in the following chapter.

5.4.1 Design and Properties

The reference free-flyer design includes all of the properties and vehicle configuration infor-

mation needed to implement the developed G&C system in the simulation environment. For ma-

neuvering, the most important aspect of a free-flyer’s design is the RCS propulsion system. This

design utilizes an RCS jet array with 32 jets of equal thrust. The jet array given by Table 5.2 shows

each jet’s position with respect to the body frame, boresight direction, and thrust. The resulting jet

configuration is visualized in Figure 5.6. Other important vehicle design properties are included in

Table 5.3

Figure 5.6: Thirty-two jet array used by the reference free-flyer

5.4.2 Default G&C System Parameters

The system parameters include all user-defined parameters in the integrated G&C system de-

scribed in Chapter 4. The system parameters used to generate the simulation results are shown in

Table 5.4.

59

Jet ID Position (m) Direction Thrust (N)
1 0.5, 0.5, 0.5 1, 0, 0 12.5
2 0.5, 0.5, 0.5 0, 1, 0 12.5
3 0.5, 0.5, 0.5 0, 0, 1 12.5
4 -0.5, 0.5, 0.5 -1, 0, 0 12.5
5 -0.5, 0.5, 0.5 0, 1, 0 12.5
6 -0.5, 0.5, 0.5 0, 0, 1 12.5
7 0.5, -0.5, 0.5 1, 0, 0 12.5
8 0.5, -0.5, 0.5 0, -1, 0 12.5
9 0.5, -0.5, 0.5 0, 0, 1 12.5

10 0.5, 0.5, -0.5 1, 0, 0 12.5
11 0.5, 0.5, -0.5 0, 1, 0 12.5
12 0.5, 0.5, -0.5 0, 0, -1 12.5
13 -0.5, -0.5, 0.5 -1, 0, 0 12.5
14 -0.5, -0.5, 0.5 0, -1, 0 12.5
15 -0.5, -0.5, 0.5 0, 0, 1 12.5
16 -0.5, 0.5, -0.5 -1, 0, 0 12.5
17 -0.5, 0.5, -0.5 0, 1, 0 12.5
18 -0.5, 0.5, -0.5 0, 0, -1 12.5
19 0.5, -0.5, -0.5 1, 0, 0 12.5
20 0.5, -0.5, -0.5 0, -1, 0 12.5
21 0.5, -0.5, -0.5 0, 0, -1 12.5
22 -0.5, -0.5, -0.5 -1, 0, 0 12.5
23 -0.5, -0.5, -0.5 0, -1, 0 12.5
24 -0.5, -0.5, -0.5 0, 0, -1 12.5
25 0.5, 0.5, 0.5 0.577, 0.577, 0.577 12.5
26 -0.5, 0.5, 0.5 -0.577, 0.577, 0.577 12.5
27 0.5, -0.5, 0.5 0.577, -0.577, 0.577 12.5
28 0.5, 0.5, -0.5 0.577, 0.577, -0.577 12.5
29 -0.5, -0.5, 0.5 -0.577, -0.577, 0.577 12.5
30 -0.5, 0.5, -0.5 -0.577, 0.577, -0.577 12.5
31 0.5, -0.5, -0.5 0.577, -0.577, -0.577 12.5
32 -0.5, -0.5, -0.5 -0.577, -0.577, -0.577 12.5

Table 5.2: Position, boresight direction, and thrust for reference free-flyer RCS system

60

Property Symbol Value Units

Vehicle mass m 25 kg

Moments of inertia Idiag 25, 25, 25 kg ·m2

Products of inertia Icross 0, 0, 0 kg ·m2

Minimum jet on-time dtmin 10 ms

Vehicle side length s 1 m

Orbit rate ω0 0.001131 rad/s

Table 5.3: Reference free-flyer properties

Property Symbol Value units

Grid resolution parameter n 50 –

Grid step size h 1 m

Grid refinement iterations N 500 –

Guidance speed cguid 0.5 m
s

Evasion speed cevad 1.5 m
s

Gradient-velocity guidance max angle βmaxguid
40 deg

Gradient-velocity evasion max angle βmaxevad
5 deg

Keep-out-sphere radius RKOS 2.5 m

Limit-cycle angular speed ccycle 0.5 deg
s

Slew-mode angular speed ccycle 5 deg
s

Angular deadband limit db 5 deg

Angular deadband buffer b 2 deg

Reactive guidance update freq. fguid 20 Hz

Potential field update freq. fpf 2 Hz

Attitude controller update freq. fac 60 Hz

Jet Manager update freq. fjm 60 Hz

Plume avoidance update freq. fpa 20 Hz

Table 5.4: Integrated G&C system parameters used during simulation testing

61

6. RESULTS

The test-bed simulation outlined in Chapter 5 was used to evaluate the performance of the

free-flyer G&C system developed in this thesis. The completed system combines several different

algorithms and techniques to provide a practical and flexible approach to free-flyer autonomous

maneuvering. To assess the performance of the integrated system, simulation runs intended to

demonstrate the system behavior were conducted. Additionally, this testing aims to assess whether

the system meets the key capabilities outlined in Table 1.1.

6.1 Point-to-Point Maneuvering Tests

The critical capability of the free-flyer G&C system developed in this thesis is to provide

safe point-to-point maneuvering in the presence of both static and dynamic obstacles in an orbital

environment. To test this capability a series of maneuvering test cases were developed. Each test

features a different obstacle environment, which were defined using the structural configuration

definition functionality of the test-bed simulation. The obstacle environments used are shown in

Figure 6.1.

In each test, the free-flyer is given an initial state and commanded state to achieve. Each test

ends when the free-flyer reaches the commanded position. The parameters for each maneuver test

Parameter Test 1 Test 2 Test 3 Test 4

Environment Knucklebones Maze Ship Asteroids

rLV LH
0 [m] 20.0, 15.0, 15.0 20.0, 15.0, 15.0 -10.0, -10.0, 0.0 20.0, 15.0, 15.0

rLV LH
cmd [m] -15.0, -15.0, -15.0 -15.0, -15.0, -15.0 20.0, 10.0, 0.0 -15.0, -15.0, -15.0

qlvlh
body0

0.0, 0.0, 1.0, 0.0 0.41, 0.41, 0.81, 0.03 0.0, 0.0, 0.0, 1.0 0.0, 0.0, 0.0, 1.0

qlvlh
bodycmd

0.0, 0.0, 0.0, 1.0 0.0, 0.0, 0.0, 1.0 0.0, 0.0, 1.0, 0.0 0.41, 0.41, 0.81, 0.03

vlvlh
0 [m/s] 0.0, 0.0, 0.0 0.0, 0.0, 0.0 0.0, 0.0, 0.0 0.0, 0.0, 0.0

ωbody
0 [rad/s] 0.0, 0.0, 0.0 0.0, 0.0, 0.0 0.4, -0.5, 0.3 0.0, 0.0, 0.0

Table 6.1: Point-to-point maneuvering test definitions

62

Figure 6.1: The four maneuver testing obstacle environments

are shown in Table 6.1. All tests include simultaneous translational and rotational maneuvers, to

test the systems ability to perform both in parallel.

6.2 Maneuvering Test 1

The first maneuvering simulation tested the ability of the free-flyer to operate near a static,

symmetrical orbital structure fixed in the local LVLH frame. The specified position command for

this test required the free-flyer to move to a point on the opposite side of the structure. Addition-

ally, the free-flyer’s attitude command required a 180 degree rotation about its z-axis during this

maneuver.

The resulting trajectory of the free-flyer from this test is shown in Figure 6.2. In this figure,

the obstacle nodes that were detected by the free-flyer and used in guidance are shown in red. Any

obstacle nodes that were undetected appear as white.

Figure 6.3 gives the plots of several guidance parameters. The plot in the upper left of this figure

shows the minimum distance between the free-flyer and any obstacle node. The black dashed line

shows the distance in which a collision would have occurred based on the vehicle radius, while the

63

Figure 6.2: Test 1 final trajectory and obstacle model

blue dashed line shows the keep out distance that defines the threshold for switching to evasion

mode. From this data, it is clear that the free-flyer avoided collision with the structure. The

vehicle maintained its slower speed for normal guidance throughout the maneuver. The β angle

and potential value plots show that the free-flyer smoothly descended the gradient with periodic

firings.

The rotational response of the free-flyer during the maneuver is shown in Figure 6.4 and 6.5.

As shown in the plots, the free-flyer achieved the desired orientation before t = 20s and maintained

that orientation by limit cycling for the rest of the maneuver. During limit-cycling the free-flyer’s

angular error stayed within the allowable deadband.

64

Figure 6.3: Test 1 guidance parameters

Figure 6.4: Test 1 attitude quaternion components

Figure 6.5: Test 1 vehicle body axis rates

65

6.3 Maneuvering Test 2

The second maneuvering test required the free-flyer to navigate a more constrained environ-

ment referred to as Maze. This environment provided the free-flyer with multiple potential paths,

but limited line-of-sight. As a result, the capability of the G&C system to adapt to new informa-

tion as the free-flyer explores the structure was emphasized in this test. During this maneuver, the

free-flyer was also commanded to eliminate a large three-axis attitude deviation.

An overview of the final free-flyer trajectory and internal obstacle model is shown in Figure 6.6.

There are two main paths in the middle section of this structure through which the free-flyer can

pass, labelled A and B in the overview figure. Path A leads to a dead-end, but is closer to the goal

position along the z-axis of the LVLH frame. Initially, the free-flyer moved towards path A since it

appeared to be a more direct route to the goal based upon what sections of the structure are initially

in the vehicle’s line-of-sight. Once the free-flyer entered path A, the obstruction was mapped and

the potential field was regenerated. The free-flyer reversed direction at this point and headed

towards path B, which leads to the commanded goal position. Similarly to test 1, the minimum

obstacle node distance plot in Figure 6.7 shows that the vehicle reached the goal position without

any collisions or close-encounters with the structure. Also, the reversal in direction is visible as

fluctuations in the potential value and β angle plots, as also shown in Figure 6.7.

For the rotational DOF, the free-flyer was commanded to reduce a large angular error along

all three rotational axes. The attitude response of the vehicle is shown in Figure 6.8. The vehicle

reached the desired orientation in under 30 seconds, and spent the rest of the maneuver limit-

cycling. The vehicle body axis rates are shown in Figure 6.9.

66

Figure 6.6: Test 2 final trajectory and obstacle model

Figure 6.7: Test 2 guidance parameters

67

Figure 6.8: Test 2 attitude quaternion components

Figure 6.9: Test 2 vehicle body axis rates

68

6.4 Maneuvering Test 3

The third maneuver test involved a more typical free-flyer operation where the vehicle ma-

neuvered near the exterior of a larger spacecraft. The Ship structure represents the exterior of a

fictitious habitable spacecraft. This spacecraft is oriented with it’s bow facing along the x-axis of

the LVLH frame, which is the orbital direction. The mid-section of the ship features a large set of

spinning arms, as shown in Figure 6.10. These arms served as dynamic obstacles for the free-flyer

to avoid as it maneuvers from the aft part of the ship to its front, and vice-versa.

Figure 6.10: The rotating arm obstacles in the Ship obstacle environment

In this test the vehicle was commanded to traverse from the aft side of the ship to the forward

side, as well as from the port side of the ship to the starboard. The vehicle was given an orientation

command that required a 180 degree rotation about its z-axis. Additionally, the vehicle started with

a large three axis angular velocity to control.

The final trajectory and internal obstacle model from this test are shown in Figure 6.11. As

evident from the final trajectory, the free-flyer successfully navigated to the commanded position.

Along the way, the vehicle had a close encounter with one of the swinging arms. This close

encounter caused the free-flyer’s guidance system to go into evasion mode at approximately t =

69

22s, as shown in the guidance plots of Figure 6.12. This section of the trajectory is labelled A

in the overview figure. The increased vehicle speed for this collision avoidance maneuver is also

visible in the guidance parameter plots.

Figure 6.11: Test 3 final trajectory and obstacle model

The attitude response of the vehicle is shown in Figures 6.13 and 6.14. The initial angular

velocity was quickly reduced by the attitude controller and the free-flyer reached the commanded

orientation with no further deviation from the allowable deadband.

70

Figure 6.12: Test 3 guidance parameters

Figure 6.13: Test 3 attitude quaternion components

Figure 6.14: Test 3 vehicle body axis rates

71

6.5 Maneuvering Test 4

For the last maneuver test, the free-flyer was placed in a highly dynamic environment called

Asteroids. In this environment, there is a mix of static and dynamic spheres. Four of those spheres

are set to orbit the central structure, as shown in the environment diagram in Figure 6.15.

Figure 6.15: The orbiting dynamic obstacles in the Asteroids obstacle environment

The free-flyer was commanded to traverse this obstacle field, placing it in the direct path of the

orbiting spheres to test its dynamic obstacle avoidance capabilities. Additionally, the free-flyer was

commanded to execute a three-axis rotational maneuver to reach an arbitrary unaligned orientation.

The resulting final trajectory of the free-flyer and the state of its internal model are shown in

Figure 6.16. At the section of the trajectory labelled A in this figure, the free-flyer performed

evasive maneuvers to avoid one of the orbiting spheres that moved directly into its path. The

response of the guidance system to this collision avoidance maneuver is visible in the guidance

parameter plots of Figure 6.17. The free-flyer quickly reversed direction and increased its speed to

avoid the incoming obstacle.

The attitude response of the free-flyer is shown in Figures 6.18 and 6.19. The free-flyer reached

the command orientation without issue, and maintained this orientation despite the collision avoid-

ance event.

72

Figure 6.16: Test 4 final trajectory and obstacle model

Figure 6.17: Test 4 guidance parameters

73

Figure 6.18: Test 4 attitude quaternion components

Figure 6.19: Test 4 vehicle body axis rates

74

6.6 Obstacle Mapping Performance

The previous section demonstrates the G&C system behavior for a variety of environments and

initial conditions. In all four tests, the free-flyer was able to maneuver from the initial position

to the goal position by constructing an internal model of the surrounding environment based on

its line-of-sight. The final trajectory overview of Figures 6.2, 6.6, 6.11, and 6.16 only show the

final state of the free-flyer’s internal model. For fully static structures, any white nodes in these

figures are nodes that were never in the free-flyer’s line-of-sight, and therefore were excluded from

the internal obstacle model managed by the guidance process. For dynamic obstacles, only the

final poses of the obstacles are reflected in these overview figures. The internal model refinement

performed by the free-flyer’s guidance system is not well shown. To better show the progression

of the obstacle mapping process, Figures 6.20, 6.21, 6.22, and 6.23 were created.

75

Figure 6.20: Test 1 obstacle mapping progression

Figure 6.21: Test 2 obstacle mapping progression

76

Figure 6.22: Test 3 obstacle mapping progression

Figure 6.23: Test 4 obstacle mapping progression

77

6.7 Plume Impingement Avoidance Performance

Another major capability of the G&C system is active plume impingement avoidance. To

assess this capability, this thesis attempts to quantify the system’s ability to reduce plume impinge-

ment and the potential degradation of other performance parameters. For the purpose of generating

comparison data, the test-bed simulation includes an option to disable plume avoidance. If this op-

tion is enabled, the plume cost for each jet is still calculated, but it is not considered during jet

selection. Therefore, the output jet firing commands are time optimal in this mode (or also fuel

optimal given that each jet has the same mass flow rate). Using this option, simulation runs with

this option enabled allows for the comparison of relative plume impingement costs, as well as other

performance parameters.

Given the non-deterministic nature of the test-bed simulation due to its asynchronous architec-

ture, each simulation run results in a new free-flyer trajectory. Trajectory differences are highly

coupled with total accumulated plume impingement cost. Therefore, given the current capabilities

of the test-bed simulation, the effectiveness of plume impingement avoidance is evaluated by com-

paring a set of runs with plume avoidance and a set of runs with avoidance disabled. Figures 6.24,

6.25, 6.26, and 6.27 compare the system performance for each of the four maneuver tests. In each

test, five runs are with plume avoidance and five are without.

Table 6.2 includes some statistics about the final cost values and maneuvering time. The plots

as well as the average performance data show that the effectiveness of plume avoidance depends

on the nature of the obstacle environment. Plume avoidance achieved large reductions in the final

plume cost for Maneuvering Tests 1, 3, and 4 as shown. Test 3 however shows a slight plume cost

increase with plume avoidance enabled. Notably, this test features the most constrained structural

environment, where the free-flyer navigates inside the Maze structure.

78

Figure 6.24: Test 1 plume avoidance performance and related parameters

Figure 6.25: Test 2 plume avoidance performance and related parameters

79

Figure 6.26: Test 3 plume avoidance performance and related parameters

Figure 6.27: Test 4 plume avoidance performance and related parameters

80

Performance Parameter Avoidance Test1 Test2 Test3 Test4

Avg. Plume Cost
Enabled 81.47 924.63 303.82 394.49
Disabled 176.79 913.73 474.22 605.61

Avg. Fuel Cost [s]
Enabled 6.20 15.66 13.02 17.82
Disabled 6.25 13.19 10.79 12.87

Avg. Number of Firings
Enabled 22.0 64.6 23.6 42.0
Disabled 25.2 61.6 24.4 38.6

Avg. Maneuver Time [s]
Enabled 134.78 305.36 93.35 133.54
Disabled 136.00 307.75 92.61 129.50

Table 6.2: Maneuvering and plume avoidance performance summary

6.8 Discussion

The simulation results presented in this chapter represent the performance of the system for the

reference free-flyer and the system parameters chosen for testing. The results are also dependent

on the specific software implementation of the G&C system and the architecture of the test-bed

simulation with which it interacts. Therefore, with the context of these results being considered,

the behavior and capabilities of the system can be assessed.

6.8.1 Obstacle Avoidance Behavior

Among the key capabilities that the G&C system sought to perform, collision avoidance for

static obstacles is among the most basic. All four maneuvering test cases demonstrate the ability of

the G&C system to maneuver safely in the presence of static obstacles. Even in the Maze obstacle

environment, the G&C system enabled the free-flyer to maintain a steady and safe progression

towards the goal position, even as its exploration of the structure required it to double back on its

path. In this case, lack of complete information about the configuration space did not inhibit the

guidance process from producing a safe trajectory. This is also demonstrated in test cases 3 and

4, where the free-flyer reaches the goal position with large portions of those structures remaining

unmapped throughout the entire maneuver. This is visible in Figures 6.11 and 6.16 as large regions

of white dots representing unmapped obstacle nodes.

The presence of dynamic obstacles complicated the G&C system’s ability to maintain safe

81

and steady progression towards the goal position. A fundamental guarantee of guidance based on

the use of potential fields is lost when introducing dynamic obstacles. For impulsive changes in

velocity, the GIM approach to reactive guidance covered in Chapter 3 guarantees the descent of the

potential field. This is true when the potential field is constant, but not when the field is regenerated

periodically. The motion of dynamic obstacles can simply outpace the ability of the G&C system

to react accordingly. This is especially true for obstacles that move at a speed greater than the user

defined evasion speed. With these limitations in mind, the evasion mode approach to dealing with

dynamic obstacles is successful in test cases 3 and 4. The reference free-flyer tested has a fairly

large thrust to weight ratio, and was able to quickly move clear of incoming obstacles as shown in

the test results. For the application of this G&C system in a real free-flyer operation, the potential

nature and speed of any dynamic obstacles would become major factors in the choice of system

parameters and even vehicle design.

6.8.2 Attitude Control Behavior

The test results demonstrate that, during the execution of translational path-finding and ma-

neuvering, the attitude control process was effectively uninterrupted. In the four test cases, the

free-flyer was required to produce a variety of rotational maneuvers. In all cases, the attitude con-

troller enabled the free-flyer to reach the commanded orientation in an amount of time roughly

proportional to the angular error between the initial and commanded attitude. In test case 3, the

free-flyer is also given an initial angular velocity to manage. With the high thrust to inertia ratio of

the reference free-flyer, the attitude controller was able to quickly eliminate this angular velocity

without issue. In all cases, after the commanded attitude was reached, the free-flyer limit cycled

within the allowable deadband for the rest of each maneuver.

One potential limitation of the attitude controller is that it will be less effective for free-flyer

designs with highly unbalanced moments of inertia. The attitude control law (4.8) directs the new

angular velocity along the axis obtained by representing the angular error in an axis-angle repre-

sentation. The nonlinear terms of equation (2.6) become larger for vehicles with unbalanced inertia

tensor components. This non-linearity can render the control law ineffective for large rotational

82

maneuvers. To adapt the G&C system for unbalanced spacecraft an alternative attitude control law

that can handle this nonlinearity should be used, especially for large angle slewing.

6.8.3 Plume Impingement Avoidance Behavior

From the simulation results, the effectiveness of the plume impingement avoidance function-

ality appears to depend strongly on the free-flyer’s environment. With plume avoidance enabled,

there is a clear reduction in plume cost in tests 1, 3, and 4. Test 3, however, tells a different story.

The plume cost for test 3 is actually slightly higher with plume avoidance enabled than with it

disabled.

The reason for this likely has a lot to do with the Maze obstacle environment. The other

obstacle environments generally feature convex obstacles with plenty of open space. On the other

hand, the Maze environment is essentially concave, with the vehicle operating inside the structure.

The plume avoidance functions by allowing the jet selection to choose alternative jet combinations

with a lower overall plume cost. In a highly constrained environment there are obstacles in most

directions from the vehicle, and therefore fewer opportunities to optimize for plume avoidance.

In these test cases, the structural components were equally weighted in the computation of

plume costs. Instead, these results suggest that designating sensitive structural components with

a higher structural weighting relative to the rest of the structure would produce more favorable

results. Therefore, the parts of the structure that plume impingement can affect the most are prior-

itized, and jet selection has more favorable jet combinations to choose from.

The results also suggest that this method of plume avoidance can cause degradation of other

performance criteria. In test cases 2, 3, and 4 the fuel cost with plume avoidance enabled was

slightly higher than with it disabled. This is an expected consequence of optimizing for plume

impingement and fuel usage, instead of just optimizing for fuel optimal solutions. The average

number of jet firings and total maneuver time were roughly unaffected based on these results,

especially given the relatively small run sample size.

One limitation of this plume avoidance approach is that it relies on free-flyer designs with many

jets. The simple reason for this is that more jets pointed in different directions create fewer options

83

for plume avoidance optimization. For a minimal jet configuration with 12 jets there are few, if

any alternative jet firings to consider during optimization. Working around this limitation would

potentially require a more active approach, changing large aspects of the overall G&C system to

be more plume impingement friendly. In particular, with fewer jets the vehicle’s attitude becomes

a significant factor for plume impingement avoidance and therefore it may be necessary to tie the

attitude controller into the optimization process.

84

7. SUMMARY AND CONCLUSIONS

Free-flyer space robots have huge potential for aiding future human spaceflight and operations.

To perform tasks and procedures usually reserved for human crew, both outside and inside a large

spacecraft or station, these robots will be required to operate with a high degree of autonomy. One

of the fundamental capabilities of autonomous robotics is path-finding, which for free-flyers entails

point-to-point maneuvering in the presence of obstacles and other constraints.

7.1 Conclusion

In this thesis, a G&C system that enabled this kind of autonomous maneuvering was developed

and tested. This system combined and adapted several existing techniques to control a vehicle in

both translational and rotational DOF with a realistic RCS propulsion system. The critical capa-

bility of the control system is to enable the free-flyer to maneuver around space structures and

obstacles along a collision-free trajectory. This system is distinct from conventional approaches

where a complete trajectory is planned at the outset of a maneuver. Instead, this system functions

more reactively, and relies on its understanding of the surrounding environment and a set of con-

ditions to guide the free-flyer towards its goal. This approach was intended to give the free-flyer

more flexibility in an uncertain environment, while potentially sacrificing some optimality in the

final trajectory.

The final G&C system consists of four separate processes that interact to produce free-flyer

RCS jet firing commands. Translational manuevering and path-finding is performed through the

use of artificial potential fields that are generated using an internal model of the free-flyer’s envi-

ronment. This internal model is constructed based on the assumption that the free-flyer has some

ability to detect obstacle geometry within its line of sight, through the use of 3D camera or lidar in-

strumentation. The other processes handle attitude control, jet selection, and a process to optimize

jet firings for plume impingement avoidance. Separating these functions into distinct processes al-

lows for extensive parallelization of the computations, which increases its feasibility for real-time

85

operation.

These four processes, as detailed in this thesis, were then implemented into a test-bed sim-

ulation. The test-bed simulation handles physics propagation, the motion of static and dynamic

obstacles, and generates simulated obstacle visibility data for the G&C system. The resulting be-

havior of the G&C system as observed in the test-bed simulation verified its intended capabilities.

In particular, the G&C system enabled the simulated free-flyer to effectively traverse obstacle en-

vironments without collision, including both static and dynamic obstacles. The test-bed simulation

results also show that the free-flyer was able to effectively control its rotational DOF and achieve

a reduction in plume impingement.

The test-bed simulation also demonstrated potential limitations of the system, including the

need for more robust obstacle avoidance strategies for high-speed dynamic obstacles and the lim-

ited effectiveness of plume avoidance in highly constrained environments. Additionally, the system

assumes that the free-flyer has relatively balanced moments of inertia and is not capable of throt-

tling jet thrust. These limitations impose constraints on compatible free-flyer designs. Perhaps the

most severe requirement is the need for the free-flyer to have a highly redundant RCS jet array,

which creates the alternative jet firings needed by the plume avoidance process. For free-flyer de-

signs with minimal RCS systems, this limitation may degrade plume avoidance performance. This

limitation, however, does not affect the path-finding algorithm used in the guidance process.

Overall, the development and testing of this system provided a chance to extensively explore

this alternative paradigm for six DOF maneuvering, and what an integrated G&C might look

like. Many of the limitations encountered in the generation of simulation results can be addressed

through changes to individual processes. Reactive guidance using potential fields provides a pow-

erful basis for free-flyer autonomous maneuvering, and is amenable to being extended and incor-

porated into a broader system as demonstrated. Additionally, the test-bed simulation provided a

useful sandbox for system development and experimentation,

86

7.2 Future Work

There are many potential directions for future development and expansion of this work. The

free-flyer G&C system proposed and tested in this thesis has much room for refinement, opti-

mization, and adaptation. Additionally, the test-bed simulation itself has much room for expanded

functionality, including visualization tools, better simulated obstacle mapping, and more complex

obstacle geometry.

While there are many potential directions to continue this work, a few major areas stand out

as the most significant in terms of validating the feasibility of the proposed approach. The first

major area for future development would be to address free-flyer navigation through the use of

Simultaneous Localization and Mapping (SLAM) algorithm. These algorithms estimate the state

of the vehicle or sensor by building a map of the local environment [38]. The form of this map

varies from algorithm to algorithm, but generally contains a set of environment features which are

tracked to estimate the motion of the sensor. The map produced by SLAM algorithms is used for

localization, and generally is not useful for trajectory planning or in this case reactive guidance

[25]. Still, the integration of SLAM in this work would relax the simplifying assumption that the

free-flyer has perfect state information.

One particular type of SLAM algorithm that would be interesting to integrate is Point-Cloud

SLAM. Point-Cloud SLAM uses a sensor such as an RGBD camera to build a point-cloud rep-

resentation of the environment. To implement Point-Cloud SLAM into this work would require

the development of a virtual sensor that models the output of an RGBD camera or similar sen-

sor. The algorithm uses the point-cloud data as features to perform localization. A 3D obstacle

mapping algorithm that uses point-cloud data could also be implemented, which would replace the

current simulated obstacle mapping process. These expansions would demonstrate the ability of

the proposed G&C system to operate using an estimated state and while running actual mapping

algorithms, enhancing the feasibility of the system.

Another area for future work is the improvement of dynamic obstacle avoidance. The use of

SLAM could enable more robust logic for the avoidance of fast moving obstacles. Specifically, if

87

dynamic obstacles could be detected as features in a mapping process, the G&C system could react

to their estimated future motion instead of just their instantaneous positions. Given the estimated

instantaneous position and velocity of a dynamic feature during obstacle mapping, a cone that

covers the potential linear motion of the feature can be defined. This cone could be used to generate

obstacle nodes in the guidance process, and enable the free-flyer to move out of the obstacle’s path

much sooner.

The last major area for future work is to incorporate techniques for changing the size, shape,

and resolution of the potential field grid automatically to adapt to different situations. In order to

not limit potential free-flyer trajectories, the potential field grid needs to properly encompass the

obstacle environment. In some cases, especially for very large space structures, the required grid

size will become computationally infeasible. To handle maneuvers that cover such large distances,

a strategy for moving and resizing the grid could be implemented to allow the free-flyer to reach

distance goal positions. To do this would require a method for placing intermediate goal positions

for when the true goal position lies outside of the current grid boundaries. As the free-flyer nears

both the intermediate and true goal positions, the grid would be moved appropriately and a new

intermediate position would be chosen in the direction of the true goal.

88

REFERENCES

[1] A. B. Roger, Free-flyer path planning in the proximity to large space structures. PhD, Uni-

versity of Glasgow, 2003.

[2] S. Loff, “NASA Image Library,” Jan. 2022.

[3] Q. Gao, J. Liu, T. Tian, and Y. Li, “Free-flying dynamics and control of an astronaut assistant

robot based on fuzzy sliding mode algorithm,” Acta Astronautica, vol. 138, pp. 462–474,

Sept. 2017.

[4] J. Wagenknecht, S. Fredrickson, T. Manning, and B. Jones, “Design, Development and Test-

ing of the Miniature Autonomous Extravehicular Robotic Camera (Mini AERCam) Guid-

ance, Navigation, and Control System,” in 26th Annual AAS Guidance and Control Confer-

ence, (Breckenridge, CO), p. 21, American Astronautical Society, Feb. 2003.

[5] D. S. E. Fredrickson, “Mini AERCam: A Free-flying Robot for Space Inspection,” tech. rep.,

NASA Johnson Space Center, 2001.

[6] S. Pedrotty, J. Sullivan, and E. Gambone, “Seeker Free-Flying Inspector GNC System

Overview,” tech. rep., NASA Johnson Space Center.

[7] D. Miller, A. Saenz-Otero, J. Wertz, A. Chen, G. Berkowski, C. Brodel, S. Carlson, D. Car-

penter, S. Chen, S. Cheng, D. Feller, S. Jackson, B. Pitts, F. Perez, J. Szuminski, and S. Sell,

“SPHERES: A Testbed For Long Duration Satellite Formation Flying In Micro-Gravity Con-

ditions,” tech. rep., MIT Space Systems Lab.

[8] T. Smith, J. Barlow, M. Bualat, T. Fong, C. Provencher, H. Sanchez, and E. Smith, “Astrobee:

A New Platform for Free-Flying Robotics Research on the International Space Station,” tech.

rep., NASA Ames Research Center.

[9] M. Lazaron and J. Alred, “Results of the SPAS-01 RCS plume impingement test,” in 23rd

Aerospace Sciences Meeting, Aerospace Sciences Meetings, American Institute of Aeronau-

89

tics and Astronautics, Jan. 1985.

[10] L. M. Bermúdez, K. J. Barnhart, and C. W. Brunner, “Modeling, Simulation, and Validation

of Plume Impingement Effects on the Cygnus Spacecraft,” Journal of Spacecraft and Rockets,

vol. 55, no. 2, pp. 427–436, 2018.

[11] W. Rochelle, J. Hughes, J. D, S. Bouslog, K. Leahy, and S. Fitzgerald, “Plume impinge-

ment heating to International Space Station (ISS),” in 30th Thermophysics Conference, Fluid

Dynamics and Co-located Conferences, American Institute of Aeronautics and Astronautics,

June 1995.

[12] W. H. Clohessy and R. S. Wiltshire, “Terminal Guidance System for Satellite Rendezvous,”

Journal of the Aerospace Sciences, vol. 27, no. 9, pp. 653–658, 1960.

[13] T. Lozano-Pérez, M. A. Wesley, and F. N. Fritsch, “An Algorithm for Planning Collision-Free

Paths Among Polyhedral Obstacles,” Communications of the ACM, vol. 22, pp. 560–570, Oct.

1979. Publisher: Association for Computing Machinery.

[14] E. W. Dijkstra, “A note on two problems in connexion with graphs,” Numerische Mathematik,

vol. 1, pp. 269–271, Dec. 1959.

[15] R. A. Brooks, “Solving the find-path problem by good representation of free space,” IEEE

Transactions on Systems, Man, and Cybernetics, vol. SMC-13, pp. 190–197, Mar. 1983.

Conference Name: IEEE Transactions on Systems, Man, and Cybernetics.

[16] R. Brooks, “Solving the Find-Path Problem by Representing Free Space as Generalized

Cones,” Memo 674, Massachusetts Institute of Technology Artificial Intelligence Laboratory,

July 2002.

[17] D. Ferguson, M. Likhachev, and A. Stentz, “A Guide to Heuristic-based Path Planning,” tech.

rep., Carnegie Mellon University, 2005.

[18] E. Rimon and D. Koditschek, “Exact robot navigation using artificial potential functions,”

IEEE Transactions on Robotics and Automation, vol. 8, pp. 501–518, Oct. 1992. Conference

Name: IEEE Transactions on Robotics and Automation.

90

[19] S. Ge and Y. Cui, “New potential functions for mobile robot path planning,” IEEE Trans.

Robotics Autom., 2000.

[20] J.-O. Kim and P. Khosla, “Real-Time Obstacle Avoidance Using Harmonic Potential Func-

tions,” IEEE Trans. Robotics Autom., Jan. 1992. Publisher: Carnegie Mellon University.

[21] Y. K. Hwang, N. Ahuja, and S. Member, “A potential field approach to path planning,” T-Ra,

1992.

[22] J. F. Raquet, “Six degree of freedom trajectory planner for spacecraft proximity operations

using an A* node search,” Master’s thesis, Massachusetts Institute of Technology, 1991.

[23] M. C. Jackson, “A six degree of freedom, plume-fuel optimal trajectory planner for space-

craft proximity operations using an A* node search. MS Thesis-MIT,” Master’s thesis, Mas-

sachusetts Institute of Technology, 1994.

[24] G. E. Chamitoff, A. Saenz-Otero, J. G. Katz, S. Ulrich, B. J. Morrell, and P. W. Gibbens,

“Real-time maneuver optimization of space-based robots in a dynamic environment: Theory

and on-orbit experiments,” Acta Astronautica, vol. 142, pp. 170–183, Jan. 2018.

[25] B. Morrell, Enhancing 3D Autonomous Navigation Through Obstacle Fields: Homogeneous

Localisation and Mapping, with Obstacle-Aware Trajectory Optimisation. Thesis, University

of Sydney, June 2018. Accepted: 2019-02-14.

[26] Y. Chen, Z. He, D. Zhou, Z. Yu, and S. Li, “Integrated guidance and control for microsatellite

real-time automated proximity operations,” Acta Astronautica, vol. 148, pp. 175–185, July

2018.

[27] F. Baldini, S. Bandyopadhyay, R. Foust, S.-J. Chung, A. Rahmani, J.-P. de la Croix, A. Bac-

ula, C. M. Chilan, and F. Hadaegh, “Fast Motion Planning for Agile Space Systems with

Multiple Obstacles,” in AIAA/AAS Astrodynamics Specialist Conference, AIAA SPACE Fo-

rum, American Institute of Aeronautics and Astronautics, Sept. 2016.

91

[28] R. E. Allen and M. Pavone, “A real-time framework for kinodynamic planning in dynamic

environments with application to quadrotor obstacle avoidance,” Robotics and Autonomous

Systems, vol. 115, pp. 174–193, May 2019.

[29] Shawn B. McCamish and Marcello Romano, “Flight Testing of Multiple-Spacecraft Con-

trol on SPHERES During Close-Proximity Operations | Journal of Spacecraft and Rockets,”

Journal of Spacecraft and Rockets, vol. 46, pp. 1202–1213, 2009.

[30] U. Lee and M. Mesbahi, “Feedback control for spacecraft reorientation under attitude con-

straints via convex potentials,” IEEE Transactions on Aerospace and Electronic Systems,

vol. 50, pp. 2578–2592, Oct. 2014. Conference Name: IEEE Transactions on Aerospace and

Electronic Systems.

[31] P. B. Hansen, “Numerical Solution of Laplace’s Equation,” technical Report, Syracuse Uni-

versity, 1992.

[32] E. V. Bergmann, S. Croopnick, J. Turkovich, and C. Work, “An Advanced Spacecraft Autopi-

lot Concept,” Journal of Guidance and Control, vol. 2, no. 3, pp. 161–168, 1979.

[33] B. S. Crawford, Operation and design of multi-jet space-craft control systems. Thesis, Mas-

sachusetts Institute of Technology, 1969. Accepted: 2005-08-10T21:54:12Z.

[34] C. R. Jakubik, A. Johnston, P. Zhong, N. McHenry, and G. Chamitoff, “SpaceCRAFT VR:

an Event-Driven, Modular Simulation Platform with Fully-Asynchronous Physics,” in AIAA

Scitech 2021 Forum, American Institute of Aeronautics and Astronautics, Jan. 2021.

[35] “Unreal Engine | The most powerful real-time 3D creation platform.”

[36] M. McCool, Structured Parallel Programming. Morgan Kaufmann, July 2012.

[37] Richard H. Battin, Ph.D., “Numerical Integration of Differential Equations,” in An Introduc-

tion to the Mathematics and Methods of Astrodynamics, AIAA Education Series, 1999.

[38] T. Taketomi, H. Uchiyama, and S. Ikeda, “Visual SLAM algorithms: a survey from 2010 to

2016,” IPSJ Transactions on Computer Vision and Applications, vol. 9, p. 16, June 2017.

92

APPENDIX A

TEST-BED SIMULATION SCREENSHOTS

Figure A.1: A screenshot of the test-bed simulation visualization during Test 1

93

Figure A.2: A screenshot of the test-bed simulation visualization during Test 1

Figure A.3: A screenshot of the test-bed simulation visualization during Test 2

94

Figure A.4: A screenshot of the test-bed simulation visualization during Test 2

Figure A.5: A screenshot of the test-bed simulation visualization during Test 2

95

Figure A.6: A screenshot of the test-bed simulation visualization during Test 3

Figure A.7: A screenshot of the test-bed simulation visualization during Test 3

96

Figure A.8: A screenshot of the test-bed simulation visualization during Test 4

Figure A.9: A screenshot of the test-bed simulation visualization during Test 4

97

Figure A.10: A screenshot of the test-bed simulation visualization during Test 4

Figure A.11: A screenshot of the test-bed simulation visualization during Test 4

98

	ABSTRACT
	DEDICATION
	ACKNOWLEDGMENTS
	CONTRIBUTORS AND FUNDING SOURCES
	NOMENCLATURE
	TABLE OF CONTENTS
	LIST OF FIGURES
	LIST OF TABLES
	INTRODUCTION
	Robotic Free-Flyers
	Past Missions and Designs
	Future Mission Concepts

	Major Challenges
	Collision Avoidance
	Jet Plume Impingement
	Real-Time Operation

	Research Objectives
	Outline of Thesis

	BACKGROUND AND LITERATURE REVIEW
	Free-Flyer Dynamics
	Relative Orbital Motion
	Impulsive Maneuvers
	Rotational Motion

	Path-Finding Concepts
	Reactive Path-Finding
	Configuration Space Representations
	Free-Space Graphs and Grids
	Potential Fields

	Applications of Path-Finding to Proximity Operations
	Trajectory Planning Methods
	Reactive Proximity Operations

	Discussion

	REACTIVE GUIDANCE WITH HARMONIC POTENTIAL FIELDS
	Artificial Harmonic Potential Field Generation
	Discretization and Relaxation
	Trilinear Interpolation
	Potential Gradient

	Field-Based Reactive Guidance
	Gradient Implusive Maneuvering
	Gradient-Velocity Control Law

	Potential Field Management
	Internal Obstacle Model
	Evasion Mode

	Final Guidance Process

	INTEGRATED GUIDANCE AND CONTROL SYSTEM
	Attitude Controller
	Attitude Error as Axis-Angle Parameters
	Axis-Angle Deadband Control Law
	Final Attitude Controller Logic

	Jet Selection and Firing Manager
	Jet Selection as a Linear Programming Problem
	Processing Input DeltaV Commands
	Output Jet Firing Commands and Execution

	Plume Impingement Avoidance
	Plume-Fuel Optimal Jet Selection
	Plume Cost Function
	Integration of Plume Cost Calculations

	Integrated System

	FREE-FLYER TEST-BED SIMULATION
	SpaceCRAFT/UE4 Simulation Software
	Components of a SpaceCRAFT Simulation
	Simulation Non-Determinism
	UE4 Integration

	Test-Bed Simulation Architecture
	Physics Propagation
	Obstacle Representation

	Simulated Obstacle Mapping
	Optimizing Raycast Execution

	Reference Free-Flyer
	Design and Properties
	Default G&C System Parameters

	RESULTS
	Point-to-Point Maneuvering Tests
	Maneuvering Test 1
	Maneuvering Test 2
	Maneuvering Test 3
	Maneuvering Test 4
	Obstacle Mapping Performance
	Plume Impingement Avoidance Performance
	Discussion
	Obstacle Avoidance Behavior
	Attitude Control Behavior
	Plume Impingement Avoidance Behavior

	SUMMARY AND CONCLUSIONS
	Conclusion
	Future Work

	REFERENCES
	APPENDIX TEST-BED SIMULATION SCREENSHOTS

