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ABSTRACT

Our understanding of turbulence has heavily relied on high-fidelity Direct Numerical Simula-

tions (DNS) that resolve all dynamically relevant scales. But because of the inherent complexities

of turbulent flows, these simulations are computationally very expensive and practically impossi-

ble at realistic conditions. Advancements in high performance computing provided much needed

boost to the computational resources through increasing levels of parallelism and made DNS re-

alizable, even though only in a limited parameter range. As the number of processing elements

(PEs) in parallel machines increases, the penalties incurred in current algorithms due to neces-

sary communications and synchronizations between PEs to update data become significant. These

overheads are expected to pose a serious challenge to scalability on the next-generation exascale

machines. An effective way to mitigate this bottleneck is through relaxation of strict communica-

tion and synchronization constraints and proceed with computations asynchronously i.e. without

waiting for updated information from the other PEs. In this work, we investigate the viability

of such asynchronous computing using high-order Asynchrony-Tolerant (AT) schemes for accu-

rate and scalable simulations of reacting and non-reacting turbulence at extreme scales. For this,

we first assess the important numerical properties of AT schemes, including conservation, stabil-

ity, and spectral accuracy. Through rigorous mathematical analysis, we expose the breakdown

of the standard von Neumann analysis for stability of multi-level schemes, even for widely used

synchronous schemes. We overcome these limitations through what we call the generalized von

Neumann analysis that is then used to assess stability of the AT schemes. Following which, we pro-

pose and implement two computational algorithms to introduce asynchrony in a three-dimensional

compressible flow solver. We use these to perform first of a kind asynchronous simulation of com-

pressible turbulence and analyze the effect of asynchrony on important physical characteristics of

turbulence. Specifically we show that both large-scale and scale-scale features including highly

intermittent instantaneous events, are accurately resolved by these algorithms. We also show ex-

cellent strong and weak scaling of asynchronous algorithms up to a processor count of P = 262144
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because of significant reduction in communication overheads. As a precursor to the development

of asynchronous combustion codes for simulations of more challenging problems with additional

physical and numerical complexities, we investigate the effect of asynchrony on several canonical

reacting flows. Furthermore, for problems with shocks and discontinuities, such as detonations,

we derive and verify AT-WENO (weighted essentially non-oscillatory) schemes. With the ultimate

goal to derive new optimal AT schemes we also develop a unified framework for the derivation of

finite difference schemes. We show explicit trade-offs between order of accuracy, spectral accu-

racy and stability under this unifying framework, which can be exploited to devise very accurate

numerical schemes for asynchronous computations on extreme scales with minimal overheads.
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1. INTRODUCTION

1.1 Asynchronous simulations of turbulent flows: An Overview

Turbulence is one of the most common state of fluid motion, prevalent in both nature and engi-

neering flows. It finds application in a diverse range of fields including high speed air and ground

transportation, engine combustion, atmospheric mixing, astrophysics, medicine and innumerable

other processes of academic and industrial relevance. Under the continuum limits, turbulent flows

can be mathematically modelled by the Navier-Stokes (NS) equations. These NS equations are

conservation laws that are highly non-local and non-linear which makes them notoriously hard to

handle analytically or theoretically. Turbulence is also chaotic in nature and thus highly sensitive

to initial and boundary conditions. Another inherent feature of turbulent flows is a wide range

of unsteady spatial and temporal scales stemming from the non-linear interactions. This range

of scales grows with the Reynolds Number (Rλ) (ratio between the inertial and viscous forces)

which is typically very high for real applications. Because of all the complexities engendered by

turbulence, despite sustained efforts spanning several decades from mathematicians, physicists and

engineers alike, it still remains a major scientific and computational challenge.

For over four decades now, fundamental understanding of turbulence has relied extensively

on numerical simulations. These simulations give invaluable insights into the complex physical

processes that are beyond the scope of theoretical studies [1, 2] and are critical for development

of turbulence models used in low-cost industrial simulations. Typically, for numerical simulations

to be accurate, the computational domain should be very finely discretized in order to resolve the

so-called Kolmogorov scale [3], the smallest dynamically relevant scale in a turbulent flow. At the

same time, the computational domain should be large enough to accommodate the largest scales

of motion in the flow. Furthermore, the simulation time should be sufficiently long to capture the

slow evolution of the largest scale while the time-step size should be small enough to capture the

fast Kolmogorov time scale characteristic of the smallest scales. Simulations that follow these
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stringent constraints and consequently, accurately resolve the physics of all relevant scales are

known as Direct Numerical Simulations (DNS) [4, 5]. Using classical scaling relations based on

Kolmogorov ideas [3] for grid spacing and a CFL condition for time-step size, the computational

work grows steeply as Re6
λ, though more recent work suggests Re8

λ if all intermittent events are

to be resolved [6]. Due to this steep power-law dependence, DNS is computationally prohibitively

expensive. However, the advancements in high performance computing platforms enabling de-

ployment of hundreds of thousands of processors concurrently made DNS realizable, though only

up to a modest Reynolds Number. In order to assess the evolution of turbulent simulations over the

years, the growth in peak computing power expressed in terms of operations per second along with

the highest Reynolds number in incompressible homogeneous isotropic turbulence simulations is

shown in Fig. 1.1. We see that both computational power and Reynolds number exhibit an expo-

nential growth in time. A similar observation was also made in DNS of compressible turbulence

[7]. This sustained growth in the problem size of DNS or highest achievable Reynolds numbers

in the past decades has been made possible by increasing levels of parallelism. Besides DNS in

a triple-periodic domain, the massive computing resources have also been used for simulations of

more complex problems, including turbulence combution with detailed reaction mechanisms and

complex geometries.

From these trends, one can anticipate that on the next-generation exascale machines that are

envisioned to have billions of processing elements (PEs) and perform operations three orders of

magnitude faster than the current state-of-the-art supercomputers, DNS at much higher Reynolds

number would be feasible. However, virtually all numerical methods used in current state-of-the-

art solvers require PEs to communicate and synchronize at all times in order to meet accuracy

requirements. The resulting overheads become exceedingly expensive at extreme scales and are

expected to be a major bottleneck to scalability on the future exascale machines [8, 9]. This will

ultimately limit the anticipated Reynolds number on these machines.

Because of their extreme levels of parallelism, exascale machines will be subject to node fail-

ures, intense data movements, load imbalances, and system noise. These coupled with limited scal-

2



1940 1950 1960 1970 1980 1990 2000 2010 2020 2030

Year

10
0

10
4

10
8

10
12

10
16

10
20

O
p
e
ra

ti
o
n
s
 p

e
r 

s
e
c
o
n
d

Electro-mechanical

SEAC

MANIAC

IBM 704

IBM 7030

CDC 6600

CDC 7600

Cray-1 Cray X-MP

Easy-commercial
Cray Y-MP

CM-1,etc

Intel Gamma, CM-2, etc

Intel Delta, CM-200, etc

Cray T3D

J-90 series

CM-5

Origin 2000

Earth Simulator

Seaborg (NERSC) DataStar (SDSC)

BlueGene/L (SDSC)

BlueGene/W (IBM)

Cray XT3 (PSC)

Franklin XT4 (NERSC)
Kraken XT5 (NICS)

Ranger (TACC)

Roadrunner (DOE)
Jaguar (ORNL)

Titan (ORNL)
Mira (DOE)

Stampede (TACC)
Stampede2 (TACC)

Summit (ORNL)
Sierra (LLNL)

Frontera (TACC)

Fugaku
Frontier (ORNL)

10
1

10
2

10
3

10
4

R

OP

K
VM

CDKS

JWSR

YZ

GFN

Ours

KIYIU

Ours (TACC/NICS)

Blue Waters (TACC/NICS)

K Computer

Year

O
pe

ra
tio

ns
pe

rs
ec

on
d

Rλ

Figure 1.1: Evolution of computational power (left axes) and Reynolds number (right axes) over
past decades. The magenta start indicates the next-generation exascale machine to be deployed in
2021.

3



ability of current approaches, clearly suggest that paradigm shifts at both hardware and software

levels are required for efficient utilization of the massive computing power of exascale machines

[8, 10, 11]. This includes development and validation of novel and resilient numerical schemes and

computational algorithms that can scale to an increasing number of PEs, whilst incurring minimal

overheads and accurately resolving the multi-scale physics engendered by the NS equations. This

is the main thrust of the present work.

In the past years, some work has focused on relaxing the synchronization requirements among

the processors and perform so-called asynchronous numerical simulations, realized either by modi-

fying the governing equations or by modifying the numerical methods. However, these efforts were

severely limited to lower orders of accuracy and restricted to certain class of PDEs [12, 13, 14, 15].

A new and more generalized approach, extensible to arbitrarily high orders of accuracy, has

been recently developed [9, 16] to derive the so-called Asynchrony-Tolerant (AT) finite-difference

schemes. But even in these studies numerical accuracy is investigated only for simplified model

problems in low dimensions. The ability of these schemes to accurately simulate realistic three-

dimensional turbulent flows or more challenging reacting flows has not been done before. Without

careful assessment of the numerical and parallel performance of these schemes it is unclear whether

they can indeed provide a path towards exascale simulations in future massively parallel systems.

1.2 Asynchrony-tolerant (AT) finite difference schemes

For the numerical simulation of any time-dependent partial differential equation (PDE), like

the NS equations, the first step is to discretize the physical domain into N grid-points. Fig. 1.2(a)

illustrates one such discretized domain in one-dimension with a uniform grid spacing ∆x. The

spatial derivatives in the PDE are then approximated, at each grid point i, using an appropriate nu-

merical method. These spatial derivatives, computed at a given time level n, are used for advancing

the system in time in small increments of ∆t.
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1.2.1 Concept

Explicit finite difference schemes have been extensively used for approximation of derivatives

in PDEs including in massive simulations of turbulent reacting flows [17, 18]. In finite difference

schemes, the derivative at the ith grid point can be approximated as the weighted average of the

values at its neighboring points. For example, for a spatially and temporally varying function

u(x, t), at a grid point i and time level n, the d-th spatial derivative can be written as,

∂(d)u

∂x(d)

∣∣∣∣n
i

≈ 1

(∆x)d

M∑
m=−M

amu
n
i+m +O(∆xp+1), (1.1)

where M is the stencil size in each direction and u(xi, tn) = uni and p+ 1 is the order of accuracy.

Here the weights or coefficients am are computed by imposing order of accuracy constraints on

the Taylor expansion of ui+m in space. The resulting schemes are unique and have a minimum

truncation error for a given stencil size M . A standard second-order finite difference scheme is
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obtained for M = 1, which for the second derivative reads as,

∂2u

∂x2

∣∣∣∣n
i

=
uni−1 − 2uni + uni+1

∆x2
, (1.2)

and is outlined in faded red in Fig. 1.2. In Eq. (1.2), the computation of spatial derivatives at time

level n, requires data at the same time level. Thus, these computations can be trivially done using

a serial code, where only one PE is used and therefore all data is available locally. This is shown

explicitly in Fig. 1.2(a).

However, with the advent and rapid developments in parallel computing paradigm, the general

trend is to have hundreds of thousands of PEs working concurrently rather than one huge PE

doing computations single-handedly. When such is the case, the discretized physical domain is

decomposed into P sub-domains, where P is the number of PEs. Such a domain decomposition

in 1D using two PEs is shown in Fig. 1.2(b). Spatial derivatives can be computed using data

available within the PE at the so-called internal points. However, at the PE boundaries, values

at the grid points that are a part of the neighboring PE are required for accurately computing the

derivative. This data is typically communicated into the buffer arrays (red circles in Fig. 1.2) by

the neighboring PEs at each time level. In order to have the most updated values at these buffer

points, PEs are forced to stall and synchronize, leading to overheads that are detrimental to parallel

performance and limit the scalability to extreme scales.

If instead, one allows for computation to proceed without waiting for the most updated values,

that is, using delayed values at the buffer points, the derivative can be computed as

∂2u

∂x2

∣∣∣∣n
i

=
un−k̃i−1 − 2uni + uni+1

∆x2
. (1.3)

Here n − k̃ is the latest available time level written in terms of the delay k̃. This is essentially

asynchronous computation of derivatives and is schematically shown as a dashed green curve in

Fig. 1.2(c). While conceptually this leads to reduction in synchronization and communication

overheads, the delay (k̃) severely degrades the accuracy of the standard scheme to zeroth order [9].
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This motivated the derivation of a new family of the so-called Asynchrony-Tolerant (AT) schemes

that are resilient to asynchrony.

1.2.2 Derivation

AT schemes can be seen as a generalization of standard finite differences, where the compu-

tation of spatial derivatives use function values of neighboring points in both space and time. We

can write a general d-th spatial derivative of a spatially and temporally varying function u(x, t) at

a grid point i and time level n as,

∂(d)u

∂x(d)

∣∣∣∣n
i

≈ 1

(∆x)d

L∑
l=0

M∑
m=−M

almu
n−l
i+m +O(∆xp), (1.4)

where M is the stencil size in each direction, L is the number of time levels used and alm’s are the

coefficients. Following the general rules for derivation of finite difference, these coefficients can

be computed by imposing order of accuracy constraints on the Taylor series expansion of un−li+m

about point uni in both space and time which is given by

un−li+m =
∞∑
q=0

∞∑
s=0

u(q,s)
∣∣n
i

(m∆x)q(−l∆x)s

q!s!
, (1.5)

where u(q,s) is the q-th and s-th partial derivative in space and time, respectively, of u. Substituting

Eq. (1.5) in the right hand side of Eq. (1.4), we get

L∑
l=0

M∑
m=−M

almu
n−l
i+m =

L∑
l=0

M∑
m=−M

alm

∞∑
q=0

∞∑
s=0

u(q,s)
∣∣n
i

(m∆x)q(−l∆x)s

q!s!
. (1.6)

Eq. (1.6) represents a numerical approximation of the second derivative of order p + 1, if the

coefficient of term u(2,0) in this linear combination is equal to one and all terms in yielding a

truncation error with the power of ∆x less than p + 1 are zero. However, due to presence of

coupled terms involving both ∆t and ∆x, in order to correctly identify and eliminate low-order

terms, we have to use a CFL type relation of the form ∆t ∼ ∆xr. We can then write the order of
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accuracy constraint as

L∑
l=0

M∑
m=−M

alm
(m∆x)q(−l∆x)s

q!s!
=


1, (q, s) = (d, 0)

0, q + rs ≤ d+ p; (q, s) 6= (d, 0)

(1.7)

where for the dth derivative of order p. In the absence of delays, i.e. when L = 0, Eq. (1.7) reduces

to
M∑

m=−M

am
(m∆x)q

q!
=


1, q = d

0, q ≤ d+ p; q 6= d

(1.8)

which is equivalent to the constraints imposed on standard finite difference schemes.

While Eq. (1.7) gives the exact constraints that need to be satisfied to get the AT scheme of

desired order. The coefficients of these AT schemes, depends upon a number of choices, including

stencil size M , time levels L, relation between the time-step and gird-size (∆t ∼ ∆xr), nature

(symmetric |c0
−m| = |c0

m| or asymmetric |a0
−m| = |a0

m| ). These choices have direct implications on

the accuracy, memory requirements and performance of the schemes. While schemes can directly

be computed by constructing a linear system of equation from Eq. (1.7), because of several linearly

dependent terms a solution is not always guaranteed. Additional constraints can be imposed to get

schemes that reduce to standard difference schemes in the absence of delays. The details of both of

these methodologies has been described detail in [16]. As an example, a second-order AT scheme

for the second derivative at the left boundary Eq. (1.9) with stencil M = 1 in space, and a delay of

k̃ can be written as,

∂2u

∂x2

∣∣∣∣n
i

=
−k̃un−k̃−1

i−1 + (k̃ + 1)un−k̃i−1 − 2uni + uni+1

∆x2
, (1.9)

where a diffusive CFL relation of the form ∆t ∼ ∆x2 is used to relate spatial and temporal

resolutions. This scheme is shown schematically in Fig. 1.2 with a solid blue curve. These schemes

use multiple consecutive time levels on the delayed side, depending upon the order of accuracy.

Also, the coefficients are a function of delays k̃ that reduce to constant coefficients for SFD when
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k̃ = 0. The delays seen by a processor depend upon machine characteristics such as network

latency and bandwidth, clock rate and routing algorithm, and are essentially random. Therefore,

the coefficients of the AT schemes that depend upon these delays, have to be computed dynamically

at runtime. The specific details of how delays are introduced in a three-dimensional Navier-Stokes

solver are described in Chapter 5

1.3 Objectives of the Present Work

The objectives of the present work can be now listed:

1. Assess the important numerical properties of novel asynchrony-tolerant (AT) finite differ-

ence schemes including, conservation and global order of accuracy with multi-stage tempo-

ral schemes.

2. Assess the stability of the AT schemes using a new generalized von Neuman analysis that

overcomes severe limitations identified in the standard analysis.

3. Develop of a unified framework for derivation of optimized finite difference schemes, both

synchronous and asynchrony-tolerant.

4. Perform first-of-its-kind asynchronous simulations of compressible turbulence

(a) Develop a flow solver that facilitates asynchronous communications using two pro-

posed algorithms.

(b) Verify the efficacy of AT schemes in resolving important large and small scale charac-

teristics of turbulence.

(c) Perform strong and weak scaling study of the asychronous solver.

5. Investigate the effect of data asynchrony on canonical reacting flows with one-step and

detailed reaction mechanism and develop AT-WENO schemes for solving problems with

shocks and discontinuties.
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2. NUMERICAL PROPERTIES OF ASYNCHRONY-TOLERANT SCHEMES∗

2.1 Introduction

For numerical simulation of any physical process governed by partial differential equations

(PDEs), the choice of numerical schemes used for the approximation of both spatial and temporal

derivatives is very critical. The numerical fidelity of the simulation explicitly depends upon how

closely the discrete approximation reproduces the continuous system. This in turn depends upon

the properties of the underlying numerical discretization scheme, for example, its order of accuracy,

spectral accuracy and stability. In general, the finite difference schemes used for compuation of

spatial derivatives are derived solely based on the order of accuracy requirements. However, the

order only dictates how steeply the truncation error decreases as the spatial grid is refined. The

asynchrony-tolerant (AT) schemes are also derived by eliminating sufficient lower order terms, as

described in the previous Chapter, to obtain a scheme of required order of accuracy. Numerical

experiments involving both linear and non-linear equations for the verification of the order of the

AT schemes were presented in [16]. The current chapter focuses on the investigation of other

important numerical properties of AT schemes before using these schemes to perform simulations

of complex physical systems.

A property of interest for accurate simulations of PDEs that represent conservation laws, is

the conservation property of the numerical discretization of these laws. While standard finite dif-

ference schemes are known to satisy the conservation property due to the telescoping effect of the

fixed coefficients, the AT schemes present some challenges since their coefficients depend upon the

delays encountered at the PE boundary. Due to this dependence of the coefficients on the delays,

the scheme at each boundary of each PE may be different. As a result, the telescoping property of

the coefficients of the standard schemes is affected. This could lead to spurious numerical source

and thus, alter the true physics of the system being solved. It is therefore very important to clearly

∗Parts of this chapter are reprinted from Journal of Computational Physics, Volume 419, Komal Kumari and Diego
A. Donzis, “Direct numerical simulations of turbulent flows using high-order asynchrony-tolerant schemes: Accuracy
and performance", Pages 109626, 15 October 2020, with permission from Elsevier.
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understand how accurately AT schems represent conservation laws and this is done in the current

chapter. Through analysis of a simple domain we compute the exact residual that is obtained when

AT schemes are used for discretization of conservation laws.

Since the PDEs involve derivatives in both space and time, the order of accuracy of the fully-

discrete system depends upon the order of both spatial and temporal discretization scheme. Both

multi-level Adams-Bashforth (AB) and multi-stage Runge-Kutta (RK) temporal schemes are used

for high-order tempral discretization along with finite difference schemes for spatial derivatives.

While the global order of accuracy (space + time) wherein AT schemes are used in conjuction with

AB schemes has been verified in [16], their coupling with RK schemes has not been investigated.

Furthemore, due to the computation of multiple stages in high-order RK schemes, these require

efficient algorithms in order to facilitate asynchronous computations with AT schemes. In this

chapter the global order of accuracy of AT schemes with RK schemes is evaluated analytically and

a methodology is presented to use them efficiently in an actual simulation. The trade-off between

communications and computations is also discussed.

The stability of AT schemes is yet another property that is essential to ensure that perturbations,

for example, due to round-off or truncation error do not grow unboundedly in time. While the effect

of data asynchrony on the stability of standard finite difference schemes is discussed in [9], stability

of AT schemes has not assessed before. Due to the random nature of coefficients of the AT schemes

that eventually leads to a different scheme being used at different processor boundaries at every

time-step, the stability analysis of these schemes is feasible only under simplifying assumptions.

In this chapter we assess the stability of AT schemes using standard methodologies in physical and

spectral space. We define stability limit of AT schemes in terms of an asynchronous CFL that equal

to the standard synchronous stability limit. This, as we show here, yields an effective asynchronous

time-step that can be used to explain the reduction in stability limit with increasing delay level at

the processor boundaries. The subsequent sections discuss each of these numerical properties in

detail [19].
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2.2 Conservation property of AT schemes

The Navier-Stokes equations represent conservation laws (mass, momentum and energy). For

accurate numerical simulations, it is important that the numerical discretization of these laws also

satisfy the global conservation. This ensures that no spurious sources are introduced because of

numerical artifacts that can result in violation of the underlying conservation. To investigate the

effect of numerical discretization on conservation property, it is common to consider a simpe one-

dimensional form of a conservation law,

∂u

∂t
+
∂f

∂x
= 0, (2.1)

where f(x, t) is the flux of some conserved quantity u(x, t), for example, mass or momentum. The

total variation of u(x, t) over a domain [0, 1] depends only upon the flux f through the boundaries.

This can be expressed more precisely by integrating Eq. (2.1) over the domain,

d

dt

∫ 1

0

u(x, t)dx =

∫ 1

0

(
∂f

∂x

)
dx = f(1, t)− f(0, t), (2.2)

showing explicit dependence of variation in u(x, t) only on the flux at the boundaries. For periodic

boundary condition i.e f(0, t) = f(1, t), this flux is equal to zero. When the derivatives are

approximated numerically, it is desirable that the discrete form of the above conservation law is

also satisfied to a given accuracy. Consider a generalized spatial discretization given by Eq. (1.4),

for N grid points and time level n, to yield

∫ 1

0

∂f

∂x

∣∣∣∣n dx =
N∑
i=1

(
1

∆x

L∑
l=0

M∑
m=−M

cmlf
n−l
i+m

)
. (2.3)

For M = 1, corresponding to an AT scheme with leading truncation error term of order O(∆xa)

where a = 2 when ∆t ∼ ∆x2 [16], and a domain decomposed into 2 PEs such that PE(1) holds

gridpoints i ∈ [1, N/2] and PE(2) holds gridpoints i ∈ [N/2+1, N ] and satisfies periodic boundary
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conditions, we can write Eq. (2.3) as

∫ 1

0

∂f

∂x

∣∣∣∣n dx =
fn2 − (k̃

(1)
l + 1)f

n−k̃(1)
l

N + k̃
(1)
l f

n−k̃(1)
l −1

N

2∆x
+

N/2−1∑
i=2

(
fni+1 − fni−1

2∆x

)

+
(k̃

(1)
r + 1)fn−k̃

(1)
r

N/2+1 − k̃
(1)
r fn−k̃

(1)
r −1

N/2+1 − fnN/2−1

2∆x

+
fnN/2+2 − (k̃

(2)
l + 1)f

n−k̃(2)
l

N/2 + k̃
(2)
l f

n−k̃(2)
l −1

N/2

2∆x

+
N−1∑

i=N/2+2

(
fni+1 − fni−1

2∆x

)
+

(k̃
(2)
r + 1)fn−k̃

(2)
r

1 − k̃(2)
r fn−k̃

(2)
r −1

1 − fnN−1

2∆x
,

(2.4)

where k̃(1)
l and k̃(1)

r are the delays on left and right boundary for PE(1) and k̃(2)
l and k̃(2)

r are the

delays on left and right boundary for PE(2) and periodic boundary conditions are used. Because of

the telescoping effect, the above expression can be simplified to

∫ 1

0

∂f

∂x

∣∣∣∣n dx =
−(k̃

(1)
l + 1)f

n−k̃(1)
l

N + k̃
(1)
l f

n−k̃(1)
l −1

N

2∆x
+

(
fnN/2 − fn1

2∆x

)

+
(k̃

(1)
r + 1)fn−k̃

(1)
r

N/2+1 − k̃
(1)
r fn−k̃

(1)
r −1

N/2+1

2∆x
+
−(k̃

(2)
l + 1)f

n−k̃(2)
l

N/2 + k̃
(2)
l f

n−k̃(2)
l −1

N/2

2∆x

+

(
fnN − fnN/2+1

2∆x

)
+

(k̃
(2)
r + 1)fn−k̃

(2)
r

1 − k̃(2)
r fn−k̃

(2)
r −1

1

2∆x
.

(2.5)

For the standard sychronous case, k̃(1)
l = k̃

(1)
r = k̃

(2)
l = k̃

(2)
r = 0, that is, when delays are absent,

all terms on the right-hand side of Eq. (2.5) cancel each other and the conservative property is

trivially satisfied. In the presence of delays, on the other hand, this is not immediately obvious

from Eq. (2.5). Further simplification of this equation can be done using a Taylor series expansion

in time which leads to similar cancellation of all low-order terms yielding a residual of the order

of ∆x3. More generally, for larger M , that is, for AT schemes of order a = 2M and ∆t ∼ ∆x2,

the residual is found to be ∫ 1

0

∂f

∂x

∣∣∣∣n dx = O(∆xa+1). (2.6)
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Thus, we conclude that the AT schemes retain the conservative property up to an order higher

than the order of the scheme. For the fourth-order schemes used for the simulation presented in

Chapter 6 and Chapter 7, conservation is satisfied up to O(∆x5). While this is a small residual,

its effects on the quantities of interest will become clear from the numerical simulations presented

subsequent Chapters.

2.3 Global order of accuracy

For the evolution of PDEs in time, spatial schemes need to be coupled with a temporal scheme

of appropriate order, yielding a fully-discrete sytem. The global order of accuracy of the fully-

discrete system so obtained depends on both the spatial and temporal discretizations. In order

to compute this global order, a relation of the form ∆t ∼ ∆xr is used to express the leading

order truncation error term of the time discretization scheme also in terms of grid size (∆x). For

example, for a fourth-order spatial scheme (O(∆x4)), if a second-order temporal discretization

scheme (O(∆t2)) is used then the global spatial order is two if ∆t ∼ ∆x and four if ∆t ∼ ∆x2.

One of the most widely used schemes for high-order temporal discretization is the multi-stage

Runge-Kutta (RK) method. An S-stage explicit RK scheme for an equation of the form du/dt =

f(u, t) over a time step ∆t is given by

un+1 = un + ∆t
S∑
s=0

bsks, (2.7)

where the stages ks are computed using

k1 = f(un, tn)

ks = f(un + ∆t
s−1∑
i=1

(asiki), t
n + cs∆t).

(2.8)

Here asi, bs, cs are the coefficients of the RK scheme [20]. For an RK scheme, in advancing from

time level n to n + 1, intermediate stages ks are computed. Each of these stages depends upon

the previous stages as can be seen from Eq. (2.8). Thus, for simulations performed in parallel,
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RK schemes require PEs to communicate and synchronize after every stage in order to update the

corresponding values at buffer points. However, if simulations are performed with asynchronous

communications using AT schemes, then a fractional delay will be encountered at the intermediate

stages and different AT schemes will be required for each stage. An alternate method is proposed

to effectively use multi-stage RK schemes with AT that circumvents the need to communicate at

every stage and avoids fractional delays.

In the presence of delays, each stage ks is computed using AT schemes at PE boundary points.

This AT scheme uses delayed data at buffer points from multiple consecutive time levels. For the

correct computation of ks at the boundaries, all previous stages ks−1, ks−2, . . . , k1 are computed

locally at both PE boundary and buffer points of each PE. Furthermore, at the delayed time levels

required by the AT scheme, these stages are also computed at the internal points close to the PE

boundary. In order to perform the additional computations at buffer points, a larger message of

size (= No. of stages in RK × spatial stencil) has to be communicated across processors at every

time step. However, the PEs no longer communicate at every stage of the RK. Thus, there exists a

trade-off between communication which is expensive and computation which is cheap.

To illustrate that the RK schemes preserve the order of accuracy when used with high-order AT

schemes, the one-dimensional diffusion equation is considered,

∂u

∂t
= α

∂2u

∂x2
(2.9)

where α is the diffusivity and u(x, t) is the velocity field. Denoting the right-hand-side of Eq. (2.9)

by f(un, tn) = ∂2un/∂x2 (without α), the temporal discretization at the j-th spatial point using a

two-stage second-order RK scheme (RK2) is given by

un+1
j = unj + α∆t

(
kj,1
2

+
kj,2
2

)
(2.10)

where kj,1 = f(unj , t
n), kj,2 = f

(
(unj )∗, tn + ∆t

)
and (unj )∗ = unj + ∆t(f(unj , t

n)) = unj + ∆tαk1.

When a standard fourth-order central difference scheme is used for numerical approximation of
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f(unj , t), the following kj,1 and kj,2 are obtained,

kj,1 =
−unj−2 + 16unj−1 − 30unj + 16unj+1 − unj+2

12∆x2

kj,2 =−
α∆t(kj−2,1) + unj−2

12∆x2
+

4
(
α∆t(kj−1,1) + unj−1

)
3∆x2

−
5
(
α∆t (kj,1) + unj

)
2∆x2

+
4
(
α∆t(kj+1,1) + unj+1

)
3∆x2

−
α∆t (kj+2,1) + unj+2

12∆x2
.

(2.11)

The Taylor series expansion of Eq. (2.10) on substituting Eq. (2.11) then yields a truncation error

of the form

TEnj |sync =
1

6

(
−f (0,3)(x, t)

)
∆t2 − 1

90
αf (6,0)(x, t)∆x4 +O(∆x6,∆t3,∆x4∆t) (2.12)

or

TEnj |sync = (−r
2
αu

(0,3)(x, t)

6α2
− 1

90
αu(6,0)(x, t))∆x4 +O(∆x6), (2.13)

where rα = α∆t/∆x2 is the diffusive CFL and the subscript “sync" denotes synchronous. Note

that from Eq. (2.13) the global spatial order of accuracy is four.

When a fourth-order AT scheme is used at the boundary points for computation of spatial

derivatives, we have

kj,11 =
(
k̃2 + k̃

) (−un−k̃−2
j−2 + 16un−k̃−2

j−1 − 30unj + 16unj+1 − unj+2

)
24∆x2

−
(
k̃2 + 2k̃

) (−un−k̃−1
j−2 + 16un−k̃−1

j−1 − 30unj + 16unj+1 − unj+2

)
12∆x2

+
(
k̃2 + 3k̃ + 2

) (−un−k̃j−2 + 16un−k̃−1
j−1 − 30unj + 16unj+1 − unj+2

)
24∆x2

(2.14)

which is used to compute kj,2 = f(unj + ∆tαk1, t
n + ∆t) with f(., .) being evaluated using the

fourth-order AT-scheme as well. Once again, the Taylor series expansion is used to obtain the
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truncation error,

TEnj |AT,k̃ = − 5

24
αk̃
(
k̃2 + 3k̃ + 2

)
u(0,3)(x, t)

∆t3

∆x2
−1

6
u(0,3)(x, t)∆t2− 1

90
αu(6,0)(x, t)∆x4+O(k̃3 ∆t3

∆x
).

(2.15)

The above expression simplifies to give a global fourth-order truncation error term when rα is

substituted,

TEnj |AT,k̃ = −

75k̃
(
k̃2 + 3k̃ + 2

)
r3
αu

(0,3)(x, t) + 60r2
αu

(0,3)(x, t) + 4α3u(6,0)(x, t)

360α2

∆x4+O(∆x6).

(2.16)

When the delay is zero i.e. k̃ = 0, the truncation error in Eq. (2.16) reduces to TEnj |sync (Eq. (2.13))

which is the synchronous truncation error at the internal points. Therefore, RK schemes can be

used with the AT-schemes without affecting the global order of accuracy. During a simulation the

stencil data at older time levels for the buffer as well as internal points is available, and hence stan-

dard synchronous schemes can be used to compute the sub-stages kj,s at these points for efficient

implementation of RK with AT. Numerical simulations of linear equations were performed using

this approach and the global order of accuracy was preserved.

2.3.1 Runge-Kutta vs. Adams-Bashforth schemes

High order explicit temporal methods including multistage Runge-Kutta (RK) schemes and

multistep Adams-Bashforth schemes, are very common choices of temporal discretizations for nu-

merical simulations of complex physical processes governed by PDEs. While RK schemes are

known for their good stability characteristics [20], the computation of a stage of RK requires com-

munication across all neighbors after every stage. This communication frequency can be reduced

by increasing the size of the message such that all the stages can be computed within the processor,

as described in the previous section. However, in a 3D domain this requires processors to commu-

nicate across all 26 (faces + edges + corners) neighbors. The right-side of the PDE also needs to be

evaluated s-times, per PE, per time-step, for an s-stage RK scheme. Consequently, RK schemes

are computation and communication intensive. On the other hand, multi-step Adams-Bashforth
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(AB) schemes offer more flexibility in terms of implementation and also require less communica-

tions. A general AB scheme with T steps for an equation of the form ∂u/∂t = f , can be written

as,

un+1
i = uni + ∆t

T−1∑
m=0

βmf
n−m
i , (2.17)

where the coeffcients βm depend upon the desired order of accuracy [21]. Not only can AB be

efficiently implemented with only six communications per PE per time-step, it only requires com-

putation of fn every time-step since fn−m,m > 0 is used from previous steps. Furthermore,

the computation of fn−m using AT schemes does not alter the order of accuracy of AB schemes

[16]. Thus, for our three-dimensional compressible flow solver we use second-order AB schemes

for the temporal evolution in both synchronous and asynchronous simulations (Chapter 6). For

one-dimensional simulations of reacting flow presented in Chapter 7 we use RK schemes with the

methodology described in the previous section.

2.4 Stability analysis

Asynchrony at the processor boundaries and the associated random nature of delays and the

coefficients of AT schemes, can introduce random numerical errors. These error can in turn trigger

instabilities, especially if the delay (k̃), bounded by L, is very large [16]. Since the delays are

random with some machine-dependent probability distribution, the instantaneous delay varies with

both time step and processor boundary. Consequently, the parameter space or the number of states

in this discrete random system grows exponentially [22] and makes sability analysis in a general

sense intractable. Thus, some simplifying assumptions need to be made in order to assess the

stability of AT schemes. For example, we assume that same delay (hence same AT scheme) is used

across all processors at all times. We also assume that each processor has exactly one grid-point

and delays can be considered on either both sides or only one side. Under these assumptions we

can compute the maximum CFL for a given delay L, such that the AT scheme is stable. This

analysis is perfomed in both physical and spectral space.
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2.4.1 Matrix stability analysis

We consider a simple 1D diffusion equation,

∂u

∂t
= α

∂2u

∂x2
(2.18)

where α is the diffusivity constant and u(x, t) is the velocity or temperature field. This equation is

discretized using a second-order AT scheme in space and forward Euler in time. Following [16],

we can discretize Eq. (2.18) at the ith grid point with delay k̃l at the left boundary and k̃r at the

right boundary as,

un+1
i = uni +

α∆t

∆x2

(
(k̃l + 1)un−k̃li−1 − k̃lu

n−k̃l−1
i−1 − 2uni + (k̃r + 1)un−k̃ri+1 − k̃ru

n−k̃r−1
i+1

)
. (2.19)

For the above discretization we have considered an extreme case scenario where P = N and

NT = 1 i.e. every PE has only one grid point. It can be shown that Eq. (2.19) preserves the

order of accuracy despite delays on both boundaries. Next we define Un := [un0 , u
n
1 , ..., u

n
N ] and

V n := [Un, ... , Un−k̃−1]T , where k̃ = max(k̃l, k̃r). Using these definitions, we can write the

matrix form of the evolution equation as,

V n+1 = A(k̃l, k̃r)V
n (2.20)

where the coefficient matrix is

A(k̃l, k̃r) =



A0 A1 . . . Ak̃ Ak̃+1

I 0 . . . 0 0

...
...

...
...

...

0 0 . . . I 0


. (2.21)

While this equation is very general, we specialize this system to same delay on both sides (k̃ =

k̃l = k̃r) for all processors, which can be thought as a worst case scenario. Defining rd = α∆t/∆x2
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as the diffusive CFL, we can then write,

A0(k̃) =



1− 2rd L0
1rd 0 . . . 0 L0

1rd

L0
1rd 1− 2rd L0

1rd . . . 0 0

...
...

...
...

...
...

L0
1rd 0 0 . . . L0

1rd 1− 2rd


, Ak̃(k̃) =



0 J 0 . . . 0 J

J 0 J . . . 0 0

...
...

...
...

...
...

J 0 0 . . . J 0


with J defined as,

J = Lm1 rd(k̃ + 1)− Lm2 rdk̃ (2.22)

which is used to set the coefficient as rd(k̃ + 1) for Un−k̃ and −rdk̃ for Un−k̃−1. For this we use

Lm, which is the Lagrange polynomial of order L,

Lm1 (k̃) =
L∏
l 6=m

k̃ − l
m− l

Lm2 (k̃) =
L∏
l 6=m

k̃ + 1− l
m− l

. (2.23)

By definition, Lm1 (k̃) takes value 1 ifm = k̃ and zero otherwise. Similarly Lm2 (k̃) is 1 ifm = k̃+1

and 0 for other values of m. The number of Lagrange polynomials is equal to the number of time

levels in the AT scheme, which for the second-order scheme used here is equal to two. In the

absence of delays we have, A = A0, which is equivalent to the standard second-order finite

difference system.

For stability, the spectral radius of A(k̃) should be bounded by unity to ensure that the numer-

ical perturbations do not grow unboundedly in time[20]. Because of the complexity of the system,

the spectrum has to be computed numerically. Again as a worst case scenario [16], we assume a

Dirac delta distribution of delays, such that, k̃ = L at all points. For a given L, we compute the

maximum or critical rd for which all the eigenvalues of the evolution matrix are less than unity.

This is the largest value for which the numerical scheme is stable, and is denoted by rd,m(L). The

results of this analysis are shown in Fig. 2.1. In the synchronous limit (L = 0), we obtain the well

known stability limit for a second order central difference scheme in space with forward Euler in

time, rd,m(0) = 0.5 [20]. As we increase L, this stability limit decreases as can be seen from the
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solid red circles in Fig. 2.1(a). Similar analysis was also done for the advection-diffusion equation

which has both first and second derivatives and thus both convective (rc = c∆t/∆x) and diffusive

CFLs are used to determine stability. Here again we fix the delay k̃ = L and compute the stability

limit in the rc-rd plane. The procedure was repeated for different values of L. The result is plotted

in Fig. 2.1(b). For L = 0, we get the well known stability bound, rc,m(0) ≤ 2(rd,m(0))2 ≤ 1 [20].

As L is increased we see that both rc,m(L) and rd,m(L) decrease resulting in a smaller stability

region. Thus, for stability a time-step smaller than that for L = 0 is required whenever L > 0. We

do point out that these stability bounds are based on worst case scenario assumptions and are thus

strict. In more realistic scenarios (2.4.2), the effect of asynchrony on stability is relatively weaker.

(a) (b)

r d
,m

(L
)

r d
,m

(L
)

L rc,m(L)

Figure 2.1: (a) Variation of stability limit rd (solid) and r̃d = (L + 1)rd (hollow) with L for
diffusion equation. (b) Stability limit in rc-rd plane for advection-diffusion equation for L = 0
(red), L = 2 (blue), L = 4 (magenta), L = 6 (black) and L = 8 (green).

In order to characterize the reduction in stability limits, it is of interest to obtain the stability

limit in an asynchronous simulations from the known stability limit of a synchronous implementa-

tion. This can be written as

rd,m(L) = rd,m(0)/f(L), (2.24)

where the yet unknown function f(L) characterizes the effect of delays. Clearly, f(0) = 1. Some
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guidance on a plausible functional form for f(L) can be obtained by a careful examination of

Eq. (2.19) where we observe that, in the presence of delays, rd at the boundary points always ap-

pears in conjunction with functions of delays that are also the coefficients of the AT scheme. In the

present case, from Eq. (2.22) we have rd(k̃+1) and−rdk̃ in the evolution matrix A(k̃). Since both

terms are linear in the delay, it is natural to expect that, for k̃ = L, stability, and thus f(L), would

be a linear function of L. In fact, a best fit approximation for rd,m(L) = rd,m(0)/f(L) does yield a

linear relation f(L) ≈ L+1. Both rd,m(0)/(L+1) (solid line) and rd,m(L) (solid circles) are plot-

ted in Fig. 2.1(a) and are in excellent agreement with each other. Furthermore, we can re-arrange

rd,m(L) = rd,m(0)/f(L) to read as rad,m = rd,m(L) × f(L) = rd,m(0). This implies that with

a correct approximation for f(L), we can express stability in terms of an effective asynchronous

CFL (rad,m), which is independent of delay L and essentially equal to the synchronous stability

limit (rd,m(0)). The numerical data do support this argument as can be seen from Fig. 2.1(a) where

rad,m (hollow circles) are constant for all L and close to rd,m(0) = 0.5 (dashed line).

We also computed the stability limit for the schemes used for the turbulence simulations in this

work, namely, fourth-order AT schemes coupled with AB2 in time. This is shown in Fig. 2.2(a) for

the diffusion equation. In this case, rd appears multiplied by the coefficients in this fourth-order

AT scheme (Appendix B) in the discrete equation which are seen to be quadratic in L. Then, based

on the argument above, we expect f(L) also to be quadratic in L. From Fig. 2.2(a) we can see that

that rd,m(L) (solid circles) decreases with L and is in good agreement with rd,m(0)/f(0.74L2 +

0.47L + 1) (solid line). Moreover, rad,m (hollow circles) is close to rd,m(0) ≈ 0.18 (dashed line)

for all L. This again supports the proposed rescaling in Eq. (2.24).

One can understand this effect more intuitively as follows. When there is a delay at the PE

boundaries, data from multiple delayed time levels is used at these points for computation of deriva-

tives. As a result the effective time-step, as seen by the numerical scheme, increases. This effective

time-step is essentially equivalent to ∆tL = ∆t× f(L) and is apparent when rad,m is written as

rad,m = rd,m(L)× f(L) =
α(∆t× f(L)

∆x2
=
α(∆tL)

∆x2
, (2.25)
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For fixed grid spacing ∆x, this increase in time-step is compensated by a decrease in rd,m(L) to

ensure stability. On the other hand, rad,m which is already expressed in terms of ∆tL, remains

approximately constant with L and is equal to rd,m(0).

(a) (b)

r d
,m

(L
)

r c
,m

(L
)

L L

Figure 2.2: Variation of stability limit (a) rd (solid) and r̃d = (0.74L2 + 0.47L + 1)rd (hollow)
with L for diffusion equation and (b) rc (solid) and r̃c = (0.90L2 − 0.35L + 1)rc (hollow) for NS
equation, using fourth-order AT scheme in space and AB2 in time.

For a complex system of equations, such as the Navier-Stokes equations, an analytical stability

analysis is difficult. However, stability limits can be computed numerically either by gradually in-

creasing the CFL until the system becomes unstable or by using the bisection method. We obtained

the stability limit for decaying turbulence at Reλ ≈ 35, by imposing a fixed delay L at all the six

faces at every time step. Since both diffusive and convective terms are present in the NS equa-

tions, the time-step is determined by the smallest physical time scale, which for the simulations

presented is always the latter. Thus, the stability limit is obtained in terms of a convective CFL (rc)

and is shown in Fig. 2.2(b) with rc,m(L) (solid circles) decreasing with L. As before, this effect is

accurately captured by rc,m(L) = rc,m(0)/f(L) (solid line), where f(L) ≈ 0.90L2 − 0.35L + 1.

Here again, rac,m = rc,m(L) × f(L) (hollow circles) is seen to be a constant consistent with the

synchronous limit rc,m(0) ≈ 0.8 for all L.
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2.4.2 Standard Von-neumann analysis of AT schemes

Stability analysis in the frequency domain, more commonly known as the Von Neumann anal-

ysis, has been widely used for linear problems with constant coefficients [20]. While the standard

von Neumann analysis is discussed in great detail in Chapter 3, in the current section we directly

use this approach to assess stability of AT schemes. Since this method also requires all the points

in the domain to use the same numerical scheme, we assume that each processor has only one

grid point (P = N) and the AT scheme use same delay (k̃) on both sides for all PEs. To proceed

further, consider a diffusion equation discretized using a second-order AT scheme in space and

forward Euler in time,

un+1
i = uni +

α∆t

∆x2

(
(k̃ + 1)un−k̃i−1 − k̃un−k̃−1

i−1 − 2uni + (k̃ + 1)un−k̃i+1 − k̃un−k̃−1
i+1

)
. (2.26)

where k̃ is the delay at both left and right boundary. Using a Fourier decomposition, uni = vneIiφ

where I =
√
−1 and φ = κ∆x, we can simplify Eq. (2.26) as

vn+1 = rd
(
vn−L(L+ 1)− vn−L−1L

)
e−Iφ + (1− 2rd)v

n + rd
(
vn−L(L+ 1)− vn−L−1L

)
eIφ.

(2.27)

where rd = α∆t/∆x2 is the diffusive CFL and delay is equal to the maximum allowed delay ie

k̃ = L. On taking the Z-transform of Eq. (2.27) with

vn = v(z); vn−L = z−Lv(z) (2.28)

we get a polynomial of order L+ 2 in z which reads as,

zL+2 − zL+1(1− 2rd)− rd(e−Iφ − eIφ)(L+ 1)z − rd(e−Iφ − eIφ)L = 0 (2.29)

For stability we require the amplitude all the harmonics to not grow in time. This is possible only

if all the roots of Eq. (2.29) are within a unit disc in the complex Z-plane and the root z = 1 has
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multiplicity one [20]. The roots of the above equation can be computed numerically for different

L and these can be used to obtain the maximum rd such that all roots lie within a unit disc. This is

the largest limit for which the numerical scheme is stable and as before, we denote it as rd,m(L).

Instead of computing the roots, the sufficient conditions that guarantee that all the roots lie within

the disc of radius one can also be computed using the Schur-Cohn criteria [23]. As an example, we

use Schur-Cohn criteria to get these conditions for L = 1. Since for L = 1, Eq. (2.29) reduces to a

cubic polynomial, we get a total of three conditions,

4r2
d cos2(φ)− 1 < 0, (2.30)

16r4
d cos4(φ)− 4r2

d(4rd(rd + 1) + 3) cos2(φ) + 1 > 0, (2.31)

8rd sin2

(
φ

2

)(
−2r2

d + 2rd(2rd cos(φ)− rd cos(2φ) + cos(φ)) + 1
)2

(
3r3

d cos(3φ) + 3
(
3r2

d − 1
)
rd cos(φ) + (rd − 1)

(
2r2

d cos(2φ) + 2r2
d − 1

))
> 0.

(2.32)

These equations have only two parameters which can be varied to determine rd,m(L) that satisfies

all the three conditions, for all values of φ ∈ [0, π]. This gives us rd,m(1) ≈ 0.25 which is

consistent with the stability limit obtained from the matrix stability analysis presented in section

3. For larger values of rd, at least one of the above conditions is violated and thus instabilities can

be triggered. We can see that this value is less than the traditional stability limit for a synchronous

scheme (rd,m(0) = 0.5). It is worthwhile to note that similar constraints can also be written for

L = 0 or the standard synchronous scheme which give us the expected limit of rd,m(0) = 0.5. This

idea can be extended to get the constraints for the stability for higher L as well. [23] discusses

techniques to extend the Schur-cohn criteria to higher order polynomials efficiently.

The above analysis assumes a worst case scenario with two-sided delays at all points. A more

practical scenario would be to have delays on either the left or the right PE boundary. Since the

schemes are symmetric, the stability limit for an AT scheme with delays on left boundary, is also

applicable to AT scheme with delays at the right boundary. Repeating the above procedure, but

now considering delay k̃ = L on the left boundary and k̃ = 0 on the right, gives us following three
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conditions for all the roots of the z equation to lie with a unit disc,

r2
d − 1 < 0, (2.33)

1− r2
d (3 + 4rd(1 + rd)) + rd

(
2r2

d + 4r3
d

)
cos(φ) > 0, (2.34)

8rd(−1 + r2
d) sin2

(
φ

2

)(
− 1 + rd + 4r2

d + r3
d − 4r4

d +

rd(−1 + 2rd)(1 + 2rd)
2cos(φ) + r2

d (1− 4rd(1 + rd)) cos(2φ) + r3
dcos(3φ)

)
> 0.

(2.35)

L

r d
,m

(L
)

Figure 2.3: Variation of stability limit rd,m(L) (solid) and rad,m (hollow) with L for diffusion equa-
tion with delays on only one side.

These new conditions are satisfied for rd,m(1) ≈ 0.33 for all φ ∈ [0, π], which is lower than

the previously computed bound of rd,m(1) ≈ 0.25. In Fig. 2.3 we show the rd,m(L) (solid circles)

obtained for varying L for one-sided delays. Also plotted is rd,m(0)/f(L) (solid line) defined in

Eq. (2.24), where f(L) ≈ 0.56L+ 0.9, and rad,m = rd,m(0)× f(L) in hollow circles with a dashed

line corresponding to the synchronous limit rd,m(0) = 0.5. We see that while rd,m(L) decreases

as delay increases, the effective asynchronous CFL (rad,m) is close to 0.5 for all L and supports the

argument presented in the previous section.
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2.5 A note on time-step

The CFL, relating time-step size to the grid spacing, can be used to determine the leading order

error term of a fully discretized PDE in order to ensure that global order of accuracy is preserved

(see section 2.3). Furthermore, the CFL is also used to determine the spatial and temporal resolu-

tion to ensure stability of the numerical simulation. The stability analysis presented here shows that

the stability limit for the AT schemes decreases with L as rd,m(0)/f(L). This dependency can also

be expressed using the effective asynchronous CFL (rac,m or rad,m) which satisfies the same limit as

the synchronous case (rc,m(0) or rd,m(0)) and uses an effective time-step (∆tL = f(L)×∆t). Here

f(L), which is of the same order in L as the coefficients in the corresponding AT scheme, gives a

quantitative measure of the effect of delays on the stability limit. For example, for a large value of

f(L), in order to keep rac,m = f(L) × rc,m(L) constant, rc,m(L) needs to be small. This implies

that a small ∆t is required for the asynchronous simulation to be stable, which in turn can increase

the computational cost. However, we note that while simulations of turbulent flows at rc = 1 are

prevalent in literature, recent studies have shown that for adequate temporal resolution, a much

smaller rc should be used [24]. Thus, the CFL (or ∆t) dictated by those resolution requirements,

could be much smaller than the reduced stability limit discussed above.

In general, a fixed CFL simulations leads to additional overheads. For example, for a convective

CFL (rc), the time-step ∆t is computed as,

∆t =
rc∆x

umax
(2.36)

where umax is the global maximum velocity. Since this maximum is computed across all PEs, it

requires a collective blocking communication call at every time step and leads to more synchro-

nization overheads. In order to avoid this, instead of a CFL condition, one can use a fixed ∆t

[18, 25]. This is the approach we adopt here. For consistency, synchronous simulations are also

done at the same fixed ∆t.
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2.6 Conclusions

In this chapter we looked at some of the numerical properties of asynchrony-tolerant (AT)

schemes. Specifically, we showed that these schemes can be used for simulations of conservation

laws and they incur only a small residual despite delays at processor boundaries. This residual is an

order higher than the order of AT schemes and thus decreases with increasing resolution. We also

verified that the multi-stage Runge-Kutta schemes when used for temporal discretization with AT

schemes, preserve the global order of accuracy. While we presented an algorithm for efficient im-

plementation of RK with AT schemes, in a three-dimensionsional domain the temporal integration

with RK has a high computation, communication and synchronization intensity. This necessitates

the need of alternate temporal integration methods including Adam-Bashforth for asynchronous

simulations in higher dimensions.

We performed stability analysis of AT schemes in both physical and spectral space using stan-

dard methodologies under the symplifying assumptions that only one grid-point is present in every

processing element and the same AT scheme (or same delay) is used throughout the domain. While

very strict stability bounds are obtained when delays are considered at both sides, these bounds for

delays on only one side are more relaxed. The stability limit for AT schemes is also expressed in

terms of the known stability limit for the corressponding synchronous scheme and a function that

characterizes the effect of delays. This function can also be used to write the effective time-step

that is seen at the processor boundaries due to delayed data.

For the stability analysis of AT schemes using standard approaches, we implicitly assume that

delay is time-invariant. However, in an actual simulation this delay is essentially a random variable

that depends upon machine characteristics and varies with time step. While considering a random

delay at every time step renders the stability problem intractable, we attempt to relax the assump-

tion of fixed delay at all times in Chapter 3. In particular, we look at a specific implementation

of AT schemes where the delay and consequently the scheme changes periodically. We are also

interested in the spectral accuracy of AT schemes and this is done in the next Chapter using the

proposed generalized von Neumann analysis.
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3. GENERALIZED VON-NEUMANN ANALYSIS∗

3.1 Introduction

A large number of complex physical processes in nature and engineering are governed by non-

linear ordinary differential equations (ODEs) and partial differential equations (PDEs). Due to

the general lack of analytical solutions for non-linear equations, the fundamental understanding of

such processes relies heavily on numerical simulations. These simulations require approximation

of derivatives by appropriate numerical methods. Consequently, truncation and round-off errors are

introduced that can affect the accuracy of the numerical solutions. High-order numerical methods

are preferred as they incur smaller truncation errors for a finely discretized domain. High-order

schemes also have the ability to resolve a wide range of scales or wavenumbers, thereby making

them suitable for simulations of multi-scale phenomena. However, a numerical scheme must be

stable in order to be usable in practice. The basic idea of stability is to ensure that the numerical

scheme does not allow the error or perturbations (such as round-off) to grow unbounded in time.

According to the definition of stability by Lax and Richtmyer [26], all components of the initial

solution should be uniformly bounded. Mathematically, we can express stability by writing out the

fully discretized PDE in matrix form

U (n) = CU (n−1), (3.1)

where C is the evolution matrix and U (n) is a vector comprising the values of the solution u(n)
i at

all mesh points i at some time level n. Similar matrix-evolution equation was also constructed in

the previous chapter (see Eq. (2.20)) to assess the stability of asynchrony-tolerant (AT) schemes.

∗Parts of this chapter are reprinted from Journal of Computational Physics, Volume 424, Komal Kumari and
Diego A. Donzis, “A generalized von Neumann analysis for multi-level schemes: Stability and spectral accuracy",
Pages 109868, 1 January 2021, with permission from Elsevier
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If the initial solution U (0) is known and bounded, then one can write

U (n) = (C)nU (0) (3.2)

where (C)n is the operator raised to the power n. Then U (n) is bounded when the operator (C)n

remains uniformly bounded for all n, ∆t and ∆x, or mathematically,

‖(C)n‖ < K for


0 < ∆t < τ

0 ≤ n∆t ≤ T

(3.3)

for fixed values of τ and T , where K is independent of n, τ and T and ‖.‖ is some matrix norm

[20].

When periodic boundary conditions are used, stability can also be studied using the von Neu-

mann analysis which provides a wealth of additional information on the performance of numerical

schemes. The von Neumann analysis is one of the most widely used and well-known techniques

for the analysis of numerical methods and can be easily found in multitude of introductory and

advanced CFD books [20, 27, 28, 29, 30] and the references therein. For this, we express the

solution as a Fourier series and compute the one-step amplification factor, G(η) = û(n)/û(n−1),

where η = k∆x is the normalized wavenumber and û(n) is the amplitude of a Fourier mode at

wavenumber η and time level n. Stability in the von Neumann sense then requires the amplitude

of the amplification factor to be bounded by unity [20], i.e

|G(η)| ≤ 1, ∀η ∈ [0, π]. (3.4)

However, the standard von Neumann analysis relies on an implicit, yet fundamental, assump-

tion that the amplification factor G(η) is independent of time level n. A simple test to assess

the validity of this assumption is to compute the amplification at different n for a model equation

whose von Neumann amplification factor is well known. An example is shown in Fig. 3.1 where
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Figure 3.1: Time evolution of the amplification factor for the advection equation using the leapfrog
(LF) scheme for wavenumber k = 32 or η ≈ 1.57. Comparison is shown between the numeri-
cal amplification (black circles) and the analytical amplification obtained from the standard von
Neumann analysis (blue horizontal line). Inset is same evolution for all times.

the amplification factor (G(n)
num,1 = û(n)/û(n−1)) has been obtained from a numerical simulation

of the linear advection equation using a three-level leapfrog scheme for an arbitrary wavenumber

k = 32 or η ≈ 1.57 at every time step (or n). While the exact discretization and Fourier analysis

of the equation are given in later sections, here it suffices to note that the numerical amplifica-

tion (black circles) varies with time (or n) and exhibits a local pattern with no clear tendency to

converge to a fixed value. This behavior persists at both long at short times, as is evident from

the inset in Fig. 3.1. Also shown in the figure is the magnitude of the leapfrog scheme obtained

using the standard von Neumann analysis, G∗± = −jrc sin η ±
√

1− r2
c sin2 η (blue line), where

rc = β1∆t/dx is the convective CFL and β1 is the propagation speed. Two important conclu-

sions emerge from this simple example. First, the instantaneous values of numerical amplification

(black circles) are not equal to the amplification factor obtained from the von Neumann analysis

(blue line). Second, the amplification factor takes values larger than unity even though the scheme

is stable at the CFL used in this simulation. Thus, it seems necessary to reevaluate the standard von

Neumann analysis. This will also have implications on the stability definition in Eq. (3.4) which

would need to be modified in order to account for variation of the amplification factor with n.
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In this chapter we identify and address these concerns [31]. In particular, we show the lim-

itations of the standard analysis using both theoretical and numerical results for two multi-level

schemes. As we discuss in great detail below, the disagreement between the amplification observed

in numerical simulations and that computed using the standard von Neumann analysis, which is

clearly apparent in Fig. 3.1, is because the standard analysis fails to account for the variation of

amplification with time. To overcome this limitation, we propose a modification to the standard

von Neumann analysis, in which we retain the time dependent behavior of amplification factor

in what we call here the generalized von Neumann analysis. This generalized analysis allows us

to compute the correct amplification factor for multi-level numerical methods. This amplification

factor is then used to compute the spectral accuracy of fully-discrete systems which also exposes

the degrading effect of temporal schemes on the spectral accuracy of the spatial scheme. We then

propose a generalized definition of stability based on the correct amplification factor. Finally, we

use this generalized von Neumann analysis to assess the stability and spectral accuracy of the more

challenging asynchrony-tolerant (AT) schemes whose coefficients change periodically in time.

3.2 Preliminaries: modified wavenumber analysis

The d-th spatial derivative of a function u(x, t) at a point i or xi and time level n using a finite

difference scheme can be written as

∂du(x, t)

∂xd

∣∣∣∣(n)

i

≈ 1

(∆x)d

M∑
m=−M

ad,mu
(n)
i+m +O(∆xp+1). (3.5)

where M points are used on both sides of i, p + 1 is the order of accuracy and ad,m are the co-

efficients of the finite difference scheme. For a given scheme, it is then common to assess the

ability of the scheme to capture adequately different wavenumbers. This can be done by perform-

ing the so-called von Neumann analysis which is based on considering a single Fourier mode for

the solution,

u(x, t) = û(t)ejkx, (3.6)
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where û is the Fourier coefficient at wavenumber k, and j =
√
−1. The exact d-th derivative is

then given by
∂du

∂xd
= û(t)(jk)dejkx = (jk)du(x, t). (3.7)

The discrete approximation Eq. (3.5) can now be written, using the following notation

u
(n)
i := u(xi, tn) = û(n)ejkxi ,

u
(n)
i+m := u(xi +m∆x, tn) = û(n)ejkxiejkm∆x = u

(n)
i ejkm∆x

(3.8)

as

∂du(x, t)

∂xd

∣∣∣∣(n)

i

=

(
1

∆xd

∑
m

ad,me
jkm∆x

)
u

(n)
i . (3.9)

Comparing Eq. (3.7) and Eq. (3.9) and defining η := k∆x as the normalized wavenumber, we can

write
∂du(x, t)

∂xd

∣∣∣∣(n)

i

=

(
1

∆xd

∑
m

ad,me
jmη

)
u

(n)
i =

1

∆xd
(jη)du

(n)
i (3.10)

where η is the so-called modified wavenumber for the spatial operator. Spectral resolution is

then assessed by studying how accurately η approximates η. For example, for a second-derivative

computed using a second-order central difference scheme, we have η2 = 2(1 − cos η) which is

shown as a dashed green line in Fig. 3.2. While this is close to the exact wavenumber η2 (magenta

line) for low wavenumbers, it departs significantly at high wavenumbers. Therefore, the scheme

will not capture accurately high wavenumber fluctuations and is thus considered inadequate for

multi-scale phenomena such as turbulence.

We note, however, that the modified wavenumber analysis is based exclusively on the ability

of a particular spatial discretization to compute gradients accurately, and involves no consideration

of the temporal discretization needed to perform an actual numerical simulation. It is somewhat

surprising that the effect of temporal discretization on the modified wavenumber for the fully dis-

cretized PDE, has received little attention, even though it follows naturally from the results of the
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von Neumann analysis. We show through numerical experiments that the temporal schemes in fact

degrade the spectral accuracy of spatial schemes, especially at high CFL values. This is presented

in the next section.

For completion, we introduce here the amplification factor as the ratio between Fourier coeffi-

cients at different time levels. In particular we define

G̃(n)
m :=

û(n)

û(n−m)
(3.11)

as the amplification factor across m steps. For clarity in the exposition, we will use a tilde over the

amplification factor for a particular numerical scheme as in Eq. (3.11) while the exact amplification

factor resulting from the exact solution of a particular PDE will be denoted by G(n)
m . We finally

mention that it also possible to obtain the modified wavenumber in terms of the amplification

factor, as we show below, for specific PDEs.

3.3 Von-Neumann analysis

In order to introduce the standard von Neumann approach, we present the analysis for standard

two-level and three-level schemes for linear equations. In each case we start by computing the am-

plification factor and the modified wavenumber from it, followed by discussion with an emphasis

on the limits of the standard approach.

3.3.1 Two-level scheme

Consider a 1D diffusion equation,

∂u

∂t
= β2

∂2u

∂x2
, (3.12)

where β2 is the diffusion coefficient. If Eq. (3.12) is discretized using a forward Euler scheme in

time and second-order central difference in space, the fully-discrete equation can be written as,

u
(n)
i = u

(n−1)
i + rd

(
u

(n−1)
i−1 − 2u

(n−1)
i + u

(n−1)
i+1

)
, (3.13)
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where rd = β2∆t/∆x2 is the diffusive CFL. The stability of Eq. (3.13) can then be computed from

the amplification factor defined in Eq. (3.11) yielding

G̃
(n)
1 = 1 + 2rd (cos η − 1) , (3.14)

Using the stability definition given by Eq. (3.4) we can easily compute the well known stability

bound rd ≤ 0.5.

It is worth noting that, besides stability, Eq. (3.14) can also be used to compute spectral ac-

curacy of the fully discrete system. For Eq. (3.12), the exact amplification can be obtained by

substituting Eq. (3.8) in Eq. (3.12),

G
(n)
1 = e−rdη

2

. (3.15)

This expression can be solved for the wavenumber as η2 =
log(|G(n)

1 |)
−rd

. Similarly, we can also obtain

the numerical or modified wavenumber for the fully discrete system from Eq. (3.14) as

η̃2(rd) =
log(|G̃1

(n)
|)

−rd
. (3.16)

This modified wavenumber η̃ gives spectral accuracy of the fully discrete system and can be used

to study the effect of the temporal scheme on the spectral accuracy of the spatial scheme (given by

η). Unlike the modified wavenumber for the spatial scheme η, the modified wavenumber for the

fully discrete system varies with the diffusive CFL rd. In Fig. 3.2, we show the exact wavenumber

(η2) for the second derivative in magenta, the modified wavenumber (η̄2) for the spatial scheme

used in Eq. (3.12) in green and the modified wavenumber (η̃2(rd)) obtained from Eq. (3.16) for

two different CFL values in black. We see that at low CFL (rd = 0.1), the dotted-black line is

slightly closer to the magenta line (η2) than the dashed-blue line (η̄), implying that the temporal

operator seems to improve the spectral accuracy of the spatial operator at this CFL value. On the

other hand, at higher CFL (rd = 0.45), the modified wavenumber for the fully discrete system

shown in dashed-dotted black line shows large variations from both the exact wavenumber and
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Figure 3.2: Spectral accuracy of the second-order central difference scheme for second-derivative
in space and fully-discrete diffusion equation. Different lines correspond to exact modified
wavenumber for second derivative (magenta), modified wavenumber for spatial scheme (green),
modified wavenumber for fully discrete system (black) at diffusive CFL rd = 0.10 (dotted) and
rd = 0.45 (dashed).

the modified wavenumber for the spatial scheme. Thus, depending on the CFL, the temporal

scheme can drastically change the spectral accuracy of the spatial scheme. This understanding

is crucial because in simulations high-order spatial schemes are preferred for their good spectral

accuracy. Without careful consideration of the effect of temporal scheme, especially at large CFLs,

the spectral accuracy of the resulting fully discrete system could be severely deteriorated.

3.3.2 Three-level schemes

As examples for standard three-level schemes, we will consider the leapfrog (LF) scheme for

the advection equation
∂u

∂t
+ β1

∂u

∂x
= 0 (3.17)

where β1 > 0 is the propagation speed and the Du-Fort and Frankel (DFF) scheme [32] for the

diffusion equation Eq. (3.12).

36



3.3.2.1 Leapfrog scheme

We can write the discretized form of Eq. (3.17) using the LF scheme as,

u
(n)
i = u

(n−2)
i − rc

(
u

(n−1)
i+1 − u(n−1)

i−1

)
, (3.18)

where rc = β1∆t/∆x is the convective CFL. Now, for the von Neumann analysis we first substitute

Eq. (3.8) in Eq. (3.18) to yield

û(n) = û(n−2)−j (2rc sin η)︸ ︷︷ ︸
:=f1(rc,η)

û(n−1). (3.19)

This can be rearranged to compute the amplification across one time step as

û(n)

û(n−1)
=
û(n−2)

û(n−1)
+ f1(rc, η), (3.20)

or across two time steps as
û(n)

û(n−2)
= 1 + f1(rc, η)

û(n−1)

û(n−2)
. (3.21)

Since the standard von Neumann analysis assumes G̃1 = û(n)/û(n−1) = û(n−1)/û(n−2), which

gives G̃2 = û(n)/û(n−2) = G̃2
1, both Eq. (3.20) and Eq. (3.21) reduce to the following quadratic

equation

G̃2
1 − f1(rc, η)G̃1 − 1 = 0, (3.22)

independent of the time level n. The two roots of Eq. (3.22),

G∗± = −jrc sin η ±
√

1− r2
c sin2 η. (3.23)

give two amplification factors for the leapfrog scheme, even though the exact amplification factor

has a single value, G = e−jrcη, for all η. Of these two roots, one is called the physical or principal

root while the other is known as the spurious root generated by the scheme [20]. For stability, the
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amplitude of both G∗± should be bounded by unity. Imposing this constraint in Eq. (3.23) results

in the stability limit rc ≤ 1. While this analysis is well established in the literature, in order to

ascertain that it is indeed the amplification factor for the LF scheme, we performed simulations

and compared the numerical amplification factor with G∗±.

For the simulations, we iterated Eq. (3.18) using a broadband initial condition with a maximum

wavenumber of kmax. Since LF is a three-level scheme, in order to start the computation, two

time levels, u(1) and u(0) need to be initialized. Here u(1) can be computed exactly (if the exact

solution is known) or numerically using two-level schemes such as Runge-Kutta from the initial

condition u(0). For simplicity here, we used former approach using the exact solution, that is,

G̃
(1)
1 = G. The different amplification factors for rc = 0.25 and rc = 0.95 are shown in Fig. 3.3 at

a normalized time t∗ = kmaxβ1t ≈ 77. We see that the one-step (black circles) and the square-root

of two-step (red triangles) numerical amplification factors are different from each other and neither

of these agree with the standard von Neumann amplification (blue line). Also, these numerical

amplifications vary with η and attain values much larger than unity for certain wavenumbers even

though G∗± is unity for all η. The time t∗ here is chosen arbitrarily and similar results are observed

at other times as well.

We can also look at the spectral accuracy of the LF scheme by computing the modified wavenum-

ber. Following the exact amplification factor, which gives the wavenumber as η = −arg[G]/rc, we

can obtain the modified wavenumber η∗± = −arg[G∗±]/rc from the standard amplification factor.

This is compared with the one-step (black circles) and two-step (red triangles) modified wavenum-

ber computed from the numerical simulations in Fig. 3.4. Similar to the amplification factor, we

see that the wavenumber obtained from the simulations (circles and triangles) overshoots or under-

shoots η∗± (blue lines). It is interesting to note that while at rc = 0.25, the numerical wavenumber

has a tendency to oscillate only about η∗+ (solid blue), the behavior changes with rc. Specifically,

for rc = 0.95, the numerical wavenumber is close to η∗+ for low η and transitions to η∗− (dashed

blue) for larger η. This suggests that the classification of the roots as physical and spurious as

established in the literature, may need to be revisited.
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Figure 3.3: Amplification factor for the advection equation using the leapfrog (LF) schemse. Com-
parison of numerical and analytical amplification factor for rc = 0.25 (left) and rc = 0.95 (right) at
t∗ = n∆tβ1kmax ≈ 77. Here Gnum is the numerical amplification factor, G̃(n) is the amplification
factor computed using the generalized von Neumann analysis, and G∗± are the standard amplifica-
tion factors. Subscript 1, 2 specifies number of time steps across which the corresponding quantity
is computed.

Figure 3.4: Spectral accuracy for the advection equation using the leapfrog (LF) scheme. Compar-
ison of numerical and analytical modified wavenumber for rc = 0.25 (left) and rc = 0.95 (right)
at t∗ = n∆tβ1kmax ≈ 77. η∗− is not shown in (a) as it takes large values. Here η is the exact
wavenumber, ηnum is the numerical modified wavenumber, η̃(n) is the modified wavenumber com-
puted using the generalized von Neumann analysis, and η∗± are the modified number computed
from standard von Neumann analysis. Subscript 1 and 2 specifies the number of time steps across
which the corresponding quantity is computed.
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3.3.2.2 Du-Fort and Frankel scheme

The discrete form of the diffusion equation (Eq. (3.12)) using the DFF scheme is given by

u
(n)
i =

1− 2rd
1 + 2rd︸ ︷︷ ︸
:=f2(rd)

u
(n−2)
i +

2rd
1 + 2rd

(
u

(n−1)
i+1 + u

(n−1)
i−1

)
, (3.24)

which reduces to

û(n) = f2(rd)û
(n−2) +

4rd cos η

1 + 2rd︸ ︷︷ ︸
:=f3(rd,η)

û(n−1), (3.25)

in wavenumber space, with rd being the diffusive CFL. Similar to the LF scheme, we can obtain

the one-step (G̃1) or two-step amplification factor (G̃2 = G̃2
1) from Eq. (3.25), both of which lead

to a quadratic equation independent of time level n and given by,

G̃2
1 − f3(rd, η)G̃1 − f2(rd) = 0, (3.26)

The two roots of Eq. (3.26),

G∗± =
2rd cos(η)±

√
1− 4r2

d sin2(η)

1 + 2rd
, (3.27)

then give us the two standard amplification factors for the DFF scheme. Since the amplitude of

G∗± is bounded by unity for all rd, the scheme is said to be unconditionally stable. Simply said,

the maximum amplification at any time level is at most unity for all wavenumbers. However, if

we iterate Eq. (3.24) for a broadband initial condition and compare the numerical amplification

so obtained with that given by G∗±, as shown in Fig. 3.5, we note important discrepancies. First,

the one-step (black circles) and the square-root of two-step (red triangles) numerical amplification

factors are not equal to just one of the two roots G∗± for all η. Instead, the numerical amplification

remains closer to G∗+ (solid blue line) for lower η and to G∗− (dashed blue line) at higher η, with a

different transition region for different rd. Second, for rd = 0.95, the numerical amplification for
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Figure 3.5: Amplification factor for the diffusion equation using the Du-fort and Frankel (DFF)
scheme. Comparison of numerical and analytical amplification factor for rd = 0.25 (left) and
rd = 0.95 (right) at t∗ = n∆tβ2k

2
max ≈ 88. Here Gnum is the numerical amplification factor,

G̃(n) is the amplification factors computed using generalized von Neumann analysis and G∗± is
the standard amplification factor. Subscript 1, 2 specifies number of time steps across which the
corresponding quantity is computed.

intermediate wavenumbers exhibits large fluctuations with magnitude much larger than unity and

clearly not equal to the standard amplification factor (blue lines). Similar disagreements are also

seen between the numerical modified wavenumber and modified wavenumber computed from G∗±

(not shown here).

The clear inability of the standard von Neumann analysis to accurately compute the amplifica-

tion factor (and modified wavenumber) for both LF and DFF schemes is a direct consequence of

the invalid assumption that the amplification factor is independent of time level. We overcome this

limitation by proposing a generalized von Neumann analysis, which we describe next.

3.4 Generalized von Neumann analysis

The generalized von Neumann analysis is also based on a Fourier decomposition of the solution

but unlike the standard analysis, the amplification factor retains the dependency on time level. As a

result, the amplification factor at any time instant is computed using a recursive relation, instead of

the characteristic polynomial found in the standard analysis. Thus, the essence of the generalized
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Von-Neumann approach is to simply relax the assumption that the amplification factor in multi-

level schemes is same at all times. Additionally, unlike the standard von Neumann method that

gives multiple amplification factors corresponding to each root of the characteristic polynomial,

the generalized method computes a unique amplification factor at every time level, which as we

show below agrees well with the numerical simulations. Moreover, for certain multi-level schemes

we can express the amplification factor obtained from the generalized von Neumann analysis as

a simple continued fraction. Doing so allows us to obtain the exact conditions under which the

standard analysis, in fact, can be used to compute the amplification factor. Finally, we re-define

the stability condition in order to account for the variation of amplification factor with time.

We now introduce and illustrate the concept of generalized von Neumann analysis using two

well-known multi-level schemes. We note that for two level schemes, the generalized von Neu-

mann analysis reduces to the standard von Neumann analysis.

3.4.1 Leapfrog scheme

The generalized von Neumann analysis for the LF scheme follows directly from Eq. (3.20) and

Eq. (3.21). Instead of assuming that the amplification is independent of time level n, we write the

general one-step and two-step amplifications as functions of n as

G̃
(n)
1 :=

û(n)

û(n−1)
= f1(rc, η) +

1

G̃
(n−1)
1

(3.28)

G̃
(n)
2 :=

û(n)

û(n−2)
= 1 + f1(rc, η)G̃

(n−1)
1 . (3.29)

While Eq. (3.28) or Eq. (3.29) give the corresponding amplification at any time level n, we are

also interested in computing conditions under which the generalized amplification reduces to the

amplification obtained from the standard von Neumann analysis. For this, we note that Eq. (3.28)

42



is a recursive function that can also be expressed as a continued fraction,

G̃
(n)
1 = f1(rc, η) +

1

f1(rc, η) +
1

f1(rc, η) +
1

. . .
f1(rc, η) + 1

G̃
(1)
1

(3.30)

when G̃(n−1)
1 is written in terms of G̃(n−2)

1 which itself is written in terms of G̃(n−3)
1 and so on. We

can write Eq. (3.30) compactly as

G̃
(n)
1 = b1 +

1|
|b2

+
1|
|b3

+ · · ·+ 1|
|bn

=
An
Bn

, where


bi = f1(rc, η), i 6= n

bn = G̃
(1)
1

(3.31)

Here An and Bn are the so-called nth numerator and denominator, respectively, and G̃(n)
1 is called

the nth approximant of the continued fraction [33]. This continued fraction is said to converge if the

sequence of its approximants {An/Bn} converges, that is, lim
n→∞

An/Bn exists and is finite. Clearly,

if the continued fraction converges, then it must converge to one of the roots of the quadratic

equation Eq. (3.22) that follows directly from Eq. (3.28) or Eq. (3.30). However, there is no reason

a priori to believe that the continued fraction converges. If it does not converge, then Eq. (3.22)

loses its meaning in the traditional sense, as there is no n-independent G̃1 which reduces Eq. (3.28)

to Eq. (3.22). Yet, as we show here, Eq. (3.22) can provide critical information about whether such

a G̃1 exists or not. The condition for existence of lim
n→∞

An/Bn (i.e. convergence) and its value is

given by the following lemma [33].

Lemma 1. Let G∗+ and G∗− be the roots of the quadratic equation Eq. (3.22), then

1. If |G∗+| 6= |G∗−| orG∗+ = G∗− the continued fraction converges to the root with larger absolute

value
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2. If |G∗+| = |G∗−| and G∗+ 6= G∗−, the continued fraction does not converge.

Proof. See Appendix 3.A.

Now, we can readily identify different cases when looking at the roots of Eq. (3.22) given by

Eq. (3.23). For a convective CFL rc that satisfies rc < 1, we have |G∗+| = |G∗−| for all η. Thus,

according to Lemma 1(ii), approximants of the continued fraction do not converge to either of

these roots. In other words, the amplification factor at any time level n, which is equal to the nth

approximant obtained from Eq. (3.31), is different from G∗±, the amplification factors obtained

with the standard von Neumann analysis. If, on the other hand, rc ≥ 1, then |G∗+| 6= |G∗−| for

η ∈ [0, α) ∪ (π − α, π], |G∗+| = |G∗−| for η ∈ (α, π − α) and G∗+ = G∗− for η = {α, π − α},

where α = sin−1(1/rc). In this case, as a consequence of Lemma 1, the amplification factor is

equal to the root in Eq. (3.23) with larger absolute value for η ∈ [0, α)∪ (π−α, π] and equal to the

approximant of the continued fraction for η = (α, π− α). When η = {α, π− α}, since both roots

are equal, the continued fraction converges to G∗+ = G∗−. The conclusion from this analysis, thus,

is that the standard von Neumann analysis is applicable only for a certain range of η depending

upon rc. Eq. (3.31), o the other hand, always gives the correct value of amplification, for all rc, η

and n.

We refer back to Fig. 3.3, where we see that the one-step numerical amplification (black cir-

cles) agrees exactly with G̃(n)
1 (dotted-black line) computed using Eq. (3.28), as expected. Similar

agreement is seen between the square-root of the two-step numerical amplification (red triangles)

and (G̃
(n)
2 )1/2 (dashed-red line) computed from Eq. (3.29). The amplification factors given by

Eq. (3.28) and Eq. (3.29) can also be used to assess the actual spectral accuracy of the fully dis-

crete system by computing the time-dependent modified wavenumber

η̃(n)
m = −arg[G̃(n)

m ]/m rc, (3.32)

where m is the number of steps across which the amplification is computed. This is shown in

Fig. 3.4. Similar to the amplification factor, we see that both the one-step (black circles) and
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Figure 3.6: Time evolution of one-step (top-left) and two-step (bottom-left) amplification factor
and stability parameter (G(n))1/n (right) for advection equation using leapfrog (LF) scheme for
wavenumber k = 32 or η ≈ 1.57. Inset in plot on the right is a zoom-in on short time interval.
Here Gnum is the numerical amplification factor, G̃(n) is the amplification factor computed using
generalized von Neumann analysis and G∗± is the standard amplification factor. Subscript 1, 2
specifies number of time steps across which the corresponding quantity is computed.

two-step (red triangles) numerical modified wavenumber obtained from simulations agree exactly

with η̃(n)
1 (black line) and η̃(n)

2 (red line), respectively. Since the modified wavenumber is directly

computed from the amplification factor, it also exhibits fluctuations depending upon rc and η if the

latter does not converge. Moreover, when the modified wavenumber varies with time, the accuracy

of the corresponding numerical gradients and thus, the accuracy of simulations will also vary with

time.

It is now clear, from both theoretical and numerical results, that the amplification factor de-

pends, in general, upon time level n. To illustrate this further, one can also look at the time

evolution of the amplification factor for an arbitrary wavenumber (k = 32 or η ≈ 1.57), as shown

in in Fig. 3.6(a) for rc = 0.95 (or Fig. 3.1). We immediately see that the instantaneous numerical

amplification factor (black circles and triangles) varies with time (t∗ or n) and is clearly different

from the amplification factorG∗± (blue) obtained from the standard analysis, which gives a constant

value at all times. However, this oscillatory instantaneous behavior of numerical amplification is

accurately predicted at all times by G̃(n)
1 or G̃(n)

2 (red) obtained from the generalized von Neumann
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analysis. Furthermore, we observe that the instantaneous amplitude, albeit bounded, is frequently

greater than unity. Since the scheme is stable in a broader sense, one needs to reevaluate the classi-

cal stability definition in Eq. (3.4). It seems natural that a stability notion in a broader sense could

be based on the product of amplification factors to be bounded instead of the values at individual

steps. Clearly, the latter is a sufficient condition for the former. We, thus, propose the following

stability criterion

G(n) :=

(
n∏
p=1

|G̃(p)|

)
< K (3.33)

where K is finite and independent of n. This is closer to the stability definition given by Eq. (3.3)

and requires all modes to be uniformly bounded. This allows the amplitude of different modes

to grow instantaneously, though not in a long-term unbounded manner. We do note that while a

close expression for Eq. (3.33) may be possible in some cases, in others it may be difficult. Thus,

Eq. (3.33) may need to be studied for each scheme. We also note that for a scheme with G̃(n) =

G̃(n−1) = · · · = G, Eq. (3.33) will reduce to the stability defined in the standard von Neumann

sense. In other words, the standard von Neumann analysis is a special case of the generalized

analysis presented here.

In Fig. 3.6(b) we show the time evolution of (G(n))1/n for rc = 0.95 and k = 32 or η ≈

1.57. After large fluctuations in the initial steps, wherein the initial condition effects are important,

we see that the amplitude oscillates but remains bounded and exhibits a tendency to converge

towards unity. In general, for rc ≤ 1, Eq. (3.33) is satisfied for all wavenumbers but for rc > 1,

K in Eq. (3.33) increases with n for at least some wavenumbers. Since there exists a finite K,

independent of n for all η only for rc ≤ 1, the LF scheme is stable for this range of CFL. It is

important to note here that even though the generalized von Neumann analysis gives the same

stability bound as the standard von Neumann analysis, the latter uses an amplification factor which

is never realizable in actual simulations.
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3.4.2 Du Fort and Frankel scheme

The general one-step and two-step amplification factors at any time level n follow from Eq. (3.25)

and are given by,

G̃
(n)
1 = f3(rd, η) +

f2(rd)

G̃
(n−1)
1

(3.34)

G̃
(n)
2 = f3(rd, η)G̃

(n−1)
1 + f2(rd), (3.35)

respectively. Once again, in order to determine whether or not the amplification computed from

the generalized von Neumann analysis is equivalent to that known from the standard analysis, we

restate the recursive relation in Eq. (3.34) as the following continued fraction

G̃
(n)
1 = b1 +

a2|
|b2

+
a3|
|b3

+ · · ·+ an|
|bn

=
An
Bn

, where


bi = f3(rd, η), i 6= n

bn = G̃
(1)
1

ai = f2(rd).

(3.36)

This fraction converges (if the limit exists) to one of the roots Eq. (3.26) that follows from Eq. (3.34)

or Eq. (3.36) if G̃1 is independent of n. The condition for the existence of a limit of Eq. (3.36) and

its value is determined by the following Lemma.

Lemma 2. Let G∗+ and G∗− be the roots of the quadratic equation Eq. (3.26) with real coefficients

and discriminant D = f3(rd, η)2 + 4f2(rd), then

1. If D > 0, the continued fraction converges to the root with larger absolute value.

2. If D = 0, the continued fraction converges to the single root with multiplicity two.

3. If D < 0, the continued fraction does not converge.

Proof. See Appendix 3.A.
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For a diffusive CFL rd < 0.5, we have D > 0 for all η and thus the continued fraction con-

verges, by Lemma 2, to the root G∗± of Eq. (3.26), listed in Eq. (3.27), with larger absolute value.

This can also be seen from simulation results shown in Fig. 3.5(a). We observe that both the

one-step (black circles) and the square-root of the two-step (red triangles) numerical amplifica-

tion factors agree exactly with the amplification computed using Eq. (3.34) (dotted black line) and

Eq. (3.35) (dashed red line), respectively, and exhibit a tendency to converge to the branch of G∗±

(blue line) with large magnitude. We do however see some discrepancies at intermediate values

of η. This difference is observed because the dissipative nature of the equation leads to a solution

which decays very rapidly to round-off levels, and the simulation time is thus necessarily short. For

short times (small n), the effect of initial condition or G̃1
1 is still prominent and thus, we do not see

the numerical amplification converging exactly to standard amplification G∗± for all wavenumbers.

However, we can also obtain the long-term behavior of the amplification factor by iterating equa-

tion Eq. (3.34) or Eq. (3.36) to obtain G̃(n)
1 and Eq. (3.35) to obtain G̃(n)

2 , for a sufficiently large

n. This is shown in Fig. 3.7(a) where we observe that both G̃(n)
1 (dotted black) and G̃(n)

2 Eq. (3.35)

(dashed red) converge to the branch of G∗± (blue) with higher magnitude. This clearly implies

that while the amplification factor obtained from the generalized von Neumann analysis agrees

well with the numerical amplification at any arbitrary time, the standard amplification factor only

captures the long term behavior for rd < 0.5.

Now for rd ≥ 0.5, we have D > 0 for η ∈ [0, α) ∪ (π − α, π], D < 0 for η ∈ (α, π − α) and

D = 0 for η = {α, π − α}, where α = sin−1(1/2rd). Thus, as a consequence of Lemma 2, the

amplification factor converges to the root G∗± with larger magnitude for η ∈ [0, α) ∪ (π − α, π],

converges to G∗+ = G∗− for η = {α, π − α}, and oscillates without converging to either of G∗± for

η ∈ (α, π − α). This is evident from both Fig. 3.5(b) and Fig. 3.7(b), where both amplification

factors obtained from Eq. (3.34) or Eq. (3.36) (black) and Eq. (3.35) (red) converge to the larger

of the two roots G∗± at low and high wavenumbers that lie in the interval η ∈ [0, α) ∪ (π −

α, π]. For the intermediate wavenumbers η ∈ (α, π − α), the amplification exhibits an oscillatory

behavior. Moreover, for these wavenumbers, where Eq. (3.36) does not converge to either of
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Figure 3.7: Amplification factor for the diffusion equation using the Du-fort and Frankel (DFF)
scheme. Comparison of amplification factor obtained from the generalized and standard von Neu-
mann analyses for rd = 0.25 (left) and rd = 0.95 (right) at long time. Here G̃(n) is the amplification
factor computed using generalized von Neumann analysis andG∗± is the standard amplification fac-
tor. Subscripts 1 and 2 denote number of time steps across which the corresponding quantity is
computed.

G∗±, the erratic instantaneous amplification is not necessarily bounded by unity, unlike the constant

standard amplification, G∗±. Thus, as in the case of LF scheme, the standard von Neumann analysis

of DFF scheme gives correct measure of amplification only for a range of wavenumber and CFL.

The generalized von Neumann analysis proposed here, on the other hand, reproduces the numerical

data for any n, η, and rd. Here also the stability of the DFF scheme can be determined from

Eq. (3.33). For instance, the stability parameter defined in Eq. (3.33) for an arbitrary wavenumber

k = 10 or η ≈ 0.49 for rd = {0.95, 2}, remains bounded for both rd values at all times, as shown

in Fig. 3.8. It is interesting to note here that for rd = 0.95, this specific η belongs in the interval

[0, α) and thus, G̃(n)
1 and consequently (G(n))1/n (dotted-black), converges toG+ (blue), with small

differences only at small n. However, for rd = 2, this specific η belongs to a different interval,

that is (α, π − α), and therefore, (G(n))1/n approaches |G±| with persistent oscillations that are

bounded.
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Figure 3.8: Time evolution of stability parameter (G(n))1/n for the diffusion equation using the
Du-fort and Frankel (DFF) scheme for k = 10 or η ≈ 0.49 for rd = 0.95 (left) and rd = 2 (right).
Blue line corresponds to |G+| (left) and to |G±| (right). Inset (right) is a zoom-in on short time
interval.

3.5 Beyond the standard von Neumann analysis: asynchrony-tolerant schemes

In the previous section we discussed the breakdown of standard von Neumann analysis for

simple synchronous schemes. We overcame these limitations with our proposed generalized von

Neumann analysis. We use this generalized analysis to assess the stability and spectral accuracy of

multi-level asynchronous schemes for which the standard von Neumann analysis is not applicable,

even in principle. This is the case of so-called asynchrony tolerant (AT) schemes [16]. These AT

schemes, as mentioned in Chapter 1, have been derived to improve the parallel performance of

large-scale simulations where communications between processors becomes exceedingly expen-

sive [9]. To do so, the algorithm does not enforce synchronization across processors to complete

communications; instead processors continue computations uninterrupted with data available lo-

cally. This leads to a random delay at each processor boundary at every time step and thus the

number of states grow exponentially rendering the stability analysis intractable. Thus, we limit our

analysis to a simple, and yet, a practical implementaion of AT schemes that is more general than

the stability analyisis perfomed in Chapter 2.

In particular, here we focus here on the Communication Avoiding Algorithm (CAA) for AT
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schemes introduced in Chapter 5, where processors communicate only periodically. As a result,

the specific numerical scheme used for derivatives also varies periodically making the standard

von Neumann analysis inapplicable. Since the generalized von Neumann approach presented in

previous sections does not require the amplification factor to be same at every step, it can be easily

used when the scheme changes in time. Here again we assume that the same AT schemes are used

at all grid points, a practice that has been used before as a worst case scenario for stability and

accuracy [9, 16, 19]. For simplicity in the exposition, we also assume that the delays are present

only on one-side as one would expect in an actual simulation.

The important parameter in the CAA is the rate of communication T , which bounds the max-

imum allowed delay L, as L = T − 1. The instantaneous delay then changes periodically from 0

(no delay) to L. For simplicity, we consider L = 1 (T = 2) which corresponds to AT schemes with

delay of one and the standard synchronous schemes used in alternate steps. For this illustration we

will consider the advection-diffusion equation,

∂u

∂t
+ β1

∂u

∂x
= β2

∂2u

∂x2
, (3.37)

where β1 is the propagation speed and β2 is the diffusion coefficient, discretized using second-order

AT schemes [16] for both spatial derivatives,

∂u

∂x

∣∣∣∣(n)

i

=
−u(n)

i−1 + (`+ 1)u
(n−`)
i+1 − `u

(n−`−1)
i+1

2∆x
, (3.38)

∂2u

∂x2

∣∣∣∣(n)

i

=
u

(n)
i−1 − 2u

(n)
i + (`+ 1)u

(n−`)
i+1 − `u

(n−`−1)
i+1

∆x2
. (3.39)

Here ` is the delay seen at the right processor boundary which, with L = 1, is given by the

sequence ` = {0, 1, 0, 1, 0, 1, . . . } in time. Both Eq. (3.38) and Eq. (3.39) reduce to a standard

finite difference scheme when ` = 0. We use a standard forward Euler method in time, leading to

the following fully discrete system
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u
(n+1)
i =u

(n)
i −

rc
2

(
−u(n)

i−1 + (`+ 1)u
(n−`)
i+1 − `u

(n−`−1)
i+1

)
+ rd

(
u

(n)
i−1 − 2u

(n)
i + (`+ 1)u

(n−`)
i+1 − `u

(n−`−1)
i+1

)
,

(3.40)

with rc and rd being the convective and diffusive CFL, respectively. which are used to compute

G̃
(1)
1 , the first CAA step is synchronous with ` = 0 and therefore, we get

G̃
(2)
1 :=

û(2)

û(1)
= 1− 4rd sin2(η/2)− jrc sin η = G̃1,s, (3.41)

where G̃1,s is the well-known synchronous amplification factor [20]. In the next CAA step, delay

is non-zero and thus the fully discrete system is given by Eq. (3.40) with ` = 1. Substitution of

Eq. (3.6) in Eq. (3.40) then yields,

û(3) =
(
1− 2rd + (rd + rc/2)e−jη

)︸ ︷︷ ︸
:=f4(rc,rd,η)

û(2) + (rd − rc/2)(`+ 1)ejη︸ ︷︷ ︸
:=f5(rc,rd,`,η)

û(1) + (rc/2− rd)`ejη︸ ︷︷ ︸
:=f6(rc,rd,`,η)

û(0),

(3.42)

or simply

û(3) =

(
f4(rc, rd, η) +

1

G̃1,s

(
f5(rc, rd, `, η) +

f6(rc, rd, `, η)

G̃
(1)
1

))
︸ ︷︷ ︸

:=G
(3)
1

û(2), (3.43)

if û(1) is rewritten in terms of û(2) using Eq. (3.41). In the next step we have ` = 0 which gives a

synchronous amplification factor followed by an asynchronous amplification factor in the follow-

ing step when ` = 1 and so on. Because of this periodicity in delay and consequently the schemes,

the general one-step amplification for any time level n ≥ 2 has T distinct functional forms given

by,

G̃
(n)
1 =


f4(rc, rd, η) + 1

G̃1,s

(
f5(rc, rd, `, η) + f6(rc,rd,`,η)

G̃
(n−2)
1

)
, if n is odd i.e. ` = 1

G̃1,s , if n is even i.e. ` = 0

(3.44)
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It is clear from Eq. (3.44) that the one-step amplification, and the corresponding modified wavenum-

bers, will alternate between synchronous and asynchronous values. This prohibits the use of the

standard von Neumann stability constraint given by Eq. (3.4) to compute stability regions.

We now express the asynchronous amplification for all odd n ≥ 3 in Eq. (3.44) as a continued

fraction of the form,

G̃
(n)
1 = b1+

a2|
|b2

+
a3|
|b3

+· · ·+an|
|bn

=
An
Bn

, where


bi = f4(rc, rd, η) + f5(rc,rd,1,η)

G̃1,s
, i 6= n

bn = G̃
(1)
1

ai = f5(rc,rd,1,η)

G̃1,s
.

(3.45)

The conditions of convergence and the limit of this continued fraction follows from Lemma 1 with

G∗± being the roots of the quadratic equation

G̃2 −

(
f4(rc, rd, η) +

f5(rc, rd, 1, η)

G̃1,s

)
G̃− f6(rc, rd, 1, η)

G̃1,s

= 0. (3.46)

On computing the roots of Eq. (3.46) we found that |G∗−| 6= |G∗+| for rc, rd ≤ 2 and η ∈ [0, π].

Thus, the continued fraction in Eq. (3.36) converges to the root of Eq. (3.46) with larger absolute

value within this range of parameters. Since, both the amplification factors in Eq. (3.44) converge

to two unique functions, their product converges to a single function. This product is the two-step

amplification given by

G̃
(n)
T = G̃

(n)
2 = f4(rc, rd, η)G̃1,s + f5(rc, rd, 1, η) +

f6(rc, rd, 1, η)

G̃
(n−3+`)
1

, (3.47)

or simply the product of G̃1,s and the nth approximant of Eq. (3.45). While the two-step amplifica-

tion, G̃(n)
2 , is expected to show variations at small n due to initial conditions, it eventually attains

the same value irrespective of n and can therefore be used to determine the spectral accuracy of

CAA.

The stability region in the rc-rd plane for second-order CAA can be obtained using the new
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Figure 3.9: Stability region of the fully discrete advection-diffusion equation using asynchrony-
tolerant (AT) schemes with a communication-avoiding algorithm (CAA) with periods T = 2 and
3 in the rc-rd plane. Also shown in a dashed-green line is the stability region for the synchronous
scheme.

definition of stability in Eq. (3.33). Due to the difficulties in obtaining an analytical closed result,

this is accomplished numerically by iterating Eq. (3.40), computing G(n) and check whether the

stability constraint Eq. (3.33) is satisfied or not. This is shown in Fig. 3.9, along with the stability

limit for the standard synchronous scheme in dashed green. We see that the stability region for

both T = 2 (black) and T = 3 (red) are close to that for the synchronous case, showing that the

effect of periodic delays on the stability of AT schemes is minimal. Within this stability region,

the instantaneous amplification, corresponding to the steps with ` > 0, can take values larger than

unity, similar to the instantaneous amplification being greater than unity for stable synchronous

multi-level schemes discussed in the previous section. We also note that if instead, standard von

Neumann analysis is used to compute the stability limits, then it would require bounding individual

amplification factors obtained for each delay value up to L. This analysis for fixed delay at all times

was recently done in [19] where it was shown that the stability region shrinks drastically as L is

increased. However, by allowing for temporal variation of amplification and not requiring the

amplification to be bounded by unity at each time level, we obtain a bigger stability region in rc-rd

plane.
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Figure 3.10: Spectral accuracy for the fully discrete advection-diffusion equation using
asynchrony-tolerant (AT) schemes with a communication-avoiding algorithm (CAA) with periods
T = 2 and 3, and rd = rc = 0.1. Comparison of analytical and numerical modified wavenumbers
for first derivative (left) and second derivative (right). Here η̃T and η̃2

T are given by Eq. (3.32) and
Eq. (3.48), respectively and the subscript s denotes the modified wavenumber for the synchronous
scheme.

As in the synchronous case, the spectral accuracy of CAA can be assessed using the amplifica-

tion factor given in Eq. (3.47) by computing the modified wavenumber η̃T for the first derivative

from Eq. (3.32) and the modified wavenumber η̃2
T for the second derivative from

η̃2
T =

log(|G̃T |)
−Trd

, (3.48)

where the superscript (n) for the time level is omitted for simplicity. We compute η̃T and η̃2
T

for (rc, rd) = (0.1, 0.1) and (0.2, 0.5). In Fig. 3.10, where both CFLs are small, we see that the

modified wavenumbers for first and second derivatives in CAA are close to the corresponding

modified wavenumbers for the synchronous scheme (dashed green). However, for larger CFL as

shown in Fig. 3.11, the modified wavenumber exhibits a tendency to move further away from

both synchronous (dashed green) and the exact solution (magenta) as L is increased from one to

two, especially for large η. We also note that the spectral accuracy for the second derivative is

deteriorated at larger CFL for synchronous as well as AT schemes, with the modified wavenumber

55



Figure 3.11: Spectral accuracy for the fully discrete advection-diffusion equation using
asynchrony-tolerant (AT) schemes with a communication-avoiding algorithm (CAA) with peri-
ods T = 2 and 3, and rd = 0.2, rc = 0.5. Comparison of analytical and numerical modified
wavenumbers for first derivative (left) and second derivative (right). Here η̃T and η̃2

T are given by
Eq. (3.32) and Eq. (3.48), respectively and the subscript s denotes the modified wavenumber for
the synchronous scheme.

close to the exact wavenumber only for a very small range of η.

We finally note that Eq. (3.47) can be generalized to a T -step amplification factor for a general

CAA with delay ` = {0, 1, . . . , L} and period T = L+ 1 as,

G̃
(n)
T = f4(rc, rd, η)

L∏
l=1

G̃
(n−l)
1 + f5(rc, rd, L, η) +

f6(rc, rd, L, η)

G̃
(n−T )
1

. (3.49)

whose analysis provides insight into the stability and spectral accuracy of this schemes.

In conclusion, through specific examples, we have shown how the proposed generalized von

Neumann analysis can be used to study diverse numerical schemes including challenging cases

such as asynchrony-tolerant schemes, which are not tractable with the standard von Neumann

analysis.

3.6 Conclusions

Von Neumann analysis has been extensively used for the stability analysis of numerical schemes

in wavenumber space. This involves the computation of the amplification factor which is a mea-

56



sure of growth or decay of different wavenumbers at every time step. Stability is then assured by

bounding the magnitude of this amplification factor by unity. However, an underlying assump-

tion in this analysis is that the amplification factor is independent of time. This leads to multiple

amplification factors for fully discrete systems with more than two time levels. For example, for

three-level schemes such as leapfrog (LF) and Du-fort and Frankel (DFF) schemes, the standard

analysis results in a quadratic equation which can be solved to obtain two amplification factors

(G∗±). However, simple numerical simulations show that for both DFF and LF the observed am-

plification factor (i) is not equal to either of these roots G∗±, (ii) varies in time, and (iii) can take

values larger than unity even though the scheme is stable.

We, thus, introduce a generalized von Neumann analysis wherein we relax the assumption

that the amplification factor does not vary in time. The resulting time-dependent amplification

factor (G̃(n)
1 ) is a recursive function that can be expressed as a periodic continued fraction. The

amplification G̃(n)
1 at any time level n is then simply equal to the nth approximant of this continued

fraction. In general, G̃(n)
1 depends upon the CFL, time level n and wavenumber η. By analyzing

the convergence properties of the corresponding continued fraction, we show that G̃(n)
1 may either

converge to a fixed value or oscillate with finite amplitudes in the long-time limit. In fact, when

it does converge, G̃(n)
1 becomes independent of n and is equal to the standard amplification factor

(G∗±) with larger magnitude. While the amplification obtained from the standard von Neumann

analysis is applicable only under certain conditions and for a range of wavenumbers—both of

which that we determine exactly—the proposed generalized analysis gives the correct measure of

amplification for all conditions and wavenumbers.

Since, in general G̃(n)
1 varies with n and may be greater than unity even if the scheme is stable,

we define stability in terms of the product of amplification at each time level and require this

product to be finite at all times (Eq. (3.33)). This allows for the amplitude to grow instantaneously

as observed in actual simulations. While the modified definition of stability gives us the same

stability bound for LF scheme as obtained by the standard analysis, this definition uses the actual

value of amplification at all n.
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We extended the generalized von Neumann analysis to the asynchronous Communication Avoid-

ing Algorithm (CAA) wherein, asynchrony-tolerant (AT) schemes with periodically changing co-

efficients are used. Since the scheme changes with time, the one-step amplification factor is always

time-dependent and thus, the standard von Neumann analysis cannot be used. The stability limit

for CAA using the time-dependent amplification factor and Eq. (3.33) was numerically obtained.

Results show that the stability region for CAA remains close to that obtained for corresponding

synchronous scheme. Thus, the AT schemes when used with periodic delays exhibit superior sta-

bility in comparison to the stricter stability bounds obtained for fixed delays in recent work by

[19].

Besides stability, we also assessed the spectral accuracy of the fully discrete systems, by com-

puting the modified wavenumber from the amplification factor. While the modified wavenumber

for the spatial differential operator is independent of CFL, for fully discrete system, the modified

wavenumber varies with CFL because of spatio-temporal coupling. Somewhat surprisingly, this

result, which is true also for the standard von Neumann analysis, seems to have not been studied

in the literature before. Our results allowed to extend this even further to situations where when

the amplification factor varies with time, which thus leads to a modified wavenumber which also

varies with time. The main conclusion is that even for same the spatial scheme with a fixed CFL,

the accuracy of the gradients and consequently, the accuracy of the simulation, can change in time.

In summary, we presented theoretical and numerical results that expose the limitations of the

standard von Neumann analysis. We developed a generalized von Neumann analysis which over-

comes these limitations and thus provides an effective alternate approach for the stability and

spectral analysis of multi-level schemes, including asynchrony-tolerant schemes.

Appendix 3.A: Convergence of a periodic continued fraction

Let u and v be the two roots the quadratic equation

x2 − bx− a = 0, (a 6= 0, b 6= 0), (3.50)
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such that |u| ≥ |v| and the discriminant is D = b2 + 4a. We can rearrange Eq. (3.50) to give

x = b+ a/x, which can be expressed in the form of the following periodic continued fraction,

x = b+
a

b+
a

b+
a

b + . . .

. (3.51)

Now, since a = −uv and b = u+ v, Eq. (3.51) can be re-written in terms of the roots u and v as

x = u+ v −
uv

u+ v −
uv

u+ v −
uv

u+ v − . . .

= u+ v −
v

1 + ρ−
ρ

1 + ρ−
ρ

1 + ρ − . . .

, (3.52)

where ρ = v/u. Following Theorem 2.1 in [33], we can then write the nth approximant of

Eq. (3.52) as

u+ v −
v

v
u

+
1

n−1∑
p=0

(v/u)p

. (3.53)

Eq. (3.53) gives important information about convergence of continued fraction Eq. (3.51).

Case 1: At least one of the coefficients a or b is imaginary

(i) If |u| 6= |v|, such that |v/u| < 1, the complex geometric series,
∞∑
p=0

(v/u)p, converges to

1
1−v/u . Thus, Eq. (3.53) converges or equivalently Eq. (3.51) converges to u which is the root

of Eq. (3.50) with larger magnitude. If v = u, the sum
∞∑
p=0

(v/u)p is infinite and thus, the

continued fraction Eq. (3.53) or Eq. (3.51) converges to u = v.

(ii) If |u| = |v|, lim
n→∞

(
n∑
p=0

(v/u)p
)

does not exist. In general, for |v/u| = 1, u 6= v, the sequence
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v/u, (v/u)2, (v/u)3, . . . has atleast two different limit-points. Consequently, the continued

fraction oscillates.

Case 2: Both a and b are real

(i) If D > 0, both u and v are real. Since |u| > |v|, the ratio |v/u| < 1 and thus the sum

of geometric progression,
∞∑
p=0

(v/u)p, that appears in the denominator in Eq. (3.53) is equal

to 1
1−v/u . Thus Eq. (3.53) or equivalently Eq. (3.51) converges to u which is the root of

Eq. (3.50) with larger magnitude.

(ii) If D = 0, the roots u and v are real and equal. In this case, the sum
∞∑
p=0

(v/u)p is infinite and

thus, the continued fraction Eq. (3.53) or Eq. (3.51) converges to u = v.

(iii) If D < 0, then the roots u, v are complex conjugates that satisfy |u| = |v|. The continued

fraction oscillates (Refer Case 1(ii)).

60



4. ASYNCHRONY-TOLERANT WEIGHTED ESSENTIALLY NON-OSCILLATORY

SCHEMES

4.1 Introduction

In the presence of sharp gradients or discontinuities in density, temperature and composition

due to detonations, shocks or high pressure flames, the central finite difference schemes are prone

to large oscillations and instabilities. An alternate well established numerical technique to ac-

curately simulate flows with piecewise smooth solutions between discontinuities is the so called

weighted essentially non-oscillatory schemes (WENO) [34, 35]. These schemes aim at achieving

high-order accuracy at the smooth regions of the flow and resolve the discontinuities with minimal

oscillations by automatically selecting the locally smoothest stencil. WENO schemes are consid-

erably more expensive than regular central difference schemes due to the need to evaluate the same

flux functions from multiple candidate stencils [36]. However, the numerical method is suitable

for implementation in finite difference codes using stencil operations very similar to the central

difference schemes. Also, the usual advantages of DNS using finite difference schemes including

parallelism and scalability apply to the WENO schemes as well. Apart from DNS [37, 38], the

advantages of WENO schemes have also been demonstrated in implicit large eddy simulations

(iLES) [39, 40, 41].

In this chapter after a brief overview of the strandard WENO schemes, we look at the degrad-

ing effect of data asynchrony on these schemes. Following which we derive asynchrony-tolerant

weighted essentially non-oscillatory (AT-WENO) schemes using the general procedure described

in [16]. We also obtain the smoothness indicators with necessary accuracy requirements with

delayed data at the PE boundaries. Further analysis of these AT-WENO schemes shows that by

selectively eliminating certain low-order terms in the truncation error, the convexity in the so-

called ideal weights is preserved. Moreover, the schemes so derived reduce to the standard WENO

schemes in the absence of delays in both small and large stencils. We verify the accuracy of these
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AT-WENO schemes through numerical simulations of both linear and non-linear equations.

4.2 Standard WENO schemes

We begin with a quick overview of the standard WENO schemes. Consider the one-dimensional

(x-direction) version of the governing equations:

∂Q

∂t
+
∂C

∂x
+
∂D

∂x
= S, (4.1)

where Q is the solution vector, C is the vector comprising the convective flux terms, D is the

viscous and molecular diffusion flux vector, and S is the vector of source terms. The exact form of

terms in Q,C and D is defined in Chapter 7In the WENO framework, the terms contained in the

D vector do not require any special treatment and are evaluated using central difference schemes

(standard or AT). However, the convective flux terms in C have to be computed appropriately to

ensure both stability and accuracy in regions near and at discontinuities. Specifically, the derivative

of the convective flux ∂C/∂x at a point j is approximated using the flux at the edges, i.e., Ĉj± 1
2

of a cell Ij = [xj− 1
2
, xj+ 1

2
]. The flux at the edges is computed using the WENO approximation

procedure that can be carried out using interpolation or reconstruction, and accordingly, requires

point values or cell averages of the fluxes. Note that the hat notation (̂) is used to denote the

variables at cell edges. The derivative is then computed using the relation

∂C

∂x

∣∣∣∣
j

=
Ĉj+ 1

2
− Ĉj− 1

2

∆x
(4.2)

for a uniform grid and the order depends upon the order of the numerical flux approximation Ĉj± 1
2
.

When using finite-differences, the WENO approximation directly yields the fluxes at the edges in

terms of the fluxes at the grid points. For stability, appropriate up-winding of fluxes is also required

and is achieved through splitting the flux, for example using the local Lax-Friedrichs flux splitting
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methodology,

C = C+ + C−, where

C± =
1

2
(C ± λmaxQ),

(4.3)

at every grid-point. The quantity λmax in Eq. (4.3) is the maximum local wave propagation speed

which can be computed as

λmax|j = max{(|u|)j−1, (|u± c|)j−1, (|u|)j, (|u± c|)j}, (4.4)

where u and c are the local flow velocity and the speed of sound, respectively. The derivative is

then simply evaluated using

∂C

∂x

∣∣∣∣
j

=
Ĉ+
j+ 1

2

− Ĉ+
j− 1

2

∆x
+
Ĉ−
j+ 1

2

− Ĉ−
j− 1

2

∆x
(4.5)

with the appropriate upwind stencil for both approximating positive and negative fluxes [38]. For

computation of derivative in Eq. (4.5) using the WENO procedure, the first step is to approximate

the fluxes at the edges (j ± 1/2) through an interpolation or a reconstruction procedure. For

simplicity, the approximation of these fluxes using an interpolation technique is discussed here

in detail. However, the approximation through reconstruction that treats grid-point values as cell

averages can also be performed following the steps detailed here. In order to do so, the primitive

function defined in [34] is required.

For illustration, consider a specific WENO scheme that uses three sub-stencils each of which

comprises three grid-points denoted by S(i), i = {0, 1, 2}, in Fig. 4.1 to approximate the value of

a quantity û at cell edges, say j + 1/2, and time-level n. Taken together the larger stencil obtained

by combining these S(i) contains five points. Since the approximation order depends upon the

number of points, a fifth-order accurate approximation can be obtained in the full stencil for a

smooth function. This is the classical three-fifth order WENO scheme, where the three smaller

candidate stencils S(0) = {j − 2, j − 1, j}, S(1) = {j − 1, j, j + 1}, and S(2) = {j, j + 1, j + 2}
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Space PE boundary

Buffer point
Internal point

Buffer point (old)
Internal point (old)

PE boundary point
PE boundary point (old)

S(0)

S(1)

S(2)

n

n− 1

n− k̃

n− k̃ − 1

j + 2j + 1jj − 1j − 2

Figure 4.1: Four-point stencils for asynchronous WENO approximation at the left processor
boundary. S(0), S(1) and S(2) are the three-point synchronous WENO stencils for approximation at
point j + 1/2 and the corresponding curves are the AT candidate stencil with delays on the left.

give a degree two polynomial interpolation of û(n)

j+ 1
2

at time level n. The synchronous third-order

interpolant in each of the three stencils can be computed using Taylor series expansion or Lagrange

interpolation [34, 35],

û
n,(0)

j+ 1
2

=
3

8
unj−2 −

5

4
unj−1 +

15

8
unj +O(∆x3)

û
n,(1)

j+ 1
2

= −1

8
unj−1 +

3

4
unj +

3

8
unj+1 +O(∆x3)

û
n,(2)

j+ 1
2

=
3

8
unj +

3

4
unj+1 −

1

8
unj+2 +O(∆x3).

(4.6)

The final approximation is taken as a convex combination of the above three third-order ap-

proximations, yielding a higher order interpolant in the larger stencil. Ideally, if u(x, t) is smooth

in the large stencil S =
2⋃
i=0

S(i) = {j − 2, j − 1, j, j + 1, j + 2}, a fifth-order approximation can
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be achieved using the following expression:

ûn
j+ 1

2
=

2∑
i=0

ωiû
n,(i)

j+ 1
2

, (4.7)

where ωi’s are the non-linear weights

ωi =
αi

2∑
i=0

αi

, αi =
γi

(ε+ β(i))2
. (4.8)

The non-linear weights in Eq. (4.8) satisfy wi ≥ 0 and
2∑
i=0

ωi = 1 and are related to theso-called

ideal or linear weights γi through the smoothness indicator β(i) [42, 35, 43]. Simple Taylor series

expansion yields the ideal weights γ = { 1
16
, 5

8
, 5

16
}, such that

ûn
j+ 1

2
=

3

128
unj−2 −

5

32
unj−1 +

45

64
unj +

15

32
unj+1 −

5

128
unj+2 +O(∆x5). (4.9)

We now focus on the effect of data asynchrony on each of the individual approximations as well

as the approximation in the full stencil.

4.2.1 Effect of asynchrony on standard WENO

Consider a point j at the left processor boundary with a delay k̃ encountered at each of the

buffer points. The order of accuracy of the interpolants in the first two stencils is affected by this

delay,

û
n,(0)

j+ 1
2

=
3

8
un−k̃j−2 −

5

4
un−k̃j−1 +

15

8
unj +O(∆t,∆x∆t,∆x3)

û
n,(1)

j+ 1
2

= −1

8
un−k̃j−1 +

3

4
unj +

3

8
unj+1 +O(∆t,∆x∆t,∆x3).

(4.10)

More precisely, there are terms in the truncation error that depend upon ∆t. On relating ∆t ∼ ∆xr,

the interpolants with delays reduce to first order when r = 1 (convective CFL) and to second order

when r = 2 (diffusive CFL). The convex combination of the three interpolants with the ideal

weights, γi, also has a leading order truncation term that scales as O(∆t), thereby degrading the
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order even in the full stencil, i.e

ûn
j+ 1

2
=

3

128
un−k̃j−2 −

5

32
un−k̃j−1 +

45

64
unj +

15

32
unj−1−

5

128
unj+2 +O(∆t,∆x∆t,∆t2,∆x2∆t). (4.11)

Clearly, the standard interpolants cannot be used in the presence of delays. A similar degradation

in order was observed when standard finite difference schemes are used with asynchrony [9] for

computation of spatial derivatives. This necessitates the need to derive WENO schemes that are

resilient to asynchony at a mathematical level. This is done next.

4.3 Asynchrony-tolerant WENO schemes

Following the general methodology to overcome this loss of accuracy in [16], the asynchrony-

tolerant WENO schemes (AT-WENO) can be derived. For this, the AT-interpolant for each of the

substencils in the presence of delays is computed. When multiple time-levels are used, the inter-

polation is two-dimensional i.e. in space and time, and thus, requires larger numbers of points to

achieve a given order of accuracy. Since Taylor series expansion is used to obtain the coefficients,

a relation of the form ∆t ∼ ∆xr is also needed in order to identify the lower order terms that

should be eliminated so as to achieve the desired order of accuracy. For example, for a third-

order accurate approximation, when ∆t ∼ ∆x six equations corresponding to terms of the form

(1,∆t,∆x,∆t2,∆t∆x,∆x2) are needed, and therefore, each candidate stencil is comprised of six

points. Similarly, if r = 2 only four equations (1,∆t,∆x,∆x2) are required, and therefore, a four-

point stencil is sufficient to achieve a third-order approximation. Since the stencil now depends

upon the delays observed at the processor boundaries, the stencil itself is random because of the

random nature of the delays. One can represent this stochastic stencil as S̃. For the first candidate

stencil, S̃(0) = {u−k̃+n−1
j−2 , un−k̃j−2 , u

n−k̃
j−1 , u

n
j } with delay k̃ and r = 2, the AT interpolant is

ũ
n,(0)

j+ 1
2

=
7

8
k̃u−k̃+n−1

j−2 +
1

8

(
3− 7k̃

)
un−k̃j−2 −

5

4
un−k̃j−1 +

15

8
unj + TE(0). (4.12)
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The leading order truncation error in Eq. (4.12) term depends on the delay k̃ and is equal to

TE(0) =
−5

4
k̃u̇′(x, t)∆t∆x+

5

16
u′′′(x, t)∆x3 ∼ O(∆x3), (4.13)

where u̇ = ∂u/∂t and u′ = ∂u/∂x and ∆t ∼ ∆x2 gives the overall order to be O(∆x3). When

k̃ = 0, Eq. (4.12) reduces to the standard third-order synchronous interpolant in Eq. (4.6). For the

second stencil S̃(1) = {u−k̃+n−1
j−1 , u−k̃j−1, u

n
j , u

n
j+1}, with delays considered only at the buffer point

(uj−1), the third-order interpolant is

ũ
n,(1)

j+ 1
2

=
1

8
k̃u−k̃+n−1

j−1 +
1

8

(
−k̃ − 1

)
un−k̃j−1 +

3

4
unj +

3

8
unj+1 + TE(1), (4.14)

where the leading order truncation error term

TE(1) = − 1

16
u′′′(x, t)∆x3 ∼ O(∆x3) (4.15)

is independent of delay k̃, unlike Eq. (4.13). Lastly, for stencil S̃(2) = {unj , unj+1, u
n
j+2} = S(2),

since all the points are within the PE, we can readily use the standard interpolant i.e. ũn,(2)

j+ 1
2

= û
n,(2)

j+ 1
2

.

The full stencil is comprised of seven points S̃ =
2⋃
i=0

S̃(i) = {u−k̃+n−1
j−2 , un−k̃j−2 , u

−k̃+n−1
j−1 , un−k̃j−1 , u

n
j ,

unj+1, u
n
j+2}. With this choice of stencil, at most, a fourth-order accurate approximation can be

obtained for the full stencil since the degrees of freedom are sufficient only to eliminate seven

low-order terms. Extension to higher orders would require extending the stencil in both space and

time. This is explained in great detail in [16] in the context of AT finite difference schemes.

On evaluation of the ideal weights for this larger stochastic stencil S̃ i.e.

ũn
j+ 1

2
=

2∑
i=0

γiũ
n,(i)

j+ 1
2

, (4.16)

yields

γ =

{
0,

1

2
,
1

2

}
(4.17)
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which, in turn, gives a fourth-order truncation error term in Eq. (4.16). These ideal weights elim-

inate the first stencil S̃(0) and reduce the full stencil to a four-point synchronous stencil in the

absence of delays. If the second stencil is modified S̃(1) = {u−k̃+n−1
j−1 , un−k̃j−1 , u

n−k̃
j , unj+1}, the

ideal weights are no longer positive, γ =
{
−3

2
,−5

2
, 5
}
. Further changing the third stencil to

S̃(2) = {u−k̃+n−1
j , un−k̃j , un−k̃j+1 , u

n
j+2} such that all three stencils now have similar stencil structure

and thus use four points as shown in Fig. 4.1, the ideal weights obtained are

γ =

{
3

8
,
5

4
,−5

8

}
. (4.18)

This exercise shows that irrespective of the choice of asynchronous stencil with four points, at least

one of the ideal or linear weights is non-positive for integer values of k̃. This non-convex nature

of ideal weights leads to instabilities and oscillations [44]. The procedure to deal with the non-

positive weights has been described in [44] and it involves splitting all the weights into positive

and negative parts,

γ̃+
i =

1

2
(γi + θ|γi|)

γ̃−i = γ̃+
i − γi

(4.19)

for i = {0, 1, 2}. The split ideal weights are then scaled by the parameters

σ± =
3∑
i=1

γ̃±i ; γ±i = γ̃+
i /σ

±, (4.20)

which are used to write the split polynomial interpolations

(
ûn
j+ 1

2

)±
=

2∑
i=0

γ±i û
n,(i)

j+ 1
2

, (4.21)

which is equivalent to replacing the ideal positive weight γi in Eq. (4.8) by the corresponding

scaled split weight γ±i [44]. However, this procedure involve a series of additional computations

to compute the derivative of the flux accurately.

For this particular choice of stencil with delayed data at the left boundaries, the reconstruction
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polynomial can also be derived using the primitive function [34]. For example, for a stencil of the

form S̃(i) = {u−k̃+n−1
j−1+i , un−k̃j+i , u

n−k̃
j+1+i, u

n
j+1+i} where i = {0, 1, 2}, one obtains the following AT

approximations,

ũ
n,(i)

j+ 1
2

=
1

6

(
3i2 − 12i+ 5

)
k̃u−k̃+n−1

i+j−2 +
1

6

(
−3i2k̃ + 12ik̃ − 5k̃ + 3i2 − 6i+ 2

)
un−k̃i+j−2

+
1

6

(
−6i2 + 18i− 7

)
un−k̃i+j−1 +

1

6

(
3i2 − 12i+ 11

)
uni+j.

(4.22)

The reconstruction polynomials in Eq. (4.22) reduce to the traditional candidate reconstruction

polynomials in [43, 34] when k̃ = 0 corressponding to the classical three-fifth order WENO

scheme with ideal weights {1/10, 6/10, 3/10}.

As is evident from Eq. (4.8), the non-linear weights ωi that are integral to the WENO formula-

tion depend upon the smoothness indicators βi defined in [34] as

β(i) =
k∑
`=1

∆x2`−1

∫ x
j+ 1

2

x
j− 1

2

(
d`

dx`
p(i)(x)

)2

dx (4.23)

where p(i)(x) is the polynomial of degree k (=2, in the example considered here) for stencil

S(i). For a one-dimensional polynomial interpolation Eq. (4.23) can be easily evaluated to give

a smoothness indicator for each stencil. However, for a simpler extension to an asynchronous

stencil, Simpson’s 3/8 rule is used to compute β(i),

β(i) =
∆x

6

(
k∑
`=1

∆x2`−1

(
d`

dx`
p(j)(x)

∣∣∣∣
x=x

j− 1
2

)2

+ 4
k∑
`=1

∆x2`−1

(
d`

dx`
p(j)(x)

∣∣∣∣
x=x

j− 1
6

)2

+ 4
k∑
`=1

∆x2`−1

(
d`

dx`
p(j)(x)

∣∣∣∣
x=x

j+ 1
6

)2

+
k∑
`=1

∆x2`−1

(
d`

dx`
p(j)(x)

∣∣∣∣
x=x

j+ 1
2

)2)
,

(4.24)

such that the derivatives of the interpolant are computed numerically at each of {xj− 1
2
, xj− 1

6
, xj+ 1

6
,

xj+ 1
2
} using all the points in the stencil S(i). This yields the smoothness indicator expressed in the
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form

β(0) =
1

3

(
4 (un)2

j−2 +
(
11unj − 19unj−1

)
unj−2 + 25 (un)2

j−1 + 10 (un)2
j − 31unj−1u

n
j

)
β(1) =

1

3

(
4 (un)2

j−1 +
(
5unj+1 − 13unj

)
unj−1 + 13 (un)2

j + 4 (un)2
j+1 − 13unj u

n
j+1

)
β(2) =

1

3

(
10 (un)2

j +
(
11unj+2 − 31unj+1

)
unj + 25 (un)2

j+1 + 4 (un)2
j+2 − 19unj+1u

n
j+2

) (4.25)

which is consistent with β(j) in the literature. Extending this to the asynchronous stencil, the

smoothness indicator of the following form is obtained when a four-point stencil is used for all

three candidate stencils,

β̃(0) =
1

3

((
10k̃2 − 11k̃ + 4

)(
un−k̃j−2

)2

+
(
− 20k̃2un−k̃−1

j−2 + k̃
(

11un−k̃−1
j−2 + 31un−k̃j−1 − 20unj

)
− 19un−k̃j−1 + 11unj

)
un−k̃j−2 + 10k̃2

(
un−k̃−1
j−2

)2

+ 25
(
un−k̃j−1

)2

− 31unj u
n−k̃
j−1

+ k̃un−k̃−1
j−2

(
20unj − 31un−k̃j−1

)
+ 10

(
unj
)2

)
(4.26)

β̃(1) =
1

3

((
4k̃2 − 5k̃ + 4

)(
un−k̃j−1

)2

+
(
− 8k̃2un−k̃−1

j−1 + k̃
(

5un−k̃−1
j−1 + 13un−k̃j − 8unj+1

)
− 13un−k̃j + 5unj+1

)
un−k̃j−1 + 4k̃2

(
un−k̃−1
j−1

)2

+ 13
(
un−k̃j

)2

− 13unj+1u
n−k̃
j

+ k̃un−k̃−1
j−1

(
8unj+1 − 13un−k̃j

)
+ 4

(
unj+1

)2

)
(4.27)

β̃(2) =
1

3

((
4k̃2 − 11k̃ + 10

)(
un−k̃j

)2

+
(
− 8k̃2un−k̃−1

j + k̃
(

11un−k̃−1
j + 19un−k̃j+1 − 8unj+2

)
− 31un−k̃j+1 + 11unj+2

)
un−k̃j + 4k̃2

(
un−k̃−1
j

)2

+ 25
(
un−k̃j+1

)2

− 19unj+2u
n−k̃
j+1

+ k̃un−k̃−1
j

(
8unj+2 − 19un−k̃j+1

)
+ 4

(
unj+2

)2

)
.

(4.28)

Each of the β̃(i) listed in Eq. (4.26), Eq. (4.27), Eq. (4.28) reduce to the corresponding β(j) ex-

pressions in Eq. (4.25) when k̃ = 0. With the approximations and smoothness indicators in the

candidate stencil known along with the ideal weights, the derivative of the flux can then be com-
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puted using the standard WENO procedure.

Time

Space PE boundary

Buffer point
Internal point

Buffer point (old)
Internal point (old)

PE boundary point
PE boundary point (old)

S(0)

S(1)

S(2)

n

n− 1

n− k̃

n− k̃ − 1

j + 1j + 2jj − 1j − 2

Figure 4.2: Updated stencil for WENO at the left processor boundary.

4.4 Improving AT-WENO schemes

For the choice of stencil discussed above, if the delay is zero then instead of achieving fifth-

order approximation in the larger stencil, only fourth-order accuracy is obtained. This is explained

next. The ideal weights {γ0, γ1, γ2} in Eq. (4.16) satisfy
∑2

i=0 γi = 1 and thus, two additional

constraints need to be imposed to find a unique solution when seeking a combination of smaller

stencils. Upon upgrading from a third-order approximation in the smaller stencil S̃(j) to a fourth-

order approximation in the full stencil S̃, only two lower order truncation error terms of the form

{∆t∆x,∆x3} can be eliminated. Thus, a unique solution for γi is obtained. However, such

an approximation will never recover fifth-order accuracy in the absence of delays since the ∆x4

truncation error term is non-zero. Consequently, when there is no delay, the large stencil S̃ will
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have at most four points and the approximation is only fourth-order accurate. For example, the

ideal weights Eq. (4.18) yield non-zero coefficients only for points {j − 2, j − 1, j, j + 2} in the

full stencil when k̃ = 0. Moreover, this stencil is spatially discontinuous.

The reduction in the number of points in the larger stencil when the delay is zero and a cor-

responding lower order accurate approximation can be overcome by selectively eliminating addi-

tional truncation error terms. For an asynchronous fifth-order approximation, terms of the form

{∆t2,∆t∆x2,∆x4} in addition to {∆t∆x,∆x3} also need to be eliminated. Since this yields a

system with six constraints and only three unknowns, a solution can not be uniquely determined.

However, it is still possible to achieve a fifth-order approximation in the absence of delays. Ad-

dition of one more point in the smaller asynchronous stencil and using this degree of freedom to

eliminate the ∆t∆x truncation term does not affect the order of the resulting interpolant. However,

when the ideal weights in the large stencil are computed, one of the constraints can now be imposed

on the ∆x4 term. This exercise then yields convex ideal weights that are exactly equal to the ones

obtained when all three small stencils are synchronous. While the asynchronous approximation in

the full stencil is still of order four, the synchronous approximation recovers fifth-order accuracy

when the delay goes to zero. Moreover, a convex combination of the candidate stencil with none of

the weights being negative is achieved. Thus, the additional computation involved in the treatment

on negative weights is no-longer required. This new asynchronous stencil at the left boundary is

given as

S̃
(0)
L = {un−k̃−1

j−2 , un−k̃j−2 , u
n−k̃−1
j−1 , un−k̃j−1 , u

n
j },

S̃
(1)
L = {un−k̃−1

j−1 , un−k̃j−1 , u
n−k̃
j , unj , u

n
j+1}

S̃
(2)
L = S(2) = {unj , unj−1, u

n
j+2}.

(4.29)

and is shown in Fig. 4.2. For this stencil the third-order interpolation of the form

ũ
n,(0)

j+ 1
2

= −3

8
k̃u−k̃+n−1

j−2 +
5

4
k̃u−k̃+n−1

j−1 +
1

8

(
3k̃ + 3

)
un−k̃j−2 +

1

4

(
−5k̃ − 5

)
un−k̃j−1 +

15

8
unj

ũ
n,(1)

j+ 1
2

=
1

8
k̃u−k̃+n−1

j−1 +
1

8

(
−k̃ − 1

)
un−k̃j−1 +

3

4
unj +

3

8
unj+1

ũ
n,(2)

j+ 1
2

=
3

8
8unj +

3

4
unj+1 −

1

8
unj+2

(4.30)
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is obtained when a constraint is imposed on the truncation error term ∆t∆x for the first two

stencils, S̃(0) and S̃(1). The ideal weights are then computed to be

γ =

{
1

16
,
5

8
,

5

16

}
. (4.31)

While the interpolation procedure for approximating the fluxes at the edges is explained in detail,

approximation using reconstruction, which is equivalent to the WENO approximation for the first

derivative, is the main relevant WENO procedure when designing finite volume or finite difference

schemes to solve hyperbolic conservation laws [45]. Similar constraints in terms of the order-of-

accuracy and elimination of specific terms can also be used to derive a reconstruction function with

an asynchronous stencil using a primitive variable. For the choice of stencil listed in Eq. (4.29),

by treating point values as cell-averages the third-order reconstruction approximation at the left

boundary assumes the following functional form

ũ
n,(0)

j+ 1
2

= −1

3
k̃u−k̃+n−1

j−2 +
7

6
k̃u−k̃+n−1

j−1 +
1

6

(
2k̃ + 2

)
un−k̃j−2 +

1

6

(
−7k̃ − 7

)
un−k̃j−1 +

11

6
unj

ũ
n,(1)

j+ 1
2

=
1

6
k̃u−k̃+n−1

j−1 +
1

6

(
−k̃ − 1

)
un−k̃j−1 +

5

6
unj +

1

3
unj+1

ũ
n,(2)

j+ 1
2

=
1

3
unj +

5

6
unj+1 −

1

6
unj+2

(4.32)

such that the coefficients reduce to their corresponding synchronous values when k̃ = 0. The ideal

or linear weights in this case can then be computed to be

γ =

{
1

10
,
3

5
,

3

10

}
(4.33)

which provides the fifth-order reconstruction polynomial in the larger stencil when the delay is

zero, and is fourth-order, otherwise. Finally, the smoothness indicator for stencil Eq. (4.29) is
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computed using Simpson’s 3/8 rule,

β̃(0) =
1

3

(
4
(
un−k̃j−2

)2

+ 25
(
un−k̃j−1

)2

+ k̃2
(

4
(
un−k̃−1
j−2

)2

+ 4
(
un−k̃j−2

)2

+ 19un−k̃j−2

(
un−k̃−1
j−1 − un−k̃j−1

)
+ 25

(
un−k̃−1
j−1 − un−k̃j−1

)2

+ un−k̃−1
j−2

(
19
(
un−k̃j−1 − un−k̃−1

j−1

)
− 8un−k̃j−2

))
− 31unj u

n−k̃
j−1

+ 10
(
unj
)2

+ un−k̃j−2

(
11unj − 19un−k̃j−1

)
+ k̃
((

19un−k̃−1
j−1 − 38un−k̃j−1 + 11unj

)
un−k̃j−2

+ 8
(
un−k̃j−2

)2

+ un−k̃−1
j−2

(
−8un−k̃j−2 + 19un−k̃j−1 − 11unj

)
−
(
un−k̃−1
j−1 − un−k̃j−1

)(
50un−k̃j−1 − 31unj

)))
(4.34)

β̃(1) =
1

3

(
4k̃2

(
un−k̃−1
j−1 − un−k̃j−1

)2

+ 4
(
un−k̃j−1

)2

+ 13
(
unj
)2

+ 4
(
unj+1

)2
+
(
5unj+1 − 13unj

)
un−k̃j−1

− 13unj u
n
j+1 − k̃

(
un−k̃−1
j−1 − un−k̃j−1

)(
8un−k̃j−1 − 13unj + 5unj+1

))
(4.35)

β̃(2) =
1

3

(
10
(
unj
)2 − 31unj+1u

n
j + 25

(
unj+1

)2
+ 4

(
unj+2

)2
+
(
11unj − 19unj+1

)
unj+2

)
= β(2).

(4.36)

In terms of the leading order truncation error, these smoothness indicators have the same prop-

erties as their synchronous counterparts, and therefore, preserve the order characteristics of the

non-linear weights in Eq. (4.7). Thus, the AT-WENO approximation in the simulations presented

here is carried out using the reconstruction polynomials in Eq. (4.32), ideal weights in Eq. (4.33)

and the smoothness indicators listed in Eq. (4.36). The corressponding approximations and the

smoothness indicators in the asynchronous stencil at the right PE boundary are listed in Appendix

4.A. While only a specific example of AT-WENO is presented here, similar steps can be followed

to derive high-order schemes as well by extending the stencil in both space and time. Furthermore,

additional low-order truncation error terms can also be selectively eliminated in both candidate

and full stencil such that the AT-WENO scheme in the full stencil reduces to the corresponding

synchronous scheme in the absence of delays.
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4.5 Order of accuracy test

Before proceeding with the validation simulations in Chapter 7, the order of accuracy of the

synchronous and the new AT-WENO schemes is tested on a linear advection equation,

∂u

∂t
+ c

∂u

∂x
= 0 (4.37)

in a periodic domain x ∈ [−1, 1] for initial condition u(x, 0) = sin4(πx + 0.25) and a convective

velocity of c = 5 for different spatial resolutions. Since the AT-WENO scheme is derived using

the relation ∆t ∼ ∆x2, we retain this power-law for computing the time step in the simulations to

assess the order of accuracy. The temporal scheme used is RK-3 implemented using the procedure

listed in section 2.3. Delays with uniform probability are introduced at every grid-point. The L1

and L∞ norm of the error at t = 1.0 is tabulated in Table 4.1 for the synchronous case, standard

WENO used asynchronously (AS-WENO) and the asynchrony-tolerant WENO (AT-WENO). As

expected, the order degrades to two when the standard WENO sees delays at the boundaries and

the error is orders of magnitude larger than the synchronous error. On the contrary, the AT-WENO

scheme exhibit errors comparable to the synchronous case and the order of accuracy is close to

four.

The analysis was repeated for an inviscid Burgers equation

∂u

∂t
+

∂

∂x

(
u2

2

)
= 0 (4.38)

in a periodic domain with an initial condition, u(x, 0) = 0.5 + sin(πx). The order of accuracy

both before and after the formation of the shock is computed. At t = 0.15, the solution is smooth

throughout the domain and the order deterioration only occurs when the standard WENO is used

asynchronously (AS-WENO). Both synchronous and AT-WENO have order higher than the theo-

retical order when the grid is refined. For L1 and L∞ norm of error after shock formation, only the

smooth region at a distance of 0.05 on both sides of the shock, ie. |x− xshock| > 0.05 is considered
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Figure 4.3: L2 norm of error for linear advection equation with initial condition u(x, 0) =
sin4(πx + 0.25) at t = 1.0 for synchronous (magenta pluses), AS-WENO (green circles) and
AT-WENO (red squares).

[42]. Once again, errors in both the L1 and L∞ norms and the order of accuracy for AT-WENO are

consistent with that for standard WENO. Thus, AT-WENO exhibits expected numerical accuracy

for both linear and non-linear equations.

4.6 Conclusions

In this chapter we presented a brief overview of the standard weighted essentially non-oscillatory

(WENO) schemes that are widely used for simulations of problems with jumps and discontinuties.

The WENO schemes comprise several ingredients, including selection of small stencils in the

vicinity of the point of interest, approximation of flux using grid-points in each of these stencils,

computation of the ideal or linear weights, the smoothness indicators in each candidate stencils

and the non-linear weights in terms of these linear weights and smoothness indicators. The final

approximation of the flux at the cell edge is then a combination of the flux approximation in each

stencil weighted by the non-linear weights. This procedure is used for computation of derivatives

of the convective terms in the presence of sharp jumps, such as seen in high pressure flames and

shocks or detonations. If delayed data is used at the processor boundary, then the numerical ac-

curacy degrades incurring large errors. This is illustrated here through truncation error analysis as

well as through numerical simulations.
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Figure 4.4: L2 norm of error for invisicd Burgers’ equation (a) before and (b) after shock with
initial condition u(x, 0) = sin4(πx + 0.25) at t = 1.0 for synchronous (magenta pluses), AS-
WENO (green circles) and AT-WENO (red squares).

Case N L1 error L1 order L∞ error L∞ order
16 1.95E-01 - 3.93E-01 -
32 3.87E-02 2.3 9.09E-02 2.1

Synchronous 64 2.79E-03 3.8 5.57E-03 4.0
(Order 5) 128 2.65E-04 3.4 1.07E-03 2.4

256 1.09E-05 4.6 7.00E-05 3.9
512 3.01E-07 5.8 2.18E-06 5.0
16 3.25E-01 - 6.10E-01 -
32 1.42E-01 1.2 2.93E-01 1.0

AS-WENO 64 2.84E-02 2.3 6.38E-02 2.2
p = [0.5, 0.5] 128 5.70E-03 2.3 1.32E-02 2.3

(Order 5) 256 1.22E-03 2.2 2.90E-03 2.2
512 2.82E-04 2.1 6.79E-04 2.1

16 2.00E-01 - 3.86E-01 -
32 4.15E-02 2.3 1.00E-01 1.9

AT-WENO 64 2.98E-03 3.8 6.70E-03 3.9
p = [0.5, 0.5] 128 2.90E-04 3.4 9.54E-04 2.9

(Order 4) 256 1.42E-05 4.4 7.04E-05 3.8
512 5.79E-07 4.6 2.40E-06 4.9
16 3.01E-01 - 5.09E-01 -
32 6.18E-02 2.3 1.37E-01 1.9

AT-WENO 64 5.20E-03 3.8 1.13E-02 3.6
p = [0.3, 0.3, 0.3] 128 4.22E-04 3.6 1.12E-03 3.3

(Order 4) 256 2.44E-05 4.1 7.73E-05 3.9
512 1.26E-06 4.3 2.86E-06 4.8

Table 4.1: Order of accuracy for linear advection equation with initial condition u(x, 0) =
sin4(πx+ 0.25) at t = 1.0 for synchronous, AS-WENO and AT-WENO.
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t = 0.15: Before shock

Case N L1 error L1 order L∞ error L∞ order
32 3.03E-04 - 2.36E-03 -

Synchronous 64 1.14E-05 4.7 1.08E-04 4.4
(Order 5) 128 4.38E-07 4.7 3.71E-06 4.9

256 1.41E-08 5.0 2.12E-07 4.1
512 3.37E-10 5.4 4.53E-09 5.5
32 7.99E-04 - 4.77E-03 -

AS-WENO 64 1.44E-04 2.5 7.21E-04 2.7
p = [0.5, 0.5] 128 3.39E-05 2.1 1.49E-04 2.3

(Order 5) 256 8.61E-06 2.0 3.76E-05 2.0
512 2.05E-06 2.1 8.93E-06 2.1
32 3.11E-04 - 2.48E-03 -

AT-WENO 64 1.21E-05 4.7 1.15E-04 4.4
p = [0.5, 0.5] 128 4.85E-07 4.6 4.14E-06 4.8

(Order 4) 256 1.82E-08 4.7 2.07E-07 4.3
512 6.61E-10 4.8 4.82E-09 5.4
32 3.23E-04 - 2.67E-03 -

AT-WENO 64 1.32E-05 4.6 1.23E-04 4.4
p = [0.3, 0.3, 0.3] 128 6.14E-07 4.4 4.88E-06 4.7

(Order 4) 256 2.74E-08 4.5 1.99E-07 4.6
512 1.25E-09 4.5 7.42E-09 4.7

Table 4.2: Order of accuracy for inviscid Burgers’ equation with initial condition u(x, 0) = 0.5 +
sin(πx) before the shock for synchronous, AS-WENO and AT-WENO.
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t = 0.55: After shock

Case N L1 error L1 order L∞ error L∞ order
32 6.26E-03 - 1.20E-01 -
64 2.43E-04 4.7 1.14E-02 3.4

Synchronous 128 6.09E-06 5.3 3.00E-04 5.2
(Order 5) 256 1.83E-07 5.1 2.18E-05 3.8

512 2.25E-09 6.3 3.79E-07 5.8
32 6.49E-03 - 1.20E-01 -

AS-WENO 64 3.21E-04 4.3 1.10E-02 3.4
p = [0.5, 0.5] 128 3.17E-05 3.3 3.48E-04 5.0

(Order 5) 256 6.96E-06 2.2 1.75E-05 4.3
512 1.70E-06 2.0 4.14E-06 2.1
32 6.26E-03 - 1.20E-01 -

AT-WENO 64 2.44E-04 4.7 1.14E-02 3.4
p = [0.5, 0.5] 128 6.10E-06 5.3 2.99E-04 5.2

(Order 4) 256 1.85E-07 5.0 2.18E-05 3.8
512 2.43E-09 6.2 3.78E-07 5.8
32 6.26E-03 - 1.20E-01 -

AT-WENO 64 2.44E-04 4.7 1.14E-02 3.4
p = [0.3, 0.3, 0.3] 128 6.15E-06 5.3 2.99E-04 5.3

(Order 4) 256 1.89E-07 5.0 2.18E-05 3.8
512 2.80E-09 6.1 3.76E-07 5.9

Table 4.3: Order of accuracy for inviscid Burgers’ equation with initial condition u(x, 0) = 0.5 +
sin(πx) after the shock for synchronous, AS-WENO and AT-WENO.
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To overcome the loss of accuracy in the presence of delays, we derive, for the first time, the

asynchrony-tolerant weighted essentially non-oscillatory (AT-WENO) schemes using the method-

ology presented in [16]. This also includes computation of smoothness indicators with desired

accuracy requirements with delayed. However, by direct extension of the [16] to derive AT-WENO

schemes, we observed the standard WENO schemes are not recovered in the absence of delays.

Furthermore, the linear weights so obtained are non-convex and can therefore lead to numerical

instabilities and oscillations [44]. Through close analysis of the truncation error terms, we note that

by introducing an additional grid point in the asynchronous stencil, we can selectively eliminate

a low-order term. This in turn allows us to recover the standard WENO schemes when delay is

zero and the resulting ideal weights are also convex. The superior accuracy of AT-WENO schemes

in comparison to the standard WENO schemes in the presence of delays is exhibited through the

order-of-accuracy tests for linear and non-linear equations. In Chapter 7 we use these AT-WENO

schemes for propagation of a detonation wave.

Appendix 4.A: Reconstruction approximation at the right processor boundary

For points located at the right processor boundary the modified smaller asynchronous stencil is

given by,
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(4.39)

Here the delay appears at the rightmost gird points. We derive the following reconstruction ap-

proximation at the right boundary in each of these stencils,
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Similarly, the approximation at point uj−1/2 on the right boundary at each of the candidate stencils

is listed below
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(4.41)

Following the procedure described in the previous sections, the smoothness indicator at the

right-boundary can be computed to be
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Appendix 4.B: Reconstruction approximation at the left processor boundary

The approximation of uj−1/2 at the left-boundary for the asynchronous stencils shown in Fig. 4.2

is
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5. COMPUTATIONAL ALGORITHMS FOR ASYNCHRONOUS SIMULATIONS∗

5.1 Introduction

The preceeding chapters focussed on devising asynchronous numerical methods and investigat-

ing their underlying properties. We now look into the application of the asynchrony-tolerant (AT)

schemes for performing asynchronous simulations of compressible turbulence. An important first

step in achieving this goal, is the development of a 3D Navier-Stokes (NS) solver that facilitates

asynchronous communications between processing elements (PEs). One also needs to consider

how asynchrony is introduced in the solver since it has implications in terms of both numerical

and computational performance. We propose two approaches for introducing asynchrony: one that

avoids synchronizations and the other that avoids communications . While the former leads to

reduction in processor idling time and results in machine-dependent random delays at processor

boundaries, the latter leads to periodic delays and reduction in the net volume of communications.

Since power consumption, especially for data movement is expected to be a major concern for the

next generation exascale machines, the reduced frequency of communications in communication

avoiding algorithm, make it a viable energy efficient alternative to standard approaches. Moreover,

as shown in Chapter 3 (section 3.5), the communication avoiding algorithms with periodic de-

lays, have stability and spectral accuracy characteristics very similar to the standard synchronous

algorithms.

5.2 Domain decomposition

The compressible flow solver is parallelized using a 3D domain decomposition and each PE

is responsible for computations in a piece of this 3D domain. Communications between PEs are

localized to the nearest neighbors only. In Fig. 5.1 we see a simple 1D domain decomposition

where every PE has NT grid points and two neighbors. The number of internal points (NI) i.e. the

∗Parts of this chapter are reprinted from Journal of Computational Physics, Volume 419, Komal Kumari and Diego
A. Donzis, “Direct numerical simulations of turbulent flows using high-order asynchrony-tolerant schemes: Accuracy
and performance", Pages 109626, 15 October 2020, with permission from Elsevier.
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Figure 5.1: 1D domain discretization: (a) into one PE (serial) (b) into two PEs in parallel. (c) shows
the left boundary of PE(1) with L time levels. Different lines are: standard synchronous scheme in
faded-red (Eq. (1.2)), standard scheme used asynchronously in dashed-green (Eq. (1.3)), second-
order AT scheme in solid-blue (Eq. (1.9)) at point i and PE boundary in dashed-black. For all the
schemes M = 1.

points that use standard (synchronous) finite differences, with M points in each direction is equal

to NT − 2M . The total number of boundary points (NB) and buffer points (NBf ) in this case are

equal to 2M . Clearly NB ∪NI = NT and NB ∩NI = ∅.

Extending this idea to a 3D computational topology, such that each PE has a total of twenty six

neighboring PEs, we can compute the total number of internal and boundary points. Consider a

general 3D domain with Nx,Ny, and Nz grid points and Px, Py, and Pz processors in the x, y, and

z directions, respectively. Then the total number of grid points (NT ) per PE is

NT =
NxNyNz

PxPyPz
. (5.1)

Using spatial schemes which require M points on each side for all three directions, it is easy to

show that the number internal points (NI) is

NI =

(
Nx

Px
− 2M

)(
Ny

Py
− 2M

)(
Nz

Pz
− 2M

)
. (5.2)
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Since communications are done across all six faces of a PE, Eq. (5.1) and Eq. (5.2) gives us the

exact number of boundary points (NB) or the points that use AT schemes for the computation of

spatial derivatives,

NB =
NxNyNz

PxPyPz
−
(
Nx

Px
− 2M

)(
Ny

Py
− 2M

)(
Nz

Pz
− 2M

)
. (5.3)

We can then compute the percentage of points that use AT schemes,

NB(%) = 100

(
NB

NT

)
, (5.4)

which can be used as a metric of the extent in space in which asynchrony affects the computations

of derivatives directly.

5.3 Parameters and algorithms

We solve the NS equation for five variables (ρ, ρu1, ρu2, ρu3, ρe) at every time step. Since data

at older time levels is used for AT schemes, each PE stores 5× (NI +NB +Nbf )× (L+ t`) data

points, where L is the maximum allowed delay that can also be used as a control parameter for er-

ror and stability as we show below and t` is the number of consecutive time-levels required for the

computation of derivatives by AT schemes. We use two-sided non-blocking MPI calls (MPI_Isend,

MPI_Irecv) for asynchronous communications between the PEs across the six faces of the 3D com-

putational domain. In each direction, these communications are limited to immediate neighbors

only. The status of these non-blocking communications is checked using MPI_test and it is utilized

to compute delay at each PE boundary. To control the manner in which asynchrony appears we

utilize two control parameters cr and L. The communication rate cr specifies the frequency of

communication in each direction, that is to say, PEs initiate communication calls every cr consec-

utive time steps. The second parameter is the maximum allowed delay, L. PEs impose explicit

synchronization by invoking MPI_Wait whenever instantaneous delays at PE boundaries cross this

threshold L. This synchronization is imposed only in the direction in which the delay is larger than
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L and is thus local in nature. These two parameters determine the nature of delays. For example, if

cr > 1, L > 1 delays are periodic and if cr = 1, L > 1 then delays at PE boundaries are random.

In both the cases the delays are however bounded by L. A synchronous simulations is realized

when cr = 1 and L = 1. Irrespective of cr and L, global communications and synchronizations

involving all PEs are done only for I/O.

(a) (b)

(c) (d)

Figure 5.2: Simulated time series of delays for (a) SAA with cr = 1, L = 3 and (c) CAA with
cr = 4, L = 3. PDF of these simulated delays for (b) SAA and (d) CAA.

5.3.1 Synchronization Avoiding Algorithm (SAA): random delays

For cr = 1 and L > 1, we have what we call a synchronization avoiding algorithm: a local

synchronization is applied if and only if the delay (k̃) at a PE boundary is greater than the max-

imum allowed delay L. We use circular send (Usend) and receive (Urecv) buffers in each direction

for communicating to and from the neighboring PEs, respectively. At each time step, PEs sent

data at only one time level across the boundaries. A generalized SAA is listed in Algorithm 1,

where computations can proceed without waiting for updated values whenever k̃ ≤ L. When syn-

chronization is not imposed, communications can complete in the background, facilitating overlap

between communications and computations. Despite the reduction of synchronization overheads
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and PE idling, this method does require communication at every step. The delay observed at PE

boundaries is a function of machine characteristics, such as, network performance, processor and

memory speeds etc., and is therefore a random variable, with a different value at each of the six

PE boundaries. Since the delays and, consequently, coefficients of AT schemes may be different

for each PE boundary, some additional numerical errors can be introduced due to random nature of

these delays. Numerical simulations show that this effect is negligible for values of L that satisfy

stability (section 5.4).

A typical time series of random delays for SAA is shown in Fig. 5.2(a) along with its PDF in

Fig. 5.2(b). In this example, the delay is bounded by L = 3 as shown by the dashed blue line in

Fig. 5.2(a). The statistical moments of the distribution of delays have an effect on the accuracy

of the solution [16]. Since statistical characteristics of the delays can be controlled by forced

synchronization, L becomes a parameter for error control.
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Algorithm 1: Synchronization Avoiding Algorithm (SAA). Here Un is the variable array

at time level n, Usend is the send buffer, Urecv is the receive buffer, Un
buffer is the data at

buffer points, Un
boundary is the data at boundary points and f evaluates the discretized NS

equation using AT schemes in space and AB schemes in time for number of time steps

equal to st.
Synchronous Loop: Initialize L+ t` levels of U,Usend ← Uboundary, Ubuffer ← Urecv

Asynchronous Loop:

for n = L+ t` + 1, · · · , st do
Un+1 = f(Un, Un−1, ..., Un−T+1)

Usend ← Un+1
boundary

Send data across 6 faces: MPI_Isend

for face = 1 : 6 do
Check communication status:MPI_Test

Compute delay (k̃)

if delay (k̃) ≤ L then
Ubuffer ← Urecv

else
Force synchronization: MPI_Wait

Update delay (k̃)

Ubuffer ← Urecv

end

Compute coefficients of the AT schemes (Appendix B)

end

end

5.3.2 Communication Avoiding Algorithm (CAA): periodic delays

As alternative to communicating at every time step, we propose the so-called communication

avoiding algorithm, in which the PEs communicate periodically every cr > 1 steps. As a result,

the delay changes periodically from 0 (no delay) to a maximum allowed delay L which satisfies
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L = cr − 1. Because of this periodicity, the delay across all the PE boundaries is the same in

every direction. Since PEs communicate every cr time steps, the send and receive buffers now

have data at min(t`,cr) time levels. This multiple time level data is required for computation

of derivatives using AT schemes at the communication avoiding time steps. We have listed a

generalized implementation of CAA in Algorithm 2, where the delay is incremented by one when

PEs do not communicate. A typical time series of delays bounded by L = 3 (dashed black line)

is shown in Fig. 5.2(c) for CAA with cr = 4. The delay in this case is deterministic and the PDF

shown in Fig. 5.2(d) has a uniform distribution. Both delay and its PDF are independent of the

machine characteristics and depend only upon the control parameters, contrary to SAA where the

delay is random and its PDF is machine specific. CAA reduce the total latency time by a factor of

cr in comparison to synchronous avoiding or standard synchronous algorithms and are therefore

particularly effective in latency-dominated machines. Furthermore, because of the reduction in

frequency of communications, the energy consumption for these algorithms is also expected to be

reduced. We also assessed the stability of the CAA in section 3.5 and showed that these algorithms

permit a time-step that is comparable to its standard synchronous counterpart. One drawback of

the communication avoiding algorithms is the larger size of send and receive buffers that could

adversely affect performance for bandwidth-dominated machines.
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Algorithm 2: Communication avoiding algorithm. Here Un is the variable array at time

level n, Usend is the send buffer, Urecv is the receive buffer, Un
buffer is the data at buffer

points, Un
boundary is the data at boundary points and f evaluates the discretized NS equa-

tion using AT schemes in space and AB schemes in time for number of time steps equal

to st.
Synchronous Loop: Initialize L+ t` levels of U,Usend ← Uboundary, Ubuffer ← Urecv

Compute ` = min(t`,cr)

Asynchronous Loop:

for n = L+ 1, · · · , st do
Un+1 = f(Un, Un−1, ..., Un−T+1)

for face = 1 : 6 do

if (mod(n,cr) == 0) then
Usend ← Un+1

boundary, ..., U
n−`
boundary

MPI_Isend and MPI_Irecv

Ubuffer ← Urecv

k̃ ← 0

else
Update delay: k̃ ← ˜k + 1

end

Compute coefficients of the AT schemes (Appendix B)

end

end

5.4 Maximum delay L

The maximum allowed delay L is an important control parameter as it determines the error

and stability of the AT schemes as well as the computational performance of the solver. As shown

in [16], the error due to asynchrony in AT schemes is a function of statistical moments of delays

which depend upon the architecture of the machine, communication links and patterns, latency,

bandwidth and clock speed. Since the asynchronous error grows with L [16], very large values
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of L can affect the accuracy of simulations. Furthermore, the memory requirement of all stored

variables, the size of send and receive buffers and the rate of synchronizations and communications

are also directly affected by the choice of parameter L. It is therefore critical that L be chosen

judiciously in simulations and this choice can be based on two main factors, including stability

that is discussed in Chapter 2 and performance that is described next.

The maximum allowed delay L has implications in terms of the computational implementation

of the solver. Increasing L increases the number of times levels that need to be stored which

increases memory requirement. At the same time, if L is too small then synchronization will be

forced more often than required and asynchrony will not be leveraged efficiently. In practice, one

can run a short simulation with a very large L and obtain the PDF of the delays (k̃). From this

data, one can calculate an appropriate L by requiring P (k̃ > L) . c, that is to say, one would

expect forced synchronization c% of the time. Thus, c exposes tradeoff between performance and

accuracy through the degree of asynchrony. For example, at c = 0 the simulation is completely

asynchronous, i.e., synchronization is never imposed, which is detrimental to accuracy if L is

large.

For illustration purposes, in Fig. 5.3 we show PDF of delays (k̃) on three large systems at Texas

Advanced Computing Center (TACC), namely, Stampede2, Frontera and Lonestar5 for L = 10 and

different processor counts. From the black lines, we can clearly see that the probability of delays

decreases with increasing delay and P (k̃ > 3) . 0.05 on Stampede2. This implies that for a

simulation with L = 3, synchronizations will be forcefully imposed less than 5% of the time. The

trend is consistent even if we double the number of processors from P = 8192 (solid black) to

P = 16384 (dashed black). For Frontera (red lines in Fig. 5.3) we see that the probability of k̃ = 1

is higher than the probability of k̃ = 0 for all the three cases. This points to a slow network that

is expected to adversely affect the scaling for standard synchronous simulations. We see similar

behavior for Lonestar5 (blue), with probability of k̃ = 1 being the maximum. For both Frontera

and Lonestar5, P (k̃ > 3) . 0.05, for all the processor counts shown in Fig. 5.3. Thus, L = 3 is

a reasonable choice for these three machines. Note that for CAA this is equivalent to a reduction
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in the volume of communications by a factor of four. This reduction will be particularly critical

when the PE count is high as envisioned in the exascale machines.
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Figure 5.3: PDF of delays on Stampede2 (black), Frontera (red) and Lonestar5 (blue) with max-
imum allowed delay of L = 10. Different lines are P = 4096 (solid red, solid blue), P = 8192
(solid black, dashed red) and P = 16384 (dashed black) and P = 262144 (dotted-circles). Inset is
PDF of delays on Frontera in linear-log scale with arrow denoting increasing P.

It is also worth noting the non-vanishing probability of delays as large as L = 10 in Fig. 5.3

(inset) for Frontera, indicating that at least some fraction of communications were synchronized.

While this is not of much consequence at low processor counts, for an increasingly large number

of PEs, even a small probability of large delays can account for severe overheads. For example,

for a seemingly low probability of P (k̃ = 10) ∼ O(10−4), at a processor count of O(105), at least

O(101) processors see a delay of L = 10 at the boundaries and are forced to synchronize at every

time step. Considering that the probability of large delays increases with increasing number of PEs

as seen in Fig. 5.3 (inset), a much larger fraction of processors would see large delays in the next

generation exascale machines where the number of PEs is expected to be of O(106)-O(109) with

increased architectural inhomogeneity. Thus, even with a large value for the maximum allowed

delay, a significant number of PEs would be subject to forced synchronization at extreme scales.

However, these synchronizations would still be extremely small in comparison to the standard
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synchronous algorithms that require all PEs to synchronize at all times.

In general, the maximum allowable delay (L) is chosen such that the PEs incur in minimal over-

heads because of forced synchronization and communications, without additional computational

cost to ensure stability.

5.5 Conclusions

We developed a first-of-its-kind threee-dimensional asynchronous Navier-Stokes solver that

uses AT schemes for computation of spatial derivatives at the processor boundaries. We introduced

two ways to allow for asynchrony, namely, communication avoiding and synchronization avoiding

algorithms (CAA and SAA, respectively). The former leads to deterministic delays with a uni-

form probability distribution, whereas the latter leads to random delays with a machine specific

delay distribution. While in this work CAA and SAA are presented as two separate algorithms,

a combination of the two can also be used, such that, both communication and synchronization

rates are greater than one. This in principle can potentially lead to further reduction in overheads

associated with the communication and synchronization. We use CAA and SAA for asynchronous

simulations of decaying and solenoidally forced turbulence that are presented in the next Chapter

where we also look at the computational perfomance of both of these algorithms.
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6. ASYNCHRONOUS DNS OF COMPRESSIBLE TURBULENCE∗

6.1 Introduction

Several numerical methods have been used for Direct Numerical Simulations (DNS) [4] of

the Navier-Stokes equations to study turbulence, depending upon the complexity of the domain

and the nature of problem of interest. Spectral methods [46], known for accurate computation

of derivatives, have been used extensively in incompressible simulations. However, these present

challenges when extended to non-periodic boundary conditions. An alternative to these methods,

that is more amenable to the choice of boundary conditions, is the compact difference schemes that

have spectral like resolution [47]. These are widely used for simulations of multi-scale phenomena

like turbulence [48, 49, 50, 51, 52]. However, computation of derivatives using compact schemes

involves a system of linear equations. This imposes constraints on the computational domain since

each processor must have entire range of data in the direction of computation of derivative. Such

codes require multiple collective communication calls, which in turn can make communication

time quite significant [53, 54, 50] for both compact and spectral implementations.

Explicit finite difference schemes have also been extensively used for approximation of deriva-

tives in partial differential equations (PDEs) including in massive simulations of turbulent reacting

flows [17, 18]. For explicit schemes, the derivative at a grid point in the domain is approximated

as a linear combination of the values at its neighboring points only. Because of this local depen-

dence, different processors can work concurrently on different parts of the domain. However, at

the processor boundaries, processors need to communicate to obtain data from the neighboring

processors in order to compute the derivatives. Although these are local communications as op-

posed to the collective communications for compact or spectral schemes, processors still incur

in overheads due to the need to communicate and synchronize at every time step to meet accu-

racy requirements. While simulations have been successfully done using hundreds of thousands

∗Parts of this chapter are reprinted from Journal of Computational Physics, Volume 419, Komal Kumari and Diego
A. Donzis, “Direct numerical simulations of turbulent flows using high-order asynchrony-tolerant schemes: Accuracy
and performance", Pages 109626, 15 October 2020, with permission from Elsevier.
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of processors [50, 55, 56], the synchronizations and communication overheads, irrespective of the

choice of numerical methods, pose a serious challenge to scalability at extreme scales [8]. In order

to overcome this bottleneck, some work has focused on relaxing the synchronization requirements

among the processors and perform so-called asynchronous numerical simulations. Early work in

the literature dealt with asynchronous simulations but severely limited to lower orders of accuracy

and restricted to certain class of PDEs [12, 13, 14, 15]. A new and more generalized approach,

extensible to arbitrarily high orders of accuracy, has been recently developed [9, 16] to derive the

so-called Asynchrony-Tolerant (AT) finite-difference schemes.

However, these studies investigated numerical accuracy and stability for simplified model

problems in low dimensions. The ability of these schemes to accurately simulate realistic three-

dimensional turbulent flows have not been done before. Without careful assessment of the numeri-

cal and parallel performance of these schemes it is unclear whether they can indeed provide a path

towards exascale simulations in future massively parallel systems. This is the main thrust of this

chapter.

Specifically, in this chapter, we use AT schemes together with asynchronous algorithms de-

scribed in Chapter 5 to perform, a first of a kind, asynchronous simulation of three-dimensional

compressible turbulence. Our focus is on the effect of asynchrony on important turbulent character-

istics such as evolution of the turbulent kinetic energy, the spectra and PDFs of velocity gradients,

enstrophy and dissipation.

6.2 Governing equations and numerical schemes

The NS equations, which represent conservation of mass, momentum and energy can be written

as,
∂ρ

∂t
+

∂

∂xi
(ρui) = 0, (6.1)

∂

∂t
(ρui) +

∂

∂xj
(ρuiuj) = − ∂p

∂xi
+

∂

∂xj
(σij) + ρfi, (6.2)

∂

∂t
(ρe) +

∂

∂xi
(ρeui) = −p∂ui

∂xi
+

∂

∂xi

(
k
∂T

∂xi

)
+ σijSij, (6.3)
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with ρ being the density, ui the ith component of velocity, e the internal energy per unit mass

which depends upon temperature (T ) according to the perfect gas law, k the coefficient of thermal

conductivity, p the pressure, and fi the external forcing. The viscous stress and the strain rate

tensors are given, respectively, by,

σij = µ

(
∂ui
∂xj

+
∂uj
∂xi
− 2

3
δij
∂uk
∂xk

)
, (6.4)

Sij =
1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
, (6.5)

where the dynamic viscosity, µ, follows Sutherland viscosity law.

In this work we use fourth-order AT schemes at processor boundaries for spatial derivatives in

each direction which require communication across six faces of each PE in a 3D domain. At the

internal points we use standard fourth-order finite differences for spatial derivatives. Computation

of mixed derivatives is challenging as they require communication across more neigboring PEs or

communication of additional quantities such as gradients. Both of these are detrimental to parallel

performance. As an alternative, we limit our communications per PE to six by computing mixed

derivatives at the boundary points in three steps. For example, for (∂ (∂u/∂y) /∂x), we first com-

pute ∂u/∂y and ∂u/∂x using AT schemes at the boundaries. Next we compute (∂ (∂u/∂y) /∂x)

and (∂ (∂u/∂x) /∂y) using standard one sided finite difference schemes in x and y directiion, re-

spectively. Since (∂ (∂u/∂y) /∂x) = (∂ (∂u/∂x) /∂y), we take the average of ∂ (∂u/∂y) /∂x and

(∂ (∂u/∂x) /∂y to minimize errors and use this value as the final approximation of the correspond-

ing mixed derivatives.

6.3 Numerical results

We have implemented the synchronous and asynchronous numerical methods and algorithms

described in the previous Chapters to perform DNS of decaying and forced isotropic turbulence at

different Reynolds numbers to assess the effect (or lack thereof) of asynchrony. The resolution used

for both synchronous and asynchronous implementations is η/∆x ≈ 0.5 or κmaxη ≈ 1.5, where
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η = (ν3/〈ε〉)1/4 is the Kolmogorov length scale, ν is the kinematic viscosity and κmax =
√

2N/3

is the highest resolvable wave number for commonly used pseudospectral simulations in a cubic

domain of length 2π on each side and N3 points [46, 24]. This resolution has been shown to lead

to well-resolved simulations for the conditions and quantities of interest presented here [57, 58].

As discussed in section 2.5, the time-step size ∆t is fixed at a value that yields an initial CFL of

O(0.1) consistent with the recommendation in [24]. To facilitate comparisons both synchronous

and asynchronous simulations use the same time step. We use periodic boundary condition in

all directions. The initial velocity field is a stationary state obtained by forcing the large scales

of motion as done in [59, 57] and is same for both synchronous and asynchronous simulations.

The important simulation parameters including resolution, percentage of points directly affected

by asynchrony (NB%), Reλ, and simulation time in terms of eddy turnover time Te = L/urms,

where L is the integral length scale and urms is the root mean square of velocity fluctuations, are

tabulated in Table 6.1. The level of compressibility is commonly defined in terms of the turbulent

Mach number Mt = 〈uiui〉1/2/c, where c is the mean speed of sound, ui is the velocity fluctuation,

〈·〉 is the average computed across the entire domain and summation convention is used. For the

simulations in this paper Mt≈0.3 which represents a case where dilatational effects start becoming

important [57].

For the rest of this section, we will refer the synchronous simulations using standard finite

differences as SFD. The asynchronous simulations using AT schemes with random delays will

be referred to as SAA and that with periodic delays will be referred to as CAA. We also have

tenth-order compact schemes (C10) with third order RK scheme in time for one of the cases for

comparison purposes to highlight that our finite difference simulations are comparable to the most

well resolved simulations of compressible turbulence in literature [60, 50, 59, 58].
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Decaying
N3 NB(%) Reλ(0) η(0)/∆x κmaxη(0) t/Te(0)

2563 57.8 100 0.5 1.4 24
5123 50.8 145 0.5 1.5 24

Forced
N3 NB(%) Reλ η/∆x κmaxη t/Te
643 57.8 35 0.5 1.6 10
2563 57.8 100 0.5 1.8 19

Table 6.1: DNS parameters: number of grid points N3, percentage of boundary points NB%,
Taylor Reynolds number Reλ, resolution η/∆x and κmaxη and normalized simulation time t/Te.
Normalization is done using the initial values (Reλ(0), η(0), Te(0)) for the decay cases and using
average computed over stationary state for the forced case.

6.3.1 Decaying turbulence

6.3.1.1 Low order statistics in physical space

It is important for any numerical scheme to accurately capture the large scale behavior of the

system. An important and widely studied [61, 62] large scale quantity in fluid turbulence is the

mean turbulent kinetic energy per unit mass defined as,

K =
1

2
〈ρuiui〉. (6.6)

In the absence of energy input to the system, K decays in time as shown in Fig. 6.1(a, c), where

K is normalized by its initial value K0 and time is normalized by initial eddy turnover time,

Te(0) = L/urms. After an initial transient, the decay obeys a power-law in time observed as

a straight line on a log-log scale in Fig. 6.1(a, c). The decay exponent is seen to be consistent

with that found in the literature for similar conditions [62, 63]. The excellent agreement between

SFD, CAA and SAA in Fig. 6.1(a, c) at all times shows that asynchronous implementations have

accuracy comparable to SFD.

The rate at which kinetic energy is dissipated is given by 〈ε〉 = 2 〈σijSij〉. Because most of
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the contribution to dissipation comes from small scales (or high wavenumbers) it is therefore sen-

sitive to how accurately high wavenumbers are resolved by the numerical methods. The decay of

〈ε〉 (normalized by its initial value) is shown in Fig. 6.1(b, d) for SFD, CAA and SAA with no

observable differences. Thus, we find that the asynchronous implementations are able to capture

the evolution of low-order large and small scale quantities with accuracy comparable to the stan-

dard finite differences. Also shown in Fig. 6.1(a, b) is the evolution obtained for C10 (magenta

line), which is identical to the evolution obtained for both asynchronous and synchronous finite

difference.

(a) (b)

K
/K

0

〈ε
〉/
〈ε

0
〉

(c) (d)

K
/K

0

〈ε
〉/
〈ε

0
〉

t/Te(0) t/Te(0)

Figure 6.1: Evolution of space averaged turbulent kinetic energy normalized by the initial turbulent
kinetic energy K0 (left) and evolution of space averaged dissipation rate normalized by the initial
dissipation rate ε0 (right) for Reλ(0) ≈ 100 (a, b) and Reλ(0) ≈ 145 (c, d). Different lines are:
SFD (red-circle), CAA (black-triangle) and SAA (blue) both with L = 3. The black-dashed line
corresponds to K/K0 ∝ (t/Te(0))−1.4 in (a) and 〈ε〉/〈ε0〉 ∝ (t/Te(0))−2.4 in (b). Magenta line in
(a, b) is C10.
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6.3.1.2 Low order statistics in spectral space

Fluid turbulence comprises a wide range of interacting scales [64]. The energy distribution

across these scales is characterized by the energy spectrum, which according to Kolmogorov self-

similarity hypothesis (K41) [3] is given by,

E(κ) = C〈ε〉2/3κ−5/3f(κη), (6.7)

where C is the Kolmogorov constant, κ is the wavenumber and η = (ν3/〈ε〉)1/4 is the Kolmogorov

length scale [3] and f(κη) is a universal function. This has been compared against simulations and

experiments extensively and shown to be a good representation of the spectrum across different

flows and Reynolds numbers for incompressible [65] and compressible flows [59, 66, 61] at low

Mt. In the so-called inertial range (1/L � k � 1/η), f(kη) = 1 and the classical 5/3 scaling for

the energy spectrum [67, 65, 5] can be seen as a flat region in the compensated energy spectrum,

E(κ)

〈ε〉2/3κ−5/3
= C, (6.8)

which becomes wider with an increase in Reynolds number. The height of this flat region gives the

Kolmogorov constant which has been estimated to be C = 1.6 from simulations and experiments

in incompressible turbulence [68, 69, 70]. This value has been shown to be consistent for com-

pressible simulations [59]. At high wavenumbers, f(kη) is a decaying exponential [71, 72, 73, 74]

which may retain a weak Reynolds number effect at very high wavenumbers [75].

In Fig. 6.2(a, c) we show the compensated energy spectrum at t/Te(0) ≈ 1 and 4 for Reλ(0) ≈

100 and 145 for SFD, CAA and SAA implementations. A plateau in this normalization corre-

sponding to the inertial range can be seen at short times over a narrow range of scales. Because of

the decrease in Reλ with time due to the decay, the inertial range becomes less prominent at later

times. We also see that the high wavenumbers are universal as expected from Eq. (6.7). Both SAA

and CAA retain the universality at small scales and accurately capture the evolution of inertial and
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large scales. We see a virtually perfect agreement even at the smallest scales (inset inFig. 6.2(a, c))

for CAA as well as SAA with SFD. Moreover, the energy spectrum is also identical to the one

obtained with C10 (magenta line in Fig. 6.2(a)) from some of the most well-resolved simulation

of compressible turbulence [59, 57].

Similar to the energy spectrum, K41 also predicts a scaling in the inertial range for pressure

fluctuations [1, 76] which reads,

Ep(κ) = Cp〈ε〉4/3κ−7/3. (6.9)

The inertial range can be identified as the plateau in the compensated pressure spectrum plot, if

Reλ is high enough. Since Mt ≈ 0.3 for our simulation is fairly low, the pressure spectrum should

be similar to the incompressible spectrum [59, 76]. This is indeed observed in Fig. 6.2(b, d) for

Reλ(0) ≈ 100 and 145 at t/Te(0) ≈ 1 and 4 for the universal part of the spectrum. A horizontal

dashed line at Cp = 8 is also included for reference obtained from incompressible flows [76].

These spectra are consistent with those in the literature at similar conditions [59] with a collapse

at the high wave-numbers similar to the energy spectrum. The data for CAA and SAA agree

closely with that for SFD at both times for both Reλ. However, for kη ≥ 1.5, SAA spectrum

has a small pileup at the high wavenumbers. This difference in the spectrum for CAA and SAA

can be attributed to the difference in the nature of delays which for the former is deterministic

and random for the latter. The randomness associated with SAA can lead to numerical errors

that are absent in CAA and can cause a small pileup of energy at the high wavenumbers as seen

in the pressure spectrum in Fig. 6.2(b) for SAA. The differences in Fig. 6.2(b) are magnified

because of the prefactor k7/3 but they are concentrated only in a few wavenumbers and represent

an extremely small contribution to e.g., pressure variance. We have also performed simulations at

higher Mt≈0.6 and found that this small pileup disappears. Thus, this seems to be a low-Mt effect

which can be explained by noting that as Mt increases, there is stronger interaction between the

so-called solenoidal and dilatational velocity components [77] which can help mix these already
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small perturbations at PE boundaries for SAA. To illustrate this, we can decompose the pressure

field into solenoidal (ps) and dilatational (pd = p − ps) components as done in [78, 59, 57]. Here

the fluctuations in solenoidal pressure are written in terms of local enstrophy (Ω = ωiωi) and

dissipation (ε) as (∇2(ps/ρ) = (Ω − ε/ν)/2). These components of pressure spectrum at two

different Mt values are shown in Fig. 6.3. We note that the small pile-up at high wavenumbers for

SAA is observed in the lowerMt case only for the dilatational component. However, the solenoidal

components exhibit no such pile-up for both CAA and SAA irrespective of the turbulent Mach

number.
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Figure 6.2: Compensated energy spectrum (left) and compensated pressure spectrum (right) for
Reλ(0) ≈ 100 (a, b) and Reλ(0) ≈ 145 (c, d) at t/Te(0) ≈ 1 and 4. Different lines are: SFD (red-
circle), CAA (black-triangle) and SAA (blue) with L = 3. The arrow denotes increasing time.
Magenta line in (a, b) is C10.
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Figure 6.3: Solenoidal (faded lines) and dilatational (dark lines) components of pressure spectrum
for Reλ(0) ≈ 100 and (a) Mt(0) ≈ 0.3 and (b) Mt(0) ≈ 0.6 at t/Te(0) ≈ 4. Inset: (a) solenoidal
spectrum at large wavenumbers and (b) both solenoidal (faded) and dialatational spectrum at large
wavenumbers. Colors of the lines are same as in Fig. 6.2

A general conclusion one can draw from both energy and pressure spectrum plots, is that the

dynamics of the flow at the scales of interest is accurately captured despite asynchrony even though

there are some very small deviations at the high wavenumbers in the pressure spectrum for SAA.

Furthermore, we see from Fig. 6.2(b) that the pressure spectrum for SFD itself is not identical to the

spectrum obtained for C10 at higher wavenumbers. Thus, it is not unexpected that asynchronous

schemes present a different behavior at high wavenumbers. The errors in SAA, though already

very small, can be mitigated if higher order schemes or higher resolution is used. As an example,

in Fig. 6.4(b), the compensated pressure spectrum is shown forReλ(0) ≈ 100 at t/Te(0) ≈ 4 using

fourth and sixth order AT scheme (included in the appendix) for SAA. While the SAA with fourth-

order AT scheme (solid blue) peels off at κη ≈ 1.5, SAA with sixth-order AT scheme (faded-blue

square), follows the SFD spectrum till the highest κη.

6.3.1.3 Statistics of velocity gradients

An important feature of 3D turbulence is the generation of vortical motions, often quantified

with the so-called enstrophy (Ω = 〈ωiωi〉, where ω = ∇×u is the vorticity vector). A normalized

metric for the production of enstrophy, which is also representative of the non-linear transfer of
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Figure 6.4: (a) Compensated energy spectrum and (b) compensated pressure spectrum for
Reλ(0) ≈ 100 at t/Te(0) ≈ 4. Faded dashed-blue line with squares is the sixth-order asyn-
chronous scheme with random delays and solid blue line is fourth-order AT scheme with random
delays. Rest of the lines are same as in Fig. 6.2. Insets zoom in on high wavenumbers.

energy from large scales to small scales, is the skewness of the longitudinal velocity gradient, S =

〈(∂u1/∂x1)3〉/(〈(∂u1/∂x1)2〉)3/2 [1, 65, 79]. The negative of the skewness (−S) is constant at

about ∼ 0.5 as long as the Reynolds number is not too low. This has been extensively documented

in experiments and numerical simulations [80, 65, 81, 5]. In Fig. 6.5(a, c) we show the time

evolution of −S for initial Reλ of 100 and 145, respectively. We see that −S is close to 0.5 and

this is consistent for SFD, CAA and SAA, with some small differences at later times. Despite odd-

order moments being more sensitive to resolution [82] and susceptible to numerical errors, we see

that the asynchronous algorithms capture skewness very well and close to the skewness computed

using C10.

Another intrinsic characteristic of turbulent flows is the phenomena of intermittency which is a

tendency to have localized events of fluctuations that are orders of magnitude larger than the mean

[72, 65, 79, 83, 84, 85]. These events add to the complexity of the turbulent flows, specifically

at the smallest scales. One way to quantify this phenomena is through the moments of velocity

gradients as most of their contribution stems from the small scales and it is thus an excellent

quantity to check small scale resolution. These moments transition from Gaussian to anomalous

as Reynolds number increases [86, 87, 88]. In Fig. 6.5(b, d) we show the normalized fourth-order

104



moment or flatness (F = 〈(∂u1/∂x1)4〉/(〈(∂u1/∂x1)2〉)2) of the longitudinal velocity gradient.

The flatness is close to 6 [80, 65] at initial times and tends to decrease because of decrease in

Reynolds number for decaying turbulence. We see an excellent agreement between synchronous

and both the asynchronous simulations with no observable differences from C10. Even though the

computation of the gradient ∂u1/∂x1 is directly affected by asynchrony, the higher order moments

of the same exhibit trends similar to SFD and C10.

(b)

−
S

F

t/Te(0)
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−
S
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t/Te(0)
Figure 6.5: Negative of skewness (top row) and flatness (bottom row) of the longitudinal velocity
gradient vs. normalized time for (a) Reλ(0) ≈ 100 and (b) Reλ(0) ≈ 145. Different symbols are:
SFD (red-circle), CAA (black-triangle) and SAA (blue asterik) with L = 3. The dashed black line
indicates skewness of 0.5 and magenta squares in (a, c)are C10.

6.3.1.4 Instantaneous enstrophy field

The average quantities discussed in the sections show good agreement between the asyn-

chronous and synchronous simulations. A stricter test of accuracy would comprise the instan-

taneous flow fields which can potentially show some differences because of different truncation

errors for different schemes in the computation of derivatives at the boundaries. As argued above,

enstrophy is known to be sensitive to small scale resolution and is highly intermittent [82, 89] and

thus provides a stringent test of the numerical performance of schemes. In Fig. 6.6 we show the

contours of the enstrophy normalized by its mean (Ω/〈Ω〉) in the yz plane at x = π. Qualitatively,
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all the large and small structures look identical for SFD, CAA and SAA. In particular, a concern

with asynchronous schemes is the behavior close to the processor boundaries. If we closely look

along these PE boundaries (faded lines in Fig. 6.6) there are no perceptible differences between

enstrophy contours for SAA, CAA and SFD. Moreover, even complex structures spanning across

multiple PE boundaries, for example, inside black circle in Fig. 6.6, is consistent for all the three

cases. Besides some very small but not apparent localized differences in the intensity of enstrophy

for SAA, the asynchronous algorithms accurately resolve the highly intermittent instantaneous en-

strophy field. The instantaneous dissipation field (not shown here) exhibits similar behavior and is

captured accurately.

6.3.2 Forced Turbulence

In the preceding section we focused on the DNS of decay of stationary state initial veloc-

ity field and observed a close agreement between the synchronous and asynchronous numerical

simulations. In this section we discuss the effect of asynchrony on forced turbulence. Here, en-

ergy is injected at the large scales, or wavenumbers (κ) in a spherical shell of radius κf , where

κ ≤ κf , (κf = 3), through the term f in the momentum equation (Eq. (6.2)). The details

of the stochastic forcing implemented can be found in [90] and has been extensively used in

[91, 59, 57, 92] for compressible turbulence. Through the non-linear interactions this injected

energy cascades down to the inertial and small scales, where it is dissipated into internal energy by

the action of viscosity. One can derive the evolution equation of the mean turbulent kinetic energy

(K) by multiplying Eq. (6.2) by ui and taking the mean, which reads as

dK

dt
= 〈p′θ′〉 − 〈ε〉+ 〈fiui〉 (6.10)

where θ = ∂ui/∂xi is the dilatation, 〈p′θ′〉 is the mean pressure-dilatation correlation and the

mean dissipation 〈ε〉. The external forcing f acts against the dissipative effect of viscosity to

sustain turbulent fluctuations. We can also write the equation of the mean internal energy (〈e〉)
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Figure 6.6: Normalized instantaneous enstrophy (Ω/〈Ω〉) field at t/Te(0) ≈ 4 for (a) SFD (b)
CAA (L = 3) and (c) SAA (L = 3) in the yz plane at x = π for Reλ(0) ≈ 100. The faded lines
represent processor boundaries

from Eq. (6.3) as
d〈e〉
dt

= −〈p′θ′〉 − 〈ε〉. (6.11)

The pressure-dilatation and viscous dissipation are responsible for the exchange between kinetic

and internal energy. While the former is a bi-directional exchange depending upon the value of

turbulent Mach number, Mt [59, 57], the latter converts kinetic energy into internal energy irre-

versibly. Since no external sink is added to the energy equation, the internal energy of the system

always increases. The time evolution of K and 〈ε〉, normalized by their initial values, is plotted

in Fig. 6.7. We can see that K increases initially, because of the input of energy due to forcing
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at large scales. Once the cascade develops and transfers energy to the smallest dissipative scales,

the mean kinetic energy starts to decrease. At the same time, dissipation also increases initially,

after an initial lag, until it reaches an equilibrium. At this point the rate of energy input is equal to

rate of dissipation and a quasi-stationary state is reached [66]. In Fig. 6.7, this state is achieved at

t/Te ≈ 5 forReλ ≈ 35 (a), and t/Te ≈ 6 forReλ ≈ 100 (b), where Te is the average eddy turnover

time. The average eddy turnover time is computed form the average taken at ten checkpoints from

t/Te ≥ 5 for Reλ ≈ 35 and at fifteen checkpoints from t/Te ≥ 6 for Reλ ≈ 100 . The net

increase in the total energy is, at this point, equal to the increase in the internal energy. As in the

case of decaying turbulence, we see a good agreement between the synchronous and asynchronous

simulations in Fig. 6.7 for both high and low Reλ.

K
/K

0
〈ε
〉/
〈ε

0
〉

(b)(a)

K
/K

0
〈ε
〉/
〈ε

0
〉

t/Te t/Te
Figure 6.7: Evolution of space averaged turbulent kinetic energy normalized by the initial tur-
bulent kinetic energy K0 (top row) and space averaged dissipation rate normalized by the initial
dissipation rate ε0 (bottom row) for(a) Reλ ≈ 35 and (b) Reλ ≈ 100. Different lines are: SFD
(red-circle), CAA (black-triangle) and SAA (blue) with maximum allowed delay level of L = 3.
Time is normalized by the average eddy turnover time (Te).

We are also interested in the energy and pressure spectrum, which are plotted in Fig. 6.8. These

spectra are the average taken for ten and fifteen checkpoints, respectively for Reλ ≈ 35 and 100,

after the quasi-stationary state is reached. These energy spectra are shown in Fig. 6.8(a) where

we see that both CAA and SAA simulations are accurately resolved, with good collapse at all
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wavenumbers. For the pressure spectrum in Fig. 6.8(b), the CAA and SAA agree equally well

with the SFD, unlike the decaying case where small errors were seen at the large wavenumbers for

SAA. These spectra are also consistent with [59] at similar conditions. For a quantitative metric of

difference between the asynchronous and synchronous spectra, we look at the relative error defined

as

e(κ∗) = max
κ

|ECAA or SAA(κ)− ESFD(κ)|
ESFD(κ)

, (6.12)

where κ∗ is the wavenumber at which maximum error occurs. This error is tabulated in Table 6.2

for both energy and pressure spectrum and is within 95% confidence interval for the standard

synchronous case. We note that the error is maximum at scales larger than the dissipative scales

(κ∗η < 1).
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Figure 6.8: (a) Compensated energy spectrum and (b) compensated pressure spectrum for Reλ ≈
35 and Reλ ≈ 100. Different lines are: SFD (red-circle), CAA (black-triangle) with L = 3 and
SAA (blue) with L = 2. Arrow indicated increasing Reλ. Dashed line in is Kolmogorov constant
C = 1.6 in (a) and Cp = 8 in (b).

The higher order moments of the longitudinal velocity gradients are also plotted in Fig. 6.9.

We see that −S fluctuates around 0.5 [88] and the values are fairly consistent for SAA, CAA and

SFD. Even better agreement is seen for F in Fig. 6.9(c, d), with value close to 6 for Reλ ≈ 100

and smaller for Reλ ≈ 35 [88]. The average of value skewness and flatness in the quasi-stationaly
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Energy Spectrum
Rλ ≈ 35 Rλ ≈ 100
e(κ∗) κ∗η e(κ∗) κ∗η

SAA 1.87% 0.32 1.69% 0.08
CAA 0.17% 0.42 0.97% 0.08

Pressure Spectrum
Rλ ≈ 35 Rλ ≈ 100
e(κ∗) κ∗η e(κ∗) κ∗η

SAA 3.06% 0.42 2.37% 0.08
CAA 0.32% 0.42 3.14% 0.08

Table 6.2: Maximum relative error in enegry and pressure spectra and the wavenumber at which it
occurs for both the Reynolds numbers.

state is tabulated in Table 6.3. Also included in this table is the relative error for both CAA and

SAA computed with respect to SFD. In general the error is small for CAA as compared to SAA

and for both the cases this relative errors are within 95% confidence interval of the synchronous

simlation.

(b)

−
S

F

t/Te(0)

(a)

−
S

F

t/Te(0)
Figure 6.9: Negative of skewness (top row) and flatness (bottom row) of the longitudinal velocity
gradient vs. normalized time for (a) Reλ ≈ 35 and (b) Reλ ≈ 100. Different symbols are: SFD
(red-circle), CAA (black-triangle) with L = 2 and SAA (blue asterik) with L = 2. The dashed
black line indicates skewness of 0.5.
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Skewness (S)
Rλ ≈ 35 Rλ ≈ 100

S Relative error S Relative Error
SFD -0.489 - -0.503 -
SAA -0.480 -1.93% -0.504 0.18%
CAA -0.491 0.36% -0.499 072%

Flatness (F )
Rλ ≈ 35 Rλ ≈ 100

F Relative error F Relative Error
SFD 3.887 - 5.041 -
SAA 3.859 0.73% 4.946 1.89%
CAA 3.893 0.14% 5.031 0.21%

Table 6.3: Skewness and flatness averaged over quasi-stationary states and the relative error com-
puted with respect to the SFD value for both Rλ.

Finally we look at the PDF of enstrophy density (Ω) and dissipation rate (ε) [82, 78, 89].

Both dissipation and enstrophy are crucial in the understanding of the small-scale motions [65]

and are highly intermittent. Because of extreme events in ε and ω, the corresponding PDFs of the

normalized quantities, ε/〈ε〉 and 〈ω〉, are characterized by wide tails. The PDF of ε/〈ε〉 and Ω/〈Ω〉,

averaged over checkpoints as in case of averaged spectrum, are plotted in Fig. 6.10(a, b). We can

clearly see the tails of both the PDFs become wider as Reynolds number is increased from 38 to

100. This suggests that the propensity of events that are an order of magnitude more intense than

the mean, increases with the Reynolds number [82, 89]. Furthermore, we also observe that the

tails for the PDF of Ω/〈Ω〉 in Fig. 6.10(b) are wider than the tails for PDF of ε/〈ε〉 in Fig. 6.10(a).

This implies that enstrophy is more intermittent than dissipation and this has been consistently

established in several past studies [80, 93, 65, 94, 82]. These features of the PDF are captured

well by both the asynchronous algorithms with very small differences at the far tails. Thus, the AT

schemes accurately resolve even the finest scales of turbulence including very highly intermittent

events in dissipation and enstrophy.
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Figure 6.10: PDF of (a) normalized dissipation rate (ε/〈ε〉) and (b)normalized enstrophy (Ω/〈Ω〉)
in log-linear scale. The insets are the same PDFs in log-log scale. Different lines are: SFD (solid
red with circle), CAA (dashed black with triangle) and SAA (solid blue) with L = 3. The arrow
indicates increasing Reλ

6.3.3 Computational performance

The preceding sections demonstrated the ability of asynchronous algorithms in resolving im-

portant physical characteristics of turbulent flows including instantaneous field and high order

statistics. Now we show that the asynchronous simulations are computationally more efficient

than their synchronous counterpart. To study this we look at so-called strong and weak scaling

of the solver. In the former the problem size remains fixed, while in the latter the computational

work is kept constant. Ideally, for a fixed problem size, the computation time should decrease

linearly on increasing the processor count. However, with increasing number of processors, the

necessary communications and synchronizations increase the communication time until it eventu-

ally dominates the total execution time. This is essentially the communication bottleneck and is

expected to be a major challenge to scalability [8, 50, 9, 16]. In Fig. 6.11(a), we have plotted the

total execution time for synchronous and asynchronous implementations for our compressible flow

solver. These times are an average of five runs of 6000 steps each and a maximum allowed delay

of L = 4 for both SAA and CAA. For reference we have also plotted ideal scaling as a dashed

black line. In Fig. 6.11(a) clear departures from ideal scaling are seen at P = 512 for SFD. This,

as is evident from Fig. 6.11(b), happens because the percentage of communication time (dashed
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red) grows with processor count (P ) until it becomes comparable to the computation time. On the

other hand, both CAA and SAA (black and blue lines) are close to the ideal scaling in Fig. 6.11(a)

for a much larger processor count of P = 8192. The improved scaling is attributed to the fact that

only a small percentage (∼ 20%) of the overall time is spent on communications. This percentage

(Fig. 6.11(b)) remains fairly constant on increasing the number of processors for the asynchronous

implementations, whereas grows to larger than 50% for the synchronous case.

Next we look at the weak scaling, where ideally because of fixed computational work, the

time per step should remain constant on increasing the processor count. The time per step for a

computational load of N3/P = 2048 is plotted in Fig. 6.12. For the synchronous case, this time

per step scaling grows by a factor of 60% because of increase in communication and synchroniza-

tion ovearheads at large core count (P = 262, 144). This can only be expected to get worse at

much higher levels of parallelism expected in exascale machines. On the other hand, the asyn-

chronous algorithms show improved scaling, with a much smaller 21% increase in time per step

for SAA and only 14% increase for CAA on increasing the number of processors from P = 128

to P = 262, 144. This also implies that reduction in the overall volume of communication (CAA)

at extreme scales provides more improvement in scaling than reducing forced synchronizations

(SAA).

Both weak and strong scaling analysis lead us to the same conclusion that the asynchronous

algorithms remove synchronization and communication overheads, leading to an effective overlap

between communications and computations and, consequently, an improvement in scaling.

6.4 Conclusions

Numerical simulations of PDEs, governing complex natural and engineering phenomena, using

standard numerical methods on parallel supercomputers, require PEs to communicate and synchro-

nize frequently to ensure accuracy. This synchronization and communication cost and the resulting

PE idling grows with increasing levels of parallelism and presents a major challenge to scalability

to exascale computing. In order to mitigate this bottleneck, these constraints were relaxed at a

mathematical level to derive the so-called Asynchrony-Tolerant (AT) of arbitrary order of accu-
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Figure 6.11: Strong scaling for N = 128. (a): Total execution time normalized by the execution
time for P = 256. (b): Computation time and communication time as a percentage of the total
execution time. Different lines are: SFD (red), CAA (black) and SAA (blue), dotted black in
(a) is ideal scaling and in (b) is 50% of total time. Dashed lines with hollow symbols in (b) is
communication time and solid lines with solid symbols is computation time.

racy in [16]. By allowing for asynchrony, these AT schemes can be used to allow computations

to proceed in a PE without having to wait for updated values at the boundaries, thus removing

synchronizations.

In this chapter we presented, first of a kind, asynchronous simulations of compressible turbu-

lence using high-order Asynchrony-Tolerant (AT) schemes to study the effect of asynchrony on the

physics of turbulence at different scales and on the computational performance of the solver. The

numerical properties of these schemes, including stability analysis was presented in Chapter 2 and

Chapter 3. The details of the asynchronous solver and two ways to allow for asynchrony, namely,

communication avoiding and synchronization avoiding algorithms (CAA and SAA, respectively)

that were discussed in Chapter 5.

The aforementioned asynchronous algorithms are used for the simulation of decaying and

solenoidally forced turbulence. Important low and high order statistics obtained for the asyn-

chronous algorithms are compared with that for the standard synchronous finite differences (SFD)

at the same resolution and order and also with high-order compact difference schemes (C10). We

found excellent agreement between SFD and CAA for the time evolution of turbulent kinetic en-
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Figure 6.12: Weak scaling: time per step for N3/P = 2048 normalized by time per step for
P = 128. Different lines are: SFD (red), CAA (black) and SAA (blue).

ergy and dissipation for both decaying and forced turbulence, including the transients for the latter.

The distribution of energy at different scales as shown by the velocity and the pressure spectrum

is resolved by CAA with same level of accuracy as SFD and C10, even at the largest wavenum-

bers. Higher-order moments of longitudinal velocity gradient, including skewness and flatness,

also showed excellent agreement between SFD, C10 and CAA. No observable differences are seen

in the complex distribution of the contours of instantaneous enstrophy field. The PDF of highly

intermittent quantities such as dissipation and enstrophy, that are also very sensitive to the accu-

racy of numerical schemes and small scale resolution, are also captured well by CAA, with some

statistical differences at extreme tails.

For SAA as well, the evolution of turbulent kinetic energy and dissipation for decaying and

forced turbulence (including transients) is in excellent agreement with SFD and C10. While no

differences were seen for the energy spectrum, the pressure spectrum showed some small differ-

ences at high wavenumbers. However, these differences do not affect the dynamics of the scales of

interest and, as we show, are easily mitigated if higher order AT schemes are used. Similar to CAA,

the instantaneous enstrophy field, the flatness and skewness of longitudinal velocity gradient and

the PDF of dissipation and enstrophy is shown to be in excellent agreement with the synchronous

simulations.
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Taken together, the results obtained for both CAA and SAA and their comparison with syn-

chronous simulations (SFD and C10), clearly show that the physics of turbulence even at the finest

scales is resolved accurately by the asynchronous algorithms, even though more than 50% of total

gridpoints are affected directly by asynchrony.

We also presented the effect of asynchrony on computational performance. In particular, both

strong and weak scaling results showed a near ideal scaling for the asynchronous algorithms and

significant departures from the same for synchronous case. This improved scaling can be traced

back to a significant reduction in communications (CAA) and synchronizations (SAA), resulting

in an overall lower fraction of communication compared to computation for both CAA and SAA.

We also observed that at very high processor count (P = 262144), the reduction in overall vol-

ume of communications (CAA) is more effective in improving the scaling than relaxing explicit

synchronization (SAA). This improvement in scaling is expected to be more consequential as we

increase the problem size and processor count to levels anticipated on exascale machines.

In conclusion, asynchronous simulations can accurately resolve the physics at all scales and

provide better parallel performance as problem size increases. Thus, asynchronous computing

presents an effective alternative to standard computing approaches for simulation of turbulence

and other complex phenomena at unprecedented levels of physical realism on the next generation

exascale machines.
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7. ASYNCHRONOUS SIMULATIONS OF REACTING FLOWS

7.1 Introduction

Over the past few decades, the advancements in high performance computation resources have

provided a significant boost to high-fidelity simulations of turbulent reacting flows [95, 96, 97].

The so-called Direct Numerical Simulations (DNS) [4] with detailed chemistry provide invaluable

insights into the fundamental details of fine-grained interactions between chemistry and turbulence

[98, 99, 100]. In the DNS approach for reacting flows the time-dependent governing Navier-Stokes,

energy and species continuity equations are solved with high accuracy, and all dynamically relevant

ranges of unsteady spatial and temporal scales are numerically resolved. This stringent resolution

criteria imposes prohibitive computational cost and consequently limits the attainable parametric

range of relevant DNS. Even for moderate Reynolds number or number of transported species, for

example, DNS requires massive supercomputers with hundreds of thousands of processing ele-

ments (PEs) working concurrently. In some of the most well resolved DNS of such complex flows

[101, 18, 102, 100, 103, 25, 104, 105, 106, 107, 38, 108] high-order finite difference schemes

have been used extensively to approximate the spatial derivatives. The parallel efficiency of these

schemes is high since they use local stencils extending only to the nearest grid-points to approxi-

mate the derivatives. However, in a data parallel decomposition of the domain, where multiple PEs

are working on different parts of the computational domain in parallel, the PEs also need to com-

municate across the processor boundaries of the nearest computational domain neighbors in each

direction. The standard schemes inherently necessitate synchronizations at PE boundaries and con-

sequently incur severe penalties due to processor idling, especially when a large number of PEs are

used. This is the communication and synchronization bottleneck that is expected to pose a major

challenge in efficiently scaling to next-generation exascale machines [8]. As described in previ-

ous chapters, an efficient way to mitigate this bottleneck is to relax the strict communication and

synchronization requirements and perform simulations asynchronously using asynchrony-tolerant
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(AT) schemes [16].

The AT schemes were used to perform accurate asynchronous simulations of Burgers’ turbu-

lence [109] and compressible turbulence [19] and exhibited superior scaling to their synchronous

counterpart. To further advance the applicability of such asynchronous simulations with AT schemes,

multi-physics simulations of turbulent combustion, that demand massive computations are a nat-

ural next choice. As a first step to evaluate the numerical performance of AT schemes for com-

putationally expensive and highly nonlinear turbulent combustion simulations, several canonical

reacting flow problems in one-dimension have been performed here. Precisely, the effect of data

asynchrony is studied on autoignition, premixed flame propagation and non-premixed autoignition.

Both one-step and detailed chemical mechanisms with stiff reactions are used to test the efficacy

of the AT schemes. Moreover, the accuracy of AT-WENO schemes derived in Chapter 4 is also

demonstrated.

7.2 Governing equations

In the following sections the effect of asynchrony is evaluated for a set of canonical reacting

flow configurations. The AT schemes described the earlier Chapters are implemented in a com-

pressible reacting flow solver in one-dimension with periodic and open boundaries. The governing

conservation equations and constitutive laws are presented in this section. The one-dimensional

form of the conservation equations for mass, momentum, total energy and species continuity are

∂ρ

∂t
= −∂ρu

∂x
∂(ρu)

∂t
= −∂(ρuu)

∂x
+
∂τ

∂x
− ∂p

∂x
∂(ρe0)

∂t
= −∂[u(ρe0 + p)]

∂x
+
∂(τu)

∂x
− ∂q

∂x
∂(ρYi)

∂t
= −∂(ρuYi)

∂x
− ∂(ρYiVi)

∂x
+Wiω̇i,

(7.1)
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where Yi is the mass fraction, Wi is the molecular weight, Vi is the species mass diffusion, ω̇i is

the molar production rate of species i and e0 is the specific total energy

e0 =
u2

2
− p

ρ
+ h. (7.2)

h =
∑Ns

i=1 Yihi =
∑Ns

i=1 Yi

(
h0
i +

∫ T
T0
cp,idT

)
is the total enthalpy expressed in terms of h0

i

which is the enthalpy of formation of species i at temperature T0 and the isobaric heat capac-

ity cp =
∑Ns

i=1 Yicp,i. For an ideal gas mixture, p = ρRuT/W and cp − cv = Ru/W where

W =
(∑Ns

i=1 Yi/Wi

)−1

and Ru is the universal gas constant, are used to compute the pressure and

specific heats. The viscous stress τ is

τ =
4

3
µ
∂u

∂x
, (7.3)

and the heat flux and species diffusion velocities are given by

q = −λ∂T
∂x

+
Ns∑
i=1

hiJi

Vi = −D
mix
i

Xi

∂Xi

∂x

(7.4)

where Ji = ρYiVi is the species diffusive flux, Dmix
i is the mixture-averaged diffusion coefficient,

and Xi = YiW/Wi is the mole fraction. Barodiffusion and the Soret and Dufour effects are

not considered. CHEMKIN [110] and TRANSPORT [111] software libraries were linked with

the solver and used for evaluating reaction rates, thermodynamic and mixture-averaged transport

properties. Eq. (7.1) can be written in a compact form as in Eq. (4.1) where

Q =



ρ

ρu

ρe0

ρYi


, C =



ρu

ρu2 + p

u(ρe0 + p)

ρuYi


, D =



0

−τ

−τu+ q

ρYiVi


, and S =



0

0

0

Wiω̇i


. (7.5)
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The derivatives of product terms in Eq. (7.1) are expanded using the chain rule. For example,

∂(ρuYi)/∂x := (ρuYi)x = ρu(Yi)x + ρuxYi + ρxuYi. This essentially allows computation of

derivatives of such terms using AT schemes without having to retain every product term at multiple

time-levels. Apart from the expansion using the chain rule, the one-dimensional asynchronous

solver used in the present study is largely based on S3D [18] that is widely used to perform DNS

of turbulent combustion.

7.3 Numerical Results

In this section, five different flow configurations are selected to assess the effect of asynchrony

on canonical combustion problems. For the first case, two types of asynchronous simulations are

considered,

1. Standard schemes used asynchronously (AS-SFD or AS, AS-WENO as applicable)

2. AT schemes for asynchronous computation (AT, AT-WENO as applicable).

For the remainder of the cases, only the the asynchronous simulation performed using AT schemes

is compared with the synchronous simulation. The domain is decomposed into P processors and

delays are introduced using a random number generator at each processor boundary similar to

[16]. The maximum allowed delay levels are three with the probability of non-zero delay gradually

increasing from Set-1 to Set-3. The different probability sets considered in numerical simulations

are tabulated in Table 7.1 where Set-4 represents a synchronous simulation. The probability for

Set-2 and Set-3 is similar to the probability of delays observed on TACC supercomputers [19].

Summary of all the numerical experiments performed and their relevance is listed in Table 7.2.

7.3.1 Non-reacting case: acoustic wave propagation

For the non-reacting case, the propagation of an acoustic wave in air is considered. By doing

so, the effect of source of the acoustic wave, for example an ignition kernel is decoupled from its

propagation, and the only focus is on whether the asynchrony-tolerant framework can accurately

capture waves traversing with the speed of sound. Furthermore, if an error in gradients due to
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Probability Legend
[p0 p1 p2]

Set-1 [0.8 0.1 0.1] ___ ◦
Set-2 [0.6 0.3 0.1] - . *
Set-3 [0.4 0.5 0.1] - - �
Set-4 [1.0 0.0 0.0] . . . +

Table 7.1: Probability of simulated delays for different sets used in the numerical experiments
presented in Section 5. This legend (color and/or symbol) is used in all the figures from Fig. 7.1 to
Fig. 7.10.

Case number Case name Relevant processes to be resolved
5.1 Acoustic wave propagation

(non-reacting)
Pressure perturbation travelling at
speed of sound

5.2 Auto-ignition of H2

(periodic domain)
Spontaneous ignition dominated by
reaction term

5.3 Auto-ignition of C2H4

(temperature fluctuations at inflow)
Unsteadiness, oscillatory ignition front

5.4 Premixed flame propagation Reactive-diffusive balance in reaction
zone

5.5 Non-premixed ignition Diffusion controlled reaction front
5.6 Propagation of a detonation wave Jump due to shock front followed by a

reaction zone

Table 7.2: Summary of numerical simulations and their relevance.
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Figure 7.1: AS-SFD: instantaneous profiles and errors in pressure (atm) and velocity (ms−1) at
t = 4 × 10−6s. The different lines: blue (Set-1), black (Set-2), red (Set-3) and magenta (Set-4)
are defined in Table 7.1. The faded blue line indicates the initial condition and faded-black lines
represent processor boundaries. AS: Asynchronous with standard finite-difference schemes, S:
synchronous.

|PAT − PS|
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t = 4× 10−6s t = 6× 10−6s

Figure 7.2: Asynchrony-tolerant (AT): instantaneous profiles and errors in pressure (atm) and ve-
locity (ms−1) at t = 4 × 10−6s (left) and t = 6 × 10−6s (right). The different lines: blue (Set-1),
black (Set-2), red (Set-3) and magenta (Set-4) are defined in Table 7.1. The faded blue line indi-
cates the initial condition and faded-black lines represent processor boundaries. AT: asynchronous
with asynchrony-tolerant, S: synchronous.
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delayed data at the boundaries manifest themselves in the form of dilatational modes then one

should observe these effects in the propagation of acoustic waves through larger errors. In the

current problem the acoustic wave is considered to be a perturbation in the pressure field that is

described with the following initial condition [112],

u(x, 0) = u0 +A exp

[
−B

(
x− x0

L

)]
P (x, 0) = P0 + ρ0c0 (u− u0)

ρ(x, 0) = ρ0 +
ρ0 (u− u0)

c0

T = P/ρR

(7.6)

where u0, ρ0, P0 prescribe the uniform mean values, and ideal gas law is used to compute the

temperature field. Here A and B determine the magnitude and stiffness of the acoustic fluctuation

and x0 is the location of the fluctuation peak. This initial field is shown as a faded blue line in

Fig. 7.1 and Fig. 7.2. Non-reflecting inflow/outflow boundary conditions [113, 114] are used and

the initial fluctuation is allowed to traverse to at least one processing element boundary where it

encounters delays. While at the internal points standard fourth-order central difference schemes

are used, at the physical boundary points the derivatives are computed using second-order finite

difference schemes. For computation of derivatives at the processor boundaries, fourth-order AT

schemes are used (see Appendix A).

When the standard central-difference schemes are used asynchronously (AS-SFD), there are

visible fluctuations in the pressure field even at early times. This is evident from Fig. 7.1 where both

instantaneous pressure and velocity fields at time t = 4 × 10−6s show large numerical errors and

clear deviation from the corresponding synchronous field. For larger delay values corresponding to

Set-3 in Table 7.1, the numerical perturbations become significant at much shorter times and render

the simulation unstable eventually. These errors are amplified even after the acoustic wave leaves

the domain. However, when AT schemes are used for propagation of acoustic wave with delays

at processor boundaries, the solution remains in close agreement with its synchronous counterpart
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t = 4× 10−6s t = 6× 10−6s
AS-SFD

Case U (ms−1) P (atm) U (ms−1) P (atm)
1 3.33e-02 1.36e-04 3.30e-02 1.34e-04

L1 error 2 9.87e-02 4.00e-04 3.78e-01 1.52e-03
3 8.01e-01 3.26e-03 2.28e+01 9.31e-02
1 2.27e-01 9.43e-04 2.72e-01 1.08e-03

L∞ error 2 6.53e-01 2.69e-03 2.03e+00 8.08e-03
3 6.16e+00 2.57e-02 1.45e+02 7.56e-01

Asynchrony-Tolerant (AT)
Case U (ms−1) P (atm) U (ms−1) P (atm)

1 5.88e-05 2.43e-07 3.38e-05 1.40e-07
L1 error 2 6.70e-05 2.75e-07 4.82e-05 1.95e-07

3 8.83e-05 3.64e-07 3.81e-05 1.57e-07
1 5.25e-04 2.18e-06 3.27e-04 1.29e-06

L∞ error 2 7.84e-04 3.23e-06 4.70e-04 1.92e-06
2 1.16e-03 4.73e-06 6.09e-04 2.56e-06

Table 7.3: L1 and L∞ norm of error in velocity and pressure in acoustic wave propagation simula-
tions.

and the errors are several orders of magnitude smaller (see Fig. 7.2). Similar behavior is also

observed at later times when the wave almost leaves the right boundary. Moreover, the errors in

both pressure and velocity are not localized to near processing element boundary points where AT

schemes are used to compute derivatives.

The L1 and L∞ norms of the errors computed with respect to the synchronous simulation are

defined as
ZL1 = 〈Zsynchronous − ZAS or AT〉

ZL∞ = max (Zsynchronous − ZAS or AT) ,

(7.7)

where Z is any quantity, for example temperature, pressure or mass fractions, and 〈.〉 is the spatial

average. These errors are listed in Table 7.3 for both AS-SFD and AT simulations at two different

times. The AT schemes exhibit significantly less numerical error at both times, and does not grow

monotonically with time like it does for the AS-SFD.
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7.3.2 Auto-ignition of H2 using one-step chemistry

A canonical problem of practical relevance to compression ignition in internal combustion en-

gines is the auto-ignition in a premixed fuel-air mixture. Here auto-ignition of a leanH2/air mixture

at an equivalence ratio of 0.4895 at 400K is considered. A Gaussian temperature spike with a peak

value of 1040K, which is above the ignition limit, is introduced at the center of a one-dimensional

closed domain and the mixture eventually auto-ignites after an induction period. Initially radical

chain-branching reactions occur accumulating reactive intermediate species at nearly isothermal

conditions. This eventually leads to thermal explosion and the temperature increases rapidly to

nearly 2000K. Two reaction fronts then emanate from the spontaneous ignition, one propagating

to the left, while the other to the right. The gas expansion from the heat release during auto-ignition

results in an induced velocity from an initially quiescent flow field.

time

Tmax

Pmax

Figure 7.3: Temporal evolution of the peak temperature (K) and pressure (atm) during auto-
ignition of a premixture of hydrogen/air in a periodic domain. The different lines (without sym-
bols): blue (Set-1), black (Set-2), red (Set-3) and magenta (Set-4) are defined in Table 7.1. The
dashed line indicates the time at which the instantaneous scalar and velocity profiles and errors are
listed in Table 7.4 and Table 7.5.

The time elapsed from the initial hot-spot to a time at which the temporal gradient of tem-

perature or heat release rate is maximum is the so-called ignition delay time (τign). The time

evolution of maximum temperature and pressure is shown in Fig. 7.3. It is clear that while the

temperature increases slowly initially, there is an exponential increase in the temperature at around
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t = 4.96× 10−5s t = 5.52× 10−5s t = 1.5× 10−4s

T

Q

P

U

YH2

YH2O

x (mm) x (mm) x (mm)

Figure 7.4: Asynchrony-tolerant (AT): auto-ignition of a premixed H2/air mixture: instantaneous
profiles of temperature (K), heat-release rate (Jm−3s−3), pressure (atm), velocity (ms−1), and
mass fractions of YH2 and YH2O. The different lines: blue (Set-1), black (Set-2), red (Set-3) and
magenta (Set-4) are defined in Table 7.1. The faded blue line indicates the initial condition and
faded-black lines represent processor boundaries.

t = 5×10−5s. The temporal evolution of the peak temperature and pressure is captured accurately

by the asynchrony-tolerant schemes. Following ignition, the two fronts propagate towards the left

and right boundary and are allowed to traverse across at least one processing element boundary

where delays are explicitly encountered. For simplicity we consider a periodic domain that allows

us to compute spectral characteristics of both thermodynamic and hydrodynamic quantities. Note

that the periodic boundary conditions considered here provide a closed volume with compression
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heating from the ignition and leads to gradual rise in pressure with time. This is evident from

Fig. 7.3 where the pressure increases from 1 atm to 1.4 atm after the ignition.

k k

T̂ (k)

Û(k)

ŶH2(k)

ŶH2O(k)

Figure 7.5: AS-SFD: spectra of temperature (T̂ (κ)), velocity (Û(κ)), and mass fractions ŶH2(κ)
and ŶH2O(κ) for auto-ignition of a premixed H2/air mixture. The different lines: blue (Set-1),
black (Set-2), red (Set-3) and magenta (Set-4) are defined in Table 7.1.

k k

T̂ (k)

Û(k)

ŶH2(k)

ŶH2O(k)

Figure 7.6: Asynchrony-tolerant (AT): spectra of temperature (T̂ (κ)), velocity (Û(κ)), and mass
fractions ŶH2(κ) and ŶH2O(κ) for auto-ignition of premixed H2. The different lines: blue (Set-1),
black (Set-2), red (Set-3) and magenta (Set-4) are defined in Table 7.1.

To investigate the effect of delays at processor boundaries on important quantities of interest

both before and after spontaneous ignition, the spatial evolution of temperature, velocity, pressure,

heat release, and mass fractions of hydrogen and water are shown in Fig. 7.4. The time instants

considered are indicated with dashed-black lines in Fig. 7.3. Qualitatively, no difference exists
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Time Case U (ms−1) P (atm) T (K) H2 H2O

AS-SFD
1 2.43e-01 8.1737e-04 3.2713e-01 1.2700e-06 2.5152e-05

1.5e-4 2 3.99e-01 1.3420e-03 5.3992e-01 2.1059e-06 4.1778e-05
3 5.66e-01 1.9061e-03 7.6244e-01 2.9054e-06 5.8324e-05

Asynchrony-tolerant (AT)
1 1.07e-07 3.16e-10 8.50e-08 1.89e-13 2.29e-12

4.96e-5 2 1.23e-07 3.68e-10 8.19e-08 2.96e-13 2.31e-12
3 1.33e-07 4.21e-10 1.11e-07 4.22e-13 3.66e-12
1 6.80e-07 2.18e-09 7.14e-07 2.49e-12 2.53e-11

7.2e-5 2 6.46e-07 2.20e-09 9.74e-07 3.77e-12 4.89e-11
3 1.07e-06 3.52e-09 1.09e-06 2.79e-12 3.67e-11
1 1.17e-04 2.70e-07 7.67e-04 4.56e-09 4.87e-08

1.5e-4 2 5.67e-05 1.49e-07 2.52e-04 1.54e-09 1.61e-08
3 1.10e-04 2.70e-07 7.17e-04 4.33e-09 4.62e-08

Table 7.4: L1 norm of error in temperature, velocity, and mass fraction of H2 and H2O for auto-
ignition of premixed Hydrogen.

between the instantaneous values of these quantities for synchronous simulation and asynchronous

simulations with AT schemes. The L1 and L∞ norm of error computed with respect to the syn-

chronous simulation is listed in Table 7.4 and Table 7.5, respectively, for three time instants. Also

listed are the errors when the standard schemes are used asynchronously. Note that in this case the

errors are several orders of magnitude larger than AT schemes, irrespective of the quantity. More-

over, for the former case, the maximum error in temperature is approximately 9K which can trigger

reactions and result in nonphysical ignition in otherwise quiescent flow due to the strong temper-

ature dependence of reaction rates. Such numerical errors are not observed for AT schemes even

when the gradients for example in temperature or species mass fractions exist at the processing

element boundaries.

The spectra of temperature, velocity and mass fraction of reactants and products, are shown

in Fig. 7.5 and Fig. 7.6. The AT schemes exhibit an excellent agreement with the synchronous

simulations at all wavenumbers (κ). Furthermore, non-physical accumulation of energy at high

wavenumbers due to numerical errors does not exist which is in fact observed in Fig. 7.5 when
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Time Case U (ms−1) P (atm) T (K) H2 H2O

AS-SFD
1 8.73e-01 2.72e-03 3.50e+00 1.80e-05 3.19e-04

1.5e-4 2 1.51e+00 4.46e-03 5.78e+00 2.96e-05 5.25e-04
3 2.14e+00 6.23e-03 8.79e+00 4.41e-05 7.88e-04

Asynchrony-tolerant (AT)
1 1.30e-06 2.44e-09 1.48e-06 4.61e-12 6.60e-11

2e-5 2 1.64e-06 2.30e-09 2.07e-06 1.07e-11 9.12e-11
3 1.83e-06 2.80e-09 1.18e-06 1.19e-11 9.79e-11
1 7.55e-06 2.64e-08 9.52e-06 7.27e-11 8.87e-10

5.52e-5 2 5.70e-06 1.95e-08 1.88e-05 1.36e-10 1.90e-09
3 9.45e-06 3.26e-08 1.19e-05 9.30e-11 1.10e-09
1 1.08e-03 2.44e-06 1.14e-02 5.51e-08 9.58e-07

1.5e-4 2 4.08e-04 7.97e-07 3.60e-03 1.77e-08 3.05e-07
3 8.06e-04 1.75e-06 1.07e-02 5.12e-08 8.93e-07

Table 7.5: L∞ norm of error in temperature, velocity, and mass fraction of H2 and H2O for auto-
ignition of premixed Hydrogen.

the standard schemes are used with asynchrony. Hence, AT schemes demonstrate an excellent

resolving efficiency in both physical and spectral space despite delayed data being used for the

computation of derivatives at processing element boundaries.

7.3.3 Auto-ignition: temperature fluctuations at the inflow boundary

It is common to investigate the effect of turbulent fluctuations on fuel-air mixing, flame or

spontaneous ignition front propagation, hotspots, etc. To simulate this effect in one-dimension

and to ensure that the AT schemes can propagate the fluctuations accurately across processing

element boundaries, a temperature perturbation is forced at the left inflow boundary. The initial

condition, shown by the faded blue line in Fig. 7.7, is the steady state solution obtained from the

auto-ignition of premixed C2H4/air mixture at a pressure of 2 atm. A 22 species 18-step reduced

mechanism describing the oxidation kinetics of ethylene/air [115] is used. The steady solution is

perturbed with sinusoidal temperature fluctuations of magnitude 180K and frequency 20Khz at

the left boundary using an oscillatory inflow boundary condition [116, 117]. As the perturbations

approach the igniting front, the temperature in its vicinity rises as is evident from the increase in
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YOH
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t = 4.48× 10−4s t = 9.98× 10−4s

Figure 7.7: Asynchrony-tolerant (AT): instantaneous profiles of temperature (K), velocity (ms−1),
and mass fractions ofOH andCH2O radicals for autoignition of premixedC2H4/air mixtures with
temperature fluctuations at the inflow. The different lines: blue (Set-1), black (Set-2), red (Set-3)
and magenta (Set-4) are defined in Table 7.1. The faded blue line indicates the initial condition
and faded-black lines represent processor boundaries.

the mass fraction of CH2O radical in Fig. 7.7. This induces a secondary ignition kernel to the left

of the initial front as can be seen in Fig. 7.7 (left column). The two kernels eventually interact

and as time progresses, a steady ignition front develops to the left of the initial kernel as shown

in the plots in the right column of Fig. 7.7. This front oscillates about a mean location, with the

peak temperature and pressure also oscillating in response to the incoming sinusoidal fluctuations.

The AT schemes accurately capture the transient and steady state evolution of both the temperature

and intermediate species even in the presence of delays at the processor boundaries. An excellent

qualitative agreement between the instantaneous profiles for AT and synchronous simulations in

Fig. 7.7 is observed. Both L1 and L∞ norms of the errors tabulated in Table 7.6 and Table 7.7 are

also reasonably small at both times.
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Time Case U (ms−1) P (atm) T (K) OH CH2O H2O

Asynchrony-tolerant (AT)
1 3.20e-08 1.10e-10 1.32e-07 6.67e-13 3.53e-13 4.48e-12

4.48e-4 2 3.89e-08 1.27e-10 1.70e-07 8.75e-13 4.82e-13 5.91e-12
3 4.97e-08 1.66e-10 1.75e-07 9.06e-13 4.90e-13 6.08e-12
1 3.09e-09 1.09e-11 3.32e-08 1.50e-13 9.12e-14 1.16e-12

9.98e-4 2 3.99e-09 1.38e-11 1.93e-08 1.20e-13 4.42e-14 6.33e-13
3 4.77e-09 1.69e-11 2.82e-08 1.69e-13 7.69e-14 8.95e-13

Table 7.6: Asynchrony-tolerant (AT): L1 norm of error in temperature, velocity, and mass fraction
ofOH and CH2O for auto-ignition of C2H4/air flame with temperature fluctuations at the inflow.

Time Case U (ms−1) P (atm) T (K) OH CH2O H2O

Asynchrony-tolerant (AT)
1 2.10e-07 8.22e-10 1.08e-06 5.76e-12 4.36e-12 5.12e-11

4.48e-4 2 2.20e-07 9.66e-10 1.53e-06 9.46e-12 6.58e-12 7.44e-11
3 3.46e-07 1.30e-09 1.33e-06 8.23e-12 5.76e-12 6.54e-11
1 2.05e-08 7.70e-11 5.33e-07 2.81e-12 2.15e-12 2.58e-11

1.9e-3 2 2.78e-08 1.01e-10 3.13e-07 1.68e-12 1.26e-12 1.50e-11
3 3.57e-08 1.28e-10 4.41e-07 2.42e-12 1.83e-12 2.14e-11

Table 7.7: Asynchrony-tolerant (AT): L∞ norm of error in temperature, velocity, and mass fraction
ofOH and CH2O for auto-ignition of C2H4/air flame with temperature fluctuations at the inflow.
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YOHPT

YH2O U YCH2O

x (mm)x (mm)x (mm)
Figure 7.8: Asynchrony-tolerant (AT): instantaneous profiles of temperature (K), pressure (atm),
velocity (ms−1), and mass fractions of product, H2O, and radicals, OH and CH2O, at t = 1 ×
10−2s for premixed C2H4 flame propagation. The different lines: blue (Set-1), black (Set-2), red
(Set-3) and magenta (Set-4) are defined in Table 7.1. The faded blue line indicates the initial
condition and faded-black lines represent processor boundaries.

7.3.4 Premixed flame propagation

The previous cases focused on investigation of the effect of asynchrony on spontaneous ignition

dominated by unsteadiness and advection-reaction balance. The current example is considered to

study the effect of delayed data on laminar premixed flame propagation. The flame propagates at

a subsonic velocity and is characterized by a balance between the reactive and diffusive terms in

the steady species conservation equations. A mixture of C2H4/air at φ = 0.42, T = 500 K and

P = 1.72 atm is considered. The one-dimensional domain is 4 mm and is discretized with 576

grid-points that are distributed across 12 processors. The 22 species, 18-step reduced mechanism

from [115] for ethylene/air used in the earlier case is also used here. The initial condition is

generated using an auto-ignition case, and non-reflecting inflow and subsonic outflow are imposed

at the left and right boundaries, respectively. The flame is initially located close to the right edge

of the domain and with time propagates to the left while consuming the reactants mixture. The

initial flame front, comprising pre-heat and reaction zones, spans across three PEs as shown by the

faded-blue line Fig. 7.8. This flame traverses across multiple processing element boundaries and

the errors are computed to assess the effect of the asynchronous data encountered at the boundaries

on flow and flame quantities.
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Time Case U (ms−1) P (atm) T (K) OH CH2O H2O

L1 error
1 6.22e-11 2.32e-13 2.72e-09 2.51e-15 3.21e-15 8.60e-14

1e-2 2 9.96e-11 3.81e-13 7.12e-10 8.73e-16 8.04e-16 2.04e-14
3 9.42e-11 3.61e-13 1.27e-09 1.16e-15 1.35e-15 3.42e-14

L∞ error
1 5.72e-10 2.07e-12 1.42e-08 3.02e-14 4.66e-13 2.38e-14

1e-2 2 1.06e-09 3.07e-12 4.18e-09 8.81e-15 1.23e-13 6.31e-15
3 6.52e-10 3.36e-12 6.61e-09 1.42e-14 2.09e-13 1.19e-14

Table 7.8: Asynchrony-tolerant (AT): L1 and L∞ norm of error in velocity, pressure, temperature,
and mass fractions of OH , CH2O and H2O for premixed C2H4 flame propagation.

The flame structure remains the same with time, therefore, only the instantaneous profiles and

errors at the time instant when the flame approaches near the left boundary is considered for ac-

curacy analysis. There is an excellent agreement between the spatial profiles for the synchronous

and the AT simulations, as shown in Fig. 7.8 for temperature, velocity as well as major and minor

species. The drop in pressure in the reaction zone is negligibly small and thus the pressure values

depicted in Fig. 7.8 are nearly constant. As is evident from Table 7.8, both L1 and L∞ norms of

the error between synchronous and AT simulations are negligibly small and as low as O(10−14)

for some of the species. Furthermore, the flame speed computed from the time evolution of the lo-

cation of the peak heat release rate is equal to 12.59 cm/s for both synchronous and asynchronous

simulations. The thermal flame thickness is equal to δT = T2−T1

max(∂T/∂x)
= 7.81×10−4m, irrespective

of the delays.

7.3.5 Non-premixed ignition

An ignition of non-premixed H2 using Burke’s mechanism [118] with 9 species is considered

next. The setup is similar to the one used in [112] and [119] with fuel diluted with nitrogen on

the left and air heated to 1500K on the right, as shown in Fig. 7.9. An inflow boundary condition

from [116] is used on the left boundary with zero velocity and an outflow boundary condition is

used on the right boundary with appropriate viscous conditions on each side. The one-dimensional

domain is 4 mm in length, discretized into 576 grid-points that are distributed across 12 PEs.
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Figure 7.9: Initial condition for non-premixed ignition with diluted fuel on the left and vitiated air
on the right.

Time Case U (ms−1) P (atm) T (K) H2 O H H2O

Asynchrony-tolerant (AT)
1 1.94e-08 4.43e-11 1.52e-07 6.04e-12 3.63e-12 4.85e-13 2.54e-11

7.92e-5 2 2.59e-08 5.94e-11 1.97e-07 6.72e-12 5.40e-12 6.60e-13 3.74e-11
3 3.14e-08 6.44e-11 3.13e-07 1.12e-11 7.77e-12 9.38e-13 5.42e-11
1 5.94e-10 1.14e-12 2.57e-08 6.04e-13 2.69e-13 1.95e-14 4.43e-12

3.19e-4 2 5.25e-10 1.06e-12 3.45e-08 6.98e-13 2.55e-13 2.22e-14 5.91e-12
3 6.18e-10 1.30e-12 5.01e-08 1.61e-12 2.56e-13 4.91e-14 4.80e-12

Table 7.9: Asynchrony-tolerant (AT): L1 norm of error in temperature, velocity, and mass fractions
of H2, O, H and H2O for non-premixed H2/air ignition.

As time progresses and diffusion process tends to homogenize the gradients, there is ignition

close to the stoichiometric mixture fraction, resulting in a rise in peak temperature and concentra-

tion of intermediate species. The instantaneous profiles of key quantities are shown in Fig. 7.10 at

two times. The first series of plots on the left column in Fig. 7.10 are at an earlier time when igni-

tion is localized. With time both fuel and intermediate species diffuse across processing element

boundaries and the flame expands, which is shown in the plots on the right column in Fig. 7.10.

The evolution of both major and minor species as well as temperature and velocity is accurately

resolved by the AT schemes. The average and maximum errors, tabulated in Table 7.9 and Ta-

ble 7.10, respectively, are both negligibly small. Similar low errors were also observed in other

species that are not shown here.
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t = 7.92× 10−5s t = 3.19× 10−4s
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Figure 7.10: Asynchrony-tolerant (AT): Instantaneous profiles and error in temperature (K), veloc-
ity (ms−1) and mass fractions ofH2,H2O,O andH for non-premixed ignition ofH2. The different
lines: blue (Set-1), black (Set-2), red (Set-3) and magenta (Set-4) are defined in Table 7.1. The
faded blue line indicates the initial condition and faded-black lines represent processor boundaries.

7.3.6 Propagation of a detonation wave

In order to test the numerical accuracy of AT-WENO schemes for reacting flows, a detonation

of stoichiometric hydrogen/oxygen mixture diluted with argon is considered. The mixture with

molar ratio H2 : O2 : Ar = 2 : 1 : 7 is at an initial temperature of 305K and pressure of 6670 Pa.

A detailed hydrogen/air mechanism [120] comprising of 9 species and 34 reversible reactions is

used. A similar setup has also been used as a test case in previous studies to investigate the efficacy

of numerical schemes [121, 122, 123]. Supersonic outflow condition is used at the left boundary

and subsonic inlet condition at the right boundary. The simulation is initialized with a shock that
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Time Case U (ms−1) P (atm) T (K) H2 O H H2O

Asynchrony-tolerant (AT)
1 1.09e-07 1.91e-10 6.10e-07 3.89e-11 1.31e-10 2.63e-11 4.05e-12

7.92e-5 2 1.11e-07 2.25e-10 8.52e-07 4.83e-11 1.85e-10 3.69e-11 5.24e-12
3 1.21e-07 2.14e-10 1.25e-06 7.16e-11 2.73e-10 5.27e-11 7.10e-12
1 5.08e-09 9.80e-12 9.89e-08 2.38e-12 1.65e-11 1.50e-12 7.53e-14

7.92e-5 2 4.01e-09 8.79e-12 8.94e-08 2.49e-12 1.64e-11 1.29e-12 6.47e-14
3 4.93e-09 7.91e-12 1.52e-07 5.15e-12 1.41e-11 1.17e-12 1.38e-13

Table 7.10: Asynchrony-tolerant (AT): L∞ norm of error in temperature, velocity, and mass frac-
tions of H2, O, H and H2O for non-premixed H2/air ignition.

ignites the mixture at the left end of the computational domain. The domain length is 30 cm which

is discretized into 6000 grid-points that are distributed across 100 PEs.

x (mm) x (mm) x (mm)

P P

T

Y × 1000

Figure 7.11: Asynchrony-tolerant (AT): Pressure (atm) profiles (left) at different times, struc-
ture of detonation wave (middle) for temperature (K) and pressure (atm) and mass fractions of
H,O,OH,H2 (right). The solid lines are standard WENO and black-dashed line with black sym-
bols (Set-3 in Table 7.1) corresponds to AT-WENO. Faded-back lines represent processor bound-
aries.

The simulation results are shown in Fig. 7.11 with pressure at different time instants in the

leftmost plot. There is a leading shock front that compresses the fuel/air mixture followed by

the induction and the reaction zones. The pressure obtained with synchronous WENO scheme is

shown in solid magenta. It is in excellent agreement with the pressure computed with AT-WENO
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scheme shown in black circles and dashed lines. A zoom-in of the detonation structure for temper-

ature and pressure is shown in the centre plots of Fig. 7.11. The mixture reacts after the induction

zone leading to an increase in temperature and a corresponding decrease in pressure. The mass

fractions for different radicals including fuel H2 are plotted on the rightmost plot in Fig. 7.11.

The results of this simulation show that the detonation structure is captured accurately with the

AT-WENO scheme. Furthermore, the detonation velocity obtained from standard WENO and AT-

WENO simulations is 1619.7 ms−1 and 1620.1 ms−1, respectively. These values are in good

agreement with detonation velocity reported in previous studies [121, 122, 123]. The peak von-

Neumann pressure is 165.35 kPa and 165.34 kPa for WENO and AT-WENO which are also close

to the previous works. Overall the AT-WENO schemes derived in this paper exhibit excellent nu-

merical accuracy despite the use of delayed data at processor boundaries. Since multidimensional

simulations of detonation phenomena in combustion devices face highly intensive computational

resource requirements [124, 125], AT-WENO schemes hold the potential of offsetting a certain

portion of communication overhead associated with the standard WENO schemes at large node

counts, thereby leading to improved scalability.

7.4 Discussions

DNS of turbulent combustion at higher Reynolds numbers with detailed chemical mechanisms

and at conditions relevant for practical devices will require efficient utilization of massive comput-

ing resources anticipated on the next generation Exascale machines. These simulations at scales

and conditions that might be currently infeasible will provide fine-grained details into the interac-

tions between turbulence and chemistry and help us understand the physical processes that result in

pollutant formation, flame stabilization, blow-off, etc. This in turn will not only aide in the design

of fuel-flexible, low-emission combustion engines but also in the development of physics-based

models for low-cost engineering simulations. However, a successful transition of DNS codes to

the Exascale machines is possible only through redesign and development of new computational

algorithms in order to overcome some of the obvious bottlenecks and challenges.

The anticipated computing power of a quintillion (1018) double precision floating point oper-
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ations per second on the Exascale machine will be realized through extreme levels of parallelism

with millions of processing elements (PEs), including CPUs, GPUs and FPGAs. For example,

Frontier at the Oak Ridge Leadership Computing Facility (OCLF) will have 1:4 CPU to GPU ratio

with unified memory. Despite the use of state-of-the-art low-latency, high-bandwidth communi-

cation links, the sheer number of communications will significantly hinder scaling to large node

counts. To this end, efficient strategies to mask communications and data movement will improve

scalability. The use of AT schemes at the PE boundaries for computation of derivatives accurately,

despite delayed data, will facilitate further overlap between communications and computations.

However, a challenge in extending the AT schemes to three-dimensions is that the derivatives of

convective and diffusive terms need to be expanded in terms of derivatives of primitive variables

using chain rule. For example, ∂(ρue)/∂x := (ρue)x = ρuex + ρeux + euρx. This expansion

increases the total number of derivatives that need to be computed, especially when a large number

of species are involved. Alternatively, one can compute the convective and diffusive terms (for ex-

ample, ρue, ρYiu, Ji, τ ) from the primitive variables at different time levels as required by the AT

schemes. These computations can be performed on the fly in order to avoid storing such product

terms at multiple time-levels. Essentially there is a trade-off between memory (data movement)

and computations. Re-design of data structures for better memory coherency will also be extremely

helpful since AT schemes use data from multiple time levels and can thus incur high cache miss

rate. Besides these challenges, a critical first step in using AT schemes for scalable simulations of

turbulent combustion on massive supercomputers is to ascertain that the numerical artifacts due to

delayed data at PE boundary are significantly small and do not affect the underlying physics. The

comprehensive set of numerical experiments presented in the current work specifically highlight

the excellent numerical accuracy of AT schemes for reacting flows.

A key component of simulations of reacting flows even for simple geometries include the pre-

scribing of boundary conditions. The NSCBC [113, 114] with improvements for reacting flows

[116, 117, 119, 126] has been successfully used for these simulations. In the normal direction,

the terms in the NSCBC boundary conditions are not affected by AT schemes. For example, at
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the outflow, one-sided schemes are used, which require only the local information within the PE.

At the inflow, relaxation terms are used which again do not require PEs to communicate. Since

transverse and viscous terms are also included for reacting flows [116, 117, 119], the AT schemes

can be utilized in the transverse direction for computation of all the spatial derivatives involved.

Extension to corners can be done following [126] with AT schemes used wherever necessary.

Another aspect of using asynchronous computations on Exascale machines is to leverage the

high flop-rate of GPUs. In hybrid computing architectures, GPUs are expected to handle most of

the computations, while CPUs facilitate communications between PEs. With AT schemes, GPUs

do not have to wait on the CPUs for the most updated data from the neighboring PEs. This would

enhance utilization of GPUs without affecting numerical accuracy or introducing idling penalties.

A similar approach has been utilized in [127] where asynchronous copies between CPUs and GPUs

are used to overlap computations and data movement, but delayed data with asynchronous compu-

tations have not been used. At a compiler level, new asynchronous run-time systems that are capa-

ble of dynamic task parallelism are being developed to improve the computation-communication

overlap [128, 129, 130]. The AT schemes, which relax synchronization at a mathematical level,

can be coupled with such programming models to create highly scalable PDE solvers. Asynchrony

has also been utilized in [131] for scalable resilience to soft faults. However, in [131] all deriva-

tives are still computed with the most updated data but the computations are re-arranged to ensure

maximum overlap between communications and computations. The asynchronization approach

utilized in [131] coupled with mathematical level asynchrony with AT schemes can be an effective

in pushing the scaling wall. Furthermore, since AT schemes do not need the updated data, these

schemes can also be used to recover node failures without halting the simulation altogether.

7.5 Conclusions

A series of numerical simulations that utilize delayed data at the processor boundaries are

presented for canonical reacting flows with one-step and detailed reaction mechanisms were pre-

sented in this chapter. It is shown that large numerical errors are incurred in physical as well as

spectral space when standard schemes are used asynchronously even for the simplest problems. To
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overcome this loss of accuracy, the novel asynchrony-tolerant (AT) schemes are used for accurate

computation of spatial derivatives with delayed data at the boundaries. These asynchronous sim-

ulations using AT schemes are compared with standard synchronous simulations and are shown

to exhibit excellent qualitative and quantitative agreement. Both spatial and temporal evolution of

hydrodynamic and thermo-chemical quantities are accurately captured by the AT schemes.

For simulations of high-speed flows with shocks and jump discontinuities, the standard shock-

resolving WENO schemes have degraded numerical accuracy. Thus, following the procedure listed

in [16] AT-WENO schemes are derived in Chapter 4. The order of accuracy of AT-WENO schemes

was verified in Chapter 4 for both linear and non-linear equations. In the current chapter we used

these schemes for simulations of detonation wave with delays and showed that the AT-WENO

schemes are in excellent agreement with their synchronous counterpart.

A common conclusion one can arrive at through these simulations is that the AT schemes

have an excellent accuracy despite relaxed synchronizations at the processor boundaries. Thus,

AT schemes provide a potential path for highly scalable asynchronous simulations of turbulent

combustion.
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8. UNIFIED FRAMEWORK FOR DERIVING OPTIMAL FINITE DIFFERENCES∗

8.1 Introduction

Ordinary differential equations (ODEs) as well as partial differential equations (PDEs) are per-

vasive in science and engineering as they model accurately a large number of natural and man-made

systems. Unfortunately, many of these equations are exceedingly complex at realistic conditions

and analytical solutions are virtually impossible. Thus, significant advances in understanding these

phenomena have relied on the use of computer simulations for which an appropriate numerical

method needs to be used to assure certain degree of accuracy in the solution.

Perhaps the most widely used method to discretize these governing equations in order to solve

them on a computer is the so-called finite differences. The derivation of explicit finite difference

schemes is in general very well known and has been studied extensively [20]. The general idea is to

linearly combine the values of the function to be differentiated at neighboring points. The weights

in this linear combination are determined so as to minimize error in some sense. The specific

choice of this objective function, we show here, has a critical effect on the resulting schemes.

More formally, the standard procedure starts with an approximation of the derivative of a func-

tion f at a point xi of the form

f ′i =
∂f

∂x

∣∣∣∣
xi

≈ 1

∆x

M∑
m=−M

amfi+m +O(∆xp+1). (8.1)

The last term indicates that the truncation error of the approximation is of order p + 1. In a

traditional derivation one first selects the stencil size, that is the number of neighboring points to

use in the approximation which is (2M + 1) in Eq. (8.1), and then finds the coefficients am such

that p+1, the order of the truncation error, is largest. This is done by eliminating all terms of order

lower than p + 1 in a Taylor expansion of the right-hand-side of Eq. (8.1). This approach has also

∗Parts of this chapter are reprinted from Journal of Computational Physics, Volume 399, Komal Kumari, Raktim
Bhattacharya and Diego A. Donzis, “A unified approach for deriving optimal finite differences", Pages 108957, 15
December 2019, with permission from Elsevier.
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been utilized to obtain the asynchrony-tolerant schemes in Chapter 1.

However, in many problems, especially those which involve multi-scale phenomena, one is

concerned not only with a global measure of the error but also with the error incurred at different

scales or, in Fourier space, at different wavenumbers. The range of wavenumbers and, thus, the

resolution requirements depend on non-dimensional parameters such as Reynolds number for tur-

bulent flows, or the Prandtl and Schmidt numbers for mixing problems, as they define length and

time scales of interest in the problem. It is therefore of consequence to use schemes that are opti-

mal for the time and length scale posed by the physics of the problems. This concern is typically

addressed by analyzing the spectral characteristics of scheme derived above by using, for example,

von Neumann analysis [20] or a modified wavenumber approach [47]. The result of this analysis is

used to determine if the scheme derived from an order-of-accuracy consideration is indeed appro-

priate to resolve all relevant scales in the problem at hand. Note that this is in general a posteriori

evaluation of the scheme.

There has been efforts in the literature to devise schemes with general properties in terms of

spectral accuracy. Early work on acoustic computations [132] showed that some desired spectral

behavior can be obtained by solving an optimization problem where the objective function to be

minimized is some measure of these errors. A number of different applications based on the same

general approach have been presented in the literature [132, 133, 134, 135, 136, 137, 138, 139, 140,

141, 142]. In all these studies specific requirements were put forth typically based on the physics of

interest which often resulted in subjective criteria to account for those specific requirements. Some

were limited in scope, for exmaple, by limiting the results to approximating only the first derivative

[132, 133, 137, 135, 139]. These optimizations were also limited in the sense that the nature of

the unknown coefficients (e.g. whether they are symmetric or antisymmetric) is specified a priori

which resulted in the objective function comprising either only the real part or only the imaginary

part of the spectral error, depending upon the order of the derivative being computed. However, as

we show below, that symmetry and antisymmetry of the coefficients for even and odd derivatives

respectively, can be obtained as a consequence of the minimization problem without any exter-
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nally imposed conditions. Some others [141] formulated an optimization based on the maximum

norm to minimize spectral errors but the algorithm adheres to certain ad-hoc rules (such as the

nature of the coefficients or the relative magnitude of the coefficients in a stencil) and presents

challenges in finding the global optimum. Other specialized optimizations have been conducted to

obtain schemes with lower errors that, for example, can resolve very strong gradients in fluid flow

calculations [138, 134, 136], though some degree of subjectivity and trial-and-error was used in

the formulations. Both [134, 136] utilize a two level optimization to achieve better resolving effi-

ciency and [136] also incorporated a weight function to emphasize on the relevant scales. Another

approach is presented in [140] where the unknown coefficient is selected according to the level

of dissipation required without carrying out any formal optimization. A general conclusion one

can arrive at from all these studies, is that more sensible choices than commonly made can lead to

numerical schemes that can outperform standard finite differences [47, 132]. Here we support this

idea and show that the precise meaning of this metric has a clear impact on the scheme obtained.

Another observation is that formulations are typically tailored with specific applications and con-

straints in mind due to the different requirements dictated by the physics of interest. It is thus not

surprising that there seems to be no general rigorous mathematical framework under which these

particular cases can be derived. Here, in a first step, we provide such a framework along with

some rigorous results on the nature of the error that result from optimization formulations. As we

will show, the framework can incorporate the different requirements needed for different cases and

conditions.

A third critical aspect when considering numerical schemes is their stability. Obviously, to

be usable, a scheme must be numerically stable when utilized to solve an ODE or PDE. Again,

this has traditionally been a posteriori undertaking: after selecting a scheme of a given order,

with a desired spectral accuracy, one would check if the scheme is stable or not and under which

conditions. This has been the case for standard or optimized schemes [132, 143]. This is also

the case for the two-step optimization of [144] in which an optimal spatial scheme is obtained

first, followed by an optimization to get a stable time marching scheme. This also highlights the
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importance of considering the relation between the space and time discretization to increase the

computational efficiency of the spatial operators. In [142], the spatial and the temporal schemes

are decoupled and optimized separately in order to achieve maximum resolving efficiency for both

the operators. The optimization of the temporal scheme is also subject to the stability constraint.

Schemes that remain stable for a broader range in the appropriate parameter space (time step

size, grid spacing, non-dimensional groups such as CFL number, etc.) are typically preferred as

simulations with larger time steps are computationally less expensive. While the time step and

grid spacing are conventionally subject to the stability and resolution requirements, [142] shows

that optimal values for these that minimize computational cost for some error level can also be

obtained.

An overriding question is, thus, whether it is possible to find optimal schemes of given order,

that are stable and that minimize the spectral error in a suitably defined manner typically informed

by the physical characteristics of the problem being solved. This is the main motivation of the work

presented in this chapter. The mathematical framework in which this can be achieved reduces to

an optimization problem with equality and inequality constraints which can be solved, under cer-

tain conditions, analytically. The importance of this work is that it allows us to express physically

meangingful desired properties and constraints into a unified mathematical framework which re-

sults in highly-accurate schemes for a particular problem of interest. Another important aspect

of the proposed framework is that it also exposes explicitly tradeoffs that can be profitably used

in specific circumstances. For example, we show that it is possible to construct explicit schemes

that can remain stable for very large time steps (even an order of magnitude larger than equivalent

standard schemes) when constraints on accuracy at some scales can be relaxed. We can also show

that unlike traditional finite differences, one can design “spectrally flat” schemes which present a

more homogeneous accuracy distribution across wavenumbers. Furthermore, because of optimal-

ity in spectral properties, we also show that the resulting schemes present better performance in

terms of important physical properties like its dispersion relation, and group and phase velocity

[145, 139, 146].
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8.2 The framework for deriving finite differences

As described above, in this work we construct a framework to derive finite differences in which

three important design characteristics, namely order of accuracy, spectral accuracy, and stability,

are combined into a rigorous mathematical framework. We now present each in turn.

8.2.1 Order of accuracy

A generalization of the approximation in Eq. (8.1) to the d-th spatial derivative is given by

f
(d)
i =

1

(∆x)d

M∑
m=−M

amfi+m, (8.2)

where, as before, we have M points on either side of the i-th grid point where the derivative is

sought. The stencil size is then S ≡ 2M + 1. A Taylor series for a term on the right-hand-side of

Eq. (8.2) can be written as

fi+m = fi + (m∆x)f ′i + (m∆x)2f ′′i /2! + . . . .

Upon constructing the entire sum in Eq. (8.2), a (p+1)-th order approximation of the d-th derivative

requires that the term with the d-th derivative be equal to d! and that the rest of the terms up to order

p be zero. After some algebra these constraints can be written as

M∑
m=−M

mqam =


0 q 6= d,

d! q = d,

(8.3)

for q ≤ d+ p, or more compactly as

aTdXd = yd, (8.4)
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where

aTd :=

[
a−M a−M+1 · · · aM−1 aM

]
, (8.5)

mT :=

[
−M −M + 1 · · · M − 1 M

]
, (8.6)

Xd :=

[
1S×1 m · · · md−1 md · · · md+p

]
, (8.7)

yd :=

[
01×d d! 01×p

]
. (8.8)

with 1S×1 is an S × 1 vector with ones as its elements and 01×d a 1 × d vector with zeros as its

elements. The vectors mn in Eq. (8.7) are defined as vectors composed of each element of m

raised to the power n.

Equation Eq. (8.4) is the linear system that, for a given stencil size M , results in a finite dif-

ference scheme of order p + 1. This approach, though presented in different forms across the

literature, forms the basis for standard derivation of finite differences when S = d+p. In this case,

the number of unknown coefficients in ad equals the number of terms that need to be eliminated to

maintain a certain order of accuracy. If on the other hand, S > d+p then the solution to Eq. (8.4) is

not unique. The remaining degrees of freedom can then be used to, e.g., assure spectral accuracy.

This is presented next.

8.2.2 Spectral accuracy

In order to understand the behavior of discrete differentiation operators at different scales or

frequencies, it is common to evaluate them utilizing a Fourier representation. This was also pre-

sented briefly in Chapter 3 (see section 3.2). Here again, for simplicity we consider a single mode

in a spatial discrete Fourier series:

f(x) = f̂ ejkx (8.9)
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where f̂ is the Fourier coefficient of the mode at wavenumber k, and j =
√
−1. Clearly, the exact

d-th derivative is given by

f (d)(x) = (jk)df(x). (8.10)

Now consider a discrete approximation of the derivative of the form Eq. (8.2). Since,

fi := f(xi) = f̂ ejkxi , (8.11)

fi+m := f(xi +m∆x) = f̂ ejkxiejkm∆x = fie
jkm∆x (8.12)

equation Eq. (8.2) becomes

f
(d)
i =

(
1

(∆x)d

∑
m

ame
jkm∆x

)
fi (8.13)

in terms of this single Fourier mode.

Comparison between the numerical approximation Eq. (8.13) and exact differentiation Eq. (8.10)

suggests a natural way to define the error at a given waveumber as

e(η) =
∑
m

ame
jmη − (jη)d, (8.14)

where η := k∆x is a convenient normalized wavenumber in the interval [0, π]. More compactly,

this can be expressed in matrix form as

e(η) =
(
CT (η) + jST (η)

)
ad − (jη)d, (8.15)
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where

C(η) :=



cos(−Mη)

...

cos(−η)

1

cos η

...

cos(Mη)



, and S(η) :=



sin(−Mη)

...

sin(−η)

0

sin(η)

...

sin(Mη)



. (8.16)

Equation Eq. (8.14) can also be written in terms of the so-called modified wavenumber (jη̃)d =∑
m ame

jmη =
(
CT (η) + jST (η)

)
ad as

e(η) = (jη̃)d − (jη)d = jd(η̃d − ηd). (8.17)

Clearly, the difference between η̃d and ηd provides a measure of the spectral error at wavenumber

η. The ratio of the modified wavenumber to the actual wavenumber is then

Gd :=
η̃d

ηd
=

e(η)

(jη)d
+ 1, (8.18)

which is a complementary measure of error across wavenumbers and will be used later on when

comparing different schemes.

A global figure of merit to assess how accurately the scheme captures spectral content can be

defined as the weighted L2 norm of the error e(η):

‖e(η)‖2
L2

:=

∫ π

0

γ(η)e∗(η)e(η)dη =: 〈e∗(η)e(η)〉 . (8.19)

Here e∗(η) is the complex conjugate of e(η), and γ(η) is a weighting function introduced to provide

control over which wavenumbers are to be more accurately resolved. The selection of γ(η) would
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depend, in general, on the physical characteristics of the system of interest. For example, for PDEs

with multi-scale broadband solutions a natural choice would be a constant γ(η) over the range of

η of interest and zero elsewhere. For a system with two well defined wavenumber bands, on the

other hand, one can define γ(η) presenting relatively large values around those bands but negligible

values everywhere else. Examples on the impact of this choice will be provided in section 8.3.

We can now frame the problem of the derivation of finite difference schemes combining spec-

tral resolution and order of accuracy. Formally, our goal is to determine ad such that ‖e(η)‖2
L2

is

minimized, subject to a given order of accuracy defined by Eq. (8.4), i.e.

min
ad∈R2M+1

‖e(η)‖2
L2
, subject to Eq. (8.4). (8.20)

Equation Eq. (8.20) provides, then, the unifying formalism to find the coefficients in Eq. (8.2)

that both provides a given order of accuracy and minimizes error in spectral space [132]. This

formulation, written in different ways, has been used extensively as pointed out in the introduction,

but here is presented in a very general form. Note that if the number of unknowns (S = 2M + 1)

is equal to the number of terms to be removed from the truncation error to achieve a given order,

then Eq. (8.4) has a unique solution and no optimization is possible. This is the case of standard

finite difference schemes. If, on the other hand, the stencil size makes the number of unknowns

greater that those needed to achieve a given order, the system will utilize those degrees of freedom

to minimize ‖e(η)‖2
L2

.

We note here that in standard derivations of finite differences based only on order-of-accuracy

considerations, the spectral behavior is found a posteriori. Spectral resolution is then coupled

to (dependent on) order of accuracy. While typically increasing the formal order of accuracy of

the scheme, leads to a better spectral resolution, standard techniques provide no mechanism to

constrain the spectral behavior of the resulting schemes. In the approach presented above, on

the other hand, specifications on spectral accuracy are independent of order of accuracy. Thus,

we see that by coupling the two mathematical systems into a unified formulation, we effectively
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decouple the requirements for order of accuracy and spectral resolution. The result is that when

the stencil size is increased, the extra degrees of freedom can be used to either increase the order of

accuracy further or improve specific spectral behavior. In section 8.3 we present specific examples

of optimized low-order schemes that are shown to have better spectral resolution than standard

high-order finite differences.

To develop the theory further, it is convenient to distinguish between odd-order and even-order

derivatives which leads to different behavior in Fourier space. In both cases an analytical solution

can be found and is presented next.

8.2.2.1 Even derivatives

For d = 2q, q = {1, 2, · · · }, e(η) becomes

e(η) =
(
CT (η)ad − (−1)qηd

)
+ jS(η)Tad.

The L2 norm of the error is therefore,

‖e(η)‖2
L2

:=

∫ π

0

γ(η)
[(

CT (η)ad − (−1)qηd
)2

+
(
S(η)Tad

)2
]
dη,

= aTd
(〈
γ(η)C(η)CT (η)

〉
+
〈
γ(η)S(η)ST (η)

〉)︸ ︷︷ ︸
Qd

ad

− 2aTd
〈
γ(η)(−1)qηdC(η)

〉︸ ︷︷ ︸
rd

+
〈
γ(η)η2d

〉
,

(8.21)

and the optimization problem Eq. (8.20) can be written as

min
ad∈R2M+1

(aTdQdad − 2aTd rd), subject to Eq. (8.4), (8.22)

where the constant term
〈
η2d
〉

is ignored in the minimization. The system Eq. (8.22) is a quadratic

programming problem, with linear equality constraints. We can solve this problem analytically,

which is determined from the Karush-Kuhn-Tucker (KKT) condition [147]. The optimal solution

for the coefficients ad, which will be denoted with an asterisk (a∗d), satisfies the following KKT
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condition Qd Xd

XT
d 0(d+p+1)×(d+p+1)


︸ ︷︷ ︸

:=K

a∗d

λ∗d

 =

 rd

yTd

 , (8.23)

where λd ∈ Rd+p+1 is the Lagrange multiplier associated with the constraint in Eq. (8.4). Since

XT
d ∈ R(d+p+1)×S has full row rank, then the KKT matrix K is nonsingular and Eq. (8.23) has

unique solution (a∗d,λ
∗
d) given by

a∗d

λ∗d

 =

Qd Xd

XT
d 0(d+p+1)×(d+p+1)


−1 rd

yTd

 . (8.24)

Since everything on the right-hand-side is known, Eq. (8.24) provides the coefficients a∗d for

the finite difference approximation Eq. (8.2) of order p + 1 which minimize the spectral error

Eq. (8.19).

As an example consider a second-order scheme for a second derivative. In this case, a 3-point

stencil (S = 2M + 1 = 3) yields a unique solution to Eq. (8.4), namely the common approxi-

mation a∗2 =

[
1 −2 1

]T
or f ′i ≈ (fi−1 − 2fi + fi+1)/∆x2. If one now retains a second-order

approximation but increases the stencil size S, the additional degrees of freedom are utilized to

reduce, through the minimization process, the spectral error in the approximation. For illustration

purposes assume we would like to resolve as accurately as possible all wavenumbers in the range

η ∈ [0, 2.5]. In this case, one can naturally choose γ(η) = 1 for η ∈ [0, 2.5] and γ(η) = 0 oth-

erwise. Upon solving Eq. (8.24), we obtain the coefficients of the resulting schemes which are

shown in Fig. 8.1 and Table 8.1.

The spectral accuracy of these schemes is shown in Fig. 8.2 where we compare η̃2 (magenta)

to η2 (dashed black) as in Eq. (8.17): the difference between these two curves correspond the error

representing the derivative at a given frequency. The standard second order scheme, M = 1, is

shown with the red line for comparison. In the top panels of the figure, we clearly see that as we
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Figure 8.1: Optimal coefficients for various stencil sizes S = 2M + 1, for a second derivative
with second order accuracy. The coefficients were obtained using γ(η) = 1, for η ∈ [0, 2.5] and
γ(η) = 0 otherwise.

M = 1 M = 2 M = 3 M = 4

a∗0 -2 -2.986945912146335 -3.067324780469417 -3.132525936497260
a∗1 1 1.657963941430890 1.795865984254199 1.843958787844204
a∗2 -0.164490985357722 -0.312793272384242 -0.357929955982910
a∗3 0.050589678364752 0.099426449444277
a∗4 -0.019192313056941

Table 8.1: Numerical coefficients for the schemes in Fig. 8.1. Note that since the resulting schemes
are symmetric around the central grid point, only coefficients on one side are shown.

increase M a better representation of the exact derivative is achieved in the range η ∈ [0, 2.5] as

expected. There is also a stark difference between the standard and the optimized schemes which

becomes more prominent as η or M increases.

Further information about the nature of the error can be obtained by analyzing the real and

imaginary components of e(η). This is shown in the middle and bottom panels of Fig. 8.2. While

there are significant errors in the real component <[e(η)] for η ∈ [0, 2.5] when M = 1, they

decrease substantially when M is increased, as expected. The errors outside of the support of

γ(η) are marginally affected since those are not modes for which the minimization process seeks

optimal solutions. The imaginary part =[e(η)] on the other hand presents zero error. This fact can

indeed be proven and is presented here as,
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Figure 8.2: Spectral accuracy for the schemes presented in Fig. 8.1 and Table 8.1. Top, middle and
bottom rows show the modified wavenumber, the real part, and the imaginary part of the spectral
error, respectively. Left, middle and right columns correspond to M = 2, 3, and 4, respectively.
Dashed black line: exact differentiation (η̃2 = η2). Magenta solid line: η̃ for optimized schemes.
In all plots, red solid line corresponds to standard second-order scheme (M = 1) for comparison.

Lemma 3. Finite difference approximations Eq. (8.2) obtained from Eq. (8.20) with d even, yield

a spectral error Eq. (8.14) which satisfies =[e(η)] = 0.

Proof. See Appendix 8.A.

This result has implications in terms of the type of error expected (dispersive versus dissipative)

when the scheme is used in a fully discretized PDE. In particular, from Eq. (8.18) we have G2 =

η̃2/η2 = (−e(η)/η2 + 1) which implies that the modified wavenumber will not have a phase error

since =[e(η)] = 0. Only dissipative errors are thus expected.

We note here that the error has also been defined using an additional arbitrary coefficient [138,

134] to emphasize the relative importance of the dissipative and dispersive errors. That is, one

modifies Eq. (8.21) to ‖e(η)‖2
L2

=
∫ π

0
γ(η)[σ(CT (η)ad − (−1)qηd)2 + (1 − σ)(S(η)Tad)

2]dη
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where σ ∈ [0, 1]. However, from the proof of lemma 3, the minimum value of the error is obtained

when one of the integrals is identically zero. Therefore the parameter σ will only appear as a

constant and will have no effect on the optimal coefficients. The parameter σ, thus, is of relevance

only when the grid is biased in one direction. In this scenario, neither of the integrals in Eq. (8.21)

will be 0, resulting in error with both real and imaginary part. The optimal solution will then be a

minimum of the summation of dispersive and dissipative errors.

It is also of interest to understand how errors change with S (or M ). This is so because in-

creasing N (number of grid points) or S (stencil size) leads to more computations and, thus, more

computationally intensive simulations. For standard schemes, when one increases the number of

points in the stencil (S), one also increases the order of accuracy. In particular, the error for a given

S (orM ) is proportional to ∆x2M where the proportionality constant also decreases withM . While

there is no easy way to represent these constants in closed form, from their structure one may then

still expects an approximately exponential decrease in the error as the stencil size increases. This

is indeed what we see in Fig. 8.3 where we show the error ‖e(η)‖2
L2

as a function ofM (black sym-

bols). For optimized schemes of fixed order, on the other hand, it is not obvious a priori the rate of

convergence with the number of grid points used in the stencil. However, we can readily evaluate

the error numerically to assess this convergence rate. This is shown in Fig. 8.3 where we include

the result of such numerical calculations with the second-order optimized schemes (blue symbols)

in Fig. 8.1 as M is increased. It can be seen that the error also decreases approximately exponen-

tially with M . While for M = 1 the two curves coincide as expected since both approaches lead

to the same scheme, optimized schemes (blue) present a better convergence rate as the stencil size

increases.

8.2.2.2 Odd derivatives

For d = 2q + 1, q = {0, 1, · · · }, e(η) becomes

e(η) = CT (η)ad + j
(
ST (η)ad − (−1)qηd

)
.
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Figure 8.3: Optimal spectral error for various stencil sizeM , approximating second derivative. The
blue line corresponds to the second order optimized schemes presented in Fig. 8.1 and Table 8.1.
The black line corresponds to the standard schemes with stencil size M and 2M order of accuracy.

The L2-norm of the error for this case is

‖e(η)‖2
L2

:=

∫ π

0

γ(η)
[(

CT (η)ad
)2

+
(
ST (η)ad − (−1)qηd

)2
]
dη,

= aTd
(〈
γ(η)C(η)CT (η)

〉
+
〈
γ(η)S(η)ST (η)

〉)︸ ︷︷ ︸
Qd

ad

− 2aTd
〈
γ(η)(−1)qηdS(η)

〉︸ ︷︷ ︸
rd

+
〈
γ(η)η2d

〉
.

(8.25)

The optimization problem is the same as Eq. (8.22) with rd given by Eq. (8.25), and the optimal

solution is given by Eq. (8.24).

As an example, we consider here again a second-order approximation but of the first derivative

for increasing values of M . The resulting schemes are shown in Fig. 8.4 and their spectral behav-

ior is shown in Fig. 8.5. Similar conclusions to the second derivative example shown above are

observed. As M increases the wavenumbers where γ(η) is non-zero are increasingly well resolved

which is seen as η̃ becoming closer to η in the top panels of Fig. 8.5. We can also see that the real

component of the spectral error (middle panels) is zero. This is due to the following lemma.
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Lemma 4. Finite difference approximations Eq. (8.2) obtained from Eq. (8.20) with d odd, yield a

spectral error Eq. (8.14) which satisfies <[e(η)] = 0.

Proof. See Appendix 8.B.

Since G1 = e(η)/(jη) + 1, and e(η) has only an imaginary component, then G1 is real. As

in the example before, errors are then expected to be dispersive in nature though the exact nature

of the error would depend on the PDE in which such a scheme is used. As before, we found the

global error to decrease exponentially with M as seen in Fig. 8.6 and faster than non-optimized

schemes.
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Figure 8.4: Optimal coefficients for various stencil size M , approximating first derivative with
second order accuracy. The coefficients were obtained using γ(η) = 1, for η ∈ [0, 2.5]; and
γ(η) = 0 otherwise.

M = 1 M = 2 M = 3 M = 4

a∗1 0.50 0.941502204636976 0.911624839168511 0.939273151104227
a∗2 -0.220751102318488 -0.372951233396604 -0.376375957228243
a∗3 0.111425875874899 0.182092697439389
a∗4 -0.058199832241477

Table 8.2: Numerical coefficients for the schemes in Fig. 8.4. Note that since the resulting schemes
are anti-symmetric (a∗−M = −a∗M) around the central grid point, only coefficients on one side are
shown.
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Figure 8.5: Spectral accuracy for the schemes presented in Fig. 8.4 and Table 8.2. Top, middle and
bottom rows show the modified wavenumber, the real part, and the imaginary part of the spectral
error, respectively. Left, middle and right columns correspond to M = 2, 3, and 4, respectively.
Dashed black line: exact differentiation (η̃ = η). Magenta solid line: η̃ for optimized schemes. In
all plots, red solid line corresponds to standard second-order scheme (M = 1) for comparison.

8.2.2.3 Effect of γ(η)

An important feature of the framework presented here for optimized schemes is that depend-

ing upon the physics of the problem, one can choose what scales need to be properly resolved.

By setting γ(η) in Eq. (8.19) as unity, equal weight is given to all wavenumbers while solving

the minimization problem. The formulation, however, is more general and allow us to change

γ(η) to, for example, resolve a subset of wavenumbers more accurately than others. To illustrate

this, consider an eight-order standard scheme (M = 4) for the second derivative whose modified

wavenumber can be readily computed analytically. The relative error at each wavenumber, which

with Eq. (8.18) can be written as |η̃2 − η2|/η2 = G2 − 1, is shown in Fig. 8.7 as a black line. We
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Figure 8.6: Optimal spectral error for various stencil size M , approximating first derivative. The
blue line corresponds to the second order optimized schemes presented in Fig. 8.4 and Table 8.2.
The black line corresponds to the standard schemes with stencil size M and 2M order of accuracy.

can see that standard schemes have very low errors at low η but become progressively worse at

high η. In fact, there are about 15 orders of magnitude difference between the error incurred at low

and high wavenumbers. This situation may present some challenges when these schemes are used

to resolve multiscale problems where all wavenumbers contribute to the dynamics. In contrast,

the optimized scheme with γ(η) = 1 in η ∈ [0, 2.5] shown in magenta in the figure, results in a

much flatter error in spectral space. The oscillatory nature of the error is due to the following. The

optimized schemes minimize a global measure of the error based on the L2 norm of difference

between η̃d and ηd. Pointwise however, the resulting scheme produces a η̃ that can be above or

below η; only the appropriate integral is minimized. An easy-to-see example of this behavior is

seen in Fig. 8.5 for M = 3 (top-middle panel). The crossing points between η̃ and η leads then to

zero error which correspond to the down peaks in Fig. 8.7 for the corresponding scheme.

The other curves in Fig. 8.7 illustrate the effect of changing γ(η) on the spectral error. For this

illustration we use γ(η) = e−η/ψ where ψ is a constant that controls how quickly the weighting

function drops to zero near the origin. A similar form has been used in some applications [138,

136] though for some ψ. As γ(η) becomes steeper (small ψ), the error for lower and higher
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Figure 8.7: Spectral error for various γ(η) for second derivative. Standard eighth order scheme
(black), γ(η) = 1 (magenta), γ(η) = exp(−η/0.1) (blue) and γ(η) = exp(−η/0.06) (red) for
η ∈ [0, 2.5] and 0 otherwise.

wavenumbers decreases and increases, respectively. The optimized schemes then get closer to the

strongly non-uniform distribution of error in spectral space of standard schemes.

Clearly one can use, for example, a banded γ(η), such that it is non-zero only for some interm-

mediate wavenumbers. Or one may need to resolve to distinct bands in wavenumber space which

can easily be accommodated by an appropriate choice of γ(η). The choice of γ(η) provides a high

flexibility to select how the available information (the value of the function at S grid points) to

resolve only the scales relevant to the problem being solved.

8.2.3 Stability

As discussed in the introduction, it is common to first choose a scheme of given order and

then verify that spectral accuracy is acceptable. That scheme is then used to discretize a PDE.

However, before this numerical arrangement can be utilized, one needs to determine whether the

fully discretized PDE is stable. Different methods to assess stability of a given discretized equation

have been discussed extensively [20]. Our objective here is not simply to determine whether the

schemes developed above are stable or not. Rather is to incorporate the stability requirement into a

unified formulation. This framework would thus provide, for a given M , a stable scheme of given

order with the best spectral resolution possible for wavenumbers of interest.
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For this, consider the general linear partial differential equation

∂f

∂t
=

D∑
d=1

βd
∂df

∂xd
. (8.26)

discretized over the entire domain with N := 2Mmax + 1 grid points. As before, spatial derivatives

are approximated using a stencil of size S = 2M + 1, where M can take values from 1 to Mmax.

The dth derivative at the ith grid point is parameterized by ai,d ∈ RS . Define Ad ∈ RN×S to be the

vertical stacking of aTi,d, i.e.

Ad :=


aT1,d

...

aTN,d

 . (8.27)

The order accuracy constraint Eq. (8.4) for every ai,d, can then be compactly written as

AdXd = Yd, (8.28)

for d = 1, · · · , D; and Yd := 1N×1 ⊗ yd.

The cost function to be minimized is the sum of the spectral error Eq. (8.19) at all locations i:

N∑
i=1

‖ei(η)‖2
L2

:=
N∑
i=1

D∑
d=1

(
aTi,dQdai,d − 2aTi,drd

)
+N

〈
η2d
〉
,

=
D∑
d=1

vTd (IN ⊗Qd)vd − 2vTd (1N×1 ⊗ rd), (8.29)

where vd := vec(AT
d ), and vec(· · · ) vectorizes a matrix by vertically stacking the columns. The

minimization of Eq. (8.29) subjected to Eq. (8.28) leads to optimal schemes with a given order of

accuracy. To include stability in the formulation, we first define the vectors
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F :=


f1

...

fN

 , and F(d) :=


f

(d)
1

...

f
(d)
N

 . (8.30)

Using these definitions, the finite-difference approximation for Eq. (8.26) for all the grid points

can be written compactly as

F(d) =
1

(∆x)d
AΦ
d F, (8.31)

where the matrix AΦ
d contains the unknown coefficients ai,d arranged appropriately for the correct

computation of the dth derivative at ith location. The matrix AΦ
d can be constructed using shift

operators the details of which are included in Appendix 8.C. The important element here is that

the spatial derivative is a linear operator acting on the value of the function f at all grid points.

8.2.3.1 Stability of Semi-discrete Scheme

With the spatial discretization from Eq. (8.31), Eq. (8.26) can be written as

Ḟ =

(
D∑
d=1

1

(∆x)d
βdA

Φ
d

)
F, (8.32)

whose analytical solution can be readily obtained as

F(t) := exp

(
D∑
d=1

1

(∆x)d
βdtA

Φ
d

)
F0, (8.33)

where F0 is the initial condition. Clearly the stability of Eq. (8.33) is governed by the coefficients

AΦ
d .

In order to understand the conditions under which the scheme defined by AΦ
d is stable consider

a single Fourier mode as in Eq. (8.11). The approximate dth derivative can be conveniently written
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in terms of the modified wavenumber as (jη̃)df̂ and the original PDE becomes

df̂

dt
=

D∑
d=1

βd(jη̃)df̂ . (8.34)

The solution, with f̂0 being the value of f̂ at t = 0, is given by

f̂

f̂0

= exp

[
D∑
d=1

βd(jη̃)dt

]
. (8.35)

If the solution to the original PDE is non-increasing in time, then the discretization is considered

stable if no Fourier mode grows in time. This is clearly satisfied if

<

{
D∑
d=1

βd(jη̃)d

}
≤ 0 (8.36)

From lemma 3 and 4, we can conclude that

(jη̃)d = (CT (η) + jST (η))ad =

 jST (η)ad, for odd derivative,

C(η)Tad, for even derivative,

because CT (η)ad = 0 for odd derivatives and ST (η)ad = 0 for even derivatives. Then,

D∑
d=1

βd(jη̃)d = jβ1S
T (η)a1 + β2C

T (η)a2 + jβ3S
T (η)a3 + β4C

T (η)a4 + · · · ,

=
(
β2C

T (η)a2 + β4C
T (η)a4 + · · ·

)
+ j

(
β1S

T (η)a1 + β3S
T (η)a3 + · · ·

)
. (8.37)

Therefore, Eq. (8.36) implies

β2C
T (η)a2 + β4C

T (η)a4 + · · · ≤ 0 (8.38)

which provides a general constraint to assure stability of the semidiscrete system.

Clearly stability for the semi-discrete system depends only on the even derivatives. In that case

162



d can be written as 2q for q = 1, 2, · · · , and (jη̃)d = (−1)qη̃2q. Since the optimization of spectral

error guarantees (jη̃)d = CT (η)a2q, we have CT (η)a2q = (−1)qη̃2q. Consequently, the sign of

CT (η)a2q alternates with q, i.e.

for q = 1, CT (η)a2 = −η̃2 <= 0,

for q = 2, CT (η)a4 = η̃4 >= 0,

for q = 3, CT (η)a6 = −η̃6 <= 0,

and so on. Therefore, if the coefficients of the original PDE can be written as β2q := (−1)q+1γ2
2q

for some γ2q, then Eq. (8.38) is implicitly satisfied as it reduces to a sum of negative numbers. In

general, if β2q does not have sign as required by (−1)q+1γ2
2q, then, while that particular derivative

is unstable, the system is still stable if

−β2η̃
2 + β4η̃

4 − β6η̃
6 + · · · ≤ 0. (8.39)

8.2.3.2 Stability of Fully-Discrete Scheme

While semi-discrete analyses provide some information about the temporal behavior of the

discretized spatial derivatives in the PDEs, one is ultimately interested in the stability of the fully

discretized system. For concreteness assume that the time discretization of Eq. (8.26) is done using

a forward difference. With Eq. (8.31) for the spatial discretization we write Eq. (8.26) as:

Fk+1 =

(
IN +

∑
d

∆t

(∆x)d
βdA

Φ
d

)
Fk. (8.40)

This is a linear discrete-time system in F, where the system matrix is linearly dependent on the

stencil coefficients Ad, discretization parameters ∆t and ∆x, and the coefficients βd. In what

follows we assume ∆x and βd are given which is a typical situation in simulations of physical

systems. The objective then is to determine ∆t and Ad so that stability is achieved subjected to
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specifications in order of accuracy and spectral resolution.

In general, stability is guaranteed if the spectral radius of the evolution matrix is bounded by

unity [20]:

λmax

(
IN +

∑
d

∆t

(∆x)d
βdA

Φ
d

)
≤ 1. (8.41)

Because the spectral radius is bounded by matrix norms, we guarantee stability by bounding the

2-norm, i.e. ∥∥∥∥∥IN +
∑
d

∆t

(∆x)d
βdA

Φ
d

∥∥∥∥∥
2

≤ 1. (8.42)

Using Schur complements, this inequality is equivalent to

 IN

(
IN +

∑
d

∆t
(∆x)d

βdA
Φ
d

)T(
I +

∑
d

∆t
(∆x)d

βdA
Φ
d

)
IN

 ≥ 0. (8.43)

This (inequality) constraint coupled with the order of accuracy (equality) constraint Eq. (8.28)

completes the set of constraints for the optimization problem aimed at minimizing the spectral

error given by Eq. (8.29).

Unfortunately, the matrix inequality in Eq. (8.43) has products of ∆t and Ad, which makes the

problem non convex. Thus, more general techniques than convex optimization have to be employed

to solve the problem. Here we present two approaches. In the first approach, we determine Ad

analytically that minimizes the spectral error and then maximize ∆t for which stability is achieved.

In the second approach, we assume a value for ∆t and determine Ad which minimizes spectral

error and guarantees stability. Both these approaches are discussed in detail below.

8.2.3.3 Given spectrally optimal Ad, maximize ∆t and guarantee stability simultaneously

In this approach, we solve for the optimal ai,d analytically that, for a given order, minimizes the

spectral error and then maximize ∆t for which stability is guaranteed. Optimization of the spectral
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error with given order of accuracy is given by previous formulation as

min
{Ad}Dd=1

D∑
d=1

vTd (IN ⊗Qd)vd − 2vTd (1N×1 ⊗ rd),

subject to

AdXd = Yd, for d = 1, · · · , D,

where vd := vec(AT
d ).

We observe that the cost and constraint functions are separable with respect to d, and thus can

be independently optimized using,

min
Ad

D∑
d=1

vTd (IN ⊗Qd)vd − 2vTd (1N×1 ⊗ rd), subject to AdXd = Yd, (8.44)

for d = 1, · · · , D. The linear constraint AdXd = Yd can be written as

(
IN ⊗XT

d

)
vd = YT

d .

Therefore, the optimization problem in Eq. (8.44) can be written as

min
vd

vTd (IN ⊗Qd) vd − 2vTd (1N×1 ⊗ rd) , (8.45)

subject to
(
IN ⊗XT

d

)
vd = YT

d , (8.46)

which has the analytical solution

vd

Λd


∗

=

IN ⊗Qd IN ⊗Xd

IN ⊗XT
d IN ⊗ 0


−11N×1 ⊗ rd

YT
d

 , (8.47)

where Λd is the vector of Lagrange multipliers associated with the constraints. Finally, we can
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recover A∗d, the coefficients of the scheme that minimizes the spectral error and is stable, from v∗d.

While intuitively it is clear that this solution should be the same at all grid points in the domain,

here we present, for completion, a proof as:

Lemma 5. Optimal explicit symmetrical finite-difference approximation is invariant of the grid

point location in the domain.

Proof. See Appendix 8.D.

From Lemma 5, we write the complete system as a stacking of local solutions:

A∗d = 1N×1 ⊗ a∗d
T . (8.48)

Therefore, the maximum ∆t for which stability is guaranteed is obtained by solving the optimiza-

tion problem Eq. (8.43), that is

max
∆t

subject to

 IN

(
I +

∑
d

∆t
(∆x)d

βdA
Φ
d

)T(
I +

∑
d

∆t
(∆x)d

βdA
Φ
d

)
IN

 ≥ 0, (8.49)

where AΦ
d is determined using Eq. (8.76) and A∗d from Eq. (8.48). The optimization in Eq. (8.49)

is a convex optimization problem in ∆t and can be efficiently solved numerically using software

such as cvx[148]. This formulation can then be used to obtain stability limits of the fully-discrete

system.

As an example, consider an advection-diffusion equation, that is Eq. (8.26) with D = 2. For

given values of β1, β2 > 0, and ∆x, one can solve the optimization problem to obtain the largest

∆t for which a previously obtained optimal A∗d remain stable. Note that the stability of the scheme

will depend only on the non-dimensional parameters ∆tβd/∆x
d. For D = 2, these are commonly

called convective and diffusive CFL, that is, rc := ∆tβ1/∆x and rd := ∆tβ2/∆x
2, respectively.

Stability regions can then be obtained by e.g. sweeping values of ∆x and plot results in terms of

rc and rd.
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This is what we show in Fig. 8.8 for the advection-diffusion equation for different values of

M . For M = 1 the numerically evaluated stability region is the same as the analytical form found

in textbooks for the standard second-order 3-point stencil for first and second derivatives, namely

r2
c ≤ 2rd ≤ 1 [20]. As M is increased the stability region becomes smaller. This is also generally

consistent with standard schemes for which as the order (and stencil size) increases the stability

region shrinks. In both cases, this is related to the decreasing dissipation at high wavenumbers as

spectral resolution improves which could trigger instabilities.

In summary, the formulation here allows us to obtain, for optimal schemes of given order and

maximum spectral resolution, the largest step size which guarantees stability or, more generally,

regions of stability.
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Figure 8.8: Stability region for the advection-diffusion equation with optimal coefficients a∗1 and
a∗2 for different stencil sizes: M = 1 (red), M = 2 (black), M = 3 (blue), M = 4 (magenta).

8.2.3.4 Given ∆t, optimize spectral error and guarantee stability simultanously

In this approach, for a given ∆t we solve for Ad that simultaneously minimizes spectral error,

achieves given order accuracy, and guarantees stability. This approach is of practical relevance as

the time-step ∆t would depend on the fastest physical process in the problem. For example, when
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chemical reactions are present in a flow, the Damkohler number (the ratio of flow time scales to

chemistry time scales) can be very high which means the time scales of reactions are considerably

smaller than flow time scales which forces ∆t to be small for an accurate solution.

The formulation here is done by combining the results in previous sections to write the follow-

ing optimization problem,

min
{Ad}Dd=1

D∑
d=1

N∑
i=1

(
aTi,dQdai,d − 2aTi,drd

)
,

subject to

AdXd = Yd, for d = 1, · · · , D; IN

(
I +

∑
d

∆t
(∆x)d

βdA
Φ
d

)T(
I +

∑
d

∆t
(∆x)d

βdA
Φ
d

)
IN

 ≥ 0.



(8.50)

Equation Eq. (8.50) is a convex optimization problem [149] in variables {Ad}Dd=1, with Ad ∈

RN×S , and can be efficiently solved numerically using cvx [148]. The time step ∆t can be max-

imized by iteratively solving Eq. (8.50) with increasing ∆t until the problem becomes unfeasible.

Since the spectra of a matrix is continuous in terms of the elements, the maximum ∆t can be

determined using a bisection algorithm [21].

In Fig. 8.9 we show the result of such a computation again for an advection-diffusion equation

discretized with second-order approximations. In particular, we show contours of the sum of the

spectral error ‖e(η)‖2
L2

in the first and second derivatives for different values of M normalized by

the value for M = 1. Colored areas represent regions where schemes are stable. For M = 1, the

stable region is well known as discussed above and presents values of 1.0 due to the normaliza-

tion chosen. Interestingly, as M increases the stability area increases instead of decreasing as in

Fig. 8.8. This illustrates an interesting aspect of the formulation. By providing additional degrees

of freedom (bigger stencil size) but fixing the formal order of accuracy, Eq. (8.50) minimizes spec-

tral error with the condition that the scheme be stable when some fixed ∆t is used. As can be seen,

for M = 4, schemes can remain stable for very large CFL numbers (an order of magnitude larger
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than for standard schemes) though with larger spectral error. In other words, the framework allows

one to trade off error with stability. If one is interested in stationary states, for example, one can

use the optimal scheme with M = 4 with very large time steps in a fully explicit arrangement to

solve transients. After the desired steady state is attained one can reduce ∆t with corresponding

optimized schemes to reduce errors. In fact, by comparing part (a) and (d) in the figure, we can

see that for regions where M = 1 is stable, M = 4 provides errors which could be two orders of

magnitude smaller. Conversely, for similar accuracy, schemes with M = 4 can be used with much

larger ∆t than a scheme with M = 1. Note that this approach could prove beneficial at very large

levels of parallelism where implicit schemes in time, while providing good stability characteristics

for large time steps, become challenging due to the necessity to invert large matrices.

(a) (b) (c) (d)

rd

rc rc rc rc

Figure 8.9: Tradeoff between stability and spectral accuracy with respect to (rd, rc), for β1 = 10
and β2 = 1. Contours represent sum of spectral errors ‖e(η)‖2

L2
for first and second derivatives

using optimal coefficients obtained as a solution of Eq. (8.50) with fixed ∆t for the advection-
diffusion equation. Errors are normalized by the spectral error obtained for M = 1. Different
stencil sizes shown in (a) M = 1, (b) M = 2, (c) M = 3, and (d) M = 4.
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It is interesting to observe how optimal coefficients change to maintain stability for very large

time steps. Since biased (upwind) schemes tend to be more dissipative and stable, one would expect

that gains in stability are mediated by losses in accuracy due to biasing. This is, in fact, what is

observed. In order to quantify deviations from symmetry (ai = a−i, where ais are the coefficients

in Eq. (8.2) that are obtained from ad) for even derivatives or anti-symmetry (ai = −a−i) for odd

derivatives we define the metric:

A =
M∑
i=1

|a−i + (−1)d+1ai|
|a−i|+ |ai|

, (8.51)

for the d-th derivative. Clearly A = 0 when the coefficients are symmetric (for even derivatives)

or anti-symmetric (for odd derivatives). Larger values of A are associated with increasingly biased

approximations. The denominator in Eq. (8.51) is included such that the contribution from all

coefficients are of the same order. This is needed because coefficients tend to decrease in magnitude

with distance from the point where derivatives are computed.

In Fig. 8.10(a) we plotA for the first (a) and second (b) derivatives, respectively forM = 2. As

before, colored areas correspond to stable conditions. The black line in Fig. 8.10(a) corresponds

to the stability region given in Fig. 8.8 for M = 2. When we are within this boundary, the value of

A for the first derivative is very small which suggests that all extra degrees of freedom are used to

minimize the spectral error for which symmetric stencils are generally better. However, as we move

outside of this area, these extra degrees of freedom are needed to satisfy the stability constraint.

By losing symmetry or anti-symmetry error increases (as seen in Fig. 8.9) but stability improves.

In fact, asymmetry for the first derivative implies that the error has both real and imaginary parts as

seen in Fig. 8.11. The biased nature of coefficients leads not only to dispersion errors (as assured by

lemma 4 with symmetric coefficients) but also to dissipation errors as <[e(η)] 6= 0. Both dissiption

and dispersion error increase as we increase the value of rc and rd.

A different behavior is observed for the second derivative whose contours of A are shown in

Fig. 8.10(b). Here we see that A is very small for any rc and rd within the limits of stability.
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The implication of this is that stability is essentially governed by the first derivative, which may

be intuitive. It is indeed common to stabilize fluid flow simulation codes by special treatment of

the convective terms while leaving diffusive terms approximated by standard central differences.

What our results show, beyond heuristic stabilization considerations is that, indeed, biasing con-

vective terms and keeping central schemes for diffusion is the spectrally optimal way of achieving

stability. They also show that, unlike [145], so-called anti-diffusion does not lead to instability

due to the compensating effect of the other term in the equation. For completion, in Fig. 8.10(c)

we show the change in optimal coefficients for the first derivative for the conditions represented

by different symbols in part (a). We clearly see how the scheme changes from a completely anti-

symmetric configuration (red circles) to a more biased set of coefficients. We emphasize this stable

configurations are optimal in spectral space.

We close this section with two remarks about the stability limits computed here. First, in terms

of computational cost we note that as a consequence of Lemma 5 for periodic domains, the opti-

mization problem in Eq. (8.50) has a total of n = Sd degrees of freedom, which is independent of

the total number of grid points N . Since the computational cost in terms of time and memory for

state-of-the-art optimization algorithms is O(n) [150], obtaining the numerical scheme represents

a small fraction of the total computational cost. Furthermore, since the time step size is typically

controlled either by rc or rd, the computational cost of solving the equation scales as N2 or N3,

respectively, making the optimization cost increasingly smaller as the problem size increases. Sec-

ond, we note that the stability limits shown in Fig. 8.9 were obtained numerically with machine

precision. Thus, caution needs to be exercised when selecting conditions in the rc-rd plane very

close to the stability boundaries.

8.2.3.5 Higher-order temporal schemes

In the previous section we illustrated how stability can be incorporated into the framework

using a first-order forward temporal discretization. However, in practice higher order schemes

are typically used. Thus, we generalize Eq. (8.40) to include higher order multi-step temporal

schemes, such as Adams-Bashforth. For this we define a vector F as a stack of the solution at L
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Figure 8.11: Dispersion error (a) and dissipation error (b) for the first derivative with M = 2 at
different values of rc and rd as marked with the same color in Fig. 8.10(a). The dashed red line
corresponds to standard second order scheme with M = 1 and the dashed magenta line (hidden)
corresponds to optimized scheme obtained for M = 2 without stability constraint.

consecutive time levels,

Fk+1 =

[
Fk+1 Fk . . . Fk−L+1

]T
. (8.52)

The evolution equation can then be written as

Fk+1 =

(
At +

∑
d

∆t

(∆x)d
βdBt

)
Fk, (8.53)
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where

At :=

A1

A2

 and Bt :=

 bT ⊗AΦ
d

0NL×N(L+1)

 , (8.54)

A1 := e1×(L+1) ⊗ IN×N and A2 :=

[
INL×NL 0NL×N

]
, (8.55)

with e =

[
1 0 . . . 0

]
. The vector bT is the vector of the coefficients of the temporal scheme

that uses L + 1 time levels. By examining Eq. (8.53) it is clear that multistep methods have the

same structure as the example in section 8.2.3.4 where, for a given ∆t, the unknowns are contained

in Bt. Thus, the stability condition can then be written as

λmax

(
At +

∑
d

∆t

(∆x)d
βdBt

)
≤ 1 (8.56)

Following the same procedure as before, this condition, and thus stability, is guaranteed by bound-

ing the 2-norm, i.e. ∥∥∥∥∥At +
∑
d

∆t

(∆x)d
βdBt

∥∥∥∥∥
2

≤ 1. (8.57)

which is the generalization for the inequality constraint Eq. (8.42).

Thus, the unified generalized formulation for arbitrary multi-step temporal discretizations con-

sists of an optimization problem that minimizes the spectral error given by Eq. (8.29) subjected

to the order of accuracy (equality) constraint Eq. (8.28), and the stability (inequality) constraint

Eq. (8.57).

The two approaches discussed in sections 8.2.3.3 and 8.2.3.4, can then be applied to the gener-

alized multi-step schemes as well. That is, we can compute maximum ∆t for given AΦ
d or we can

compute AΦ
d by fixing ∆t. We do note, however, that bounding the spectral radius by the 2-norm

can be unnecessarily restrictive for some multistep schemes especially for long temporal stencils

which leads to long vectors resulting from the stacking of increasingly large number of time levels.
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8.3 Numerical results

In order to test the theoretical results from previous sections we conducted several test on

model PDEs of increasing complexity. The focus would be in a comparison between the schemes

developed here and standard schemes. In particular, we will compare our optimized schemes

against

1. standard scheme of the same order

2. standard scheme with the same stencil size

While (a) allows us to assess how the additional degrees of freedom are used to increase spectral

accuracy and/or maintain stability, (b) provides comparison between two schemes with the same

computational cost in computing spatial derivatives since both schemes use the same stencil size.

As pointed out later on, however, optimal schemes of lower order may indeed provide a compu-

tational advantage when they are coupled with a temporal scheme of matching order to solve a

PDE.

We begin our analysis with the diffusion equation and the linear advection-diffusion equation

for which exact analytical solutions are known and the error in numerical solutions can be evalu-

ated accurately. We then turn to the non-linear advection-diffusion (Burgers) equation which is a

widely used proxy to study important features of fluid flow motion governed by the Navier-Stokes

equations. We will conclude the numerical section by a brief analysis of the wave equation as well

as a discussion of the effect on dispersion relations.

For short, we will refer to the standard and optimized finite difference schemes as SFD and

OFD, respectively in what follows.

8.3.1 Diffusion equation

Consider the equation:
∂u

∂t
= α

∂2u

∂x2
, (8.58)
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where α is the diffusivity. Since this equation is linear, different Fourier modes do not interact and

wavenumbers present in the solution are only due to them being present in the initial conditions.

The dissipative action of the second derivative causes the decay of amplitude of all modes with

time. This decay becomes more prominent as the wavenumber increases. Equation Eq. (8.58)

is solved in a periodic domain of length L = 2π. The initial condition is a superimposition of

sinusoidal waves,

u(x, 0) =
∑
k

A(k) sin(kx+ φk), (8.59)

where k denotes the wavenumber, φk is a random phase angle corresponding to each wavenumber,

and A(k) is the amplitude of each mode taken here to be represented as a power law of the form

A(k) = A(1)kσ. The value of the exponent was chosen to be σ = −1/6 which, by being small,

corresponds to a shallow spectrum representative of a solution with a wide range of energetic

modes. The reason for this is to critically assess the ability of schemes to represent accurately a

wide range of scales.

The analytical solution of Eq. (8.58) is known:

ua(x, t) =
∑

e−αk
2tA(k) sin(kx+ φk) (8.60)

For the semi-discrete analysis, we discretize Eq. (8.58) using an optimized second order scheme

(OFD2) withM = 4 in space whose coefficients can be found in Tables 8.1 and 8.2. The numerical

results so obtained are compared with standard second order (SFD2) and standard eighth order

(SFD8) in space. For the fully discrete system, we match the order of accuracy of time and space

discretization. Time and space step sizes (∆t, ∆x) are related through a diffusive CFL condition

(rd = α∆t/∆x2). Thus, we use a forward first order discretization in time for OFD2 and SFD2,

and a fourth-order five-stage Runge-Kutta scheme for SFD8.

To assess the error across scales, we compute the relative difference between the energy at

individual Fourier modes (at a given wavenumber) of the numerical and analytical solutions, that

is |û(η)2 − ûa(η)2|/|ûa(η)|2 where as before η = k∆x. In Fig. 8.12 we show this error for the
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semi-discrete system (solid lines) at a normalized time of tαk2
0 ≈ 0.002 where k0 = 1 is the

lowest wavenumber in the simulation. This small normalized time was selected to ensure that the

solution has evolved enough to present measurable errors while, at the same time, energy in high

wavenumbers is not completely dissipated. In terms of the highest wavenumber in the simulation

he normalized time is tαk2
max ≈ 20. The error for SFD2 is larger than OFD2 and grows drastically

with increasing wavenumber, illustrating the inability of low-order standard schemes to capture

rapid spatial fluctuations. However, this is clearly not the case of optimized second-order schemes.

For SFD8, the error is very small at low wavenumbers but also increases significantly at high

wavenumbers. In fact, we see that the error spans more than fifteen orders of magnitude showing

a dramatic disparity in resolution capabilities for multiscale problems.

The optimized scheme OFD2, on the other hand, shows a more uniform error distribution

across the entire wavenumber space shown. In fact, OFD2 presents much smaller errors than even

the eighth order SFD8 at high wavenumbers. By fixing the formal order the scheme to two, the

additional degrees of freedom provided are used to increase the resolution capabilities of increas-

ingly large regions of wavenumber space. The fact that OFD2 is more spectrally flat than the other

schemes stems for the choice we have made for the function γ(η) in Eq. (8.19) as unity in the

region of interest η ∈ [0, 2.5] and zero otherwise. This assigns equal weights to all wavenumbers

in that interval and, thus, leads to spectrally flat schemes. Such performance is highly desired

when one wants to study multiscale physical processes like turbulence. As we have shown in sec-

tion 8.2.2.3, however, the formulation allows for non-uniform weights which can be used to obtain

better resolution in one or more arbitrary regions of the wavenumber space.

In the figure we also include the fully-discrete system integrated with a very small time step

(rd = 0.0005) as a dashed line. This is seen to be very similar to the semi-dicrete case. However,

if we increase the time-step, that is, increase rd, then the error increases and the time discretization

errors may dominate the solution. Note that this is true both for optimized and standard schemes.
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Figure 8.12: Normalized error in spectral energy for diffusion equation. Solid lines correspond
to semi-discrete integration with different numerical schemes: SFD2 (red), SFD8 (black), OFD2
(solid magenta). Dashed magenta line is OFD2 for the fully-discrete system using forward first
order in time with rd = 0.0005.

8.3.2 Linear advection-diffusion equation

We now consider, next in complexity, the linear advection-diffusion equation which has both

the first and second derivatives in space which, as shown in previous sections, typically present

different types of errors:
∂u

∂t
+ c

∂u

∂x
= α

∂2u

∂x2
, (8.61)

In this case, Fourier modes are convected at the velocity c and dissipated at a rate determined by

the diffusivity α. Here we use the same initial condition Eq. (8.59) as in the previous section. The

analytical solution for Eq. (8.61) is given by

ua(x, t) =
∑

e−αk
2tA(k) sin(k(x− ct) + φk) (8.62)

Because of the presence of both first and second derivatives we expect the numerical solution

to be affected by both dispersion and dissipation errors. Dispersion error typically due to the first

derivative, distorts phase relations between different waves and tend to create distorted shapes. Dis-

sipation errors, as explained before, affect the amplitude of different waves. In Fig. 8.13 we show
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again the relative error of spectral energy which represents dissipation error across the wavenumber

space. The trend is similar to what we observed for the diffusion equation.
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Figure 8.13: Normalized error in spectral energy for advection-diffusion equation. Different lines
correspond to different numerical schemes: standard second order in space (red), standard eighth
order in space (black), optimized (M -4) second order in space (solid magenta) and optimized (M -
4) second order in space and forward first order in time (dashed magenta)

It is also possible to quantify dispersion errors by computing the effective propagation speed c∗

of Fourier modes at wavenumber k which can readily shown to be given by c∗(k) = arg[ût(k)/û0(k)]/kt,

where û0(k) and ût(k) are the Fourier coefficients at the beginning of the simulations and at a time

t, respectively. The ratio of the numerical speed c∗ to the actual propagation speed c is a measure

of phase (dispersive) errors. This ratio is unity if there is no phase error which implies that the

numerical solution travels with the same speed as the actual solution. In fig. 8.14(a) we show re-

sults for a normalized time of ck0t = 0.1, or in terms of the highest wavnumber in the simulation

ckmaxt ≈ 10. We see that, for SDF2, the numerical wave speed becomes much smaller compared

to the actual speed c as the wavenumber increases, resulting in large phase errors. For OFD2 the

numerical speed remains much closer to the actual speed, though with some oscillations. OFD2

is also seen to be better than even the eighth order scheme SFD8 for which, as the wavenumber

increases, the numerical speed decreases monotonically leading to very large phase error. The
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diffusion equation. Different lines correspond to different numerical schemes: SFD2 (red), SFD8
(black), semi-discrete with OFD2 in space (solid magenta) and OFD2 in space and forward first
order in time (dashed magenta).

normalization of fig. 8.14(b) highlights this trend in the phase error. In particular, it shows that,

because of the particular choice of γ(η), the numerical scheme presents a more spectrally flat

response.

A complementary assessment of the numerical performance of these schemes can be obtained

by comparing the time evolution of different Fourier modes. In the fully discrete system, order of

accuracy in time is chosen to be consistent with the spatial discretization. With a fixed diffusive

CFL, this implies that the second and eight order schemes in space need a first and fourth order

temporal discretization, respectively. In the examples below we use, thus, forward Euler (first

order) and RK4 (fourth order) for time integration.

For illustration purposes we consider waves at the extreme ends (k = 10, 100) of the wavenum-

ber interval over which the schemes have been optimized, and an intermediate wave-number

(k = 50). These correspond to η = {0.245, 1.227, 2.454}. In fig. 8.15 we show the evolution of

energy for these three wavenumbers. The decay in energy occurs at a faster rate as the wavenumber

increases. At lower η, the energy decay is well captured by all three schemes. As we increase η,

SFD2 over-predicts the energy content and fails to capture the actual dissipation. The disparity
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Figure 8.15: Evolution of space-averaged energy normalized by the initial space-averaged en-
ergy with normalized time t∗ = tc/L for three different wave-numbers (η = 0.245, 1.227, 2.454).
Different line styles correspond to different numerical schemes: SFD8 with RK4 in time (black),
OFD2 with forward Euler in time (solid magenta), SFD2 with forward Euler in time (red). The
blue dashed-star line is the analytical solution.

between SFD2 and OFD2 increases with increasing wavenumber with the latter remaining close to

the analytical solution. For very high wavenumbers η = 2.454, the second-order optimized scheme

is in fact visibly closer to the analytical solution than a standard eighth-order scheme. Clearly by

using the additional information provided by neighboring points to increase spectral accuracy in-

stead of formal order of accuracy leads to better resolved physics, especially at high wavenumbers

where dissipation is strongest.

We have also compared schemes derived with our framework with those in [137, 132]. For ex-

ample, we have computed fourth-order optimized schemes for M = 4 with the same conditions as

those in those references and found essentially the same coefficients. Thus, our general framework

can reproduce other particular results in the literature.

8.3.3 Non-linear advection-diffusion equation

Of fundamental and practical interest is the non-linear advection-diffusion equation as it resem-

bles the one-dimensional version of the Navier-Stokes equation that governs the motion of fluid

flows,
∂u

∂t
+ u

∂u

∂x
= α

∂2u

∂x2
. (8.63)
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Here u(x, t) is the velocity and α is viscosity. The non-linear term causes interaction between

Fourier modes which redistributes energy among the different scales (wavenumbers) in the solution

and produces new scales of motion. Because of the absence of a constant input of energy, the

amplitude of different modes decay with time due to the dissipative action which becomes more

effective at smaller scales.

Eq. (8.63) is solved in a periodic domain of length L = 2π, subject to initial conditions given

by Eq. (8.59). The value of the exponent in Eq. (8.59) was chosen to be σ = −5/6. This expo-

nent, which corresponds to an energy spectrum decaying as k−5/3 consistent with fully developed

turbulence, ensures that the spectrum is shallow enough to ensure high energy content at high

wavenumbers while remaining stable.

Although Eq. (8.63) is non-linear, we can apply the Cole-Hopf transformation and find an

analytical solution to the problem [151, 152]. Define a transformation variable φ, such that

u = −2α
1

φ

∂φ

∂x
, (8.64)

Then Eq. (8.63) reduces to a simple diffusion equation in φ, which can be readily solved analyti-

cally. The result in terms of the primitive variable u(x, t) is

u(x, t) =

∫∞
−∞

(x−y)I(y,x)
t

dy∫∞
−∞ I(y, x)dy

. (8.65)

where I(y, x) = e−
(x−y)2

4αt φ(y, 0). and the initial condition for φ, is computed from the initial

condition for u as

φ(x, 0) = e(−
∫ x
0
u(y,0)

2α
dy). (8.66)

While Eq. (8.65) is the exact solution, the integrals involved are computed numerically with stan-

dard integral techniques which were tested for grid convergence. This is compared with the nu-

merical solution of Eq. (8.63) using, as before, SFD2, SFD8, and OFD2. The fully discrete system

is formed with compatible temporal scheme as described in previous section. We performed grid
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Figure 8.16: Energy spectrum for the non-linear advection-diffusion equation at t∗ = t/t0 ≈
0.464. Different lines correspond to different numerical schemes: SFD8 with RK4 in time (black),
OFD2 with forward first-order in time (magenta), and SFD2 with forward first-order in time (red).
The blue dashed-star line is the analytical solution.

convergence studies and found that e.g. the space-averaged kinetic energy evolution in time be-

comes independent of resolution at N = 256. This is the resolution used for the comparisons that

follow.

In Fig. 8.16 we show the energy spectrum obtained for these three schemes along with the

analytical solution Eq. (8.65), at t/t0 ≈ 0.464, where t0 = K0/ε0 is a characteristic time scale

defined by the initial energy (K0 ≡ 〈u2
0〉/2, where angular brackets denote space averages and

a subscript 0 denotes initial conditions) and the energy dissipation rate (ε0 ≡ α〈(∂u0/∂x)2〉).

We observe that OFD2 and SFD8 agree closely with each other and with the analytical solution

throughout the range of η. Results for SFD2, however, exhibit clear departures especially at high

wavenumbers. The ability of OFD2 to capture high wavenumbers accurately is expected since, as

shown above, this scheme presents a more spectrally flat response. In fact, this optimized scheme

presents better resolution than SFD8 at very high waveumbers though the converse is true at low

waveumbers.

Because of the better small-scale resolution of OFD2, one would expect it to capture quan-

tities that depend sensitively on the small scales more accurately than SFD8 as well. An ex-
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ample of such a quantity is the dissipation rate introduced above which is proportional to the

second order moment of the velocity gradient and thus is dominated by high wavenumber ac-

tivity. This is indeed observed in Fig. 8.17(a) where we show the evolution of 〈ε〉 as the flow

decays along with the analytical value (dashed-star line) which can be computed easily by tak-

ing derivative of Eq. (8.65), 〈ε〉 = α〈(du/dx)2〉 = α〈
( ∫∞
−∞ I(y, x)dy

∫∞
−∞

(2αt−(x−y)2)I(y,x)

2αt2
dy −∫∞

−∞
(x−y)I(y,x)

t
dy
∫∞
−∞

(y−x)I(y,x)
2αt

dy
) (∫∞

−∞ I(y, x)dy
)−2

〉.We can clearly see that initially OFD2

is very close to the analytical value followed by SFD8 and SFD2. As time evolves, diffusive effects

damp high wavenumbers faster then small scales and the main contribution to dissipation moves

to lower wavenumbers where the three schemes present similar resolution capabilities. The same

conclusion holds for the more challenging higher order moments. This is seen in Fig. 8.17(b).

where we show the fourth-order moment of velocity gradients. Again OFD2 is more accurate than

second and eight order standard schemes.
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8.3.4 Wave Equation

Another equation that has been used to assess the performance of numerical schemes is the

second order linear PDE for the discription of waves [144], commonly used in acoustics and given

by,
∂2u

∂t2
= c2∂

2u

∂x2
(8.67)

where c is the propagation speed. The general solution to this equation is a standing wave formed

by the superposition of two travelling waves moving with velocity c to the right and -c to the left

respectively. Following [144], this equation can be expressed as the following system of equations,

∂u/∂t
∂v/∂t

 =

 0 1

c2∂2/∂x2 0


u
v

 . (8.68)

We solved this system for a Gaussian initial condition, u0(x) = 0.2e−64x2 , that has a narrow width

in the physical domain and therefore the spectrum spans a wide range of wavenumbers in Fourier

space. We use the optimized second-order OFD2 for the second derivative in space computed with

a weight function, γ(w) = e−w
2/256 for w = [0, 2] and γ(w) = 0 elsewhere in Eq. (8.21). This was

done to emphasize wavenumbers relevant to the problem. Because of the use of a CFL condition

given by rc = c∆t/∆x = 0.1, we also employ second-order temporal discretization (RK2). The

solution was advanced until a physical time of t = 2 for periodic boundary conditions and the

results have been plotted in Fig. 8.18. We can see that the SFD2 scheme has already developed

significant oscillations that trigger instabilities, whereas the OFD2 is comparable to both SFD8

and the exact solution. The space averaged 2-norm of the error for OFD2 is an order of magnitude

smaller than the error for SFD2. The 2-norm of the error for OFD2 scheme is comparable to

the error obtained for SFD8. Besides this, the OFD2 scheme is three times computationally less

expensive as compared to the SFD8.
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Figure 8.18: Solution of the wave-equation for t = 2 with a Gaussian initial condition. Different
lines correspond to different numerical schemes: SFD8 with RK4 in time (black), OFD2 with RK2
in time (magenta), and SFD2 with RK2 in time (red). The blue dashed-star line is the analytical
solution.

8.3.5 Space-time errors

In addition to spectral accuracy, other performance metrics have been utilized in the literature

to assess the appropriateness of a numerical scheme to reproduce physics of interest. For strongly

convective problems, such as in acoustics, the dispersion relation provides important information

about propagation speeds and characteristics. Thus, the interest in so-called dispersion-relation

preserving schemes [132].

Consider again the convection-diffusion equation:

∂u

∂t
+ c

∂u

∂x
= α

∂2u

∂x2
, c, α > 0 , (8.69)

This linear equation propagates the initial condition to the right at the speed c and because of the

diffusive term the amplitude decreases with time at a rate determined by the diffusivity coefficient

α. Using u = ûe−jωtejkx it is easy to obtain the exact dispersion relation for this equation, ω = ck−

jαk2, where k is the wavenumber. Two physically meaningful quantities related to the dispersion

relation are the phase and group velocities (cp and cg respectively) which are given by the real
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part of cp = ω/k and cg = dω/dk. Note that both are equal to c for the analytical solution. The

equivalent numerical dispersion relation is, on the other hand, given by ω∗ = c∗k − jα∗k, where

c∗ and α∗ are the numerical velocity and diffusivity respectively. One is thus interested in how the

phase and group velocities from the computed solution (c∗p and c∗g) compares to their exact values.

A convenient way to obtain dispersion relations and derived quantities is through the so-called

amplification factor G∗ defined as the ratio of Fourier modes of the numerical solution at two

consecutive time steps. In general, one can write G∗ = |G∗|e−jβ , where |G∗| is the magnitude of

the amplification factor and the phase β is related to the numerical phase speed (c∗p). Note that

the exact amplification factor is given by G = e−iω∆t. It is then readily shown that the numerical

group velocity can be written as [139],

c∗g
cg

=
1

rc∆x

dβ

dk
. (8.70)

where, as noted above, cg = c. In a dispersion-relation preserving scheme, this ratio as well as

c∗p/cp should be close to unity.

As an illustration, consider Eq. (8.69) discretized with a forward difference in time and the

spatial schemes in Table 8.1 and Table 8.2:

un+1
i − uni

∆t
=
−c
∆x

M∑
m=−M

am,1ui+m +
α

∆x2

M∑
m=−M

am,2ui+m. (8.71)

Since c∗g/cg and c∗p/cp depend on both k∆x and ω∆t, one can assess performance by measuring

the area in the k∆x − ω∆t plane in which these ratios area within some percentage of unity, say

5% [145]. The larger this area, the larger the range of wavenumbers that preserve the dispersion

relation. And since the phase errors are more prominent in convection dominated problems, we will

consider relatively small values of rd. From table 8.3, we can see that when the optimized schemes

derived above are coupled with forward difference in time, the region in the k∆x−ω∆t for which

c∗g/cg is close to unity, increases considerably for different values of rd. ForM = 4, this area is five

times larger than that for the standard second order scheme. We can also see that the ratio c∗p/cp
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is close to unity for a much larger area for optimized schemes. This is in fact not unexepected as

the objective function in the minimization problem is designed to bring the modified wavenumber

close to the actual wavenumber, resulting in more accurate derivatives leading, in general, to lower

errors in phase and group velocities. Similar results were also observed for the diffusivity ratio

α∗/α.

rd = 0 rd = 0.02
M c∗g/cg c∗p/cp c∗g/cg c∗p/cp

1(S) 0.58 1.73 0.62 1.84
2(O) 2.29 6.87 2.27 6.89
3(O) 1.82 5.13 1.87 5.34
4(O) 2.91 10.09 3.04 10.59

Table 8.3: Percentage area in the k∆x − ω∆t plane for which c∗g/cg and c∗p/cp is within 5% of
unity for rd = 0 and rd = 0.02. In parenthesis, O stands for optimized scheme, and S for standard
scheme. The schemes used here are those in Table 8.1 and Table 8.2.

We close this section by noting that although optimized schemes seem to naturally preserve

dispersion relations better, constraints on these dispersion relations can be directly included in

the general framework proposed here. For example, one can construct objective functions as in

[132] where one can emphasize either propagation characteristics or damping characteristics. In

the present framework, this can be done in such a way to ensure, at the same time, stability of the

resulting scheme. Some of the effects of such an implementation were discussed in section 8.2.2.1.

8.4 Conclusions

Standard finite difference schemes are commonly derived to maximize its formal order of accu-

racy for a given stencil. The spectral accuracy and stability of the schemes so obtained are typically

checked a posteriori. While efforts have been devoted to merge order-of-accuracy constraints and

spectral accuracy, no general mathematical framework has been put forth which, perhaps more
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importantly, introduced stability as an additional constraint. Here we develop such a framework to

derive finite differences that accounts for order of accuracy, spectral resolution and stability. The

most general formulation is given by Eq. (8.50).

While order of accuracy is defined as the power of the lowest order term in the truncation error,

spectral accuracy is defined through an objective function that minimizes the spectral error in some

specific way. This definition of this error is rather general and includes a weighting function γ(η)

which can be used to emphasize different scales relevant to the physical problem being solved.

The fusion of order-of-accuracy constraints and spectral accuracy leads to a minimization problem

which is convex and thus leads to a global minimum. The optimal coefficients, which are obtained

analytically from the minimization problem, were shown to be symmetric for the even derivatives

and anti-symmetric for the odd derivatives. This was shown to correspond to vanishing imaginary

and real part of the error e(η). This is the case, regardless of the functional form of the weighting

function γ(η). In other words, we have shown that the minimization of spectral errors leads to

symmetric or anti-symmetric stencils for even and odd derivatives respectively, regardless of which

range of wavenumber is optimized.

We have also incorporated stability into the unified framework. The semi-discrete system is

shown to depend upon the sign of the parameters βd for even d in the PDE. For the fully-discrete

system, stability is assured by requiring the spectral radius of the evolution matrix to be smaller

than unity which can in turn be bounded by its 2-norm. The latter can be written as a linear

matrix inequality. This provides an additional constraint imposed on the minimization problem

to ensure that the resulting scheme is stable. The final unified mathematical framework consists

on the minimization of an objective function representative of spectral error constrained by given

order of accuracy and stability guarantees. Due to the non-linearity inherent in this constraint, this

problem is no longer convex and therefore cannot be solved directly using standard optimization

tools. Two approaches were proposed to tackle this non-linear optimization.

In the first approach, given an optimal scheme (subjected to constraints in order and spectral

accuracy) one finds the largest ∆t for which the scheme remains stable. This approach is similar
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to standard practices in which given a scheme, one aims at finding the largest time step that as-

sures stability. Here, however, the largest time step results from a convex optimization which gives

global extrema and can be solved efficiently. Through an example, we showed that the stability

region decreased with increasing stencil size M consistent with a reduction of (artificial) dissi-

pation at higher wavenumbers. This approach illustrates how accuracy and stability are separate

requirements in the formulation: the additional degrees of freedom available for longer stencils are

used to maximize spectral resolution regardless of stability. The result is a reduced stability region

in the rd-rc space. In the second approach, the three elements are combined: optimal coefficients

are obtained with both order of accuracy and stability constraints for a given time-step ∆t. This is

a common situation when the time step is set by physical considerations (e.g. shortest time scale

in the problem). In this approach, the additional information provided by neighboring grid points

is used to extend stability which make the use of much larger time-step feasible with spectral error

comparable to the standard schemes. We showed that explicit schemes both in time and space, can

remain stable for very large time steps. This can provide significant advantages for massively par-

allel simulations for which implicit schemes become increasingly challenging at large processor

counts.

Several numerical results were presented to illustrate the numerical performance against stan-

dard finite differences of different orders. In particular, we compared optimized schemes against

standard schemes of the same order and the same stencil size. While the latter presents the same

computational cost in terms of spatial derivatives, the fully discrete system may be less expensive

if the order of the temporal discretization is to be compatible with spatial order. Introducing the

effect of temporal discretization in the unified framework presented here is part of our own ongo-

ing research. Another application of the framework presented here is the inclusion of more general

boundary conditions. Although we have limited our results to periodic domains, the framework

can straightforwardly be extended to solve problems with non-periodic boundary conditions. The

overall minimization problem and the constraints remain the same but the structure of some matri-

ces has to be changed to restrict the stencil used close to boundaries. In particular, the first few and
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last elements of Ad in Eq. (8.27) will be biased so that only grid points to the right and left of the

boundary are used respectively [153]. The size of each stencil as well as the order or accuracy can

be set individually through the corresponding entries in Xd in Eq. (8.28). As commonly done in

simulations of complex flows, a progressive reduction of order of accuracy close to the boundary

can thus be easily accomodated in this formulation. The stability constraint is identical to that

presented for periodic domains. Thus, here too Eq. (8.50) will yield spectrally optimal schemes

for a given ∆t and Eq. (8.47) will yield the maximum ∆t for which a spectrally optimal scheme

remain stable.

In summary, we integrated order of accuracy, spectral resolution and stability in the derivation

of finite differences in a unified framework. We have shown specific properties of the resulting

schemes in terms of the kind of error expected. The coupling of these three critical elements in

a unified formulation allows one to decouple requirements in terms of e.g. order of accuracy and

spectral accuracy. This coupling also manifests itself in the trading of accuracy with stability.

We showed, for example, how spectrally optimal finite differences bias odd order derivatives to

maintain stability at the expense of accuracy. Other tradeoffs can be analyzed similarly within the

framework presented here.

Appendix 8.A: Imaginary component of the optimal spectral error e(η) is zero for even

derivatives

Proof. The spectral error for even derivative is

e(η) =
(
CT (η)ad − (−1)qηd

)
+ jS(η)Tad.

Therefore,

‖e(η)‖2
L2

=

∫ π

0

γ(η)
[(

CT (η)ad − (−1)qηd
)2

+ (S(η)Tad)
2
]
dη,

or
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min
ad
‖e(η)‖2

L2
= min

ad

∫ π

0

γ(η)
[(

CT (η)ad − (−1)qηd
)2
]
dη + min

ad

∫ π

0

γ(η)
(
S(η)Tad

)2
dη.

Since the cost function is sum of squares, it is minimized if and only if individual terms are mini-

mized.

Without loss of generality, we can write ad := asd + aasd , where asd is symmetrical about the

central element, and aasd is anti-symmetric about central element. Therefore,

ST (η)ad = ST (η)(asd + aasd ) = ST (η)aasd ,

CT (η)ad = CT (η)(asd + aasd ) = CT (η)asd,

since ST (η)asd = 0 for symmetric coefficients and CT (η)aasd = 0 for anti-symmetric coefficients.

Consequently,

min
ad

∫ π

0

γ(η)
[(

CT (η)ad − (−1)qηd
)2
]
dη + min

ad

∫ π

0

γ(η)
(
S(η)Tad

)2
dη,

= min
asd

∫ π

0

γ(η)
[(

CT (η)asd − (−1)qηd
)2
]
dη + min

aasd

∫ π

0

γ(η)
(
S(η)Taasd

)2
dη.

Therefore, the two optimizations are independent of each other. For a positive real valued function

γ(η), the second term is zero if and only if aasd = 0. Consequently, for L2 optimal spectral

errors, the imaginary part of the spectral error is zero for even derivatives, and the optimal ad is

symmetrical about central element.

We next analyze the feasibility of the order constraint with aasd = 0. Let Ts := (I + J)/2, and

Tas := (I − J)/2, where J represents anti-diagonal matrix. Wth these transformation matrices,

we can write asd := Tsad and aasd := Tasad. Therefore,

aTdXd = (asd + aasd )TXd = (asd)
TXd = aTdTT

s X,
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and the order accuracy constraint can be written as

aTdTT
s X = yd.

We observe that the structure of Xd is such that the odd columns are symmetric and the

even columns are anti-symmetric, about the central element. Therefore, for the even columns,

TT
s (Xd)i = 0. Noting that the even columns of yd are zero, we can conclude that the constraints

corresponding to the even columns are trivially satisfied for symmetric coefficients. For the odd

columns of Xd, we observe that TT
s (Xd)i = (Xd)i. That is, the constraints corresponding to the

odd columns are unaffected. Consequently, if aTdXd = yd is feasible, then aTdTT
s X = yd is also

feasible.

Appendix 8.B: Real component of the optimal spectral error e(η) is zero for odd derivatives

Proof. The proof follows similarly to above. The spectral error in this case is

e(η) := CT (η)ad + j
(
ST (η)ad − (−1)qηd

)
.

Using the same decomposition for ad as above, we get

min
ad
‖e(η)‖2

L2
= min

ad

∫ π

0

γ(η)
(
CT (η)ad

)2
dη + min

ad

∫ π

0

γ(η)
[
ST (η)ad − (−1)qηd

]2
dη,

min
asd

∫ π

0

γ(η)
(
CT (η)asd

)2
dη + min

aasd

∫ π

0

γ(η)
[
ST (η)aasd − (−1)qηd

]2
dη.

Using similar arguments as above, the optimal solution will guarantee asd = 0 and consequently,

the real part of the spectral error is zero for odd derivatives. With asd = 0, the optimal ad will be

anti-symmetric about its central element.

The proof for feasibility of the accuracy order constraint, with asd = 0, is similar to the feasi-

bility proof for the even derivative.
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Appendix 8.C: Construction of coefficient matrix AΦ
d

Proof. Define a shift operator Φk, which is an N ×N matrix, with elements

Φkij := δ((i− j − k) mod N), (8.72)

where δ(·) is the Kronecker delta function defined as

δ(i) =

 0 if i 6= 0,

1 if i = 0.

For a column vectors, the operator Φk cyclically shifts the elements down, k times. For example,

for

v :=



1

2

3

4


,Φ1v =



4

1

2

3


,

where

Φ1 := δ((i− j − 1) mod 4) =



0 0 0 1

1 0 0 0

0 1 0 0

0 0 1 0


.

For a row vector, the operator cyclically shifts the elements left, k times. That is,

vT :=

(
1 2 3 4

)
,vTΦ1 =



2

3

4

1


,
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From the definition of vector F and F(d)

F :=


f1

...

fN

 , and F(d) :=


f

(d)
1

...

f
(d)
N

 . (8.73)

we can write the finite difference approximation at the i-th grid point as

f
(d)
i =

1

(∆x)d
aTi,dTΦMmax+i−1F,

for i = {1, · · · , N}, and T ∈ RS×N is a transformation matrix defined by

T :=

[
0S×(Mmax−M) IS 0S×(Mmax−M)

]
. (8.74)

The matrix TΦMmax+i−1 is a linear operator, or simply a mask, that picks the correct elements

from F in determining the derivative at the ith location.

Now, let AΦ
d be the vertical stacking of aTi,dTΦMmax+i, for i = {1, · · · , N}, i.e.

AΦ
d :=


aT1,dTΦMmax

...

aTN,dTΦMmax+N−1

 :=
N∑
i

δiδ
T
i AdTΦMmax+i−1, (8.75)

where δi ∈ Rn is a vector whose kth element is defined by δ(i− k), i.e. the ith element of δi ∈ Rn

is equal to one and the rest are zero. The vector δi in Eq. (8.76) is defined for n = N .

The definition of AΦ
d can be compactly written as

AΦ
d = M1 (IN ⊗Ad) M2, (8.76)
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where

M1 :=

[
δ1δ

T
1 · · · δNδTN

]
, M2 :=


TΦMmax

...

TΦMmax+N−1

 . (8.77)

Equation Eq. (8.76) shows that AΦ
d is linear in Ad.

Thus, the finite-difference approximation for the dth derivative for all the grid points is

F(d) =
1

(∆x)d
AΦ
d F. (8.78)
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9. CONCLUSIONS AND FUTURE WORK

9.1 Conclusions

A vast number of natural and engineering phenomena are governed by complex differential

equations that resist analytical treatment. One such ubiquitous phenomenon is fluid turbulence,

governed by the Navier-Stokes (NS) equations. These equations have been the subject of experi-

mental validation, and theoretical and numerical exploration for over a century. Over the last four

decades direct numerical simulations have become an indispensable tool for improved insights into

turbulence. These computations are challenging due to the characteristic wide range of unsteady

spatio-temporal scales of turbulence. This places stringent and expensive requirements on high

fidelity simulations and rendering them unachievable at realistic conditions. Parallel computing

which employs a large number of processors for computation is a major advance in mitigating

this challenge. But, virtually all current approaches require frequent communications and syn-

chronization between processors which becomes a bottleneck in performance and scalability to

high processor counts. On the next-generation exascale computers, envisioned to increase the

computational power by three orders of magnitude over current state-of-the-art supercomputers,

communication will likely be an insurmountable obstacle with current numerical approaches. It

is now a common consensus that in order to scale to these exascale machine, paradigm shifts and

co-design at both hardware and software levels are required. To this end, we focus on numeri-

cal methods and computational algorithms that reduce communications and synchronizations to

perform the so-called asynchronous simulations of complex phenomena including turbulence.

The current effort is based on previous work [154] which was mainly confined to the derivation

of asynchrony-tolerant (AT) schemes. Building up on that, we first assess the important numeri-

cal properties of these schemes, including coversation, stability, and spectral accuracy. We note

that since the coefficients of AT schemes depend on the delay seen at the processor boundary, the

schemes used in an actual simulation are time varying. Because the scheme changes, the standard
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von Neumann analysis for stability can not be used for the AT schemes, even in principle. More-

over, we rigorously prove that the well-established standard von Neumann analysis, in fact fails

even for some of the widely used synchronous schemes. We overcome these limitations through

our proposed generalized von Neuamann analysis that is also used to assess the spectral accuracy

of fully-discrete systems. We show that, despite common belief, the modified wavenumber of spa-

tial schemes can vary with time-step even in the absence of asynchrony. This has implications on

the numerical accuracy of multi-scale processes.

Following extensive analysis of the properties of AT schemes, we developed an asynchronous

three-dimensional compressible Navier-Stokes solver that facilitiates relaxations of communica-

tions and synchronizations. The solver uses two proposed algorithms to effectively introduce de-

lays at processor boundaries. These are the synchronization avoiding algorithm (SAA) and the

the communication avoiding algorithms (CAA) that lead to machine-dependent random delays

and deterministic periodic delays, respectively. We use this solver to verify the efficacy of AT

schemes in resolving the important small and large scale characteristics of compressible homoge-

neous isotropic turbulence. We also benchmarked the performance of our asynchronous solver on

TACC supercomputers and showed that the asynchronous algorithms have better scaling than their

synchronous counterpart, primarily due to reduction in communication time. Several steps were

also taken to identify and eliminate major bottlenecks in the solver through profiling tools, such as

vTune Amplifier, TAU and PAPI. We extended the AT framework to investigate the effect of data

asynchrony on reacting flows with one-step and detailed reactions mechanisms. Here again we

observed the high numerical accuracy of AT scheme, both qualitatively and quantitatively. We also

derived, for the first time, asynchrony-tolerant weighted essentially non-oscillatory schemes (AT-

WENO) for problems with shock and discontinuities. The excellent accuracy of these schemes is

demonstrated through the propagation of detonation wave.

Finally, with the ultimate goal to derive new optimal AT schemes we developed a unified frame-

work for the derivation of finite difference schemes [155]. We show explicit trade-offs between or-

der of accuracy, spectral accuracy and stability under this unifying framework. We also concretely
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proved some properties relating to the nature of the coeffiicients (symmetric/anti-symmteric) of

standard finite difference schemes, which albeit well-known have never been rigorously proved

before.

9.2 Future Research Directions

We finish this dissertation by pondering on some plausible future research directions that can

stem out from our present work. This includes extension of our framework for deriving optimal

synchronous spatial schemes to a more a general framework that can be used to obtain optimal

asynchrony-tolerant schemes. Besides numerical methods, the other major part of future work

includes optimization of the performance of the code. This included restructuring the computations

intensive modules of the code, new and more efficient data strutures and wiser use of asynchrony.

Each of these directions are described next.

9.2.1 Numerical methods

• In our communication avoiding algorithms, a larger chunk of data needs to be sent and

received at every communicating step since the AT schemes use multiple consecutive time-

levels. While the CAA reduces the volume of communications by reducing the frequency

of communications, further reduction in the communication time in this algorithm can be

achieved through new AT schemes which use only one time-level information from the

neighboring processor and multiple delayed levels at internal points instead. Once exam-

ple of such a second order scheme for second derivative is,

∂2u

∂x2

∣∣∣∣n
i

≈
k̃un−k̃−1

i−1 − 2k̃un−k̃−1
i + (k̃ + 1)un−k̃i+1 − 2uni + uni+1

∆x2(k̃ + 1)
, (9.1)

where instead of using multiple time levels at the buffer points, multiple time levels are used

at the internal points. The size of message in CAA for these new AT schemes is the same as

that for the algorithms which communicate at every time step. The effect of these schemes

on the performance and accuracy needs to be explored.
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• The stability constraint used in our optimization work ensure that solutions are non-growing

and are applied to the entire PDE which may involve terms of different characteristics (con-

vection, diffusion, etc). While this type of constraint is standard practice, it seems possible to

extend the framework to other approaches that can capture other details of the error dynamics

[156], such as group velocity. Furthermore, our current focus was on spatial discretization

with a given temporal scheme which could be of arbitrary order. Because of the potential

additional effects when coupling space-time operators as is also shown in Chapter 3, it is a

natural next step to optimize spatial and temporal schemes simultaneously. Unfortunately,

this coupled optimization problem yields non-linear objective functions [144] which makes

the mathematical problem much more challenging. While we have tried approaches, such

as linearization of the constraints and objective function, a more unified theory for deriving

optimal AT schemes requires more work.

• Although not shown here, from some of our recent work we identified another compua-

tionally expensive problem of interest that pretains to propagation of electromagnetic wave

through compressible turbulence. The simplified governing equation, which is the paraxial

approximation of the Maxwell’s equations, has complex coefficients, could only be stablized

when implicit schemes are used for propagation. Since implicit schemes require solving a

system of linear equations, the scalability of the solver is severely limited. The extension

of the optimization framework for deriving stable explicit (synchronous and asynchrony-

tolerant) schemes for such a problem will be extremely useful for simulations of the paraxial

equations at conditions and scales of interest.

9.2.2 High Performance Computing

• In this work CAA and SAA were presented as two separate algorithms, however, a combina-

tion of the two can also be used. This will potentially lead to further reduction in overheads

associated with the communication and synchronization.

• There are generalizations that can be introduced where the maximum delay level (L) is dif-
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ferent across different regions in the domain, depending upon the level of accuracy required.

This does require critical analysis of load balancing to ensure that the processors synchroniz-

ing more often (smaller L), have less computational work, so that the synchronization time

in these processors does not affect the total execution time.

• From the performance analysis, we observed that while the asynchronous algorithms showed

an improved scaling compared to the standard synchronous algorithm, the cache miss rate

for the former was found to be higher. Though this miss rate reduces as the processor count

is increased, optimization in implementation will help further push the limits of scaling and

reduce the overall computation time.

• Another aspect of using asynchronous computations on Exascale machines is to leverage

the high flop-rate of GPUs. In hybrid computing architectures, GPUs are expected to han-

dle most of the computations, while CPUs facilitate communications between PEs. With AT

schemes, GPUs do not have to wait on the CPUs for the most updated data from the neighbor-

ing PEs. This would enhance utilization of GPUs without affecting numerical accuracy or in-

troducing idling penalties. A similar approach has been utilized in [127] where asynchronous

copies between CPUs and GPUs are used to overlap computations and data movement, but

delayed data with asynchronous computations have not been used. At a compiler level, new

asynchronous run-time systems that are capable of dynamic task parallelism are being de-

veloped to improve the computation-communication overlap [128, 129, 130, 157, 158]. The

AT schemes, which relax synchronization at a mathematical level, can be coupled with such

programming models to create highly scalable PDE solvers.

• Asynchrony has also been utilized in [131] for scalable resilience to soft faults. However, in

[131] all derivatives are still computed with the most updated data but the computations are

re-arranged to ensure maximum overlap between communications and computations. The

asynchronization approach utilized in [131] coupled with mathematical level asynchrony

with AT schemes can be an effective in pushing the scaling wall. Furthermore, since AT
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schemes do not need the updated data, these schemes can also be used to recover node

failures without halting the simulation altogether.

Taken together, with optimal-asynchrony-tolerant numerical methods used in a performance

optimized flow solver, we can perform scalable, fast and high-fidelity simulations of complex phys-

ical processes that are governed by Partial Differential Equations (PDEs). This includes extending

the compressible DNS capability to perform simulations at unprecedented range of flow parame-

ters for new insights into fundamental physics of turbulence. The resulting optimal-asynchronous

framework can also be leveraged for simulations of turbulent combustion, shock-turbulence inter-

actions and turbulent boundary layer, where different levels of asynchrony and numerical methods

can be used in different regions in the domain.
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APPENDIX A

ASYNCHRONY-TOLERANT SCHEMES

(Derivative, Boundary Scheme
Order)

(2,4) Left

1
2

(k̃2 + 3k̃ + 2)
(
−uni+2 + 16uni+1 − 30uni + 16un−k̃i−1 − u

n−k̃
i−2

)
/12∆x2

−(k̃2 + 2k̃)
(
−uni+2 + 16uni+1 − 30uni + 16un−k̃−1

i−1 − un−k̃−1
i−2

)
/12∆x2

+ 1
2

(k̃2 + k̃)
(
−uni+2 + 16uni+1 − 30uni + 16un−k̃−2

i−1 − un−k̃−2
i−2

)
/12∆x2

(2,4) Right

1
2

(k̃2 + 3k̃ + 2)
(
−un−k̃i+2 + 16un−k̃i+1 − 30uni + 16uni−1 − uni−2

)
/12∆x2

−(k̃2 + 2k̃)
(
−un−k̃−1

i+2 + 16un−k̃−1
i+1 − 30uni + 16uni−1 − uni−2

)
/12∆x2

+ 1
2

(k̃2 + k̃)
(
−un−k̃−2

i+2 + 16un−k̃−2
i+1 − 30uni + 16uni−1 − uni−2

)
/12∆x2

(1,4) Left

1
2

(k̃2 + 3k̃ + 2)
(
−uni+2 + 8uni+1 − 8un−k̃i−1 + un−k̃i−2

)
/12∆x

−(k̃2 + 2k̃)
(
−uni+2 + 8uni+1 − 8un−k̃−1

i−1 + un−k̃−1
i−2

)
/12∆x

+ 1
2

(k̃2 + k̃)
(
−uni+2 + 8uni+1 − 8un−k̃−2

i−1 + un−k̃−2
i−2

)
/12∆x

(1,4) Right

1
2

(k̃2 + 3k̃ + 2)
(
−un−k̃i+2 + 8un−k̃i+1 − 8uni−1 + uni−2

)
/12∆x

−(k̃2 + 2k̃)
(
−un−k̃−1

i+2 + 8un−k̃−1
i+1 − 8uni−1 + uni−2

)
/12∆x

+ 1
2

(k̃2 + k̃)
(
−un−k̃−2

i+2 + 8un−k̃−2
i+1 − 8uni−1 + uni−2

)
/12∆x

Table A.1: Fourth-order asynchrony-tolerant (AT) schemes for left and right boundary used in
numerical simulations for first and second derivative.
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(Derivative, Boundary Scheme
Order)

(2,6) Left

1
6

(k̃3 + 6k̃2 + 11k̃ + 6)

(
2un

i+3−27un
i+2+270un

i+1−490un
i +270u

n−k̃
i−1 −27u

n−k̃
i−2 +2u

n−k̃
i−3

)
180∆x2

− 1
2

(k̃3 + 5k̃2 + 6k̃)

(
2un

i+3−27un
i+2+270un

i+1−490un
i +270u

n−k̃−1
i−1 −27u

n−k̃−1
i−2 +2u

n−k̃−1
i+3

)
180∆x2

+ 1
2

(k̃3 + 4k̃2 + 3k̃)

(
2un

i+3−27un
i+2+270un

i+1−490un
i +270u

n−k̃−2
i−1 −27u

n−k̃−2
i−2 +2u

n−k̃−2
i+3

)
180∆x2

− 1
6

(k̃3 + 3k̃2 + 2k̃)

(
2un

i+3−27un
i+2+270un

i+1−490un
i +270u

n−k̃−3
i−1 −27u

n−k̃−3
i−2 +2u

n−k̃−3
i+3

)
180∆x2

(2,6) Right

1
6

(k̃3 + 6k̃2 + 11k̃ + 6)

(
2u

n−k̃
i+3 −27u

n−k̃
i+2 +270u

n−k̃
i+1 −490un

i +270un
i−1−27un

i−2+2un
i−3

)
180∆x2

− 1
2

(k̃3 + 5k̃2 + 6k̃)

(
2u

n−k̃−1
i+3 −27u

n−k̃−1
i+2 +270u

n−k̃−1
i+1 −490un

i +270un
i−1−27un

i−2+2un
i−3

)
180∆x2

+ 1
2

(k̃3 + 4k̃2 + 3k̃)

(
2u

n−k̃−2
i+3 −27u

n−k̃−2
i+2 +270u

n−k̃−2
i+1 −490un

i +270un
i−1−27un

i−2+2un
i−3

)
180∆x2

− 1
6

(k̃3 + 3k̃2 + 2k̃)

(
2u

n−k̃−3
i+3 −27u

n−k̃−3
i+2 +270u

n−k̃−3
i+1 −490un

i +270un
i−1−27un

i−2+2un
i−3

)
180∆x2

(1,6) Left

1
6

(k̃3 + 6k̃2 + 11k̃ + 6)
(
uni+3 − 9uni+2 + 45uni+1 − 45un−k̃i−1 + 9un−k̃i−2 − u

n−k̃
i−3

)
/60∆x

− 1
2

(k̃3 + 5k̃2 + 6k̃)
(
uni+3 − 9uni+2 + 45uni+1 − 45un−k̃−1

i−1 + 9un−k̃−1
i−2 − un−k̃−1

i+3

)
/60∆x

+ 1
2

(k̃3 + 4k̃2 + 3k̃)
(
uni+3 − 9uni+2 + 45uni+1 − 45un−k̃−2

i−1 + 9un−k̃−2
i−2 − un−k̃−2

i+3

)
/60∆x

− 1
6

(k̃3 + 3k̃2 + 2k̃)
(
uni+3 − 9uni+2 + 45uni+1 − 45un−k̃−3

i−1 + 9un−k̃−3
i−2 − un−k̃−3

i+3

)
/60∆x

(1,6) Right

1
6

(k̃3 + 6k̃2 + 11k̃ + 6)
(
un−k̃i+3 − 9un−k̃i+2 + 45un−k̃i+1 − 45uni−1 + 9uni−2 − uni−3

)
/60∆x

− 1
2

(k̃3 + 5k̃2 + 6k̃)
(
un−k̃−1
i+3 − 9un−k̃−1

i+2 + 45un−k̃−1
i+1 − 45uni−1 + 9uni−2 − uni−3

)
/600∆x

+ 1
2

(k̃3 + 4k̃2 + 3k̃)
(
un−k̃−2
i+3 − 9un−k̃−2

i+2 + 45un−k̃−2
i+1 − 45uni−1 + 9uni−2 − uni−3

)
/60∆x

− 1
6

(k̃3 + 3k̃2 + 2k̃)
(
un−k̃−3
i+3 − 9un−k̃−3

i+2 + 45un−k̃−3
i+1 − 45uni−1 + 9uni−2 − uni−3

)
/60∆x

Table A.2: Sixth-order asynchrony-tolerant (AT) schemes for left and right boundary used in nu-
merical simulations for first and second derivative.
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