SOFTWARE-DEFINED WIRELESS NETWORK FOR REAL-TIME

SENSING

An Undergraduate Research Scholars Thesis

by
AUSTIN M. KEITH

Submitted to the LAUNCH: Undergraduate Research office at
Texas A&M University
in partial fulfillment of requirements for the designation as an

UNDERGRADUATE RESEARCH SCHOLAR

Approved by
Faculty Research Advisor: Dr. I-Hong Hou

May 2022

Major: Electrical Engineering

Copyright © 2022. Austin M. Keith.

RESEARCH COMPLIANCE CERTIFICATION

Research activities involving the use of human subjects, vertebrate animals, and/or
biohazards must be reviewed and approved by the appropriate Texas A&M University regulatory
research committee (i.e., IRB, IACUC, IBC) before the activity can commence. This requirement
applies to activities conducted at Texas A&M and to activities conducted at non-Texas A&M
facilities or institutions. In both cases, students are responsible for working with the relevant
Texas A&M research compliance program to ensure and document that all Texas A&M
compliance obligations are met before the study begins.

I, Austin M. Keith, certify that all research compliance requirements related to this
Undergraduate Research Scholars thesis have been addressed with my Research Faculty Advisor
prior to the collection of any data used in this final thesis submission.

This project did not require approval from the Texas A&M University Research

Compliance & Biosafety office.

TABLE OF CONTENTS

Page

S 1 2 ¥ AN 3 PSP 1

DEDICATION ...ttt b ettt s e s et e b e be st e e bt e beebe e st e e e nbesbesbesbeanearenneas 3

ACKNOWLEDGEMENTS ...ttt ettt ba e e e et et e sresnenreenaeneens 4

NOMENCLATURE ..ottt ettt b et b et se et e b e sbesbesbesteasenreaneas 5
CHAPTERS

1. INTRODUCTION ..ottt sttt b et e sb e bt e eseeneeneas 6

1.1 Traditional NEtWOIKINGccooiiiiiiieiieie ettt ae s 6

1.2 Software-Defined NetWOrKingccccoeiiiiiiieiiiie e 8

1.3 Software-Defined RaGIO.........ccooiiiiiiieiiiie e 10

I O0] 141 01 [(3} V£S) (=11 RSSSSPS 12

2. IMETHODS ...ttt ettt et e st e beebeeRe e e et e ntenbeenenreeneeneenes 13

2.1 SDN CONSIIUCTION. ...ttt bbbttt bbb 13

2.2 SDR COMMUNICALION......ciiiitieieitie ittt ee s sre e e e e sbeansesreenreenee e 15

3. RESULTS Lttt bbbt bbbt bbb ettt be st e b e neene s 24

3.1 Operation of the Complete SYSTEM.........ccviiiiiiiieie e 24

3.2 Effectiveness of AIGOrithmsScoovoeiiiii i 25

4. CONCLUSIONottt ettt ettt et e testestesteesaesa e st et e stestesressaaneeneenes 29

4.1 Effectiveness 0f SDN-SDR NEWOIKccooviiiiiiiiiiiienineseeie e 29

4.2 Real-World APPHICAIONSccuoiiiiiiiie i 30

REFERENGCESottt ettt b et b et n et e b e sbesbeabeabeeneene e 33

APPENDIX A: PYTHON SOFTWARE WRITTEN FOR COMMUNICATIONcccovenee. 35

ABSTRACT

Software-Defined Wireless Network for Real-Time Sensing

Austin M. Keith
Department of Electrical & Computer Engineering
Texas A&M University

Research Faculty Advisor: Dr. I-Hong Hou
Department of Electrical & Computer Engineering
Texas A&M University

Traditionally in the field of electronics, hardware is designed, developed, and improved
on in various methods, whether it be increased storage capabilities or smaller models. Software
applications lagged because of the hardware requirements to operate software, but increasingly,
software tools are replacing technology that relied heavily on hardware components where
applicable because of the abilities to both modify the technology easily and to consolidate tasks
in an automated fashion. This research focuses on the networking space and aims to replace
hardware architecture with software, as well as write algorithms to intelligently allocate
incoming data.

To orchestrate this architecture and the algorithms, the modern tools of software-defined
networking and software-defined radios were combined. This created a network capable of
transmitting packets over-the-air, with the network itself having separated the data plane and
control plane in the software-defined networking standard. The control plane is written entirely
in software, allowing modifications to be made across the whole system relatively simply. In this
research, two software-defined radios were used to represent a base station and a field multi-

1

sensor collector respectively. The field sensor transmits real sensor data from a web database that
represents readings of the resistance of a gas over time from fourteen sensors. The base station
radio can only receive a single packet at a time from the secondary radio due to bandwidth
constraints, and so, using a software-defined controller, the various scheduling policies are
compared to develop the most efficient means of processing the individual data packets.

The final algorithm started from basic round-robin before evolving into weighted round-
robin, with measurable results in terms of root-mean-square error values for each sensor and one
for the total transmission period. The weighted round-robin was upgraded a step further to have
real-time weight updates at regular intervals based on the accuracy of prediction for the next
value in the sequence, per sensor. The contrast between the three stages of development for the
round-robin algorithms is plain to see, with steady improvement between basic round-robin and
weighted round-robin, and drastic improvement between weighted round-robin and the smart
algorithm. The results from the research project yield a final draft of communication between the
software-defined radios that produced an effective and efficient manner of software-defined

networking.

DEDICATION

To my family, for supporting me continuously. To my fiancé, for always being there. To my

friends, for keeping me focused.

ACKNOWLEDGEMENTS

Contributors

I would like to thank my faculty advisor, Dr. I-Hong Hou, and my graduate student
colleagues, Sigi Fan and Khaled Nakhleh, for their guidance and support throughout the course
of this research.

Thanks also go to my friends and colleagues and the department faculty and staff for
making my time at Texas A&M University a great experience.

Finally, thanks to my parents for their support and encouragement and to my fiancé for
her patience and love.

The B210 software-defined radios used for over-the-air communication were provided by
the Wright Brothers Institute and the Air Force Research Laboratory for participating in the
Beyond 5G University Challenge for 2021-2022.

All other work conducted for the thesis was completed by the student independently.
Funding Sources

No sources for funding were used for the duration of this research.

NOMENCLATURE

USRP — Universal Software Radio Peripheral
SDN - Software-Defined Network

SDR - Software-Defined Radio

GUI — Graphical User Interface

RF — Radio Frequency

GMSK - Gaussian Minimum Shift Keying
GHz — Gigahertz

RMSE — Root-Mean-Square-Error

UDP — User Datagram Protocol

WRR — Weighted Round-Robin

1. INTRODUCTION

The goal of this project is to have a software-defined network that takes advantage of two
software-defined radios, one working as a base station and the other representing a series of field
sensors, to transmit a variety of sensor data over-the-air. Because of bandwidth constraints, only
a single data packet can transmit through the radios at a single instant of time. Algorithms
written for the controller of the network allocate the incoming sensor data efficiently to reduce
the time it takes to process the incoming data. Because much of the operation of the entire
system can be modified through the controller software, the network can switch between various
scheduling priorities to demonstrate the differences in efficiency between them.

1.1 Traditional Networking

To begin the understanding of this research project, one must understand how a
traditional network works as well as the issues surrounding it. Networking itself is simply a
connection of two or more devices that allows them to share information with each other. The
number of connections and geographical range of the connections determines the categorization
of the network, but there are common elements between all traditional network types. Each are
built on connections between computers that are created with the use of switches and routers, as
shown in Figure 1.1 below. Switches ensure that data packets are communicated and sent
properly within a single network, while routers ensure that data packets are correctly transmitted
between networks themselves. This creates a hierarchy of networks, routers, and switches that
are highly dependent on physical hardware for the establishment of the network and for future

modifications.

Router

Server

Figure 1.1: Network Components

An example of such a network on the larger side of the scale is the Internet, which is a
giant web of interconnected networks so that any device can send information to any other
device. Other examples include university campus networks, a network of computers in an office
building, and a network of gamers playing online together. Each of these examples is highly
dependent on hardware, limiting its flexibility and increasing its complexity as the number of
users join.

1.1.1 Problems with Traditional Networking

Some of the issues associated with this style of network building and amendment have
been hinted at. Most of the current problems with traditional networking can be categorized
under either an issue of complexity or an issue of inefficiency.

The immediate problem with traditional networking is that the number of users has
grown at a tremendous rate in the last few decades. Both the number of people that own devices
has increased as well as the number of devices that a single individual owns. Regardless of the

networks that these devices are connected to, the overall complexity of networking has increased

dramatically because of the number of connections that needs to be maintained has increased
dramatically. Each additional connection requires the use of hardware to either make physical
connections (with a cable) or virtual connections (with Wi-Fi, for example). This creates an
enormous number of switches, routers, and other network architecture hardware that must be
independently maintained to ensure the network operates as intended. Additionally, any changes
in the way that devices are connected, including emergency changes if a critical part of the
network fails, are slow to happen and difficult to execute. Network engineers must be well-
trained and staffed at many companies just to accomplish this difficult work.

The inefficiencies of traditional networking may be obvious with many disciplines of
technology turning towards software, even in fields that were dominated by hardware in the past.
The limitations on flexibility with physical hardware in the environment of increased complexity
create problems in areas of high traffic in a network in a live setting, and the potential for
network connections to adapt in a highly efficient manner to the information that they
communicate is quite high. However, even in an offline setting, changes to a network are limited
because multiple parts of the network must be individually modified. The problem of multiple
network engineers changing different switches and routers without communicating and causing
conflicts with the network connections also occurs.

1.2 Software-Defined Networking

The newer type of networking that is starting to be employed is known as software-
defined networking, or SDN. SDN differs largely from the traditional network due to an abstract
layer of computer architecture known as the control plane which is separated from the data plane
in SDN. Before, the data plane and control plane were paired together, meaning in practicality

that each fixed piece of hardware in the network that is responsible for sending packets was

independently operated. With SDN, the control plane is separated into a centralized unit known
as the controller, and the devices responsible for communication are directed by the controller, as
shown in Figure 1.2. In this manner, a proper analogy is that traditional network architecture is
orchestrated like a pack of wolves, where each individual animal makes decisions so that the
pack can survive. A similar analogy can be made for SDNs which operate like a beehive, with

individual worker units that have a hive mind and adapt to new situations collectively.

Control Plane

Control Plane Control Plane
Data Plane 7 Data Plane —
Data Plane L ata Plane
lControI Plane ’
Data Plane ‘q
| Data Plane | rd

Figure 1.2: Control Plane Separation

Because the SDN controller is programmable and runs the network, separating the
control plane and data plane has huge benefits to networking and addresses many of the core
issues defined with traditional networking.

1.2.1 Benefits with SDN

There are many benefits associated with switching from a traditional network to a
software-defined network. The first and most obvious benefit is that network operation is
controlled by a single, programmable unit. This means that, rather than a network engineering
modifying switches and packets at an individual level, a single network engineer can write code
for a controller that modifies the entire system. This greatly reduces the complexity of managing

a given network. Adjustments are automatically made within the network to adapt to the new

communication methods written in the controller software. The increased level of flexibility this
provides cannot be understated. Adding multiple devices to a network becomes much simpler as
the controller adjusts virtual switches and routers to accommodate new users. Not only can a
single network be changed drastically in a short period of time, but an SDN can be repurposed
for multiple different functions as well. Established virtual networks that are no longer needed
can be modified to serve a new function without the steps necessary in traditional networking to
rebuild the architecture.

Additionally, maintenance of a network using SDN technology is much simpler. The
controller operates by changing the connection lines and general network architecture to address
the conditions set by an engineer within the software. This allows automatic readjustments in
connections between devices when errors occur. Network failures at critical traffic points are no
longer a major concern while the network is manually repaired as done with traditional
networking; instead, the SDN establishes new connections automatically to ensure operation
continues as intended. While this implies benefits that address the complexity and flexibility
issues described under the traditional networking infrastructure, it also improves the security of
networks. Point-to-point connections that are attacked by malicious users can adapt with a new
secure channel of communication once the network controller recognizes that an attack is
happening.

1.3 Software-Defined Radio

In a similar line of thought, radios can have a huge increase in flexibility and a reduction
in maintenance cost and complexity by moving some part of the physical functionality into the
software domain. This precisely describes software-defined radios (SDRs), where some aspect of

the physical elements of a traditional radio are controlled by programmable software. Some

10

physical components of a radio are necessary for transmission and signal processing, but the
general idea of separating the control plane into software applies here just as done with SDN.
There are a great variety of types of SDRs as their share of the market increased over the last few
decades, and there are a multitude of benefits that come from using an SDR over a traditional -

style radio. In Figure 1.3, the two radios that are used for the duration of this project are shown.

Figure 1.3: Two Software-Defined Radios (B210s)

1.3.1 Benefits of SDR

Several of the benefits associated with SDN over traditional networking are reflected in
the benefits of choosing SDR over traditional radios. Modification of the purpose of the SDR is
simple and only requires a change in the code that controls its operation. Similarly, maintenance
of the radio is much less complicated when, instead of physically tampering with the device, new
code can be uploaded that addresses the problem. Both simplifications massively reduce the cost
of using the technology and provide greater flexibility than previously offered.

The added flexibility that comes with the programmable functions of the SDR is another
benefit. A group of radios can be linked together and controlled through their software to do a

variety of tasks that were unavailable previously. Commands or data packets that are sent over-

11

the-air using SDR technology allows devices in a network or similar infrastructure to be
modified remotely. Radio frequency processing can be adjusted easily, allowing communication
channels to rapidly change. This comes with increased security benefits as well, with emphasis
on application within military technology due to the large use of traditional radios.
1.4 Complete System

The task of this project is to combine the new technologies and applications of SDR and
SDN into a single system, and then to write algorithms that receive data packets and allocates
them efficiently. This system is intended to be a software-defined network containing two SDRs
that communicate to each other. Specifically, the controller for the SDN sends commands to a
virtual switch by sending the command to the first SDR, which then gets transmitted over-the-air
to the second SDR, and finally, the second SDR sends the command to the switch. The switch
responds appropriately to the command, most of which were written previously by graduate
students in this research field. In Figure 1.4, a block diagram of the complete architecture for the

system is presented.

SDN
Controller

Virtual
Switch

USRP
B210 Radio

USRP
B210 Radio

Figure 1.4: Complete Architecture of System

Some of the commands that are sent through this system change the scheduling priority
of the SDN. Traditional scheduling methods, such as round-robin, are included, along with the

other algorithms written for the purpose of this project.

12

2. METHODS

The approach to this research project is best described in two categories: the construction
of the SDN and the development of the communication between the base station and field sensor
SDRs. The first semester was primarily focused on the early work for implementing the SDN on
the hosts and the research components of the project, while the winter break and second semester
were instead focused on creating the block diagrams and Python files for the radio connections,
writing the scheduling priority algorithms to allocate the data appropriately, and completing the
infrastructure of the project.

2.1 SDN Construction

Much of the work involved in the initialization of the SDN was about reconstructing the
basics from the work of previous graduate students using the open-source information from Ryu
and OpenFlow (developed basic controller for network and methods for configuring settings).
The terminal commands for constructing the first edition of the SDN were included in some
documentation from the previous semesters, and using that information along with the public
instructions, the SDN was first created on a single host running multiple virtual machines. The
controller terminal, switch terminal, and a connection terminal were all running independently,
and communication was confirmed with fake data being sent to a GUI that was included in the
work done by the previous graduate students. Figures 2.1 and 2.2 show the early user interaction

with the terminal and GUI when establishing the SDN.

13

v ;
-

«
=
©)
[}
=
®Z

Figure 2.1: Terminal Interface for Switch and Controller

&
- hrmma -
©)
. Cos Comens
A : —

Configure Statistics Events
. Mot

Chont Throughput v

‘ o [N Queiw

Figure 2.2: GUI Interface for SDN Controller

2.1.1 UDP Connection from USRPs to Localhosts

The original plan for the next step in SDN research was to create a UDP connection
between the respective localhost and radio connected to the host. This was not known to be
possible, so the alternative plan of improving the weighted round-robin algorithm with a smart

algorithm that updates the weights of sensors in real-time was created. In the end, there was no

14

solution found on addressing this UDP connection, so the backup plan was implemented, and a
smart algorithm was created. The SDN aspect of this project, because of this change, was less
significant and primarily was relegated to research purposes.
2.2 SDR Communication

The construction of the architecture that allows communication between the two SDRs
originally used the GNU Radio Companion software tool to construct block diagrams using the
pre-built library meant for SDRs and other communication equipment. From there, the generated
Python files from the block diagrams within GNU Radio Companion were modified by hand to
develop the specific needs regarding this research. Each host device had its own radio, software,
and Python files that were created collectively before individual modifications pertaining to the
base station or the field sensors respectively were implemented.
2.2.1 One-Way Communication

The first block diagrams created were to establish some form of basic communication
between the two radios. After researching the toolset within GNU Radio Companion and
understanding the capabilities of the included functions, the transmission and reception files
were developed on each respective radio’s host device. The method of communication uses
GMSK modulation on the transmit side, and GMSK demodulation on the receive side. The two
B210 SDRs are both using a channel frequency of 1 GHz and a sample rate of 400k samples per
second. These were chosen with the device characteristics and the nature of the project in mind.
The two block diagrams that represent the files created to first establish one-way communication

are displayed below in Figures 2.3 and 2.4.

15

Variable
1Dz same: rate
Value: 400

Head
b l Nusm It 100k

Packet Encoder
Samples/Symbol: 2
Bis/Symbok |
Preamble:
Access Code:
Pad for USRP: s
Payload Length:

UHD: USRP Sink
Syme: PC Clock
Samp Rate | Sps): 400

File Soisres
File: Momedtifile_test
Repeat: fes

Acdd Begin tag: |}

CMSK Mod

. Multiply Const
::n:::nml.z | —] s

Throttie
Sample Rate: 400k

Cha: Cemter Freq (Hz): 16
Chill: Galn Valse: 20

Chi: Antenma: TR

TS50 tag name:

GMSK Demod

Samplea/Symbok 2 File Sink
Galn Mu: 175m :("*"‘;:"" File: fhomestitie test?
Mu: 500m . “II‘II . : . Unibuffe red: O
Gmega Rubathes Limit: 5 e Append file: Dvenwrite
Freq Error: 0

Figure 2.3: Transmission Block Diagram for One-Way Communication

GMSK Demod
UHD: USRP Source ‘Samples/Symbol: 7 File Sink
Packet Decoder
Samg Rate (Sps): 300k Galn Mu: 175m ™ File: fhomejctest_file2
€ho: Center Freq (Hz): 1G ;‘::::‘m“;w“ P8 Mu: s00m | 5 ““r::;: -“. 3 3 Ginbattereds o
Cho: Gain Valhae: 30 . Omega Relative Limit: 5m - Append file: Overwrite
€hO: Antenna: THRX

T GUI Frequency Sink
FFT Size: 1024k

Center Frequency (Hz):
Bandwidth (Hz): 400

Figure 2.4: Reception Block Diagram for One-Way Communication

The actual data that was being sent from the first SDR to the second SDR came from a
local text file on the transmission host with a series of fake data points created for the purpose of
establishing one-way communication. The data is read from the text file, encoded into packets,
modulated, and sent through the B210s before the process is reversed on the other side and the
data is stored onto a new text file on the receiving host. This method of using a text file to send
fake data is repeated until the SDN commands are implemented into the SDR’s communication.

Running both files on each host at the same time resulted in the file being correctly

transferred to the other side, with the only issue being a glitch that is built into GNU Radio

16

Companion that requires the message to repeat continuously. This is addressed in a future
upgrade to the SDR communications.
2.2.2 Two-Way Communication

The first upgrade needed for the communication between the two SDRs is to establish
two-way communication, or the ability for both radios to transmit and receive information. Once
again, additional block diagrams are built in GNU Radio Companion for these modifications.
Fortunately, much of the content of the blocks is the same as when establishing one-way
communication, but the specific settings regarding the antennas being used and the timing when
either actively sending or actively listening to a signal are changed to meet the new requirements.

The block diagrams used for this point of the project are shown in Figures 2.5 and 2.6 below.

Packet Encoder
2

GMSK Mod

UHD: USRP Sink
Sync: PC Clock
[[] same Rate (sps): 400k
Cho: Center Freq (Hz): 1G
Cho: Gain
ChO: Ante

Multiply Const

2 Constant: 1

Bits/Symbol: 1
Preamble:
Access Code:

Pad for USRP: Yes
Payload Length: 0

BT: 350m

File Source
Flle: fhomeicchatl
Repeat: Yes

Add begin tag: ()

Low Pass Filter
Decimation: 1
Gain: 1

Sample Rate: 400k
Cutoff Freq: 200k
Transition Width: 50k
Window: Hamming
Beta: 6.76

GMSK Demod

Append file: Overwrite

QT GUI Frequency Sink
FFT Size: 1.024k

Center Frequency (Hz): 0
Bandwidth (Hz): 400k

Figure 2.5: Two-Way Communication on Transmit Side

17

Low Pass Filter
Decimation: 1
Gain: 1

Sample Rate: 400k
Cutoff Freqz 200k
Transition Width: 50k
Window: Hamming g
Beta: 6.76

Variable
ID: samp_rate
Value: 200k

GMSK Demod
Samples/Symbol: 2
Gain Mu: 175m

Mu:

Omega Relative Limit: 5m
Freq Error: 0

File Sink
Flle: jhomefbjchat_testl txt
Unbuffered: Off

Append file: Overwrite

Packet Decoder
Access Code:
Threshold: -1

QT GUI Frequency Sink
FFT Size: 1.024k

Center Frequency (Hz): 0
Bandwidth (Hz): 400k

Packet Encoder

UHD: USRP Sink

Syne: PC Clock

[[] same Rate (sps): 400
r Fre

2
1

File Source
File: ../blryuibinffile_test
Repeat: Yes

Add begin tag: ()

GMSK Mod
Samples/Symbol: 2
BT: 350m

Preamble:
Access Code:

Pad for USRP: Yes
Payload Length: 0

Multiply Const
Constant: 1

Sample Rate: 400k

Figure 2.6: Two-Way Communication on Receive Side

After constructing the block diagrams for the radios, the generated Python files are
modified to match the style of communication needed for this project. This means that timings
and order are introduced to the devices; each respective device needs to be able to understand
that it can only listen while it is not talking, and that while it is talking, it is not listening. These
changes allow basic conversation between the SDRs to take place without interruption or other
complications to the dialogue.

Once the Python files have been adjusted, the radios can send information back and forth
to each other. The text file filled with fake data referenced previously for testing functionality of
the radio communications is once again used here.

2.2.3 Transfer from Multiple Text Files

The next step in terms of communication between the radios is to add the capability to
send from multiple options of text files on the field sensor side of the SDRs. In this model, the
field sensor SDR has three text files, each filled with random data and identifier numbers for

each data point as done previously. The base station SDR can request any combination of the

18

three text files, including just a single file, to be transmitted back towards the base station. The
field sensor SDR will send each file completely, one-at-a-time, until the request is fulfilled. The
repeat bug found earlier in GNU Radio Companion is not addressed at this stage of the project,
and the consequences of its problems were addressed in this upgrade by having a short timer set
for each file to prevent infinite repetition.

2.2.4 Round-Robin Communication

The further modifications made for the next iteration of communication between the two
devices takes place entirely within the Python file. With the addition of two-way communication
with multiple text files in the last upgrade, the changes here mostly relate to timing and
addressing the repeat issue from GNU Radio Companion. Code was developed to address the
repeat bug that takes advantage of the local text files on each host. The Python file will read from
each file that is requested by the base station host, and record one line at a time from each file
into a separate text file for transmission. The additional layer of reading from a file addresses the
issue of repeating well, and it allows for this process to work (using the text file setup) without
changing the base libraries of GNU Radio Companion.

Following the fix of the repeat bug, the code for a round-robin scheduling priority was
implemented at this time in the research. Round-robin algorithms work by sending a single data
point from multiple set options, and then going around each set sending the first single data point
until you reach the second data point of the first set chosen. This process repeats, one-at-a-time
for each data set (or text file, in this case) until all the data has been transmitted. This works in
the Python code with timings set between the two SDRs to prevent transmission and reception on
one device at the same time. Although this serves the purpose of establishing the first basic

algorithm for this project, the next step in the code is to set up acknowledgements in the

19

communication, where after receiving any data or information, the receiving radio sends a
receipt of data received back to the transmitting radio to ensure that no data was lost and needs to
be sent again.

2.2.5 Weighted Round-Robin Communication

The next iteration of upgrade that was included was a series of smaller changes that
resulted in a complete weighted round-robin algorithm, or a round-robin algorithm that takes in
weight factors to give priority to the sensors that need it. As mentioned previously, the first of
those changes was to implement acknowledgements. In this manner, after the field sensor radio
sends a single data point to the base station radio, the base station responds with an ACK
message to show that it has received the data properly. The field sensor radio waits until the
ACK is acquired before sending the next piece of data in the list. This is important because it
makes the communication channel more robust and decreases the likelihood of error in
transmission. It also allows the algorithm to be less dependent on timing between the two radios,
and instead allows them to be synced up like a conversation. At this point, much of the
intentional delays added to ensure the timing of the radios were synced were removed and the
communication process took much less time to complete.

Following this, the weights pertaining to each text file (and will later be each sensor)
needed to be implemented. A user-input terminal request for weights was added, and after
spending some time developing the code for a proper weighted round-robin algorithm for
determining the order of files to send, the basics of weighted round-robin were present. The
inclusion of the algorithm was successful and established the correct order for weighted round-

robin, whether for two text files or for ten, by labeling each file in a list, calculating the proper

20

order based on the inputted weights, and ensuring that the next data point in the list to be sent
had an identifier that matched the request from the algorithm.

After confirming the success of the ordering of data, the number of text files was
extended to fourteen (still with fake data) to ensure readiness for the fourteen sensors with real
data that are represented in this research. The real data was then included, replacing all the fake
data that has been used up to this point, and additional code had to be written to address the
formatting differences (all the real data was included in a single csv file). This was relatively
easy to address compared with the other components of the algorithm.

For each sensor being represented, the next step to include for the weighted round-robin
is a prediction scheme for guessing the next value that will be sent based on the data of the past.
The prediction for the next value in each sensor was developed as the average of all of the data
that has been sent previously, which was not the best prediction method but worked as a
baseline. The significance of including this is that it allows a root-mean-square-error (RMSE) to
be calculated and generated at the end of the communication between the radios for each sensor,
and then added together to find a total RMSE. This is the metric that is used to evaluate the
success of the models created. Final modifications are minor and include examples such as
having the end of the file communicated to stop the communication, having the field sensor wait
on the base station to be running before continuing operation, and others. The changes were
successful, completing the requirements for the weighted round-robin algorithm that were
desired.

2.2.6 Smart Weighted Round-Robin Communication
The last form up the algorithm developed is the smart weighted round-robin algorithm.

The difference between the last version of this and the smart version is that the smart weighted

21

round-robin algorithm updates the weights in real time to get more data and make better
predictions, resulting in a lower error rate. This final change required some restructuring of the
previous Python codes to accommodate the changing weights, including additional
communication back and forth between the radios among others.

On the base station radio side of the code, many updates were included. The first is the
weight change calculations and parameters for making changes to the weight; this was
accomplished with creative thinking and experimental testing of different techniques. The ending
parameters established for weight changes are as follows: the weight of a respective sensor will
increase by a factor of one if the difference between the prediction and real value is greater than
two times the weight, and the weight will decrease by a factor of one if the difference is less than
the weight. This allows a more dynamic change in weights than simply looking at the difference
in prediction and real value; the weight factor implemented spreads priority more evenly over the
sensors and prevents exponential growth or collapse in the weight changes. This method for
changing the weights is quite stable, and by far gave the best results compared to other
techniques. Lastly, the weights were transmitted back to the field sensor radio side of
communication to implement the calculated changes.

The other major change to the base station code is the improved prediction model. As
mentioned previously, the prediction for the next value at each sensor in the weighted round-
robin algorithm was built on the average of all data that had already transmitted. This was
changed at this stage of the research project to a much better model: the average difference
between two data points for every pair sent thus far is added to the last number received. The
shifting of the average from the real value to the difference in real values was remarkably

successful at preventing wide errors in prediction.

22

On the field sensor radio side, the only changes made were taking the weight updates that
were sent every twenty transmissions and incorporating them into the new weighted round-robin
order that the scheduler makes. This required some creativity, not only for the difficulty of
implementing the reorder in further transmission, but for recognizing the data that has already
been sent. This problem was solved by including fillers of zero in the first parts of the order that

had already been transmitted, and from there, the smart weighted round-robin worked perfectly.

23

3. RESULTS

3.1 Operation of the Complete System
The physical setup of the architecture as described in Figure 1.4 is modeled below in
Figure 3.1. Each side of the radios has a host device that the user interacts with, and the radios

are communicating with the various algorithms described over-the-air.

Figure 3.1: Overview of Complete System

There were complications in achieving a UDP connection between the localhost device
and the USRP radios. This aspect was deemed to be beyond the scope of this research project, so
instead the smart weighted round-robin algorithm was developed for this project. The Python
codes for the base station and field sensor radios are contained in the hard drive of their
respective host devices, and the public repository data used for the sensor data is stored on the
field sensor radio’s host. Otherwise, the files and information necessary for communication are

created during the operation of the Python software files themselves.

24

3.2 Effectiveness of Algorithms

For data collection, the process was relatively simple. The algorithms were each ran with
150 data points total, meaning that there were 150 transmissions from the field sensor radio to
the base station radio and 150 sent acknowledgements in return. Because there are fourteen
sensors, this is adequate amount of information to compare the effectiveness of the various
algorithms, which is measured with the RMSE values from each sensor as well as the total
RMSE for a single iteration. For the algorithms with weights, the weights are varied over several
iterations to get a solid set of data for comparison. Although the round-robin original algorithm
did not include a measurement for prediction and RMSE values, entering a value of one for the
weight of every sensor in the weighted round-robin algorithm will give the values for a simple

round-robin iteration. The various information collected is displayed in Table 3.1 below.

Table 3.1: Final Data Results with Varying Weights
1 J

A B [9 D E F G H K L M N Total

Weight 1 1 1 1 1 1 1 1 1 1 1 1 1 1

WRR RMSE 37.958 | 48.737 | 25.271 | 9.933 | 24.029 | 23.744 | 24.61 | 17.505 | 5.069 9.488 | 12.225 9.097 5.805 4.411 | 257.883
Smart RMSE 8.769 6.5 15.955 | 2.557 | 12.362 | 4.981 9.725 | 30.095 | 6.935 | 12.817 | 27.549 6.728 3.615 2.242 150.83

Weight 1 6 4 8 3 2 6 1 4 6 3 5 5 1 -
WRR RMSE 7.92 88.451 | 25.271 | 16.044 | 19.298 | 12.833 | 30.203 | 13.796 | 5.069 | 13.341 | 11.136 | 10.563 8.784 0 262.708
Smart RMSE 8.393 6.498 | 16.211 | 4.274 12.12 4.981 10.54 26.98 | 6.935 | 13.248 | 27.549 6.111 3.623 0 147.462

Weight 3 2 5 2 1 3 3 5 2 4 1 2 3 4

WRR RMSE 42.058 | 29.871 | 75.265 | 7.861 8.229 | 23.744 | 24.61 22.83 | 4.316 | 12.268 | 7.437 6.379 6.939 6.142 277.95
Smart RMSE 8.769 6.498 | 16.365 | 2.478 | 10.537 | 4.983 10.214 | 34.058 | 6.819 | 13.248 | 21.375 5.453 3.473 5.526 149.794

Weight 2 4 2 1 7 1 4 5 3 6 1 6 2 3

WRR RMSE 21.353 | 63.283 | 12.653 | 3.249 | 36.015 | 5.843 25.565 | 19.743 | 4.499 | 15.805 | 7.437 13.2 3.133 4.219 | 235.996
Smart RMSE 8.748 6.401 15.955 2.26 13.259 | 4.677 10.214 | 34.058 | 6.935 | 13.287 | 22.631 6.823 3.206 1.099 149.553

Weight 6 3 3 5 2 2 1 3 4 1 2 4 1 2

WRR RMSE 90.045 | 56.005 | 29.443 | 14.159 | 19.298 | 18.668 | 12.515 | 17.67 | 6.739 6.346 11.02 11.486 2.174 3.006 | 298.573
Smart RMSE 8.77 6.498 | 16.211 | 4.077 12.12 4.981 9.167 | 31.966 | 6.935 | 12.065 | 27.133 5.453 3.206 1.099 149.681

The format of the table has sensors A — N (all fourteen sensors) in the column labels at
the top, and in groups of three rows, it shows the weights chosen for that specific iteration along
with the root-mean-square-error values from the weighted round-robin (WRR RMSE) and the
smart weighted round-robin (Smart RMSE). On the rightmost column, the total RMSE for each

was also included.

25

3.2.1 Round-Robin Algorithm

The only relevant data from Table 3.1 for the basic round-robin algorithm is the first
iteration, where all the weights are set to one, meaning the priority is spread across each sensor
equally, which results in going around one-by-one in the round-robin manner. The total error that
was calculated in this algorithm run is 257.883 from adding each sensor’s error together; without
a base reference, this feels meaningless. However, comparing to the other (randomly chosen)
weight values, 257.883 is reasonably within the bounds of error from the other weighted round-
robin total errors. It is not the highest or lowest error value, which makes sense because the
varying weights are going to impact the errors for each sensor differently which can have a
positive or negative impact on the value. This is true for the total values, but also for each of the
sensors. For the remaining algorithms, the analysis can be done with the individual sensor error
values and the total error from the basic round-robin as a base value.
3.2.2 Weighted Round-Robin Algorithm

Changing the weights with randomly chosen values resulted in four iterations of data as
shown in Table 3.1 above (excluding the first iteration, representing basic round-robin). Keeping
the values from the round-robin algorithm run as base values to compare to, some changes in
individual sensor weights add to the RMSE value, while others decrease it. The variations all
remain within reasonable bounds from each other, such as the fact that all the total RMSE values
are in the two-hundreds. Because the data set for each iteration is the same, with some careful
analysis, the results from the weighted round-robin algorithm can be used and further iterations
can be ran to discover ideal values for individual weights leading towards the much lower error
rates. Fortunately, this is unnecessary because the next algorithm does this on its own without

any need for user calculations.

26

3.2.3 Smart Weighted Round-Robin Algorithm

The smart weighted round-robin algorithm makes drastic improvements on the RMSE
values for every single iteration tested. When comparing results to the base value from basic
round-robin in Table 3.1, the smart algorithm yields a total RMSE of 150.830, compared to the
original RMSE in round-robin of 257.883, a 41.5% reduction of error. The trend holds out for the
various weights attempted; the second through fifth iterations yield reductions of 43.9%, 46.1%,
36.6%, and 50.0% respectively. These improvements are massive and prove that the smart
weighted round-robin algorithm consistently outperforms the basic round-robin algorithm and
weighted round-robin algorithm drastically.

For most of the individual sensor data points, the trend also holds, although there is some
variation where the weighted round-robin outperforms specific sensors. This is primarily due to
two reasons: the first is that there is an inherent bias towards the first few sensors in the order,
and the second is that the actual data is fluctuating in different manners. The bias exists because
of the manner of scheduling in weighted round-robin; even if the weights are distributed equally,
the first sensors still transmit their data first. When the updates to the weights are implemented
and the new schedule is created for the remaining data, if any two weights are equal, the first
sensor in the original order is prioritized. This bias has been mostly reduced with the update to
the next-value prediction model, but it is still present at a small scale and likely will be for all
variations of real-time weighted round-robin scheduling. The second reason for specific
outperformances by the weighted round-robin algorithm is that the real-time data from the public
repository is fluctuating and inconsistent across all the sensors, so some predictions for the next-
values will be more inaccurate than the mean of all data points when the data changes from

increasing to decreasing or vice versa. This is inherently a property of the data used, and the

27

prediction would be more accurate over longer periods of time (meaning more data points in a
transmission would reduce the chance of this occurring). Regardless, the total RMSE values are
significantly lower than the other algorithms, so these edge cases are largely unimportant to the

grand scheme of the communication.

28

4. CONCLUSION

4.1 Effectiveness of SDN-SDR Network

The combination of software-defined radios and software-defined networks into an
experimental architecture such as done with this project is a task that is profound and fascinating
in its development. Each technology serves to displace its predecessor by moving components
into software, allowing greater flexibility with the construction of this network than previously.
The radios themselves allow communication between the base station and the field sensors to
take place over-the-air, and the elements of their communication controlled in software
(frequency, sample size) can be changed in real-time. The software nature of the network itself
allows code to be developed further for the virtual controller to make specific changes for real-
world applications, such as a certain method of reading a set of sensors or changes to who can
access the network.

Additionally, because everything other than the actual B210s takes place in software,
once the radios are set up in permanent place as meant to be for the project, changes to the entire
architecture can be made remotely. This is perhaps the most key benefit of the use of these newer
technologies in the network construction — the ability to change settings remotely directly
addresses the issues with traditional networking discussed in the introduction and increases the
ease of use for the technology. For example, one can imagine a scenario where out of the
thousands of sensors reading temperature, a critical sensor starts acting strange. With the SDR-
SDN full setup, the sensor can be isolated, analyzed, fixed, and reincluded without a single

shutdown of the entire network. The benefits of this are huge.

29

However, one critical aspect that should be discussed is the practicality of converting
modern networks into the software domain using SDN and SDR technology. It is easy to imagine
one or the other being used for its respective widening of the range of applications but
implementing both at the same time is unlikely for a company or project to do, and there are
potential benefits from that decision. The learning curve for creating and adapting this network,
along with integrating the SDN and SDRs together on each host, is a huge cost to the
construction of an SDR-SDN network that many projects will not be willing to undertake. The
components of a traditional network, by comparison, are well-studied, well-understood, and
widely applied so that there are infinite resources related to the construction of the network and
network engineers that are trained to create them. With both software-defined networks and
software-defined radios, each technology is documented decently well, but the user base is not
large enough to have a comparable number of resources to use. When the technologies are
combined, there are far fewer than there are independently.

Once the large costs for acquiring the equipment and understanding it to the point of
development are undergone, however, the radios and network architecture as a whole are quite
useful and applicable in the world. For projects that need specific flexibility and special
attention, the SDN-SDR architecture can address those needs in a highly dynamic manner.

4.2 Real-World Applications

The real-world applications of SDNs, SDRs, and SDN-SDR systems are interesting to
consider. As stated previously, the ability to control elements using software has been critical in
the development of all sorts of modern technology — smart phones, cameras, laptops, and cars, to

name a few examples. The changes to network and radio technologies are not unprecedented,

30

and the expectation is that the popularity of the other devices that use a combination of hardware
and software elements will be repeated with these tools.

Software-defined networks, however, have had somewhat limited success in finding
applications (Saleem 2016). For much of the world, the costs for implementing SDNs is much
higher than the costs of operating a traditional network. Also, the surrounding network
infrastructure has for a long time been underdeveloped to serve the purposes of SDNs, although
the ground for this is changing as the demand for more network flexibility goes up. Despite the
excitement for the technology, the rate of growth has not met expectations, and the SDN has not
yet proven itself as a permanent upgrade to networking.

The software-defined radios have had more success in market implementation. The SDRs
are applicable almost everywhere where radios were previously used, such as communication,
measuring and monitoring data, and streaming information. The immediate bonus of using an
SDR as opposed to a traditional radio is the ability to have multiple options for configuration for
different scenarios. For testing equipment or analyzing data from sensors, the flexibility involved
in being able to switch between predefined, custom settings allows much less radio technology to
be used as many of their individual tasks have been taken instead by the SDR. For many
industries and companies, particularly those involved with networks, SDRs are gaining
popularity and have an optimistic future.

The real-world applications for SDN-SDR combinations are limited at the moment. For
the industries that want to create networks with the highest flexibility, especially regarding
sensor reading, the technology can be very useful. However, this has yet to occur beyond the
research efforts behind the technology. One could imagine, however, that companies that are

reading lots of sensor data in real-time would receive lots of benefits by investing in SDN-SDR

31

combinations for their data collection, as done in this research project. The modular nature of the
project allows any number of sensors to be added, and each sensor can be remotely modified at
any point in time. An industry such as weather prediction, with conditions that change rapidly
and the requirement of a lot of sensor data, would benefit from using the SDN-SDR technology.
For now, the devices used in this research project are primarily at the research stage of

their development, but the applications to real-world projects are promising.

32

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

REFERENCES

"The Basics of SDN and the OpenFlow Network Architecture.” NoviFlow, NoviFlow, 6
May 2021, noviflow.com/the-basics-of-sdn-and-the-openflow-network-architecture/.

"What Is SDN?" Juniper Networks, Juniper Networks,
https://www.juniper.net/us/en/research-topics/what-is-sdn.html.

Akeela, Rami, and Behnam Dezfouli. "Software-Defined Radios: Architecture, State-of-
the-Art, and Challenges.” Computer Communications, Elsevier, 30 July 2018,
https://www.sciencedirect.com/science/article/abs/pii/S0140366418302937.

Cooney, Michael. "What Is SDN and Where Software-Defined Networking Is Going."
Network World, Network World, 16 April. 2019,
www.networkworld.com/article/3209131/what-sdn-is-and-where-its-going.html.

Hamill, Stephanie. "Introduction to Software Defined Radio.” Wireless Innovation
Forum, 2021, www.wirelessinnovation.org/Introduction_to_SDR.

IBM Cloud Education. "The Fundamentals of Networking." IBM, IBM, 17 Mar. 2021,
https://www.ibm.com/cloud/learn/networking-a-complete-guide#toc-important--
ez_DoRa_.

Jain, Raj. "OpenFlow, Software Defined Networking (SDN) and Network Function
Virtualization." McKelvey School of Engineering. Tutorial at 2014 IEEE 15"
International Conference on High Performance Switching and Routing, 2014, Vancouver,
Canada.

Jena, Satyabrata. "Difference between Software Defined Network and Traditional
Network." GeeksforGeeks, 21 Aug. 2020, https://www.geeksforgeeks.org/difference-
between-software-defined-network-and-traditional-network/.

Lessing, Marlese, and Connor Craven. "What Is an SDN Controller? Definition."
SDxCentral, SDxCentral Studios, 2020,
www.sdxcentral.com/networking/sdn/definitions/what-is-sdn-controller/.

Molenaar, Rene. "Introduction to SDN (Software Defined Networking)."

33

NetworkLessons.com, 19 Dec. 2019, networklessons.com/cisco/ccna-routing-switching-
icnd2-200-105/introduction-to-sdn-software-defined-networking.

[11] Saleem, Maab. "Software Defined Network: Use Cases From the Real World"
RouterFreak.com, 14 July. 2016, https://www.routerfreak.com/software-defined-network-
use-cases-from-the-real-world/.

34

APPENDIX A: PYTHON SOFTWARE WRITTEN FOR

COMMUNICATION

if _ name__ __main__':
import ctypes
import sys
if sys.platform.startswith('linux'):
try:
x1l = ctypes.cdll.LoadLibrary('1libXll.so')
%11 .XInitThreads()
except:

print "Warning: failed to XInitThreads()"

import

class chat(gr.top_block, Qt.QWidgst)

def _init (self):
gr.top block.__init__ (self,
Qt.QWidget.__init__ (self)
self.setWindowTitle ("Chat")

"Chat")

gtgui.util.check set_gss ()
try:

self.setWindowIcon (Qt.QIcon. fromTheme (' gnuradio-gre'))
except:

pass
self.top scroll layout = Qt.QVBoxLayout ()
self.setLayout (self.top_scroll_layout)
self.top_scroll = Qt.QScrollarea()
self.top_scroll.sstFrameStyle (Qt.QFrame.NoFrames)
self.top scroll layout.addWidget (self.top scroll)
self.top scroll.setWidgetResizable (True)
self.top_widget = Qt.QWidget ()
self.top_scroll.setWidget (self.top widget)
self.top_layout = Qt.QVBoxLayout (sclf.top widget)
self.top_grid layout = Qt.QGridLayout ()
self.top layout.addLayout (self.top_grid_layout)

self.settings = Qt.QSettings("GNU Radio"”, "chat")
self.restoreGeomstry(self.settings.valus ("geometry") .toBytehArray ())

self.samp_rate = samp_rate = 400000

while True:

weightl = raw_input("Enter a value for the weight of sensor 1 (integer):

try:
int (weightl)
if (int(wsightl) < 0):
print "Value cannot be negative. Try again."
continue
except ValusError:
print "Value provided needs to be an integer. Try again."
continue

break

while True:
weight2 = raw_input("Enter a value for the weight of sensor 2
try:
int (weight2)
if (int(weight2) < 0):
print "Value cannot be negative. Try again."
continue

except ValusError:

35

(integer) :

")

")

(Image continued from previous page)

9z print "Value provided needs to be an integer. Try again."
continue
break

96 while True:

g8 try:

int (weight3)

if (int(weight3) < 0):

101 print "Value cannot be negative. Try again.”

continue

103 except ValusError:
print "Value provided needs to be an integer. Try again."
continue

break

108 while True:

109 weight4 = raw input("Enter a value for the weight of sensor 4 (integer):

110 try:
111 int (weight4)
if (int(weightd4) < 0):
print "Value cannot be negative. Try again."

continue

except ValusError:
116 print "Value provided needs to be an integer. Try again."
1L continue

break

while True:

121 welght5 = raw_input("Enter a value for the weight of semnsor 5 (integer):

try:
123 int (weight5)
if (int(weight5) < 0):

print "Value cannot be negative. Try again."

continue

12 except ValusError:

128 print "Value provided needs to be an integer. Try again."
continue

break

while True:

try:
int (weight6)
if (int(weight€) < 0):
print "Value cannot be negative. Try again."

continue

except ValusError:

print "Value provided needs to be an integer. Try again.”

4 continue
142 break

44 while True:

try:
147 int (weight7)
148 if (int(weight7) < 0):

print "Value cannot be negative. Try again."

continue
except ValusError:
print "Value provided needs to be an integer. Try again."
continue
break

while True:

try:
int (weight8)
if (int(weight8) < 0):
print "Value cannot be negative. Try again.”
continue

except ValusError:

print "Value provided needs to be an integer. Try again."

continue

36

3 weight3 = raw_input("Enter a value for the weight of sensor 3 (integer):

weight6 = raw_input("Enter a value for the weight of sensor 6 (integer):

weight7 = raw_input ("Enter a value for the weight of sensor 7 (integer):

weight8 = raw_input ("Enter a value for the weight of sensor 8 (integer):

)

(Image continued from previous page)

break

while True:

weight9 = raw_input ("Enter a value for the weight of sensor 9 (integer): ")

try:
int (weight9)
if (int(weight9) < 0):
print "Value cannot be negative. Try again.”
continue

except ValusError:

print "Value provided needs to be an integer. Try again.
continue
break

while True:

weightl0 = raw_input("Enter a value for the weight of sensor 10 (integer):

try:
int (weightl0)
if (int(weightl0) < 0):
print "Value cannot be negative. Try again."
continue
except ValusError:
print "Value provided needs to be an integer. Try again."
continue
break

while True:

weightll = raw_input("Enter a value for the weight of sensor 11 (integer):

try:
int(weightll)
if (int(weightll) < 0):
print "Value cannot be negative. Try again."
continue

except ValusError:

print "Value provided needs to be an integer. Try again.
continue
break

while True:

weightl2 = raw_input("Enter a value for the weight of sensor 12 (integer):

try:
int (weightl2)
if (int(weightl2) < 0):
print "Value cannot be negative. Try again."
continue
except ValusError:
print "Value provided needs to be an integer. Try again."
continue
break

while True:

weightl3 = raw_input("Enter a value for the weight of sensor 13 (integer):

try:
int (weightl3)
if (int(weightl3) < 0):
print "Value cannot be negative. Try again.”
continue
except ValusError:
print "Value provided needs to be an integer. Try again."
continue
break

while True:
weightl4 = raw_input ("Enter a value for the weight of sensor 14
try:
int (weightl4)
if (int(weightl4) < 0):
print "Value cannot be negative. Try again."
continue
except ValusError:
print "Value provided needs to be an integer. Try again.”
continue
break

37

(integer) :

"y

")

(Image continued from previous page)

240 weight_file =

weight file.write(wsightl
weight file.write (wsight2
weight file.write(weight3
weight file.write(weight4
weight_file.write (weight5
weight_file.write (weighté
weight_file.write (weight?
weight_file.write (weight8
weight file.write (weight9
weight file write(weightl0
weight file write(weightll
weight file write(weightl2
weight file.write(weightl3
weight file.write(weightl4

weight_file.close()

P T

ot o+ o+ o+

open (' /home/c/chat3’,

) n

")
")
")
")
")
")
")
")
")
)
)
")
")
Ant)

self.uhd usrp sink 1 =
.

uhd.stream_args (

"fe32n,

_doin((n,

cpu_forma

channsls=range (1),

).

268)

uhd.usrp_sink(

269 self.uhd usrp sink l.set_samp rate(samp rate)

samples_per_symbol=2,
276 bt=0.35,

2 verbose=False,

278 log=False,

279)

280 self.blocks_throttle 0 =

blocks.throttle (gr.sizeof char*l,
self.blocks_multiply const_vxx_1 = blocks.multiply const_vec((1,))

270 self.uhd usrp_sink_l.set_time_now (uhd.time_spec (time.time()), uhd.ALL_MBOARDS)
self.uhd usrp_sink_l.set_center_freg(1000000000, 0)

self.uhd usrp_sink l.set_gain(40, 0)

273 self.uhd usrp sink l.set_antenna('R¥X2', 0)

self.digital_gmsk mod 0 = digital.gmsk_mod(

samp_rate, True)

100000)

self.blocks_head 0 = blocks.head(gr.sizeef char*l,

self.blocks_file source 0.set_begin tag(pmt.PMT_NIL)

28 samples_per symbol=2,

self.blocks_file_source 0 = blocks.file source (gz.sizeof chaz*l,

EEE self.blks2_packet_sncoder_0 = grc_blks2.packet_mod b(grc blks2.packst_sncodex (

287 bits_per_ symbol=l,
288 preamble='",

access_code='",

pad_for_usrp=True,

Yo
payload length=0,

self.connect ((self.blks2_packst_encoder_0,
01 self.connect ((self.blocks_file_source 0,
302 self.connect ((self.blocks_head 0,
self.connect ((self.blocks multiply const_vxx_1,

304 self.connect ((self.blocks_throttle 0,
305 self.connect ((self.digital gmsk mod 0,

closeEvent (self, event):

self.settings =

310 event.accept ()

get_samp_rate (self):

313 return self.samp_rate

Qt.Qgettings ("GNU Radio”,
self.settings.setValue ("geometry",

0,
0.
(self.blks2_packet_encoder 0,
0), (self.uhd usrp sink_1,
(self.blocks_head 0, 0))

(self.blocks_multiply const_vxx_1,

(self.digital gmsk_mod 0, 0))
(self.blocks_throttle_0, 0))
O}, 0))

0y
0) .,

0}, 0))

"chat")

self.saveGeometry ())

38

(Image continued from previous page)

def set_samp_rate(sclf, samp_rate):

self.samp_rate = samp_rate
7 self.uhd usrp_sink_1.set_samp_rate (self.samp_rate)

self.blocks_throttle_D.set_sample_rate(self.samp_rate)

class text_rx(gr.top_block, Qt.QWidget):

def _ init_ (s=1f):
24 gr.top_block.__init__ (self, "Text Rx")
Ot.QWidgst.__ ini self)

self.setWindowTitle ("Text Rx")

gtgui.util.check_set_gss ()
328 try:
self.setWindowIcon(Qt.QIcon. fromThems ('gnuradio-gre'))

except:

pass
self.top_scroll_layout = Qt.QVBoxLayout ()
self.setLayout(sslf.top_scroll_layout)

334 self.top_scroll = Qt.0Scrollareal()
self.top_scroll.setFrameStyle (Ot.CFrams.NoFrams)
self.top_scroll_layout.addWidget (ss1f.top_scroll)

s=lf.top_scroll.setWidgetResizable (True)
s=lf.top_widget = Qt.QWidget()

339 self.top_scroll.setWidget(s=lf.top_widget)

340 s=lf.top_layout = Ot.QVBoxLayout (self.top_widget)
341 s=lf.top_grid layout = Qt.QGridLayout ()
s=lf.top_layout.addLayout(s=lf.top_grid layout)

344 self.settings = Qt.QSettings("GNU Radio", “"text rx")
345 s=lf.restorsGeomstry(s=lf.ssttings.valus("geometry").toByteArray(})

348 E2223323232 2352333383533 33 3355833358352 535835533
iables
FREFREERFRFRREREFRFRREREERERRARS FREREERERRERS FHEER

sclf.samp_rate = samp_rate — 400000

FREREEREREERRERERBERER R R FRRERE AR ERBERERRERERRE
cks

FEEREERERRERRERERERREREFREERERRERFRERRERREREF
self.uhd_usrp source 0 = uhd.usrp_source
o Seim (),

uhd.stream args(
cpu_format="fc32",
channels=range (1),
)e
)
self.uhd_usrp_source 0.set_samp_rate (samp_rate)
se1f.uhd usrp source 0.set_center £reg(1000000000, 0)
self.uhd usrp source 0.set_gain(30, 0)
self.uhd usrp_source 0.set_antenna('Rx2', 0)
self.gtgui_freq sink x_0 = gtgui.freq_sink c(
1024, #size
firdes.WIN BLACKMAN hARRIS,
0, #fc

samp_rate, #bw

1
)
self.gtgui_freq sink x_0.set update_time(0.10)
self.qtgui_freq_sink _x_0.set_y_axis(-140, 10)
self.gtgui_freq sink x_0.set_y label('Relative Gain', 'dB')
self.gtgui_freq_sink_x_0.set_trigger_mode (qtgui.TRIG_MODE_FREE, 0.0, 0, "")
self.gtgui_freqg sink x_0.enable autoscals (False)
s=1f.gtgui_freq_sink_x_0O.enable_grid(False)
self.qtgui_freq_sink_x_0.set_£ft_average(1.0)
self.gtgui_freq sink x_O.enable_axis_labels (True)
self.gtgui_freg sink x_0.snable control panel(False)

if not True:

sclf.qtgui_freq sink x 0.disable_legend()

39

(Image continued from previous page)

if "complex" == "float" or "complex" == "msqg float":

self.gtgui_freqg sink x O.set_plot_pos_half(not True)
lakbels = ['', "', "', v, T,

widths = [1, 1, 1, 1, 1,

1, 1, 1, 1, 1]
colors = ["blue", "red", "green", "black", "cyan",

"magenta", "yellow", "dark red", "dark gresn", "dark blue"]
alphas = [1.0, 1.0, 1.0, 1.0, 1.0,

1.0, 1.0, 1.0, 1.0, 1.0]
for i in xrange(l):

if len(labels[i]) == 0:
self.gtgui_freq sink_x_0.set_line_label(i, "Data {0}".format (i))

else:

self.qtgui_freq sink x_0.set_line_label(i, labels[il)
404 self.gtgui_freq_sink_x_0.set_line_width(i, widths[i])

self.gtgui_freg sink_x_0.set_line_color (i, colers[i])

406 self.gtgui_freqg_sink_x_O.set_line_alpha(i, alphas([i])

self._gtgui_freq_sink_x 0_win = sip.wrapinstance(s=lf.gtgui_freq_sink_x_0.pygwidget (), Qt.OWidget)

top_grid layout.addwidget(s=lf. gtgui freq sink x 0 win)
low_pass_filter_0 = filter.fir_filter ccf(l, firdes.low_pass(
411 1, samp_rate, 200000, 50000, firdes.WIN HAMMING, &.7€))

2 self.digital_gmsk demod 0 = digital.gmsk_demod(

samples_per symbol=2,
gain_mu=0.175,

mu=0.5,
omega_relative_limit=0.005,
freq erzozr=0.0,

verbose=False,

log=False,

clr_file = open('/home/c/test file2', 'w')

elr_file.close()

self.blocks_multiply const_vxx 0 = blocks.multiply const_vec((1,))
426 s=1f.blocks fils_sink 0 = blocks.file sink(gr.sizesof_char*l, '/home/c/test file2', False)
427 self.blocks _file sink 0.set_unbuffered(False)

=c1£.blks2_packet_decoder_0 = grc_blks2.packet_demod_b(grc_blks2.packet_dscoder (
access_code='",
threshold=-1,
callback=lambda ok, payload: sclf.blks2_packet_decoder_0.recv_pkt(ok, payload),

440 EEFEREARE AR AR AR AR R R R R R R
self.connect ((sclf.blks2_packet_decoder_0, 0), (sslf.blocks_file sink 0, 0))

2 self.connect ((self.blocks_multiply const_vxx_0, 0), (sclf.low_pass_filter_0, 0))
s=lf.connect ((s=lf.digital gmsk_demed 0, 0), (s=lf.blks2_packet_decoder_0, 0))

sclf.connect ((s=lf.low_pass_filter 0, 0), (szlf.digital gmsk demod 0, 0))
self.connect ((sclf.low_pass_filter_0, 0), (self.gtgui_freq_sink_x_0, 0))
self.connect ((sclf.uhd usrp_source 0, 0), (self.blocks multiply const_vxx_0, 0))

def clossEvent (s event) :
self.settings = Qt.QSettings("GNU Radioc”, "text rx")
s=lf.settings.setValue ("geometry", s=lf.saveGeomstry())

event.accept ()

def get_samp_rate(sclf

return sclf.samp rate

def set_samp_rate(sclf, samp_rate):

sclf.samp_rate — samp_rate

self.uhd usrp source_0.set_samp_rate (self.samp_rate)

460 self.qgtqui_freq_sink_x_0.set_frequency_range (0, s=lf.samp_rate)

40

(Image continued from previous page)

sslf.low_pass_filter 0.set_taps(firdes.low_pass(l, self.samp_rate, 200000, 50000, firdes.WIN_ HAMMING,

class ack(gr.top_block, Qt.QWidgst):

def _ init_ (s=lf):

gr.top_block._init_ (self, "Chat")
ot.owidget._ init__ (s=1f)
s=lf.setWindowTitle ("Chat")
gtgui.util.check set_gss ()
try:

self.setWindowIcon (Qt.0QIcon. fromThene ('gnuradio—gre'))
except:

pass
self.top scroll_layout = Ot.QVBoxLayout ()
self.setlayout (self.top_secroll layout)
self.top_seroll = Qt.QScrollireal()
self.top_scroll.setFrameStyle (Ct.QFrams.NoFrame)
self.top_scroll layout.addWidget (self.top_scroll)
self.top_scroll.setWidgetResizable (True)
self.top_widget = Ot.awidgst()
self.top_scroll.setWidget (self.top widget)

sslf.top_layout = Qt.QVBoxLayout(s=lf.top_widget)

self.top_grid_layout = Qt.QGridLayout ()
self.top_layout.addlayout (s=1f.top_grid layout)

self.settings = Ot.QSettings("GNU Radie", “chat")
self.restoreGeometry(self.settings.value ("geometry") .toBytekrray())

L 2]
£ .
#

self.samp_rate = samp_rate = 400000

weight_file = open('/home/c/chat3’, 'w')
weight file.write ("ACK\n")
weight file.close()

HEE

FERERRFRRFRERRFRERREREEREREERFERFRBERER AR

Blooks
FEERERRERFRERRRERRREFRERRERBERFRBRRRERRRRREHRBEREF
self.uhd_usrp_sink 1 = uhd.usrp_sink(

ey,
uhd.stream args (

v jedn ("

cpu_format="£e32",
channels=range(1),
|
)
s=1f.uhd_usrp_sink_l.set_samp_rate (samp_rate)
self.uhd usrp sink_1l.set time now (uhd.time_spec(time.time ()}, uhd.ALL MBOARDS)
sslf.uhd_usrp_sink_l.set_center_freq(1000000000, 0)
self.uhd usrp sink 1l.set_gain(40, 0)
self.uhd_usrp_sink_l.set_antenna ('T¥/RX', 0)
self.digital gmsk mod 0 = digital.gmsk mod(
samples_per_symbol=2,
bt=0.35,
verbose=False,
log=False,
)
s=1f.blocks_throttls 0 = blocks.throttle(gr.sizeof_char*l, samp_rate,True)
self.blocks multiply const_wxx_ 1 = blocks.multiply const_vec((l,))
s=lf.blocks_head 0 = blocks.hsad(gr.sizeof char*l, 100000)
self.blocks_file source_0 = blocks.file_source (gr.sizeof char*l, '/home/c/chat3’,
self.blocks_file_source_0.set_begin_tag (pmt.PMT_NIL)
s2lf.blks2 packet_encoder 0 = grc_blks2.packet mod bi{grc blks2.packet encoder(
samples_psr_symbol=2,
bits_per symbol=l,
preamble='",
access_code='",
pad_for_usrp=True,
|
payload length=0,

41

€.7€))

(Image continued from previous page)

FERRERRRRFRERERRERREFRERBERBERFRBERRERRRERRERREREF

FHEEE R R
connect ((self.blks2 packet_encoder 0, 0), (sclf.digital gmsk mod 0, 0))
542 f.connect ((self.blocks_file_source 0, 0), (self.blocks_throttle 0, 0))
£.connect ((self.blocks_head 0, 0), (self.blks2_packet_sncoder_0, 0))
connect ((s=lf.blocks multiply const_vxx_1, 0), (s=lf.uhd usrp_sink_1, 0))

connect ((s=1£.blocks_throttle 0, 0), (s=lf.blocks_head 0, 0))

=elf.connect ((s=lf.digital_gmsk _mod_0, 0), (s=lf.blocks_multiply_const_vxx_1, 0})

def closeEvent(s=lf, svent):

s=lf.settings = Qt.QSettings ("GNU Radio", "chat")
55 self.settings.setValue ("gecmetry", self.saveGeomstry())

event.accept ()

def get_samp_rate(s=lf):

return sclf.samp_rate

def set_samp rate(self, samp_rate):

samp_rats = samp_rate

uhd_usrp_sink_l.set_samp_rate(s=lf.samp_rate)

self.blocks_throttle_0.set_sampls_rats (ss

s=None)

from distutils.version import StrictVersion

if StrictVersion(Qt.gVersion()) >= StrictVersion("4.5.0"):
style = gr.prefs().get_string('gtgui', 'style', 'raster')
Qt.QApplication.set! 1 ystem (style)

gapp = Qt.QApplication(sys.argv)

global weightl, weight2, weight3, weight4, weight5, weight&, weight7, weight®, weightS, weightl0, weightll, weightl2, weightl3, weightl4
a_num = 0

=

572 b _num =

573 ©_num

d_num

&_num

£_num

g_num

h_num

i_num

j_num

k_num

1_num

m_num

n_nun
sum_a
sum b =
sum c =
sum d =
sum_e
sum_f
sum g =
sum_h

sum_i =

vl
vl
0
0
vl
vl
o
0
0
0
o
vl
0
=0
0
vl
0
0
0
vl
0
0
0
vl
o
0
a

o oo oo oo o000

42

(Image continued from previous page)

oo oo

actual_a_list = []

actual_b_list = []

actual_c_list = []
16 actual_d_list = []
1 actual_e_list = []
18 actual £ list = []
19 actual_g_list = []
20 actual h list = []
actual_i_list = []
actual j_list = []
actual_k list = []
actual_1_list = []
actual m list = []
actual_n_list = []
predict_a_list = []
predict b list = []
predict_c_list = []
predict_d list = []
31 predict e list = []
32 predict_f_list = []

predict g list = []
34 predict_h_list = []
predict_i_list = []

prediect_j_list = []
predict_k_list = []
prediet_1_list = []

predict_m list = []
40 predict_n list = []

a2 tb = chat ()
43 tb.start ()
time.slesp (1)
tb.stop()

4 final = open('/home/c/final’, 'w')

48 £inal.close()

while True:
51 th = text_rx()

52 th.start ()
datal = open('/home/c/test_£ile2', 'r+')
55 final = open('/home/c/final', 'a')

while True:
58 datal.flush()

datal.readline ()

file_content2 = datal.readline()

if (file_content2 == "eof\n"):
€2 print(file content2)
break

4 elif (file_content2 != ""):

final.write (£ile_content2)

split = file_content2.split(" ')

667 if (split[l].startswith('10') and (split[l].startswith('0', 2)

= False)):
a_num += 1

actual_a_list.append(fleat(split[01)}

sum_a += float (split[0])

predict_a = sum_a/a_num

print("Prediction for Next A: "+str (predict_a))
predict_a list.append(predict_a)
elif (split[l].startswith('20')):
b_num += 1
actual b list.append(float(split[0]))
sum b += float (split[0])
predict_b = sum b/b_num

print ("Prediction for Next B: "+str(predict_b))

predict b list.append(predict b)
81 elif (split[l].startswith('30')):

2 c num += 1

43

(Image continued from previous page)

actual_c_list.append(float(split[0]))
584 sum_c += float(split[0])
5 predict_c = sum_c/c_num
print ("Prediction for Next C: "+str(predict_c))
predict_c_list.append (predict_c)
elif (split[l].startswith('40')):
d num += 1
actual_d list.append(float(split[0]))
51 sum_d += float(split[0])
predict_d = sum_d/d_num
print("Prediction for Next D: "+str (predict_d))
predict_d list.append (predict_d)
elif (split[l].startswith('50')):

= num += 1

actual e list.append(float(split[0]))

sum_e += float (split[0])

predict_s = sum_e/es_num

print ("Prediction for Next E: "+str(predict_e))
1 predict_e_list.append (predict_e)

& elif (split[l1].startswith('60')):

3 £ num += 1

actual £ list.append(float(split[0]))

sum_£ += f£loat (split[0])

predict_£ = sum_£/£_num

print("Prediction for Next F: "+str (predict_f£))
predict £ list.append (predict £)
elif (split[l].startswith('70')):

10 g_num += 1

actual g_list.append(float(split([0]))
12 sum_g += f£loat (split[0])
13 predict_g = sum_g/g_num
14 print("Prediction for Next G: "+str (predict_g))
15 predict_g_list.append (predict_g)
1€ elif (split[l].startswith('80')):
i) h num += 1
actual_h_list.append(float(split[0]))
sum_h += f£loat (split[0])
predict_h = sum h/h_num
print ("Prediction for Next H: "+str(predict_h))
predict_h list.append(predict_h)
elif (split[l].startswith('907)):
inum += 1

actual i_list.append(float(split[0]))

26 sum_i += float (split[0])

predict_i = sum_i/i_num

print ("Prediction for Next I1: "+str(predict_i))

predict_i_list.append (predict_i)

elif (split[1].startswith('100'}):

1 j_num += 1

actual j_list.append(float(spliz[0]})
sum_j += float(split[0])

predict 3 = sum 3/ num
print ("Prediction for Next J: "+str(predict_j))
predict_j_list.append(predict i)

elif (split[l].startswith('110')):

k num += 1
actual_k_list.append(float (split[0]))
sum_k += £loat (split[0])

predict_k = sum k/k_num
print ("Prediction for Next K: "+str(predict_k))
predict_k_list.append (predict_k)
elif (split[l].startswith('1207)):
1 num += 1
actual_l_list.append(f£loat(split[0]1))
sum_1 += float(split[0])
predict 1 = sum 1/1_num
print ("Prediction for Next L: "+str(predict_l1))
predict 1 list.append(predict 1)
elif (split[l].startswith('130')):
m num += 1
actual _m list.append(£loat (split[01))
sum m += £loat (split[0])

predict_m = sum m/m_num

print ("Prediction for Next M: "+str(predict_m))

44

(Image continued from previous page)

5 predict_m_list.append(predict_m)
5 elif (split[l].startswith('140')):
n_pum += 1
actual_n_list.append(float(split[0]))
51 sum_n += £leoat (split[0])
62 predict_n = sum n/n_num
print ("Prediction for Next N: "+str(predict n))
64 predict_n_list.append(predict_n)
5 print("Current Value: "+file_content2)
time.slesp (1)
sb = ack()
sb.start ()
print "SENDING ACK"
time.slesp(l)
1 sb.stop ()
7 break
time.slesp (1)

th.stop ()

if (fils content2 == "eofl\n"):
datal.close ()
final.close ()

78 break

782 datal.close()

£inal.close()

th.stop ()

sum_sg a = O

for z in rangs (0, len(predict_a_list)-1):
square = (actual_a_list[z+1] - predict_a_list[z])**2
sum_sg a += sguare

51 msgrterr_a = math.sgrt(sum_sg_a)

print ("Root Mean Squared Error for Sensor 1: "+str(msgrterr_a))

sum_sg b = 0

for z in range(0, len(predict b list)-1):
square = (actual_b_list[z+1] - prediet_b_list[z])**2
sum_sq b += square

msgrterr_b = math.sqrt(sum_sg_b)

print ("Root Mean Squared Error for Sensor 2: "+str(msgrterr b))

8ol sum sg c =0

for z in range(0, len(predict_c_list)-1):

square = (actual _c_list[z+l] - predict_c_list[z])*+2

04 sum_sq_c += square
SE msgrterr c = math.sgrt(sum sg <)
print("Root Mean Squared Error for Sensor 3: "+str(msgrterr_c))

sum sq d = 0

for z in range(0, len(predict_d list)-1):

10 square = (actual_d_list[z+1] - prediet_d_list[z])**2

811 sum_sg d += square

812 msqgrterr d = math.sgrt(sum sg_d)

13 print ("Root Mean Squared Error for Sensor 4: "+str(msgrterr_d))

sum sg e = 0

214 for z inm rangs(0, len(predict_s_list)-1):
1 square = (actual_e_list[z+l] - predict_s_list[z])**2
818 sum_sq e += square

msgrterr_s = math.sqrt(sum_sg &)

print ("Root Mean Squared Error for Sensor 5: "+str(msgrterr_e))

sum_sg £ = 0

for z inm rangs(0, len(predict_£ list)-1):
sguare = (actual £ list[z+l] - predict £ list[z])**2
sum_sq_£ += square

msgrterr £ = math.sgre(sum_sg £)

2 print("Root Mean Squared Error for Sensor 6: "+str(msgrterr_f))

sum_sg g = ©
for z in rangs(0, len(predict_g_list)-1):

45

(Image continued from previous page)

square = (actual g _list[z+1] - predict g list[z])}**2

sum_sg g += squars

msgrterr_g = math.sgrt(sum_sg g)
print ("Root Mean Squared Error for Sensor 7: "+str(msgrterr_g))

sum_sg h =0
for z in range(0, len(predict_h list)-1):
square = (actual_h_list[z+l] - predict_h_list[z])**2

sum_sq h += square

msgrterr_h = math.sgrt(sum_sg h)

print ("Root Mean Squared Error for Sensor 8: "+str(msgrterr_h))

sum sg i =0
for z in range(0, len(predict_i list)-1):

square = (actual i list[z+l] - predict i list([z])**2

4 sum_sq_1i += square
B84 msgrterr i = math.sgrt(sum_sg i)

print ("Root Mean Squared Error for Sensor 9: "+str(msgrterr i))

sum_sgq_j = 0

for z in range (0, len(predict j list)-1):
square = (actual 3 list[z+1] - predict 3_list[z])**2
sum_sg j += sguare

msgrterr_j = math.sgrt(sum_sg_j)

print ("Root Mean Squared Error for Sensor 10: "+str(msgrterr_j))

sum_sg k= 0

for z in range(0, len(predict k_list)-1):
square = (actual_k_list[z+1] - predict_k_list[z])**2

sum_sqg_k += sguare
61 msgrterr k = math.sqrt (sum_sg k)
€2 print ("Root Mean Squared Error for Sensor 1l: "+str(msgrterr k))

sum_sg l =0

for z in range (0, len(predict 1 list)-1):
square = (actual 1 list[z+1] - predict 1 list[z])**2
sum_sg_l += square

msgreerr_1 = math.sgrt(sum_sq 1)

print ("Root Mean Squared Error for Sensor 12: "+str(msgrterr 1))

871 sum_sqm = 0
2 for z in range(0, len(predict_m_list)-1):
square = (actual m list[z+1l] - predict m list[z])**2

4 sum_sgq m += square

msgrterr_m = math.sgrt(sum_sq m)

print("Roct Mean Squared Error for Semsor 13: "+str(msgrterr_m))

578 sum_sq n = 0

for z in range(0, len(predict_n_list)-1):

square = (actual n list[z+1] - predict n list[z])+*2
81 sum_sg_n += squars

msgrterr n = math.sgrt (sum_sq n)

print("Root Mean Squared Error for Sensor 14: "+str(msgrterr_n))

rmse_tot = msgrterr_atmsgrterr_b+msgrterr_c+msqrterr_dimsgrterr e+msqgrterr_ f+msgrterr_g+msgrterr_himsqrterr_ i+msqrterr_j+msgrterr_kt+msgrterr_
print(*\nTotal Root Msan Squared Error: “+str(rmse tot))

exit ()

def guitting():

th.stop ()
th.wait ()
gapp.connect (gapp, Qt.SIGNAL("aboutToQuit()"), guitting)
qapp.sxsc_ ()
7 P if name == ' main ':
main()

Figure A.1: Weighted Round-Robin Algorithm for Base Station Radio

46

FEEEERR SRR R R HAREEFRRRRREE
€ # Feb 10 09:52:14 2022
7 FREREEEA R R R R
< b if _nams__ == ' main ':
import ctypes
11 import sys
2 if sys.platform.startswith('linux'):
try:
4 x1l = ctypes.cdll.LoadLibrary('1libXll.s0'})
5 %x11.XInitThreads|()
16 except:

printw"Warning: failed to XInitThreads ()"

import - .

41 class chat2(gz.top_block, ot.OWidget):

4 def _ init_ (self):

24 gr-top_block.__init__ (self, "cChat2")

45 Qt.oWidget._ init__ (s=lf)

46 s=lf.setWindowTitle ("Chat2")

qtgui.util.check_set_gss()

48 try:

29 self.setWindowIcon (Qt.QIcon. fromTheme ('gnuradio-gre'))
except:

51 pass

self.top_scroll layout = Qt.QVBoxLayout ()

53 self.setLayout (self.top_scroll_layout)
54 sslf.top_scroll = Qt.QScrollArea()
self.top_scroll.setFrameStyle (Qt.QFrams.NoFrame)

self.top scroll layout.addWidget(self.top scroll)
s=lf.top_scroll.setWidgetResizable (True)
s=lf.top_widget = Qt.OWidget()

59 self.top_scroll.setWidget (self.top widget)

60 self.top_layout = Qt.QVBoxLayout(self.top_widget)

61 self.top_grid layout = Qt.QGridLayout ()

62 self.top_layout.addLayout (self.top grid_layout)

63

64 self.settings = Qt.QSettings ("GNU Radio", "chat2")

65 self.restoreGeometry (sslf.settings.value ("geometry") .toByteArray())
66

-

68 FEEREEEEAREREERSREREERB AR SRR ERREERAREREERAREREEH

FEERERERAREREFRRREEHEERREREERAR L ERRRERERHRRRERHH

1 self.samp_rate = samp_rate = 400000

FREREEERRERERERR B R RR B R R ERR B AR AR R R R R ERE

FHERFREFERBERF AR ERFRRR BB TR R REFRRRRREHE
€ s=1f.uhd usrp_source_0 = uhd.usrp_source(
77 tetededn((")),
uhd.stream args(
s cpu_format="fc32",
8 channels=range (1),
81).
82)
83 self.uhd usrp source 0.set samp rate(samp_rate)
84 self.uhd usrp source 0.set_center £reg(1000000000, 0)
85 self.uhd usrp source 0O.set_gain(20, 0)
86 self.uhd usrp source_0.set_antenna ('TX/RZ', 0)
s=lf.gtgui_freg_sink _x_0 = gtgui.freg_sink o
1024, #
firdes.WIN_BLACEMAN_hARRIS, #ii
0, #fc

a1 samp_rate, #bw

47

(Image continued from previous page)

[

=1£.qtgui_freg sink_x_0.set_update_time(0.10)

self.gegui_ freg sink x_O.set_y_axis(-140, 10)
self.gtgui_freg sink x_0O.set_y label('Relative Gain', 'dB')
= qtgui_freq_sink_u_0.sst_trigger_mode (gtgui.TRIG_MCDE_FREE, 0.0, 0, ")

gtgui_freg_sink_x_0.enable_autoscale (False)
gtgui_freq_sink_x_0.enable_grid(False)
qtgui_freg sink x_0.set_f££t_average(1.0)

')

qtgui_freq_sink_x_0O.enable_axis_labels (True)

w

gtgui_freg_sink_x_0.enable_control_panel (False)

if not True:

10 self.qtgui_freq_sink x 0.disabls_legend()

if "complex" == "float" or "complex" == "msq float":

sclf.gtgui_freg sink_x_0.set_plot_pos_half (not True)

labels = ['', "', "', "', ',

113 widths = [1, 1, 1, 1, 1,

114 1, 1, 1, 1, 11

colors = ["blue", "red", "green”, "black", "cyan",

11 "magenta”, "yellow", "dark red", "dark green", "dark blue"]
7 alphas = [1.0, 1.0, 1.0, 1.0, 1.0,

1.0, 1.0, 1.0, 1.0, 1.0]
for i in xrangs(l):
if len(labels[i]) == 0:
self.gtgui_freq sink_x_0.set_line_label(i, "Data {0}".format(i))
else:
s=lf.qtgui_freq_sink_x_0.set_line_label (i, labsls[i])
self.qtgui_freq_sink_x_0.sst_line_width(i, widths[i])

sclf.qgtgui_freg sink_x_0O.set_line_color(i, colers[i])

qtgui_freg sink x O.set_line_alpha(i, alphas[i])

_gtgui_freg_sink_x_0_win = sip.wrapinstance(sslf.qtgui_freqg_sink_x_ 0.pygwidget(), Qt.QWidget)

u
a

w
a

top_grid layout.addWidget(self. gtgui_fregq sink_x 0_win)

w
o

low pass filter 0 = filter.fir filter cecf(l, firdes.low pass(
, samp_rate, 200000, 50000, firdes.WIN HAMMING, 6.76))

digital_gmsk _demod 1 = digital.gmsk_demod(

samples_per_symbol=2,
gain mu=0.175,

mu=0.5,

136 omega_relative_limit=0.005,
13 freq erzor=0.0,

verbose=False,

log=False,

self.blocks_multiply const_vxx_l = blocks.multiply_const_wee((l, })

blocks_file_sink_1 = blocks.file_sink(gr.sizeof _char*l, */home/b/chat_testl.txt', False)
£.blocks_file_sink_1.set_unbuffered(False)

blks2_packet_decoder_l = grc_blks2.packet_demod b(grc_blks2.packet_decodsr

access_code="",
threshold=-1,
12 callback=lambda ok, payload: self.blks2_packet_decoder_l.rscv_pkt(ok, payload),

blks2_packet_decoder_1, 0), (self.blocks_file_sink_1, 0))
£.blocks_multiply_const_vxx_l, 0), (s=lf.low_pass_£iltsr_0, 0))
£.digital gmsk_demod_1, 0), (sclf.blks2 packet_decoder_1, 0))
£.digital_gmsk_demod_1, 0))

0), (self.gtgui_freg sink_x_0, 0))

f.low_pass_filter_0, 0), (s=
0), (sclf.blocks multiply const _vxx_1, 0))
163 def clossEvent(s=1f, svent):

164 self.settings = Qt.QSettings("GNU Radio", "chat2")

165 self.settings.setValue("geometry", self.saveGeometry())

1 event.accept ()

48

(Image continued from previous page)

def

get_samp_rate(sclf):
return sclf.samp_rate
set_samp_rate(self, samp_rate):

sclf.samp_rate = samp_rate

sclf.uhd usrp_source_0.set_samp_rate (sclf.samp_rate)

self.gtgui_freq_sink_x_0.set_frequency_range (0,
self.low_pass_filter_0.set_taps(firdes.low_pass(l,

class text_tx(gr.top_block):

__init_ (self):
gr-top_block.__init__ (self, "Text Tx")

HEFEEER R R R R R R R R e
#

FEEEEEREEE R R PR R AR F R R R R R R R R R
self.samp_rate = samp_rate = 400000

FEERFEARRRE AR RRERARRRERRRRRERERBREHERRIERERRIRERR
#
FEEEFERRREFRRRRRERRRRREHRERREHHRRREFRAREEFHRRERHHE
self.uhd usrp_sink 0 = uhd.usrp_sink(

),

uhd.stream_args(

" ein(

cpu_format="£c32",

channels=range (1},

s=lf.samp_rats)

self.samp_rate, 200000, 50000, firdes.WIN_HAMMING,

.uhd_usrp_sink 0.
.uhd_usrp_sink 0.
.uhd_usrp_sink 0.
.uhd_usrp_sink 0.
.uhd_usrp_sink 0.

set_samp_rate (samp_rate)

set_time_now (uhd.time_spec(time.time()), uhd.ALL MBORRDS)

set_center_freg(1000000000,
set_gain (40, 0)

set_antenna ('TX/RX', 0)

0)

.digital_gmsk_mod 0 =
samples_per_symbol=2,
bt=0.35,

verbose=False,

digital.gmsk_mod(

log=False,

)
self.blocks_throttle 0 = blocks.throttle(gr.sizeof_char*l, samp_rate, True)

self.blocks multiply_const_vxx_0 = blocks.multiply const_vee((L,

»

sclf.blocks_head 0 = blocks.head(gr.sizeof_char*l, samp_rate/4)

send = open('/home/bftx.txt', 'w')

if switch == 'a':
send.write (data0[al])
print(data0(al])

elif switch == 'b':
send.write (datal[bl])
print(datal(bl])

elif switch ==

‘et
send.write (data2[cl])
print(datazlel])

elif switch == 'd':
send.write (data3[dl])
print(data3[dl])

elif switch

= 'e':
send.write (data4[el])
print(data4[el])

elif switch == "£':
send.write (data5[£1])
print (dataS[£1])

elif switch == 'g':
send.write (data6[gl])
print(dataé[gl])

elif switch == 'h':
send.write (data7[h1])
print(data7[hl])

elif switch == 'i':

send.write (datag[il])

print(dataB[il])

49

£.76))

(Image continued from previous page)

elif switch yrs
send.write (datad[31])
print(datas[j1])

elif switch == 'k':
send.write (datal0[k1])
print (datal0[k1])

elif switch == '1':
send.write (datall[11])
print (datall[11])

elif switch
send.write (datal2[ml])
print (datal2[ml])

elif switch == 'n':
send.write(datal3[nl])
print (datal3[nl])

elif switch == 'cof':

'm':

send.write ("eof\n")
print_ "eof"
send.closs ()

self.blocks_file_souree 0 = blocks.file_ source(gr.sizeof char*l, '/home/b/tx.txt', True)

w

blocks_file_source_0.set_begin_tag(pmt.FPMT NTL)

f.blks2_packet_sncodsr_0 = grc_blks2.packet_mod b(gre blks2.packet_sncodsr (

w

samples_per_symbol=2,
bits_per_symbol=l,
preamble='",
access_code="",

pad_for_usrp=True,

|
payload_length=0,

blks2_packet_encoder 0, 0), (self.digital gmsk mod 0, 0))
blocks_file_source 0, 0), (self.blocks_throttle 0, 0))
blocks_head 0, 0), (sclf.blks2_packet_caceder 0, 0))
self.connect ((self.blocks multiply_const_vxx 0, 0), (sclf.uhd usrp sink_0, 0))
blocks_throttle 0, 0), (self.blocks_head 0, 0))

self.connect ((self

sclf.connect ((sclf.digital_gmsk med 0, 0), (sclf.blocks multiply const_vxx_0, 0))

get_samp_rate (self):

return sclf.samp_rate

set_samp rate (self, samp rate):

sclf.samp_rate = samp_rate
sclf.uhd usrp_sink_0.set_samp_rate(s<lf.samp_rate)

self.blocks_throttle 0.set_sample_rate (self.samp rate)
self.blocks_head 0.set_length(se

.samp_rate/4)

class WRRScheduler () :

ow = 0
i=-1

1 data_set = []
max_s = None

counter = [}

07 def _ init_ (s=lf, s = None):
self._init_dataset (s)

1 def _init_datasst(s=1f, s):

self.data_set = =
self.max_s = max(s, key=lambda x: x[L1])[1]
self.ged_s = reduce(fractions.ged, [weight for data, weight in s])

self.len s = len(s)

50

(Image continued from previous page)

316 def schedule(sslf

7 while True:

if

self.len_s

self.ged_s

return None

if self.data_set[s=lf.i][1] »= s=lf.cw:

_inc_counter(sslf.data_set[s=1£.1])

return self.data_set[self.i]

def _inc_counter (self, item):

try:
31 self.counter[item[0]] += 1
332 except KeyError:

self.counter[item[0]] = 1

def set_data(sslf, s):

reset()

._init_dataset(s)

def reset counter(self):

self.counter = {}

def reset(sslf):

u
a

u
a

u
a

w
o

u
a

self.reset_counter()

def get_next(s=lf, n = 1):
if n > 1=
return [self.schedule() for i in rangs(0,n)]

return sclf.schedules()

class ack2(gr.top_block, Qt.OWidget):

def _ init_ (s=l£):

gr.top_block._ init_ (self, "Chat2")
Qt.OoWidget._ init__ (self)
setWindowTitle ("Chat2")
gtgui.util.check set_gss()
try:
sclf.setWindowIcon (Qt.0QIcon. fromThene ('gnuradic-gre'))

except:
pass
self.top_scroll_layout = Ot.OVBoxLayout ()

u
a

setLayout (self.top_scroll_layout)
top_scroll = Qt.QScrollirea()

u
a

u

top_scroll.setFrameStyle (Qt.QFrame.NoFrame)

u

top_scroll_layout.addWidget (s=1f.top_scroll)

u

top_scroll.setWidgetResizable (True)

u

top_widget = Qt.QWidget ()

u

top_scroll.setWidget (s=1f.top_widget)

top_layout = Qt.QVBoxLayout (self.top_widget)
top_grid_layout = Qt.QGridLayout ()

u

u

u
a

1£.top_layout.addLayout (s=1£.top_grid_layout)

u

settings = Qt.QSettings ("GNU Radio", "chat2")

u
a

£.restoreGeometry (s=1£.settings.value ("geometry") .toByteArray())

FEEERERARRERREERERREFRBERERREREERRERBRREERBERIRRRS
¥
FEERRERERRERRERRERREFRERRERRERERRRERERRBERBERIERRH

£.samp_rate = samp_rate = 400000

iables

FEEREERERRERRERREFREFRERRERRERRERRERFRREHREREFRRH

o1

(Image continued from previous page)

self.uhd usrp source_0 = uhd.usrp_souree(

wonGoin (",),
uhd.stream_args(
cpu_format="fe32",

channels=range (1),

|

)

self.uhd usrp_source_0.sst_samp_rate (samp_rate)

a0 self.uhd usrp_source_0.set_center_freq(1000000000, 0)
self.uhd usrp_source_D.set_gain(30, 0)

402 self.uhd_usrp_source_0.set_antenna('TX/RZ', 0)
self.qtgui freq sink x 0 = gtgui.freq sink c|

1024,
firdes.WIN_BLACEMAN_ hARRIS,
0,

40 samp_rate,

410)

41 self.qtgui_freq sink _x 0O.set_y label ('Relative Gain', 'dB')
self.qtgui_freq_sink_x_ 0.set_trigger_mode (qtgui.TRIG_MODE_FREE, 0.0, 0, ")

self.gtgui_freg_sink_x 0.enable_autoscale (False)

.gtgui_freq sink_x 0.cnable_grid(False)

.qtgui_freg_sink_x 0.set_£ft_average(1.0)

.gtgui_freq sink_x_0.cnable_axis_labels (Tzrue)

_gtgui_freg sink x 0.enable_control_panel (False)

if not True:

self.gtgui_freq_sink_x_0.disable_legend()

if "complex" == "float" or "complex" == "msqg_float":

425 self.gtgui_freq_sink_x_ 0.set_plot_pos_half (not True)

labels = ['', "', "', 11, v,
widths = [1, 1, 1, 1, 1,
1, 1, 1, 1, 1]
colors = ["blue", "red", "green", "black", "cyan",
"magenta”, "yellow”, "dark red”, "dark green”, "dark blue"]
alphas = [1.0, 1.0, 1.0, 1.0, 1.0,

1.0, 1.0, 1.0, 1.0, 1.0]
for i in xrangs(l):

if len(labels[i]) == 0:

.gtgui_freq_sink_x_0.set_line_label(i, "Data {0}".format(i))

self.qtgui_freq_sink_x_0.set_line_label(i, labels[i])

1£.qtqui_freqg_sink_x_0.set_line_width(i, widths[i])
self.qgtgui_freq_sink_x_0.set_line_color (i, colors[i]}
1

f.qtgui_freq_sink_x_0.set_line_alpha(i, alphas[i])

1£. gtgui freg sink x 0 _win = sip.wrapinstance(sclf.gtgui_ freg sink x_O.pygwidget(), Ot.OWidget)
self.top_grid layout.addWidget (sel
1

_gtgui_freq_sink_x_0_win)

f.low_pass_filter 0 = filter.fir filter_ccf(l, firdes.low_pass(
1, samp_rate, 200000, 50000, firdes.WIN HAMMING, 6.7€))
self.digital gmsk demod 1 = digital.gmsk demod(

samples_per_symbol=2,

gain mu=0.175S,

mu=0.5,

omega_relative limit=0.003,

freq error=0.0,

verbose=False,

log=False,
)
self.blocks_multiply const_vxx_1 = blocks.multiply censt_vee((l,))
self.blocks file sink 1 = blocks.file sink(gr.sizeof char*l, '/home/b/chat_test2.txt', False)
self.blocks_file sink 1.set unbuffered(False)

460 self.blks2 packet_decoder_1 = grc_blks2.packet_demod b(grc_blks2.packet_decoder (
access_code='",
482 threshold=-1,

callback=lambda ok, payload: self.blks2 packet_decodsr_l.recv_pkt (ok, payload),

52

(Image continued from previous page)

SRR RREEREERER AR F B B R R E R RS

FEEEEAAREERRERRRRREFH R B LR R R R EREERER R AT HH R BHE
=lf.connect ((sclf.blks2_packet_decoder 1, 0), (self.blocks_file_sink 1, 0))
f£.connect ((s=1f.blocks multiply const_vxx_1, 0), (self.low pass filter 0, 0})

connect ((self.digital gmsk demod 1, 0), (s=lf.blks2_packet_decoder_1, 0))
connect ((sslf.low_pass_filter 0, 0), (seslf.digital gmsk demod 1, 0))
£.connect ((self.low pass_filter 0, 0), (self.gtgui_freq sink x_0, 0))
self.connect ((self.uhd usrp_source 0, 0), (self.blocks multiply const_vxx 1, 0))

def closeEvent(sclf, event):

self.settings = Qt.QSettings("GNU Radio", "chat2")

')
o

f.settings.setValue ("geometry”, s=lf.saveGeometry())

event.accept ()

def get samp rate(s=1f):

return self.samp_rate

def set_samp rate(s=lf, samp rate):

samp_rate = samp_rats

uhd_usrp_source_0.set_samp_rate (self.samp_rate)

qtgui_freg sink x_O.set_frequency range (0, sclf.samp_rate)
self.low_pass_filter_0.set_taps(firdes.low_pass(l, sclf.samp_rate, 200000, 50000,

from distutils.version import StrictVersion

if StrictVersion(Qt.gVersion()) >= StrictVersion("4.5.0"):
style = gr.prefs().get_string('qtgui’', 'style', 'raster')
Qt.oapplication.setGraphicsSystem(styls)

gapp = Qt.QApplication(sys.argv)

data_csv = open (' /home/b/20161005 140846.esv', 'r')
csvreader = csv.reader (data_csv)
header = next (csvresader)

data_rows = []
for row in csvreader:
data_rows.append (row)

data_csv.close ()

for x in range(0,14):
out = open('file' + str(x+l) + '.txt', 'w')
for y in range (0, 100):
cut.write(data rows[y] [x+E]+' '+str(x+1)+ 0 +str(y+1)+ \n')
out.closs()

th = chat2 ()
th.start ()
print "Ready to start..."
while True:
£ = open('/home/b/chat testl.txt', 'r')
£.flush()
f.readline ()
check = f.readline ()
if (check != ""):
print, "START"
time.sleep (1)
break
th.stop ()

weight_file = open('/home/b/chat testl.txt', 'r')
weight_file.flush()

weight_file.readline()

weights = weight_file.readline()

w_list = weights.split(", ")

w_list.pop ()

for m in range(0, len(w_list)):

w_list[m] = int(w_list[m])

53

firdes.WIN_ HAMMING,

£.76))

(Image continued from previous page)

sensors = ['A', 'B', '€', 'D', 'E', 'F', 'G', 'H', 'I', 'J', 'K', 'L',

global i, al, bl, <1, di, <1, £1, gi, hl, il, 31, k1, 11, =ml, al
i=0

al
bl =
cl =
4l =
el =
£1 =

1
000000000000 O0

gl =
hl =
i1 =
j1 =
X1 =
11 =
ml =

al =
global datal, datal, data2, data3, data, data5, dataé, data7, dataf,

readl = open('/home/b/filel.txt', 'r')
data0 = readl.readlines()
lengthl = len(datal)

zeadl.close ()

read2 = open('/home/b/file?.txt', 'T')
datal = read2.readlines()
length? = len(datal)

read2.close ()

read3 = open('/home/b/file3.txt', 'r')
data? = read3.readlines()
length3 = len(data2)

read3.close ()

read4 = open('/home/b/filed.txt’, 'r')
data3 = read4.readlines()
length4 = len(data3)

read4.closs ()

zeadS = open('/home/b/file5.txt’, 'r')
data4 = readS.readlines()
lengthS = len(data4)

readS.close ()

readé = open('/home/b/file6.txt’, 'r')
data5 = read6.readlines()
lengthé = len(data5)

zeadé.close()

read? = open('/home/b/fileT.txt’, 'r')
data6 = read7.readlines()
length7 = len(dataf)

read7.close ()

read8 = open('/home/b/fileB.txt’, 'r')
data7 = readd.readlines()
lengthd = len(data7)

readf.closs ()

read$ = open('/home/b/filed.txt’, 'r')
data8 = readS.readlines()
lengthS = len(data8)

zeads.close()

readl0 = open('/home/b/filell.txt', 'x')
data% = readl0.readlines ()

lengthl0 = len(data$)

readl0d.close ()

readll = open('/home/b/filell.txt', 'z')
datal0 = readll.readlines()

54

MY, 'N')

data%, datall,

datall,

datal2,

datal3

(Image continued from previous page)

12 lengthll = len(datal0)
13 readll.close ()

15 readl2 = open('/home/bffilelZ.txt', 'r')
Le datall = readlZ.readlines()
17 lengthl2 = len(datall)

18 readl2.closs ()

20 readl3 = open('/home/bffilel3.txt', 'r')
1 datal? = readl3.readlines()

22 lengthl3 = len(datal2)

23 readl3.close ()

readl4 = open('/home/b/fileld.txt', 'r')
26 datal3 = readl.readlines()

27 lengthl4 = len(datal3)

28 readl4.closs ()

data = list(zip(sensors, w_list))
31 sched = WRRScheduler (data)

global a_tot, b_tot, c_tot, d_tot, e_tot, f_tot, g_tot, h_tot, i_tot, j_tot, k_tot, 1_tot, m_tot, n_tot, switch

a_tot
b_tot
c _tot
37 d tot

e tot =

£ tot
40 g_tot =
41 h_tot
42 i_tot
43 j_tot
k _tot
1 _tot
46 m_tot
4 n_tot

[
oo oo oo oo oo ooool

49 x =0

result = []
while (x < 150):
choose = sched.get_next ()
if choose[0]
a tot += 1
if (a_tot <= lengthl):
result.append (choose[0])

ATz

57 x 4= 1
elif choose[0] == 'B':
b tot += 1

if (b_tot <= length2):
61 result.append(choose[0])
x = 1
elif choose[0] == 'C':
c_tot += 1
if (c_tot <= lengthl):
result.append(choose[0])

7 x += 1
elif choose[0] == 'D':
d tot += 1

70 if (d_tot <= lengthd):
1 result.append(choose[0])
2 x += 1

573 elif chocse[0] == 'E':

4 e tot += 1

75 if (e_tot <= lengthS):
result.append(choose[0])
x += 1

78 elif choose[0] == 'F':

£_tot += 1

if (£_tot <= lengthé):

561 result.append(choose[0])

82 x += 1

elif choose[0] == 'G':
g_tot += 1
if (g_tot <= length7):

55

(Image continued from previous page)

result.append (choose[0])

7 ®x += 1
elif choose[0] == 'H':
h_tot += 1

if (h_tot <= lengthf):
zesult.append (choose [0])

x += 1
elif choose[0] == 'I
£94 i_tot += 1

if (i_tot <= length9):
result.append (choose[0])
x += 1
elif chooss[0]
j_tot += 1

o

if (j_tot <= lengthlQ):
01 result.append (choose[0])

702 ®x += 1
elif choose[0] == 'K':
k tot += 1

if (k_tot <= lengthll):
result.append (choose [0])
®x += 1

70 elif choose[0] ==

1 tot +=1

1 if (1_tot <= lengthl2):

11 result.append (chooss [0])

12 x += 1
71 elif choose[0]
14 m_tot += 1
1 if (m_tot <= lengthl3):

1€ zesult.append (chooss[0])

1 x += 1
elif choose[0] == 'N':

19 n_tot += 1

2 if (n_tot <= lengthl4):

2 result.append (choose [0])

2 ® += 1

while i < (lem(result)):

if resulc[i] A

2 switch = 'a’
2 th = text_tx()
2 th.start ()

time.slesp (1)

th.stop ()

i+=1

al += 1
elif result[i]
3 switch = 'b’
th = text_tx()
th.start ()

time.sleep (1)
th.stop ()

i+=1

740 bl += 1

1 elif result[i] == 'C':
switch = 'c
743 th = text_tx()
th.start ()
time.sleep (1)
4 th.stop ()
i+=1

748 cl += 1

elif result[i] == 'D':
switch = 'd
th = text_tx()
th.start ()
time.sleep (1)
th.stop ()
i+=1
dl 4= 1

elif result[i]

switch = 'e!'
- th = text_tx()

(Image continued from previous page)

th.start ()
time.sleep(l)
th.stop ()
i+=1
el += 1

elif result[i] == 'F':
switch = '
th = text_tx()
th.start ()
time.sleep(l)
th.stop ()
i+=1
fl1 += 1

elif result[i]

switch = ‘g’
th = text_tx()
tb.start ()
time.sleep(l)
tb.stop()
i+4=1
gl += 1

elif result[i] == 'H':
switch = 'h'
tb = text tx()
th.start ()
time.sleep(l)
th.stop ()
i+=1
hl += 1

elif result[i] == 'I':
switch = 'i’
th = text_tx()
th.start ()
time.sleep(l)
th.stop ()
i+=1
il +=1

elif result[i] == 'J':
switch = 'j"
th = text tx()
th.start ()
time.sleep (1)
th.stop ()
i+=1
il += 1

elif result[i] == 'K':
switch = 'k’
th = text tx()
th.start ()
time.sleep (1)
th.stop ()
i+=1
kl += 1

elif result[i]

switch = '1°

tb = text_tx()
th.start ()
tims.sleep (1)
th.stop ()
i+=1

11 += 1

elif result[i] ==

switch = 'm'
th = text_tx()
th.start ()
tims.sleep (1)
th.stop ()
i+=1

ml += 1

elif resule[i] ==
switch = 'n’
tb = text_tx()
tb.start ()

time.slesp (1)

(Image continued from previous page)

th.stop()
i+=1
nl += 1
else:
print, "Error: Empty Result"
tb = ack2()
tb.start ()
while True:
ack_file = open('/home/b/chat_test2.txt', 'z')
ack_file.flush()
ack file.readline()
ack0 = ack_file.readline()
if (ack0 == 'ACK\n'):
printv"RECEIVING ACK"
time.slesp(l)
break
ack file.close ()
time.slesp (1)
th.stop ()

switch = 'eof’
th = text_tx()
tb.start ()
time.sleep (1)
tb.stop ()

print('done')

exit ()

def quitting():

th.stop ()
th.wait ()
gapp.connect (gapp, Qt.SIGNAL("aboutToQuit()"), quitting)
gapp.exec_()
if _name__ == ' main ':
main ()

Figure A.2: Weighted Round-Robin Algorithm for Field Sensor Radio

58

10 import ctypes

import sys

if sys.platform.startswith('linux'):

13 try:

13 xll = ctypes.cdll.LoadLibrary('libXll.so")
5 x11.XInitThreads ()

16 except:

17 print_"Warning: failed to XInitThreads()"

import

class chat (gr.top_block, Qt.QWidget):

a1 def _ init (self):
gr-.top_block.__init__ (self, "Chat")
ot.oWidget. init_ (self)
self.setWindowTitle ("Chat")

gtgui.util.check set_gss()

46 try:

47 self.setWindowIcon (Qt.QIcon.fromTheme ('gnuradio—gra'))
48 except:

4 pass

self.top_scroll_layout = Qt.QVBoxLayout ()
self.setLayout (self.top_scroll_layout)
self.top_scroll = Qt.OScrollirea()

self.top scroll.setFrameStyle (Ot .QFrame.NoFrame)
self.top_scroll layout.addWidget (self.top_scroll)
self.top_scroll.setWidgetResizable (True)
self.top_widget = Qt.QWidget ()
self.top_scroll.setWidget (s=lf.top widget)

58 self.top layout = Qt.QVBoxLayout (self.top widget)
59 self.top_grid_layout = Qt.QGridLayout()

&0 self.top_layout.addLayout (s=lf.top_grid layout)
€2 self.settings = Qt.QSettings("GNU Radio", "chat")
63 s=lf.restoreGeomstry (s=1f.ssttings.valus ("geometry") .toByteArray ()}

66 | HEERHERERREHERER S S R ISR F AL Epddaaid

68 #EbREE

FREREERERES REERERREE RS
B self.samp_rate = samp_rate = 400000
71 L FEEEEEREER RS FERREERRERREERRERESHE RS FERdEEEEE
73 LD RERERERREREEEREES FREREEREER AR EE R RS FEEREEREE

74 self_uhd usrp_sink_1 = uhd.usrp_sink(

5 s"eJein((t, M),
76 uhd.stream_args(
77 cpu_format="£a32",
8 channels=range (1),
Z |
80)
81 s=lf.uhd_usrp_sink l.set samp_rate (samp_rate)
82 self.uhd usrp_sink_l.set_time_now(uhd.time spec(time.time()}, uhd.ALI, MBOARDS)
83 self.uhd_usrp_sink_l.set_center_freq(1000000000, 0)
84 self.uhd_usrp_sink l.set_gain(40, 0)
85 self.uhd usrp_sink_l.set_antenna('R¥2', 0)
86 self.digital gmsk mod 0 = digital.gmsk_mod(
8 samples_per_symbol=2,

8 bt=0.35,

verbose=False,

log=False,

59

(Image continued from previous page)

a2 =elf.blocks_throttls_0 = blocks.throttle(gr.sizeof_char*l, samp_rate, True)
a3 self.blocks_multiply const_vxx_1 = blocks.multiply const_vec((1,))

self.blocks_head 0 = blocks.head(gr.sizeof char*l, 100000)

self.blocks_file_source 0 = blocks.file_source(gr.sizeof_char*l, '/home/c/chat3’, True)
self.blocks_file_source 0.set_begin_tag(pmt.BMT_NIL)

==1£.blks2_packet_encoder_0 = grc_blks2.packet_mod_b (grc_blks2.packet_encoder (

samples_per_symbol=2,
=k bits_per_symbol=l,
100 preamble='",

101 access_code='",

pad_for usrp=True,
103 Ir
104 payload length=0,

FREERFEREREER R RERRERRFRRERE FREEREREERRERRFREERER
0 #c ns
111 R R S R e]
112 self.connect ((sclf.blks2_packet_encoder 0, 0), (sclf.digital gmsk_mod 0, 0))
113 self.connect((self.blocks_file_source_0, 0), (sslf.blocks_throttle 0, 0))

self.connect ((sslf.blocks_head_0, 0), (self.blks2_packet_sncoder_0, 0))
self.connect ((sclf.blocks multiply const_vxx 1, 0), (sclf.uhd uszp simk_1, 0))
self.connect ((s=l1f.blocks_throttle 0, 0), (s=lf.blocks_head 0, 0))

self.connect ((sclf.digital_gmsk med 0, 0}, (sclf.blocks multiply const_vxx_1, 0))

def clossEvent(s=1f, event):
self.settings = Qt.QSettings("GNU Radio", "chat")
self.settings.setValue ("gecmetry", s=l1f.saveGeomstry())

event.accept ()

def get_samp_rate(s=1f):

return sclf.samp_rate

def set_samp rate(sclf, samp_rate):
self.samp rate = samp rate
self.uhd_usrp_sink_l.set_samp_rate(sclf.samp_rate)

sclf.blocks_throttle_0.sct_sample_zate(sclf.samp_zate)

class text_zxz(gr.top_block, Ot.QWidget):

def __init_ (self):
gr.top_block. init_ (sclf, "Text Rx")

13 Qt.QWidgst.__init__ (self)

138 self.setWindowTitle ("Text Rx")

gtgui.util.check _set_gss()
140 try:
141 self.setWindowIcon(Qt.QIcon. fromTheme ('gnuradio-gra'))

except:
pass

s=lf.top_scroll layout = Qt.QVBoxLayout ()

self.setLayout (self.top scroll_layout)

s=1f.top_scroll = Qt.0ScrollArea()

s=lf.top_scroll.sstFramsStyle (Qt.QFrams.NoFrams)

self.top_scroll layout.addWidget(self.top scroll)
12 self.top_scroll.setWidgetResizable (True)
self.top widget = Qt.QWidget()

151 self.top_scroll.setWidget(self.top widget)
self.top_layout = Qt.QVBoxLayout(self.top_widget)
self.top_grid layout = Ot.QGridLayout ()
self.top_layout.addLayout(sslf.top_grid_layout)

self.settings = Qt.0QSettings("GNU Radio", "text rx")
self.restoreGeometry(self.settings.value ("geometry") .toBytearray())

fid 23333333553 5535333335335355535333

FREFREERERREERERRER R R E R EER R AR RS

self.samp_rate = samp_rate = 400000

FREFREERER R R AR

60

(Image continued from previous page)

168 self.uhd usrp source_0 = uhd.usrp_source(

|

168 " Sein((,

170 uhd.stream_args(

171 cpu_format="fe32",

172 channels=range (1),

173).

174)

175 self.uhd usrp_source_0.set_samp_rate (samp_rate)

176 self.uhd usrp source 0.set_center_ freq(l000000000, 0}
1 self.uhd usrp_source_0.set_gain(30, 0)

178 self.uhd usrp source_0.set_antenna('R¥2', 0)

179 self.gtgui_freq sink_x_0 = gtgui.freg_sink c|(

1024,
firdes.WIN_BLACEMAN hARRIS,
182 o,

183 samp_rate,

qtgui_freq_sink_x_0.set_update_time (0.10)
gqtgui_freq_sink x 0.set_y_axis(-140, 10)

gqtgui_freg sink x 0.set_y label('Relative Gain', 'dB')

gtgui_freq sink_x 0.set_trigger_mode (gtgui.TRIG_MCDE_FREE, 0.0, 0, "")
gqtgui_freg_sink x 0.enable_autoscale (False)

gtgui_freq_sink _x_0.enable_grid(False)

gtgui_freq sink x 0O.set £ft average(1.0)

qtgui_freq_sink x_0.snable_axis_labels (True)

qtgui_freq_sink x_0.enable_control_panel (False)

if not True:
198 self.qtgui_freq_sink_x 0.disable_legend()
200 if "complex” == "float" or "complex" == "msq_float':

201 self.qtgui_freq sink_x_O.set_plot_pos_half (not True)

20 labels = ['', "', "', "', '7,
204 Tyttt]
widths = [1, 1, 1, 1, 1,
1, 1, 1, 1, 1]
207 colors = ["blue", "red", "green", "black", "cyan",
20 "magenta", "yellow", "dark red", "dark green", "dark blue"]
203 alphas = [1.0, 1.0, 1.0, 1.0, 1.0,

210 1.0, 1.0, 1.0, 1.0, 1.0]

211 for i in xrangs(l):

if len(labels[i]) == 0:

qtgui_freq sink x 0.set_line_label(i, "Data {0}".format(i))

else:

self.gtgui_freq sink x 0O.set_line_label(i, labels([i])

gtgui_freq_sink_x_0.set_line_width(i, widths[i])

21 self.qtgui_freq_sink_x_0.sst_line color(i, colors[il)

sclf.qgtgui_freq sink x_0.set_line alpha(i, alphas[il)

£._gtgui_freg sink_x 0_win = sip.wrapinstance (self.gtgui freg sink_x_O.pyqwidget (),

.QWidget)
top_grid_layout.addWidget (s=lf._gtgui fregq sink x 0_win)

low_pass_filter_0 = filter.fir_filter_ccf(l, firdes.low_pass(
1, samp _rate, 200000, 50000, firdes.WIN HAMMING, €.76))
self.digital_gmsk_demod 0 = digital.gmsk_demod(

samples_per_symbol=2,
gain_mu=0.175,

mwu=0.5,
omega_relative_limit=0.005,
freq erzor=0.0,
verbose=False,

log=False,

clr file = open('/home/c/test file2', 'w')

clr_file.close ()

23 self.blocks_multiply const_vxx_0 = blocks.multiply comst_vec((1, 1)
23 self.blocks_file sink_0 = blocks.file sink(gr.sizeof_char*l, '/home/c/test file2', False)
238 self.blocks file sink 0.set unbuffercd(False)

61

(Image continued from previous page)

scl£.blks2_packet_decodsr_0 = gre_blks2.packet_demod_b(grc_blks2.packst_decoder (
access_code='",
threshold=-1,
callback=lambda ok, payload: sclf.blks2_packet_deceder_0.recv_pkt(ok, payload),
).

B g st

co

FERREFREFREERREES RERRRERRERREFREFREERREES EREREREE

self.connect ((self.blks2_packet_decoder_0, 0), (self.blocks_file_sink 0, 0))
self.connect ((self.blocks_multiply const_vxx_0, 0), (self.low_pass filter_0, 0))
self.connect((sclf.digital gmsk_demod 0, 0), (s=lf.blks2 packet decoder_0, 0))

self.connect((sclf.low_pass_filter 0, 0), (self.digital gmsk_demod 0, 0))
self.connect((self.low_pass_filter 0, 0), (self.qgtgui_freq sink_x_0, 0))
self.connect((self.uhd_usrp_source_0, 0), (sclf.blocks_multiply_const_vxx_0, 0))

def clossEvent(s=1f, svent):
self.settings = Qt.QSettings ("GNU Radio", "text rx")
self.settings.setValue ("geometry", sclf.saveGeometry())

svent.accept ()

def get_samp_rate(s=1%):
return sclf.samp_rate

def set_samp_rate(s=lf, samp_rate):

270 self.samp_rats = samp_rate

271 sclf.uhd usrp_source_0.set_samp_rate(sclf.samp_zate)

272 self.gtgui_freq sink_x_0.set fregquency range(0, sclf_samp rate)
self.low_pass_filter_0.set_taps(firdes.low_pass(l, self.samp_rate, 200000, 50000, firdes.WIN HAMMING, 6.76))

2 class ack(gr.top_block, Qt.QWidget):

278 def _ init_ (self):
2 gr-top block._ init__ (self, "Chat")

280 ot.owWidgst.__init__ (sslf)
281 self.setWindowTitle ("Chat")
282 gtgui.util.check_set_gss()

283 try:
self.setWindowIcon (Qt.QIcon. fromTheme ('gnuradico-—gra'))

except:

286 pass
2 self.top_scroll_layout = Qt.@VBoxLayout ()

288 self.setlLayout(s=lf.top_scroll layout)
self.top_scroll = Qt.@Scrollarea()
self.top_scroll.setFrameStyle (Qt.QFrams.NoFrams)
self.top_scroll_layout.addWwidget (self.top_scroll)
self.top_scroll.setWidgetResizable (True)
self.top widget = Qt.QWidget()
self.top_scroll.setWidget (self.top_widget)
self.top_layout = Qt.QVBoxLayout (self.top_widget)
self.top_grid_layout = Qt.QGridLayout ()
self.top_layout.addLayout (self.top_grid layout)

self.settings = Qt.QSettings("GNU Radio", "chat")

self.restoreGeometry(sclf.settings.value ("geometry") .toBytehrray())

“““ REREERRREREE

self.samp_rate = samp_rate = 400000

weight_file = open('/home/c/chatd', 'w')
5 weight_file.write ("ACK\n")
weight_file.close ()

EREREEEERERES EEpdEasaas REpdEasaas REpdEasaas ¥

cks

62

(Image continued from previous page)

FERREFERREERREEER AR AR R R AR R ER AR AR RERRREES
self.uhd_usrp_sink_1 = uhd.usrp_sink(

W Gedn((rr, "My,
31 uhd.stream args(
318 cpu_format="fc3z",

channels=range (1),

320 be

1)

s=lf.uhd_usrp sink 1.set_samp_rate (samp_rate)

323 self.uhd usrp sink 1.set_time_now(uhd.time_spec(time.time()), uhd.ALL MBOARDS)
self.uhd_usrp_sink_l.set_center_freg(l000000000, 0)

s=lf.uhd usrp_sink_1.sst_gain(40, 0)

self.uhd usrp_sink 1.set_antenna('TX/RX', 0)

self.digital gmsk mod 0 = digital.gmsk mod(

samples_per_symbol=2,
bt=0.35,
verbose=False,
log=False,
)
self.blocks_throttle 0 = blocks.throttle(gr.sizeof char*l, samp rate,True)
self.blocks multiply const_wxx_1 = blocks.multiply comst_wee((1,))
self.blocks_head_0 = blocks.head(gr.sizeof char*l, 100000)
self.blocks_file source 0 = blocks.file source(gr.sizeof char*l, '/home/c/chatd', True)

self.blocks_file_source_0.sst_begin_tag (pmt.PMT_NIL)

self.blks2_packet_encoder_0 = grc_blks2.packet_mod_b(grc_blks2.packet_encoder (

samples_per_symbol=2,
340 bits_per_symbol=1,

preambl,
access_code='",

pad_for_usrp=True,
).
payload length=0,

FEEEREEEEEERRREERERERRRREREEREREREERELERRREERARRER

¥ # B S s]
=elf.connect ((s=lf.blks2_packet_encoder_0, 0), (s=lf.digital_gmsk_mod_0, 0})
self.connect ((self.blocks_file_source_0, 0), (sslf.blocks_throttle_0, 0))
= self.comnect ((self.blocks_head 0, 0), (self.blks2_packet_sncoder_0, 0))
35 sclf.comnect ((sclf.blocks_multiply const_vxx_1, 0), (sclf.uhd usrp_sink 1, 0))
blocks_head_0, 0))
self.comnect ((s=lf.digital_gmsk med 0, 0), (self.blocks multiply const_vxx 1, 0))

357 self.connect ((self.blocks_throttle 0, 0), (s=

def closeEvent(self, event):
self.settings = Ot.QSettings("GNU Radio", "chat™)

self.settings.setValue ("geometry", self.saveGeomestry())

event.accept ()

365 def get_samp_rate (sslf):

return self_samp_rate

def set_samp_rate(sclf, samp_rate):
self.samp_rate = samp_rate
self.uhd_usrp_sink_l.set_samp_rate(sclf.samp_rate)

1 self.blocks_throttle_0.set_sample_rate(self.samp_rate)

374 def main (- ons=None) :

from distutils.version import StrictVersion

if StrictVersion(Qt.gVersion()) >= StrictVersion("4.5.0"):
style = gr.prefs().get_string('gtgui', 'style’, 'raster')
Ot.QApplication.setGraphicsSystem(style)

gapp = Qt.CApplication(sys.argv)

382 a_num =

b_num =

a c num
L d_num =

e num =

|
o oo oo

f num

63

(Image continued from previous page)

©C oo 000000000 00000000 Co

oo o000 o000 ooo o

actual a list = []
actual b _list = []

actual_c_list = []
42 actual_d list = []
428 actual e list = []
actual_f_list = []

430 actual_g_list = []
actual h_list = []
432 actual_i_list = []
433 actual j_list = []
434 actual_k_list = []
435 actual_1_list = []
436 actual m list = []

43 actual_n_list = []

438 predict_a_list = []
predict_b_list = []
predict c list = (]
predict_d_list = []
predict e list = []

predict £ list = []

444 predict_g_list = []
predict h list = []

446 predict_i_list = []

447 predict_j_list = []
predict_k _list = []
predict_1_list = []
predict_m_list = []
predict_n_list = []

while True:

weightl = raw_input ("Enter a value for the weight of semsor 1 (imteger): ")

try:

int (weightl)
457 if (int(weightl) < 0):

print "Value cannot be negative. Try again."

459 continue
460 except ValusError:

461 print "Value provided needs to be an integer. Try again."

64

(Image continued from previous page)

continue
break

while True:
weight2 = raw_input ("Enter a value for the weight of sensor 2 (integer):
try:
int (weight2)
if (int(weight2) < 0):
print "Value cannot be negative. Try again."
continue
except ValusError:
print, "Value provided needs to be an integer. Try again."
continue
break

while True:
weight3 = raw_input ("Enter a value for the weight of sensor 3 (integer):

try

int (weight3)
if (int(weight3) < 0):
print "Value cannot be negative. Try again."
continue
except ValusError:
print, "Value provided needs to be an integer. Try again."
continue
break

while True:
weight4 = raw_input ("Enter a value for the weight of sensor 4 (integer):

try

int (weight4)
if (int(weightd) < 0):
print "Value cannot be negative. Try again."
continue
except ValusError:
print, "Value provided needs to be an integer. Try again."
continue
break

while True:

weight5 = raw_input ("Enter a value for the weight of semsor 5 (integer):

try:
int (weight5)
if (int(weight5) < 0):
print "Value cannot be negative. Try again."
continue
except ValusError:
print "Value provided needs to be an integer. Try again."
continue
break

while True:

weighté = raw_input ("Enter a value for the weight of sensor 6 (integer):

try:
int (weight€)
if (int(weight€) < 0):
print "Value cannot be negative. Try again."
continue
except ValusError:
print "Value provided needs to be an integer. Try again."
continue
break

while True:

weight7 = raw_input ("Enter a value for the weight of senser 7 (integer):

try:
int (weight7)
if (int(weight7) < 0):
print "Value cannct be negative. Try again."
continue
except ValusError:
print, "Value provided needs te be an integer. Try again."
continue
brealk

65

(Image continued from previous page)

while True:

weight8 = raw_input ("Enter a value for the weight of sensor 8 (integer):
try:
int (weight8)

")

if (int(weight8) < 0):
print_ "Value cannot be negative. Try again."
continue
except ValusError:
print_'Value provided needs to be an integer. Try again.”
continue
break

while True:

weight9 = raw_input ("Enter a value for the weight of sensor 9
try:
int (weightd)

(integer) : ")

if (int (weight%) < 0):
print_"Value cannot be negative. Try again."
continue
except ValusError:
print "Value provided needs to be an integer. Try again."
continue
break

while True:
weightl0 = raw_input("Enter a value for the weight of sensor 10 (integer): ")
try:
int (weightl0)
if (int(weightlD) < 0):
print "Value cannot be negative. Try again."
continue
except ValusError:
print "Value provided needs to be an integer. Try again."
centinue

break

while True:

weightll =
try:
int (weightll)

raw _input("Enter a value for the weight of sensor 1l (integer):

")

if (int (weightll) < 0):

print "Value cannot be negative. Try again."
continue
except ValusError:
print_"Value provided needs to be an integer. Try again.®
continue

break

while True:

weightl2 = raw_input ("Enter a value for the weight of sensor 12 (integer):
try:
int (weightl12)

")

if (int (weightl2) < 0):
print "Value cannot be negative. Try again."
continue
except ValusError:
print_"Value provided needs to be an integer. Try again.®
continue

break

while True:

weightl3 = raw_input ("Enter a value for the weight of sensor 13 (integer):
try:
int (weightl3)

")

if (int (weightll) < 0):
print "Value cannot be negative. Try again."
continue
except ValusError:
print, "Value provided needs to be an integer. Try again."
continue

break

while True:

66

(Image continued from previous page)

1 weightld4 = raw_input("Enter a value for the weight of sensor 14 (integer): ")
611 try:

€12 int (weightl4)

613 if (int(weightld) < 0):

4 print "Value cannot be negative. Try again."

continue

616 except ValueError:

1 print "Value provided needs to be an integer. Try again."
continue

break

weight_file = open('/home/c/chat3', 'w')

)

)

)

)

")

)

)

)

R}
)
o

weight_file.write(weightl2 + ', ')
4
.

weight_file.write(weightl
weight_file.write (weight2
weight_file.write(wsight3

2 weight file.write(weight4
2 weight_file.write (weightS
528 weight file.write(weight€
weight_file.write (weight7
weight_file.write (weight8

EE T S

weight file.write (weight9
weight_file.write(weightl0
weight file.write(weightll

)
toAn)

weight_file.write(weightl3
weight_file.write(weightl4

weight_file.close()

tb = chat()
th.start()
time.sleep(1)
th.stop()

final = open('/home/c/£inal', 'w')

final.close()

48 packst_tot = 0

s sum_changs0 =
E sum_changel =
sum_changs2 =

sum_change3 =

sum_change5 =
sum_changeé =

1 sum_change7 =

0
0
0
0

sum_changed = 0
0
0
0

2 sum_changef = 0

sum_changeS = 0

4 sum_changel0 =

5 sum_changell =

sum_changel2 =

o o oo

sum_changel3 =

while True:
th = text_rx()

th.start()
82 datal = open('/home/c/test file2', 'r+')
final = open('/home/c/final", 'a')

67

(Image continued from previous page)

84 while True:

datal.flush()

datal.readline()

file_content2 = datal.readline()

if (file_content2 == "cof\n"):
print (file content2)

o1 break

92 elif (file content2 != ""):

packet_tot += 1

final.write(file_content2)
split = file content2.split(' ')
if (split[l].startswith('10') and (split[l].startswith('0', 2) == False)):

a_num += 1
actual a_list.append(£loat (split[0]))
if (a_num > 1):
diff = abs(predict _a_list[-1]-actual a list[-11)
01 print (diff)
if (diff > 2%int(weightl)):
weightl = int (weightl)+1
elif (int(weightl) > 1) and (diff < int(weightl)):
weightl = int(weightl)-1
print (weightl)

if (a_num > 1):

change0 = actual_a_list[-1]-actual_a list[-2]

sum_changs0 += changs0
10 predict_a = actual_a_list[-1] + sum_change0/a_num
2l else:
12 predict_a = actual_a_list[-1]
print ("Prediction for Next A: "+str(predict a))
predict_a_list.append(predict_a)
elif (split[1].startswith('20')):
16 b _num += 1
1 actual_b_list.append(float (split[0]))
718 if (b_num > 1):
diff = abs(predict_b_list[-1]-actual b_list[-1])
20 print (diff)
72 if (diff > 2%int (weight2)):
weight2 = int(weight2)+1
723 elif (int(weight2) > 1) and (diff < int(weight2)):
weight2 = int(weight2)-1

2 print (weight2)

2 if (b onum > 1):

2 changel = actual _b_list[-1]-actual_b_list[-2]
28 sum_changel += changel

predict b = actual b_list[-1] + sum_changel/b_num

else:

31 predict_b = actual_b_list[-1]

32 print ("Prediction for Next B: "+str(predict_b))
predict_b_list.append(predict_b)

elif (split[l].startswith('30')):

o _num += 1
actual_c_list.append(£loat(split[0]))
if (c num > 1):
738 diff = abs(predict_c_list[-1]-actual_c_list[-1])
print (diff)
if (diff > 2*int (weight3)):
weight3 = int(weight3)+1
elif (int(wsight3) > 1) and (diff < int(weight3)):
weight3 = int(weight3)-1

print (weight3)

if (c_num > 1):

change2 = actual_c list[-1]-actual_c list[-2]
4 sum_change2 += change2
predict_c = actual_c_list[-1] + sum_change2/c_num
else:
predict_c = actual_c_list[-1]
print ("Prediction for Next C: "+str(predict c))

predict_c_list.append(predict_c)
elif (split[l].startswith('40')):
d num += 1
actual d list.append(float (split[0]))
if (d num > 1):
diff = abs(predict d list[-1]-actual d list[-1])

68

(Image continued from previous page)

print (diff)
759 if (diff > 2*int(weight4)):
weight4 = int(weight4)+1
761 elif (int(weight4) > 1) and (diff < int(weight4)):
2 weight4 = int(weight4)-1
print (weightd)
4 if (d_num > 1):
change3 = actual_d list[-1]-actual_d list[-2]
sum_change3 += change3

predict_d = actual_d_list[-1] + sum_change3/d_num

else:
predict_d = actual d list[-1]
print("Prediction for Next D: "+str(predict_d))
1 predict_d list.append(predict_d)
2 elif (split[l].startswith('50')):
e num += 1
actual_e_list.append(float (split[0]))
if (e num > 1):
Jdiff = abs(predict e list[-1]-actual e list[-1])
print (diff)
778 if (diff > 2*int (wsight5)):
weight5 = int (weight5)+1
780 elif (int(weight5) > 1) and (diff < int (weight5)):
81 weight5 = int (weight5)-1

print (weightS)
if (e_num > 1):

change4 = actual e list[-1]-actual e list[-2]

sum_change4 += change4

predict_e = actual e _list[-1] + sum change4/e num
787 else:
7 predict_e = actual e list[-1]
7 print("Prediction for Next E: "+str(predict_e))

predict_e_list.append(predict_e)
elif (split[1].startswith('60')):

£ onum += 1

actual_f_list.append(float (split[0]))

if (£ num > 1):
diff = abs(predict_f_list[-1]-actual £ list[-1])
print (diff)

if (diff > 2%int (weighté)):
weighté = int (weighté)+1

elif (int(weighté) > 1) and (diff < int(weighté)):
weighté& = int (weighté)-1

801 print (weighté)
if (f_num > 1):
change5 = actual £ list[-1]-actual £ list[-2]
sum_change5 += change5
predict_f = actual_f_list[-1] + sum_change5/f_num
else:

predict_f = actual_f_list[-1]
print ("Prediction for Next F: "+str(predict_£))
predict_£_list.append(predict_f£)

elif (split[l].startswith('70')):

g num += 1

actual_g_list.append(float (split[0]))

81 if (g_num > 1):

diff = abs(predict_g_list[-1]-actual g list[-1])

815 print (diff)

81 if (diff > 2%int(weight7)):

g1 weight7 = int(weight7)+1

elif (int(weight7) > 1) and (diff < int(weight7)):
weight7 = int(weight7)-1

82 print (weight7)
if (g num > 1):
change6é = actual_g_list[-1]-actual_g_list[-2]
sum_changeé += changeé
predict_g = actual_g_list[-1] + sum_change6/g_num
else:

predict_g = actual_g_list[-1]

print("Prediction for Next G: "+str(predict_g))
828 predict_g_list.append(predict_g)
829 elif (split[l].startswith('80')):
h_num += 1
831 actual h list.append(£loat (split[0]))

69

(Image continued from previous page)

832 if (h num > 1):
diff = abs(predict_h list[-1]-actual_h list[-1]}
print (diff)
if (diff > 2%int (weight8)):

weight8 = int (weight8)+1
elif (int(weight8) > 1) and (diff < int(weightB)):
weight8 = int (weight8)-1
print (weightt)
if (h num > 1):
change? = actual_h_list[-1]-actual_h list[-2]
sum_change7 += change’
predict_h = actual _h_list[-1] + sum change7/h_num
else:
predict_h = actual h list[-1]
print ("Prediction for Next H: "+str(predict_h))
predict_h_list.append (predict_h)
elif (split[l].startswith('907)):
i num += 1
actual i list.append(f£loat(split[0]))
if (i num > 1):
diff = abs(predict_i_list[-1]-actual i_list[-1])
print (diff)
if (diff > 2*int (weight9)):
weight9 = int (weight9)+1
elif (int(weight9) > 1) and (diff < int(weight9)):

weight% = int (weightd)-1
58 print (weight9)

if (i_num > 1):
change® = actual i_list[-1]-actual i list[-2]

sum_change8 += change8

predict i = actual i list[-1] + sum_change8/i_num
else:
4 predict_i = actual_i_list[-1]
65 print ("Prediction for Next I: "+str(predict i))

26 predict_i_list.append(predict_i)
867 elif (split[l].startswith('100')):

g J_num += 1
actual_j_list.append(£loat (split[0]))

if (j_num > 1):
7 diff = abs(predict_j_list[-1]-actual j_list[-1])
print (diff)
if (diff > 2%int (weightlD)):
weightl0 = int(weightl0)+1
75 elif (int (wsightl0) > 1) and (diff < int(weightl0)):
576 welghtlD = int (weightl0)-1
print (weightl0)

if (_num > 1):

changed = actual_3_list[-1]-actual_j_list[-2]
sum_change9 += changs$
predict_j = actual j_list[-1] + sum changed/j_num
else:
predict_j = actual_j_list[-1]
print ("Prediction for Next J: "+str(predict_j))
predict_j_list.append(predict_j)
elif (split[1].startswith('110')):
k_num += 1
actual_k_list.append(£loat (split[0]))
if (k_num > 1):
diff = abs(predict_k_list[-1l]-actual k list[-1])
print (diff)
if (diff > 2%int(weightll)):
weightll = int(weightll)+l
elif (int(weightll) > 1) and (diff < int(weightll)):
weightll = int(weightll)-1
print (weightll)
if (k num > 1
changel0 = actual_k_list[-1]-actual_k_list[-2]

sum_changel0 += changel0
predict_k = actual _k_list[-1] + sum_changel0/k_num
else:
predict_k = actual k_list[-1]
print ("Prediction for Next K: "+str(predict_k))

predict_k_list.append(predict_k)
elif (split[l].startswith('120')):

70

(Image continued from previous page)

1 num += 1

actual_1_list.append(£loat (split[0]))
if (1_num > 1):
diff = abs(predict_1 list[-1]-actual 1 list[-1])
print (diff)
if (diff > 2*int (weightl2)):
weightl2 = int(weightl2)+1
elif (int(weightl2) > 1) and (diff < int(weightl2)):
weightl2 = int(weightl2)-1
print (weightl2)
if (1_num > 1):
changell = actual 1 list[-1]-actual 1 list[-2]
sum_changell += changell
predict_1 = actual_l_list[-1] + sum changell/l_num
else:
predict 1 = actual 1 list[-1]
print("Prediction for Next L: "+str(predict_ 1))
predict_1_list.append(predict_1)
elif (split[l].startswith('1307)):
m_num += 1
actual_m_list.append(£loat(split[0]))
if (m onum > 1):
diff = abs(predict_m list[-1]-actual_m list[-1])
print (diff)
if (diff > 2*int (weightl3)):
weightl3 = int (weightl3)+1
elif (int(weightl3) > 1) and (diff < int(weightll)):
weightl3 = int (weight13)-1
print (weightl3)
if (m num > 1

changel2 = actual m list[-1]-actual m_list[-2]
sum_changel2 += changel2

predict_m = actual_m_list[-1] + sum_changel2/m_num
else:
predict m = actual m list[-1]
print("Prediction for Next M: "+str(predict m))
predict_m list.append(predict_m)
elif (split[l].startswith('140')):

n_num += 1
actual n_list.append(£loat (split[0]))
if (n_num > 1):
diff = abs(predict n_list[-1]-actual n list[-1]}
print (diff)
if (diff > 2*int (weightl4)):
weightl4 = int(weightl4)+1
elif (int(weightl4) > 1) and (diff < int(weightl4)):
weightl4 = int (weightl4)-1
print (weightl4)
if (n_num > 1):
changel3 = actual_n_list[-1]-actual_n_list[-2]
sum_changel? += changel2

predict n = actual _n list[-1] + sum_changel3/n_num

else:

predict n = actual n list[-1]
print("Prediction for Next N: "+str(predict_n))
predict_n_list.append(predict_n)

print ("Current Value: "+file content2)
time.sleep (1)

sb = ack()

sb.start()

printv“SENDING ACK"

time.sleep (1)

sb.stop ()

if (packet_tot > 28) and (packst_tot % 20 == 0):
weight_file = open('/home/c/chat3', 'w')
weight_file.write(str(weightl) + ', ")

)

)

)

)

")

)

)

)

weight_file.write(str(weight2)

weight file.write(str(weight3)
weight_file.write (str(weight4)
weight_file.write (str(weight5)
weight_file.write (str(weightg)
weight_file.write (str(weight7)
weight_file.write (str (weight8)

o+ oF o+ o+ o+ 4

weight_£file.write (str (weight9)

71

(Image continued from previous page)

weight file.write(str(weightld) + ', ')
981 weight file.write(str(weightll) + ',')
weight_file.write(str(weightl2) + ',')
weight file.write(str(weightl3) + ',')
weight file.write(str(wsightl4) + ',\n')

weight file.close ()

up = chat()

up.start ()

time.sleep (1)

up.stop ()
break

time.sleep (1)

tb.stop()

if (file_content2 "eof\n") :
datal.closs ()
final.closs()

break

datal.closs()

1001 final.close()

tb.stop()

sum_sg a =0

for z in rangs(0, len(predict_a list)-1):

square = (actual_a list[z+l] - predict_a list[z])**2
sum_sq a += square

msgrterr_a = math.sgrt(sum_sq a)

print ("Root Mean Squared Error for Senmsor 1: "+str(msgrterr_a))

1012 sum_sq b = 0
for z in range(0, len(predict_b_list)-1):
square = (actual b list[z+l] - predict b list[z]]}**2

sum_sq b += squars
msgrterr_b = math.sqrt(sum_sq b)

print ("Root Mean Squared Error for Sensor 2: "+str(msgrterr_b))

sum_sq e = 0

for z in rangs(0, len(predict_c_list)-1}:

square = (actual_c list[z+1] - predict_c_list[z])**2

sum_sq_c += square

1023 msqrterr_c = math.sgrt(sum sg c)

1026 sum_sq d = 0
102 for z in range(0, len(predict_d_list)-1}:
square = (actual_d list[z+1] - predict_d list[z])**2

sum_sq d += square
1030 msgrterr d = math.sqrt (sum sg d)

print ("Root Mean Squared Error for Sensor 3: "+str(msgrterr_c))

print ("Root Mean Squared Error for Sensor 4: "+str(msgrterr_d))

1033 sum_sq_e = 0

for z in rangs (0, len(predict_e list)-1):

squaze = (actual_s_list[z+l] - predict_s_listlz])**2
1036 sum sg e += square

10 msgrterr e = math.sgrt(sum sg e)

1038 print{"Root Mean Squared Error for Sensor 5: "+str(msgrterr_e))

sum_sq_£ = 0
for z in rangs (0, len(predict £ list)-1):

square = (actual £ list[z+l] - predict_f list[z])**2

sum_sq £ += square

msgrterr £ = math.sgrt(sum sg f)

sum_sq_g = 0

for z in rangs(0, len(predict_g list)-1):

square = (actual g list(z+l] - predict g listlz])**2
1050 sum_sg_g += square

1051 msgrterr_g = math.sgrt (sum sg_g)

print{"Root Mean Squared Error for Sensor 6: "+str(msgrterr_f))

print{"Root Mean Squared Error for Sensor 7: "+str(msgrterr_g))

72

(Image continued from previous page)

sum_sg_h = 0

for z in range(0, len(predict h list)-1):
square = (actual h list[z+1] - predict h list[z])**2
sum_sg h += square

msgrterr_h = math.sqrt(sum_sg h)

print ("Root Mean Squared Error for Sensor B: "+str(msgrterr_h))

1061 sum_sg i = 0

for z in rangs(0, len(predict i list)-1):

1063 square = (actual_i_list[z+1] - predict i list[z])+**2
1064 sum_sg i += square

1065 msgrterr_i = math.sqgrt(sum_sq_i)

print ("Root Mean Squared Error for Sensor 9: "+str(msgrterr_i))

1068 sum_sq j = 0

for z in range(0, len(predict_i_list)-1):

1070 square = (actual j_list[z+1] - predict j list[z])+*2
1071 sum_sq_j += square
1072 msgrterr_j = math.sqrt(sum_sqg_j)

print ("Root Mean Squared Error for Sensor 10: "+str(msgrterr_3))

1075 sum_sg k = 0

1 for z in range(0, len(predict_k_list)-1):

10 square = (actual k list(z+1] - predict k list[z])**2
1078 sum_sg_k += square

1079 msgrterr_k = math.sgrt(sum_sq k)

print ("Root Mean Squared Error for Sensor 1l: "+str(msgrterr_k))

1082 sum_sg_ 1 = 0

for z in range(0, len(predict 1 list)-1):

square = (actual 1 _list[z+1] - predict_l list[z])**2

sum_sg 1 += square

msgrterr_l = math.sqrt(sum sg 1)

108 print ("Root Mean Squared Error for Sensor 12: "+str(msgrterr 1))

1089 sum_sqm = 0

for z in range(0, len(predict m list)-1):

1 square = (actual_m_list[z+1] - prediet_m_list[z])**2
sum_sq m += square

108 msgrterr_m = math.sgrt(sum_sq_m)
1 print ("Root Mean Squared Error for Sensor 13: "+str(msgrterr_m))
1 sum_sgn = 0

for z in range(0, len(predict_n_list)-1):

sguare = (actual n list[z+l] - predict n list[z])**2
sum_sq n += square
msgrterr_n = math.sqrt(sum_sg n)

1101 print("Root Mean Squared Error for Sensor 14: "+str(msgrterr_n))

rmse_tot = msgrterr_atmsgrterr bimsgrterr c+msgrterr_d+msgrterr_etmsgrterr fimsqrterr_gtmsgrterr h+msqrterr_i+msgrterr_j+msgrterr k+msqrterr

print ("\nTotal Root Mean Squared Error: "+str(rmse_tot))

exit()

def guitting():

th.stop()

1110 th.wait ()

gapp.connect (gapp, Qt.SIGNAL("aboutToQuit()"), quitting)
qapp.sxsc_ ()

122 b if name == ' main_ ':

main()

Figure A.3: Smart Weighted Round-Robin Algorithm for Base Station Radio

73

1 #

2 # -*- co
3 e s s
4 # e Flow
5 #
& # rated : Feb 10 09:52:14 2022
G B e s a s FEERFREERE RS FREREREEREE
s P if _name_ == ' main ':
10 import ctypes
11 import sys
if sys.platform.startswith('linux'):
13 try:

x1l = ctypes.cdll.LoadLibrary('libxll.so")
x11.XInitThreads ()

except:

1 print, "Warning: failed to XInitThreads ()"

import

a1 class chatZ (gr.top_block, Qt.QWidget):

def _ init_ (self):

gr.top block._ init (self, "Chat2")
QOt.QWidget. init_ (s=lf)
26 self.setWindowTitle ("Chat2")

gqtgui.util.check_set_gss ()
try:
self.setWindowIcon (Qt.QIcon.fromThems (' gnuradio-gre'))

50 except:

pass
self.top_scroll layout = Qt.QVBoxLayout ()

53 self.setLayout{self.top_scroll_layout)
self.top_scroll = Ot.oScrollirea()
self.top_scroll.setFrameStyle (Qt.QFrame.NoFrame)

sslf.top_scroll layout.addWidget (self.top_scroll)
5 self.top_scroll.setWidgetResizable (True)
self.top_widget = Qt.OWidget ()

self.top scroll.setWidget(self.top_widget)
self.top_layout = Qt.QVBoxLayout(sslf.top widget)
self.top grid layout = Qt.QGridLayout()
self.top_layout.addbLayout(s=lf.top_grid layout)

self.settings = Qt.QSettings ("GNU Radio", "chat2")

self.restoreGeometry (self.settings.value ("geometry").toByteArray())

FEEREERFRERERFERREEREREEREERERRERERRERREREREEREREE

les
70 FEEREERERBERBERERREREREFRERRERBERERBERRERRREFRERRE

1 self.samp_rate = samp_rate = 400000

73 FEEREE
74 #

75 FEEREERERBERBERERREREREFRERRERBERERBERRERRREFRERRE
& self.uhd_usrp source 0 = uhd.usrp_source (

S Join((n,),

8 uhd.stream args (

#

#

FERERRFRRFRERRFREREE

cpu_format="fc3z2",
channsls=rangs (1),
).
)
se1f.uhd_usrp source 0.set_samp_rate (samp_rate)
self.uhd_usrp source 0.set_center £req(l000000000, 0)
s=1f.uhd_usrp_source_0.set_gain (30, 0)
se=lf.uhd usrp source 0.set_antenna('T®/RX', 0)
self.gtgui_freq sink x_0 = gtgui.freg sink_c(
1024, #size
firdes.WIN BLACEMAN hARRTS, #»
0, #fo
samp rate, #bw

74

(Image continued from previous page)

)

clf.gtgui_freq sink x 0.set_update_time (0.10)
self.gtgui_freq sink x_0.set_y_axis(-140, 10)

self.qtgui_freq_sink_x_0.set_y_label ('Relative Gain', 'dB')

self.gtgui_freq sink_x_0.set_trigger_mode (qtgui.TRIG_MODE_FREE, 0.0, 0, "")

self.qtgui_freq_sink_x_0.enable_autoscale (False)
100 self.gtgui_freq_sink_x_0.enable_grid(False)

self.gtgui_freq sink x_0.set_f£ft_average(1.0)
102 s=lf.gvgui_freq_sink_x_0.snable_axis_labsls (True)

103 self.gtgui freq sink x_0.enable_control_ panel (False)

105 if not True:

10 self.qtgui_freq sink x 0.disable_legend()

108 if "complex" == "float" or "complex" == "msg_float":

qtgui_freg_sink_x_0.set_plot_pos_half (not True)

111 labels = ['', '', "', ‘1, U1,
113 widths = [1, 1, 1, 1, 1,
1, 1, 1, 1, 1]
colors = ["blue", "red", "green", "black", "cyan",
"magenta", "yellow", "dark red", "dark green", "dark blue"]
alphas = [1.0, 1.0, 1.0, 1.0, 1.0,

118 1.0, 1.0, 1.0, 1.0, 1.0]

for i in xrange(l):

12 if len(labels[i]) 0:

.gtgui_freqg sink x O.set_line label(i, "Data {0}".format(i))

_gtgui_freq sink x O.set_line_label(i, labels[i])

124 self.gtgui_freq sink x 0.set_line width(i, widths[i])

self.qgtgui_freg sink x 0.set_line_color (i, colors([i])

12 self.gtgui_freq sink x 0.set_line_alpha(i, alphas[i])

128 self._gtgui_freg sink_x_O_win = sip.wrapinstance(self.gtgui_freg sink x_0.pyqwidget (), ot.OWidget)

128 self.top_grid_layout.addWidget (self._gtgui_freq_sink_x_0_win)
130 self.low pass filter 0 = filter.fir filter ccf(l, firdes.low pass|
1, samp_rate, 200000, 50000, firdes.WIN_HAMMING, 6.76))

sclf.digital_gmsk demed 1 = digital.gmsk_demad(

133 samples_per_ symbol=2,
gain_mu=0.175,

mu=0.5,

136 omega_relative limit=0.005,
1 freq error=0.0,

138 verbose=False,

138 log=False,

blocks_multiply_const_vxx_l = blocks.multiply_const_vce((l,))
blocks file sink 1 = blocks.file sink(gr.sizeof char*l, '/home/b/chat testl.txt', False)
blocks_file_sink_l.set_unbuffered(False)

blks2_packet_decoder 1 = grc_blks2.packet_demod b(gre blks2.packet_decoder(

access code=""',
threshold=-1,
callback=lambda ok, payload: s=1Z.blks2_packet_decoder l.rscv_pkt(ok, payload),

connect ((s=1£.blks2_packet_decoder_1, 0), (sslf.blocks_file sink 1, 0})

connect ((s=1£.blocks_multiply const_vxx_1, 0), (s=lf.low pass filter 0, 0))
connect ((s=1f.digital gmsk demod 1, 0), (s=lf.blks2_packet_decodsr 1, 0))
connect ((s=1f.low pass_filter 0, 0), (s=lf.digital gmsk demod 1, 0))
1 connect ((self.low _pass filter 0, 0), (self.qtgui_freq sink x 0, 0))
161 self.connect ((self.uhd usrp source 0, 0), (self.blocks multiply const_wxx 1, 0))
1 def closeEvent (ss svent) :
settings = Qt.QSettings ("GNU Radio", "chat2")
self.settings.setValue ("geometry", se=lf.saveGesometry())

166 event.accept ()

75

(Image continued from previous page)

180 def

get_samp rate(self):
return self.samp_rate

set_samp rate(sclf, samp rate):

samp_rate = samp_rate
uhd_usrp_source_0.set_samp_zate(self.samp_zate)

sclf.qgtgui_freq sink_x_0.set_£frequency zange (0,

.low_pass_filter_ 0.sst_taps(firdes.low_pass (1,

178 class text_tx(gr.top_block):

__dnit_ (self):

gr.top_block.__init__ (s=lf, "Text Tx")

FEERFFRERRERRFRREREEREHRS REFRREREEREE

BERRFRBERRERBEREFRREREERBERREREERBERRE
.uhd_usrp sink 0 = uhd.usrp_sink(
M,

w
o

Join (", 7

whd. stream_args (
cpu_format="f£c32",
channels=rangs (1),

)y

1f.uhd usrp_sink 0.set_samp_rate (samp_rate)

u
o

w

f.uhd usrp sink 0.set_center fregq(1000000000, 0)

w
o

f.uhd usrp sink 0.set_gain(40, 0)
1f.uhd usrp_sink_0.set_antenna (' T¥%/Rx', 0)

w
o

f.digital_gmsk mod_0 =
samples_per_symbol=2,
bt=0.35,

digital.gmsk_mod (

verbose=False,

log=False,

sclf.samp_rate)

.samp_rate, 200000, 50000, firdes.WIN_ HAMMING,

uhd usrp sink O.set_time now(uhd.time spec(time.time()), uhd.ALL MBOARDS)

self.blocks_throttle_0 = blocks.throttle(gr.sizeof char*l, samp_rate,True)

send = open (' /home/b/tx.txt’,

if switch ==
send.write (datal[all)
print (data0[al])

elif switch == 'b':
send.write (datal[bl])
print (datallbl]l)

elif switch ==
send.write (data2[cl])
print (data2(cl])

elif switch == 'd':
send.write (data3[d1])
print (data3[dl])

W)

e

Ter:

elif switch == 'e':
send.write (datad[el])
print (data4[el])

elif switch == '£':
send.write (dataS[£1])
print (dataS[£1])

elif switch == 'g':
send.write(dataé[gl])
print (dataé[gl])

elif switch == 'h':
send.write (data7[hl])
print (data7[h1])

elif switch ==
send.write (dataB[il])
print (data8[il])

i

blocks_multiply_const_vxxz_0 = blocks.multiply_censt_vec ({1, })
£.blocks_head 0 = blocks.head(gr.sizeof_char*l, samp_rate/%)

76

€.76))

(Image continued from previous page)

elif switch == 'j':
send.write (data%(31])
print(data9[jl])

elif switch == 'k':
send.write (datal0([k1])
print (datal0[kl])

elif switch 1t
send.write (datall[11])
print (datall[ll])

elif switch

'm":
send.write (datal2 [ml])
print(datalz[ml])

elif switch == 'n':
send.write (datal3[nl])
print(datal3[nl])

elif switch == 'eof':

send.write ("eof\n")

print_"eof"

260 send.close ()

262 self.blocks_file source_0 = blocks.file_source (gr.sizeof_char*l, '/home/b/tx.txt', True)

264 self.blocks_file source O.set_begin_tag(pmt.PMT NIL)

265 self.blks2_packet_encoder_0 = grc_blksZ.packet_mod_b(grc_blks2.packet_encoder (
266 samples per symbol=2,

26 bits_per_symbol=1,

268 preamble='",

access_code="",

270 pad_for usrp=True,
271 |
272 payload length=0,

.connect ((s=lf.blks2_packet_sncoder_0, 0), (self.digital gmsk_med_0, 0))
£.blocks_throttle_0, 0})
self.connect ((self.blocks_head_0, 0), (sslf.blks2_packst_encoder_0, 0))

.connect ((self.blocks_file_source_0, 0}, (s=
self.connect ((s=lf.blocks_multiply const_vxx_0, 0), (self.uhd usrp_sink_0, 0})
self.connect ((sclf.blocks_throttle 0, 0), (sclf.blocks_head 0, 0))

self.connect ((s=lf.digital_gmsk_med 0, 0), (self.blocks_multiply const_vxx_0, 0})

def get_samp_rate(self

return s=1f.samp_rate

def set_samp rate(sslf, samp rate):
self.samp_rate = samp_rate
self.uhd_usrp_sink_0.set_samp_rate(s=lf.samp_rate)
self.blocks_throttle 0.set_sample rate(self.samp_rate)
self.blocks_head 0.set_length(sclf.samp_rate/4)

elass WRRScheduler () :

cw =0
i=-1
01 data_set = []

max_s = None

ged_s = None

len_s = None

counter = {}
def _ init_ (sclf, s = Nene):
self._init_dataset(s)

def _init_dataset(sclf, s):

self.data_set = s

= max(s, key=lambda x: x[1])[1]
= reduce (fractions.ged, [weight for data, weight in s])

= len(s)

77

(Image continued from previous page)

def schedule (self):
while True:
self.i = (self.i + 1) % self.len s
if self.i == 0:
self.ow = self.cw - self.gcd s
if self.cw <= O
self.ow = self.max_s
if self.cw == 0:
return Nene
if self.data set[self.i][1] >= self.cw:
self._inc counter(self.data_set[self.i])

return sslf.data_set[sslf.i]

def _inc_counter(self, item):
try:
self.counter[item[0]] += 1
except EeyError:

self.counter[item[0]] = 1

def set_data(self, s):
self.reset()

self._init_dataset(s)

def reset_counter(sslf):

self.counter = {}

def reset(sslf):
self.ow = 0
self.i = -1
self.data_set = []
self.max_s = None
self.ged s = None
self.len s = None

self.resst_counter()

def get_next(self, n = 1):
if n > 1:
return [sclf.schedule() for i in range(0,n)

return s=1f.schedule()

class ack2(gz.top_block, Ot.QWidget):

def _ init_ (self):
gr.top_block._ init_ (self, "Chat2")
Qt.owidget._ init__ (se=lf)
self.setWindowTitle ("Chat2")
gtgui.util.check set_gss()
try:
self.setWindowIcon (Qt.QIcon.fromTheme ('gnuradio-gre'))

except:
pass

self.top_scroll layout = Qt.QVBoxLayout ()

self.setLayout(sclf.top_scroll layout)

self.top_scroll = Qt.QScrollarea ()

self.top scroll.setFrameStyle (Qt.QFrame.NoFrame)

self.top_scroll_layout.addWidget (self.top_scroll)

self.top_scroll.setWidgetResizable (True)

self.top widget = Qt.QWidget ()

self.top_scroll.setWidget (sclf.top_widget)

self.top layout = Qt.QVBoxLayout (sslf.top_widget)

self.top_grid_layout = Qt.QGridLayout()

sclf.top layout.addlayout (sclf.top_grid_layout)

self.settings = Ot.GSettings("GNU Radio", "chat2")
1 self.restoreGeomstry (sslf.settings.value ("gecmetry") .toByteArray())

FERRERRERERREERBERRERRRRERRRER R RRERRRBERREERERURE
lables
FERRERRERERREER B ERERRERERRREREEERERRRRERREERELURE

self.samp rate = samp_rate = 400000

389 FERRFERREERREERRFERRERREERRRERRFEREERR AR ERFRERE

78

(Image continued from previous page)

52 self.uhd usrp source 0 = uhd.usrp_source(
o Goin (", "y,
uhd. stream_args(

cpu_format="fc32",

channsls=zange (1),

by
)

self.uhd_usrp_source_0.set_samp_rate (samp_rate)

self.uhd usrp source_0.set_center freg(l000000000, 0)
self.uhd_usrp_source_0.set_gain(30, 0)

402 s=lf.uhd usrp source_0O.set_antenna (' T¥%/Rx', 0)

403 self.gtgui_freg sink x 0 = gtgui.freg sink cf

1024,
firdes.WIN BLACEMAN hARRIS,
0,

samp_rate,

0.0, 0, ")
.gqtgui_freq sink x 0.enable_grid(False)
.gtgui_freq_sink_x_0.set_£ft_average(l.0)
a1 .gtgui_freg_sink_x_0.enable_axis_labels (True)
.gtgui_freg sink x 0O.snable_control panel(False)
if not True:
self.gtgui_ freg sink x 0.disable legend()
if "complex" == "float" or "complex" == "msg_float":
self.gtgui_freq sink x 0.set_plot pos half (not True)
labels = ['', "', "1, v, ot
widths = [1, 1, 1, 1, 1,
1, 1, 1, 1, 11
431 colors = ["blue", "red", "green", "black", "eyan",
432 "magenta”, "yellow", "dark red", "dark green", "dark blue"]
alphas = [1.0, 1.0, 1.0, 1.0, 1.0,

1.0, 1.0, 1.0, 1.0, 1.0]
for i in xrange(l):
436 if len(labels[i])

0z

.gtgui_freq sink x O.set_line label(i, "Data {0}".format (i))
438 else:

self.gtgui_freq sink_x 0O.set_line_label(i, labels[i])
self.gtgui_freq sink_x 0.set_line width(i, widths[i])
self.gtgui_freq sink_x O.set_line_color(i, colors[i])

sclf.qtgui_freq sink _x 0.set_line_alpha(i, alphas(il)

_gtgui_freq_sink_x_0_win = sip.wrapinstance (self.gtgui_freq_sink_x_0.pyqwidget (),

.owWidget)

f.top_grid_layout.addWidget (s=1f._gtgui_freq_sink_x_0_win)

.low_pass_filter 0 = filver.fir_filever_ccf(l, firdes.low _pass(
1, samp_rate, 200000, 50000, firdes.WIN HAMMING, 6.76))
sclf.digital_gmsk_demod 1 = digital.gmsk_demod(

samples_per symbol=2,

gain_mu=0.175,

mu=0.5,

omega_relative_limit=0.005,

freq_srror=0.0,

verboss=False,

log=False,

£.blocks_multiply const_vxx_1 = blocks.multiply_const_vee((L,))

self.blocks_file_sink_1 = blocks.file_sink(gr.sizeof char*l, '/home/b/chat testZ.txt', False)
sclf.blocks_file_sink_l.sct_unbuffered(False)

self.blks2 packet decoder 1 = grc blks2.packet demod b(grc blksZ.packet decoder (

461 access_code='",

a62 threshold=-1,

callback=lambda ok, payload: sclf.blks2_packet_decoder_l.recv_pkt (ok, payload),

79

(Image co

def mai:

if

502 dat
503 csv
4 hea

dat.

sos dat

tb
tb.
pri

whi

th.

wei
531 wei

532 wel

536 for

ntinued from previous page)

FEEEERREFREEERREERRERRERERRRERERRARERRRERRRHHRRER

B e s i)
connect ((se1£.blks2_packet_decoder 1, 0), (self.blocks file sink_1, 0))

£.connect ((sclf.blocks multiply const_vxx 1, 0), (self.low_pass_filter 0, 0))

w

w
o

self.connect ((sclf.digital gmsk_demod_1, 0), (sclf.blks2_packet_decoder_1, 0})

self.connect ((s=lf.low pass filter 0, 0), (self.digital gmsk demod 1, 0))

s connect ((self.low_pass_filter_0, 0), (self.gtgui_freq_sink_x_0, 0))

self.connsct ((s=lf.uhd usrp source 0, 0), (self.blocks multiply const_vxx 1, 0))
def closeEvent(s=1F, svent):

self.settings = Qt.QSettings ("GNU Radieo", "chat2")

self.settings.setValue ("geometry", self.saveGeometry())

event.accept ()

get_samp_rate (s=1£):

return sclf.samp_rate

set_samp_rate(sclf, samp rate):
self.samp rate = samp rate
self.uhd_usrp_source_0.set_samp_rate(seclf.samp_rate)

self.gtgui freq sink_x 0O.set_frequency range (0, self.samp rate)
self.low_pass_filter_0.set_taps(firdes.low_pass(l, seclf.samp_rate, 200000, 50000,

a(‘ns=None) :

from distutils.version import StrictVersion

StrictVersion (Qt.gVersion()) >= StrictVersion("4.5.0"):
style = gr.prefs().get_string('gtgui', 'style', 'raster')
Qt.0Application.setGraphicsSystem(styls)

gapp = Qt.OBpplication(sys.argv)

a_csv = open('/home/b/20161005 140846.csv', "r')
reader = csv.reader (data_esv)

der = next (csvreader)

s rows = []

506 for row in csvreader:

data_rows.append (row)

2 csv.closs()

for x in range(0,14):

out = open('file' + str(x+l) + '.txt', 'w')
for vy in range (0, 100):
cut.write (data_rows[y] [x+6]+' '+str(x+1)+'0'+str(y+1)+'\n")

out.close ()

= chat2(}

start ()

nt_"Ready to start..."

le True:

£ = open('/home/b/chat testl.txt', 'r')

£.flush ()

f.readline ()

check = £.resadlins()

if (check != ""):
print, "START"
time.sleep(1)
break

stop ()

ght_file = open('/home/b/chat testl.txt', 'r')
ght_file.flush()
ght_file.readline()

533 weights = weight file.readline()
w_list = weights.split(",")
w_list.pop()

m in range (0, len(w_list)):

w list[m] = int(w list[m])

80

firdes.WIN_HAMMING,

€.76))

(Image continued from previous page)

sensors = ['A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'I', 'd', 'K', 'L', 'M', 'N']

global i, al, bl, cl, d1, e1, £1, g1, hl, il, j1, k1, 11, ml, nl
i=0

al
bl =

c o ooo o000 oooo o

cl =
di =
el =
£1 =
gl
hl =
i1 =
j1 =
Kl =
11 =
ml =

nl =

global datal, datal, data2, data3, data4, data5, dataé, data7, datad, data9, datald, datall, datal2, datal3

readl = open('/home/b/filel.txt', 'r')
561 datad = readl.readlines()
lengthl = len(data0)

563 readl.close()

read2 = open('/home/b/fileZ.txt', 'r')
datal = readZ2.readlines()
length2z = len(datal)

read2.close ()

read3 = open('/home/b/file3.txt', 'r')
data2 = read3.readlines()
length3 = len(data2)

read2?.close ()

read4 = open('/home/b/filed.txt’, 'r')
data3 = read4.readlines()
length4 = len(data3)

read4.close ()

read5 = open('/home/b/file5.txt', 'r')
datat = readS.readlines()
lengthS = len(data4)

readS.close ()

readé = open('/home/b/file6.txt’, 'r')
data5 = readé.readlines()
lengthé = len(data5)

readé.close ()

read7 = open('/home/b/filel.txt’, 'r')
dataé = read7.readlines()
length7 = len(data€)

read7.close ()

readd = open('/home/b/fileB.txt', 'r')
data7 = read8.readlines()
length8 = len(data’)

readf.close ()

readS = open('/home/b/filed.txt’, 'r')
01 datal = read9.readlines()
02 lengthS = len(dataB)

read9.close ()

readl0 = open('/home/b/filel0.txt', 'r')
data9 = readl0.readlines()

07 lengthl0 = len(data9)
readl0.close ()

1 readll = open('/home/b/filell.txt', 'r')
11 datal0 = readll.readlines()

81

(Image continued from previous page)

612 lengthll = len(datal0)
613 readll.close ()

readl? = open('/home/b/filel?.txt', 'r')
datall = readl2.readlines()

lengthl2 = len(datall)

615 read12.close ()

620 readl3 = open('/home/b/fileld.txt', 'r')
621 datal? = readl3.readlines()

lengthl3 = len(datal2)

readl3.close ()

readl4 = open('/home/b/fileld.txt', 'r')
626 datal3 = readl4.readlines()
62 lengthld = len(datal3)

zeadld.closs ()

data = list(zip(sensors, w_list))
sched = WRRScheduler (data)

global a_tot, b_tot, c_tot, d_tot, e_tot, f_tot, g_tot, h tot, i_tot, j_tot, k_tot, 1 _tot, m_tot, n_tot, switch
a_tot =
b_tot
c tot
37 d_tot
e tot =
£ tot
640 g_tot =
&4 h_tot
i tot =
643 j_tot
k_tot
645 1 _tot
646 m_tot =
64 n_tot

|
0o oo oo 00O o oo o)l

packet_num = 0
iterations = 150

result = []

while (packet num < iterations):
choose = sched.get_next ()
if choose([0] 'A:
a_tot += 1
if (a_tot <= lengthl):

result.append (choose [0])
packet_num += 1
elif choose[0] == 'B':
b _tot += 1
61 if (b_tot <= length2):

562 result.append (choose [0])
3 packet_num += 1
elif choose[0] == 'C':
o tot += 1
if (c_tot <= length3):
result.append (chooss [0])
packet_num += 1
elif choose[0] == 'D':
70 d tot += 1
71 if (d_tot <= lengthé):
2 result.append (choose [0])
packet_num += 1
elif choose[0] == 'E':
5 e _tot += 1
76 if (s_tot <= lengthS):

result.append (choose [0])
packet_num += 1
79 elif choose[0] == 'F':
£ tot += 1
B1 if (£_tot <= length6):
562 result.append (chooss [0])
packet num += 1
elif choose[0] == 'G':

g_tot += 1

82

(Image continued from previous page)

if (g _tot <= length7):
result.append (choose[0])
packet_num += 1
elif choose[0]
h_tot += 1
591 if (h_tot <= lengthf):
52 result.append (chooss[0])

TH

packet_num += 1
54 elif choose[D] == 'I':
i_tot += 1
if (i_tot <= length9):
result.append (choose[0])
packet_num += 1
elif choose[0] == 'J':
700 J_tot +=1
701 if (j_tot <= lengthl0):
result.append (choose[0])

packet_num += 1
704 elif choose[0] == 'K':

k tot += 1

70 if (k_tot <= lengthll):
result.append (chooss[0])

packet_num += 1
elif choose[0] == 'L':

1 tot += 1
if (1_tot <= lengthl2):

12 result.append (choose[0])
13 packet_num += 1

714 elif choose[0] == 'M':

715 m tot += 1

71 if (m_tot <= lengthl3):

1 result.append (choose[0])

packet_num += 1
elif choose[0] == 'N':
20 n_tot += 1
72 if (n_tot <= lengthl4):
22 result.append (choose[0])

packet_num += 1

while i < iterations:
26 if result[i] == 'A':
2 switch = 'a’
728 tb = text tx()
729 th.start()
time.sleep(1)
731 tb.stop()
2 i+=1

al += 1
734 elif result[i] == 'B':
switch = 'b'
th = text_tx()
th.start ()
time.slesp (1)
th.stop()
i+=1

bl += 1

elif result[i] ==

switch = 'e’
th = text_tx()
th.start ()
time.sleep(l)
th.stop ()
i+=1
el += 1
elif result[i] == 'D':
switch = 'd-
th = text_tx()
th.start ()
time.sleep(l)
th.stop()
i+=1
757 dl += 1
758 elif result[i] == 'B':

switch = 'e’

(Image continued from previous page)

th = text_tx()
tb.start ()
time.slesp(l)
th.stop ()
i+=1
el += 1

elif result[i] == 'F':
switch = 'f'
th = text_tx()
th.start()
time.sleep(l)
th.stop()
i+=1
f1 += 1

elif result[i] == 'G':
switch = 'g’
th = text_tx()
tb.start ()
time.slesp(l)
th.stop ()
i+=1
gl += 1

elif result[i] == 'H':
switch = 'h'
th = text_tx()
th.start()
time.sleep (1)
th.stop ()
i+=1
hl += 1

elif result[i] == 'I':
switch = 'i’
th = text_tx()
th.start ()
time.sleep (1)
th.stop ()
i+=1
il += 1

elif result[i] == 'J':
switch = '3°
th = text_tx()
th.start ()
time.sleep(1)
th.stop()
i+=1
31 += 1

elif result[i] == 'K':
switch = 'k’
th = text_tx()
tb.start ()
time.slesp (1)
th.stop()
i+=1
kl += 1

elif result[i] ==

switeh = '1°
th = text_tx()
th.start ()
time.slesp(l)
th.stop ()
i+=1
11 += 1

elif result[i] == 'M':
switch = 'm’
th = text_tx()
th.start ()
time.sleep(l)
th.stop()
i+=1
ml += 1

elif result[i] == 'N':
switch = 'n’
th = text_tx()

- th.start ()

(Image continued from previous page)

time.sleep (1)
th.stop ()
i+=1

nl += 1

else:

print_"Brror: Empty Result"

840 th = ack2 ()
841 th.start ()

while True:

ack_file = open('/home/b/chat test2.txt',

ack_file.flush()

ack_file.readline()

ack0 = ack_file.readline()

if (ack0 == 'ACK\mn'):
print_"RECEIVING ACK"

time.sleep (1)
break
ack_file.close()

time.sleep (1)

th.stop()

if (i > 28) and (i % 20 == 0):
tb = chat2()
tb.start ()

while True:

£ = open('/home/b/chat_testl.txt',

£.£lush()
£.readline()
check = f.readline()

if (check != ""):
time.sleep (1)
break
tb.stop ()

weight_file = open('/home/b/chat testl.txt',

weight_file.flush()
weight file.readline()

weights = weight_file.readline()

w_list = weights.split(",")
w_list._pop ()
for m in range (D, len(w_list)):

w_list[m] = int(w_list[m])

data = list(zip(sensors, w_list))

sched = WRRScheduler (data)
count = 0

new_result = []

while (count < (iteratioms-i)):

new_choose = sched.get_next ()

if new _choose[0] == 'A':

elif new_chooss[0]

a_tot += 1
if (a_tot <= lengthl):

new_result.append (new_chooss[0])

count += 1

elif new_choose[0] == 'B':

b_tot += 1
if (b_tot <= length2):

new_result.append(new_choose [0])

count += 1

elif new_choose[0] == 'C':

c_tot += 1
if (c_tot <= length3):

new_result.append(new_choose [0])

count += 1

d tot += 1
if (d_tot <= lengthd):

new_result.append (new_chooss[0])

count += 1

elif new_choose[0] == 'E':

e_tot += 1
if (s_tot <= lengthS):

new_zesult.append(new_choose[0])

count += 1

elif new_choose[0] == 'F':

£f_tot += 1
if (£ tot <= lengthf):

‘rr)

rrr)

P

85

(Image continued from previous page)

new_result.append (new_choose[0])
count += 1
elif new_choose[0] == 'G':
g _tot += 1
if (g_tot <= length7):
new_result.append (new_chooss[0])
count += 1
€lif new_choose[0] == 'H':
h_tot += 1
if (h_tot <= lengthB):
new_result.append (new_chooss[0])
count += 1
€lif new_choose[0] == 'I':
i_tot += 1
if (i _tot <= length9):
new_result.append (new_choose [0])
count += 1
elif new choose[0] == 'J':
j_tot += 1
if (j_tot <= lengthl0):
new_result.append (new_choose[0])
count += 1
elif new choose[D] == 'K':
k_tot += 1
if (k_tot <= lengthll):
new_result.append (new_choose[0])
count += 1
elif new choose[D] == 'L':
1 tot += 1
if (1_tot <= lengthl2):
new_result.append (new_choose[0])
count += 1
elif new_choose[0] == 'M':
m tot += 1
if (m_tot <= lengthl3):
new_result.append (new_choose[0])
count += 1
elif new_choose[0] == 'N':
n_tot += 1
if (n_tot <= lengthld):
new_result.append (new_choose[0])
count += 1
if (len(new_result) < iterations):
for v in range (iterations-len(new_result)):
new_result.insert(0,0)

result = new_result

= new_choose
switch = 'eof’

tb = text_tx()

tb.start ()

time.sleep (1)

th.stop ()

print ('dene’)

exit()

def quitting():

th.stop ()

th.wait()
gapp.connect (gapp, Qt.SIGNAL("aboutToQuit()"), gquitting)
gapp.exec_()

4 if name == ' main ':

Tmain()

Figure A.4: Smart Weighted Round-Robin Algorithm for Field Sensor Radio

86

