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ABSTRACT 

Software-Defined Wireless Network for Real-Time Sensing 

Austin M. Keith 

Department of Electrical & Computer Engineering 

Texas A&M University 

Research Faculty Advisor: Dr. I-Hong Hou 

Department of Electrical & Computer Engineering 

Texas A&M University 

Traditionally in the field of electronics, hardware is designed, developed, and improved 

on in various methods, whether it be increased storage capabilities or smaller models. Software 

applications lagged because of the hardware requirements to operate software, but increasingly, 

software tools are replacing technology that relied heavily on hardware components where 

applicable because of the abilities to both modify the technology easily and to consolidate tasks 

in an automated fashion. This research focuses on the networking space and aims to replace 

hardware architecture with software, as well as write algorithms to intelligently allocate 

incoming data. 

To orchestrate this architecture and the algorithms, the modern tools of software-defined 

networking and software-defined radios were combined. This created a network capable of 

transmitting packets over-the-air, with the network itself having separated the data plane and 

control plane in the software-defined networking standard. The control plane is written entirely 

in software, allowing modifications to be made across the whole system relatively simply. In this 

research, two software-defined radios were used to represent a base station and a field multi-
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sensor collector respectively. The field sensor transmits real sensor data from a web database that 

represents readings of the resistance of a gas over time from fourteen sensors. The base station 

radio can only receive a single packet at a time from the secondary radio due to bandwidth 

constraints, and so, using a software-defined controller, the various scheduling policies are 

compared to develop the most efficient means of processing the individual data packets.  

The final algorithm started from basic round-robin before evolving into weighted round-

robin, with measurable results in terms of root-mean-square error values for each sensor and one 

for the total transmission period. The weighted round-robin was upgraded a step further to have 

real-time weight updates at regular intervals based on the accuracy of prediction for the next 

value in the sequence, per sensor. The contrast between the three stages of development for the 

round-robin algorithms is plain to see, with steady improvement between basic round-robin and 

weighted round-robin, and drastic improvement between weighted round-robin and the smart 

algorithm. The results from the research project yield a final draft of communication between the 

software-defined radios that produced an effective and efficient manner of software-defined 

networking.  
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NOMENCLATURE 

USRP – Universal Software Radio Peripheral 

SDN – Software-Defined Network 

SDR – Software-Defined Radio 

GUI – Graphical User Interface 

RF – Radio Frequency 

GMSK – Gaussian Minimum Shift Keying 

GHz – Gigahertz 

RMSE – Root-Mean-Square-Error 

UDP – User Datagram Protocol 

WRR – Weighted Round-Robin 
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1. INTRODUCTION 

The goal of this project is to have a software-defined network that takes advantage of two 

software-defined radios, one working as a base station and the other representing a series of field 

sensors, to transmit a variety of sensor data over-the-air. Because of bandwidth constraints, only 

a single data packet can transmit through the radios at a single instant of time. Algorithms 

written for the controller of the network allocate the incoming sensor data efficiently to reduce 

the time it takes to process the incoming data. Because much of the operation of the entire 

system can be modified through the controller software, the network can switch between various 

scheduling priorities to demonstrate the differences in efficiency between them.  

1.1 Traditional Networking 

To begin the understanding of this research project, one must understand how a 

traditional network works as well as the issues surrounding it. Networking itself is simply a 

connection of two or more devices that allows them to share information with each other. The 

number of connections and geographical range of the connections determines the categorization 

of the network, but there are common elements between all traditional network types. Each are 

built on connections between computers that are created with the use of switches and routers, as 

shown in Figure 1.1 below. Switches ensure that data packets are communicated and sent 

properly within a single network, while routers ensure that data packets are correctly transmitted 

between networks themselves. This creates a hierarchy of networks, routers, and switches that 

are highly dependent on physical hardware for the establishment of the network and for future 

modifications. 
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Figure 1.1: Network Components 

An example of such a network on the larger side of the scale is the Internet, which is a 

giant web of interconnected networks so that any device can send information to any other 

device. Other examples include university campus networks, a network of computers in an office 

building, and a network of gamers playing online together. Each of these examples is highly 

dependent on hardware, limiting its flexibility and increasing its complexity as the number of 

users join. 

1.1.1 Problems with Traditional Networking 

Some of the issues associated with this style of network building and amendment have 

been hinted at. Most of the current problems with traditional networking can be categorized 

under either an issue of complexity or an issue of inefficiency. 

The immediate problem with traditional networking is that the number of users has 

grown at a tremendous rate in the last few decades. Both the number of people that own devices 

has increased as well as the number of devices that a single individual owns. Regardless of the 

networks that these devices are connected to, the overall complexity of networking has increased 
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dramatically because of the number of connections that needs to be maintained has increased 

dramatically. Each additional connection requires the use of hardware to either make physical 

connections (with a cable) or virtual connections (with Wi-Fi, for example). This creates an 

enormous number of switches, routers, and other network architecture hardware that must be 

independently maintained to ensure the network operates as intended. Additionally, any changes 

in the way that devices are connected, including emergency changes if a critical part of the 

network fails, are slow to happen and difficult to execute. Network engineers must be well-

trained and staffed at many companies just to accomplish this difficult work.  

The inefficiencies of traditional networking may be obvious with many disciplines of 

technology turning towards software, even in fields that were dominated by hardware in the past. 

The limitations on flexibility with physical hardware in the environment of increased complexity 

create problems in areas of high traffic in a network in a live setting, and the potential for 

network connections to adapt in a highly efficient manner to the information that they 

communicate is quite high. However, even in an offline setting, changes to a network are limited 

because multiple parts of the network must be individually modified. The problem of multiple 

network engineers changing different switches and routers without communicating and causing 

conflicts with the network connections also occurs. 

1.2 Software-Defined Networking 

The newer type of networking that is starting to be employed is known as software-

defined networking, or SDN. SDN differs largely from the traditional network due to an abstract 

layer of computer architecture known as the control plane which is separated from the data plane 

in SDN. Before, the data plane and control plane were paired together, meaning in practicality 

that each fixed piece of hardware in the network that is responsible for sending packets was 
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independently operated. With SDN, the control plane is separated into a centralized unit known 

as the controller, and the devices responsible for communication are directed by the controller, as 

shown in Figure 1.2. In this manner, a proper analogy is that traditional network architecture is 

orchestrated like a pack of wolves, where each individual animal makes decisions so that the 

pack can survive. A similar analogy can be made for SDNs which operate like a beehive, with 

individual worker units that have a hive mind and adapt to new situations collectively. 

 

Figure 1.2: Control Plane Separation 

Because the SDN controller is programmable and runs the network, separating the 

control plane and data plane has huge benefits to networking and addresses many of the core 

issues defined with traditional networking. 

1.2.1 Benefits with SDN 

There are many benefits associated with switching from a traditional network to a 

software-defined network. The first and most obvious benefit is that network operation is 

controlled by a single, programmable unit. This means that, rather than a network engineering 

modifying switches and packets at an individual level, a single network engineer can write code 

for a controller that modifies the entire system. This greatly reduces the complexity of managing 

a given network. Adjustments are automatically made within the network to adapt to the new 



 

10 

 

communication methods written in the controller software. The increased level of flexibility this 

provides cannot be understated. Adding multiple devices to a network becomes much simpler as 

the controller adjusts virtual switches and routers to accommodate new users. Not only can a 

single network be changed drastically in a short period of time, but an SDN can be repurposed 

for multiple different functions as well. Established virtual networks that are no longer needed 

can be modified to serve a new function without the steps necessary in traditional networking to 

rebuild the architecture. 

Additionally, maintenance of a network using SDN technology is much simpler. The 

controller operates by changing the connection lines and general network architecture to address 

the conditions set by an engineer within the software. This allows automatic readjustments in 

connections between devices when errors occur. Network failures at critical traffic points are no 

longer a major concern while the network is manually repaired as done with traditional 

networking; instead, the SDN establishes new connections automatically to ensure operation 

continues as intended. While this implies benefits that address the complexity and flexibility 

issues described under the traditional networking infrastructure, it also improves the security of 

networks. Point-to-point connections that are attacked by malicious users can adapt with a new 

secure channel of communication once the network controller recognizes that an attack is 

happening. 

1.3 Software-Defined Radio 

In a similar line of thought, radios can have a huge increase in flexibility and a reduction 

in maintenance cost and complexity by moving some part of the physical functionality into the 

software domain. This precisely describes software-defined radios (SDRs), where some aspect of 

the physical elements of a traditional radio are controlled by programmable software. Some 
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physical components of a radio are necessary for transmission and signal processing, but the 

general idea of separating the control plane into software applies here just as done with SDN. 

There are a great variety of types of SDRs as their share of the market increased over the last few 

decades, and there are a multitude of benefits that come from using an SDR over a traditional-

style radio. In Figure 1.3, the two radios that are used for the duration of this project are shown. 

 

Figure 1.3: Two Software-Defined Radios (B210s) 

1.3.1 Benefits of SDR 

Several of the benefits associated with SDN over traditional networking are reflected in 

the benefits of choosing SDR over traditional radios. Modification of the purpose of the SDR is 

simple and only requires a change in the code that controls its operation. Similarly, maintenance 

of the radio is much less complicated when, instead of physically tampering with the device, new 

code can be uploaded that addresses the problem. Both simplifications massively reduce the cost 

of using the technology and provide greater flexibility than previously offered.  

The added flexibility that comes with the programmable functions of the SDR is another 

benefit. A group of radios can be linked together and controlled through their software to do a 

variety of tasks that were unavailable previously. Commands or data packets that are sent over-
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the-air using SDR technology allows devices in a network or similar infrastructure to be 

modified remotely. Radio frequency processing can be adjusted easily, allowing communication 

channels to rapidly change. This comes with increased security benefits as well, with emphasis 

on application within military technology due to the large use of traditional radios. 

1.4 Complete System 

The task of this project is to combine the new technologies and applications of SDR and 

SDN into a single system, and then to write algorithms that receive data packets and allocates 

them efficiently. This system is intended to be a software-defined network containing two SDRs 

that communicate to each other. Specifically, the controller for the SDN sends commands to a 

virtual switch by sending the command to the first SDR, which then gets transmitted over-the-air 

to the second SDR, and finally, the second SDR sends the command to the switch. The switch 

responds appropriately to the command, most of which were written previously by graduate 

students in this research field. In Figure 1.4, a block diagram of the complete architecture for the 

system is presented. 

 

Figure 1.4: Complete Architecture of System 

Some of the commands that are sent through this system change the scheduling priority 

of the SDN. Traditional scheduling methods, such as round-robin, are included, along with the 

other algorithms written for the purpose of this project.  



 

13 

 

2. METHODS 

The approach to this research project is best described in two categories: the construction 

of the SDN and the development of the communication between the base station and field sensor 

SDRs. The first semester was primarily focused on the early work for implementing the SDN on 

the hosts and the research components of the project, while the winter break and second semester 

were instead focused on creating the block diagrams and Python files for the radio connections, 

writing the scheduling priority algorithms to allocate the data appropriately, and completing the 

infrastructure of the project. 

2.1 SDN Construction 

Much of the work involved in the initialization of the SDN was about reconstructing the 

basics from the work of previous graduate students using the open-source information from Ryu 

and OpenFlow (developed basic controller for network and methods for configuring settings). 

The terminal commands for constructing the first edition of the SDN were included in some 

documentation from the previous semesters, and using that information along with the public 

instructions, the SDN was first created on a single host running multiple virtual machines. The 

controller terminal, switch terminal, and a connection terminal were all running independently, 

and communication was confirmed with fake data being sent to a GUI that was included in the 

work done by the previous graduate students. Figures 2.1 and 2.2 show the early user interaction 

with the terminal and GUI when establishing the SDN. 
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Figure 2.1: Terminal Interface for Switch and Controller 

 

Figure 2.2: GUI Interface for SDN Controller 

2.1.1 UDP Connection from USRPs to Localhosts 

The original plan for the next step in SDN research was to create a UDP connection 

between the respective localhost and radio connected to the host. This was not known to be 

possible, so the alternative plan of improving the weighted round-robin algorithm with a smart 

algorithm that updates the weights of sensors in real-time was created. In the end, there was no 
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solution found on addressing this UDP connection, so the backup plan was implemented, and a 

smart algorithm was created. The SDN aspect of this project, because of this change, was less 

significant and primarily was relegated to research purposes. 

2.2 SDR Communication 

The construction of the architecture that allows communication between the two SDRs 

originally used the GNU Radio Companion software tool to construct block diagrams using the 

pre-built library meant for SDRs and other communication equipment. From there, the generated 

Python files from the block diagrams within GNU Radio Companion were modified by hand to 

develop the specific needs regarding this research. Each host device had its own radio, software, 

and Python files that were created collectively before individual modifications pertaining to the 

base station or the field sensors respectively were implemented. 

2.2.1 One-Way Communication 

The first block diagrams created were to establish some form of basic communication 

between the two radios. After researching the toolset within GNU Radio Companion and 

understanding the capabilities of the included functions, the transmission and reception files 

were developed on each respective radio’s host device. The method of communication uses 

GMSK modulation on the transmit side, and GMSK demodulation on the receive side. The two 

B210 SDRs are both using a channel frequency of 1 GHz and a sample rate of 400k samples per 

second. These were chosen with the device characteristics and the nature of the project in mind. 

The two block diagrams that represent the files created to first establish one-way communication 

are displayed below in Figures 2.3 and 2.4. 
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Figure 2.3: Transmission Block Diagram for One-Way Communication 

 

Figure 2.4: Reception Block Diagram for One-Way Communication 

The actual data that was being sent from the first SDR to the second SDR came from a 

local text file on the transmission host with a series of fake data points created for the purpose of 

establishing one-way communication. The data is read from the text file, encoded into packets, 

modulated, and sent through the B210s before the process is reversed on the other side and the 

data is stored onto a new text file on the receiving host. This method of using a text file to send 

fake data is repeated until the SDN commands are implemented into the SDR’s communication. 

Running both files on each host at the same time resulted in the file being correctly 

transferred to the other side, with the only issue being a glitch that is built into GNU Radio 
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Companion that requires the message to repeat continuously. This is addressed in a future 

upgrade to the SDR communications. 

2.2.2 Two-Way Communication 

The first upgrade needed for the communication between the two SDRs is to establish 

two-way communication, or the ability for both radios to transmit and receive information. Once 

again, additional block diagrams are built in GNU Radio Companion for these modifications. 

Fortunately, much of the content of the blocks is the same as when establishing one-way 

communication, but the specific settings regarding the antennas being used and the timing when 

either actively sending or actively listening to a signal are changed to meet the new requirements. 

The block diagrams used for this point of the project are shown in Figures 2.5 and 2.6 below. 

 

Figure 2.5: Two-Way Communication on Transmit Side 
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Figure 2.6: Two-Way Communication on Receive Side 

After constructing the block diagrams for the radios, the generated Python files are 

modified to match the style of communication needed for this project. This means that timings 

and order are introduced to the devices; each respective device needs to be able to understand 

that it can only listen while it is not talking, and that while it is talking, it is not listening. These 

changes allow basic conversation between the SDRs to take place without interruption or other 

complications to the dialogue. 

Once the Python files have been adjusted, the radios can send information back and forth 

to each other. The text file filled with fake data referenced previously for testing functionality of 

the radio communications is once again used here. 

2.2.3 Transfer from Multiple Text Files 

The next step in terms of communication between the radios is to add the capability to 

send from multiple options of text files on the field sensor side of the SDRs. In this model, the 

field sensor SDR has three text files, each filled with random data and identifier numbers for 

each data point as done previously. The base station SDR can request any combination of the 
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three text files, including just a single file, to be transmitted back towards the base station. The 

field sensor SDR will send each file completely, one-at-a-time, until the request is fulfilled. The 

repeat bug found earlier in GNU Radio Companion is not addressed at this stage of the project, 

and the consequences of its problems were addressed in this upgrade by having a short timer set 

for each file to prevent infinite repetition. 

2.2.4 Round-Robin Communication 

The further modifications made for the next iteration of communication between the two 

devices takes place entirely within the Python file. With the addition of two-way communication 

with multiple text files in the last upgrade, the changes here mostly relate to timing and 

addressing the repeat issue from GNU Radio Companion. Code was developed to address the 

repeat bug that takes advantage of the local text files on each host. The Python file will read from 

each file that is requested by the base station host, and record one line at a time from each file 

into a separate text file for transmission. The additional layer of reading from a file addresses the 

issue of repeating well, and it allows for this process to work (using the text file setup) without 

changing the base libraries of GNU Radio Companion. 

Following the fix of the repeat bug, the code for a round-robin scheduling priority was 

implemented at this time in the research. Round-robin algorithms work by sending a single data 

point from multiple set options, and then going around each set sending the first single data point 

until you reach the second data point of the first set chosen. This process repeats, one-at-a-time 

for each data set (or text file, in this case) until all the data has been transmitted. This works in 

the Python code with timings set between the two SDRs to prevent transmission and reception on 

one device at the same time. Although this serves the purpose of establishing the first basic 

algorithm for this project, the next step in the code is to set up acknowledgements in the 
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communication, where after receiving any data or information, the receiving radio sends a 

receipt of data received back to the transmitting radio to ensure that no data was lost and needs to 

be sent again. 

2.2.5 Weighted Round-Robin Communication 

 The next iteration of upgrade that was included was a series of smaller changes that 

resulted in a complete weighted round-robin algorithm, or a round-robin algorithm that takes in 

weight factors to give priority to the sensors that need it. As mentioned previously, the first of 

those changes was to implement acknowledgements. In this manner, after the field sensor radio 

sends a single data point to the base station radio, the base station responds with an ACK 

message to show that it has received the data properly. The field sensor radio waits until the 

ACK is acquired before sending the next piece of data in the list. This is important because it 

makes the communication channel more robust and decreases the likelihood of error in 

transmission. It also allows the algorithm to be less dependent on timing between the two radios, 

and instead allows them to be synced up like a conversation. At this point, much of the 

intentional delays added to ensure the timing of the radios were synced were removed and the 

communication process took much less time to complete. 

 Following this, the weights pertaining to each text file (and will later be each sensor) 

needed to be implemented. A user-input terminal request for weights was added, and after 

spending some time developing the code for a proper weighted round-robin algorithm for 

determining the order of files to send, the basics of weighted round-robin were present. The 

inclusion of the algorithm was successful and established the correct order for weighted round-

robin, whether for two text files or for ten, by labeling each file in a list, calculating the proper 
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order based on the inputted weights, and ensuring that the next data point in the list to be sent 

had an identifier that matched the request from the algorithm. 

 After confirming the success of the ordering of data, the number of text files was 

extended to fourteen (still with fake data) to ensure readiness for the fourteen sensors with real 

data that are represented in this research. The real data was then included, replacing all the fake 

data that has been used up to this point, and additional code had to be written to address the 

formatting differences (all the real data was included in a single csv file). This was relatively 

easy to address compared with the other components of the algorithm. 

 For each sensor being represented, the next step to include for the weighted round-robin 

is a prediction scheme for guessing the next value that will be sent based on the data of the past. 

The prediction for the next value in each sensor was developed as the average of all of the data 

that has been sent previously, which was not the best prediction method but worked as a 

baseline. The significance of including this is that it allows a root-mean-square-error (RMSE) to 

be calculated and generated at the end of the communication between the radios for each sensor, 

and then added together to find a total RMSE. This is the metric that is used to evaluate the 

success of the models created. Final modifications are minor and include examples such as 

having the end of the file communicated to stop the communication, having the field sensor wait 

on the base station to be running before continuing operation, and others. The changes were 

successful, completing the requirements for the weighted round-robin algorithm that were 

desired. 

2.2.6 Smart Weighted Round-Robin Communication 

The last form up the algorithm developed is the smart weighted round-robin algorithm. 

The difference between the last version of this and the smart version is that the smart weighted 
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round-robin algorithm updates the weights in real time to get more data and make better 

predictions, resulting in a lower error rate. This final change required some restructuring of the 

previous Python codes to accommodate the changing weights, including additional 

communication back and forth between the radios among others. 

On the base station radio side of the code, many updates were included. The first is the 

weight change calculations and parameters for making changes to the weight; this was 

accomplished with creative thinking and experimental testing of different techniques. The ending 

parameters established for weight changes are as follows: the weight of a respective sensor will 

increase by a factor of one if the difference between the prediction and real value is greater than 

two times the weight, and the weight will decrease by a factor of one if the difference is less than 

the weight. This allows a more dynamic change in weights than simply looking at the difference 

in prediction and real value; the weight factor implemented spreads priority more evenly over the 

sensors and prevents exponential growth or collapse in the weight changes. This method for 

changing the weights is quite stable, and by far gave the best results compared to other 

techniques. Lastly, the weights were transmitted back to the field sensor radio side of 

communication to implement the calculated changes. 

The other major change to the base station code is the improved prediction model. As 

mentioned previously, the prediction for the next value at each sensor in the weighted round-

robin algorithm was built on the average of all data that had already transmitted. This was 

changed at this stage of the research project to a much better model: the average difference 

between two data points for every pair sent thus far is added to the last number received. The 

shifting of the average from the real value to the difference in real values was remarkably 

successful at preventing wide errors in prediction. 
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On the field sensor radio side, the only changes made were taking the weight updates that 

were sent every twenty transmissions and incorporating them into the new weighted round-robin 

order that the scheduler makes. This required some creativity, not only for the difficulty of 

implementing the reorder in further transmission, but for recognizing the data that has already 

been sent. This problem was solved by including fillers of zero in the first parts of the order that 

had already been transmitted, and from there, the smart weighted round-robin worked perfectly. 
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3. RESULTS 

3.1 Operation of the Complete System 

The physical setup of the architecture as described in Figure 1.4 is modeled below in 

Figure 3.1. Each side of the radios has a host device that the user interacts with, and the radios 

are communicating with the various algorithms described over-the-air. 

 

Figure 3.1: Overview of Complete System 

There were complications in achieving a UDP connection between the localhost device 

and the USRP radios. This aspect was deemed to be beyond the scope of this research project, so 

instead the smart weighted round-robin algorithm was developed for this project. The Python 

codes for the base station and field sensor radios are contained in the hard drive of their 

respective host devices, and the public repository data used for the sensor data is stored on the 

field sensor radio’s host. Otherwise, the files and information necessary for communication are 

created during the operation of the Python software files themselves. 
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3.2 Effectiveness of Algorithms 

For data collection, the process was relatively simple. The algorithms were each ran with 

150 data points total, meaning that there were 150 transmissions from the field sensor radio to 

the base station radio and 150 sent acknowledgements in return. Because there are fourteen 

sensors, this is adequate amount of information to compare the effectiveness of the various 

algorithms, which is measured with the RMSE values from each sensor as well as the total 

RMSE for a single iteration. For the algorithms with weights, the weights are varied over several 

iterations to get a solid set of data for comparison. Although the round-robin original algorithm 

did not include a measurement for prediction and RMSE values, entering a value of one for the 

weight of every sensor in the weighted round-robin algorithm will give the values for a simple 

round-robin iteration. The various information collected is displayed in Table 3.1 below. 

Table 3.1: Final Data Results with Varying Weights

 

The format of the table has sensors A – N (all fourteen sensors) in the column labels at 

the top, and in groups of three rows, it shows the weights chosen for that specific iteration along 

with the root-mean-square-error values from the weighted round-robin (WRR RMSE) and the 

smart weighted round-robin (Smart RMSE). On the rightmost column, the total RMSE for each 

was also included. 

A B C D E F G H I J K L M N Total

Weight 1 1 1 1 1 1 1 1 1 1 1 1 1 1 -

WRR RMSE 37.958 48.737 25.271 9.933 24.029 23.744 24.61 17.505 5.069 9.488 12.225 9.097 5.805 4.411 257.883

Smart RMSE 8.769 6.5 15.955 2.557 12.362 4.981 9.725 30.095 6.935 12.817 27.549 6.728 3.615 2.242 150.83

Weight 1 6 4 8 3 2 6 1 4 6 3 5 5 1 -

WRR RMSE 7.92 88.451 25.271 16.044 19.298 12.833 30.203 13.796 5.069 13.341 11.136 10.563 8.784 0 262.708

Smart RMSE 8.393 6.498 16.211 4.274 12.12 4.981 10.54 26.98 6.935 13.248 27.549 6.111 3.623 0 147.462

Weight 3 2 5 2 1 3 3 5 2 4 1 2 3 4 -

WRR RMSE 42.058 29.871 75.265 7.861 8.229 23.744 24.61 22.83 4.316 12.268 7.437 6.379 6.939 6.142 277.95

Smart RMSE 8.769 6.498 16.365 2.478 10.537 4.983 10.214 34.058 6.819 13.248 21.375 5.453 3.473 5.526 149.794

Weight 2 4 2 1 7 1 4 5 3 6 1 6 2 3 -

WRR RMSE 21.353 63.283 12.653 3.249 36.015 5.843 25.565 19.743 4.499 15.805 7.437 13.2 3.133 4.219 235.996

Smart RMSE 8.748 6.401 15.955 2.26 13.259 4.677 10.214 34.058 6.935 13.287 22.631 6.823 3.206 1.099 149.553

Weight 6 3 3 5 2 2 1 3 4 1 2 4 1 2 -

WRR RMSE 90.045 56.005 29.443 14.159 19.298 18.668 12.515 17.67 6.739 6.346 11.02 11.486 2.174 3.006 298.573

Smart RMSE 8.77 6.498 16.211 4.077 12.12 4.981 9.167 31.966 6.935 12.065 27.133 5.453 3.206 1.099 149.681
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3.2.1 Round-Robin Algorithm 

The only relevant data from Table 3.1 for the basic round-robin algorithm is the first 

iteration, where all the weights are set to one, meaning the priority is spread across each sensor 

equally, which results in going around one-by-one in the round-robin manner. The total error that 

was calculated in this algorithm run is 257.883 from adding each sensor’s error together; without 

a base reference, this feels meaningless. However, comparing to the other (randomly chosen) 

weight values, 257.883 is reasonably within the bounds of error from the other weighted round-

robin total errors. It is not the highest or lowest error value, which makes sense because the 

varying weights are going to impact the errors for each sensor differently which can have a 

positive or negative impact on the value. This is true for the total values, but also for each of the 

sensors. For the remaining algorithms, the analysis can be done with the individual sensor error 

values and the total error from the basic round-robin as a base value. 

3.2.2 Weighted Round-Robin Algorithm 

Changing the weights with randomly chosen values resulted in four iterations of data as 

shown in Table 3.1 above (excluding the first iteration, representing basic round-robin). Keeping 

the values from the round-robin algorithm run as base values to compare to, some changes in 

individual sensor weights add to the RMSE value, while others decrease it. The variations all 

remain within reasonable bounds from each other, such as the fact that all the total RMSE values 

are in the two-hundreds. Because the data set for each iteration is the same, with some careful 

analysis, the results from the weighted round-robin algorithm can be used and further iterations 

can be ran to discover ideal values for individual weights leading towards the much lower error 

rates. Fortunately, this is unnecessary because the next algorithm does this on its own without 

any need for user calculations. 



 

27 

 

3.2.3 Smart Weighted Round-Robin Algorithm 

The smart weighted round-robin algorithm makes drastic improvements on the RMSE 

values for every single iteration tested. When comparing results to the base value from basic 

round-robin in Table 3.1, the smart algorithm yields a total RMSE of 150.830, compared to the 

original RMSE in round-robin of 257.883, a 41.5% reduction of error. The trend holds out for the 

various weights attempted; the second through fifth iterations yield reductions of 43.9%, 46.1%, 

36.6%, and 50.0% respectively. These improvements are massive and prove that the smart 

weighted round-robin algorithm consistently outperforms the basic round-robin algorithm and 

weighted round-robin algorithm drastically.  

For most of the individual sensor data points, the trend also holds, although there is some 

variation where the weighted round-robin outperforms specific sensors. This is primarily due to 

two reasons: the first is that there is an inherent bias towards the first few sensors in the order, 

and the second is that the actual data is fluctuating in different manners. The bias exists because 

of the manner of scheduling in weighted round-robin; even if the weights are distributed equally, 

the first sensors still transmit their data first. When the updates to the weights are implemented 

and the new schedule is created for the remaining data, if any two weights are equal, the first 

sensor in the original order is prioritized. This bias has been mostly reduced with the update to 

the next-value prediction model, but it is still present at a small scale and likely will be for all 

variations of real-time weighted round-robin scheduling. The second reason for specific 

outperformances by the weighted round-robin algorithm is that the real-time data from the public 

repository is fluctuating and inconsistent across all the sensors, so some predictions for the next-

values will be more inaccurate than the mean of all data points when the data changes from 

increasing to decreasing or vice versa. This is inherently a property of the data used, and the 



 

28 

 

prediction would be more accurate over longer periods of time (meaning more data points in a 

transmission would reduce the chance of this occurring). Regardless, the total RMSE values are 

significantly lower than the other algorithms, so these edge cases are largely unimportant to the 

grand scheme of the communication.  
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4. CONCLUSION 

4.1 Effectiveness of SDN-SDR Network 

The combination of software-defined radios and software-defined networks into an 

experimental architecture such as done with this project is a task that is profound and fascinating 

in its development. Each technology serves to displace its predecessor by moving components 

into software, allowing greater flexibility with the construction of this network than previously. 

The radios themselves allow communication between the base station and the field sensors to 

take place over-the-air, and the elements of their communication controlled in software 

(frequency, sample size) can be changed in real-time. The software nature of the network itself 

allows code to be developed further for the virtual controller to make specific changes for real-

world applications, such as a certain method of reading a set of sensors or changes to who can 

access the network.  

Additionally, because everything other than the actual B210s takes place in software, 

once the radios are set up in permanent place as meant to be for the project, changes to the entire 

architecture can be made remotely. This is perhaps the most key benefit of the use of these newer 

technologies in the network construction – the ability to change settings remotely directly 

addresses the issues with traditional networking discussed in the introduction and increases the 

ease of use for the technology. For example, one can imagine a scenario where out of the 

thousands of sensors reading temperature, a critical sensor starts acting strange. With the SDR-

SDN full setup, the sensor can be isolated, analyzed, fixed, and reincluded without a single 

shutdown of the entire network. The benefits of this are huge. 
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However, one critical aspect that should be discussed is the practicality of converting 

modern networks into the software domain using SDN and SDR technology. It is easy to imagine 

one or the other being used for its respective widening of the range of applications but 

implementing both at the same time is unlikely for a company or project to do, and there are 

potential benefits from that decision. The learning curve for creating and adapting this network, 

along with integrating the SDN and SDRs together on each host, is a huge cost to the 

construction of an SDR-SDN network that many projects will not be willing to undertake. The 

components of a traditional network, by comparison, are well-studied, well-understood, and 

widely applied so that there are infinite resources related to the construction of the network and 

network engineers that are trained to create them. With both software-defined networks and 

software-defined radios, each technology is documented decently well, but the user base is not 

large enough to have a comparable number of resources to use. When the technologies are 

combined, there are far fewer than there are independently.  

Once the large costs for acquiring the equipment and understanding it to the point of 

development are undergone, however, the radios and network architecture as a whole are quite 

useful and applicable in the world. For projects that need specific flexibility and special 

attention, the SDN-SDR architecture can address those needs in a highly dynamic manner. 

4.2 Real-World Applications 

The real-world applications of SDNs, SDRs, and SDN-SDR systems are interesting to 

consider. As stated previously, the ability to control elements using software has been critical in 

the development of all sorts of modern technology – smart phones, cameras, laptops, and cars, to 

name a few examples. The changes to network and radio technologies are not unprecedented, 
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and the expectation is that the popularity of the other devices that use a combination of hardware 

and software elements will be repeated with these tools. 

Software-defined networks, however, have had somewhat limited success in finding 

applications (Saleem 2016). For much of the world, the costs for implementing SDNs is much 

higher than the costs of operating a traditional network. Also, the surrounding network 

infrastructure has for a long time been underdeveloped to serve the purposes of SDNs, although 

the ground for this is changing as the demand for more network flexibility goes up. Despite the 

excitement for the technology, the rate of growth has not met expectations, and the SDN has not 

yet proven itself as a permanent upgrade to networking. 

The software-defined radios have had more success in market implementation. The SDRs 

are applicable almost everywhere where radios were previously used, such as communication, 

measuring and monitoring data, and streaming information. The immediate bonus of using an 

SDR as opposed to a traditional radio is the ability to have multiple options for configuration for 

different scenarios. For testing equipment or analyzing data from sensors, the flexibility involved 

in being able to switch between predefined, custom settings allows much less radio technology to 

be used as many of their individual tasks have been taken instead by the SDR. For many 

industries and companies, particularly those involved with networks, SDRs are gaining 

popularity and have an optimistic future. 

The real-world applications for SDN-SDR combinations are limited at the moment. For 

the industries that want to create networks with the highest flexibility, especially regarding 

sensor reading, the technology can be very useful. However, this has yet to occur beyond the 

research efforts behind the technology. One could imagine, however, that companies that are 

reading lots of sensor data in real-time would receive lots of benefits by investing in SDN-SDR 
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combinations for their data collection, as done in this research project. The modular nature of the 

project allows any number of sensors to be added, and each sensor can be remotely modified at 

any point in time. An industry such as weather prediction, with conditions that change rapidly 

and the requirement of a lot of sensor data, would benefit from using the SDN-SDR technology. 

For now, the devices used in this research project are primarily at the research stage of 

their development, but the applications to real-world projects are promising. 
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APPENDIX A: PYTHON SOFTWARE WRITTEN FOR 

COMMUNICATION 
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Figure A.1: Weighted Round-Robin Algorithm for Base Station Radio  
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Figure A.2: Weighted Round-Robin Algorithm for Field Sensor Radio 
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Figure A.3: Smart Weighted Round-Robin Algorithm for Base Station Radio  
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Figure A.4: Smart Weighted Round-Robin Algorithm for Field Sensor Radio 


