
SOFTWARE-DEFINED WIRELESS NETWORK FOR REAL-TIME

SENSING

An Undergraduate Research Scholars Thesis

by

AUSTIN M. KEITH

Submitted to the LAUNCH: Undergraduate Research office at

Texas A&M University

in partial fulfillment of requirements for the designation as an

UNDERGRADUATE RESEARCH SCHOLAR

Approved by

Faculty Research Advisor: Dr. I-Hong Hou

May 2022

Major: Electrical Engineering

Copyright © 2022. Austin M. Keith.

RESEARCH COMPLIANCE CERTIFICATION

Research activities involving the use of human subjects, vertebrate animals, and/or

biohazards must be reviewed and approved by the appropriate Texas A&M University regulatory

research committee (i.e., IRB, IACUC, IBC) before the activity can commence. This requirement

applies to activities conducted at Texas A&M and to activities conducted at non-Texas A&M

facilities or institutions. In both cases, students are responsible for working with the relevant

Texas A&M research compliance program to ensure and document that all Texas A&M

compliance obligations are met before the study begins.

I, Austin M. Keith, certify that all research compliance requirements related to this

Undergraduate Research Scholars thesis have been addressed with my Research Faculty Advisor

prior to the collection of any data used in this final thesis submission.

This project did not require approval from the Texas A&M University Research

Compliance & Biosafety office.

TABLE OF CONTENTS

Page

ABSTRACT .. 1

DEDICATION .. 3

ACKNOWLEDGEMENTS .. 4

NOMENCLATURE ... 5

CHAPTERS

1. INTRODUCTION .. 6

1.1 Traditional Networking .. 6

1.2 Software-Defined Networking ... 8

1.3 Software-Defined Radio ... 10

1.4 Complete System .. 12

2. METHODS ... 13

2.1 SDN Construction... 13

2.2 SDR Communication .. 15

3. RESULTS ... 24

3.1 Operation of the Complete System ... 24

3.2 Effectiveness of Algorithms ... 25

4. CONCLUSION ... 29

4.1 Effectiveness of SDN-SDR Network ... 29

4.2 Real-World Applications .. 30

REFERENCES ... 33

APPENDIX A: PYTHON SOFTWARE WRITTEN FOR COMMUNICATION 35

1

ABSTRACT

Software-Defined Wireless Network for Real-Time Sensing

Austin M. Keith

Department of Electrical & Computer Engineering

Texas A&M University

Research Faculty Advisor: Dr. I-Hong Hou

Department of Electrical & Computer Engineering

Texas A&M University

Traditionally in the field of electronics, hardware is designed, developed, and improved

on in various methods, whether it be increased storage capabilities or smaller models. Software

applications lagged because of the hardware requirements to operate software, but increasingly,

software tools are replacing technology that relied heavily on hardware components where

applicable because of the abilities to both modify the technology easily and to consolidate tasks

in an automated fashion. This research focuses on the networking space and aims to replace

hardware architecture with software, as well as write algorithms to intelligently allocate

incoming data.

To orchestrate this architecture and the algorithms, the modern tools of software-defined

networking and software-defined radios were combined. This created a network capable of

transmitting packets over-the-air, with the network itself having separated the data plane and

control plane in the software-defined networking standard. The control plane is written entirely

in software, allowing modifications to be made across the whole system relatively simply. In this

research, two software-defined radios were used to represent a base station and a field multi-

2

sensor collector respectively. The field sensor transmits real sensor data from a web database that

represents readings of the resistance of a gas over time from fourteen sensors. The base station

radio can only receive a single packet at a time from the secondary radio due to bandwidth

constraints, and so, using a software-defined controller, the various scheduling policies are

compared to develop the most efficient means of processing the individual data packets.

The final algorithm started from basic round-robin before evolving into weighted round-

robin, with measurable results in terms of root-mean-square error values for each sensor and one

for the total transmission period. The weighted round-robin was upgraded a step further to have

real-time weight updates at regular intervals based on the accuracy of prediction for the next

value in the sequence, per sensor. The contrast between the three stages of development for the

round-robin algorithms is plain to see, with steady improvement between basic round-robin and

weighted round-robin, and drastic improvement between weighted round-robin and the smart

algorithm. The results from the research project yield a final draft of communication between the

software-defined radios that produced an effective and efficient manner of software-defined

networking.

3

DEDICATION

To my family, for supporting me continuously. To my fiancé, for always being there. To my

friends, for keeping me focused.

4

ACKNOWLEDGEMENTS

Contributors

I would like to thank my faculty advisor, Dr. I-Hong Hou, and my graduate student

colleagues, Siqi Fan and Khaled Nakhleh, for their guidance and support throughout the course

of this research.

Thanks also go to my friends and colleagues and the department faculty and staff for

making my time at Texas A&M University a great experience.

Finally, thanks to my parents for their support and encouragement and to my fiancé for

her patience and love.

The B210 software-defined radios used for over-the-air communication were provided by

the Wright Brothers Institute and the Air Force Research Laboratory for participating in the

Beyond 5G University Challenge for 2021-2022.

All other work conducted for the thesis was completed by the student independently.

Funding Sources

No sources for funding were used for the duration of this research.

5

NOMENCLATURE

USRP – Universal Software Radio Peripheral

SDN – Software-Defined Network

SDR – Software-Defined Radio

GUI – Graphical User Interface

RF – Radio Frequency

GMSK – Gaussian Minimum Shift Keying

GHz – Gigahertz

RMSE – Root-Mean-Square-Error

UDP – User Datagram Protocol

WRR – Weighted Round-Robin

6

1. INTRODUCTION

The goal of this project is to have a software-defined network that takes advantage of two

software-defined radios, one working as a base station and the other representing a series of field

sensors, to transmit a variety of sensor data over-the-air. Because of bandwidth constraints, only

a single data packet can transmit through the radios at a single instant of time. Algorithms

written for the controller of the network allocate the incoming sensor data efficiently to reduce

the time it takes to process the incoming data. Because much of the operation of the entire

system can be modified through the controller software, the network can switch between various

scheduling priorities to demonstrate the differences in efficiency between them.

1.1 Traditional Networking

To begin the understanding of this research project, one must understand how a

traditional network works as well as the issues surrounding it. Networking itself is simply a

connection of two or more devices that allows them to share information with each other. The

number of connections and geographical range of the connections determines the categorization

of the network, but there are common elements between all traditional network types. Each are

built on connections between computers that are created with the use of switches and routers, as

shown in Figure 1.1 below. Switches ensure that data packets are communicated and sent

properly within a single network, while routers ensure that data packets are correctly transmitted

between networks themselves. This creates a hierarchy of networks, routers, and switches that

are highly dependent on physical hardware for the establishment of the network and for future

modifications.

7

Figure 1.1: Network Components

An example of such a network on the larger side of the scale is the Internet, which is a

giant web of interconnected networks so that any device can send information to any other

device. Other examples include university campus networks, a network of computers in an office

building, and a network of gamers playing online together. Each of these examples is highly

dependent on hardware, limiting its flexibility and increasing its complexity as the number of

users join.

1.1.1 Problems with Traditional Networking

Some of the issues associated with this style of network building and amendment have

been hinted at. Most of the current problems with traditional networking can be categorized

under either an issue of complexity or an issue of inefficiency.

The immediate problem with traditional networking is that the number of users has

grown at a tremendous rate in the last few decades. Both the number of people that own devices

has increased as well as the number of devices that a single individual owns. Regardless of the

networks that these devices are connected to, the overall complexity of networking has increased

8

dramatically because of the number of connections that needs to be maintained has increased

dramatically. Each additional connection requires the use of hardware to either make physical

connections (with a cable) or virtual connections (with Wi-Fi, for example). This creates an

enormous number of switches, routers, and other network architecture hardware that must be

independently maintained to ensure the network operates as intended. Additionally, any changes

in the way that devices are connected, including emergency changes if a critical part of the

network fails, are slow to happen and difficult to execute. Network engineers must be well-

trained and staffed at many companies just to accomplish this difficult work.

The inefficiencies of traditional networking may be obvious with many disciplines of

technology turning towards software, even in fields that were dominated by hardware in the past.

The limitations on flexibility with physical hardware in the environment of increased complexity

create problems in areas of high traffic in a network in a live setting, and the potential for

network connections to adapt in a highly efficient manner to the information that they

communicate is quite high. However, even in an offline setting, changes to a network are limited

because multiple parts of the network must be individually modified. The problem of multiple

network engineers changing different switches and routers without communicating and causing

conflicts with the network connections also occurs.

1.2 Software-Defined Networking

The newer type of networking that is starting to be employed is known as software-

defined networking, or SDN. SDN differs largely from the traditional network due to an abstract

layer of computer architecture known as the control plane which is separated from the data plane

in SDN. Before, the data plane and control plane were paired together, meaning in practicality

that each fixed piece of hardware in the network that is responsible for sending packets was

9

independently operated. With SDN, the control plane is separated into a centralized unit known

as the controller, and the devices responsible for communication are directed by the controller, as

shown in Figure 1.2. In this manner, a proper analogy is that traditional network architecture is

orchestrated like a pack of wolves, where each individual animal makes decisions so that the

pack can survive. A similar analogy can be made for SDNs which operate like a beehive, with

individual worker units that have a hive mind and adapt to new situations collectively.

Figure 1.2: Control Plane Separation

Because the SDN controller is programmable and runs the network, separating the

control plane and data plane has huge benefits to networking and addresses many of the core

issues defined with traditional networking.

1.2.1 Benefits with SDN

There are many benefits associated with switching from a traditional network to a

software-defined network. The first and most obvious benefit is that network operation is

controlled by a single, programmable unit. This means that, rather than a network engineering

modifying switches and packets at an individual level, a single network engineer can write code

for a controller that modifies the entire system. This greatly reduces the complexity of managing

a given network. Adjustments are automatically made within the network to adapt to the new

10

communication methods written in the controller software. The increased level of flexibility this

provides cannot be understated. Adding multiple devices to a network becomes much simpler as

the controller adjusts virtual switches and routers to accommodate new users. Not only can a

single network be changed drastically in a short period of time, but an SDN can be repurposed

for multiple different functions as well. Established virtual networks that are no longer needed

can be modified to serve a new function without the steps necessary in traditional networking to

rebuild the architecture.

Additionally, maintenance of a network using SDN technology is much simpler. The

controller operates by changing the connection lines and general network architecture to address

the conditions set by an engineer within the software. This allows automatic readjustments in

connections between devices when errors occur. Network failures at critical traffic points are no

longer a major concern while the network is manually repaired as done with traditional

networking; instead, the SDN establishes new connections automatically to ensure operation

continues as intended. While this implies benefits that address the complexity and flexibility

issues described under the traditional networking infrastructure, it also improves the security of

networks. Point-to-point connections that are attacked by malicious users can adapt with a new

secure channel of communication once the network controller recognizes that an attack is

happening.

1.3 Software-Defined Radio

In a similar line of thought, radios can have a huge increase in flexibility and a reduction

in maintenance cost and complexity by moving some part of the physical functionality into the

software domain. This precisely describes software-defined radios (SDRs), where some aspect of

the physical elements of a traditional radio are controlled by programmable software. Some

11

physical components of a radio are necessary for transmission and signal processing, but the

general idea of separating the control plane into software applies here just as done with SDN.

There are a great variety of types of SDRs as their share of the market increased over the last few

decades, and there are a multitude of benefits that come from using an SDR over a traditional-

style radio. In Figure 1.3, the two radios that are used for the duration of this project are shown.

Figure 1.3: Two Software-Defined Radios (B210s)

1.3.1 Benefits of SDR

Several of the benefits associated with SDN over traditional networking are reflected in

the benefits of choosing SDR over traditional radios. Modification of the purpose of the SDR is

simple and only requires a change in the code that controls its operation. Similarly, maintenance

of the radio is much less complicated when, instead of physically tampering with the device, new

code can be uploaded that addresses the problem. Both simplifications massively reduce the cost

of using the technology and provide greater flexibility than previously offered.

The added flexibility that comes with the programmable functions of the SDR is another

benefit. A group of radios can be linked together and controlled through their software to do a

variety of tasks that were unavailable previously. Commands or data packets that are sent over-

12

the-air using SDR technology allows devices in a network or similar infrastructure to be

modified remotely. Radio frequency processing can be adjusted easily, allowing communication

channels to rapidly change. This comes with increased security benefits as well, with emphasis

on application within military technology due to the large use of traditional radios.

1.4 Complete System

The task of this project is to combine the new technologies and applications of SDR and

SDN into a single system, and then to write algorithms that receive data packets and allocates

them efficiently. This system is intended to be a software-defined network containing two SDRs

that communicate to each other. Specifically, the controller for the SDN sends commands to a

virtual switch by sending the command to the first SDR, which then gets transmitted over-the-air

to the second SDR, and finally, the second SDR sends the command to the switch. The switch

responds appropriately to the command, most of which were written previously by graduate

students in this research field. In Figure 1.4, a block diagram of the complete architecture for the

system is presented.

Figure 1.4: Complete Architecture of System

Some of the commands that are sent through this system change the scheduling priority

of the SDN. Traditional scheduling methods, such as round-robin, are included, along with the

other algorithms written for the purpose of this project.

13

2. METHODS

The approach to this research project is best described in two categories: the construction

of the SDN and the development of the communication between the base station and field sensor

SDRs. The first semester was primarily focused on the early work for implementing the SDN on

the hosts and the research components of the project, while the winter break and second semester

were instead focused on creating the block diagrams and Python files for the radio connections,

writing the scheduling priority algorithms to allocate the data appropriately, and completing the

infrastructure of the project.

2.1 SDN Construction

Much of the work involved in the initialization of the SDN was about reconstructing the

basics from the work of previous graduate students using the open-source information from Ryu

and OpenFlow (developed basic controller for network and methods for configuring settings).

The terminal commands for constructing the first edition of the SDN were included in some

documentation from the previous semesters, and using that information along with the public

instructions, the SDN was first created on a single host running multiple virtual machines. The

controller terminal, switch terminal, and a connection terminal were all running independently,

and communication was confirmed with fake data being sent to a GUI that was included in the

work done by the previous graduate students. Figures 2.1 and 2.2 show the early user interaction

with the terminal and GUI when establishing the SDN.

14

Figure 2.1: Terminal Interface for Switch and Controller

Figure 2.2: GUI Interface for SDN Controller

2.1.1 UDP Connection from USRPs to Localhosts

The original plan for the next step in SDN research was to create a UDP connection

between the respective localhost and radio connected to the host. This was not known to be

possible, so the alternative plan of improving the weighted round-robin algorithm with a smart

algorithm that updates the weights of sensors in real-time was created. In the end, there was no

15

solution found on addressing this UDP connection, so the backup plan was implemented, and a

smart algorithm was created. The SDN aspect of this project, because of this change, was less

significant and primarily was relegated to research purposes.

2.2 SDR Communication

The construction of the architecture that allows communication between the two SDRs

originally used the GNU Radio Companion software tool to construct block diagrams using the

pre-built library meant for SDRs and other communication equipment. From there, the generated

Python files from the block diagrams within GNU Radio Companion were modified by hand to

develop the specific needs regarding this research. Each host device had its own radio, software,

and Python files that were created collectively before individual modifications pertaining to the

base station or the field sensors respectively were implemented.

2.2.1 One-Way Communication

The first block diagrams created were to establish some form of basic communication

between the two radios. After researching the toolset within GNU Radio Companion and

understanding the capabilities of the included functions, the transmission and reception files

were developed on each respective radio’s host device. The method of communication uses

GMSK modulation on the transmit side, and GMSK demodulation on the receive side. The two

B210 SDRs are both using a channel frequency of 1 GHz and a sample rate of 400k samples per

second. These were chosen with the device characteristics and the nature of the project in mind.

The two block diagrams that represent the files created to first establish one-way communication

are displayed below in Figures 2.3 and 2.4.

16

Figure 2.3: Transmission Block Diagram for One-Way Communication

Figure 2.4: Reception Block Diagram for One-Way Communication

The actual data that was being sent from the first SDR to the second SDR came from a

local text file on the transmission host with a series of fake data points created for the purpose of

establishing one-way communication. The data is read from the text file, encoded into packets,

modulated, and sent through the B210s before the process is reversed on the other side and the

data is stored onto a new text file on the receiving host. This method of using a text file to send

fake data is repeated until the SDN commands are implemented into the SDR’s communication.

Running both files on each host at the same time resulted in the file being correctly

transferred to the other side, with the only issue being a glitch that is built into GNU Radio

17

Companion that requires the message to repeat continuously. This is addressed in a future

upgrade to the SDR communications.

2.2.2 Two-Way Communication

The first upgrade needed for the communication between the two SDRs is to establish

two-way communication, or the ability for both radios to transmit and receive information. Once

again, additional block diagrams are built in GNU Radio Companion for these modifications.

Fortunately, much of the content of the blocks is the same as when establishing one-way

communication, but the specific settings regarding the antennas being used and the timing when

either actively sending or actively listening to a signal are changed to meet the new requirements.

The block diagrams used for this point of the project are shown in Figures 2.5 and 2.6 below.

Figure 2.5: Two-Way Communication on Transmit Side

18

Figure 2.6: Two-Way Communication on Receive Side

After constructing the block diagrams for the radios, the generated Python files are

modified to match the style of communication needed for this project. This means that timings

and order are introduced to the devices; each respective device needs to be able to understand

that it can only listen while it is not talking, and that while it is talking, it is not listening. These

changes allow basic conversation between the SDRs to take place without interruption or other

complications to the dialogue.

Once the Python files have been adjusted, the radios can send information back and forth

to each other. The text file filled with fake data referenced previously for testing functionality of

the radio communications is once again used here.

2.2.3 Transfer from Multiple Text Files

The next step in terms of communication between the radios is to add the capability to

send from multiple options of text files on the field sensor side of the SDRs. In this model, the

field sensor SDR has three text files, each filled with random data and identifier numbers for

each data point as done previously. The base station SDR can request any combination of the

19

three text files, including just a single file, to be transmitted back towards the base station. The

field sensor SDR will send each file completely, one-at-a-time, until the request is fulfilled. The

repeat bug found earlier in GNU Radio Companion is not addressed at this stage of the project,

and the consequences of its problems were addressed in this upgrade by having a short timer set

for each file to prevent infinite repetition.

2.2.4 Round-Robin Communication

The further modifications made for the next iteration of communication between the two

devices takes place entirely within the Python file. With the addition of two-way communication

with multiple text files in the last upgrade, the changes here mostly relate to timing and

addressing the repeat issue from GNU Radio Companion. Code was developed to address the

repeat bug that takes advantage of the local text files on each host. The Python file will read from

each file that is requested by the base station host, and record one line at a time from each file

into a separate text file for transmission. The additional layer of reading from a file addresses the

issue of repeating well, and it allows for this process to work (using the text file setup) without

changing the base libraries of GNU Radio Companion.

Following the fix of the repeat bug, the code for a round-robin scheduling priority was

implemented at this time in the research. Round-robin algorithms work by sending a single data

point from multiple set options, and then going around each set sending the first single data point

until you reach the second data point of the first set chosen. This process repeats, one-at-a-time

for each data set (or text file, in this case) until all the data has been transmitted. This works in

the Python code with timings set between the two SDRs to prevent transmission and reception on

one device at the same time. Although this serves the purpose of establishing the first basic

algorithm for this project, the next step in the code is to set up acknowledgements in the

20

communication, where after receiving any data or information, the receiving radio sends a

receipt of data received back to the transmitting radio to ensure that no data was lost and needs to

be sent again.

2.2.5 Weighted Round-Robin Communication

 The next iteration of upgrade that was included was a series of smaller changes that

resulted in a complete weighted round-robin algorithm, or a round-robin algorithm that takes in

weight factors to give priority to the sensors that need it. As mentioned previously, the first of

those changes was to implement acknowledgements. In this manner, after the field sensor radio

sends a single data point to the base station radio, the base station responds with an ACK

message to show that it has received the data properly. The field sensor radio waits until the

ACK is acquired before sending the next piece of data in the list. This is important because it

makes the communication channel more robust and decreases the likelihood of error in

transmission. It also allows the algorithm to be less dependent on timing between the two radios,

and instead allows them to be synced up like a conversation. At this point, much of the

intentional delays added to ensure the timing of the radios were synced were removed and the

communication process took much less time to complete.

 Following this, the weights pertaining to each text file (and will later be each sensor)

needed to be implemented. A user-input terminal request for weights was added, and after

spending some time developing the code for a proper weighted round-robin algorithm for

determining the order of files to send, the basics of weighted round-robin were present. The

inclusion of the algorithm was successful and established the correct order for weighted round-

robin, whether for two text files or for ten, by labeling each file in a list, calculating the proper

21

order based on the inputted weights, and ensuring that the next data point in the list to be sent

had an identifier that matched the request from the algorithm.

 After confirming the success of the ordering of data, the number of text files was

extended to fourteen (still with fake data) to ensure readiness for the fourteen sensors with real

data that are represented in this research. The real data was then included, replacing all the fake

data that has been used up to this point, and additional code had to be written to address the

formatting differences (all the real data was included in a single csv file). This was relatively

easy to address compared with the other components of the algorithm.

 For each sensor being represented, the next step to include for the weighted round-robin

is a prediction scheme for guessing the next value that will be sent based on the data of the past.

The prediction for the next value in each sensor was developed as the average of all of the data

that has been sent previously, which was not the best prediction method but worked as a

baseline. The significance of including this is that it allows a root-mean-square-error (RMSE) to

be calculated and generated at the end of the communication between the radios for each sensor,

and then added together to find a total RMSE. This is the metric that is used to evaluate the

success of the models created. Final modifications are minor and include examples such as

having the end of the file communicated to stop the communication, having the field sensor wait

on the base station to be running before continuing operation, and others. The changes were

successful, completing the requirements for the weighted round-robin algorithm that were

desired.

2.2.6 Smart Weighted Round-Robin Communication

The last form up the algorithm developed is the smart weighted round-robin algorithm.

The difference between the last version of this and the smart version is that the smart weighted

22

round-robin algorithm updates the weights in real time to get more data and make better

predictions, resulting in a lower error rate. This final change required some restructuring of the

previous Python codes to accommodate the changing weights, including additional

communication back and forth between the radios among others.

On the base station radio side of the code, many updates were included. The first is the

weight change calculations and parameters for making changes to the weight; this was

accomplished with creative thinking and experimental testing of different techniques. The ending

parameters established for weight changes are as follows: the weight of a respective sensor will

increase by a factor of one if the difference between the prediction and real value is greater than

two times the weight, and the weight will decrease by a factor of one if the difference is less than

the weight. This allows a more dynamic change in weights than simply looking at the difference

in prediction and real value; the weight factor implemented spreads priority more evenly over the

sensors and prevents exponential growth or collapse in the weight changes. This method for

changing the weights is quite stable, and by far gave the best results compared to other

techniques. Lastly, the weights were transmitted back to the field sensor radio side of

communication to implement the calculated changes.

The other major change to the base station code is the improved prediction model. As

mentioned previously, the prediction for the next value at each sensor in the weighted round-

robin algorithm was built on the average of all data that had already transmitted. This was

changed at this stage of the research project to a much better model: the average difference

between two data points for every pair sent thus far is added to the last number received. The

shifting of the average from the real value to the difference in real values was remarkably

successful at preventing wide errors in prediction.

23

On the field sensor radio side, the only changes made were taking the weight updates that

were sent every twenty transmissions and incorporating them into the new weighted round-robin

order that the scheduler makes. This required some creativity, not only for the difficulty of

implementing the reorder in further transmission, but for recognizing the data that has already

been sent. This problem was solved by including fillers of zero in the first parts of the order that

had already been transmitted, and from there, the smart weighted round-robin worked perfectly.

24

3. RESULTS

3.1 Operation of the Complete System

The physical setup of the architecture as described in Figure 1.4 is modeled below in

Figure 3.1. Each side of the radios has a host device that the user interacts with, and the radios

are communicating with the various algorithms described over-the-air.

Figure 3.1: Overview of Complete System

There were complications in achieving a UDP connection between the localhost device

and the USRP radios. This aspect was deemed to be beyond the scope of this research project, so

instead the smart weighted round-robin algorithm was developed for this project. The Python

codes for the base station and field sensor radios are contained in the hard drive of their

respective host devices, and the public repository data used for the sensor data is stored on the

field sensor radio’s host. Otherwise, the files and information necessary for communication are

created during the operation of the Python software files themselves.

25

3.2 Effectiveness of Algorithms

For data collection, the process was relatively simple. The algorithms were each ran with

150 data points total, meaning that there were 150 transmissions from the field sensor radio to

the base station radio and 150 sent acknowledgements in return. Because there are fourteen

sensors, this is adequate amount of information to compare the effectiveness of the various

algorithms, which is measured with the RMSE values from each sensor as well as the total

RMSE for a single iteration. For the algorithms with weights, the weights are varied over several

iterations to get a solid set of data for comparison. Although the round-robin original algorithm

did not include a measurement for prediction and RMSE values, entering a value of one for the

weight of every sensor in the weighted round-robin algorithm will give the values for a simple

round-robin iteration. The various information collected is displayed in Table 3.1 below.

Table 3.1: Final Data Results with Varying Weights

The format of the table has sensors A – N (all fourteen sensors) in the column labels at

the top, and in groups of three rows, it shows the weights chosen for that specific iteration along

with the root-mean-square-error values from the weighted round-robin (WRR RMSE) and the

smart weighted round-robin (Smart RMSE). On the rightmost column, the total RMSE for each

was also included.

A B C D E F G H I J K L M N Total

Weight 1 1 1 1 1 1 1 1 1 1 1 1 1 1 -

WRR RMSE 37.958 48.737 25.271 9.933 24.029 23.744 24.61 17.505 5.069 9.488 12.225 9.097 5.805 4.411 257.883

Smart RMSE 8.769 6.5 15.955 2.557 12.362 4.981 9.725 30.095 6.935 12.817 27.549 6.728 3.615 2.242 150.83

Weight 1 6 4 8 3 2 6 1 4 6 3 5 5 1 -

WRR RMSE 7.92 88.451 25.271 16.044 19.298 12.833 30.203 13.796 5.069 13.341 11.136 10.563 8.784 0 262.708

Smart RMSE 8.393 6.498 16.211 4.274 12.12 4.981 10.54 26.98 6.935 13.248 27.549 6.111 3.623 0 147.462

Weight 3 2 5 2 1 3 3 5 2 4 1 2 3 4 -

WRR RMSE 42.058 29.871 75.265 7.861 8.229 23.744 24.61 22.83 4.316 12.268 7.437 6.379 6.939 6.142 277.95

Smart RMSE 8.769 6.498 16.365 2.478 10.537 4.983 10.214 34.058 6.819 13.248 21.375 5.453 3.473 5.526 149.794

Weight 2 4 2 1 7 1 4 5 3 6 1 6 2 3 -

WRR RMSE 21.353 63.283 12.653 3.249 36.015 5.843 25.565 19.743 4.499 15.805 7.437 13.2 3.133 4.219 235.996

Smart RMSE 8.748 6.401 15.955 2.26 13.259 4.677 10.214 34.058 6.935 13.287 22.631 6.823 3.206 1.099 149.553

Weight 6 3 3 5 2 2 1 3 4 1 2 4 1 2 -

WRR RMSE 90.045 56.005 29.443 14.159 19.298 18.668 12.515 17.67 6.739 6.346 11.02 11.486 2.174 3.006 298.573

Smart RMSE 8.77 6.498 16.211 4.077 12.12 4.981 9.167 31.966 6.935 12.065 27.133 5.453 3.206 1.099 149.681

26

3.2.1 Round-Robin Algorithm

The only relevant data from Table 3.1 for the basic round-robin algorithm is the first

iteration, where all the weights are set to one, meaning the priority is spread across each sensor

equally, which results in going around one-by-one in the round-robin manner. The total error that

was calculated in this algorithm run is 257.883 from adding each sensor’s error together; without

a base reference, this feels meaningless. However, comparing to the other (randomly chosen)

weight values, 257.883 is reasonably within the bounds of error from the other weighted round-

robin total errors. It is not the highest or lowest error value, which makes sense because the

varying weights are going to impact the errors for each sensor differently which can have a

positive or negative impact on the value. This is true for the total values, but also for each of the

sensors. For the remaining algorithms, the analysis can be done with the individual sensor error

values and the total error from the basic round-robin as a base value.

3.2.2 Weighted Round-Robin Algorithm

Changing the weights with randomly chosen values resulted in four iterations of data as

shown in Table 3.1 above (excluding the first iteration, representing basic round-robin). Keeping

the values from the round-robin algorithm run as base values to compare to, some changes in

individual sensor weights add to the RMSE value, while others decrease it. The variations all

remain within reasonable bounds from each other, such as the fact that all the total RMSE values

are in the two-hundreds. Because the data set for each iteration is the same, with some careful

analysis, the results from the weighted round-robin algorithm can be used and further iterations

can be ran to discover ideal values for individual weights leading towards the much lower error

rates. Fortunately, this is unnecessary because the next algorithm does this on its own without

any need for user calculations.

27

3.2.3 Smart Weighted Round-Robin Algorithm

The smart weighted round-robin algorithm makes drastic improvements on the RMSE

values for every single iteration tested. When comparing results to the base value from basic

round-robin in Table 3.1, the smart algorithm yields a total RMSE of 150.830, compared to the

original RMSE in round-robin of 257.883, a 41.5% reduction of error. The trend holds out for the

various weights attempted; the second through fifth iterations yield reductions of 43.9%, 46.1%,

36.6%, and 50.0% respectively. These improvements are massive and prove that the smart

weighted round-robin algorithm consistently outperforms the basic round-robin algorithm and

weighted round-robin algorithm drastically.

For most of the individual sensor data points, the trend also holds, although there is some

variation where the weighted round-robin outperforms specific sensors. This is primarily due to

two reasons: the first is that there is an inherent bias towards the first few sensors in the order,

and the second is that the actual data is fluctuating in different manners. The bias exists because

of the manner of scheduling in weighted round-robin; even if the weights are distributed equally,

the first sensors still transmit their data first. When the updates to the weights are implemented

and the new schedule is created for the remaining data, if any two weights are equal, the first

sensor in the original order is prioritized. This bias has been mostly reduced with the update to

the next-value prediction model, but it is still present at a small scale and likely will be for all

variations of real-time weighted round-robin scheduling. The second reason for specific

outperformances by the weighted round-robin algorithm is that the real-time data from the public

repository is fluctuating and inconsistent across all the sensors, so some predictions for the next-

values will be more inaccurate than the mean of all data points when the data changes from

increasing to decreasing or vice versa. This is inherently a property of the data used, and the

28

prediction would be more accurate over longer periods of time (meaning more data points in a

transmission would reduce the chance of this occurring). Regardless, the total RMSE values are

significantly lower than the other algorithms, so these edge cases are largely unimportant to the

grand scheme of the communication.

29

4. CONCLUSION

4.1 Effectiveness of SDN-SDR Network

The combination of software-defined radios and software-defined networks into an

experimental architecture such as done with this project is a task that is profound and fascinating

in its development. Each technology serves to displace its predecessor by moving components

into software, allowing greater flexibility with the construction of this network than previously.

The radios themselves allow communication between the base station and the field sensors to

take place over-the-air, and the elements of their communication controlled in software

(frequency, sample size) can be changed in real-time. The software nature of the network itself

allows code to be developed further for the virtual controller to make specific changes for real-

world applications, such as a certain method of reading a set of sensors or changes to who can

access the network.

Additionally, because everything other than the actual B210s takes place in software,

once the radios are set up in permanent place as meant to be for the project, changes to the entire

architecture can be made remotely. This is perhaps the most key benefit of the use of these newer

technologies in the network construction – the ability to change settings remotely directly

addresses the issues with traditional networking discussed in the introduction and increases the

ease of use for the technology. For example, one can imagine a scenario where out of the

thousands of sensors reading temperature, a critical sensor starts acting strange. With the SDR-

SDN full setup, the sensor can be isolated, analyzed, fixed, and reincluded without a single

shutdown of the entire network. The benefits of this are huge.

30

However, one critical aspect that should be discussed is the practicality of converting

modern networks into the software domain using SDN and SDR technology. It is easy to imagine

one or the other being used for its respective widening of the range of applications but

implementing both at the same time is unlikely for a company or project to do, and there are

potential benefits from that decision. The learning curve for creating and adapting this network,

along with integrating the SDN and SDRs together on each host, is a huge cost to the

construction of an SDR-SDN network that many projects will not be willing to undertake. The

components of a traditional network, by comparison, are well-studied, well-understood, and

widely applied so that there are infinite resources related to the construction of the network and

network engineers that are trained to create them. With both software-defined networks and

software-defined radios, each technology is documented decently well, but the user base is not

large enough to have a comparable number of resources to use. When the technologies are

combined, there are far fewer than there are independently.

Once the large costs for acquiring the equipment and understanding it to the point of

development are undergone, however, the radios and network architecture as a whole are quite

useful and applicable in the world. For projects that need specific flexibility and special

attention, the SDN-SDR architecture can address those needs in a highly dynamic manner.

4.2 Real-World Applications

The real-world applications of SDNs, SDRs, and SDN-SDR systems are interesting to

consider. As stated previously, the ability to control elements using software has been critical in

the development of all sorts of modern technology – smart phones, cameras, laptops, and cars, to

name a few examples. The changes to network and radio technologies are not unprecedented,

31

and the expectation is that the popularity of the other devices that use a combination of hardware

and software elements will be repeated with these tools.

Software-defined networks, however, have had somewhat limited success in finding

applications (Saleem 2016). For much of the world, the costs for implementing SDNs is much

higher than the costs of operating a traditional network. Also, the surrounding network

infrastructure has for a long time been underdeveloped to serve the purposes of SDNs, although

the ground for this is changing as the demand for more network flexibility goes up. Despite the

excitement for the technology, the rate of growth has not met expectations, and the SDN has not

yet proven itself as a permanent upgrade to networking.

The software-defined radios have had more success in market implementation. The SDRs

are applicable almost everywhere where radios were previously used, such as communication,

measuring and monitoring data, and streaming information. The immediate bonus of using an

SDR as opposed to a traditional radio is the ability to have multiple options for configuration for

different scenarios. For testing equipment or analyzing data from sensors, the flexibility involved

in being able to switch between predefined, custom settings allows much less radio technology to

be used as many of their individual tasks have been taken instead by the SDR. For many

industries and companies, particularly those involved with networks, SDRs are gaining

popularity and have an optimistic future.

The real-world applications for SDN-SDR combinations are limited at the moment. For

the industries that want to create networks with the highest flexibility, especially regarding

sensor reading, the technology can be very useful. However, this has yet to occur beyond the

research efforts behind the technology. One could imagine, however, that companies that are

reading lots of sensor data in real-time would receive lots of benefits by investing in SDN-SDR

32

combinations for their data collection, as done in this research project. The modular nature of the

project allows any number of sensors to be added, and each sensor can be remotely modified at

any point in time. An industry such as weather prediction, with conditions that change rapidly

and the requirement of a lot of sensor data, would benefit from using the SDN-SDR technology.

For now, the devices used in this research project are primarily at the research stage of

their development, but the applications to real-world projects are promising.

33

REFERENCES

[1] "The Basics of SDN and the OpenFlow Network Architecture." NoviFlow, NoviFlow, 6

May 2021, noviflow.com/the-basics-of-sdn-and-the-openflow-network-architecture/.

[2] "What Is SDN?" Juniper Networks, Juniper Networks,

https://www.juniper.net/us/en/research-topics/what-is-sdn.html.

[3] Akeela, Rami, and Behnam Dezfouli. "Software-Defined Radios: Architecture, State-of-

the-Art, and Challenges." Computer Communications, Elsevier, 30 July 2018,

https://www.sciencedirect.com/science/article/abs/pii/S0140366418302937.

[4] Cooney, Michael. "What Is SDN and Where Software-Defined Networking Is Going."

Network World, Network World, 16 April. 2019,

www.networkworld.com/article/3209131/what-sdn-is-and-where-its-going.html.

[5] Hamill, Stephanie. "Introduction to Software Defined Radio." Wireless Innovation

Forum, 2021, www.wirelessinnovation.org/Introduction_to_SDR.

[6] IBM Cloud Education. "The Fundamentals of Networking." IBM, IBM, 17 Mar. 2021,

https://www.ibm.com/cloud/learn/networking-a-complete-guide#toc-important--

ez_DoRa_.

[7] Jain, Raj. "OpenFlow, Software Defined Networking (SDN) and Network Function

Virtualization." McKelvey School of Engineering. Tutorial at 2014 IEEE 15th

International Conference on High Performance Switching and Routing, 2014, Vancouver,

Canada.

[8] Jena, Satyabrata. "Difference between Software Defined Network and Traditional

Network." GeeksforGeeks, 21 Aug. 2020, https://www.geeksforgeeks.org/difference-

between-software-defined-network-and-traditional-network/.

[9] Lessing, Marlese, and Connor Craven. "What Is an SDN Controller? Definition."

SDxCentral, SDxCentral Studios, 2020,

www.sdxcentral.com/networking/sdn/definitions/what-is-sdn-controller/.

[10] Molenaar, Rene. "Introduction to SDN (Software Defined Networking)."

34

NetworkLessons.com, 19 Dec. 2019, networklessons.com/cisco/ccna-routing-switching-

icnd2-200-105/introduction-to-sdn-software-defined-networking.

[11] Saleem, Maab. "Software Defined Network: Use Cases From the Real World"

RouterFreak.com, 14 July. 2016, https://www.routerfreak.com/software-defined-network-

use-cases-from-the-real-world/.

35

APPENDIX A: PYTHON SOFTWARE WRITTEN FOR

COMMUNICATION

36

(Image continued from previous page)

37

(Image continued from previous page)

38

(Image continued from previous page)

39

(Image continued from previous page)

40

(Image continued from previous page)

41

(Image continued from previous page)

42

(Image continued from previous page)

43

(Image continued from previous page)

44

(Image continued from previous page)

45

(Image continued from previous page)

46

(Image continued from previous page)

Figure A.1: Weighted Round-Robin Algorithm for Base Station Radio

47

48

(Image continued from previous page)

49

(Image continued from previous page)

50

(Image continued from previous page)

51

(Image continued from previous page)

52

(Image continued from previous page)

53

(Image continued from previous page)

54

(Image continued from previous page)

55

(Image continued from previous page)

56

(Image continued from previous page)

57

(Image continued from previous page)

58

(Image continued from previous page)

Figure A.2: Weighted Round-Robin Algorithm for Field Sensor Radio

59

60

(Image continued from previous page)

61

(Image continued from previous page)

62

(Image continued from previous page)

63

(Image continued from previous page)

64

(Image continued from previous page)

65

(Image continued from previous page)

66

(Image continued from previous page)

67

(Image continued from previous page)

68

(Image continued from previous page)

69

(Image continued from previous page)

70

(Image continued from previous page)

71

(Image continued from previous page)

72

(Image continued from previous page)

73

(Image continued from previous page)

Figure A.3: Smart Weighted Round-Robin Algorithm for Base Station Radio

74

75

(Image continued from previous page)

76

(Image continued from previous page)

77

(Image continued from previous page)

78

(Image continued from previous page)

79

(Image continued from previous page)

80

(Image continued from previous page)

81

(Image continued from previous page)

82

(Image continued from previous page)

83

(Image continued from previous page)

84

(Image continued from previous page)

85

(Image continued from previous page)

86

(Image continued from previous page)

Figure A.4: Smart Weighted Round-Robin Algorithm for Field Sensor Radio

