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Abstract

This article focuses on model-based clustering of subjects based on the shared re-

lationships of subject-specific networks and covariates in scenarios when there are dif-

ferences in the relationship between networks and covariates for different groups of

subjects. It is also of interest to identify the network nodes significantly associated

with each covariate in each cluster of subjects. To address these methodological ques-

tions, we propose a novel nonparametric Bayesian mixture modeling framework with

an undirected network response and scalar predictors. The symmetric matrix coef-

ficients corresponding to the scalar predictors of interest in each mixture component

involve low-rankness and group sparsity within the low-rank structure. While the low-

rank structure in the network coefficients adds parsimony and computational efficiency,

the group sparsity within the low-rank structure enables drawing inference on network

nodes and cells significantly associated with each scalar predictor. Being a principled

Bayesian mixture modeling framework, our approach allows model-based identification
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of the number of clusters, offers clustering uncertainty in terms of the co-clustering ma-

trix and presents precise characterization of uncertainty in identifying network nodes

significantly related to a predictor in each cluster. Empirical results in various sim-

ulation scenarios illustrate substantial inferential gains of the proposed framework in

comparison with competitors. Analysis of a real brain connectome dataset using the

proposed method provides interesting insights into the brain regions of interest (ROIs)

significantly related to creative achievement in each cluster of subjects. Supplementary

material shows the convergence rate for the posterior predictive density of the proposed

model, additional simulation examples with model mis-specification and also presents

traceplots for various model parameters to demonstrate convergence of the Markov

Chain Monte Carlo (MCMC) algorithm.

Keywords: Bayesian mixture modeling, Network clustering, Network node selection, Spike

and slab prior, Brain connectome data.

1 Introduction

In recent times, network data is regularly encountered in disciplines as diverse as neu-

roscience, genetics, finance and economics. This article is motivated by scenarios where an

undirected network and several scalar variables are available for each subject in a multi-

subject setting, and there are differences in the relationship between the network and co-

variates for different groups of subjects. In this context, we develop a novel non-parametric

Bayesian regression framework with the network serving as the response, and scalar predic-

tors. In particular, we focus on brain connectome data obtained using diffusion weighted

magnetic resonance imaging (dMRI). Here, the human brain is segmented into structural

regions of interest (ROIs), viewed as nodes of the brain network, and the number of fiber

bundles connecting any pair of regions (an edge connecting a pair of nodes) is estimated.

Thus the brain may be viewed as an undirected network expressed in the form of a symmetric

matrix. Along with the brain networks, we have information on a brain related phenotype

(creative achievement), as well as behavioral variables, for each subject, which serve as our

scalar predictors.

Our modeling endeavor primarily aims at achieving the following inferential objectives
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simultaneously. First, we intend to cluster subjects into groups, with members in each

group sharing the same relationship between the undirected network response and scalar

covariates. The clustering endeavor aims at model-based determination of the number and

composition of clusters. Additionally, it offers clustering uncertainty in terms of the model-

based estimation of the probability of a pair of observations being part of the same cluster.

Second, inferential interest lies in identifying nodes and edges in the network significantly

impacted by each predictor of interest in each cluster. To this end, an important inferential

objective is to accurately characterize uncertainty in our inference on network nodes. For the

brain connectome data, the latter objective amounts to drawing inference on brain regions of

interest (ROIs) and their interconnections significantly associated with creative achievement

in each cluster. We also offer uncertainty in terms of estimated probability of a node being

identified as influential. Moreover, we would like to achieve these inferential goals with

parsimony in the fitted model and computational efficiency in the model fitting process.

An overwhelming literature in network analysis aims at understanding the topological

structure of a single network, rather than focusing on multiple network observations col-

lected for different individuals. Some notable examples of single-network models include

exponential random graph models (Frank and Strauss, 1986), social space models (Hoff,

2005) including random dot product graph (RDPG) models (Young and Scheinerman, 2007)

and stochastic block models (Nowicki and Snijders, 2001). In the context of developing a

regression/classification model with a network response, a possibility is to extract a few sum-

mary measures from the network to reshape the network object into a multivariate response

(e.g., see Bullmore and Sporns, 2009 and references therein). Clearly, the success of this ap-

proach is highly dependent on the choice of summary measures. Furthermore, this approach

cannot identify the impact of specific nodes on the predictor, which is of clear interest in

our setting. In a newer work, Wang et al., 2017 exploit the relational nature of the network

response, though their approach does not offer any clustering mechanism for the subjects and

is not designed to detect network nodes significantly related to a scalar predictor. Another

approach in the tensor regression literature, which assumes a general version of the tensor

and does not consider the symmetry constraint (inherent in an undirected network), applies

regression with a matrix/tensor response (Gahrooei et al., 2021; Guhaniyogi and Spencer,
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2021). Some recent articles on supervised stochastic block models (Kim and Levina, 2019;

Pavlović et al., 2020) focus on clustering the nodes of the network into groups, which is

methodologically a different problem than ours, where the focus is on clustering subjects

into groups.

While our framework treats the network as a response, a few recent approaches (Guha

and Rodriguez, 2021; Relión et al., 2019) treat the network as a predictor to predict a scalar

response. This difference in the modeling approach leads to a different focus and interpreta-

tion. Network predictor regression focuses on understanding variations in a biological out-

come as the network image varies, while network response regression aims to study changes

in the network as predictors such as the creativity levels, age and sex vary. In a sense, their

difference is comparable to that of multi-response regression and multi-predictor regression

in the classical vector-valued regression context. Importantly, our network-response regres-

sion framework bypasses the need to invert any high dimensional matrix to draw Bayesian

inference, thereby adding substantial computational gains over Guha and Rodriguez, 2021,

especially in the analysis of networks with a moderately large to a large number of nodes,

when computation in Guha and Rodriguez, 2021 may become quite expensive. Note that

a recent approach (Guha and Guhaniyogi, 2021) discusses symmetric tensor-on-vector re-

gression models; however, both Guha and Guhaniyogi, 2021 and Guha and Rodriguez, 2021

tacitly assume that the same set of network nodes influence the regression function in a

similar manner for every subject.

The neuroscience literature provides substantial evidence of differences in the relationship

between brain connectivity networks and phenotypic traits for different groups of individuals

(Saad et al., 2012; Meskaldji et al., 2013, 2015). However, flexible statistical methods for

identifying such subgroups and ascertaining subgroup differences have somewhat lagged be-

hind the increasingly routine collection of such data. One possibility is to flatten the network

to a high dimensional multivariate vector and employ a mixture of multivariate regression

models. This idea can make use of the literature on mixtures of supervised parametric and

semi-parametric linear and generalized linear models with continuous, binary and categor-

ical responses and predictors (Müller et al., 1996; Shahbaba and Neal, 2009; Duan et al.,

2007; Rodŕıguez et al., 2009; Amewou-Atisso et al., 2003; Hannah et al., 2011). These ap-
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proaches are less suitable for our problem of interest since they ignore the network topology

in the model building process, and do not allow drawing inference on network nodes. In

this context, one may invoke the literature on clustering of matrices or tensors into multiple

groups (Huang et al., 2009; Lee et al., 2010; Chi and Lange, 2015; Chi et al., 2017; Li et al.,

2014; Cao et al., 2013; Wu et al., 2016), but this literature is more pertinent to unsupervised

clustering of networks, as opposed to our interest in supervised clustering of networks.

In this article, we propose a novel nonparametric Bayesian modeling approach to achieve

the aforementioned inferential objectives simultaneously. A Dirichlet process (DP) mixture

of network response regression models is developed and used to analyze the data, which leads

to clustering of subjects into groups signifying differential relationships between the network

response and scalar predictors. Further, the network valued coefficients corresponding to

the predictors of interest in each mixture component are assumed to have a low-rank for

parsimony and computational efficiency. We also impose a node-specific sparsity structure

using a Bayesian spike-and-slab variable selection prior for identifying network nodes signif-

icantly associated with the predictors. Being a Bayesian mixture modeling framework, our

method achieves model-based determination of the number of clusters and delivers model-

based estimation of clustering uncertainty. Specifically, clustering uncertainty is quantified

by estimating the posterior probability of any pair of observations being part of the same

cluster. Additionally, the proposed method identifies network nodes significantly related to

a predictor in each cluster, and characterizes uncertainty associated with identifying impor-

tant network nodes in each cluster. The uncertainty is quantified by model-based estimation

of posterior probability of a node being influentially related to a predictor. Unlike a frequen-

tist approach, both the uncertainty in clustering as well as the uncertainty in the inference

on nodes can be seamlessly estimated from the post burn-in Markov Chain Monte Carlo

(MCMC) iterates of the proposed Bayesian approach. Such uncertainty characterizations

are crucial in neuroscientific applications with a limited sample size, high dimensional pa-

rameters and low signal-to-noise ratio. Our framework does not involve any expensive matrix

manipulation, allowing efficient computation with a large number of network nodes.

Our approach is fundamentally different from regression with a covariance matrix out-

come and scalar predictors. These approaches tacitly use positive-definite property of the
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outcome matrix (Hoff and Niu, 2012; Zou et al., 2017). A similar modeling framework

is developed by Zhao et al. (2021), wherein important principal components of covariance

matrix outcomes related to scalar covariates are identified. In contrast, we do not impose

any restrictions on our network matrix response matrix (e.g., positive definiteness) except

symmetry, which is directly motivated by the scientific problem at hand. Additionally, an

important modeling objective lies in identifying network nodes (with uncertainties) signif-

icantly related to scalar predictors. The aforementioned approaches are not designed to

deliver such inference.

The rest of this article progresses as follows. Sections 2 and 3 describe model develop-

ment and posterior computation, respectively. Empirical investigation of the model with

simulation studies and the brain connectome data analysis are presented in Sections 4 and

5, respectively. Finally, Section 6 concludes the paper with an eye towards future work.

Theoretical investigations of the model, showing convergence rate of the posterior predic-

tive distribution, are described in the supplementary material. Supplementary material also

shows convergence of MCMC chains for model estimation by displaying traceplots of model

parameters.

2 Supervised Clustering of Undirected Networks: Model

and Prior Formulation

2.1 Notations and Framework

For i = 1, . . . , n, let Y i ∈ Y ∈ Rp×p denote the weighted undirected network response

with p nodes, xi = (xi1, . . . , xim)
′ be m predictors of interest and zi = (zi1, . . . , zil)

′ be l

auxiliary predictors corresponding to the ith individual. Mathematically, this amounts to

Y i being a p × p matrix, with the (j1, j2)-th entry of Y i denoted by yi,(j1,j2) ∈ R. In this

article, we focus on networks that contain no self relationship, i.e., yi,(j1,j2) ≡ 0 when j1 = j2,

and are undirected (yi,(j1,j2) = yi,(j2,j1)).

We assume that the relationship between the predictor vector of interest xi and the

response varies in every cell (j1, j2). In contrast, an auxiliary predictor explains the response

in every cell identically. Let J = {j = (j1, j2) : 1 ≤ j1 < j2 ≤ p} be a set of indices. Since Y i
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is symmetric with 0 diagonal entries, it suffices to build a probabilistic generative mechanism

for yi,j(j ∈ J ). This is a common practice in the modeling of undirected relational data

(Hoff et al., 2002; Hoff, 2005). Moreover, working with (yi,j : j ∈ J ) is fundamentally

different from the ordinary vectorization of Y i for model fitting, since every element yi,j of

Y i keeps a tab on the cell index j = (j1, j2) of the entry (i.e., position of the entry in the

matrix), which will be crucial in the modeling development described below.

2.2 Model Development and Prior Distributions

To develop a sufficiently flexible relationship between Y i and predictors xi and zi, we

propose to model the conditional distribution of Y i |xi, zi, σ
2, denoted by f(Y i|xi, zi, σ

2)

as a mixture model given by,

f(Y i|xi, zi, σ
2) =

∫
g(Y i|xi, zi,B1, . . . ,Bm, γ0, . . . , γl, σ

2)dG(B1, . . . ,Bm, γ0, γ1, . . . , γl),

(1)

where g(Y i|xi, zi,B1, . . . ,Bm, γ0, . . . , γl, σ
2) is suitably chosen from the class of exponential

family distributions depending on whether each yi,j is continuous, binary or categorical. In

this article, we focus on the case where each network edge yi,j is continuous, and choose

g(·) such that each yi,j(j ∈ J ) is normally distributed with its probabilistic generative

mechanism given by

yi,j = γ0 +
l∑

s=1

γszis +
m∑
s=1

Bs,jxis + ei,j , ei,j ∼ N(0, σ2). (2)

Supplementary material presents performance of (2) when it is mis-specified, e.g., the con-

tinuous edge effects yi,j ’s are generated from a heavy-tailed t-distribution in the truth. The

coefficients B1,j , . . . , Bm,j are the j-th cells of the symmetric matrix coefficients B1, . . . ,Bm

of order p×p with zero diagonal entries, respectively. Here γ0 is the intercept and γ1, ..., γl ∈ R

are coefficients corresponding to the auxiliary predictors. The model formulation implies a

similar effect of any of the auxiliary variables zi1, ..., zil on all cells of the response tensor in

each mixture component. In contrast, Bs,j determines the effect of xis on the j = (j1, j2)-th

cell of the response in any mixture component. Equations (1) and (2) together can be seen
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as a mixture of undirected network response regression models with the mixing distribution

given by G(·). Note that (1) is markedly different from building an ordinary mixture of linear

regression models with vectorized network response Y i and scalar predictors. Vectorization

of the Y i network matrix would have led to a long vector, which would be a collection of

network edges. But such a construction would lose the crucial information regarding the

pair of nodes that each edge is connected to. Since our interest lies in drawing inference on

network nodes significantly associated with a scalar predictor, such a vectorization strategy

is inadequate. In contrast, (2) develops a regression model for each edge on scalar predictors

while keeping a tab on the nodes, j1 and j2, that the edge yi,j is connected to. The edge

coefficient Bs,j in (2) is suitably modeled, exploiting this information, to draw inference on

network nodes significantly related to the predictors. It is important to note that the prior

literature on network data modeling and tensor regression models also use a similar strategy

(Hoff, 2005; Guhaniyogi et al., 2017; Guha and Guhaniyogi, 2021). We further elaborate on

this point as this section progresses.

The random probability measure G(·) is taken to be a discrete distribution of the form

G =
∑H

h=1 ωhδ∆∗
h
, with atoms ∆∗

h = (B∗
1,h, ..,B

∗
m,h, γ

∗
0,h, γ

∗
1,h, .., γ

∗
l,h) ∼ G0. Here G0 is the

base measure and δ∆∗
h
corresponds to the Dirac-delta function at ∆∗

h. Such a specification

contains a broad class of species sampling priors, including the Dirichlet process (DP) prior

and the Pitman-Yor process prior through the popular stick breaking construction (Sethura-

man, 1994). In this work, we adopt the stick breaking construction to jointly model cluster

inclusion probabilities. More precisely, for h = 1, ..., H − 1, and α > 0,

ω1 = v∗1, ω2 = v∗2(1− v∗1), .., ωH−1 = v∗H−1

H−2∏
h=1

(1− v∗h), ωH =
H−1∏
h=1

(1− v∗h), v
∗
h ∼ Beta(1, α),

(3)

where H is an upper bound on the number of clusters. As H → ∞, this choice leads to the

classical Dirichlet process prior (Ishwaran and James, 2002). The parameter α is crucial in

determining the number of clusters and it is assigned a Gamma(aα, bα) prior distribution.

From (1) and the discrete prior on G imposed by the stick breaking construction, the
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conditional distribution of Y i can be written as

f(Y i|xi, zi, σ
2) =

H∑
h=1

ωhg(Y i|xi, zi,B
∗
1,h, . . . ,B

∗
m,h, γ

∗
0,h, . . . , γ

∗
l,h, σ

2). (4)

The mixture components signify different relationships between the network response and

scalar predictors in H different clusters. We introduce a cluster index ci ∈ {1, .., H} corre-

sponding to the individual i, Y i|xi, zi, ci, σ
2 ∼ g(Y i|xi, zi,B

∗
1,ci

, . . . ,B∗
m,ci

, γ∗
0,ci

, . . . , γ∗
l,ci

, σ2),

with P (ci = h) = ωh, for h = 1, ..., H. This conditional independence structure, given the

cluster indices of the individuals, facilitates computation, while still allowing a flexible de-

pendence structure among the different components marginally. Additionally, inference on

cluster indices determine the number of clusters and constitution of each cluster.

In order to identify network nodes in different clusters significantly associated with

predictors of interest, we first introduce a low-rank structure of the coefficient B∗
s,h =

((B∗
s,h,j))

p
j1,j2=1 corresponding to the sth predictor of interest in the hth cluster as

B∗
s,h,j =

R∑
r=1

λs,h,ru
(r)
s,h,j1

u
(r)
s,h,j2

, h = 1, ..., H; s = 1, ..,m, 1 ≤ j1 < j2 ≤ p. (5)

Here us,h,k = (u
(1)
s,h,k, ..., u

(R)
s,h,k)

′ ∈ RR, for k = 1, ..., p, is a collection of R-dimensional h-

th mixture specific latent variables, one for each node and each predictor of interest, such

that us,h,k corresponds to node k and predictor xs in the h-th mixture component, and

λs,h,r ∈ {−1, 0, 1} determines if the rth summand in (5) is relevant in model fitting in the hth

mixture component. Setting U s,h as a p×R matrix with the k-th row as us,h,k (k = 1, ..., p),

and Λs,h a R × R diagonal matrix with the r-th diagonal entry as λs,h,r, (5) represents a

low-rank decomposition of the symmetric matrix coefficient B∗
s,h = U s,hΛs,hU

′
s,h. Since the

choice of R is arbitrary, allowing λs,h,r to be 0 protects the model from over-fitting. The low-

rank formulation of B∗
s,h is motivated by several considerations simultaneously. In practice,

the matrix of coefficients B∗
s,h is expected to exhibit transitivity effects, i.e., we expect that

if the interactions between nodes j1 and j2 and between nodes j2 and j3 are both influentially

related to the sth predictor of interest, the interaction between nodes j1 and j3 is likely to

be influential as well (e.g., see Li et al., 2013). Such an effect is a natural outcome of the
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low-rank formulation of B∗
s,h. Second, the low-rank formulation allows inference on network

nodes through the node-specific latent vectors us,h,1, . . . ,us,h,p, which can be interpreted as

the positions of the nodes in a latent space, with the strength of the association B∗
s,h being

controlled by the inner product or the angular distance between the vectors. The assumed

low-rank structure on B∗
1,h, ...,B

∗
m,h additionally offers parsimony by reducing the number

of estimable parameters from mHp(p− 1)/2 to mHRp, typically with R ≪ p.

Depending on the structure of Λs,h, the node specific latent variables us,h,k’s may become

unidentifiable. For example, when Λs,h = IR, B
∗
s,h = U s,hΛs,hU

′
s,h = U s,hOΛs,h(U s,hO)′,

for any orthogonal matrix O. While this implies that posterior inference on us,h,k’s (without

any constraint imposed on us,h,k’s) may not always be meaningful, our focus is on the event

{us,h,k = 0} for each k, which is indeed identifiable (since 0-valued latent vectors are invariant

to orthogonal transformation) and is critical to drawing inference on the nodes related to the

s-th predictor of interest, as we describe next. To infer on the network nodes significantly

related to the predictors of interest in each cluster, we assign a spike-and-slab prior on node

specific latent variables as below,

us,h,k ∼

 N(0,M s,h), if ξs,h,k = 1

δ0, if ξs,h,k = 0
, ξs,h,k ∼ Ber(ζs,h), M s,h ∼ IW (ν, I), ζs,h ∼ Beta(a, b).

(6)

where M s,h is a covariance matrix of order R × R. The parameter ζs,h corresponds to the

probability of the nonzero mixture component in (6). Importantly, ξs,h,k = 0 implies that

the kth network node in the response is not related to the sth predictor in the hth cluster of

subjects. In order to learn how many summands in (5) are informative, we draw inference

on Reff,s =
∑R

r=1 |λs,h,r| by assigning a hierarchical prior

λs,h,r ∼


0, w.p. πs,h,r,1,

1, w.p. πs,h,r,2,

−1, w.p. πs,h,r,3,

(πs,h,r,1, πs,h,r,2, πs,h,r,3) ∼ Dirichlet(rη, 1, 1), η > 1.

The choice of hyper-parameters of the Dirichlet distribution is crucial. In particular, note
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that (i) E[|λs,h,r|] = 2/(2 + rη) → 0 as r → ∞ and that (ii)
∑R

r=1 V ar(|λs,h,r|) =∑R
r=1[

2(rη+1)
(rη+2)2(rη+3)

+ 2(rη+1)
(rη+3)(rη+4)

] < ∞ as R → ∞. Property (i) provides (weak) identifiability

of the different latent dimensions, while property (ii) ensures that limR→∞ var(Reff,s) < ∞.

The parameters γ∗
0,h, γ

∗
1,h, ..., γ

∗
l,h are assigned standard normal distributions and the error

variance σ2 is assigned IG(aσ, bσ) a-priori. With the construction specified above, the form of

the base measureG0 can be expressed asG0(∆
∗
h|σ2) =

∏l
s=0G0,1(γ

∗
s,h|σ2)

∏m
s=1G0,2(B

∗
s,h|σ2),

where G0,1(γ
∗
s,h|σ2) = N(0, 1), and G0,2(B

∗
s,h|σ2) is expressed as follows:

G0,2(B
∗
s,h|σ2) =

∫ p∏
k=1

π(us,h,k|ξs,h,k,M s,h, ζs,h)dM s,hdζs,h

R∏
r=1

π(λs,h,r)
R∏

r=1

dλs,h,r

p∏
k=1

π(ξs,h,k)dξs,h,k.

The model and prior specifications allow clustering of individuals into a number of groups

less than or equal to H. In each group, the network response and scalar predictors share

separate regression structures, and thus subjects belonging to different clusters may have

different sets of network nodes significantly related to the predictors of interest, as desired.

3 Posterior Computation

While fitting our proposed mixture model, we adopt a moderately large choice of H.

Note that, according to Rousseau and Mengersen (2011), a similar choice of prior as ours

is effective in the deletion of redundant mixture components not needed to characterize the

data. If a specific choice of H leads to all of the clusters being occupied, then the analysis

should be repeated for a larger H until there is at least one unoccupied cluster. Since

all parameters except α have full conditional posterior distributions belonging to standard

families of distributions, Gibbs sampling with Metropolis is implemented to empirically

estimate posterior distributions. Details of the Markov chain Monte Carlo algorithm are

presented in the Appendix. We have implemented our code in R (without using any C++,

Fortran or Python interface) on a cluster computing environment with three interactive

analysis servers, 56 cores each with the Dell PE R820: 4x Intel Xeon Sandy Bridge E5-4640

processor, 16GB RAM and 1TB SATA hard drive.

Indicators to assess clustering performance. To assess inference from the proposed

mixture model, we investigate (i) a point estimate of clustering denoted by ĉ, (ii) a heatmap
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of the posterior probabilities of pairs of samples belonging to the same cluster, i.e., P (ci =

cj|Y 1, . . . ,Y n) (which provides a measure of the uncertainty associated with the clustering),

and (iii) a histogram of the posterior distribution of the number of identified clusters. The

point estimate ĉ is obtained by minimizing (using iterative component-wise optimization)

the expected loss function discussed in Lau and Green, 2007,

F (ĉ) =
n∑

i=1

n∑
j=i+1

1(ĉi = ĉj)

[
o2

o1 + o2
− P (ci = cj|Y 1, . . . ,Y n)

]
, (7)

where the ratio o1/o2 controls the relative loss due to incorrect clustering or separation of

a pair of samples. Without any prior knowledge, we assume the loss due to incorrectly

clustering and separating any pair of samples is the same, by setting o1/o2 = 1.

4 Simulation Studies

This section studies the relative performance of our proposed network response mixture

model (NRMM) vis-a-vis its competitors. To study all competitors under various data

generation schemes, we simulate the network response Y i, depending on the predictors xi

and zi, from the finite mixture model given by

Y i|xi, zi ∼
H0∑
h=1

ωh,0g(Y i|xi, zi, B
∗
1,h,0, ..., B

∗
m,h,0, γ

∗
0,h,0, ..., γ

∗
l,h,0, σ

2
0), i = 1, ..., n+ n0. (8)

The first n observations {(Y i,xi, zi) : i = 1, ..., n} are used for model fitting and the rest

n0 observations are used for out-of-sample inference. Here g(·) is as described in equation

(2), and B∗
s,h,0, s = 1, . . . ,m, h = 1, . . . , H0 are mixture specific coefficients for xis. Section

3 of the supplementary material shows performance of the proposed approach and its com-

petitors under model mis-specification, i.e., when each yi,j is generated from a heavy-tailed

t-distribution. The parameter γ∗
0,h,0 is the hth mixture specific intercept and γ∗

1,h,0, ..., γ
∗
l,h,0

are the hth mixture specific coefficients corresponding to zi1, ..., zil, respectively. We set

m = 1 and l = 2 for the simulations, which mimics the real data application scenario. Since

m = 1, the subscript s will be omitted from variables related to the predictor of interest

hereon. The predictors xi , zi1 and zi2 are simulated i.i.d. from N(0,1).
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To simulate the coefficients B∗
h,0, we draw p latent variables uh,k,0, each of dimension Rg,

from a mixture distribution given by

uh,k,0 ∼ π0NRg(uh,m,g, u
2
h,v,gIRg) + (1− π0)δ0; k ∈ {1, ..., p}, (9)

where NRg(uh,m,g, u
2
h,v,gIRg) represents an Rg-variate normal distribution with mean vector

uh,m,g and covariance matrix u2
h,v,gIRg . Also, (1 − π0) is the probability of any uh,k,0 being

zero in the truth, h = 1, ..., H0, and is referred to as the network node sparsity. We consider

10 simulation cases as following:

Cases 1-8: In Cases 1-8, the j = (j1, j2)th element (j1 < j2) of B∗
h,0 corresponding to

the h-th mixture component is constructed using a low-rank approach B∗
h,0,j = u′

h,j1,0
uh,j2,0,

accounting for the interaction between the j1th and j2th network nodes, for all h = 1, ..., H0.

The diagonal entries of B∗
h,0 are set to zero, and the lower triangular part of B∗

h,0 is a

mirror image of the upper triangular part. The 8 different cases are obtained by varying the

number of true mixture components (H0), number of network nodes (p), sample size (n),

true dimension of latent variables (Rg), fitted dimension of latent variables (R) and network

node sparsity (1− π0), as summarized in Table 1.

Case 9: In Case 9, we consider H0 = 2, ω1,0 = 0.4, ω3,0 = 0.6, and B∗
1,0 and B∗

2,0 are

simulated using two different strategies as following:

Simulating B∗
1,0: The j = (j1, j2)th element (j1 < j2) of B

∗
1,0 is constructed using a low-rank

approach B∗
1,0,j = u′

1,j1,0
u1,j2,0, where the sparsity (1− π0) in generating the latent variables

is set at 0.6. The diagonals of B∗
1,0 are set to zero and the lower triangular part is a mirror

image of the upper triangular part.

Simulating B∗
2,0: Randomly set (1 − π0) = 0.6 proportion of upper triangular elements in

B∗
2,0 to zero, while the rest are simulated from N(0, 1). The diagonals of B∗

2,0 are set to zero

and the lower triangular part is a mirror image of the upper triangular part.

Case 10: Case 10 uses an identical construct as Case 9, except that (1− π0) is set at 0.3.

The intercept γ∗
s,h,0, h = 1, ..., H0, s = 1, 2 in each mixture component is drawn from

N(−2, 2), while σ2
0 is fixed at 0.5.

In all cases, each component of the mean vector uh,m,g is randomly generated to lie
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Table 1: Table presents specifications of Cases 1-8 in the simulation study. The parameter
H0 refers to the true number of mixture components in the Bayesian network response
mixture model (NRMM). Different cases present various combinations of the number of
network nodes p, fitted sample size n, number of subjects n0 for out-of-sample inference,
network node sparsity (1 − π0), true (Rg) and fitted (R) dimensions of the node specific
latent variables.

Cases p n n0 Rg R (1− π0) H0

1 30 100 20 2 5 0.6 3
2 30 100 20 2 5 0.3 3
3 30 100 20 3 5 0.6 4
4 80 100 20 2 5 0.6 3
5 80 100 20 2 5 0.3 3
6 80 100 20 3 5 0.6 2
7 30 100 20 2 5 0.6 1
8 30 100 20 2 5 0.3 1

between (−2, 2) and the standard deviation uh,v,g is set randomly at a number between 0.3

and 2.

Notably, Cases 1-6 represent scenarios with heterogeneous settings where H0 > 1, i.e.,

the true data generating model is a mixture of more than one network response regression

model. In contrast, Cases 7 and 8 correspond to the homogeneous setting with H0 = 1, i.e.,

the true model constitutes a single network response regression model. Also, it is important

to note that Cases 1-8 represent the true model being included in the class of fitted models.

In contrast, Cases 9 and 10 show departure of the true model from the fitted models. In

particular, the last two cases include specifications where the network coefficient in a cluster

is full rank, whereas the fitted model assumes a low-rank structure for network coefficients

in all the clusters. This will allow assessing the performance of our approach under model

mis-specification. Notably, for any p (i.e., the number of network nodes), the model needs

to estimate mHRp parameters, so that even moderately large values of p in Cases 1-10 lead

to high dimensional regression settings. In all simulations, we set p < n, which is a sufficient

condition for convergence of the fitted predictive density to the true predictive density (see

Theorem 1.1 in the Supplementary Material).
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4.1 Choice of Hyper-parameters

All simulation settings and the real data analysis are presented with the hyper-parameters

chosen as a = 1, b = 1, aσ = 1, bσ = 1 and ν = 20. The choice of aσ = bσ = 1 ensures that

the prior on σ2 is sufficiently flat with an infinite mean. The choice of a = b = 1 leads to a-

priori uniform distribution on the number of network nodes related to each predictor in each

cluster. Setting ν = 20 implies that the prior distribution of Mh is concentrated around a

scaled identity matrix. Since the model is invariant to rotations of the latent positions uh,k,

the prior on uh,k’s should ideally be invariant under rotation. CenteringMh around a matrix

that is proportional to the identity satisfies such a requirement. Finally, we choose aα, bα

following Escobar and West (1995) such that the mean number of clusters is approximately

2.5 a-priori. Since in most applications of the mixture model, the true number of clusters

is small, our choice of aα and bα represent a reasonable prior belief. Moderately perturbing

hyper-parameters yields practically identical inference, as described in Section 4.5.

4.2 Competitors and Metrics of Evaluation

NRMM is fitted in all simulations with H = 15 mixture components and it is allowed to

identify the unknown and true number of mixtures from the data. As a competitor to our

model, we employ the network response regression (NRR), which is essentially our proposed

framework with only one mixture component, i.e., H = 1. Thus NRR assumes (a) the same

set of network nodes is significantly related to the predictors of interest for every individual,

and, (b) normality for the distribution of each cell in the network response. Comparison

with NRR will highlight any relative advantages of NRMM when these assumptions do not

hold true. However, we also include simulation cases 7 and 8 where data are simulated from

the NRR model (i.e., there is only one mixture component), and hence data are likely to

favor NRR over NRMM. Additionally, we compare our approach with a frequentist higher

order low-rank regression (HOLRR) method (Rabusseau and Kadri, 2016) popularly used

in machine learning. This approach also assumes a homogeneous setting and a low-rank

decomposition for matrix coefficients without the ability of identifying influential network

nodes with uncertainties.

The competitors are assessed based on their ability to estimate the true regression mean
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function E0[yi,j |xi, zi] =
∑H0

h=1 ωh,0

(
γ∗
0,h,0 +

∑l
s=1 γ

∗
s,h,0zis +

∑m
s=1B

∗
s,h,0,jxis

)
for both in-

sample and out-of-sample observations. In particular, the mean squared error (MSE) of

estimating the true regression mean function over the in-sample fitted data and out-of-sample

observations are given by,

MSE =
2

np(p− 1)

n∑
i=1

||E0[Y i|xi, zi]− ̂E[Y i|xi, zi]||2,

MSE(out) =
2

n0p(p− 1)

n+n0∑
i=n+1

||E0[Y i|xi, zi]− ̂E[Y i|xi, zi]||2, (10)

where ̂E[Y i|xi, zi] denotes the posterior mean of the regression function for a competing

method. While MSE offers an evaluation of the point estimation by competitors in-sample,

MSE(out) evaluates the point estimation by competitors out-of-sample. The uncertainty

in estimating the true regression mean function in-sample is measured using the coverage

and length of 95% credible intervals obtained from NRMM and NRR. HOLRR being a

frequentist method, coverage and length of 95% confidence intervals from HOLRR are not

readily available. Thus, we invoke normal approximation wherein the 95% confidence inter-

val for E0[yi,j|xi, zi] is constructed by ( ̂E[yi,j |xi, zi] − 1.96 se(E[yi,j |xi, zi]), ̂E[yi,j|xi, zi] +

1.96 se(E[yi,j|xi, zi]), where se(E[yi,j |xi, zi]) denotes the standard error of estimating the

regression mean function in-sample.

In addition to reporting the posterior distribution of the number of clusters and the

uncertainty associated with clustering through P (ci = cj|Y 1, . . . ,Y n), we also evaluate the

ability of the models to identify clusters using the Adjusted Rand Index (ARI) (Hubert

and Arabie, 1985) of the posterior cluster configurations with respect to the known cluster

configuration. The ARI evaluates the agreement in cluster assignment between two cluster

configurations. ARI is upper bounded by 1, with values close to 1 indicating more agreement

between cluster configurations.

4.3 Simulation Results

All model parameters show excellent convergence with fairly uncorrelated post burn-in

samples to draw posterior inference. To demonstrate this, we present the effective sample
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size (ESS) corresponding to 10000 post burn-in samples from NRMM for all simulation

examples (see Table 2). Section 4 of the supplementary material shows traceplots for a few

parameters, and demonstrate excellent convergence. Table 2 and Figure 1 provide insights

into the estimates of the cluster structure and associated uncertainty by displaying the

discrepancy between the true and estimated number of clusters and heat maps of posterior

probabilities of pairs of subjects belonging to the same cluster. To facilitate visualization in

Figure 1, subjects are ordered according to their true cluster configurations in the heatmap.

In all cases, the model successfully recovers the true cluster structure, with little uncertainty

associated with the estimator. Importantly, the mixture model also successfully identifies

only one cluster when the true data generation setting is homogeneous (cases 7-8). The most

challenging cases among all are cases 9 and 10, which correspond to model mis-specification.

Even with model mis-specification, there is a minor deterioration in the performance, with

ARI dropping to around 0.93 in case 9 and 0.95 in case 10. It appears from Figure 1 that the

clustering performance improves nominally with decreasing sparsity of B∗
h,0, the impact of

sparsity being a little more prominent under model mis-specification (compare cases 9 and

10). The uncertainty in clustering for a few individuals also appears to be higher in case 8,

where the true data generating model is homogeneous with H0 = 1.

The posterior distributions of the number of identified clusters are also presented in the

form of barplots in Figure 2. The posterior distribution of the number of clusters appears

to concentrate around the true number of clusters H0 in all cases except case 9, where the

model mildly overestimates the number of clusters. Notably, case 9 corresponds to model mis-

specification with a higher node sparsity parameter (1−π0). As the node sparsity parameter

(1−π0) decreases, the posterior distribution of the number of clusters concentrates aroundH0

even under model mis-specification (case 10). The results also reveal a somewhat bi-modal

structure of the posterior distribution of the number of clusters under cases 3 (with H0 = 4)

and 8 (with H0 = 1). Importantly, out of H assigned clusters, most are not populated in

each case, justifying the choice of H = 15 in each case.

Table 2 presents in-sample MSE and out-of-sample MSE(out) for estimating the regres-

sion mean function for all competitors. Further, coverage and average length of 95% credible

intervals for NRMM and NRR, and 95% confidence intervals for HOLRR are provided to
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(a) Case 1,H0 = 3 (b) Case 2,H0 = 3 (c) Case 3,H0 = 4

(d) Case 4,H0 = 3 (e) Case 5,H0 = 3 (f) Case 6,H0 = 2

(g) Case 7,H0 = 1 (h) Case 8,H0 = 1 (i) Case 9,H0 = 2

(j) Case 10,H0 = 2

Figure 1: Plots showing uncertainty in estimating clusters in simulation cases 1-10. Boldfaced
horizontal and vertical lines indicate the true clustering.
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(a) Case 1,H0 = 3 (b) Case 2,H0 = 3 (c) Case 3,H0 = 4

(d) Case 4,H0 = 3 (e) Case 5,H0 = 3 (f) Case 6,H0 = 2

(g) Case 7,H0 = 1 (h) Case 8,H0 = 1 (i) Case 9,H0 = 2

(j) Case 10,H0 = 2

Figure 2: Plots showing the posterior distribution of the number of clusters in the simulation
cases 1-10.
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Table 2: The first column presents Effective sample size (ESS) for NRMM corresponding
to the 10000 post burn-in iterations to assess the convergence of the MCMC sampler for
NRMM. The second column presents ARI values to assess the clustering accuracy of NRMM.
The next two columns present True Positive Rates (TPR) and False Positive Rates (FPR) in
identifying network nodes related to the predictor of interest in NRMM. MSE and MSE(out)
for NRMM, NRR and HOLRR are presented for cases 1-10. The lowest MSE in each case is
boldfaced. Coverage and length of 95% credible interval are provided for NRMM, NRR and
HOLRR.

NRMM Competitors
Case ESS ARI TPR FPR NRMM NRR HOLRR

MSE(out) 0.07 0.47 0.10
MSE 0.02 0.40 0.08

1 8006 0.99 0.87 0.08 Coverage of 95% CI 0.89 0.02 0.99
Length of 95% CI 0.54 0.22 3.67

MSE(out) 0.12 0.61 0.26
MSE 0.03 0.54 0.14

2 7985 0.99 0.90 0.05 Coverage of 95% CI 0.96 0.05 0.98
Length of 95% CI 0.58 0.44 4.12

MSE(out) 0.23 0.42 0.51
MSE 0.14 0.32 0.44

3 7942 0.98 0.71 0.00 Coverage of 95% CI 0.69 0.29 0.98
Length of 95% CI 0.64 0.39 4.67

MSE(out) 0.05 0.09 0.12
MSE 0.01 0.07 0.09

4 7235 0.99 0.95 0.02 Coverage of 95% CI 0.99 0.15 0.99
Length of 95% CI 0.47 0.15 3.64

MSE(out) 0.09 0.16 0.18
MSE 0.04 0.06 0.11

5 7451 0.99 0.93 0.02 Coverage of 95% CI 0.93 0.44 0.98
Length of 95% CI 0.55 0.34 3.92

MSE(out) 0.09 0.58 0.22
MSE 0.05 0.30 0.17

6 7324 0.99 1.00 0.00 Coverage of 95% CI 0.99 0.10 0.99
Length of 95% CI 0.61 0.28 4.05

MSE(out) 0.17 0.06 0.33
MSE 0.12 0.008 0.32

7 8106 0.97 0.92 0.00 Coverage of 95% CI 0.86 0.97 0.96
Length of 95% CI 0.37 0.07 2.86

MSE(out) 0.19 0.07 0.38
MSE 0.14 0.02 0.36

8 8390 1.00 0.89 0.02 Coverage of 95% CI 0.84 0.95 0.96
Length of 95% CI 0.40 0.06 2.74

MSE(out) 0.16 1.33 0.19
MSE 0.10 1.30 0.13

9 8195 0.93 – – Coverage of 95% CI 0.84 0.07 0.96
Length of 95% CI 0.51 0.36 3.69

MSE(out) 0.20 0.69 0.21
MSE 0.17 0.54 0.19

10 7839 0.95 – – Coverage of 95% CI 0.74 0.09 0.97
Length of 95% CI 0.70 0.39 3.81
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assess uncertainty quantification for regression mean functions in-sample. A few interesting

observations emerge from Table 2. Comparing cases 1 and 2 (and also comparing cases

4 and 5), it turns out that NRMM yields marginally lower MSE with increased values of

the sparsity parameter (1 − π0). Results from cases 9 and 10 present a similar trend, even

under model mis-specification. Also, keeping n fixed and increasing p moderately does not

have any significant impact on MSE. Increasing the number of true mixture components H0

has an adverse effect on the performance of NRMM, which becomes evident by comparing

results from case 3 with cases 1 and 2. The out-of-sample inference on regression mean

function follow very similar trends as suggested by the MSE(out) values. As expected, out-

of-sample MSE values are always higher than in-sample MSE values. Additionally, in most

cases, NRMM shows higher coverage levels, often close to nominal coverage, compared to

NRR. The less than nominal coverage in cases 9 and 10 can be attributed to model mis-

specification, whereas the under-coverage in case 3 could be due to the larger number of

mixture components, which presents obstacles in model estimation. Note that under cases

7 and 8, only one mixture component (homogeneous setting) is used to simulate the data,

and so the data favors NRR over NRMM. Consequently, NRR yields smaller MSE and close

to nominal coverage in this case. Under all other cases with H0 > 1, NRR demonstrates

inferior performance to NRMM with a higher MSE and considerable under-coverage of the

mean function. HOLRR offers a higher MSE compared to NRMM under all simulation sce-

narios. The construction of 95% confidence intervals for HOLRR based on the asymptotic

normal approximation result in much wider intervals with coverage close to 1.

Note that inference on each cluster is not readily available from the mixture model due

to the clusters not being identifiable. Thus, to draw inference on which network nodes are

influential in each cluster, we fix the cluster membership indicator ci for the ith sample at ĉi

(the estimated cluster indicator) and run the model once more without updating the cluster

membership indicator ci at any MCMC iteration. With the clusters remaining fixed in every

iteration, it is possible to draw inference on the influential network nodes in each cluster. In

particular, the kth node is deemed influential for the hth cluster, if the empirically estimated

posterior probability of the event {uh,k ̸= 0} exceeds 0.5. As demonstrated in Figures 1

and 2, for cases 1-8, our proposed model correctly identifies each cluster in every simulation,
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Table 3: Computation time (in seconds) per MCMC iteration of the NRMM model with
H = 15 mixture components. The number of network nodes (p) and the sample size (n) are
varied.

p 20 40 80 160 200 250
n = 50 0.17 0.32 1.08 3.63 5.97 7.63
n = 100 0.26 0.43 1.14 4.10 6.41 13.40
n = 150 0.40 0.72 1.70 6.08 9.49 16.31

and hence inference on influential network nodes in each cluster as mentioned above can be

directly compared to the truly influential nodes in each cluster for these simulation cases

(i.e., under no model mis-specification). In this regard, Table 2 presents the True Positive

Rates (TPR)= TP
TP+FP and False Positive Rates (FPR)= FP

TN+FP of identifying influential

network nodes over all clusters, where TP, FP and TN denote the total number of true

positives, false positives and true negatives, respectively. The results indicate high TPR and

low FPR in all cases, except in case 3, which shows a comparatively lower TPR than the

rest, but still a very low FPR. This observation may be attributed to a higher number of

true clusters, where the model detects some influential nodes as uninfluential, resulting in

decrease of TPR. Overall, the simulation studies indicate good performance of NRMM.

4.4 Computational Complexity and Time

In our framework, the Gibbs sampler for model estimation does not involve any expensive

matrix inversion or multiplication, leading to fast computation. In fact, the Gibbs sampler

can be suitably parallelized since the updates of us,h,k can be performed over different pro-

cessors in parallel. Computation times (in seconds) per MCMC iteration for the NRMM

model (for varying number of network nodes, p, and sample size n) without parallelization

are provided in Table 3. The entries in the table are recorded corresponding to H = 15

mixture components fitted to the data.

4.5 Sensitivity Analysis

To check sensitivity of inference to the choice of hyper-parameters, we consider a repre-

sentative case (case 2) and re-analyze the same simulated data with different combinations

of hyper-parameters. In particular, we consider three different hyper-parameter settings

for case 2 and compare the inference with the results on case 2 presented earlier. The
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Table 4: Sensitivity Analysis: ARI, MSE, MSE(out), coverage of 95% CI and length of 95%
CI for NRMM in Case 2 with different hyper-parameter combinations are provided.

Combinations (i) a = 1, b = 5, ν = 20 (ii) a = 5, b = 1, ν = 20 (iii) a = 1, b = 1, ν = 50
ARI 0.99 0.99 0.99
MSE 0.08 0.03 0.05

MSE(out) 0.15 0.12 0.15
Coverage of 95% CI 0.93 0.96 0.95
Length of 95% CI 0.61 0.57 0.50

three combinations are given by, (i) a = 1, b = 5, ν = 20; (ii) a = 5, b = 1, ν = 20; (iii)

a = 1, b = 1, ν = 50. Note that (i) presents a low prior mean of 0.2 for each ξh,k encourag-

ing less number of activated nodes a-priori, whereas (ii) presents a higher prior mean of 5

for ξh,k which encourages a higher number of activated nodes. Combination (iii) presents a

variation of the hyperparameter ν in the Inverse-Wishart distribution of Mh. Table 4 shows

the posterior mean of ARI in case 2 under the three different hyper-parameter settings. We

additionally present MSE, MSE(out), coverage and length of 95% credible intervals for these

hyper-parameter combinations and compare these results with the result presented for case

2 in Table 2. Of all the parameters, only variations in a and b seem to have an effect on the

inference, but this effect is found to be very small. More specifically, when the prior mean of

the number of activated nodes is small (combination (i)), both MSE and MSE(out) are found

to be a little higher than what is presented in Table 2 under case 2. Similarly, the coverage

is found to be a little lower and length little higher as compared to case 2 in Table 2. In

contrast, combinations (ii) and (iii) yield practically identical results when compared with

case 2 in Table 2. The clustering accuracy is found to be unaffected by the perturbation in

hyper-parameters, with all three combinations resulting in similar values of ARI. The results

are also found not to be sensitive to moderate perturbations of hyper-parameters aσ and bσ.

5 Brain Connectome Dataset with the Creative Achieve-

ment Questionnaire (CAQ)

Our dataset of interest consists of brain connectome information on several subjects col-

lected using a brain imaging technique called Diffusion Weighted Magnetic Resonance Imag-

ing (dMRI). It is openly available in the Templeton 114 repository at https://neurodata.
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io/mri. Note that dMRI is a magnetic resonance imaging technique that measures the re-

stricted diffusion of water in brain tissues in order to produce neural tract images which

are then pre-processed using the NDMG pre-processing pipeline (Kiar et al., 2016). In the

context of dMRI, the human brain is divided according to the Desikan atlas (Desikan et al.,

2006) that identifies 34 cortical regions of interest (ROIs) in each of the left and the right

hemispheres of the human brain, implying 68 cortical ROIs in all. These 68 ROIs are con-

tained in 6 lobes each in the left and the right hemispheres, namely the temporal, frontal,

occipital, parietal, cingulate and insula lobes.

Using dMRI, a brain network for each subject is constructed as a symmetric matrix

with row and column indices corresponding to different ROIs, and entries corresponding to

the estimated number of ‘fibers’ connecting pairs of brain regions. Thus, for each subject,

representing the brain network, is a symmetric matrix of dimension 68×68, with the (j1, j2)th

off-diagonal entry being the estimated number of fibers connecting the j1th and the j2th

brain ROIs, and diagonal entries set to zero. For each subject, information on creativity as

measured by the Creative Achievement Questionnaire (CAQ) is also available, which we treat

as a feature of interest. Creative achievement can be perceived as an aggregate of creative

products of an individual during his/her lifetime (Carson et al., 2005). CAQ, in particular, is

a self-reported measure of creative achievement that assesses achievement across ten domains

of creativity. To obtain the CAQ, each subject is given a questionnaire to complete, which

is then used to form a comprehensive measure of creative productivity across ten domains,

including visual arts, music, creative writing, dance, drama, architecture, humor, scientific

discovery, invention and culinary arts. As a measure of creativity, CAQ has been recognized

in the literature to be both reliable and valid (Jung et al., 2010). Along with brain network

information and CAQ, age and sex are also available and are treated as auxiliary features for

n = 73 subjects in our dataset of interest. While there is earlier literature suggesting an effect

of age on brain connectivity (Baum et al., 2017), all subjects in our dataset belong to the

age group of 18-29 years with very little variation, which prompts us to ignore ROI specific

age effects. We also find in the analysis in Section 5.1 that the age effects are practically

insignificant in almost all the clusters, which further justifies our argument.

The main objective of the data analysis lies in supervised clustering of brain networks
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(a) QQ Plot: Cell 1
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(b) QQ Plot: Cell 2
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(c) QQ Plot: Cell 3

Figure 3: QQ-plot of residuals corresponding to linear regression fitted on three representa-
tive cells (edges in the brain network) with n = 73 subjects of the CAQ dataset.

of the 73 subjects. The Bayesian mixture model of network objects proposed in this article

achieves clustering of subjects into different groups, each group having a different regres-

sion relationship of the brain connectome on CAQ, age and sex. The model offers inference

on influential network nodes related to CAQ in different clusters, allowing for the scientific

understanding of the relationship between creativity and the brain connectome with char-

acterization of uncertainty in different groups/clusters of subjects. As a byproduct of our

clustering exercise using the network mixture model, the normality assumption on the errors

of the network response matrix is automatically relaxed. This is deemed appropriate for

this dataset, since after fitting linear regression models independently on each cell of the

network response matrix with CAQ, age and sex as predictors, we have observed visible non-

normality in the standardized residuals (refer to the QQ plots of the standardized residuals

for three representative cells in Figure 3).

5.1 Findings from CAQ Brain Connectome Data

This section reports analysis of the CAQ brain connectome dataset described in Section

5. We fit NRMM with H = 20, with the same set of hyper-parameters used in the simulation

studies. NRMM, when applied to the CAQ dataset, identifies 7 clusters with 25, 13, 6, 6,

7, 8 and 8 subjects included in the clusters, respectively. Similar to simulation studies, the

uncertainty in clustering is measured by the posterior probability of pairs of subjects lying in

the same cluster, which is displayed through a heatmap in Figure 4(a). The figure indicates

three distinct cluster assignments, with a somewhat higher degree of uncertainty among the
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(a) Uncertainty in Clustering (b) Posterior Dist. of no. of Clusters

Figure 4: CAQ Data: Figure (a) shows the uncertainty in estimating the clusters. Figure
(b) shows the barplot corresponding to the posterior distribution of the estimated number
of clusters. The inference is presented for H = 20.

pairs lying outside these three clusters. The posterior distribution of the number of clusters

(see Figure 4(b)) demonstrates some bimodality with modes at 6 and 7. Importantly, there is

no posterior probability of having more than 9 clusters, suggesting thatH = 20 is appropriate

for this analysis.

In the absence of any ground truth, we compare the performances of NRMM and NRR

with respect to the Posterior Predictive Loss Criterion statistic (Gelfand and Ghosh, 1998),

which is calculated as D = G + P , such that a model corresponding to a lower value of D

is preferred. The G values, representing a measure of model fit, turn out to be 98163.8 and

101738.7 for NRMM and NRR, respectively. The P values, indicative of model complexity,

are 101722 and 101489.2 for NRMM and NRR, respectively. Thus, the overall model fitting

statistic D shows a better performance of NRMM compared to NRR. HOLRR, being a

frequentist method, is not included in this comparison. We also compute leave-one-out of

sample mean squared prediction error (MSPE) for the three competitors and they turn out

to be 0.64, 0.73, 0.71 for NRMM, NRR and HOLRR, respectively.

Similar to the simulation studies, we supply the model with the estimated cluster indica-

tors and run it again to draw further inference on the influential nodes in the seven clusters.

Notably, Cluster 3 includes individuals who are all male. Hence analysis of Cluster 3 does not

include gender as a variable. To assess the model fit in each cluster, we calculate the mean
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Table 5: MSPE, average coverage of 95% predictive intervals and average length of 95%
predictive intervals for the seven clusters are provided.

Cluster size 25 13 6 6 7 8 8
MSE 0.66 0.43 0.28 0.92 0.64 0.83 0.54

Coverage of 95% CI 0.95 0.97 0.97 0.94 0.95 0.94 0.96
Length of 95% CI 3.02 3.02 3.03 3.03 3.04 3.03 3.02

squared prediction error (MSPE), average coverage of 95% predictive intervals and average

length of 95% predictive intervals averaged over all cells of the network response matrix and

all subjects in a cluster. Table 5 depicts satisfactory point prediction along with an excellent

characterization of predictive uncertainty. Referring to the high degree of non-normality in

the error distributions discussed in Section 5, it is instructive to see if the mixture modeling

framework justifies the normality assumption on the error distribution in each cluster. To

check this, cell by cell Kolmogorov-Smirnov tests are conducted by comparing the discrep-

ancy between the posterior mean of residuals and the normal distribution. Out of 2278

network matrix cells in each cluster, residuals in 51%, 62%, 18%, 96%, 91%, 89% and 97%

cells in clusters 1 − 7, respectively, show statistically significant normality. Therefore, the

normality assumption on the errors in each cluster is reasonable except for Cluster 3.

Figure 5 displays posterior densities of the age coefficients for all seven clusters. Except

for Clusters 2 and 6, all other age coefficients turn out to be significant. Digging a bit

deeper, we find that Clusters 2 and 6 show significantly lower variability in the ages of

the subjects included, compared to the other clusters, which explains the age coefficient

being statistically insignificant in these clusters. Also, except for Cluster 5, the posterior

mean of the age coefficients are found to be negative in all other clusters, implying a negative

association between creativity and age. In all six clusters where gender is added as a variable,

it is found to be significantly related to creativity (see Figure 6).

To assess which nodes are related to creativity (as measured by CAQ) in each cluster,

we run the analysis in each cluster 10 times and report the nodes which have posterior

probability of being active greater than 0.5 for at least five of the replications. Figure 7

records the 10, 40, 30, 37, 41, 49 and 15 ROIs significantly related to CAQ in the 7 clusters

of individuals. A considerable proportion of ROIs detected in each cluster are part of the

frontal, cingulate and temporal lobes in both hemispheres. This finding concurs with results
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Figure 5: Plots of age coefficient in each cluster. The 95% posterior credible intervals are
shown through the space between the two dotted lines.
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Figure 6: Plots of sex coefficient in each cluster. The 95% posterior credible intervals are
shown through the space between the two dotted lines.
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presented previously in the literature. In particular, the frontal lobe has been scientifically

associated with divergent thinking, problem solving ability, spontaneity, memory, language,

judgement, impulse control and social behavior (Stuss et al., 1985; Razumnikova, 2007;

Miller and Milner, 1985; Kolb and Milner, 1981). Prior scientific studies also suggest that

increased cortical volume of the superior frontal gyrus, and ventromedial prefrontal cortex,

and decreased volume of the dorsal and rostral anterior cingulate cortex are associated with

CAQ (Chen et al., 2014). Finkelstein et al., 1991 also report de novo artistic expression

to be associated with the frontal and temporal regions. Our identification of the middle

frontal gyrus and the inferior occipital gyrus being associated with CAQ is also supported

by earlier scientific studies (e.g., Shi et al., 2017). Additionally, CAQ being related to the

medial superior frontal gyrus and orbitofrontal insula have also been supported by previous

studies (Chen et al., 2014).

6 Conclusion and Future Work

This article is motivated by the need to develop a flexible relationship between the brain

network and creativity, as measured by CAQ, from subjects in a brain connectome dataset.

Viewing the brain image for each subject as an undirected network, we propose a novel

Bayesian mixture of regression models with a network response and scalar predictors. Our

proposed framework clusters subjects into groups, with individuals in the same group sharing

an identical relationship between the network response and scalar predictors. A spike-and-

slab variable selection prior is assigned on the network node specific latent variables in each

mixture component to deliver inference on influential network nodes significantly related

to a specific predictor of interest. Empirical investigations with simulation studies validate

our network response mixture modeling (NRMM) framework and yield superior inference

over relevant competitors. The NRMM framework, when applied to a real brain connec-

tome dataset, finds clusters of individuals sharing similar relationships between their brain

networks and creativity, identifying brain ROIs significantly related to creativity in each

cluster.

As part of future work, we envision investigating the performance of our model with a

more flexible non-local prior structure on the node-specific latent variables. We also plan to
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Figure 7: CAQ Data: Figure plots a 68×7 matrix with the rows and columns corresponding
to the ROIs and clusters, respectively. A green cell in the (k, h)th entry of the matrix implies
that the kth ROI in the hth cluster is not significantly related to creativity. Prefix ‘lh-’ and
‘rh-’ in the ROI names on the y-axis denote their positions in the left and right hemispheres
of the brain, respectively. The ROI names are color-coded according to the lobes they belong
to. From bottom to top, the group of ROIs under the same color correspond to the temporal,
cingulate, frontal, occipital, parietal and insula lobes.
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extend our framework with each mixture component fitting a generalized linear model with

a symmetric network/tensor response and scalar predictors.

Appendix

Posterior Full Conditionals

Let Ih = {i : ci = h}, nh denote the cardinality of Ih, yi = (yi,j : 1 ≤ j1 < j2 ≤ p)′

and yh = (yi : ci = h)T , h = 1, ..., H. Further assume, q = p(p − 1)/2, β∗
s,h = (B∗

s,h,j : 1 ≤

j1 < j2 ≤ p)′ and Jk = {j ∈ J : js1 = k, for some s1}. The full conditionals are in closed

form and hence allow a Gibbs sampling procedure to sample posteriors. They are listed as

following:

• γ∗
0,h|− ∼ N

[∑
i∈Ih

1′(yi−
∑m

s=1 β
∗
s,hxis−1

∑l
s=1 γ

∗
s,hzis)/σ

2

(nhq)/σ2+1
, 1
(nhq)/σ2+1

]
, h = 1, ..., H.

• γ∗
s,h|− ∼ N

(∑
i∈Ih

z2is1
′(yi−

∑m
h2=1 β

∗
h2,h

xih2
−1

∑l
h2=1,h2 ̸=s γ

∗
h2,h

zih2 )/σ
2+1

q
∑

i∈Ih
z2is/σ

2+1
, 1
q
∑

i∈Ih
z2is/σ

2+1

)
, s =

1, ..., l; h = 1, ..., H.

• σ2|− ∼ IG(aσ + (nq)/2, bσ +
∑H

h=1

∑
i∈Ih ||yi −

∑m
s=1 β

∗
s,hxis − 1

∑l
s=1 γ

∗
s,hzis||2/2)

• M s,h|− ∼ IW
[
(S +

∑
k:us,h,k ̸=0 us,h,kus,h,k

T ), (ν + {#k : us,h,k ̸= 0})
]

• (πs,h,r,1, πs,h,r,2, πs,h,r,3)|− ∼ Dirichlet(rη+#{λs,h,r = 0}, 1+#{λs,h,r = 1}, 1+#{λs,h,r =

−1})

• λs,h,r|− ∼ Discrete distribution taking values 0,1,-1 with probabilities ps,h,r,1, ps,h,r,2 and

ps,h,r,3, respectively. Here ps,h,r,1 =
πs,h,r,1J(Λs,h)(λs,h,r=0)

πs,h,r,1J(Λs,h)(λs,h,r=0)+πs,h,r,2J(Λs,h)(λs,h,r=1)+πs,h,r,3J(Λs,h)(λs,h,r=−1)

ps,h,r,2 =
πs,h,r,2J(Λs,h)(λs,h,r=1)

πs,h,r,1J(Λs,h)(λs,h,r=0)+πs,h,r,2J(Λs,h)(λs,h,r=1)+πs,h,r,3J(Λs,h)(λs,h,r=−1)
, ps,h,r,3 = 1−ps,h,r,1−

ps,h,r,2. Here J(Λs,h) =
∏

i∈Ih N(yi|γ∗
0,h1+

∑m
s=1 β

∗
s,hxis+1

∑l
s=1 γ

∗
s,hzis, σ

2I). J(Λs,h)(λs,h,r=0),

J(Λs,h)(λs,h,r=1) and J(Λs,h)(λs,h,r=−1) denote J(Λs,h) evaluated at λs,h,r = 0, 1,−1, re-

spectively. Here Λs,h is the collection of {λs,h,r : r = 1, ..., R}.

• us,h,k|− ∼ wus,h,k
δ0(us,h,k) + (1 − wus,h,k

) N(us,h,k|mus,h,k
,Σus,h,k

), where U s,h,Jk
=

[U ′
1,s,h,Jk

: · · · : U ′
nh,s,h,Jk

]′, U ′
i,s,h,Jk

has rows

(xisλs,h,1

∏2
s1=1,js1 ̸=k u

(1)
s,h,js1

, ..., xisλs,h,R

∏2
s1=1,js1 ̸=k u

(R)
s,h,js1

). Further assume ỹsi,j = yi,j−
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γ∗
0,h−

∑l
h1=1 γ

∗
h1,h

zih1 −
∑m

h2=1,h2 ̸=s B
∗
h2,h,j

xih2 , ỹ
s
i,Jk

is a vector of collections of ỹsi,j over

j ∈ Jk and ỹs
Jk

is a vector consisting of ỹsi,Jk
over i ∈ Ih. Also,

Σus,h,k
=

(
U ′

s,h,Jk
U s,h,Jk

/σ2 +M−1
s,h

)−1
, mus,h,k

= Σus,h,k
UT

s,h,Jk
ỹs
Jk
/σ2

wus,h,k
=

(1− ζs,h)N(ỹs
Jk
|0, σ2I)

(1− ζs,h)N(ỹs
Jk
|0, σ2I) + πN(ỹs

Jk
|0, σ2I +U s,h,Jk

M s,hU
T
s,h,Jk

)

• ξs,h,k|− ∼ Ber(1− wus,h,k
)

• ζs,h|− ∼ Beta(
∑p

k=1 ξs,h,k + 1,
∑p

k=1(1− ξs,h,k) + 1).

• P (ci = h | −) =
ωhN(yi|γ∗

0,h1+
∑m

s=1 β
∗
s,hxis+1

∑l
s=1 γ

∗
s,hzis,σ

2I)∑H
d′=1 ωd′N(yi|γ∗

0,d′1+
∑m

s=1 β
∗
s,d′xis+1

∑l
s=1 γ

∗
s,d′zis,σ

2I)
, for h = 1, .., H.

• v∗l1 | −Beta(1 + #{i : ci = l1}, α+
∑H

ss=l1+1#{i : ci = ss}), l1 = 1, ..., H − 1,

ω1 = v∗1, ω2 = v∗2(1− v∗1), .., ωH−1 = v∗H−1

∏H−2
l1=1 (1− v∗l1), ωH =

∏H−1
l1=1 (1− v∗l1)

• Parameter α is updated using a Metropolis-Hastings algorithm.
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