
1. Introduction
Sub-Saharan Africa, a region of 23 million km2 and home to more than 1 billion people, has long been beset 
with food insecurity (FAO & ECA, 2018). This situation can be largely attributed to the suboptimal perfor-
mance of its agricultural sector and is correlated with underdeveloped irrigated agriculture in the region. 
Currently, only 5% of cropland in sub-Saharan Africa is equipped with irrigation (FAO, 2016), much less 
than any other developing region in the world. Lack of irrigation leaves crop production in sub-Saharan 
African countries susceptible to climate variability and limits production in the dry season. Boosting agri-
cultural production through the development of irrigated agriculture is considered to be a promising option 
for addressing food insecurity (J A. Burney et al., 2013; de Fraiture & Giordano, 2014; Xie et al., 2014).

This study maps the relative cost-effectiveness of groundwater-fed irrigation in sub-Saharan Africa under 
two off-grid energy solutions: solar photovoltaic (PV) and diesel fuel. Groundwater plays an important role 
in global irrigated agriculture. It is estimated that groundwater-fed irrigation accounts for about 40% of the 
global area equipped with irrigation (Siebert et al, 2010). The success of groundwater-fed irrigation in other 
regions suggests that groundwater may also be key to the development of irrigated agriculture in sub-Saha-
ran Africa (Cobbing & Hiller, 2019; Villholth, 2013).

As groundwater irrigation requires energy to lift water, the cost and efficiency of the energy technology are 
key determinants of the performance of the irrigation system (Belaud et al., 2020; Langarita et al., 2017; 
Tarjuelo et  al.,  2015). Various energy solutions are available for water pumping. In this study we chose 
to focus on diesel and solar energy since these are the two most promising off-grid solutions to powering 
groundwater-fed irrigation in sub-Saharan Africa. The analysis can be extended in the future to include 
other options such as on-grid electric pumps and manual treadle pumps. However, the potential applica-
bility of the former is restricted by the current low access to the electric grid in sub-Saharan Africa (Blimpo 
& Cosgrove-Davies, 2019) and use of the latter is hampered by labor-intensity and gender inequity (Njuki 
et al., 2014).

Compared to diesel, solar energy is an emerging energy technology whose application to power-irrigated 
agriculture has been attracting much attention in recent years (Hartung & Pluschke, 2018). Various studies 
have compared the costs of using these two energy technologies for irrigation water pumping at site scale 
(Girma et al., 2015; Hossain et al., 2015; Kelley et al., 2010; Lorenzo et al., 2018). This study is designed to 
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provide a cost comparison analysis at regional level and to map the rela-
tive cost-effectiveness of groundwater pumping for irrigation powered by 
solar PV and diesel energy over the entire sub-Saharan Africa region. Spe-
cifically, we compared the costs of solar powered groundwater irrigation 
and diesel irrigation site-by-site across sub-Saharan Africa under a num-
ber of crop and irrigation method scenarios. In each scenario, an irrigated 
crop type as well as an irrigation method are assumed within the produc-
tion suitability domain of the crop and with flood and drip as alternative 
irrigation methods. The results of the analysis allow us to examine the 
spatial and across-crop variability of the economic performance of the 
two energy solutions in pumping groundwater for irrigation and can be 
used to inform policy discussions on the role these solutions may play in 
supporting future development of groundwater-fed irrigated agriculture. 
Szabó et  al.  (2011) compared the costs of electrification by distributed 
solar and diesel generation in Africa, using a presumed residential energy 
consumption pattern. The pattern of energy demand for irrigation water 
pumping, however, varies with climate and also by crop and irrigation 
method and could differ substantially from that of residential use. There 
is therefore a need for a separate study identifying cost-effective energy 
solutions for irrigation.

The rest of the paper is organized as follows. Section 2 describes the crop-irrigation method scenarios and 
other key settings of the analysis. Section 3 presents the data and method we used to size pumping systems 
under two energy solutions and estimate their life-cycle costs. The results of the cost comparison analysis 
are presented in Section 4, which is followed by a concluding section where implications of findings of the 
study and direction for future research are further discussed.

2. Crop-Irrigation Method Scenarios, Boundary of Pumping System for Life-
Cycle Cost Estimation and Spatial Extent of the Comparison Analysis
The crop irrigation-method scenarios we used are shown in Table 1. They were formulated to represent pos-
sible typical combinations of crops and irrigation technologies. Case studies, although limited, have shown 
that farmers are more likely to use irrigation to cultivate high-value crops (see a review in Domènech, 2015). 
In this study, we included vegetables, pulses, sugarcane, maize, wheat, and fruits; we selected tomatoes and 
onions as representative vegetable crops, chickpeas and common beans as representative pulse crops, and 
banana as a representative fruit crop.

In terms of irrigation methods, flood and drip irrigation are two ends of a broad spectrum of irrigation 
methods, where flood irrigation is characterized by a low field application efficiency and drip by a high 
application efficiency. Drip irrigation has been promoted substantially in sub-Saharan Africa over the past 
2 decades, and specifically low-cost drip (J. Burney et al., 2010; Postel et al., 2001; Woltering et al., 2011). Our 
scenarios consider the use of low-cost drip for the cultivation of tomatoes, onions, chickpeas, and common 
beans.

Most areas in sub-Saharan Africa have a tropical climate with alternating rainy and dry seasons, the latter 
with a more intensive water and energy requirement for irrigation. In carrying out the analysis, we use the 
dry season irrigation energy demand to define the size and operational costs of water pumping systems.

The costs in this study refer to the life-cycle costs of solar and diesel water pumping systems. The life-cycle 
cost of a water pumping system consists of capital costs, operation and maintenance costs (O&M), fuel 
costs, and replacement costs (World Bank, 2018). We did not consider nonfinancial costs associated with 
environmental externalities, such as reduced greenhouse gas emissions. To simplify the analysis, the sys-
tem boundary is defined to include the power unit only by assuming the same costs for motor and pumps 
(Abu-Aligah, 2011; Kelley et al., 2010). Moreover, although the study is not designed to score the environ-
mental suitability of groundwater-fed irrigation, GIS layers indicating sites with favorable conditions for 
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Scenario Crop Irrigation method

1 Maize Flood

2 Wheat Flood

3 Tomatoes Drip

4 Tomatoes Flood

5 Onions Drip

6 Onions Flood

7 Chickpeas Drip

8 Chickpeas Flood

9 Common beans Drip

10 Common beans Flood

11 Sugarcane Flood

12 Bananas Flood

Table 1 
Crop Irrigation-Method Scenarios
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groundwater-fed irrigated production for each crop were determined using criteria shown in Table 2. We 
limited the analysis to the spatial extent of these suitability domains.

3. Data and Methods for Life-Cycle Cost Estimation
The procedure for estimating cell-wise values of life-cycle costs of solar PV- and diesel-powered ground-
water irrigation pumping systems is schematically shown in Figure 1, with key input parameters and cal-
culated variables listed. It follows the same logic applied in reported single-site economic studies on solar/
diesel water pumping systems. However, the very large spatial scale of the analysis in this study has impli-
cation for choosing the calculation approach used in each step of the estimation. Implementation details 
of the life-cycle cost estimation procedure are explained below. All spatial input data were resampled to a 
resolution of 0.0083 latitude-longitude degree (∼1 km) in the analysis and the results are reported at that 
resolution.

XIE ET AL.

10.1029/2020EF001611

3 of 21

Category Inclusion criteria Data source

Cropland extent Cropland percentage > 0 1 km global IIASA-IFPRI cropland 
percentage map (Fritz et al., 2015)

Slope <8% Shuttle Radar Topography Mission (SRTM) 
digital elevation data

Groundwater depth <50 m British Geological Survey digital groundwater 
maps of Africa (MacDonald et al., 2012)

Groundwater productivity >0.1 l/s British Geological Survey digital groundwater 
maps of Africa (MacDonald et al., 2012)

Agro-climatically attainable yield >0 under irrigation IIASA-FAO Global Agro-ecological Zones 
(GAEZ) (Fischer et al., 2012)

Table 2 
Criteria and Input Data Used in Constraint Layer Formulation

Figure 1. Estimation procedure of life-cycle costs of solar PV and diesel water pumping systems for groundwater-fed 
irrigation. Names of input variables/parameters are shown in the rectangle. Names of calculated variables appear in 
italic.
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3.1. Solar PV and Diesel Power System Sizing

To inform the estimation of system-wide life cycle costs, we first sized power units of pumping systems un-
der two energy solutions. The size of a solar PV array, which is rated by electricity generation capacity under 
standard testing conditions (STC) in kilowatts peak (kWp), is estimated as:

   array_STC max /i iP E h df (1)

where array _ STCP  is the rated power of the solar array under standard testing conditions (kWp), subscript i 
denotes the month in the growing season, Ei is the daily mean energy requirement for irrigation in month i 
(kWh), hi is the peak sun hour (hr) in month i, and df is a derating factor.

The peak sun hour at a location is numerically identical to the daily solar insolation received at that lo-
cation, measured in units of kWh/m2. The average daily solar insolation over sub-Saharan Africa in each 
month was calculated from solar irradiance data obtained from the Photovoltaic Geographical Information 
System (PVGIS)'s Satellite Application Facility on Climate Monitoring (CM SAF) database between 2005 
and 2015 (Huld et al., 2012).

The derating factor, df, is a coefficient that is included in order to account for the reduction in electricity 
output caused by various factors such as temperature, dirt, and wiring loss. As data to estimate the derating 
factor are not available for the entire study area, a constant value of 0.77 is assumed in this analysis; this 
default value is typically used when no further estimates are available (World Bank, 2018).

To estimate the energy requirement Ei, we first calculated crop-irrigation water demand using the FAO-56 
approach (Allen et al., 1998). The daily mean net irrigation water demand in month i is calculated as

  net, 0, , eff,· / daysi i c i i iD ET k P n (2)

where Dnet,i is the daily mean net irrigation water demand in month i expressed in depth of water (mm H2O), 
ET0,i is the monthly reference evapotranspiration (mm H2O), kc,i is the crop coefficient in month i, Peff,i is the 
effective rainfall in month i (mm H2O), and n daysi is the number of days in month i.

Effective rainfall, Peff,i, is estimated by using the method proposed by the US Department of Agriculture Soil 
Conservation Service (Smith, 1992):
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where Pi is the monthly precipitation in month i (mm H2O).

Average crop reference evapotranspiration and precipitation by month, ET0,i and Pi, are derived from 
time-series data of crop reference evapotranspiration and precipitation during the PVGIS solar irradiance 
data period from the CRU TS (v. 4.03) (Harris et al, 2014) and the CHIRPS (Funk et al., 2015) data set, re-
spectively. The values of crop coefficients kc,i used in this study are the monthly averages of daily kc values 
from constructed kc- crop growth stage curves (Allen et al 1998; also see Table S1 for more details).

The net irrigation demand is adjusted for application efficiency of irrigation in order to yield an estimate of 
the gross irrigation water demand:


 net,

gross,
irr

i
i

D
D (4)

where Dgross,i is the daily mean gross irrigation water demand in month i (mm H2O) and ηirr is the project-
ed efficiency of irrigation. The application efficiency of flood irrigation in this study is assumed to be 0.5 
(FAO, 1997) and the application efficiency of drip irrigation is set to 0.9 (Brouwer et al., 1989).

With estimated irrigation water demand, the daily average energy requirement for irrigation water pumping 
in month i, Ei, is calculated as
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where A is farm size or irrigated area in hectares (ha), 10 is a factor used to calculate the conversion of gross 
irrigation demand (expressed in mm H2O) to gross irrigation water demand in cubic meters (m3 H2O), ρ is 
the density of water (in 1,000 kg/m3), g is the gravity of the Earth ( 29.8 m / s ), H is the total dynamic head 
(m), η is the energy efficiency of the motor and the pump, and  63.6 10  is the conversion factor from joules 
to kWh.

The total dynamic head, H, consists of elevation head, pressure head, and friction loss. Elevation head is 
the vertical distance from the groundwater table to the ground surface. It further comprises the depth of the 
rest groundwater table and the drawdown caused by pumping. The drawdown variation in each pixel in this 
study was estimated by using the analytical solution of the single-well model which is proposed to simulate 
the water table response to pumping in individual boreholes. This approach has the limitation of omitting 
groundwater table variations that are caused by interactions between the cone depression of the borehole of 
interest and the cone depressions of other boreholes which may be located nearby, and interactions between 
boreholes and nearby natural surface waterbodies. The use of this approach also implicitly assumes that 
the groundwater table can fully recover during the rainy season. However, it provides a computationally 
economical method with parsimonious input data requirements to contribute to the pumping height esti-
mation in large-scale groundwater resources planning analysis (Bonsor & MacDonald, 2011; MacDonald 
et al., 2009). Specifically, in this study the drawdowns at the end of each month during the growing season 
are calculated by applying the Theis equation (Theis, 1935) and the principle of superposition in time:
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where Hs is the drawdown (m), Qn (  1,2,3, )n is the pumping rate in the nth month i (m3/d;  = 
 gross, 10nD A ), T is transmissivity (m2/d), S is storativity (dimensionless), r is the distance to the center of 

the borehole and denotes the radius of the borehole, tn is the elapsed time since pumping rate Qn starts (d).

Estimates for depth of natural or rest groundwater level are obtained from digital groundwater depth maps of 
Africa developed by the British Geological Survey (BGS) (MacDonald et al., 2012). The estimated rest ground-
water table depth on this map falls into six classes: very shallow: 0–7 m; shallow: 7–25 m; shallow to moderate: 
25–50 m; moderate: 50–100 m; deep: 100–250 m; and very deep: >250 m. A study in Tanzania (Baumann 
et al., 2005) indicates that the average rest groundwater table depth for boreholes over all 20 regions in Tanza-
nia is about 17 m, but in some regions the average rest groundwater table depth exceeds 30 m. In this study, 
we assumed that groundwater-fed irrigation may occur at locations with a rest groundwater depth of up to 
50 m, that is, within the first three groundwater depth classes of the BGS groundwater depth map (Table 2).

In applying Equation 6 for the drawdown estimation, the borehole radius is assumed to be 0.075 m or 3 
inches (BWA, 2020). Values used for storativity S are suggested by de Graaf et al. (2017) and are assigned 
according to lithology classes defined by Hartmann and Moosdorf (2012). Transmissivity T is the most sen-
sitive parameter in Equation 6. Estimates of transmissivity are derived from the aquifer productivity map in 
BGS' digital groundwater maps of Africa (MacDonald et al., 2012). The BGS aquifer productivity map shows 
spatial distributions of six aquifer productivity classes, and ranges of estimated transmissivity T correspond-
ing to each aquifer productivity class are provided by Bonsor and MacDonald (2011): 500–1,000 m2/d for 
aquifers with very high productivity (>20 l/s), 50–500 m2/d for aquifers with high productivity (5–20 l/s), 
10–50 m2/d for aquifers with moderate productivity (1–5 l/s), 5–10 m2/d for aquifers with low to moderate 
productivity (0.5–1 l/s) and 1–5 m2/d for aquifers with low productivity (0.1–0.5 l/s). Aquifers with very 
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low productivity (<0.1  l/s) are considered not suitable for developing groundwater irrigation (Schmitter 
et al., 2018) and thus are excluded from this cost comparison analysis (Table 2).

As the estimates for rest groundwater depth and transmissivity T are provided as categorical data and the 
wide ranges of values of the two parameters in each class, Monte Caro simulations were conducted. Sam-
ples of the two parameters were randomly drawn by assuming uniform distributions over value ranges of 
groundwater depth and transmissivity classes. The expected values of energy requirements Ei calculated 
from the Monte Carlo simulation are used in the ensuing calculations.

Pressure head in total dynamic head is zero in flood irrigation and is assumed to be 2 m in low cost drip 
irrigation systems (Phocaides,  2007). Friction loss is assumed to be 10% of the elevation head (World 
Bank, 2018).
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Figure 2. Expected values of seasonal irrigation water demand, diesel fuel consumption and required capacity of the solar PV system and power of the diesel 
generator derived from the Monte Carlo-based sizing calculation under the tomatoes + flood irrigation scenario.
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The energy requirement in Equation 5 also depends on the energy efficiency of motor and pump, η, and 
farm size, A. η is set to 0.6 (Kelley et al., 2010; Phocaides, 2007). In sub-Saharan Africa, small farms dominate 
(FAO 2020; Fritz et al 2015; Lowder et al 2016). However, detailed information on farm size distribution is 
lacking. Because of this, farm size was also considered as an uncertain parameter and included in the Monte 
Carlo simulation, together with rest groundwater depth and transmissivity T. A uniform distribution was 
assumed for farm size variable. The upper limit of farm size was set to 2 hectares or the maximum irrigated 
area which can be supported by a single borehole, if such maximum irrigated area calculated according to 
the irrigation water demand and borehole yield from BGS aquifer productivity map is less than 2 hectares.

As a remark on the sizing approach for solar PV systems noted above, monthly solar irradiance, crop ref-
erence evapotranspiration and precipitation data are used in the sizing calculations. Site-scale case stud-
ies of applying this method to size solar PV water pumping systems for irrigation are reported by Cuadros 
et al. (2004) and Barrueto Guzmán et al. (2018). Some authors consider this method to be more appropriate 
for the preliminary design of solar PV systems, which could be followed by a more detailed design analysis 
that involves simulations of the solar irradiance–electricity production relationship at sub-daily timestep 
(Abu-Aligah, 2011; World Bank, 2018). In this study, the method with monthly time step of calculations was 
chosen due to the strategic planning nature of the analysis and the lack of site-specific data which are needed 
to support a more detailed sizing analysis. Moreover, a typical solar PV system sizing process also includes 
procedures to determine the specifications of other equipment/accessories in the system and optimizing the 
configuration of system. Correspondingly, life cycle cost analysis typically requires specifying the cost cash 
flows associated with each equipment in the system over their life spans as input (Short et al., 1995). In view 
of the fact that the solar array is the principal component of the solar PV system, a full design and configu-
ration optimization of the solar PV system requires strong local knowledge and cost information on compo-
nents of the solar PV system other than the solar array is even more scarce, in this study we chose to limit the 
sizing calculations to solar PV arrays and a variant method is implemented to estimate the life-cycle cost of 
the whole solar PV system: as indicated in the next section, we estimated the system-wide life-cycle cost of 
the solar PV pumping system by assuming that it varies in proportion to the installed cost of the solar array.
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Figure 3. Percentage share of fuel cost in life-cycle cost of the diesel power system under the tomatoes + flood 
irrigation reference diesel fuel price scenario.
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In the sizing of diesel pumping systems, we estimated the power of the diesel generators and the consump-
tion of diesel fuel. The required power of a diesel generator Pgen (kW) is estimated as

gen
diesel

max iEP
h (7)

where maxEi denotes the daily mean energy requirement in a peak month (kWh), hdiesel is daily operation 
hours (hr) which is set to 10 h in this study (EMCON, 2006).

The annual consumption of diesel through the whole growing season is calculated as

 
 1 ndaysn

i i iEV
e

 (8)
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Figure 4. Breakeven installed cost of solar PV irrigation systems (Madagascar is not included in the analysis due to lack of groundwater depth data).
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where V is the annual diesel consumption in liters (l), Ei is the calculated daily mean energy requirement 
(kWh) in month i, ndaysi is the number of days in month i, and e is diesel consumption per kWh ≈ 0.4 l/
kWh.

3.2. Life-Cycle Cost Estimation of Solar PV and Diesel Pumping Systems

Using the estimated rating of solar PV arrays and diesel generators and annual diesel fuel consumption, we 
estimated the present value of the life cycle cost of the two water lifting systems over a 25-year period, which 
is the typical life expectancy of a solar array and thus is often chosen as the assessment horizon.

The life cycle cost of a power unit in solar PV pumping is calculated as

   solar array _ STC installed IC1000LCC P C f (9)
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Figure 4. Continued
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where LCCsolar is the present value of the life-cycle cost of the power unit of the solar PV water pumping 
system (US$), Parray_STC is the rated power of the solar array (kWp) calculated in Equation 1, Cinstalled is the 
 installed cost of the solar array per watt peak (US$/Wp), fIC is an estimated ratio of the system-wide life-cy-
cle cost to the total installed cost of the power unit.

The life cycle cost of the power unit in diesel water pumping systems is estimated as

 diesel gen dieselLCC GC FC (10)

where LCCdiesel is the present value of the life-cycle cost of the power unit in diesel water pumping systems 
(US$), and GCgen is the present value of the nonfuel cost components through the span of the life-cycle 
assessment period (in US$), which includes the cost of the diesel generator purchase, installation, mainte-
nance, and replacement. FCdiesel is the present value of the diesel fuel costs over the life cycle of the pumping 
system (in US$).

XIE ET AL.

10.1029/2020EF001611

10 of 21

Figure 4. Continued



Earth’s Future

GCgen is calculated as

  gen gen gen genGC P C f (11)

where Pgen is the power rating of the diesel generator (kW), Cgen is the initial investment of purchasing and 
installing the diesel generator per kilowatt (US$/kW), fgen is the ratio coefficient between initial investment 
and the present value of total nonfuel costs.

The present value of the diesel fuel cost over the 25-year assessment period is calculated as

 
 

     


24

diesel diesel
0

11
1

y
yy

FC pr pe V
d

 (12)

where PVdiesel is the present value of the diesel fuel cost (US$), y is the number of future years, prdiesel is the 
diesel price (US$/liter) in the base year or year 0, pe is the escalation rate of the diesel fuel price, V is the 
annual consumption of diesel fuel (liters), and d is the discount rate.

Apart from the variables calculated from the system sizing, the input data and the values of parameters used 
in the life-cycle cost estimation of the two systems are described below.

For the estimation of nonfuel costs in the life cycle of diesel power systems, the investment incurred in year 
zero is estimated by multiplying the rated power of the diesel generator in kilowatts by the unit investment 
cost of the diesel generator per kilowatt. The unit investment cost, Cgen, is set at US$300/kW, which consists of 
an average price of US$270/kW for equipment purchase - estimated using online dealer pricing information 
from selected sub-Saharan African countries (Kenya, Nigeria, and South Africa)—and an added installation 
cost which is assumed to be 10% of the cost of equipment purchase (Kelley et al., 2010). Diesel generators 
require maintenance such as oil, filter, and coolant changes, and regular replacement of parts. The interval of 
maintenance and replacement services depends on the quality of the equipment. Fulfilling the services requires 
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Figure 5. Climate and diesel prices in sub-Saharan African countries.
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(a)

(b)

Figure 6. Cost-effective area under solar PV and diesel irrigation, under the reference scenario of diesel fuel pricing (escalation rate of 2%). East African countries 
include Eritrea, Ethiopia, Kenya, Rwanda, Somalia, Sudan, Tanzania, Uganda, and Djibouti; West African countries include Benin, Burkina Faso, Côte d'Ivoire, Ghana, 
Guinea, Guinea-Bissau, Liberia, Mali, Mauritania, Niger, Nigeria, Senegal, Sierra Leone, The Gambia, Togo and Western Sahara; Central African countries include 
Burundi, Cameroon, Central African Republic, Chad, Congo, Congo DRC, Equatorial Guinea and Gabon; Southern African countries include Angola, Botswana, 
Lesotho, Malawi, Mozambique, Namibia, South Africa, Swaziland, Zambia, and Zimbabwe. Areas of cropland suitable for wheat and chickpea production in West 
Africa are very small and are not shown in the charts. For results on these two crops, refer to the Excel source data file in the supporting information.



Earth’s Future

XIE ET AL.

10.1029/2020EF001611

13 of 21

Figure 6. Continued



Earth’s Future

skilled workers and therefore incurs substantial labor costs. Without site-by-site data available for determining 
the maintenance costs, a factorial approach is taken which is similar to what is used in life cycle cost estimation 
of solar water pumping systems. By synthesizing the cost breakdown information produced from case studies 
of diesel water pumping (Bengtsson & Nilsson, 2015; EMCON, 2006; Girma et al., 2015; Kelley et al., 2010; 
Sherrin, 2015; World Bank, 2018), the present value of maintenance and replacement costs in the life cycle of a 
diesel irrigation system is assumed to be three times the initial capital cost; as such fgen in Equation 11 is set to 4.

In the calculation of the present value of diesel fuel costs, the discount rate d is assumed to be 5%. Diesel fuel 
prices at country levels obtained for 2018/2019 from the Deutsche Gesellschaft für Internationale Zusam-
menarbeit (GIZ, 2019) international fuel price report were used as the diesel fuel prices in year zero. Diesel 
prices for future years are projected under a constant price escalation rate. It is well known that fossil fuel 
prices are highly volatile. To address this uncertainty, our analysis included three scenarios for future diesel 
fuel prices. In the reference scenario, an annual price escalation rate of 2% is assumed; in the high fuel price 
scenario the price escalation rate is raised to 4%; in the low-fuel price scenario where the real price of diesel 
fuel is held constant in all future years, the escalation rate is zero.

When it comes to the groundwater pumping system powered by solar PV, the information on installed cost 
of solar PV systems in sub-Saharan Africa is very limited. An effort to fill this knowledge gap and to collect 
data on the installed costs of solar energy projects in Africa is reported by the International Renewable En-
ergy Agency (IRENA, 2016). Three types of solar PV systems: solar home systems, solar PV minigrids, and 
utility-scale solar PV applications were covered in the IRENA survey, and economy of scale was identified; 
that is, to say, unit installed cost decreases with the installed capacity of systems. Among the three types 
of solar PV systems, the solar home systems have capacities that are similar to those of solar PV irrigation 
systems investigated in this study. The unit installed cost of most surveyed solar home systems ranges be-
tween US$5 and $10 per watt peak, and this installed cost includes both the equipment costs for solar array 
and accessories (inverter, battery, and even home electronic appliances in some cases) and soft costs such as 
cost of installation labor, sales tax, and the overhead/profits of the service provider. Notably, in off-grid solar 
home systems, the battery is an essential component; its energy storage capacity ensures that the system can 
respond to demand in off-sunshine hours. The installed cost of the battery bank makes up a significant por-
tion of the total installed cost and sometimes exceeds the hardware cost of the solar array. An operational 
characteristic that distinguishes solar PV irrigation systems from solar home systems is that the timeliness 
of meeting demands is less critical than for residential systems. It is thus possible to configure the solar PV 
power system for irrigation without a battery. If we assume a low-cost configuration of the solar PV power 
unit for irrigation water pumping, the installed cost of a solar PV power unit for irrigation is likely below 
the solar home system cost reported in the IRENA study. In addition, it is also important to note that the 
report was published in 2016, and cost data in the report refer to the years in which the projects were com-
missioned, which are even earlier than the year the report was published. Installed cost of solar PV system 
decreased rapidly in past decade. For example, according to U.S. NREL (National Renewable Energy Labo-
ratory), in the United States the installed cost of solar PV residential system dropped by 63% between 2010 
and 2018 from US$7.3/Wp to 2.7 $/Wp (Fu et al, 2018). Considering the fast pace of solar PV cost reductions 
and the turnaround time for data collection, analysis, and publication, it is clear that published data on solar 
PV costs may not reflect the latest pricing on the solar PV market.

In view of the uncertainties in the installed cost of solar PV, and in order to facilitate presenting the spatial 
variability in cost comparison results under this uncertainty, we calculated the breakeven installed costs 
of solar PV powered irrigation systems under three diesel fuel price scenarios and used it as a metric for 
the cost-effectiveness of solar PV irrigation relative to diesel irrigation. The breakeven installed cost is the 
maximum installed cost of solar PV up to which solar PV is more cost-effective than the diesel system and 
is calculated by rearranging Equation 9 as


 

diesel
installed _ BE

array _ STC1000 IC

LCCC
P f (13)

where Cinstalled_BE is the breakeven cost of the installed solar PV system (US$/Wp). In this study, fIC is set to 
1.25, assuming that the installed cost accounts for 80% of the present value of the life cycle cost of the solar 
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Figure 7. Cost-effective area under solar PV and diesel irrigation, under alternative diesel fuel pricing (at installed cost 
of solar PV of US$2.5/Wp).

(a)

(b)
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PV irrigation system (Bengtsson & Nilsson, 2015; EMCON, 2006; Girma et al., 2015; Kelley et al., 2010; 
Sherrin, 2015; World Bank, 2018). The higher the calculated breakeven cost, the more likely it is that solar 
PV is more cost-effective.

We plotted solar PV breakeven installed cost maps to encapsulate all information generated from this study. 
These maps can be reclassified to produce thematic maps to display the recommended energy solution for 
irrigation by location by taking the assigned solar PV installed cost as a class break value. In the reclassifi-
cation, a pixel is labeled as “solar PV cost-effective” if the calculated breakeven installed cost for solar PV in 
that pixel is below the class break value, and diesel irrigation would otherwise be recommended. To be con-
cise, we only present summarized data generated from such reclassification analysis by geographic region 
(i.e., East Africa, West Africa, Central Africa and Southern Africa—names of countries included in each 
region are shown on map in Figure 5 and added to the caption of Figure 6). By referring to solar PV costs 
and price trend information from the IRENA and NREL reports, three values for solar PV installed costs 
are assumed in the reclassification analysis: US$2.5/Wp, US$2/Wp, and US$3/Wp. Using the summarized 
cost-effective area data, we determine the sensitivity of the cost-effective area under solar PV irrigation to 
the installed cost of solar PV systems. Summary data on cost-effective area of solar irrigation under alterna-
tive diesel fuel price scenarios are also presented as a demonstration of the sensitivity of the cost-effective-
ness of solar PV irrigation systems to future diesel fuel prices.

4. Results
The values of several key intermediate variables: irrigation water demand, size of solar PV power system, 
diesel fuel consumption and power of diesel generator, calculated for the tomatoes and flood irrigation 
method scenario are shown in Figure 2 as an illustration of the calculations in the sizing procedure dis-
played in Figure 1. Moreover, the percentage share of diesel fuel cost in the life-cycle cost of the diesel power 
system under this crop-irrigation method scenario and the reference diesel fuel price is shown in Figure 3. It 
is shown that diesel fuel is the principal cost component of diesel irrigation accounting for 70%–90% of the 
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Figure 8. Gross irrigation water demand of sugarcane and chickpea.
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life-cycle cost of the whole system except for a few countries with low diesel fuel prices (e.g., Sudan, Nigeria 
and Angola; refer to Figure 5 for diesel prices).

The solar PV breakeven installed cost maps plotted under various crop-irrigation method scenarios and 
under reference diesel fuel price (escalation rate of diesel fuel = 2%) are shown in Figure 4. These maps 
show that there is great spatial variability in calculated breakeven installed costs and that the price of diesel 
is undoubtedly a factor of the variability. In nearly all crop-irrigation method scenarios, low-breakeven cost 
values are observed at almost all locations in Sudan, Nigeria, and Angola. For the purpose of explanation, 
the bar chart in the right panel of Figure 5 shows the diesel fuel prices from the 2018/2019 GIZ report that 
were used in the study. As demonstrated by the chart, these three countries have the lowest diesel prices in 
sub-Saharan Africa. The diesel price in Sudan was reported at US$0.09/liter, followed by a price of US$0.44/
liter in Angola, and US$0.57/liter in Nigeria. Another noticeable pattern in the geographic distribution of 
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Figure 9. Expected values of seasonal irrigation water demand, diesel fuel consumption and required capacity of the solar PV system and power of the diesel 
generator derived from the Monte Carlo-based sizing calculation under the tomatoes + drip irrigation scenario.
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calculated breakeven values is that low values of breakeven installed costs of solar PV systems tend to co-
incide with areas with humid climate. Ghana and Côte d'Ivoire, for example, span a precipitation gradient 
from south to north with lower breakeven costs for solar PV found in the wetter south and higher breakeven 
cost values calculated in the drier north. Low breakeven values for solar PV installation are also observed 
in humid areas which straddle the equator in Gabon, Congo, and the Democratic Republic of the Congo. 
According to the definition of the breakeven installed cost, the adoption of solar irrigation is faced with 
more challenges in areas with low breakeven installed costs. In these areas, to be considered a more cost-ef-
fective option than diesel, the installed cost of a solar PV system often has to be below US$2/Wp. Low solar 
insolation is probably a reason that leads to the unfavorableness for solar PV in these areas. By contrast, a 
high calculated breakeven cost tends to appear in countries with high diesel prices and in places with arid 
climates, two characteristics which imply better opportunities for using solar energy to power irrigation.

Figure 6 shows the cost-effective areas under the two energy solutions summarized by geographic region, as 
obtained through a reclassification analysis of breakeven cost maps in Figure 4. In the reclassification anal-
ysis which generated the charts in Figure 6a, the installed cost of solar PV is assumed to be US$2.50/Wp. 
The largest potential of solar PV irrigation can be seen in southern Africa. Under the majority of crop-ir-
rigation method scenarios, more than 80% of the cropland area in southern Africa is classified as solar 
PV cost-effective. The share of cost-effective irrigable cropland for solar PV is also high in central Africa. 
Although low breakeven cost values were calculated in land pixels which appear to be scattered widely in 
the very humid zone straddling the equator, the share of cropland in these pixels is rather low. The cost-ef-
fective area under diesel irrigation exceeds the cost-effective area under solar PV in East and West Africa. In 
West Africa, this is mainly because solar irrigation lacks cost-effectiveness in Nigeria, which has the largest 
farming in the region and low diesel cost, as noted above. In other parts of West Africa (including Senegal, 
Guinea, Mali, Burkina Faso, Niger, northern Côte d'Ivoire and northern Ghana), solar PV tends to be a more 
economical energy solution to power irrigation. In East Africa, the adoption potential of solar irrigation is 
concentrated in South Sudan, Eritrea, Somalia, and Tanzania.

Figures 6b and 6c show how the relative cost-effectiveness of the two energy solutions can vary with the 
installed cost of solar PV. Here, solar PV installed cost is set at US$2/Wp and US$3/Wp, respectively. As 
expected, the cost-effectiveness of solar PV rises with a lower solar PV installed cost (Figure 6b) and de-
creases as the installed cost increases (Figure 6c). The wide range of the area variable revealed in this sen-
sitivity analysis suggests that the investment decision on energy solution selection is highly sensitive to the 
installed cost of solar PV. In particular, the adoption potential of solar PV surpasses that of diesel irrigation 
in West and East Africa when the solar PV installed cost drops to US$2/Wp.

The solar PV breakeven installed costs calculated under the high diesel fuel price scenario (diesel fuel price 
escalation rate = 4%) and low diesel fuel price scenario (no change in the future diesel price) exhibit a 
similar pattern of spatial variability as that shown on maps in Figure 4. Figure 7 shows the summarized 
 cost-effective areas by energy solution under the two future diesel price scenarios. These results are pro-
duced with a solar PV installed cost of US$2.50/Wp for comparison with the graphs in Figure 4a as a demon-
stration of the impact of future diesel prices on the relative cost-effectiveness of groundwater irrigation 
systems under the two energy technologies. Not surprisingly, solar irrigation becomes more attractive in the 
high future diesel price scenario and less feasible in the low diesel price scenario. The change in feasible 
area for the two technologies again varies significantly.

In addition to spatial variability, the summarized statistics presented in Figures 6 and 7 suggest that the 
calculated breakeven installed costs of solar PV also possess large variability across crops. Based on share of 
cost-effective area, solar irrigation is found to be more suitable for irrigating sugarcane, onions, and banan-
as, but to perform less well in the case of chickpeas and common beans. Chickpea and common bean are 
two crops which have the lowest irrigation water demand, and therefore energy requirement for irrigation, 
among the crops included in this study. Figure 8 illustrates the difference in irrigation water demand in the 
irrigated production of chickpea and sugarcane in southern Africa where the cropland with suitability for 
chickpea is mainly located. Rather than a coincidence, the greater cost-effectiveness of solar irrigation in 
cultivating crops with higher irrigation water demand may be linked to the investment characteristics of the 
solar PV power system: solar PV investment is characterized by high upfront capital cost and in the sizing 
calculations we sized the solar PV system according to the irrigation demand/energy requirement in the 
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peak month instead of the total irrigation water/energy demand through the season. Conversely, the cost of 
diesel irrigation tends to escalate with irrigation water considering that the fuel cost constitutes the major 
part of life-cycle cost of the diesel power system (Figure 3).

Finally, it is also interesting to note that the cost-effective areas of solar and diesel groundwater pumping 
for drip-irrigated tomatoes, onions, chickpeas, and common beans are not significantly different from the 
cost-effective areas under flood-irrigated scenarios for these crops. What is behind the seemingly invari-
ant cost-effectiveness is that, for a given irrigated crops, when there is a change in irrigation method the 
absolute values of estimated life-cycle costs of solar and diesel irrigation water pumping systems shift in 
a synchronized way, which leaves the relative cost-effectiveness of the two pumping systems more or less 
unchanged. The values of seasonal irrigation water demand, required capacity of the solar PV system and 
power of the diesel generator calculated under the tomatoes and drip irrigation scenario are plotted on 
maps in Figure  9 in comparison with the values of the these variables plotted under the tomatoes and 
flood irrigation scenario in Figure 2. As is evident, drip irrigation can lead to substantial savings in water 
and energy consumption and downsize the requirements for both solar PV and diesel power systems. This 
observation is in line with conclusions from field studies by Pawar et al. (2015) and Surendran et al. (2016). 
The differences in absolute magnitudes of water and energy consumption/costs undoubtedly have implica-
tions for irrigation investment decisions, although it is beyond the scope of study to fully investigate such 
implications or address the irrigation method selection issue.

5. Conclusions and Discussions
In this study, we compared the cost-effectiveness of solar PV and diesel energy for groundwater pumping 
for irrigation in sub-Saharan Africa under a range of crop and irrigation-method scenarios. The observed 
cost-effectiveness of solar-powered groundwater irrigation relative to diesel-powered groundwater irriga-
tion varies across scenarios. But overall, the results of the study show that solar PV is a promising energy 
solution to support groundwater-fed irrigation development. In many cases, solar energy can serve as a 
substitute for diesel to power groundwater pumping for irrigation more economically, particularly in the 
central and southern African regions. On the other hand, the fact that the calculated cost-effectiveness of 
solar PV is sensitive to the installed cost of solar PV and the escalation rate of diesel prices highlights the 
financial risk and uncertainty associated with the investment in solar powered irrigated agriculture. This 
is linked with the rapid development of solar energy technology and the price volatility of fossil fuels. The 
cost comparison analysis should thus be updated periodically in order to provide up-to-date information on 
cost-effectiveness which reflects the cost and pricing trends of solar energy and energy markets.

As a caveat, it is worth noting that while this study provides a first insight into the prospect of expanding 
groundwaterirrigation under solar and diesel energy solutions in sub-Saharan Africa, it is not designed 
to provide a complete answer to questions such as “what is the development potential of groundwater 
irrigation powered by solar or diesel energy?” Irrigation development is a complex decision-process, and 
many factors play a role. In addition to energy costs, the economic viability of irrigation also depends on 
the market potential of the irrigated products, which determine revenues from the irrigated production, 
and costs of other inputs in crop production (e.g., seeds, fertilizers, and pesticides). There are also con-
cerns about the groundwater overdraft risks in groundwater irrigation (Abric et al., 2011; Rodell et al., 2009; 
Scanlon et  al.,  2012). In a sound irrigation planning analysis, all these factors should be taken into ac-
count. Various approaches have been proposed to assist in strategic irrigation planning analysis in sub-Sa-
haran Africa. For example, there are studies that used GIS (Geographic Information System) tools and 
MCE (Multi Criteria Evaluation) techniques to score land suitability for irrigation and delineated area with 
irrigation development potential (Berhanu & Hatiye, 2020; Schmitter et al., 2018; Worqlul et al., 2017). Xie 
et al. (2014, 2017, 2021) developed an integrated modeling framework which combines the use of GIS land 
suitability analysis, hydrological/crop simulation and economic modeling tools with cost-benefit and sus-
tainability of irrigation development being evaluated explicitly. The data developed in this cost comparison 
study can be used to augment these analyses by introducing additional suitability criteria in MCE analysis 
and incorporating a decision process of energy solution selection in Xie et al. (2021)'s model to generate 
enhanced estimates of groundwater irrigation development potential under different energy solutions. This 
constitutes an interesting topic for future research.
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Data Availability Statement
All the data used in the analysis are publicly available and can be accessed via supporting information (Ta-
ble S2). GIS source data files of breakeven cost maps that are shown in Figure 4 and generated under two 
alternative diesel fuel price scenarios are deposited to https://doi.org/10.7910/DVN/TI7VYF.

References
Abric, S., Sonou, M., Augeard, B., Onimus, F., Durlin, D., Soumaila, A., et al. (2011). Lessons learned in the development of smallholder 

private irrigation for high-value crops in West Africa. World Bank.
Abu-Aligah, M. (2011). Design of photovoltaic water pumping system and compare it with diesel powered pump. Jordan Journal of Me-

chanical and Industrial Engineering, 5(3), 273–280.
Allen, R. G., Pereira, L. S., Raes, D., & Smith, M. (1998). In: Crop evapotranspiration—Guidelines for Computing Crop water require-

ments—FAO Irrigation and drainage paper 56. Rome: FAO.
Barrueto Guzmán, A., Barraza Vicencio, R., Ardila-Rey, J., Núñez Ahumada, E., González Araya, A., & Arancibia Moreno, G. (2018). A 

cost-effective methodology for sizing solar PV systems for existing irrigation facilities in Chile. Energies, 11(7), 1853.
Baumann, E., Ball, P., & Beyene, A. (2005). Rationalization of drilling operations in Tanzania. In Review of the borehole drilling Sector in 

Tanzania (St. Gallen: Rural water supply network).
Belaud, G., Mateos, L., Aliod, R., Buisson, M.-C., Faci, E., Gendre, S., et al. (2020). Irrigation and energy: Issues and challenges. Irrigation 

and Drainage, 69(Supp. 1), 177–185. https://onlinelibrary.wiley.com/doi/epdf/10.1002/ird.2343
Bengtsson, N., & Nilsson, J. (2015). Solar water Pumping for irrigation: Case Study of the Kilimanjaro region. Independent Thesis.
Berhanu, K. G., & Hatiye, S. D. (2020). Identification of groundwater potential zones using proxy data: Case study of Megech watershed, 

Ethiopia. Journal of Hydrology: Regional Studies, 28, 100676.
Blimpo Moussa, P., & Cosgrove-Davies, M. (2019). Electricity access in sub-Saharan Africa: Uptake, reliability, and complementary factors for 

economic impact Africa development forum. Washington, DC: World Bank. https://openknowledge.worldbank.org/handle/10986/31333
Bonsor, H. C., & MacDonald, A. M. (2011). An initial estimate of depth to groundwater across Africa, Groundwater Science Programme Open 

Report OR/11/067. British Geological Survey.
Borehole Water Association of Southern Africa (2020). https://bwa.co.za/laypersons-guide
Brouwer, C., Prins, K., & Heibloem, M. (1989). Irrigation water management: Irrigation scheduling. Training manual no. 4. Rome: FAO. 

http://www.fao.org/tempref/agl/AGLW/fwm/Manual5.pdf
Burney, J., Woltering, L., Burke, M., Naylor, R., & Pasternak, D. (2010). Solar-powered drip irrigation enhances food security in the Sudano–

Sahel. Proceedings of the National Academy of Sciences, 107(5), 1848–1853. https://doi.org/10.1073/pnas.0909678107
Burney, J. A., Naylor, R. L., & Postel, S. L. (2013). The case for distributed irrigation as a development priority in sub-Saharan Africa. Pro-

ceedings of the National Academy of Sciences, 110(31), 12513–12517.
Cobbing, J., & Hiller, B. (2019). Waking a sleeping giant: Realizing the potential of groundwater in Sub-Saharan Africa, 122, 597–613. 

https://doi.org/10.1016/j.worlddev.2019.06.024
Cuadros, F., López-Rodrıguez, F., Marcos, A., & Coello, J. (2004). A procedure to size solar-powered irrigation (photoirrigation) schemes. 

Solar Energy, 76(4), 465–473.
de Fraiture, C., & Giordano, M. (2014). Small private irrigation: a thriving but overlooked sector. Agricultural Water Management, 131, 

167–174.
de Graaf, I. E., van Beek, R. L., Gleeson, T., Moosdorf, N., Schmitz, O., Sutanudjaja, E. H., et al. (2017). A global-scale two-layer transient 

groundwater model: Development and application to groundwater depletion. Advances in Water Resources, 102, 53–67.
Domènech, L. (2015). Improving irrigation access to combat food insecurity and undernutrition: A review. Global Food Security, 6, 24–33.
EMCON (2006). Feasibility assessment for the replacement of diesel water pumps with solar water pumps. Windhoek, Namibia: UNDP.
FAO (1997). Irrigation potential in Africa: A basin approach. FAO land and water bull. Rome: FAO.
FAO (2016). Aquastat. Rome: FAO. http://www.fao.org/land-water/databases-and-software/aquastat/en/
FAO (2020). Smallholders dataportrait. Rome: FAO http://www.fao.org/family-farming/data-sources/dataportrait/farm-size/en/
FAO and ECA (2018). Regional overview of food security and nutrition. Addressing the threat from climate variability and extremes for food 

security and nutrition. Accra: FAO.
Fischer, G., Nachtergaele, F. O., Prieler, S., Teixeira, E., Tóth, G., Van Velthuizen, H., et al. (2012). Global agro-ecological zones (GAEZ v3. 

0)—Model documentation. Laxenburg, Austria: IIASA and Rome: FAO
Fritz, S., See, L., McCallum, I., You, L., Bun, A., Moltchanova, E., et al. (2015). Mapping global cropland and field size. Global Change 

Biology, 21(5), 1980–1992
Fu, R., Feldman, D. J., & Margolis, R. M. (2018). US solar photovoltaic system cost benchmark: Q1 2018 Technical report NREL/TP-

6A20-72399. Golden, CO:National Renewable Energy Lab.
Funk, C., Peterson, P., Landsfeld, M., Pedreros, D., Verdin, J., Shukla, S., et al. (2015). The climate hazards infrared precipitation with 

stations—A new environmental record for monitoring extremes. Scientific Data, 2(1), 1–21.
Girma, M., Assefa, A., & Molinas, M. (2015). Feasibility study of a solar photovoltaic water pumping system for rural Ethiopia. AIMS 

Environment Science, 2(3), 697–717.
GIZ (2019). International Fuel Prices 2018/19. Eschborn, Germany: German Corporation for International Cooperation. http://sutp.trans-

port-nama.org/files/contents/documents/resources/K_International%20Fuel%20Prices/GIZ_SUTP_IFP_2018-19_EN.pdf
Harris, I., Jones, P. D., Osborn, T. J., & Lister, D. H. (2014). Updated high-resolution grids of monthly climatic observations—the CRU 

TS3.10 Dataset. International Journal of Climatology, 34(3), 623–642.
Hartmann, J., & Moosdorf, N. (2012). The new global lithological map database GLiM: A representation of rock properties at the Earth 

surface. Geochemistry, Geophysics, Geosystems, 13(12).
Hartung, H., & Pluschke, L. (2018). The benefits and risks of solar-powered irrigation—a global overview. Rome: FAO.
Hossain, M. A., Hassan, M. S., Mottalib, M. A., & Hossain, M. (2015). Feasibility of solar pump for sustainable irrigation in Bangladesh. 

International Journal of Energy and Environmental Engineering, 6(2), 147–155.
Huld, T., Müller, R., & Gambardella, A. (2012). A new solar radiation database for estimating PV performance in Europe and Africa. Solar 

Energy, 86(6), 1803–1815.

Acknowledgments
This project is part of the CGIAR 
Research Program on Water, Land and 
Ecosystems (WLE). It is supported by 
CGIAR Fund Donors (http://www.
cgiar.org/who-we-are/cgiar-fund/
fund-donors-2). The research was 
conducted by a team of scientists based 
at the International Food Policy Re-
search Institute (IFPRI) and at Daffodil 
International University. We also thank 
Dr. Petra Schmitter at the International 
Water Management Institute (IWMI) 
for her constructive comments.

https://doi.org/10.7910/DVN/TI7VYF
https://onlinelibrary.wiley.com/doi/epdf/10.1002/ird.2343
https://openknowledge.worldbank.org/handle/10986/31333
https://bwa.co.za/laypersons-guide
http://www.fao.org/tempref/agl/AGLW/fwm/Manual5.pdf
https://doi.org/10.1073/pnas.0909678107
https://doi.org/10.1016/j.worlddev.2019.06.024
http://www.fao.org/land-water/databases-and-software/aquastat/en/
http://www.fao.org/family-farming/data-sources/dataportrait/farm-size/en/
http://sutp.transport-nama.org/files/contents/documents/resources/K_International%20Fuel%20Prices/GIZ_SUTP_IFP_2018-19_EN.pdf
http://sutp.transport-nama.org/files/contents/documents/resources/K_International%20Fuel%20Prices/GIZ_SUTP_IFP_2018-19_EN.pdf


21 of 21

Earth’s Future

XIE ET AL.

10.1029/2020EF001611

IRENA (2016). Solar PV in Africa: Costs and markets. https://www.irena.org/publications/2016/Sep/Solar-PV-in-Africa-Costs-and-Markets
Kelley, L. C., Gilbertson, E., Sheikh, A., Eppinger, S. D., & Dubowsky, S. (2010). On the feasibility of solar-powered irrigation. Renewable 

and Sustainable Energy Reviews, 14(9), 2669–2682.
Langarita, R., Chóliz, J. S., Sarasa, C., Duarte, R., & Jiménez, S. (2017). Electricity costs in irrigated agriculture: a case study for an irrigation 

scheme in Spain. Renewable and Sustainable Energy Reviews, 68, 1008–1019.
Lorenzo, C., Almeida, R. H., Martínez-Núñez, M., Narvarte, L., & Carrasco, L. M. (2018). Economic assessment of large power photovoltaic 

irrigation systems in the. ECOWAS Region Energy, 155, 992–1003.
Lowder, S. K., Skoet, J., & Raney, T. (2016). The number, size, and distribution of farms, smallholder farms, and family farms worldwide. 

World Development, 87, 16–29.
MacDonald, A. M., Bonsor, H. C., Ó Dochartaigh, B. É., & Taylor, R. G. (2012). Quantitative maps of groundwater resources in Africa. 

Environmental Research Letters, 7(2), 024009.
MacDonald, A. M., Ó Dochartaigh, B. É., Calow, R. C., Shalabi, Y., Selah, K., & Merrett, S. (2009). Mapping groundwater development costs 

for the transboundary Western Aquifer Basin, Palestine/Israel. Hydrogeology Journal, 17(7), 1579.
Njuki, J., Waithanji, E., Sakwa, B., Kariuki, J., Mukewa, E., & Ngige, J. (2014). A qualitative assessment of gender and irrigation technology 

in Kenya and Tanzania. Gender, Technology and Development, 18(3), 303–340.
Pawar, N., Bishnoi, D. K., Singh, M., & Dhillon, A. (2015). Comparative economic analysis of drip irrigation vis-a-vis flood irrigation system 

on productivity of Bt. cotton in Haryana. Agricultural Science Digest, 35(4), 300–303.
Phocaides, A. (2007). Handbook on pressurized irrigation techniques. Rome: FAO.
Postel, S., Polak, P., Gonzales, F., & Keller, J. (2001). Drip irrigation for small farmers: A new initiative to alleviate hunger and poverty. 

Water International, 26(1), 3–13.
Rodell, M., Velicogna, I., & Famiglietti, J. S. (2009). Satellite-based estimates of groundwater depletion in India. Nature, 460(7258), 

999–1002.
Scanlon, B. R., Faunt, C. C., Longuevergne, L., Reedy, R. C., Alley, W. M., McGuire, V. L., et al. (2012). Groundwater depletion and sus-

tainability of irrigation in the US High Plains and Central Valley. Proceedings of the National Academy of Sciences of the United States 
of America, 109(24), 9320–9325.

Schmitter, P., Kibret, K. S., Lefore, N., & Barron, J. (2018). Suitability mapping framework for solar photovoltaic pumps for smallholder 
farmers in sub-Saharan Africa. Applied Geography, 94, 41–57.

Sherrin, A. R. (2015). Water use and system reliability under diesel generator and solar photovoltaic powered pumping systems: A case study 
of Solla Togo. Master's thesis Michigan Technological University.

Short, W., Packey, D. J., & Holt, T. (1995). A manual for the economic evaluation of energy efficiency and renewable energy technologies. 
Technical Report NREL/TP-462-5173. National Renewable Energy Lab.

Siebert, S., Burke, J., Faures, J. M., Frenken, K., Hoogeveen, J., Döll, P., et al. (2010). Groundwater use for irrigation–a global inventory. 
Hydrology and Earth System Sciences, 14(10), 1863–1880.

Smith, M. (1992). Cropwat – a computer program for irrigation planning and management, Irrigation and drainage paper 46. Rome: FAO.
Surendran, U., Jayakumar, M., & Marimuthu, S. (2016). Low cost drip irrigation: Impact on sugarcane yield, water and energy saving in 

semiarid tropical agro ecosystem in India. The Science of the Total Environment, 573, 1430–1440.
Szabó, S., Bódis, K., Huld, T., & Moner-Girona, M. (2011). Energy solutions in rural Africa: Mapping electrification costs of distributed 

solar and diesel generation versus grid extension. Environmental Research Letters, 6(3), 034002.
Tarjuelo, J. M., Rodriguez-Diaz, J. A., Abadía, R., Camacho, E., Rocamora, C., & Moreno, M. A. (2015). Efficient water and energy use 

in irrigation modernization: Lessons from Spanish case studies. Proceedings of the ICE - Agricultural Water Management, 162, 67–77.
Theis, C. V. (1935). The relation between the lowering of the piezometric surface and the rate and duration of discharge of a well using 

ground-water storage. Eos, Transactions American Geophysical Union, 16(2), 519–524. https://doi.org/10.1029/TR016i002p00519
Villholth, K. G. (2013). Groundwater irrigation for smallholders in Sub-Saharan Africa–a synthesis of current knowledge to guide sustain-

able outcomes. Water Bar International Series, 38(4), 369–391.
Woltering, L., Pasternak, D., & Ndjeunga, J. (2011). The African market garden: the development of a low-pressure drip irrigation system 

for smallholders in the Sudano Sahel. Irrigation and Drainage, 60(5), 613−621.
World Bank (2018). Solar pumping: The basics (English). Washington, DC: World Bank. http://documents.worldbank.org/curated/

en/880931517231654485/Solar-pumping-the-basics
Worqlul, A. W., Jeong, J., Dile, Y. T., Osorio, J., Schmitter, P., Gerik, T., et al. (2017). Assessing potential land suitable for surface irrigation 

using groundwater in Ethiopia. Applied Geography, 85, 1–13.
Xie, H., You, L., Dile, Y. T., Worqlul, A. W., Bizimana, J. C., Srinivasan, R., Richardson, J. W., et al. (2021). Mapping development potential 

of dry-season small-scale irrigation in Sub-Saharan African countries under joint biophysical and economic constraints-An agent-based 
modeling approach with an application to Ethiopia. Agricultural Office Systems, 186, 102987.

Xie, H., You, L., & Takeshima, H. (2017). Invest in small-scale irrigated agriculture: A national assessment on potential to expand small-
scale irrigation in Nigeria. Agricultural Water Manage, 193, 251–264.

Xie, H., You, L., Wielgosz, B., & Ringler, C. (2014). Estimating the potential for expanding smallholder irrigation in Sub-Saharan Africa. 
Agricultural Water Manage, 131, 183–193.

https://www.irena.org/publications/2016/Sep/Solar-PV-in-Africa-Costs-and-Markets
https://doi.org/10.1029/TR016i002p00519
http://documents.worldbank.org/curated/en/880931517231654485/Solar-pumping-the-basics
http://documents.worldbank.org/curated/en/880931517231654485/Solar-pumping-the-basics

	Solar or Diesel: A Comparison of Costs for Groundwater-Fed Irrigation in Sub-Saharan Africa Under Two Energy Solutions
	Abstract
	1. Introduction
	2. Crop-Irrigation Method Scenarios, Boundary of Pumping System for Life-Cycle Cost Estimation and Spatial Extent of the Comparison Analysis
	3. Data and Methods for Life-Cycle Cost Estimation
	3.1. Solar PV and Diesel Power System Sizing
	3.2. Life-Cycle Cost Estimation of Solar PV and Diesel Pumping Systems

	4. Results
	5. Conclusions and Discussions
	Data Availability Statement
	References


