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ABSTRACT

In the first part of this dissertation, we consider the Group Testing (GT) problem and its

two variants, the Quantitative GT (QGT) problem and the Coin Weighing (CW) problem.

An instance of the GT problem includes a ground set of items that includes a small subset

of defective items. The GT procedure consists of a number of tests, such that each test

indicates whether or not a given subset of items includes one or more defective items. The

goal of the GT procedure is to identify the subset of defective items with the minimum

number of tests.

Motivated by practical scenarios where the outcome of the tests can be affected by

noise, we focus on the noisy GT setting, in which the outcome of a test can be flipped

with some probability. In the noisy GT setting, the goal is to identify the set of defective

items with high probability. We investigate the performance of two variants of the Belief

Propagation (BP) algorithm for decoding of noisy non-adaptive GT under the combinato-

rial model for defective items. Through extensive simulations, we show that the proposed

algorithms achieve higher success probability and lower false-negative and false-positive

rates when compared to the traditional BP algorithm. We also consider a variation of the

probabilistic GT model in which the prior probability of each item to be defective is not

uniform and in which there is a certain amount of side information on the distribution of

the defective items available to the GT algorithm. This dissertation focuses on leveraging

the side information for improving the performance of decoding algorithms for noisy GT.

First, we propose a probabilistic model, referred to as an interaction model, that captures

the side information about the probability distribution of the defective items. Next, we

present a decoding scheme, based on BP, that leverages the interaction model to improve
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the decoding accuracy. Our results indicate that the proposed algorithm achieves higher

success probability and lower false-negative and false-positive rates when compared to the

traditional BP, especially in the high noise regime.

In the QGT problem, the result of a test reveals the number of defective items in the

tested group. This is in contrast to the standard GT where the result of each test is either

1 or 0 depending on whether the tested group contains any defective items or not. In this

dissertation, we study the QGT problem for the combinatorial and probabilistic models of

defective items. We propose non-adaptive QGT algorithms using sparse graph codes over

bi-regular and irregular bipartite graphs, and binary t-error-correcting BCH codes. The

proposed schemes provide exact recovery with a probabilistic guarantee, i.e. recover all

the defective items with high probability. The proposed schemes outperform existing non-

adaptive QGT schemes for the sub-linear regime in terms of the number of tests required

to identify all defective items with high probability.

The CW problem lies at the intersection of GT and compressed sensing problems.

Given a collection of coins and the total weight of the coins, where the weight of each coin

is an unknown integer, the problem is to determine the weight of each coin by weighing

subsets of coins on a spring scale. The goal is to minimize the average number of weigh-

ings over all possible weight configurations. Toward this goal, we propose and analyze

a simple and effective adaptive weighing strategy. This is the first non-trivial achievable

upper bound on the minimum expected required number of weighings.

In the second part of this dissertation, we focus on the private information retrieval

problem. In many practical settings, the user needs to retrieve information messages from

a server in a periodic manner, over multiple rounds of communication. The messages

are retrieved one at a time and the identity of future requests is not known to the server.

We study the private information retrieval protocols that ensure that the identities of all

the messages retrieved from the server are protected. This scenario can occur in practical
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settings such as periodic content download from text and multimedia repositories. We

refer to this problem of minimizing the rate of data download as online private information

retrieval problem. Following the previous line of work by Kadhe et al., we assume that

the user knows a subset of messages in the database as side information. The identities of

these messages are initially unknown to the server. Focusing on scalar-linear settings, we

characterize the per-round capacity, i.e., the maximum achievable download rate at each

round. The key idea of our achievability scheme is to combine the data downloaded during

the current round and the previous rounds with the original side information messages and

use the resulting data as side information for the subsequent rounds.
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NOMENCLATURE

GT Group Testing

QGT Quantitative Group Testing

CS Compressed Sensing

CW Coin Weighing

BP Belief Propagation

RSBP Random Scheduling Belief Propagation

NW-RBP Node-Wise Residual Belief Propagation

BPIP Belief Propagation using Initial Prior probabilities

BPUP Belief Propagation using Updated Prior probabilities

BPCG Belief Propagation on Combined Graph

BCH Bose–Chaudhuri–Hocquenghem
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LDPC Low-Density Parity-Check

LLR Log-Likelihood Ratio

FNR False Negative Rate

FPR False Positive Rate

MAP Maximum a Posteriori

{wi} Weight configuration

w(S) Total weight of the subset S of coins(
n
k

)
n choose k
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Ψ Adaptive weighing strategy

O(·) Big O notation

A Measurement matrix

y Test results vector

R Set of real numbers

Z≥0 Set of non-negative integers

N Set of positive integers

F2 Finite field of two elements

F2m Extension field of F2

TG Adjacency matrix of a bipartite graph G

U Signature matrix

[i] Set of integers {1, . . . , i}

L(·) Lef-node degree distribution

{S}ℓ Set of all subsets of size ℓ for set S

PIR Private Information Retrieval

OPIR Online Private Information Retrieval

MDS Maximum Distance Separable

Fq Finite field for a prime power q

Fqm Extension field of Fq

Fk×nq k × n-dimensional matrix space over Fq

H(·) (Shannon) Entropy

H(·|·) Conditional entropy

P(·) Probability

P(·|·) Conditional probability
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1. INTRODUCTION

1.1 Group Testing

In the first part of this dissertation, we consider the problem of Group Testing (GT).

The invention of GT dates back to World War II when the U.S. military needed to identify

soldiers infected with syphilis. In order to identify an infected individual, one can take

a blood sample and test it. However, testing the blood samples of a large number of

soldiers individually costed lots of time and resources. Also, since the infected population

was sparse, this testing procedure seemed inefficient. It is thus natural to ask whether it

is possible to test N individuals with less than N tests. Dorfman, in his seminal work

[1], introduced the concept of GT for the first time. He showed that by testing pools of

blood samples, the required number of tests for identifying infected individuals could be

dramatically reduced. In other words, the required number of tests can be reduced when

the test is performed as follows. For each test, blood samples are taken from a group of

soldiers and a pool is made by mixing the blood samples. Then, the test is performed on

the pool. A negative test result indicates that all the soldiers involved in the pool are not

infected with syphilis, whereas a positive test result reveals that at least one of the soldiers

involved in the pool is infected with syphilis.

The GT problem is defined formally as follows. An instance of the GT problem in-

cludes a set S of N items which includes a small subset of defective items. The GT

procedure consists of a sequence of tests, such that each test indicates whether there are

one or more defective items in a given subset of S. The goal of the GT procedure is to

identify the subset of defective items through the minimum number of tests. Aside from

the theoretical endeavors, the GT problem has also gained substantial attention from the

practical perspective. In particular, the GT problem has been studied for a wide range of
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applications from biology and medicine [2] to information and communication technol-

ogy [3, 4], and computer science [5]. Very recently, group testing has also been used for

COVID-19 detection [6–10].

There are two different models for the defective items in the literature: deterministic

and randomized. In the deterministic model (a.k.a. the combinatorial model), the exact

number of defective items is known, whereas in the randomized model (a.k.a. the prob-

abilistic model), each item is defective with some probability, independent of the other

items [11–15]. There are also two types of GT algorithms: non-adaptive, and adaptive.

In an adaptive scheme, each test depends on the outcomes of the previous tests. On the

other hand, in a non-adaptive scheme, all tests are planned in advance. In other words, the

result of one test does not affect the design of another test. A GT algorithm consists of

two parts: encoding and decoding. The encoding part is concerned with the test design,

i.e., the question of which item should be included in which test. The decoding part is

concerned with identifying the defective items given the test design and outcomes of the

tests.

Let D be the index set of the defective items and D̂ be an estimation of D. Depending

on the application at hand, there can be different requirements for the closeness of D̂ to

D [16,17]. The strongest condition for closeness is exact recovery when it is required that

D̂ = D. Two weaker conditions are partial recovery without false detections when it is

required that D̂ ⊆ D and |D̂| ≥ (1−ϵ)|D|, and partial recovery without missed detections

when it is required that D ⊆ D̂ and |D̂| ≤ (1 + ϵ)|D|. There are also different types of

the recovery guarantees [17]. The strongest guarantee is perfect recovery guarantee when

the exact or partial recovery needs to be achieved with probability 1 (over the space of

all problem instances). A slightly weaker guarantee is probabilistic recovery guarantee

when it suffices to achieve the exact or partial recovery with high probability only (and not

necessarily with probability 1).
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Motivated by practical scenarios where the outcome of the tests can be affected by

noise, we consider both noiseless and noisy settings. Under the noiseless GT setting, We

get a negative test result if all items in the test are not defective, and a positive result if at

least one item in the test is defective. However, under the noisy GT setting, the outcome of

a test can be flipped with some probability. In the noisy GT setting, the goal is to identify

the set of defective items with high probability (1− ε), for small values of ε.

There is a variant of the GT problem, the quantitative GT problem, and a generalization

of the GT problem, the coin weighing problem. We define the quantitative GT problem

and the coin weighing problem in Section1.1.1 and Section1.1.2, respectively.

1.1.1 Quantitative Group Testing

The Quantitative Group Testing (QGT) problem is to identify the defective items,

where the result of a test reveals the number of defective items in the tested group. The

key difference between the QGT problem and the standard GT problem is that, unlike the

former, in the latter the result of each test is either 1 or 0 depending on whether the tested

group contains any defective items or not. The QGT problem has been extensively studied

for a wide range of applications, e.g., multi-access communication, spectrum sensing, and

network tomography, see, e.g., [13], and references therein.

1.1.1.1 Connection with Compressed Sensing

A closely related problem to QGT is the problem of compressed sensing (CS) in which

the goal is to recover a sparse signal from a set of (linear) measurements. Given an N -

dimensional sparse signal with a support size up to K, the objective is to identify the

indices and the values of non-zero elements of the signal with minimum number of mea-

surements. The main differences between the CS problem and the QGT problem are in the

signal model and the constraints on the measurement matrix. Most of the existing works

on the CS problem consider real-valued signals and measurement matrices. The QGT
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problem, however, requires both the signal and the measurement matrix to be binary.

There are a number of CS algorithms in the literature that use binary measurement

matrices, see, e.g. [18, 19] and references therein. However, these strategies either use

techniques not applicable to binary signals, or provide different types of closeness and

guarantee than those required in this work. There are also several CS algorithms for the

support recovery where the objective is to determine the indices of the non-zero elements

of the signal but not their values [20, 21]. The support recovery problem is indeed equiva-

lent to the QGT problem. Notwithstanding, the existing schemes for support recovery rely

on non-binary measurement matrices, and hence are not suitable for the QGT problem.

Last but not least, to the best of our knowledge, the majority of works on the CS

problem focus mainly on the order optimality of the number of measurements, whereas in

this dissertation for the QGT problem we are also interested in minimizing the constant

factor hidden in the order.

1.1.2 Coin Weighing

The Coin Weighing (CW) problem is defined as follows. Suppose that there is a col-

lection of n ≥ 2 coins of total weight d, where each coin has an unknown integer weight

in the set {0, 1 . . . , k}, for some known integers d ≥ 1 and k ≥ 1. The problem is to

determine the weight of each coin by weighing subsets of coins in a spring scale while

minimizing (i) the maximum number of required weighings over all possible weight con-

figurations (worst-case setting), or (ii) the average number of required weighings over all

possible weight configurations (average-case setting).

The CW problem is a generalization of the group testing problem. In particular, for

k = 1 and d ≤ n, the CW problem is equivalent to the combinatorial quantitative group

testing problem, see, e.g., [22]. Consider a set of n items among which a subset of d

items are defective. The problem is to identify the defective items by performing fewest
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possible tests over subsets of the items, where the result of each test indicates the number

of defective items in the tested subset. Also, for d ≪ n and k ≥ 1, the CW problem

is equivalent to the integral compressed sensing problem where both the signal and the

sensing matrix are integer valued, see, e.g., [23]. Consider an n-dimensional signal with

at most d components of non-zero integer values and at least n − d components of zero

value. The problem is to construct smallest possible number of linear measurements of the

signal with integer coefficients, from which the signal can be uniquely recovered.

1.2 Private Information Retrieval

In the second part of this dissertation, we focus on the Private Information Retrieval

(PIR) problem. The goal of the PIR schemes [24] is to enable a user to download a mes-

sage or a set of messages belonging to a database whose copies are stored on a single

or multiple remote servers, without revealing which message it is requesting. In a sin-

gle server scenario, the entire database needs to be downloaded to preserve the privacy

of the requested message. However, when the user has some side information about the

database [25–33], the information-theoretic privacy can be achieved more efficiently than

downloading the whole database.

In the PIR with side information setting, the user has access to a random subset of

the messages in the database as side information, which are unknown to the server. This

side information could have been obtained from other trusted users or through previous

interactions with the server. In this setting, the savings in the download cost depend on

whether the user wants to protect only the privacy of the requested message, or the privacy

of both the requested message and the messages in the side information.

To the best of our knowledge, all of the prior works on PIR focus on retrieval of a

single or multiple messages at once. However, in many practical settings, the user needs

to retrieve multiple messages periodically, over multiple rounds. For example, a user
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might retrieve a book or a movie from an on-line repository on a daily basis. We refer to

this setting as online PIR, inspired by the fact that the user does not know the identities

of the future items that need to be retrieved from the server. The key requirement in such

scenarios is to protect the identity of all the requested messages up to the current round. By

leveraging previously downloaded messages, the user can significantly reduce the number

of bits that need to be downloaded. Accordingly, we analyze both the fundamental limits

as well as the achievability schemes for the online PIR schemes.

1.3 Our Contributions and Organization

In this section, we summarize the key contributions of this dissertation, and describe

the organization of the chapters.

In Chapter 2, we study a generalized version of the CW problem with a spring scale

that lies at the intersection of group testing and compressed sensing problems. We propose

and analyze a simple and effective adaptive weighing strategy for d = k = 2. The results

of our theoretical analysis show that the proposed strategy requires 2 log2 n− 1 number

of weighings in worst case, and it requires about 1.365 log n− 0.5 number of weighings

on average. (The average-case result is obtained by a numerical evaluation of the exact

recursive formulas, derived for the analysis of performance of the proposed strategy.) This

is the first non-trivial achievable upper bound on the minimum expected required number

of weighings for d = k = 2. Additionally, for the average-case setting, we design and ana-

lyze an optimal strategy within the class of nested strategies, which are mostly being used

in today’s applications, that requires 2n+1
n+1

log n− 2(n−1)
n+1

weighings on average. A simple

analysis shows that as n grows unbounded, the proposed strategy, when compared to the

optimal nested strategy, requires about 31.75% less number of weighings on average; and

when compared to the information-theoretic lower bound, the proposed strategy requires

at most about 8.16% extra number of weighings on average.
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In Chapter 3, we investigate the QGT problem for a scenario in which there are K

defective items among a population of N items. We propose a non-adaptive QGT strategy

for the sub-linear regime where K
N

vanishes as K,N → ∞. We utilize sparse graph

codes over bi-regular bipartite graphs and binary t-error-correcting BCH codes for the

design of the proposed strategy. Leveraging powerful density evolution techniques for

the analysis enables us not only to determine the exact value of constants in the number

of tests needed but also to provide provable performance guarantees. We show that the

proposed scheme provides exact recovery with probabilistic guarantee, i.e. recovers all the

defective items with high probability. In particular, for the sub-linear regime, the proposed

scheme requires at most m ≈ 1.19K log2
(
4.74N

K

)
tests to recover all the defective items

with probability approaching one as K,N → ∞. This bound can be achieved by t = 2.

Moreover, for any t ≤ 4, the encoding and decoding algorithms of the proposed scheme

have the computational complexity of O(N log N
K
) and O(K log N

K
), respectively.

In Chapter 4, we consider a QGT problem with a probabilistic model for defective

items, where in a population of N items, each item is defective with probability K
N

, inde-

pendently from the other items. We propose a non-adaptive QGT scheme for the sub-linear

regime where K
N

vanishes asK,N → ∞. The encoding algorithm of the proposed scheme

relies on sparse graph codes over irregular bipartite graphs with optimized left-degree pro-

files as well as binary t-error-correcting BCH codes. As part of the process of optimizing

the left-degree profile of the graph, we take advantage of the density-evolution technique

to analyze the probability of error of the proposed peeling-based recovery algorithm, i.e.,

the probability that a defective item remains unidentified over the iterations of the recovery

algorithm. We provide provable guarantees on the performance of the proposed scheme

in terms of the required number of tests. In particular, we show that in the sub-linear

regime the proposed scheme requires m = c(t, d)K(t log( ℓN
c(t,d)K

+ 1) + 1) tests to iden-

tify all defective items with high probability, where d and ℓ are the maximum and average
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left degree, respectively, and c(t, d) is constant with respect toK andN , and depends only

on t and d. Moreover, we show that, for any t ≤ 4, the testing and recovery algorithms of

the proposed scheme have the computational complexity of O(N log N
K
) and O(K log N

K
),

respectively.

In Chapter 5, we focus on the noisy GT problem which is concerned with recovering

all defective items in a given population of items. We consider a practical regime in which

the number of items is in the order of hundreds, and investigate the performance of two

variants of Belief Propagation (BP) algorithm for decoding of noisy non-adaptive GT un-

der the combinatorial model for defective items. Through extensive simulations, we show

that the proposed algorithms achieve higher success probability and lower false-negative

and false-positive rates when compared to the traditional BP algorithm.

Motivated by practical scenarios, such as testing for viral diseases, we study a GT with

side information problem in Chapter 6. We focus on the following GT settings: (i) the

GT procedure is noisy, i.e., the outcome of the GT procedure can be flipped with a certain

probability; (ii) there is a certain amount of side information on the distribution of the in-

fected individuals available to the GT algorithm. First, we propose a probabilistic model,

referred to as an interaction model, that captures the side information about the proba-

bility distribution of the infected individuals. Our model is motivated by the availability

of contact tracing information which can be collected from surveys and mobile phone

applications. Next, we present a decoding scheme, based on belief propagation, that lever-

ages the interaction model to improve the decoding accuracy. Our results indicate that

the proposed algorithm achieves higher success probability and lower false-negative and

false-positive rates when compared to the traditional belief propagation especially in the

high noise regime.

In Chapter 7, we turn to the PIR problem. We study the problem of single-server

online PIR with side information. In this problem, there is a user who wishes to download
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a sequence of messages XW = {XW1 , XW2 , . . . , XWt} from a database X of K messages,

stored on a single server. The communication is performed in rounds, such that at round

i, the user wishes to retrieve a message XWi
for some Wi ∈ [K]. We assume that the

user decides on which message Wi to request at round i at the beginning of that round and

that the identity of the future messages Wj , j > i are not known at that time. We also

assume that at the beginning of the first round the user has access to M messages which

are selected uniformly at random from the database. The identity of these M messages are

not known to the server.

We focus on the scenario where at round i, the user wishes to protect the identity of all

the requested messages individually up to round i, {W1, . . . ,Wi} for 1 ≤ i ≤ t. That is,

after the user makes a request to the server at round i, the server cannot decide which of the

K messages is more likely to get requested at that round and at the previous rounds. Fo-

cusing on scalar-linear settings, we characterize the per-round capacity, i.e., the maximum

achievable download rate at each round. We also present a scalar-linear coding scheme

that achieves this capacity. The key idea of our scheme is to combine the data downloaded

during the current round and the previous rounds, with the original side information (un-

known to server) so as to construct new side information for the subsequent rounds. We

show that for the setting with K messages stored at the server and a random subset of M

messages available to the user at the first round, the per-round capacity of the scalar-linear

scheme is C1 = (M + 1)/K for the first round and Ci = (2i−1(M + 1))/KM for round

i ≥ 2, provided that K/(M + 1) = 2l for some l ≥ 1.

We conclude this dissertation in Chapter 8 by summarizing our results and presenting

some interesting future directions.
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2. A SIMPLE AND EFFICIENT STRATEGY FOR THE COIN WEIGHING

PROBLEM WITH A SPRING SCALE*

2.1 Introduction

In this chapter, we consider a generalized version of the coin weighing (CW) problem

with a spring scale [34]. Suppose that there is a collection of n ≥ 2 coins of total weight

d, where each coin has an unknown integer weight in the set {0, 1 . . . , k}, for some known

integers d ≥ 1 and k ≥ 1. The goal is to determine the weight of each coin by weighing

subsets of coins in a spring scale. The problem is to devise an adaptive weighing strategy,

where each weighing can depend on the results of the previous weighings, that minimizes

(i) the maximum number of required weighings over all possible weight configurations

(worst-case setting), or (ii) the average number of required weighings over all possible

weight configurations (average-case setting).

The CW problem is a generalization of the group testing problem. In particular, for

k = 1 and d ≤ n, the CW problem is equivalent to the combinatorial quantitative group

testing problem, see, e.g., [22]. Also, for d≪ n and k ≥ 1, the CW problem is equivalent

to the integral compressed sensing problem where both the signal and the sensing matrix

are integer valued, see, e.g., [23].

For d = k = 1, a simple adaptive bisecting weighing strategy is optimal in both worst-

case and average-case settings [13]. However, the simplest non-trivial case of the problem,

i.e., d = k = 2, is still open, and hence the focus of this work. For the worst-case setting,

a simple information-theoretic argument yields a lower bound on the minimum required

number of weighings by max{log2 n, log3
(
n
2

)
} (see Theorem 1); and for the average-

*Reprinted with permission from [14] "A Simple and Efficient Strategy for the Coin Weighing Problem
with a Spring Scale," by E. Karimi, F. Kazemi, A. Heidarzadeh and A. Sprintson, 2018. In Proceedings of
2018 IEEE International Symposium on Information Theory (ISIT), 2018, pp. 1730-1734. Copyright © by
IEEE.
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case setting, a similar argument gives a lower bound of 2
n+1

log2 n + n−1
n+1

log3
(
n
2

)
on the

minimum expected required number of weighings (see Theorem 1). Notwithstanding, the

question whether these lower bounds are achievable remains open. For the worst-case

setting, 2 log2 n− 1 weighings are known to be sufficient, and this bound is achievable

by a simple nested strategy (see [13, Lemma 1]). This quantity also serves as an upper

bound for the average-case setting, and no tighter achievable upper bound was previously

reported.

2.1.1 Related Work and Applications

The worst-case setting of the CW problem was originally proposed in [35] for k = 1

and unknown d, and was later studied for k = 1 and known d, e.g., in [36–38]. Various

order-optimal strategies were previously proposed for unknown d, see, e.g., [36, 39], and

for known d, see, e.g., [34, 40–42]. Recently, in [34], Bshouty proposed the first and only

known order-optimal strategy for any k > 1 and unknown d, and no such result exists for

any k > 1 and known d. Despite the rich literature on the worst-case setting, there was no

result for the average-case setting of the CW problem prior to the present work, excluding

the results that trivially carry over from worst case into average case.

The worst-case setting of the CW problem has also been extensively studied for a

wide range of applications, e.g., multi-access communication, spectrum sensing, traffic

monitoring, anomaly detection, and network tomography, to name a few (see, e.g., [13],

and references therein). Moreover, most of these applications are being run repeatedly

over time, and for such applications, the average-case performance is expected to be more

relevant than the worst-case performance. This observation is the primary motivation for

studying the average-case setting of the CW problem in this work.
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2.1.2 Main Contributions

In this work, we propose and analyze a simple and effective adaptive weighing strat-

egy for the case d = k = 2. The results of our theoretical analysis show that the pro-

posed strategy requires 2 log2 n− 1 number of weighings in worst case, and it requires

about 1.365 log n− 0.5 number of weighings on average. (The average-case result is ob-

tained by a numerical evaluation of the exact recursive formulas, derived for the analysis

of performance of the proposed strategy.) This is the first non-trivial achievable upper

bound on the minimum expected required number of weighings for d = k = 2. Addi-

tionally, for the average-case setting, we design and analyze an optimal strategy within

the class of nested strategies, which are mostly being used in today’s applications, that

requires 2n+1
n+1

log n− 2(n−1)
n+1

weighings on average. A simple analysis shows that as n

grows unbounded, the proposed strategy, when compared to the optimal nested strategy,

requires about 31.75% less number of weighings on average; and when compared to the

information-theoretic lower bound, the proposed strategy requires at most about 8.16%

extra number of weighings on average.

2.2 Setup and Notations

Fix an integer l ≥ 1, and let n = 2l. Let N = {1, . . . , n}. Consider a collection N of

n coins, each coin i ∈ N of an unknown integer weight wi ∈ {0, 1, 2}. We refer to the set

{w1, . . . , wn}, simply denoted by {wi}, as the weight configuration, or the configuration,

for short. For any S ⊆ N , denote by w(S) the total weight of the subset S of coins, i.e.,

w(S) =
∑

i∈S wi. We assume that the total weight of N , i.e., w(N), is equal to 2.

The problem is to determine the weight of all coins inN by weighing subsets ofN in a

spring scale. In the worst-case setting of the problem, the goal is to minimize the maximum

number of required weighings over all possible configurations; and in the average-case

setting of the problem, the goal is to minimize the expected number of required weigh-
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ings over all possible configurations, where all possible configurations are assumed to be

equally probable.

Since w(N) = 2 and wi ∈ {0, 1, 2} for all i ∈ N , there are n distinct configurations

such that wi = 2 for some i ∈ N , and wj = 0 for all j ∈ N \ {i}, and there are
(
n
2

)
distinct configurations such that wi = wj = 1 for some i, j ∈ N and wk = 0 for all

k ∈ N \ {i, j}. We refer to the first group of configurations as Type-I, and refer to the

second group as Type-II. For example, for n = 2, the possible configurations {w1, w2}

are {2, 0}, {0, 2}, and {1, 1}, where the first two configurations are Type-I and the third

one is Type-II. For the ease of exposition, we define a representative function ∆({wi}i∈S)

for any S ⊆ N , w(S) = 2, as follows. For any Type-I (sub-) configuration {wi}i∈S ,

∆({wi}i∈S) = 0, and for any Type-II (sub-) configuration {wi}i∈S , ∆({wi}i∈S) = |i− j|,

where wi = wj = 1.

Any adaptive weighing strategy Ψ can be defined as a sequence {S1, S2, . . . } of subsets

of coins that are to be weighed following the prescribed order, where the choice of each

subset Si can depend on {Sj}i−1
j=1 and {w(Sj)}i−1

j=1.

Consider an arbitrary strategy Ψ. Denote by TΨ
ave(n) the expected number of weighings

required by the strategy Ψ to determine the weight of all coins in N , over all possible

weight configurations. For any subset S of coins, all with unknown weights, we denote

by TΨ
w (s) the expected number of weighings that the strategy Ψ performs to determine the

weight of all coins in S, where s = |S| and w = w(S). The expectation is taken over all

possible (sub-) configurations {w̃i}i∈S , w̃i ∈ {0, 1, 2}, such that
∑

i∈S w̃i = w.

For any subset S of coins, all with unknown weights, such that w(S) = 2, denote

by TΨ(s|∆) the expected number of weighings that the strategy Ψ performs to determine

the weight of all coins in S, given that ∆({wi}i∈S) = ∆, where s = |S|. Here, the

expectation is taken over all possible (sub-) configurations {w̃i}i∈S , w̃i ∈ {0, 1, 2}, such

that
∑

i∈S w̃i = 2 and ∆({w̃i}i∈S) = ∆.

13



For any disjoint subsetsA andB of coins, all with unknown weights, such thatw(A) =

1 and w(B) = 1, denote by TΨ(a, b) the expected number of weighings required by the

strategy Ψ to determine the weight of all coins in A and B, where a = |A| and b = |B|.

The expectation is here taken over all possible (sub-) configurations {w̃i}i∈A and {w̃i}i∈B,

w̃i ∈ {0, 1}, such that
∑

i∈A w̃i = 1 and
∑

i∈B w̃i = 1. For convenience, we adopt the

convention TΨ(1, s) = TΨ(s, 1) = TΨ
1 (s).

From now on, whenever the strategy Ψ is clear from the context, we omit the super-

script Ψ, and denote TΨ
ave(n), T

Ψ
w (s), T

Ψ(s|∆), and TΨ(a, b) by Tave(n), Tw(s), T (s|∆),

and T (a, b), respectively. Moreover, we define Tmax(n), T ⋆w(s), T
⋆(s|∆), and T ⋆(a, b)

similarly as Tave(n), Tw(s), T (s|∆), and T (a, b), respectively, except for the maximum

number of weighings, instead of the expected number of weighings, that the strategy Ψ

must perform.

Theorem 1. For any weighing strategy Ψ, we have

TΨ
max(n) ≥ max

{
log2 n, log3

(
n

2

)}

and

TΨ
ave(n) ≥

2

n+ 1
log2 n+

n− 1

n+ 1
log3

(
n

2

)
.

Proof. Recall that there are two types of weight configurations: Type-I and Type-II. For

any Type-I configuration, the result of weighing on any subset of coins is either zero or

non-zero, and the number of distinct possible configurations of Type-I is n. Thus, at least

log2 n weighings are needed to distinguish a particular configuration of this type. For any

Type-II configuration, the result of weighing on any subset of coins can be 0, or 1, or 2.

Thus, there are
(
n
2

)
distinct possible configurations of this type, and to distinguish a partic-

ular configuration within this class, one needs at least log3
(
n
2

)
weighings. Accordingly, for
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a configuration of an unknown type, at least max{log2 n, log3
(
n
2

)
} weighings are required

to identify the configuration. Since all configurations are equally probable, it can be easily

verified that a randomly chosen configuration is of Type-I or of Type-II with probability

2
n+1

or n−1
n+1

, respectively. Consequently, on average, at least 2
n+1

log2 n + n−1
n+1

log3
(
n
2

)
weighings are necessary to identify a particular configuration of an unknown type.

2.3 Proposed Weighing Strategy

In this section, we propose a weighing strategy that determines the weight of all coins,

for the setup in Section 2.2.

For any set S = {i1, . . . , i|S|} such that |S| is a power of 2, we denote by S1 and S2

the two disjoint subsets {i1, . . . , i|S|/2} and {i|S|/2+1, . . . , i|S|}, respectively.

The proposed strategy is based on three recursive procedures Π0, Π1, and Π2, described

shortly. At the beginning, the strategy initializes the weight of all coins by zero, i.e., ŵi = 0

for all i ∈ N . Then, it starts with the procedure Π0 over the set N . The weights of coins

will be updated recursively according to the procedures Π0, Π1, and Π2. This process is

terminated once the sum of weights of all coins,
∑

i∈N ŵi, is equal to 2, and the strategy

returns {ŵi}i∈N .

The inputs of the procedure Π0 are a set S and its weight w(S). The procedure Π1

takes as input two disjoint sets A and B such that w(A) = w(B) = 1, and the procedure

Π2 takes as input two disjoint sets A and B such that w(A) = w(B) = w(A1 ∪ B1) = 1.

(Recall that A1 = {i1, . . . , i|A|/2} and B1 = {j1, . . . , j|B|/2} when A = {i1, . . . , i|A|} and

B = {j1, . . . , j|B|}.) We represent these procedures by Π0(S), Π1(A,B), and Π2(A,B),

respectively.

2.3.1 Procedure Π0

For any S = {i}, the procedure Π0(S) updates ŵi by w(S); and for any S, |S| > 1,

the procedure Π0(S) begins with weighing S1. If w(S1) = 0 or w(S1) = 2, the procedure
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Π0(S) continues with Π0(S2) or Π0(S1), respectively. Otherwise, depending on w(S) = 1

or w(S) = 2, the procedure Π0(S) continues with Π0(S1) or Π1(S1, S2), respectively.

We note that for w(S1) = 0 or w(S1) = 2, the procedure Π0 follows a simple bisecting

strategy, and for w(S1) = 1, it follows a generalized bisecting strategy defined below.

2.3.2 Procedure Π1

For any A = {i} and B = {j}, the procedure Π1(A,B) updates ŵi and ŵj by 1; For

any A and B such that |A| = 1 and |B| > 1 or |A| > 1 and |B| = 1, the procedure

Π1(A,B) continues with two procedures Π0(A) and Π0(B). For any A and B such that

|A| > 1 and |B| > 1, the procedure Π1(A,B) weighs A1 ∪ B1. If w(A1 ∪ B1) = 0

or w(A1 ∪ B1) = 2, the procedure Π1(A,B) continues with Π1(A2, B2) or Π1(A1, B1),

respectively; otherwise, it continues with Π2(A,B).

2.3.3 Procedure Π2

For any A = {i1, i2} and B = {j1, j2}, the procedure Π2(A,B) weighs A1 = {i1},

and updates ŵi1 , ŵi2 , ŵj1 , and ŵj2 by w(A1), 1 − w(A1), 1 − w(A1), and w(A1), re-

spectively. For any A and B such that max(|A|, |B|) > 2 and |A| ≤ |B|, the proce-

dure Π2(A,B) weighs A1 ∪ (B2)1. (Recall that (B2)1 = {j|B|/2+1, . . . , j3|B|/4} when

B2 = {j|B|/2+1, . . . , j|B|}.) If w(A1∪ (B2)1) is equal to 0, 1, or 2, the procedure Π2(A,B)

continues with Π1(A2, B1), Π1(A1, (B2)2), or Π1(A1, (B2)1), respectively. For any A and

B such that max(|A|, |B|) > 2 and |B| < |A|, the procedure is the same, except for A and

B being interchanged.

Example 1. Consider n = 8 coins of weights w3 = w6 = 1 and wi = 0 for all

i ̸∈ {3, 6}. Let N = {1, . . . , 8}. Initialize ŵi by 0 for all i ∈ N . Applying Π0(N),

the set {1, . . . , 4} is weighed. Since w({1, . . . , 4}) = 1, the strategy proceeds with

Π1({1, 2, 3, 4}, {5, 6, 7, 8}). According to the strategy, the set {1, 2} ∪ {5, 6} is weighed.

Since w({1, 2} ∪ {5, 6}) = 1 the strategy continues with Π2({1, 2, 3, 4}, {5, 6, 7, 8}). Ac-
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cording to the procedure Π2, weighing is performed on {1, 2} ∪ {7}. Since w({1, 2} ∪

{7}) = 0, the strategy proceeds with Π1({3, 4}, {5, 6}), and weighs {3} ∪ {5}. Since

w({3} ∪ {5}) = 1, the strategy continues with Π2({3, 4}, {5, 6}). According to the pro-

cedure Π2, the weighing is performed on {3}. Since w({3}) = 1, the strategy updates

ŵ3 = 1, ŵ4 = 0, ŵ5 = 0, and ŵ6 = 1. Since
∑

i∈N ŵi = 2, the process is terminated.

2.4 Analysis of the Proposed Startegy

In this section, we analyze the average-case and worst-case performance of the strategy

proposed in Section 2.3. For simplifying the notation, for all 0 ≤ i, j ≤ l, we denote

T (2i, 2j) and T ⋆(2i, 2j) by Ti,j and T ⋆i,j , respectively.

2.4.1 Average-Case Setting

The following two lemmas are useful for computing Ti,j recursively for different values

of i and j.

Lemma 1. T0,0 = 0, T1,1 = 3
2
, and for all 1 < i < l,

Ti,i =
3

4
Ti−1,i−1 +

1

4
Ti−2,i−1 +

3

2
.

Proof. It is easy to see that T0,0 = T (1, 1) = 0, since we have two coins and the weight

of each coin is 1, so no weighing is required. To obtain T1,1 = T (2, 2), we know that we

have four coins and the total weight of two coins (set A) is 1 and the total weight of the

other two (set B) is also 1. Thus, one coin in A and one coin in B are weighed together.

The weighing outcome is either (i) 0 or 2 with probability 1
2
, or (ii) 1 with probability 1

2
.

In the case (i), with just one weighing the weights of all coins are determined. In the case

(ii), one more weighing is needed to be performed on one coin in A or one coin in B, in

order to find the weights of all coins. Thus, T1,1 = 1
2
(1) + 1

2
(2) = 3

2
.

For any 1 < i < l, Ti,i can be computed based on a similar reasoning as follows.
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Ti,i

Ti−1,i−1 Ti−1,i−1

Ti−2,i−1

1
2

1
2

1
2

1
2

Figure 2.1: Recursive form of Ti,i.

By performing one weighing on the union set of half of A (say A1) and half of B (say

B1), with probability 1
2

the weighing outcome is 0 or 2, and the expected number of extra

required weighings is Ti−1,i−1. Otherwise, with probability 1
2
, the weighing outcome is 1.

In this case, one more weighing is needed to be performed on the union set of A1 and half

of B2 (say (B2)1). Followed by two weighings, with probability 1
2
, the expected number

of extra required weighings is equal to Ti−1,i−1; and with probability 1
2
, this quantity is

equal to Ti−2,i−1 (see Fig. 2.1). Thus, we have

Ti,i =
1

2
(Ti−1,i−1 + 1) +

1

4
(Ti−1,i−1 + 2) +

1

4
(Ti−2,i−1 + 2),

or equivalently,

Ti,i =
3

4
Ti−1,i−1 +

1

4
Ti−2,i−1 +

3

2
.

This completes the proof.

Lemma 2. For all 1 ≤ j < l, T0,j = j; for all 1 < j < l, T1,j = j + 1
4
; and for all

1 < i ≤ l − 1 and 1− i < j ≤ l − i,

Ti,i+j =
3

4
Ti−1,i+j−1 +

1

8
Ti−2,i+j−1 +

1

8
Ti+j−2,i+j−2 +

3

2
.

Proof. For any Ti,j , we consider two disjoint sets A and B of size 2i and 2j , respectively,

each set of total weight 1. By the definition, T0,j = T (1, 2j) = T1(2
j). In this case, the
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proposed strategy applies the procedure Π0(B), which requires j weighings, on average,

to determine the weights of all coins. Thus, T0,j = j.

Now, consider T1,j = T (2, 2j). In this case, with one weighing (on the set A1 ∪ B1)

with probability 1
2
, the outcome is 0 or 2. For the outcome 0 (or 2), we find that one coin

with weight 1 is in A2 (or A1) and the other coin of weight 1 is in B2 (or B1). Thus,

T (1, 2j−1) = j − 1 more weighings, on average, are needed to determine the weights of

all coins. Also, with probability 1
2
, the weighing outcome is 1 and the weight of no coin

is discovered by this particular weighing. In this case, with one more weighing (on the

set A1 ∪ (B2)1), with probability 1
2

the weighing outcome is 0, and T (1, 2j−1) = j − 1

more weighings, on average, are needed to determine the weights of all coins. Otherwise,

with probability 1
2
, the weighing outcome is 1 or 2, and thus, T (1, 2j−2) = j − 2 more

weighings are needed on average to find the weights of all coins. As a result, we have

T1,j =
1

2
(j − 1 + 1) +

1

4
(j − 1 + 2) +

1

4
(j − 2 + 2) = j +

1

4
.

Lastly, consider Ti,i+j = T (2i, 2i+j). Performing one weighing (on the set A1 ∪ B1),

there are two cases: (i) the outcome is 0 or 2 (with probability 1
2
), and (ii) the outcome is

1 (with probability 1
2
). First, consider the case (i). By a similar argument as before, for

the outcome 0 (or 2), we find the weight of all coins in A1 (or A2) and that of all coins in

B1 (or B2), respectively. Thus, T (2i−1, 2i+j−1) more weighings are needed, on average,

to determine the weights of all coins. Next, consider the case (ii). There are two sub-

cases: (ii-1) with probability 1
4
, the coin with weight 1 belongs to the larger set, and (ii-2)

with probability 1
4
, the coin with weight 1 belongs to the smaller set. In the case (ii-1),

the weight of no coin can be determined by this particular weighing. Thus, with one more

weighing (on the set (A2)1∪B1 orA1∪(B2)1), with probability 1
2

the weighing outcome is

0, and consequently, T (2i−1, 2i+j−1) more weighings are needed, on average, to determine
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the weights of all coins; otherwise, with probability 1
2
, the weighing outcome is 1 or 2, and

T (2i−2, 2i+j−1) more weighings are needed, on average, to find the weights of all coins.

In the case (ii-2), again, the weight of no coin is determined by this specific weighing.

Thus, with one more weighing (on set (A2)1 ∪ B1 or A1 ∪ (B2)1), with probability 1
2
, the

weighing outcome is 0, and T (2i−1, 2i+j−1) more weighings are needed, on average, to

determine the weights of all coins. Otherwise, with probability 1
2
, the weighing outcome

is 1 or 2, and T (2i+j−2, 2i+j−2) more weighings, on average, are needed to find the weights

of all coins. Thus, we have

Ti,i+j =
1

2
(Ti−1,i+j−1 + 1) +

1

8
(Ti−1,i+j−1 + 2) +

1

8
(Ti−2,i+j−1 + 2)

+
1

8
(Ti−1,i+j−1 + 2) +

1

8
(Ti+j−2,i+j−2 + 2),

or in turn,

Ti,i+j =
3

4
Ti−1,i+j−1 +

1

8
Ti−2,i+j−1 +

1

8
Ti+j−2,i+j−2 +

3

2
.

This completes the proof.

For any 0 ≤ ∆ ≤ n− 1, define ∆n = n
2
−
∣∣∆− n

2

∣∣. For simplifying the notation, let

q∆,i ≜



2i−1∆n

2l−1−2i−1∆n
, ∆n < 2l−(i+1), 2l−(i+1) ≥ 1,

1, ∆n ≥ 2l−(i+1), 2l−(i+1) ≥ 1,

0, otherwise,

for all 1 ≤ i < l, and

q∆,0 ≜


∆n

2l−1 , ∆n < 2l−1,

1, otherwise,
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for i = 0. Also, let q∆,l ≜ 1. Moreover, let

p∆,j ≜


2l−1−2j∆n

2l−1−2j−1∆n
, ∆n < 2l−1, 2l−1 ≥ 1,

0, otherwise,

for all 1 ≤ j < l, and

p∆,0 ≜


2l−1−∆n

2l−1 ∆n < 2l−1, 2l−1 ≥ 1

0 otherwise.

The following lemma is useful for computing T (n|∆) based on the values of Ti,j .

Lemma 3. For any 0 ≤ ∆ ≤ n− 1, we have

T (n|∆) =
l−1∑
i=0

m∆,i(Tl−i−1,l−i−1 + i+ 1) +m∆,ll

where m∆,0 = q∆,0, and

m∆,i = q∆,i

i−1∏
j=0

p∆,j

for all 1 ≤ i ≤ l.

Proof. Fix an arbitrary 0 ≤ ∆ ≤ n− 1. Consider the application of the proposed strategy

on an arbitrary configuration {wi} such that ∆({wi}) = ∆. Let p∆,0 (or respectively,

q∆,0) be the probability that the outcome of the first weighing is 0 or 2 (or respectively, 1).

Thus, with probability p∆,0, followed by performing one weighing, the expected number of

extra required weighings is T (n
2
|∆). Similarly, with probability p∆,0p∆,1, after performing

two weighings, T (n
4
|∆) more weighings are needed on average, and so forth (see the

straight line in Fig. 2.2). Thus, with probability
∏l−1

i=0 p∆,i, l weighings are needed. On

the other hand, with probability q∆,0, followed by performing one weighing, Tl−1,l−1 more
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weighings are needed on average. Similarly, with probability p∆,0q∆,1, after performing

two weighings, Tl−2,l−2 extra number of weighings are needed on average, and so forth

(see the diagonal lines in Fig. 2.2). Putting everything together, we can write

T (n|∆) = q∆,0(Tl−1,l−1 + 1) + p∆,0q∆,1(Tl−2,l−2 + 2) + · · ·+ p∆,0p∆,1 · · · p∆,l−1(l),

or equivalently,

T (n|∆) = m∆,0(Tl−1,l−1 + 1) +m∆,1(Tl−2,l−2 + 2) + · · ·+m∆,l−1(T0,0 + l) +m∆,l(l).

This completes the proof.

By combining the results of Lemmas 1–3, we can compute Tave(n) for the proposed

strategy as follows.

Theorem 2. For the proposed strategy, Tave(n) can be computed as Tave(n) = PMI ,

where P = [P0, . . . , Pn−1] is a row vector of length n, where P∆ = 2(n−∆)
n(n+1)

for all 0 ≤

∆ ≤ n−1; and I = [I1, . . . , Il, l]
⊤ is a column vector of length l+1, where Ii = Tl−i,l−i+i

for all 1 ≤ i ≤ l; and M = (m∆,i)0≤∆≤n−1,0≤i≤l is an n × (l + 1) matrix, where {m∆,i}

are defined in Lemma 3.

Proof. Fix an arbitrary 0 ≤ ∆ ≤ n − 1. It is easy to verify that there exist n − ∆

distinct configurations {wi} such that ∆({wi}) = ∆. Also, the total number of possible

configurations are n +
(
n
2

)
= n(n+1)

2
. Thus, for a randomly chosen configuration {wi},

the probability that ∆({wi}) = ∆ is equal to P∆ = 2(n−∆)
n(n+1)

. Then, it is easy to see that

Tave(n) =
∑n−1

∆=0 P∆T (n|∆). Re-writing this equation in matrix form by using the result

of Lemma 3, the result of the theorem follows immediately.

22



T (n|∆) T (n
2
|∆)

Tl−1,l−1 Tl−2,l−2

... T (2|∆) T (1|∆)

T1,1

p∆,0

q∆,0

p∆,1

q∆,1

p∆,l−2

q∆,l−1

p∆,l−1

Figure 2.2: Recursive form of T (n|∆).

2.4.2 Worst-Case Setting

Theorem 3. For the proposed strategy, we have Tmax(n) = 2 log2 n− 1.

Proof. First, we prove that Tmax(n) = T ⋆2 (n) = T ⋆2 (
n
2
) + 2. It is easy to verify that

T ⋆(n|∆) and T ⋆i,i can be computed recursively similar to T (n|∆) and Ti,i, respectively,

as shown in Fig. 2.2 and Fig. 2.1, by replacing T with T ⋆ everywhere. As can be seen

in Fig. 2.2, the straight lines correspond to the cases in which one weighing resolves

the weights of half of the coins; whereas, the diagonal lines correspond to the cases in

which the weight of none of the coins is determined. That is, the diagonal lines cor-

respond to the cases that require more number of weighings. Moreover, from T ⋆(n|∆)

to T ⋆(n
4
, n
4
), there are two ways (see Fig. 2.1); one way is through T ⋆(n

2
|∆) which re-

quires two weighings, and the other way is through T ⋆(n
2
, n
2
) which requires, in worst

case, three weighings, noting that T ⋆(n
2
, n
2
) = T ⋆(n

4
, n
4
) + 2. Thus, among the diago-

nal lines, the first one, reaching to T ⋆(n
2
, n
2
), yields the maximum number of required

weighings. By these arguments, T ⋆2 (n) = T ⋆(n
2
, n
2
) + 1. Similarly, it can be shown that

T ⋆2 (
n
2
) = T ⋆(n

4
, n
4
) + 1. Thus, T ⋆2 (n) = T ⋆2 (

n
2
) + 2. More generally, we can write the

recursive formula T ⋆2 (2
i) = T ⋆2 (2

i−1) + 2 for all 1 < i ≤ l. Noting that T ⋆2 (2) = 1, by

solving the above recursion, we have T ⋆2 (n) = 2 log2 n− 1.
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2.5 Optimal Nested Weighing Strategy

In a nested strategy, followed by weighing a subset S of coins, if the weight of some

coin(s) in S remains undetermined, the next weighing must be performed on a proper sub-

set of S. Moreover, if there are multiple such subsets S, this procedure must be performed

separately for each S.

2.5.1 Average-Case Setting

For any collection S of coins, denote by d(S) the number of coins in S with non-zero

weight. For any 1 ≤ s ≤ n, w ∈ {1, 2}, and d ∈ {1, 2}, denote by Ψd(s, w) an optimal

nested strategy for all collections S of coins, each with an unknown weight in the set

{0, 1, 2}, such that |S| = s, w(S) = w, and d(S) = d. That is, the expected number of

weighings required by the strategy Ψd(s, w) over all such S (for any given s, w, and d)

is minimum, among all possible nested strategies. Similarly, define Ψ(s, w) as Ψd(s, w),

except when the expectation is taken over all S such that |S| = s and w(S) = w, and

define the strategy Ψ as {Ψ(s, w)}1≤s≤n,1≤w≤2. We wish to design the strategy Ψ and

analyze TΨ
ave(n).

Take an arbitrary collection S of coins such that |S| = s, w(S) = w, and d(S) = d.

Consider the application of a nested strategy, represented by Ψm
d (s, w), on S as follows.

The strategy Ψm
d (s, w) begins with weighing an arbitrary subset R of coins in S of size

1 ≤ m ≤ |S|−1. Ifw(R) = 0 orw(R) = 2, the strategy Ψm
d (s, w) proceeds with applying

the strategy Ψd(s−m,w) on S\R, or the strategy Ψd(m,w) onR, respectively. Otherwise,

the strategy Ψm
d (s, w) applies the strategies Ψd(m, 1) and Ψd(s −m, 1) on R and S \ R,

respectively. Denote by Tmw,d(s) the expected number of weighings required by the strategy

Ψm
d (s, w) over all such S, and let T opt

w,d(s) ≜ min1≤m≤s−1 T
m
w,d(s). Similarly, define the

strategy Ψm(s, w) the same as Ψm
d (s, w), except when Ψd is replaced by Ψ everywhere.

Denote by Tmw (s) the expected number of weighings required by the strategy Ψm(s, w)

24



over all S such that |S| = s and w(S) = w, and let T opt
w (s) ≜ min1≤m≤s−1 T

m
w (s). A

simple recursive argument yields that for the strategy Ψ defined earlier, we have TΨ
ave(n) =

T opt
2 (n).

For the ease of notation, for any 2 ≤ s ≤ n and 1 ≤ m ≤ s− 1, we define αi,j(s,m) ≜(
s−i
m−j

)
/
(
s
m

)
for all i, j such that 0 ≤ m− j ≤ s− i, and define αi,j(s,m) ≜ 0, otherwise.

For brevity, we simply refer to αi,j(s,m) by αi,j whenever s and m are clear from the

context. Based on the above definitions, the following results can be shown.

Lemma 4. For any 2 ≤ s ≤ n and 1 ≤ m ≤ s− 1, we have

Tm1 (s) = α1,0(T
opt
1 (s−m) + 1) + α1,1(T

opt
1 (m) + 1),

where T opt
1 (1) = 0. Moreover, for any 3 ≤ s ≤ n and 1 ≤ m ≤ s− 1, we have

Tm2 (s) =
2

s+ 1
Tm2,1(s) +

s− 1

s+ 1
Tm2,2(s),

Tm2,1(s) = α1,0(T
opt
2,1 (s−m) + 1) + α1,1(T

opt
2,1 (m) + 1),

and

Tm2,2(s) = α2,0(T
opt
2,2 (s−m)+1)+α2,2(T

opt
2,2 (m)+1)+2α2,1(T

opt
1 (m)+T opt

1 (s−m)+1),

where T opt
2,1 (1) = T opt

2,2 (1) = 0, and T opt
2,1 (2) = T opt

2,2 (2) = 1.

Proof. Consider an arbitrary collection of s coins of total weight w. There are two cases:

(i) w = 1, and (ii) w = 2. In the case (i), a randomly chosen subset of m coins weighs

0 with probability α1,0, and it weighs 1 with probability α1,1. In these two sub-cases the

expected number of extra required weighings is T opt
1,1 (s − m) and T opt

1,1 (m), respectively.
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Note that Tm1,1(t) = Tm1 (t) for all t, and so, T opt
1,1 (t) = T opt

1 (t) for all t. Thus,

Tm1 (s) = α1,0(T
opt
1 (s−m) + 1) + α1,1(T

opt
1 (m) + 1)

In the case (ii), there are two sub-cases: (ii-1) there is one coin of weight 2 (there exist s

distinct sub-configurations with this characteristic), and (ii-2) there are two coins, each of

weight 1 (there exist
(
s
2

)
distinct such sub-configurations). Thus,

Tm2 (s) =
2

s+ 1
Tm2,1(s) +

s− 1

s+ 1
Tm2,2(s).

In the case (ii-1), a randomly chosen subset of m coins weighs 0 or 2 with probability α1,0

or α1,1, respectively, and in these two sub-cases the expected number of extra required

weighings is T opt
2,1 (s−m) and T opt

2,1 (m), respectively. Thus,

Tm2,1(s) = α1,0(T
opt
2,1 (s−m) + 1) + α1,1(T

opt
2,1 (m) + 1).

Similarly, in the case (ii-2), a randomly chosen subset of m coins weighs 0, or 1, or 2

with probability α2,0, or 2α2,1, or α2,2, respectively. In these three sub-cases, the expected

number of extra required weighings is T opt
2,2 (s−m), T opt

1 (m)+T opt
1 (s−m), and T opt

2,2 (m),

respectively. Thus,

Tm2,2(s) = α2,0(T
opt
2,2 (s−m)+1)+2α2,1(T

opt
1 (m)+T opt

1 (s−m)+1)+α2,2(T
opt
2,2 (m)+1).

This completes the proof.

Lemma 5. For any 2 ≤ s ≤ n, we have ⌊ s
2
⌋, ⌈ s

2
⌉ ∈ argmin1≤m≤s−1 T

m
1 (s); for any

3 ≤ s ≤ n and d ∈ {1, 2}, we have ⌊ s
2
⌋, ⌈ s

2
⌉ ∈ argmin1≤m≤s−1 T

m
2,d(s); and for any

3 ≤ s ≤ n, we have ⌊ s
2
⌋, ⌈ s

2
⌉ ∈ argmin1≤m≤s−1 T

m
2 (s).
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Proof. The proof techniques are the same for Tm1 (s), Tm2,d(s), and Tm2 (s), and we only

state the proof for Tm1 (s) to avoid repetition. In particular, we shall show that for any

2 ≤ s ≤ n, we have ⌊ s
2
⌋, ⌈ s

2
⌉ ∈ argmin1≤m≤s−1 T

m
1 (s). The proof is by induction on

s. It is easy to see that for s = 2, we have ⌊2
2
⌋, ⌈2

2
⌉ = 1 = argmin1≤m≤2−1 T

m
1 (2). The

induction hypothesis is that for s ≤ l − 1,

⌊s
2

⌋
,
⌈s
2

⌉
∈ argmin

1≤m≤s−1
Tm1 (s) (2.1)

holds. To complete the proof, it is enough to show that for s = l, we have ⌊ l
2
⌋, ⌈ l

2
⌉ ∈

argmin1≤m≤l−1 T
m
1 (l). Based on the formula for Tm1 (s) in Lemma 4, it can be readily

confirmed that Tm1 (s) is symmetric around midrange point, i.e., T
⌈ s
2
⌉

1 (s) = T
⌊ s
2
⌋

1 (s). Thus,

showing the proof for ⌊ s
2
⌋ suffices. More specifically, we need to show the following:

( l−1

⌊ l
2⌋
)

(
l

⌊ l
2⌋
)T opt

1 (l−
⌊
l

2

⌋
) +

( l−1

⌊ l
2⌋−1

)
(

l

⌊ l
2⌋
) T opt

1 (

⌊
l

2

⌋
) ≤

(
l−1
m

)(
l
m

) T opt
1 (l−m) +

(
l−1
m−1

)(
l
m

) T opt
1 (m) (2.2)

for all 1 ≤ m ≤ l − 1. Due to the symmetry, it suffices to show that (2.2) holds for all

1 ≤ m ≤ ⌊ l
2
⌋. We consider two cases: (i) l = 2k, and (ii) l = 2k + 1, for some k ≥ 1.

Proof for Case (i)

Noting that l = 2k and ⌊ l
2
⌋ = k, (2.2) can be written as

(
2k−1
k

)(
2k
k

) T opt
1 (k) +

(
2k−1
k−1

)(
2k
k

) T opt
1 (k) ≤

(
2k−1
m

)(
2k
m

) T opt
1 (2k −m) +

(
2k−1
m−1

)(
2k
m

) T opt
1 (m),

or equivalently,

T opt
1 (k) ≤

(
2k −m

2k

)
T opt
1 (2k −m) +

(m
2k

)
T opt
1 (m) (2.3)
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for all 1 ≤ m ≤ k. An inductive argument (on m) is used to prove that (2.3) holds. It is

easy to see that (2.3) holds for m = k, i.e.,

T opt
1 (k) =

(
2k − k

2k

)
T opt
1 (2k − k) +

(
k

2k

)
T opt
1 (k).

We assume that (2.3) holds for m > t. We need to show that for m = t, the following

holds:

T opt
1 (k) ≤

(
2k − t

2k

)
T opt
1 (2k − t) +

(
t

2k

)
T opt
1 (t). (2.4)

The proof is by contradiction. Suppose that (2.4) does not hold, i.e.,

T opt
1 (k) >

(
2k − t

2k

)
T opt
1 (2k − t) +

(
t

2k

)
T opt
1 (t). (2.5)

Since (2.3) holds for m > t (by assumption), for m = t+ 1 we have

T opt
1 (k) ≤

(
2k − t− 1

2k

)
T opt
1 (2k − t− 1) +

(
t+ 1

2k

)
T opt
1 (t+ 1). (2.6)

Combining (2.5) and (2.6), we get

(
2k − t

2k

)
T opt
1 (2k − t) +

(
t

2k

)
T opt
1 (t)

<

(
2k − t− 1

2k

)
T opt
1 (2k − t− 1) +

(
t+ 1

2k

)
T opt
1 (t+ 1),

which equivalently can be written as

(2k − t)T opt
1 (2k− t)− (2k − t− 1)T opt

1 (2k− t− 1) < (t+ 1)T opt
1 (t+1)− (t)T opt

1 (t).

(2.7)
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We need to disprove (2.7). Before moving further with disproving (2.7), we shall show the

following formula which will be used in the rest of the proof:

T opt
1 (q)− T opt

1 (q − 1) =
2⌊log(q−1)⌋+1

q(q − 1)
(2.8)

for all 2 ≤ q ≤ l − 1.

The proof of (2.8) is based on an inductive argument. It is easy to see that for q = 2, we

have T opt
1 (2)−T opt

1 (2−1) = 1−0 = 2⌊log(2−1)⌋+1

2(2−1)
= 1. We assume that for q ≤ h−1, (2.8)

holds. It suffices to show that for q = h we have

T opt
1 (h)− T opt

1 (h− 1) =
2⌊log(h−1)⌋+1

h(h− 1)
.

We consider two cases: (i-1) h = 2d, and (i-2) h = 2d + 1, for some d ≥ 1. First,

consider the case (i-1). Since h ≤ l − 1 and (2.1) holds for s ≤ l − 1, we have ⌊h
2
⌋ ∈

argmin1≤m≤h−1 T
m
1 (h) and ⌊h−1

2
⌋ ∈ argmin1≤m≤h−2 T

m
1 (h − 1). Using the formula in

Lemma 4 and noting that h = 2d, ⌊h
2
⌋ = d, and ⌊h−1

2
⌋ = d− 1, T opt

1 (h) and T opt
1 (h− 1)

can be written as

T opt
1 (h) = T opt

1 (d) + 1, (2.9)

and

T opt
1 (h− 1) =

(
d

2d− 1

)
T opt
1 (d) +

(
d− 1

2d− 1

)
T opt
1 (d− 1) + 1. (2.10)

Subtracting (2.10) from (2.9) results in

T opt
1 (h)− T opt

1 (h− 1) =

(
d− 1

2d− 1

)
(T opt

1 (d)− T opt
1 (d− 1)). (2.11)
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Since (2.8) holds for q ≤ h− 1 (by assumption), we have

(T opt
1 (d)− T opt

1 (d− 1)) =
2⌊log(d−1)⌋+1

d(d− 1)
.

Substituting (T opt
1 (d)− T opt

1 (d− 1)) by 2⌊log(d−1)⌋+1

d(d−1)
in (2.11), we have

T opt
1 (h)− T opt

1 (h− 1) =
2⌊log(d−1)⌋+1

d(2d− 1)
=

2⌊log(2d−2)⌋+1

2d(2d− 1)
=

2⌊log(2d−1)⌋+1

2d(2d− 1)
=

2⌊log(h−1)⌋+1

h(h− 1)
.

This completes the proof of (2.8) for the case (i-1). Now, consider the case (i-2). Noting

that h = 2d+ 1 and using similar arguments as above, it can be shown that

T opt
1 (h)− T opt

1 (h− 1) =

(
d+ 1

2d+ 1

)
(T opt

1 (d+ 1)− T opt
1 (d)),

and

T opt
1 (d+ 1)− T opt

1 (d) =
2⌊log(d)⌋+1

d(d+ 1)
.

Subsequently, we have

T opt
1 (h)− T opt

1 (h− 1) =
2⌊log(d)⌋+1

d(2d+ 1)
=

2⌊log(2d)⌋+1

2d(2d+ 1)
=

2⌊log(h−1)⌋+1

h(h− 1)
.

This completes the proof of (2.8) for the case (i-2).

Now, we proceed with disproving (2.7). By using (2.8) and substituting T opt
1 (2k − t)

by T opt
1 (2k− t−1)+ 2⌊log 2k−t−1⌋+1

(2k−t−1)(2k−t) and T opt
1 (t+1) by T opt

1 (t)+ 2⌊log t⌋+1

t(t+1)
in (2.7), we have

T opt
1 (2k − t− 1) +

2⌊log 2k−t−1⌋+1

2k − t− 1
< T opt

1 (t) +
2⌊log t⌋+1

t
,
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which equivalently can be written as

T opt
1 (2k − t− 1)− T opt

1 (t) <
2⌊log t⌋+1

t
− 2⌊log 2k−t−1⌋+1

2k − t− 1
. (2.12)

To complete disproving (2.7), we need to show that (2.12) does not hold. To this end, we

need to prove the following:

T opt
1 (a+ i)− T opt

1 (a) ≥ 2⌊log a⌋+1

a
− 2⌊log a+i⌋+1

a+ i
(2.13)

for all 1 ≤ a ≤ l − 2 and 1 ≤ i ≤ l − 1− a. The proof of (2.13) is based on an inductive

argument (on i). For i = 1, we need to show that

T opt
1 (a+ 1)− T opt

1 (a) ≥ 2⌊log a⌋+1

a
− 2⌊log a+1⌋+1

a+ 1
.

Using (2.8), we have

T opt
1 (a+ 1)− T opt

1 (a) =
2⌊log a⌋+1

a(a+ 1)
>

2⌊log a⌋+1

a
− 2⌊log a+1⌋+1

a+ 1
,

and subsequently, (2.13) holds for i = 1. Next, we assume that for i = b, we have

T opt
1 (a+ b)− T opt

1 (a) ≥ 2⌊log a⌋+1

a
− 2⌊log a+b⌋+1

a+ b
. (2.14)

It is enough to show that for i = b+ 1, we have

T opt
1 (a+ b+ 1)− T opt

1 (a) ≥ 2⌊log a⌋+1

a
− 2⌊log a+b+1⌋+1

a+ b+ 1
.
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We use proof by contradiction. Assume that

T opt
1 (a+ b+ 1)− T opt

1 (a) <
2⌊log a⌋+1

a
− 2⌊log a+b+1⌋+1

a+ b+ 1
. (2.15)

Combining (2.14) and (2.15), we have

T opt
1 (a+ b+ 1)− T opt

1 (a+ b) <
2⌊log a+b⌋+1

a+ b
− 2⌊log a+b+1⌋+1

a+ b+ 1
. (2.16)

Using (2.8), we have

T opt
1 (a+b+1)−T opt

1 (a+b) =
2⌊log(a+b)(a+b+1)⌋+1

a+ b
≥ 2⌊log a+b⌋+1

a+ b
− 2⌊log a+b+1⌋+1

a+ b+ 1
. (2.17)

Putting (2.16) and (2.17) together, we arrive at a contradiction, and consequently, (2.13)

holds.

Now, we can disprove (2.12). Taking a = t and i = 2k − 2t− 1 in (2.13), we have

T opt
1 (2k − t− 1)− T opt

1 (t) ≥ 2⌊log t⌋+1

t
− 2⌊log 2k−t−1⌋+1

2k − t− 1
,

which readily contradicts (2.12). This completes the disproof of (2.7), and consequently,

the proof for the case (i).

Proof for Case (ii)

Noting that l = 2k + 1 and ⌊ l
2
⌋ = k, (2.2) can be written as

(
2k
k

)(
2k+1
k

)T opt
1 (k + 1) +

(
2k
k−1

)(
2k+1
k

)T opt
1 (k) ≤

(
2k
m

)(
2k+1
m

)T opt
1 (2k −m+ 1) +

(
2k
m−1

)(
2k+1
m

)T opt
1 (m),
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or equivalently,

(
k + 1

2k + 1

)
T opt
1 (k + 1) +

(
k

2k + 1

)
T opt
1 (k)

≤
(
2k −m+ 1

2k + 1

)
T opt
1 (2k −m+ 1) +

(
m

2k + 1

)
T opt
1 (m) (2.18)

for all 1 ≤ m ≤ k. We use an inductive argument to prove that (2.18) holds. It is easy to

see that (2.18) holds for m = k, i.e.,

(
k + 1

2k + 1

)
T opt
1 (k + 1) +

(
k

2k + 1

)
T opt
1 (k)

=

(
2k − k + 1

2k + 1

)
T opt
1 (2k − k + 1) +

(
k

2k + 1

)
T opt
1 (k).

We assume that (2.18) holds for m > t. We need to show that for m = t, the following

holds:

(
k + 1

2k + 1

)
T opt
1 (k + 1) +

(
k

2k + 1

)
T opt
1 (k)

≤
(
2k − t+ 1

2k + 1

)
T opt
1 (2k − t+ 1) +

(
t

2k + 1

)
T opt
1 (t). (2.19)

The proof is by contradiction. Suppose that (2.19) does not hold, i.e.,

(
k + 1

2k + 1

)
T opt
1 (k + 1) +

(
k

2k + 1

)
T opt
1 (k)

>

(
2k − t+ 1

2k + 1

)
T opt
1 (2k − t+ 1) +

(
t

2k + 1

)
T opt
1 (t). (2.20)

We need to disprove (2.20). Since (2.18) holds for m > t (by assumption), for m = t+ 1
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we have

(
k + 1

2k + 1

)
T opt
1 (k + 1) +

(
k

2k + 1

)
T opt
1 (k)

≤
(
2k − t

2k + 1

)
T opt
1 (2k − t) +

(
t+ 1

2k + 1

)
T opt
1 (t+ 1). (2.21)

Combining (2.20) and (2.21) yields

(
2k − t+ 1

2k + 1

)
T opt
1 (2k − t+ 1) +

(
t

2k + 1

)
T opt
1 (t)

<

(
2k − t

2k + 1

)
T opt
1 (2k − t) +

(
t+ 1

2k + 1

)
T opt
1 (t+ 1)

which equivalently can be written as

(2k − t+ 1)T opt
1 (2k− t+1)− (2k − t)T opt

1 (2k− t) < (t+ 1)T opt
1 (t+1)− (t)T opt

1 (t).

(2.22)

Using (2.8) and substituting T opt
1 (2k−t+1) by T opt

1 (2k−t)+ 2⌊log(2k−t)⌋+1

(2k−t+1)(2k−t) and T opt
1 (t+1)

by T opt
1 (t) + 2⌊log t⌋+1

t(t+1)
in (2.22), we have

T opt
1 (2k − t) +

2⌊log(2k−t)⌋+1

2k − t
< T opt

1 (t) +
2⌊log(t)⌋+1

t

which equivalently can be written as

T opt
1 (2k − t)− T opt

1 (t) <
2⌊log t⌋+1

t
− 2⌊log(2k−t)⌋+1

2k − t
. (2.23)

Taking a = t and i = 2k − 2t in (2.13), we have

T opt
1 (2k − t)− T opt

1 (t) ≥ 2⌊log t⌋+1

t
− 2⌊log 2k−t⌋+1

2k − t
,
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which readily contradicts (2.23). This completes the disproof of (2.20), and consequently,

the proof for the case (ii). So far, we proved that for any 2 ≤ s ≤ n, we have ⌊ s
2
⌋, ⌈ s

2
⌉ ∈

argmin1≤m≤s−1 T
m
1 (s). The same procedure can be taken to prove the other two claims.

Lemma 6. For any 0 ≤ i ≤ l, we have T opt
1 (2i) = i, and T opt

2 (2i) = (i−1)2i+1+i+2
2i+1

.

Proof. By the results of Lemmas 4 and 5, the following recursive formulas can be shown:

T opt
1 (s) =

⌈ s
2
⌉
s
T opt
1

(⌈s
2

⌉)
+

⌊ s
2
⌋
s
T opt
1

(⌊s
2

⌋)
+ 1,

for all 2 ≤ s ≤ n, and

T opt
2,1 (s) =

⌈ s
2
⌉
s
T opt
2,1

(⌈s
2

⌉)
+

⌊ s
2
⌋
s
T opt
2,1

(⌊s
2

⌋)
+ 1,

and

T opt
2,2 (s) =

⌈ s
2
⌉(⌈ s

2
⌉ − 1)

s(s− 1)
T opt
2,2

(⌈s
2

⌉)
+

⌊ s
2
⌋(⌊ s

2
⌋ − 1)

s(s− 1)
T opt
2,2

(⌊s
2

⌋)
+

2⌊ s
2
⌋⌈ s

2
⌉

s(s− 1)

(
T opt
1

(⌈s
2

⌉)
+ T opt

1

(⌊s
2

⌋))
+ 1,

for all 3 ≤ s ≤ n. Solving these recursions, it follows that T opt
1 (2i) = i for all 1 ≤

i ≤ l, and T opt
2,1 (2

i) = i and T opt
2,2 (2

i) = (1 + (i− 1)(2i+1 − 1))/(2i − 1) for all 2 ≤ i ≤ l.

Noting that T opt
1 (1) = 0, it is easy to verify that T opt

1 (2i) = i for all 0 ≤ i ≤ l. Similarly,

it follows that T opt
2 (s) = 2

s+1
T opt
2,1 (s) +

s−1
s+1

T opt
2,2 (s) for all 3 ≤ s ≤ n, and subsequently,

T opt
2 (2i) = ((i− 1)2i+1 + i+ 2)/(2i + 1) for all 2 ≤ i ≤ l. Noting that T opt

2 (1) = 0

and T opt
2 (2) = 1, it is easy to see that T opt

2 (2i) = ((i− 1)2i+1 + i+ 2)/(2i + 1) for all

0 ≤ i ≤ l. This completes the proof.
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Figure 2.3: The average-case and worst-case results for the proposed strategy, the optimal
nested strategy, and the information-theoretic lower bound.

Recall that for the optimal nested strategy Ψ defined earlier, we have TΨ
ave(n) =

T opt
2 (n). Thus the following result is immediate by the result of Lemma 6.

Theorem 4. For the optimal nested strategy Ψ, we have Tave(n) = 2n+1
n+1

log2 n− 2(n−1)
n+1

.

2.5.2 Worst-Case Setting

Consider an optimal nested strategy Ψ⋆ for the worst-case setting, defined similarly as

the strategy Ψ for the average-case setting, except when considering the maximum number

of required weighings (instead of the expected number of required weighings). Then, the

following result holds [13].

Theorem 5. [13] For the optimal nested strategy Ψ⋆, we have Tmax(n) = 2 log2 n− 1.

2.6 Comparison Results

In this section, we present our numerical results for the performance of the proposed

strategy in both the average-case and worst-case settings. For each setting, the perfor-
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mance of the proposed strategy is compared with the performance of the optimal nested

strategy (defined in Section 2.5) and the information-theoretic lower bound (Theorem 1).

Fig. 2.3 illustrates that the proposed strategy, in the average-case setting, significantly

outperforms the optimal nested strategy. Also, in the worst-case setting, the proposed

strategy achieves the same performance as the nested strategy. Our numerical evaluations

suggest that the expected number of weighings required by the proposed strategy, which

is computable using the recursive formulas in Section 2.4, can be also approximated by

1.365 log2 n − 0.5 as n grows unbounded (see Fig. 2.3). In this asymptotic regime, the

optimal nested strategy requires 2 log2 n − 2 weighings on average, and the information-

theoretic lower bound is 2 log3 n ≈ 1.262 log2 n. Thus, a simple calculation shows that the

proposed strategy, when compared to the optimal nested strategy, requires about 31.75%

less number of weighings on average. Additionally, when compared to the information-

theoretic lower bound, the proposed strategy requires at most about 8.16% extra number

of weighings on average.
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3. NON-ADAPTIVE QUANTITATIVE GROUP TESTING USING BI-REGULAR

SPARSE GRAPH CODES*

3.1 Introduction

In this chapter, we consider the problem of Quantitative Group Testing (QGT). Con-

sider a set ofN items among whichK items are defective. The QGT problem is to identify

(all or a sufficiently large fraction of) the defective items, where the result of a test reveals

the number of defective items in the tested group. The key difference between the QGT

problem and the original group testing problem is that, unlike the former, in the latter the

result of each test is either 1 or 0 depending on whether the tested group contains any de-

fective items or not. The objective of QGT is to design a test plan with minimum number

of tests that identifies (all or a sufficiently large fraction of) the defective items.

There are two general categories of test strategies: non-adaptive and adaptive. In an

adaptive scheme, each test depends on the outcomes of the previous tests. On the other

hand, in a non-adaptive scheme, all tests are planned in advance. In other words, the result

of one test does not affect the design of another test.

Let S be the index set of the defective items and Ŝ be an estimation of S. Depending

on the application at hand, there can be different requirements for the closeness of Ŝ to

S [16, 17]. The strongest condition for closeness is exact recovery when it is required that

Ŝ = S. Two weaker conditions are partial recovery without false detections when it is

required that Ŝ ⊆ S and |Ŝ| ≥ (1− ϵ)|S|, and partial recovery without missed detections

when it is required that S ⊆ Ŝ and |Ŝ| ≤ (1 + ϵ)|S|. There are also different types of

the recovery guarantees [17]. The strongest guarantee is perfect recovery guarantee when

*Reprinted with permission from [43] "Sparse Graph Codes for Non-adaptive Quantitative Group Test-
ing," by E. Karimi, F. Kazemi, A. Heidarzadeh, K. R. Narayanan and A. Sprintson, 2019. In Proceedings of
2019 IEEE Information Theory Workshop (ITW), 2019, pp. 1-5. Copyright © by IEEE.
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the exact or partial recovery needs to be achieved with probability 1 (over the space of

all problem instances). A slightly weaker guarantee is probabilistic recovery guarantee

when it suffices to achieve the exact or partial recovery with high probability only (and not

necessarily with probability 1). In this work, we are interested in the exact recovery of all

defective items with the probabilistic recovery guarantee.

3.1.1 Related Work and Applications

The QGT problem has been extensively studied for a wide range of applications, e.g.,

multi-access communication, spectrum sensing, and network tomography, see, e.g., [13],

and references therein. This problem was first introduced by Shapiro in [35]. Several

non-adaptive and adaptive QGT strategies have been previously proposed, see, e.g., [13,

14, 34]. It was shown in [36] that any non-adaptive algorithm must perform at least

(2K log2(N/K))/ log2K tests. Various order optimal or near-optimal non-adaptive strate-

gies were previously proposed, see, e.g., [14, 34, 36]. The best known polynomial-time

non-adaptive algorithms require K logN tests [36, 44]. Recently, a semi-quantitative

group testing scheme based on sparse graph codes was proposed in [45], where the re-

sult of each test is an integer in the set {0, 1, 2, . . . , L}. This strategy identifies a (1 − ϵ)

fraction of defective items using c(ϵ, L)K log2N tests with high probability, where c(ϵ, L)

depends only on ϵ and L.

3.1.2 Connection with Compressed Sensing

A closely related problem to QGT is the problem of compressed sensing (CS) in which

the goal is to recover a sparse signal from a set of (linear) measurements. Given an N -

dimensional sparse signal with a support size up to K, the objective is to identify the

indices and the values of non-zero elements of the signal with minimum number of mea-

surements. The main differences between the CS problem and the QGT problem are in

the signal model and the constraints on the measurement matrix. Most of the existing
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works on the CS problem consider real-valued signals and measurement matrices. The

QGT problem, however, deals with binary signals and requires the measurement matrix to

be binary-valued. There are a number of CS algorithms in the literature that use binary-

valued measurement matrices, see, e.g. [18, 19] and references therein. However, these

strategies either use techniques which are not applicable to binary signals, or provide dif-

ferent types of closeness and guarantee than those required in this work. There are also

several CS algorithms for the support recovery where the objective is to determine the in-

dices of the non-zero elements of the signal but not their values [20, 21, 46]. The support

recovery problem is indeed equivalent to the QGT problem. Notwithstanding, the existing

schemes for support recovery rely on non-binary measurement matrices, and hence are

not suitable for the QGT problem. Last but not least, to the best of our knowledge, the

majority of works on the CS problem focus mainly on the order optimality of the number

of measurements, whereas in this work for the QGT problem we are also interested in

minimizing the constant factor hidden in the order.

3.1.3 Main Contributions

In this work, we propose a non-adaptive quantitative group testing strategy for the sub-

linear regime where K
N

vanishes as K,N → ∞. We utilize sparse graph codes over bi-

regular bipartite graphs with left-degree ℓ and right-degree r and binary t-error-correcting

BCH codes for the design of the proposed strategy. Leveraging powerful density evolution

techniques for the analysis enables us not only to determine the exact value of constants

in the number of tests needed but also to provide provable performance guarantees. We

show that the proposed scheme provides exact recovery with probabilistic guarantee, i.e.

recovers all the defective items with high probability. In particular, for the sub-linear

regime, the proposed algorithm requires at most m = c(t)K
(
t log2

(
ℓN
c(t)K

+ 1
)
+ 1
)
+ 1

tests to recover all defective items with probability approaching one as K,N → ∞, where
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c(t) depends only on t. The results of our theoretical analysis reveal that the minimum

number of required tests for the proposed algorithm is achieved by t = 2. Moreover, for

any t ≤ 4, the encoding and decoding of the proposed algorithm have the computational

complexity of O(N log N
K
) and O(K log N

K
), respectively.

3.2 Problem Setup and Notation

Let the vector x ∈ {0, 1}N represent the set of N items in which the coordinates with

value 1 correspond to the defective items. A non-adaptive group testing problem consisting

ofm tests can be represented by a measurement matrix A ∈ {0, 1}m×N , where the i-th row

of the matrix corresponds to the i-th test. That is, the coordinates with value 1 in the i-th

row correspond to the items in the i-th test. The results of the m tests are expressed in the

test vector y ∈ {0, 1, . . . }m, i.e.,

y = [y1, · · · , ym]T = Ax. (3.1)

The goal is to design a testing matrix A that has a small number of rows (tests), m, and

can identify with high probability all the defective items given the test vector y.

3.3 Proposed Algorithm

3.3.1 Binary t-error-correcting codes and t-separable matrices

Definition 1. (t-separable matrix) A binary matrix D ∈ {0, 1}m×n (for n > t) is t-

separable over field F if the sum (over field F) of any set of t columns is distinct.

Example 2. Consider the following matrix,

D =


0 1 0 1

0 1 1 0

0 0 1 1

 .
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The matrix D is 2-separable over real field R, but it is not 2-separable over F2 since, for

instance, the sum of the first and second columns over F2 is the same as the sum of the

third and fourth columns over F2.


0

0

0

⊕


1

1

0

 =


0

1

1

⊕


1

0

1

 =


1

1

0

 .

From the definition, it can be easily seen that if a matrix D (with n columns) is t-

separable over a field F, then D is also s-separable over F for any 1 ≤ s < t < n. The

vector of test results, y, is the sum of the columns in the testing matrix corresponding to the

coordinates of the defective items. When a t-separable matrix over R is used as the testing

matrix, the vector y will be distinct for any set of t defective items. Thus, a t-separable

matrix over R can be used as the testing matrix for identifying t defective items. However,

the construction of t-separable matrices for arbitrary t with minimum number of rows

is an open problem. Instead, we can leverage the idea that the parity-check matrix of any

binary t-error-correcting code is a t-separable matrix over F2. Note that t-separability over

F2 results in t-separability over R. Hence, a possible choice for designing a t-separable

matrix over R is utilizing the parity-check matrix of a binary t-error-correcting code.

We use binary BCH codes for this purpose. The key feature of the BCH codes which

make them suitable for designing t-separable matrices is that it is possible to design binary

BCH codes, capable of correcting any combination of t or fewer errors.

Definition 2. [47] (Binary BCH codes) For any positive integers m ≥ 3 and t < 2m−1,

there exists a binary t-error-correcting BCH code with the following parameters:
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n = 2m − 1 block length

n− k ≤ mt number of parity-check digits

dmin ≥ 2t+ 1 minimum Hamming distance

The parity-check matrix of such a code is given by Ht =
(
α(2i−1)(j−1)

)
i∈{1,··· ,t},j∈{1,··· ,n}

where α is a primitive element in F2m .

Since each entry of Ht is an element in F2m , it can be represented by an m-tuple over

F2. Thus, the number of rows in the binary representation of Ht is given by R = tm =

t log2(n+ 1).

3.3.2 Encoding algorithm

The design of the measurement matrix A in our scheme is based on an architectural

philosophy that was proposed in [17] and [48]. The key idea is to design A using a sparse

bi-regular bipartite graph and to apply a peeling-based iterative algorithm for recovering

the defective items given y.

Let Gℓ,r(N,M) be a randomly generated bipartite graph where each of the N left

nodes is connected to ℓ right nodes uniformly at random, and each of the M right nodes is

connected to r left nodes uniformly at random. Note that there are Nℓ edge connections

from the left side and Mr edge connections from the right side,

Nℓ =Mr (3.2)

Let TG ∈ {0, 1}M×N be the adjacency matrix of Gℓ,r(N,M), where each column

in TG corresponds to a left node and has exactly ℓ ones, and each row corresponds to

a right node and has exactly r ones. Let ti ∈ {0, 1}N denote the i-th row of TG, i.e.,

TG = [tT1 , t
T
2 , · · · , tTM ]T . We assign s tests to each right node based on a signature matrix
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U ∈ {0, 1}s×r. The matrix U is chosen as U = [1T1×r,H
T
t ]
T , where 11×r is an all-ones

row of length r, and Ht ∈ {0, 1}t log2(r+1)×r is the parity-check matrix of a binary t-error-

correcting BCH code of length r. We then have s = R + 1 = t log(r + 1) + 1.

The measurement matrix is given by A = [AT
1 , · · · ,AT

M ]T where Ai ∈ {0, 1}s×N is

a matrix that defines the s tests at the i-th right node. There are exactly r ones in each

row ti of TG, and the signature matrix U = [u1,u2, · · · ,ur] has r columns. Note that

ui = [1,hTi ]
T is the i-th column of U, where hi is the i-th column of Ht. Ai is obtained

by placing the r columns of U at the coordinates of the r ones of the row vector ti,

and replacing zeros by all-zero columns, Ai = [0, . . . ,0,u1,0, . . . ,u2,0, . . . ,ur] where

ti = [0, . . . , 0, 1, 0, . . . , 1, 0, . . . , 1]. The number of rows in the matrix A,m =M × s

where s = t log2(r + 1) + 1, represents the total number of tests in the proposed scheme.

Example 3. Let N = 14 be the total number of items. Let G be a randomly generated

bi-regular graph with N left nodes of degree ℓ = 2 and M = 4 right nodes of degree

r = 7. For this example, suppose that the adjacency matrix TG of the graph G is given by

TG =



1 0 1 0 1 0 1 0 1 0 1 0 0 1

0 1 1 0 0 1 0 1 0 1 0 1 0 1

0 1 0 1 0 1 1 0 0 1 1 0 1 0

1 0 0 1 1 0 0 1 1 0 0 1 1 0


.

The parity-check matrix of a binary 1-error-correcting BCH code of length 7 given by

H1 =

[
1 α · · · α6

]
=


0 0 1 0 1 1 1

0 1 0 1 1 1 0

1 0 0 1 0 1 1

 ,

where α ∈ F23 is a root of the primitive polynomial α3 + α + 1 = 0. The signature matrix
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U = [1T1×7,H
T
1 ]
T is then given by

U =



1 1 1 1 1 1 1

0 0 1 0 1 1 1

0 1 0 1 1 1 0

1 0 0 1 0 1 1


.

Following the construction procedure explained earlier, the testing matrix A is then given

by

A =



1 0 1 0 1 0 1 0 1 0 1 0 0 1

0 0 0 0 1 0 0 0 1 0 1 0 0 1

0 0 1 0 0 0 1 0 1 0 1 0 0 0

1 0 0 0 0 0 1 0 0 0 1 0 0 1

0 1 1 0 0 1 0 1 0 1 0 1 0 1

0 0 0 0 0 1 0 0 0 1 0 1 0 1

0 0 1 0 0 0 0 1 0 1 0 1 0 0

0 1 0 0 0 0 0 1 0 0 0 1 0 1

0 1 0 1 0 1 1 0 0 1 1 0 1 0

0 0 0 0 0 1 0 0 0 1 1 0 1 0

0 0 0 1 0 0 1 0 0 1 1 0 0 0

0 1 0 0 0 0 1 0 0 0 1 0 1 0

1 0 0 1 1 0 0 1 1 0 0 1 1 0

0 0 0 0 1 0 0 0 1 0 0 1 1 0

0 0 0 1 0 0 0 1 1 0 0 1 0 0

1 0 0 0 0 0 0 1 0 0 0 1 1 0



.
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3.3.3 Decoding algorithm

Let the observation vector corresponding to the i-th right node be defined as

zi = [zi,1, zi,2, · · · , zi,s]T = Aix, ∀i ∈ {1, · · · ,M}. (3.3)

Note that zi = [y(i−1)s+1, · · · , yis]T .

Definition 3. (t-resolvable right node) A right node is called t-resolvable if it is connected

to t or fewer defective items.

The following lemma is useful for resolving the right nodes.

Lemma 7. The proposed algorithm detects and resolves all the t-resolvable right nodes.

Proof. Let us divide zi into two blocks, zi = [z
(1)
i

T
, z

(2)
i

T
]T , where z

(1)
i = zi,1 and

z
(2)
i = [zi,2, · · · , zi,s]T . We can rewrite (3.3) by placing [1,hTi ]

T at the coordinates of ui’s,

z(1)i
z
(2)
i

 =

0 . . . 0 1 0 . . . 1 0 . . . 1

0 . . . 0 h1 0 . . . h2 0 . . . hr

x.

Assume that j ≤ t defective items are connected to the i-th right node. The first block, z(1)i ,

which is the first element of zi, shows the number of defective items connected to the i-th

right node. Recall that the first row of the signature matrix is an all-ones vector. It means

that there are r ones in the first row of every Ai, i ∈ {1, 2, · · · ,M}. Thus, all r items

connected to the i-th right node are included in the test corresponding to the first row of

Ai. The second block, z(2)i , is equal to the sum of hi’s corresponding to the defective items

connected to the i-th right node. Let Si be the set of indices of items (left nodes) that are

connected to the i-th right node, and let xSi
be the vector x restricted to the items indexed

by Si. Note that xSi
can be viewed as an error vector for a t-error-correcting BCH code
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with parity-check matrix Ht, and the block vector z(2)i under modulo 2 can be interpreted

as the syndrome corresponding to the error vector xSi
. The Hamming weight of the error

vector XSi
, i.e., the number of ones in xSi

, is equal to j. When j ≤ t, the error vector xSi

can be decoded from the corresponding syndrome by decoding the underlying BCH code,

and hence all j defective items connected to the i-th right node can be identified.

The decoding algorithm performs in rounds as follows. In each round, the decoding

algorithm first iterates through all the right node observation vectors {zi}Mi=1, and resolves

all t-resolvable right nodes (by BCH decoding, as discussed in the proof of Lemma 7).

Then, given the identities of the recovered left nodes, the edges connected to these defec-

tive items are peeled off the graph. That is, the contributions of the recovered defective

items will be removed from the unresolved right nodes so that new right nodes may be-

come t-resolvable for the next round. The decoding algorithm terminates when there is no

more t-resolvable right nodes.

Example 4. Consider the group testing problem in the Example 3. Let the number of

defective items be K = 3 and let

x = [1, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0]T ,

i.e., item 1, item 4, and item 10 are defective items. We show how the proposed scheme

can identify the defective items. The result of the tests can be expressed as follows,

y =



z1

z2

z3

z4


= Ax =



u1

u5

u2 + u5

u1 + u2
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Then, the right-node observation vectors are given by

z1 = u1 = [1, 0, 0, 1]T

z2 = u5 = [1, 1, 1, 0]T

z3 = u2 + u5 = [2, 1, 2, 0]T

z4 = u1 + u2 = [2, 0, 1, 1]T

Because the signature matrix is built using a 1-separable matrix, each right node can

be resolved if it is connected to at most one defective item.

Iteration 1: we first find the 1-resolvable right nodes. The first and second right nodes

are 1-resolvable because z1,1 = z2,1 = 1. Using a BCH decoding algorithm, one can

find that the defective items connected to the first and second right nodes are item 1 and

item 10, respectively. Next, we remove the contributions of the items 1 and 10 from the

unresolved right nodes. The new observation vectors will be as follows,

z3 = u2 = [1, 0, 1, 0]T

z4 = u2 = [1, 0, 1, 0]T

Iteration 2: it can be easily observed that the third and forth right nodes are 1-resolvable

since z3,1 = z4,1 = 1. Using a BCH decoding algorithm, it follows that the item 4 is the

defective item connected to both right nodes 3 and 4. Since all the K = 3 defective items

are identified, the decoding algorithm terminates.
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3.4 Main Results

In this section, we present our main results. Theorem 6 characterizes the required

number of tests that guarantees the identification of all defective items with probability

approaching one as K,N → ∞. Theorem 7 presents the computational complexity of the

proposed algorithm. The proofs of Theorems 6 and 7 are given in Section 3.5.

Theorem 6. For the sub-linear regime, the proposed scheme recovers all defective items

with probability approaching one (as K,N → ∞) with at most

m = c(t)K

(
t log2

(
ℓN

c(t)K
+ 1

)
+ 1

)
+ 1

tests, where c(t) depends only on t. Table 3.1 shows the values of c(t) for t ≤ 8.

t 1 2 3 4 5 6 7 8
c(t) 1.222 0.597 0.388 0.294 0.239 0.202 0.176 0.156
ℓ⋆ 3 2 2 2 2 2 2 2

Table 3.1: The function c(t) and the optimal left degree ℓ⋆.

Theorem 7. The encoding and decoding of the proposed algorithm for any t ≤ 4 have the

computational complexity of O(N log N
K
) and O(K log N

K
), respectively.

3.5 Proofs of Main Theorems

3.5.1 Proof of Theorem 6

Let N be the total number of items, out of which K items are defective. Note that

in the QGT problem, performing one initial test (on all items) would suffice to obtain

the number of defective items. As mentioned in Section 3.3.3, our scheme employs an

49



iterative decoding algorithm. In each iteration, the algorithm finds and resolves all the t-

resolvable right nodes. At the end of each iteration, the decoder subtracts the contribution

of the identified defective items from the unresolved right nodes. This process is repeated

until there is no t-resolvable right nodes left in the graph. The fraction of defective items

that remain unidentified when the decoding algorithm terminates can be analyzed using

density evolution as follows.

Assuming that the exact number of the defective items, K, is known and the values

assigned to the defective and non-defective items are one and zero, respectively, the left-

and-right-regular bipartite graph can be pruned. All the zero left nodes and their respective

edges are removed from the graph. The number of left nodes in the pruned graph is K,

but the degree of these nodes remains unchanged. On the other hand, the number of right

nodes remains unchanged, but the resulting graph is not right-regular any longer.

Let λ be the average right degree, i.e., λ = Kℓ
M

. Let ρ(x) ≜
∑min(K,r)

i=1 ρix
i−1 be the

right edge degree distribution, where ρi is the probability that a randomly picked edge in

the pruned graph is connected to a right node of degree i, and min(K, r) is the maximum

degree of a right node. As shown in [48], as K,N → ∞, we have ρi = e−λ λi−1

(i−1)!
. The

following lemma is useful for computing the fraction of unidentified defective items at

each iteration j of the decoding algorithm.

Lemma 8. Let pj be the probability that a randomly chosen defective item is not recovered

at iteration j of the decoding algorithm; and let qj be the probability that a randomly

picked right node is resolved at iteration j of the decoding algorithm. The relation between

pj and pj+1 is determined by the following density evolution equations:

qj =
t∑
i=1

ρi +

min(K,r)∑
i=t+1

ρi

t−1∑
k=0

(
i− 1

k

)
pkj (1− pj)

i−k−1, (3.4)
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Figure 3.1: Tree-like representation of neighborhood of the edge between a left node v
and a right node c in the pruned graph.

pj+1 = (1− qj)
ℓ−1, (3.5)

where t is the level of separability, and ρi is the probability that a randomly picked edge

in the pruned graph is connected to a right node of degree i.

Proof. As mentioned earlier, the pruned graph is left-regular and the degree of the left

nodes is ℓ, but the pruned graph is not right-regular any longer and the degree of the

right nodes can be any integer in {0, 1, · · · ,min(K, r)}. A tree-like representation of the

neighborhood of an edge between a left node v of degree ℓ and a right node c of degree

i is shown in Fig. 3.1. The left node v sends a “not identified” message to the right node

c at iteration j + 1 with probability pj+1 if all of its neighboring nodes {ci}ℓ−1
i=1 have not

been resolved at iteration j which it happens with probability (1− qj)
l−1. The right node

c of degree i with probability qj passes a “resolved” message to the left node v at iteration

j if the number of defective items connected to node c, i.e., i, is equal to t or less which it

happens with probability
∑t

i=1 ρi, or if the number of defective items connected to node c

is more than t (i > t), but only k ∈ {0, 1, · · · , t− 1} of the i−1 defective items connected

to node c other than v are unidentified (we know that v is not identified yet) which this case

happens with probability
∑min(K,r)

i=t+1 ρi
∑t−1

k=0

(
i−1
k

)
pkj (1− pj)

i−k−1.

51



Note that pj is only a function of the variables t, ℓ, and λ when min(K, r) → ∞.

Recall that the goal is to minimize the total number of tests, i.e., M × s, where M is

the number of right nodes, and s is the number of rows in the signature matrix. The

number of rows, s, in the signature matrix depends only on the level of separability,

t. For a given t, we can minimize the number of right nodes M = ℓ
λ
K subject to the

constraint limj→∞ pj(ℓ, λ) = 0, so as to minimize the total number of the tests. The con-

straint limj→∞ pj(ℓ, λ) = 0 guarantees that running the decoding algorithm for sufficiently

large number of iterations, the probability that a randomly chosen defective item remains

unidentified approaches zero. For any ℓ ≥ 2, let λT (ℓ) ≜ sup{λ : limj→∞ pj(ℓ, λ) = 0}.

Then, for any ℓ ≥ 2 and λ < λT (ℓ), we have limj→∞ pj(ℓ, λ) = 0. Accordingly, for any

ℓ ≥ 2 and M = ℓ
λ
K > ℓ

λT (ℓ)
K, it follows that limj→∞ pj(ℓ, λ) = 0. Our goal is then to

compute

min
ℓ∈{2,3,... }

ℓ

λT (ℓ)
K. (3.6)

We can solve this problem numerically and attain the optimal value of ℓ, i.e., ℓ⋆. Let

c(t) ≜ ℓ⋆

λT (ℓ⋆)
. The number of right nodes can then be chosen as M = c(t)Kβ for any

β > 1 to guarantee that M > c(t)K = ℓ⋆

λT (ℓ⋆)
K. Substituting M = c(t)Kβ in (3.2) results

in r = ℓN
c(t)Kβ

. Therefore, the total number of tests will become

M × s = c(t)Kβ

(
t log2

(
ℓN

c(t)Kβ
+ 1

)
+ 1

)
.

Lemma 9. There exist some β > 1 such that

c(t)K

(
t log2

(
ℓN

c(t)K
+ 1

)
+ 1

)
+ 1 ≥ c(t)Kβ

(
t log2

(
ℓN

c(t)Kβ
+ 1

)
+ 1

)
.
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Proof. Let us define the following function,

f(β) ≜ c(t)K

(
t log

(
ℓN

c(t)Kβ
+ 1

)
+ 1

)
.

We need to show that there exists some β > 1 such that f(1) + 1 ≥ βf(β), or equivalently,

βf(β) − f(1) ≤ 1. Since f(β) is a monotone decreasing function of β, f(β) < f(1) for

β > 1. This inequality leads to βf(β)− f(1) < (β − 1)f(1). Hence, to guarantee that

there exists some β > 1 such that βf(β)−f(1) ≤ 1, it suffices to show that (β−1)f(1) ≤

1 for some β > 1. It is easy to see that 1 < β ≤ 1
f(1)

+ 1 is the satisfactory range.

By combining the result of Lemma 9 and the preceding arguments, it follows that with

probability approaching one asK,N → ∞,m = c(t)K
(
t log2

(
ℓN
c(t)K

+ 1
)
+ 1
)
+1 tests

would suffice for the proposed algorithm to recover all defective items. This completes the

proof.

3.5.2 Proof of Theorem 7

Lemma 10. For any t ≤ 4, the computational complexity of resolving each t-resolvable

right node is O(log r).

Proof. As mentioned in Lemma 7, the block vector z(2)i under modulo 2 can be interpreted

as the syndrome corresponding to an error pattern of Hamming weight j ≤ t. The location

of the j errors (j defective items) can be determined from z
(2)
i under modulo 2 by first

using a Berlekamp-Massey algorithm for finding the error locator polynomial. This step

involves a time complexity of O(t2 log r) (all computations are performed in a finite field

of size 2m = r+1). Once the error locator polynomial is determined, the roots of the error

locator polynomial have to be found. A standard Chien search can be used to solve this

step with complexity O(tr log r); however, when t ≤ 4, the Chien search can be avoided

and the roots can be found directly using the algorithm in [49] with a complexity that is
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only O(t log r). Therefore, for t ≤ 4, the decoding complexity of resolving a t-resolvable

right node is only logarithmic in r (i.e., O(log r)).

The total number of right nodes, M , is O(K). From Lemma 10, it then follows that

the complexity of the decoding algorithm is O(K log r). Using (3.2), it is easy to see that

for any t ≤ 4 the decoding algorithm has complexity O(K log N
K
). The total number of

measurements is m and for each measurement r summations are performed. Hence, the

complexity of the encoding algorithm is O(mr), which becomes equivalent to O(N log N
K
)

for any t ≤ 4.

3.6 Evaluation of c(t)

In this section, we present the complete analysis for the case of t = 1, and show how

one can evaluate c(t) at t = 1, i.e., c(1). The same procedure can be used for evaluating

c(t) at any t > 1. To compute c(1) = ℓ⋆

λT (ℓ⋆)
, we compute the ratio ℓ

λT (ℓ)
for each ℓ ≥ 2

and its corresponding λT (ℓ). The optimal ℓ, i.e., ℓ⋆, is the one that yields the minimum

value for ℓ
λT (ℓ)

. For the case of t = 1, the density evolution equations (3.4) and (3.5) can

be combined as

pj+1 =

1−
min(K,r)∑
i=1

ρi(1− pj)
i−1

ℓ−1

. (3.7)

Obviously, p1 = 1. Substituting ρi = e−λ λi−1

(i−1)!
, we can rewrite (3.7) as

pj+1 =

1− e−λ
min(K,r)∑
i=1

λi−1

(i− 1)!
(1− pj)

i−1

ℓ−1

. (3.8)

For the sub-linear regime, K
N

→ 0 (by definition) as K,N → ∞, and hence, r → ∞

(by (3.2)). Thus, in the asymptotic regime of our interest, min(K, r) → ∞. Letting
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min(K, r) → ∞, the equation (3.8) reduces to

pj+1 =
(
1− e−λpj

)ℓ−1
. (3.9)

Using (3.9), we can write

λ =

 ln

(
1− p

1
ℓ−1

j+1

)
−pj

.
The following two lemmas are useful for computing λT (ℓ) = sup{λ : limj→∞ pj(ℓ, λ) =

0} for each ℓ ≥ 2.

Lemma 11. For any ℓ ≥ 2 and any λ > 0, the infinite sequence {p1, p2, · · · } converges.

Proof. Note that every bounded and monotonic sequence converges. From the definition,

it is obvious that 0 ≤ pj ≤ 1 for any integer ℓ ≥ 2 and any real number λ > 0. Then,

it suffices to show the monotonicity of the sequence {p1, p2, . . . }. The proof is based on

induction. It is easy to see that p2 < p1, i.e.,
(
1− e−λ

)ℓ−1
< 1. The induction hypothesis

is that pj < pj−1. We need to show that pj+1 < pj . By the induction hypothesis, we have

(
1− e−λpj−1

)ℓ−1
< pj−1.

Then, it is easy to see that

1− e−λ(1−e
−λpj−1)

ℓ−1

< 1− e−λpj−1 ,

or equivalently,

(
1− e−λ(1−e

−λpj−1)
ℓ−1
)ℓ−1

<
(
1− e−λpj−1

)ℓ−1
(3.10)
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Replacing
(
1− e−λpj−1

)ℓ−1 by pj , we can rewrite (3.10) as

(
1− e−λpj

)ℓ−1
< pj,

which yields pj+1 < pj , as was to be shown.

Lemma 12. Let p∗ be the limit of the sequence {p1, p2, · · · }, and let

λT (ℓ) ≜ inf
0<x<1

(
ln(1− x

1
ℓ−1 )

−x

)
.

Then, for any ℓ ≥ 2, we have


p∗ = 0, 0 < λ < λT (ℓ),

p∗ > 0, λ ≥ λT (ℓ).

Proof. By Lemma 11, we know that p∗ exists, and it must be a solution to the following

equation,

p∗ =
(
1− e−λp

∗)ℓ−1
. (3.11)

We first show that for 0 < λ < λT (ℓ), it holds that p∗ = 0. It suffices to show that for

0 < λ < λT (ℓ) and any integer ℓ ≥ 2, the only solution of (3.11) is p∗ = 0. Obviously,

p∗ = 0 is a solution of (3.11) for any 0 < λ < λT (ℓ) and any integer ℓ ≥ 2. Thus,

we need to show that for 0 < λ < λT (ℓ) and any integer ℓ ≥ 2, and any 0 < ϵ <

1, we have ϵ ̸=
(
1− e−λϵ

)ℓ−1. The proof is by the way of contradiction. Suppose that

ϵ =
(
1− e−λϵ

)ℓ−1 for some 0 < ϵ < 1. By solving this equation for λ, we get

λ =
ln(1− ϵ

1
ℓ−1 )

−ϵ
.
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On the other hand, we know that

λ < λT (ℓ) = inf
0<x<1

(
ln(1− x

1
ℓ−1 )

−x

)
.

Thus, we have
ln(1− ϵ

1
ℓ−1 )

−ϵ
< inf

0<x<1

(
ln(1− x

1
ℓ−1 )

−x

)
for some 0 < ϵ < 1. Obviously, this inequality cannot hold, and we reach a contradiction,

as desired.

Next, we shall show that for any λ ≥ λT (ℓ), we have p∗ > 0. From (3.11), it follows

that

λ =
ln(1− p∗

1
ℓ−1 )

−p∗
.

Hence, λ ≥ λT (ℓ) implies that

ln(1− p∗
1

ℓ−1 )

−p∗
≥ inf

0<x<1

(
ln(1− x

1
ℓ−1 )

−x

)
.

Again, the proof is by the way of contradiction. Suppose that p∗ = 0, i.e., the sequence

{p1, p2, . . . } converges to 0. Therefore, for any δ > 0, there exist a positive integer i such

that for any j ≥ i, |p∗ − pj| = pj < δ. Consider an arbitrary 0 < δ < 1. Let i be such that

pi−1 ≥ δ and pj < δ for all j ≥ i. Note that pi < δ implies that
(
1− e−λpi−1

)ℓ−1
< δ. This

inequality can be rewritten as λ < ln(1−δ
1

ℓ−1 )
−pi−1

. Using the facts that λ ≥ λT (ℓ) and pi−1 ≥ δ,

we have

inf
0<x<1

(
ln(1− x

1
ℓ−1 )

−x

)
<

ln(1− δ
1

ℓ−1 )

−pi−1

, (3.12)

and
ln(1− δ

1
ℓ−1 )

−pi−1

≤ ln(1− δ
1

ℓ−1 )

−δ
. (3.13)
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Figure 3.2: The number of required tests (m) to identify all K defective items with prob-
ability approaching one (for different values of K) among N = 216 items for different
values of t obtained via analysis.

Combining (3.12) and (3.13), we get

inf
0<x<1

(
ln(1− x

1
ℓ−1 )

−x

)
<

ln(1− δ
1

ℓ−1 )

−δ
. (3.14)

Let f(x) ≜ ln(1−x
1

ℓ−1 )
−x , and let x∗ be such that

inf
0<x<1

f(x) =
ln(1− x∗

1
ℓ−1 )

−x∗
.

Since limx→0 f(x) = limx→1 f(x) = +∞, obviously we have 0 < x∗ < 1. Taking δ = x∗,

we will have

inf
0<x<1

(
ln(1− x

1
ℓ−1 )

−x

)
=

ln(1− δ
1

ℓ−1 )

−δ
. (3.15)

From (3.14) and (3.15), we arrive at a contradiction. This completes the proof.
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Figure 3.3: The average fraction of unidentified defective items obtained via Monte Carlo
simulations for N = 216 items among which K = 100 items are defective.

By the result of Lemma 12, for any ℓ ≥ 2 the value of λT (ℓ) can be computed numer-

ically. One can then obtain the optimal value of ℓ, i.e., ℓ⋆, which minimizes the ratio of

ℓ
λT (ℓ)

, and accordingly c(1) = ℓ⋆

λT (ℓ⋆)
can be computed.

3.7 Comparison Results

In this section we will evaluate the performance of the proposed algorithm based on

our theoretical analysis and the Monte Carlo simulations.

Based on the results in Theorem 6 and Table 3.1, Fig. 3.2 depicts the total number of

tests (m) required to identify all the defective items with probability approaching one for

different values of t. The number of items is assumed to be N = 216. As it can be seen,

when t ∈ {1, 2, 3} the required number of tests for identifying all the defective items is

less than that for larger values of t.

Using the Monte Carlo simulation, we also compare the performance of the proposed
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scheme for t ∈ {1, 2, 3} with the performance of the Multi-Level Group Testing (MLGT)

algorithm from [45]. The MLGT scheme is a semi-quantitative group testing scheme

where the result of each test is an integer in the set {0, 1, 2, · · · , L}. Letting L→ ∞,

the MLGT scheme becomes a QGT scheme. Based on the optimization that we have

performed, the optimal left degree for the MLGT scheme is ℓ⋆ = 3 when L → ∞. For

K = 100 defective items among a population of N = 216 items, the average fraction of

unidentified defective items for the MLGT scheme and the proposed scheme are shown

in Fig. 3.3 for different values of m/K. As it can be observed, the proposed scheme for

all the three tested values of t outperforms the MLGT scheme significantly. For instance,

when the fraction of unidentified defective items is 2× 10−4, the required number of tests

for the MLGT scheme (for ℓ = 3) is 3 times, 5 times, and 7 times more than that of the

proposed scheme for t = 1, t = 2, and t = 3, respectively.
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4. NON-ADAPTIVE QUANTITATIVE GROUP TESTING USING IRREGULAR

SPARSE GRAPH CODES*

4.1 Introduction

In this chapter, we consider the Quantitative Group Testing (QGT) problem which is

concerned with recovering all or a sufficiently large fraction of defective items in a given

population of items, each of which is either defective or not. In the QGT problem, the

result of a test on any group of items reveals the number of defective items in the tested

group. The objective is to design a test plan for QGT with minimum number of tests.

There are two different models for the defective items in the literature: deterministic

and randomized. In the deterministic model (a.k.a. the combinatorial model), the exact

number of defective items is known, whereas in the randomized model (a.k.a. the prob-

abilistic model), each item is defective with some probability, independent of the other

items [11–14]. In this work, we consider the randomized model in which each item is

defective with probability K
N

, independently from the other items, where N is the total

number of items, and the parameter K represents the expected number of defective items.

It should be noted that the deterministic model can be readily justified using the fact that

performing one initial test on all items reveals the number of defective items. Notwith-

standing, in most practical applications, performing a test on all items may not be feasible,

particularly when the number of items is very large. On the other hand, assuming that the

expected number of defective items is known is a more reasonable assumption for many

practical applications. Moreover, it should be noted that the QGT schemes designed for

the scenarios in which the randomized model is considered are applicable to the scenarios

*Reprinted with permission from [50] "Non-adaptive Quantitative Group Testing Using Irregular Sparse
Graph Codes," by E. Karimi, F. Kazemi, A. Heidarzadeh and A. Sprintson, 2019. In Proceedings of 2019
57th Annual Allerton Conference on Communication, Control, and Computing (Allerton), 2019, pp. 608-
614. Copyright © by IEEE.
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considering the deterministic model, but this relation does not work in reverse order.

In this study, we are interested in non-adaptive QGT schemes, where all tests are

designed in advance. This is in contrast to adaptive QGT schemes, in which the design of

each test depends on the results of the previous tests. In most practical applications, when

compared to adaptive QGT schemes, non-adaptive QGT schemes are preferred because all

tests can be executed at once in parallel.

4.1.1 Related Work and Applications

The QGT problem can be traced back to the seminal work by Shapiro in [35]. To date,

several adaptive and non-adaptive QGT strategies have been proposed, see, e.g., [13, 14,

34,43,51] and references therein. Using a simple information theoretic argument, one can

easily show the information-theoretic lower bound logK
(
N
K

)
≈ (K log(N/K))/ logK on

the minimum number of tests for any adaptive QGT scheme.* However, this lower bound

is not tight for non-adaptive QGT schemes. In particular, it was shown in [36] and [52]

that any non-adaptive QGT scheme requires at least (2K log(N/K))/ logK tests. For the

linear regime in which the number of defective items is a constant fraction of the total num-

ber of items, the QGT problem has been fully solved [53,54]. However, for the sub-linear

regime, i.e., when the number of defective items grow sub-linearly in the total number of

items, the QGT problem is widely open. Recently, in [43], the first non-adaptive QGT

scheme for the sub-linear regime that requires m ≈ 1.19K log
(
4.74N

K

)
tests to recover all

the defective items with probability approaching 1 was proposed. Shortly after, Gebhard et

al. in [51] proposed a greedy non-adaptive QGT scheme that requires m = 1+
√
θ

1−
√
θ
K ln

(
N
K

)
tests to recover all K = N θ (for 0 < θ < 1) defective items with high probability.

Aside from the theoretical endeavors, the QGT problem has also gained substantial

attention over the last few years from the practical perspective. In particular, the QGT

*Throughout the chapter the base of log is 2, unless explicitly noted otherwise.
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problem has been studied for a wide range of applications from machine learning and

computational biology [55, 56] to multi-access communication, traffic monitoring, and

network tomography [57–59]. It should be noted that most of these applications are being

run repeatedly over time, and for such applications, minimizing the constant factor hidden

in the order is also of prominent importance. This observation is the primary motivation

for this work.

4.1.2 Main Contributions

In this work, we propose a non-adaptive QGT scheme for the scenarios in which the

randomized model is considered for defective items. The testing algorithm of the proposed

scheme relies on sparse graph codes over irregular bipartite graphs with optimized left-

degree profiles as well as binary t-error-correcting BCH codes. As part of the process of

optimizing the left-degree profile of the graph, we take advantage of the density-evolution

technique to analyze the probability of error of the proposed peeling-based recovery al-

gorithm, i.e., the probability that a defective item remains unidentified over the iterations

of the recovery algorithm. We provide provable guarantees on the performance of the

proposed scheme in terms of the required number of tests. In particular, we show that in

the sub-linear regime the proposed scheme requires m = c(t, d)K(t log( ℓN
c(t,d)K

+ 1) + 1)

tests to identify all defective items with high probability, where d and ℓ are the maximum

and average left degree, respectively, and c(t, d) is constant with respect to K and N , and

depends only on t and d. Moreover, we show that, for any t ≤ 4, the testing and recovery

algorithms of the proposed scheme have the computational complexity of O(N log N
K
) and

O(K log N
K
), respectively.

4.2 Problem Setup and Notations

We denote vectors and matrices by bold-face small and capital letters, respectively. For

an integer i ≥ 1, we denote {1, . . . , i} by [i].
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We define the support vector x ∈ {0, 1}N to represent the set of N items. The i-

th component of x is 1 if and only if the i-th item is defective. In a non-adaptive QGT

problem, designing a test scheme consisting of m tests is equivalent to the construction of

a binary matrix with m rows which is referred to as measurement matrix. We let matrix

A ∈ {0, 1}m×N denote the measurement matrix wherein the non-zero indices in the i-

th row correspond to the items that are present in the i-th test. We also let vector y ∈

{0, 1, 2, . . . }m denote the outcomes of the m tests in the following matrix form.

y = [y1, . . . , ym]
T = Ax. (4.1)

The objective is to construct a measurement matrix with a small number of rows (tests)

that successfully identifies the set of defective items with high probability given the test

results vector y.

4.3 Proposed Algorithm

4.3.1 Testing algorithm

We employ a framework similar to that proposed in [43] for designing the measure-

ment matrix A; however, in our design we utilize irregular bipartite graphs with carefully

designed left-degree profile, instead of bi-regular bipartite graphs.

Consider a randomly generated bipartite graph with N left nodes and M right nodes

where each right node is connected to r left nodes. The left nodes are connected to the

right nodes according to a left-node degree distribution given by L(x) ≜
∑d

i=1 Lix
i where

d and Li denote the maximum degree of a left node and the probability that a randomly

selected left node in the graph has degree i, respectively. We denote the adjacency matrix

of such a graph by T ∈ {0, 1}M×N where each column in T corresponds to a left node,

and each row in T corresponds to a right node and has exactly r ones. The adjacency
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matrix T can be represented in the matrix form T = [tT1 , t
T
2 , . . . , t

T
M ]T , where ti denotes

the i-th row.

A carefully designed signature matrix U ∈ {0, 1}s×r is used to assign s tests to each

right node. We place an all-ones row of length r as the first row of the signature matrix.

The first row in U corresponds to a test whose result reveals the number of defective items

connected to a right node. The rest of the rows in U are the rows in the parity-check

matrix of a binary t-error-correcting BCH code [47]. Given that the number of defective

items connected to a right node is no more than t, the results of the tests corresponding to

the rows in the parity-check matrix can be used to identify the defective items connected

to the right node. Considering that the number of columns is r, the number of rows in

the parity-check matrix of a t-error-correcting BCH code is given by R = t log(r + 1).

The signature matrix U can then be represented by U = [1T1×r,H
T
t ]
T , where 11×r is an

all-ones row of length r, and Ht ∈ {0, 1}R×r is the parity-check matrix of a binary t-

error-correcting BCH code. One can readily observe that the number of rows in U is given

by s = R + 1 = t log(r + 1) + 1.

Now, we show the construction process of the measurement matrix using the adja-

cency matrix T and the signature matrix U. Let the measurement matrix be given by

A = [AT
1 , . . . ,A

T
M ]T where Ai ∈ {0, 1}s×N is a block matrix that represents the s tests at

the i-th right node. Let uj denote the j-th column of the signature matrix. Note that the

number of columns in the signature matrix U is r, and there are exactly r ones in each row

of the adjacency matrix T. The block matrix Ai is then constructed by replacing zeros

and ones in the i-th row of the adjacency matrix, ti, by all-zero columns and the columns

of the signature matrix, respectively, as follows:

Ai = [0, . . . ,0,u1,0, . . . ,u2,0, . . . ,ur] (4.2)
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where ti = [0, . . . , 0, 1, 0, . . . , 1, 0, . . . , 1]. In other words, we place the r columns

of the signature matrix at the coordinates of the r ones in the row ti, and then we replace

zeros in ti by all-zero columns. The total number of rows in the measurement matrix

A which is equivalent to the total number of tests in the proposed scheme is given by

m =M × s =M(t log(r + 1) + 1). The following example helps to better understand

the construction process of the measurement matrix.

Example 5. Let T denote the adjacency matrix of an irregular bipartite graph withN = 14

left nodes and M = 3 right nodes of degree r = 7. The edge connections of the left side

satisfies the following left node degree distribution given by L(x) = 10
14
x+ 1

14
x2 + 3

14
x3.

T =


0 1 0 1 1 0 0 0 1 1 0 0 1 1

0 0 1 1 0 0 1 1 0 1 0 1 1 0

1 0 0 1 0 1 0 1 0 1 1 0 1 0

 .
Also, we let H1 and U = [1T1×7,H

T
1 ]
T denote the parity-check matrix of a binary t = 1-

error-correcting BCH code of length r = 7 and the signature matrix, respectively, where

H1 = [h1, . . . ,h7] =


0 0 1 0 1 1 1

0 1 0 1 1 1 0

1 0 0 1 0 1 1

 ,

and

U =



1 1 1 1 1 1 1

0 0 1 0 1 1 1

0 1 0 1 1 1 0

1 0 0 1 0 1 1


.
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The measurement matrix A can then be constructed by following the procedure ex-

plained earlier,

A =



0 1 0 1 1 0 0 0 1 1 0 0 1 1

0 0 0 0 1 0 0 0 0 1 0 0 1 1

0 0 0 1 0 0 0 0 1 1 0 0 1 0

0 1 0 0 0 0 0 0 1 0 0 0 1 1

0 0 1 1 0 0 1 1 0 1 0 1 1 0

0 0 0 0 0 0 1 0 0 1 0 1 1 0

0 0 0 1 0 0 0 1 0 1 0 1 0 0

0 0 1 0 0 0 0 1 0 0 0 1 1 0

1 0 0 1 0 1 0 1 0 1 1 0 1 0

0 0 0 0 0 1 0 0 0 1 1 0 1 0

0 0 0 1 0 0 0 1 0 1 1 0 0 0

1 0 0 0 0 0 0 1 0 0 1 0 1 0



.

4.3.2 Recovery Algorithm

The recovery algorithm is similar to the peeling decoding algorithm, and it proceeds

in an iterative manner as follows. During each iteration, the recovery algorithm inspects

all the right nodes, and identifies and resolves any right node which is connected to t or

less number of defective items (for more details, see the proof of [43, Lemma 1]). Then,

the recovery algorithm peels the edges connected to the identified defective items off the

graph, and the next iteration begins. When no (not-yet-resolved) right node connected to t

or less number of defective items can be found, the recovery algorithm terminates. Below,

we provide an illustrative example of the recovery algorithm.
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Example 6. Consider the scenario in Example 5. Suppose that items 4,8, and 11 are

defective. Let the support vector x = [0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0]T represent the set

of N = 14 items. The test results vector y according to the testing algorithm using the

measurement matrix A constructed in Example 5 can be expressed as follows:

y = [y1, · · · , y12]T = Ax =


u2

u2 + u4

u2 + u4 + u6

 .

The results of the tests corresponding to the right nodes 1, 2, 3 are respectively given by

[y1, y2, y3, y4]
T = u2 = [1, 0, 1, 0]T ,

[y5, y6, y7, y8]
T = u2 + u4 = [2, 0, 2, 1]T ,

[y9, y10, y11, y12]
T = u2 + u4 + u6 = [3, 1, 3, 2]T .

Since we used the parity-check matrix of a t = 1-error-correcting BCH code to build

the signature matrix, each right node can be resolved (i.e., all items connected to the right

node can be identified) if it is connected to at most one defective item. The first test result

associated to a right node shows the number of defective items connected to that right

node.

In the first iteration, the decoding algorithm can only resolve the first right node be-

cause y1 = 1 and y5, y9 ̸= 1. Using [y2, y3, y4]
T = h2 = [0, 1, 0]T , by using a BCH

decoding algorithm we can identify the second item connected to the first right node, i.e.,

item 4, as a defective item. Subtracting off the contribution of the item 4 from the test

results corresponding to the unresolved right nodes, the updated test results will be as
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follows:

[y5, y6, y7, y8]
T = u4 = [1, 0, 1, 1]T

[y9, y10, y11, y12]
T = u4 + u6 = [2, 1, 2, 2]T

In the second iteration, the recovery algorithm resolves the second right node because

y5 = 1 and y9 ̸= 1. A BCH decoding algorithm uses [y6, y7, y8]T = h4 = [0, 1, 1]T , and

declares the forth item connected to the second right node, i.e., item 8, as a defective item.

Similarly as in the case of item 4 in the first iteration, subtracting off the contribution of

the item 8 from the test results corresponding to the unresolved right nodes, the updated

test results will be as follows:

[y9, y10, y11, y12]
T = u6 = [1, 1, 1, 1]T

Since y9 = 1, the recovery algorithm is then able to resolve the third right node in the third

iteration. Looking at [y10, y11, y12]T = h6 = [1, 1, 1]T , by using a BCH decoding algorithm

we can identify the sixth item connected to the third right node, i.e., item 11, as a defective

item. Since all 3 right nodes are resolved, the recovery algorithm cannot find any not-

yet-resolved right node (connected to 1 or less defective items), and hence the recovery

algorithm terminates. For this example, the recovery algorithm successfully identified all

3 defective items.

4.4 Main Results

We present our main results in this section. Theorem 8 specifies the number of tests

required by the proposed QGT scheme in the sub-linear regime. Theorem 9 states the

computational complexity of the testing and recovery algorithms of the proposed QGT

scheme. The proofs of Theorems 8 and 9 are given in Section 4.5.
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Theorem 8. In the sub-linear regime, the proposed QGT scheme requires

m = c(t, d)K(t log( ℓN
c(t,d)K

+ 1) + 1) tests to identify all defective items with probability

approaching 1, where d and ℓ are the maximum and average left degree, respectively; and

c(t, d) is constant in N and K, and depends only on t and d. Table 4.1 shows the values of

c(t, d) for t = 1 and d ∈ {3, 4, · · · , 18}, and Table 4.2 (or respectively, Table 4.3) shows

the values of c(t, d) for t = 2 (or respectively, t = 3) and d ∈ {2, 3, · · · , 17}.

Table 4.1: The constant c(t, d) for t = 1 and d ∈ {3, 4, · · · , 18}.

d 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
λ3 1 0.785 0.765 0.746 0.723 0.705 0.69 0.676 0.658 0.646 0.634 0.621 0.611 0.595 0.579 0.564
λ4 0.215
λ5 0.235
λ6 0.254
λ7 0.277
λ8 0.295
λ9 0.31
λ10 0.324
λ11 0.342
λ12 0.354
λ13 0.366
λ14 0.379
λ15 0.389
λ16 0.405 0.005
λ17 0.416 0.003
λ18 0.433
ℓ 3 3.17 3.312 3.437 3.563 3.678 3.783 3.88 3.993 4.084 4.177 4.273 4.356 4.473 4.592 4.709
c(t, d) 1.222 1.217 1.208 1.197 1.186 1.175 1.164 1.153 1.142 1.133 1.123 1.114 1.106 1.098 1.093 1.09

Table 4.2: The constant c(t, d) for t = 2 and d ∈ {2, 3, · · · , 17}.

d 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
λ2 1 0.659 0.69 0.681 0.666 0.653 0.639 0.619 0.592 0.57 0.56 0.554 0.549 0.546 0.541 0.536
λ3 0.341
λ4 0.31
λ5 0.319
λ6 0.334
λ7 0.347 0.001 0.049 0.09 0.059 0.022 0.001
λ8 0.361 0.004 0.074 0.144 0.187 0.199
λ9 0.381 0.002
λ10 0.406
λ11 0.429
λ12 0.391
λ13 0.352
λ14 0.317
λ15 0.288
λ16 0.271
λ17 0.265
ℓ 2 2.257 2.367 2.474 2.573 2.659 2.741 2.843 2.969 3.085 3.126 3.15 3.174 3.193 3.214 3.242
c(t, d) 0.597 0.582 0.572 0.562 0.553 0.545 0.538 0.531 0.528 0.527 0.526 0.526 0.526 0.525 0.525 0.525
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Table 4.3: The constant c(t, d) for t = 3 and d ∈ {2, 3, · · · , 17}.

d 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
λ2 1 0.97 0.889 0.844 0.807 0.784 0.759 0.737 0.72 0.704 0.686 0.668 0.653 0.639 0.632 0.63
λ3 0.03
λ4 0.111
λ5 0.156
λ6 0.193
λ7 0.216
λ8 0.241
λ9 0.263
λ10 0.28
λ11 0.296
λ12 0.314
λ13 0.332 0.001 0.045 0.11
λ14 0.346
λ15 0.361
λ16 0.323
λ17 0.26
ℓ 2 2.021 2.118 2.207 2.295 2.366 2.442 2.515 2.577 2.639 2.709 2.781 2.848 2.909 2.945 2.952
c(t, d) 0.388 0.388 0.387 0.384 0.381 0.378 0.375 0.372 0.37 0.367 0.365 0.363 0.363 0.362 0.362 0.362

Theorem 9. For any t ≤ 4, the testing and recovery algorithms of the proposed QGT

scheme have the computational complexity of O(N log N
K
) and O(K log N

K
), respectively.

4.5 Proof of Main Theorems

4.5.1 Proof of Theorem 8

Consider a group of N items where each item is defective with probability γ ≜ K
N

.

Also, consider an irregular bipartite graph with N left nodes and M right nodes where

each right node is connected to r left nodes. The left nodes are connected to the right

nodes according to a left-node degree distribution given by L(x) =
∑d

i=1 Lix
i where d

and Li denote the maximum degree of a left node and the probability that a randomly

selected left node in the graph has degree i, respectively. The average left degree can be

computed by ℓ =
∑d

i=1 iLi. Since the number of edges connected to the left nodes is equal

to the number of edges connected to the right nodes, the following equation holds:

Nℓ =Mr (4.3)

The left edge degree distribution can be defined by λ(x) ≜
∑d

i=1 λix
i−1 = L′(x)

L′(1)
where λi

denotes the probability that a randomly selected edge in the graph is connected to a left
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Figure 4.1: A tree-like representation of the neighborhood of an edge e between a left node
v of degree i and a right node c of degree r in the right-regular bipartite graph.

node of degree i. It is easy to see that L′(1) = ℓ. Thus, one can readily compute λi = iLi

ℓ
.

Using the fact that
∑d

i=1 Li = 1, we can rewrite the last equation as follows:

1

ℓ
=

d∑
i=1

λi
i

(4.4)

We leverage the density evolution technique to analyze the fraction of defective items

remains unidentified at the end of each iteration of the recovery algorithm.

Lemma 13. Let the probability that a randomly picked item is a defective item and remains

unidentified at the end of iteration j of the recovery algorithm be denoted by pj . Also,

let the probability that a randomly selected right node is resolved at iteration j of the

recovery algorithm be denoted by qj . The following density evolution equations illustrates

the relation between pj and pj+1.

qj =
t−1∑
k=0

(
r − 1

k

)
pkj (1− pj)

r−k−1, (4.5)

pj+1 = γ
d∑
i=1

λi(1− qj)
i−1, (4.6)

where t, r, and d are the error correction capability of the BCH code, the degree of right

nodes, and the maximum degree of left nodes, respectively.
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Proof. A tree-like representation of the neighborhood of an edge e between a left node v

of degree i and a right node c of degree r is shown in Fig. 4.1. The left node v sends a

“not identified” message to the right node c at iteration j + 1 through the edge e if none

of its other neighboring right nodes {ck}i−1
k=1 have been resolved at iteration j. This event

happens with probability (1−qj)i−1. A randomly selected edge is connected to a left node

of degree i with probability λi. Thus, a randomly selected left node remains unidentified

at the end of iteration j with probability
∑d

i=1 λi(1− qj)i−1. Also, we know that each item

is defective with probability γ. Hence, the probability that a randomly picked item is a

defective item and remains unidentified at the end of iteration j of the recovery algorithm

is pj+1 = γ
∑d

i=1 λi(1− qj)
i−1. The right node c passes a “resolved” message to the left

node v at iteration j through the edge e if among the other r − 1 left nodes connected to

it only k ∈ {0, 1, · · · , t − 1} items are unidentified. This event happens with probability∑t−1
k=0

(
r−1
k

)
pkj (1 − pj)

r−k−1. A randomly selected edge is connected to a right node of

degree r with probability one. Thus, a randomly selected right node is resolved at iteration

j of the decoding algorithm with probability qj =
∑t−1

k=0

(
r−1
k

)
pkj (1− pj)

r−k−1.

The density evolution equations (4.5) and (4.6) can be combined as

pj+1 = γ
d∑
i=1

λi

(
1−

t−1∑
k=0

(
r − 1

k

)
pkj (1− pj)

r−k−1

)i−1

. (4.7)

Letting r → ∞ and using the Poisson approximation, the equation (4.7) reduces to

pj+1 = γ
d∑
i=1

λi

(
1−

t−1∑
k=0

(rpj)
ke−rpj

k!

)i−1

. (4.8)

Let ϕj ≜
pj
γ

and ψ ≜ rγ. We can rewrite (4.8) as follows:
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ϕj+1 =
d∑
i=1

λi

(
1−

t−1∑
k=0

(ψϕj)
ke−ψϕj

k!

)i−1

, (4.9)

where ϕj denotes the probability that a randomly chosen defective item remains uniden-

tified at the end of iteration j of the recovery algorithm. The objective is to minimize the

total number of tests, m = M × s, where M is the number of right nodes and s is the

number of rows in signature matrix. Substituting γ = K
N

in (4.3) results in M = ℓ
rγ
K.

Using the fact that ψ = rγ, we can rewrite the number of right nodes as M = ℓ
ψ
K.

For a given t and d, we can minimize the number of right nodes, M = ℓ
ψ
K, subject to

the constraint ϕj+1 < ϕj , so as to minimize the total number of the tests. The constraint

ϕj+1 < ϕj guarantees that lim
j→∞

ϕj → 0. In other words, this constraint guarantees that the

probability that a randomly selected defective item remains unidentified after running the

recovery algorithm for sufficiently large number of iterations, approaches zero. Note that

knowing N and γ means that K is also known. Thus, the optimization problem reduces to

minimizing the fraction ℓ
ψ

. It should be noted that minimizing the fraction ℓ
ψ

is equivalent

to minimizing the fraction −ψ
ℓ

. Using (4.4), one can readily see that −ψ
ℓ

= −ψ
∑d

i=1
λi
i

.

We perform a two-step optimization procedure as follows. First, given the parameters t

and d, we solve the following Linear Programming (LP) problem for any ψ > 0.

min
λi

i∈[d]

− ψ

d∑
i=1

λi
i

(4.10a)

s.t.
d∑
i=1

λi

(
1−

t−1∑
k=0

(ψϕ)ke−ψϕ

k!

)i−1

< ϕ (4.10b)

d∑
i=1

λi = 1 (4.10c)

λi ≥ 0,∀i ∈ [d] (4.10d)
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Figure 4.2: The number of required tests (m) to identify all defective items (for different values
of K) among N = 232 items obtained via analysis.

For any ψ > 0, let f(ψ) ≜ −ψ
∑d

i=1
λ⋆i
i

, where λ⋆i ’s denote the optimal value of λi’s

attained by solving this LP problem. We then minimize f(ψ) over all values of ψ > 0 as

follows.

min
ψ>0

f(ψ) (4.11)

We can solve this problem numerically and attain the optimal value of ψ which is de-

noted by ψ⋆. Let c(t, d) ≜ −1
f(ψ⋆)

. Then, the minimum number of right nodes is given by

M = c(t, d)K. Substituting M = c(t, d)K in (4.3), one can easily compute r = ℓN
c(t,d)K

.

Therefore, the total number tests will become

m =M × s = c(t, d)K(t log(
ℓN

c(t, d)K
+ 1) + 1).
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Figure 4.3: The probability of error obtained via Monte Carlo simulations for N = 216 items
among which K = 100 items are defective.

4.5.2 Proof of Theorem 9

The total number of tests is m = O(K log N
K
). For each test, r summations are ex-

ecuted. Thus, the testing algorithm has the computational complexity of O(rK log N
K
).

From (4.3), one can easily see that r = O(N
K
). Then, the computational complexity of the

testing algorithm can be stated as O(N log N
K
).

The total number of right nodes is M = O(K). The computational complexity of

resolving each right node is given by O(log r) when t ≤ 4 (see the proof of [43, Lemma

4]). Therefore, the computational complexity of the recovery algorithm is O(K log N
K
).

4.6 Comparison Results

In this section, we evaluate the performance of the proposed scheme via extensive

simulations.
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We compare the performance of the proposed scheme with the performance of two

non-adaptive QGT schemes recently proposed in [51] and [43] based on our theoretical

analysis. Fig. 4.2 illustrates the total number of tests (m) required to identify all defective

items. The total number of items is considered to be N = 232. As it can be seen, the

proposed scheme, for t = 2, requires the minimum number of tests to identify all the

defective items. Also, it can be observe that the gap between the proposed scheme and the

two other schemes increases as the number of defective items (K) grows.

We also compare the performance of the proposed scheme with the performance of

non-adaptive QGT schemes in [51] and [43] using the Monte Carlo simulation. The prob-

ability of error, defined as the probability of a defective item to remain unidentified, is

depicted in Fig. 4.3 for K = 100 defective items among a population of N = 216 items.

For a target error probability, e.g., 10−5, the required number of tests is minimum for the

proposed scheme for t = 3.
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5. SCHEDULING IMPROVES THE PERFORMANCE OF BELIEF PROPAGATION

FOR NOISY GROUP TESTING

5.1 Introduction

In this chapter, we consider the noisy Group Testing (GT) problem which is concerned

with recovering all defective items in a given population of items. In the group testing

problem, the result of a test on any group of items is binary. The objective is to design

a test plan for the group testing problem with a minimum number of tests. Aside from

the theoretical endeavors, the GT problem has also gained substantial attention from the

practical perspective. In particular, the GT problem has been studied for a wide range of

applications from biology and medicine [2] to information and communication technol-

ogy [3, 4], and computer science [5]. Very recently, group testing has also been used for

COVID-19 detection [6–9].

There are two different scenarios for the defective items. In the combinatorial model,

the exact number of defective items is known, whereas in the probabilistic model, each

item is defective with some probability, independent of the other items [43,60,61]. In this

work, we consider the combinatorial model. In the combinatorial model, we assume that

there are exactly K defective items among a population of N items.

In this study, we are interested in non-adaptive group testing schemes, where all tests

are designed in advance. This is in contrast to adaptive schemes, in which the design of

each test depends on the results of the previous tests [14, 50, 62]. In most practical ap-

plications, when compared to adaptive group testing schemes, non-adaptive schemes are

preferred because all tests can be executed at once in parallel. Different decoding algo-

rithms such as linear programming, combinatorial orthogonal matching pursuit, definite

defectives, belief propagation (BP), and separate decoding of items have been proposed
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for noisy non-adaptive group testing. A thorough review and comparison of these algo-

rithms is provided in [63]. It is difficult to analyze the performance of these algorithms in

the non-asymptotic regime. However, empirical evidence suggests that the BP algorithm

results in lower error probabilities compared to other algorithms.

BP decoding is an iterative algorithm that passes messages over the edges in the under-

lying factor graph according to a schedule. For a cycle-free factor graph, BP decoding is

equivalent to maximum-likelihood decoding. However, in the presence of loops in the fac-

tor graph, BP becomes suboptimal. The most popular scheduling strategy in BP decoding

is flooding, or simultaneous scheduling, where in every iteration all the variable nodes are

updated simultaneously using the same pre-update information, followed by updating all

the test nodes of the graph, again, using the same pre-update information. Several studies

have investigated the effects of different types of sequential, or non-simultaneous, schedul-

ing strategies in BP for decoding low-density parity-check (LDPC) codes among which are

random scheduling BP and node-wise residual BP (see [64] and references therein). It has

been shown that sequential BP algorithms converge faster than traditional BP. Also, se-

quential updating solves some standard trapping set errors [64, 65]. To the best of our

knowledge, these algorithms have not been used in the context of group testing.

5.1.1 Main Contributions

In this chapter, we focus on a practical regime in which the number of items is in the

order of hundreds, and investigate the performance of two variants of BP algorithm for

decoding of noisy non-adaptive group testing under the combinatorial model for defec-

tive items. Through extensive simulations, we show that the proposed algorithms achieve

higher success probability and lower false-negative and false-positive rates when com-

pared to the traditional BP algorithm.
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5.2 Problem Setup and Notations

Throughout the chapter, we denote vectors and matrices by bold-face small and capital

letters, respectively. For an integer i ≥ 1, we denote {1, . . . , i} by [i].

In this chapter, we consider a noisy non-adaptive group testing problem under the

combinatorial model. In the combinatorial model, there are K defective items among a

group ofN items. The problem is to identify all defective items by testing groups of items,

with the minimum possible number of tests. The outcome of each test is a binary number.

The focus of this work is when N is limited rather than on the asymptotic regime.

We define the support vector x ∈ {0, 1}N to represent the set of N items. The i-th

component of x, i.e., xi, is 1 if and only if the i-th item is defective. In non-adaptive group

testing, designing a testing scheme consisting of M tests is equivalent to the construction

of a binary matrix with M rows which is referred to as measurement matrix. We let

matrix A ∈ {0, 1}M×N denote the measurement matrix. If ati = 1 in the measurement

matrix A, it means that the i-th item is present in the t-th test. The design of measurement

matrices for group testing has been studied extensively [63]. Our proposed algorithms

are applicable for any measurement matrix; however, evaluation results are presented for

Bernoulli designs in this study.

The standard noiseless group testing is formulated component-wise using the Boolean

OR operation as yt =
∨N
i=1 atixi where yt and

∨
are the tth test result and a Boolean OR

operation, respectively. In this chapter, we consider the widely-adopted binary symmetric

noise model where the values
∨N
i=1 atixi are flipped independently at random with a given

probability. The tth test result in a binary symmetric noise model is given by

yt =


∨N
i=1 atixi with probability 1− ρ,

1⊕
∨N
i=1 atixi with probability ρ,
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Figure 5.1: An example of a factor graph representing a group testing scheme.

where ⊕ is the XOR operation. Note that this model and the proposed algorithms can

be easily extended to include the general binary noise model where the values
∨N
i=1 atixi

are flipped from 0 to 1 and from 1 to 0 with different probabilities. However, for ease of

exposition, we focus only on the binary symmetric noise model. We let vector y ∈ {0, 1}M

denote the outcomes of the M tests. The objective is to minimize the number of tests

required to identify the set of defective items while meeting a target success probability,

false positive and false negative rates. These metrics are formally defined in Section 5.4.

5.3 Decoding Algorithms

5.3.1 Belief Propagation

The Belief Propagation (BP) algorithm have gained promising success in different ap-

plications in recent years. It has been applied successfully to the problems in the area

of coding theory and compressed sensing. Most of these works consider the asymptotic

regime; however, we want to apply the BP algorithm to the practical regime where the

number of item is limited. To apply the BP algorithm we consider the factor graph (Tan-
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ner graph) representation of the group testing scheme as shown in Figure 5.1. In the

Tanner graph, there are N nodes at the left side of the graph corresponding to items. Also,

there are M nodes at the right side corresponding to the tests. This graph shows the con-

nections between the items and the tests. Each item node is connected to the test nodes

that the item participates in, according to the measurement matrix. In general, in a BP

algorithm, messages are exchanged between the nodes of the graph. For a loopy BP al-

gorithm, the messages are passed iteratively from items to tests and vice versa. We let

µi→t = [µi→t(0) µi→t(1)] and µt→i = [µt→i(0) µt→i(1)] denote the message from item i to

test t and the message from test t to item i, respectively, where


µi→t(0) ∝ (1− K

N
)

∏
t′∈N (i)\{t}

µt′→i(0),

µi→t(1) ∝ K
N

∏
t′∈N (i)\{t}

µt′→i(1),

(5.1)

where ∝ indicates equality up to a normalizing constant, and N (i) denotes the neigh-

bours of the item node i. Note that these messages follow a probability distribution, i.e.,

µi→t(0) + µi→t(1) = 1. For both combinatorial and probabilistic models, we initialize the

messages by

µi→t(1) = 1− µi→t(0) =
K

N
. (5.2)

The messages from tests to items are given as follows. If yt = 0, we have


µt→i(0) ∝ ρ+ (1− 2ρ)

∏
i′∈N (t)\{t}

µi′→t(0),

µt→i(1) ∝ ρ,

(5.3)
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and if yt = 1, we have


µt→i(0) ∝ 1− ρ− (1− 2ρ)

∏
i′∈N (t)\{t}

µi′→t(0),

µt→i(1) ∝ 1− ρ.

(5.4)

Again, these messages follow a probability distribution, i.e., µt→i(0) + µt→i(1) = 1.

A fixed point iteration is performed using the BP equations (5.1), (5.3), and (5.4).

The algorithm stops after a fixed number T of iterations. We choose the parameter T

experimentally. In the end, we compute the marginals of the posterior distribution as

follows. 
q(xi = 0) ∝ (1− K

N
)
∏

t′∈N (i)

µt′→i(0),

q(xi = 1) ∝ K
N

∏
t′∈N (i)

µt′→i(1).

(5.5)

It is more convenient to compute the Log-Likelihood Ratio (LLR) of a marginal and

work with it instead.

λi = ln
q(xi = 1)

q(xi = 0)
= ln

K

N −K
+
∑

t′∈N (i)

ln
µt′→i(1)

µt′→i(0)
(5.6)

For the combinatorial model, we sort the LLRs of the marginals in decreasing order

and announce the items corresponding to the top K LLRs to be the defective items. Algo-

rithm 1 defines the BP algorithm.

5.3.2 Random Scheduling Belief Propagation

Traditional BP algorithm utilizes flooding scheduling, i.e., in each iteration all mes-

sages are updated simultaneously. However, in random scheduling, we update the mes-

sages from test nodes to item nodes in a randomized fashion. We start from initialization
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Algorithm 1 Belief Propagation

1: Initialize µi→t(1) = 1− µi→t(0) =
K
N
∀i ∈ [N ],∀t ∈ N (i)

2: for j = 1, 2, · · · ,T do
3: Compute µt→i(0) and µt→i(1) ∀t ∈ [M ],∀i ∈ N (t)
4: Compute µi→t(0) and µi→t(1) ∀i ∈ [N ],∀t ∈ N (i)
5: end for
6: Compute λi ∀i ∈ [N ]

of the messages from test nodes to their neighboring item nodes as follows.

µt→i(0) = µt→i(1) =
1

2
. (5.7)

Also, we initialize the messages from item nodes to their neighboring test nodes as in (6.5).

After that, for each iteration j ≥ 1, when we want to update the messages from tests to

items, we randomly choose a test node and only send messages from that test node to

its neighbouring item nodes. Next, we update the messages from the neighbouring item

nodes of this test node. In the end, we identify the defective items in a similar way that was

explained for the traditional BP algorithm. Random scheduling BP is formally described

in Algorithm 2.

Algorithm 2 Random Scheduling Belief Propagation

1: Initialize µt→i(0) = µt→i(1) =
1
2
∀t ∈ [M ],∀i ∈ N (t)

2: Initialize µi→t(1) = 1− µi→t(0) =
K
N
∀i ∈ [N ],∀t ∈ N (i)

3: for j = 1, 2, · · · ,T do
4: Select a test node t′ at random
5: Compute µt′→i(0) and µt′→i(1) ∀i ∈ N (t′)
6: for each i ∈ N (t′) do
7: Compute µi→s(0) and µi→s(1) ∀s ∈ N (i)
8: end for
9: end for

10: Compute λi ∀i ∈ [N ]
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5.3.3 Node-wise Residual Belief Propagation

In order to obtain a better performance over the traditional BP algorithm for decoding

LDPC codes, the authors of [64] propose node-wise Residual Belief Propagation (RBP).

Here, we adopt this algorithm for the noisy group testing problem. Similar to the random

scheduling, in node-wise RBP, we choose a test node in each iteration and only update the

messages from that test node to its neighboring item nodes. However, unlike the random

scheduling, this test node is not chosen at random. We choose this test node using an

ordering metric called the residual. In order to compute the residual for the messages from

the test node t ∈ [M ] to the item node i ∈ N (t), we first compute λt→i = ln µt→i(1)
µt→i(0)

as

the LLR of the most updated messages µt→i(0) and µt→i(1) from the test node t to the

item node i in previous iterations. For each t ∈ [M ] and i ∈ N (t), we also compute

λ∗t→i = ln
µ∗t→i(1)

µ∗t→i(0)
, where µ∗

t→i(0) and µ∗
t→i(1) are computed using (6.7) or (6.8) depending

on yt = 0 or yt = 1, as the pseudo-updated messages from the test node t to the item node

i in the current iteration assuming that the test node t is to be scheduled in this iteration.

The residual rt→i is then defined as the absolute value of the difference between the LLR

of the most updated messages in previous iterations and the LLR of the pseudo-updated

messages from the test node t to item node i, i.e., rt→i = |λ∗t→i − λt→i|. In each iteration,

we select a test node t such that rt→i has the highest value among all t ∈ [M ] and all i ∈

N (t), and update the messages from the selected test node to its neighboring item nodes.

(Note that the messages from other test nodes to their neighboring item nodes will not be

updated in this iteration.) The idea behind this strategy is that the differences between the

LLRs before and after an update approaches zero as loopy BP converges. Hence, a large

residual means that the corresponding test node is located in a part of the graph that has

not converged yet [64]. Node-wise RBP is formally described in Algorithm 3.
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Algorithm 3 Node-wise Residual Belief Propagation

1: Initialize µt→i(0) = µt→i(1) =
1
2
∀t ∈ [M ],∀i ∈ N (t)

2: Initialize µi→t(1) = 1− µi→t(0) =
K
N
∀i ∈ [N ],∀t ∈ N (i)

3: Compute rt→i ∀t ∈ [M ],∀i ∈ N (t)
4: for j = 1, 2, · · · ,T do
5: Let t′ = argmax

t∈[M ]

max
i∈N (t)

rt→i

6: for each i ∈ N (t′) do
7: Compute µt′→i(0) and µt′→i(1)
8: Set rt′→i = 0
9: for each t′′ ∈ N (i) \ {t′} do

10: Compute µi→t′′(0) and µi→t′′(1)
11: for each i′ ∈ N (t′′) \ {i} do
12: Compute rt′′→i′

13: end for
14: end for
15: end for
16: end for
17: Compute λi ∀i ∈ [N ]

5.4 Simulation Results

In this section, we compare the performance of the BP algorithm, the Random Schedul-

ing BP (RSBP) algorithm, and the Node-Wise Residual BP (NW-RBP) algorithm for the

combinatorial model of the defective items using three metrics. The first metric, success

probability, shows the probability that an algorithm identifies all the defective items cor-

rectly. We also use False-Negative Rate (FNR) and False-Positive Rate (FPR) in our per-

formance comparison. FNR is defined as the ratio of the number of defective items falsely

classified as non-defective over the number of all defective items. Similarly, FPR is de-

fined as the number of non-defective items falsely classified as defective over the number

of all non-defective items. In our simulations, we consider the binary symmetric noise

model with parameter ρ. Each result is averaged over 3000 experiments. The measure-

ment matrix is constructed according to a Bernoulli design [63]. In a Bernoulli design,
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N = 100

K ρ M
BP RSBP NW-RBP Optimal

Suc. Pr. Suc. Pr. FNR FPR Suc. Pr. FNR FPR Suc. Pr. FNR FPR

2

0.01
20 0.8135 0.8559 0.0805 0.0016 0.8617 0.0756 0.0016 0.8768 0.0672 0.0014
25 0.9368 0.9521 0.0257 0.0005 0.9602 0.0233 0.0005 0.9689 0.0161 0.0003
30 0.9788 0.9821 0.0101 0.0002 0.9880 0.0072 0.0001 0.9914 0.0043 0.0001

0.03
25 0.8437 0.8832 0.0659 0.0013 0.9120 0.0480 0.0010 0.9147 0.0463 0.0009
30 0.9270 0.9470 0.0298 0.0006 0.9607 0.0211 0.0004 0.9673 0.0171 0.0003
35 0.9635 0.9750 0.0140 0.0003 0.9788 0.0113 0.0003 0.9892 0.0054 0.0001

0.05
30 0.8580 0.8893 0.0631 0.0013 0.9216 0.0441 0.0009 0.9325 0.0372 0.0008
35 0.9151 0.9441 0.0307 0.0006 0.9574 0.0239 0.0005 0.9701 0.0157 0.0003
40 0.9524 0.9620 0.0213 0.0004 0.9818 0.0092 0.0002 0.9854 0.0076 0.0002

4

0.01
40 0.8037 0.8395 0.0412 0.0015 0.8359 0.0415 0.0017 0.8388 0.0412 0.0016
45 0.8961 0.9040 0.0249 0.0010 0.9055 0.0233 0.0010 0.9145 0.0220 0.0009
50 0.9465 0.9471 0.0137 0.0006 0.9482 0.0135 0.0005 0.9488 0.0131 0.0005

0.03
50 0.8583 0.8650 0.0360 0.0015 0.8799 0.0331 0.0014 0.8851 0.0316 0.0013
55 0.9065 0.9268 0.0193 0.0009 0.9291 0.0181 0.0008 0.9366 0.0169 0.0007
60 0.9458 0.9538 0.0099 0.0004 0.9559 0.0098 0.0004 0.9598 0.0095 0.0004

0.05
60 0.8751 0.8991 0.0294 0.0012 0.9013 0.0283 0.0011 0.9071 0.0242 0.0010
65 0.9207 0.9422 0.0165 0.0006 0.9450 0.0146 0.0006 0.9474 0.0136 0.0005
70 0.9471 0.9564 0.0116 0.0005 0.9583 0.0109 0.0004 0.9596 0.0104 0.0004

Table 5.1: The performance of different decoding algorithms for the combinatorial model
when N = 100.

each item is included in each test independently at random with some fixed probability

ν/K where K is the number of defective items and we set ν = ln 2.

In Table 5.1, we present experimental simulation results for N = 100 items and K =

2, 4 defective items. Corresponding to each value of K, we consider three different values

for the noise parameter ρ = 0.01, 0.03, 0.05. And for each value of ρ, we consider three

different number of tests. The optimal decoder which is used as a benchmark here is the

maximum-likelihood decoder. The results in Table 5.1 show that the NW-RBP algorithm

outperforms the BP algorithm and the RSBP algorithm for all problem parameters being

considered. The NW-RBP algorithm perform fairly close to the optimal decoder for a

large set of parameters, particularly when the success probability approaches one. Note

that although the RSBP algorithm is inferior to the NW-RBP algorithm, it outperforms the

BP algorithm.

87



6. NOISY GROUP TESTING WITH SIDE INFORMATION

6.1 Introduction

Identifying infected people is a critical step in dealing with pandemics caused by viral

diseases. However, testing a large number of people individually might be prohibitively

expensive for practical reasons. For this reason, we need to deploy strategies that allow

efficient testing. Group Testing (GT) has been shown as an efficient strategy in reducing

the number of tests required to test for pandemics. An instance of the GT problem includes

a set S of N individuals which includes a small subset of infected individuals. The GT

procedure consists of a sequence of tests, such that each test indicates whether there are

one or more infected individuals in a given subset of S. The goal of the GT procedure is

to identify the subset of infected individuals through the minimum number of tests.

The GT problem has been the subject of many studies. Most studies have focused on

the following two models [15, 43, 60, 66]: (i) a combinatorial model which assumes that

the number of infected individuals is fixed and known; (ii) a probabilistic model which

assumes that each individual is infected with a certain probability. There are also two

types of GT algorithms: non-adaptive, and adaptive. In this study, we are interested in

non-adaptive GT strategies, where all tests are designed in advance. This is in contrast to

adaptive strategies, in which the design of each test depends on the results of the previous

tests [14, 50, 63, 67].

Motivated by practical scenarios where the outcome of the tests can be affected by

noise, we focus on the noisy GT setting, in which the outcome of a test can be flipped

with some probability. In the noisy GT setting, the goal is to identify the set of infected

individuals with high probability (1−ε), for small values of ε. We also focus on a variation

of a probabilistic GT model in which the prior infection probability is not uniform and in
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which there is a certain amount of side information on the distribution of the infected

individuals available to the GT algorithm.

A GT algorithm consists of two parts: encoding and decoding. The encoding part is

concerned with the test design, i.e., the decision on which individuals to include in each

test. The decoding part is concerned with identifying the infected individuals given the test

design and outcomes of the tests. Different decoding algorithms such as linear program-

ming, combinatorial orthogonal matching pursuit, definite defectives, belief propagation

(BP), and separate decoding of items have been proposed for noisy non-adaptive GT. A

thorough review and comparison of these algorithms is provided in [63]. In the context

of GT, it is extremely difficult to analyze the performance of BP algorithms even for the

asymptotic regime. To the best of our knowledge, no theoretical analysis has been pro-

vided for the BP-based GT algorithms so far. However, empirical evidence suggests that

the BP algorithm results in lower error probabilities compared to other algorithms for the

probabilistic model. BP is a message passing algorithm that passes messages over the

edges in the underlying factor graph representation of the GT problem. For a cycle-free

factor graph, BP decoding is equivalent to Maximum a Posteriori (MAP) decoding. How-

ever, in the presence of loops in the factor graph, BP becomes suboptimal.

This study focuses on leveraging the side information for improving the performance

of BP-based decoding algorithms for noisy GT. In the context of testing for viral infec-

tions, different forms of side information can be exploited including the prevalence rate,

individuals’ symptoms, family structure, community structure, and contact tracing in-

formation. It has been shown that side information can be used to reduce the required

tests [61,62,68–70]. For example, Zhu et al. [68] show that the number of tests can be re-

duced if the prior information about the prevalence rate is takend into account. Nikolopou-

los et al. [61,69] and Ahn et al. [62] show that utilizing community structure also leads to

a lower number of tests. While the focus of these works is on the encoder design, in our
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work we focus on leveraging the side information for the efficient decoder design.

6.1.1 Contribution.

In this work, first, we propose a probabilistic model, referred to as an interaction

model, that captures the side information about the probability distribution of the infected

individuals. Our model is motivated by the availability of contact tracing information

which can be collected from surveys and mobile phone applications [71–73]. Next, we

present a decoding scheme, based on belief propagation, that leverages the interaction

model to improve the decoding accuracy. Our results indicate that the proposed algorithm

achieves higher success probability and lower false-negative and false-positive rates when

compared to the traditional belief propagation especially in the high noise regime.

6.2 Probabilistic Model

Throughout the chapter, we denote vectors and matrices by bold-face small and capital

letters, respectively. For an integer i ≥ 1, we denote {1, . . . , i} by [i]. Let S be a set. The

set of all subsets of size ℓ for set S is denoted by {S}ℓ.

Our model assumes that there are two points in time, namely time 0 and time 1 such

that time 0 occurs prior to time 1. Let N be the total number of individuals. We define

the vector x(0) ∈ {0, 1}N to represent the status of N individuals at time 0, such that x(0)i

is 1 if the i-th individual is infected at time 0, and is 0 otherwise. Similarly, we define

the vector x(1) ∈ {0, 1}N to represent the status of N individuals at time 1. We assume

that at time 0, the probability of an individual being infected is equal to the prevalence

rate p, and that the infection of each individual at time 0 occurs independently of other

individuals. The probability of the individual to be infected at time 1 depends on their

probability to be infected at time 0 as well as their interaction with other individuals. The

interactions of individuals between time 0 and time 1 is captured by the interaction graph.

For each individual i, the graph includes nodes x(0)i and x(1)i that represent that individual
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Figure 6.1: An example of an interaction graph. Nodes x(0)i and x(1)i represent individual
i at times 0 and 1, respectively. An interaction node Ii captures interactions between
individual i and other individuals from time 0 to time 1.

at times 0 and 1, respectively. For each individual i, the graph has an interaction node Ii

that captures interactions between individual i and other individuals from time 0 to time

1. In particular, the graph contains an edge (x
(0)
j , Ii) for each individual j who have been

in contact with individual i from time 0 to time 1. An example of an interaction graph is

shown in Fig. 6.1.

We assume that an infected individual infects a healthy individual with probability q,

referred to as contagion probability. It is also assumed that if an individual is infected

at time 0, they remain infected by time 1. The interaction model can be used to find the

probability that an individual at time 1 is infected. The ith individual is not infected at

time 1 if the following holds: 1) the ith individual is not infected at time 0, and 2) other

individuals in contact with the ith individual either are not infected at time 0 or, if infected,

they do not infect the ith individual. Thus, the probability of individual i to be infected at

time 1 can be calculated as follows:

P
(
x
(1)
i = 0

)
= (1− p)

(
1− p+ p(1− q)

)di
= (1− p)(1− pq)di ,
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where di is the number of individuals which interact with individual i from time 0 to time

1. The probability that individual i is infected at time 1 is given by

πi = P
(
x
(1)
i = 1

)
= 1− P

(
x
(1)
i = 0

)
= 1− (1− p)(1− pq)di . (6.1)

Our ultimate goal is to test and identify infected individuals at time 1, assuming the knowl-

edge of the probabilistic model described above. This model can be extended to capture

interactions between individuals in more than one round. For ease of exposition, we con-

sider only one round of interactions in this study.

In non-adaptive group testing, designing a testing scheme consisting of M tests is

equivalent to the construction of a binary matrix with M rows which is referred to as a

testing matrix. We let matrix A ∈ {0, 1}M×N denote the testing matrix. The entry (t, i)

of matrix A is denoted by at,i. If at,i = 1, it means that the i-th item is present in the

t-th test. The design of testing matrices for group testing has been studied extensively (see

e.g., [63]). Our proposed algorithms are applicable for any testing matrix; however, simu-

lation results are presented for Bernoulli designs. In a Bernoulli design, each individual is

included in each test independently at random with some fixed probability ν/K where K

is the average number of defective items and ν is a constant.

The standard noiseless group testing is formulated component-wise using the Boolean

OR operation as yt =
∨N
i=1 at,ix

(1)
i where yt and

∨
are the tth test result and a Boolean OR

operation, respectively. In this study, we consider the widely-adopted binary symmetric

noise model where the values
∨N
i=1 at,ix

(1)
i are flipped independently at random with a

given probability. The tth test result in a binary symmetric noise model is given by

yt =


∨N
i=1 at,ix

(1)
i with probability 1− ρ,

1⊕
∨N
i=1 at,ix

(1)
i with probability ρ,
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where ⊕ is the XOR operation and ρ is the probability that the values
∨N
i=1 at,ix

(1)
i are

flipped. Note that this model and the proposed algorithms can be easily extended to include

the general binary noise model where the values
∨N
i=1 at,ix

(1)
i are flipped from 0 to 1 and

from 1 to 0 with different probabilities independently. However, for ease of exposition, we

focus only on the binary symmetric noise model. We let vector y ∈ {0, 1}M denote the

outcomes of the M tests.

Our objective is to design a decoding algorithm that performs well under the follow-

ing three metrics: (i) success probability which captures the probability that all infected

individuals are identified correctly; (ii) False-Negative Rate (FNR), which is the number

of infected individuals falsely classified as healthy over the total number of infected in-

dividuals, (iii) False-Positive Rate (FPR), defined as the ratio of the number of healthy

individuals falsely classified as infected and the total number of healthy individuals.

6.3 Proposed Decoding Algorithms

In this section, we describe the proposed decoding algorithms for retrieving the status

vector x(1) from the test results vector y and the testing matrix A.

6.3.1 Belief Propagation Using Initial Prior Probabilities

Message passing algorithms are utilized to solve inference problems, optimization

problems, and constraint satisfaction problems. In an inference problem, there are some

noisy measurements as input, and the goal is to infer the value of some unobserved vari-

ables from those measurements. It is impossible, in general, to make those inferences with

complete certainty, but one can try to obtain the most probable value of the unobserved

variables [74,75]. In a probabilistic noisy group testing, we intend to perform a Maximum

a Posteriori (MAP) estimation to find the status vector x̂(1) given the test results vector u.

argmax
x̂(1)

P
(
x(1) = x̂(1)

)
P
(
y = u|x(1) = x̂(1)

)
(6.2)
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This problem can be solved using exhaustive search when the vector x(1) is small, e.g.,

N ≈ 10 − 20. However, the exhaustive search approach rapidly becomes intractable

when N increases. For instance, when N = 100 (a relatively small problem), the number

of different configurations for the vector x(1) is 2100. An alternative solution is to find

the marginals of the posterior distribution for each item using Belief Propagation (BP).

BP is a message passing algorithm for performing inference on factor graphs with the

purpose of calculating the marginal distribution for each unobserved variable, conditional

on observed variables. A factor graph is a type of probabilistic graphical model which is

used to visualize and precisely define the underlying optimization problem. Factor graphs

are bipartite graphs with two types of nodes referred to as variable nodes and factor nodes.

See Fig. 6.2 for an example of a factor graph. The variable nodes which represent the

variables in the optimization problem are represented by circles. The factor nodes show

how the overall cost function can be factorized into local cost functions and are represented

by squares. There is an edge between the variables that are involved in a local cost function

and the factor node representing that local cost function.

We assume that the only side information we have is the prevalence rate at time 0.

Since we have no information about the status of individuals at time 1, we consider the

prior probability of each individual being infected at time 1 to be equal to the prevalence

rate p, independent of other individuals. The overall cost function in (6.2) can be factorized

as follows.

P
(
x(1) = x̂(1)

)
P
(
y = u|x(1) = x̂(1)

)
=

[
N∏
i=1

P
(
x
(1)
i = x̂

(1)
i

)]

×

[
M∏
t=1

P
(
yt = ut

∣∣∣{x(1)i = x̂
(1)
i

}
i∈N (t)

)]
,

(6.3)
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Figure 6.2: An example of a factor graph representing a group testing scheme. A variable
node x(1)i represents individual i at time 1. A factor node yt represents test t. Factor nodes
represented by dotted squares correspond to the a priori probability distribution of the
variable nodes.

where N (t) denotes the indices of individuals involved in the tth test.

In order to apply BP, we consider the factor graph (Tanner graph) representation of

the group testing scheme. In the Tanner graph, there are N variable nodes that represent

individuals at time 1. There are also M factor nodes that represent the tests. Each test

factor node corresponds to the conditional probability distribution of a test result, given

the observed variable nodes. Each individual in the Tanner graph is connected to the test

in which the individual participates, according to the testing matrix. There are also N

factor nodes that correspond to the a priori probability distribution of the variable nodes.

Since these factor nodes are usually not exhibited in a Tanner graph, we show them using

dotted squares in Fig. 6.2.

For a cycle-free factor graph, BP decoding is equivalent to MAP decoding. However,

in the presence of loops in the factor graph, BP becomes suboptimal. In other words,

loopy BP computes an approximation of the marginals of the posterior distribution for

each variable node. For a loopy BP algorithm, the messages are passed iteratively from
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variable nodes to factor nodes and vice versa. We let µi→t = [µi→t(0) µi→t(1)] and µt→i =

[µt→i(0) µt→i(1)] denote the message from individual i to test t and the message from test

t to individual i, respectively. In general, the message from variable node i to factor node

t is given by computing the product of all incoming messages from the neighboring factor

nodes of variable node i excluding the message from factor node t.


µi→t(0) ∝ (1− p)

∏
t′∈N (i)\{t}

µt′→i(0),

µi→t(1) ∝ p
∏

t′∈N (i)\{t}

µt′→i(1),

(6.4)

where ∝ indicates equality up to a normalizing constant, and N (i) denotes the indices of

tests in which item i participates. Note that these messages are probability distributions

on {0,1}, i.e., µi→t(0) + µi→t(1) = 1. Since we assume that the prior probability of each

individual being infected at time 1 is equal to p, the messages are initialized by

µi→t(1) = 1− µi→t(0) = p. (6.5)

The messages from factor nodes to variable nodes are computed as follows. The message

from test t to individual i is given by

µt→i(x̂
(1)
i ) =∑

x̂
(1)

i′ ∈{0,1}
ut∈{0,1}

[
P
(
yt = ut

∣∣∣x(1)i = x̂
(1)
i ,
{
x
(1)
i′ = x̂

(1)
i′

}
i′∈N (t)\{i}

)
×

∏
i′∈N (t)\{i}

µi′→t(x̂
(1)
i′ )

]
.

(6.6)

As was shown in [76–79], the equation (6.6) can be simplified as follows. If yt = 0, we
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have 
µt→i(0) ∝ ρ+ (1− 2ρ)

∏
i′∈N (t)\{i}

µi′→t(0),

µt→i(1) ∝ ρ,

(6.7)

and if yt = 1, we have


µt→i(0) ∝ 1− ρ− (1− 2ρ)

∏
i′∈N (t)\{i}

µi′→t(0),

µt→i(1) ∝ 1− ρ.

(6.8)

We perform a fixed point iteration using the BP equations (6.4), (6.7), and (6.8). We

stop the algorithm after a fixed number T of iterations. The parameter T is chosen ex-

perimentally. In the end, we compute the marginals of the posterior distribution for each

variable node by computing the product of all incoming messages from the neighboring

factor nodes of that variable node.


ϕ
(
x
(1)
i = 0

)
∝ (1− p)

∏
t∈N (i)

µt→i(0),

ϕ
(
x
(1)
i = 1

)
∝ p

∏
t∈N (i)

µt→i(1).

(6.9)

For convenience, we work with the Log-Likelihood Ratio (LLR) of a marginal defined as

λi = ln
ϕ
(
x
(1)
i = 1

)
ϕ
(
x
(1)
i = 0

) = ln
p

1− p
+
∑
t∈N (i)

ln
µt→i(1)

µt→i(0)
. (6.10)

We consider a threshold, τ , and announce the ith individual infected if λi ≥ τ . A nat-

ural threshold one can choose is τ = 0. Note that values other than 0 are also permissible.

Algorithm 4 defines the belief propagation using initial prior probabilities algorithm.
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Algorithm 4 Belief Propagation Using Initial Prior Probabilities

1: Initialize µi→t(1) = 1− µi→t(0) = p ∀i ∈ [N ],∀t ∈ N (i)
2: for ℓ = 1, 2, · · · , T do
3: Compute µt→i(0) and µt→i(1) ∀t ∈ [M ],∀i ∈ N (t) using (6.7) and (6.8)
4: Compute µi→t(0) and µi→t(1) ∀i ∈ [N ],∀t ∈ N (i) using (6.4)
5: end for
6: Compute λi ∀i ∈ [N ] using (6.10)

6.3.2 Belief Propagation Using Updated Prior Probabilities.

In this scheme, instead of using the prevalence rate at time 0 for the probability that

an individual is infected at time 1, we use the updated prior probability πi, i ∈ [N ], given

by (6.1). We perform the BP algorithm in Section 6.3.1 where in the equations (6.4)-

(6.10), the initial prior probability p is replaced by the updated prior probability πi, for

each i ∈ [N ].

6.3.3 Belief Propagation on Combined Graphs

In this scheme, assuming that the contact tracing information is available, we form the

interaction graph and combine it with the Tanner graph corresponding to the testing matrix.

An example of a combined graph is presented in Fig. 6.3. We then perform a BP algorithm

over the combined graph. Note that there are two sets of variable nodes in the combined

graph,
{
x
(0)
i

}
i∈[N ]

and
{
x
(1)
i

}
i∈[N ]

. We are interested in computing the marginals of the

posterior distribution for
{
x
(1)
i

}
i∈[N ]

. There are also three different types of factor nodes.

The interaction node Ii corresponds to the conditional probability that individual i at time

1 is infected or not, given the status of individuals at time 0 who have been in contact

with individual i. The test factor node yt corresponds to the conditional probability that

the result of test t is equal to a one or zero, given the status of neighboring individuals

at time 1. Furthermore, there are N factor nodes, represented by dashed squares, that
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Figure 6.3: An example of a combined graph. Nodes x(0)i and x(1)i represent individual i at
times 0 and 1, respectively. An interaction node Ii captures interactions between individual
i and other individuals from time 0 to time 1. A factor node yt represents test t. Factor
nodes represented by dotted squares correspond to the a priori probability distribution of
the status of individuals at time 0.

correspond to the a priori probability that each of the individuals at time 0 is infected or

not. The combined graph represents the factorization in the following joint probability

mass function.

P
(
x(0) = x̂(0),x(1) = x̂(1),y = u

)
=

[
N∏
i=1

P
(
x
(0)
i = x̂

(0)
i

)]

×

[
N∏
i=1

P
(
x
(1)
i = x̂

(1)
i

∣∣∣{x(0)i′ = x̂
(0)
i′

}
i′∈N (Ii)

)]

×

[
M∏
t=1

P
(
yt = ut

∣∣∣{x(1)i = x̂
(1)
i

}
i∈N (t)

)]
,

where N (Ii) denotes the indices of individuals at time 0 who are connected to interaction

node Ii.

As it has been mentioned before, in a loopy BP algorithm, the messages are passed

iteratively from variable nodes to factor nodes and vice versa. In what follows, we show

the flow of messages in one iteration.
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First, individuals at time 0 send their messages to interaction nodes. We let γi→Ij =

[γi→Ij(0) γi→Ij(1)] and γIj→i = [γIj→i(0) γIj→i(1)] denote the message from individual

i at time 0 to interaction node Ij and the message from interaction node Ij to individual

i at time 0, respectively. It is easy to show that the messages γi→Ij can be computed as

follows: 
γi→Ij(0) ∝ (1− p)

∏
j′∈N (i)\{j}

γIj′→i(0),

γi→Ij(1) ∝ p
∏

j′∈N (i)\{j}

γIj′→i(1),

(6.11)

where these messages are initialized by γi→Ij(1) = 1− γi→Ij(0) = p.

Then, the interaction nodes send their messages to individuals at time 1. We denote

the message from interaction node Ij to individual j at time 1 and the message from

individual j at time 1 to interaction node Ij by δIj→j = [δIj→j(0) δIj→j(1)] and δj→Ij =

[δj→Ij(0) δj→Ij(1)], respectively. It can be shown that the message δIj→j is given by



δIj→j(0) ∝ γj→Ij(0)
∏

i∈N (Ij)\{j}

(
1− qγi→Ij(1)

)
,

δIj→j(1) ∝ γj→Ij(1)− γj→Ij(0)

|N (Ij)|−1∑
ℓ=1

∑
S∈
{

N (Ij)\{j}
}

ℓ

(
− q
)ℓ∏

i∈S

γi→Ij(1).

(6.12)

In the next step, individuals at time 1 send their messages to test factor nodes. We let

µi→t = [µi→t(0) µi→t(1)] and µt→i = [µt→i(0) µt→i(1)] denote the message from individ-

ual i at time 1 to test t and the message from test t to individual i at time 1, respectively.


µi→t(0) ∝ δIi→i(0)

∏
t′∈N (i)\{t}

µt′→i(0),

µi→t(1) ∝ δIi→i(1)
∏

t′∈N (i)\{t}

µt′→i(1).

(6.13)

100



Now, test nodes send their messages to individuals at time 1. The message µt→i is

calculated in a similar way as in (6.7) and (6.8). Next, individuals at time 1 send their

messages to interaction nodes. It can be shown that the message from individual i at time

1 to interaction node Ii is given by


δi→Ii(0) ∝

∏
t∈N (i)

µt→i(0),

δi→Ii(1) ∝
∏
t∈N (i)

µt→i(1).

(6.14)

Finally, interaction nodes send their messages to individuals at time 0. The message

from interaction node Ij to individual j at time 0 is given as follows.



γIj→j(0) ∝ δj→Ij(0)
∏

i∈N (Ij)\{j}

(
1− qγi→Ij(1)

)

− δj→Ij(1)

|N (Ij)|−1∑
ℓ=1

∑
S∈
{

N (Ij)\{j}
}

ℓ

(
− q
)ℓ∏

i∈S

γi→Ij(1),

γIj→j(1) ∝ δj→Ij(1).

(6.15)

Let us define

f(i, j) ≜
|N (Ij)|−2∑

ℓ=1

∑
S∈
{

N (Ij)\{i,j}
}

ℓ

(
− q
)ℓ∏

i′∈S

γi′→Ij(1).

The message from interaction node Ij to individual i at time 0, where i ∈ N (Ij) \ {j}, is

given by
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γIj→i(0) ∝ γj→Ij(1)δj→Ij(1) + γj→Ij(0)δj→Ij(0)
∏

i′∈N (Ij)\{i,j}

(
1− qγi′→Ij(1)

)
− γj→Ij(0)δj→Ij(1)f(i, j),

γIj→i(1) ∝ γj→Ij(1)δj→Ij(1) + γj→Ij(0)δj→Ij(1)
[
q − (1− q)f(i, j)

]
+ (1− q)γj→Ij(0)δj→Ij(0)

∏
i′∈N (Ij)\{i,j}

(
1− qγi′→Ij(1)

)
.

(6.16)

In the end, when the algorithm is run for a fixed number T of iterations, we compute

the marginals of the posterior distribution for individuals at time 1 as follows.


ϕ
(
x
(1)
i = 0

)
∝ δIi→i(0)

∏
t∈N (i)

µt→i(0),

ϕ
(
x
(1)
i = 1

)
∝ δIi→i(1)

∏
t∈N (i)

µt→i(1).

The LLRs of the marginals are given by

λi = ln
ϕ
(
x
(1)
i = 1

)
ϕ
(
x
(1)
i = 0

) = ln
δIi→i(1)

δIi→i(0)
+
∑
t∈N (i)

ln
µt→i(1)

µt→i(0)
. (6.17)

The interpretation of the LLRs is done in the same way that has been explained in Sec-

tion 6.3.1. For a given threshold τ , individual i at time 1 is announced infected if λi ≥ τ .

Algorithm 5 defines the belief propagation on combined graphs algorithm.

Example 7. Consider the combined graph shown in Fig. 6.3. We want to compute the BP

messages exchanged over the edges of the combined graph. Calculating the messages from

variable nodes to factor nodes is straightforward. Thus, we intend to compute messages

from factor nodes to variable nodes. Since in [76–79] it was shown that the messages

from tests to individuals at time 1 are computed using (6.7) and (6.8), we only show how
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Algorithm 5 Belief Propagation on Combined Graphs

1: Initialize γi→Ij(1) = 1− γi→Ij(0) = p ∀i ∈ [N ],∀j ∈ N (i)
2: Initialize µt→i(0) = µt→i(1) =

1
2
∀t ∈ [M ],∀i ∈ N (t)

3: for ℓ = 1, 2, · · · , T do
4: Compute δIi→i(0) and δIi→i(1) ∀i ∈ [N ] using (6.12)
5: Compute µi→t(0) and µi→t(1) ∀i ∈ [N ],∀t ∈ N (i) using (6.13)
6: Compute µt→i(0) and µt→i(1) ∀t ∈ [M ],∀i ∈ N (t) using (6.7) and (6.8)
7: Compute δi→Ii(0) and δi→Ii(1) ∀i ∈ [N ] using (6.14)
8: Compute γIj→i(0) and γIj→i(1) ∀j ∈ [N ],∀i ∈ N (Ij) using (6.15) and (6.16)
9: Compute γi→Ij(0) and γi→Ij(1) ∀i ∈ [N ],∀j ∈ N (i) using (6.11)

10: end for
11: Compute λi ∀i ∈ [N ] using (6.17)

to compute messages from interaction nodes to individuals at time 0 and time 1. The

message from interaction node Ij to individual j at time 1 is computed using

δIj→j

(
x̂
(1)
j

)
=

∑
x̂
(0)
i ∈{0,1}

[
P
(
x
(1)
j = x̂

(1)
j

∣∣∣{x(0)i = x̂
(0)
i

}
i∈N (Ij)

) ∏
i∈N (Ij)

γi→Ij

(
x̂
(0)
i

)]

For instance, the message from interaction node I1 to individual 1 at time 1 is given by

δI1→1

(
x̂
(1)
1

)
=

∑
x̂
(0)
1 ,x̂

(0)
3 ,x̂

(0)
5 ∈{0,1}

[
P
(
x
(1)
1 = x̂

(1)
1

∣∣∣x(0)1 = x̂
(0)
1 , x

(0)
3 = x̂

(0)
3 , x

(0)
5 = x̂

(0)
5

)

× γ1→I1

(
x̂
(0)
1

)
γ3→I1

(
x̂
(0)
3

)
γ5→I1

(
x̂
(0)
5

)]
. (6.18)

We first consider the case that x̂(1)1 = 0, and form Table 6.1. It is easy to see that (6.18)

can be expanded into the following

δI1→1(0) = γ1→I1(0)γ3→I1(0)γ5→I1(0) + (1− q)γ1→I1(0)γ3→I1(0)γ5→I1(1)

+ (1− q)γ1→I1(0)γ3→I1(1)γ5→I1(0) + (1− q)2γ1→I1(0)γ3→I1(1)γ5→I1(1),
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x̂
(0)
1 x̂

(0)
3 x̂

(0)
5 P

(
x
(1)
1 = 0

∣∣∣x(0)1 = x̂
(0)
1 , x

(0)
3 = x̂

(0)
3 , x

(0)
5 = x̂

(0)
5

)
0 0 0 1
0 0 1 1− q
0 1 0 1− q
0 1 1 (1− q)2

1 0 0 0
1 0 1 0
1 1 0 0
1 1 1 0

Table 6.1: The conditional probability that individual 1 at time 1 is not infected, given the
status of individuals 1, 3, and 5 at time 0.

where it can be simplified using the fact that messages γi→Ij are probability distributions

on {0, 1}, i.e., µi→Ij(0) + µi→Ij(1) = 1.

δI1→1(0) = γ1→I1(0)
(
1− qγ3→I1(1)

)(
1− qγ5→I1(1)

)

We now consider the case that x̂(1)1 = 1. Expansion of (6.18) results in

δI1→1(1) = qγ1→I1(0)γ3→I1(0)γ5→I1(1) + qγ1→I1(0)γ3→I1(1)γ5→I1(0)

+
(
1− (1− q)2

)
γ1→I1(0)γ3→I1(1)γ5→I1(1) + γ1→I1(1)γ3→I1(0)γ5→I1(0)

+ γ1→I1(1)γ3→I1(0)γ5→I1(1) + qγ1→I1(1)γ3→I1(1)γ5→I1(0)

+ qγ1→I1(1)γ3→I1(1)γ5→I1(1),

where we can simplify it to

δI1→1(1) = γ1→I1(1)− γ1→I1(0)
(
− qγ3→I1(1)− qγ5→I1(1) + q2γ3→I1(1)γ5→I1(1)

)
.

The messages from interaction nodes to individuals at time 0 are computed as follows.
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The message from interaction node Ij to individual i at time 0 is computed using

γIj→i

(
x̂
(0)
i

)
=

∑
x̂
(1)
j ,x̂

(0)

i′ ∈{0,1}

[
P
(
x
(1)
j = x̂

(1)
j

∣∣∣x(0)i = x̂
(0)
i ,
{
x
(0)
i′ = x̂

(0)
i′

}
i′∈N (Ij)\{i}

)

× δj→Ij

(
x̂
(1)
j

) ∏
i′∈N (Ij)\{i}

γi′→Ij

(
x̂
(0)
i′

)]
.

For instance, the message from interaction node I1 to individual 3 at time 0 is given by

γI1→3

(
x̂
(0)
3

)
=

∑
x̂
(1)
1 ,x̂

(0)
1 ,x̂

(0)
5 ∈{0,1}

[
P
(
x
(1)
1 = x̂

(1)
1

∣∣∣x(0)1 = x̂
(0)
1 , x

(0)
3 = x̂

(0)
3 , x

(0)
5 = x̂

(0)
5

)

× δ1→I1

(
x̂
(1)
1

)
γ1→I1

(
x̂
(0)
1

)
γ5→I1

(
x̂
(0)
5

)]
. (6.19)

First, we consider the case that x̂(0)3 = 0, and expand (6.19) as follows.

γI1→3(0) = δ1→I1(0)γ1→I1(0)γ5→I1(0) + (1− q)δ1→I1(0)γ1→I1(0)γ5→I1(1)

+ qδ1→I1(1)γ1→I1(0)γ5→I1(1) + δ1→I1(1)γ1→I1(1)γ5→I1(0)

+ δ1→I1(1)γ1→I1(1)γ5→I1(1),

where after simplification becomes

γI1→3(0) = γ1→I1(1)δ1→I1(1) + γ1→I1(0)δ1→I1(0)
(
1− qγ5→I1(0)

)
− γ1→I1(0)δ1→I1(1)

(
− qγ5→I1(1)

)
.

Then, we consider the case that x̂(0)3 = 1.
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γI1→3(1) = (1− q)δ1→I1(0)γ1→I1(0)γ5→I1(0) + (1− q)2δ1→I1(0)γ1→I1(0)γ5→I1(1)

+ qδ1→I1(1)γ1→I1(0)γ5→I1(0) +
(
1− (1− q)2

)
δ1→I1(1)γ1→I1(0)γ5→I1(1)

+ δ1→I1(1)γ1→I1(1)γ5→I1(0) + δ1→I1(1)γ1→I1(1)γ5→I1(1),

where can be simplified to

γI1→3(1) = γ1→I1(1)δ1→I1(1) + (1− q)γ1→I1(0)δ1→I1(0)
(
1− qγ5→I1(0)

)
+ γ1→I1(0)δ1→I1(1)

[
q − (1− q)

(
− qγ5→I1(1)

)]
.

6.4 Simulation Results

In this section, we compare the performance of the BP using Initial Prior probabilities

(BPIP) algorithm, the BP using Updated Prior probabilities (BPUP) algorithm, and the BP

on Combined Graphs (BPCG) algorithm using three metrics, success probability, FNR,

and FPR. Each result is averaged over 1000 experiments. The testing matrix is constructed

according to a Bernoulli design with parameters ν = ln 2. In the BPUP algorithm, the

updated prior probabilities given by (6.1) are computed using the contact tracing informa-

tion. In our simulations, we assume that individual i at time 0, for each i ∈ [N ], interacts

with individual j at time 0, for each j ∈ [N ] \ {i}, with some fixed probability θ, referred

to as interaction probability. It should be noted that di, the number of individuals which

interact with individual i, follows a binomial distribution with parameters N − 1 and θ,

i.e., di ∼ B(N − 1, θ). The expected value of x(1)i is computed as follows:

E
[
x
(1)
i

]
= E

[
E
[
x
(1)
i

∣∣∣di]] = E
[
1− (1− p)(1− pq)di

]
= 1− (1− p)E

[
(1− pq)di

]
,
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Figure 6.4: Success probability as a function of the number of testsM based on simulation
results for N = 500 individuals, the prevalence rate p = 0.01, the contagion probability
q = 0.1, and the interaction probability θ = 0.008, under the binary symmetric noise
model with parameter ρ ∈ {0.01, 0.05} .

where the term E
[
(1− pq)di

]
is given by

E
[
(1− pq)di

]
=

N−1∑
d=0

(1− pq)d
(
N − 1

d

)
θd(1− θ)N−d−1 = (1− pqθ)N−1.

Thus, we have E
[
x
(1)
i

]
= 1− (1− p)(1− pqθ)N−1. Accordingly, the average number of

infected individuals for the BPUP and the BPCG algorithms is given by

K = N
(
1− (1− p)(1− pqθ)N−1

)
.

In Fig. 6.4, we plot success probability as a function of the number of tests M based

on simulation results for N = 500 individuals, the prevalence rate p = 0.01, the contagion

probability q = 0.1, and the interaction probability θ = 0.008, under the binary symmetric

noise model with parameter ρ ∈ {0.01, 0.05}. The value of success probability for each

number of test is optimized over the threshold in the range τ ∈ [−10, 10]. The number of
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Figure 6.5: FNR vs. FPR based on simulation results for threshold τ ∈ [−10, 10], N =
500 individuals, M = 350 tests, the prevalence rate p = 0.01, the contagion probability
q = 0.1, and the interaction probability θ = 0.008, under the binary symmetric noise
model with parameter ρ ∈ {0.01, 0.05} .

iterations for the BPUP and the BPIP algorithms is T = 15. We consider T = 30 iterations

for the BPCG algorithm. It can be observed that the BPCG algorithm outperforms the

other algorithms for all values of M . For instance, when ρ = 0.01 and the number of

test is M = 350, the BPCG algorithm provides a success probability 4% and 24% greater

than that of the BPUP and the BPIP algorithms, respectively. Also, it can be seen that

for the high noise regime, i.e., ρ = 0.05, the advantage of BPCG algorithm over the

other algorithms in terms of success probability becomes more evident. For example, for

ρ = 0.05 and M = 350 tests, the success probability of the BPCG algorithm is 7.4% and

43.5% greater than that of the BPUP and the BPIP algorithms, respectively.

In Fig. 6.5, we depict the FNR vs. FPR for all three decoding algorithms for threshold

τ ∈ [−10, 10], N = 500 individuals, M = 300 tests, the prevalence rate p = 0.01,

the contagion probability q = 0.1, the interaction probability θ = 0.008, and the noise

parameter ρ = 0.01. A point on a curve corresponding to a decoding algorithm represents

the pair (FNR,FPR) which has been computed for the same value of τ . The closer a curve
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is to the origin of the FNR–FPR plane, the better the performance of the corresponding

decoding algorithm in terms of FNR and FPR. It can be observed that for the BPCG

algorithm the operating point that minimizes the total error rate, i.e., the sum of FPR and

FNR is closer to the origin than that of the BPUP and the BPIP algorithms.
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7. SINGLE-SERVER SINGLE-MESSAGE ONLINE PRIVATE INFORMATION

RETRIEVAL WITH SIDE INFORMATION*

7.1 Introduction

In this chapter, we study the problem of single-server online Private Information Re-

trieval (PIR) with side information. The goal of the PIR schemes [24] is to enable a user to

download a message or a set of messages belonging to a database whose copies are stored

on a single or multiple remote servers, without revealing which message it is requesting.

In a single server scenario, the entire database needs to be downloaded to preserve the pri-

vacy of the requested message. However, when the user has some side information about

the database [25–33], the information-theoretic privacy can be achieved more efficiently

than downloading the whole database.

In the PIR with side information setting, the user has access to a random subset of

the messages in the database as side information, which are unknown to the server. This

side information could have been obtained from other trusted users or through previous

interactions with the server. In this setting, the savings in the download cost depend on

whether the user wants to protect only the privacy of the requested message, or the privacy

of both the requested message and the messages in the side information.

To the best of our knowledge, all of the prior works on PIR focus on retrieval of a

single or multiple messages at once. However, in many practical settings, the user needs

to retrieve multiple messages periodically, over multiple rounds. For example, a user

might retrieve a book or a movie from an on-line repository on a daily basis. We refer to

this setting as online PIR, inspired by the fact that the user does not know the identities

*Reprinted with permission from [80] "Single-Server Single-Message Online Private Information Re-
trieval with Side Information," by F. Kazemi, E. Karimi, A. Heidarzadeh and A. Sprintson, 2019. In Pro-
ceedings of 2019 IEEE International Symposium on Information Theory (ISIT), 2019, pp. 350-354. Copy-
right © by IEEE.
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of the future items that need to be retrieved from the server. The key requirement in such

scenarios is to protect the identity of all the requested messages up to the current round. By

leveraging previously downloaded messages, the user can significantly reduce the number

of bits that need to be downloaded. Accordingly, we analyze both the fundamental limits

as well as the achievability schemes for the online PIR schemes.

7.1.1 Main Contributions

In this study, we consider the problem of single-server online PIR with side infor-

mation. In this problem, there is a user who wishes to download a sequence of messages

XW = {XW1 , XW2 , . . . , XWt} from a database X ofK messages, stored on a single server.

The communication is performed in rounds, such that at round i, the user wishes to retrieve

a message XWi
for some Wi ∈ [K]. We assume that the user decides on which message

Wi to request at round i at the beginning of that round and that the identity of the future

messages Wj , j > i are not known at that time. We also assume that at the beginning of

the first round the user has access to M messages which are selected uniformly at random

from the database. The identity of these M messages are not known to the server.

We focus on the scenario where at round i, the user wishes to protect the identity of all

the requested messages individually up to round i, {W1, . . . ,Wi} for 1 ≤ i ≤ t. That is,

after the user makes a request to the server at round i, the server cannot decide which of

the K messages is more likely to get requested at that round and at the previous rounds.

Focusing on scalar-linear settings, we characterize the per-round capacity, i.e., the maxi-

mum achievable download rate at each round. Note that the tightness of the scalar-linear

capacity for general schemes is still open. We also present a scalar-linear coding scheme

that achieves this capacity. The key idea of our scheme is to combine the data downloaded

during the current round and the previous rounds, with the original side information (un-

known to server) so as to construct new side information for the subsequent rounds. We
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show that for the setting with K messages stored at the server and a random subset of M

messages available to the user at the first round, the per-round capacity of the scalar-linear

scheme is C1 = (M + 1)/K for the first round and Ci = (2i−1(M + 1))/KM for round

i ≥ 2, provided that K/(M + 1) = 2l for some l ≥ 1. The generalization of these results

for the cases in which K/(M + 1) is not a power of 2 is not straightforward, and remains

an open problem.

7.1.2 Related Work

The classical PIR problem with multiple servers each of which stores the full copy of

the database, has been extensively studied [81, 82]. The most relevant to our study is the

line of work that focuses on setting with multiple retrieved messages [31,83,84] as well as

settings in which the user access to certain files as side information before the information

retrieval process begins. The side information settings have been studied in [25,26] for the

single server setting and in [27–31] for the multi-server setting.

Kadhe et al. [25] initiated the study of the single-server single-message PIR with side

information. References [30] and [31] studied the multi-server scenario where the user

wants to protect the privacy of both the requested message(s) and the messages in the side

information, for the single-message and the multi-message PIR problems, respectively.

Another notion of privacy, termed individual privacy, was also recently introduced in [33]

for the multi-user setting of PIR with side information. Recently, the settings in which the

side information is a linear combination of a subset of messages was studied in [26, 32].

To the best our knowledge, none of the prior works on the private information retrieval

focused on the online settings in which the requests are issued one at a time such that the

identities of future requests are unknown.
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7.2 Problem Formulation and Main Results

Throughout, we denote random variable and their realizations by bold-face letters and

regular letters, respectively. For a positive integer i, denote [i] ≜ {1, . . . , i}. Let Fq

be a finite field for some prime q, and Fqm be an extension field of Fq for some inte-

ger m ≥ 1. We assume that there is a server storing a set X of K messages, X ≜

{X1, . . . , XK}, with each message Xi being independently and uniformly distributed over

Fqm , i.e., H(X1) = · · · = H(XK) = L and H(X1, . . . , XK) = KL, where L ≜ m log2 q.

We assume that there is a user that wishes to retrieve a sequence of messages XW =

{XW1 , XW2 , . . . , XWt} from the server so that at round i, the user wishes to retrieve the

message XWi
for some Wi ∈ [K]. We assume that the identity of the index Wi of the

message retrieved at round i is not known to the user before round i. We also assume

that initially the user knows a random subset XS of X that includes M messages for some

S ⊂ [K], |S| =M . We refer to Wi as the demand index at round i, XWi
as the demand at

round i, S as the side information index set, XS as the side information set and M as the

size of the side information set.

Let S and Wi be random variables corresponding to S and Wi, respectively. Denote

the probability mass function (pmf) of S by pS(·), and the conditional pmf of Wi given S

by pWi|S(·|·). We assume that S is uniformly distributed over all subsets of [K] of size M ,

i.e., pS(S) =
(
K
M

)−1
for all S ⊂ [K], |S| = M ; and Wi’s are independent and uniformly

distributed over [K] \ S , i.e.,

pWi|S(Wi|S) =


1

K−M , Wi /∈ S

0, otherwise.

Also, we assume that the server knows the size of S (i.e., M ), the pmf pS(.) and

pWi|S(.|.), but the realizations S and Wi are unknown to the server before round i.
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At round i in order to retrieve XWi
, the user sends to the server a query Q[Wi,S],

and upon receiving Q[Wi,S], the server sends to the user an answer A[Wi,S]. We define

Q[W1:i,S] ≜ {Q[W1,S], Q[W2,S], . . . , Q[Wi,S]} and A[W1:i,S] ≜ {A[W1,S], A[W2,S], . . . , A[Wi,S]}

as the sets of all queries and answers up to the round i, respectively.

Note that the query Q[Wi,S] at round i is a (potentially stochastic) function of

Wi,S, XS , Q
[W1:i−1,S], and A[W1:i−1,S]. We assume that the answer at round i, A[Wi,S] is

a (deterministic) function of Q[W1:i,S] and the messages in X , i.e,

H(A[Wi,S]|Q[W1:i,S],X ) = 0.

The queries Q[W1:i,S] from the first round up to round i all together must protect the

privacy of every demand index up to round i individually (not jointly) from the server, i.e.,

P(Wj = W ′|Q[W1:i,S] = Q[W1:i,S],X = X ) =
1

K

for all W ′ ∈ [K] and all j ∈ [i]. This means that some correlations between the demand

indices of different rounds (or correlations between the demands and the side information)

can be revealed to the server, but every demand index up to round i must be kept private

individually at each round. This condition is referred to as the privacy condition.

All the answers from the first round up to round i, A[W1:i,S] along with the side infor-

mation XS must enable the user to retrieve the demand XWi
. This condition is referred to

as the recoverability condition, as follows:

H(XWi
|A[W1:i,S],Q[W1:i,S],XS ,W1, . . . ,Wi,S) = 0.

The problem of the single-server Online Private Information Retrieval (OPIR) is to

design a protocol that at round i ≥ 1, constructs a query Q[Wi,S] for any given S and Wi,
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and the corresponding answerA[Wi,S] that satisfy the privacy and recoverability conditions.

The per-round rate of an OPIR algorithm at round i denoted by Ri, is defined as the

ratio of the entropy of a message, i.e., L, to the maximum entropy of the answer at round

i, i.e.,

Ri = min
W1,...,Wi,S

L

H(A[Wi,S])
,

where the minimum is taken over all possible realizations W1, . . . ,Wi and S.

The per-round capacity of OPIR at round i denoted by Ci, is defined as the supremum

of rates over all OPIR algorithms that achieve the capacity up to round i− 1.

In this work, we focus on scalar-linear (per-round) capacity, which corresponds to the

maximum (per-round) rate that can be achieved by scalar-linear schemes.

In scalar-linear schemes, the answer A[Wi,S] at round i is a set of mi messages, i.e.,

A[Wi,S] ≜ {yi,1, . . . , yi,mi
}. Each message yi,j for 1 ≤ j ≤ mi is a scalar linear combi-

nation of the original messages in X , i.e. yi,j =
∑K

m=1 γ
m
i,jXm, where γmi,j ∈ Fq are the

encoding coefficients of yi,j . We refer to the vector γi,j = [γ1i,j, γ
2
i,j, . . . , γ

K
i,j] as the encod-

ing vector of yi,j . The i-th unit encoding vector that corresponds to the original packet Xi

is denoted by ui = [u1i , u
2
i , . . . , u

K
i ], where uii = 1 and uji = 0 for i ̸= j. Consider the set

of K linearly independent unit vectors {u1, u2, . . . , uK} as a basis of a vector space V of

dimension K. Then, the encoding vector of yi,j , i.e., γi,j , is a vector in V . We also define

the answer matrix at round i, Ai, of dimension (mi ×K) with γi,j being the j-th row of

Ai. Note that the entropy H(A[Wi,S]) of the answer is proportional to number of messages

in A[Wi,S], or equivalently, the number of rows of matrix Ai.

The goal is to establish the scalar-linear per-round capacity of OPIR, and present an

algorithm that achieves this capacity. Theorem 10 characterizes the capacity of scalar-

linear OPIR problem for the case when K/(M + 1) is a power of 2. It should be noted

that the tightness of the scalar-linear capacity for general (vector-linear and non-linear)
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schemes remains an open problem.

Theorem 10. For the OPIR problem withK messages, and side information sizeM , when

K/(M + 1) is a power of 2, the scalar-linear per-round capacity at round i is given by:

Ci =


M+1
K

i = 1

2i−1(M+1)
KM

i ≥ 2

7.3 Converse Proof

In this section, we prove the converse part of Theorem 10. Suppose that the user wishes

to retrieve a sequence of messages XW = {XW1 , XW2 , . . . , XWt} from the server so that

at round i, the user wants to download the message XWi
for some Wi ∈ [K], and knows

XS for a given S ⊆ [K] \W , |S| = M . By assumption, K/(M + 1) is a power of 2. At

round i, for any S and Wi, in order to retrieve XWi
, the user sends to the server a query

Q[Wi,S], and the server responds to the user by an answer A[Wi,S].

For the first round (i = 1), the proof of converse follows from the prior results for

PIR with side information (see [25, Lemma 1]). It is easy to verify that at round 1, any

optimal scalar-linear scheme can be converted to the partition-based scheme of [25] by

row operations. The answer matrix A1 corresponding to the optimal scheme has exactly

K/(M + 1) rows. Followed by a column permutation, the matrix A1 can be represented

as:

A1 =



M + 1︷ ︸︸ ︷
∗ . . . ∗ M + 1︷ ︸︸ ︷

∗ · · · ∗
. . . M + 1︷ ︸︸ ︷

∗ · · · ∗


K

M+1
×K

116



where ∗’s indicate non-zero entries in matrix A1 and all other entries in matrix A1 are

zero. Each row of A1 corresponds to one of the messages in the answer. For in-

stance, the first row corresponds to X1 + · · ·+XM+1, the second row corresponds to

XM+2 + · · ·+X2M+2, and so on. The support set of each message in the answer is called

a partition set. Thus, the optimal scheme in the first round has n = K/(M + 1) partition

sets, denoted by {P1, P2, . . . , Pn}.

In Theorem 11 below we prove that for round i ≥ 2, the maximum entropy of the

answer, i.e., H(A[Wi,S]), where the maximum is taken over all Wi and S, is lower bounded

by KM/(2i−1(M + 1)).

Theorem 11. The maximum entropy of the answer H(A[Wi,S]) at round i ≥ 2 over all Wi

and S, is lower bounded by KM/(2i−1(M + 1)).

Proof. For linear schemes it is sufficient to prove that the maximum number of rows of

matrix Ai for i ≥ 2 is lower bounded by KM/(2i−1(M + 1)). The proof is based on an

inductive argument and uses a simple yet powerful observation, formally stated in Lemma

14.

Lemma 14. For any i, W1:i, S, and any W ∗ ∈ [K], there must exist S∗ and Pj (for some

j ∈ [n]) such that: (i) S∗ ⊆ Pj , (ii) |S∗| =M , and (iii) W ∗ /∈ Pj and it holds that

H(XW ∗|A[W1:i,S], Q[W1:i,S],XS∗) = 0.

Proof. Assume, by the way of contradiction, that there does not exist any S⋆ such that

XW ⋆ is recoverable from A[W1:i,S] and XS⋆ , then the server knows that W ⋆ cannot be the

user’s demand index, and this violates the privacy condition. Now, assume that there exist

some S⋆ that XW ⋆ is recoverable from A[W1:i,S], Q[W1:i,S] and XS⋆ . Given the optimal

scheme in the first round, if all such S⋆’s do not satisfy the conditions of the lemma, then
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the server knows that none of these S⋆’s can be the user’s real side information index set.

Thus, the server realizes that W ⋆ cannot be the user’s demand index, and this violates the

privacy condition.

Lemma 15. At round i for i ≥ 2, in the vector space spanned by the rows of matri-

ces A1, A2, . . . , Ai, corresponding to any W ∗ ∈ [K], there must exist a vector which is

a linear combination of at most M + 1 messages including XW ∗ itself and at most M

other messages which are a subset of XS∗ , a potential side information for XW ∗ defined in

Lemma 14.

Proof. The proof is based on contradiction. Assume that at round i, for i ≥ 2, in the vector

space spanned by the rows of matrices A1, A2, . . . , Ai, for a given W ∗ ∈ [K], there does

not exist such a vector described in Lemma 15. This means that XW ∗ is not recoverable

from A[W1:i,S] and XS∗ , which contradicts the result of Lemma 14.

In fact, in the vector space spanned by the rows of A1, A2, . . . , Ai, there must exist K

of such vectors, one for each potential value of W ∗ ∈ [K]. Define matrix Γ with these K

vectors being as the rows of Γ. An instance of matrix Γ would be as follows:

Γ =

R {

L {



W ∗︷︸︸︷
1

S∗︷ ︸︸ ︷
∗ ∗ · · · ∗

1 ∗ ∗ · · · ∗
. . .

∗ ∗ · · · ∗ 1

∗ ∗ · · · ∗ 1


K×K

Lemma 16. The rank of matrix Γ is lower bounded by K/2.
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Proof. Since by Lemma 14, S∗ ⊆ Pj for some j ∈ [n] and W ∗ ⊈ Pj , then S∗ is either in

the left side of W ∗, or in the right side of W ∗ in each row of matrix Γ. Accordingly, the

rows of matrix Γ can be classified into two types: L and R, based on the criteria that S∗

is in the left side of W ∗, or in the right side of W ∗, respectively. Let z1 and z2 denote the

number of rows of type L and the number of rows of type R, respectively. Note that the

maximum of z1 and z2 is greater than or equal to K/2, i.e., max(z1, z2) ≥ K/2. Without

loss of generality, assume max(z1, z2) = z1. Then, z1 ≥ K/2. By removing z2 rows of

type R from matrix Γ, we are left with z1 ≥ K/2 rows of type L that constitute a matrix

of size z1 ×K, in which there exists a lower triangular submatrix of size z1 × z1 and rank

z1 ≥ K/2. Thus, the rank of matrix Γ is at least z1 which is lower bounded by K/2.

For the second round (i = 2), we need to show that the number of rows of matrix A2 is

lower bounded byKM/(2(M + 1)). Based on Lemma 15, in the vector space spanned by

the rows of matrices A1 and A2, there must exist all K rows of matrix Γ which based on

Lemma 16 is of rank greater than or equal toK/2. On the other hand, as mentioned earlier,

the optimal scheme in the first round is partitioning where each row ofA1 corresponds to a

linear combination of M +1 messages. One can readily confirm that corresponding to any

M + 1 number of linearly independent rows of matrix Γ, there exists at most one linear

combination of these rows in the span of the rows of matrix A1. Thus, there must exist at

least M linearly independent combinations of these rows in the span of the rows of matrix

A2. Then, we have:

rank(A2) ≥
M

M + 1
× rank(Γ) ≥ M

M + 1
× K

2
=

KM

2(M + 1)

In other words, matrix Γ has at least K/2 linearly independent rows. Thus, there exist

at most K/(2(M + 1)) linearly independent combinations of these rows in the rows of

matrixA1. Therefore, there must exist at leastK/2−K/(2(M + 1)) = KM/(2(M + 1))
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linearly independent combinations of these rows in the rows of matrix A2, which indicates

that the number of rows of matrix A2 is lower bounded by KM/(2(M + 1)). The optimal

scheme achieves the lower bound. Thus, in the optimal scheme, the number of rows of

matrix A2 is exactly KM/(2(M + 1)).

For the third round (i = 3), it suffices to show that the number of rows of matrix

A3 is lower bounded by KM/(4(M + 1)). By the result of Lemma 15, the vector space

spanned by the rows of matrices A1, A2, A3 contains all K rows of matrix Γ, which itself

has rank greater than or equal to K/2 (by Lemma 16). Similarly as in the case of i = 2,

there exist at most two linearly independent combinations of these rows among the rows

of matrix A1, corresponding to any 2(M + 1) number of linearly independent rows of

matrix Γ. On the other hand, as shown earlier, in an optimal scheme, the rank of A2 is

given by KM/(2(M + 1)). This shows that there exist at most M linearly independent

combinations of these rows among the rows of matrix A2, corresponding to any 2(M +1)

number of linearly independent rows of matrix Γ. Thus, there must exist at least 2(M +

1) − 2 −M = M linearly independent combinations of these rows among the rows of

matrix A3. Thus, we have:

rank(A3) ≥
M

2(M + 1)
× rank(Γ) ≥ KM

4(M + 1)

Thus, there must exist at leastK/2−K/(2(M+1))−KM/(4(M+1)), or equivalently,

KM/(4(M + 1)) linearly independent combinations of these rows among the rows of

matrix A3. This further indicates that the number of rows of matrix A3 is lower bounded

by KM/(4(M + 1)).

Using the same proof technique and similar reasoning as in the cases of i = 2 and

i = 3, it can be shown that the number of rows of Ai for i ≥ 2 is lower bounded by

KM/(2i−1(M + 1)). By the result of Lemma 15, in the vector space spanned by the
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rows of matrices A1, A2, . . . , Ai, there must exist all K rows of matrix Γ, which is of rank

greater than or equal to K/2 (by Lemma 16). Again, similarly as in the cases of i = 2 and

i = 3, it follows that corresponding to any 2i−2(M + 1) number of linearly independent

rows of matrix Γ, there exist at most 2i−2, 2i−3M, 2i−4M, . . . ,M , linearly independent

combinations of these rows in the rows of matrixA1, A2, A3, . . . , Ai−1, respectively. Thus,

there must exist at least 2i−2(M + 1)− (2i−2)− (
∑i−3

j=0 2
j)M =M linearly independent

combinations of these rows in the rows of matrix Ai. Then, we have:

rank(Ai) ≥
M

2i−2(M + 1)
× K

2
=

KM

2i−1(M + 1)
.

This shows that the number of rows of matrix Ai is lower bounded by

KM/(2i−1(M + 1)).

7.4 Achievability Scheme

In this section, we propose an OPIR protocol, referred to as the Online Partitioning

(OP) Protocol, for arbitrary K and M where K/(M + 1) is a power of 2. The proposed

scheme achieves the rate (M + 1)/K in the first round and the rate (2i−1(M + 1))/KM

at rounds i ≥ 2.

Each round of the OP protocol consists of four steps described as follows.

Round i = 1:

Step 1: The user creates a partition of the K messages into n1 ≜ K/(M + 1) sets as

follows. First, it selects an index µ1 ∈ [n1], by randomly picking an element in [n1] with

uniform probability. Then, the user forms the partition, P 1
µ1

by combining the demand

index and the side information index set S: P 1
µ1

≜ {W1}∪S . The user randomly partitions

the set of remaining indices [K] \ P 1
µ1

into n1 − 1 sets, each of size M + 1, denoted as

P 1
1 , . . . , P

1
µ1−1, P

1
µ1+1, . . . , P

1
n1

.
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Step 2: The user sends to the server the partition {P 1
1 , . . . , P

1
n1
}. Note that the server

does not know the value of µ1, hence it cannot identify which partition includes W1.

Step 3: The server generates the answer A[W1,S] = {AP 1
1
, . . . , AP 1

n1
} as a set of n1

sums AP 1
1
, . . . , AP 1

n1
, where AP 1

j
=
∑

k∈P 1
j
Xk for j = 1, . . . , n1.

Step 4: Upon receiving the answer from the server, the user decodes XW1 by subtract-

ing the sum of its side information set XS from AP 1
µ1

.

Round i ≥ 2:

If the user is able to decode XWi
, based on the information obtained from the previous

rounds, it will not send any request to the server, and proceed to the next round. Otherwise,

the user executes the steps below.

Step 1: Let Q[Wi−1,S] = {P i−1
1 , P i−1

2 , . . . , P i−1
ni−1

} be the query sent at round i− 1. Let

λ be the index of the partition set of Q[Wi−1,S] that includes Wi, i.e., Wi ∈ P i−1
λ . Since the

user is not able to decode XWi
before round i, it holds that Wi and S belong to the two

different partition sets at round i− 1, i.e., λ ̸= µi−1. The user then creates a partition of K

indices into ni = ni−1/2 sets {P i
1, P

i
2, . . . , P

i
ni
} as follows. First, it selects an index µi ∈

[ni], by randomly picking an element in [ni] with uniform probability. Then, the user forms

the partition set P i
µi

by combining P i−1
λ and P i−1

µi−1
, i.e., P i

µi
≜ P i−1

λ ∪P i−1
µi−1

. The user then

forms ni − 1 partition sets, each of sizeK/ni, denoted as P i
1, . . . , P

i
µi−1, P

i
µi+1, . . . , P

i
ni

by

randomly pairing partition sets in {P i−1
1 , P i−1

2 , . . . , P i−1
ni−1

} \ {P i−1
λ , P i−1

µi−1
}. The partition

{P i
1, P

i
2, . . . , P

i
ni
} contains P i

µi
and a partition set P i−1

j1
∪ P i−1

j2
for any resulting pair P i−1

j1

and P i−1
j2

where j1, j2 ∈ [ni−1] \ {λ, µi−1}.

Step 2: The user sends to the server the partition {P i
1, P

i
2, . . . , P

i
ni
}.

Step 3: The server computes ni ·M linearly independent combinations of the messages

in X . Specifically, for each P i
j , 1 ≤ j ≤ ni the server constructs M linear combinations of

two messages as follows. First, recall that each partition set P i
j is a union of two partition
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sets from the previous round. We denote these partition subsets as P i−1
j1

and P i−1
j2

, i.e.,

P i−1
j1

∪ P i−1
j2

= P i
j . Note that P i−1

j1
is a union of 2i−2 partition sets in {P 1

1 , P
1
2 , . . . , P

1
n1
}.

The server randomly selects one of such partition sets say P 1
i1

. Similarly, P i−1
j2

is a union of

2i−2 partition sets in {P 1
1 , P

1
2 , . . . , P

1
n1
}. The server randomly selects one of such partition

sets say P 1
i2

. Finally, the server arbitrarily selects M indices from P 1
i1

and M indices from

P 1
i2

and constructs M sums (AP i
j
)1, . . . , (AP i

j
)M , such that each sum (AP i

j
)l for l ∈ [M ]

includes one message whose index is selected from P 1
i1

and one message whose index is

selected from P 1
i2

and each message is only included in one of the sums. The resulting

M · ni linear combinations constitute an answer A[Wi,S].

Step 4: Upon receiving the answer A[Wi,S] from the server, the user retrieves XWi

by using linear combinations corresponding to the partition P i
µi

and the answers of the

previous rounds A[W1:i−1].

Lemma 17. The OP protocol satisfies the recoverability and individual privacy condi-

tions, while achieving the rate (M + 1)/K at first round, and the rate (2i−1(M+1))/KM

at round i ≥ 2, when K/(M + 1) is a power of 2.

Proof. The OP protocol for the first round is based the Partition and Code

PIR Scheme which satisfies the recoverability and the privacy conditions and

achieves the rate (M + 1)/K [25]. At round i ≥ 2, the answer A[Wi,S]

consists of niM = KM/(2i−1(M + 1)) linear combinations of the messages in

X , i.e., A[Wi,S] = {(AP i
j
)1, . . . , (AP i

j
)M} for j ∈ [ni]. It should be noted that

{(AP i
1
)1, . . . , (AP i

ni
)M} are linearly independent combinations of the messages in X .

(This is because each sum constructed in any round i ≥ 2 includes two (dis-

tinct) messages, one from a partition set P 1
i1

and one from another partition set

P 1
i2

, such that there do not exist any other linear combinations including both

of these two messages). Since the messages in X are uniformly and indepen-
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dently distributed over Fqm , then {(AP i
1
)1, . . . , (AP i

ni
)M} are uniformly and indepen-

dently distributed over Fqm , i.e., H((AP i
1
)1) = · · · = H((AP i

ni
)M) = m log2 q = L, and

H(A[Wi,S]) = H((AP i
1
)1) + · · ·+H((AP i

ni
)M) = niML. Therefore, the rate of the OP

protocol at round i ≥ 2 is equal to L/H(A[Wi,S]) = (2i−1(M + 1))/KM .

It should be obvious that the recoverability condition is satisfied in the first round. It

is also easy to verify that at the beginning of any round i ≥ 2 (excluding the rounds for

which the demand has been recovered previously), all 2i−2(M+1) messages whose indices

belong to P i−1
µi−1

for some (unique) µi−1 ∈ [ni−1] are recovered in the previous round(s).

(For instance, at the beginning of the second round, all M +1 messages of the partition set

P 1
µ1

are recovered in the first round.) Suppose that the user demands the message XWi
in

the round i ≥ 2 where XWi
has not been already recovered in the previous round(s). That

is, Wi belongs to P i−1
j for some j ∈ [ni−1] \ {µi−1}. By the step 3 of the OP protocol,

the answer of round i includes M sums of distinct pairs of messages, where for some

fixed j′, j′′, for all of these pairs of messages, the index of one message belongs to the

partition set P 1
j′ ⊂ P i−1

µi−1
and the index of the other message belongs to the partition set

P 1
j′′ ⊂ P i−1

j . Using these M (linearly independent) sums, and by the fact that all messages

with indices belonging to P i−1
µi−1

(including P 1
j′) have been recovered previously, it follows

that all M + 1 messages with indices in the partition set P 1
j′′ can be recovered. Given

these new M + 1 recovered messages, from the construction of P i−1
j , it readily follows

that all other messages with indices belonging to P i−1
j \ P 1

j′′ can be recovered. That is, all

messages whose indices belong to P i−1
j can be recovered in round i. This confirms that all

messages, including the message XWi
, with indices in P i

µi
= P i−1

µi−1
∪ P i−1

j are recovered

by the end of the round i.

To prove that the OP protocol satisfies the privacy condition at round i ≥ 2, we need

to show that P(Wj = W ′|Q[W1:i,S] = Q[W1:i,S],X = X ) = 1/K for all W ′ ∈ [K] and all

j ∈ [i]. Since the OP protocol does not depend on the contents of the messages in X , it is
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sufficient to prove that P(Wj = W ′|Q[W1:i,S] = Q[W1:i,S]) = 1/K for all W ′ ∈ [K] and

all j ∈ [i]. Here we only give the proof for the case of j = i; and the proof for the cases of

1 ≤ j ≤ i− 1, not presented here to avoid repetition, is based on a similar technique. For

the case of j = i, we have:

P(Wi = W ′|Q[W1:i,S] = Q[W1:i,S])

=
∑
S⋆

P(Wi = W ′|Q[W1:i,S] = Q[W1:i,S],S = S⋆)P(S = S⋆|Q[W1:i,S] = Q[W1:i,S])

where the sum is over all possible S⋆ of size M , each of which is a poten-

tial side information index set for the demand index W ′. First, we compute

P(Wi = W ′|Q[W1:i,S] = Q[W1:i,S],S = S⋆). Without loss of generality, assume W ′ be-

longs to the kth partition set of round i, i.e. P i
k. As mentioned earlier, at round i ≥ 2,

each partition set is a union of two partition sets of round i− 1. Without loss of generality,

assume that: (i) the kth partition set of round i (of size 2i−1(M + 1)) is the union of wth

and vth partition sets of round i−1 (each of size 2i−2(M+1)), i.e., P i
k = P i−1

w ∪P i−1
v , and

(ii) W ′ is located in the P i−1
w . Any potential side information index set S⋆ for W ′ must be

a subset of P i−1
v of size M . Any such subset belongs to one of the partition sets of the first

round. On the other hand, P i−1
v (of size 2i−2(M+1)) is a union of 2i−2 partition sets of the

first round. Let Λ be the index set of all such partition sets. For each partition set P 1
ℓ for

ℓ ∈ Λ, all
(
M+1
M

)
= M + 1 subsets of size M of P 1

ℓ can be considered as a potential side

information S⋆ forW ′. Thus, there exist 2i−2(M+1) potential side information index sets

S⋆ for the demand index Wi = W ′. For any specific S⋆, given that S⋆ belongs to P i−1
v ,

each of the 2i−2(M +1) elements in the partition set P i−1
w is equally likely to be the user’s

demand index. That is,

P(Wi = W ′|Q[W1:i,S] = Q[W1:i,S],S = S⋆) = 1

2i−2(M + 1)
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for all potential side information index sets S⋆ for W ′.

Next, we compute P(S = S⋆|Q[W1:i,S] = Q[W1:i,S]). By the application of the total

probability theorem and the chain rule of conditional probability, we have:

P(S = S⋆|Q[W1:i,S] = Q[W1:i,S])

=

K
M+1∑
l=1

P(S = S⋆|Q[W1:i,S] = Q[W1:i,S],S ∈ P 1
ℓ )P(S ∈ P 1

ℓ |Q[W1:i,S] = Q[W1:i,S]).

Note that P(S ∈ P 1
ℓ |Q[W1:i,S] = Q[W1:i,S]) = M+1

K
for all ℓ ∈ [ K

M+1
]. In each partition

set of the first round, there exist
(
M+1
M

)
= M + 1 subsets of size M , each of which

is equally likely to be the potential side information index set. Note also that any

given S⋆ belongs to one (and only one) partition set of the first round, say P 1
ℓ⋆ . Thus,

P(S = S⋆|Q[W1:i,S] = Q[W1:i,S],S ∈ P 1
ℓ ) =

1
M+1

for ℓ = ℓ⋆, and it is zero for any ℓ ∈

[ K
M+1

] \ {ℓ⋆}. Thus, we have:

P(S = S⋆|Q[W1:i,S] = Q[W1:i,S]) =
1

M + 1
× M + 1

K
=

1

K
.

Putting the above arguments together, we get

P(Wi = W ′|Q[W1:i,S] = Q[W1:i,S]) = 2i−2(M + 1)× 1

2i−2(M + 1)
× 1

K
=

1

K
.

This completes the proof for the case of j = i.

7.5 Example of a protocol execution

Assume that the server has K = 12 messages {X1, X2, . . . , X12}, and the user has

M = 2 messages, X2 and X3, as side information, i.e., S = {2, 3}.

First round: Suppose that the user requires the message X1, i.e., W1 = 1 at the first
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round. The user creates four sets of size 3 P 1
1 , . . . , P

1
4 as follows. First, the user randomly

picks one of the partitions, say P 1
1 . The user constructs P 1

1 = {W1,S} = {1, 2, 3} and

randomly partitions the set of remaining indices into sets P 1
2 , P

1
3 , P

1
4 . Assume the user has

chosen P 1
2 = {4, 5, 6}, P 1

3 = {7, 8, 9}, P 1
4 = {10, 11, 12}. Then, the user sends to the

server the partition {P 1
1 , . . . , P

1
4 }. The server sends back to the user four coded packets:

Y1 = X1 +X2 +X3, Y2 = X4 +X5 +X6

Y3 = X7 +X8 +X9, Y4 = X10 +X11 +X12

It is clear that the user retrieves X1 by replacing the values of X2 and X3 in Y1.

Second round: The user demands the message X4, i.e., W2 = 4. The user creates a

partition of the indices [12] into 2 sets P 2
1 , P

2
2 , each of size 6 as follows. The user randomly

picks one of these two partitions, say P 2
1 , and forming P 2

1 = P 1
1 ∪ P 1

2 = {1, . . . , 6} (Since

W2 = 4 ∈ P 1
2 and S ∈ P 1

1 ). Thus, P 2
2 = P 1

3 ∪ P 1
4 = {7, . . . , 12}. The user sends to the

server the partition {P 2
1 , P

2
2 }. The server computes 4 linearly independent combinations

of the messages as follows. Since P 2
1 = P 1

1 ∪ P 1
2 , the server arbitrarily selects two indices

from P 1
1 , say {1, 2} and two indices from P 1

2 , say {5, 6}. Then, the server constructs 2

linear combinations of two messages such that in each linear combination one message

index is selected from {1, 2} and the other message index is picked from {5, 6}. Also,

Since P 2
2 = P 1

3 ∪ P 1
4 , the server arbitrarily selects two indices from P 1

3 , say {7, 8} and

two indices from P 1
4 , say {10, 12}. Then, the server constructs 2 other linear combinations

of two messages such that in each linear combination one message index is selected from

{7, 8} and the other message index is picked from {10, 12}. The server sends back to the

user four coded packets as follows: Z1 = X1 +X5, Z2 = X2 +X6, Z3 = X7 +X10, and

Z4 = X8 +X12. The user has already downloaded X1 from the first round. Thus, the user

can retrieve X4 from the answers of the first and second rounds.
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Third round: The user demands the message X11, i.e., W3 = 11. Since

W3 = 11 ∈ P 2
2 , and S ∈ P 2

1 , the user forms P 3
1 = {P 2

1 ∪ P 2
2 } and sends it to the server.

Since P 2
1 = P 1

1 ∪ P 1
2 and P 2

2 = P 1
3 ∪ P 1

4 , the server randomly chooses one of the two par-

titions {P 1
1 , P

1
2 } and one of the two partitions {P 1

3 , P
1
4 }. Suppose the server has chosen

P 1
2 , P

1
3 . Then, the server arbitrarily chooses two indices from P 1

2 , say {4, 6} and two

indices from P 1
3 , say {7, 9}. The server constructs 2 linearly independent combinations

of two messages such that in each linear combination one message index is picked from

{4, 6} and the other message index is selected from {7, 9}. Finally, the server sends back

to the user the following two coded packets: T1 = X4 +X7, T2 = X6 +X9. The user has

already downloaded X1 from the first round and X4, X5, and X6 from the second round.

It is easy to verify that the user can retrieve X11 from the answers of the first, second and

third rounds.
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8. CONCLUSIONS AND FUTURE DIRECTIONS

In this dissertation, we addressed some of the challenges that arise in the Group Test-

ing (GT) problem and its two variants, the Quantitative GT (QGT) and Coin Weighing

problems, by developing novel algorithms for various settings. We also addressed some

of the challenges in the Private Information Retrieval (PIR) problem. In what follows, we

outline the contributions of this dissertation briefly and provide a number of related open

problems and potential future directions.

In Chapter 2, we studied a generalized version of the CW problem with a spring

scale. We proposed and analyzed a simple and effective adaptive weighing strategy

for d = k = 2, where the weight of each coin is an unknown integer in the range of

{0, 1, . . . , k} and d is the total weight of the coins. The results of our theoretical analysis

show that the proposed strategy requires 2 log2 n− 1 number of weighings in worst case,

and it requires about 1.365 log n− 0.5 number of weighings on average, where n is the

total number of coins. This is the first non-trivial achievable upper bound on the minimum

expected required number of weighings for d = k = 2. Additionally, for the average-case

setting, we designed and analyzed an optimal strategy within the class of nested strate-

gies, which are mostly being used in today’s applications, that requires 2n+1
n+1

log n− 2(n−1)
n+1

weighings on average. A simple analysis showsed that as n grows unbounded, the pro-

posed strategy, when compared to the optimal nested strategy, requires about 31.75% less

number of weighings on average; and when compared to the information-theoretic lower

bound, the proposed strategy requires at most about 8.16% extra number of weighings

on average. The proposed algorithms are for the adaptive setting of CW problem. Thus,

an immediate future direction is to propose and analyze non-adaptive weighing strategies

for the case d = k = 2. Also, it should be noted that, a special case of the CW prob-

129



lem, i.e., d = k = 2, was considered in Chapter 2. Proposing and analyzing adaptive and

non-adaptive weighing strategies for arbitrary values of d and k remains as another open

problems.

In Chapter 3 and Chapter 4, we studied the QGT problem for the combinatorial and

probabilistic models of defective items, respectively. We proposed non-adaptive QGT

algorithms using sparse graph codes over bi-regular and irregular bipartite graphs, and bi-

nary t-error-correcting BCH codes. The proposed schemes provide exact recovery with

probabilistic guarantee, i.e. recover all the defective items with high probability. For any

t ≤ 4, the testing and recovery algorithms of the proposed schemes have the computa-

tional complexity of O(N log N
K
) and O(K log N

K
), respectively. The proposed schemes

outperforms existing non-adaptive QGT schemes for the sub-linear regime in terms of the

number of tests required to identify all defective items with high probability. It should

be noted that although the proposed QGT algorithms outperform all other existing algo-

rithms, their testing matrix is not optimal. Thus, designing an optimal testing matrix that

yields an efficient recovery algorithm appears to be a very interesting open problem. The

proposed QGT algorithms strongly relies on the assumption that there is no noise in the

system. A future direction one can follow is to design QGT algorithms for noisy scenarios.

There are a variety of noise models such as binary symmetric noise, erasure noise, dilu-

tion noise, etc. Depending on the noise model, the algorithms and their performance may

vary in different ways. Another interesting future direction is to consider a variant of the

QGT problem in which the number of items involved in a test is limited. This restriction

changes the problem completely, and implies the need for a novel idea.

In Chapter 5, we studied the noisy GT problem which is concerned with recovering

all defective items in a given population of items. We considered a practical regime in

which the number of items is in the order of hundreds, and investigated the performance

of two variants of Belief Propagation (BP) algorithm for decoding of noisy non-adaptive
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GT under the combinatorial model for defective items. Through extensive simulations,

we showed that the proposed algorithms achieve higher success probability and lower

false-negative and false-positive rates when compared to the traditional BP algorithm. In

the context of group testing, it is extremely difficult to analyze the performance of BP

algorithms even for the asymptotic regime. To the best of our knowledge, no theoretical

analysis has been provided for the BP-based group testing algorithms so far. However,

we are hopeful that our work ignites interest in the researchers who are working in this

area to further improve the performance of the group testing algorithms and to perform the

theoretical analysis of their performance.

In Chapter 6, motivated by practical scenarios, such as testing for viral diseases, we

studied a GT with side information problem . We focused on the following settings: (i) the

GT procedure is noisy, i.e., the outcome of the GT procedure can be flipped with a certain

probability; (ii) there is a certain amount of side information on the distribution of the in-

fected individuals available to the GT algorithm. First, we proposed a probabilistic model,

referred to as an interaction model, that captures the side information about the probability

distribution of the infected individuals. Next, we presented a decoding scheme, based on

belief propagation, that leverages the interaction model to improve the decoding accuracy.

Our results indicated that the proposed algorithm achieves higher success probability and

lower false-negative and false-positive rates when compared to the traditional belief prop-

agation especially in the high noise regime. In our interaction model, we only considered

one round of interactions between individuals. Extending the interaction model to capture

interactions between individuals in more than one round is an interesting future direction.

In Chapter 7, we studied the problem of single-server online PIR with side informa-

tion. In this problem, there is a user who wishes to download a sequence of messages

XW = {XW1 , XW2 , . . . , XWt} from a database X ofK messages, stored on a single server.

The communication is performed in rounds, such that at round i, the user wishes to retrieve
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a message XWi
for some Wi ∈ [K]. We assume that the user decides on which message

Wi to request at round i at the beginning of that round and that the identity of the future

messages Wj , j > i are not known at that time. We also assume that at the beginning of

the first round the user has access to M messages which are selected uniformly at random

from the database. The identity of these M messages are not known to the server. We

focused on the scenario where at round i, the user wishes to protect the identity of all the

requested messages individually up to round i, {W1, . . . ,Wi} for 1 ≤ i ≤ t. That is, after

the user makes a request to the server at round i, the server cannot decide which of the K

messages is more likely to get requested at that round and at the previous rounds. Focus-

ing on scalar-linear settings, we characterized the per-round capacity, i.e., the maximum

achievable download rate at each round. Note that the tightness of the scalar-linear ca-

pacity for general schemes is still open. We also presented a scalar-linear coding scheme

that achieves this capacity. We showed that for the setting with K messages stored at

the server and a random subset of M messages available to the user at the first round,

the per-round capacity of the scalar-linear scheme is C1 = (M + 1)/K for the first round

and Ci = (2i−1(M + 1))/KM for round i ≥ 2, provided that K/(M + 1) = 2l for some

l ≥ 1. The generalization of these results for the cases in which K/(M +1) is not a power

of 2 is not straightforward, and remains an open problem.
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