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ABSTRACT

Weyl semimetals (WSMs) have unusual optical responses originating from unique topological

properties of their bulk and surface electron states. Their third-order optical nonlinearity is ex-

pected to be very strong, especially at long wavelengths, due to linear dispersion and high Fermi

velocity of three-dimensional Weyl fermions. Here we derive the third-order nonlinear optical

conductivity of WSMs in the long-wavelength limit and calculate the intensity of the nonlinear

four-wave mixing signal as it is transmitted through the WSM film or propagates away from the

surface of the material in the reflection geometry. All results are analytic and show the scaling of

the signal intensity with variation of all relevant parameters. The nonlinear generation efficiency

turns out to be surprisingly high for a lossy material, of the order of several mW per W3 of the

incident pump power. Optimal conditions for maximizing the nonlinear signal are realized in the

vicinity of bulk plasma resonance. This indicates that ultrathin WSM films of the order of skin

depth in thickness could find applications in compact optoelectronic devices.
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1. INTRODUCTION

1.1 Nonlinear Optics

Nonlinear optics is the study of phenomena that happen as a result of the changes of the optical

properties of the material by the presence of light. So when an incident electrical field changes

the optical properties of the material this process is a nonlinear optical process and the study of

all such phenomena is the subject of nonlinear optics. They are nonlinear in the sense that they

happen when the material system’s response to an applied electrical field depends in a nonlinear

way upon the strength of the electrical field[1]. It is believed that the field of nonlinear optics was

started experimentally with Franken and his co-workers’ paper in 1961. Their paper was a mile-

stone where they produced the second harmonics in ultraviolet by shining a red light from ruby

laser into quartz doubling its frequency[2]. Although there are claims about nonlinear experiments

much earlier but they weren’t as significant as Franken’s experiment. N. Bloembergen was shown

a preprint of Franken’s paper and after reading it he immediately assembled a team of three people

consisting of John Armstrong, Jacques Ducuing, and Peter Pershan. The team worked hard every

day for four months until they produced the monumental 1962 ABDP paper which laid the theo-

retical foundation for nonlinear optics. Both Franken’s experimental discovery and Bloembergen’s

ABDP paper together started the field of nonlinear optics [3, 4].

To describe accurately what is meant by optical nonlinearity, let’s consider the polarization of

a material system that depends upon the strength of the applied electrical field at the same point

in space E(t). Here we neglect the spatial dispersion. Polarization is the dipole moment per unit

volume. In the conventional linear case which is linear optics, the induced polarization depends

linearly upon the electric field strength in a manner described by

P = χ(1) · E (1.1)

where the constant of proportionality χ(1) is known as the linear susceptibility. Susceptibilities of
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any order are generally a tensor. Moreover, in this form it is valid only for the spectral Fourier

harmonics; otherwise the relation becomes an integral over all previous times. Previous relation

can be written in a tensor form as


Px

Py

Pz

 =


χxx χxy χxz

χyx χyy χyz

χzx χzy χzz




Ex

Ey

Ez

 (1.2)

In nonlinear optics the optical response is described by generalizing P = χ(1) ·E by expressing

the polarization as a power series in the field strength as

P = χ(1) · E + χ(2) · EE + χ(3) · EEE + ... = P(1) + P(NL) (1.3)

where we again have in mind Fourier harmonics of frequency spectrum. The quantities χ(2) and

χ(3) are known as second and third order nonlinear optical susceptibilities. They are also generally

tensors. We shall refer to P(2) = χ(2) ·EE and P(3) = χ(3) ·EEE as second and third order nonlin-

ear polarization, respectively. It can be shown that second order optical nonlinear interactions can

occur only in noncentrosymmetric crystals which are crystals that do not display inversion symme-

try. On the other hand, third order optical nonlinear interaction can occur for both centrosymmetric

and noncentrosymmetric media.

For example, when the incident electric field consists of two frequency harmonics, Ẽ(t) =

E1e
−iω1t + E2e

−iω2t + c.c. the complex amplitudes of the second-order nonlinear polarization for

2



each frequency component are given by

P(2ω1) = χ(2)E1
2 (Second Harmonic Generation)

P(2ω2) = χ(2)E2
2 (Second Harmonic Generation)

P(ω1 + ω2) = 2χ(2)E1E2 (Sum Frequency Generation)

P(ω1 − ω2) = 2χ(2)E1E
∗
2 (Difference Frequency Generation)

P(0) = 2χ(2)(E1E
∗
1 + E2E

∗
2) (Optical Rectification)

We have seen that nonlinearity can cause the polarization of the medium to generate new

electromagnetic field with new frequency components not originally there. Here starting with

Maxwell’s equations that describe the fields generated by the polarization in a medium,

∇ ·D = 4πρ (1.4)

∇ ·B = 0 (1.5)

∇× E = −1

c

∂B

∂t
(1.6)

∇×H =
1

c

∂D

∂t
+

4π

c
J (1.7)

we derive a wave equation that couples nonlinear polarization to the field. We are interested in

the region where there are no free charges hence ρ = 0 and there is no free current hence J = 0.

We also assume the material is nonmagnetic hence B = H. Moreover, we assume the material

is nonlinear in a way that the field D and E are related by D = E + 4πP where generally the

polarization vector P depends nonlinearly upon the local value of the electric field strength E. By

taking the curl of the third Maxwell equation Eq(6) namely ∇ × ∇ × E = −1
c
∂∇×B
∂t

this can be

rewritten as

∇2E− 1

c2

∂2E

∂t2
=

4π

c2

∂2P

∂t2
(1.8)

Plugging P = P(1) + P(NL) we find this equation

3



∇2E− ε

c2

∂2E

∂t2
=

4π

c2

∂2P(NL)

∂t2
(1.9)

This equation is inhomogeneous and the nonlinear response of the medium represents the source

term whereas the linear response is included in the dielectric permittivity and we again assume the

monochromatic fields.

After this short and greatly simplified introduction into the nonlinear optics we now turn to

four-wave mixing. Four-wave mixing is a nonlinear effect resulting from the third order nonlinear-

ity described by χ(3). The third order nonlinear polarization will be a function of E3. When there

are incident field components at two input frequencies ω1 and ω2, then these two fields can gener-

ate the third-order nonlinear polarization at frequencies ω3 = 2ω1 − ω2 and ω4 = 2ω2 − ω1. In the

more general non-degenerate case for the nonlinear polarization at frequency ωn = ±ω1±ω2±ω3

there are 8 different combinations of three input frequencies.

Now let us learn how we can mathematically understand this. Three waves incident on a

material and one wave coming out can be represented as E(ωn) = 1
2
(Ene

i(knz−ωnt) + c.c.) for each

frequency component. Now if we want to know how the new field is generated then we find the

nonlinear polarization given by

P(NL) = χ(3)(E
(ω1)
1 + E

(ω2)
2 + E

(ω3)
3 )3 (1.10)

and the nonlinear polarization for example for ω4 = ω1 + ω2 + ω3 is

P(NL4) =
6

8
χ(3)E1E2E3e

i((k1+k2+k3)z−ω4t) (1.11)

Typical values of χ(3) can be found in [1].

1.2 Weyl Semimetals

In 1928, P. A. M. Dirac proposed an equation describing massive spin-1/2 particles in quan-

tum mechanics reconciled with special relativity[5]. The Dirac equation has a 4-component wave
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functions and 4×4 matrices. When we take c = h̄ = 1, Dirac equation in 3+1D is given by

i∂tψ = −iα · ∇ψ +mβψ (1.12)

A year later in 1929, Hermann Weyl apprehended that a real-valued 2-component equation is

sufficient to describe massless spin-1/2 particles, splitting the Dirac equation into two parts of

different chirality[6]. This equation now is called Weyl equation and it’s given by

i∂tψ± = ∓p · σψ± (1.13)

Weyl semimetal is a solid state crystal that lacks either inversion or time reversal symmetry where

the low energy quasiparticle excitations correspond to Weyl fermions. In Weyl semimetal, non-

degenerate bands touching happens in the three-dimensional momentum space forming linearly

dispersed Weyl cones of opposite chiralities. The Hamiltonian of two bands touching at point k0

and energy ε0 can be expressed as

H(k) = ε0σ0 ± h̄vF (k− k0) · σ (1.14)

where σ0 is the unit matrix, vF is the Fermi velocity, k represent the momentum and σ is the Pauli

matrix. In the case the touching point of the band set to be zero this Hamiltonian becomes the

exact Weyl Hamiltonian. The band crossing is irremovable and robust no matter how we change

the parameters.

The topology of Weyl node is understood by the Berry curvature, and to understand that we

are going here to derive the Berry phase first and then introduce concepts like Berry curvature and

Chern number. My derivation and remaining introduction will follow[7, 8, 9, 10, 11]

The general solution to the time-dependent Schrodinger equation

ih̄∂tΨ(t) = Ĥ(t)Ψ(t) (1.15)

5



can be written as a linear superposition of the eigenfunctions

Ψ(t) =
∑
n

c̄n(t)ψn(t) (1.16)

If we substitute the general solution Eq.(1.16) into Eq.(1.15) we find

ih̄
∑
n

( ˙̄cnψn + c̄nψ̇n) =
∑
n

c̄nEnψn (1.17)

Taking the inner product with ψm we obtain

˙̄cm +
∑
n

c̄n〈ψm|ψ̇n〉 = − i
h̄
c̄mEm (1.18)

Let

c̄n(t) = cn(t)eiθn(t) (1.19)

Then

ċme
iθm + iθ̇mcme

iθm +
∑
n

cne
iθn〈ψm|ψ̇n〉 = − i

h̄
cme

iθmEm

ċm +
∑
n

cne
i(θn−θm)〈ψm|ψ̇n〉 = − i

h̄
(h̄θ̇m + Em)cm (1.20)

By setting

θ̇m(t) = −1

h̄
Em(t)

θm(t) = −1

h̄

∫ t

0

Em(t′)dt′ (1.21)

So

ċm = −cm〈ψm|ψ̇m〉 −
∑
n6=m

cne
i(θn−θm)〈ψm|ψ̇n〉 (1.22)
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To find another expression for 〈ψm|ψ̇n〉 we differentiate Schrodinger equation with respect to time

˙̂
Hψn + Ĥψ̇n = Ėψn + Eψ̇n (1.23)

We again take the inner product with ψm to obtain

〈ψm| ˙̂
H|ψn〉+ 〈ψm|Ĥ|ψ̇n〉 = Ėnδnm + En〈ψm|ψ̇n〉 (1.24)

Selecting only the n 6= m terms gives

〈ψm|ψ̇n〉 =
〈ψm| ˙̂

H|ψn〉
En − Em

(1.25)

Substituting this back in Eq.(1.22) leads to

ċm = −cm〈ψm|ψ̇m〉 −
∑
n6=m

cn
〈ψm| ˙̂

H|ψn〉
En − Em

e(i/h̄)
∫ t
0 [En(t′)−Em(t′)]dt′ (1.26)

The second term may be dropped if we use the adiabatic approximation assuming that ˙̂
H is suffi-

ciently small. A solution to the equation after we drop the term is obtained by integration

cm(t) = cm(0)exp
[
i

(
i

∫ t

0

〈ψm(t′)|∂t′ψm(t′)〉dt′
)]

= cm(0)eiγm(t) (1.27)

Now let’s assume the system have time dependence through a set of N parameters R(t) ≡

(R1(t), R2(t), ..., RN(t)), and the parameters change slowly over time so that the adiabatic ap-

proximation is valid then γn(t) can be written as

γn(t) = i

∫ t

0

〈ψn|∇Rψn〉 ·
dR

dt′
dt′ = i

∫ Rf

Ri

〈ψn|∇Rψn〉 · dR (1.28)

If the Hamiltonian completes a cycle after time-evolution say from time t = 0 to t = T then

7



R(0) = R(T ) and

γn(t) = i

∮
C
〈ψn|∇Rψn〉 · dR (1.29)

where C is a closed path in parameter-space. Eq.(1.29) is called Berry phase. Defining a

function called Berry connection which is a gauge-dependent quantity

An(R) = i〈ψn|∇Rψn〉 (1.30)

This let us write

γn(t) = i

∮
C

An(R) · dR (1.31)

Using Stokes’ theorem one can write the Berry phase equation as

γn(t) =

∫
S

(∇R ×An) · dS (1.32)

One may define

Bn = ∇R ×An = i∇R × 〈ψn|∇Rψn〉 (1.33)

where B is called Berry curvature. The Chern number is defined as

Cn =
1

2π

∫
d2kek⊥ · B (1.34)

where d2k is Fermi surface, and ek⊥ is the unit vector normal to the Fermi surface. In the case

of Weyl semimetal, the Chern number associated with right-handed chiral spinor is Cn = +1 and

The Chern number associated with left-handed chiral spinor is Cn = −1. One can interpret the

Weyl node as a monopole charge since the flux through the Fermi surface enclosing the Weyl node

is nonzero . The Chern number can be considered as a topological charge of the Weyl node where

the sign of the charge is determined by the chirality.

In metals, almost everything of consequence that’s observable occurs on the Fermi surface.

So, the corresponding momentum space invariant has to be defined on the Fermi surface in order

8



for metal to be topological. The flux of the Berry curvature through the two-dimensional Fermi

surface of a three-dimensional metal is the only topological invariant that can be defined on the

Fermi surface and leads to observable consequences.

Berry curvature is an analog to the magnetic field but it’s defined in momentum space rather

than real space. The Hamiltonian H(k) in a crystal of noninteracting electrons is a matrix, whose

elements are labelled by spin quantum numbers and atomic orbitals and which depends in k the

crystal momentum as a parameter. The electronic structure is defined by the eigenvalues and

eigenvectors of the equation

H(k)|u(k)〉 = ε(k)|u(k)〉 (1.35)

Let’s consider an overlap between an eigenvector at point k and similar eigenvector taken at

point in momentum space k + δk

〈u(k)|u(k + δk)〉 ≈ 1 + δk · 〈u(k)|∇k|u(k)〉 ≈ eiA(k)δk (1.36)

where A(k) = −i〈u(k)|∇k|u(k)〉 is the Berry connection. Berry curvature as mentioned before

is the curl of Berry connection

B(k) = ∇k ×A(k) (1.37)

Tha phase A(k)δk can not be eliminated by a gauge transformation when the Berry curvature is

nonzero and it leads to observable consequences

Suppose we have a nonzero flux of Berry curvature through a Fermi surface sheet. It’s implied

by Gauss’ theorem that there must be a point of source or sink of the Berry curvature enclosed by

this Fermi surface. Near this point, which is called Weyl node the Berry curvature takes a universal

form up to trivial rescaling of the crystal momentum components

B = ± k

2k3
(1.38)
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such that

C =
1

2π

∫
B · dS = ±1 (1.39)

C is the above mentioned Chern number and the sign depends on whether the point a source or a

sink.

A source or a sink point of the Berry curvature is obviously some sort of a singularity of

the electronic structure. This singularity comes to be a point of degeneracy between two band.

These degeneracy points are Weyl nodes. Fig(1.1) shows electronic structure of the simplest Weyl

semimetal, with two nodes of opposite chirality, separated by a distance of 2k0 along the z-axis

in momentum space. Similar to Berry curvature near the Weyl node take a universal form of the

magnetic field of a point monopole, the Hamiltonian itself if expanded in the vicinity of Weyl node

takes the following universal form as

H(k) = ±vFσ · k (1.40)

where the crystal momentum k is measured from the Weyl node. σ is Pauli matrices. The Hamil-

tonian is identical to the Hamiltonian proposed by Hermann Weyl in 1929 up to a replacement of

vF by the speed of light c.

Eq.(1.40) shows an essential property of topological metals which is their band eigenstate must

be nondegenerate. This needs either broken spatial inversion when the crystal lacks a center of

inversion or a broken time-reversal symmetry which happens in magnetic materials. Otherwise

due to Kramers theorem all bands are doubly degenerate. Eq.(1.40) makes it clear that no other

conditions are necessary for the existence of the Weyl band touching nodes in a 3D material.

If either inversion symmetry or time-reversal symmetry are indeed broken the three components

of the crystal momentum provide the necessary three real parameters needed to make two band

eigenstate coincide in energy. So Weyl nodes happen generically in any 3D noncentrosymmetric

or magnetic material.

A very interesting feature and key signature of Weyl semimetals is their surface states, which is
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Figure 1.1: Electronic structure of the simplest Weyl semimetal, with two nodes of opposite chi-
rality, separated by a distance of 2k0 along the z-axis in momentum space. Reprinted figure with
permission of [8]

called Fermi arcs as shown in Fig(1.2). Usual materials have their Fermi surface a closed circle up

to deformations on a two-dimensional surface. The Fermi surface in Weyl semimetals is different

and only half of the usual Fermi circle stays in one surface, while the other half can be found on

the opposed surface. Fermi arcs start and end at surface projections of the Weyl cones. Within the

bulk band gap well-defined surface states can exist and typically are exponentially localized near

the surface. When the bulk is gapless as in Weyl semimetals how can we define surface states. In

this case we require to further assume translational invariance, thus we tag surface states by the

crystal momenta within the 2D surface Brillouin zone. Then the regions of the surface Brillouin

zone that are free of bulk states at the same energy are the only ones required. One can define

surface states at same energy at all momenta except at the projection of the Weyl point onto the

surface Brillouin zone, if we consider the idealized limit of a pair of Weyl nodes at the chemical

potential (EF = 0) at momenta ±k∗0 in the surface Brillouin zone. Surface states can leak into the

bulk even at EF = 0 at those two points and are not well defined. The momentum region occupied

by bulk states, if one consider other energies, grows as shown at the bottom of Fig(1.2) . Surface

state that are impossible to realize in both strictly 2D and on the surface of any 3D insulator are

allowed by the presence of these bulk states.
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Figure 1.2: (Top left) Chern number, Weyl points, and Fermi arcs. (Top right) Connection of
surface states to bulk Weyl points. (Bottom) Evolution of the Fermi arc with chemical potential
in a particular microscopic model on raising the chemical potential from the nodal energy (E=0).
Fermi arcs are tangent to the bulk Fermi surface projections and may persist even after they merge
into a trivial bulk Fermi surface. Reprinted figure with permission of [9]

As mentioned above, either inversion symmetry or time reversal symmetry needs to be bro-

ken for Weyl semimetals. Two classes of Weyl semimetals were calculated and predicted theo-

retically. the first one is the broken time reversal symmetry candidates such as ferromagenetic

hald-metalHgCr2Se4 and magenetic pyrochlories A2Ir2O7. Also Co-based Heusler compounds

were proposed as Weyl semimetals. The second one is broken inversion symmetry candidates. The

tool that can directly observe the band structure of the material is angle-resolved photoemission

spectroscopy (ARPES) and was used to get the band crossing and Weyl nodes in nonmagnetic

Weyl semimetals. Multiple compounds were calculated by theorists in 2015 such as TaAs, TaP,

NbAs and NbP Fig(1.3) (a) shows the structure of TaAs and shows that it doesn’t have space in-

version symmetry and (b) shows first-principles band structures calculation of TaAs. In the same

year 2015 the Fermi arc and Weyl cones in TaAs as directly observed by ARPES indicating the

realization of three-dimensional Weyl semimetal as shown in Fig(1.4). Later on more compounds

were discovered theortically and observed experimentally.
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Figure 1.3: (a) Body-centered tetragonal structure of TaAs, shown as stacked Ta and As layers.
The lattice of TaAs does not have space inversion symmetry.(b) First-principles band structure
calculations of TaAs without spin-orbit coupling. The blue box highlights the locations where bulk
bands touch in the BZ. Reprinted figure with permission of [14]

Figure 1.4: (a) High-resolution ARPES Fermi surface map of the crescent Fermi arcs.(b) A
schematic showing the evolution of the Fermi arcs as a function of energy. (c)ARPES disper-
sion map along the cut 2 direction, showing that the W2 Weyl cone also disperses linearly along
the out-of-plane direction.(d)First-principles calculated dispersion that corresponds to the cut 2
shown in (c).Reprinted figure with permission of [14]
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Finally an introduction on Weyl semimetals cannot be complete without mentioning the types

of Weyl semimetals. The previously known type is type I Weyl semimetal and the later discovered

type is type II Weyl semimetal. To distinguish between the types we look at the Fermi surface.

The Fermi surface of type I Weyl semimetal at Weyl point is point-like as shown in Fig (1.5). Weyl

fermions are emerging at boundary between electron and hole pockets in type II Weyl semimetal.

the Weyl cone for type II has a tilted shape since the Weyl point is different even though it is still

linearly dispersive.

Figure 1.5: (Left) Conventional type I point with point-like Fermi surface. (Right) Type II Weyl
point is the touching point between electron and hole pockets. Red and blue (highlighted) isoenergy
contours denote the Fermi surface coming from electron and hole pockets with chemical potential
tuned to the touching point. Reprinted figure with permission of [9]
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2. FOUR-WAVE MIXING IN WEYL SEMIMETALS1

2.1 Introduction

Weyl semimetals (WSMs) are fascinating materials with nontrivial topology of both bulk and

surface electron states [8, 9, 12, 13, 14, 15, 16, 17, 18]. Although most of the research on WSMs

has been focused on their electronic structure and transport, a number of recent studies have sug-

gested that WSMs should also have highly unusual optical properties. For example, Kerr and

Faraday rotations were predicted [19]. The evolution of the interband response within a model

Hamiltonian which contains Dirac, Weyl, and gapped semimetal phases is studied [20]. The plas-

mon modes which have damping rates more than an order of magnitude smaller compared to the

energy were predicted [21]. The theory of topological Fermi arc plasmons was developed in [22].

Negative refraction was shown theoretically that it can occur in WSM and the refractive index is

negative at specific frequency range close to the plasmon frequency [23]. The electronic band-

structure calculations can effectively explain the optical conductivity spectra of typical WSMs

without electron correlation [24]. The existence of nonreciprocal waveguides modes in ferromag-

netic WSM films in the Voigt configuration without an external magnetic field is predicted [25].

It’s shown that the component of the permittivity tensor normal to the interfaces can achieve an ε-

near-zero (ENZ) response depending on the Weyl cone tilt, chemical potential, and electromagnetic

wave frequency [26]. A dissipationless second-order anomalous node conductivity for WSMs be-

longing to the TaAs family is predicted [27]. It’s shown how information about electronic structure

of Weyl semimetals, such as the position and separation of Weyl nodes, Fermi energy, and Fermi

arc surface states, can be unambiguously extracted from measurements of the dispersion, trans-

mission, reflection, and polarization of electromagnetic waves[28]. By calculating the frequency-,

polarization-, and temperature-dependent complex dielectric functions using a microscopic pic-

ture of the relevant electron-electron and electron-phonon interactions in each material, a concrete

1Reprinted with permission from “Four-wave mixing in Weyl semimetals” by Sultan Almutairi, Qianfan Chen,
Mikhail Tokman, and Alexey Belyanin, Phys. Rev. B 101, 235156, Copyright 2020 by The American Physical
Society
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link between Weyl physics, scattering processes, and experimentally relevant optical quantities is

established [29]. Information about Weyl node position and separation, the value of the Fermi mo-

mentum, and the matrix elements of the optical transitions involving both bulk and surface electron

states is provided by Strong anisotropy, gyrotropy, and the optical Hall effect for surface polaritons

launched by a nanotip [30].

Due to the presence of one or more pairs of separated Weyl nodes, the electron bandstruc-

ture of WSMs is highly anisotropic and (in the case of time-reversal symmetry-breaking WSMs)

gyrotropic. As a result, even in the weak-field linear regime the optical conductivity tensor is

quite complicated and generally cannot be expressed analytically even within the simple micro-

scopic model of a two-band WSM Hamiltonian with two separated Weyl nodes ([32, 33]); see

e.g. [28, 30] where bulk and surface conductivity tensors were derived and the properties of bulk

and surface electromagnetic eigenmodes were described. Fortunately, one expects the strongest

nonlinear optical response in the high-doping, long-wavelength limit h̄ω � EF , h̄vF b, where EF

is the Fermi energy and 2h̄b is the Weyl point separation in momentum space [28]. In this limit the

electron bandstructure takes a simple universal form of 3D cones for both Dirac and Type-I Weyl

semimetals. As a result, one can obtain analytic, although a bit cumbersome, expressions for the

nonlinear conductivity of any order.

There are several reasons why the power of the nonlinear four-wave mixing (FWM) efficiency

from WSMs should be high in the long-wavelength limit. First, the dispersion of massless Weyl

fermions is, of course, very far from parabolic, which ensures strong nonlinearity of intraband

electron oscil- lations in an external optical field. This is to be contrasted with electrons near the

conduction band minimum of conventional semiconductors that are only weakly nonparabolic:

see, for example, Refs. [34, 35, 36] where the third-order intraband non- linear response due to

band nonparabolicity has been observed and explained.

Second, the magnitude of the dipole matrix element of the optical transitions between two

states |n〉 and |m〉 with eigenenergies εn and εm is ~µmn = e · 〈m|r|n〉 = ih̄e
εn−εm 〈m|v̂|n〉. For

electron systems with continuous energy spectra, the main contribution to the optical response at
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frequency ω comes from energy states separated by εn − εm = h̄ω. Furthermore, for massless

fermions, the magnitude of the velocity is constant: v̂ = vF ~̂σ, i.e., |v| = vF , where vF is the

Fermi velocity. Therefore, the magnitude of the dipole moment scales as µ ∼ evF/ω. This is true

for both intraband and interband transitions. Note the linear scaling with wavelengthλ, µ ∝ λfor

Weyl fermions as compared to the usual µ ∝
√
λ scaling for massive electrons with parabolic

dispersion. As a result, the nonlinear nth order conductivity grows rapidly,|σ(n)| ∝ µn+1, with

increasing wavelength. Taking into account the density of states, one can immediately predict the

scaling |σ(3)| ∝ e4vF
(h̄ω)3

which is confirmed below. The resulting magnitude of |χ(3)| is many orders

of magnitude higher than in conventional nonlinear materials.

The third reason is that at low frequencies h̄ω � 2EF , the interband absorption is eliminated

by Pauli blocking. Finally, the electric field of the nonlinear signal is enhanced in the vicinity of

bulk plasma resonance due to the boundary conditions at the interface. The latter effect is similar to

the observed enhancement of Kerr index modulation and third- harmonic generation in so-called

epsilon-near-zero materials; see, e.g., Refs. [37, 38]. An exceptionally high value of |χ(3)| in

combination with field enhancement at plasma resonance lead to a surprisingly high efficiency of

the nonlinear generation, of the order of several mW per W3 of incident pump power.

The third order conductivity has been calculated by [39] in the hydrodynamic limit and for fre-

quencies lower than the scattering rate 1/τ . Here we are interested in the frequencies higher than

the scattering rate, but still low enough to limit the response to the vicinity of the Weyl points, as

argued above. There is some controversy surrounding this low-frequency kinetic limit of the third-

order response. In [40] the third-order conductivity in the terahertz spectral range was calculated

for degenerate FWM (ω + ω − ω) and third-harmonic generation processes. However, in a very

recent paper [41] the third-order conductivity was found to be zero in the low-frequency limit and

zero result was rationalized by symmetry arguments. While the inversion symmetry prohibits the

nonzero second-order response in electric-dipole approximation, we don’t see any symmetry ar-

guments that would require the third-order response of WSMs to be zero, even assuming perfectly

isotropic conical dispersion near every Weyl point. And indeed, we present a very general kinetic
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equation-based derivation of the third-order conductivity to show that it remains finite and in fact

quite large in magnitude at low frequencies.

In Sec. 2.2, we derive the general expression for the third-order nonlinear conductivity by using

the kinetic equation formalism for frequencies higher than the phenomenological relaxation rate.

We then proceed in Sec. 2.3 to calculate the four-wave mixing (FWM) signal power transmitted

through a WSM slab or propagating away from the surface of the material opposite to the direction

of incident pump beams. as a function of relevant parameters such as frequency and doping level.

The Appendix contains the derivation of the third-order susceptibility.

2.2 Third-Order Nonlinear Optical Conductivity

We consider the optical response of a doped WSM at frequencies 1/τ < h̄ω < 2EF that are

low enough so that the electron excitations in the vicinity of each Weyl point satisfy the linear

dispersion:

Es = sv · p, (2.1)

where s = ±1 is for the conduction and valence bands, respectively. We assume for simplicity

that the velocity has the same magnitude in every direction, i.e. the cone is isotropic. Anisotropic

cones can be easily incorporated into the analytic theory below, but they will make the expressions

more cumbersome without changing the nonlinear response qualitatively. We will assume for

definiteness that the Fermi level is in the conduction band. Thus we have

v =
∂E+

∂p
= vFn, (2.2)

where E+ is the electron energy in the conduction band, p =
√
p2
x + p2

y + p2
z is the magnitude

of electron momentum, vF is the Fermi velocity, and n = p
p

= (sin θ cosφ, sin θ sinφ, cos θ) is

the unit vector in the direction of the electron velocity.For h̄ω < 2EF and in the limit of strong

Fermi degeneracy, intraband transitions make the dominant contribution. When only the intraband

transitions are included, the fully quantum approach based on the von Neumann equation for the

density matrix gives the same result as the semiclassical kinetic equation approach. For massless
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2D Dirac fermions, this was checked explicitly in [42]. The kinetic equation with a phenomeno-

logical collision term has a standard form:

∂f

∂t
+ vF (n · ∇)f − [eE +

vF
c

(n×B)] · ∂f
∂p

= γ[F (p)− f ], (2.3)

where E and B are external electric and magnetic fields, respectively, e is the electron charge, γ

is the electron relaxation rate, F (p) is an unperturbed (zeroth-order) distribution function, which

is chosen as the equilibrium Fermi-Dirac distribution, and f is the non-equilibrium distribution

function in the presence of external fields.We are interested in the electric-dipole optical response,

so we will neglect the magnetic-field-dependent terms and the terms with spatial gradients in Eq.

(2.3). The latter would lead to corrections that scale as powers of the small parameter vF/(Lω),

where L is a characteristic scale of the optical field nonuniformity in the material [42, 43]. In a

transparent medium, L would be equal to the wavelength of radiation.

The current density can be then calculated as

j(r, t) = −e
∫

vf(r,p, t) d3p. (2.4)

We are interested in the electric-dipole optical response, so the magnetic field term can be ne-

glected. We also assume that the electric field has the form

E(r, t) =
∑
n

En(r, ωn)e−iωnt =
∑
n

Ane
iknx−iωnt, (2.5)

and make an ansatz for the non-equilibrium distribution function:

f =
∑
m

ξme
iqmx−iωmt, (2.6)

where we have set ξ0 = F (p), E0 = 0, ω0 = 0. Because both the electric field and the non-

equilibrium distribution function are real, i.e. E(r, t) = E∗(r, t) and f = f ∗,we obtainE−n = E∗n,
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ξ−n = ξ∗n, ω−n = −ωn.,q−n = −qn

In the Appendix, we perturbatively solve the Boltzmann equation up to the third order under

the above conditions. In particular, we show that an optical response at any order for an arbitrary

non-degenerate multi-wave mixing can be calculated by the repetitive applying of the following

operator to the equilibrium distribution function:

Gn,m(p, φ, θ) ≡ gn,m1 (φ, θ)
∂

∂p
+ gn,m2 (φ, θ)

∂

p∂φ

+gn,m3 (φ, θ)
∂

p∂θ
, (2.7)

where p, φ, θ are spherical coordinates in momentum space and

gn,m1 (φ, θ) ≡ e
Em,x cosφ sin θ + Em,y sinφ sin θ + Em,z cos θ

−iωn + γ
, (2.8)

gn,m2 (φ, θ) ≡ e
Em,y cosφ− Em,x sinφ

sin θ(−iωn + γ)
(2.9)

gn,m3 (φ, θ) ≡ (Em,x cosφ cos θ + Em,y sinφ cos θ − Em,z sin θ)

× e

(−iωn + γ)
. (2.10)

For example, the first-order approximation describing the linear optical response is

ξ(1)
n = Gn,nξ0 = g

(n,n)
1

∂F

∂p
. (2.11)

Substituting this into Eq. (2.4) and using
∫∞

0
∂F (p)
∂p

p2dp = −p2
F in the strong degeneracy/low

temperature limit, one can get

σ(1)(ω) =
e2vFp

2
Fgsgw

6π2h̄3(γ − iω)
, (2.12)

where gs and gw are the degeneracy factors associated with spin and the number of Weyl nodes

respectively.
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The second-order approximation of the non-equilibrium distribution function is ξ(2)
l ,

ξ
(2)
l =

∑
m,k

Gl,mξ
(1)
k =

∑
m,k

Gl,mGk,kξ0 (2.13)

for all possible ωm and ωk satisfying the relation ωl = ωm+ωk. Similarly, the third-order response

is described by

ξ
(3)
i =

∑
j,m,k

Gi,jξ
(2)
l =

∑
j,m,k

Gi,jGl,mGk,kξ0 (2.14)

for all possible ωj, ωm and ωk satisfying the relation ωi = ωj + ωm + ωk. The nonlinear current

j(ωn = ω1 + ω2 + ω3) is then given by


jx

jy

jz

 = −evF
∫ ∞

0

∫ 2π

0

∫ π

0

ξ(3)
n


cosφ sin θ

sinφ sin θ

cos θ

 p2 sin θdpdθdϕ

= σijklE
j
1E

k
2E

l
3 (2.15)

In the strong degeneracy/low temperature limit the integral can be evaluated analytically; see the

Appendix. The resulting third-order nonlinear optical conductivity tensor has the form

σijkl =
e4vFgsgw∆ijkl

90π2h̄3(γ − iω1)

1

[γ − i(ω1 + ω2)] [γ − i(ω1 + ω2 + ω3)]

+ all permutations of ω1, ω2, ω3, (2.16)

where ∆ijkl ≡ δijδkl + δikδjl + δilδjk. Here δij is the Kronecker delta.

In the particular case of the third harmonic generation ω1 = ω2 = ω3 = ω. Then the nonlinear

current at ωn = 3ω is

j
(3)
k (3ω) =

e4vFgsgw(E2
1,x + E2

1,y + E2
1,z)

5π2h̄3(γ − i3ω)(γ − i2ω)(γ − iω)
E1,k, (2.17)

where k = (x, y, z). This is consistent with the result for σintra3 (3ω) in [40] when E1,x,y,z = E0.
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In another special case of partially degenerate FWM we consider the nonlinear current at fre-

quency ωs = 2ω1 − ω2. For simplicity, we assume that the electric field is along the z-axis; then

the z-component of the nonlinear current is

j(3)
z (ωs) =

e4vFgsgwE
2
1,zE

∗
2,z

15π2h̄3(−iωs + γ)

[
1

iω2+γ
+ 1
−iω1+γ

(−i(ω1 − ω2) + γ)

+
1

(−i2ω1 + γ)(−iω1 + γ)

]
. (2.18)

Note the resonance at ω1 = ω2. The absolute value of the third-order susceptibility χ(3) = iσ(3)

ωs

which follows from Eq. (2.18) is plotted in Fig.(2.1) as a function of detuning δω = ω2 − ω1 for

several values of ω1. The magnitudes of χ(3) are many orders of magnitude higher as compared

to typical values in the conventional nonlinear crystals [1]. However, strong optical absorption in

WSMs limits the nonlinear signal power, as we show in the next section.

Figure 2.1: The absolute value of χ(3) as a function of detuning δω = ω2 − ω1 for several values
of ω1. Other parameters are h̄γ = 5 meV, vF = 108 cm/s, gs = 2, gw = 4. Reprinted figure with
permission of [44]
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2.3 Intensity and Power of the Nonlinear FWM Signal

As the simplest problem relevant to the experiment, we consider two monochromatic pump

fields at frequencies ω1 and ω2 normally incident at the WSM layer from the air. The case of an

oblique incidence can be easily solved in the same way, but we will try to keep the expressions

less cumbersome. The nonlinear FWM signal at frequency ωs = 2ω1 − ω2 is generated by the

nonlinear current inside the WSM material. It can be observed both in the transmission geometry,

i.e. propagating through the WSM layer, or in the reflection geometry where it propagates away

from the WSM surface into the air, opposite to the direction of the incident pump beam. Although

there is no incident nonlinear signal, the presence of the “reflected” wave is mandated by the

boundary conditions, since the nonlinear current exists only on one side of the air-WSM interface.

First, it is instructive to find the linear dispersion and absorption of EM waves propagating in

the bulk WSM. Since the material is isotropic within our model, the normal modes are transverse

waves with the wave vector magnitude k = n(ω)ω
c

. Here n(ω) =
√
ε(ω) and ε(ω) = εb + 4πiσ(1)

ω
,

where εb is the background dielectric permittivity due to off-resonant transitions to remote bands

and σ(1) is the linear response of Weyl fermions given by Eq. (2.12). The absorption length can be

obtained as Lab(ω) =
c

ωIm [n]
.

Fig.(2.2a), and Fig.(2.2b) show real and imaginary parts of the linear refractive index as a func-

tion of frequency at different Fermi energies. At low frequencies the linear response is dominated

by the plasmonic response of Weyl fermions. The plasmonic resonance Re[ε(ω)] = 0 is clearly

visible in the refractive index spectra. Below the plasmonic resonance the absorption length drops

to the values shorter than the wavelength. Note that the plots cannot be applied to the interband

transition region h̄ω > 2EF .

Next, we calculate the intensity and power of the nonlinear signal. Assume that the interface

between the WSM and the air is in the (x, y) plane and the WSM is at z > 0.As shown in Fig .(2.3)

EM fields in the air above the WSM consist of incident and reflected pump waves, Ei1,2ei(ω1,2/c)z

and Er1,2e−i(ω1,2/c)z, and the nonlinear signal wave propagating away from the interface: Ea =

E
(−)
a e−ik0z, where k0 = ωs/c. Here we assume that all fields are linearly polarized in the same
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Figure 2.2: (a)Real part of the linear refractive index as a function of frequency at different Fermi
energies for εb = 10, h̄γ = 5 meV, vF = 108 cm/s, gs = 2, gw = 4. (b)Imaginary part of the linear
refractive index as a function of frequency at different Fermi energies for εb = 10, h̄γ = 5 meV,
vF = 108 cm/s, gs = 2, gw = 4. Reprinted figure with permission of [44]
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Figure 2.3: Sketch of the simplest experimental geometry. The third- order nonlinear current
generated in bulk WSM by incident pump beams gives rise to the FWM signals propagating both
into and out of the material. Reprinted figure with permission of [44]

direction and drop the polarization vectors.

The EM fields in the WSM consist of transmitted pump waves t1,2Ei1,2eik1,2z where t1,2 are

Fresnel transmission coefficients for the field at frequencies ω1,2, and the copropagating nonlinear

signal. The nonlinear correction to the refractive index for the pump waves in the WSM is not

important because they interact with the signal wave over a short distance comparable or smaller

than the wavelength, as we will see below. The monochromatic electric field of the nonlinear signal

at frequency ωs satisfies Maxwell’s wave equation with the nonlinear polarizationP (3)(ωs) as the

source term and appropriate boundary conditions for electric and magnetic fields at z = 0:

∇2Ew(ωs) + ε(ωs)k
2
0Ew(ωs) =

−4πω2
s

c2
P (3)(ωs), (2.19)
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After expressing the nonlinear polarization through the third- order susceptibility and the pump

fields in the material, the right-hand side of Eq. (2.19) can be written as

d2Ew
dz2

+ ε(ωs)k
2
0Ew = Aeikz, (2.20)

where k ≡ 2k1 − k2 and

A = −4πω2
s

c2
χ(3)t21t

∗
2E

2
i1E

∗
i2. (2.21)

Note that the dielectric function ε(ω) is complex at all frequencies and therefore all relevant

wavenumbers are complex: k1,2 = (ω1,2/c)n1,2, ks = k0ns, where n1,2 =
√
ε(ω1,2), ns =

√
ε(ωs),

and all imaginary parts Im[n1,2,s] are greater than zero.

The solution to Eq. (2.20) can be written as a sum of the general solution to the homogeneous

part and a particular solution to the inhomogeneous equation:

Ew = E(+)
w eiksz +

A

k2
s − k2

eikz, (2.22)

where we dropped the E(−)
w e−iksz term.

The continuity of the tangential electric and magnetic fields at the interface z = 0 giveEa = Ew

and dEa

dz
= dEw

dz
, or

E
(−)
a = E

(+)
w +

A

k2
s − k2

−k0E
(−)
a = ksE

(+)
w + k

A

k2
s − k2

.
(2.23)

This leads to the following expressions for the nonlinear signal fields propagating from the inter-

face into the air and into the WSM:

Ea =
1

ks + k0

A

ks + k
e−ik0z,

Ew =
A

k2
s − k2

(
eikz − k0 + k

k0 + ks
eiksz

)
,

(2.24)

where as a reminder k = 2k1 − k2. These expressions can be used to calculate the nonlinear

signal power in both transmission and reflection geometry. For the transmission geometry, when
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the pumps and the nonlinear signal co-propagate through a WSM film, it makes no sense to take

the films thicker than the absorption length of the field. The maximum power is reached when the

film thickness is of the order of the absorption length Labs = 1/Im[ks].

In the absence of any dissipation (i.e. when all wavenumbers are real) and for exact phase

matching ks → k, the signal field propagating into the WSM grows linearly with z, as expected:

Ew = A
eiksz

2ks

(
1

k0 + ks
− iz

)
; Ea =

A

2ks(ks + k0)
e−ik0z. (2.25)

Of course, for realistic fields of finite duration, the region of linear growth of the field is limited

by the pulse duration. Moreover, field dissipation is always important because of a fast electron

scattering rate γ expected in real materials and especially in the region around plasma resonance.

Figure (2.4) shows the power of the nonlinear signal in the reflection geometry, in W per W3 of

incident pump power, for degenerate FWM with ω1 = ω2 and assuming that all beams are focused

into an area of vacuum wavelength squared, i.e. Pa = c
2π
|Ea|2

(
2π
k0

)2

and similarly for the pump.

All other parameters are the same as in Fig.(2.2).

EF = 12 meV
EF = 30 meV
EF = 50 meV
EF = 100 meV
EF = 150 meV
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Figure 2.4: The nonlinear signal power in reflection geometry, i.e. when the signal propagates
away from the interface into the air, as a function of frequency and for several values of the Fermi
energy. Reprinted figure with permission of [44]
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The sharp peaks in the spectrum are entirely due to a strong dependence of the signal field

intensity from the refractive index of the WSM:

|Ea|2 =
256π2|χ(3)|2

|ns|2|ns + 1|8
|Ei|6. (2.26)

Indeed, the absolute value of the refractive index has a sharp minimum in the vicinity of plasma

resonance, see Fig.(2.5), that are manifested in the power spectra. Note a simple “universal ”

character of the expression Eq. (2.26) for the nonlinear signal, especially given the fact that the

value of χ(3) in this expression does not depend on the Fermi energy. The Fermi energy dependence

in Eq. (2.26) which is shown in Fig.(2.4) enters entirely through the refractive index ns.

EF = 12 meV
EF = 30 meV
EF = 50 meV
EF = 100 meV
EF = 150 meV
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Figure 2.5: Absolute value of the linear refractive index as a function of frequency at different
Fermi energies for εb = 10, h̄γ = 5 meV, vF = 108 cm/s, gs = 2, gw = 4. Reprinted figure with
permission of [44]

The efficiency of the FWM process is quite high, a few mW per W33 of incident pump power,

especially in view of the fact that the reflected nonlinear signal is generated in the subwavelength

skin layer below the air/WSM interface. It originates from the high magnitude of |χ(3)| and strong
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refractive index dependence mandated by the boundary conditions. The sharp increase in the FWM

signal near plasma resonance is conceptually similar to the predicted and observed enhancement of

the third-order nonlinear effects for intense laser field propagating in epsilon-near-zero materials;

see, e.g., Refs. [37, 38] or the recent reviews [45, 46] and references therein.

With detuning from resonance δω = ω2 − ω1 = 0, the FWM power will decrease

following|χ(3)| ∝ 1/(δω)2 as one can see from Eq. (2.18) and Fig. (2.1).

The field intensity of the transmitted nonlinear signal in the degenerate FWM process at the

distance z into the sample is given by

|Ew|2 =
256π2|χ(3)|2|Ei|6

|ns|2|ns + 1|6

∣∣∣∣ 1

1 + ns
− ik0z

∣∣∣∣2 e−2k0Im[ns]z. (2.27)

The corresponding power after propagating a distance equal to the absorption length Lab =

1/Im[ks] into the sample is plotted in Fig.(2.6) as a function of frequency for different Fermi

energies. Here we again assumed that the pump beam was focused into the area of (2π/k0)2.

EF = 30 meV
EF = 50 meV
EF = 100 meV
EF = 150 meV
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Figure 2.6: The nonlinear signal power after propagating a distance equal to one absorption length
Lab = 1/Im[ks] into the sample, as a function of frequency and for several values of the Fermi
energy. Reprinted figure with permission of [44]
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The characteristic feature of each spectrum is a sharp peak just above plasma resonance, when

the refractive index ns(ω) is still close to its minimum value, followed by a gradual increase. This

increase is entirely due to the absorption length increasing with frequency, as shown in Fig.(2.7).

Note however that the plots in Figs.(2.6) and 2.7 cannot be extended beyond ω = 2EF where the

interband transitions become important.

EF = 30 meV
EF = 50 meV
EF = 100 meV
EF = 150 meV
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Figure 2.7: Absorption length Lab = 1/Im[ks] as a function of frequency at different Fermi ener-
gies for εb = 10, h̄γ = 5 meV, vF = 108 cm/s, gs = 2, gw = 4. Reprinted figure with permission
of [44]

Therefore, for a sample with a given electron density one can get similar levels of the transmit-

ted nonlinear signal power when using a very thin film at frequencies near the plasma resonance

enhancement and when using thicker films at higher frequencies near the interband transitions cut-

off. This is illustrated in Fig.(2.8) which shows the nonlinear signal power as a function of distance

into the sample at two different frequencies and the same Fermi level.

Various strategies can be employed to extract the transmit- ted nonlinear signal from the sample

on the bottom side of the WSM film: an index-matching substrate, tailoring the layer thicknesses

to form a Fabry-Perot cavity or a coupled cavity, etc. We won’t go into these technical details here.
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Moreover, since the magnitudes of the signal power in transmission and reflection geometries

are similar (compare Figs. 2.4 and 2.8), in many cases it is more convenient to use the reflected

(backward-propagating) FWM signal |Ea|2 which is formed in the subwavelength layer of the order

of skin depth at the surface. Then the details of the substrate and actual sample thickness don’t

matter, as long as this thickness is much larger than the skin depth. Since the electric field decays

exponentially into the sample over the scale of the skin depth, the structure of the sample at several

or more skin depths below the surface can’t affect the signal.

EF = 30 meV, ω = 20 meV
EF = 30 meV, , ω = 50 meV
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Figure 2.8: The nonlinear signal power as a function of distance z into the sample at two different
frequencies and the same Fermi energy. Reprinted figure with permission of [44]
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3. CONCLUSION

We studied the nonlinear optical response of Weyl semimetals within the kinetic equation ap-

proach which is valid at low enough frequencies in the vicinity of Weyl nodes and below the onset

of interband transitions. We calculated the intensity of the nonlinear four-wave mixing signal in

both transmission and reflection geometry. The doped bulk WSM exhibits extremely high third

order nonlinearity combined with very high absorption loss. This led us to rethink the optimal

strategies for nonlinear signal generation. The nonlinear signal intensity is maximized in the vicin-

ity of bulk plasma resonance, which allows one to use ultrathin WSM films of the order of skin

depth. The nonlinear generation efficiency turns out to be quite high for a thin film of a highly

dissipative material: of the order of several mW per W3, in both transmission and reflection ge-

ometries. This could pave the way to interesting optoelectronic applications.
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APPENDIX A

THIRD-ORDER NONLINEAR OPTICAL CONDUCTIVITIES

The kinetic equation with the simplest relaxation term has the form:

∂f

∂t
+ vF (n · ∇)f − [eE +

vF
c

(n×B)] · ∂f
∂p

= γ[F (p)− f ], (A.1)

where E and B are external electric and magnetic fields, respectively, e is the electron charge, γ is

the electron relaxation rate, F (p) is an unperturbed (zeroth-order) distribution, which is chosen as

the equilibrium Fermi-Dirac distribution, and f is the non-equilibrium distribution function. We

consider the following form of the incident optical field:

Ẽ(x, t) =
∑
n

En(x, ωn)e−iωnt =
∑
n

Ane
iknx−iωnt, (A.2)

and write the non-equilibrium distribution function f as

f =
∑
m

ξme
iqmx−iωmt. (A.3)

where we have set ξ0 = F (p), E0 = 0, ω0 = 0. Because both the Ẽ(x, t) and the f are real, i.e.

Ẽ(z, t) = Ẽ(z, t)∗and f = f ∗, we have E−n = E∗n, ξ−n = ξ∗n, ω−n = −ωn. Exploiting Eq.(A2)

and Eq.(A3), Eq.(A1) becomes

(
∂

∂t
+ vF cosφ sin θ

∂

∂x
+ γ)f

= γF (p) + e[Ex
∂f

∂px
+ Ey

∂f

∂py
+ Ez

∂f

∂pz
]. (A.4)

Transforming the Cartesian coordinate system to the spherical coordinate system, Eq.(A4) can
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be rewritten as

(
∂

∂t
+ vF cosφ sin θ

∂

∂x
+ γ)f

= γF (p) + e[(Ex cosφ sin θ + Ey sinφ sin θ + Ez cos θ)
∂

∂p

+
1

p sin θ
(Ey cosφ− Ex sinφ)

∂

∂φ
+

1

p
(Ex cosφ cos θ + Ey sinφ cos θ − Ez sin θ)

∂

∂θ
]f. (A.5)

Substituting Eq.(A2) and Eq.(A3) and setting qm = 0, we obtain

(−iωn + γ)ξn

= e[(Em,x cosφ sin θ + Em,y sinφ sin θ + Em,z cos θ)
∂

∂p

+
1

p sin θ
(Em,y cosφ− Em,x sinφ)

∂

∂φ
+

1

p
(Em,x cosφ cos θ

+Em,y sinφ cos θ − Em,z sin θ)
∂

∂θ
]ξk, (A.6)

where ωn = ωm + ωk. Now we define the operator Gn,m(p, φ, θ) as

Gn,m(p, φ, θ) ≡ gn,m1 (φ, θ)
∂

∂p
+ gn,m2 (φ, θ)

∂

p∂φ

+gn,m3 (φ, θ)
∂

p∂θ
, (A.7)

where

gn,m1 (φ, θ) ≡ e
Em,x cosφ sin θ + Em,y sinφ sin θ + Em,z cos θ

−iωn + γ
, (A.8)

gn,m2 (φ, θ) ≡ e
Em,y cosφ− Em,x sinφ

sin θ(−iωn + γ)
(A.9)

gn,m3 (φ, θ) ≡ (Em,x cosφ cos θ + Em,y sinφ cos θ − Em,z sin θ)

× e

(−iωn + γ)
. (A.10)
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Thus the Eq.(A6) can be written as

ξn =
∑
m,k

Gn,mξk. (A.11)

Solving in the linear approximation of the distribution function ξ(1)
n , we get

ξ(1)
n = Gn,nξ0 = g

(n,n)
1

∂F

∂p
, (A.12)

for all possible ωm and ωk satisfying the relation ωn = ωm + ωk. For ωn = ±ω1, ω2, ω3, we have

ωm = ±ω1, ω2, ω3 and ωk = 0. Solving for the second-order approximation of the distribution

function ξ(2)
l with the second order frequency ωl = ωm + ωk, we get

ξ
(2)
l =

∑
m,k

Gl,mξ
(1)
k =

∑
m,k

Gl,mGk,kξ0, (A.13)

for all possible ωm and ωk satisfying the relation ωl = ωm+ωk. For ωl, we have ωm = ±ω1, ω2, ω3

and ωk = ±ω1, ω2, ω3. Solving for the third-order approximation of the distribution function ξ(3)
i

with the frequency ωi = ωj + ωl = ωj + ωm + ωk, we get

ξ
(3)
i =

∑
j,m,k

Gi,jξ
(2)
l =

∑
j,m,k

Gi,jGl,mGk,kξ0, (A.14)

for all possible ωj, ωm and ωk satisfying the relation ωi = ωj + ωm + ωk.

Now we study the expression G(n3,m3)G(n2,m2)g
(n1,m1)
1

∂F
∂p

. Firstly, by acting G(n2,m2) = G2 on

the g(n1,m1)
1

∂F
∂p

= g1
1
∂F
∂p
, we have

G2g1
1

∂F

∂p
= g2

1g
1
1∂

2
p2F + g2

2∂φg
1
1

∂pF

p
+ g2

3∂θg
1
1

∂pF

p
. (A.15)
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Secondly, acting G(n3,m3) = G3 on Eq.(A15), we have

G3G2g1
1

∂F

∂p
= (g3

1∂p + g3
2

∂φ
p

+ g3
3

∂θ
p

)

×(g2
1g

1
1∂

2
p2F + sin2 θg2

2g
1
2

∂pF

p

+g2
3g

1
3

∂pF

p
). (A.16)

Using the Eq.(A16) to evaluate the integral I3,2,1
i , we obtain

I3,2,1
i = −evF

∫ ∞
0

∫ 2π

0

∫ π

0

G3G2g1
1

∂F

∂p
×

cosφ sin θ

sinφ sin θ

cos θ

 p2 sin θdθdφdp

=
8πe4vFF (0)

15(γ − iω1)(γ − i(ω1 + ω2))

× ∆ijklE
j
1E

k
2E

l
3

(γ − i(ω1 + ω2 + ω3))
(A.17)

where ∆ijkl = δijδkl + δikδjl + δilδjk. Here δij is the Kronecker delta defined as δij = 1 for i = j,

δij = 0 for i 6= j. Here we have used the relations
∫∞

0
∂F (p)
p2∂p

p2dp = −
∫∞

0
∂2F (p)
p∂p2

p2dp = −F (0)

and
∫∞

0
∂3F (p)
∂p3

p2dp = −
∫∞

0

∂( ∂F (p)
p∂p )
∂p

p2dp = −2F (0).

Therefore, the nonlinear current j(ωn=ω1+ω2+ω3) is then given by


jωn
x

jωn
y

jωn
z

 = −evF
∫ ∞

0

∫ 2π

0

∫ π

0

ξ(3)
n


cosφ sin θ

sinφ sin θ

cos θ

 p2dpdΩ

=
1

3!

(
I3,2,1
i + Permutation(ω1, ω2, ω3)

)
, (A.18)

where dΩ = sin θdθdϕ is the solid angle and ξ
(3)
n is the third-order approximation of non-

equilibrium distribution function associated with the third-order frequency ωn = ω1 + ω2 + ω3.
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For a strongly Fermi-degenerate distribution we can replace the equilibrium distribution func-

tion with its zero-temperature limit, F (p) = F (0)Θ (pF − p) , where F (0) = gsgw
(2πh̄)3

. Here gs and

gw are the spin and Weyl node degeneracy, respectively. In this case, Eq.(A18) becomes


jωn
x

jωn
y

jωn
z

 = σijklE
j
1E

k
2E

l
3, (A.19)

where

σijkl

=
1

3!
(

8πe4vFgsgw∆ijkl

15(2πh̄)3(γ − iω1)
×

1

[γ − i(ω1 + ω2)] [γ − i(ω1 + ω2 + ω3)]

+Permutation(ω1, ω2, ω3)), (A.20)

is the third-order nonlinear optical conductivity at zero temperature.
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