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ABSTRACT

The prospect of incorporating strong light-matter interaction into the greater cause of optical

information processing has become one of the ultimate goals of quantum optics. Currently, one of

the most useful resources for the design of quantum photonic devices is waveguide-integrated op-

tics [1]. The most lucrative feature of waveguide-based interfaces is the remarkable controllability

over photonic transport properties, a feature that can be conveniently harnessed for the design of

purely optical devices. However, this is not the sole aspect that makes these systems so special.

Quantum emitters interfacing with a waveguide offers the perfect platform to study the effects

of vacuum-mediated long-range couplings between distant emitters. The tunability of the nature

and strength of waveguide-induced couplings is providing useful insights into the wider scope and

applicability of these models. This thesis attempts to bring these two different approaches to the

theoretical investigation of waveguide-integrated architectures under a common theme, highlight-

ing some of the intriguing outcomes of these treatments deduced in the recent past.

The first half of the thesis is dedicated to the theoretical study of single-photon transport in a

waveguide interfacing with a periodic string of atomic-scale dipoles, like qubits or two-level atoms.

Radiation fields in a one-dimensional structured environment can strongly modify the spontaneous

emission from these dipoles. The ensemble of dipoles can exhibit a variety of interference phe-

nomena, which lends greater control to these setups on photon transport. For identical atoms, these

interference effects are systematically studied and connections to the lattice periodicity are estab-

lished. Other notable features include flat-banded reflection profiles owing to the periodicity and

cooperative Dicke-type superradiance. Certain non-Markovian signatures are also studied numeri-

cally, as they would be relevant in very-strong-coupling regimes. Going beyond the assumption of

identical atoms, we next solve photon transport across an array of non-identical dipoles differing in

their transition frequencies. By tailoring our analysis in a setting where the periodicity is an integer

or half-integer multiple of the resonant wavelength, we work out the exact condition to generate
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transparency by modulating the individual transition frequencies. We demonstrate the specific

applicability of this scheme to an even-sized atomic chain. Since there is no control field used,

this mechanism is clearly distinct from the standard paradigm of EIT. We also establish analogies

with the linear excitation regime of cavity QED, where an identical manipulation of the atomic

frequencies can render the system transparent to a weak input field. However, photon transport

in a waveguide has one major distinction from cavity-QED setups. Waveguide-integrated devices

display diode-like characteristics owing to the non-reciprocity of photon transport. This additional

perk in a waveguide setup is a direct consequence of phase couplings between quantum emitters

mediated by the waveguide, which widens the space of possibilities, offering clear advantages over

cavities in various applications. All our theoretical results are deduced in the single-photon regime

of waveguide QED, which requires a dedicated quantum mechanical treatment. With the advent

of high-quality single-photon quantum sources, whether in the optical or the microwave regime,

as well as the possibility of producing enhanced light-matter couplings in superconducting cir-

cuitry and quantum-dot-based structures, the laboratory verification of our analytical observations,

should be within reach.

The second half of this thesis addresses some acute ramifications of a reservoir-mediated cou-

pling between physical systems. Even in the absence of a driving field, the vacuum modes in

a waveguide can introduce coupling and coherence between any two otherwise non-interacting

systems exchanging energy with the waveguide. The coupling is commonly referred to as dis-

sipative coupling as it originates from leakage into a common bath and requires an open-system

description. The mean-field dynamics of dissipatively coupled systems can be modeled in terms

of an effective non-Hermitian Hamiltonian, which can be tailored to exhibit anti-Parity-Time (PT)

symmetry. This symmetry characterizes a Hamiltonian that flips signs upon the joint action of

parity and time-reversal operators and has attracted enormous attention in the last decade. By tap-

ping into the remarkable potential of anti-PT symmetry, we propose two intriguing applications.

First, we demonstrate how this can serve as a sensor for weak anharmonicities. Nonlinearities

are of fundamental interest in optics, leading to a myriad of important physical effects, such as
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multistability/switching, generation of squeezed and entangled states, electromagnetically induced

transparency, and so on. A fine-grained estimation of nonlinearities is, therefore, a prerequisite to

the primed control of these effects. We present explicit results in the context of cavity magnonics,

illustrating the efficient detection of magnonic anharmonicity (∼ 0.01 − 10 nHz) even at a very

weak drive power of 1 µW. Since the theoretical analysis guiding our results is absolutely general,

the sensing protocol can be applied to a broad class of systems. That said, the prime reason for

choosing a magnon-based model is the continued escalation of interest in hybrid magnon-photon

interfaces. New interest has also shown up in utilizing these interfaces for the reversible conversion

between microwave and optical photons. This pursuit is still in its infancy and achieving appre-

ciable conversion efficiency is still a far cry. We took a significant step in this direction when we

proposed the idea of a dissipatively coupled, anti-PT symmetric cavity-magnon interface support-

ing large enhancements in the theoretical efficiency. The enhancement is made possible on account

of a dark mode in the system. While the conversion in our model is reversible, the efficiencies in

the microwave-to-optical and the optical-to-microwave conversions are found to be unequal. This

asymmetry is unique to dissipatively coupled systems and emerges both from the indirect nature

of the coupling as also the spatial separation between the cavity and magnetic sample. In light of

the recent experimental realizations of dissipative magnon-photon couplings, both the applications

proposed above are likely to secure practical implementation in the foreseeable future.
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1. INTRODUCTION

Photon-photon scattering is extremely weak in free space, as the individual photons do not

interact with each other. This makes photons exemplary, low-noise carriers of information, both

classical and quantum, preserving coherence over long distances. The longevity of their coher-

ence sets them apart from material systems that suffer from appreciable decoherence on account

of interactions with their environment. Equally central to the task of efficient information process-

ing is that of information storage, which requires the controlled, reversible mapping of photonic

quantum states onto long-lived states of matter, otherwise known as dark states. It is, therefore,

imperative to devise robust atom-photon interfaces which endow long-time memory capabilities in

optical information networks. The advent of modern nanotechnology has enabled the realization of

strong coupling between atoms and photons, which is the cornerstone of quantum optics, lending

a wide arsenal of resources for chip-scale all-optical devices and for quantum optical metrology.

There has been remarkable progress in cavity quantum electrodynamics (QED) on the expedient

engineering of strong and ultrastrong atom-photon couplings as well as photon-photon correla-

tions, which has found very useful applications in superconducting circuitry, for instance. In a

high-finesse electromagnetic resonator, strong optical confinement along the transverse dimension

allows a single photon to effectively interact multiple times with atoms placed inside the cavity.

This can generate strongly enhanced atom-photon coupling in cavities [2, 3]. This explains why

quantum optics was, for a long time, concerned primarily with either atoms in free space or atoms

interacting with single electromagnetic modes in cavities.

More recently, as a complementary paradigm to cavity QED, waveguide QED has started gain-

ing significant traction in the study and regulation of light-matter interaction, with prospective ap-

plications in optical information processing. As opposed to cavity-based architectures, the atoms

interact with a continuum of propagating photonic modes, but the confinement to 1D instead of

3D is enough to still achieve a strong coupling. A good quantifier for the coupling strength in

these systems is the extinction of a propagating photon by a single emitter coupled to the waveg-
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uide. As light scatters off an emitter, it gets attenuated in its original direction of propagation. The

attenuation is perfectly encapsulated in the form of the extinction coefficient which is defined as

(1 − T ), where T is the transmission coefficient. Superconducting flux qubits integrated with 1D

microwave transmission lines have already achieved more than 99% extinction (see, for instance

[4]). Among solid-state candidates, equally promising as efficient quantum emitters are epitaxy-

grown QDs. Semiconductor QDs coupled to line defects in photonic crystal waveguides provide

another platform to effect really strong atom-photon leading to high extinction coefficients [5].

While the former operates in the microwave regime, the latter employs optical photons. Both these

systems describe realizations of a waveguide-QED model. The near-unity extinction coefficients

in these configurations is to be contrasted with the very weak extinction by a single emitter experi-

mentally realized in 3D open space, with the coefficient typically lying between 7− 12% (see Ref.

[6] as an example). The major impediment to achieving high extinction is the inadequate overlap

between the spatial modes of incident and scattered waves. The multitude of emission directions

for an atom in 3D space substantially dampens the interference effect. In waveguide structures,

emission can be tightly confined into the guided channel, allowing only two directions of scatter-

ing. However, compared to the prodigious success rate of artificial atoms like superconducting

qubits and QDs, other waveguide-integrated quantum emitters like cold atoms in an optical lattice,

color centers in diamond and solids like SiC, rare-earth defects in glasses and crystals still have a

lot of catching up to do.

Experimental interest in waveguide-QED picked up speed when nanofiber-controlled fluores-

cence from an evanescently coupled Cesium atom was first demonstrated by Kien et al [7]. Ever

since then, there has been a concerted endeavor by the photonics community to design cavity-

free one-dimensional (1D) systems with no optical confinement along the propagation direction.

Ref. [8] provides a comprehensive review on this subject. Photon scattering from a 1D contin-

uum coupled to atomic scatterers has been widely investigated from various perspectives [9–38].

The radiative behavior of multi-emitter configurations is governed by the relative location of the

emitters, allowing more efficient control on photon transport and possible adoption as a prototyp-
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ical element for quantum information. As quantum emitters, artifical atoms like superconducting

qubits and quantum dots have largely led the way in the engineering of strongly integrated atom-

waveguide architectures, due to their near-perfect coherence properties. An ensemble of emitters

interfacing with a waveguide exhibits a myriad of exotic phenomena such as single-photon super-

and sub-radiance [39], nonreciprocal photon transport [40], and asymmetrical Fano lineshapes

[39]. Such models serve as the simplest possible theoretical platform to analyse, predict, and

leverage the cooperative effects of multiple quantum emitters arranged in a lattice configuration.

When the lattice periodicity equals an integer multiple of the wavelength, the cooperative emission

from the atomic array retains its Lorentzian profile with a linearly scaling decay rate, as has been

demonstrated in [39, 41]. By stimulating interaction between photons, a multi-spin cluster can

serve as an optical switch or nearly any possible quantum gate. Possibility of transparency due

to single-photon transport across differentially detuned two-level emitters has been theoretically

demonstrated, without applying any control field [40]. In view of the engrossing physics of collec-

tive effects in waveguide-integrated atomic systems, part of my PhD research was dedicated to the

theoretical understanding of these effects in the single-photon regime of waveguide QED. Recent

experiments have produced highly pure single-photon sources both in the microwave [42] and in

the optical [43] regimes, which can be used to probe our model. Chapters 2-4 in this thesis present

detailed analyses of this model, identifying, in parallel, some experimentally relevant platforms for

its realization.

It is also interesting to shift perspective by viewing the photons in a waveguide continuum as

a vacuum reservoir in the absence of any classical fields. When quantum emitters are coupled to

the same waveguide, an effective interaction between any two emitters is entailed, which produces

long-range inter-emitter entanglement. The interaction strength depends directly on the efficiency

of emission into the guided modes. Such an interaction is known as dissipative coupling, as the

coupling is established via photon leakage. It does not support a Hamiltonian description and sur-

faces only from a master-equation description of the emitters obtained by eliminating the bath’s

degrees of freedom. More generally, the interaction mediated by an optical fiber wields flexible
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control on both coherent (Hermitian-like) and dissipative couplings, leading to the dual possi-

bilities of level repulsion and level attraction. By tuning the spatial separation between any two

emitters, the coherent-part of the inter-emitter coupling can be suppressed and the coupling morphs

into a purely dissipative one. Dissipatively coupled systems interfacing purely via a waveguide of-

fer the perfect platform to engineer anti-PT symmetry - a characteristic hallmark of non-Hermitian

effective Hamiltonians. Anti-PT symmetry is the characteristic of a Hamiltonian which changes

sign under the action of time-reversal followed by a parity flip. A close investigation of anti-PT

symmetry reveals some standout characteristics in the normal modes of the system, which props

it up not only for the study of topological phenomena associated with phase transition but also for

sensing utilties [44–49]. It was recently shown by us that anti-PT symmetric couplings can also

be used to enhance nonlinear interconversion between microwave and optical fields [50]. If one

takes stock of current information technologies, superconducting qubits have emerged as one of

the top contenders for quantum information processing and have already found chip-scale imple-

mentations as prototypical quantum processors operating at low temperatures in the microwave

regime [51, 52]. On the other hand, quantum communication technologies prefer to use optical

fibers for transmitting quantum information over long distances, since such fibers can be operated

even at room temperatures with low signal losses [53, 54]. Given this state of affairs, a reliable

interface for the conversion of microwave to optical frequency and vice versa is paramount to the

sustainability of robust, large-scale quantum communication networks.

All theoretical schematics require proper context - an experimental test bed to verify the pre-

dicted behavior. In light of the immense topicality of cavity magnonics, we contextualized our

theoretical predictions in a hybrid cavity-magnetic setup, by considering a microcavity coupled

dissipatively to magnetic excitations in a YIG sphere, a macroscopic ferrimagnetic sample. The

quasiparticle representing low-energy spin waves in a magnetic sample is called a magnon, which

acts as a Bosonic mode in the limit of large spin. Endowed with a very high spin density, YIG is

a suitable candidate for studying the associated signatures of magnon-photon couplings and also

to implement anti-PT symmetry [48]. Our initial pursuits in the study of anti-PT symmetry have
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shown plenty of promise and we believe that this might be the tip of the iceberg. A deeper scrutiny

of anti-PT symmetry should guide us closer to unraveling its full potential. Chapters 5-7 in this

thesis have been dedicated to the topic of anti-PT symmetry and its specific applications to cavity-

magnonic systems. Given the plethora of ongoing experimental activities in cavity magnonics, we

believe that our theoretical predictions should allow laboratory implementation.

This thesis is written based on the following published and unpublished research articles, orga-

nized in a chronological order,

1. D. Mukhopadhyay and G. S. Agarwal, Multiple Fano interferences due to waveguide-mediated

phase coupling between atoms, Phys. Rev. A 100, 013812 (2019).

2. D. Mukhopadhyay and G. S. Agarwal, Transparency in a chain of disparate quantum emit-

ters strongly coupled to a waveguide, Phys. Rev. A 101, 063814 (2020).

3. J.M. P. Nair, D. Mukhopadhyay, and G. S. Agarwal, Enhanced Sensing of Weak Anharmonic-

ities through Coherences in Dissipatively Coupled Anti-PT Symmetric Systems, Phys. Rev.

Lett. 126, 180401 (2021).

4. G. S. Agarwal and D. Mukhopadhyay, Coupling Quantum Antennas to Fibers and Waveg-

uides, arXiv:2111.03200.

5. D. Mukhopadhyay, A. Akimov, A. Zheltikov, and G. S. Agarwal, Quantum Optics in In-

tegrated Waveguides and Photonic Crystal Fibres, edited by G. Moody and V. Sorger in

“Roadmap on Integrated Quantum Photonics”, J. Phys:Photonics 4 012501 (2022).

6. D. Mukhopadhyay, J. M. P. Nair, and G. S. Agarwal, Anti-PT symmetry enhanced intercon-

version between microwave and optical fields, Phys. Rev. B 105, 064405 (2022).

Section 5.4 in Chapter 5 has partially overlapping content with another recent publication (Phys.

Rev. B. 105, 214418 (2022)). Other collaborative research articles, including Phys. Rev. B. 103,

224401 (2021) and Phys. Rev. Res. 4, 013131 (2022) have been excluded from this thesis, and

find mention only in related contexts.
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The thesis is divided into seven main chapters apart from a short chapter on concluding re-

marks. Chapter 2 introduces the theoretical framework for studying waveguide QED, particularly

in the context of single-photon excitation regimes. In chapter 3, we extensively discuss how Fano

interference due to photon transport across a chain of identical atoms leads to multiple Fano min-

ima in the reflection profile. In chapter 4, we demonstrate the emergence of transparency in a

chain of non-identical atoms embedded on a waveguide, without applying any external control

field. Chapter 5 reviews the general characteristics of anti-PT symmetry as well as its optical re-

alizations, with a special focus on cavity magnonics. The next two chapters bring to light two

important applications of this symmetry. In particular, chapter 6 delineates a scheme to detect

very weak nonlinearities, while chapter 7 highlights the role of anti-PT symmetry in enhancing the

interconversion between microwave and optical fields.

6



2. WAVEGUIDE QED: INSIGHTS FROM SCATTERING THEORY

There exist various theoretical prescriptions customized to the study of photonic transport

across a periodic chain of emitters coupled to a waveguide, particularly when the photonic dis-

persion relation is assumed to be linear. In our research, we have adopted two of the foremost

systematic approaches to this end: (i) real-space formalism for analyzing scattering eigenstates

in few-photon manifolds, and (ii) master-equation formulation for analyzing both semiclassical

and quantum transport of light. The first half of my thesis is dedicated to the first approach, and

my analysis would be contextualized within the single-excitation manifold. The second approach

acquires more relevance from the point of view of an effective waveguide-mediated coupling be-

tween distant emitters, and will be shelved until Chapter 4. Theoretical studies in waveguide QED

were inspired primarily by the wealth of experimental progress in waveguide-integrated nanopho-

tonics, particularly with superconducting circuits. One of the earliest theoretical endeavors in this

direction was by Shen and Fan in 2005 [9] who had advanced the real-space formalism for the

first time. This was subsequently generalized into two-photon and multiphoton excitation regimes.

The few-photon regime of waveguide QED is indubitably quantum in nature and therefore, merits

customized exploration in its own right. As was shown by the pioneering work of [9], the transmis-

sion properties of a photon can be conveniently solved in the real-space representation, yielding

tailormade solutions to the traveling fields in different spatial regimes. Of particular interest is a

finite-sized atomic array periodically spaced out in a lattice configuration and coupled strongly to

the 1D structure. The scenario becomes especially intriguing when the impact of spatial separa-

tion L is considered, as the collective emission properties can be drastically different for different

ratios of L/λ, where λ is the resonant waveguide mode. However, before the collective radiance

due to atomic ensembles can be analyzed and their repercussions properly assessed, it is important

to develop the theoretical foundation of the real-space formalism. This is the ultimate objective of

the current chapter.

We organize the content of this chapter as follows. In Sec. 2.1, we derive the real-space Hamil-
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tonian of a single 2LA coupled to a 1D waveguide, with the atom-photon interaction Hamiltonian

subject to the RWA. Sec. 2.2 acts as a link between the real-space formulation and interpretations

of the photonic transport properties, with perspectives borrowed from the scattering theory. In Sec.

2.3, we analyze the problem for a single atom, and formally extend this analysis to the case of

multiple atoms in 2.4. A short summary of the basic ideas is presented in Sec. 2.5.

2.1 Real-space formulation of the problem

A simple model of a 2LA coupled to the evanescent fields in a waveguide is depicted in Fig.

2.1(a). Several prominent solid-state systems feature this configuration, such as a superconducting

quantum bit coupled to a coplanar transmission line, an atom coupled to a toroidal microresonator,

and a QD interfacing with surface plasmons. Fig. 2.1(b) exhibits a variant of the previous model,

where the 2LA is directly coupled to photons in the waveguide. This model is relevant to atomic

cavity-QED experiments and also experiments involving line-defects in photonic bandgap crystals.

It has been demonstrated that there exists a one-to-one correspondence between the transmission

and reflection of photons in the side-coupled configuration and those in the directly coupled con-

figuration [22]. Both these architectures bear connections with a number of problems important

in condensed-matter physics, as for instance, the spin-boson problem which has found a revival

of interest particularly in the context of various implementations of quantum bits [55]. However,

in traditional condensed-matter perspectives, the photons in the 1D continuum play the role of the

bosonic bath and are therefore traced out from the full system. This is different from the spirit in

which we go about analyzing the coupled system in the current and the two subsequent chapters

of this thesis. In condensed-matter context, the focal interest is on the dynamics of the spin or

impurity (akin to our 2LA). We are mostly concerned with the dynamics of photons in the 1D

continuum. In particular, our analysis will be premised on systems described in Fig. 2.1(a).

Model and Hamiltonian: A general Hamiltonian of a 2LA side-coupled to a 1D waveguide is

8
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Figure 2.1: Single atom: (a) Side-coupled; (b) Directly coupled configuration. The location of the
atom, assumed a point dipole, can be taken to be the origin, i.e., x = 0.

given by H = H0 +Hint, where

H0 =

∫
dk ℏω(k)a†(k)a(k) + ℏ(ωe − iΓ0) |e⟩ ⟨e| ,

Hint =

∫
dk ℏJk(a

†
k |g⟩ ⟨e|+ ak |e⟩ ⟨g|), (2.1)

where H0 and Hint signify the free and the interaction Hamiltonians respectively. The first term

in H0 represents the propagating photon fields of frequency ωk and wavenumber k. The 2LA is

described by the second term in H0, with transition frequency ωe between the ground and the ex-

cited states |g⟩ and |e⟩ respectively. The ground-state energy has been calibrated at zero on the

energy scale, and the operators |g⟩ ⟨e| and |e⟩ ⟨g| denote the lowering and raising operators on the

2LA. The imaginary term iΓ0 accounts for spontaneous emission into photon modes outside of

the 1D continuum, which dominates in atomic systems. In superconducting systems, one also has

the possibility of dephasing which plays a similar role. The interaction of the propagating photons

with the 2LA is governed by Hint, which is written in the rotating-wave approximation. This is

valid for typical light-matter coupling strengths achieved in experiments, although, for studying

the purely quantum regime of a single or few photons, this approximation naturally holds water.

In the above expressions, ak (a†k) is the photon annihilation (creation) operator, and the coupling

strength of a photon of wave vector k with the emitter is Jk. This coupling strength is given by

Jk =

(
ℏω(k)
2ε0V

)1/2

p · êk, where p = peg |e⟩ ⟨g|+ pge |g⟩ ⟨e| equals the dipole moment vector of

the atom, êk is the polarization unit vector of the photon mode, and ε0 is the free-space permittivity
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[56]. The expression is written in SI units, and that will be the chosen convention throughout this

thesis. The atom is assumed to be of subwavelength dimensions and can therefore, be treated as

a localized point dipole at x = 0. An ideal emitter-waveguide model would be one which totally

excludes dissipation into free space. From a practical point of view, however, we only require that

the decoherence effects are weak compared to the efficiency of emission into the guided modes.

Dispersion relation: The energy-momentum dispersion (ω(k) vs k) of photons in various 1D

waveguides is generally nonlinear and depends on the geometrical and material properties of the

waveguide. It is, however, convenient and reasonable to assume linear dispersion to describe the

theoretical approach discussed here. We can linearize the dispersion near some arbitrary frequency

ω0 with the corresponding wave vector k0, as shown in Fig. 2.2 [22]. The approximate linearized

dispersion of ω(k) around k0 (right-moving photons) and k0 (left-moving photons) would then

read

ω(k ≃ −k0) ≃ ω0 − vg(k + k0) (left-moving branch),

ω(k ≃ k0) ≃ ω0 + vg(k − k0) (right-moving branch), (2.2)

where vg =

∣∣∣∣∂ω(k)∂k

∣∣∣∣ is the group velocity of these photons, assumed positive. We now change

variables as k + k0 = kL and k − k0 = kR, where the subscripts L and R would, henceforth, be

referred to as the left- and right-propagating branches. Since we are interested in a narrow band-

width of frequencies in the neighborhood of ω0, we can extend the range of wavenumbers kL and

kR to (−∞,∞) and drop the subscripts L and R inside the integral. Similarly, we can decompose

the field modes into two sets of operators, aL(k) and aR(k), corresponding to these branches. This

divides the photonic energy contribution between the left- and right-traveling modes, and yields,

10



in the quasicontinuum limit,

∫ ∞

−∞
dk ℏω(k)a(k)†a(k) ≃

∫ ∞

−∞
dk ℏ(ω0 − vgk)aL(k)

†aL(k)︸ ︷︷ ︸
left-going modes

+

∫ ∞

−∞
dk ℏ(ω0 + vgk)aR(k)

†aR(k)︸ ︷︷ ︸
right-going modes

.

(2.3)

In deriving Eq. (2.3), we have also assumed that the dispersion relations are non-degenerate, so

that there is no undercounting of states. We also note in this context that the linearization proce-

dure is analogous to a commonly applied procedure in electronic transport problems, where k0 is

chosen to be the Fermi wave vector.

 

𝜔(𝑘) 

𝜔0 

−𝑘0 +𝑘0 

𝑘 

Figure 2.2: Linearization of the dispersion Relation near ±k0.

Transformation into a rotated frame: We can now switch to a frame rotating at the frequency

ω0, about which we had linearized our dispersion. Such a rotation is underpinned by the unitary

operator Ur = eiω0N̂t, where N̂ =
∫
dk [aL(k)

†aL(k)+aR(k)
†aR(k)]+|e⟩ ⟨e| is the total excitation-

number operator. Under this rotation, the Hamiltonian transitions as H → UrHU †
r − iℏ

∂Ur

∂t
U †
r , and

we obtain a new, effective Hamiltonian H̃ in the rotating frame. Since [N̂ ,H] = 0, the transformed

Hamiltonian is given simply by H̃ = H− ℏω0N̂ , which describes a rigid shift in the energy scale
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of the system. Thus, the constituents become

H̃0 =

∫
dk ℏvgk

(
a†R(k)aR(k)− aL(k)

†aL(k)

)
+ ℏ(ω̃e − iΓ0) |e⟩ ⟨e| ,

H̃int =

∫
dk ℏJk

[(
a†R(k) + a†L(k)

)
|g⟩ ⟨e|+

(
aR(k) + aL(k)

)
|e⟩ ⟨g|

]
, (2.4)

where ω̃e = ωe − ω0 is a shifted atomic frequency. Note that the interaction term remains con-

served under this transformation. For brevity, we will dispense with the tilde notations, with the

understanding that our analysis pertains to a rotated frame.

Introduction to real space: We now write down an effective representation of H in real space,

where the evolution of the incident photons is more conveniently described. To this end, we take

the photon operators in momentum space to be the Fourier transforms of real-space operators,

aL,R(k) =
1√
2π

∫ ∞

−∞
dx aL,R(x)e

−ikx,

a†L,R(k) =
1√
2π

∫ ∞

−∞
dx a†L,R(x)e

ikx, (2.5)

where aL(x) annihilates a left-moving photon and aR(x) annihilates a right-moving photon at the

position x along the waveguide. These new operators satisfy the Bosonic commutation relation in

real space, i.e. [aR(L)(x), a
†
R(L)(x

′)] = δ(x − x′) and [aR(L)(x), aR(L)(x
′)] = 0. Substituting Eq.

(2.5) into the Hamiltonian, we can find an effective real-space Hamiltonian for a 2LE coupled to

the 1D continuum. For instance, in the position space, the free-field Hamiltonian would be recast

into

H(field)
0 =

∫
dk ℏvgk

(
a†R(k)aR(k)− aL(k)

†aL(k)

)
= i

∫
dx ℏvg

(
a†L(x)

∂

∂x
aL(x)− a†R(x)

∂

∂x
aR(x)

)
(2.6)
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Likewise, on switching to Fourier space, the interaction term also changes into

Hint =

∫
dk ℏJk

[(
a†R(k) + a†L(k)

)
|g⟩ ⟨e|+

(
aR(k) + aL(k)

)
|e⟩ ⟨g|

]
=

∫
dx ℏJ (x)

[(
a†R(x) + a†L(x)

)
|g⟩ ⟨e|+

(
aR(x) + aL(x)

)
|e⟩ ⟨g|

]
(2.7)

in which we have introduced the Fourier transform of the coupling strength Jk thus:

Jk =
1√
2π

∫ ∞

−∞
dxJ (x)eikx (2.8)

In deriving Eq. (2.6), we have made use of the property δ(x− x′) =
1

2π

∫∞
−∞ dk eik(x−x′). Details

on the steps leading to (2.6) are provided in Appendix A.1. It is no coincidence that the free-field

Hamilonian in (2.6) involves partial spatial derivatives of the annihilation operators. This is, in

fact, connected with the interpretation of the momentum operator in real-space. Recall that or-

dinary quantum mechanics requires the momentum operator to be given by p̂ = −iℏ ∂
∂x

in 1D

position representation. Thus, the appearance of first-order partial derivatives is hardly a mystery.

Hamiltonian under the slowly-varying-envelope approximation: The interaction Hamiltonian

can be further simplified under the slowly-varying-envelope approximation, whereby the coupling

parameter Jk can be taken to be independent of k, i.e., Jk ≈
J√
2π

(the factor of
√
2π is merely in-

troduced for convenience). This makes sense considering that the factor
(

ℏωk

2ε0V

)1/2

varies slowly

over the narrow bandwidth of waveguide frequencies that contribute maximally to the coupling.

With this assumption, the Fourier transform of Jk reduces to a delta-function in x, centered on the

origin, i.e.,

J (x) = J δ(x) (2.9)
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Consequently, we get the simplified interaction term as

Hint = ℏJ
[(
a†R(0) + a†L(0)

)
|g⟩ ⟨e|+

(
aR(0) + aL(0)

)
|e⟩ ⟨g|

]
. (2.10)

In the real-space picture, it can at once be seen from Eq. (2.10), that the interaction only couples

up the field modes with the atom at the precise location of the atom, which is x = 0. Viewed in this

way, the atom acts as a localized scattering agent which would partly reflect and partly transmit

photons launched through the waveguide. This would be veritably manifested through our ana-

lytical treatment in Sec 2.3. But to start off, it is useful to further consolidate foundations of our

approach by reviewing some of the core perspectives from scattering theory, which would offer

intuitive insights into the problem.

2.2 Perspectives from scattering theory

Scattering theory is a methodical framework to study scattering of waves and particles from a

central or localized potential, and it finds extensive applications in different branches of physics.

In what follows, we shortly discuss this theoretical technique, contextualized within the paradigm

of waveguide QED. In scattering theory, it is customary to introduce a matrix S, also termed the

scattering matrix, which encapsulates all the scattering properties of the scattering source/agent.

This matrix connects the scattered output to the incident input via the unitary time-evolution op-

erator of the joint system consisting of the injected particle/wave and the scattering source. In

a waveguide QED framework, such a technique can be employed for characterizing the transport

properties of photons as they encounter a scattering medium, which could absorb and subsequently

emit photons into the guided modes of the quasi-continuum. It is well known in literature that the

S matrix for scattering of an single-photon state is defined by the matrix elements

Sp;k = ⟨p|S |k⟩ , (2.11)
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where |k⟩ and |p⟩ stand for the incoming and the outgoing photonic states, respectively [57]. Here,

the quantities k and p denote the incoming and the outgoing momenta (in units of ℏ) of the photon.

These incoming and outgoing states are considered to be free states in the interaction picture,

existing in the distant past and in the distant future respectively. The corresponding operator

S = lim
t→−∞
T→∞

UI(T, t) (2.12)

is given simply by the time-evolution operator UI(T, t) = eiH0t/ℏe−iHint(T−t)/ℏe−iH0t/ℏ calculated

in the interaction picture, wherein H0 represents the free-Hamiltonian part and Hint corresponds to

the interaction energy between the photons and the scattering medium. The scattering matrix can

also be redefined as

Sp;k =
〈
p−

∣∣k+〉 , (2.13)

where we have introduced the scattering eigenstates |k+⟩ and |p−⟩, which evolve unitarily in the

interaction picture from/into a perfectly free-photon state either in the distant past or into the distant

future:

∣∣k+〉 = lim
t→−∞

UI(0, t)︸ ︷︷ ︸
:=Ω+

|k⟩ = Ω+ |k⟩ ,

∣∣p−〉 = lim
T→∞

UI(0, T )︸ ︷︷ ︸
:=Ω−

|p⟩ = Ω− |p⟩ . (2.14)

Thus, to quote Ref. [8], the S matrix, which can also be expressed as S = Ω†
−Ω+, describes how

an incoming state of monochromatic, free photons evolves via a local interaction with atoms into

a superposition of outgoing monochromatic photons.

Scattering in 1D: In the context of waveguide-mediated photon transport, we present an ap-
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proach which treats the atom-photon dynamics in real space, which is particularly convenient for

discussing steady-state photon transport from one space-time point to another. We start with an

ansatz for the full scattering eigenstate |k+⟩ of the full Hamiltonian, subject to specified unscat-

tered state |k⟩ of the free Hamiltonian H0. Under the purview of the RWA, the total number of

photons must be conserved during the scattering process. Thus, when all other interaction channels

are suppressed relative to the scattering channel, energy conservation would be observed. To calcu-

late different amplitudes of the scattering eigenstate, we employ the time-independent Schrödinger

equation

H
∣∣k+〉 = Ek

∣∣k+〉 , (2.15)

where Ek = ℏω(k) is the energy of the incident photon*. This has to be supplemented by appro-

priate boundary conditions that determine the propagation direction of the incident photons. Quite

naturally, the photon can be administered along the right-moving and/or left-moving channels. The

nonequilibrium dynamics of the transport can be probed in experiments by measuring the trans-

mission and reflection of photons at the opposite ports of the waveguide. For a side-coupled 2LA,

the transmission coefficient can be calculated from the relative number of photons remaining in

the incident channel after the scattering event, while the reflection coefficient can be determined by

counting relative photons in the opposite channel. If the longitudinal dimension of a 1D waveguide

is supposed to be large, then the frequency spacing between the allowed modes is small enough

to merit a quasi-continuum description of these guided modes. In other words, an isolated waveg-

uide would act as a 1D reservoir of electromagnetic vacuum fields. Therefore, the total number of

photons, whether left-moving or right-moving, can be expressed in either momentum space or real

space as

∫
dk a†L,R(k)aL,R(k) =

∫ ∞

−∞
dx a†L,R(x)aL,R(x), (2.16)

*Since we have now transitioned into the rotating frame, the single-photon dispersion relation is to be assumed as
ω(k) = vgk.
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where the equality follows from Eq. (2.5) upon invoking the property of Dirac-Delta function. So

the operator a†L,R(x)aL,R(x) can be interpreted as the density of left-moving (L) or right-moving

(R) photons at the location x. When we take expectation value of this operator in the incident state

|k⟩, we obtain the input photon flux, whereas the output photon flux is evaluated by taking the

expectation value in the state |k+⟩. For example, the transmission and reflection coefficients for a

right-moving incident photon would be respectively given by

T =
⟨k+| a†R(x)aR(x) |k+⟩
⟨k+| a†R(x)aR(x) |k+⟩

R =
⟨k+| a†R(x′)aR(x′) |k+⟩
⟨k+| a†R(x′)aR(x′) |k+⟩

(2.17)

where the denominators are a measure of the incident photon flux and are independent of x and

x′ [8]. Assuming the scattering source to be located at the origin, we choose x > 0 and x′ < 0.

We now calculate the single-photon scattering eigenstate of H, following the seminal approach of

Shen and Fan [9, 22], which would allow us to evaluate the above coefficients.

2.3 Single-excitation regime: single 2LA coupled to a waveguide

The full system Hamiltonian for a single atom interacting with the modes of the waveguide

continuum was derived as

H = ℏ(ωe − iΓ0) |e⟩ ⟨e|︸ ︷︷ ︸
atomic part

+ iℏvg
∫ ∞

−∞
dx

(
a†L(x)

∂aL(x)

∂x
− a†R(x)

∂aR(x)

∂x

)
︸ ︷︷ ︸

free field

+

ℏJ
[{

aL(0) + aR(0)

}
|e⟩ ⟨g|+ h.c.]︸ ︷︷ ︸

atom-field interaction under rotating-wave approximation

, (2.18)

The total excitation operator

N̂ =

∫
dx [aL(x)

†aL(x) + aR(x)
†aR(x)] + |e⟩ ⟨e|
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commutes with H, i.e., [N̂ ,H] = 0. It is, therefore, a conserved quantity. This allows one to work

within the manifold of a given number of excitations. We now consider the problem of a single

photon administered into the atom-waveguide apparatus. The Hamiltonian is non-Hermitian due

to the presence of the dissipation term Γ0. In the following, we calculate |k+⟩ using the Hermitian

approximation, whereby we neglect the impact of Γ0. We can always reintroduce the effect of Γ0

by replacing ωe with ωe − iΓ0.

Formal expressions for reflection and transmission: We first chart out a theoretical template

to probe the reflection and the transmission from the system. If we launch a photon with definite

frequency into right-moving channel, the input state of this photon can be expressed as

|k⟩ = a†R(k) |ϕ⟩ =
1√
2π

∫
dx eikxa†R(x) |ϕ⟩ (2.19)

where |ϕ⟩ =
(∏

k |0⟩k
)⊗

|g⟩ represents the electromagnetic vacuum with the 2LA in its ground

state, with the notation
⊗

signifying the tensor product between the photonic and atomic states. It

is easy to compute the incident photon flux in this state and it turns out to be

Φinc(x) ∝ ⟨k| a†R(x)aR(x) |k⟩ =
1√
2π
, (2.20)

which, being a constant in space, is emblematic of its free-photon character. Considering different

scattering processes, we write an ansatz for the single-photon scattering eigenstate,

∣∣k+〉 = 1√
2π

[ ∫
dx

(
ψR,k(x)a

†
R(x) + ψL,k(x)a

†
L(x)

)
|ϕ⟩+ ck |ϕ1⟩

]
, (2.21)

where |ϕ1⟩ = (|e⟩ ⟨g|) |ϕ⟩ =

(∏
k |0⟩k

)⊗
|e⟩ embodies the electromagnetic vacuum with the

2LA in its excited state. The functions ψR,L(x) describe the wavefunctions or scattering amplitudes

subject to the incident photonic state, while ck denotes the atomic excitation amplitude. This ansatz

is perfectly justified, given that the total excitation number N̂ commutes with the Hamiltonian - this
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leaves us with only three options: (i) the atom absorbs the photon and gets excited, (ii) the photon

proceeds rightward, or (iii) the photon changes track and flips direction. This is shown in Fig. .

Note that while the vacuum ket |ϕ⟩ is normalized according to ⟨ϕ|ϕ⟩ = 1, the monochromatic,

free-photon states subscribe to the Dirac-Delta normalization, i.e., ⟨k|k′⟩ = δ(k − k′). This is

because the set {|k⟩} forms a complete, orthogonal basis of scattering continuum states. Similarly,

one has the orthonormalization condition for the {|k+⟩} states, ⟨k+|k′+⟩ = δ(k − k′). In this

scattering eigenstate, one can infer the outgoing fluxes (rightward and leftward) by computing

Φout(x > 0) ∝
〈
k+

∣∣ a†R(x)aR(x) ∣∣k+〉 =
|ψR,k(x)|2

2π

Φout(x < 0) ∝
〈
k+

∣∣ a†R(x)aR(x) ∣∣k+〉 =
|ψL,k(x)|2

2π
(2.22)

Therefore, upon invoking Eq. (2.17) and (2.20), we obtain the transmission and reflection coeffi-

cient as

T = |ψR,k(x > 0)|2, R = |ψL,k(x < 0)|2. (2.23)

Problem statement and exact solution: We now solve the Schrodinger equation H |k+⟩ =

ℏvgk |k+⟩ to obtain the relevant amplitudes ψR,k(x), ψL,k(x), subject to the following boundary

conditions

ψR,k(x < 0) = eikx, ψL,k(x > 0) = 0, (2.24)

In other words, the problem is framed as follows. To the left of the atom, i.e., in the region x < 0,

only the incident plane wave propagates along the right-moving channel, and we do not know a

priori the solution for the left-going field. To the right of the atom, i.e., for x > 0, we know that

there is no left-going field (simply because there is none incident!), but we would like to eke out the

solution for the right-going wave. On applying the Schrodinger equation, we obtain three coupled
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linear equations for three unknown scattering amplitudes,

(
− ivg

∂

∂x
− vgk

)
ψR,k(x) + J ckδ(x) = 0,(

ivg
∂

∂x
− vgk

)
ψL,k(x) + J ckδ(x) = 0,

−∆kck + J
(
ψR,k(0) + ψL,k(0)

)
= 0, (2.25)

in which we have introduced the frequency detuning ∆k = vgk−ωe. The first two equations can be

solved to yield plane waves with different weights in the two regions x < 0 and x > 0. Compactly

expressed, the solutions are given by

ψR,k(x) =

[
Θ(x) + tkΘ(−x)

]
eikx,

ψL,k(x) = rke
−ikxΘ(−x), (2.26)

where the parameter Γ =
J 2

vg
determines the coupling strength between the emitter and the field

and has the dimension of frequency. Also, Θ(x) represents the Heaviside step function defined as

Θ(x) =


1, x > 0

0, x < 0

, (2.27)

Substituting these solutions back into the differential equations in (2.25), we find the coefficients

rk, tk and ck to be

rk = − iΓ

∆k + i(Γ + Γ0)
,

tk =
∆k + iΓ0

∆k + i(Γ + Γ0)
,

ck =
J

∆k + iΓ
, (2.28)

where we have now plugged back the dissipation parameter Γ0. Since ψR,k(x > 0) = tk and
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ψL,k(x < 0) = rk, we find, upon comparison with Eq. (2.23), T (k) = |tk|2 and R(k) = |rk|2. By

virtue of this connection, we can identify tk and rk to be the transmission and reflection amplitudes

as the photon scatters off the atom. In the limit Γ0 → 0, these expressions satisfy the expected

energy conservation rule

T (k) +R(k) = 1. (2.29)

The single-photon reflection exhibits a Breit-Wigner-like (Lorentzian) line shape around the res-

onance ∆k = 0. When the atom is excited on resonance, it emits equally into both propagation

directions of the waveguide channel. This emitted wave interferes destructively with the weak

probe signal and the transmitted signal is completely quenched. Thus, a lossless side-coupled

emitter behaves as a perfect nanomirror for propagating photons in a 1D continuum [9].

2.4 Generalization to multiple 2LAs
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Figure 2.3: Chain of N identical 2LAs side-coupled to a 1D waveguide. rj and tj represent the
reflection and transmission coefficients due to scattering from the j th atom; L is the distance of
separation.

In this section, we consider a periodic chain of atoms coupled to a waveguide. For simplicity,

we assume the first atom to be located at the origin, so that the jth atom is placed at xj = (j −
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1)L. Multiatom-integrated lattice models can be rather intriguing, considering the wide variety of

scattering pathways supported by these models. As a photon can address a multitude of atoms,

with each of these interaction events featuring a finite probability, the overall effect is realized as

a superposition of these events. Viewed from the perspective of waves, the spontaneous emission

from these individual emitters can either coherently or destructively interfere to yield interesting

transport properties. In order to analyze these models, we can extend our previous analysis to

include multiple atoms interfacing with the waveguide. The free-field part of the Hamiltonian

remains untouched, but the atomic and the interaction Hamiltonians are modified as follows

Hatoms = ℏ
N∑
j=1

(ωj − iΓ
(j)
0 ) |e⟩j ⟨e| ,

Hint = ℏJ
N∑
j=1

[{aL(xj) + aR(xj)} |e⟩j ⟨g|+ h.c.], (2.30)

where, for simplicity, we assumed identical coupling strengths for all the atoms. The jth atom has

a transition frequency of ωj . The single-photon scattering eigenstate should now be extended to

account for multiple atomic excitations. We, therefore, solve for an eigenstate of the form

∣∣k+〉 = 1√
2π

[ ∫
dx

(
ψR,k(x)a

†
R(x) + ψL,k(x)a

†
L(x)

)
|ϕ⟩+

N∑
j=1

c
(j)
k

∣∣∣ϕ(j)
1

〉]
, (2.31)

where |ϕ⟩ =
(∏

k |0⟩k
)⊗(∏

j |g⟩j
)

is the ground state of the composite system, and
∣∣∣ϕ(j)

1

〉
=(∏

k |0⟩k
)⊗(∏

m ̸=j |g⟩m |e⟩j
)

symbolizes the state where the field is vacuum and only the

jth atom is excited. Proceeding like in the case of a single atom, we can solve for the transmission

and reflection coefficients in terms of the outgoing photon fluxes, which, in this case, would be

given by

T = |ψR,k(x > xN)|2, R = |ψL,k(x < x1)|2. (2.32)

The scattering amplitudes are to solved from the Schrodinger equation H |k+⟩ = ℏvgk |k+⟩, which
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yields a set of coupled linear equations as follows:

(
− ivg

∂

∂x
− vgk

)
ψR,k(x) + J

N∑
j=1

c
(j)
k δ(x− xj) = 0,

(
ivg

∂

∂x
− vgk

)
ψL,k(x) + J

N∑
j=1

c
(j)
k δ(x− xj) = 0,

−∆
(j)
k c

(j)
k + J

(
ψR,k(xj) + ψL,k(xj)

)
= 0 (2.33)

Here, ∆(j)
k = vgk − ωj is the detuning of the jth atom. The solutions to the plane waves turn out

to be

ϕkL(x) =


r1e

−ikx, x < 0

rj+1e
−ik(x−jL), (j − 1)L < x < jL

0, x > (N − 1)L

, (2.34)

ϕkR(x) =


eikx, x < 0

tje
ik(x−jL), (j − 1)L < x < jL

tNe
ik(x−NL), x > (N − 1)L

, (2.35)

where we assumed xj = (N − 1)L. Plugging them back into (2.33), we obtain a set of lin-

early coupled equations involving the transmission and reflection coefficients, and the single-atom-

excitation amplitudes.

tje
−ikL − tj−1 +

iJ c(j)k

vg
=0,

rj+1e
ikL − rj −

iJ c(j)k

vg
=0,

tj−1 + rj −
∆

(j)
k c

(j)
k

J
= 0.
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Eliminating the atomic excitation coefficients engenders a recursive matrix relation

 rj

tj−1

 = Lj

rj+1

tj

 , (2.36)

where the transfer matrix

Lj =

eikL(1− iδ−1
k(j)) −ie−ikLδ−1

k(j)

ieikLδ−1
k(j) e−ikL(1 + iδ−1

k(j))

 (2.37)

connects the left- and right-propagating fields across the jth atom, k is the wavenumber of the

incident photon, δk(j) =
vgk − ωj + iΓ

(j)
0

Γ
, and Γ =

J2

vg
. The above relation can be solved itera-

tively to extract the ultimate reflection and transmission coefficients. In addition, we would need

apposite boundary conditions, which are given by t0 = 1, rN+1 = 0, r1 = r, and t = tNe
−iNkL.

The correspondence between t and tN accounts for the phase shift that the incident wave suffers

till it scatters off the final atom. The joint consideration would yield the reflection and transmission

coefficients as follows

r =

(∏N
j=1 Lj

)
12(∏N

j=1 Lj

)
22

, t =
e−iNkL(∏N
j=1 Lj

)
22

. (2.38)

The above expressions are absolutely general, and will apply irrespective of the individual emitter

properties. However, because of the presence of the phase factors e±ikL and the generally differ-

ential detunings assigned to the emitters, it is analytically hard to find out compact expressions

from the above. It turns out, however, that closed-form analytical expressions for r and t can be

extracted for two independent scenarios: (i) when all the atoms are identical, and (ii) when the

phase kL equals an integer multiple of π. These two settings would be the basis of the next two

chapters.
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2.5 Summary

To summarize, we have developed the real-space formulation to study photonic transport in real

space, and are ready to apply this model to a comprehensive analysis of the single-photon regime.

In the two forthcoming chapters, we would examine quantum interference effects due to absorption

and emission from multiple atoms coupled to a waveguide and highlight the modifications they en-

tail with regard to single-photon transport properties. We note that the same procedure outlined

here can be applied to the study of correlated two-photon transport, and also multiphoton scattering

problems, in general. Such systems can be analytically solved for a single 2LA interacting with

the waveguide. However, for more than one atom, to the best of our knowledge, while numerical

treatments have partially borne fruit, no analytical solution exists to date in the multiphoton excita-

tion regime. We also note that certain resonators, waveguides, and photonic crystals admit modes

that allow photon transport with specific polarizations [58–61]. As a result, the atomic emission

is not symmetric in either direction. Chirality can also ensue from the application of an external

magnetic field. The problem can be handled by assigning different coupling constants to the left-

and right-propagating fields in Eq. (2.30). This would be a subject for further study.
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3. FANO INTERFERENCES IN MULTIEMITTER WAVEGUIDE MODELS*

They focal point of this chapter is to analytically solve the waveguide model for an arbitrary

number of identical 2LAs and bring out interesting possibilities originating from the quantum in-

terference of scattering pathways. A system of two-level atoms coupled to a 1D continuum enables

one to study a number of interesting collective effects depending on the chain size. These include,

for example, modification of optical band structure [62], single-photon super-radiance [63], real-

ization of Bragg mirrors [64, 65] and single-photon isolators [66]. The impact of chain size on

spontaneous emission from one of the excited atoms was treated in [19]. The dynamical evolution

of emitter excitations and photon pulses in a waveguide interfacing with multiple emitters was

studied by Liao et al. in [67], by taking into account dipole-dipole couplings between the emitters.

A significant amount of theoretical [13, 67–73] progress has been made in regards to single-photon

transport in the context of these models, which has shed light on the role of spatial separation be-

tween atoms. Equally important a question was the feasibility of effecting strong atom-photon

couplings in waveguide-based platforms. This was theoretically addressed in plasmonic structures

[74] and photonic crystal waveguides [75, 76], which laid out a propitious roadmap for the novel

possibilities. All of these were accompanied by an abundance of experimental works on closely

associated configurations [4, 7, 63–65, 77–85], which reported efficient coupling of emitters to the

guided modes.

Since a chain of two-level emitters strongly coupled to a waveguide scatters wave excitations,

one can observe the emergence of asymmetric Fano lineshapes [36, 37] due to interference effects

between the scattering amplitudes, a feature which is absent in the single-emitter scenario. This

is an example of the Fano interference phenomenon [86], which has been extensively reviewed

in Ref. [87] in the context of modern nanotechnology. The possibility of quantum interference

stems from the existence of multiple quantum pathways in the transport of single photons. This

*A major part of this chapter is reprinted with permission from Multiple Fano interferences due to waveguide-
mediated phase coupling between atoms by D. Mukhopadhyay and G. S. Agarwal, Phys. Rev. A 100, 013812 (2019),
published by the American Physical Society.
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is because following each interaction with an atom, new pathways are created. Such interference

phenomena give rise to multiple Fano minima depending on the relative location of atoms in the

chain. The manifestation of multiple Fano minima has been discussed in other contexts ([88, 89]).

In this chapter, we study the Fano interference phenomena in relation to single-photon transport

through a waveguide. The atoms coupled to the waveguide are all assumed to be identical. By

deriving exact expressions for the reflected and transmitted intensities, we show the development

of Fano lineshapes with multiple reflection minima. The maximum number of minima typically

allowed for a chain size of N is (N − 1). In the absence of DDI, the origin of Fano coupling

can be attributed to the relative phase picked up by the propagating photon as it traverses from

one emitter to the next. The waveguide-mediated phase coupling can occur over long distances

(of the order of a wavelength), which has been reported in the context of two optical/microwave

resonators [90, 91]. An adjustment of the emitter-spacing allows us to regulate this phase-coupling,

which in turn controls the existence and the locations of Fano minima. Even though the Fano

profiles are generally asymmetric, we observe a Dicke-type super-radiant effect in the reflection

when the emitter-spacing equals an integral or half-integral multiple of the resonant wavelength.

Discounting this special case, a key finding concerning the reflection lineshapes is the appearance

of flat-topped broadband spectra in the highly reflecting domain, with the flatness as well as the

frequency bandwidth increasing with the chain size. This is due to super-Gaussian nature of the

spectra in frequency domain. For a large chain size, we find a finite band gap over which the

system remains opaque to a single photon. This is enabled by the periodic nature of the lattice

arrangement. Finally, we find that an increase in the atom-photon coupling strength opens up the

possibility of observing new Fano minima in the reflection spectrum.

We structure the chapter in the following manner. In Sec. 3.1, we obtain the analytical formulae

characterizing the reflection and transmission profiles. Based on these analytical expressions, we

illustrate, in Sec. 3.2, the Fano lineshapes and extract the points of Fano minima. Certain features

of these spectra are discussed in the light of Fano interference effect. In Sec. 3.3, we elaborate

how an increase in the chain size has a direct role to play in the introduction of a spectral band gap.
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Subsequently, in Sec. 3.4, we underline the appearance of symmetric lineshapes, with or without

the presence of Fano minima, subject to pertinent choices of the spatial periodicity. Following

that, we numerically report some non-Markovian signatures in the system in Sec. 3.5, when the

coupling to the waveguide becomes quite large. Sec. 3.6 foregrounds the impact of lattice disorder

when empirical uncertainties in the lattice spacing is accounted for. In Sec. 3.7, we repeat our

theoretical analysis for the case when extraneous dissipation is included. Sec. 3.8 concludes with

a summary of the key results in this manuscript.

3.1 Exact solution for identical atoms

We consider a one-dimensional array of N identical 2LAs spaced periodically apart from each

other (recall Fig. 2.3). The real-space Hamiltonian for this system was derived in Chapter 2. Typi-

cally, one also needs to account for dipole-dipole interaction (DDI) between the atoms, especially

when the spatial separation is in the extreme subwavelength domain of the resonant excitation [56].

Mu-Tian et al. demonstrated the appearance of non-Lorentzian lineshapes for the case of two emit-

ters and brought to light the enhancement of asymmetry and splitting of the reflection spectrum

as fundamental ramifications of the DDI [37]. In our model, we disregard the DDI contribution

to the Hamiltonian by assuming that the atomic separation is size-wise comparable the resonance

wavelength. In order to keep the physics transparent, we also ignore radiative losses into modes

beyond the 1D continuum. This enables us to work with a perfectly lossless system. The more

general dissipative case is sketched out in a later section.

In view of the fact that scattering occurs at the level of a single photon implying a single

excitation in the system, the scattering eigenstate, with an eigenvalue vgk, can be constructed as a

superposition of single-photon and vacuum states,

∣∣k+〉 = 1√
2π

[ ∫
dx

(
ψR,k(x)a

†
R(x) + ψL,k(x)a

†
L(x)

)
|ϕ⟩+

N∑
j=1

c
(j)
k

∣∣∣ϕ(j)
1

〉]
. (3.1)

Derivation for arbitrary N : Assuming that the photon is incident from the left, the explicit
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forms for ψL,k(x) and ψR,k(x) can be worked out, subject to appropriate continuity relations at the

boundaries. These solutions turn out to be plane waves. Substituting them into the Schrödinger

equation (H−ℏωk) |k+⟩ = 0, one is led to a system of coupled equations involving the transmission

and reflection coefficients. This leads to a recursive matrix relation rj

tj−1

 =

eikL(1− iδ−1
k ) −ie−ikLδ−1

k

ieikLδ−1
k e−ikL(1 + iδ−1

k )


rj+1

tj

 , (3.2)

where Γ =
J 2

vg
and δk =

∆k

Γ
. From this, we identify a transfer matrix

L =

eikL(1− iδ−1
k ) −ie−ikLδ−1

k

ieikLδ−1
k e−ikL(1 + iδ−1

k )

 . (3.3)

Upon using Eq. (3.2) iteratively N times in succession, we find a simultaneous equation involving

r and t: r
1

 = LN

 0

teikNL

 . (3.4)

It follows that in order to extract the analytical expressions for r and t, one needs to evaluate the

N th power of the 2 × 2 matrix L. To that end, one can invoke a well-known and straightforward

technique as follows: consider the diagonal form of L, say D = U−1LU , where U is the diagonal-

izing transformation, and then raise the inverse relation to its N th power to get LN = UDNU−1. A

simple eigenvalue analysis yields the diagonal form of L to be

D =

eΛ 0

0 e−Λ

 , (3.5)
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where the auxiliary parameter Λ is related to δk and kL as

cosh(Λ) = cos(kL) + δ−1
k sin(kL). (3.6)

Using the above definition, it becomes convenient to work out compact expressions for the reflec-

tion and transmission coefficients:

r =
(LN)12
(LN)22

= −ie−ikL

[
µN(Λ)

ΩN(δk,Λ)

]
,

t =
e−ikNL

(LN)22
= e−ikNL

[
δk

ΩN(δk,Λ)

]
, (3.7)

where the functions µN and ΩN are defined respectively as

µN(Λ) :=
sinh(NΛ)

sinh(Λ)
, ΩN(δk,Λ) := δk cosh(NΛ)− iµN(Λ)ζ(δk, kL), (3.8)

with ζ(δk, kL) = δk sin(kL) − cos(kL). This completes our derivation of the transmission and

reflection coefficients for a chain of identical atoms.

On the conservation of energy: It is useful to note that Λ, defined as a solution to Eq. (3.6), can

be generally complex. Since the RHS of (3.6) happens to be real, cosh(Λ) would be constrained to

assume all real values between −∞ and +∞. When the value of this function exceeds unity, Λ has

a real solution. In the range −1 ≤ cosh(Λ) ≤ 1, Λ can be described by purely imaginary values, as

changing Λ → iΛ turns the function into cos(Λ). For cosh(Λ) < −1, the solutions to Λ are neither

real nor purely imaginary. Nevertheless, one can establish a one-to-one correspondence between

the solutions of cosh(Λ) < 0 and those of cosh(Λ) > 0. Observe that cosh(Λ) flips signature

when we let Λ → iπ ± Λ, and consequently, for any real Λ = Λ0 satisfying cosh(Λ0) > 1,

we find that Λ̃±
0 = iπ ± Λ0 satisfy cosh

(
Λ̃±

0

)
= − cosh(Λ0) < −1. Now essentially, both the

transformation schemes Λ → iΛ and Λ → iπ ± Λ ensure that cosh(NΛ) and µN(Λ) continue to

assume real values, provided Λ is originally chosen to be real. Furthermore, it can be verified that
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ζ2 = 1− δ2k sinh
2(Λ). Considering all these subtleties, we conclude that |ΩN |2 = δ2k+µ

2
N , whence

we compute, quite generically, the expressions for R = |r|2 and T = |t|2:

R =
µ2
N(Λ)

δ2k + µ2
N(Λ)

, T =
δ2k

δ2k + µ2
N(Λ)

. (3.9)

This satisfies R + T = 1 as radiative decays have been ignored in the current model. It should

also be borne in mind that Eqs. (3.7) and (3.9) do not showcase the explicit dependence of the

amplitudes and intensities on the dimensionless detuning parameter δk =
∆k

Γ
. This is because Λ

itself is determined by δk.

3.2 Emergence of Fano interference minima

From Eq. (3.7), we can identify the roots or zeros of the reflection, which would correspond to

the points of Fano minima and determine the peaks in the transmission spectrum. The appropriate

values of the detuning ∆k at which the system becomes transparent are obtained by solving the

equation

µN(Λ) = 0 (3.10)

This leads to exactly (N − 1) simpler root equations, each of which may be expected to yield a

solution. Of course, it might turn out that for certain choices of kL and/or N , some of these equa-

tions either make no sense or do not provide finite solutions. In what follows, we briefly review

the known results for N = 1 and N = 2 and then proceed to obtain the roots for a general value of

N .

Comparison between single-atom and two-atom settings: For a single emitter coupled to the

waveguide, r reduces to an extremely simple form, as can be seen by plugging N = 1 and kL = 0
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into Eq. (3.7):

r(1) = − 1

1− i∆k

Γ

. (3.11)

In compliance with previously known results, this function has no roots. In fact, the spectrum

R =
∣∣r(1)∣∣2 = 1

1 +
∆2

k

Γ2

has a Lorentzian lineshape (Fig. 3.1) of width 2Γ and is symmetric in ∆k

with a peak at ∆k = 0. This is quite reasonable given that there are no interference channels for a

single scatterer, which precludes the existence of a Fano minimum.

The double-emitter case is more interesting as it allows for multiple photon transport chan-

nels leading to the possibility of destructive interference between these channels. The reflection

coefficient is now given by

r(2) = −
2ieikL[sin(kL) + ∆k

Γ
cos(kL)]

(∆k

Γ
+ i)2 + e2ikL

. (3.12)

The numerator goes to zero at ∆r min
k = −Γ tan(kL), which is a special case of the result obtained

in Ref. [37] for symmetrical coupling between the emitters and the field in the absence of DDI.

Thus, there exists a Fano minimum at this value of detuning which renders the system transparent.

Further, the location of this root demonstrates the generally asymmetric nature of the spectrum, in

contrast to the single-emitter scenario. Finally, it is crucial to draw attention to the fact that not for

all values of kL are we guaranteed to observe a Fano minimum (see Fig. 3.1).

Extension to arbitrary number of emitters: solving Fano minima in general: For arbitrary N ,

one would expect the possibility of multiple minima in the reflection lineshape as the number

of interference channels increases with the number of scatterers, since each of them contributes

to the final reflected output. Indeed, when Eq. (3.10) is solved, it leads to (N − 1) simplified

root equations pertaining to any value of N . Using the definition of hyperbolic sine function, i.e.
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Figure 3.1: Plots of R = |r|2 vs
∆k

Γ
for N = 1 and N = 2 respectively. The spectrum for N = 1

is symmetric with no Fano minimum. For N = 2, the choice of kL, or equivalently L
λ

, heavily
influences the spectral characteristics, including the existence of a Fano minimum.

sinh(x) =
e2x − 1

2ex
, it is possible to express the function µN as

µN(Λ) =
1

e(N−1)Λ

N−1∏
l=1

(e2Λ − e2ilπ/N). (3.13)

Setting this equal to zero, one finds that the Fano minima occur at purely imaginary values of the
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quantity Λ

Λr min
l =

ilπ

N
, for l = 1, 2, ..., N − 1, (3.14)

which, when combined with Eq. (3.6), yields

cos(kL) +
Γ

∆k

sin(kL) = cos

(
lπ

N

)
; (3.15)

=⇒ ∆r min
k = − Γ tan(kL)

1− cos
(
lπ
N

)
sec(kL)

,

for l = 1, 2, ..., N − 1.

For N=1, Eq. (3.15) provides no roots, while for N = 2, there is a single equation corresponding

to l = 1, which reduces to ∆r min
k = −Γ tan(kL), in agreement with the result obtained earlier.

It makes for a relevant observation in this context that for N = 2 and kL = nπ
2

, with odd n,

∆r min
k blows up and therefore, no finite solution exists. In fact, for any even N , the root equation

stipulated by the choice l = N
2

does not lead to a finite solution. Similarly, in the instance when

kL = nπ, there exists no finite solution for anyN , as can be figured out from the more fundamental

equation (3.15). Therefore, the spectral properties and the existence of well-defined transmission

peaks are heavily reliant on the size of emitter-spacing relative to the resonant wavelength λ = 2π
k

.

This also explains the absence of Fano minima in Fig. 3.1 for N = 2 and kL = 2π,
5π

2
.

In Fig. 3.2, we plot the spectra for a couple of higher values ofN (= 3, 4), each subject to three

distinct choices of kL. The plots clearly illustrate how the choice of phase plays a pivotal role in

determining the symmetric or asymmetric nature of the spectrum. The spectra also reveal how

the precise choice of kL dictates the feasibility of observing as many Fano minima as the number

of root equations in 3.15. For instance, in the case kL = 7π
3

with three emitters, a single Fano

minimum is observed, while for the choice kL = 5π
2

, two symmetric points of minima appear.

As a direct consequence of the existence of multiple Fano minima, one can notice the emer-

gence of multiple shorter sidebands in the reflection spectrum. It makes for a more intriguing
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Figure 3.2: Spectral characteristics for N = 3 and N = 4 respectively. As expected, the value of
kL fundamentally impacts the nature of the graphs and therefore, the existence of Fano minima.
For N = 3, the number of observed roots vary between none to at most 2, while for N = 4, there
can be at most 3 roots. Higher number of scatterers lead to higher number of interference channels
and hence, to the possibility of a greater number of roots. It can also be observed that in the cases
kL = 5π

2
and kL = 7π

3
, the lineshapes become very flat near the origin giving rise to broadband

characteristics.

observation that some of the lineshapes corresponding to N = 2, 3 and 4 (Figs. 3.1 and 3.2) are

almost flat near resonance, thereby exhibiting the characteristic feature of a broadband spectrum.

This broadband region signifies an opacity window because transmission is almost entirely blocked

out. It turns out that this flatness in the highly reflecting domain is quite a generic feature for the
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case of multiple emitters, which holds as long as kL does not get too close to an integral multiple

of π. This statement will be analytically justified in the next section. Finally, Eq. (3.15) also shows

that for arbitrarily large values of N , the roots corresponding to l ≪ N and l ∼ N evolve into sets

of continuum leading to the formation of broadband regions of high transmittance.

Explanation of Fano Interference: The root cause behind the appearance of asymmetric line-

shapes and corresponding minima in the spectra can be attributed to the Fano effect. Fano profiles

are generally asymmetric in nature, as we have seen in many of the plots, and stem from the in-

terference between various scattering amplitudes generated due to photonic interaction with the

scatterers. Compactly described, the photon in the waveguide can be absorbed and emitted by

any one of the atoms, and as such, there exists a number of such possible channels determined

by the number of scattering agents. Since, quantum mechanically, all these processes have finite

probabilities, the net effect is an interference between all these transition amplitudes. In particu-

lar, destructive interference between the scattering amplitudes leads to suppression of the reflected

amplitude and one can encounter a zero (or, more generally, a minimum) in the corresponding

profile. The atomic separation can be seen to play a vital role in giving rise to these Fano profiles

and multiple points of transparency. In Ref. [37], it was explained how the phase factor eikL,

brought about due to the propagation of light from one emitter to the next, was crucial in intro-

ducing asymmetry in the lineshapes. More precisely, it was interpreted as being a key contributor

to waveguide-mediated interaction between the emitters existing even in the absence of the actual

DDI.

3.3 Flatbanded spectral character: an effect of periodicity

In the vicinity of δk =
∆k

Γ
∼ 0, under the assumption kL ̸= nπ, we have the asymptotic

behavior cosh(Λ) ∼ δ−1
k sin kL, sinh(Λ) ∼ δ−1

k sin kL and eΛ ∼ 2δ−1
k sin kL. On account of these
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considerations, we obtain the asymptotic form of the function µN to be

µN(Λ) ∼ {2δ−1
k sin kL}N−1

[
1−

{
δk

2 sin kL

}2N]
. (3.16)

Substituting this expression into Eq. (3.7), one obtains the behavior of the lineshape near zero

detuning:

R(δk)

∣∣∣∣
δk∼0

≈ 1− 4 sin2 kL

[
δk

2 sin kL

]2N
+O

[
δk

2 sin kL

]4N
. (3.17)

Hence, viewed as a Taylor series expansion in δk/(2 sin kL) around the origin, this manifests a

couple of features: (i) R → 1 as δk → 0, and (ii) the leading order non-vanishing derivative of R

w.r.t δk at the origin is R(2N)(δk). The first feature testifies to the validity of a well-known result in

literature that the zero-detuned case corresponds to perfect reflection with zero transmission. This

fact holds true for arbitrary chain size.

The second feature is a direct algebraic manifestation of spectral flatness in the region near zero

detuning, applicable to all N ≥ 2. In order to exemplify this point, we can consider the case for

N = 2, where the leading-order expansion of R(δk) goes as 1 − δ4k
4 sin2 kL

≈ exp

[
− δk

4

4 sin2 kL

]
and therefore, possesses super-Gaussian characteristics. This is in contrast to the Lorentzian nature

of the lineshape forN = 1 (see Eq. (3.11)), which resembles a Gaussian distribution in the vicinity

of zero detuning. In fact, whenever N exceeds 1, the order of the lowest non-vanishing derivative

at the origin exceeds two, since R(δk) behaves approximately as exp

[
− δk

2N

{2 sin kL}2N−2

]
. The

essential implication is that the function varies rather slowly in relation to a Gaussian, leading

to the emergence of an almost horizontal plateau-top near the origin. Consequently, lineshapes

pertaining to multiple emitters are significantly flatter than what is realized in the single-emitter

setting and quite generically display broadband characteristics. Moreover, at the qualitative level,

the existence of this property is insensitive to the choice of kL, barring kL = nπ when the emitter-
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spacing is an integral or half-integral multiple of the resonant wavelength. More interestingly, since

the super-Gaussian characteristics get progressively amplified with the increase in N , an emitter

chain of large size (N ≫ 1) is capable of fabricating a broadband rectangular profile over the

frequency domain. One can discern its validity by considering the graphs of e−x2N or (1 − x2N)

for increasingly larger values of N .

The order of the super-Gaussian distribution scales linearly as N and therefore, for a given kL,

both the flatness and the frequency bandwidth grow with N . In the limit N → ∞, the bandwidth

approaches ∼ 3.4Γ sin(kL). We, therefore, observe the emergence of a band gap of finite width

in an infinitely long chain, which can be reconciled with the formation of band structures in crys-

talline geometries. In periodic systems of infinite size, the discrete translational symmetry leads

to band formation as a direct consequence of Bloch’s theorem. Note that the flatbanded character

becomes particularly prominent as kL moves further and further away from any integral multiple

of π, with the bandwidth peaking at kL =
nπ

2
. In what follows next, we treat the case kL = nπ

separately and reveal a Lorentzian superradiant character of the spectrum at this phase.

3.4 Symmetrical Lineshapes w.r.t qubit detunings for special choices of phase-coupling

The reflection spectra for N > 1 are endowed with certain interesting features, some of which

are quite generic while some pertain to particular categories of choices for kL. In this section, we

analytically uphold the symmetric nature of the output spectra, subject to suitable choices of kL.

It follows from Eq. (3.9) that the reflection and transmission spectra can be symmetric in δk if and

only if the function µN(Λ) is either even or odd under a sign flip in δk. Specifically, this condition

is always satisfied when kL equals any integral or half-integral multiple of π.

Dicke Superradiant character of reflection for kL = nπ: This corresponds to L =
nλ

2
, where

n can assume both even and odd values. It is easy to see that the Taylor series expansion laid out in

Sec. 3.3 does not hold good for this particular choice of kL. This stems from the fact that cosh(Λ)

and sinh(Λ) are identically equal to (−1)n and 0 respectively. Consequently, Λ equals 0 when n
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is even and iπ when n is odd, making the variable independent of δk. Hence µN remains invariant

under the transformation δk → −δk. In fact, we can plug in the values of Λ to obtain an expression

for R as an explicit function of
∆k

Γ
. To that end, we employ the relation

µN(Λ) =
N∑

m→odd

(
N

m

)
coshN−m(Λ) sinhm−1(Λ), (3.18)

which yields

lim
kL→nπ

µN(Λ) = (−1)n(N−1)N, (3.19)

and immediately determines a Lorentzian lineshape for the reflection spectrum:

R =
1

1 +
∆2

k

N2Γ2

. (3.20)

This generalization also encompasses the case N = 1. Thus, the spectrum for kL = nπ, which

pins down a real phase eikL = (−1)n, is perfectly symmetric in the detuning and has a Dicke-type

super-radiant structure. Viewed as a function of ∆k, the spectrum has a width that scales linearly

as the size of the chain and equals 2NΓ. It is also bereft of a Fano minimum, which is in line with

the prediction made by Eq. (3.15) for kL = nπ.

Non-Lorentzian symmetry for the kL =
nπ

2
spectral family (n → odd): For even values of

n, the spectrum possesses Lorentzian symmetry, as we have obtained in the preceding subsection.

For odd n, we have cos(kL) = 0 which leads to cosh(Λ) = (−1)(n−1)/2δ−1
k . Under a parity

transformation in δk, cosh(Λ) flips signature, which, as we saw in Sec. 3.1, can be embodied as

the transformation scheme Λ → iπ ± Λ. In this process, µN(Λ) acquires a real phase given by

(∓1)N−1. Invoking these transformation properties in Eq. (3.7), it becomes apparent that R is

indeed an even function of δk, whenever kL is chosen to be an half-integral multiple of π. This
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property makes for an interesting observation, since, even though one observes Fano minima, the

lineshapes exhibit perfect symmetry.

3.5 Effect of the variation of ∆k with kL

So far, everything has been discussed under the assumption that kL can be treated as a constant,

considering its weak variation w.r.t.
∆k

Γ
. However, it should be noted that kL has a one-to-one

correspondence with ∆k. As a consequence, contingent on the strength of their interdependence,

one can possibly encounter multiple observable roots for a given choice of l in Eq. (3.15). Recall

that ∆k = vgk − ω0 and therefore, one has the relation

kL = k0L

[
1 +

η∆k

Γ

]
, (3.21)

where k0 =
ω0

vg
, η =

Γ

ω0

. Hence, kL depends linearly on ∆k, and a specified choice of kL ideally

pins down a unique value of ∆k. That said, in most practical experiments, the value of η tends to

be quite small, i.e. η ≪ 1. For instance, in the case of cold atoms coupled to an optical fiber, the

resonance frequency lies in the optical THz domain, while the coupling constant Γ lies in the GHz

regime. Besides, since one is concerned with waveguide frequencies in the vicinity of the atomic

transition frequency, i.e.
∆k

Γ
≈ 0, one typically drops the correction term

η∆k

Γ
from Eq. (3.21)

altogether and examines the spectral characteristics by treating kL as a constant (kL ≈ k0L). This

assumption has been a cornerstone for the Markovian approximation, and is especially relevant in

the framework of RWA. In Fig. 3.3, we graph the exact spectrum for N = 2 and k0L =
5π

2
by

including the correction term
η∆k

Γ
in Eq. (3.21) and illustrate what modification it brings about

for the following ballpark order-of-magnitude choices of η: (i) η ∼ 0, (ii) η ∼ 10−3, (iii) η ∼ 10−2

and (iv) η ∼ 10−1. For the sake of comparison, these plots are superimposed on top of each

other. Expectedly, case (ii) yields an almost identical spectrum to (i). Case (iii) reveals a slight

narrowing of the lineshape, whereas case (iv) shows considerable shrinking in its width. Even more

curiously, one happens to observe new points of Fano minima in (iii) and (iv) which did not exist in
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the approximate spectrum where η was small enough to be ignored. Moreover, even though there

is only a single value of l in Eqs. (3.15) for the case of two symmetrical emitters, there happens to

be two distinct values of the detuning in case (iv) for which the reflection vanishes. This is because

the condition for Fano minima is transformed into a transcendental equation when Γ becomes very

large.

Γ≪ω0

Γ=10-3ω0

Γ=10-2ω0

Γ=10-1ω0

-10 -5 0 5 10
0.0

0.2

0.4

0.6

0.8

1.0

Δk

Γ
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Figure 3.3: Reflection lineshapes for two quantum emitters with (i) Γ ≪ ω0 (no correction term),
(ii) Γ = 10−3ω0, (iii) Γ = 10−2ω0 and (iii) Γ = 10−1ω0. Cases (i) and (ii) are indistinguish-
able whereas cases (iii) and (iv) reveal noticeable aberrations from case (i). Specifically, one can
observe a couple of symmetric zeros in their reflection spectra. In (iv), these zeros appear at∣∣∆r min

k

∣∣ ≈ 2.2Γ. All of these plots correspond to k0L = 5π
2

.

3.6 Lattice disorder: localization uncertainty

There are obvious experimental challenges to fix the lattice length (atomic separation) to arbi-

trary degree of precision. Consequently, given that we are working in the nanoscale regime, the

spatial separation between neighbouring emitters should possess an experimental uncertainty. To

get a better estimate of the reflected output, we should, therefore, view the separation as a stochas-

tic variable and consider an average of the intensity over the associated probability distribution in

the empirical model. Let us consider the simplest case of two atoms with separation L and define
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the random variable θ ≡ kL = θ0 + ϵ, where ϵ signifies fluctuation of the parameter kL about θ0.

We can model the fluctuation by assigning a Gaussian probability distribution, as follows:

ρ(θ) =
1√
2πσ

exp

[
− (θ − θ0)

2

2σ2

]
. (3.22)

In the absence of any fluctuation in θ, we have the following reflection output (see Eq. 3.12):

R(2)(θ) =
∣∣r(2)(θ)∣∣2 = (sin θ + δk cos θ)

2

(δ2k − 1 + cos 2θ)2 + (2δk + sin 2θ)2
. (3.23)

Hence, the averaged output will be obtained as:

R(2)(δk) =

∫ ∞

0

dθ ρ(θ)R(2)(θ). (3.24)

In Fig. 3.4, we plot the reflected intensity R(2)(δk) averaged w.r.t the aforementioned Gaussian

distribution with mean θ0 = π
4

and standard deviations σ = 0.1θ0 and σ = 0.25θ0. We observe that

for σ = 0.1θ0, the spectrum closely resembles the non-fluctuating case and at the Fano minimum,

the reflected intensity is quite close to zero. The observed spectrum for σ = 0.25θ0 is more inter-

esting in the context of our investigation. In this case, the Fano minimum is clearly affected and

becomes almost unnoticeable. However, the rest of the graph is barely affected. Essentially what

this demonstrates is that the existence of a Fano minimum is largely sensitive to fluctuations in the

atomic spacing.

3.7 Inclusion of atomic couplings to the side modes

In our analytical treatment, we have conveniently neglected radiative decays into all modes

outside the propagating modes of the 1D waveguide. However, in real experiments, spontaneous

emissions into these ‘outsider’ modes will always be present. In light of such considerations, one

could be prompted to question the relevance of our results that neglect these losses. Hereby, we put

to rest such doubts through a re-evaluation of the problem by accounting for radiative decays. We
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Figure 3.4: Plots of R(2) vs
∆k

Γ
for θ0 = π

4
and different choices of σ. The dashed line indicates

the spectrum corresponding to zero fluctuation in the atomic separation, i.e. when the Gaussian
takes the form of a Dirac-delta function.

demonstrate that if this decay rate is small compared to the parameter Γ =
J 2

vg
, the spectral nature

does not exhibit appreciable variation. The decay rate will be reflected in the Hamiltonian of the

atom and can be given substance to by augmenting an anti-Hermitian contribution to the atomic

Hamiltonian, as follows:

H̃A = ℏ(ω0 − iΓ0)
N∑
i=1

|e⟩j ⟨e| , (3.25)

The presence of additional decay channels incorporates an imaginary offset to the real atomic

transition frequency in the quantum description of the transport model, i.e., ω0 → ω̃0 = ω0 − iΓ0.

Consequently, the quantities ∆k and δk will turn into complex parameters ∆̃k = ∆k + iΓ0 and

δ̃k = δk + iγ0 respectively, with γ0 =
Γ0

Γ
. On account of the modified complex nature of δ̃k, one
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would have to redefine a new parameter Λ̃ in place of Λ satisfying

cosh
(
Λ̃
)
≡ cos(kL) + δ̃−1

k sin(kL). (3.26)

γ0=0
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Figure 3.5: Plots of R = |r|2 vs
∆k

Γ
for N = 3 corresponding to two distinct choices of phase.

The presence of decay barely changes the nature of the graphs. The Fano minima remain almost
unaltered, although the flat-banded characteristic suffers a decline as the dissipation increases.

It is clear that cosh
(
Λ̃
)

is no longer constrained to be real, and it can be shown thatR+T < 1.

Thus, the new parameter Λ̃ not only depends on the detuning but is also sensitive to the decay rate.
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Hence, the analytical results have to generalized by letting δk → δ̃k:

r = −ie−ikL

[
µN(Λ̃)

ΩN(δ̃k, Λ̃)

]
, t = e−ikNL

[
δ̃k

ΩN(δ̃k, Λ̃)

]
, (3.27)

where µN(Λ̃) = sinh
(
N Λ̃

)
sinh

(
Λ̃
)

and ΩN(δ̃k, Λ̃) ≡ δ̃k cosh
(
N Λ̃

)
− iµN(Λ̃)ζ(δ̃k, kL), with

ζ(δ̃k, kL) = δ̃k sin(kL)− cos(kL). As δ̃k is now complex, all of µN(Λ̃), cosh
(
N Λ̃

)
and ζ(δ̃k, kL)

will also be complex. Hence, the expressions for R = |r|2 and T = |t|2 turn out to be more

complicated, as follows:

R =
|µN |2

ξ{δ2k + γ20}+ |µN |2 + 2 Im{µNζ cosh
∗(N Λ̃)(δk − iγ0)}

, (3.28)

T =
δ2k + γ20

ξ{δ2k + γ20}+ |µN |2 + 2 Im{µNζ cosh
∗(N Λ̃)(δk − iγ0)}

. (3.29)

where we introduced the function ξ, defined below:

ξ(Λ̃) ≡ 2−

∣∣∣cosh(Λ̃)∣∣∣2 − 1∣∣∣sinh(Λ̃)∣∣∣2 . (3.30)

Note that in the limit γ0 → 0, ξ approaches unity and Eqs. (3.28) and (3.29) go over into Eqs. (3.7)

and (3.9).

From the modified expression for R, it follows that zero-reflection points do not exist anymore.

This is because the root equation µN = 0 yields purely imaginary values of Λ̃ which imposes the

restriction Im{cosh
(
Λ̃
)
} = 0, or γ0 = 0. However, if we plot the reflection spectrum for N = 3

with the choices γ0 = 0.1 and γ0 = 0.05, we find that the fundamental nature of the graphs remain

fairly unaffected (see Fig. 3.5). We still get Fano minima (suppression of the reflection amplitude)

in the close vicinity of the original zero-reflection points. The flatbanded nature of the spectra gets

more and more prominent as γ0 diminishes in magnitude. This is obviously related to the fact that

since the broadbanded structure appears in the proximity of zero detuning, i.e. Re
{
δ̃k

}
= δk ∼ 0,

unless the parameter Im
{
δ̃k

}
= γ0 is sufficiently small, appreciable deviations from flatband char-
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acteristics would be noticed in this highly reflecting region.

3.8 Experimental Feasibility

All the results that have been derived in this chapter would allow experimental verification in

a variety of models of topical interest. Some of these are resonators on a transmission line, laser-

cooled atoms near a fiber and semiconducting QDs coupled to plasmonic excitations in a metallic

or diamond nanowire, or to photonic crystal waveguides. Our theoretical results were, however,

premised on loss-free or low-decoherence models. Therefore, it is desirable to contextualize the

verification of these results in realistic empirical systems that allow adequate qubit-waveguide

couplings, i.e. Γ ≫ Γ0. In that regard, superconducting circuit-QED models have marched way

past all other systems, and would, consequently, be one of the prime candidates for realizing our

predictions. In fact, except for QDs coupled to photonic crystals, almost none of the setups have

come close to the staggering success rate of superconducting circuits.

Strong emission of single photons into a waveguide was first demonstrated in a circuit QED set-

ting, with superconducting flux qubits playing the role of artificial atoms [82]. The experimenters

were able to couple a flux qubit to an open microwave transmission line and observe a reflectance

of about 94% at resonance, i.e., ωqubit = ωprobe, which was a hallmark achievement. This observa-

tion was made at a very weak probe power, where a single-photon analysis would be more relevant,

while at higher probe powers, saturation effects in the atom restored high transmittivity. The ma-

jor advantage of these types of systems in achieving strong coupling is that superconductors can

confine the electromagnetic fields to deeply subwavelength sizes in the transverse dimensions. In

addition, transition dipoles of superconducting qubits are much larger than those of real atoms [92].

These systems work in the microwave regime, with frequencies around 5− 12 GHz, and the reso-

nant qubit-transition is well below the superconducting energy gap ∆SC . Such frequencies cannot

induce transitions between the superconducting energy levels, as the corresponding transition fre-

quencies are strictly greater than the energy gap. This is why superconductors incur little-to-no

losses into side-modes and the coherence of the circuits is robustly protected. A necessary con-

46



cession is that these systems must be operated at cryogenic temperatures, typically below 50 mK,

in order for the background thermal radiation to be sufficiently suppressed. However, supercon-

ducting systems suffer from pure dephasing, which can be significant and still low enough for our

theoretical results to hold valid. In the resonance fluorescence experiment of Ref. [82], the reso-

nance frequency of the artificial atom was reported as ωqubit = 2π× 10.204 GHz, and the coupling

strength Γ was inferred from experimental curve-fitting to be 2π × 5.5 MHz. While loss of emis-

sion into undesirable modes was negligible, they could identify a dephasing rate of Γϕ = 2π× 1.7

MHz, which effectively plays the role of Γ0 in our theoretical description. A subsequent experi-

ment in 2011 using a superconducting transmon qubit achieved an even higher extinction rate, and

a reflectance of nearly 99.6% was recorded by further alleviating the effects of decoherence due to

both dephasing and relaxation into extrinsic channels [4]. Operating at the microwave resonance

frequency of ωqubit = 2π× 6.38 GHz, they achieved very strong coupling strength of Γ = 2π× 96

MHz while simultaneously tamping down the dephasing rate to Γϕ = 2π× 2 MHz. Going beyond

a single qubit, Ref. [93] experimentally demonstrated collective decay rates, including both subra-

diance and superradiance, in a system of two spatially separated transmon qubits coupled to a 1D

transmission line. The experiment clearly showcased a separation-sensitive exchange interaction

between the atoms.

In parallel with superconducting circuitry, quantum dots coupled to surface plasmons and cold

atoms trapped inside or near optical fibers have also largely led the way in the engineering of

strongly integrated atom-waveguide architectures, due to their strong coherence properties. In

2014, researchers were able to manipulate and channel the emission of a quantum dot strongly

into a photonic crystal waveguide, reporting 98.4% coupling efficiency to the transmission line

[5]. The coupling efficiency is defined as β =
Γ

Γ + Γ0

. Quite recently, a β−factor of 99% was

reported at cryogenic temperature by Scarpelli et al [94]. Till date, superconducting microwave

circuits and QD-based platforms have demonstrated the best performance metrics primed for the

study of waveguide-controlled fluorescence phenomena. These are the two systems which could

readily corroborate our theoretical predictions. On the cold-atom frontier, Bragg reflection off a
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large chain of identical atoms trapped in an optical lattice in a waveguide was demonstrated by two

experimental groups [64, 65]. However, these systems still pose a significant challenge in reducing

the deleterious effects of decoherence. Typically, these platforms contain laser-cooled Cesium (Cs)

or Rubidium (Rb) atoms trapped in the vicinity of an optical nanofiber. The associated β−factor

remains quite low.

3.9 Summary

To put things into perspective, we have analytically investigated the Fano interference effect

for single-photon transport through a one-dimensional waveguide that is evanescently coupled to a

periodic array of two-level quantum emitters. The expression for the reflection amplitude reveals

the existence of multiple Fano minima corresponding to induced transparency in the system. At

any of the Fano minima, the atomic chain behaves effectively like a reflection-less potential. In

the absence of DDI, waveguide-mediated phase-coupling between the atoms owing to their spatial

separation acts as the driving agent behind the emergence of Fano profiles. Typically, for a chain

size of N , the reflection amplitude can possess upto (N − 1) roots. However, appropriate choices

of the phase eikL can lead to suppression of one or more of these roots. In fact, when kL is an

integral multiple of π, the observed spectrum happens to be a Lorentzian which is devoid of any

roots. The case when kL is a half-integral multiple of π also stands out, in the sense that it per-

tains to symmetrically located roots. With the exception of kL ≈ nπ, one observes flat-topped

spectral lineshapes in the region of high reflectivity. Such characteristics are a manifestation of

super-Gaussian signature, with both the flatness and the frequency bandwidth increasing with the

chain size. In the limit of N → ∞, the reflection spectrum resembles a rectangular profile with

a width of 3.4Γ sin(kL). We have also illustrated how strong enhancements in the atom-photon

coupling strength can generate new points of Fano minima, which remain untapped in weaker cou-

pling regimes where the Markovian approximation remains valid. In the non-Markovian regime,

the condition for Fano minima evolves into a transcendental equation and requires numerical so-

lutions. For the special case of N = 2, on choosing Γ = 0.1ω0, we observed the appearance of
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two distinct Fano minima almost symmetrically situated w.r.t the common qubit detuning. Lastly,

we have identified two main test beds for verifying our theoretical predictions, superconducting

microwave circuits and QDs coupled to line defects in a photonic crystal waveguide.
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4. TRANSPARENCY WITHOUT ANY CONTROL FIELD*

EIT is a well-known mechanism in quantum optics whereby a strong coherent field renders

a system transparent to a probe field under appropriate conditions [95, 96]. The notion of EIT

was originally envisaged in the context of a Λ-type three-level system. Conjoined with a weak

optical probe field coupling to a selected transition, a strong control field was used to drive a

different transition in the system. By regulating the frequency of the control field, the complex

susceptibility (i.e., both its real and imaginary parts) of the probe-coupled transition, could be

effectively suppressed. Owing to zero dispersion, the probe suffered no absorption in the medium

and passed through the latter unimpeded. In the current chapter, we introduce a distinct protocol

to implement transparency in an ensemble of non-identical 2LAs, without applying any coherent

coupling field. This is based on our work in which we addressed the spectral properties of a

periodic array of atoms, strongly coupled to a waveguide, with the periodicity being an integer

multiple of the resonant wavelength [40]. Our key result was that the individual atomic detunings

could be strategically adjusted to ensure destructive interference between the atomic emissions

into the left-moving channel, allowing the input light to be fully transmitted. In other words, the

interplay between atomic detunings effectively appropriated the role of a coupling field in inducing

transparency in our system. The underlying mechanism, of course, is completely different.

As we had hinted in Chapter 2, the scattering eigenstate under the constraint kL = nπ could be

exactly solved, even when the atomic frequencies were left different. The parity of the chain size,

i.e., whether it is even or odd, was found to play a crucial role on the control of collective radiance.

For even parity, we showcased a scheme to effect transparency by assigning equal and opposite

pairwise detunings to the atoms. More generally, we derived the general condition for observing

*A major part of this chapter is reprinted with permission from Transparency in a chain of disparate quantum
emitters strongly coupled to a waveguide by D. Mukhopadhyay and G. S. Agarwal, Phys. Rev. A 101, 063814 (2020),
published by the American Physical Society.
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transparency in the system to be

1

∆
(1)
k

+
1

∆
(2)
k

+
1

∆
(3)
k

+ . . .
1

∆
(N)
k

= 0, (4.1)

where ∆(j)
k = vgk− ωj is the detuning of the jth atom. Our results are strong enough to withstand

dissipative effects as long as the dissipative channel is weak compared to the waveguide channel

and the atomic detunings are large compared to their decay rates. In the usual scenario for EIT,

the system comprises noninteracting atoms, whereas in a waveguide, an effective phase coupling

between the emitters persists even at long spatial separations (of the order of a wavelength). Fur-

thermore, while reciprocity in single-photon transport does not generally hold due to the phase

coupling, we observed an interesting exception for kL = nπ at which the waveguide demonstrates

reciprocal behavior with regard to both the transmission and reflection coefficients.

The chapter is organized as follows. In Sec. 4.1, we solve single-photon transport through a

waveguide coupled to two non-identical emitters. Such an arrangement allows nonreciprocal pho-

ton transport, which we will discuss in Sec. 4.2. In the special case kL = nπ, the nonreciprocity

disappears. In Sec. 4.3, we solve the system for an arbitrary number of non-identical emitters,

deriving the condition under which transparent behavior unfolds. The analysis is simplified by the

assumption kL = nπ. In Sec. 4.4, we show numerical plots that testify to the robustness of the

transparency condition to extraneous losses. The experimental feasibility of our theoretical model

is discussed at length in Sec. 4.5. Finally, in Sec. 4.6, we draw some analogies with transparent

behavior observed in a cavity-QED system with multiple atoms coupled to a single intracavity field

mode. Section 4.7 summarizes the key ideas explored.
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4.1 Solution for two non-identical 2LEs

In Chapter 2, Sec. 2.4, we had obtained the reflection and transmission coefficients across a

general system of emitters as

r =

(∏N
j=1 Lj

)
12(∏N

j=1 Lj

)
22

, t =
e−ikNL(∏N
j=1 Lj

)
22

. (4.2)

where

Lj =

eikL(1− iδ−1
k(j)) −ie−ikLδ−1

k(j)

ieikLδ−1
k(j) e−ikL(1 + iδ−1

k(j))

 (4.3)

was the transfer matrix across the jth atom, with δk(j) =
vgk − ωj + iΓ

(j)
)

Γ
, Γ =

J 2

vg
. For nota-

tional convenience, we let vgk − ωj = ∆
(j)
k . Nevertheless, in order to avoid cumbersome notation,

we suppress the k− dependence and assume identical damping rates for the atomic systems. We,

therefore, denote these variables as δj =
vgk − ωj + iΓ0

Γ
and δj = vgk − ωj . This convention

would be retained throughout the rest of the chapter. Let us first consider the simpler scenario

of two differentially detuned atoms in a waveguide and define the mean detuning of the incident

photon ∆ = vgk − 1
2
(ω1 + ω2) and relative atomic detuning s = ω1 − ω2.

Emergence of transparency: It turns out that while (L1L2)22 is symmetric in s, (L1L2)12 is not,

owing to the phase coupling between the emitters mediated by the waveguide. In other words, in

view of Eq. 4.2, even though transmission is perfectly reciprocal, reflection is not. For this system,
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the reflection and transmission coefficients reduce to

r =
−iΓ[(eiα + 1)(∆ + iΓ0)− (eiα − 1)s/2]− Γ2(eiα − 1)

[∆ + i(Γ + Γ0)]2 + Γ2eiα − (s/2)2
,

t =
(∆ + iΓ0 + s/2)(∆ + iΓ0 − s/2)

[∆ + i(Γ + Γ0)]2 + Γ2eiα − (s/2)2
, (4.4)

where we have taken α = 2kL. We note, however, in the special case kL = nπ, that the above

expressions turn symmetric in s, thereby leading to reciprocity in the transport properties. In

subsequent considerations, we analyse the results pertaining to this special choice of phase.

We now assume an idealized scenario where Γ0 can be ignored. The effect of Γ0 on the trans-

mission is studied later in Sec. 4.4. With Γ0 set to 0, one observes an emergence of transparent

behavior when the two atoms are equally detuned, albeit in opposite directions, with respect to the

laser frequency. In other words, t becomes unity when ∆ equals zero, or ωk − ω1 = ω2 − ωk,

i.e. for a pair of antisymmetrically detuned emitters. It follows, from Eq. 4.4 and the plots in

Fig. 4.1, that there is a transmission peak at ∆ = 0, while there are two roots of the profile at

∆ = s
2

(or vgk = ω1) and ∆ = − s
2

(or vgk = ω2) corresponding to perfect reflection. The peak

has unit height in the absence of decay, signifiying transparent behavior. The height of this peak

is strictly less than unity for any other choice of phase, as can be verified from 4.4 (for instance,

in the specific scenario, when kL = nπ
2

with odd n, the height of this peak is
[

s2

s2 + 8Γ2

]2
− see

Fig. 4.1). For a sufficiently small yet non-zero value of |ω1 − ω2|, one finds a very narrow window

of size s over which the system is capable of demonstrating both opacity as well as transparency.

As s → 0, the two roots come progressively closer. Fig. 4.1 illustrates this scenario for various

choices of |ω1 − ω2|.

Level Attraction: It can be noted that the poles of the transmission and reflection demonstrate

53



s

2 Γ
= 1.5

s

2 Γ
= 0.75

-4 -2 0 2 4
0.0

0.2

0.4

0.6

0.8

1.0

Δ

Γ

|t
2

Γ0=0

Figure 4.1: Transmission for a two-atom system without decay for a couple of values of
s = ω1 − ω2 and with kL = nπ. Perfect transparency is observed at ωk =

1
2
(ω1 + ω2) (zero mean

detuning), unless ω1 = ω2, in which case, the system is perfectly reflecting at zero detuning. The
two roots of the transmission come closer as the atomic frequencies approach each other.

features remindful of level attraction. These poles occur at

∆
(p)
± = −iΓ±

√(
s

2

)2

− Γ2 . (4.5)

Level attraction is typically observed between the normal modes of two coupled oscillators when

one of the bare modes has negative energy and the modes have comparable decay rates. When

the coupling strength equals or exceeds a critical value, the level separation vanishes. As a direct

analogy, we see, in our case, that the real parts of the transmission poles coincide and become

0 in the region s
2
≤ Γ, while the imaginary parts expand and shrink respectively. The point of

transition where the coupling equals this critical value is referred to as an exceptional point where

the complex eigenfrequencies coincide [97]. Realizing level attraction has been quite a challenge

from an experimental perspective and consequently, there is burgeoning interest in level attraction

and phenomena occuring in the vicinity of exceptional points. Recently, level attraction has been
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Figure 4.2: Comparison of transmission spectra corresponding to kL = π and kL = π
2
, with

s = 1.5Γ. The transmission peak attains unit height for kL = π whereas it is much shorter than
unity for kL = π

2
.

observed in a variety of systems and topological behavior around an exceptional point has also

been explored [98–104].

In the waveguide case with two atoms, we see that the transmission has zeros at

∆
(r)
± = ±s

2
, (4.6)

which simultaneously determine the peaks of the reflection spectrum. These zeros are close to the

the real parts of the poles when s
2
≫ Γ. In the complementary regime, when s

2
is comparable

to Γ, the real parts of the poles become small compared to the respective imaginary parts, as a

consequence of which, the resolution between the two levels (or the two poles) becomes difficult.

This problem of resolution arises fundamentally because Γ not only appears in the discriminant of

the poles, but also acts as a natural broadening term.

The shrinking of the transmission width as s
2

goes below Γ is clearly reflected in the transmis-
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Figure 4.3: Transmission at kL = nπ for s
2
= Γ− η with η = 0.1Γ and η = 0.25Γ.

sion plots shown in Fig. 4.3. Note that for s
2
= Γ, the poles given by Eq. 4.5 become degenerate.

Thus, if we define s
2
= Γ−η, then η depicts how far we are off the degeneracy point. For a positive

value of η > 0, the pole ∆
(p)
+ shrinks in width, with the relevant width given by

(
1 −

√
2η
Γ

)
Γ.

Choosing η
Γ
∼ 10−1, we find, in Fig. 4.3, that the transmission window becomes narrower as η

becomes larger.

4.2 On the nonreciprocity of photon transport

For general system parameters, the noncommutativity of transfer matrices precludes the possi-

bility of having reciprocal photon transport through the waveguide, even while there is symmetric

coupling between the atoms and the waveguide. However, when kl is a multiple of π, one has

perfect reciprocity. Let us consider the simpler scenario of two differentially detuned atoms in

a waveguide and define the mean detuning of the incident photon ∆ = vgk − (ω1 + ω2)/2 and

the relative atomic detuning s = ω1 − ω2. Then, for the general phase-dependent paradigm, the
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(a)                                                               (b)             

Figure 4.4: Degree of non-reciprocity, η, as a bivariate function of θ = kl and s/Γ. The left graph
(a) prominently captures the region where η < 1, while the right one (b) accentuates the spot in
which η < 1. All values in the range η ⩾ 1 are encoded as 1 in (a), while those in the set η ⩾ 9
are mapped to 9 in (b). Very small or very large values of η indicate substantial non-reciprocity.
System parameters have been constrained to the space ∆ = 0 (i.e., equal and opposite detunings),
and Γ = Γ0 (i.e. critical coupling).

reflection from the atomic system can be expressed as

r = −Γ2(eiα − 1) + iΓ[(eiα + 1)(∆ + iΓ0)− (eiα − 1)s/2]

(∆ + i(Γ + Γ0))2 + Γ2eiα − (s/2)2
, (4.7)

where α = 2kl. Therefore, unless kl is an integral multiple of π, the above expression depends on

s which is order dependent.

Quantifying Nonreciprocity: To quantify the extent of non-reciprocity, we could define the ratio

η =

∣∣∣∣r12r21
∣∣∣∣2, where rij represents the coefficient of reflection from an atomic chain with the atoms

with frequency ωi and ωj in positions 1 and 2 respectively. Clearly, η = 1 would signify perfect

reciprocity. From Eq. (4.7), it follows, on using (eiα − 1)/(eiα + 1) = i tan(α/2), that

η =
(∆ + Γ tan kl)2 + ( s

2
tan kl − Γ0)

2

(∆ + Γ tan kl)2 + ( s
2
tan kl + Γ0)2

, (4.8)
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which deviates from unity whenever Γ0 ̸= 0 and kl = nπ. Thus, the existence of a dissipative

channel is central to the absolute reciprocity of photonic energy transfer. Note that Eq. (4.7) also

implies η(−s) = [η(s)]−1, which means that if a certain s maximizes η, flipping the sign of s

would minimize the same for an otherwise constant set of parameters. The two panels in Fig. 4.4

demonstrate the two-dimensional plots of η when ∆ = 0 and Γ = Γ0, with the convention s > 0.

The value of η can be much larger than 1 as well if it lies well within the dark red regions shown

on either panel. For instance, the phase kl = 5π/6 supports a maximum asymmetry of η ≈ 13.78

in the chosen parameter space. This indicates that the reflected intensity for one direction of inci-

dence is almost 14 times that for the opposite direction of incidence[105].

Reciprocity for kL = nπ as a general fact: As was discussed in the context of a two-atom

system, reciprocity is entailed for the choice of phase kL = nπ even for a multiatom chain. It

follows, quite generally, from the expressions in Eq. (4.3), that kL = nπ ensures perfect optical

reciprocity for any arbitrary chain size. In fact, this choice of phase is both necessary and sufficient

for reciprocity in both the reflection and the transmission. The fundamental property that brings

about this reciprocal character is the commutativity between any two transfer matrices, i.e.

[Lr,Ls] = 0 ∀ r, s. (4.9)

The commutation relation follows from the form in Eq. 4.3. As an essential implication of

this, one finds that the matrix product
∏N

j=1 Lj is insensitive to the order in which the individual

matrices are multiplied. Consequently, no matter what the order of the atoms is, one has the same

transmission and reflection coefficients. Of course, this result is valid under the assumption that

each emitter couples identically to the left as well as the right-propagating fields, as far as the two

coupling strengths are concerned.
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4.3 General multiemitter chain: Condition for transparency

We now bring out some interesting features of the spectral behavior collectively induced by a

chain of multiple emitters with nonidentical detunings, corresponding to a spatial periodicity so

chosen that kL = nπ. In Chapter 3, Sec. 3.1, the analytical expressions for the spectral amplitudes

were derived for a system of identical emitters for which the transfer matrices were also identical.

Through a diagonalization procedure, the matrix product could be exactly calculated. However,

kL = nπ is an EP of the transfer matrices, since the eigenvalues coincide and become (−1)n.

Hence, diagonalization fails. However, the cascaded transfer-matrix product becomes tractable

when the lattice periodicity becomes commensurate with the wavelength, i.e., for kl = nπ, with n

as any natural number.

Analytical solution for kL = nπ: In this case, the transfer matrices reduce to

Lj = (−1)n(1+ δ−1
j ρ−), (4.10)

where 1 is the 2x2 Identity matrix, and ρ− = σy − iσz is a spin-annihilation operator in the σx-

eigenbasis. Since ρn− = 0 ∀n ≥ 2, the transfer matrices commute, and the transfer matrix product

becomes

N∏
j=1

Lj = (−1)nN
[
1+

( N∑
j=1

δ−1
j

)
ρ−

]

= (−1)nN

1− iΓ
∑N

j=1 δ
−1
k(j) −iΓ

∑N
j=1 δ

−1
k(j)

iΓ
∑N

j=1 δ
−1
k(j) 1 + iΓ

∑N
j=1 δ

−1
k(j)

 . (4.11)

By virtue of this simplification, the following transmission and reflection coefficients entail:

t =
1

1 + iΓ
∑N

j=1(vgk − ωj + iΓ0)−1
, r = −

iΓ
∑N

j=1(vgk − ωj + iΓ0)
−1

1 + iΓ
∑N

j=1(vgk − ωj + iΓ0)−1
. (4.12)
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The collective effect due to emission from multiple periodically spaced emitters is clearly em-

bodied in the aforementioned expressions. The spectral dependence on the detunings has a close

resemblance with that in the single-emitter scenario. The key factor that modifies the spectrum is∑N
j=1(vgk−Ωj)

−1, an additive effect of the inverse detunings pertaining to the individual emitters.

The expression is, of course, not as simple for other choices of phase. As a further simplification,

let us focus on the case where Γ0 is small enough to be dropped from consideration. This, in prin-

ciple, entails in the possibility of generating perfect transmission through suitable arrangements of

the individual detunings. The condition for transparency (r = 0 and t = 1) is, thus, given by

N∑
j=1

1

∆k(j)

= 0. (4.13)

For a single emitter, this relation is clearly impossible to satisfy and therefore, a single atom in

a waveguide can not suppress reflection completely†. One must have multiple atoms to be able

to achieve transparency. In a double-emitter scenario, where N = 2, the condition translates

to 2ωk = ω1 + ω2, which implies an exactly antisymmetric assignment of detunings to the two

emitters. This is in line with what was highlighted in the previous section dedicated to the study of

a two-atom chain (see Fig. 4.1).

For N = 3, the corresponding constraint appears as a quadratic equation

3ω2
k − 2(ω1 + ω2 + ω3)ωk + ω1ω2 + ω2ω3 + ω3ω1 = 0, (4.14)

with roots given by

1

3

[
ω1 + ω2 + ω3 ±

√
ω2
1 + ω2

2 + ω2
3 − ω1ω2 − ω2ω3 − ω3ω1

]
.

The discriminant can be re-expressed as 1
2
[(ω1 − ω2)

2 + (ω2 − ω3)
2 + (ω3 − ω1)

2], which, being a

sum of squares, is strictly non-negative, and hence, the roots are real.

†In fact, for a single atom, the solution is trivial, i.e., ∆k → ∞, which practically symbolizes the absence of an
atom.
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Figure 4.5: Even number of emitters with equal and opposite detunings assigned in pairs
generates transparency. The order of the atoms is not important, so the arrangement shown here is
just one of the possible permutations.

Even chain size: In general, it is easy to see that for even number of emitters in the chain, it is

always possible to make the system transparent if the atomic transition frequencies can be so ad-

justed that for any atom detuned by a certain amount, there exists another atom in the chain detuned

by the same amount but in the opposite sense (Fig. 4.5). In other words, for a chain of 2l atoms,

an assignment of the frequency detunings +∆1, −∆1, +∆2, −∆2,... +∆l, −∆l, in no particular

order, would give rise to transparency in the system. Such an asymmetric pairwise assignment of

detunings lead to Fano minima in the reflection spectrum, which signifies a destructive interference

between the reflected waves emanating from the emitters. Concomitantly, the transmitted waves

constructively interfere, leading to perfect transmission. This extreme resonant inhibition of the

reflection amplitude relative to the single-atom emission is a new phenomenon that is not observed

at kL = nπ for a system of identically detuned emitters.

Odd chain size: On the other hand, if one has odd number of emitters in the chain, one can

recover the single-atom emission spectra by assigning pairwise asymmetric detunings to any ran-

domly chosen (N − 1)/2 emitter pairs, leaving out a single atom. It then follows from Eqs. 4.12,

that the remaining atom completely determines the spectral characteristics. That is, if this partic-

ular atom has a transition frequency ω0, the transmitted spectrum due to the entire atomic chain
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Figure 4.6: A system of three atoms, out of which two carry equal and opposite detunings +∆
and −∆. The odd one out (the middle one, in this figure) with a detuning of ∆0 determines the
spectral behavior, and no collective effects exist. This behavior transcends to the case of any odd
number of emitters in the chain with a commensurate assignment of frequency detunings. When
∆0 = 0 , the system behaves as a perfectly reflecting mirror.

reduces simply to

t =
1

1 + iΓ(ωk − ω0)−1
, (4.15)

which is identical to the transmission coefficient with just that single atom coupled to the waveg-

uide (Fig. 4.6). Stated differently, when an even number of atoms with a pairwise asymmetric

assignment of frequency detunings are added, in a periodic fashion, to a single atom coupled to a

waveguide, no discernible collective effects emerge. The order of this arrangement and therefore,

the location of the odd atom are not important. This makes sense from the perspective of Fano

interference, since the reflected waves from the appended atoms destructively interfere, while that

from the residual atom effectively goes through unperturbed. As a consequence, if the odd atom is

in resonance with the laser frequency, the system resembles a perfectly reflecting mirror, regardless

of the frequency detunings of the other atoms.

When all atoms are identical: Finally, in the event that all the atoms have identical frequencies,

one can observe Dicke-type superradiant behavior due to enhancement of the reflection amplitude.

If the atomic frequencies are all set equal to ω0, the corresponding transmitted spectrum is obtained
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to be

t =
1

1 + iNΓ(ωk − ω0)−1
, (4.16)

which pertains to a Lorentzian with a half-width of NΓ. One can see a direct analogy of this re-

sult with the phenomenon of resonant diffraction from a system of periodically spaced quantum

wells, which demonstrates superradiant properties under the Bragg reflection condition, i.e. when

the periodicity is a half-integral multiple of the incident wavelength [106, 107]. At kL = nπ,

the reflection from the atomic chain is endowed with a single pole, identical to the Bragg reflec-

tion scenario, which has a linewidth proportional to the size of the system. However, having the

added flexibility of adjusting the atomic frequencies brings out different types of interesting ra-

diant behavior that one can observe, in principle. We do not merely encounter the possibility of

superradiant reflection, but also come across new points of transparency.

4.4 Robustness against dissipation into side modes

The simplistic results laid out in the preceding discussions in Secs. 4.1 and 4.3 hold only when

Γ0 is small enough to be ignored. However, we can look at more realistic scenarios with dissipation

included (Γ0 ̸= 0) and examine the effect of the same on those observations. For a two-atom chain,

we discover that the behavior changes drastically depending on how the relative detuning between

the atomic frequencies compares to this decay rate. Fig. 4.7 shows the plots for |t|2 vs.
∣∣∣∣∆Γ

∣∣∣∣
for a good-quality waveguide with a weak dissipative channel (Γ0 = 0.1Γ), for varying values of

|ω1 − ω2|. It is observed that for sufficiently small values of the latter, the transmission peak almost

disappears, whereas for large values, the height of the peak approaches unity. In other words, by

adjusting the relative frequency detuning between the emitters, one can achieve either high opacity

or high transparency around vgk = 1
2
(ω1 + ω2). For perfectly matched up atomic frequencies, i.e.

ω1 = ω2, one observes a diametrically opposite behavior as the two roots coincide - the central

peak is replaced by a trough. This is a Dicke-type superradiant effect - for negligible decay, the

63



s

2 Γ
= 2.5

s

2 Γ
= 0.75

s

2 Γ
= 0

-4 -2 0 2 4
0.0

0.2

0.4

0.6

0.8

1.0

Δ

Γ

|t
2

Γ0=0.1Γ

Figure 4.7: Effect of dissipation on the transmission of a two-atom system. If the dissipative
channel is weak compared to the waveguide channel, the profile closely resembles the
dissipation-free spectrum, except when the frequency mismatch between the atoms is smaller than
or comparable to the rate of dissipation. The central peak disappears as s→ 0 and is replaced by
a trough at s = 0.

transmission profile is a vertically inverted Lorentzian with a half-width of 2Γ.

One can analytically understand this behavior by considering two specific regimes, (i) s≪ 2Γ0

and (ii) s≫ 2Γ0. At ∆ = 0, one obtains

t =

(
s

2

)2

+ Γ2
0(

s

2

)2

+ Γ0(Γ0 + 2Γ)

. (4.17)

For small relative detuning between the atoms, i.e. s ≪ 2Γ0, the approximate form is given as

|t|2 ≈ Γ2
0

4Γ2
, which is vanishingly dimunitive, as long as the decay rate is much less than Γ. In the

opposite scenario when s ≫ 2Γ0, we get |t|2 ≈ 1 − O
(
8ΓΓ0

δ2

)
. Thus, a fairly high degree of

transparency can be achieved by specifically working with a large relative detuning |ω1 − ω2|.

For a system of even number of emitters, in which half of them have detuning +∆ whereas the
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other half have detuning −∆, the transmission goes as

t =
∆2 + Γ2

0

∆2 + Γ0(Γ0 +NΓ)
. (4.18)

For ∆ ≪ Γ0, |t|2 ≈
(

Γ0

NΓ

)2

, which testifies to highly reflecting behavior. However, when

∆ ≫ Γ0, we have |t|2 ≈ 1 − O
(
4NΓΓ0

∆2

)
, implying near-transparency. The situation here is

reminiscent of EIT where perfect transparency emerges in the absence of dissipative transitions.

Similarly, when there are odd number of emitters, with
N − 1

2
emitters each having a detuning

of +∆ and
N − 1

2
other emitters each detuned by −∆, one has, for the transmission coefficient,

t =
1

1 +
(N − 1)ΓΓ0

∆2 + Γ2
0

+
iΓ

vgk − ω0 + iΓ0

, (4.19)

where ω0 is the frequency of the remaining atom. When ∆ is large compared to Γ0, one can discern

a re-emergence of single-atom behavior.

One might also wonder how robust the transparency effect happens to be against sign-flip error

in the detunings. If we take the instance of a simple two-emitter system and ignore dissipative cou-

plings to keep the physics transparent, we know that perfectly transparency ensues from assigning

detunings that are equal in magnitude but opposite in signature to the individual emitters. Practical

setups are not devoid of noise, and perfect flip in signature would be too ideal to achieve. In order

to test the robustness against this indispensable error, we can re-examine the case of an atomic

array of even parity, with frequency detunings assigned in a way such that the j th pair carries the

detunings {+∆j,−∆j + ϵj}. The transmission becomes

t =
1

1− iΓ
∑N

j=1
ϵj
∆2

j

∼ 1 + i
N∑
j=1

Γϵj
∆2

j

+ . . . (4.20)

This means that the transparency in our optical setup can largely withstand fluctuations in sign-

flip, as long as the the fluctuations are tiny compared to the magnitude of the detunings. An error
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Figure 4.8: Chain of emitters placed inside a cavity resonator which is driven by an external laser.

analysis can also be made in relation to the proclaimed reemergence of single-atom behavior in

a chain of odd size, subjected to a similar assignment protocol, which will similarly vindicate its

robustness against imperfections in sign-flip.

4.5 Transparency in cavity QED: General analogies and discrepencies

Having discussed how to generate transparency in waveguide setups, it is instructive to explore

similar effects in a cavity-based platform. To that end, we consider a chain of N atomic scatterers

placed at the antinodes of an optical cavity, as depicted in Fig. 4.8. An optical laser of frequency

ωl drives the cavity (resonant mode ωc), which, then, excites the emitters coupled to the intracavity

field. Assuming a cavity leakage rate of κ across each mirror, while ignoring internal cavity losses

and atomic dampings, the system Hamiltonian in the reference frame of the laser frequency takes

the form

H/ℏ = δa†a+
N∑
j=1

∆jS
(j)
z +

N∑
j=1

gj(S
(j)
+ a+ S

(j)
− a†) + iEin(a

† − a) (4.21)

where δ = ωc−ωl, gj’s quantify the strengths of atom-cavity coupling, ∆j = ωj−ωl is the detuning

of the jth atom, and Ein =

√
2κPl

ℏωl

is the Rabi frequency of the control field, and Pl is the driving

power. We have also introduced the atomic pseudospin operators S(j)
+ = |e⟩j ⟨g|, S

(j)
− = |g⟩j ⟨e|,
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and S(j)
z =

1

2
(|e⟩j ⟨e| − |g⟩j ⟨g|), which satisfy the spin-

1

2
angular momentum algebra. Now, from

the master equation for cavity QED,

∂ρ

∂t
= − i

ℏ
[H, ρ]− κ(a†aρ− 2aρa† + ρa†a)− γ

N∑
j=1

(S
(j)
+ S

(j)
− ρ− 2S

(j)
− ρS

(j)
+ + ρS

(j)
+ S

(j)
− ) (4.22)

which assumes the reservoirs to be vacuum fields, we find the equations of motion to be

ȧ = −(2κ+ iδ)a− i

N∑
j=1

gjS
(j)
− + Ein,

Ṡ
(j)
− = −(γj + i∆j)S

(j)
− + 2igjS

(j)
z a, (4.23)

where we have dropped the expectation value notation ⟨.⟩. The damping terms are assumed to

be identical for all the qubits. In the steady state, using the mean-field approximation, one can

decouple the field and the atomic operators thus,
〈
S
(j)
z a

〉
≃

〈
S
(j)
z

〉
⟨a⟩ for brevity. Further, in the

weak excitation limit, it is safe to invoke the approximation
〈
S
(j)
z

〉
≈ −1

2
, i.e., the populations

remain predominantly in their ground states. This allows us to solve the steady-state amplitude of

the intracavity field,

as.s =
1

2κ+ i

(
δ −

∑N
j=1

g2j
∆j − iγj

)Ein (4.24)

Next, on using the input-output relation for cavity QED, Eout = 2κas.s, where Eout corresponds to

the transmitted field (in frequency units), we find the transmission coefficient to be

t =
Eout

Ein
=

2κ

2κ+ i

(
δ −

∑N
j=1

g2j
∆j − iγj

) ,
Γj≪∆j−−−−→ 2κ

2κ+ i

(
δ −

∑N
j=1

g2j
∆j

) . (4.25)
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We find that on setting δ = 0 and treating the coupling constants as equal, i.e. gj = g ∀j, we

recover results akin to the waveguide transport. When the atoms have identical detunings, super-

radiant effect becomes evident from Eq. (4.25), as the collective linewidth becomes
Ng2

2κ
. For

disparate detunings, the possibility of transparency hinges on the parity of the ensemble size. An

even chain size allows transparency upon imparting equal and opposite pairwise detunings, while

an odd chain size, for a similar assignment protocol, leads to an effective retrieval of single-atom

emission characteristics. Thus, there are obvious parallels between cavities and waveguides when

they are integrated with atomic scale dipoles [105]. However, photon transfer in cavity setups does

not depend on the order in which the atoms are arranged, and is, therefore, always reciprocal. On

the other hand, a waveguide mediates a phase-sensitive coupling between atoms, and this phase-

dependence makes photon transport generally nonreciprocal, as has been discussed earlier.

4.6 Summary

To summarize, we have thrown light on new possibilities that emerge in relation to the collec-

tive effects of a chain of atoms side-coupled to a waveguide when the interemitter separation is

fixed to satisfy kL = nπ, where n is an integer. For a chain of N atoms, we have demonstrated the

emergence of new Fano minima (transparency points) in the reflection spectrum for negligible dis-

sipation. WhenN is even, we have seen how transparency can be generated by assigning equal and

opposite detunings to the atoms in pairs, while for odd N , we have highlighted the possibility of

reproducing single-atom behavior through a similar assignment, so that the odd one out completely

determines the emission spectrum. A system of identically detuned emitters, on the other hand,

demonstrates superradiant behavior, similar to the reflection from a system of equidistant quantum

wells under Bragg condition. We have also shown that the optical system demonstrates reciprocal

behavior with respect to both transmission and reflection. In general, the system turns out to be

insensitive to the order in which the atoms are arranged. Finally, it has been demonstrated, both

analytically and graphically, that when dissipation into nonwaveguide modes cannot be neglected,

one can still produce highly transparent behavior by implementing a considerable disparity in the
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atomic transition frequencies. For a small mismatch in the frequencies, one, however, observes

predominantly opaque behavior in its place.

69



5. NON-HERMITIAN PHYSICS AND ANTI-PT SYMMETRY*

In standard quantum mechanics, observable quantities are always represented by Hermitian

operators. The eigenvalues of a Hermitian operator represent possible outcomes of the measure-

ment of an observable represented by that operator. Once the measurement of, say, the energy is

performed and the outcome recorded, the system collapses into a state of definite energy. States

of definite energy are characterized by the eigenstates of the operator. If an operator has a com-

plete set of eigenstates and real eigenvalues, then it becomes a viable candidate for representing

a physical observable. Carl Bender was amongst the first to question the stringent criterion of

Hermiticity and investigated the feasibility of non-Hermitian Hamiltonians which could also sup-

port real eigenvalues. This spawned the development of PT-symmetric quantum theory [108–110]

where the Hermiticity condition is replaced by the invariance under simultaneous parity (P̂ ) and

time-reversal (T̂ ) operation, i.e.

[P̂ T ,H] = 0. (5.1)

A PT-symmetric Hamiltonian is not Hermitian, but if the corresponding eigenstates are also sym-

metric w.r.t the P̂ T operation, then its eigenvalues are real and eigenstates may be complete.

Consequently, PT-symmetric Hamiltonians can, also be used, in principle, to describe quantum

mechanical systems.

The Hamiltonian of a physical system characterizes its energy spectrum and time evolution, and

is thus, of fundamental importance in quantum theory. In nature, all systems are invariably dissi-

pative as they interface with their environment and relax into equilibrium. As a consequence, an

open-system formulation in terms of the master equation becomes imperative. Such a description

leads to the system dynamics being described in terms of an effective non-Hermitian Hamiltonian.

*Sec. 5.4 of this chapter is reprinted with permission from Cavity mediated level attraction and repulsion between
magnons by J. M. P. Nair, D. Mukhopadhyay, and G. S. Agarwal, Phys. Rev. B 105 214418 (2022), published by the
American Physical Society. Collaboration with J. M. P. Nair is acknowledged.
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The transient as well as the steady-state characteristics of an open system depends strongly on the

symmetry properties of their effective Hamiltonian. Enigmatically, PT symmetry necessitates sys-

tems to feature a balanced tradeoff between gain and loss. Such a criterion would demand extrinsic

administration of gain into the system. To circumvent the challenge of gain administration, a sep-

arate category of systems that exhibit a modified symmetry property was theoretically proposed

by Ge and Turecii in 2013 [44] and later experimentally implemented by various scientific groups

[45, 47, 48] as interest in its utility flourished expeditiously. This has been classified as anti-PT

symmetry where the commutator in Eq. (5.1) is replaced by the anticommutator, i.e.,

{P̂ T ,H} = 0. (5.2)

Alternatively, a Hamiltonian with anti-PT symmetry flips sign under the joint action of the parity

and time-reversal operations. Such systems can display intriguing properties in the absence of any

gain medium, which set them apart from the class of PT-symmetric systems. Traditionally, much

attention has, however, been invested on the transient dynamics of anti-PT symmetric systems.

Our research, on the other hand, is focused on the steady-state character of these systems, and

contextualized, for specificity, on hybrid cavity-magnonic systems.

This chapter is organized in the following manner. Briefly acknowledging the relevance of

non-Hermitian dynamics in coupled optical systems, we outline the operational features of the P̂ T

operator in Sec. 5.1, and discuss spontaneous phase transition in anti-PT symmetric systems. In

Sec. 5.2, we provide a compact background on some optical implementations of anti-PT sym-

metry, following which, we uncover the role of dissipative coupling in realizing the associated

Hamiltonian. Sec. 5.3 is dedicated to a thorough analysis of cavity magnonics. We also discuss

how anti-PT symmetry can be achieved in magnon-based platforms. In Sec. 5.4, we analyze the

bad-cavity regime which also supports a realization of this symmetry. We conclude with a sum-

mary of discussions in Sec. 5.5.

71



5.1 General characteristics of non-Hermitian systems and introduction to anti-PT symme-

try

According to the coupled-mode theory in optics, the temporal evolution of an open system of

two harmonic oscillators can be described via a 2 × 2 non-Hermitian Hamiltonian matrix H . In

response to any electromagnetic excitation, the dynamics of the system, in the rotating frame of

the drive, can be encoded as

α̇0

β̇0

 = −iH

α0

β0

+ Ω

1

0

 , (5.3)

where (α0, β0) signify the mean-field amplitudes of the two modes, E is some generalized Rabi

frequency, and ωd is the laser frequency. The steady-state properties of the system would hinge

on the symmetry properties of H =

ρ σ

η ζ

, where the matrix elements are currently taken to

be arbitrary complex numbers. The diagonal terms are related to the frequency detunings and the

individual dissipation rates, while the off-diagonal terms signify coupling between the two modes,

often found to be symmetric. The spectrum of this matrix would be generally complex and the evo-

lution non-unitary. If the corresponding eigenfrequencies never intersect in the parameter space,

a minimum frequency gap exists between the normal modes, which has been variously referred to

as level repulsion/splitting or mode anticrossing. In contrast, there could be scenarios where the

eigenfrequencies converge and coalesce over a band of frequencies in the parameter space. This

phenomenon is termed level attraction or mode crossing. Compared to level repulsion, extensive

exploration into the subject of level crossing is a fairly recent pursuit [98–104]. In the following,

we shall discuss the feasibility of implementing level attraction in a bimodal framework, starting

from a brief exegesis of the P̂ T operation on these systems.

P̂ T transformation: The generic 2×2 matrixH lends itself to two very interesting symmetries,

namely PT-symmetry, which is defined by the condition [PT,H] = 0, and anti-PT symmetry,
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which subscribes to {PT,H} = 0. The operators P̂ and T̂ commute, [P̂ , T̂ ] = 0, and both satisfy

the property P̂ 2 = T̂ 2 = 1. In a 2 × 2 system, the effect of the parity operator is underscored by

the transformation property

P̂ |±⟩z = |∓⟩z , (5.4)

|±⟩z are eigenstates of the Pauli spin operator σ̂z. In the parlance of quantum information theory,

this is equivalent to a bit-flip operation, and therefore, P̂ = σ̂x =

0 1

1 0

. The time-reversal

operator T̂ is characterized by its operational signature of complex conjugation, i.e.,

T̂ zT̂ = z∗, (5.5)

where z ∈ C is any complex scalar quantity. This is an anti-linear operation since, it discriminates

between real and imaginary scalars. However, it does leave the basis states |±⟩z untouched. Taking

stock of all these properties, we can formally write down the transformation of the matrix H under

the joint application of P̂ and T̂ :

H =

ρ σ

η ζ

 P̂−→

ζ η

σ ρ

 T̂−→

ζ∗ η∗

σ∗ ρ∗

 = H ′. (5.6)

The matrix is said to be PT-symmetric when H ′ = H , and anti-PT symmetric for H ′ = −H .

The two symmetries can be visualized as follows. Consider two systems A and B, which could

feature either gain or loss. Now swap the two systems, A ↔ B and interchange the gain/loss in

the individual modes. If the composite system can be described exactly by the same Hamiltonian

as before, it is PT-symmetric. Contrarily, if the Hamiltonian undergoes only a sign change in the

process, the composite system is anti-PT symmetric.

Anti-PT symmetry and spontaneous phase transition: The PT-symmetric configuration is con-
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Figure 5.1: a), b) Eigenfrequencies and linewidths for an anti-PT symmetric system, plotted
against a variable ∆ = δ/2, calculated in units of Γ. While EPs emerge at ∆ = ±Γ, the
VIC-induced linewidth suppression (designated as X) corresponds to δ = 0. c), d) Analogous
plots for the PT symmetric system, against the coupling strength g, in units of γ, at ∆ = 0. EPs
are found at g = ±γ.
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formable with the parameter structure H11 = δ/2 − iγ, H22 = δ/2 + iγ, H12 = H21 = g, where

δ, γ, g are all real. This structure implies that a loss in mode a must be offset by a commensurate

gain in mode b. An anti-PT symmetric realization of mode hybridization can be reconciled with

the parameter description H11 = δ/2 − iγ, H22 = −δ/2 − iγ, H12 = H21 = −iΓ, where δ, γ,Γ

are all real. The coherence-inducing off-diagonal elements of H characterize a purely dissipative

form of interaction between the two modes, which is termed as vacuum induced coherence (VIC)

[56]. The diagonal terms indicate equal damping rates but opposite detunings in the two modes.

Both PT-symmetric and anti-PT symmetric Hamiltonians exhibit level attraction, as illustrated by

Fig. 5.1.

Let us now discuss the spontaneous phase transition of this anti-PT symmetric model [46].

It can be shown that the P̂ T operator can share simultaneous eigenstates with H under certain

conditions. On denoting the eigenvectors of H as |ϕ⟩± with their corresponding eigenvalues λ±,

we are led to the relation

H(P̂ T |ϕ⟩±) = −(P̂ T )(H |ϕ⟩±)

= −λ∗±(P̂ T |ϕ⟩±), (5.7)

in which the defining property {PT,H} = 0 was used in the first step. This shows that P̂ T |ϕ⟩±

are themselves eigenvectors of H with eigenvalues −λ±. This is conformable with two distinct

possibilities: (i) λ± are purely imaginary, satisfying λ± = −λ∗±, and P̂ T |ϕ⟩± = eiθ± |ϕ⟩± = for

some phases θ±; (ii) λ± satisfy λ± = −λ∗∓, with P̂ T |ϕ⟩± = eiθ± |ϕ⟩∓. The first possibility (i)

describes the PT-symmetric phase, where |ϕ⟩± are also eigenstates of the P̂ T operator, and there-

fore, themselves PT-symmetric. The second (ii) denotes the symmetry-broken phase, where the

states are not direct eigenvectors of the P̂ T operator but transform into each other under P̂ T op-

eration. The analytical forms of the eigenvalues of H are obtained to be −iγ ±
√

(δ/2)2 − Γ2 for

|δ/2| > Γ and −iγ±i
√

Γ2 − (δ/2)2 for |δ/2| < Γ (see Fig. 5.1(a,b)). Therefore, the former refers

to the symmetry-broken phase whereas the latter pertains to the symmetric phase. The points of
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transition |δ/2| = ±Γ, where the eigenvalues become degenerate, are known as exceptional points

(EPs), which have been found useful in the context of sensing. The existence of EPs is unique

to non-Hermitian systems. At an EP of order 2, both eigenfunctions of the system coalesce into

a single level. That is to say, as the eigenvalues coincide, the corresponding eigenfunctions also

collapse into a unique eigenfunction at an EP. The Hamiltonian becomes non-diagonalizable at

this point, since its rank reduces to 1. Such a peculiar behavior sets EPs apart from ordinary de-

generacies in Hermitian Hamiltonians. A Hermitian Hamiltonian always remains diagonalizable,

regardless of the multiplicity of its spectrum. This is because, even at a degeneracy, a Hermitian

Hamiltonian continues to possess a complete set of eigenstates. This is not the case for an EP

observed in non-Hermitian systems, and one must resort to a Jordan normal decomposition of this

Hamiltonian at the EP. Conventional degeneracies in Hermitian systems are also called Diabolic

Points (DPs). Owing to the unique character of an EP, this has been found to useful in sensing

applications as well as topological energy transfer [102–104, 111–113]. The sensing utility at an

EP and its advantage over a DP would be explained in Sec. 6.1 of Chapter 6.

In addition to an EP, anti-PT systems possess a real singularity at δ → 0, γ → Γ, which has

immense sensing potential, allowing efficient detection of both linear and nonlinear perturbations

in the system. This limiting point where one of the eigenmodes is completely quenched has been

utilized for the sensing of weak nonlinearities. This is discussed in great detail in the follow-

ing chapter. A key difference between PT-symmetric and anti-PT symmetric Hamiltonians is the

existence of a unique steady state. A similar analysis as above would show that PT-symmetric

eigenmodes are in the symmetric phase when the corresponding eigenvalues are purely real, i.e.,

when g ≥ γ in Fig. 5.1(c,d). In the symmetric phase, the eigenmodes are oscillatory, while in the

symmetry-broken phase, one of these modes, λ+ sustains exponential amplification. Thus, these

systems, in general, do not permit a unique, non-equilibrium steady state. On the other hand, anti-

PT symmetric eigenmodes always feature finite decay rates, except when the limit δ = 0, γ = Γ is

attained. Consequently, the long-time behavior of these systems can be perfectly encapsulated in

terms of well-defined and unique steady states, if one makes sure to avert the limiting real singu-
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larity.

5.2 Realization of anti-PT symmetry in dissipatively coupled optical systems

Optical systems provide a versatile playground for exploring non-Hermitian physics, because

light-matter interactions in nature are naturally accompanied by dissipative effects. More impor-

tantly, current technology allows the tunability of the optical properties of a medium through the

appropriate incorporation of gain or loss. The realizability of PT symmetry in photonic systems

has contributed immensely to the advancement of the study of non-Hermitian physics [114–116].

PT symmetry has been pivotal to the discovery of a number of unprecedented properties in photon-

ics, such as asymmetric light transport [114, 117], simultaneous coherent perfect absorption and

lasing [118, 119], superprism effect [120], and enhanced metrological precision [121]. The phase

transition associated with PT symmetry has been measured in topological photonic systems [122]

and complex-frequency band structures [123]. Unlike PT symmetry, anti-PT symmetry does not

require any extrinsic gain, and is predisposed to simple laboratory realization. The seminal theo-

retical work in Ref. [44] envisioned the tailoring of anti-PT symmetry via the symmetrical balance

of positive and negative refraction indices in a 1D synthetic heterostructure. In fact, the refractive

index was supposed to be spatially modulated to satisfy antisymmetry under P̂ T operation, i.e.,

n(−x) = −n∗(x). In addition, the magnetic permeability was demanded to obey µ(−x) = −µ(x).

However, designing a composite system of metamaterials by balancing positive and negative re-

fraction is experimentally not feasible. Subsequently, several theoretical studies were published,

which were contextualized on optically dressed atomic lattices [124] and nonlinear optical sys-

tems [125]. However, the primary method for devising anti-PT symmetry, which is experimentally

tenable, is via the indirect coupling of two systems mediated by a common reservoir. Such kinds

of coupling have become popularized as dissipative coupling, since this is brought about by dis-

sipation into the shared bath. The coupling is essentially non-Hermitian, ensuing from the master

equation description of the two systems.
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(a) (b) 

Figure 5.2: (a) Ballistic atomic motion in an atomic vapor cell distributes atomic coherence and
establishes dissipative coupling between two optical channels, each of which contains a weak
probe and a strong control field operating under the condition of EIT; (b) Realization of anti-PT
symmetry in an electrical circuit: Two resistively coupled amplifying LRC resonators, each with a
negative resistor unit.

Engineering anti-PT symmetry through dissipative couplings: The pioneering experiment by

Peng et al. reported anti-PT symmetry by employing dissipative couplings between atomic spin

waves resulting from rapidly moving atoms in a warm atomic vapor cell [45]. The corresponding

setup is reproduced in Fig. 5.2(a). F. Yang et al., in 2017, advanced a theoretical explanation

highlighting how anti-PT symmetry could be engineered via dissipative couplings in linear optical

systems [46]. Riding high on the sudden upsurge in interest on this subject, there was a prolif-

eration of efforts to fabricate expedient systems featuring anti-PT symmetry. In 2018, this was

experimentally demonstrated in a resistively coupled electrical LRC resonators [47]. The simplic-

ity of the associated circuit model, as shown in Fig. 5.2(b), makes it especially attractive †. By now,

a wide array of physical systems have been tailored to exhibit anti-PT symmetry in a multitude of

settings including, but not limited to, driven cold atoms [126, 127], laser-cooled atomic ensembles

[128], waveguides [46, 129], diffusive systems [130], coupled cavity-magnon systems [48], and

many more. Recently, Wen et al. demonstrated anti-PT symmetry in a quantum circuit model with

three qubits using nuclear spins [131]. Akin to the PT-symmetric setting, anti-PT symmetry also

†Fig. 5.2(a) has been redrawn from Nature Physics, 12(12):1139–1145, (2016), while Fig. 5.2(b) has been adapted
from Nature Communications, 9(1):2182, (2018) published as open access under the Creative Commons Attribution
4.0 International License.
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supports spontaneous phase transition in the photonic eigenmodes across an EP, and experiments

have successfully verified this phase transition (see, for example, [47]).

Origin of dissipative coupling: a quantum perspective: A notable example of a dissipatively

coupled system which we have already discussed in the earlier chapters, is an array of atoms

coupled to the 1D field continuum supported by a waveguide. However, in those chapters, we were

principally concerned with the steady-state transport properties of photons. But the waveguide can

also be treated as a Bosonic bath, which permits the adiabatic elimination of the waveguide degrees

of freedom. This leads to an effective dissipative coupling between the atoms. The coupling has a

quantum origin, as it is induced by the vacuum fields of the common bath, i.e., even when the bath

contains no photons. We note, however, that this coupling is not specifically restricted to 2LAs.

In fact, any quantum emitters, whether multilevel systems or harmonic oscillators would acquire

the same characteristic coupling mediated by the waveguide photons. This implies that waveguide-

integrated photonics can serve as a reliable platform to generate and modulate dissipative couplings

between spatially separated quantum emitters. The general schematic is shown in Fig. 5.3. For

instance, it has been shown that a microwave cavity can be dissipatively coupled to a single magnon

mode in a ferrimagnetic material through an interceding microwave transmission line (see Fig.

5.4). A systematic prescription to study magnetic systems and magnon-photon couplings would be

laid out in the next section. But before going into the topic of cavity-magnonics, we briefly outline,

through a quantum mechanical treatment, how anti-PT symmetry can be achieved by coupling two

modes dissipatively, i.e., through a shared reservoir.

For a non-interacting two-mode system irradiated by a laser drive of Rabi frequency E , the

dynamics in the rotating frame of the input drive is underpinned by the Hamiltonian operator

H/ℏ = ∆aa
†a+∆bb

†b+ i(Ea† − E∗a), (5.8)

where ∆a and ∆b denote the frequency detunings of the individual modes a and b relative to the
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Figure 5.3: Schematic of a general two-mode system dissipatively coupled through a waveguide.
γa(b) and Γ describe decay into the surrounding (local heat bath) and coupling to the fiber (shared
bath), respectively.

            

cavity 
waveguide 

Figure 5.4: Schematic of a ferrimagnetic YIG sample interacting dissipatively with the transverse
cavity, with the coupling mediated by an interposing microwave transmission line. YIG samples
have frequencies in the microwave domain while Γ, γ are in the MHz range. (Redrawn from Phys.
Rev. Lett. 125, 147202 (2020).)

carrier frequency. In addition, if both the modes are interfacing with dissipative reservoirs, we can

derive the master equation of the two modes as

dρ

dt
= − i

ℏ
[Heff , ρ] + κL(a)ρ+ κL(b)ρ+ 2ΓL(c)ρ, (5.9)

where κ stands for the intrinsic damping rate of either of the modes into its local heat bath, L is
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the Liouvillian operator defined by L(α)ρ = 2αρα† − α†αρ− ρα†α for any annihilation operator

α. The final term, with c =
1√
2
(a + b) emerges due to dissipation from the two modes into a

shared reservoir, such as a waveguide. Therefore, Γ quantifies the rate of spontaneous emission

into the waveguide channel. This equation holds under the approximation that the phase delay due

to light propagation from one mode to another is an integral multiple of 2π. The general master

equation for an ensemble of arbitrary number of oscillators coupled to a shared bath is derived in

Appendix B. Evaluating mean values of the mode operators ⟨a⟩ = Tr(aρ̇) and ⟨b⟩ = Tr(bρ̇), we

obtain the dynamics

˙⟨a⟩ = −(i∆a + κ+ Γ) ⟨a⟩ − Γ ⟨b⟩+ E ,

˙⟨b⟩ = −(i∆b + κ+ Γ) ⟨b⟩ − Γ ⟨a⟩ . (5.10)

We have dropped all quantum fluctuations at the mean-field level, i.e., set the averages of the noise

terms to zero. On making the identification α0 = ⟨a⟩ and β0 = ⟨b⟩, we recover a dynamical

equation of the form 5.3. Additionally, on choosing ∆a = −∆b = δ/2, we obtain

H =

δ/2− i(κ+ Γ) −iΓ

−iΓ −δ/2− i(κ+ Γ)

 , (5.11)

which fulfils the conditions for anti-PT symmetry. This shows how dissipative coupling can lead

to an anti-PT symmetric effective Hamiltonian under an antisymmetric assignment of the mode

detunings. In the forthcoming section, we dive into the subject of cavity magnonics and establish

it as a useful test bed for probing the interesting signatures of dissipative coupling and anti-PT

symmetry.

5.3 Cavity magnonics: a test bed for producing dissipative coupling

Of late, cavity magnonics has emerged as an important platform to implement many of the ideas

from quantum optics and non-Hermitian physics. Magnetic systems are often more interesting to
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study as one deals with the dynamical features of the collective spin excitations in macroscopic

systems instead of a small cluster of qubits. The low-lying collective excitations in magnetically

ordered materials have wave-like characteristics, as was demonstrated by Bloch in the context of

ferromagnets. These waves are known as spin waves and they have quantized energies [132].

Just the quantum of vibrational energy is denoted as a phonon, an elementary excitation of a spin

wave is represented as a quasiparticle called magnon. There are various types of magnon modes

that typify a magnetic sample, however, we focus on a very special mode known as the Kittel

mode, which describes a spatially homogeneous magnetic mode in the long-wavelength limit of

a spin wave [133]. To understand the concept of this mode better, we first recall the classical

picture of spin precession (also known as Larmor precession) in an external magnetic field. If a

magnetic field is applied to a spin-system making an angle with the direction of spin, one observes

a precession of the spin about the field axis. Now imagine we have a cluster of spins coupled

through exchange interaction (typically, nearest-neighbor couplings) spread across space and an

external magnetic field causes one of the spins to precess about the field direction. The exchange

interaction subsequently distributes this precession amongst other spins, forming spin waves. In

other words, any magnetic sample subjected to an external magnetic field which makes an angle

with its magnetization would necessarily incur a precession in its magnetization due to a net torque

acting on the same. In experiments, this is typically carried out by applying a small alternating

magnetic field, which oscillates at a fixed frequency, to the magnetic sample. Now, there exists

a unique mode, in which the individual spins are locked together resulting in all of these spins

precessing in phase and with the same amplitude. Because of this in-phase coherent oscillation,

the entire assemblage of spins can be mapped onto a large macroscopic spin, precessing as a

giant magnetic dipole. This particular mode of precession, which is characterized by its spatially

uniform magnetization density, is known as the ferromagnetic resonance (FMR) mode. In more

popular parlance, this came to be known as the Kittel mode, named after Charles Kittel, who

proposed the theory of FMR. The precession frequency of the Kittel mode in the presence of a
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Quantities of interest Experimental range Units
Frequency of Kittel mode, ωm =
γeB0

1-10 GHz

Anharmonicity constant, U O(0.01)−O(10) nHz
Damping constant, γ/(2π) 1-10 MHz
Coherent magnon-photon coupling,
g/(2π)

50− 100 MHz

Dissipative magnon-photon cou-
pling, Γ/(2π)

1-25 MHz

Table 5.1: Typical experimental parameters relevant to cavity magnonics, based on literature.
The values shown are ballpark numbers.

static magnetic field B0 is given, upto a good approximation, by

ωm ≃ γeB0, (5.12)

where γe/(2π) = 28 GHz/T is the gyromagnetic ratio of the electron spin. Therefore, for B0 ≃ 36

mT, the resonance frequency is obtained as ωm/(2π) = 1 GHz, which makes this a good candidate

for coupling to microwaves. Also, being spatially uniform, it is much simpler to model than other

non-uniform modes.

Motivation to study cavity-magnonics: All said and done, it is perhaps more pertinent to ad-

dress the real motivation in exploiting magnon-photon couplings. While there is an indispensable

damping effect associated with the precession of magnetization, the losses are much lower than

qubits or two-level atoms. Thus, magnonic excitations are fairly robust and the frequencies easily

tunable. Moreover, these excitations can be observed at very low driving powers, even at fractions

of a microwatt. A number of discretely spaced magnetostatic magnon modes are found in a mag-

netic sample, out of which the simplest is the Kittel mode. It is always possible to to selectively

excite the homogeneous Kittel mode by judiciously tuning the carrier frequency and selecting the

cavity mode most proximal to the Kittel mode. All of these in a magnetic sample afford a reliable

paradigm for designing futuristic spintronic devices using magnon-photon couplings [134, 135].
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Strong coupling of magnons to microwaves was first successfully demonstrated by Tabuchi et al.

[136] and Zhang et al. [137] in 2014. They performed their experiments with spherical samples

of YIG, which is a ferrimagnetic insulator and consequently suffers from low dissipation. Propi-

tiously, YIG is endowed with very high spin density ρ = 4.22 × 1027 m−3, with s =
5

2
being the

spin number of the ground state Fe3+ ion in YIG. With a value of ρ = 4.22 × 1027 m−3 for the

Fe3+ ion density, and a diameter d = 1 mm of the spherical sample, the total spin becomes

S = sρVm = 5.524× 1018, (5.13)

which is extremely high. Here, Vm =
4

3
π

(
d

2

)3

is the volume of the YIG. The quantity ρ =

4.22× 1027 m−3 has been borrowed from literature [138, 139]; however, this could be even higher.

In [136], the experimenters demonstrated mode splitting due to strong magnon-photon coupling

of ∼ 50 MHz, permitting a cooperativity of 3 × 103. The following year, in 2015, they were

able to couple a superconducting qubit to magnons via microwave fields in a cavity [140]. The

current state of the art allows even ultrastrong photon-magnon couplings to be achieved, which

makes the study of magnon-photon interfaces particularly tempting [141]. This enables theory and

experiment to proceed hand in hand, reliably guiding each other in their pursuits. YIG systems

enable us to study various signatures of non-Hermitian physics like nonreciprocity, EPs, level

attraction and repulsion [48, 99, 142–147].

In addition to semiclassical phenomena, several quantum features, like entanglement and squeez-

ing, have also been proposed in such systems [138, 139, 148, 149]. The magneto-crystalline

anisotropy of magnons leads to Kerr-like nonlinearity, familiar from nonlinear optics. The Kerr

effect has been shown to be responsible for multistability and photon-mediated control of spin

current [150–154]. Spherical samples of YIG with diameters ranging from ∼ 100µm to 1 mm

have been fabricated in a myriad of experiments, clearly underscoring the macroscopic sizes of

the samples used. In light of the immense topicality of cavity magnonics, we have analyzed some

of the general features of hybrid quantum systems using the master-equation approach, applying
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them numerically to the context of cavity-magnonic systems. We have been particularly interested

in the study of anti-PT symmetric systems, in which the magnons are dissipatively coupled to mi-

crowave fields (see Fig. 5.4). This type of coupling offers definite advantages over coherently

coupled PT-symmetric systems in a number of physical problems, some of which we will expand

on in the forthcoming chapters.

Quantization of magnons in a magnetic field: We now provide a quantum mechanical descrip-

tion of a YIG sphere subjected to a static, uniform magnetic field B = B0ẑ applied along the ẑ

direction. Such a bias magnetic field enkindles the spatially uniform Kittel mode. The magnetiza-

tion associated with the Kittel mode, which is the magnetic dipole moment per unit volume, can

simply be written as M =
ℏγeS
Vm

, where γe =
e

mec
is the gyromagnetic ratio for electron spin, S

denotes the collective spin operator, and Vm the volume of the YIG sphere. The collective spin

variables represent spin angular momentum operators spanning the appropriate SU(2) Lie algebra,

[Sj, Sk] = iεjklSl. We know that a spin s in a magnetic field attains a Hamiltonian Hs = −m · B,

where m = ℏγes is the magnetic moment. For a macroscopic magnetic material, this expression

generalizes to HM = −
∫

M(r) · B(r) d3r in the magnetic dipole approximation. This is the

usual Zeeman Hamiltonian. This approximation works pretty well in the long-wavelength limit of

low-energy spin-waves, as exchange interactions between spins can be effectively subordinated in

comparison to the dipolar effect. For the uniformly precessing Kittel mode with a space-invariant

magnetization within the sample, this reduces to HM = −ℏγeB0Sz. Owing to the magnetocrys-

talline anisotropy, an additional anisotropic magnetic field Han is entailed, which has only a non-

zero z-component when the static magnetic field is aligned parallel to the crystallographic axis.

This field is then given by Han = −2KanMz/M
2, where Kan denotes the dominant first anisotropy

constant, and M is the saturation magnetization. This anisotropic field shifts the Hamiltonian by

an amount H (a.i)
M = −µ0

2

∫
Mz(r)Han(r)d3r = γ2e

ℏµ0Kan

M2V
S2
z . Here, µ0 is the magnetic permeabil-

ity of the material. Summing up the two contributions, the Hamiltonian of the Kittel mode, in the
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presence of an applied bias field, assumes the expression

H = HM +H (a.i)
M = −ℏγeB0Sz + ℏ2γ2e

µ0Kan

M2Vm
S2
z . (5.14)

One can, thereafter, diagonalize this Hamiltonian in the simultaneous eigenspace of S2 and Sz.

However, since the total spin is very large, one can obtain a Bosonic representation of the Kittel

mode operators via the Holstein-Primakoff transformation, viz.

Sz ≃ S −m†m,

S+ ≃
√
2S

(
1− m†m

2S

)1/2

m,

S− ≃
√
2S

(
1− m†m

2S

)1/2

m†. (5.15)

Note that the magnon creation operator m† corresponds to deexcitation of the spin state, or the

down-flipping of any one of the constituent spins. For a typical YIG sphere, S ∼ 1018, which far

exceeds the mean magnon number
〈
m†m

〉
achievable in the space of low-lying excitations. It is

then safe to approximate the spin raising and lower operators as S+ ≃
√
2Sm and S− ≃

√
2Sm†.

Armed with these simplifications, we can recast the Hamiltonian in Eq. () into

H/ℏ = (ωm + U)m†m+ U(m†2m2), (5.16)

where ωm = γeB0 −
2Sℏµ0γ

2
eKan

M2Vm
, U =

ℏµ0γ
2
eKan

M2Vm
. Now, while ωm is of the order of GHz,

the anharmonicity constant U relevant to YIGs lies in the nanoscale regime (see, for instance,

[150, 155]) and therefore, as a frequency, it is around 18 orders of magnitude smaller than ωm.

This facilitates the further approximation ωm + U ≃ ωm. But we cannot afford to be flippant by

approximating ωm = γeB0 − 2SU ≃ γeB0. This particular approximation would make sense

only when U is the sub-nHz domain, i.e., U ≲ 0.1 nHz, which often happens to be the case.
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Nevertheless, quite generally, the Hamiltonian can be expressed as

H/ℏ = ωmm
†m+ U(m†2m2), (5.17)

where the second term, resulting from magnetocrystalline anisotropy, embodies the Kerr nonlin-

earity in the sample.

Hamiltonian of coherent interaction with a microcavity: We first consider a YIG sphere wedged

inside a microwave cavity so that the Kittel mode can be coupled efficiently to the intracavity field.

Strong coupling can be achieved via the Purcell effect. The Hamiltonian of the cavity mode is

obtained in the usual harmonic oscillator form, i.e.,

Hc =
1

2

∫
Va

(
ε0E

2 +
B2

µ0

)
d3r ≃ ℏωaa

†a, (5.18)

where Va is the quantization volume of the cavity and ωc is the resonant cavity-mode frequency.

The magnetic field B, assumed to be along the x-axis, would also coherently interact with the

magnetization of the Kittel mode, leading to the Hamiltonian

Hcoherent = −
∫
Vm

M ·B d3r = −ℏγeSx

Vm

∫
Vm

Bx(r)d
3r (5.19)

where Sx =
S+ + S−

2
≃

√
S

2
(m +m†) and Bx(r) = i

√
µ0ℏωa

2Va
u(r)a + h.c. are both quantized

operators. The integral is taken over the volume of the YIG since the magnetization is confined

only within this volume. The parameter Va symbolizes the volume of the cavity and u(r) designates

the relevant mode function normalized as
∫
Va

|u(r)|d3r = Va. Substituting these expressions into

(5.17), we find

Hcoherent = −iℏγe
4

√
5ρµ0ℏωa

VaVm

(
ηa+ η∗a†

)(
m+m†

)
(5.20)
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with the constant η defined as η =
∫
Vm
u(r)d3r‡. Under the RWA, this expression reduces to

Hcoherent = ℏ(gam† + g∗a†m), with the coupling constant g = −iγe
4

√
5ρµ0ℏωa

VaVm
η. In any case, we

can always absorb the phase factor associated with g into a redefined magnon operator and treat g

as a real variable, which simplifies (5.20) as

Hcoherent = ℏg(am† + a†m) (5.21)

This kind of interaction is referred to as coherent coupling between a and m since it is established

through the direct exchange of energy between magnons and photons. It is easy to see that the total

excitation number N̂a+N̂m = a†a+m†m is preserved by this coupling, as [a†a+m†m,Hcoherent] =

0 and therefore, energy is transferred back and forth between the cavity and the magnon modes in

an oscillatory fashion. These oscillations are known very well as Rabi oscillations. Stated alter-

natively, there exists an oscillatory coherence between the singly-excited-magnon state and the

singly-excited-cavity state. So the nature of this Hamiltonian is exactly similar to the Jaynes-

Cummings model of a 2LA interacting with an EM field.

Effect of a coherent microwave drive with magnetic field along ŷ direction: We next con-

sider the scenario when the Kittel mode is driven externally by a classical driving field Bd(t) =

Bd cos(ωdt)ŷ =
Bd

2
(eiωdt + e−iωdt)ŷ. The interaction Hamiltonian would be given by

Hd = −
∫

M ·Bd d
3r =

iℏγeBd

4

√
5ρVm

(
eiωdt + e−iωdt

)
(m−m†), (5.22)

which, on account of the RWA, yields

Hd = iℏΩ(meiωdt −m†e−iωdt), (5.23)

‡More generally, for a spatially non-uniform mode, this would be the overlap-integral between the magnetization
and field mode functions.
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where Ω = γeBd

√
5ρVm
4

is the associated Rabi frequency. We would, however, like to connect this

to the input power of the driving field. For this, we need to calculate the Poynting vector pertaining

to the drive. The time-averaged magnitude of this Poynting vector can be expressed in SI units as
cB2

d

2µ0

, where c stands for the speed of light. Since this is just the power imparted per unit area of the

target, the input power would be given approximately by Dp ≃
cB2

d

2µ0

.
πd2

4
, where d is the diameter

of the YIG sphere. This allows us to rewrite the Rabi frequency in terms of the incident power and

the system parameters:

Ω =
γe
2

√
5µ0ρdDp

3c
. (5.24)

So finally, when we combine all the contributions, we find the full Hamiltonian of the cavity-

magnonic composite system as

Heff/ℏ = ωaa
†a+ ωmm

†m++U(m†2m2) + g(a†m+ am†) + iℏΩ
(
m†e−iωdt −meiωdt

)
. (5.25)

Dissipatively coupled cavity-magnon system: Here, we would like to address the following:

what if, instead of placing the YIG inside a resonator, we couple the YIG and the resonator to a

shared waveguide and keep a spatial separation between the two elements? This the precise setup

that was illustrated in Fig. 5.4 and was based on the experimental model proposed by Wang et al.

- an integrated apparatus comprising a bulk YIG sphere, coupled dissipatively to a single-mode

cavity through an interposing fiber waveguide. In the experiment, they kept the spatial separation

between the cavity and the YIG adequately large, so as to minimize any direct interaction between

the two. Additionally, a protective shield was used around the YIG which further mitigated the

chances of coherent couplings. The Hamiltonian of this model is exactly the same as before, with

only g now set equal to zero. The dissipative effect of the waveguide has to be incorporated at

the level of a master equation, as argued before. In the rotating frame of the drive frequency, this
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results in the following mean-value equations

ȧ
ḃ

 = −iH

a
b

+ 2U(b†b)N

a
b

+ Ω

0

1

 , (5.26)

where H =

∆a − i(γa + Γ) −iΓ

−iΓ ∆b − i(γb + Γ)

, N =

0 0

0 1

, and the notation ⟨.⟩ has been

dropped for conciseness. In dealing with the nonlinear term, we have taken recourse to the mean-

field approximation ⟨X1X2⟩ = ⟨X1⟩ ⟨X2⟩ for any two operators X1 and X2. When one ignores

the effect U , then under pertinent choices of the system parameters, i.e., γa = γb = γ0 and

∆a = −∆b =
δ

2
, an effective anti-PT symmetric Hamiltonian as derived in Eq. 5.11 can be

used to describe the system. Anti-PT symmetry was first experimentally demonstrated in a cavity-

magnonic setting by C. M. Hu’s group [48]. Throughout the next two chapters, we would focus

primarily on anti-PT symmetric systems, and base our numerical analyses on cavity-magnonic

setups, which are finding considerable attention in the experimental optics and solid-state com-

munity. But before we move on to explore the significance of such systems, we briefly allude

to an alternative method of generating dissipative coupling, which is mediated between two non-

interacting magnon modes by a bad-quality cavity, i.e., having a high leakage rate.

5.4 Dissipative coupling and anti-PT symmetry in a poor cavity

We have just shown that dissipative coupling between a cavity and a magnetic sample by cou-

pling them evanescently to a waveguide can lead to anti-PT symmetry. Here, we delineate an al-

ternate protocol for bringing about the same symmetry in a cavity QED framework. In this model,

we envisage a hybrid cavity-magnonic system, with two macroscopic YIG samples placed inside

a microwave cavity, as illustrated in Fig. 5.5. We consider the spatially uniform Kittel mode of

either YIG as being dispersively coupled to the intracavity photons of a neighboring frequency. To

simplify our analysis, we assume the YIG samples to be identical in all respects. The Hamiltonian
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Figure 5.5: Schematic of two YIGs coherently coupled to a single-mode microwave cavity. The
static magnetic field exciting the Kittel mode in both the YIGs are aligned along the z-axis. The
intracavity field mode is propagating along the y-axis, with the corresponding magnetic field
directed along the x-axis.

of the hybrid magnon-cavity system is then provided by

H/ℏ = ωaa
†a+

2∑
i=1

[
ωm†

imi + g(m†
ia+mia

†)
]

(5.27)

The parameter gi =
√
5

2
γe
√
ρVmBvac quantifies the coherent magnon-cavity coupling, with Bvac =√

µ0ℏωa

2Va
denoting the magnetic field amplitude of vacuum. In the frame rotating at frequency ωa,

the Heisenberg equations of motion can be cast in the form Ẋ = −iHX , where where X = (⟨a⟩

⟨m1⟩ ⟨m2⟩)T , and the effective non-Hermitian Hamiltonian describing the system dynamics is

provided by

H =


−iκ g1 g2

g1 s− iγ1 0

g2 0 −s− iγ2

 . (5.28)

Here, we have set ωa = (ωm1 + ωm2)/2 (thus, the magnons are antisymmetrically detuned

relative to the cavity frequency) and defined s = (ωm1 − ωm2)/2. The parameters κ and γi denote

the rates of dissipation appearing in the master equation. The normal modes of the hybridized

system are referred to as polaritons. For convenience, we now assume that the coupling strengths
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are identical, i.e., g1 = g2 = g and so are the magnon damping rates, i.e., γ1 = γ2 = γ. When the

cavity is weakly coupled to the magnon modes (g ≪ κ) and the photons decay over a much shorter

time scale than the magnons (γ ≪ κ), we can observe signatures of level crossing between the

magnon-like polaritons. To see this, we consider the characteristic equation for H by neglecting

the effect of γ in reference to κ:

(λ+ iκ)(λ2 − s2)− 2g2λ = 0. (5.29)

Since the eigenvalues in the absence of g equal λ0 = −iκ, and λ± = ±s, it can be argued

that the perturbative correction to each of them for sufficiently small g would go as O(g2). This

consideration pins down the approximate form of λ0 to be −iκ[1− 2g2/(s2 + κ2)]. Next, in view

of the fact that both s and g are small compared to κ, we approximate λ±+ iκ ≈ iκ, which permits

the reduction of the cubic equation into a quadratic one λ2± + 2Γλ±i − s2 ≈ 0, where Γ = g2/κ.

This yields the remaining eigenvalues

λ± = −iΓ± i
√
Γ2 − s2. (5.30)

The forms of λ± are strongly redolent of the eigenspectrum of an anti-PT symmetric system,

with EPs located at s = Γ. We can extract spectroscopic information about the system by applying

an external probe, which renders an empirical tool to observe this level crossing§. The onset of

level crossing in this regime points to a hidden dissipative interaction between the magnon modes

[147]. This is proved rigorously in Appendix C.

5.5 Summary

Non-Hermitian effective Hamiltonians are useful in describing open quantum systems which

exchange energy with their surroundings. We have introduced two exotic symmetries in non-

§Details on the derivation can be found out in our paper (Phys. Rev. B. 105, 214418 (2022)) and are beyond the
scope of this thesis.
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Hermitian systems, PT-symmetry and anti-PT symmetry, with a special focus on the latter. Anti-PT

symmetry can be realized in various optical systems of interest, with a reservoir-mediated purely

dissipative coupling forming the mainstay of this symmetry. Guided by recent experiments on cav-

ity magnonics, we have pick these systems as a useful and emergent test bed for probing dissipative

couplings. We have presented a detailed, first-principle description for analyzing magnon-photon

interactions in the quantum mechanical formalism. We have also brought to light the feasibility of

engineering dissipative coupling between two magnons coupled to a single-mode cavity, by ma-

nipulating the relaxation rates and the magnon-photon coupling strengths. Specifically, this feature

transpires in the bad-cavity regime of cavity QED.
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6. SENSING OF ANHARMONICITIES THROUGH ANTI-PT SYMMETRY*

In the modern world with proliferating technological advances, sensing is of fundamental im-

portance, with far-reaching applications [156–162] across various scientific disciplines, with adop-

tions as particle sensors, motion sensors, and more. Both semiclassical and quantum phenomena

provide us with a wide range of techniques to attain remarkable efficacy in sensing operations. In

recent times, there has been a widespread interest in exploiting EPs for enhanced sensing. The

square-root singularity of an EP reinforces the sensitivity in eigenmode splitting to weak pertur-

bations [111–113, 163–167]. Some recent experiments include the demonstration of enhanced

sensitivity in optical microcavities near EPs [111] and the observation of higher-order EPs in a

coupled-cavity arrangement [112]. While this is a truly remarkable development and has acquired

a lot of traction, these methodologies are customized to sense only linear perturbations. One would

like to examine the possibilities of newer sensing techniques, which could be tapped for the de-

tection of anharmonic perturbations. However, many systems like transmon qubits and magnons

have intrinsic anharmonicities which are too small to detect and consequently, ignored. We took

the first step in the direction of sensing nonlinear perturbations in driven dissipative systems, by

exploiting the phenomenon of VIC [168].

Dissipatively coupled systems have the novel property that the vacuum field inside a shared

reservoir induces coherence between two modes. The phenomenon of vacuum induced coher-

ence (VIC) has been the subject of intense activity [169–181] with applications ranging from heat

engines [173] and nuclear gamma ray transmission [178] to photosynthesis [179] and molecular

isomerization in vision [181]. When optimally strong, under anti-PT symmetric conditions, the

VIC produces a long-lived eigenmode, thereby stirring up a strong response to an external pump.

The response is starkly sensitive to the strength of anharmonicity, which underscores its sensing

*A major portion of this chapter is reprinted with permission from Enhanced Sensing of Weak Anharmonicities
through Coherences in Dissipatively Coupled Anti-PT Symmetric Systems by J. M. P. Nair, D. Mukhopadhyay, and G.
S. Agarwal, Phys. Rev. Lett. 126, 180401 (2021), published by the American Physical Society. Sec. 6.3 is reprinted
with permission from Phys. Rev. Res. 4, 013131 (2022). Respective collaborations with J. M. P. Nair and J. Wang are
acknowledged.
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capabilities. This is achieved in anti-PT symmetric systems. Our sensing methodology operates

near the quasi-real singularity of an anti-PT symmetric system where VIC creates a divergent lin-

ear response. Any intrinsic anharmonicity serves to regularize this response. More importantly,

the steady-state response is starkly sensitive to the strength of anharmonicity, which underscores

its sensing capabilities. Contextualized in a cavity-magnonic setting, our simulations illustrate the

efficient detection of magnonic anharmonicity through the application of a maser pump at a minus-

cule power of Dp = 1 W. Note that under most circumstances, weak nonlinearities of the order of

nHZ would require immense drive power to be detected in experiments. However, a dissipatively

coupled system affords a prodigious response in the magnetization of the YIG which goes up spec-

tacularly with the weakening strength of nonlinearity. That this response is strongly sensitive to

variations in the strength of anhamonicity underpins the utility of our scheme in sensing applica-

tions. This new mechanism is applicable generally to a large class of systems encountered across

various scientific disciplines. Examples include quantum emitters coupled to metamaterials [169–

171], optomechanical systems [98], superconducting transmon qubits in a microwave transmission

line [182], and many more.

The chapter is organized as follows. In section 6.1, we briefly recapitulate the mechanism for

sensing weak linear perturbations around an EP. We subsequently discuss, in Sec. 6.2, the role

of VIC in an anti-PT symmetric system by enhancing sensitivity to perturbations around the VIC

point. Following this, we highlight its potential in sensing linear perturbations in Sec. 6.3, an weak

anharmonicities in 6.4. Results from numerical simulations are shown in the specific context of

cavity magnonics. For driven nonlinear systems, new VIC-like effects emerge, which we bring out

in Sec. 6.5. The main results are summed up and presented in 6.6.

6.1 Sensing of linear perturbations at EP

Singularities in a physical system are extremely critical points which wield tremendous influ-

ence on the characteristics of the system, particularly related to phase transition. Owing to the

pronounced impact of singularities, the behavior of a system is of a fundamentally different nature
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compared to the neighboring points. This property is directly responsible for creating opportunities

for ultrasensitive measurements around a singular point, as borne out by a range of recent theo-

retical and experimental works. An interesting category of sensors deployed in physics is based

on the detection of splittings in the resonant frequencies or energy levels to external perturbations.

Examples would be nanomechanical mass sensors [156], magnetic field sensors [161] and optical

gyroscopes [162]. A degeneracy of resonant modes can function as the cardinal element of a sensor

because any tiny perturbation to the system serves to break the multiplicity of eigenfrequencies.

The role of a sensor is then to probe the splitting effect. Conventionally, for closed, conservative

systems, a minute perturbation of strength ε leads to spectral splitting in the resonance frequencies

linearly proportional to ε, which admittedly is itself comparably weak†. This behavior drastically

changes for open systems which are non-conservative. Since these systems are described by an

effective non-Hermitian Hamiltonian, the corresponding degeneracies appear as EPs, where not

only the eigenvalues coincide but so do the corresponding eigenvalues. For example, if a system

prepared at an EP is subjected to a perturbation of strength ε then the resulting energy splitting

is typically proportional to ε1/2 (see Fig. 6.1(a,b)). In other words, for a sufficiently small ε, the

strength of the spectral splitting is enhanced compared to the strength of the perturbing influence.

This feature owes its origin to the branch-point singularity at an EP, and lends enhanced sensitivity

to feeble perturbations. The exciting potential of EP-based sensors was first brought to the fore

through the ingenuity of J. Wiersig, when he theoretically analyzed its application to single-particle

detection in microcavity sensors. We briefly review the underlying theory here.

Let us consider a 2 × 2 matrix M(µ) as a function as a function of a tunable (and generally

complex) parameter µ. To keep the analysis general, we do not specify the elements of the ma-

trix. Now, upon solving the characteristic polynomial equation, the eigenvalues of M(µ) can be

expressed in the form

λ±(µ) = η ±
√
(µ− µ+)(µ− µ−), (6.1)

†Degeneracy points in Hermitian are also known as DPs, as was defined in Sec. 5.2 of Chapter 5.
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Figure 6.1: Normal-mode splitting (a) and (b) intensity-peak-shift in response to a weak
perturbation. Blue curve corresponds to the performance at a DP (hermitian degeneracy) while
red curve at an EP. (Adapted from Photon. Res. 8, 1457-1467 (2020), published as open access by
the Optica Publishing Group.)

where η =
1

2
TrM and µ± represent two well-separated EPs of the system. Then λ±(µ) have

branch-point singularities at µ = µ±. At any of these EPs, the eigenvalues become degenerate,

i.e., λ(µ±) = η. Let us now consider the splitting defined by δΩ(µ) = 2Re(λ+(µ) − λ−(µ)) =

2
√

(µ− µ+)(µ− µ−). For a tiny perturbation at the EP µ+, i.e., µ = µ+ + δµ, the splitting can

be written, up to leading order in the perturbation parameter, as

δΩ

∣∣∣∣
µ=µ+

≃ 2
√
δµ

√
µ+ − µ− (6.2)

Thus, the sensitivity around the EP can be encoded as

δΩ(µ)

δµ

∣∣∣∣
µ=µ+

≃
√
µ+ − µ−√
δµ

∝ 1√
δµ

(6.3)

showing that the derivative function diverges at the EP. In contrast, if the system did not have a

square-root singularity at µ+, the corresponding derivative function would be a constant, indepen-

dent of the perturbation. Consequently, applying the same idea to the effective Hamiltonian of an

open systems affords a sensing scheme for detecting weak perturbations that induce a splitting in

the eigenmodes. As ridiculously simple an idea this might sound, the fact that this was conceived

only a few years back shows how nature has a habit of concealing elegant ideas in plain sight. In a
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fairly recent paper, however, Wiersig himself has acknowledged the indelible impact of quantum-

limited intensity noise on EP-based sensing protocols [183]. Nevertheless, the sensing scheme is

already a success story, and research on this subject continues to burgeon.

6.2 VIC and the emergence of a long-lived mode

The concept of VIC was briefly introduced in the previous chapter. Here, we provide a mathe-

matical analysis showing how VIC can be advantageous to the sensing of perturbations in anti-PT

symmetric systems. Unlike the EP, the singularity used in this sensing scheme is not one that

is inherent to the splitting of spectral frequencies. Rather, our sensing mechanism exploits the

vanishing spectral linewidth of an eigenmode, which makes the linear response function strongly

peaked at the corresponding resonance. We shall demonstrate the great utility of this key property

to the sensing of extremely weak nonlinearities which are, otherwise, difficult to detect. We start

off by considering the general model for a two-mode anharmonic system, which is pertinent to a

wide range of physical systems. This is characterized by a Hamiltonian

Hab/ℏ = ωaa
†a+ ωbb

†b+ g(ab† + a†b) + U(b†2b2)− iΩ(be−iωdt − b†eiωdt), (6.4)

where ωa and ωb denote the respective resonance frequencies of the uncoupled modes a and b,

and g constitutes the coherent hermitian coupling between them. The meanings of the various

parameters were introduced in the preceding chapter. If the two modes are coupled dissipatively,

g = 0, and the mean value equations for a and b are obtained in the rotating frame of the drive as

ȧ
ḃ

 = −iH

a
b

+ 2U(b†b)N

a
b

+ Ω

0

1

 , (6.5)
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where H =

∆a − i(γa + Γ) −iΓ

−iΓ ∆b − i(γb + Γ)

, and N =

0 0

0 1

. This assumes the spatial

separation between the two modes satisfies kL = nπ. Before proceeding with a generalized

treatment, let us first deconstruct the linear dynamics, i.e., when U = 0. Subject to the fulfillment

of the stability criterion, viz. γ > Γ, so that both eigenmodes decay in time, the steady state of

the system can solved by setting ȧ = ḃ = 0. We assume that ∆a = −∆b =
δ

2
, γa = γb = γ0

so as to satisfy anti-PT symmetry. For these parameters, the system reduces to a steady state

limt→∞ ⟨a(t)⟩ = α0, limt→∞ ⟨b(t)⟩ = β0 in the long-time limit, yielding the solutions

α0 = −i H22

detH
Ω = − γ − i∆

Γ2 −∆2 − γ2
Ω,

β0 = i
H21

detH
Ω =

Γ

Γ2 −∆2 − γ2
Ω, (6.6)

with γ = γ0 + Γ epitomizing the total relaxation rate of each individual mode. It follows from

these expressions that the PT unbroken phase brings in a real singularity in the linear response at

= 0 in the limit Γ → γ. This is evidenced by the resonant inhibition in the imaginary part of λ+,

as marked by the point X in Fig. 5.1(b), Chapter 5. We have referred to this as the VIC point in

our system. This can be understood from a thorough analysis in terms of the eigenmodes of the

system. In this limit, the two eigenvalues reduce to λ+ = 0 and λ− = −2iΓ. The former represents

a non-dissipative dark mode. Denoting the corresponding eigenfunctions as ψ+ and ψ−, we find

that the first eigenfunction never decays in time while the other eigenfunction is rapidly flushed

out over a timescale of ∼ 1

2Γ
. The transient dynamics is then dominated by the ψ+−mode. What

about the steady-state behavior near the VIC point, i.e. as δ → 0, Γ → γ? If a system starts out

in the initial state ψ(0) =

a(0)
b(0)

 = c+ψ+ + c−ψ−, where c± are complex amplitudes, in the
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long-time limit, the system evolves into

lim
t→∞

ψ(t) = c+ lim
t→∞

e−iλ+tψ+︸ ︷︷ ︸
decays very slowly

+c− lim
t→∞

e−iλ−tψ−︸ ︷︷ ︸
rapidly decays away

+ Ω lim
t→∞

∫ t

0

e−iH(t−t′)dt′

0

1


= −iΩH−1

0

1

 ,

→ ∞. (6.7)

where the penultimate inequality follows from expanding the exponential on the third term in a

Taylor series, yielding

∫ t

0

e−iH(t−t′)dt′ = iH−1

[
e−iH(t−t′) − 1

]
, (6.8)

and eventually taking the limit t → ∞‡. The final equality in (6.7) follows from the relation

detH → 0 as the VIC point is approached, since detH = λ+λ−, and λ+ → 0. However,

it ought to be borne in mind that all these results pertain to the frame of the carrier frequency.

Since the eigenvalues in the original frame are related to those in the rotated frame by simple shift

of frequencies, the VIC point in the original frame can be identified generally by the condition

Im(λ
(original)
+ ) = 0, where λ(original)

+ now refers to the non-decaying eigenmode calculated in the

original frame.

6.3 Application of VIC to the sensing of linear perturbations

Before we explicate the sensitivity in nonlinear systems, we consider the application of VIC to

sensing ordinary weak perturbations. In realistic scenarios, there would always be some discord

with the watertight conditions of anti-PT symmetry, no matter how small the error can be made. In

‡Note that the limit of e−iH(t−t′) can be rigorously derived by appealing to its biorthogonal decomposition,
which is a generalization of orthonormal decomposition relevant to non-Hermitian systems. Since the eigenvalues
have decaying character, it follows that this function vanishes in the long-time limit.
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Sec. 6.2, we derived the mode amplitudes ensuing in the steady state of the linear system. Since the

amplitudes are proportional to Ω and sensitive to the system parameters (∆, γ,Γ), the application

of a probe field yields nonzero values of the derivatives
∂(α0, β0)

∂(∆, γ,Γ)
. This gives us a way of sensing

any small perturbations to these parameters. Let us consider, for instance, the particular case when

one of the frequency detunings is zero but there is only a small mismatch in the magnitudes of the

two detunings, i.e., H11 = −iγ and H22 = −s − iγ, where s is a small parameter. One could get

an estimate of this mismatch by measuring the complex amplitudes

α0(s) = − γ − is

Γ2 + isγ − γ2
Ω, β0(s) =

Γ

Γ2 + isγ − γ2
Ω. (6.9)

The pertinent sensitivities could, then, be obtained in terms of

∂α0(s)

∂s
=

iΓ2

(Γ2 + isγ − γ2)2
Ω,

∂β0(s)

∂s
=

−iΓγ
(Γ2 + isγ − γ2)2

Ω. (6.10)

Supposing that γ = (1 + ξ)Γ for ξ ≪ 1, both the derivatives would scale as
1

s2
, if ξ ≪ s

Γ
.

This would imply an augmented sensing capability around this point. Alternatively, there could be

some weak dispersive coupling between a and b, which modifies the off-diagonal terms in H into

H12 = H21 = g − iΓ, where g ≪ Γ. An example of this case from integrated photonics would

be a string of two dipolar emitters embedded onto a waveguide and separated by a distance that

is scale-wise similar to the resonant wavelength. Following the same approach as above, we can

compute the corresponding sensitivities as

∂α0(g)

∂g
= 2i

(Γ + ig)(γ − i∆)

[(Γ + ig)2 −∆2 − γ2]2
Ω,

∂β0(g)

∂g
= −i (Γ + ig)2 +∆2 + γ2

[(Γ + ig)2 −∆2 − γ2]2
Ω. (6.11)

Once again, for ξ ≪ g

Γ
, the derivatives scale as

1

g2
in the limit ∆ → 0.
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6.4 Sensitivity in the nonlinear response of a cavity-magnonic system

Next, we illustrate the importance of the VIC point in the context of the nonlinear response

observed in the system [168]. It is found that the nonlinear behavior depends on the intrinsic sym-

metry properties of the matrix H . Specifically, the extraordinary response achievable in anti-PT

symmetric models yields a convenient protocol for the fine-grained estimation of weak anhar-

monicity. We now consider a full treatment of Eq. (6.5) by factoring in the effect of U . In the

rotating frame, upon setting g = 0 and choosing γa = γb = γ0, this leads to the modified steady-

state relations:

−(iδ/2 + γ0 + Γ)a− Γb = 0,

−(−iδ/2 + γ0 + Γ)b− 2iU |b|2b− Γa+ Ω = 0. (6.12)

Defining γ = γ0 + Γ and eliminating a, the intensity x = |b|2 is found to satisfy a cubic relation

β2

γ2 + (δ/2)2
x− 2Uβδ

γ2 + (δ/2)2
x2 + 4U2x3 = I, (6.13)

where β = Γ2 − γ2 − (δ/2)2 and I = Ω2. Eq. (6.13) can entail a bistable response under the

condition Uδ < 0 and δ2 > 12γ2. However, we operate at adequately low drive powers to ward

off bistable signature§. Now, in the limit γ0 → 0 and δ → 0, β becomes vanishingly small, and the

first two terms in Eq. (6.13) recede in importance, for a given Rabi frequency Ω. Consequently, in

the neighborhood of δ = 0, the response becomes highly sensitive to variations in U . To be more

precise, for sufficiently low values of the detuning, the response mimics the functional dependence

x ≃
(

I

4U2

)1/3

. A tenfold decrease in U , therefore, scales up the peak intensity of b by a factor

of 4.64. In this context, it is useful to strike a correspondence with the sensitivity in eigenmode

splitting around an EP. For two-mode systems, where the EP is characterized by a square root

singularity, this splitting δω scales as the square root of the perturbation parameter δµ implying a

§The bistable regime has been explored elsewhere, in the collaborative work of Ref. [154], which has been left
out of this thesis.
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sensitivity that goes as
∣∣∣∣δωδµ

∣∣∣∣ ∝ |δµ|−1/2. However, in our setup, the sensitivity to U in the response

is encoded as

∣∣∣∣ δxδU
∣∣∣∣ ∝ |U |−5/3, (6.14)

where the constant U itself is very small. The importance of the above result in the context of

sensing is hereby legitimized for dissipatively coupled cavity-magnonic systems. We consider an

integrated apparatus comprising a microwave cavity and a YIG sphere, both interfacing with a 1D

waveguide, as was depicted in Fig. 5.4 of Chapter . In order to excite the weak Kerr nonlinearity

of the YIG sphere, a microwave laser is used to drive the spatially uniform Kittel mode. The full

Hamiltonian in presence of the external drive can be cast exactly in the form of Eq. (6.4), with b

superseded by the magnonic operator m.

As discussed earlier, the mediating effect of the waveguide is reflected as a dissipative coupling

between the two modes, which instills VIC into the system. With the anti-PT symmetric choices

∆a = −∆m = δ/2, γa = γb = γ0, and the redefinition γ0 + Γ = γ, we recover Eq. (6.13) in the

steady state, with the obvious substitution b→ m and x = |m|2 denoting the spin current response.

We now expound the utility of engineering a lossless system in sensing weak Kerr nonlinearity. To

that end, we zero in on the parameter subspace Γ = γ = 2π × 10 MHz. Since β = −δ2/4,

the contributions from the first two terms in Eq. (6.13) taper off as the resonance condition is

approached. As outlined earlier, we find that for all practical purposes, the nonlinear response can

be approximated as x ≃
(

I

4U2

)1/3

in the region δ/2π < 1 MHz, which demonstrates its stark

sensitivity to U . A lower nonlinearity begets a higher response, as manifested in Fig. 6.2(a), where

plots of x against δ are studied at differing strengths of the nonlinearity. Even at Dp = 1 µW , we

observe a significant enhancement in the induced spin current of the YIG around δ = 0. The result

is a natural upshot of the VIC-induced divergent response in an anti-PT symmetric system in the

linear regime. Quite conveniently, the inclusion of nonlinearity dispels the seemingly absurd prob-

lem of a real singularity noticed in the linear case. If Γ < γ, a strong quenching in the response
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Figure 6.2: a) The spin current plotted against δ at two different nonlinearities; b) spin currents
away from the VIC condition, compared against the lossless scenario, at different drive powers-
for ease of comparison, the blue and red curves have been scaled up by 10; c) contrasting
responses observed at a drive power of 1mW for two different strengths of nonlinearity; d)
sensitivity for a nonzero coherent coupling g at Dp = 1 µW.
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is observed, as depicted in Fig. 6.2(b). The sensitivity to variations in U also incurs deleterious

consequences. Nevertheless, we can counteract this decline by boosting the drive power. A drive

power close to 1 mW can bring back the augmented response and the pronounced sensitivity to

U (figure 6.2(c)). By the same token, the introduction of coherent coupling g between the two

modes prompts a decline in the sensitivity. The real singularity pertaining to a purely dissipative

linear model is now replaced by a complex one, i.e., with a finite linewidth, bringing down the

sharpness of the resonance and similarly, the sensitivity. Here, a tenfold depreciation in U barely

generates an enhancement factor of 1.39 in the response, as illustrated in figure 6.2(d). This is to

be contrasted with the g = 0 case in figure 6.2(a), where the magnification factor is 4.64 for an

otherwise identical set of parameters. Propitiously, systems with zero coherent coupling (or purely

dissipative coupling) were engineered in recent experiments [48, 99, 184]. This mechanism can,

thus, serve as an efficient tool to sense small anharmonicities present in a system.

6.5 Anharmonicity-induced new coherences

The sensing protocol delineated in the last section hinges on the anti-PT symmetric character

and the eigenmodes of H , which largely control the dynamics at low drive powers. At larger drive

powers (∼ 0.1 W ), the nonlinear correction in Eq. (6.5) becomes important. This phenomenon

can be understood by studying the modified spectroscopic character of the system in response to

a weak probe field. The nonlinear effects can be encapsulated as time-varying fluctuations to the

steady-state values, viz. a(t) = a + δa(t), b(t) = b + δb(t). The fluctuations δa(t) and δb(t) are

presumed to be general, albeit small in relation to a0 and b0. This permits the dismissal of higher-

order effects in these variations. Consequently, we have a simplification in the term (b†b)b which

appears in the dynamical equation for mode b in Eq. (6.5):

[b(t)†b(t)]b(t) ≈ |b|2b+ 2|b|2δb(t) + b2δb†(t). (6.15)
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This demonstrates that the variables δb(t) and δb†(t) get interconnected due to the anharmonicity.

The inter-coupling is, of course, too weak to bear on any observable effects at smaller drive powers.

However, higher drive powers ∼ 0.01W makes this coupling paramount. The dynamics of the

fluctuations δξ =

(
δa(t) δb(t) δa†(t) δb†(t)

)T

reduce to a linear dynamical model,
[
d

dt
+

iHNL

]
δξ(t) = Ein(t), with

HNL =



− δ
2
− iγ −iΓ 0 0

−iΓ ∆̃− iγ 0 2Ub20

0 0 δ
2
− iγ −iΓ

0 −2Ub∗20 −iΓ −∆̃− 2iγ


, (6.16)

Ein(t) = ε

(
e−iδpt e−iδpt eiδpt eiδpt

)T

where ∆̃ = δ
2
+ 4U |b|2. The eigenvalues of this matrix,

for the cavity-magnon setting, appear in Fig. 6.3(a,b). Strong anharmonicity alters the coherence

properties of the system, as reinforced by the extreme linewidth narrowing observed now around
δ

2γ
= −3.2 in Fig. 6.3(b). Such effects were systematically explored in [154], where we discov-

ered observable anomalies in the transmission signal due to new coherences. These anomalies can

be traced to exotic properties of the eigenvalues, particularly when the imaginary parts of any of

these eigenvalues become small. The nonlinearity spawns a long-lived eigenmode with ultrasmall

linewidth leading to anomalous transmission effects like pump-to-probe energy transfer, similar to

the Mollow gain effect [41], and enhanced sensitivity in waveguide transmission. We anticipate

that this could have potential applications in futuristic signal-processing networks using driven

nonlinear devices.

As a final remark, we also note that the nonlinear corrections at more intense pump powers

stem from the matrix elements 2Ub2 and −2Ub∗2 in Eq. (6.16). This implies that the higher-

dimensional eigensystem attains precedence over the linear model only when the product U |b|2

becomes comparable to Γ. However, in the event that U |b|2 ≪ Γ, the nonlinearity acts merely as

a perturbation. It is precisely in this weakly anharmonic regime that our sensing proposal holds
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Figure 6.3: a) Real and b) imaginary parts of the eigenvalues of HNL at a drive power of 0.1W .
The vertical dotted line running through the point δ/(2γ) = −3.2 shows a new VIC point induced
by the system’s anharmonic excitation. At such a point, the transmission signal can become really
strong, aided by pump-to-probe energy transfer.

relevance.

6.6 Summary

In summary, we have proposed a dissipative test bed that shows enhanced sensitivity to Kerr

nonlinearity of the mode, hence qualifying it as a prototypical agency to gauge the strength of

anharmonic perturbations under optimal conditions.Our scheme is distinct from the one popularly

used for the detection of linear perturbations around an EP. The sensitivity to anharmonicities in

our model can be traced down to the existence of a remarkably long-lived eigenmode of the lin-

ear system, characterized by a vanishing linewidth. The physical origin of this peculiar behavior

lies in an effective coupling induced between the cavity and the magnon modes in the presence

of a shared ancillary reservoir. Optimal results vis-à-vis the estimation of nonlinearity are ob-

tained when VIC strongly dominates, i.e., when spontaneous emissions from the modes to the

surrounding environments become negligible in comparison to the waveguide-mediated coupling.

To provide numerical estimates, our analysis has been tailored to demonstrate a pronounced sen-
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sitivity in the context of magnonic excitations. Nonetheless, the essence of our assessment would

be applicable to any two-mode nonlinear system. Moreover, our scheme can also be used to sense

linear perturbative effects. Finally, we have shown that higher drive powers engender new domains

of VIC-like points on account of strongly anharmonic responses. The precise implications of these

new VICs have been explored by us as part of a separate project [154], and have only been glossed

over in Sec 6.5.
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7. APPLICATION OF ANTI-PT SYMMETRY TO ENHANCED TRANSDUCTION

BETWEEN MICROWAVE AND OPTICAL FIELDS*

Superconducting qubits are widely recognized as one of the prime candidates for processing

quantum information. The qubits operate at low temperatures in the microwave regime. Concur-

rently, for communication of quantum information, optical nanofibers are utilized on account of

their low-loss transmission, long-time memory, and low thermal occupancy. A coherent and re-

versible conversion between microwave and optical fields is thereby instrumental to achieving ro-

bust, long-distance quantum communication through superconducting quantum processors. Such

an interface can effectively leverage the strengths of optical signals, which include , while simul-

taneously facilitating control over superconducting circuits which deploy microwave signals. One

would thus like to engineer efficient quantum transducers, which are devices that execute the de-

sired conversion between two kinds of signals. To that end, hybrid micro/nano-scale systems have

being been designed which combine different degrees of freedom to accomplish this conversion

in an optimal fashion. Of these, the most commonly pursued routes are ones that exploit either

light coupling to mechanical modes (optomechanics), electrons coupling to collective vibrations in

a nanotube (electromechanics). A conversion efficiency close to 10% between microwave signals

of a few GHz into optical domain was demonstrated in an experiment [185] using optomechanical

systems. In general, a variety of systems have been explored, including not only optomechani-

cal systems [185–188], but cold atoms [189, 190], spins [191, 192], trapped ions [193, 194], and

electro-optic systems [195, 196]. Fairly recently, when magnons in a magnetic material were ex-

perimentally coupled to both superconducting qubits [140] and parametrically to optical photons

[197–199], magnons also entered the fray as potential wavelength converters. However, while

much progress has been made with regard to optomechanical and electro-optomechanical setups,

the transduction has not been accomplished with a desirable efficiency in cavity magnonics.

*Largely reprinted with permission from Anti-PT symmetry enhanced interconversion between microwave and
optical fields by D. Mukhopadhyay, J. M. P. Nair, and G. S. Agarwal, Phys. Rev. B 105, 064405 (2022), published by
the American Physical Society. Collaboration with J. M. P. Nair is acknowledged.
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A few years ago, Hisatomi et al. demonstrated bidirectional conversion between microwave

and optical waves in a hybrid cavity-magnonic setup, where a microwave cavity was coherently

coupled to the Kittel mode in a YIG sample through the Purcell effect. The mechanism for conver-

sion was premised on a triliniear Faraday interaction between two orthogonally polarized optical

modes and a Kittel mode [200]. Subsequently, Ihn et al. generalized this result to the multimode

case by accounting for both the Kittel mode and a higher-order space-varying magnetostatic mode

[201]. The primary challenge posed by these setups is the weakness of the parametric interaction

between the optical modes and the magnonic frequencies, as this is a weak, second-order nonlinear

effect. Lately, we set forth a conversion model comprising a dissipatively coupled cavity-magnonic

system and implementing much stronger transduction between microwave and optical signals [50].

Based on the same principle, the converter draws its potential from the anti-PT symmetry of the

configuration. By harnessing the effect of strong VIC, we found that anti-PT symmetry allowed im-

provements in the conversion efficiency by a few orders of magnitude relative to the non-symmetric

regime. While coherently coupled systems were found to achieve an efficiency of η(c.c) ∼ 10−5

[200], our setup affords a theoretical efficiency of around 2.5 × 10−3 in the vicinity of the VIC

point. Since the nonlinear Faraday interaction driving the conversion is quite weak, such an im-

provement over preexisting protocols is quite intriguing. In addition, our work also highlighted an

inherent asymmetry between the efficiencies of the two opposite pathways of conversion. Even

though the Faraday coupling between the magnon mode and the optical fields is perfectly sym-

metrical, a fundamental asymmetry emerges between the efficiencies of microwave-to-optical and

optical-to-microwave conversion. This asymmetry stems, in part, from the phase sensitivity of the

output fields, and also, from the fact that optical fields are entirely decoupled from the microwave

cavity while the YIG interacts with both kinds of fields. It could be appreciated that while it is

generally challenging to engineer non-reciprocity [202–205] in physical systems, such an attribute

is naturally built into waveguide-integrated photonic devices.

The structure of this chapter is summarized as follows. Following a concise review of nonlinear

three-wave mixing in Sec. 7.1, we overview the magneto-optic Faraday effect in Sec 7.2 that is
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responsible for transduction in our setup. The theoretical formulation underpinning the conversion

model is introduced in Sec. 7.3, subsequent to which we explain the two possible schemes vis-à-vis

the microwave-to-optical transduction mechanism in Secs. 7.4 and 7.5. In Sec 7.6, we derive the

efficiency of the reverse conversion, viz. optical to microwave, and demonstrate the nonreciprocity

of the two conversion pathways. Finally, we summarize the key results in 7.7.

7.1 Nonlinear three-wave mixing

Nonlinear three-wave interactions constitute the bedrock of several exotic nonlinear optical

phenomena, including stimulated Raman and Brillouin scattering [206], first observed by Wood-

bury et al. [207] and later explained by Garmire et al [208], and Bloembergen and Shen [209, 210],

employing a coupled-wave formalism. Quantum mechanically, such an interaction can be under-

stood as the energy-conserving conversion of an incident pump quantum into two daughter quanta

and vice versa.

Nonlinear optical phenomena are “nonlinear” in the sense that they occur when the response

of a material system to an applied optical field E(t) depends in a nonlinear manner on the strength

of the applied optical field. Three-wave mixing is a second-order nonlinear effect originating

from the second-order contribution to the nonlinear polarization, P (2)(t) = ϵ0χ
(2)E(t), where

χ(2) is the second-order susceptibility of the medium of propagation, assumed isotropic. When

an overall oscillating (scalar) electric field E(t) = E1e−iω1t + E2e−iω2t (ω1 > ω2) is applied to a

nonlinear crystal with nonzero χ(2), the resulting polarization contains contributions from various

components that oscillate at frequencies ω1 + ω2, ω1 − ω2, 2ω1, and 2ω2, along with a static DC

component. In conformity with Maxwell’s equations, the induced polarization, in turn, generates

oscillating waves at the above frequencies. The physical processes pertaining to the production of

the frequencies ω1 + ω2 and ω1 − ω2 are referred to as sum-frequency generation and difference-

frequency generation respectively. However, such exchanges do not require all fields to be optical

or lie in overlapping frequency domains. For instance, such three-mode interactions have been

widely investigated in the context of the interconversion between optical and microwave fields,
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Figure 7.1: Visualization of (a) Sum-frequency generation and (b) Difference-frequency
generation. Energy conservation implies ω1 + ω2 = ω3.

both of which are pivotal to an efficient information processing network. Since optical frequencies

lie in the THz domain and microwave frequencies are of GHz scale, it is possible, in principle,

to find a microwave frequency ωµ and two optical frequencies Ω and Ω0 (Ω > Ω0) satisfying

Ω = Ω0 + ωµ. Consequently, by launching one optical photon at Ω0 and a microwave photon

at ωµ into a nonlinear χ(2)-medium, one can produce an optical photon at the “sum-frequency"

Ω. The converse procedure can be initiated by making incident the higher-frequency photon at

Ω. The process of difference-frequency generation is also termed as parametric amplification as

it leads to the amplification of the lower-frequency input wave. These processes are illustrated in

Fig. 7.1(a,b).

Two of the most well-known scattering processes that involves three-wave mixing interaction

are Raman scattering and Brillouin scattering. While the former describes scattering of light off

optical phonons, the latter refers to light scattering from acoustic phonons. In a laboratory ambi-

ence, three-wave mixing is typically achieved using a birefringent crystalline material, where the

refractive index depends on the polarization and the direction of the light that passes through the

medium. Birefringence is the phenomenon wherein the refractive index of propagating radiation

field depends on its direction of polarization. In a magnetic sample, the Faraday effect naturally
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engenders birefringence, leading to a trilinear optomagnonic interaction. This is what we discuss

next.

7.2 Optomagnonics and the magneto-optic Faraday Effect

Since the magnon spin dynamics plays out in the GHz regime, we have already seen that it

is possible to generate strong, linear magnon-photon couplings in the microwave regime via the

resonant tuning of frequencies. This is why one magnon can be converted into a photon and vice

versa. However, the coupling between magnons and photons in the optical regime is fundamen-

tally different from that in the microwave regime, since single-photon absorptions are non-resonant

with the excitation frequency of magnons. Therefore, only two-photon resonant phenomena can be

observed in the optical regime. As we discussed earlier, such processes ensue from the nonlinear

three-wave mixing amongst photons in non-overlapping frequency domains. The corresponding

coupling is known as parametric coupling and the mechanism by which this is achieved in a mag-

netic system is the Faraday effect [211]. This effect is caused by left- and right-circularly polarized

waves propagating at slightly different speeds, a property known as circular birefringence. Since

a linear polarization can be decomposed into the superposition of two equal-amplitude circularly

polarized components of opposite handedness and different phase, the effect of a relative phase

shift, induced by the Faraday effect, is to rotate the orientation of a wave’s linear polarization. This

produces an optomagnonic interaction involving the magnetization of the material and two orthog-

onally polarized modes of light [212, 213]. The effect of three-wave mixing due to the Faraday

effect in a YIG sample was independently demonstrated by Osada et al. [197], X. Zhang et al.

[198], and Haigh et al. [199]. As an example, in [197], a 500 µm YIG sphere was evanescently

coupled to an optical fiber to produce optical sidebands in the output signal which were displaced

by the magnonic excitation frequency. YIG has a large Verdet constant of V = 3.8 rad/cm corre-

sponding to a 1550 nm optical field, and is therefore, suitable for observing the nonlinear Faraday

effect. We next spell out a simple derivation of the quantized Faraday Hamiltonian, following Ref.

[200].
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Suppose that linearly polarized light, with polarization vector along the z axis, and propagating

along the x axis is incident on a ferromagnetic sample with a length L, which is magnetized along

the z axis under a bias magnetic field. Consistent with the principle of the Faraday effect, the

magnetization oscillation perpendicular to the z axis is incorporated to the polarization oscillations.

The resulting optomagnonic interaction Hint takes the form

Hint =

∫ T

0

ℏGMx(t)sx(t)Ac, (7.1)

whereG is a coupling parameter related to the Verdet constant, T =
L

v
is the interaction time, with

v being the speed of light in the material, and A is the cross section of the light beam. M(t) is

the magnetization density induced in the sample, which can be quantized in terms of the magnon

mode operators as

Mx(t) =

√
N

V

[
m(t) +m†(t)

]
, (7.2)

with V being the volume of the YIG and N = ρV being the total number of spins in the sample.

The operator sx(t) is related to the x−component of the Stokes operator of light and has the

expression

sx(t) =
1

2A

[
b†R(t)bR(t)− bL(t)b

†
L(t)

]
, (7.3)

where bR(t) and bL(t) are respectively the annihilation operators for the right-circularly and left-

circularly polarized light modes propagating along the x−axis.

Now assume that a strong laser field in the z-polarized mode impinges on the YIG, for which

the annihilation operator bz(t) can be treated classically, i.e.,

bz(t) ≃
√

P0

ℏΩ0

e−iΩ0t, (7.4)
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with P0 being the input power in the mode and Ω0 being its angular frequency. Let by(t) represent

the annihilation operator for the mode with linear polarization along the y axis. Then the circularly

polarized modes bR(t) and bL(t), can be written as

bR(t) =
1√
2

[
by(t) + ibz(t)

]
and bL(t) =

1√
2

[
by(t)− ibz(t)

]
(7.5)

respectively. Substituting these into Eq. (7.1), we obtain

Hint =
iℏG

√
Nc

4V
.

√
P0

ℏΩ0

∫ T

0

[
m(t) +m†(t)

][
b†y(t)e

−iΩ0t − by(t)e
iΩ0t

]
dt (7.6)

Upon assuming that the interaction time T is shorter than the oscillatory timescale of the magnon

dynamics, 1/ωm, the operators m(t) and by(t) can be treated as constants during the interaction, in

the frame rotating at the laser frequency Ω0. Then the Hamiltonian Hint in Eq. (7.6) reduces to

Hint = −iℏ
√
κo(m+m†)[bye

iΩ0t − b†ye
−iΩ0t] (7.7)

where the integration is performed to get
∫ T

0
cdt = cT = L. The light-magnon coupling rate

κ0 is defined as κ0 =
ρG2L2

16V

P0

ℏΩ0

, where G =
4V
ρ

, V is the Verdet constant, and ρ is the spin

density of the sample. With the rotating-wave approximation, the above Hamiltonian reduces to

either the parametric-amplification-type Hamiltonian given by

HP.A. = −iℏ
√
κ0(mbye

iΩ0t −m†b†ye
−iΩ0t) (7.8)

which is effective only around Ω = Ω0 − ωm, or the beamsplitter-type Hamiltonian given by

HB.S. = iℏ
√
κ0(mb

†
ye

−iΩ0t −m†bye
iΩ0t) (7.9)

which is effective only around Ω = Ω0 + ωm. Eq. (7.8) describes Stokes scattering while (7.9) is

the underlying Hamiltonian for the anti-Stokes scattering process.
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Figure 7.2: Energy levels of the magnetic system showing the allowed two-photon transitions
relevant to the trilinear optomagnonic interaction. The states |g⟩,|e⟩ specify the electronic states
while |n⟩ represents the magnon Fock state within either one of these manifolds. By driving the
system with an optical field detuned far below the |g⟩ ↔ |e⟩ transition, a threeway interaction is
whipped up between the magnon and the optical fields. The inset maps the relevant optical modes
to the energy transitions within the ground-state manifold. The mode bz is taken to be a large
coherent field. The problem then reduces to the interconversion between a magnon excitation and
another optical mode which is frequency-shifted relative to Ω0 by an amount ωm. The modes by,s
and by,a denote red-detuned and blue-detuned optical fields respectively, with the corresponding
frequencies given by Ω0 − ωm and Ω0 + ωm. The Stokes-shifted mode by,s is produced through
the interaction HP.A. ≃ iℏ√κ0(bzb†y,sm† − h.c), whereas the anti-Stokes component is generated
via HB.S. = iℏ√κ0(bzb†y,am− h.c) (compare Eqs. (7.8), (7.9)). (Redrawn from Phys. Rev. B 93,
174427 (2016).)
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Explanation from the Energy-level diagram: Fig. 7.2 illustrates the energy levels in a YIG

sample, appropriate to the magneto-optic Faraday effect and its inverse phenomenon, the inverse

Faraday effect. The states |g⟩ and |e⟩ pertain to the electronic ground and excited states of the

material, with |n− 1⟩, |n⟩ and |n+ 1⟩ representing the magnon Fock states within the manifold of

a given electronic state. Electronic transitions between these two manifolds represent the charge-

transfer transition 6S(3d52p6) ↔ 6P(3d62p5). The associated wavelength of this transition is 440

nm. Thus, by applying optical fields far detuned below this transition frequency, it is possible to in-

duce two-photon resonant phenomena involving magnon excitations. For example, the wavelength

of the incident coherent field in Ref. [200] was 1550 nm. Owing to the large detuning, a system

starting out in the electronic ground state can only make virtual transitions to the excited state.

Now, there are two ways to induce two-photon transitions. As shown in the figure, by applying a

large classical field bz (frequency Ω0), the system in an initial state |g, n⟩ can emit a photon into the

mode by,a (frequency Ω0 + ωm) and settles eventually into |g, n− 1⟩, simultaneously annihilating

a magnon excitation in the process. Effectively, a magnon gets converted into an optical photon of

frequency Ω0 + ωm. Likewise, the system in the initial state |g, n⟩, having absorbed a photon from

the bz-field, may as well relax into the final state |g, n+ 1⟩ by concurrently emitting a photon into

the mode by,s (frequency Ω0−ωm) and creating a magnon. An optical photon is thereby converted

into a magnon excitation.

7.3 Model for transduction

We consider a hybrid cavity-magnonic model in which a rectangular microwave cavity and a

YIG interacts dissipatively via a one-dimensional (1D) microwave transmission line. Unlike the

previously explored scenario where the YIG was wedged inside the cavity resonator to enhance the

coherent coupling between them through the Purcell effect [200, 201], the interposing waveguide

here acts as the mediator of a long-range coupling between the two. For the purpose of the con-

version process, the YIG sphere is evanescently coupled to an ancillary optical fiber withal. The
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transduction mechanism could be initiated by the application of a microwave drive at a frequency

ωµ, duly complemented by an intense laser drive at a frequency Ω0 sent along optical fiber target-

ing the YIG sample. The converse mechanism of optical-to-microwave transfer proceeds via the

administration of two orthogonally polarized optical inputs at frequencies Ω and Ω0 respectively,

such that the frequency discord |Ω− Ω0| is closely resonant with a Kittel mode frequency, which

lies in the microwave regime.

System Hamiltonian: At the outset, we overview a first-principle description of the exchange

dynamics enabling the mode conversions. In the most general case, the full Hamiltonian H = Hs+

Hmicro +Hoptical of the driven cavity-YIG system would comprise of the following contributions:

Hs =ℏωaa
†a− ℏγeB0Sz,

Hmicro =H(a)
micro +H(m)

micro,

Hoptical =− iℏ
√
κo(m+m†)[bye

iΩ0t − b†ye
−iΩ0t]. (7.10)

Here, Hs represents the free Hamiltonian of the cavity-YIG composite, where a (a†) denotes the

annihilation (creation) operator of the cavity, B0 the applied bias magnetic field and Sz the collec-

tive spin operator of the YIG along the z direction, and γe is the gyromagnetic ratio. Employing

the Holstein-Primakoff transformation, the Hamiltonian of the magnons reduce to ℏωmm
†m, with

ωm = γeB0. The Hamiltonian Hmicro captures the typical interplay between incident microwave

photons and the cavity-YIG network, with the first term H(a)
micro encapsulating the coupling of the

microwave drive to the cavity. The second term

H(m)
micro = −ℏγeS⃗.B⃗micro (7.11)

characterizes the exchange interaction between the Kittel mode in the YIG and the local AC mi-

crowave field B⃗micro. The specific expressions for H(a)
micro and H(m)

micro would be introduced in due

course based on contextual considerations about the incident fields. In addition, two linearly po-
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larized optical field modes selectively couple to the ferromagnetic material which is magnetized

along the z direction, producing the trilinear Faraday interaction Hoptical. This interaction generates

optical sidebands displaced by ωm = γeB0 on either flank of the Ω0-band, and thereby, converting

those incident microwave photons into optical photons. By the same token, the application of two

orthogonally polarized optical beams stimulates the production of a microwave field oscillating at

a frequency equaling the difference between the two optical frequencies, a phenomenon commonly

known as the inverse Faraday effect. These two phenomena constitute the physical foundation of

the conversion scheme.

The dissipative non-Hermitian coupling between the cavity and the YIG has to be formalized

at the level of a master equation for the system by treating the common waveguide as a thermal

bath. Note that in writing the exact form of the Faraday interaction Hoptical, the phase acquired

by the optical wave vis-à-vis its transit from the cavity to the YIG has been absorbed in the def-

inition of the y−polarized optical mode by. In principle, there could be two possible schemes of

effecting the microwave-to-optical conversion: (i) by guiding the microwave drive field along the

microwave fiber, or (ii) by directly shining a maser on the YIG. In the following two sections, we

develop explicit results for the two schemes separately.

7.4 Microwave-to-Optical Conversion: Input through waveguide

Apropos of the microwave-to-optical conversion process, the magnons in modem are driven by

a classical microwave drive frequency ωµ, while concurrently interfacing with an optical waveguide

that delivers and channels the optical component by. In Fig. 7.3, which conveys a particular

modality of exciting the system, the input microwave drive is launched through the bottom fiber.

An alternative means would involve directly impinging a maser on the YIG sample, which we

would discuss as a separate scheme. The Faraday interaction Hoptical, prompted by the pump laser

bz at the frequency Ω0 sent along the optical channel, entails the Stokes and anti-Stokes sidebands

relative to Ω0 in the optical spectrum. The indirect coupling Γ engineered between the cavity and

the magnons through the interceding transmission line consolidates the coupling of the YIG to the
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Figure 7.3: First scheme for microwave-to-optical conversion. The bottom microwave waveguide
couples to both the cavity and the YIG sphere, whereas the itinerant vacuum mode by in the top
fiber, polarized along y-axis, addresses the collective magnonic excitation. A microwave signal aµ
is launched through the bottom channel, in conjunction with an intense optical laser drive bz,
polarized along the z-axis and shone on the YIG. This induces both the Stokes and the anti-Stokes
optical sidebands at the output port of the optical fiber.

microwave photons via the Purcell effect. The sideband outputs can be empirically reconstructed

from the amplified, beat-down, heterodyne signal between the carrier and the side modes.

When the microwave field is launched through the transmission line, the magnons encounter a

phase-translated input relative to the intracavity field, which promptly simplifies the components

in Hmicro to

H(a)
micro = −iℏ

√
κa[a

†aµe
−iωµt − aa†µe

iωµt],

H(m)
micro = −iℏ

√
κm[m

†aµe
−i(ωµt−ϕ) −ma†µe

i(ωµt−ϕ)], (7.12)

where κa and κm symbolize the leakage rates of the cavity and the magnons respectively into the

interfacing microwave line, and aµ is the microwave drive.

Stokes process: It is convenient to redefine the system variables as ã = aeiωµt, m̃ = meiωµt,
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and, depending on whether we consider the Stokes or anti-Stokes process, b̃y = bye
i(Ω0−ωµ)t or b̃y =

bye
i(Ω0+ωµ)t. The operation dispels the explicit time-dependence in H, when the fast-oscillating

terms are expunged. The first process pertains to a parametric-amplification type process, whereas

the second is associated with a beam-splitter type interaction, both of which are familiar from the

literature. For the Stokes process, the Hamiltonian morphs into

Hs.w. = ∆aã
†ã+∆mm̃

†m̃− (Ω0 − ωµ)b̃
†
y b̃y − i

√
2κa[ã

†aµ − ãa†µ]− i
√
2κm[m̃

†aµ − m̃a†µ]

− i
√
2κo(m̃b̃y − m̃†b̃†y), (7.13)

in which we have introduced the detuning parameters ∆a = ωa − ωµ and ∆m = ωm − ωµ. We

now solve the Langevin equations to the lowest order in the optomagnonic coupling rate
√
κ0. For

notational simplicity, we shall drop the tildes over the mode variables.

Pursuant to the master equation derived in Appendix B, the mean-value dynamics of the cavity

and the magnon modes reduces to

ȧ = −(i∆a + γa)a− Γeiϕm−
√
κaaµ,

ṁ = −(i∆m + γm)m− Γeiϕa−
√
κmaµe

iϕ +
√
κob

†
y. (7.14)

where γa = κa + κ̃a and γm = κm + κ̃m encompass the dissipative effects, and the expectation-

value notations have been suppressed under the semiclassical approximation. The decay rate κ̃a

(κ̃m) stands for the intrinsic damping of the cavity (magnon) mode into the non-waveguide modes.

Based on the input-output formulation, the output Stokes wave would be accorded by the relation

by,out = −
√
κom

†, (7.15)

since the input mode by, in this case, can be taken to be the thermal vacuum. Eq. (7.14) can be
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condensed into the form

Ẋ = −iMX −F −
√
κoG, (7.16)

whereX = (a m)T , F = aµ(
√
κa

√
κme

iϕ)T , G = (0 b†y)
T , and M =

∆a − iγa −iΓeiϕ

−iΓeiϕ ∆m − iγm

.

If by,out has to be solved to the lowest (here, linear) order in
√
κ0, it follows that the long-time so-

lution to X could be obtained by dropping the final term in (7.16), leading to

X = iM−1F . (7.17)

Hence, the solutions to the intracavity field and the magnonic oscillation stand as

a =
iaµ[

√
κa(∆m − iγm) + i

√
κme

2iϕΓ]

(∆a − iγa)(∆m − iγm) + Γ2e2iϕ
,

m =
iaµe

iϕ[i
√
κaΓ +

√
κm(∆a − iγa)]

(∆a − iγa)(∆m − iγm) + Γ2e2iϕ
. (7.18)

By virtue of Eq. (7.15), we educe the Stokes conversion efficiency to be

η(d.c)s =

∣∣∣∣by,out

aµ

∣∣∣∣ = ∣∣∣∣ iΓ√κoκa + (∆a − iγa)
√
κoκm

(∆a − iγa)(∆m − iγm) + Γ2e2iϕ

∣∣∣∣, (7.19)

For comparison, we recall the efficiency factor in a coherent environment, where a (double-sided)

microwave cavity addresses the magnons in the YIG by means of a Hermitian coupling J(a†m +

am†). In that case, M is replaced by

∆a − iγa J

J ∆m − iγm

 and F by aµ(
√
κa 0)T , when the

microwave cavity is driven [200]. Then, the same input-output relation would yield a conversion

efficiency

η(c.c)s =

∣∣∣∣by,out

aµ

∣∣∣∣ = ∣∣∣∣ J
√
κoκa

(∆a − iγa)(∆m − iγm)− J2

∣∣∣∣. (7.20)
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Figure 7.4: Stokes conversion efficiencies for the microwave-to-optical conversion pertaining to
scheme 1, are plotted under anti-PT symmetric conditions and comparable couplings Γ = J in
both dissipative and coherent setups. In (a), we impose γ = 2Γ and in (b), we consider γ = 1.1Γ.
The EPs are identified via the dotted vertical lines. The regions between the vertical lines denote
the symmetry-broken phases. The absolute efficiencies in both (a) and (b) have been scaled up by
a factor of S = 1.4× 105, for Γ ≈ π× 25 MHz and κ0 ≈ π× 0.3 mHz.

Since the solution to X determines the Stokes sideband of the optical spectra, its efficiency

of conversion from the microwave input pivots on the symmetry properties of M. For anti-PT

symmetry, we require the constraints ∆a = −∆m = ∆, γa = γm = γ and ϕ = nπ, with n being

a natural number. Figures 7.4(a,b) plot the conversion factors for both dissipatively coupled and

dispersively coupled systems for comparable system parameters and similar coupling strengths

(Γ ≈ J), under the constraint of anti-PT symmetry. It is interesting to note the broadband nature

of the profiles for anti-PT symmetry.

While the order of magnitude does not change dramatically by switching to a dissipative con-

figuration, it does turn out that dissipative couplings can predominantly outstrip the efficiency

of coherent setups under anti-PT conditions. From Eqs. (7.19) and (7.200), the figure of merit

quantified as an advantage gained through anti-PT symmetry in dissipative environments can be

simplified as

123



η
(d.c)
s

η
(c.c)
s

=

[
{∆2 + (γ − Γ)2}{∆2 + γ2 + Γ2}

Γ2{∆2 + γ2 − Γ2}

]1/2
, (7.21)

where κa ≈ κm and Γ ≈ J has been assumed. For large dampings or frequency detunings in the

range ∆ ≥ Γ, the expression above exceeds 1, demonstrating the superiority of these couplings.

In the complementary regime, the situation is not so cut and dry, and numerical means become the

imperative.

Anti-Stokes output: The anti-Stokes process is described by the transformed Hamiltonian

Ha.s.w. = ∆aã
†ã+∆mm̃

†m̃− (Ω0 + ωµ)b̃
†
y b̃y − i

√
κa[ã

†aµ − ãa†µ]− i
√
κm[m̃

†aµ − m̃a†µ]

− i
√
κo(m̃

†b̃y − m̃b̃†y), (7.22)

to which the equations of motion are obtained as

ȧ = −(i∆a + γa)a− Γeiϕm−
√
κaaµ,

ṁ = −(i∆m + γm)m− Γeiϕa−
√
κmaµe

iϕ −
√
κoby, (7.23)

where, once again, we have suppressed the tildes. An identical calculation for the anti-Stokes

process yields the same efficiency factor as above, i.e.,

η(d.c)as =

∣∣∣∣by,out

aµ

∣∣∣∣ = ∣∣∣∣ iΓ√κoκa + (∆a − iγa)
√
κoκm

(∆a − iγa)(∆m − iγm) + Γ2e2iϕ

∣∣∣∣, (7.24)

The relevant input-output relation employed in this case is by,out = −√
κom. Thus, the in-

put microwave photons of frequency ωµ, upon interacting with the optical wave of frequency Ω0,

are converted into output traveling light modes with frequencies Ω0 − ωµ and Ω0 + ωµ pertaining

to the Stokes and anti-Stokes bands respectively. The two processes are therefore, equivalent to
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Figure 7.5: Second scheme for microwave-to-optical conversion. The microwave input as well as
the laser drive are targeted on the YIG sphere, generating the optical sidebands.

the difference-frequency generation and sum-frequency generation respectively, which were intro-

duced in Sec. 7.1.

7.5 Microwave-to-Optical Conversion: Direct excitation of magnons

This protocol of selectively driving the YIG sphere, as demonstrated in Fig. 7.5, can exploit

a spectral singularity of dissipatively interacting systems in drawing out an enhanced steady-state

response in the hybrid system. We know that the VIC, when optimally strong, can push one of

the poles in the linear response to the real axis, under anti-PT symmetric conditions. With the

corresponding linewidth suffering a stark suppression, the resonant response shoots up, only to be

regularized by intrinsic anharmonicites present in any of the modes. This is the same feature that

was cashed in for the sensing of weak perturbations in Chapter 6. Here, we throw light on the

feasibility of ramping up the efficiency of our conversion model by operating in the neighborhood

of this singularity. With this constraint, it is easy to see that the poles in Eq. (7.19) approach zero

as ∆ → 0 and Γ → γ. This is possible under the circumstance when extraneous decoherence

is strongly overshadowed by the coherence produced by the shared reservoir. However, around
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this point, the numerator also becomes small, precluding sizable enhancements in the output fields

procreated via scheme 1. To mitigate the pernicious role of the numerator, we can merely resort to

shining a maser beam on the YIG sample. While the microwave-YIG interaction becomes

H(m)
micro = −iℏ

√
2κm[m

†aµe
−i(ωµt−ϕ) −ma†µe

i(ωµt−ϕ)], (7.25)

the cavity gets decoupled from any external driving fields. Therefore, the term H(a)
micro drops out.

The Langevin equations for the mode amplitudes corresponding to the Stokes process would, then,

be remodeled as

ȧ = −(i∆a + γa)a− Γeiϕm,

ṁ = −(i∆m + γm)m− Γeiϕa−
√
2κmaµe

iϕ +
√
κob

†
y. (7.26)

The input-output relation pertaining to the optical mode by remains intact, which yields the Stokes

efficiency factor to be

η(d.c)s =

∣∣∣∣by,out

aµ

∣∣∣∣ =
√

2κoκm(∆2
a + γ2a)

|(∆a − iγa)(∆m − iγm) + Γ2e2iϕ|
(7.27)

To bring out the significance of the anti-PT symmetry, we look at the behavior of the above

expression under this constraint, i.e., ∆a = −∆m = ∆, γ1 = γ2 = γ and ϕ = nπ . The efficiency

is plotted in Fig. 7.6, which unveils a spike around the origin ∆/κ = 0. When γ is only slightly

larger than Γ, such that γ = Γ(1 + ε) for ε ≪ 1, the above expression reduces, in the limit

∆/Γ → 0, to

η(d.c)s ≈ (ε/2)−1(κo/κa)
1/2. (7.28)

Consequently, the smallness of ε has a direct bearing on the scaling up of the figure of merit char-

acterizing the conversion scheme. For instance, when ε becomes one-tenth, there is about a tenfold
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Figure 7.6: Stokes conversion efficiencies for the scheme 2 with the chosen parameters γ = 1.1Γ
(i.e., ε = 0.1) and γ = 1.01κ (i.e., ε = 0.01), under anti-PT symmetry. The graph with the lowest
peak corresponds to a non-anti-PT-symmetric system with ∆a = ∆,∆m = −∆+ 0.5Γ, γ = 1.1Γ.
The absolute efficiencies have been scaled up by S(ε = 0.1) = 1.4× 105 and
S(ε = 0.01) = 1.4× 104. The two graphs in the anti-PT symmetric case have peaks in close
proximity of each other, which vindicates the proportionality in Eq. (15).

amplification observed in the optical output. This is evident from the comparative plot in Fig. 7.6,

since the deviations of γ from Γ are respectively one and two orders of magnitude smaller than

Γ. In the same figure, we also contrast the symmetric system with a non-symmetric one satisfying

∆a = ∆, ∆m = −∆ + 0.5Γ and γ = 1.1Γ. A substantial reduction in the peak conversion effi-

ciency - by about a factor of 2.5 - is observed near the origin in the non-symmetric case, testifying

to the role of anti-PT symmetrIC VIC point in boosting the conversion potential. This property

can also be justified from the perspective of bright and dark states pertaining to radiating and non-

radiating modes of the system. On defining two linearly independent modes c± = 1/
√
2(a ±m),

we find that the mode c− evolves as ċ− = −εΓc− − i∆c+ − √
κmaµ +

√
κ0b

†
y. Thus, the mode

c− acts as a long-lived mode, akin to a dark state, as ε becomes small. The other mode c+ decays

significantly faster at the rate of 2Γ. The emergence of a dark state explains the coherent buildup

in the output signal around the singularity ε = 0.

Theoretical enhancement relative to the experiment in Ref. [200]: To provide some perspec-
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tives on the kind of enhancement we observe in our scheme, we recall the experimental parameters

from the seminal work of Hisatomi et al.. By tuning the microwave-YIG resonance frequency to

approximately 2π×9.5 GHz, they created strong hybridization between the magnon mode and the

input microwave field with a coherent coupling strength of g ≃ 2π × 63 MHz. By impinging a

1550 nm laser (with a frequency of 200 THz) at an incident power of P0 = 0.015 W, they were

able to generate sidebands displaced by the magnon frequency. Harnessing a high spin density of

ρ = 2.1×1028m−3 and the diameter of YIG as d = 0.75 mm, they could engineer an optomagnonic

coupling rate of κ0 ≃ 2π×0.25 mHz. This supported a microwave-to-optical conversion efficiency

of roughly η(c.c) ≃ 10−5. For a comparable dissipative coupling strength of Γ ≈ g, our scheme of

operating near the VIC point (γ = 1.01Γ) yields a theoretical efficiency of η(d.c) ≃ 2.5 × 10−3.

Working slightly away from the VIC point, with γ = 1.1Γ, this roughly becomes 2.6 × 10−4,

around one-tenth of the previous value. The second scheme of directly irradiating the magnetic

sample, therefore, proffers enhancements in the conversion efficiency by around 1 − 2 orders of

magnitude.

7.6 Optical-to-Microwave conversion: Asymmetrical efficiencies

The reverse procedure of light getting transformed into microwave photons is made feasible by

the inverse Faraday effect. The initial conditions are now translated into injecting two copropa-

gating phase-coherent laser inputs (by and bz) along the optical transmission line, with the relevant

frequencies in the optical domain and separated by a microwave frequency. If the difference fre-

quency coincides with a Kittel mode frequency, the resonance imparts an oscillatory magnetization

to the magnons in the YIG, which, in turn, elicit traveling microwave photons at this difference fre-

quency. With the plane-wave ansatz by =

√
P

ℏΩ
e−iΩt, where P is the drive power, we can derive

the induced microwave output at frequency ω+ = Ω0 − Ω (Stokes scattering) or ω− = Ω − Ω0

(anti-Stokes scattering), depending on whichever is positive, by solving the dynamical equations

in time domain. For this process, we can rotate the variables as m → meiωµt and a → aeiωµt, and
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Figure 7.7: Nonreciprocal Stokes’ conversion efficiencies (M: Microwave, O: Optical) pertaining
to the scheme 1, for the system parameters ∆a = −∆m = δ (for M→O) and δ(+)

a = −δ(+)
m = δ

(for O→M), plotted against δ for two sets of the phase separation ϕ. We choose γa = γm = 1.1Γ.
The conversion is, however, reciprocal when ϕ is an integer multiple of π. The M→O graphs refer
to Eq. (7.19), and the O→M graphs refer to Eq. (7.32).

define the input amplitude β =

√
P

ℏΩ
. Then, the evolution equations would be

ȧ = −(iδ(±)
a + γ1)a− Γeiϕm,

ṁ = −(iδ(±)
m + γ2)m− Γeiϕa±

√
κoβ, (7.29)

where the detunings δ(±)
a = ωa − ω± and δ(±)

m = ωm − ω± have been introduced, and the rapid

oscillations neglected. Since no classical microwave drive needs to be applied, the corresponding

interaction term has been dropped. It is now a simple exercise to evaluate the scattered microwave

field in the long-time limit. Clearly, the long-time solutions X± would correspond to fresh mi-

crowave oscillations at ω+ or ω−, as the case may be, as an artifact of the nonlinear mixing between

the two optical beams and the driven magnons. Eq. (7.29) yields the solutions

X± = ∓i
√
κ0βH−1

0

1

 . (7.30)

Invoking the input-output relation for the field transmitted across the microwave waveguide,
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Figure 7.8: Nonreciprocity in the Stokes’ conversion efficiencies (M: Microwave, O: Optical)
pertaining to scheme 2, for the system parameters ∆a = −∆m = δ (for M→O) and
δ
(+)
a = −δ(+)

m = δ (for O→M). We use the same damping parameters as in Fig. 5. The M→O
graphs refer to Eq. (7.27), and the O→M graphs to Eq. (7.32).

we find that

a±out = −(
√
κae

iϕa± +
√
κmm±)

= ∓iβ
[
iΓe2iϕ

√
κ0κa +

√
κoκm(δ

±
a − iγ1)

(δ±a − iγ1)(δ±m − iγ2) + Γ2eiϕ

]
. (7.31)

This allows us to infer the conversion efficiencies for the two possible microwave bands,

∣∣∣∣a±out

β

∣∣∣∣ = ∣∣∣∣iΓe2iϕ√κoκa + (δ±a − iγ1)
√
κoκm

(δ±a − iγ1)(δ±m − iγ2) + Γ2e2iϕ

∣∣∣∣. (7.32)

where the upper sign refers to the Stokes band and the lower to the anti-Stokes generation.

Strikingly, there is a structural disparity between the expression in Eqs. (7.19) or (7.27), and

that in Eq. (7.32), indicating nonreciprocal transductions. In the case of scheme 1, for ϕ = nπ,

the microwave-to-optical conversion efficiency and vice versa resemble each other up to a reinter-

pretation of the detunings. However, there is a palpable quantitative asymmetry in the two mech-

anisms pertaining to an arbitrary phase for an otherwise commensurate set of system parameters,

as demonstrated in Fig. 7.7(a,b). The discrepancy between the two efficiency factors is even more

evident in scheme 2, whereby the two conversion processes ensue with starkly disparate efficien-
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cies, regardless of the choice of phase. We illustrate this effect in Fig. 7.8(a,b). Fundamental to the

nonreciprocity in either scheme is the factor that microwave fields are directly or indirectly linked

up with both the cavity and the YIG, whereas the optical fields interact purely with the YIG. In

addition, the phase-sensitive asymmetry pertinent to scheme 1 can be traced down to the existence

of the reservoir-mediated phase-coupling between the cavity and the YIG, that is a characteristic

of dissipatively coupled systems. This is veritably distinct from the symmetric nature of conver-

sion observed in coherently coupled setups, where both the conversion mechanisms unfold with

equal efficiencies. Note that this nonreciprocity in the conversion mechanisms exists in spite of the

symmetrical interaction between the two optical modes and the magnons, as embodied in Hoptical.

7.7 Summary

In conclusion, we have demonstrated the efficient interconversion between optical and mi-

crowave fields in the context of a dissipatively coupled optomagnonic setup. Dissipatively coupled

systems with anti-PT symmetry perform significantly better than coherent settings for comparable

system parameters, although both are based on the nonlinear Faraday effect. We have explicated

two disparate schemes for the microwave-to-optical conversion, one of which involves injecting

the microwave field through the shared waveguide and the other where the ferromagnetic sample

is directly subject to an external pump. While the two schemes showcase improved conversion

efficiencies compared to the coherently coupled systems, the second scheme in particular, which

directly drives the magnetic sample, manifests remarkable improvements when the dissipative cou-

pling dominates the extraneous dissipations. Very close to the VIC point, i.e., γ = 1.01Γ, the

efficiency was found to be almost 2.5 × 10−3. This superior conversion efficiency stems from the

emergence of a long-lived dark mode near the VIC point, and consequently, the linear response

suffers a tremendous boost. This efficiency could be further improved, in principle, by integrating

an optical cavity to the converter. Alternatively, magnetic materials with even larger Verdet con-

stants, such as chromium tribromide, can be used in place of YIG, which would naturally enhance

the optomagnonic coupling rate κ0. Efforts along these lines have already started to show promise

131



[214]. Finally, we have shown that the transduction protocols achieved via strong phase-sensitive

dissipative couplings feature strong nonreciprocity, with stark discrepancies in the efficiencies of

microwave to optical conversion and vice versa.
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8. CONCLUDING REMARKS AND FUTURE OUTLOOK

To conclude, this thesis has been focused primarily on the theoretical study of waveguide-

integrated photonics and driven dissipative quantum systems, both of which have received widespread

attention from the experimental community. With the sheer amount of progress being made in

waveguide-QED, waveguide-integrated circuits continue to expand the frontiers of research in

purely optics-based quantum computing [4, 85, 215–221]. The Fano-like interference between

multiple emission pathways in the photonic interaction with an array of spatially separated emit-

ters makes the photon transport strongly nonreciprocal and sensitive to the spatial separation. Al-

though experimental investigations on photon transport in these setups have picked up speed over

the last two decades, it is imperative to make continual upgrades to bridge the chasm between

theory and experiment. With the tremendous success of superconducting artificial atoms as robust,

low-decoherence quantum emitters, the future in this field certainly looks promising.

Hybrid quantum systems coupled to a waveguide channel render a conspicuous light-matter

interface to carry out some of the most vital information processing tasks in an optimal manner.

This includes, but is not restricted to, converting microwave signals to light and vice versa - one

crucial sector that we have explored in our research. The manipulation of coherent coupling be-

tween systems has long been a cornerstone of quantum optics and information processing. It is

fairly recent that the hallmarks and the immense potential of waveguide-mediated couplings are

starting to find widespread recognition. The dissipative interaction mediated between distant emit-

ters enables one to not only entangle these emitters but also to explore EP-induced phase transition

and topological phenomena [102–104], without resorting to extrinsic gain as is usually the case

with directly coupled systems. Considering the pronounced relevance of magnon-based systems,

we have examined some of the key functionalities of dissipative coupling and anti-PT symmetry

by placing them in the specific context of such systems. However, one thing we have made sure

in many of our analyses is to emphasize on the generality of our models, whenever feasible. To

exemplify this point, our sensing scheme for detecting anharmonicities was formulated in an abso-
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lutely general context, apropos of a large class of quantum systems. The same is true for a related

work on nonlinear systems (albeit, not considered in this thesis) where we established the role of

dissipative coupling in lowering the pumping threshold for bistability [154]. That said, it is to be

acknowledged that cavity magnonics has emerged as a new, fertile testing ground for examining

some of the deeply held concepts in quantum optics and assessing the limits of quantum signatures

in macroscopic systems.

As a prospective project, we are now considering, for instance, the quantum effects of squeez-

ing in amplifying magnon-photon and effective magnon-magnon couplings. Specifically, a para-

metric drive is found to draw out a much greater response in the spin current from the magnon

modes. Quite generally speaking, quantum control of magnon states would be an important idea

to pursue in the foreseeable future. On the subject of waveguide QED, new interest has cropped

up in chiral waveguides, in which the emitters relax with differential emission rates into the two

oppositely propagating field modes. The directional dependence of atomic emission provides an

entirely different setup for manipulating photon scattering. Preliminary calculations have shown

that these setups usher in vastly different transport properties. A chiral system shifts the condition

for Fano-minimum and reintroduces high transmission in a region of high reflectivity observed in

the non-chiral system. In the simple case of two identical 2LAs, chirality brings in a transmission

peak on resonance when kL = nπ. This is in striking discord with the non-chiral system of identi-

cal emitters addressed in Chapter 3 of this thesis, where we had demonstrated superradiance in the

reflection for kL = nπ. Since chirality acts as an independent parameter strongly modifying the

transport, it can be deployed as an optical switch. Therefore, the controllability of chiral character-

istics and the feasibility of unidirectional emission, i.e., when the atoms emit into a single direction,

merit further investigation. It would also be interesting to transcend the single-excitation regime

into the two-photon and multiphoton regimes. Not only does the associated Hilbert space in these

regimes feature higher complexity, the photons themselves have the possibility of getting corre-

lated [222, 223]. The incidence of a second photon stimulates relaxation of the excited atom to its

ground state, leading to enhancement of emission from the atom [224]. This stimulated emission
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owes its origin largely to an effective photon-photon correlation induced by the emitter. In addition

to scattering states, the physics of correlated few-photon transport supports an additional category

of states, known as multiphoton bound states [222, 223, 225]. Signatures of photon-photon corre-

lation in the multiphoton regime would offer novel quantum insights accessible neither within the

single-photon manifold nor in the semiclassical limit of large photon numbers. In Ref. [222], an

asymptotic analysis (i.e., far away from the scattering source) of the two-photon scattering eigen-

state for a single 2LA in a waveguide reported intriguing photon-correlation properties: the trans-

mitted photons are bunched, while the reflected photons are antibunched. Going ahead, it would

be worthwhile to examine these photon-correlated states from an information-theoretic viewpoint.

Finally, it would also be interesting to extend our analysis of photon transport to the context of

infinite periodic lattices, dimer lattices and disordered systems, in general. Periodic geometries are

particularly interesting to explore since a given lattice periodicity gets mapped into a distinctive

spectral profile with a collective decay rate depending on the scale of the system. Such a treatment

allows tracing the spectral signature of crystalline structures down to their periodicity. In the same

vein, spectroscopic lineshapes of defective lattices should afford definite insights into the nature

of disorder in the system. Using absorption/emission spectra as the penetration probes of internal

configurations has long been one of the holy grails of optics. Therefore, a coherent analysis of

photon dispersion and transport properties in these prototypical systems should facilitate a better

understanding of the collective effects emerging in complex, many-body systems with crystalline

features.
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[111] Weijian Chen, Şahin Kaya Özdemir, Guangming Zhao, Jan Wiersig, and Lan Yang. Excep-

tional points enhance sensing in an optical microcavity. Nature, 548(7666):192–196, Aug

2017.

146



[112] Hossein Hodaei, Absar U. Hassan, Steffen Wittek, Hipolito Garcia-Gracia, Ramy El-

Ganainy, Demetrios N. Christodoulides, and Mercedeh Khajavikhan. Enhanced sensitivity

at higher-order exceptional points. Nature, 548(7666):187–191, Aug 2017.

[113] Mohammad-Ali Miri and Andrea Alù. Exceptional points in optics and photonics. Science,

363(6422):eaar7709, 2019.

[114] Christian E. Rüter, Konstantinos G. Makris, Ramy El-Ganainy, Demetrios N.

Christodoulides, Mordechai Segev, and Detlef Kip. Observation of parity–time symmetry

in optics. Nature Physics, 6(3):192–195, Mar 2010.

[115] Alois Regensburger, Christoph Bersch, Mohammad-Ali Miri, Georgy Onishchukov,

Demetrios N. Christodoulides, and Ulf Peschel. Parity–time synthetic photonic lattices.

Nature, 488(7410):167–171, Aug 2012.
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et al. Multidimensional quantum entanglement with large-scale integrated optics. Science,

360(6386):285–291, 2018.

[221] Yu He, X. Ding, Z.-E. Su, H.-L. Huang, J. Qin, C. Wang, S. Unsleber, C. Chen, H. Wang, Y.-

M. He, X.-L. Wang, W.-J. Zhang, S.-J. Chen, C. Schneider, M. Kamp, L.-X. You, Z. Wang,

S. Höfling, Chao-Yang Lu, and Jian-Wei Pan. Time-bin-encoded boson sampling with a

single-photon device. Phys. Rev. Lett., 118:190501, May 2017.

[222] Jung-Tsung Shen and Shanhui Fan. Strongly correlated multiparticle transport in one di-

mension through a quantum impurity. Phys. Rev. A, 76:062709, Dec 2007.

[223] Huaixiu Zheng, Daniel J. Gauthier, and Harold U. Baranger. Waveguide qed: Many-body

bound-state effects in coherent and fock-state scattering from a two-level system. Phys. Rev.

A, 82:063816, Dec 2010.

[224] Eden Rephaeli and Shanhui Fan. Stimulated emission from a single excited atom in a waveg-

uide. Phys. Rev. Lett., 108:143602, Apr 2012.

[225] Io-Chun Hoi, Tauno Palomaki, Joel Lindkvist, Göran Johansson, Per Delsing, and C. M.

Wilson. Generation of nonclassical microwave states using an artificial atom in 1d open

space. Phys. Rev. Lett., 108:263601, Jun 2012.

157



APPENDIX A

SINGLE-PHOTON TRANSPORT: WAVEGUIDE QED

In this appendix, we present some derivations related to the real-space formalism of single-

photon transport in a 1D waveguide.

A.1 Real-space Hamiltonian of waveguide modes

The field energy is written in k−space as

H(field)
0 =

∫
dk ℏvgk

(
a†R(k)aR(k)− aL(k)

†aL(k)

)
(A.1)

Substituting the Fourier decomposition of the mode operators embodied into Eq. (2.5), we obtain,

for the contribution from the right-propagating modes

H(R)
0 =

1

2π

∫
dk ℏvgk

∫ ∫
dx dx′ a†R(x)aR(x

′)eik(x−x′)

=
1

2π

∫ ∫
dx dx′

∫
dk ℏvgkeik(x−x′)a†R(x)aR(x

′)

=
i

2π

∫ ∫
dx dx′

∫
dk ℏvg

∂

∂x′

(
eik(x−x′)

)
a†R(x)aR(x

′)

=
iℏvg
2π

∫ ∫
dx dx′ a†R(x)aR(x

′)
∂

∂x′

(∫
dk eik(x−x′)

)
= iℏvg

∫
dx a†R(x)

∫
dx′ aR(x

′)
∂

∂x′
δ(x− x′)

= −iℏvg
∫

dx a†R(x)

∫
dx′ δ(x− x′)

∂

∂x′
aR(x

′)

= −iℏvg
∫

dx a†R(x)
∂

∂x
aR(x). (A.2)
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We have used the property limx′→±∞ aR(x
′) = 0 and integrated by parts to get the penultimate step

above, i.e.,
∫
dx′ aR(x

′)
∂

∂x′
δ(x− x′) = −

∫
dx′ δ(x− x′)

∂

∂x′
aR(x

′). A similar treatment yields

H(L)
0 = iℏvg

∫
dx a†L(x)

∂

∂x
aL(x) (A.3)

Combining (A.2) and (A.3) verifies Eq. 2.6.

A.2 Obtaining the single-atom reflection and transmission

On substituting the plane-wave solutions for ψR,k and ψL,k from (2.26) into their corresponding

differential equations in (2.26), we find

−ivg(tk − 1) + J ck = 0,

ivgrk + J ck = 0. (A.4)

More precisely, one can integrate the differential equations
(
−ivg

∂

∂x
−vgk

)
ψR,k(x)+J ckδ(x) =

0 and
(
ivg

∂

∂x
− vgk

)
ψL,k(x) + J ckδ(x) = 0 from x− ϵ to x+ ϵ, and then take the limit ϵ→ 0,

while keeping ϵ > 0. Such a limiting calculation yields −ivg
(
ψR,k(0

+)− ψR,k(0
−)

)
+ J ck = 0

and ivg

(
ψL,k(0

+)− ψL,k(0
−)

)
+ J ck = 0, where f(0±) define the limiting values

lim
ϵ→0
ϵ>0

f(±ϵ).

Next, to solve the third equation in (2.25), we need the values of the wave functions at the location

of the atom. However, the wave functions are discontinuous at these points. One therefore resorts
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to a regularization procedure whereby they introduced the regularized functions

ψ̃R,k(0) =
1

2
(ψR,k(0

+) + ψR,k(0
−)),

ψ̃L,k(0) =
1

2
(ψL,k(0

+) + ψL,k(0
−)). (A.5)

where the tilde-notation has been used to indicate regularized wave-functions which are continuous

and well-defined at atomic location. Upon this redefinition, we obtain the values

ψ̃R,k(0) =
tk + 1

2
,

ψ̃L,k(0) =
rk
2
. (A.6)

Using these regularized forms in the final equation of (2.25), we find

ck =
J (tk + rk + 1)

2∆k

(A.7)

Solving (A.4) and (A.7) jointly leads to the expressions in Eq. (2.28).

A.3 Interaction Hamiltonian for arbitrary N

For N > 1, the coupling constant Jk, originally introduced for a single atom at x = 0, would

be superseded by the forms

J (j)
k =

(
ℏω(k)
2ε0V

)1/2

eikxjpj · êk, (A.8)

where pj is the dipole-moment vector of the jth atom. The phases carry information about the

location of the different atoms. The corresponding interaction Hamiltonian in k−space goes as

∫
dk ℏJ (j)

k (a†k |g⟩j ⟨e|+ ak |e⟩j ⟨g|) (A.9)
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Upon transitioning to real space, this becomes

Hint =

∫
dx ℏJ (j)(x)

[(
a†R(x) + a†L(x)

)
|g⟩j ⟨e|+

(
aR(x) + aL(x)

)
|e⟩j ⟨g|

]
(A.10)

where we have, now, the Fourier transform of J (j)
k defined via

J (j)
k =

1√
2π

∫ ∞

−∞
dxJ (j)(x)eikx (A.11)

Now, the factor
(
ℏω(k)
2ε0V

)1/2

is slowly varying, while the phase factors eikxj represent fast oscil-

lations. Furthermore, when one assumes the dipole-moment elements to be identical for all the

atoms, it is posible to replace the function J (j)
k by

J (j)
k ≈ J√

2π
eikxj (A.12)

where J is essentially a constant. Substituting (A.12) into (A.11), we obtain

J (j)(x) = J δ(x− xj) (A.13)

Plugging these into (A.10) verifies the generalized real-space interaction Hamiltonian for a chain

of N 2LAs expressed in (2.30).

A.4 Derivation of N -atom reflection and transmission

We next show how the system of equations in (2.33) leads to the simultaneous, linear equations

in (2.36). Integrating the differential equations in (2.33) between xj − ϵ and xj + ϵ, and letting
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ϵ→ 0 (ϵ > 0) we obtain

−ivg
(
ψR,k(x

+
j )− ψR,k(x

−
j )

)
+ J ck = 0,

ivg

(
ψL,k(x

+
j )− ψL,k(x

−
j )

)
+ J ck = 0. (A.14)

Invoking the plane-wave expressions listed in (2.34) and (2.35), we are led to the respective coupled

equations

tje
−ikL − tj−1 +

iJ c(j)k

vg
= 0, (A.15)

rj+1e
ikL − rj −

iJ c(j)k

vg
= 0. (A.16)

In addition, when one uses the same regularization technique as employed for the case of a single

atom, the following regularized values of the wave functions are obtained at the location of the jth

atom:

ψ̃R,k(xj) =
tje

−ikL + tj−1

2
,

ψ̃L,k(xj) =
rj+1e

ikL + rj
2

, (A.17)

Substituting these into the final equation in (2.33), leads, after a slight algebraic maneuver, into

tj−1 + rj −
∆

(j)
k c

(j)
k

J
= 0, (A.18)

which reproduces the final equation in (2.36).
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APPENDIX B

MASTER EQUATION OF A CHAIN OF DISSIPATIVELY COUPLED EMITTERS

We consider an system (S) of N harmonic oscillator modes interacting dissipatively through

a shared one-dimensional bath (B) aligned along the x-axis. The model is similar to Fig. 2.3

in Chapter 2, with the 2LAs replaced by oscillators. We split the net Hamiltonian H into three

contributions given by

HS = ℏ
N∑

λ=1

ωλc
†
λcλ,

HB = ℏ
∑
k

ωka
†
kak,

HSB = iℏ
∑
k

N∑
λ=1

gkλ(ake
ikxλ − a†ke

−ikxλ)(cλ + c†λ), (B.1)

where we assume that the mode cλ is coupled to the waveguide at the location x = xλ. The

coupling coefficients gkλ’s are assumed to be real. Here, HSB exemplifies a two-body interac-

tion among spatially separated modes with electromagnetic field quantized in a one-dimensional

geometry.

B.1 Master equation for the Ensemble

We can adiabatically eliminate the reservoir degrees of freedom to obtain the master equation

under the Markov approximation as

ρ̇S(t) = − i

ℏ
[HS, ρS(t)]−

1

ℏ2

∫ ∞

0

dτ TrB[HSB, [HSB(−τ), ρS(t)ρB]] (B.2)

where O(−τ) = exp
[
− i

ℏ(HS +HB)τ
]
O exp

[
i
ℏ(HS +HB)τ

]
, and ρB is the initial state of the

bath [56]. Decomposing the interaction Hamiltonian as HSB =
∑

α SαBα, where Sα and Bα
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denote the system and bath operators respectively, the above expression can be further reduced to

ρ̇S = − i

ℏ
[HS, ρS]−

1

ℏ2

{∫ ∞

0

dτ
∑
α,β

Cαβ(−τ)[SαSβ(−τ)ρS − SB(−τ)ρSSα] + h.c.
}

(B.3)

with Cαβ(−τ) = exp{BαBβ(−τ)}. Idealizing the bath as the electromagnetic vacuum, the reser-

voir signatures would encoded as ⟨akak′⟩ =
〈
a†kak′

〉
= 0 and

〈
aka

†
k′

〉
= δk,k′ . We then find the

constituent terms to be

Cαβ(−τ) =
∑
k

gkαgkβe
ikxαβe−iωkτ

SαSβ(−τ)ρS = (bα + b†α)(e
iωβτbβ + e−iωβτb†β)ρS

Sβ(−τ)ρSSα = (eiωβτbβ + e−iωβτb†β)ρS(bα + b†α) (B.4)

Substituting these expressions into (B.3), we obtain τ−integrals which, for the moment, can be

expressed in terms of

T (±)
kµ =

∫ ∞

0

dτei(ωµ±ωk)τ = πδ(ωµ ± ωk) + iP
1

(ωµ ± ωk)
, (B.5)

where P(1/x) denotes the Cauchy Principal Value of its argument. Since ωk’s are all positive, terms

of the form δ(ωµ + ωk) can be stamped out. In light of these simplifications, we can compactify

(B.3) into the form

ρ̇S = − i

ℏ
[HS, ρS]−

1

ℏ2
N∑

α,β=1

(Wαβ +W†
αβ), (B.6)

where a typical contribution would appear as

Wαβ =
∑
k

gkαgkβe
ik(xα−xβ)

[
T (−)
kβ (c†αcβρS − cβρSc

†
α) + T (+)

kβ (cαc
†
βρS − c†βρScα)

]
. (B.7)
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We have dropped the fast-oscillating terms that go as cαcβ or c†αc
†
β under the purview of the rotating

wave approximation. Using a linearized approximation to the reservoir frequencies ωk ≈ vg|k|,

with the +ve and the −ve values of k representing right-propagating and left-propagating fields

respectively, we take the continuum limit
∑

k → L

2π

∫
dk in computing Wαβ and W†

αβ . With

the identification Λ± =
1

π
P
∫∞
−∞ dk

eikxαβ

ωβ ± vg|k|
and the assumption that the coupling to the modes

is independent of the field’s propagation direction, the cardinal intermediate relations could be

codified as

∫ ∞

−∞
dke±ikxαβδ(ωβ − vg|k|) =

2

vg
cos(kβxαβ),

Λ+ + Λ− =
2

vg
sin(kβxαβ), (B.8)

where xαβ = |xα − xβ| and kβ = ωβ/vg. Terms like P
∫∞
−∞ dk

1

ωβ ± vg|k|
get reflected as small

frequency shifts in ω1 and ω2, which can be neglected. Then, collecting the like terms together

in (B.7) and exploiting the preceding relations in (B.8), we obtain the full master equation for the

dissipative dynamics of S:

ρ̇S = − i

ℏ
[HS, ρS]−

N∑
α,β=1

γαβ(c
†
αcβρS − 2cβρSc

†
α + ρSc

†
αcβ)− i

∑
α ̸=β

Ωαβ[c
†
αcβ, ρS]. (B.9)

The associated coefficients are given by

καβ =
g2αL

vg
δαβ + Γαβ cosϕαβ(1− δαβ),

Γαβ = (καακββ)
1/2 =

gαgβL

vg
,

Ωαβ = Γαβ sinϕαβ, (B.10)

where, in view of the proximity between the transition frequencies, it is assumed that kλ ≈ k0 =

ω0/vg ∀λ ∈ {1, N}. gkα ≈ gα, and {k0, ω0} is the central waveguide mode in the vicinity of which

the linear dispersion holds valid. The phases ϕαβ are defined as ϕαβ = k0xαβ , and gkλ’s are taken
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to be k-independent. Note that the decay parameter καα =
g2αL

vg
deduced here accounts only for

the waveguide’s contribution to the dynamics. When other decohering channels are considered in

parallel, additional dissipative effects are tacked onto these terms.

B.2 Dissipative Dynamics of the system

Pursuant to the master equation derived, we find the dynamical equations for the various modes

to be encoded as

⟨ċα⟩ = −i(ωα − iγα) ⟨cα⟩ −
∑
β ̸=α

Γαβe
iϕαβ ⟨cβ⟩ , (B.11)

Switching to a frame rotating at ω0, and defining ωα − ω0 = ∆α, we can recast this in matrix form

as Ẋ = −iHX , where X = (⟨c1⟩ ⟨c2⟩ ⟨c3⟩ . . . ⟨cN⟩)T , and

H =


∆1 − iγ1 −iΓ12e

iϕ12 . . .

... . . .

−iΓ1,N−1e
iϕ1,N−1 . . . ∆N − iγN

 . (B.12)

When ϕβ = nπ, the couplings are purely dissipative. For a simple two-mode system, under the

further assumption that ∆1 = −∆2 = δ/2 and γ1 = γ2 = γ, we obtain an anti-PT symmetric

Hamiltonian.
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APPENDIX C

ADIABATIC ELIMINATION OF CAVITY MODE IN THE WEAK COUPLING REGIME

In the bad-cavity limit, we can employ an adiabatic model to advance an effective two-mode

description for the magnon modes, since the cavity mode relaxes rapidly into its steady state. This

treatment reinforces forthwith the emergence of a dissipative interaction between the magnons, can

lead to anti-PT symmetry*. In the rotating frame of the cavity mode, the mean field equations of

the hybrid cavity magnon system are given by

Ẋ = −iHX, (C.1)

where H =


−iκ g1 g2

g1 s− iγ1 0

g2 0 −s− iγ2

 (see Eq. 5.28). In the adiabatic limit, we can eliminate

the cavity mode by setting ȧ = 0, yielding

a =
−i(g1m1 + g2m2)

κ
. (C.2)

Substituting this into Eq. (C1), we obtain a coupled system of differential equations encompassing

the dynamics of the magnon modes,

Ẏ = −iH̃Y, (C.3)

*The derivation presented here appears partly in the appendix of our paper Phys. Rev. B. 105, 214418 (2022),
published by the American Physical Society.
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with Y T =[m1 m2], and

H̃ =

s− iγ̃1
−ig1g2
κ

−ig1g2
κ

−s− iγ̃2

 , (C.4)

where γ̃i = γi +
g2i
κ

. The effective magnon-magnon Hamiltonian clearly features the hallmarks of

dissipative coupling. To put it into perspective, the cavity, when weakly coupled to the magnons,

merely acts as a common reservoir for the magnon modes in the adiabatic limit. Further, on mak-

ing the usual choice γ1 = γ2, g1 = g2, it turns anti-PT symmetric.

A quick justification of C.2: From C.1, we have

ȧ(t) = −κa(t)− i
2∑

j=1

gjmj(t). (C.5)

Eq. C.5 can be formally integrated to obtain

a(τ) = e−κτa(0) + i
2∑

j=1

gj

∫ τ

0

e−κ(τ−t)mj(t) dt . (C.6)

We are interested in the cavity-dynamics after a timescale of τ such that 1/κ ≪ τ ≪ 1/gj, 1/γj .

Stated differently, after a timespan of τ , the cavity mode has substantially decayed away, and the

first term in Eq. C.6 approximates to zero, i.e.,

lim
τ≫1/κ

e−κτa(0) ≃ 0. (C.7)

Since τ ≪ 1/gj , coherent Rabi oscillations due to the intracavity field have barely had a chance

to materialize. In addition, since τ ≪ 1/γj , the magnon modes have hardly experienced any

dissipation within this time-frame. Consequently, in this limit, we can treat the magnon variables
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as constants and take them out of the integral thus:

∫ τ

0

e−κ(τ−t)mj(τ) dt ≃ mj(τ)

∫ τ

0

e−κ(τ−t) dt

τ≫1/κ−−−−→ −mj

κ
(C.8)

Substituting C.7 and C.8 into C.6, we recover C.2.
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