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ABSTRACT 

 

Many public concerns have been brought to the increasingly intense greenhouse effects. 

The International Maritime Organization (IMO) has ambitious strategies to limit the air 

pollutant emissions from the merchant ships in a long run, especially for carbon, sulfur, 

methane and nitrogen oxides.  

 

To achieve IMO 2050 decarbonization objectives, more than one solution are required 

for maritime energy transition, from electric batteries for onboard activities to a variety 

of “green fuels” as well as safe and sustainable process design of onboard carbon 

capture, utilization, and storage (CCUS). Our work is focusing on screening promising 

marine fuels and providing safer and more sustainable carbon capture systems for 

maritime industry from the perspective of process safety and process systems 

engineering. 

 

This work can be divided into four major parts: Tank to propeller (TTP) sustainability 

study focuses on providing solutions on marine fuel consumption and TTP exhaust gas 

emission control, and a bottom-up emission inventory model was developed by 

analyzing and optimizing multiple parameters; Then an onboard carbon capture system 

called TTP post-combustion carbon capture (TTPPCC) system was proposed by 

integrating ship engine process modeling with chemical absorption/desorption process 

modeling techniques, this work covers a thorough sustainability evaluation based on 
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emission reduction efficiency, energy penalty, and carbon cyclic capacity among two 

single aqueous amines, MEA and diisopropanolamine (DIPA), and one blended amine 

with a promoter, methyldiethanolamine (MDEA) with piperazine (PZ); The first TTP 

safety study aims at identifying the contributors influencing liquid aerosol flammability 

and solving their data deficiencies by developing quantitative structure−property 

relationship (QSPR) models, 1215 liquid chemicals and 14 predictors have been input to 

train the developed machine learning models via k-fold cross validation with the 

consideration of principal component analysis; The second TTP process safety study 

makes contributions on exploring inherently safer marine fuels by offering a liquid 

combustion risk criterion for ship compression ignition engines, two unsupervised 

machine learning clustering models were developed by considering liquid flammability 

flame propagation and aerosol formulation characteristics. 
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NOMENCLATURE 

 

AB Auxiliary Boiler 

AE Auxiliary Engine 

AIS Automatic Identification System 

AIT Auto Iginition Temperature 

BCA Black Carbon Aerosol 

CAPEX Capital Expenditure 

CIE Compression Ignition Engine 

!! Specific Heat Capacity 

DWT Deadweight Ton 

"# Damkohler number 

D3,2, SMD   Sauter mean diameter (μm) 

FP Flash Point 

FR Flammability Range 

GPR Gaussian process regression 

HFO Heavy Fuel Oil 

HPDF High Pressure Injection Dual Fuel 

IMO International Maritime Organization 

LDV Liquid dynamic viscosity 

LICRI Liquid In-cylinder Combustion Risk Index 

LNG Liquefied Natural Gas 



 

ix 

 

LPDF Low Pressure Injection Dual Fuel 

LPG Liquefied Petroleum Gas 

LVP Liquid Vapor Pressure 

MAE Mean Absolute Error 

ME Main Engine 

MEPC The Marine Environment Protection Committee 

MGO Marine Gas Oil 

MSE mean squared error 

OPEX Operation Expenditure 

PCA principle component analysis 

QSPR Quantitative Structure–Property Relationships 

RMSE Root Means Squared Error 

$"#$$#% Explosion vessel diameter (m) 

SFC Specific Fuel Consumption 

SSD Slow Speed Diesel 

ST Surface Tension 

%% Laminar flame speed (m/s) 

%& Turbulent flame speed (m/s) 

TEU Twenty Foot Equivalent Unit 

TTP Tank to Propeller 

VLSFO Very Low Sulphur Fuel Oil 
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Greek 

symbols 

 

& Thermal diffusivity 

' Liquid Density 

(' Flame thickness (m) 

)̇ Reaction rate 

+( Turbulence intensity 
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1. INTRODUCTION
*
  

 

The oil and gas sector have been always considered as a large capital and technology intensive 

sector, while the process industries focus on the infrastructures and manufacturing technologies 

which transform feedstocks to value-added products via the means of chemical and physical 

(El-Halwagi, 2017). Many process techniques have been widely adopted to the oil and gas 

sector, leading to great economic boost. In another aspect, the world’s economy relies heavily 

as well on maritime transportation since more than 90% of the global trade are carried by 

marine transportation (International Maritime Organization, 2019), which is commonly 

deemed as the midstream of the oil and gas sector. As illustrated in Figure 1.1, the value chain 

of the marine fuel oil comprises the exploration and extraction of feedstock, refining the raw 

material, products transportation to bunkering station, and refueling to the ships. This whole 

life cycle of  marine fuel oil is often referred as the well to propeller (WTP) or well to wake 

process, including the well to tank (WTT) process, which covers the upstream and midstream 

part of the value chain, and the tank to propeller (TTP) process that defines the fuel functional 

stage in the various types of ships (Bengtsson et al., 2011).    

 

 

* Reprinted with permission from “Ji, Chenxi, and Mahmoud M. El-Halwagi. "A data-driven study of IMO compliant fuel 
emissions with consideration of black carbon aerosols." Ocean Engineering 218 (2020): 108241. Ji, Chenxi, Shuai Yuan, 
Zeren Jiao, Mitchell Huffman, Mahmoud M. El-Halwagi, and Qingsheng Wang. "Predicting flammability-leading properties 
for liquid aerosol safety via machine learning." Process Safety and Environmental Protection 148 (2021): 1357-1366. Ji, 
Chenxi, Zeren Jiao, Shuai Yuan, Mahmoud M. El-Halwagi, and Qingsheng Wang. "Development of novel combustion risk 
index for flammable liquids based on unsupervised clustering algorithms." Journal of Loss Prevention in the Process 
Industries 70 (2021): 104422.” Ji, Chenxi, Shuai Yuan, Mitchell Huffman, Mahmoud M. El-Halwagi, and Qingsheng Wang. 
"Post-combustion carbon capture for tank to propeller via process modeling and simulation." Journal of CO2 Utilization 51 
(2021): 101655. 
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Figure 1.1 Definition of WTP, WTT and TTP 
 

In the recent decade, many concerns have been brought on environmental and safety 

infrastructures and economic criteria of the well to propeller process. In the shipping 

industry, the Marine Environment Protection Committee (MEPC) of the International 

Maritime Organization (IMO) has issued a long-term plan to phase out the major ship-

resulted air polluters, such as SOx, NOx, and CO2.  Carbon emissions are set to be reduced by 

at least 40% by 2030 and 70% by 2050 compared to the benchmark emissions of 2008 

(MEPC 72, 2018).  

 

Figure 1.2 shows grams CO₂ equivalent (CO2, CH4 and N2O considered) per megajoules of 

energy contained in heavy fuel oil (HFO) (g CO₂eq/MJ) of the WTT (Figure 1.2(a)) and TTP 

(Figure 1.2(b))  from our collected data (Argonne National Laboratory, n.d.; Baldi et al., 

2013; Baresic, D.; Smith, T.; Raucci, C.; Rehmatulla, N.; Narula, K.; Rojon, 2019; Bengtsson 

et al., 2012; El-Houjeiri et al., 2019, 2013; Gilbert et al., 2018; Manganaro and Lawal, 2016; 

Verbeek, Ruud; Kadijk, Gerrit;Mensch, Pim van; Wulffers, Chris; Beemt, Bas van den; 

Fraga, 2011). The median value of the TTP CO2 equivalent emissions is 78 grams per MJ 

while that value of WTP is around 10 grams per MJ. Around 90% global warming potential 
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(GWP) of the whole WTP process may attribute to the tank to propeller process. Therefore, 

TTP process is essential for the global warming effects of the whole shipping fuel value 

chain.  

 

 
Figure 1.2 (a) CO₂ equivalent emission for well to tank and (b) tank to propeller 
processes 
 

To achieve IMO 2050 decarbonization objectives, more than one solution are required for 

maritime energy transition, from electric batteries for onboard activities to a variety of “green 

fuels” as well as safe and sustainable process design of onboard carbon capture, utilization, 

and storage (CCUS). Our work is focusing on screening promising marine fuels and 

providing safer and more sustainable carbon capture systems for maritime industry from the 

perspective of process safety and process systems enegineering.  

 

In general, this work is comprised of four major parts: Tank to propeller sustainability study 

focuses on providing solutions on marine fuel consumption and TTP exhaust gas emission 

control; Then an onboard carbon capture system called TTP post-combustion carbon capture 

(TTPPCC) system was proposed by integrating ship engine process modeling with chemical 

absorption/desorption process modeling techniques; The first TTP safety study aims at 

identifying the contributors influencing liquid aerosol flammability and solving their data 

deficiencies by developing quantitative structure−property relationship (QSPR) models; The 
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second TTP process safety study makes contributions on exploring inherently safer marine 

fuels by offering a liquid combustion risk criterion for ship compression ignition engines. 

 

1.1. TTP fuel sustainability analysis  

As a result of the extensive maritime transportation activities, there is a substantial impact on 

sustainable development of marine transportation. The International Maritime Organization 

(IMO) has been working on reducing greenhouse gases (GHG) emissions and other pollutants 

such as sulfur oxides, nitrogen oxidizes. The latest Marine Environment Protection Committee 

(MEPC) regulation, Annex VI of the International convention for the Prevention of Pollution 

from Ship (MARPOL), called “2020 Sulfur Cap”, is set to globally reduce the fuel sulfur 

content on board from 3.5% mass to 0.5% mass outside the emission control areas (ECA). 

Furthermore, the IMO’s carbon footprint reduction targets of 2050 has brought many 

challenges and opportunities for each stage of the shipping fuel supply chain. Towards 

complying with the MARPOL convention, the shipping companies and oil refineries have 

made various improvements.  

 

The current standard for shipping fuel is ISO 8217: 2017 and its latest revision, which was 

published on Sep. 18, 2019, named as ISO/PAS 23263:2019. It defines general requirements 

and serves to confirm the compliant fuels of ISO 8217:2017 with maximum 0.50% sulfur 

content, and it addresses quality considerations and the range of marine fuels as well.  A new 

category, very low sulfur fuel oil (VLSFO) with sulfur content range between 0.1% and 0.5%, 

was introduced to serve as the blended IMO fuel oil for non-ECAs in line with ISO 8217:2017. 

In addition, the proven IMO 2015 ECA grade distillate fuel, marine gas oil with maximum 

0.1% sulfur content is still an available option for shipowners to comply with the 2020 Sulfur 

Cap. The high sulfur fuel oil (HFSO), 3.5% maximum sulfur content, is considered as an 



 

 5 

attractive option for shipping industry because of the low fuel price, but the HFSO driven 

vessels should be equipped with pollutant reduction devices, mostly scrubbers, to continue 

serving for worldwide trade under the current MARPOL convention. As a clean fossil fuel, 

liquefied natural gas (LNG) has been applied to marine transportation for one decade. Many 

new vessels adopt this technique to meet the latest IMO rule. As illustrated in Figure 1.3, these 

four fuel options are the widely recognized solutions for green shipping strategy of the global 

commercial fleet. 

 

Figure 1.3 IMO 2020 shipping fuel options and promising fuel options  
 

Although some other alternative fuel options, such as liquefied hydrogen, ammonia, methanol, 

and biodiesel, might be sustainable candidates for marine transportation in the future, these 

above-mentioned four fuels are ready to use for ocean going vessels, and the merits and 

demerits of them are listed in Table 1.1.  

Table 1.1 Merits and demerits of proven shipping fuel options under IMO 2020 Sulfur 
Cap 

 Pros Cons Remarks 

VLSFO RM 

New fuel, mostly 

blended; 

A preferred option by 

considering both 

Stability and 

compatibility need to be 

widely tested 

Sulfur content 

0.1%~0.5%; 

BP estimates 

VLSFO will 
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sustainability and fuel 

price  

supply over 50% 

of the market 

after 2020 

(CIMAC, 2018). 

MGO DM 

No fuel switching 

required; 

Good sustainability as a 

distillated component; 

Further expenditure 

may be needed. 

Fuel price is the most 

expensive.  

Distillate oil, 

sulfur content 

<0.1%;  

Lowest CAPEX, 

High OPEX 

LNG 

 

Most sustainable option 

(Low NOx and SOx 

emissions); 

Low fuel price. 

 

 

Infrastructures for LNG 

bunkering are least 

established; 

CH4 slip may bring 

more GHG negative 

effects; 

High CAPEX, 

unknown OPEX, safety 

concerns  

 

 

Long term fuel 

option; 

Further 

technology and 

infrastructure 

needed. 

HFO with 

Scrubber 

 

Widely accepted fuel 

solution to immediately 

meet the requirements; 

 

Scrubber installation 

needs time and room on 

board, and extra cost; 

 

Sulfur 

content <3.5%, 

>0.5%;  
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Medium CAPEX, low 

OPEX; 

Low fuel price. 

Not a good sustainable 

solution; 

More than 10 countries 

forbit scrubber use in 

near shore areas. 

A fuel economy 

option. 

 

Aiming at providing sustainable fuel solutions for the stage of tank to propeller, this chapter 

evaluated all the compliant shipping fuel options under latest IMO sulphur limit for six most 

common merchant ship types, focusing on quantitatively comparing the fuel consumptions and 

emissions of GWP related ship exhaust gases and other major air pollutants. 

1.2. TTP carbon capture system design  

As many uncertainties lie in the new fuel exploration, the carbon capture techniques are 

currently attractive for IMO to meet its decarbonization strategy during this energy transition 

period. The maritime carbon capture, one specific type of combustion carbon capture, whose 

techniques can be classified as: 

• Pre-combustion capture: carbon is separated from H2, H2 is used for combustion 

• Oxy-fuel combustion: air for combustion is replaced by pure O2, then CO2 and H2O 

are separated 

• Post-combustion capture: CO2 is removed from flue gases produced during the 

combustion of fuels using air 

 

When considering technology maturity, the post-combustion carbon capture is the most 

favorable one to apply for the tank to propeller process. In particular, the tank to propeller 

post-combustion capture approaches may involve adsorption, cryogenic carbon capture, 

solvent-based chemical absorption, physical absorption, and membrane-based technologies.  
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The fuel tank continuously sends the shipping fuel to the ship main engine. Both the shaft 

work and flue gas are generated by the fuel combustion in the engine chamber. While the 

effective work constantly provides axial thrust to the propeller to move the ship, the produced 

flue gas is processed by the post-combustion carbon capture system. The flue gas firstly 

reacts with the lean solvent solution in the absorber, leaving the treated gas with a lower CO2 

content. Then the rich solvent (high CO2 stream) is desorbed in the stripper, the top of which 

is connected to the compressed CO2 tank for storage. The regenerated solution passes through 

a heat exchanger for heat recovery and goes back to the absorber.  

 

This chapter aims to provide a holistic way to determine the most efficient and sustainable 

post-combustion carbon capture solution for tank to propeller processes.  The objectives of this 

work encompass the following: 1) marine engine cylinder modeling and validation, 2) 

TTPPCC system process model development and pilot plant validation, 3) Optimal absorber 

and stripper design under variation of solvents, packed type, and liquid gas ratio, 4) 

Quantitative sustainable evaluation by emission reduction efficiency, energy penalty and 

carbon cyclic capacity. 

 

1.3. Inherently safer fuel properties for TTP process 

Besides exploring clean promising shipping fuels and developing onboard carbon capture 

systems, safety is a key aspect for the promising marine fuel screening process. Most ships 

employ 2-stroke diesel compression-ignition (CI) engine as their main power-driven source. 

Flammability and explosive hazards, which have been well studied, are the major concerns of 

safety aspects of the TTP process. However, the liquid aerosolization and flame propagation, 

making bulk liquids more hazardous on combustion and explosion in the cylinder of CI engine, 

have not widely recognized in industry or academia, thus, it is necessary to identify contributors 
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of liquid aerosol formulation and to find an effective method of predicting these aerosolization-

leading target properties. 

 

The objective of this work is to develop a mechanism to find an optimal algorithm for the three 

identified liquid aerosol safety parameters of organic compounds by comparing interpretation 

and prediction accuracy among the proposed machine learning models. One liquid 

aerosolization controlling factor (LVP) and two SMD dominating parameters (LDV and liquid 

surface tension) are set as the dependent variables to develop quantitative structure–property 

relationship (QSPR) models individually. 

 

1.4. Novel combustion risk index for TTP liquids 

To fill in gaps for categorizing promising shipping fuels from the perspective of chemical 

safety and process system engineering, there are two steps to carry on the study of TTP process 

safety: the first step is to find optimal models for the identified contributors of liquid aerosol 

formulation and the next step is to adopt the clustering and classification approaches via 

unsupervised machine learning (ML) algorithms to quantitatively classify the safety level of 

promising marine fuels. 

 

By integrating the liquid aerosol formulation contributors with liquid flammability and flame 

propagation, the database of our liquid in-cylinder combustion criterion is built with three 

evaluation matrix and nine contributors including auto-ignition temperature (AIT), flash point 

(FP), flammability range (FR), heat capacity (HC), liquid density (LD), and liquid thermal 

conductivity (LTC). This work employs two unsupervised clustering algorithms to categorize 

the risk rating of liquid flammability, flame propagation, and aerosol formulation, then a liquid 

in-cylinder combustion risk index (LICRI) is presented to obtain the overall liquid combustion 
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safety ratings. The four cluster models are finalized as the optimal ones for the three TTP risk 

rating categorizes. The liquid organic compound database is clustered into four groups for the 

three safety matrices, and the low overall rating presents the high-level hazard. 

 

Compared with the flash point driven liquid flammability classification method, this work 

integrates the major inherent properties of the liquid flammability and flame propagation with 

aerosol formulation. Unlike the traditional expert judgment dominated risk assessment 

techniques, the two ML clustering algorithms are firstly executed to evaluate the risk associated 

with marine fuel combustion in the engine cylinder. Also, the graph theory-based spectral 

clustering algorithm is the first time to employ in the chemical process safety field based on 

the authors’ knowledge.  More than 700 liquid chemicals have been analyzed and rated by the 

proposed LICRI criterion, proving as a solid reference for marine fuel selection in the TTP 

process. 

 

To achieve these goals, the following specific tasks will be conducted in the below chapters: 

• Determination of emission profiles of IMO 2020 compliant fuel options with focus on 

equivalent carbon dioxide (CO2e) and other major ship exhaust gases in marine shipping 

while adopting a holistic approach with clear basis of assumptions, scenarios, and 

characterization of uncertainties; 

• Identification of the most promising marine fuels for designated ship types with 

consideration different unit of capacity bins; 

• Ship dual fuel engine cylinder modeling and validation; 

• TTP post-combustion carbon capture process design and pilot plant validation; 

• Optimal absorber and stripper design under variation of solvents, packed type and 

liquid gas ratio; 
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• Identification of the contributors of the liquified fuel flammability, flame propagation 

and liquid aerosol formulation; 

• Determination of the optimal models of liquid aerosolization leading factors; 

• Development of a novel criterion to classify the risk rating of liquified fuels in marine 

compression ignition engines. 
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2. LITERATURE REVIEW
*
 

 

2.1. TTP fuel sustainability analysis 

The increasingly intense greenhouse effects have brought more concerns than ever before. 

Motivated by its mission of “safe, secure, clean and sustainable shipping”, IMO has 

implemented many strategies, regulations, and rules to reduce Greenhouse Gases (GHG) 

emissions from ships. The major Greenhouse Gases, CO2, CH4, N2O, and O3 have been 

studied for years to take effective measures to limit their emissions (Brynolf et al., 2014a; 

Comer et al., 2017; DNV GL, 2019a; IPCC Panel, 2014; Luo and Wang, 2017; Olmer et al., 

2017; Pavlenko et al., 2020; Smith et al., 2014). The Global Warming Potential (GWP) was 

firstly proposed by Intergovernmental Panel on Climate Change (IPCC) and the 100-year GWP 

(GWP100) was adopted by the Nations Framework Convention on Climate Change and its 

Kyoto Protocol (IPCC Panel, 2014). However, black carbon aerosol (BCA) has not been widely 

considered by the shipping industry and related research. Among all particulate phase species, 

BCA has its uniqueness: stable at high temperature, strong absorption of solar radiation, and 

insolubility in water, alcohol and other liquids (AMAP, 2015). It is worth noting that an 

individual soot particle can be aggregated to form external structures, which is subject to 

forming a mixture of coated particles to reduce the albedo of the surface and to contribute to a 

continuous warming effect (AMAP, 2015). As the dominant form of light-absorbing particulate 

matter in the atmosphere, BCA emission has been linked with negative influences on earth’s 

 

* Reprinted with permission from “Ji, Chenxi, and Mahmoud M. El-Halwagi. "A data-driven study of IMO compliant fuel 
emissions with consideration of black carbon aerosols." Ocean Engineering 218 (2020): 108241. Ji, Chenxi, Shuai Yuan, 
Zeren Jiao, Mitchell Huffman, Mahmoud M. El-Halwagi, and Qingsheng Wang. "Predicting flammability-leading properties 
for liquid aerosol safety via machine learning." Process Safety and Environmental Protection 148 (2021): 1357-1366. Ji, 
Chenxi, Zeren Jiao, Shuai Yuan, Mahmoud M. El-Halwagi, and Qingsheng Wang. "Development of novel combustion risk 
index for flammable liquids based on unsupervised clustering algorithms." Journal of Loss Prevention in the Process 
Industries 70 (2021): 104422.” Ji, Chenxi, Shuai Yuan, Mitchell Huffman, Mahmoud M. El-Halwagi, and Qingsheng Wang. 
"Post-combustion carbon capture for tank to propeller via process modeling and simulation." Journal of CO2 Utilization 51 
(2021): 101655. 
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climate change, especially on the vulnerable Arctic region (IPCC Panel, 2014; Sharafian et al., 

2019). One recent study (Olmer et al., 2017) pointed out that BCA is the second largest 

contributor to ship-induced GWP emissions, larger than CH4 and N2O; Moreover, black 

carbon is a major contributor to the human heart and lung disease as well (Bond et al., 2013). 

As a result, there is no reason to ignore BCA emissions, and this paper considers it as a major 

pollutant for the global warming potential consequence.  

 

In assessing the environmental impacts of shipping fuels, it is necessary to adopt a life cycle 

assessment (LCA) approach for the whole supply chain of alternative fuels. Several studies 

(Bengtsson, 2011; Bengtsson et al., 2012; Brynolf et al., 2014b) have considered the extraction 

of raw material, fuel production, fuel transportation and storage, and bunkering as the well to 

tank stage and ship operation with the produced fuel as the tank to propeller stage. An important 

segment of the LCA is the tank to propeller (TTP) stage which is responsible for the bulk of 

emissions for carbonaceous fuels and is under the direct control of the shipping industry. 

 

Accurate determination of shipping fuel emissions is critically important in benchmarking and 

accomplishing the long-term carbon reduction goal. To show a more reasonable estimation on 

the shipping fuel consumption and ship exhaust gas emissions, this work thoroughly searched 

the relevant works in the topic. The Marine Environment Protection Committee (MEPC), a 

subcommittee of IMO, has been working to streamline the process of collecting and calculating 

fuel combustion data. In one of the early studies on estimating emissions from the shipping 

industry, Eyring et al. (Eyring et al., 2005) analyzed 11 types of ships and 117,500 engines and 

divided them into 132 subgroups; they estimated total fuel consumptions by the following 

expression: 
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A! = ∑ A!)*+,
)-* = ∑ D) ∙ A./0,) ∙ F)*+,

)-* ∙ %AG!)                                  (2.1) 

 

Where D)  is the engine power, A./0,)  is the maximum continuous rated,  F)  is the engine 

operation time and %AG!) is the specific fuel oil consumption value.  

 

Following Eyring’s study, many research including the two widely-accepted milestone studies, 

Port of Long Beach emission inventory (Starcrest Consulting Group, 2014) and IMO 3rd GHG 

study (Smith et al., 2014), have presented similar approaches with minor revise to calculate the 

shipping fuel consumption. Moreno-Gutiérrez’s research team (Moreno-Gutiérrez et al., 2015) 

determined the engine operation time by calculating the result of average speed divided ship 

navigation distance, but they only considered the ship’s sailing process, and the auxiliary boiler 

emission was ignored. Rakke (Rakke, 2016) presented the detailed way in his master thesis to 

calculate the brake power by introducing total resistance, ship speed and sea margin. Moreover, 

a recent study (Olmer et al., 2017) by the international council on clean transportation (ICCT) 

proposed a new approach to calculate the fuel consumption by dividing carbon dioxide 

intensity for specific fuel with total CO2 emissions for one ship in a year. Since most studies 

established the mechanism models of ship fuel consumptions by the way from formula 1, the 

quality of estimated outputs largely relies on the accuracy of ship engine operation time, engine 

actual delivered power and the specific fuel oil consumption. On the other hand, several studies 

made their contributions on statistical models of ship exhaust gas emission. A Gaussian process 

model was proposed by Yuan and Nian (Yuan and Nian, 2018), seven influencing factors, 

including speed, mean draft, trim, wind speed, wind direction, wave height and wave direction 

were considered to build their model, but the RMSE value for both training data and validation 

set was not good. In addition, a multi linear regression method was proposed by Uyanik and 

his co-workers (Uyanik et al., 2019) to estimate the main engine fuel rate, but the predicted 
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variables of main engine revolutions per minute and shaft power seemed to be highly 

collinearity.  

 

Beyond the shipping fuel consumption, many scholars have published great works on 

estimation of ship exhaust gas emissions. Some previous work evaluated the shipping emission 

on a basis of geographical characteristics, one way is to calculate shipping emission in a 

specific area then to expand the estimation around the world, while the other is to estimate the 

global shipping emission and then assign the specific values to one defined zone. In the 

meanwhile, more recent studies adopted either the bottom-up approaches or top-down methods 

to quantitatively analyze emissions occurring the maritime activities. The top-down approach 

is a method to calculate the total emissions without considering the vessel characteristics and 

the estimated values are assigned to the different ships in a specific fleet or area; It is an 

accessible way to evaluate regional emission inventories, but the ship data tend to have a large 

number of uncertainties as a result of ocean-going vessels travelling among continents, and the 

fuel oil characteristics and prices cannot be consistent from port to port as well. Consequently, 

a more close-to-reality approach, the bottom-up approach emerges to obtain the air emission 

by a ship in a specific position, and the total emissions are estimated by aggregating these 

estimates over time and over the fleet. As a first milestone study, US EPA (EPA, 2000) 

proposed the theoretical basis for the ship emission calculation, as shown in equation 2.2. 

 

HIJKKJL9K2//,34&,.56# = HA ∙ MA756# ∙ ND ∙ "OP ∙ P2//,34&,.56#        (2.2) 

 

Where VCC is the vessel class (oil tanker, RORO carrier, etc.), DWT is the deadweight ton, 

EF is the emissions factor, LF is the mode specific load factor, HP is the horsepower of the 

engine and T is the running time of engine.  
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Based on equation 2.2, many studies (Eyring et al., 2005; Kwon et al., 2019; Moreno-Gutiérrez 

et al., 2019; Rakke, 2016; Smith et al., 2014; Starcrest Consulting Group, 2014; Wan et al., 

2019) estimated shipping emissions with different assumptions and updated information to 

reduce the uncertainties. As a widely accepted way, the ship emission calculation usually 

begins with inputting ship static information, including ship’s identification (ship name, MMSI 

code, IMO registry), physical properties (deadweight ton, length overall, design speed, draught, 

etc.) and engine properties (main engine brake horsepower, stroke type, rpm, installed power 

of auxiliary engine, boiler operation characteristics); Then a great number of valuable ship 

dynamic information, such as ship’s actual speed, position, engine operation status can be 

provided by the automatic information system (AIS) on board. Combined these two categories 

of information with ship consumption calculation, a specific ship exhaust gas emission can be 

determined by multiplying the ship energy consumption by the emission factors of different air 

pollutants accordingly.  

 

Many uncertainties are associated with the bottom-up calculations of ship emission. Firstly, 

ships within different types have many options of marine propulsion, among them diesel 

engines (slow speed engine, medium speed engine, high speed engine), gas turbine engine, 

electric motors, and LNG fueled engines are the typical ones. Secondly, one ship in a whole 

trip may experience several operation modes: cruising mode at sea, reduced speed mode in 

designated areas, maneuvering mode for inbound and outbound operation, and hoteling mode 

for in-port operation. Uncertainties underlie all the operation modes, particularly during the 

switch period of two modes because of frequent rudder and engine orders. Thirdly, ship’s 

exhaust gas sources, main engine (ME) and auxiliary engine (AE), are the major ones for 

cruising mode, while another emission source auxiliary boiler (AB) should never be neglected 
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when a ship is in maneuvering and hoteling mode (EPA, 2000; Goldsworthy and Galbally, 

2011; Olmer et al., 2017; Smith et al., 2014; Starcrest Consulting Group, 2014; Wan et al., 

2019). Lastly but not least, ship activities in one trip may involve uncertainties underly ship 

routes selection, operation time and speed in ECAs and non-ECAs, loading status (in full or 

ballast), and geographical and meteorological conditions. Many contributions (EPA, 2000; 

Goldsworthy and Galbally, 2011; Jalkanen et al., 2009; Moreno-Gutiérrez et al., 2019; Olmer 

et al., 2017; Smith et al., 2014; Starcrest Consulting Group, 2014) have made to reduce the 

uncertainties of ship emission in the TTP stage, and among them the most effective way is to 

improve the accuracy of the engine load factor, specific fuel oil consumption and emission 

factor. This study compares the load factor, SFC, and emission factor for six previous studies, 

and Table 2.1 shows the summary of the major studies. One can find that most of the studies 

took the shipping speed as the key parameter for load factor to simplify the calculation, 

however, a more robust is needed to cover uncertainties during the voyage and to deal with 

different vessel types, ages, and engines with different leading factors. 

Table 2.1 Summary of major studies on load factor, specific fuel consumption and 
emission factor  

Method Load Factor SFC Emission Factor 

EPA Approach 

(EPA, 2000) 

!" = $%!"#$%&'$!%()* &
+
 

Obtained from data 

regression between 

specific emission and 

fractional load. 

'	 ) ,
-./* =

	+	("-+./012+3	!1+4)01 −
7 

Where E is the 

emissions rate per unit 

of work 
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Goldsworthy 

and Galbally 

Approach 

(Goldsworthy 

and Galbally, 

2011) 

 

!" = 8
823 = $%4,6%23&

+
 

SFC values are 

obtained from 

different sources 

(Cooper and 

Gustafsson, 2004; 

ENTEC, 2002; EPA, 

2009) 

 

Emission factors are 

from different sources, 

covering residual oil, 

marine distillate oil, 

ultra-low sulfur diesel.  

IMO 3rd study 

(Smith et al., 

2014) 

!" =
)/!"#$%&'$!/4 *

6
+ )%!"#$%&'$!%4 *

+

97 ∙ 98  

97: the weather adjustment 

factor 

98: the fouling adjustment factor. 

SFC for auxiliary 

boiler: 305 g/kWh. 

SFC for ME and AE 

was referred from 

IMO 2nd study and 

IVL 2004; Use 

STEAM model for 

MGO SFC. 

 

IMO fuel combustion 

data for HFO, LSFO, 

MGO, and LNG. 

Port of Long 

Beach report 

(Starcrest 

Consulting 

Group, 2014) 

!" = $ %#9!:#;
%<#1&<:<&

+
 

Data from ENTEC 

(ENTEC, 2010)   

Normal engine loads: 

Data from 2004 IVL 

study (Cooper and 

Gustafsson, 2004). 

Low engine loads:  

'" = ;+<='" × !!?  

LLA: Low load 

adjustment multiplier 
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STEAM Model 

(Jalkanen et al., 

2009) 

!" = @= A
%!"#$%&'$!

%>'%&,$ + %%#8'!?C
+
 

Where @=	is assumed to be 0.8, 

%%#8'!?is assumed as 0.5 knots. 

D"EF(31+4)

= D"EF@#%'
× (0.455 × !1+46

− 0.71 × !1+4
+ 1.28) 

 

'" ) ,
-./* =

O
17,					2 < 130
45 × 206,

9.8,				2 > 2000
[130,2000]  

n is the engine rpm. 

Moreno-

Gutiérrez et 

al.’s real-time 

emission model 

(Moreno-

Gutiérrez et al., 

2019) 

!" = $%!"#$%&'$!%()* &
+.B

 
Use STEAM SFC 

model 

Use Goldsworthy and 

Galbally (Goldsworthy 

and Galbally, 2011) 

approach as the 

emission factor source. 

 

 

Black carbon aerosol is formed in incomplete fossil fuel combustion process. Recently, the 

shipping community has become increasingly concerned with the negative impact of black 

carbon aerosol (BCA) emissions because they contribute to global warming by absorbing solar 

radiation (Lu et al., 2020; Talukdar et al., 2019).  Lack and Corbett (Lack and Corbett, 2012) 

pointed out that BCA emissions increased at low engine loads, and ship speed, fuel quality, 

and exhaust gas scrubbing may bring a significant influence on black carbon aerosol emission. 

Compared to the common shipping residual fuel oil, most low sulfur fuels can be deemed as 

applicable solutions of BCA abatement, yet the newly compliant VLSFO tells another story. 

The BCA emission tends to have a positive linear relationship with the fuel’s aromatic content, 

and one latest study proposed by Finland and Germany (Finland and Germany, 2019) to the 

IMO advised that the blended VLSFO increased BCA emission up to 85 percent due to its high 

proportion of aromatic compounds. Under the IMO 2020 Sulfur Cap, alternative fuels such as 
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LNG, low sulfur distillate oil, biodiesel, and methanol, are typical abatement strategies for 

BCA; besides, the electrostatic precipitators and selective catalytic reduction served as the 

main exhaust treatment for BCA abatement. 

 

2.2. TTP post-combustion carbon capture system 

Common practice of maritime CO2 emission reduction encompasses the optimal design of 

propulsion system (Baldi et al., 2018, 2016), cleaner and safer shipping fuels substitution(Ji 

et al., 2021c, 2021a), maritime carbon capture and storage (Feenstra et al., 2019; Luo and 

Wang, 2017) and thermal efficiency improvement via onboard waste heat recovery (Shu et 

al., 2013; Yang and Yeh, 2015). Unlike the widely investigated carbon capture studies for 

onshore facilities, research on maritime/onboard carbon capture is still in an early stage: it 

was firstly proposed by Det Norske Veritas (DNV) and Process Systems Enterprise (PSE) in 

2013 (DNV, 2013), and only limited publications have focused on this area.  As one specific 

type of combustion carbon capture, the maritime carbon capture techniques can be classified 

as: 

• Pre-combustion capture: carbon is separated from H2, H2 is used for combustion 

• Oxy-fuel combustion: air for combustion is replaced by pure O2, then CO2 and H2O 

are separated 

• Post-combustion capture: CO2 is removed from flue gases produced during the 

combustion of fuels using air 

 

When considering technology maturity, the post-combustion carbon capture is the most 

favorable one to apply for the tank to propeller process. In particular, the tank to propeller 

post-combustion capture approaches may involve adsorption, cryogenic carbon capture, 

solvent-based chemical absorption, physical absorption, and membrane-based 
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technologies. Figure 2.1 (a) shows the simplified process flow diagram of solvent-based 

chemical absorption-type tank to propeller post-combustion carbon capture (TTPPCC), while 

Figure 2.1 (b) illustrates the major process units and the available solvent options of the 

TTPPCC process. The fuel tank continuously sends the shipping fuel to the ship main engine. 

Both the shaft work and flue gas are generated by the fuel combustion in the engine chamber. 

While the effective work constantly provides axial thrust to the propeller to move the ship, 

the produced flue gas is processed by the post-combustion carbon capture system. The flue 

gas firstly reacts with the lean solvent solution in the absorber, leaving the treated gas with a 

lower CO2 content. Then the rich solvent (high CO2 stream) is desorbed in the stripper, the 

top of which is connected to the compressed CO2 tank for storage. The regenerated solution 

passes through a heat exchanger for heat recovery and goes back to the absorber.  

 

Since marine vessels have limitations of space and utilities, the TTPPCC system design 

should consider the dimensions of the absorber and stripper and the supply of heat and 

electric power. In addition, the reaction kinetics and carbon capture equipment stability must 

be carefully considered as the tank to propeller CO2 capture operation is in a constantly 

moving environment. The first work on maritime post-combustion carbon capture in public 

domain was presented by Luo et al. (Luo and Wang, 2017), who employed process 

simulation for one cargo ship under three scenarios, one without carbon capture as a 

reference case and the other two cases with either monoethanolamine (MEA) based PCC or 

MEA solvent with an additional diesel gas turbine. In 2019, Feenstra et al. (Feenstra et al., 

2019) used two solvent options,30 wt% aqueous MEA and 30 wt% aqueous piperazine (PZ), 

for two ships with both diesel and LNG engines. Utilizing Luo and Wang’s ship engine 

model (Luo and Wang, 2017), Awoyomi (Awoyomi et al., 2019) applied 3.5% and 4.1% 

ammonia to capture CO2 and SO2 simultaneously to meet the requirements of both the IMO 
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2020 sulfur cap and 2030 IMO CO2 strategy. Another aspect should be noticed in the process 

design stage is that the CO2 concentration in the flue gas shares different values from a power 

plant compared to a TTPPCC system. Before entering into the carbon capture system, the 

flue gas from an onshore power plant contains 12-15 mol% CO2 (Van De Haar et al., 2017), 

while the typical CO2 mole fraction in the ship-based flue gas is around 4-7 mol% (Awoyomi 

et al., 2019; Feenstra et al., 2019; Ji et al., 2021b; Luo and Wang, 2017). The lower CO2 

concentration at the TTPPCC system inlet requires a rigorous regime to screen solvent 

options and solvent concentration to achieve the target carbon capture rate of 90%. This study 

finalized three solvent options (MEA, DIPA, and MDEA with PZ) with specific 

concentration by considering solvent solubility, absorption rate, reaction rate, and thermal 

degradation. 

 

Figure 2.1 (a) Simplified process flow diagram of TTPPCC; (b) Major process units and 
solvent options of TTPPCC 

 

This chapter aims at providing a holistic way to determine the most efficient and sustainable 

post-combustion carbon capture solution for tank to propeller processes.  The objectives of this 

work encompass the following: 1) marine engine cylinder modeling and validation, 2) 

TTPPCC system process model development and pilot plant validation, 3) optimal absorber 

and stripper design under variation of solvents, packed type, and liquid gas ratio, 4) 
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Quantitative sustainable evaluation by emission reduction efficiency, energy penalty and 

carbon cyclic capacity. 

 

As a follow up TTP sustainability study, this chapter will provide the most effective way to 

contain ship-resulted carbon volume via process intensification techniques. To the best 

knowledge of the authors, this chapter firstly explored a thorough sustainable performance 

analysis of a TTPPCC system by employing process modeling methodology. Also, this is the 

first time a maritime post-combustion carbon capture system has been modeled using a blended 

amine with PZ as a promoter.  

2.3. Predicting flammability-leading properties for liquid aerosol safety 

Inherent safety properties such as flash point and upper/lower flammability limit have been 

well investigated and are believed to be the key to finding safe fuel solutions. Beyond the 

typical flammability properties, numerous incidents have revealed that a liquid can be ignited 

below its flash point due to the aerosolization phenomenon (Kohlbrand, 1991; Santon, 2009). 

Unfortunately, no consensus has been reached on the standardization of aerosol flammability 

yet, owing to a lack of quantification (Yuan et al., 2020a). It is therefore urgent to 

quantitatively investigate liquid safety factors, with particular importance placed on 

quantifying the aerosolization effect.  

In 1955, Eichhorn (Eichhorn, 1955) first established that aerosols were able to cause an 

explosion and pointed out that mist flammability with fuzzy boundaries was completely 

different from vapor flammability limits. Subsequently, Ballal and Lefebvre (Ballal and 

Lefebvre, 1979) proposed an experimental model to demonstrate the importance of the 

aerosolization process to the ignition of liquid fuels (their model consisted of iso-octane, 

kerosene, gasoline, diesel oil, light oil, and heavy fuel oil). Their model identified that 
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droplet size was the dominant factor for determining quenching distance and minimum 

ignition energy. Integrating the experimental results of Ballal and Lefebvre (Ballal and 

Lefebvre, 1979), Polymeropoulos (Polymeropoulos, 1984) presented a theoretical model for 

liquid aerosols, and concluded that droplets in the fuel mixtures might have an accelerating 

effect on flame propagation. As concerns related to the hazards of high flash point liquids 

continued to rise due to the aerosolization or atomization phenomenon, the study published 

by Bowen and Shirvill (Bowen and Shirvill, 1994) highlighted that hazards related to liquid 

aerosolization could be minimized by adopting the minimum practicable pressure for 

operating systems. However, the aerosolization effect of fuel oils was still underestimated, 

and was identified as the root cause of many incidents in the shipping industry (Kohlbrand, 

1991; Santon, 2009). Thus, it is critical to identify the leading factors of liquid aerosolization 

effects and to build an accurate mathematical model to predict such properties.  

Many literature sources (Ballal and Lefebvre, 1979; Danis et al., 1988; Kiran et al., 2003; 

Polymeropoulos, 1984; Yuan et al., 2020b, 2019) reached agreement that droplet size is more 

associated with flame speed than other factors are. As shown in Figure 2.2, a transition range 

was defined to identify the region of enhanced relationship between burning speed and 

droplet size (Polymeropoulos, 1984). On the left side of the transition region is homogeneous 

vapor phase combustion, and the burning speed on the right side of the transition region 

drops dramatically as a result of insufficient vapor (Krishna et al., 2003). Liquid aerosols are 

comprised of polydisperse droplets, and the most common mean diameter to apply for heat 

transfer, combustion, and dispersion modelling of aerosols is the Sauter Mean Diameter 

(SMD) (Krishna et al., 2003). SMD formulae proposed as an air blast type atomizer (Jasuja, 

1979) and as a pressure-swirl type atomizer (Lefebvre and Ballal, 2010) are listed below. 

%Q" = 4.4S8.*:T8.:O;
8.,,∆D<8.=+                                             (2.3) 
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"+,, = 2.25T,.,>+'8.,>İ'
8.,>∆D'<8.,>'?<8.,>                                       (2.4) 

In the above equations, S is the kinematic viscosity, T is the surface tension, O; is the mass 

flow rate, ∆D is the atomizer pressure drop, +' is the liquid dynamic viscosity, İ is the liquid 

mass flow rate,  ∆D' is the liquid pressure differential, and '? is the air density. 

 

Figure 2.2 Variation of burning velocity with droplet size for medium diesel oil-air 

sprays (Reprint from (Polymeropoulos, 1984)) 

Liquid dynamic viscosity (LDV) and surface tension (ST), as the liquid inherent properties, 

are the determinant parameters for the droplet size of liquid aerosols based on the above two 

equations. Liquid aerosolization effects often occur at the interface between two different 

fluids, and the Weber number and Reynolds number both indicate positive correlations with 

liquid droplet size. Specifically, ST is inversely proportional to the Weber number, and LDV 

is inversely proportional to the Reynolds number as well. Salehi et al. (Salehi et al., 2017) 

investigated inertial effects and the shape of droplets in turbulent flows by presenting CFD 
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simulations, resulting in the identification of fluid viscosity as a key indicator of spherical 

droplet formulation. Also, Yuan and his colleagues (Yuan et al., 2020b) confirmed viscosity 

and surface tension as two leading factors for the aerosolization of flammable liquids via an 

unsupervised machine learning approach. From a safety perspective, liquids with high LDV 

and ST are preferred since they are less prone to aerosolization. For most practical fuels, any 

change in dynamic viscosity is always accompanied by a change in volatility, and Ballal and 

Lefebvre (Ballal and Lefebvre, 1979) indicated that the quenching distance was dependent on 

fuel volatility. Besides dynamic viscosity, liquid vapor pressure (LVP) is another evidential 

index that denotes the volatility level of liquids. Large-scale mist explosions revealed the 

potential hazards associated with the atomization of liquids at vapor pressure. Unlike LDV 

and ST, LVP has a positive effect on the liquid aerosolization phenomenon, so low LVP 

liquids are preferred for inherently safer design. Our previous work (Yuan et al., 2019) 

experimentally measured the maximum explosion pressure and explosibility characteristics of 

n-octane and n-dodecane liquid aerosols, and established LVP as a controlling step for the 

liquid aerosol combustion process after comparing the experimental outputs to a three-zone 

flame model. Another discovery was that the flame thickness, found by integrating the liquid 

aerosol burning speed with burning time, is a significant indicator to determine the maximum 

explosion pressure of liquid aerosols. Salehi et al. (Salehi et al., 2015) applied the conditional 

moment closure model to investigate ignition of lean n-heptane/air and iso-octane/air 

mixtures with various levels of thermal stratification. This work established that the 

dominated sources of ignition delay fluctuation are correlations between dissipation and 

conditional fluctuation, and correlations between reaction and conditional fluctuation. 

Furthermore, Ji et al. (Ji et al., 2021a) identified three indicators for flame propagation in a 

compression ignition engine and integrated them with the other six indicators, including 

surface tension, LVP, and dynamic viscosity, to construct two novel unsupervised machine 
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learning clustering models. This work exhibited a promising result for classifying flammable 

liquid safety with inclusion of liquid aerosolization.  

Both mechanism models and statistical models have been developed to predict the 

flammability-leading properties for liquid aerosol safety. As an early study for LVP 

prediction, Jensen and his colleagues (Jensen et al., 1981) developed the UNIFAC group-

contribution approach to predict LVP by calculating the excess Gibbs energies of liquids. 

Meanwhile, McGarry (Mcgarry, 1983) used constraint regression to determine the 

coefficients of the Wagner equation, and processed 14 highly accurate existing data to predict 

58 other substances. Recently, the quantitative structure–property relationship (QSPR) 

models have been adopted for predicting multiple chemical properties (Jiao et al., 2020a; Jiao 

et al., 2019a; Zeng et al., 2019) including lower/upper flammability limit (Jiao et al., 2020b; 

Jiao et al., 2019b; Pan et al., 2008; Wang et al., 2019), minimum ignition energy (Wang et 

al., 2017; Chen and Chen, 2020; Chaudhari et al., 2020), liquid vapor pressure (Zeng et al., 

2007), and surface tension (Gajewicz et al., 2010; Gardas and Coutinho, 2008). Eight 

molecular descriptors were presented to develop Gajewicz’s (Gajewicz et al., 2010) QSPR 

model, which was utilized to predict logarithmic values of LVP for halogenated persistent 

organic pollutants. As for flame-propagation leading factors, Gardas and Coutinho (Gardas 

and Coutinho, 2008) addressed the lack of ionic liquid surface tension data by introducing 

parachors, densities, and molecular weight. Nevertheless, rarely has literature focused on the 

liquid dynamic viscosity. A Gibbs energy additivity approach to QSPR was proposed by 

Chum-in’s group (Chum-in et al., 2017), and although a good fit was shown for biodiesel 

and fatty acid methyl ester, the only dependent variables were identified as average carbon 

numbers and number of double bonds, therefore the suitability for more complex systems 

was unknown.  
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2.4. Liquid combustion safety in compression ignition engine 

New fuel options are in demand to reach the long term decarbonization goal, and safety is a 

top priority for the promising marine fuel selection. Flammability and explosive hazards, which 

have been well studied, are the major concerns of safety aspects of the tank to propeller (TTP) 

process aboard ships. The inherent flammable properties of liquids may involve flash point 

(FP), auto ignition point (AIP), upper/lower flammability limit (UFL/LFL), and boiling point.  

Currently, liquid combustion level is commonly determined by flash point. NFPA 704 

(National Fire Protection Association, 2017), the widely recognized liquid flammability 

classification standard, categorizes liquids into five classes. Table 2.2 shows the NFPA 704 

standard and flammability ratings of the promising fuels by adopting the NFPA fire diamond.  

Table 2.2 NFPA 704 liquid flammability ratings of the promising marine fuels 
Rating NFPA Criteria Marine fuel options 

0 
Materials will not burn in air when exposed to a 

temperature of 1500℉ for a period of 5 minutes 
 

1 Flash point at or above 200℉ Biodiesel, Ammonia 

2 Flash point between 100℉ and 200℉ 
Heavy fuel oil, Marine gas oil, 

VLSFO 

3 Flash point between 73℉ and 100℉ Methanol, Ethanol 

4 Flash point below 73℉ LNG, LPG, Liquefied Hydrogen 

 

As located in rating 4 from Table 2.2, LNG, LPG, and liquefied hydrogen, which have 

displayed great potential to be long-term sustainable marine fuel solutions (DNV GL, 2019; Ji 

and El-Halwagi, 2020), might share the higher flammability as per NFPA 704. Since many 

concerns were risen on the hazards of high flash point liquid because of the aerosolization or 

atomization phenomenon, the study published by Bowen and Shirvill (Bowen and Shirvill, 
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1994) highlighted the liquid aerosolization hazard could be minimized by adopting the 

minimum practicable pressure for operating systems. However, the aerosolization effect of fuel 

oils was still underestimated, although it has been identified as the root cause of many incidents 

in shipping industry (Kohlbrand, 1991; Santon, 2009). Therefore, the flash point driven liquid 

flammability standard is too simple to classify the safety level of marine fuel options, especially 

when considering the common combustion scenario of marine fuels.  

 

Most ships employ 2-stroke diesel compression-ignition (CI) engine as their main power-

driven source (Klett et al., 2017). Unlike the Otto cycle, the diesel internal combustion engine 

uses a higher compression ratio, 15 to 20, to ignite the marine fuel (Sivaganesan and 

Chandrasekaran, 2016). The flame in the cylinder of the CI engine is initially propagated as 

laminar and later becomes turbulent. Besides, there is a common operation for the combustion 

of heavy fuel oil, which needs to be heated to bring the viscosity below 20 cst for achieving 

proper aerosolization (MAN Diesel & Turbo, 2014). Date back to 1955, Eichhorn (Eichhorn, 

1955) firstly presented that the aerosols were able to lead an explosion and pointed out that the 

liquid aerosol flammability with fuzzy boundaries was completely different from vapor 

flammability limits. Moreover, we experimentally confirmed that the n-dodecane in the aerosol 

state can be ignited lower than the flash point. There is a pressure rising when the equivalence 

ratio decreases to 0.1, but neither n-octane nor n-dodecane is supposed to be ignited since the 

LFL for both n-octane and n-dodecane vapor are 0.57% and 0.54% respectively, illustrating 

the liquid aerosol has a wider flammability range than the bulk liquid (Yuan et al., 2019).  

 

However, the liquid aerosolization and flame propagation, making bulk liquids more hazardous 

on combustion in the cylinder of CI engine, have not widely recognized. Thus, it is necessary 

to take the liquid flammability, flame propagation, and liquid aerosolization effects into 



 

 31 

consideration to represent the safety extent of the liquefied fuel options in the CI engine. To 

fill in gaps for categorizing promising shipping fuels from the perspective of chemical safety, 

there are two steps to carry on the study of TTP process safety: the first step is to find optimal 

models for the identified contributors of liquid aerosol formulation and the next step is to adopt 

the clustering to classify the safety level of promising marine fuels. With the rapid development 

of machine learning (ML) techniques and algorithms, more work has focused on implementing 

machine learning into safety-related studies, which demonstrated their successful applications 

with satisfying accuracy (Jiao et al., 2019a, 2020a, 2020b). For classification and clustering, 

there are unsupervised learning algorithms like k-means clustering, hierarchical clustering, and 

spectral clustering which are suitable for this study.  
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3. PROBLEM STATEMENT 

 

In general, this study follows shipping fuel sustainability analysis, ship onboard carbon 

capture process design, inherent safety properties prediction of promising fuel options, and 

novel inherent safety criterion for flammable liquids development. Many uncertainties are 

associated with TTP process, such as dual engine emission factor, SFC and load factor 

determination. This study overcomes many weaknesses by employing new equations on 

determination of load factor and fuel consumptions, bringing a novel parameter to compare 

emissions between different ship classes, adopting the updated emission sources and 

considering the LNG dual engine flexibility and BCA emission for GWP related ship exhaust 

gases. Aiming at providing a holistic way to find the most efficient and sustainable PCC 

solution for an LNG tanker, the TTP carbon capture work proposes a system of the tank to 

propeller post-combustion carbon capture which integrates ship engine process modeling 

with chemical absorption/desorption process modeling techniques. Meanwhile, one 

supervised ML study is conducted for the prediction of liquid aerosolization contributors, 

while another unsupervised study on fuel safety clustering is completed to classify the marine 

fuels. Many unique works have been carried out to answer the below questions: 

• What are the emission sources for ship cruising mode? 

• Which marine fuel has a good emission control for GWP gases/ non-GWP gases/ 

black carbon aerosol? 

• How does the newly blended fuel option perform on emission and safety? 

• Which type of merchant ship is preferred for energy saving in the tank to propeller 

process? 

• Is there any uniqueness of TTPPCC process design and simulation? 

• Which key factors are dominated to determine the TTPPCC performance? 
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• What is the next focus on maritime carbon capture system? 

• How to classify the shipping fuel combustion safety in CIE? 

• Which variables are selected for the prediction of the liquid aerosolization features 

and how to select the significant variables?   

• Are QSPR/QSAR models good to predict the liquid aerosolization features? 

• Which thermodynamic properties of the liquid impact the consequence of fuel 

combustion? 

• How is the preference of fuel safety clustering approaches determined? 

• Which marine fuel is classified as the safest option? Which fuel option may lead the 

shipping market to meet the long-term IMO strategies? 

 

Firstly, this study proposes a bottom-up approach to estimate the GWP and non-GWP gases as 

a result of maritime activities during ship cruising mode. By introducing the ship capacity bins, 

emissions and fuel consumptions of ship classes with same unit of ship capacity are compared 

to illustrate the recommended size for each ship type, and a case study based on our proposed 

mathematical models have been conducted as well. In the second part, the chapter provides a 

reliable prediction for the identified liquid aerosol safety parameters based on a thorough 

comparison among machine learning algorithms, with an emphasis on the liquid aerosolization. 

Secondly, to increase the carbon capture efficiency and decrease the energy penalty, the 

TTPPCC study provided detailed steps for process model development covering innovative 

absorber/stripper design under variation of solvents, packed type, and liquid to gas ratio. This 

work also included a thorough sustainability evaluation based on emission reduction efficiency, 

energy penalty, and carbon cyclic capacity among two single aqueous amines, MEA and 

diisopropanolamine (DIPA), and one blended amine with a promoter, methyldiethanolamine 

(MDEA) with piperazine (PZ). 
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Moreover, four categories of regression algorithms with consideration of principal component 

analysis are applied in the liquid aerosol safety prediction study by developing quantitative 

structure−property relationship (QSPR) models. 1215 liquid chemicals and 14 predictors have 

been input to train the developed machine learning models via k-fold cross validation with the 

consideration of principal component analysis. Three rounds of model performance 

comparisons are conducted to find the optimal models for liquid dynamic viscosity (LDV), 

surface tension (ST), and liquid vapor pressure (LVP). Lastly, the marine fuel clustering section 

is proceeding towards nine variables in three categorized liquid combustion safety matrices via 

two unsupervised algorithms. The overall liquid safety performance is evaluated by a novel 

combustion risk index via the weight values determined by the information entropy approach. 

This index can be used to explore inherently safer fuels in the process industries. 
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4. TTP SUSTAINABILITY: SHIPPING FUEL EMISSIONS WITH CONSIDERATION OF 

BLACK CARBON AEROSOLS
*
 

 

This chapter is aiming at estimating the fuel consumption and air pollutant emissions during 

the cruising mode in non-SECAs by adopting IMO 2020 compliant fuel options. The ships’ 

characteristics and machinery data are collected from the Llyod’s Maritime database, with the 

given data of ship capacity, draught, length between perpendicular, main engine type, power, 

service speed, etc. Multiple sources are employed to extract the important energy-based 

emission factors and the SFC data, collected from two major sources, recalculated as carbon 

dioxide intensity to convert energy-based emission factors to fuel-based emission factors. 

4.1. Methodology 

4.1.1. Description of Methodology 

The bottom-up approach is more reliable than the top-down method since it deals with more 

uncertainties. Figure 4.1 is a flowchart showing the key tasks and collected data in the 

proposed methodology. We have compared all the milestone works of this field and 

constructed the fuel consumption and shipping emission models by covering more 

operational uncertainties (adverse weather impacts for ship cruising, hull fouling effects for 

shipping fuel consumption and ship draught adjustment), adopting the latest ship dimension 

and machinery data from Lloyd’s List Intelligence and collecting the dynamic data for six 

major types of merchant ships from shipboard AIS. To provide a close-to-reality shipping 

emission data, the paper makes a great effort to minimize the deterministic input values and 

to consider the emission for main engine, auxiliary engine, and auxiliary boiler for a large 

sample ship size, 337 in total. As the IMO 2020 Sulfur Cap is an ambitious move for global 

 

* Reprinted with permission from “Ji, Chenxi, and Mahmoud M. El-Halwagi. "A data-driven study of IMO compliant fuel 
emissions with consideration of black carbon aerosols." Ocean Engineering 218 (2020): 108241.” 
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shipping, especially for the non-ECAs, the study focuses on the cruising mode at sea, and the 

ship service speed is defined as the speed over ground, which is 80% of the normal 

continuous rating (NCR) speed. Six ship types, bulk carriers, general cargo ships, container 

ships, oil tankers, LNG carriers, and LPG tankers are studied in this research since their 

shares of transportation capacities top other merchant ships among world fleet (UNCTAD, 

2019). In addition, this paper considers the four proven shipping fuel solutions (HFO with 

scrubber, MGO, VLSFO, and LNG) instead of paying attention on the future-promising fuel 

options, such as biofuels, ammonia, and liquid hydrogen. There is no doubt that shipbuilding 

has an evident large-scale trend, and our focus is the oceangoing vessels, so the 2-stroke slow 

speed engine is our major analysis object for oil-fueled main engine, while the 4-stroke 

engine is assumed for the auxiliary engine. As for LNG-fueled ships, the common techniques 

may involve steam turbines, gas turbines, lean burn spark-ignited (LBSI) engines, low-

pressure injection dual-fuel (LPDF) engines, and high-pressure injection dual-fuel (HPDF) 

engines. No gas turbine or steam turbine engines are analyzed in this research because they 

have limited future international shipping applications and are less efficient compared to 

other LNG engines. Therefore, the LPDF and HPDF solutions are adopted for the cruising 

mode emission calculation when LNG is taken as the fuel solution to determine the 

environmental impacts.  
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Figure 4.1 A flowchart describing the proposed methodology 
As a bottom-up emission approach, this work has completed individual calculations ship by 

ship using the detailed calculation process shown in Figure 4.1. In general, the given 

parameters, displaying in the yellow block, cover ship characteristic data, energy-based 

emission factors, specific fuel consumption (SFC) data, AIS information, and fleet voyage 

plan. This study firstly preprocesses the collected ship characteristic data from the Lloyd’s 

Maritime Intelligence Unit (LMIU), then the load factors are worked out by integrating ship 

characteristics and external influential factors, such as the hull fouling factor, the draught 

adjusted factor, and extreme weather factor; the emission factors are compared and validated 

among ten sources, and after the AE and AB power demand is calculated case by case, the 

total CO2 emissions per nautical mile by one fuel option can be determined. Next, the fuel 

consumption is obtained by adopting a converted emission factor, which is integrated into the 

fuel-based emission factor with the SFC data. Then, the study proposed a new variable to 

show the amounts of fuel consumption and GWP related gas emissions per nautical mile for 
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one unit of capacity bin so that every unit of transported merchants can be connected with 

fuel consumption and CO2 equivalent emissions. Finally, the emission outputs of other 

pollutants (NOx, SOx, CO, and PM) are finalized by inputting relevant emission factors, fleet 

voyage information, and real-time data from shipboard AIS. By introducing a unique 

allocation unit, i.e., shipping air pollutants per nautical mile per capacity bin, the work 

presents a heuristic approach to reasonably estimate fuel consumption, GWP emissions, and 

common non-GWP air pollutants. Instead of adopting deterministic values of load factors, 

this study considered many external factors in the calculation process and the simple linear 

regression of SFC is avoided by calculating fuel-based emission factors. Also, the proposed 

model firstly compared four proven IMO 2020 fuel solutions with consideration of LNG dual 

engines. In addition, this chapter integrated black carbon aerosol emission with other three 

common GWP air pollutants and the auxiliary boiler is not neglected in this study as well. 

LMIT provided real-time AIS data for the defined ship types and routes. Python 3.0 was 

adopted in this study to collect and to preprocess the ship characteristic data. JMP 15 and 

StatTools 7.6 were applied to process the ship-by-ship calculations for fuel consumption and 

marine exhaust gas emissions, and they were served to analyze the calculated data and to 

make regression models for the case study as well. 

4.1.2. Merchant ship exhaust gas emissions  

Some previous studies used a linear relationship between ship emissions per nautical mile 

and the total emissions as the shipping speed was presumed as a constant value. This 

assumption is reasonable for the cruising mode, especially for the Non-ECAs since it is a 

common practice to adopt auto-pilot mode when the ship is navigating in the stable external 

environment at the deep sea. The paper works on the cruising mode emissions for marine air 

pollutants when the selected merchant ships are navigating in the Non-ECAs, comparing the 
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amount of ship exhaust pollutants emitted by the selected merchant ships when different fuel 

options are adopted.  

HI!7(",$,%) = ∑W(D.@'()(",$,%) ∙ MA.@(",$,%) ∙ HA.@(",$,%) + D?@'()(",$,%) ∙ MA?@(",$,%) ∙ HA?@(",$,%) +

D?A*+(",$,%) ∙ HA?A(",$,%)) ∙ YBCD
<*Z                        (4.1) 

i: Ship class 

j: Fuel option 

k: Air pollutant 

HI!7: Emissions for ship class i, fuel option j and air pollutant k per nautical mile 

D.@'(): main engine maximum continuous rating power  

MA.@: main engine load factor 

HA.@: main engine energy-based emission factor 

D?@'(): auxiliary engine maximum continuous rating power  

MA?@: auxiliary engine load factor 

HA?@: auxiliary engine energy-based emission factor 

D?A*+: auxiliary boiler effective power demand 

HA?A: auxiliary boiler energy-based emission factor 

YBCD: ship actual speed, equals to ship design speed times speed over ground multiplying 

speed adjusted factor 

As shown in the equation 4.1, the ship exhaust gas emission per nautical mile is integrated 

with six ship types(J ∈

{[\]^	!#__J`_, a`9`_#]	!#_bL	%ℎJd, !L9e#J9`_	%ℎJd, Mfa	P#9^`_, MDa	P#9^`_, GJ]	P#9^`_}

), five fuel options (g ∈ {NAG	hJeℎ	%i_\jj`_,QaG, YM%AG, MD"A,ND"A}) and eight 

pollutants (^ ∈ {!G,, !N=, f,G, [!k,fGE , %GE , DQ, !G}) for the main engine, auxiliary 

engine, and auxiliary boiler exhaust gases. Specifically, the main engine maximum 
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continuous rating (MCR) power is obtained by Lloyd’s database dividing 0.9 since NCR 

conventionally equals to 85~95% MCR; The AE maximum continuous rating power is 

calculated by using the vessel ratio of Auxiliary Engines/Main Engines, shown in the Table 

S-3 of Appendix A; The AB effective power demand is determined by the ship capacity bins 

within the specific ship class, see Tab. S-4 of Appendix 4. 

4.1.3. Main engine load factor 

This study compares the load factor, SFC, and emission factor for six previous studies, and 

Table 2.1 shows the summary of the major studies. One can find that most of the studies took 

the shipping speed as the key parameter for load factor to simplify the calculation, however, a 

more robust is needed to cover uncertainties during the voyage and to deal with different 

vessel types, ages, and engines with different leading factors. The main engine load factor 

tends to be greater than the actual value since seldom of them considered the safety margin 

and navigation environment impacts. Referred from the ICCT report (Olmer et al., 2017), this 

study substituted the transient speed with an adjusted ship speed, and the negative effects of 

hull roughness, weather adjusted factors and draught coefficient are added in the load factor 

equation, see equation 4.2. 

 

MA = l 2BCD
2'()

m
+
∙ NAA) ∙ Ok! ∙ "kA)                                           (4.2) 

where Vact is the actual ship speed, which equals to the speed over ground multiplying the 

speed adjusted speed; VMCR is the speed when ME is in maximum continuous rating mode, 

which is assumed as 1.064 times the normal continuous rating speed because the cruise 

speeds proposed by Lloyd's data are 94% of the maximum speed (Moreno-Gutiérrez et al., 

2015); HFF is the hull fouling factor, which is determined by the ship age, length between 

perpendiculars and the coefficient of marine biofouling; WAC, weather adjustment 

coefficient, and DAF, draught adjustment factor. 
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4.1.4. Ship fuel emission factor  

A key element to reflect the actual emissions from theoretical calculations is to adopt the 

accurate emission factor. Overall, an emission factor is a coefficient which allows to 

transforming activity data into air polluter emissions. As a critical parameter for the typical 

fuel converter, emission factor has been analyzed for many decades. IPCC has an emission 

factor database, IPCC EFDB (IPCC, 2019); The EU has the EMEP EEA database emission 

factors (EMEP/EEA, 2019) and the USA EPA has AP-42, a compilation of emission factors 

while in Australia there are some NPI emission factors within the emissions estimation 

handbooks (NPI, 2017). Besides these open-access data sources, many works have specified 

emission factor estimation in the maritime sector. The IMO has published three emission 

studies on shipping fuel options and the emission factors for each fuel have been keeping 

updating as they have great ambitions to build a low carbon and Sulfur ecofriendly shipping 

environment. Besides, the International Council on Clean Transportation (ICCT) pays plenty 

of attention to emission control in both aviation and marine transportation, and their emission 

factor data for ME, AE, and AB have been adopted by many scholars 

 

As shown in Tab. S-1 of Appendix A, the selected ships are mega ocean-going vessels, thus, 

the two-stroke SSD engine is the focus for diesel-based main engines. Table 4.1 listed the 

emission factors of currently compliant fuel options. Emission factor for HFO with the 

maximum sulfur content of 2.5% for slow speed diesel engine, which is served as a 

benchmark for the major option for the prior IMO 2020 shipping fuel, is collected from the 

ICCT study (Olmer et al., 2017). As a widely applied retrofit option to meet the 2020 Sulfur 

Cap, an open-loop scrubber is adopted in the study, so no addition of alkali is needed. The 

scrubber is modeled to reduce the emissions of SO2 from HFO with 2 percent sulfur content 

to the same levels as the SO2 emissions from a fuel within 0.5 percent of sulfur content and 
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the reduction required by the scrubber unit is thus 95 percent. The fuel consumption increases 

with a scrubber (van der Linde, 2009), and a 2 percent increase is assumed in this study. 

 

The scrubber unit is modeled to remove 50 percent of the particulate matters. As the open-

loop scrubber for reducing black carbon aerosol ranging from 25% to 70%, a 40-percentage 

reduction of BCA is assumed in this study. Moreover, emission factors for HFO with 

scrubber include a 2 percent energy consumption penalty as well. As for VLSFO, BCA 

emission factor is assumed to be 35 percent more than that of HFO, since a recent study 

(Finland and Germany, 2019) criticized VLSFO even increased the BCA emission by 

10%~85% comparing with high sulfur fuel oils, making the newly blended fuel limited 

acceptable for the Arctic transportation, see Tab. S-2 in Appendix A for BCA fuel-based 

emission factors. 

 

Table 4.1 Emission factors of currently available fuel solutions 

 

EF CO2 

(ME/AE

/AB) 

EF CH4 

(ME/AE/A

B) 

EF N2O 

(ME/AE/

AB) 

EF SOx 

(ME/AE

/AB) 

EF PM 

(ME/AE

/AB) 

EF NOx 

(ME/AE

/AB) 

EF CO 

(ME/AE

/AB) 

HFO 

2.5% 

S(SSD

) 

607/707/9

50 

0.01/0.01/0.00

2 

0.03/0.04/0.

05 

10.29/11.9

8/16.1 

1.42/1.44/

0.93 

14.4/11.2/

2.1 

0.54/0.54/

0.2 

MGO 

0.1% 

S 

519/602/9

62 

0.0053/0.0055

/0.002 

0.027/0.029

/0.04 

0.37/0.43/0

.57 

0.19/0.19/

0.1 

13.54/10.5

3/2.0 

0.54/0.54/

0.2 
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VLSF

O 

0.1~0.

5% S 

533/557/9

62 

0.0052/0.0055

/0.002 

0.027/0.028

/0.04 

0.51/0.6/0.

81 

0.20/0.20/

0.11 

13.54/10.5

3/2.0 

0.54/0.54/

0.2 

HFO 

with 

Scrub

ber 

576/602/9

55 

0.0054/0.0056

1/0.002 

0.028/0.029

/0.05 
0.5/0.6/0.8 

0.71/0.72/

0.47 

14.4/11.2/

2.1 

0.54/0.54/

0.2 

Dual 

Engin

e I, 

LPDF 

417/445/4

45 
0.13/0.13/0.13 

0.011/0.011

/0.011 

0.14/0.14/0

.14 
0.1/0.1/0.1 3.4/2.4/2.4 0.3/1.3/1.3 

Dual 

Engin

e II, 

HPDF 

445/445/4

45 
0.12/0.12/0.12 

0.01/0.01/0.

01 

0.24/0.24/0

.24 

0.13/0.13/

0.13 

8.76/2.4/2.

4 

0.79/1.3/1.

3 

 

Moreover, emission factors for CO2, CH4 and N2O of HFO with scrubber, VLSFO, MGO, 

LPDF, and HPDF are calculated from the GREET model (ANL, 2016) and the ICCT latest 

report (Pavlenko et al., 2020); while the SOx, NOx, PM, and CO are collected from the ICCT 

study (Olmer et al., 2017).  

 

For LNG-fueled options, the LNG LPDF and HPDF are the main engine types, while LPDF 

is mostly applied for LNG carriers and large-scale container ship, and HPDF, another slow-

speed two-stroke engine, is a proven solution for bulk carriers, general cargo ships and gas 

tankers. Furthermore, the LPDF engine has a medium-speed version, which will not be 

discussed in this study because it usually serves as the main power for cruising ships, 

passenger ferries, and offshore support vessels. Emission factors of CO2, CH4, and N2O for 
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the dual engines are collected from the latest study (Pavlenko et al., 2020) and the emission 

factors of SOx, NOx, PM, and CO for dual engine are collected from two studies (Kristensen, 

2015) (Man B&M, 2012). 

4.1.5. Fuel consumption per unit of capacity bin    

Fuel consumption is determined by many variables, which can be categorized as engine 

attributes (engine type, load, maintenance state) and fuel types (RM, DM, LNG, etc.). To 

mathematically determine the fuel consumption, it is necessary to convert the energy-based 

emission factors of marine fuel options to fuel-based emission factors by introducing the 

SFC. Specifically, the amounts of CO2 emission combusting from marine fuels are called 

CO2 intensity of the fuel, which is listed in the following table. 

Table 4.2 CO2 intensity of selected fuels 

Fuel Type CO2 intensity of selected 

fuel (g CO2/g Fuel) 

HFO1  3.114 

MGO1 3.206 

VLSFO1 3.154 

LPDF2 2.69 

HPDF2 2.39 

1. Source from the IMO 3rd study (Smith et al., 2014) 
2. Calculated from the latest ICCT study (Pavlenko et al., 2020) 

 

This study covers the shipping fuel emissions by all the emission sources on board, and the 

fuel consumption is calculated by CO2 emissions of ME, AE, and AB. Then the calculated 

fuel consumption is adopted to compute the fuel consumption per unit of capacity bin on a 

distance basis to compare the energy consumption of each ship class. The calculation process 

is taken on a ship-by-ship basis for our collected ship database, and the equation is listed 

below.  
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A!CF",$,,-. = ∑ ∑ [(
@7(/0'1	 ",$,,-.

G@7(/031	 ",$,,-.
G@7(/034",$,,-.

/H0	JKD#K$)DL
)M∈OP#% /!#d#iJep	[J9K])∈/%B$$                               

(4.3) 

A!CF",$,,-.: Fuel consumption per unit of capacity bin per nautical mile for ship class i, fuel 

option j within the specific capacity bin type. 

HI/H0'1	 ),M,CFD
: Amount of CO2 emission per unit of capacity bin per nautical mile emitted 

by main engine. 

HI/H031	 ),M,CFD
: Amount of CO2 emission per unit of capacity bin per nautical mile emitted by 

auxiliary engine. 

HI/H034	 ),M,CFD
: Amount of CO2 emission per unit of capacity bin per nautical mile emitted by 

auxiliary boiler. 

 

Since many variances lie on the sample size, ship capacity bins, and ship main power 

systems, the cumulative fuel consumption and emissions are hard to find the most sustainable 

fuel options. Thereafter, the capacity bin is introduced among all the six ship classes to 

calculate the fuel consumption and GWP CO2 equivalent emissions per nautical mile per unit 

of capacity bin.  

 

4.1.6. Global warming potential related gas emission calculation 

This paper adopted the IPCC fifth report GWP100 values for CO2, CH4, and N2O, and the 

BCA GWP100 was referred from Bond’s study (Bond et al., 2013). The below equation shows 

the way to calculate the fleet’s total emission of GHGs by considering the emissions of BCA.  

∑ ∑ HI/H0*(",$)
>
M∈OP#%

:
)∈/%B$$ = ∑HI/H0(",$)

+ aOD!/Q5 ∙ ∑ HI/Q5(",$)
+ aOD!R0H ∙

∑ HIR0H(",$) + aOD!A/? ∙ ∑ HIA/?(",$)                                                                   (4.4) 
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HI/H0*(",$)
: GWP equivalent CO2 emission for ship class i, fuel option j 

HIE: Emission of CO2, CH4, N2O, and Black Carbon Aerosol  

aOD!E: Global Warming Potential Coefficient of CO2, CH4, N2O, and Black Carbon 

Aerosol 

 

Following the timeline of IMO’s initial GHG strategy, up to 20% reduction in the carbon 

intensity of international shipping needs to be accomplished this year. The GWP related ship 

exhaust gases are determined as CO2, CH4, N2O, and BCA in this paper, although other 

substances like CF4 and HFC-152a were also deemed as air pollutants for GWP. This 

research does not consider these non-combustion emissions such as refrigerants, and 

halogenated hydrocarbons due to the wide variations of the emissions factors of non-

combustion sources and little significance to overall shipping GHG emissions, and the non-

GWP gas emission estimations follow the typical way to integrate emission factors of SOx, 

NOx, PM, and CO with the calculated fuel consumption. 

4.2. Results and discussion 

Figure 4.2 shows the fuel consumption and shipping exhaust gas emissions contributing to 

global warming potential for the six ship types and five designated fuel options under IMO 

2020 Sulfur Cap. In general, the total values of fuel consumption per nautical mile for 

container ships surpass those of the other five ship classes, while the GWP related gas 

emissions show the same trend as well. Focusing on emission amounts only, CO2 emissions 

consistently account for more than 90% among the four GWP related gases, and for the two 

common abatement option, HFO with Scrubber and VLSFO, the BCA is the second 

pollutant, then CH4 and N2O, while for LNG-based fuel options (LPDF and HPDF), the 

emission sequence after CO2 is CH4, N2O and BCA.  
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As for the shipping emission sources, the air pollutants emitted by the main engine are ten 

times more than those emitted by auxiliary engine and auxiliary boiler. Also, the cruise 

power demand of boilers for bulk carriers, container ships, and general cargo ships are 

assumed zero in this study based on the ship maneuvering experiences. Next, one conclusion 

can be made that the LNG-based fuels have great emission controls on CO2, N2O, and BCA, 

and the amounts of BCA emissions only account for 1%~5% of HFO with scrubber and 

VLSFO based on our calculation, see Appendix A Tab. S-5 for detail; However, the only 

issue for LNG-fueled ship is the CH4 emission, which is around 20 times more than that of 

oil-based fuel options, and MGO, VLSFO present an obvious strength on methane emission 

control, while HPDF beats LPDF within the LNG-based fuel options. Specifically, the data 

for bulk carrier indicates that HFO with scrubber emits the most amounts of CO2, CH4 and 

N2O among the three oil-based fuels, while the VLSFO emits the most BCA. Compared to 

HFO with scrubber option, the LPDF and HPDF can reduce CO2 emissions by 28% and 36%, 

respectively, and the emissions of N2O are dropped by 61% and 64% as well. As for general 

cargo ships, the shipping pollutants emitted by the auxiliary engine have a remarkable rise 

than other ship classes, that is because most general cargo ships require more power from 

AE, causing the ratio of AE/ME much higher than other ships. Although the methane 

emissions from Figure 4.2 indicate a sharp rise for LPDF and HPDF, it does not conclude 

that those two are not eco-friendly options as the GWP is calculated depending on the four 

pollutant emissions and CO2 emissions may make a great difference. On the other hand, the 

cumulative results between LNG tankers and LPG tankers change dramatically mainly 

because of the larger ship size of LNG tankers. 
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Figure 4.2 Fuel consumption and GWP related gas emissions per nautical mile for six 
specific ship types 

 

Besides the GWP related gas emissions, other pollutants resulting from the ship activities 

should be considered as well. This study compared the nautical mile-based emissions of CO, 

PM, NOx, and SOx for five fuel options among six merchant ships, and the calculated mean 

emission values with 5% confidence interval are shown in Figure 4.3. The amounts of NOx 

emission dominate the selected pollutants, and the LNG fueled engines display a less NOx 
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emission than that of oil-fueled engines. As for PM, the most amount of emission occurs 

when HFO with scrubber is chosen, and still, LPDF and HPDF emits less PM than oil-based 

fuels. Speaking to SOx emission, VLSFO, and HFO with scrubber top other options, but CO 

emissions tell another story, the HPDF option shows the worst CO emission. Therefore, one 

conclusion can be made that the LPDF is the best shipping fuel option based on the 

cumulative emission results of CO, PM, NOx, and SOx. 

 

 

Figure 4.3 Amounts of emissions for CO, PM, NOx, and SOx per nautical mile 

 

To compare the fuel consumption and CO2 equivalent emission between different ship 

classes, the nautical mile-based fuel consumption/ CO2 equivalent emission per capacity bin 
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was brought to categorize six ship types into three groups. Figure 4.4-4.6 presents the 

relationship between CO2 equivalent emissions per nautical mile per unit of capacity bin for 

six ship types and the values of DWT, LTC, and TEU, respectively, and the corresponding 

fuel consumption are shown in Fig. S-1 and Fig. S-2 in Appendix A. Overall, all unit 

emission values display a decreasing trend as the capacity bin increases, suggesting larger-

size ships exhibit better environmental performance. Specifically, bulk carrier, as shown in 

Figure 4.4(a), outperforms general cargo ship (Figure 4.4(b)) on exhaust gas emissions. There 

is no clear pattern for general cargo ships with less than 15,000 DWT capacity, but the unit 

emission drops along with the increment of capacity bins when the DWT value grows over 

15,000. Moreover, LNG-based options are more eco-friendly than oil-based options on either 

bulk carrier or general cargo ship.  

 

 

Figure 4.4 Nautical mile-based CO2 equivalent emissions per DWT for bulk carrier 
(4.4a) and general cargo ship (4.4b) 
 

Liquid tank capacity is set as the capacity bin unit for the three tankers in this study. Figure 

4.5 illustrates the most sustainable option is the oil tanker as a result of its overall large ship 

scale. In general, the oil-based fuels do not perform as well as the two LNG-fueled engines, 

and HPDF shows a better performance than LPDF on CO2 equivalent emissions among these 

three tankers. Furthermore, the difference between oil-based engines and LNG-based engines 

is tremendous when the ship size is small. Based on our calculated outputs, LNG tankers with 
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LTC of 30,000 cubic meters presents the most unit CO2 equivalent emission, indicating the 

investment of LNG tanker in this scale may not be a wise choice; When LTC grows to 

150,000 LTC, the value is dropped below 0.004 kg/n.m./LTC, and there is no big difference 

when the LTC locates in the range of 150,000 and 180,000 except for two abnormal ship 

types with their LTC of 173,400. The unit emission value for LPG tanker, shown in Figure 

4.5b, plunges to 0.005kg/n.m./LTC when the x-axis value exceeds 23000 cubic meters, but 

there are two exceptional data points, i.e., LTC=36,000 and LTC=38,000. For oil tankers, the 

CO2 equivalent unit emission is below 0.004 kg/n.m./LTC at the time when LTC surpasses 

180,000 cubic meters or stays in the range between 100,000 and 130,000. Therefore, the 

recommended tanker sizes from the perspective of CO2 equivalent emission savings are as 

follows: LNG tanker with liquid tank capacity larger than 150,000 cubic meters; LPG tanker 

with LTC greater than 23,000; Oil tanker whose LTC in the range between 100 thousand and 

130 thousand and greater than 180 thousand cubic meters.  
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Figure 4.5 CO2 equivalent emissions per nautical mile per unit of capacity bin for LNG 
tanker (4.5a), LPG tanker (4.5b) and oil tanker (4.5c) 
 

The capacity bin of container ships is unique among all the six merchant ships, and the unit 

of the fuel consumption, which is the y-axis in Figure 4.6a, is kilogram fuel per TEU per 

nautical mile. 0.04 kg fuel per TEU every nautical mile is achieved when the shipping 

capacity surpasses 5,000 TEU; the lowest value of fuel consumption occurs when the TEU is 

18,982, of which the values of MGO, VLSFO, LPDF, and HPDF are 87.5%, 91.4%, 83.9%, 

and 84.4%, respectively, as much as that of HFO with scrubber. As for Figure 4.6b, the 

capacity unit CO2 equivalent emission goes below 0.1 kg/n.m./TEU once the capacity bin 

reaches 5000 TEU; At that point, when taking HFO with scrubber as a benchmark, the MGO 
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emission can be saved by 13.6%, while the unit emission saving for VLSFO, LPDF and 

HPDF are 5.8%, 31.1%, and 38.4%, respectively. Thus, the small size container ship, whose 

TEU is less than 5,000, is not a recommended choice when considering the fuel cost and 

GWP gas emission. 

 

 

Figure 4.6 Nautical mile-based fuel consumption (4.6a) and CO2 equivalent emissions 
(4.6b) per TEU for container ship 

 

Next, the BCA emissions for our database were calculated based on the unit of capacity bin 

for every nautical mile. Figure 4.7 shows the BCA emissions for two capacity bin groups, 

one can conclude that the two LNG fuel options can reduce BCA emissions into a neglectable 

level. Specifically for DWT basis fleets shown in Figure 4.7a, general cargo ship may emit 

around 2.5 times more black carbons than bulk carriers, while the BCA emission can be 

saved up to 94 times by replacing oil-based fuels with LNG fuel options; as for the LTC basis 

shown in Figure 4.7b, the best BCA emission control tanker is LNG tankers, it emits 65% 

less black carbons than LPG tankers, meanwhile oil tankers only emit 7% more than LNG 

tankers when employing same fuel options. For container ships, suppose the benchmark 

choice is HFO with scrubber, by substituting it with other options, the BCA emissions 

decreased 82% for MGO, 98% for LPDF and HPDF, however, the VLSFO emits 25% more 

black carbons than the benchmark fuel option.   



 

 61 

 

Figure 4.7 BCA emissions per DWT for bulk carrier and general cargo ship (4.7a) and 
BCA emissions per LTC for LNG, LPG, and oil tankers (4.7b)  
 

To sum up, GHG emissions follow the rank of HFO with scrubber > VLSFO > MGO > 

LPDF > HPDF, while the order for non GHG emissions is HFO with scrubber > VLSFO > 

MGO > HPDF > LPDF. Specifically, the two LNG options outperform the three oil options 

on emissions of non-GWP emissions except for the CH4 emission, which is reasonable 

because of the concern of methane slip, and CO emission for HPDF is as well interior than 

others. On the other hand, the between-group calculated results confirmed the large-size ships 

of our database tend to have a good performance on fuel saving and GWP gas emission 

control. In detail, bulk carriers generally have lower values of the GWP gas emissions per 

DWT than general cargo ships; The three tankers, which share the liquid tank capacity as the 

capacity bin, have little difference on emission control for large-size tankers, but LPG tankers 

have better CO2 equivalent emission records for medium-size tankers, ranging from 20,000 to 

100,000 cubic meters; Set TEU as a unique capacity bin unit, container ships emit more air 

pollutants per unit than other ship types, which is attributed to its fast serving speed and large 

transport capability per TEU. For black carbon emissions, VLSFO, serving as a newly 

blended IMO 2020 compliant option, is surprisingly to emit the largest amount of BCA 

among all the fuel options; while HPDF and LPDF have overwhelming performance in BCA 

emission control over the two residual oil options, 60 to 100 times BCA emissions will be 

saved by taking LNG fuel options rather than HFO and VLSFO. Based on our calculations, 
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the recommended ship types when considering BCA emission are bulk carriers and LNG 

tankers respectively for the DWT group and the LTC group.   

4.3. Case study 

The proposed mathematical models for fuel consumption and GWP gas emissions are 

employed on a specific case for trans-ocean cruising from Houston (located in the North 

America ECA) to Rotterdam (located in North Sea SECA) from Oct. 1 to Oct. 31, 2019, 

aiming to find an optimized fuel option by minimizing the fuel consumption and 

environmental impacts. 

 

Figure 4.8 Route plan for the Houston to Rotterdam voyage 

 

Based on the AIS collected data, there were 234 ships navigating from Houston to 

Rotterdam. The total distance of this voyage is 5,089 nautical miles of which 3,615 nm for 

non-ECA cruising. Collected data from Lloyd’s Database, the DWT of six major merchant 

ships accounts for 90% of all the listed vessels as shown in the outer circle of Figure 4.9 and 

the inner circle represents the vessel numbers of each ship type, see Tab. S-6 in Appendix A 

for details. Next, this study will focus on calculating the total fuel consumption and ship 

exhaust gas emissions for the cruising mode of the six-merchant ship class in the non-ECA 

areas, shown as the red line in the Figure 4.8, based on the model previously proposed.  
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Figure 4.9 Ship number and DWT composition based on ship class from AIS data 

 

As DWT is the unit of capacity bin for bulk carrier and general cargo ship, the relationship 

between DWT and the capacity bin units of the container ships and the three tankers should 

be found to proceed with the fuel consumption. This study adopted the regression model 

proposed by to calculate TEU from DWT (Abramowski et al., 2018); In the meanwhile, a fit 

regression model was built by the liquid tank capacity and DWT for LNG, LPG and oil 

tankers, see Fig. S-3 in Appendix A.  
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Figure 4.10 Cumulative fuel consumption for non-ECA cruising 

 

From the perspective of fuel consumption, the least energy saving-solution for each ship class 

is always the HFO with scrubber, shown in Figure 4.10, particularly for bulk carriers, other 

options can save up to 39 % fuel by discarding this scrubber solution. The container ships 

take the most value of fuel consumption, ranging from 81,936 to 97,768 tons since they 

contribute the most transported DWT and their design speed is much higher than that of other 

options. On the other side, LNG carriers and LPG tankers share the least fuel consumption as 

there were 6 LNG tankers and 5 LPG tankers navigating from US ECA to North Sea SECA 

at that time, leading no evident difference between the LNG fueled engines and oil fueled 

engines. By considering the operating expense only, the LNG based fuel options, LPDF and 

HPDF, are the best strategy because of the least amount of fuel consumption and the lowest 

energy price of LNG.   

 

When using the emission model to calculate the GWP-related exhaust gas emissions, it can 

be deduced that the HFO with scrubber is the option with the highest amounts of CO2 
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equivalent emissions, so it is set as the benchmark to show the emission reduction of other 

four fuel options, see Figure 4.11.  

 

 

Figure 4.11 Total CO2 equivalent emissions during the whole non-ECA cruising voyage 

 

HPDF, as the most effective fuel option for emission abatement, can reduce the emission of 

CO2 equivalent by around 36~39% for the six ship types. Taken bulk carrier as an instance, 

the GWP related gases emissions for HFO with scrubber is 39,502 tons while that of HPDF is 

24,433 tons. Furthermore, the VLSFO option does not show much difference as the 

benchmark solution, the percentage of reduced CO2 equivalent ranges from 4% to 7%. As for 

the most CO2 equivalent ship class, the container ship emits around 237,278 tons of GWP 

related gases when HFO with scrubber is taken for cruising in the non ECA of this study, and 

when the MGO is adopted, 205,235 tons of CO2 equivalent will be exhausted, while for 

VLSFO, LPDF and HPDF are 223,640, 163,696, 146,312 tons, respectively.  

 

Suppose the first scenario employs HFO with scrubber for the six merchant ships, the total 

CO2 equivalent emission may surge to 340,344 tons for the whole non-ECA cruising voyage; 
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alternatively, the number may reduce to 209,990 tons when all the merchant ships employ 

HPDF engines as the most eco-friendly scenario, 38% GWP related gases may be dropped 

compared to the first scenario, see Figure 4.12.  

 

 

 

Figure 4.12 CO2 equivalent emission comparisons among the three scenarios 
 

It is widely recognized that the newly blended marine fuel option, VLSFO, is a compliant 

solution with high cost-performance ratio under IMO 2020 Sulfur Cap; more and more 

liquefied gas tankers, either newly building orders or existed ones, tend to install or retrofit 

LNG fueled engines to meet the long term marine environmental requirements of IMO. As a 

result, this case study defined a most practical fuel scenario which assumed VLSFO as the 

major option for bulker carriers, general cargo ships, container ships, and oil tankers, in the 

meanwhile, the LNG HPDF engines were assumed to be installed on the LNG and LPG 

carriers. Then the total amount of CO2 equivalent emission for the case is 3,077,411 tons, 

with the 37,232 tons contributed by bulk carriers, 16718 tons by general cargo ships, 223,640 

tons by container ships, 5,158 tons by LNG carriers, 4,067 tons by LPG carriers and 20,596 

tons by oil tankers. 
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4.4. Concluding remarks 

Towards enhancing the sustainable development of the shipping industry, fuel economy and 

safety concerns are among the most important factors to create future roadmaps for the 

operation and the growth of the global ship fleets. Focusing on optimizing calculations of 

shipping fuel consumption and ship exhaust gas emissions, this study provides a holistic 

bottom-up methodology by integrating and evolving several approaches to reduce the 

uncertainties. To our knowledge, this chapter is the first work to cover both the newly 

blended fuel and the BCA emission impacts, and the fuel consumption and exhaust gas 

emissions from 337 ships within six major merchant ship types have been calculated and 

analyzed to find the most sustainable solutions by in-group comparison and between-group 

comparison. In general, the calculated values from the mathematical model confirmed that 

the large size ships are preferred from the perspective of maritime sustainability, and the two 

LNG fuel options displayed great potential for fuel savings and reductions in the emissions of 

CO2, N2O, and BCA. Although CH4 emission may be an issue for LNG fueled ships, their 

overall GWP gas emissions were better than other options. As for the sustainable preferred 

ship fleet, bulk carriers outperformed general cargo ships on both nautical mile-based fuel 

consumption and CO2 equivalent emissions per unit of DWT, while for the unit of liquid tank 

capacity, there is little difference in GHG emissions among LNG tanker, LPG tanker and oil 

tanker when the liquid tank size surpasses 100 thousand cubic meters. The recommended 

tanker size is LNG tanker with LTC larger than 150,000 cubic meters, LPG tanker greater 

than 23,000, and oil tanker whose LTC in the range between 100,000 and 130,000, and 

greater than 180,000 m
3
. Among all the proven fuel options under IMO 2020 Sulfur Cap, the 

HFO with scrubber is the least favorable for both GWP and non-GWP gases, while the LNG 

fueled engines, LPDF and HPDF, are recommended to meet the green shipping requirement. 

HPDF took a slight lead for GWP related gas emission control whereas LPDF offers superior 
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emission control for CO, PM, NOx, and SOx. The case study confirmed 36~39% CO2 

equivalent emissions were reduced by replacing HFO with scrubber option with HPDF. As a 

second dominated GWP gas following CO2, BCA emission follows the rank: VLSFO > HFO 

with scrubber > MGO > HPDF > LPDF, from high to low. Because of BCA’s high emission 

rate, VLSFO fails to show great improvement on GWP gas emission control compared to 

HFO with scrubber. Meanwhile, the two LNG based fuel options show the least global 

warming potential benefiting from lower BCA and CO2 emissions.  
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5. TTP SUSTAINABILITY: POST-COMBUSTION CARBON CAPTURE FOR TANK TO 

PROPELLER VIA PROCESS MODELING AND SIMULATION
*
 

 

Following Chapter 4, this chapter aims at providing a holistic way to determine the most 

efficient and sustainable post-combustion carbon capture solution for tank to propeller 

processes.  The objectives of this work encompass the following: 1) marine engine cylinder 

modeling and validation, 2) TTPPCC system process model development and pilot plant 

validation, 3) Optimal absorber and stripper design under variation of solvents, packed type 

and liquid gas ratio, 4) Quantitative sustainable evaluation by emission reduction efficiency, 

energy penalty and carbon cyclic capacity.  

 

5.1. Maritime system design 

For decades, the larger-scale ship has displayed a great potential for improved fuel efficiency 

and emission control per unit of cargo, as well as a good return on investment. There is a 

clear trend of embracing the era of larger-scale ships. However, no study has focused on 

simulation of the carbon capture system for larger sized ships. The size of the reference ships 

for the maritime PCC studies are in a surprisingly small range, with a maximum displacement 

of 20,550 cubic meters for an LPG tanker (Awoyomi et al., 2019). Moreover, the ship engine 

is another perspective to consider in the sustainable maritime solution. The two-stroke slow 

speed diesel engine still dominates the ship engine market, while many dual-fuel engine 

options (mainly marine diesel fuel and LNG) are available to meet the current IMO emission 

standard. Based on our collected data, no study in the maritime carbon capture field has 

focused on process modelling for the 2-stroke dual-fuel engine type. As a milestone study in 

 

*
 Reprinted with permission from “Ji, Chenxi, Shuai Yuan, Mitchell Huffman, Mahmoud M. El-Halwagi, and Qingsheng 

Wang. "Post-combustion carbon capture for tank to propeller via process modeling and simulation." Journal of CO2 
Utilization 51 (2021): 101655.” 
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the maritime post-combustion carbon capture, Luo and Wang (Luo and Wang, 2017) 

established the process model for a two-diesel-engine power system, while most other studies 

pay more attention to modeling the single-diesel main engine. 

 

5.1.1. Reference LNG tanker 

Three strategies of sulfur emission control including ship exhaust gas scrubber, oil change to 

the low sulfur shipping fuels, and engine change to LNG-driven type are currently available 

for ship owners under IMO 2020 sulfur cap. When considering long-term carbon emission 

reduction, the LNG-fueled engine is the most attractive option. Therefore, the study targeted 

the LNG dual-fuel engine to establish the modeling of the tanker to propeller process. Tab. S-

1 in Appendix B lists the parameters of the reference LNG tanker (Wärtsilä, 2019), which 

used to be the largest LNG carrier before the Q-flex and Q-max era. The ship can be driven 

by either marine diesel fuel or LNG with three V-type dual engines and one L-type dual 

engine (Wärtsilä, 2019). The fuel consumed in the LNG tanker is set as the marine diesel oil 

and its inherent properties are listed in Table 5.1. 

Table 5.1 Inherent properties for marine diesel oil (Reprint from (Xie, 2017)) 
Types Name LHV 

(MJ/kg) 

Density 

(g/cm3) 

RON Weight % 

Branched 

alkanes 

Iso-cetane/ HMN 44.38 0.321 98.9 0.1786 

Aromatic 

HCs 

1-

Methylnaphthalene 

40.27 0.548 120 0.1776 

Naphthenic 

HCs  

Decalin 43.02 0.569 46 0.36 

N-alkanes N-hexadecane 45.23 0.268 -30 0.2838 
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5.1.2. Tank to propeller process model development 

 

 

 

 

 

Figure 5.1 Process flow charts for two types of marine engines: (a) 12V50DF; (b) 
6L50DF; (c) Simplified process modeling for the target ship engine system 

 

The tank to propeller process of the targeted ship was modeled by Aspen Plus V11. At the 

property stage, the airflow (mainly nitrogen and oxygen) and marine diesel oil flow were 

input using the Peng-Robinson equation of state as the property method with Boston-Mathias 

modifications. The TTP process in the simulation stage has four functional modules: 

compression module, fuel combustion module, mixing module, and integration module. The 

block models of Compr, RGibbs, Mixer, and Hierarchy were employed for the four modules, 

respectively.  

 

Referenced from the manual book of Wärtsilä 12V50DF and 6L50DF (Wärtsilä, 2019), the 

input value of fuel flow and airflow can be calculated accordingly, as well as the shipping 
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fuel temperature and mean effective pressure in the engine cylinder. Figure 5.1 (a) shows the 

tank to propeller flow chart of 12V50DF. The fresh air is preprocessed by filter, compressor, 

and cooler before it is mixed and reacted with injected marine diesel fuel in the engine 

cylinder, then one part of the high-temperature exhaust gas is cooled down and another part is 

entering the turbocharger. Using a similar theory, the model of 6L50DF is built as shown in 

Figure 5.1 (b). The detailed process models for the two dual engines can be found in the Fig. 

S-1 of Appendix B. The 4-engine ship power system is integrated by four Hierarchy blocks, 

displayed in Figure 5.1 (c). The effective work is then sent to the propeller and the total 

exhaust gas enters the post-combustion carbon capture system.  

 

To validate the proposed TTP process model, the simulated results for the two engines (see 

Tab. S-2 from Appendix B for details) are compared with the data abstracted from the 

Wärtsilä 50DF product guidebook. The validation results displayed in Table 5.2 present good 

agreement for the values of the simulated engine output power and exhaust gas flow rate 

across all load levels. The maximum prediction deviation for the V-type engine is -9.92% at 

50% load level, while that for the L-type is -9.85% at 50% as well. 85% workload simulation 

outputs will be applied to the following TTPPCC system process modeling since it is a 

common practice to assume 85% engine load when the ship is in the navigation mode. 
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Table 5.2 Marine engine cylinder process simulation output and validation 

Engine Type Load SFOC 

(kg/s) 

Comp. 

Air Flow 

Rate 

(kg/s) 

Validation Engine 

Output 

(kw) 

Ex. Gas 

Flow Rate 

(kg/s) 

12V50DF 100 0.62 21.9 Manual 11700 23.8 

Model 11623 22.52 

Prediction 

Dev. (%) 

-0.66 -5.38 

85 0.604 18.61 Manual 9945 19.7 

Model 9877 19.22 

Prediction 

Dev. (%) 

-0.68 -2.44 

75 0.599 16.42 Manual 8775 18.2 

  

Model 8714 17.02 

Prediction 

Dev. (%) 

-0.69 -6.48 

50 

 

 
 

0.618 11.9 Manual 5850 13.9 

Model 6315 12.52 

Prediction 

Dev. (%) 

7.94 -9.92 

6L50DF 100 0.308 11.0 Manual 5850 12.4 

    Model 5838 11.31 

    Prediction 

Dev. (%) 

-0.21 -8.79 

 85 0.302 9.35 Manual 4972 10.1 
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    Model 4962 9.66 

    Prediction 

Dev. (%) 

-0.20 -4.36 

 75 0.3 8.25 Manual 4387 9.2 

  

    Model 4378 8.55 

    Prediction 

Dev. (%) 

-0.21 -7.06 

 50 0.309 6.0 Manual 2925 7.1 

    Model 3184 6.4 

    Prediction 

Dev. (%) 

8.96 -9.85 

 

5.2. TTPPCC process model development 

Extensive studies have focused on the only commercialized CO2 capture technology, post-

combustion carbon capture system. For ships powered by fossil fuels, the solvent based 

TTPPCC methodology is the most promising process for implementing this technology. 

Many previous milestone works in the field of PCC have pointed out the MEA as an ideal 

solution for carbon capture because of its high CO2 solubility, acceptable reaction kinetics, 

and fair price. In this chapter, the MEA with molality of 7 m (30% in weight percent) was 

employed to establish the base case process model for the TTPPCC system. Furthermore, the 

unique features and operation limitations of TTPPCC have been identified and shown in 

Table 5.3, and the corresponding process modeling considerations are listed as well.  

Table 5.3 Features, limitations, and modelling considerations of TTPPCC 

Features of TTP Limitations of TTPPCC TTPPCC modelling 

considerations 
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Limited space Size/ height of equipment Constraints in absorber/ stripper 

dimension determination 

Limited utilities Supply of heat, electric power, 

etc. 

Energy penalty/ Required 

regeneration energy 

Long lasting constant 

movement 

Fast reaction rate, Equipment 

effectiveness & stability 

Solvent selection preference: 

stable, fast reaction kinetics, not 

subject to degradation  

Multiple operation modes Integrated carbon capture 

stategies 

Scenario based process models, 

variant of L/G ratio 

Vulnerable marine environment  Toxic/high corrosive substance 

release 

Low toxic & corrosive solvent 

preferred, packed materials with 

high packing factor preferred 

 

Based on Table 5.3, the major considerations to improve the performance of the TTPPCC 

process with a maritime process intensification study are: the optimized dimension of process 

units, variant lean solution flows, and intensified absorption/desorption reactions with the 

least negative effects. 

 

5.2.1. Physical solubility and Henry’s constant  

Using the same approach of molecular interaction calculations as the electrolyte NRTL, the 

eNRTL-Redlich-Kwong (RK) property method is applicable for handling aqueous and mixed 

solvent systems with a wide range of concentrations (Aspen Technology, 2006). This work 

adopted eNRTL-RK equation of state (EOS) to compute the liquid phase thermodynamic 

properties, while the PC-SAFT was utilized for vapor property calculations of the MEA-H2O-
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CO2 system. The Henry's constant of the mixture is calculated from the binary Henry’s 

constants of pure solvents (see equation 5.1): 

ln tQ"
S"
6u = ∑ h? ln t

Q"3
S"3
6u?                                                  (5.1)    

where N)  is Henry’s constant for binary components, v)T is the infinite dilution activity 

coefficient of molecular solute J in the mixed solvent,  N)? Henry’s constant of molecular 

solute J in pure solvent k, v)?T is the infinite dilution activity coefficient of molecular solute J 

in pure solvent k. h?, the weighting factor, is calculated by equation 5.2: 

h? =
E3(2"3

6)0/8

∑ E44 (2"4
6)0/8

                                                         (5.2) 

where  w? is the mole fraction of solvent k on solute-free basis,  Y)?T is the partial molar 

volume of molecular solute J at infinite dilution in pure solvent k and its calculation process 

is referred to as the Brelvi-O’Connell model (Brelvi and O’Connell, 1972). Henry’s law 

constants N)9,)0 of the binary components (J*, J,) in this study follow the below equation: 

N)9,)0 = exp	(!* +
/0
&
+ !+]9P + !=P)                                        (5.3) 

where !*, !,, !+, != are the correlations for binary Henry’s law constants, and P is the system 

temperature. Table 5.4 displays the correlation coefficients for the determination of Henry’s 

law constants on a molality basis. This study adopted the model of Yan and Chen (Yan and 

Chen, 2010) to calculate the Henry’s constant of CO2 and H2O, and CO2-MEA was extracted 

from the work of Liu et al. (Liu et al., 1999). The correlation coefficients of N2- H2O and O2-

H2O were both from the APV Binary database, while the APV ENRTL-RK database was 

applied for the H2S-H2O binary pair. The default values from the Aspen Databank were used 

for other Henry’s constants of the binary components (Aspen Technology Inc, 2019).   

 

Table 5.4 Correlation coefficients of Henry’s law constants 
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Binary 

components 
CO2-H2O CO2-MEA N2- H2O O2-H2O H2S-H2O 

Source Yan and 

Chen (Yan 

and Chen, 

2010) 

Liu et al. (Liu 

et al., 1999) 

APV Binary 

(Aspen 

Technology 

Inc, 2019)  

APV 

Binary 

(Aspen 

Technology 

Inc, 2019) 

APV 

ENRTL-

RK (Aspen 

Technology 

Inc, 2019) 

Unit N/sqm N/sqm N/sqm N/sqm N/sqm 

T 273-473 { 280-600 { 273-346 { 274-348 { 273-423 { 

C1 100.65 89.452 176.507 155.921 358.138 

C2 -6147.7 -2934.6 -8432.77 -7775.06 -13236.8 

C3 -10.191 -11.59 -21.558 -18.3974 -55.0551 

C4 0 0.001644 -0.008436 -0.009444 0.05957 

 

5.2.2. Carbon capture chemical reaction mechanism 

The equilibrium reactions and kinetics-controlled reactions of the MEA-CO2-H2O mixture 

have been well investigated, and Table 5.5 summarizes the two categories of the aqueous 

phase chemical reactions in this work.  

Table 5.5 Reactions in the kinetic model for MEA-CO2-H2O system 

Reaction No. Reaction Type Stoichiometry 

1 Equilibrium QHkNG + N,G	«	N+GG +QHk 

2 Equilibrium 2N,G	«	N+GG + GN<
 

3 Equilibrium N!G+< + N,G«	N+GG + !G+,< 

4 Equilibrium N,% + N,G«	N%< + N+GG 

5 Equilibrium N,G + N%<«	%,< + N+GG 
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6 Kinetic !G, + GN< → N!G+< 

7 Kinetic N!G+< 	→ !G, + GN<
 

8 Kinetic QHk +	N,G + !G, 	→ QHk!GG< + N+GG	 

9 Kinetic QHk!GG< + N+GG → 	QHk +	N,G + !G, 

 

The equilibrium constants ({)) for reactions 1-5 in MEA were calculated from the reference 

state Gibbs free energies of the participating components by equation 5.4 (Zhang et al., 

2011): 

−$P]9{! = ∆a!°                                                            (5.4) 

where R is the universal gas constant, T is the system temperature, {! is the chemical 

equilibrium constant of reaction d, and ∆a!°  is the reference state Gibbs energy change for 

reaction d. The kinetics-controlled reactions (6-9 in Table 5.5) are governed by the power 

law expressions expressed in the below equation: 

_Y = ^Y°PKexp	(−
@:
0&
)∏ (w)v))Z":R

)-*                                           (5.5) 

where  _Y  is the reaction rate for reaction �, ^Y°  is the pre-exponential factor,  PK is the 

system temperature with temperature factor 9, HY is the activation energy, $ is the gas 

constant, w) is the molar fraction of component J, v) is the activity coefficient of component J, 

and Ä)Y is the stoichiometric of component J in reaction �. 

 

The rate-based mass transfer correlations can be found in the Tab. S-3 of Appendix B, and 

the parameters of the other components were collected from the databank of Aspen Plus 

(Aspen Technology Inc, 2019). 
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5.2.3. Base case design and validation   

 

 

Figure 5.2 Base case design of the TTPPCC process  
 

Figure 5.2 shows the base case process model of TTPPCC with the major columns of 

absorber and stripper. Two water makeup streams (one for the pre-cooling module and 

another for the absorption module) and one MEA replenishment before the leanin flow were 

incorporated in the PCC process, and the operation conditions of the pilot plant were 

extracted from experiment 1 of the Notz study to validate the proposed TTPPCC model. The 

key parameters of TTPPCC validation were identified as Leanin/Richout flow CO2 loading, 

CO2 emission reduction efficiency (CRE), captured CO2 flow rate, and reboiler or specific 

reboiler duty.  In particular, the Leanin/Richout flows are expressed per amount of CO2 

absorbed, the CRL is calculated from the CO2 mass difference between the flue gas and the 

exhausted gas, and the captured CO2 is the amount of CO2 regenerated after the desorption 

operation. The energy required by the reboiler was determined by the sum of the latent heat 
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water condensation (ÅC5K6), the sensible heat for solvent to reach reboiler temperature (Å$[) 

and the heat of CO2 desorption (Å6#$), then the penalty energy is calculated by integrating the 

reboiler duty and the captured CO2 flow rate. The equations of the validation parameters are 

represented below: 

&%#BK)K	(\)C[5PD) =	
[/H0]G[Q/H8

;]G_/H8
0;`G[.@?/HH;]

[.@?]G[.@?Q<]G[.@?/HH;]
                           (5.6) 

 

!$H = L,=0,>?∙O>?<L,=0,1?∙O1?
L,=0,>?∙O>?

                                           (5.7) 

Å\#F = ÅC5K6 + Å$[ + Å6#$ = IbΔNb +I$i!ÉPF5DD57 − PD5!Ñ − IC50ΔNC50     (5.8) 

Å$!# l
.c
de
	!G,m = 	

f@*-
O,A+	(/0

                                             (5.9) 

Table 5.6 Pilot plant carbon capture process simulation outputs and validation  
Variable Experiment 

output (Notz et al., 

2012) 

Rate-based model 

output 

Absolute relative 

deviation, % 

Lean in CO2 

loading (mol 

CO2/mol MEA) 

0.265 0.273 3.0 

Rich out CO2 

loading (mol 

CO2/mol MEA) 

0.386 0.386 0 

CO2 emission 

reduction 

efficiency (%) 

76.0% 73.9% 2.7 

Captured CO2 rate 

(kg/h) 

4.65 4.51 3.0 
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Reboiler duty (kw) 6.48 6.80 4.9 

Specific reboiler 

duty (MJ/kg CO2) 

5.02 5.42 7.9 

 

The experimental data of the pilot plant (Mellapak 250Y packing type) were extracted from 

case 1 of Notz et al.’s study (Notz et al., 2012). The method from Bravo’s research 

group (Bravo et al., 1985) was applied to determine corrections for the mass transfer 

coefficients and effective interfacial area on the liquid and gas side. The results of the flows 

of leanin, richout, gasout, and co2out, and the reboiler duty value was obtained by the 

proposed model. Employing equation 5.6-5.9, the validation results are calculated and 

summarized in Table 5.6. The largest absolute relative deviation of 7.9% is in the specific 

reboiler duty, and others are consistent with the experimental data as well, leading to the 

conclusion that the proposed model appears to be in line with experimental results. Moreover, 

the validation process for Sulzer BX, Mellapak plus 252Y, and Flexipac 2Y were completed 

with acceptable results as well, see Tab. S-4 in Appendix B for details. 

 

5.3. TTPPCC process simulation and performance analysis 

After the process synthesis, design, and analysis, the well-known MEA-based PCC operation 

has been set as the base case of the TTPPCC model with good validation results. As per the 

framework of the sustainable process synthesis-intensification (Babi et al., 2014), the 

innovation design should be the next focus to find a more eco-friendly solution for our 

defined maritime system. Referenced from the above-mentioned considerations in Table 5.3 

of TTPPCC modelling, the alternative design for intensified unit operations would involve 

sustainable solvent selection, optimal column dimension determination, variance of L/G ratio, 

and minimal energy penalty for the TTPPCC system.   
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5.3.1. Intensified TTPPCC design 

Following the 7 m MEA case, the alteration process design is processed with varying inputs 

of leanin flow rates and different structured packed types to find the optimal L/G ratio and 

design diameter of the absorber under acceptable flooding percentage, which is assumed to 

be 80% in this work.  

 

In the contribution of Agbonghae et al. (Agbonghae et al., 2014), the range of L/G (kg/kg) 

ratio is from 0.70 to 2.75 for gas-fired power plants and is from 2.00 to 5.50 for coal-fired 

power plants. This study selected the point values 1 to 4 as the variant L/G ratio to conduct 

the calculation of column diameter of different structured packed types, involving BX, 

Mellapak plus 252Y, Mellapak 250Y and Flexipac 2Y.  

 

The packed column parameters such as liquid/gas (L/G) ratio, diameter, packed height and 

total height were determined using physical modeling with two–film gas–liquid absorption 

theory. The input values of MEA-based on-board PCC are displayed in Table 5.7. 

Table 5.7 Major input values of MEA -based maritime PCC  
Entering gas  Flow rate (kg/s) 67.32 

Average molecular weight 

(g/mol) 

28.91 

Temperature (℃) 48 

Pressure (bar) 1 

Density (kg/m
3
) 1.089 

Entering solvent Flow rate (kg/s) 67.32/134.64/201.96/269.28 

Temperature (℃) 40 
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Density (kg/m
3
) 1053.39 

Viscosity at 40 ℃ (cP) 3 

 

 

 

Figure 5.3 Generalized pressure drop correlation (Reprint from (Stichlmair and Fair, 
1998)) 
 

For the absorber design, the recommended value of liquid pressure drop is between 15 to 50 

mm H2O per meter packed area (Towler and Sinnott, 2013). This study assumed the drop line 

of 20.83 mmH2O per meter packing for the present design of absorber and stripper. Figure 

5.3 shows the generalized pressure drop correlation (Stichlmair and Fair, 1998), the 

relationship between flooding correlation factor ({=) and the flow parameter (A'2), and their 

equations are listed below: 
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A'2 =
'
gÜ

hB
hC

                                                          (5.10) 

{= =
*+∙(2D∗ )0O+(

FC
GC
)H.9

hJ(hC<hJ)
                                                  (5.11) 

where Yb∗ is the gas mass flow rate per unit column cross-sectional area, A! is the packing 

factor, +' is the liquid viscosity, '' and '" are the liquid density and vapor density, 

respectively. 

Besides the flooding correlation factor ({=), its corresponding flooding factor ({;%) can also 

be found from Figure 5.3, and the column flooding percentage (CFP) is calculated by: 

!AD = Ü
j5
jKL

                                                           (5.12) 

After the Yb∗ is calculated, the trial cross-sectional area and trial diameter can be determined. 

The designed diameter and cross-sectional area for varying L/G ratio and multiple packing 

types are shown in Table 5.8.  
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Table 5.8 The designed diameter and cross-sectional area for variant L/G ratio and multiple packing types  

Liqui

d gas 

ratio 

Flow 

para., 

!!" 

Floodin

g corr. 

factor, 

k4 

Packed type 

Packin

g 

factor 

(m-1), 

Fp 

Gas 

mass 

flowrate 

per unit 

column 

C/S area 

(kg/m2s)

, "#∗  

Trial 

C/S 

area 

(m2), a 

Trial 

diamete

r (m), d 

Floodin

g factor, 

#%& 

Trial 

flooding 

percentag

e (%) 

Design 

diamete

r (m) 

Colum

n C/S 

area 

(m2) 

Column 

flooding 

percentag

e (%) 

1.0 0.032 0.90 

Mellapak plus 

252Y 
39.0 2.701 24.927 5.635 

5.4 0.408 

6.0 19.63 0.518 

Flexipac 2Y 49.0 2.409 27.941 5.966 6.0 23.76 0.480 

Mellapak 250 Y 66.0 2.076 32.427 6.427 6.5 28.27 0.468 

Sulzer BX 90.0 1.778 37.867 6.945 7.0 33.18 0.466 

2.0 0.064 0.80 

Mellapak plus 

252Y 
39.0 2.546 26.439 5.803 

4.0 0.447 

6.0 19.63 0.602 

Flexipac 2Y 49.0 2.272 29.635 6.144 6.5 23.76 0.558 

Mellapak 250 Y 66.0 1.957 34.394 6.619 7.0 28.27 0.544 

Sulzer BX 90.0 1.676 40.164 7.153 7.5 33.18 0.541 
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3.0 0.096 0.78 

Mellapak plus 

252Y 
39.0 2.514 26.776 5.840 

3.4 0.479 

6.0 23.76 0.540 

Flexipac 2Y 49.0 2.243 30.013 6.183 6.5 23.76 0.605 

Mellapak 250 Y 66.0 1.933 34.832 6.661 7.0 28.27 0.590 

Sulzer BX 90.0 1.655 40.675 7.198 7.5 33.18 0.587 

4.0 0.129 0.70 

Mellapak plus 

252Y 
39.0 2.382 28.265 6.000 

3.1 0.475 

6.5 23.76 0.565 

Flexipac 2Y 49.0 2.125 31.682 6.353 6.5 28.27 0.533 

Mellapak 250 Y 66.0 1.831 36.769 6.844 7.0 28.27 0.618 

Sulzer BX 90.0 1.568 42.937 7.396 7.5 33.18 0.615 



 

 

 

5.3.2. Analysis of solvent selection  

Due to the unique features of maritime PCC (see Table 5.3), the criteria of solvent 

selection are as follows: fast kinetics, minimal energy penalty, less prone to degradation, 

less corrosive, and neglectable toxicity. In addition, to reduce the sensible heat loss and 

the dimension of maritime PCC system, the solvent should have high cyclic capacity, 

which refers to the difference between the CO2 concentration in the rich and lean 

solution. The molar cyclic CO2 absorption capacity (the cyclic capacity in this work) of 

aqueous single and blended amines is defined as: 

∆" = "!"#$%&' − "()*+"+	                                             (5.13) 

where "()*+"+ represents the CO2 loading of the initial amine solution, and "!"#$%&' is the 

CO2 loading of the amine solution after absorption. 

 

One single aqueous amine and one blended amine were selected to find an optimal 

solution of the proposed TTPPCC system. Diisopropanolamine (DIPA) was chosen as 

the single amine for the TTPPCC system since the aqueous DIPA solution requires less 

energy  to  regenerate, removes CO2 without degradation of the solution, and also is less 

corrosive and has greater selectivity of H2S toward CO2 (Haghtalab et al., 2014). 

Moreover, the methyldiethanolamine (MDEA) is another alkanol-amine which has less 

regeneration cost, lower volatility, greater thermal stability, and higher CO2 cyclic 

capacity. However, both DIPA and MDEA have one common weakness for maritime 

carbon capture, a lower second order CO2 absorption rate constant (%-) than MEA 

(Liang et al., 2015), leading to their inferior absorption reaction rate. Many studies have 
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pointed out the blended amine with the promotor PZ is a superior solution to resist to 

degradation with higher kinetic rates. Therefore, this study proposed an intensified 

maritime carbon capture process using a MDEA-PZ-CO2-H2O system. 

 

This study completed 40 process simulations in total: 16 groups for MEA, 16 groups for 

DIPA, and 8 groups for MDEA-PZ (since the flooding percentage of absorber and 

stripper exceeded 80% when L/G ratio was set as 3 and 4). The input values of selected 

variables for the TTPPCC system, including the composition of the selected solvent in 

leanin flow, the calculated richout loading range, and the diameter, stages and height of 

absorber and stripper, are listed in Table 5.9. Unlike the PCC system of onshore 

facilities, the limited space (particularly the height of columns) on the ship should be a 

solid constraint for TTPPCC system design rather than setting the 90% carbon capture 

amount as the abatement goal.  

Table 5.9 TTPPCC process simulation input variables  
                             Solvent 

Input variables   

MEA DIPA MDEA-PZ 

Composition (on molality scale) 7 m 6 m 5 m + 5 m 

Leanin loading (mole CO2/mole 

amine) 

0.199 0.029 0.127 

Richout loading range (mole 

CO2/mole amine) 

[0.309, 0.489] [0.195, 0.318] [0.406, 0.489] 

Diameter of absorber (stripper) BX: 7.5(4.5) 

M 250: 7(4.5) 

Mp 252: 6.5(4.5) 

2Y: 6.5(4.5) 

BX: 7.5(4.5) 

M 250: 7(4.5) 

Mp 252: 6.5(4.5) 

2Y: 6.5(4.5) 

BX: 7.5(6.5) 

M 250: 7(6.5) 

Mp 252: 6.5(6.5) 

2Y: 6.5(6.5) 
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Stages of absorber (stripper) 20 (8) 20 (8) 20 (8) 

Height of absorber (stripper) 10 (6) 10 (6) 10 (6) 

 

 

5.3.3. TTPPCC system performance analysis 

 

 

Figure 5.4 CO2 reduction efficiency of single amines: MEA and DIPA 

The black dashed line and orange dashed line in Figure 5.4 represent IMO 2030 and 

2050 carbon reduction goals, respectively. In general, the MEA outperforms DIPA in 

every defined scenario. There is a clear trend that the carbon reduction level is increasing 

when the L/G ratio goes up for the two single-amine solvents. Furthermore, the 

sustainable-preferred packing type is as follows: Sulzer BX > Mellapak 250 Y> 

Mellapak plus 252Y > Flexipac 2Y  
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A conclusion can be made that only the maximum L/G ratio of DIPA cases can satisfy 

the IMO 2050 carbon reduction strategy, and when the L/G ratio equals 1, DIPA solvent 

is not even eligible for the 2030 IMO carbon reduction plan. When L/G ratio exceeds 2, 

the MEA solvent can meet the IMO long-term strategy well, but not when the L/G ratio 

falls below 2.  

 

Figure 5.5 Specific reboiler duty of MEA and DIPA 

In Figure 5.5, the DIPA solution saves more energy than MEA, and when the L/G ratio 

goes up, more energy will be saved by adopting DIPA over MEA. From the perspective 

of energy saving, the preferred packing type would correspond to the highest carbon 

capture efficiency in most cases. The best energy-saving performance is 3.22 MJ/Kg 

CO2 which is obtained by DIPA solvent with BX under L/G=1, while the worst case is 

the MEA solvent with MEA with Flexipac 2Y under L/G=4, which yields a value of 

10.7 MJ/Kg CO2.  
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To summarize, there will be a tradeoff between carbon capture performance and specific 

reboiler duty for the two single amines. Although DIPA is applicable for short-term IMO 

strategy with less energy consumption when the L/G ratio exceeds 2, MEA is 

recommended for most cases since its carbon capture performance is much better than 

that of DIPA. 

Next, the TTPPCC process was conducted by introducing the blended MDEA and PZ 

solvent. The carbon capture performance and the specific reboiler duty of the three 

solvents are shown in Figure 5.6.  

 

Figure 5.6 (a) Carbon capture efficiency of MEA, DIPA and MDEA-PZ; (b) 
Specific reboiler duty of MEA, DIPA and MDEA-PZ 

Overall, the CO2 capture efficiency of MDEA-PZ tops the other options, and its 

regeneration energy is between MEA and DIPA (see Figure 5.6 (a)). When the liquid 

flow equals to gas flow (L/G =1 cases), the MDEA-PZ is still capable of meeting the 

2050 IMO carbon strategy with the only exception being the Flexipac 2Y case. As for 

L/G=2, all the blend amine cases generated great carbon capture results, as more than 

95% CO2 from the ship engine flue gas was reduced by installing the TTPPCC system. 
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DIPA is the best option for specific reboiler duty, and the blend-amine option presented 

performance similar to DIPA for the L/G =1 cases; when the leanin flow rate is twice of 

that of the flue gas, the MDEA-PZ option can save more than 10% energy for every 

mole captured CO2 compared to the benchmark solvent MEA.  

 

Figure 5.7 Cyclic capacity of MEA, DIPA and MDEA-PZ 

Lastly, Figure 5.7 illustrates the cyclic capacity of the three solvents, and the detailed 

calculated results are listed in Tab.S-5 of Appendix B. The cyclic capacity has an inverse 

relationship with the lean solution flow rate, which can be reasonably predicted by the 

smaller holding time in the absorber led by the larger liquid flow rate, resulting in 

insufficient CO2 absorbed by the selected solvents. The MDEA-PZ option exhibits 

superior cyclic capacity performance based on our process model, and the Sulzer BX 

with a lower liquid flow rate is recommended to reach a high-level cyclic capacity.  



 

 

 

95 

 

Figure 5.8 CO2 emission control and energy penalty tradeoff analysis of MEA, 
DIPA and MDEA-PZ 

In summary, although a large carbon capture rate can be achieved by increasing the L/G 

ratio, the associated energy penalty increase rate is even higher, probably due to the 

inverse relationship between the liquid-gas ratio and the chemical absorption cyclic 

capacity. The ideal solvent for the TTPPCC system can be identified as low specific 

reboiler duty and high carbon reduction efficiency, as shown in the right corner of Figure 

5.8. Additionally, one can easily conclude that the cases of MDEA-PZ solvent with L/G 

equals to one have the best overall emission control-energy saving performance, and the 

MEA (L/G=1) group and DIPA (L/G=2) group share similar TTPPCC performance.  

5.4. Concluding remarks 
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This study successfully established the process model of a 2-stroke ship engine system 

consisting of three Wärtsilä 12V50DF and one 6L50DF and presented a good validation 

result. Following the stages of sustainable process intensification, a rate-based 

aqueous MEA process model was developed and validated, then scaled up and modified 

to capture CO2 from the flue gas. Also, a blended amine process model was established 

to simulate the onboard PCC system for the first time. The innovative design covered the 

absorber /stripper design with variation of solvents, packed type, and liquid gas ratio. A 

thorough sustainability evaluation of emission reduction efficiency, energy penalty, and 

carbon cyclic capacity was conducted among three aqueous amine options: MEA, DIPA, 

and MDEA-PZ. Compared to the benchmark aqueous amine MEA, the MDEA-PZ 

option could capture more than 57% CO2 while around 25% specific reboiler duty can be 

saved. The generated results confirmed that the Sulzer BX was preferred among the 

selected four packing types from the perspective of carbon capture efficiency and energy 

requirement for solvent regeneration, and the cyclic capacity has an inverse relationship 

with the lean solution flow rate.  
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6. TTP SAFETY: PREDICTING FLAMMABILITY-LEADING PROPERTIES FOR 

LIQUID AEROSOL SAFETY* 

A limited number of studies have attached importance to the liquid aerosol formulation 

and flame speed, leading to insufficient data for liquid aerosol combustion and explosion 

parameters (i.e., LVP, LDV, and liquid surface tension). Therefore, it is urgent to find an 

effective method of predicting these aerosolization-leading target properties. The 

objective of this work is to develop a mechanism to find an optimal algorithm for the 

three identified liquid aerosol safety parameters of organic compounds by comparing 

interpretation and prediction accuracy among the proposed machine learning models. 

One liquid aerosolization controlling factor (LVP) and two SMD dominating parameters 

(LDV and liquid surface tension) are set as the dependent variables to develop machine 

learning models individually, as shown in Figure 6.1. 14 predictors, including 3 

intersectional items, are selected through forward stepwise feature selection to ensure 

statistical significance of proposed models and to avoid collinearity issues between any 

pair of predictors. Since these parameters are all temperature related, 298 K is the 

temperature used to pre-process the collected data and to compare the performance of 

the prediction models. 

 

* Reprinted with permission from “Ji, Chenxi, Shuai Yuan, Zeren Jiao, Mitchell Huffman, Mahmoud M. El-Halwagi, 
and Qingsheng Wang. "Predicting flammability-leading properties for liquid aerosol safety via machine 
learning." Process Safety and Environmental Protection 148 (2021): 1357-1366.” 
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Figure 6.1 (a) Three-zone flame model of a flame thickness less than the explosion 
vessel radius (b) Feature selection and predictive models for liquid aerosol safety 
contributors  
 

6.1. Methodology 

6.1.1. Data set and response variables 

The dataset of LVP, LDV and surface tension were collected from the Design Institute 

for Physical Properties (DIPPR) 801 database (Knovel, 2019). The liquid aerosolization 

dataset, consisting of 1215 data points for organic compounds, was randomly split into 

training data and test data by &-fold cross-validation to find a more stable prediction 

accuracy than the dataset-split validation approach. &-fold cross validation is applied in 

this research because of its more desirable trade-off between prediction and 

interpretation. There is no denying that the leave-one-out cross-validation (a special case 

of k-fold cross-validation) would show an even greater fit to the training data, however, 

its prediction variance will be suboptimal in comparison to &-fold validation. The liquid 
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aerosolization data set is split into k number of sections, and the proposed machine 

learning (ML) models are developed k times using one-fold cross validation as the test 

set in each iteration. The k-fold statistical assessment value is calculated by averaging 

through all developed models. As a common practice, 5 to 10 are the ideal k values for 

&-fold cross validation, while &	 = 10 has become the standard value in practical 

machine learning and data mining circles (Ceri et al., 2003).   

 

Figure 6.2 (a). Original experimental data distribution of response variables, 
*., */, *0. (b). Logarithmic transformation of response variables, ±-./	(*1) 

As indicated by Figure 6.2 (a), the distributions of LVP (22,), ST (2-) and LDV (23) 

show clearly right-skewed trends. This is especially true for LDV, which has a highly 

centralized distribution close to zero with extensive noise on the right side. A 

logarithmic transformation was performed to obtain an acceptable distribution of the 

dependent parameters (see Figure 6.2 (b)). Table 6.1 displays the statistics summary for 

the three response variables before and after transformation. The outputs of transformed 
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response variables in Table 6.1 confirms the improvement of the original data (see 

Figure S-1 and S-2 in Appendix C for detailed statistical analysis). No clear linear 

relationship between these three response variables exists. 

Table 6.1 Summary of statistics for original/ transformed data for response 
variables 

Original Mean Median Std Dev. Std Err Mean Upper/ Lower 95% Mean 

LVP 6669.4 284.1 16087.1 461.5 7574.9/5764.0 

ST 0.030 0.028 0.012 3.4E-4 0.030/0.029 

LDV 9.7E-3 1.1E-3 0.079 2.3E-3 0.014/0.005 

Transformed Mean Median Std Dev. Std Err Mean Upper/ Lower 95% Mean 

Log (LVP) 2.16 2.45 2.04 0.059 2.27/2.04 

Log (ST) 1.55 1.55 0.13 3.6E-3 1.55/1.54 

Log (LDV) 2.81 2.94 0.59 0.017 2.85/2.78 

 

6.1.2. Predictors and correlations 
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Figure 6.3 Scatterplot matrix with pairwise correlation heat map 
 

The simplified molecular-input line-entry system (SMILES) for the organic compounds 

is obtained from Pubchem (PubChem, 2020). Then, the predictor screening process is 

conducted by the open-source Python modules, RDKit, Psi4, and Mordred. First, the 

SMILES is translated to a molecular structure using RDKit (RDKit, 2020). Then, two 

rounds of optimization are carried out: the MMFF94 force filed optimization conducted 

by RDKit followed by the density functional optimization by Psi4 (Nikolaienko et al., 
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2016). After the calculation process using Mordred package is completed (Moriwaki et 

al., 2018), the molecular descriptors are selected by forward stepwise selection. 

 

Classified by the dimensionality of structure representation, three categories of 

molecular descriptors, 1-dimension to 3-dimension, are employed in this study. Besides 

the commonly adopted quantum chemical descriptor dipole moment, geometric indices 

such as radius of gyration, Van Der Waals surface area, and electric information such as 

refractive index and dielectric constant were introduced in this study as well (see Table 

S-1 from Appendix C for details). Before fitting regression models, the potential flaws in 

assumptions regarding non-constant error variance, outliers, abnormal leverage points 

and collinearity between independent variables should be avoided in advance. The 

residual plots could be utilized to check the heteroscedasticity, outliers, and uncommon 

leverage points. The covariance and correlation between any two predictors (32, … , 3+) 

are calculated using the below equations. 

567834 , 359 =
2

+62
∑ (34" − 37;)(35! − 35<<<)
+
"82                              (6.1) 

=9"9# = =9#9" =
:%;<9",9#>
?$"?$#

                                             (6.2) 

In the above equations, 567834 , 359 and =9"9# are the covariance and correlation, 

respectively, between 34 and 35, and >9" and >9# denote the standard deviations for 34 

and 35, respectively. Figure 6.3 shows the scatterplot matrix between eleven predictors. 

Collinearity issues might exist between parachor and Van Der Waals surface area, 

parachor and liquid molar volume, or parachor and radius of gyration. In general, there 
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are three ways to deal with highly collinear items: remove the highly correlated predictor 

directly, perform a principal component analysis (PCA) to reduce predictor numbers, 

add extra linearly combined pairwise independent variables. This work added three 

products from the identified pairs of collinear predictors to the set of independent 

variables. This is necessary because PCA will reduce the interpretation of the proposed 

models and removing predictors would cause less statistical significance for the response 

variables. 

6.1.3. Model evaluation  

To evaluate the performance of machine learning regression models, two aspects of the 

index are calculated to consider the model’s bias and variance, those aspects being the 

coefficient of determination and the model fitting error (Pedregosa et al., 2011). R 

squared value is a common criterion to determine what percentage of the training data 

can be represented by the proposed model, but the weakness of this value lies in its 

continuously increasing value as the number of predictors grows. This chapter therefore 

utilizes adjusted R squared value to avoid redundant insignificant predictors in the 

models (see equation 6.3 below).  

?*@4.
- = 1 − @ +62

+6B62
A B1 −

∑ (E%F 6EG)&'
!()

∑ (E!6EG)&'
!()

C	                                      (6.3) 

In the above equation, n is the number of data points in the sample, p is the number of 

predictors, 2ID  is the predicted value, 2" is the observed value, and 2< is the average of the 

observed values. In addition to the adjusted R squared value, the root mean squared error 



 

 

 

107 

(RMSE), mean squared error (MSE) and mean absolute error (MAE) are chosen to be 

the performance values for statistical errors. As previously mentioned, k-fold cross 

validation is adopted in this work, so the modified formulae are listed below: 

?EFG56J%(@ =
2

5
H∑ I∑ (EK#!6E#!)&'

!()
+

5
+82 J                                     (6.4) 

EFG56J%(@ =
2

5
@∑

∑ (E#!6EK#!)&'
!()

+
5
+82 A                                          (6.5) 

EKG56J%(@ =
2

5
@∑

∑ |EK#!6E#!|'
!()

+
5
+82 A                                            (6.6) 

where 25" is the observed value in the kth iteration and 2L5" is the corresponding 

predicted value of k-fold cross validation (here k=10). 

In general, there are three steps to obtain the final optimal prediction models for the 

three identified contributors. Based on the reported values for interpretation and 

prediction, the first comparison was taken to determine the best model for each 

regression algorithm, and then the comparison among groups was employed to find the 

optimized models without dimensionality reduction techniques. The final model is 

determined by comparing the optimized models with and without the optimal number of 

principal components.  

Four categories of machine learning algorithms have been investigated in this work: 

regression tree, ensemble of trees, Gaussian process regression, and SVM. Regression 

tree is an algorithm that follows the tree from a root node down to a leaf node, which 

contains the value of the response. The values of the predictors are checked in each node 



 

 

 

108 

to decide the correct branch to follow, and the response variable value is set until the 

branches reach a leaf node. In this work, three types of regression tree models were 

presented, with a minimum leaf size of 4 (fine tree), 12 (medium tree), and 36 (coarse 

tree), and a maximum number of surrogates per node of 10. Two ensembles of trees, 

boosted trees and bagged trees, are employed to develop preliminary models. Boosted 

tree is an advanced method of integrating least-squares boosting with traditional 

regression trees, while bootstrap aggregating techniques are combined with regressions 

trees to construct Bagged trees. The minimum leaf size and number of learners of 

Bagged trees are set as 8 and 30, respectively, and the Boosted trees employ the same 

value of leaf size and learners’ number, with a learning rate of 0.1 at the model 

development stage. As for Gaussian process regression, a probability distribution is 

utilized over a space of functions to determine the dependent variables. Four kernel 

functions are adopted to determine the correlation in their response to the distance 

between the values of independent variables: rational quadratic, Matern 5/2, exponential, 

and squared exponential functions. The sigma values of each kernel function are all set 

as 1.44. The support vectors, defined as the data points whose errors are larger than M, 

are the way of the nonlinear transformation applied to the dataset before SVM is trained; 

The SVM kernel functions covers linear, quadratic, cubic, and Gaussian functions. In 

this work, the box constraint is set as 1.67 with an M of 0.167; the kernel scale of fine, 

medium, and coarse Gaussian SVM models is input as 0.94, 3.7, and 15, respectively. 
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At the last stage, PCA is employed to seek the possibility of model improvement. A 

scree test (Cattell, 1966) is conducted in this study to find the optimal number of 

principal components. By comparing the reported performance values of the machine 

learning models with and without PCAs, the optimized model for liquid aerosol safety 

properties can be established. 

6.2. Results and Discussion 

6.2.1. Liquid dynamic viscosity 

 

Figure 6.4 Response plots and residual plots: (a) Medium regression tree; (b) 
Bagged Ensemble of Trees; (c) Exponential Gaussian process regression; (d) 
Medium Gaussian support vector machine model; (e) Exponential GPR with 7 
PCAs 
 

To begin, a total of 15 machine learning models have been developed for the prediction 

of LDV. Then, four models among them (see Figure 6.4 (a)~(d)) were identified as the 
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most persuasive models for the regression tree, ensemble of trees, Gaussian process 

regression (GPR), and support vector machine (SVM) models, respectively. The best 

adjusted R squared performance is found in the Exponential GPR model (0.69), while 

the SVM and ensemble bagged trees have similar values (both 0.68). As for the values of 

RMSE and MAE, the medium regression tree shows results of 0.38 and 0.24, 

unacceptable compared to other models. Again, the Exponential GPR outperforms others 

with the least RMSE (0.32) and MAE (0.19). Then, the PCA technique is employed to 

build another model which optimizes the exponential GPR model. The seven-principal-

component increases both the interpretation and the prediction accuracy, as 71% of the 

training data can be represented and the MSE value is reduced to 0.10. In addition, the 

overall shapes of figure 6.4 show that there is no evidence of heteroscedasticity of the 

proposed models, verifying that the models meet the requirement of constant error 

variance. To verify another assumption of statistical significance, the outliers are 

checked based on an acceptable range of (-2, 2). Only three outliers from the medium 

Gaussian SVM model are located outside the acceptable range, therefore it is negligible 

as the sample size is greater than 1000. The performance of the Gaussian SVM model 

and ensemble bagged tree model provided MSE values similar to the GPR model, so 

these two types of ML models can also be utilized to predict liquid dynamic viscosity 

effectively. Figure S-3 in Appendix C displays the response plots for the proposed ML 

models, and Figure S-4 from Appendix C shows the predicted response plots compared 

to the experimental response plots. 

 



 

 

 

111 

6.2.2. Liquid surface tension 

 

Figure 6.5 Response plots: (a) Matern 5/2 GPR model; (b) Matern 5/2 GPR with 
PCA; Residual plots: (c) Matern 5/2 GPR model; (d) Matern 5/2 GPR with PCA 
 

Similar to LDV, the preliminary results first found the optimal models of each regression 

group using adjusted R squared value and fitting errors. For the comparison among 

groups, the coefficient of determination value follows the order of Matern 5/2 GPR > 

Coarse Gaussian SVM > Ensemble Bagged Tree > Coarse Regression Tree. One notable 

result is that the proposed models share satisfactory values of mean absolute error, 
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ranging from 0.022 to 0.049, likely due to a highly normalized distribution of the data 

for surface tension after logarithm transformation. Matern 5/2 GPR is selected as the 

optimal ML model for surface tension, then it is compared to its PCA model (see Figure 

6.5). Two distinct outliers reside within the upper diagram of Figure 6.5 (a). The outlier 

within the rectangle is the abnormal observed data point, and the outlier in the green 

triangle is the uncommon data point as a predicted value. These two data points are 

marked on the lower chart of Figure 6.5 (a) as well. The blue area is deemed as the range 

of the residual plot from -0.4 to 0.4, and the yellow area is a narrow band to limit the 

range from -0.2 to 0.2 By introducing PCA, the outlier in the green triangle indeed 

moves into the acceptable region, but two other points are moving out, making the 

performance of the model worse based on the total number of outliers. Furthermore, 

there are more data points outside the narrow band of the model with PCA than the 

model without PCA. The reported results support our observation that the MAE of the 

model without PCA outperforms the model with PCA, with MAE values of 0.0022 and 

0.039 for the two models with and without principal components, respectively.  

 

6.2.3. Liquid vapor pressure 

Liquid vapor pressure is an essential indicator for a liquid’s evaporation rate, as well as a 

leading factor for liquid aerosolization. Figure 6.6 shows the relationship charts between 

predicted values and experimental values for the data set, and their response plots and 

residual plots can be found in the Appendix C (see Figure S-5). The first two models 

have many data points that are located outside the acceptable error range (-5%, 5%), 
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especially for the low-value zone. An interesting result is that when the PCA technique 

is coupled with GPR model, the prediction accuracy seems to drop. This can be 

attributed to the two emerging prediction flaws compared to the presented models in 

Figure 6.6 (c) and Figure 6.6 (d). 

 

Figure 6.6 Predicted vs experimental plots: (a) Medium regression tree; (b) 
Ensemble boosted tree; (c) Matern 5/2 GPR; (d) Quadratic SVM; (e) Matern 5/2 
GPR with PCA 
 

Overall, the Matern GPR model and the quadratic SVM model outperformed the 

regression tree and ensemble boosted tree models; they showed excellent interpretability 

and great prediction results with corresponding MAE values of 0.11 and 0.10. A closer 

look at the results along the axis indicate that the prediction will be more validated when 

the dependent variable (−log	(QRS)) falls within the range of (-2, 4). A possible 

explanation of the prediction error, which is higher than the other two response 
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variables, is that the logarithmic transformation switches the original data distribution 

from highly right-skewed to slightly left-skewed. The optimized ML model for LVP is 

again obtained by the Matern 5/2 GPR approach without PCA, with a determination 

coefficient of 0.99 and an MSE value of 0.054.  

 

6.2.4. Model performance and discussion 

Table 6.2 Calculated Performance Parameters of optimal models for the liquid 
aerosol safety contributors on five ML algorithms  

  RMSE Adjusted R2 MSE MAE 

 Liquid Dynamic Viscosity 

1 Medium Regression Tree 0.38 0.58 0.14 0.24 

2 Ensemble Bagged Tree 0.33 0.68 0.11 0.20 

3 Exponential GPR 0.32 0.69 0.11 0.19 

4 Medium Gaussian SVM 0.33 0.68 0.11 0.19 

5 Expo. GPR with PCA 0.32 0.71 0.10 0.18 

 Surface Tension 

1 Coarse Regression Tree 0.078 0.61 0.0061 0.049 

2 Ensemble Bagged Tree 0.073 0.66 0.0053 0.040 

3 Matern 5/2 GPR 0.054 0.82 0.0029 0.022 

4 Coarse Gaussian SVM 0.072 0.67 0.0052 0.040 

5 Matern 5/2 GPR with PCA 0.070 0.69 0.0049 0.039 

 Liquid Vapor Pressure 

1 Medium Regression Tree 0.45 0.95 0.20 0.22 

2 Ensemble Boosted Tree 0.42 0.96 0.18 0.25 

3 Matern 5/2 GPR 0.21 0.99 0.054 0.11 
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4 Quadratic SVM 0.23 0.99 0.11 0.10 

5 Matern 5/2 with PCA 0.34 0.97 0.11 0.10 

 

As seen in Table 6.2, all the proposed ML models exhibit acceptable prediction and 

interpretation performance for the three liquid aerosol safety contributors since their 

RMSE values are below 0.5 and the adjusted R squared values are above 0.6 (Witten et 

al., 2011). In particular, the optimal model for LDV is determined to be the exponential 

GPR with 7 PCAs, while the optimal models for ST and LVP are both determined to be 

the Matern 5/2 GPR model. Compared to other ML models, the Gaussian process 

regression algorithm presents superior performance for the liquid aerosolization 

database. GPR is a nonparametric kernel based multivariate distribution method used for 

a finite collection of random variables (Zhang et al., 2018). The basic idea of GPR is to 

employ a linear model with normalized noise to obtain the predictive distribution by 

coupling with the likelihood function and posterior probability function (Rasmussen and 

Williams, 2018). Therefore, this study utilized the predictive distribution functions 

shown in equations 6.7-6.10 to construct the GPR machine learning models.  

2" = T"
MU + M, M = W(0, X+-Y)		Z = 1,… , [.		                               (6.7) 

]82̂_T, 2, T̀9 = W(â, Σd)                                               (6.8) 

â = %8T,e T9
M
(%(T, T) + X+-Y)62(2 − a(T	e ))                               (6.9) 

Σd = %8T̀, T̀9 − %8T,e T9
M
(%(T, T) + X+-Y)62%8T̀, T̀9                         (6.10) 

From the above functions, 2" = (22, 2-, … , 2+)M is the response variables, T"M is the 

independent variables, M is the Gaussian noise, K is the [ × [ covariance matrix, a is the 
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mean vector matrix, T̀ is the test locations, a8T	e 9 = [a(3+N2), … , a(3+NO)]M, K(T, T) =

%, and %8T̀, T̀9 is an i ×i matrix. The kernel functions for the optimized models, 

exponential GPR and Matern 5/2 GPR, are shown below in equations 6.11 and 6.12. 

 

For exponential GPR,  

   %834 , 35_j9 = XP
-exp	(− !

Q*
)                                               (6.11) 

Matern 5/2 GPR, 

 %834 , 35_j9 = XP
-(1 + √3!

Q*
)exp	(− √3!

Q*
)                                     (6.12) 

where = = n(34 − 35)(34 − 35)M, XP is the signal standard deviation, and j is the 

maximum posterior estimated value. 

 

Besides the above-mentioned GPR approaches, this chapter applied rational quadratic 

and squared exponential kernel functions as well, but they did not produce the high 

quality of results that Matern 5/2 and Exponential options produced. Moreover, the 

overall performance of regression tree models is inferior to other models based on the 

outputs from Table 6.2, and this may be attributed to the low-robust inherent feature of 

regression trees, as a tiny change in the data may result in an obvious change in the final 

predicted tree.  Undoubtedly, the prediction ML models of the three response variables 

have acceptable overall predictability and interpretability. Specifically, the surface 

tension prediction models indicate a great prediction accuracy with the lowest RMSE, 

MSE, and MAE values, while the LVP models have the best interpretability due to their 
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high adjusted R square values, and the LDV models share good values of RMSE and 

coefficient of determination. These results make the exponential GPR mode with 

optimal principal components a robust tool to predict dynamic viscosity values of 

organic compounds. Regarding the application of PCA, the LDV model with PCA does 

exhibit improved performance due to the introduction of seven principal components. 

However, the PCA is unnecessary for the LVP and ST models, as the dimension 

reduction technique brought negative effects on the prediction performance. Thus, it can 

be deduced that the dimensional reduction approach is not always useful to improve the 

GPR models. Moreover, as many sources established that the SVM has exceptional 

prediction performance on classification problems (Chih-Wei Hsu, Chih-Chung Chang, 

2008; Huang et al., 2012; Ivanciuc, 2007), this work employed six types of SVM 

algorithms (linear, quadratic, cubic, fine Gaussian, medium Gaussian, and coarse 

Gaussian kernel equations), and they provided close-to-optimal results, demonstrating 

that SVM methods are applicable for multivariate regression problems as well. Based on 

the outputs from the best model for each dependent variable (see Table 6.3), the most 

accurate prediction may come from the surface tension Matern 5/2 model since it 

performs best on RMSE, and therefore minimizes the variance limit to a narrow interval. 

Meanwhile, the LVP optimized model has the best trade-off between bias and variance, 

illustrating that the LVP Matern 5/2 model can be robust enough for vapor pressure 

prediction of chemical substances. One conclusion to be drawn from this research is that 

the GPR models are often the optimal models for quantitative structure−property 

relationship studies based on the ML outputs.  
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Finally, 315 organic compounds were randomly selected as the validation set to verify 

the prediction accuracy of our presented models for LDV, Surface Tension, and LVP. As 

illustrated in Table 6.3, the predicted values are close to the observed ones, resulting in 

good quality of prediction errors. The box plots of the three response parameters are 

presented in Figure S-6 in Appendix C, and clearly demonstrate that the surface tension 

model has very accurate prediction, with a median value of 0.05% located within a 95% 

confidence interval of [-2.35%, 2.19%], while the median value and confidential interval 

for the LVP model and LDV model are -0.44% within [-8.29%, 7.56%] and 0.45% 

within [-10.84%, 11.17%], respectively. Again, these values highly confirmed the 

prediction robustness of the presented models for the liquid aerosol safety contributors.   
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Table 6.3 Excerpt from the supporting information data table showing the 
prediction of the LDV, ST, and LVP using the optimized models 

 

6.3. Concluding remarks 

In summary, this work provides a reliable prediction for the identified liquid aerosol 

safety parameters based on a thorough comparison among multiple machine learning 

algorithms, with an emphasis on liquid aerosolization, aerosol flame speed, and flame 

thickness. Based on the liquid aerosolization database, four categories of regression 

algorithms (i.e., regression tree, SVM, ensemble of trees, and GPR) with consideration 

of principal component analysis are applied in this study. The performance values have 

revealed the advantage of the Gaussian process regression approach in predicting liquid 

dynamic viscosity, surface tension, and liquid vapor pressure. After integrating 11 

molecular predictors with 3 interaction items, the final models showed excellent 

prediction robustness regarding the major contributors of liquid aerosol combustion and 

explosion hazards. The outputs serve as an effective tool to address the lack of 

Name Log(L
DV) 

Pred(Ex 
GPR 
with 
PCA) 

Pred. 
Err. 

Log(Su
rf) 

Pred(Ma
tern 5/2 
GPR) 

Pred. 
Err. 

Log(LV
P) 

Pred(Ma
tern 5/2 
GPR) 

Pred. 
Err. 

3-
methylcyclopent

anone 
2.92 3.01 -8.84% 1.53 1.53 -0.75% 2.87 2.82 -5.02% 

3-
methylundecane 2.90 2.91 -1.03% 1.60 1.60 0.29% 1.52 1.54 1.98% 

3-
methyltridecane 2.71 2.71 -0.49% 1.58 1.58 0.36% 0.49 0.56 7.02% 
diethyl sulfide 3.37 3.36 1.15% 1.61 1.60 -0.52% 3.90 3.90 -0.53% 

n-butyl formate 3.19 3.20 -1.22% 1.61 1.59 -2.31% 3.58 3.54 -4.62% 
n-butyl 

mercaptan 3.32 3.32 -0.32% 1.60 1.59 -0.47% 3.79 3.77 -1.41% 
Hhexachlorosila

ne 2.81 2.82 -0.66% 1.63 1.64 0.55% 2.78 2.75 -2.88% 
Eethyl benzoate 2.70 2.73 -3.30% 1.46 1.45 -1.33% 1.58 1.58 0.05% 
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quantification for liquid aerosol safety. The output properties can assist an inherently 

safer process design when dealing with liquid aerosols.   
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7. TTP SAFETY: DEVELOPMENT OF NOVEL COMBUSTION RISK INDEX FOR 

FLAMMABLE LIQUIDS*  

 

Compared with the flash point driven liquid flammability classification method, this work 

integrates the major inherent properties of the liquid flammability and flame propagation 

with aerosol formulation. Unlike the traditional expert judgment dominated risk 

assessment techniques, the two ML clustering algorithms are firstly executed to evaluate 

the risk associated with fuel combustion in the engine cylinder. Also, the graph theory-

based spectral clustering algorithm is the first time to employ in the chemical process 

safety field based on the authors’ knowledge.  A new flammability rating called liquid in-

cylinder combustion risk index (LICRI) will be calculated to show the overall liquid safety 

performance, which can be applied as a reasonable reference when considering the marine 

fuel selection issue in the TTP process.  

7.1. Methodology 

In this chapter, the methodology will be introduced following: Identification of liquid in-

cylinder combustion contributors, liquid in-cylinder combustion safety clustering 

approaches, safety indicator weight value determination and clustering performance 

evaluation, shown in the process flow chart Figure 7.1. 

 

* Reprinted with permission from “Ji, Chenxi, Zeren Jiao, Shuai Yuan, Mahmoud M. El-Halwagi, and Qingsheng 
Wang. "Development of novel combustion risk index for flammable liquids based on unsupervised clustering 
algorithms." Journal of Loss Prevention in the Process Industries 70 (2021): 104422.” 
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Figure 7.1 Overall methodology process flowchart 
 

7.1.1. Identification of liquid in-cylinder combustion contributors  



 

 

 

124 

The field of fluid flammability characteristics has been well studied while few work has 

focused on the inherent property identification for liquid in-cylinder flame propagation 

and liquid aerosolization. Thus, it is critical to identify the leading factors for liquid fuel 

aerosolization and flame propagation effects so that a reasonable liquified fuel safety 

criterion in CI engines may be established accordingly. 

 

This work adopts AIT, FP, and flammability range (FR), the range between LFL and UFL, 

as the contributors for liquid flammability matrix. Since the liquid in-cylinder flame has a 

combination feature of both premixed laminar and turbulent, the theoretical models of 

these two flames are analyzed to identify the significant parameters.   

 

The well known “two zones” model proposed by Mallard and  Le Chatelier (Mallard and 

Le Chatelier, 1883) is:  

F( = I"ȯ(
M+6M!
M!6M,

)                                                          (7.1) 

" = 5

S:-
                                                                 (7.2) 

" is the thermal diffusivity, ȯ is the reaction rate, & is the thermal conductivity, 5B is the 

specific heat capacity and q  is the density. The relationship, shown in equation 7.3, 

between laminar flame and turbulent flame speed presented by Peters (Peters, 2000) has 

been widely accepted and shown a good performance.  

FM = F( + aT r−
*.U/&

-U)
st + [@*.U/

&

-U)
stA

-
+ tVu3

-st]2/-v , where st = X0(
Y1Z0

        (7.3) 
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As the above equation shows, aT  is the turbulence intensity; u2 , uV  and tV  are the 

turbulence modeling constants with value of 2.0, 1.0, and 0.78; st is the Damkohler 

number and w	is the turbulence integral length scale, x[ that denotes the flame thickness is 

a function of heat capacity, heat conductivity, density, and laminar flame speed. Hence, 

both laminar and turbulent flame equations pointed out the dependent variables of flame 

propagation for CI engines are heat capacity (HC), liquid density (LD), and liquid thermal 

conductivity (LTC), and these three variables construct our liquid in-cylinder flame 

propagation matrix.  

 

Many literature (Ballal and Lefebvre, 1979; Danis et al., 1988; Kiran Krishna et al., 2003; 

Polymeropoulos, 1984; Yuan et al., 2020b, 2020a, 2019; Zhang et al., 2020) have pointed 

out the key parameter to determine liquid aerosolization is the droplet size. Among all the 

theoretical mean diameters of aerosols, the Sauter Mean Diameter (SMD) is the most 

common one to apply for heat transfer, combustion, and dispersion modeling (K. Krishna 

et al., 2003). In addition, the diesel engine fuel injector can be deemed as an electrospray 

type of aerosol generator (Yuan et al., 2020a). Most studies conducted on pressure 

atomizers have focused on the type of injector used in compression ignition engines 

(Lefebvre and McDonell, 2017). Two SMD formulae proposed by Harmon (Harmon, 

1955) and Elkotb (Elkotb, 1982) for plain-orifice type pressure atomizers are listed as 

below: 

SMD = 3300}%\.3X6\.2]q[
6\.^V_a[

\.\`~[
6\.]]qa

6\.\]-aa
\.`_                          (7.4) 
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where }% is the discharge orifice diameter, a[ is the liquid kinematic viscosity, X is the 

surface tension, ~[ is the liquid flow rate and q[ is the liquid density. 

s3,- = 3.08(Xq[)\.`3`7[
\.3_]∆S[

6\.]Vqb
\.\^                                       (7.5) 

From the above equation, X is the surface tension, 7[ is the liquid dynamic viscosity, q[ 

is the liquid density,  ∆S[ is the liquid pressure differential and qb is the air density. 

 

Liquid dynamic viscosity (LDV) and surface tension (ST), as the inherent properties of 

fuels, are the determinant parameters for the droplet size of liquid aerosols based on the 

above two equations. For most practical fuels, any change in dynamic viscosity is always 

accompanied by a change in volatility, and  Ballal and Lefebvre (Ballal and Lefebvre, 

1979) indicated as well the quenching distance was dependent on fuel volatility. Besides 

dynamic viscosity, liquid vapor pressure (LVP) is an evidential index to tell the volatility 

level of liquids. Therefore, the identified contributors for liquid aerosolization are surface 

tension, liquid dynamic viscosity, and liquid vapor pressure.  

 

7.1.2. Liquid in-cylinder combustion safety clustering approaches  
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Figure 7.2 Network of liquid in-cylinder combustion risk index 
 

By integrating the liquid aerosol formulation contributors with liquid flammability and 

flame propagation, the database of our liquid in-cylinder combustion criterion is built with 

three evaluation matrix and nine contributors, shown in Figure 7.2. This work employs 

two unsupervised clustering algorithms, the network of which is shown in the above figure 

to categorize the risk rating of liquid flammability, flame propagation, and aerosol 

formulation, then a liquid in-cylinder combustion risk index (LICRI) is presented to obtain 

the overall liquid combustion safety ratings.  

LICRI = ∑ Ñ"
:!,"3

"82,4∈{2,-,…,+}                                                 (7.6) 
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As shown in the above equation, the weight value Ñ" for the three safety matrices should 

be determined and normalized before implementing the ML clustering algorithms. The 

range of LICRI is between 0 to 1, as the values of cluster numbers 5",4 are increasing, the 

less value of LICRI value for one substance would be, illustrating its high risk for liquid 

in-cylinder combustion. In this study, the DIPPR 801 database (Knovel, 2019) are 

preprocessed to collect 703 effective organic compounds in the liquid state under 

specific temperatures with values on the nine-dimensional data.  

 

7.1.2.1. Information entropy approach 

Statistically, information entropy can be referred as the expectation of the amount of 

information contained in an event. Thus, the entropy value is a useful tool to give the 

degree of dispersion. The smaller the entropy value, the greater the degree of dispersion 

of the indicator, and the greater the influence, i.e., weight vector, of the indicator on the 

comprehensive evaluation. Compared with other weight value determination approaches, 

the information entropy method, as an objective approach, has an outstanding capability 

to distinguish indicators, and it always brings high credibility and precision to avoid 

subject weight determination (Li et al., 2011). The typical information entropy procedures 

are summarized as: 

• Step 1 Determination of the evaluation matrix: 

Herein, three parameters within a total of nine indicators construct the evaluation matrix. 

• Step 2 Normalization of the evaluation matrix: 
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This study employs the critical value approach to normalize the evaluation matrix, and 

the normalized indicators are calculated by: 

3"4
T =

9!"6ghi9"
gjk9"6ghi9"

  ,  3"4T =
gjk9"69!"

gjk9"6ghi9"
                                    (7.7) 

• Step 3 Calculation of information entropy: 

Ö4 =
6∑

$!"
1

∑ $!"
14

!()
∙mi(

$!"
1

∑ $!"
14

!()
)4

!()

miO
                                              (7.8) 

• Step 4 Calculation of weight vectors:  

Ñ4 =
26)"

∑ (26)")"
                                                          (7.9) 

Therefore, the LICRI can be updated after the weight vectors are determined, please 

check supporting information (Table S-1 in Appendix D) for calculation details. 

LICRI = 0.480:(&?')!!+ 0.323:(&?')!"+ 0.197:(&?')!#                        (7.10) 

 

7.1.2.2. k-means clustering  

For clustering, the application of unsupervised clustering methods is still limited because 

of their unlabeled nature as well as the difficulty in boundary determination. Among those 

clustering methods, k-means clustering is the go-to algorithm that can benchmark the 

clustering algorithms performance (Jiao et al., 2020c; Zeren Jiao et al., 2019b). k-means 

clustering is based on the distance between objects and centroids with the actual 

observations as the input. The identified cluster shape is assumed as spheroidal with equal 

diagonal covariance. As a traditional clustering algorithm, the core idea of the k-means 

clustering approach is to minimize the total with-in cluster variation, as shown in equation 
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7.11. Firstly, the initial cluster assignment is proceeded by randomly assigning a number 

from 1 to K; then the cluster centroid for each datum of the K clusters will be calculated 

and each data point will be distributed to the closest Euclidean distance (Likas et al., 2003). 

The centroids calculation for each cluster will be repeated until the clustering assignments 

complete, and the objective function of k-means algorithm is shown below: 

min52, … , 55 ç∑
2
|:#|

n
582 	∑ ∑ (3"4 − 3"4

T )-B
482"," ‘∈:# é                            (7.11) 

Where 52, … , 55 denote cluster 1 to k, |55| is the number of samples in the kth cluster, ] 

is the number of predictors, and ∑ (3"4 − 3"4
T )-B

482  represents the Euclidean distance 

between two observations in the kth cluster. The study applies Python package Scikit-learn 

(Pedregosa et al., 2011) to process the k-means cluster algorithm, and the silhouette 

analysis (scikit-learn, 2017) is adopted to determine the number of clusters, the 

corresponding codes are listed in the supporting document.  

 

7.1.2.3. Spectral clustering  

In contrast to the traditional k-means algorithm, spectral clustering is more adaptable to 

data distribution with an excellent clustering effect and less computational cost. Spectral 

clustering is an algorithm that evolved from graph theory. The main idea is to treat all data 

as points in space, and these points can be connected by edges. The edge weight value 

between two points farther away is lower, and the weight value between two points closer 

is higher. With the eigenvectors of matrices as the input algorithm, spectral clustering 

adopts graph distance geometry and arbitrarily identified cluster shape. By cutting the 

graph composed of all data points, the difference after cutting the sum of the edge weights 
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between the subgraphs is low, while the sum of the edge weights in the subgraphs is quite 

high, so the purpose of clustering can be achieved (Bürk, 2012; Von Luxburg, 2007). 

Referred from Ng’s work (Ng et al., 2002), the normalized spectral clustering algorithm 

for LICRI is formulated as Table 7.1. 

Table 7.1 LICRI spectral clustering model development procedures 
Step Explanation 

1 Split the LICRI database into three data sets and normalize each data set; 

2 Construct similarity graph with adjacency matrix by normal k-nearest neighbor 

approach by setting the number of neighbors to 15 and sigma value of 1;  

 

3 Compute the normalized graph Laplacian Q	and its first eigenvectors 72, … , 75; 

4 Set R ∈ ℝ+×5 as the matrix containing the vectors 72, … , 75 and formulate the 

matrix ~ ∈ ℝ+×5 by normalizing the matrix R; 

 

5 Let 2" ∈ ℝ5 , Z	 ∈ {1,2, … , [}	 be the vector corresponding the i-th row of matrix ~;	

 

6 Cluster the points (2")"82,…,+ with the &-means algorithm into clusters 52, … , 55 

 

The relationship between the vectors in matrix R and matrix ~ is: 

 ï"4 =
;!"

p∑ ;!#
&#

                                                            (7.12) 
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The key to spectral clustering algorithm is to construct similarity graph for a given set of 

data points 32, 3-, … , 3+ . Many methods, including the fully connected graph, M -

neighborbood graph and normal/mutual &-nearest neighbor graphs (Von Luxburg, 2007), 

can be applied to transform the given data set with pairwise similarities >"4 into a similarity 

graph. As mentioned in step 2, this study employs normal k-nearest neighbor approach to 

construct the similarity graphs. The spectral clustering algorithm is implemented with the 

help of Matlab statistics and machine learning toolbox and the fast and efficient spectral 

clustering package (Ingo, 2020). In contrast to the convex data set shape of k-means 

algorithm, spectral clustering tends to be useful for hard non-convex problems (Hocking 

et al., 2011).  

 

7.1.2.4. Clustered data visualization  

Data visualization is a challenge for model performance comparison since the LICRI 

database has a three-dimensional feature. One available technique as previously discussed 

is to utilize principal component analysis (PCA) to reduce the dimension of the data sets, 

and this work employs PCA to automatically consider weight values of principal 

components and to visualize k-means cluster models; while another method is to build star 

coordinates (SC), converting high-dimensional database to 2-dimensional coordinates. 

 

Basically, the SC system is a curvilinear coordinate system. By defining the origin as a 2d 

point ñ+(3, 2) = (69 , 6E) and a series of [	2d vectors K+ = 〈t2òòòò⃗ , t-òòòò⃗ , … , tIòòò⃗ , … , t+òòòò⃗ 〉 , the 

axes can be established and mapped to the Cartesian Coordinates (Kandogan, 2000). The 
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data points s4 from a high dimensional dataset s are converted to data points s4T of the 

established 2d Cartesian Coordinates by the sum of all unit vectors ïIòòò⃗ = (ï9! , ïE!) on each 

coordinate, and the relationship between the original and converted data points are shown 

below: 

s4
T(3, 2) = [69 +	∑ ï9! ∙ 8}4" −iZ["9,

+
"82 	6E +∑ ïE! ∙ 8}4" −iZ["9	]	

+
"82           (7.13) 

where                       s4 = (}4\, }42, … , }4" , … , }4+),  |ïIòòò⃗ | = 	
|*%qqqq⃗ |

O*9!6O"+!
 

it3" = max	{}4" , 0	 ≤ û	 < 	 |s|}, iZ[" = min{}4" , 0	 ≤ û	 < 	 |s|} 

Moreover, the cluster projection diagram of any two response variables can be applied to 

find the optimal clustering model as well. The star coordinates and cluster projection 

diagrams are integrated with the spectral clustering algorithm to visualize the clustered 

data of the LICRI database. The silhouette plot, which has been widely applied to show 

the optimal number of clusters for unsupervised algorithms, is employed to find the better 

clustering models among three safety features between k-means and spectral clustering 

algorithms. 

 

7.1.2.5. Cluster validation criterion  

To evaluate which algorithm has a better clustering performance, cluster validation criteria 

are introduced in the work. Focusing on measuring the fit of a clustering structure itself, 

the study employs the internal validation indices to consider both cluster cohesion and 

cluster separation. Three common internal measures of cluster validation have been 

surveyed, including the Dunn index (Dunn, 1974), Davies-Bouldin index (Davies and 



 

 

 

134 

Bouldin, 1979), and Silhouette index (Rousseeuw, 1987). All the three indices have 

presented as robust strategies to predict the optimal clustering partitions. This work 

utilizes the Silhouette index as the cluster validation criterion because of its interpretation 

and validation of consistency within clusters of the liquid in-cylinder combustion 

database. The silhouette validation criterion applies a concise graphical representation, the 

silhouette plot, to display how well each data points have been clustered. Like the Dunn 

index, the higher the silhouette index is, the better the clustering performance would be. 

For the data point û in the cluster 54, the mean distance between I and other data point 

within the same cluster is defined as: 

t(û) = 	 2

s:"s62
	∑ }(û, &)5∈:",4t5                                             (7.14) 

where  }(û, &) is the distance between two data points û and & within the cluster 54. The 

reason for adding the item 2

s:"s62
 is because the distance }(û, û) is excluded in the sum.  

Then the distance of û to the points in some cluster 5( (5( 	≠ 54) other than 54 is defined 

as:  

u(û) = min
(t4

2
|:*|
	∑ }(û, &)5∈:* 	                                           (7.15) 

Next, the silhouette value of one data point û can be expressed as: 

>(û) = °
1 − t(û) u(û),⁄ Z£	t(û) < u(û)

0, Z£	t(û) = u(û)
u(û) t(û)⁄ − 1 Z£	t(û) > u(û)

•                                    (7.16) 

From the above expression, one can find the range of >(û) is between -1 and 1: a vale close 

to 1 indicates the data point is clustered to the correct cluster whereas the value -1 tells the 
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data point is affected to the wrong cluster. This study applies the mean silhouette value to 

show the performance for a given cluster 5(, which is denoted as >(; : 

>(; =
2
|:*|
	∑ >(û)4∈:* 	                                               (7.17) 

Finally, the overall performance of one specific model is able to be evaluate by the global 

silhouette index, the mean of the average silhouette values through all the clusters with 

the cluster number Q: 

F̅ = 	 2
[
∑ >(;[
[82                                                     (7.18) 

7.2. Results and discussion 

This study employs silhouette analysis to study the separation distance between the final 

clusters of & -means and spectral clustering algorithms. Also, the silhouette value is 

adopted to determine the optimal numbers of clusters for the LICRI database. The 

performance of the unsupervised clustering models is evaluated with the visualization of 

the clustered data and the silhouette plot. 

7.2.1. k-means clustering  
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Figure 7.3 Silhouette plots and the ß cluster labeled scatter plots for liquid 
flammability indicators by integrating PCA (ß ∈ {®, ©, ™, ´}) 
As shown in Figure 7.3, the silhouette plots of the &-means clustering show the silhouette 

coefficient values of  [ clusters for the three indicators of liquid flammability. The [ 

clustering value of 6 and 7 are bad picks because each of them has a negative dominated 

cluster, indicating those samples might have been assigned to the wrong cluster. The right 
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figure is the [ cluster labeled scatter plots, and its horizontal axis is PCA 1 and the vertical 

axis is PCA 2. The 4-cluster model seems to have fewer overlap points than others, and 

this statement is supported by the highest average silhouette value, 0.209, locating in the 

4-cluster model and its narrow fluctuations in the size of the silhouette plots. These bring 

to the conclusion that the 4-cluster model is the optimal clustering model. However, many 

data points are locating in the unclear clusters from the 4-cluster labeled scatter plot.  

 

Figure 7.4 Silhouette plots and the ß cluster labeled scatter plots for optimal flame 
propagation model (7.4a) and optimal liquid aerosolization model (7.4b) 
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Similarly, the study analyzed the silhouette plots and the [ cluster labeled scatter plots for 

flame propagation and liquid aerosolization indicators by integrating PCA, and the optimal 

models are shown in Figure 7.4. Surprisingly, even the optimal clustering models have 

less acceptable cluster labeled scatter plots and wide fluctuation in the values of the 

silhouette coefficient. Therefore, a more accurate clustering algorithm is needed to 

establish a reasonable liquid combustion safety criterion.  

7.2.2. Spectral clustering  

By adopting the normal k-nearest neighbor approach, the two dimensional and three-

dimensional similarity graphs for liquid flammability are shown in Figure 7.5. Also, the 

3D similarity graphs for flame propagation and aerosol formulation can be found in 

Figure S-4 of Appendix D. 

 

Figure 7.5 The two-dimensional (7.5a) and three-dimensional (7.5b) similarity 
graphs 
Then the Ncut approach is employed to obtain the optimal number of connected 

components, and the [	([ ∈ {4,5,6,7}) clustering performance is illustrated in Figure 

7.6, the silhouette plots for liquid flammability indicators.   
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Figure 7.6 ß cluster silhouette plots for liquid flammability indicators (ß ∈
{®, ©, ™, ´}) 
By considering the average silhouette value, the negative silhouette values, and the 

fluctuation of the size of each cluster, the four-cluster model is determined as the optimal 

spectral clustering model. Based on the optimal model, the clustered data for liquid 

flammability, flame propagation, and aerosol formulation with all combinations of 

dimensions are drawn, see Appendix D (Figure S-1, S-2, S-3) for details.  

Figure 7.7(a) shows the 3-dimensional labeled scatter plot with little clustering effects, so 

the theory of star coordinate (Kandogan, 2000) was presented to visualize the performance 

of the proposed spectral clustering model, see Figure 7.7(b).  
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Figure 7.7 Three-dimensional labeled scatter plot (7.7a) and the corresponding star 
coordinate plot (7.7b) 
Clearly, the spectral model performs great on clustering liquid flammability indicators, 

i.e., FT, AIT, and FR, only a limited number of misclassified points locate in cluster 1 and 

cluster 2, while cluster 3 and 4 have excellent clustering feature. Compared with the &-

means clustering model with 2 principal components, the spectral clustering model 

increases the average silhouette value from 0.209 to 0.426, and the clustering effect on the 

labeled scatter plot improves a lot as well.  

  

Figure 7.8 Optimal silhouette plot (7.8a) and optimal cluster star coordinate plot 
(7.8b) for flame propagation 
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The spectral clustering model performs even better in the dataset of flame propagation. 

Illustrated in Figure 7.8, the silhouette plot and the optimal cluster star coordinates plot 

show fairly good results on clustering HC, LD, and LTC, while the silhouette coefficient 

value is 0.479 and few outliers in the star coordinate plot have crossed the boundary of 

each cluster. Meanwhile, the silhouette and clustered SC plot for aerosol formulation 

which can be found in Appendix D (Figure S-5, S-6) point out the 4-cluster model as the 

optimal one. 

 

To summarize, the spectral clustering models outperform k-means clustering models with 

two principal components for each liquid combustion safety matrix, see Table 7.2. Also, 

the silhouette plots of the spectral clustering models present better performance than those 

of the k-means clustering models, consistent with the values of global average silhouette 

numbers. The optimal cluster models can be determined by the highest value of silhouette 

coefficient value, and the 4-cluster models are selected as the optimal clustering models 

for the three liquid in-cylinder combustion safety features: liquid flammability, flame 

propagation, and aerosol formulation.  

Table 7.2 Average silhouette coefficient value of three liquid combustion safety 
matrices for two clustering models 

 

Liquid Flammability Flame Propagation Aerosol Formulation 

4 

cluster 

model 

5 

cluster 

model 

6 

cluster 

model 

7 

cluster 

model 

4 

cluster 

model 

5 

cluster 

model 

6 

cluster 

model 

7 

cluster 

model 

4 

cluster 

model 

5 

cluster 

model 

6 

cluster 

model 

7 

cluster 

model 

!-means 

clustering 
0.209 0.167 0.160 0.128 0.243 0.181 0.153 0.142 0.225 0.219 0.156 0.145 
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models 

with 2 

PCAs 

3-

dimensional 

spectral 

clustering 

models 

0.426 0.342 0.358 0.340 0.479 0.432 0.455 0.453 0.436 0.379 0.291 0.301 

 

By employing the optimal clustering models, the risk ratings of each collected liquid 

flammability, flame propagation, and aerosol formulation are generated by the Matlab 

codes with the help of the calculated information entropy values. The whole clustered data 

and the weight value calculation can be found in supporting documents. The following 

table shows the example liquids with NFPA 704 flammability level 3 and 4 but different 

ratings based on our proposed clustering models. 

Table 7.3 NFPA flammable and highly flammable liquids with different liquid in-
cylinder combustion ratings 

 
NFPA 

Flammability 

Liquid 

Flammability 

Flame 

Propagation 

Liquid 

Aerosolization 

LICRI 

Value 

Methanol 3 2 4 2 0.280 

Ethanol 3 4 2 3 0.165 

Methoxy acetone 3 4 4 2 0.103 

o-Ethyl aniline 4 4 1 4 0.378 

Di-(2-Chloroethoxy) 

Methane 
4 3 2 3 0.223 
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As shown in Table 7.3, methanol and ethanol share the same flammability level in the 

NFPA 704 standard, but the proposed model points out that methanol is a less risky marine 

fuel on overall liquid in-cylinder risk combustion value than that of ethanol, although 

methanol has a high-risk rating on flame propagation. Based on the LICRI values of the 

extracted substances in Table 7.3, the safety preferences can be ranked as o-Ethyl aniline, 

methanol, di-(2-Chloroethoxy) methane, ethanol, and methoxy acetone. Following the 

same way, more promising fuels can be evaluated from the LICRI value of the spectral 

clustering model. 

 

7.3. Concluding remarks 

In this study, a novel combustion safety criterion for promising liquid fuel options is 

carried out successfully with acceptable clustering outputs. This work confirms that the 

graph theory-based spectral clustering performs better than k-means clustering algorithm 

in the non-convex liquid in-cylinder combustion database. The four cluster models are 

finalized as the optimal ones for liquid flammability, flame propagation, and liquid 

aerosolization. The liquid organic compound database is clustered into four groups for the 

three safety matrices, the low overall rating presents the high-level hazard. More than 700 

liquid chemicals have been analyzed and rated by the proposed LICRI criterion. The k-

means algorithm integrates PCA to automatically optimize weight values of each principal 

component; while the spectral clustering algorithm employs the star coordinate plots to 

only reduce the high dimensional data into two-dimensional data in the visualization stage. 
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The star coordinate plots provide a great way to visualize high dimensional data sets, and 

it can solve the most obvious disadvantage of PCA, lack of interpretability.  

 

This work can be a solid reference for exploring more promising fuel options from the 

perspective of inherent safety. Compared with the NFPA flammability standard, this 

criterion embodies more safety information on fuel combustion in the CI engines. Also, 

the global mean silhouette value is reliable to find the optimal number of clusters in this 

work and it can be served as a robust approach to quantitatively evaluate the goodness of 

the clustering algorithms. Although the clustered results do show good performance on 

cluster 1 and cluster 4, the results still need to be improved on the boundary 

determination of cluster 2 and cluster 3. Nevertheless, the unsupervised clustering 

models with information entropy determined weight values give a more objective way to 

evaluate the risk associated with the liquid in-cylinder combustion since it avoids 

subjective human judgment for establishing the safety matrices. 
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8. CONCLUSIONS* 

 

To meet the IMO 2050 decarbonization goals during this maritime energy transition 

period, this work applied a holistic approach by both mechnism and data-driven models 

to provide solutions covering IMO-compliant fuel emission analysis, onboard carbon 

capture system design, fuel aerosolization contributor prediction, and inherent safety 

property based in-cylinder combustion risk index development.  

 

To summarize the sustainability study for TTP process, the two LNG fuel options 

displayed great potential for fuel savings and reductions in the emissions of CO2, N2O, 

and BCA. Although CH4 emission may be an issue for LNG fueled ships, their overall 

GWP gas emissions were better than other options. As for the sustainable preferred ship 

fleet, bulk carriers outperformed general cargo ships on both nautical mile-based fuel 

consumption and CO2 equivalent emissions per unit of DWT, while for the unit of liquid 

tank capacity, there is little difference in GHG emissions among LNG tanker, LPG 

tanker and oil tanker when the liquid tank size surpasses 100 thousand cubic meters.  

 

* Reprinted with permission from “Ji, Chenxi, and Mahmoud M. El-Halwagi. "A data-driven study of IMO compliant 
fuel emissions with consideration of black carbon aerosols." Ocean Engineering 218 (2020): 108241. Ji, Chenxi, 
Shuai Yuan, Zeren Jiao, Mitchell Huffman, Mahmoud M. El-Halwagi, and Qingsheng Wang. "Predicting 
flammability-leading properties for liquid aerosol safety via machine learning." Process Safety and Environmental 
Protection 148 (2021): 1357-1366. Ji, Chenxi, Zeren Jiao, Shuai Yuan, Mahmoud M. El-Halwagi, and Qingsheng 
Wang. "Development of novel combustion risk index for flammable liquids based on unsupervised clustering 
algorithms." Journal of Loss Prevention in the Process Industries 70 (2021): 104422.” Ji, Chenxi, Shuai Yuan, 
Mitchell Huffman, Mahmoud M. El-Halwagi, and Qingsheng Wang. "Post-combustion carbon capture for tank to 
propeller via process modeling and simulation." Journal of CO2 Utilization 51 (2021): 101655. 
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As for TTPPCC, the MDEA-PZ system outperforms MEA and DIPA systems since it 

could capture more CO2 while more specific reboiler duty can be saved. Newly blended 

aqueous amines, particularly ternary mixtures, might be the next focus on the solvent 

selection of the chemical absorption-based maritime capture system, despite the binary 

blended amines displaying satisfactory PCC performance in this study. The TTPPCC 

system needs more studies on the kinetics modeling, the second-order absorption rate 

constant, and activation energy to meet its requirement of fast reaction rate and low 

energy consumption. Moreover, process design for intensified unit operations involving 

rotating packed bed and printed circuit heat exchangers is another direction to expand on 

this study. Other post-combustion carbon capture techniques such as membrane-based 

approach, adsorption, and physical absorption can be integrated to the TTPPCC system 

as well. 

 

The two safety studies for TTP process can be served as solid references for exploring 

more promising fuel options from the perspective of inherent safety. Liquid dynamic 

viscosity (LDV), surface tension (ST), and liquid vapor pressure (LVP) were identified 

as the most contributed factors for liquid aerosolization. Due to their good interpretation 

and prediction performance, the optimized machine learning models can be used to 

predict flammability-leading properties for aerosols and can therefore help design 

inherently safer processes involving potential liquid aerosolization. With reliable 

prediction models of the defined set of response variables, future studies can be 

expanded to formulate an aerosol flammability standard test or to establish a new safety 
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categorical criterion for the liquids. After successfully implementing machine-learning 

models, one can directly use the developed optimal models to expand the inherent 

safety-related properties for organic compounds in the liquid state. Future liquid aerosol 

safety studies may integrate the clustering and classification techniques via unsupervised 

and semi-supervised ML algorithms to discover the knowledge necessary to categorize 

emerging sustainable fuels.  

 

The proposed criterion in the second TTP safety study embodies more safety information 

on fuel combustion in the CI engines compared with the NFPA flammability standard. 

Also, the safety work provides a reliable prediction for the identified liquid aerosol 

safety parameters based on a thorough comparison among multiple machine learning 

algorithms, with an emphasis on liquid aerosolization, aerosol flame speed, and flame 

thickness. The future safety work may focus on improving the clustering results by 

adopting other clustering techniques such as hierarchical clustering and density-based 

spatial clustering of algorithms with noise and expand this work to integrate 

sustainability parameters of the promising marine fuels. In this way, the greener and 

safer fuel solutions can be determined to meet the long-term sustainable and safe 

strategy. 
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APPENDIX A 

SUPPLEMENTAL DOCUMENT FOR SHIP EMISSION AND FUEL 

CONSUMPTION 

1. Data sample description 
This research collected 337 ship data from the Lloyd’s List Intelligence, the detailed 

information is as follows: 

Tab. S-1 Features of collected ship database 

Ship Class Ship Capacity Bin Age 

Bulk carrier above 10000 DWT after 2005 

General cargo ship above 10000 DWT after 2005 

Container ship above 3000 TEU after 2015 

LNG carrier above 10000 LTC after 2005 

LPG carrier above 10000 LTC after 2005 

Oil tanker above 10000 LTC after 2005 

 

Tab. S-2 BCA fuel based emission factors (kg BCA/ ton fuel) from (Comer et al., 

2017; Pavlenko et al., 2020) 

HFO with 

Scrubber 

0.19 

MGO 0.04 

VLSFO 0.26 

LPDF 0.003 
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HPDF 0.003 

 
2. AE and AB emission determination  

 
The total ME power and capacity bins of the collected ship samples, associating with the 

ratio of AE/ME and AE load factors. 

Tab. S-3 Total ME power, capacity bins, AE/ME ratio, AE LF 

Ship class Total 

ME(kw) 

Total 

Capacity Bin 

AE/ME1 AE Load 

Factor for 

Cruising2 

BC 572078 5355659 dwt 0.222 0.17 

CS 2185165 422149 teu 0.220 0.13 

GCS 295087 295087 dwt 

 

0.191 0.80 

LNG 1285532 

 

12000195 

m3 

0.211 0.13 

LPG 532948 2640167 m3 0.211 0.13 

OT 1058849 11921208 

m3 

0.211 0.13 

1. Source from ENTEC final report (ENTEC, 2010); 
2. Source from (Moreno-Gutiérrez et al., 2015) 

 
The power demand of AB varies with the ship type and ship capacity bin. Referred from 

the (Olmer et al., 2017), the crusing boiler power demand relationship for our selected 

ship type is shown in the below table.  
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Tab. S-4 Boiler power demand for cruising mode by ship type and capacity bin 

Ship class Ship Capacity Bin Effective Power 

Demand(kw) 

Bulk Carrier Any  0 

Container ship  Any  0 

General cargo ship Any  0 

LNG/LPG <50000  100 

 [50000,200000] 150 

 >200000 300 

Oil tanker <20000 0 

 [20000,80000] 150 

 (80000,120000) 200 

 [120000,200000] 250 

 >200000 300 

 
3. Ship fuel consumption  

 

Fuel consumption per hour for cruising mode is calculated as follows: 

Æ5BO!," =Ø(
5ñ-67,!," + 5ñ-87,!," + 5ñ-89,!,"

5ñ-	Y[∞Ö[>Z∞2
)

4

 

Æ5BO!,": Fuel consumption per nautical mile for ship class i, fuel option j. 

5ñ-67,!,": Amout of CO2 emission per nautical mile emitted by main engine. 
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5ñ-87,!,": Amout of CO2 emission per nautical mile emitted by auxiliary engine. 

5ñ-89,!,": Amout of CO2 emission per nautical mile emitted by auxiliary boiler. 

 

 

Fig. S-1 Fuel consumption per nautical mile per DWT for bulk carrier and general 

cargo ship 

 

 

Fig. S-2 Fuel consumption per nautical mile per LTC for LNG tanker, LPG tanker 

and oil tanker 

 

 



 

 

 

156 

Tab. S-5 Calculated data for Figure 2 in the paper 

 

 

4. Case study data description  
 

Ship class and DWT distribution based on the AIS collected data for the ships transited 

from Houston to Rotterdam. 

Tab. S-6 Summary of AIS data for ship travelling from Houston to Rotterdam 

during Oct. 2019 

Row Labels Count of Vessel 

Type 

Sum of 

DWT 

bulk carrier 40 2680417 

chemical tanker 10 233661 

crude oil tanker 15 2064658 

fruit juice tanker 1 43067 

fully cellular containership 52 3081899 

general cargo 27 461168 

HFO+S M.E. A.E. Total M.E. A.E. Total M.E. A.E. Total M.E. A.E. A.B. Total M.E. A.E. A.B. Total M.E. A.E. A.B. Total
Fuel Cons.*10 kg 9.34 24.48 6.84 13.61 8.12 18.46
Em CO2 *10 kg 26.93 2.14 72.24 4.00 16.35 4.97 40.24 2.15 0.01 24.01 1.26 0.01 52.65 2.93 1.90

Em CH4 g 2.52 0.20 -- 6.77 0.37 -- 1.53 0.46 -- 3.77 0.20 0.02 -- 2.25 0.12 0.02 -- 4.94 0.27 0.04 --
Em N2O g 13.09 1.03 35.12 1.93 7.95 2.39 19.56 1.03 0.48 11.67 0.61 0.44 25.59 1.41 1.00
Em BCA g -- -- 17.74 -- -- 46.52 -- -- 13.01 -- -- 25.87 -- -- 15.43 -- -- 35.08

MGO -- -- -- -- -- -- -- -- -- -- -- --
Fuel Cons.*10 kg 8.17 21.43 5.99 12.20 7.37 16.22
Em CO2 *10 kg 24.27 1.93 65.09 3.60 14.73 4.47 36.26 1.93 0.93 21.64 1.14 0.84 47.44 2.64 1.92

Em CH4 g 2.48 0.20 -- 6.65 0.37 -- 1.50 0.45 -- 3.70 0.20 0.02 -- 2.21 0.12 0.02 -- 4.84 0.27 0.04 --
Em N2O g 12.62 1.03 33.86 1.93 7.66 2.39 18.86 1.03 0.39 11.26 0.61 0.35 24.68 1.41 0.80
Em BCA g 3.27 8.57 2.40 4.88 2.95 6.49

VLSFO -- -- -- -- -- -- -- -- -- -- -- --
Fuel Cons.*10 kg 8.53 22.37 6.25 12.73 7.68 16.92
Em CO2 *10 kg 24.92 1.98 66.85 3.70 15.13 4.59 37.23 1.99 0.93 22.22 1.17 0.84 48.72 2.71 1.92

Em CH4 g 2.43 0.20 -- 6.52 0.37 -- 1.48 0.45 -- 3.63 0.20 0.19 -- 2.17 0.12 0.17 -- 4.75 0.27 0.40 --
Em N2O g 12.62 1.00 33.86 1.86 7.66 2.31 18.86 1.00 0.39 11.26 0.59 0.35 24.68 1.36 0.80
Em BCA g 22.18 58.16 16.26 33.10 19.98 43.98

LPDF -- -- -- -- -- -- -- -- -- -- -- --
Fuel Cons.*10 kg 7.84 20.54 5.76 11.58 6.96 15.31
Em CO2 *10 kg 19.50 1.58 52.30 2.96 11.84 3.67 29.13 1.59 0.43 17.39 0.93 0.39 38.12 2.17 0.89

Em CH4 g 60.78 4.63 -- 163.04 8.64 -- 36.90 10.72 -- 90.81 4.63 1.26 -- 54.20 2.73 1.14 -- 118.83 6.33 2.59 --
Em N2O g 5.14 0.39 13.80 0.73 3.12 0.91 7.68 0.39 0.11 4.59 0.23 0.10 10.06 0.54 0.22
Em BCA g 0.24 0.62 0.17 0.35 0.21 0.46

HPDF -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
Fuel Cons.*10 kg 7.90 20.65 5.93 11.66 7.01 15.43
Em CO2 *10 kg 17.30 1.58 46.40 2.96 10.50 3.67 25.85 1.59 0.43 15.43 0.93 0.39 33.82 2.17 0.89

Em CH4 g 56.11 4.27 -- 150.50 7.97 -- 34.06 9.90 -- 83.83 4.28 1.16 -- 50.03 2.52 1.05 -- 109.69 5.85 2.39 --
Em N2O g 4.68 0.36 12.54 0.66 2.84 0.82 6.99 0.36 0.10 4.17 0.21 0.09 9.14 0.49 0.20
Em BCA g 0.24 0.62 0.18 0.35 0.21 0.46

Bulk Carrier Container Ship General Cargo Ship LNG Tanker LPG Tanker Oil Tanker
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Liquefied Petroleum Gas Carrier 6 208343 

LNG Carrier 5 289186 

Naval Vessel 1 49000 

oil tanker 37 2042693 

passenger (cruise) 3 36878 

reefer 1 13202 

research 1 1000 

Roll On Roll Off 1 14800 

roll on roll off with container capacity 6 267746 

semi-sub HL vessel 1 13300 

support 1 
 

vehicle carrier 25 560109 

Vessel Type (unspecified) 1 
 

Grand Total 234 12061127 

 

Two regression model to convert DWT to TEU for container ships and DWT to LTC for 

tankers 

 

Referred from the (Abramowski et al., 2018), the regression formula between TEU and 

DWT is as follows: 

±G~	 = 	372.53 + 7.94 × 1063 · sÑ±2.- 
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Fig. S-3 Fit regression model between LTC and DWT for tankers 
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APPENDIX B 

SUPPLEMENTAL DOCUMENT FOR MARITIME CAPTURE PROCESS DESIGN 

(a) 

 

(b) 

 

Fig. S-1 Detailed process design of the two dual engines: a) Wärtsilä 12V50DF and 

b) 6L50DF 
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Table S-1. Parameters of reference ship 

Item Value 

Size (m3) 154,472 

Length (m) 289.6 

Beam (m) 45.35 

Draft (m) 12.5 

Propulsion engine 3* Wärtsilä 12V50DF & 

1*Wärtsilä 6L50DF 

Deadweight (mt) 74,300 

Propulsion power (MW) 39.9 
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Tab. S-2 Marine engine (12V50DF) simulation output 

Flue gas flow rate, kg/s 19.22 

Flue gas inlet temperature, c 355.9 

Steam pressure, kpa 900 

CO2 production, kg/s 1.93 

Available heat in exhaust gas, kw 1446 

CO2 concentration in exhaust gas 10.02% 

Heat available per kg co2 produced 

(kwh/kg) 

0.21 

 

 

Tab.S-3 Parameters and correlations selection for mass transfer in RateSep model 

Parameters Correlations 

Flow model Vplug 

Film discretization points 20 

Mass transfer coefficients Brf-85 

Heat transfer coefficient Chilton and Colburn 
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Tab. S-4 Pilot plant carbon capture process simulation outputs and validation  

For Mellapak plus 252Y (experimental data from a recent work by Morgan et al. [1], Case 1A) 

Variable Experiment 

output  

Sim. 

model 

output 

Absolute 

relative 

deviation, % 

Lean in CO2 loading (mol CO2/mol MEA) 0.24 0.253 5.4 

Rich out CO2 loading (mol CO2/mol MEA) 0.46 0.486 5.7 

CO2 emission reduction efficiency (%) 97.5% 95.9% 1.6 

Specific reboiler duty (MJ/kg CO2) 4.451 4.781 7.4 

 
For Sulzer BX (experimental data from a study by Mangalapally and Hasse [2], Case 3) 

Variable Experiment 

output  

Sim. 

model 

output 

Absolute 

relative 

deviation, % 

Lean in CO2 loading (mol CO2/mol MEA) 0.205 0.195 4.9 

Rich out CO2 loading (mol CO2/mol MEA) 0..465 0.449 3.4 

CO2 emission reduction efficiency (%) 90.9% 89.7% 1.3 

Specific reboiler duty (MJ/kg CO2) 4.20 4.28 1.9 

 

For Flexipac 2Y (experimental data from a study by Hamborg et al. [3], Case C1-1a) 
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Variable Experiment 

output  

Sim. 

model 

output 

Absolute 

relative 

deviation, % 

Lean in CO2 loading (mol CO2/mol MEA) 0.230 0.225 2.2 

Rich out CO2 loading (mol CO2/mol MEA) 0.480 0.476 0.8 

CO2 emission reduction efficiency (%) 91.5% 90.9% 0.7 

Specific reboiler duty (MJ/kg CO2) 4.16 4.32 3.8 

 

 

Tab. S-5 Molar cyclic capacity under variance of packing materials and L/G 
 

Scenario (packing 

type, L/G ratio) 
Solvent 

cyclic capacity mole 

co2/mole amine 

BX, 1 

MEA 0.29 

DIPA 0.289 

PZ+MDEA 0.362 

BX,2 

MEA 0.229 

DIPA 0.264 

PZ+MDEA 0.301 

250, 1 

MEA 0.287 

DIPA 0.271 

PZ+MDEA 0.359 
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250,2 

MEA 0.218 

DIPA 0.247 

PZ+MDEA 0.29 

2y,1 

MEA 0.286 

DIPA 0.268 

PZ+MDEA 0.358 

2y,2 

MEA 0.207 

DIPA 0.24 

PZ+MDEA 0.279 

252,1 

MEA 0.287 

DIPA 0.27 

PZ+MDEA 0.359 

252,2 

MEA 0.212 

DIPA 0.243 

PZ+MDEA 0.284 
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 APPENDIX C 

SUPPLEMENTAL DOCUMENT FOR LIQUID AEROSOL FLAMMABILITY 

Table S-1. Predictors selected for constructing QSPR model 

Predictor Type Definition 

MW Constitutional 

descriptor 

Molecular weight 

Para. Constitutional 

descriptor 

Parachor 

DC Electronic information Dielectric constant 

RI Electronic information Refractive index 

BP Experimental data Boiling point (K) 

MP Experimental data Melting point (K) 

LMV Geometrical descriptor Liquid molar volume (m3/kmol) 

RG Geometrical descriptor radius of gyration (m) 

VDWa Geometrical descriptor Van Der Waals surface area (m2/kmol) 

SP Quantum descriptor Solubility parameter ((J/m3)1/2) 

Dip. Quantum descriptor Dipole moment (C m) 

Int1 Interaction item Between VDWa and Para. 

Int2 Interaction item Between Para. and LMV 

Int3 Interaction item Between RG and Para. 
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Figure S-1. Summary of statistics for original data for response variables 
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Figure S-2. Summary of statistics for transformed data for response variables 
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Figure S-3. Response plots for the proposed ML LDV models, with the blue dots 

serving as the experimental data and yellow dots for predicted values. 

 

 

Figure S-4. Predicted vs experimental plots: (a) Medium regression tree; (b) 

Bagged Ensemble of Trees; (c) Exponential Gaussian process regression; (d) 

Medium Gaussian support vector machine model; (e) Exponential GPR with 7 

PCAs 
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Figure S-5. Residual plots: (a) Medium regression tree; (b) Ensemble boosted tree; 

(c) Matern 5/2 GPR; (d) Quadratic SVM; (e) Matern 5/2 GPR with PCA 

 

 

 

Figure S-6. Box plots of the three response parameters  
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Supplemental codes 
 
Matlab code 

%% Import data from spreadsheet 
% Script for importing data from the following spreadsheet: 
% 
%    Workbook: /Users/jichenxi/Desktop/research 
everyday/data/TableData-DIPPR python with st.xlsx 
%    Worksheet: Table 
% 
% To extend the code for use with different selected data or a 
different 
% spreadsheet, generate a function instead of a script. 
  
% Auto-generated by MATLAB on 2020/04/01 21:08:01 
  
%% Import the data 
[~, ~, raw] = xlsread('/Users/jichenxi/Desktop/research 
everyday/data/TableData-DIPPR python with st.xlsx','Table'); 
raw = raw(2:end,:); 
raw(cellfun(@(x) ~isempty(x) && isnumeric(x) && isnan(x),raw)) = {''}; 
stringVectors = string(raw(:,1)); 
stringVectors(ismissing(stringVectors)) = ''; 
raw = 
raw(:,[2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24]); 
  
%% Replace non-numeric cells with NaN 
R = cellfun(@(x) ~isnumeric(x) && ~islogical(x),raw); % Find non-
numeric cells 
raw(R) = {NaN}; % Replace non-numeric cells 
  
%% Create output variable 
data = reshape([raw{:}],size(raw)); 
  
%% Create table 
TableDataDIPPRpythonwithst = table; 
  
%% Allocate imported array to column variable names 
TableDataDIPPRpythonwithst.Name = stringVectors(:,1); 
TableDataDIPPRpythonwithst.mw = data(:,1); 
TableDataDIPPRpythonwithst.MP = data(:,2); 
TableDataDIPPRpythonwithst.LMV = data(:,3); 
TableDataDIPPRpythonwithst.BP = data(:,4); 
TableDataDIPPRpythonwithst.RG = data(:,5); 
TableDataDIPPRpythonwithst.Dip = data(:,6); 
TableDataDIPPRpythonwithst.DC = data(:,7); 
TableDataDIPPRpythonwithst.RI = data(:,8); 
TableDataDIPPRpythonwithst.VDWa = data(:,9); 
TableDataDIPPRpythonwithst.SP = data(:,10); 
TableDataDIPPRpythonwithst.Para = data(:,11); 
TableDataDIPPRpythonwithst.LTC = data(:,12); 
TableDataDIPPRpythonwithst.LVP = data(:,13); 
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TableDataDIPPRpythonwithst.Log_LVP = data(:,14); 
TableDataDIPPRpythonwithst.log_LTC = data(:,15); 
TableDataDIPPRpythonwithst.ln_LTC = data(:,16); 
TableDataDIPPRpythonwithst.int1 = data(:,17); 
TableDataDIPPRpythonwithst.int2 = data(:,18); 
TableDataDIPPRpythonwithst.int3 = data(:,19); 
TableDataDIPPRpythonwithst.Surf = data(:,20); 
TableDataDIPPRpythonwithst.LogSurf = data(:,21); 
TableDataDIPPRpythonwithst.ldv = data(:,22); 
TableDataDIPPRpythonwithst.logLDV = data(:,23); 
  
%% Clear temporary variables 
clearvars data raw stringVectors R; 
 
%% Machine Learning regression model code 
function [trainedModel, validationRMSE] = 
trainRegressionModel(trainingData) 
% [trainedModel, validationRMSE] = trainRegressionModel(trainingData) 
% returns a trained regression model and its RMSE. This code recreates 
the 
% model trained in Regression Learner app. Use the generated code to 
% automate training the same model with new data, or to learn how to 
% programmatically train models. 
% 
%  Input: 
%      trainingData: a table containing the same predictor and response 
%       columns as imported into the app. 
% 
%  Output: 
%      trainedModel: a struct containing the trained regression model. 
The 
%       struct contains various fields with information about the 
trained 
%       model. 
% 
%      trainedModel.predictFcn: a function to make predictions on new 
data. 
% 
%      validationRMSE: a double containing the RMSE. In the app, the 
%       History list displays the RMSE for each model. 
% 
% Use the code to train the model with new data. To retrain your model, 
% call the function from the command line with your original data or 
new 
% data as the input argument trainingData. 
% 
% For example, to retrain a regression model trained with the original 
data 
% set T, enter: 
%   [trainedModel, validationRMSE] = trainRegressionModel(T) 
% 
% To make predictions with the returned 'trainedModel' on new data T2, 
use 
%   yfit = trainedModel.predictFcn(T2) 
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% 
% T2 must be a table containing at least the same predictor columns as 
used 
% during training. For details, enter: 
%   trainedModel.HowToPredict 
  
% Auto-generated by MATLAB on 01-Apr-2020 23:14:40 
  
  
% Extract predictors and response 
% This code processes the data into the right shape for training the 
% model. 
inputTable = trainingData; 
predictorNames = {'mw', 'MP', 'LMV', 'BP', 'RG', 'Dip', 'DC', 'RI', 
'VDWa', 'SP', 'Para', 'int1', 'int2', 'int3'}; 
predictors = inputTable(:, predictorNames); 
response = inputTable.Log_LVP; 
isCategoricalPredictor = [false, false, false, false, false, false, 
false, false, false, false, false, false, false, false]; 
  
% Apply a PCA to the predictor matrix. 
% Run PCA on numeric predictors only. Categorical predictors are passed 
through PCA untouched. 
isCategoricalPredictorBeforePCA = isCategoricalPredictor; 
numericPredictors = predictors(:, ~isCategoricalPredictor); 
numericPredictors = table2array(varfun(@double, numericPredictors)); 
% 'inf' values have to be treated as missing data for PCA. 
numericPredictors(isinf(numericPredictors)) = NaN; 
numComponentsToKeep = min(size(numericPredictors,2), 7); 
[pcaCoefficients, pcaScores, ~, ~, explained, pcaCenters] = pca(... 
    numericPredictors, ... 
    'NumComponents', numComponentsToKeep); 
predictors = [array2table(pcaScores(:,:)), predictors(:, 
isCategoricalPredictor)]; 
isCategoricalPredictor = [false(1,numComponentsToKeep), 
true(1,sum(isCategoricalPredictor))]; 
  
% Train a regression model 
% This code specifies all the model options and trains the model. 
regressionGP = fitrgp(... 
    predictors, ... 
    response, ... 
    'BasisFunction', 'constant', ... 
    'KernelFunction', 'matern52', ... 
    'Standardize', true); 
  
% Create the result struct with predict function 
predictorExtractionFcn = @(t) t(:, predictorNames); 
pcaTransformationFcn = @(x) [ array2table((table2array(varfun(@double, 
x(:, ~isCategoricalPredictorBeforePCA))) - pcaCenters) * 
pcaCoefficients), x(:,isCategoricalPredictorBeforePCA) ]; 
gpPredictFcn = @(x) predict(regressionGP, x); 
trainedModel.predictFcn = @(x) 
gpPredictFcn(pcaTransformationFcn(predictorExtractionFcn(x))); 
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% Add additional fields to the result struct 
trainedModel.RequiredVariables = {'mw', 'MP', 'LMV', 'BP', 'RG', 'Dip', 
'DC', 'RI', 'VDWa', 'SP', 'Para', 'int1', 'int2', 'int3'}; 
trainedModel.PCACenters = pcaCenters; 
trainedModel.PCACoefficients = pcaCoefficients; 
trainedModel.RegressionGP = regressionGP; 
trainedModel.About = 'This struct is a trained model exported from 
Regression Learner R2017b.'; 
trainedModel.HowToPredict = sprintf('To make predictions on a new 
table, T, use: \n  yfit = c.predictFcn(T) \nreplacing ''c'' with the 
name of the variable that is this struct, e.g. ''trainedModel''. \n 
\nThe table, T, must contain the variables returned by: \n  
c.RequiredVariables \nVariable formats (e.g. matrix/vector, datatype) 
must match the original training data. \nAdditional variables are 
ignored. \n \nFor more information, see <a 
href="matlab:helpview(fullfile(docroot, ''stats'', ''stats.map''), 
''appregression_exportmodeltoworkspace'')">How to predict using an 
exported model</a>.'); 
  
% Extract predictors and response 
% This code processes the data into the right shape for training the 
% model. 
inputTable = trainingData; 
predictorNames = {'mw', 'MP', 'LMV', 'BP', 'RG', 'Dip', 'DC', 'RI', 
'VDWa', 'SP', 'Para', 'int1', 'int2', 'int3'}; 
predictors = inputTable(:, predictorNames); 
response = inputTable.Log_LVP; 
isCategoricalPredictor = [false, false, false, false, false, false, 
false, false, false, false, false, false, false, false]; 
  
% Perform cross-validation 
KFolds = 10; 
cvp = cvpartition(size(response, 1), 'KFold', KFolds); 
% Initialize the predictions to the proper sizes 
validationPredictions = response; 
for fold = 1:KFolds 
    trainingPredictors = predictors(cvp.training(fold), :); 
    trainingResponse = response(cvp.training(fold), :); 
    foldIsCategoricalPredictor = isCategoricalPredictor; 
     
    % Apply a PCA to the predictor matrix. 
    % Run PCA on numeric predictors only. Categorical predictors are 
passed through PCA untouched. 
    isCategoricalPredictorBeforePCA = foldIsCategoricalPredictor; 
    numericPredictors = trainingPredictors(:, 
~foldIsCategoricalPredictor); 
    numericPredictors = table2array(varfun(@double, 
numericPredictors)); 
    % 'inf' values have to be treated as missing data for PCA. 
    numericPredictors(isinf(numericPredictors)) = NaN; 
    numComponentsToKeep = min(size(numericPredictors,2), 7); 
    [pcaCoefficients, pcaScores, ~, ~, explained, pcaCenters] = pca(... 
        numericPredictors, ... 
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        'NumComponents', numComponentsToKeep); 
    trainingPredictors = [array2table(pcaScores(:,:)), 
trainingPredictors(:, foldIsCategoricalPredictor)]; 
    foldIsCategoricalPredictor = [false(1,numComponentsToKeep), 
true(1,sum(foldIsCategoricalPredictor))]; 
     
    % Train a regression model 
    % This code specifies all the model options and trains the model. 
    regressionGP = fitrgp(... 
        trainingPredictors, ... 
        trainingResponse, ... 
        'BasisFunction', 'constant', ... 
        'KernelFunction', 'matern52', ... 
        'Standardize', true); 
     
    % Create the result struct with predict function 
    pcaTransformationFcn = @(x) [ 
array2table((table2array(varfun(@double, x(:, 
~isCategoricalPredictorBeforePCA))) - pcaCenters) * pcaCoefficients), 
x(:,isCategoricalPredictorBeforePCA) ]; 
    gpPredictFcn = @(x) predict(regressionGP, x); 
    validationPredictFcn = @(x) gpPredictFcn(pcaTransformationFcn(x)); 
     
    % Add additional fields to the result struct 
     
    % Compute validation predictions 
    validationPredictors = predictors(cvp.test(fold), :); 
    foldPredictions = validationPredictFcn(validationPredictors); 
     
    % Store predictions in the original order 
    validationPredictions(cvp.test(fold), :) = foldPredictions; 
end 
  
% Compute validation RMSE 
isNotMissing = ~isnan(validationPredictions) & ~isnan(response); 
validationRMSE = sqrt(nansum(( validationPredictions - response ).^2) / 
numel(response(isNotMissing) )); 
 
% Structure  'trainedModelaeo' exported from Regression Learner.  
To make predictions on a new table, T:  
T=readtable("/Users/jichenxi/Desktop/research everyday/data/validate 
new.xlsx") 
yfit = trainedModelaeo.predictFcn(T) 
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Part of Python code  
 
%matplotlib inline 
import matplotlib.pyplot as plt 
import pandas as pd 
import seaborn as sns 
import numpy as np 
 
df = pd.read_excel('/Users/ log transform.xlsx') 
df.head() 
des=df[['mw', 'MP', 'LMV', 'BP', 'RG', 'Dip.', 'DC', 'RI', 'VDWa', 'SP', 
       'Para.','Log_LVP','log_LTC']] 
des.head() 
df.corr() 
 
df.corr().style.background_gradient(cmap='coolwarm') 
plt.figure(figsize=(15,15)) 
 
sns.heatmap(des.corr(),annot=True,cmap='PuOr') 
 
sns.set(style='ticks',color_codes=True) 
 
g=sns.pairplot(des) 
 
g=sns.pairplot(df, diag_kind="kde") 
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APPENDIX D 

SUPPLEMENTAL DOCUMENT FOR LIQUID COMBUSTION RISK INDEX 

Weight value determination 

Table S-1. Information entropy, information effectiveness, weight values for nine 

indicators and final weight value for three features  
 

lvp   ltc Surf ldv heat 

capa 

fl 

range 

AIT flash p densit

y 

 informatio

n entropy 

0.997

9 

0.995

3 

0.993

1 

0.996

4 

0.989

2 

0.995

5 

0.988

9 

0.984

8 

0.994

7 

information 

effectiveness 

0.002

1 

0.004

7 

0.006

9 

0.003

6 

0.010

8 

0.004

5 

0.011

1 

0.015

2 

0.005

3 

weight 

value 

0.033

2 

0.072

7 

0.107

3 

0.056

0 

0.168

5 

0.070

4 

0.172

1 

0.237

3 

0.082

4 

 

liquid aerosolization 0.19657416 

flame propagation 0.32362415 

flammability 0.47980169 
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Spectral clustering  

 

Figure S-1. Clustered data for liquid flammability using optimal model 
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Figure S-2. Clustered data for flame propagation using optimal model 
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Figure S-3. Clustered data for aerosol formulation using optimal model 
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Figure S-4. The three-dimensional similarity graphs for flame propagation and 

aerosol formulation 

 

Figure S-5. Star coordinate plot for aerosol formulation clustered data 
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Figure S-6. ß cluster silhouette plots for aerosol formulation indicators (ß ∈

{®, ©, ™, ´}) 
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Clustering Algorithm Code 

import numpy as np 
import matplotlib.pyplot as plt 
import pandas as pd 
import numpy as np 
import matplotlib.pyplot as plt 
# Though the following import is not directly being used, it is required 
# for 3D projection to work 
from mpl_toolkits.mplot3d import Axes3D 
 
from sklearn.cluster import KMeans 
 
dataset = pd.read_excel('/Users/jichenxi/Desktop/research 
everyday/data/unsupervise/flam.xlsx') 
dataset 
 
X = dataset.iloc[:, [1,2,3]].values 
 
from sklearn.preprocessing import StandardScaler 
sc = StandardScaler() 
X = sc.fit_transform(X) 
 
from sklearn.decomposition import KernelPCA 
kpca = KernelPCA(n_components = 2, kernel = 'rbf') 
X_new = kpca.fit_transform(X) 
a = kpca.alphas_ 
 
from sklearn.metrics import silhouette_samples, silhouette_score 
import matplotlib.cm as cm 
 
for n_clusters in range(2, 8): 
    kmeans = KMeans(n_clusters=n_clusters, random_state=10) 
    y_kmeans = kmeans.fit_predict(X_new) 
 
    fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(11,4), dpi=500) 
    # lie within [-0.1, 1] 
    ax1.set_xlim([-0.1, 1]) 
    # The (n_clusters+1)*10 is for inserting blank space between silhouette 
    # plots of individual clusters, to demarcate them clearly. 
    ax1.set_ylim([0, len(X) + (n_clusters + 1) * 10]) 
 
    silhouette_avg = silhouette_score(X, y_kmeans) 
    print("For n_clusters =", n_clusters, 
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          "The average silhouette_score is :", silhouette_avg) 
    # Compute the silhouette scores for each sample 
    sample_silhouette_values = silhouette_samples(X, y_kmeans) 
     
    y_lower = 10 
    for i in range(n_clusters): 
        # Aggregate the silhouette scores for samples belonging to 
        # cluster i, and sort them 
        ith_cluster_silhouette_values = \ 
            sample_silhouette_values[y_kmeans == i] 
 
        ith_cluster_silhouette_values.sort() 
 
        size_cluster_i = ith_cluster_silhouette_values.shape[0] 
        y_upper = y_lower + size_cluster_i 
 
        color = cm.nipy_spectral(float(i) / n_clusters) 
        ax1.fill_betweenx(np.arange(y_lower, y_upper), 
                          0, ith_cluster_silhouette_values, 
                          facecolor=color, edgecolor=color, alpha=0.7) 
 
        # Label the silhouette plots with their cluster numbers at the middle 
        ax1.text(-0.05, y_lower + 0.5 * size_cluster_i, str(i)) 
 
        # Compute the new y_lower for next plot 
        y_lower = y_upper + 10  # 10 for the 0 samples 
 
    ax1.set_title("The silhouette plot for the various clusters.") 
    ax1.set_xlabel("The silhouette coefficient values") 
    ax1.set_ylabel("Cluster label") 
 
    # The vertical line for average silhouette score of all the values 
    ax1.axvline(x=silhouette_avg, color="red", linestyle="--") 
 
    ax1.set_yticks([])  # Clear the yaxis labels / ticks 
    ax1.set_xticks([-0.1, 0, 0.2, 0.4, 0.6, 0.8, 1]) 
 
    # 2nd Plot showing the actual clusters formed 
    colors = cm.nipy_spectral(y_kmeans.astype(float) / n_clusters) 
    ax2.scatter(X[:, 0], X[:, 1], marker='.', s=30, lw=0, alpha=0.7, 
                c=colors, edgecolor='k') 
 
    # Labeling the clusters 
    centers = kmeans.cluster_centers_ 
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    # Draw white circles at cluster centers 
    ax2.scatter(centers[:, 0], centers[:, 1], marker='o', 
                c="white", alpha=1, s=200, edgecolor='k') 
     
    for i, c in enumerate(centers): 
        ax2.scatter(c[0], c[1], marker='$%d$' % i, alpha=1, 
                    s=50, edgecolor='k') 
 
    ax2.set_title("The visualization of the clustered data.") 
    ax2.set_xlabel("Feature space for the 1st feature") 
    ax2.set_ylabel("Feature space for the 2nd feature") 
 
    plt.suptitle(("Silhouette analysis for KMeans clustering on sample data " 
                  "with n_clusters = %d" % n_clusters),fontsize=14, fontweight='bold') 
 
plt.show() 
     
kmeans = KMeans(n_clusters = 5, init = 'k-means++') 
y_kmeans = kmeans.fit_predict(X) 
 
fig = plt.figure(figsize=(12,8)) 
ax = Axes3D(fig, rect=[0, 0, 1, 1], elev=48, azim=134) 
plt.scatter(X[y_kmeans == 3, 0],X[y_kmeans == 3, 1], X[y_kmeans == 3, 2], c = 'black', 
label = 'Cluster 1') 
plt.scatter(X[y_kmeans == 4, 0],X[y_kmeans == 4, 1], X[y_kmeans == 4, 2], c = 'red', 
label = 'Cluster 2') 
plt.scatter(X[y_kmeans == 0, 0],X[y_kmeans == 0, 1], X[y_kmeans == 0, 2], c = 'cyan', 
label = 'Cluster 3') 
plt.scatter(X[y_kmeans == 1, 0],X[y_kmeans == 1, 1], X[y_kmeans == 1, 2], c = 'green', 
label = 'Cluster 4') 
#plt.scatter(X[y_kmeans == 5, 0], X[y_kmeans == 5, 1], s = 20, c = 'magenta', label = 
'Cluster 5') 
plt.scatter(X[y_kmeans == 2, 0],X[y_kmeans == 2, 1], X[y_kmeans == 2, 2], c = 'blue', 
label = 'Cluster 5') 
#plt.scatter(X[y_kmeans == 6, 0], X[y_kmeans == 6, 1], s = 20, c = 'gray', label = 
'Cluster 7') 
#plt.scatter(X[y_kmeans == 7, 0], X[y_kmeans == 7, 1], s = 20, c = 'orange', label = 
'Cluster 8') 
# plt.scatter(kmeans.cluster_centers_[:, 0], kmeans.cluster_centers_[:, 1], s = 300, c = 
'yellow', label = 'Centroids') 
    
plt.legend(loc='upper right', fontsize = 16) 
plt.show() 
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dataset.loc[dataset.y_kmeans==0,'cluster']=3 
dataset.loc[dataset.y_kmeans==3,'cluster']=1 
dataset.loc[dataset.y_kmeans==4,'cluster']=2 
dataset.loc[dataset.y_kmeans==2,'cluster']=5 
dataset.loc[dataset.y_kmeans==1,'cluster']=4 
dataset 
 

 

 

 

 

 

 


