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ABSTRACT 

Oil spill disasters may have devastating impacts for coastal communities and the ecosystem (Baade 

et al., 2007). For instance, the coastal regions of the United States, especially the Gulf region, have 

been devastated by oil spill events of varying sizes, resulting in significant ecological 

and economic losses (Baade et al., 2007; Smith et al., 2010). In this study, a human-centered multi-

criteria decision-making (MCDM) framework is proposed and then present an example assessment 

of oil spill vulnerability utilizing the framework to support oil spill risk-informed decision-making 

in Texas coastal areas and the Western Planning Area (WPA) in the Gulf of Mexico.  

This work aims to assess oil spill vulnerability by defining three major conceptualizations 

of vulnerability: socioeconomic vulnerability, environment vulnerability, and vulnerability of spill 

impact risk through the Blowout and Spill Occurrence Model (BLOSOM) simulation. Furthermore, 

a decision support system is developed with an MCDM framework by combining spatiotemporal 

simulation results from BLOSOM and the vulnerability indexes. The proposed framework is 

applied to identify areas prone to oil spill disasters with the combination of spatial-temporal 

analysis and a customized multi-criteria evaluation. Areas with higher vulnerability scores in the 

case study are considered more vulnerable to oil spill impacts and should be considered with high 

priority in emergency response. Results indicated that communities in Galveston, Freeport, and 

Corpus Christi areas, are under great threat from oil spill disasters under conditions similar to those 

in the simulation. Moreover, the proposed framework emphasizes human-centered design and 

collaborative decision-making where different decision-makers can select the data that are 

important for their decision goals and assign weights for the evaluation criteria to generate an 

overall vulnerability score from vulnerability indexing to improve the performance of 

collaborative decision-making and eventually facilitate oil spill response and management. 
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1. INTRODUCTION  

According to the Energy Information Administration, oil production in the federal 

offshore area of the Gulf of Mexico accounts for approximately 15% of total crude oil 

production in the United States (EIA, 2018). Offshore oil exploration and production have 

become a large and important component of the United States' energy sector, while marine 

oil exploration production technology has been advanced to improve offshore oil and gas 

production operations. While oil production and exploration activities in the GOM have 

been increasing, the coastal communities in the GOM region have suffered from various 

oil spill disasters, which motivates us to study how spill events can potentially impact the 

environment, the society and the ecosystem. Some chemical components from spilled oil 

which is poisonous can cause harm to living things, for example, causing eye irritation or 

skin illness (NOAA, 2017; Chiau et al, 2005). Therefore, developing methods and models 

for assessing vulnerability and oil spill implications is in great need for oil spill studies. 

Oil spill vulnerability assessments as critical parts of oil spill disaster management 

and preparedness have attracted attention around the world. In general, there are two basic 

approaches for estimating and assessing oil spill risks and impacts (Nelson et al., 2018). 

According to work by Nelson et al. (2018), the first approach relies on historical datasets 

and in situ observations. Empirical observations of oiled locations are usually included in 

this procedure as well as subsequent analysis of the damages caused by spilled oil. The 

second approach is mainly based on simulations, which combines statistical analysis and 

numerical modeling methods to estimate the potential impacts of oil spills. The 

simulations are also applied to forecast the trajectory and the movement of spilled oil in 
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many of these models. Recent scientific research has produced studies based on these 

approaches, especially the second one, by illustrating the efficiency of prediction models 

and approaches and their implications for oil spill disaster management and response. 

(Anselain et al., 2021; Aghajanloo et al., 2022). Although reasonable snapshots of 

predicted movements and impacts coming behind of oil spills have been proposed in many 

of these studies, few consider the spatiotemporal characteristic of oil spill impact 

distribution. Evaluating changes in spill impacts from both spatial and temporal 

perspectives remains a key gap, and it is a fundamental and critical aspect of response 

policy and contingency planning in oil spill disaster management (Nelson et al., 2021). 

Additionally, in the case of an oil spill disaster, the first responders often have to 

make a rapid decision on evaluating the negative impacts of the event by combining all 

decision variables. Sometimes, the decision has several decision objectives which may 

conflict with each other. For example, it is challenging to distribute rescue resources to all 

the areas that are impacted by an oil spill disaster. Operations have to be prioritized based 

on the decision objectives associated with the level of degree of urgency. Different 

priorities on coastal resources and research purposes from different individuals usually 

lead to different decisions. Multi-criteria decision analysis has played an essential role in 

decision science for addressing the problems related to conflict decision objectives and 

priorities (Zhang et al., 2021). Multi-criteria decision-making analysis has shown its 

effectiveness in supporting decisions that have conflict decision objectives and it is also 

used for supporting decisions that often have a number of different criteria contained. 
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Those criteria are supposed to be all considered to meet decision objectives and help to 

improve collaborative decision-making (Zhang et al., 2018). 

In this project, a collaborative decision support framework is developed by 

integrating the oil spill Blowout and Spill Occurrence simulation Model and various 

vulnerability assessment indicators derived from multi-source data. The results of this 

work can support oil spill environmental assessment and help the coastal communities to 

be better prepared for the oil spill hazard events. The proposed framework can be used to 

support oil spill disaster management in coastal areas from the following two perspectives: 

1) supporting spatiotemporal decision making in oil-spill risk assessment by developing 

space-time oil spill simulations; 2) helping to improve situational awareness of oil spills 

by developing comprehensive oil spill vulnerability evaluation indices using social 

vulnerability and environmental vulnerability indicators; 3) advancing collaborative 

decision-making in oil spill assessment by developing an interactive user interface and 

multi-criteria decision analysis framework. 
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2. BACKGROUND 

2.1 Oil Spill vulnerability and risk assessment 

Assessments on vulnerability and impact of oil spill events are decisive sections of oil spill 

disaster preparedness. Considerable studies have been conducted focusing on advancing 

analytical techniques for highlighting community vulnerability, oil behavior, and spill 

outcomes in recent years. In order to provide supportive information to policymakers and 

first responders, oil spill vulnerability and impact analysis in coastal communities need to 

cover several fundamental components in general (Nelson et al., 2017).  

First of all, the assessment of the sensitivity of the coastal environment that is 

potentially impacted by spilled oil must be determined by researchers. This often includes 

identifying metrics that describes the economic systems and environment of a 

region. Established metrics such as the environmental sensitivity index (ESI) and the 

social vulnerability index (SVI) are taken advantage of by Numerous researchers (Romero 

et al., 2013; Jensen et al., 1998) to assess the sensitivity of coastal ecosystem. ESI, 

originally produced by Gundlach and Hayes et al., (1978) revealed how sensitive a specific 

coastal region is against spilled oil according to the assigned ESI of the region. The ESI 

value is estimated based on plenty of indicators, including the types of shores such as 

mixed sand, salt marshes, exposed rocky lands and mangroves, etc. Environmental 

sensitivity risk (ESR) maps that are generated from ESI allow decision-makers, 

responders, and policymakers to make decisions about how to handle oil spill 

disasters. ESI has been utilized to a lot of recent studies. For instance, Andrade et al. 

(2010) conducted a study on the coastal region of the Brazilian state of Maranh˜ao because 
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it is a region that is vulnerable to oil spill disasters and other pollution in the marine 

environment. In their research, not only the geomorphological variables but education, 

income, and the local population's dependence on tourism and fishing were considered. 

Going further on this viewpoint, it is necessary to prioritize the various kinds of resources 

at risk in an order of impact significance and adopt systematical approaches to disaster 

management and response. This may raise plenty of challenges because of the different 

priorities on resources and coastal assets decided by different individuals and 

groups. Additionally, the cooperation and interaction of these organizations and multiple 

stakeholders with diverse interests are required to combine resources and efforts to 

perform tasks beyond their individual capabilities in an oil spill response system to make 

decisions (Nelson et al., 2021). As result, customized indexing of coastal assets and 

resources that are likely to be affected by oil spills towards different interests of decision-

makers is vital to perform more effective interactions with multiple user groups. 

The second step is to quantitatively approximate the potential damage that an oil 

spill may bring forth for a specific coastal area to model vulnerability and risk. Knowing 

where the spilled oil is likely to go, the general susceptibility of communities to be 

impacted, the degree of damage, and the resources it may impact in a case of oil spill 

events can produce supportive information for oil spill disaster planning, response, and 

clean-up (Nelson et al., 2015). Within this circumstance, the broadest conceptualization 

of vulnerability is referred to as the susceptibility to oil spills (Cutter et al., 2006; Grubesic 

et al., 2013). Nevertheless, as detailed by Wu et al. (2002), vulnerability may be 

conceptualized differently depending on topics (e.g., risk assessment, infrastructure, 
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climate etc.) and disciplines (e. g., coastal activity planning, geography, disaster 

management, etc.). Wu et al. (2002) also proposed that three main concepts of 

vulnerability in the literature are as follows: (a) physical vulnerability, (b) social 

vulnerability, and (c) spatial vulnerability. Physical vulnerability usually refers to potential 

oil spill hazards physically. Social vulnerability assumes some type of destructive event 

exposure but reveal and explain how social groups are affected differently (Cutter et al., 

2006). Spatial vulnerability takes into account both the physical and social aspect to a 

particular coastal area (Cutter et al., 2008). According to Nelson et al. (2017), the three 

main concepts of oil spill vulnerability in recent research are (a) environmental 

vulnerability, (b) social and economic vulnerability, and (c) spatial vulnerability for spill 

assessment in coastal areas. 

The ESI is used to estimate the environmental vulnerability of an oil spill. As 

mentioned above, the ESI's original development efforts centered on assessing the 

physical mechanisms driving oil-land interactions and transforming these interactions to 

an ESI value in a 1-10 scale. Hence, ESI values indicated the degree of oil deposition, the 

prevalence and persistence of spilled oil in the offshore environment, and the estimated 

magnitude of biological damage (Gundlach and Hayes et al., 1978). Exposed rock 

outcrops, for instance, are assigned a rating of 1 because the lack of permeability and wave 

action keep the majority of oil in the marine environment. Salt marshes and other densely 

vegetated areas score an ESI value of 10 not just because they represent the most 

productive aquatic ecosystems, but also because they are extremely prone to spilled oil. In 

these areas, oil can remain for years and is hard to eliminate (Gundlach and Hayes et al., 
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1978). Consequently, the ESI value became a crucial component in determining the 

environmental vulnerability of oil spills.  

Social vulnerability indices are used to quantify the capacity of inhabitants, 

communities, and economic systems in coastal areas to recover from the oil spill impacts. 

This is especially important for communities with a quantifiable reliance on the offshore 

environment for their well-being. Several large-scale surveys were conducted for a more 

comprehensive evaluation of social and economic vulnerability during the past two 

decades, but many of them have only considered the population size (e.g., Sepp Neves et 

al., 2015). Other studies take into account metrics related to residential land use (Yang et 

al., 2015), and population marginalization (Mendoza-Cantú et al., 2011), as aspects of 

community residents' mental health after oil spill events (Allen et al., 2015; Grattan et al., 

2011; Lazarus, 2016). According to Nelson et al. (2018), a more comprehensive 

assessment of social vulnerability should incorporate racial information, household 

income, ethnicity, age, and other critical variables that might represent the variety of a 

community and the diverse experiences of its citizens after a significant spill. Therefore, 

it is advised that the CDC/ATSDR social vulnerability index (SVI) be used to identify 

social and economic factors (Nelson et al., 2021). It defines the social vulnerability of each 

census tract using the Census data. Census tracts are spatial subdivisions for which the 

Census collects statistical information. The CDC/ATSDR SVI scores each tract based on 

15 sociodemographic variables, such as poverty, lack of vehicle access, and overcrowding, 

and classifies them into four themes. Each tract is ranked and assigned scores separately 

for each of the four themes and an overall social vulnerability ranking. 
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The following stage is to estimate oil spill risk by analyzing the likelihood of an 

oil spill occurring at a specific location (Nelson et al., 2017; Al Shami et al., 2017; Sepp 

Neves et al., 2015). Risk is often described as the potential for vulnerability and the 

likelihood of oil approaching a certain place. Modeling oil spill risk may be achieved 

with a variety of methods, but the ultimate purpose is to assess the probability of spilled oil 

occurrence and the extent of oil spill that region may experience (Gasparotti et al., 2010). 

The basic method for risk modeling is using numerical spill simulation (Amstutz et al., 

1984), which may be informed by historical oil spill data or simulations (Fernández-

Macho et al., 2016). SIMAP (McCay et al., 2004), MEDSLICK (De Dominicis et al., 

2013), and GNOME (Beegle Krause, 2001) are a few of the most often utilized simulation 

approaches to model oil spill risk (Aamo et al., 1997). In addition, several researchers have 

created transportation prediction models rather than using the more usual "pre-packaged" 

platforms for oil spill risk modeling as mentioned. For instance, by using a boundary-fitted 

grid approach, Naidu et al. (2013) created a model to predict the eventual landing 

locations of spills based on trajectory prediction, which is then be utilized to construct oil 

spill risk evaluation metrics.  Mokhtari et al. (2015) assessed probability of oiling based 

on ship density along defined transportation routes, oil facilities, surrounding coasts, and 

oil well sites in the Persian Gulf using a generalized linear model.  Beyond these 

measurements of susceptibility and risk of oil spill impact, French-McCay et al. (2004) 

emphasized the need of considering the possible spill repercussions. Following this 

viewpoint, it is proposed by Gasparotti er al., (2010) that the combination of vulnerability 

and risk assessment of oil spills and can eventually contributes to the generation of an 
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effective assessment for simulated spill scenarios. However, it is critical to recognize that 

vulnerability analysis is not included in many oil spill impact assessments in their 

proposed assessment approaches. Those assessments frequently concentrate on a specific 

oil spill modeling approach or the development of an oil spill database for future 

academics to exploit (Boer et al., 2014; Amstutz et al., 1984). A deeper understanding of 

the likelihood and severity of a prospective occurrence of oil spills may be obtained by 

assessing risk independently of vulnerability as well as a combined assessment of the oil 

spill vulnerability and risk. 

The outcome of an oil spill vulnerability assessment is usually an overall 

vulnerability score or index that integrates coastal assets prone to oil spills (e.g., 

socioeconomic, environmental, and cultural) with the likelihood and severity of oil spill 

events (Nelson et al., 2017). Numerous researchers utilized a weighted sum technique, in 

which indicators that occur within the pre-identified spatial units in the studied area are 

summed to determine an over vulnerability score for each sector or aspect (de Andrade et 

al., 2010; Kankara et al., 2007). Then, these weighted sums are allocated to specific 

categories and assessed to produce an overall index of vulnerability (Azevedo et al., 2017; 

Arockiaraj et al., 2016). 

 

2.2 Multi-Criteria Decision Analysis 

In recent years, the decision-making process has been continuously advanced and is 

recognized as the identification of alternatives to serve as potential solutions for an 

upcoming decision problem. Decision Support Systems (DSS) are defined as interactive 
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computer-based systems that provide people with helpful solutions to deal with problems 

and make reasonable decisions (Power et al., 2002). DSSs can be clustered into 

five different categories: Data-driven DSSs, Communication-driven DSSs, Model-

driven DSSs, Knowledge-driven DSSs, and Document-driven DSSs (Psarommatis et al., 

2022; Felsberger et al., 2017). Data-driven DSSs explore external information and retrieve 

related data for decision-making procedures (Gandhi et al., 2018). Information 

technologies and communication is leveraged by Communication-driven DSSs to 

collect and share information (Al-Alawi et al., 2018). More efficient collaboration is 

enabled by this amongst the different user groups that are involved, both inside and outside 

the organization (Yazdani et al., 2017). Model-driven DSSs concentrate on a specific 

activity's simplification and assess possible alternative actions. Different possible actions 

and outcomes are compared, and an output performance score to estimate probability if 

assigned to each scenario (Psarommatis et al., 2022).  Document-driven DSSs are capable 

of rapidly and efficiently retrieving information from valid documents such as images, 

sound recordings, text files, and videos. These documents are leveraged by them to 

support decision-based actions (Schuh et al., 2018). Data mining systems are used in 

Knowledge-driven DSSs to empower computer-based decisions. Advanced DSSs 

commonly apply the combination of two or more mentioned types of DSSs. Data-driven 

DSSs, knowledge-driven DSSs and model-driven DSSs are usually applied in recent 

studies (Psarommatis et al., 2022). According to research produced by Psarommatis et al., 

in 2022, two major sub-categories are identified for those hybrid DSSs. 
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The first type is formed of rule-based systems that are developed according to the 

knowledge of specialists replicating their decision processes (Prasad et al., 2018). These 

DSSs combine model-driven DSSs with some knowledge-driven DSSs aiming to provide 

solutions to real-world problems. For instance, Decision Tree models with Utility 

functions are usually applied in these DSSs (Pappalardo et al., 2021; Schwetschenau et al., 

2022). Decision tree analysis is a graphical depiction of the expected outcomes of a series 

of actions and decisions. (Crundwell et al., 2008). The graphs in the decision tree 

model comprise events, terminal nodes, and decisions linked by using distinct 

branches. The graphs are used to represent an event node's predicted outcome and finally 

demonstrate a suggested decision. This structure allows decisions to be deconstructed so 

that their components can be easily viewed by analysts as well as the alternatives and the 

outcomes. With the predicted outcomes, probability analysis of each outcome is then 

integrated to assess the preferred decisions. Utility theory is a developed method to 

account for a decision maker's risk tolerance based on identified utility function 

(Crundwell et al., 2008). The utility function delineates the outcomes' utility which the 

decision-maker take into consideration to decide to take the risky options or certain 

options (Crundwell et al., 2008). Finally, predicted outcomes are transformed into a value 

to delineate the utility with the utility function. In this circumstance, the decision or 

preferred option is the one having maximum utility value. The outcomes in the decision 

tree model can be identified in terms of utility, which can increase the scope of 

the analysis and the model by explaining distinct preferences and risk tolerance in 

different research. 
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The second category follows through the combination of communication-driven 

DSSs and data-driven DSSs to explore the data's internal information with multi-criteria 

analysis, neural networks, artificial intelligence technologies, and machine learning 

algorithms (Mrzygłód et al., 2018) and share the information to support collaborative 

decision-making. These systems conduct presentation and analysis of the data and 

compare the outcomes that use assessment functions and indexes, thereby providing 

a more reasonable understanding of the problems to support decision making. Multi-

Criteria DSSs are the well-recognized type in this category. Recent improvements in 

decision-making theories, enhanced design of the decision support framework, and 

capabilities to produce GIS analysis have provided Multi-Criteria Decision Support 

Systems' development with possibilities (Zhang et al., 2018). Multi-criteria decision-

making (MCDM) model and analysis are usually formed by a mathematical framework 

that provides tools for the analysis of decision alternatives in the planning procedure. It is 

an approach to support decisions having different criteria that are supposed to be 

considered and integrated to meet one or several decision objectives and help produce a 

suggested decision as a solution. The Weighted sum model (WSM), which is mentioned 

above as a prevailing model to amalgamate the vulnerability score, is one of the 

commonly used multi-criteria decision analysis (MCDM) approaches (Shafiee et al., 

2015). The key principle behind this approach is to ascertain the weighted sum of ratings 

for each decision alternative that is considered in decision analysis. In fact, a similar 

approach is used by most vulnerability assessments, including the work of Passos et al. 

(2014), who produced a multi-criteria decision-making approach to assess oil spill 
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vulnerability, and the proposed approach is utilized in the Brazilian oil spill management 

and response. A fuzzy comprehensive evaluation-based decision-making approach was 

developed by Liu and Wirtz (2007) for oil spill management, and they used the prestige 

accident off the Spanish shore in 2002 as an instance to illustrate the proposed model's 

effectiveness. In other studies, normalized indices were developed to evaluate total 

vulnerability with the WSM to combined risk and vulnerability analysis (Olita et al., 2019; 

Sepp Neves et al., 2015).  

To sum up, the first category of the advanced hybrid DSSs consists of model-

driven and knowledge-driven decision-making to evaluate possibility, alternative actions, 

and utility coming behind and is aimed at providing specific decision suggestions. The 

second type concentrates more on the interpretation and sharing of the processed 

information based on data-driven and communication-driven approaches. The main 

purpose of this type of DSS is to help decision-makers explore detailed information 

contained in the various datasets and obtain a reasonable overall understanding of the data 

itself in order to support further decision-making, especially in the context of collaborative 

decision-making.  

In general, research on oil spill vulnerability and risk assessment utilized a basic 

methodology consisting of developing metrics for evaluating coastal vulnerability or 

sensitivity, estimating the likelihood of oil spill occurrence for risk assessment, and 

integrating these metrics into an overall vulnerability score contained in a final 

vulnerability index (Nelson et al., 2017). The scores may be assigned to a large geographic 

region, a single spill scenario location, or smaller discrete units of assessment (Fattal et 
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al., 2010; Nelson et al., 2015; Olita et al., 2019). However, several of these researches go 

beyond metrics of basic implications to address other features linked to spilled oil, such 

as the travel distance of a spilled oil from its original blowout location to the landing 

location to estimate its travel speed, or the magnitude of simulated spilled oil to determine 

the volume of its impact, or the prevailing wind direction and ocean currents movement to 

forecast the trajectory of spilled oil (Nelson et al, 2021). 

Moreover, it is essential to highlight that, changes in the spatial and temporal 

dimensions of an oil spill might lead to considerable variations to the outcomes. However, 

many vulnerability evaluation frameworks in recent research are not designed to 

investigate the spatiotemporal variation of oil spills. Instead, many 

studies concentrated on proving the integrity of their proposed framework (Sepp Neves et 

al., 2015). These techniques proposed in their studies are undoubtedly possible for 

contributing to a better understanding of the relationship between spill behavior and 

impact in coastal regions (Azevedo et al., 2017). But these studies were mainly conducted 

to predict the trajectory of spilled oil rather than impacts and damages caused by oil spills 

in coastal communities (Brenner, 2015), and only a few oil spill risk and impact 

evaluations considered spatiotemporal variation of oil spill events. In addition, a small 

number of studies that evaluate the temporal aspect of oil spill risk and effect did not 

provide a mechanism for assessing the variations in outcomes across multiple oil 

spill scenarios. This is a critical gap, particularly in the Gulf area, where ocean circulation 

is very energetic and dynamically complicated. In light of the seasonal character of the 

Gulf of Mexico, it is necessary to take into account the temporal dynamics of oil spill 
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occurrences in order to predict the potentially vulnerable regions impacted by oil spills, 

given their related trajectories and repercussions on coastal areas under various scenarios. 

For example, due to seasonal changes on wind force and ocean currents, the risk of a spill 

happening in January may differ from that of a spill occurring in July or August.  Therefore, 

an analytical framework is crucial to minimize evaluation bias and promote a more 

scientific assessment for analyzing spill vulnerability. Specifically, a framework that takes 

into account the spatial and temporal variations of oil spills and the diverse interests of 

individuals and groups towards coastal resources is required to identify vulnerable areas. 

To address the issues mentioned above, A multi-criteria decision support 

framework is proposed in this study to produce a vulnerability index with indicators based 

on users' preferences and to reveal the spatiotemporal variation of areas prone to spill 

impacts in simulated oil spill scenarios within coastal areas of Texas and the western 

planning area in Gulf of Mexico region. 
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3. METHODOLOGY 

Figure 1 illustrates the general framework of the project, which includes five major 

modules: 1) Identifying specific decision goals based on collected and processed datasets 

and specifying  socioeconomics and environmental vulnerability indicators; 2)  Modeling 

oil spill risk at a spatiotemporal scale using the Blowout and Spill Occurrence Model 

(BLOSOM); 3) Developing socioeconomics and environmental vulnerability indices 

using indicators from collected and processed datasets;  4)  Assessing and calculating 

overall vulnerability score using multi-criteria decision analysis; 5) Designing an 

interactive user interface to visualize the results for collaborative decision making.  A 

detailed introduction of the methods used to fulfill the modules is as follows.      

Figure 1. An overview of the workflow of this study. 
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3.1 Identifying decision goals and specifying vulnerability indicators (Module 1) 

Two decision goals were introduced as examples to better explain the research purposes 

in this project and the case study:  

Decision goal 1: How did the oil spill risks change across space and time in Texas 

coastal areas in 2016? 

Decision goal 2: Where are the most vulnerable areas in a case of oil spill when 

considering socioeconomic and environmental aspects, and oil spill risks? 

The first decision goal focused on observing the oil spill's spatiotemporal pattern 

to support risk-informed decisions. The second decision goal took into consideration of 

socioeconomic and environmental indicators and the oil spill risks derived using the 

Blowout and Spill Occurrence model (BLOSOM). Here, the scenario was focused on all 

those three components (socioeconomics, environment, and spill risks) with equal weights 

to observe the overall vulnerability score across the Texas coastal areas. Specifically, the 

SVI and ESI data was collected and processed as socioeconomic and environmental 

indicators to model vulnerability. Detailed information about the collected and processed 

datasets is included in the case study section (section 4.3) 

 

3.2 Modeling oil spill risk using the Blowout and Spill Occurrence Model 

(BLOSOM) (Module 2) 

BLOSOM is a Java-based simulation software tool (Sim, 2013). It was developed to 

model offshore oil spills scenarios caused by deep-water and ultra-deep-water well 

blowouts. BLOSOM contains many sub-models, such as Jet/Plume model, crude oil 
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simulation model, transportation prediction model, gas/hydrates simulation model, 

weathering model, and a hydrodynamic handler. The hydrodynamic handler is applier to 

model the tides, currents, and wind direction with the input of multiple datasets (Nelson 

et al., 2015). BLOSOM is also flexible to permit the modification of any or all input 

parameters. Rose et al. (2014) provides an overview of the model, while Sim et al. (2013) 

provides a more in-depth introduction and validation analysis. 

In this project, BLOSOM was used to simulate the hydrocarbon release effects 

caused by the spill event. BLOSOM is a four-dimensional that can simulate the oil spill 

event at a spatiotemporal scale. Detailed information about how the BLOSOM was 

applied is included in the case study section. 

 

3.3 Developing socioeconomic and environmental vulnerability indices (Module 3) 

Social Vulnerability Index (SVI) 

Social vulnerability is recognized as the possible negative impacts in disaster scenarios in 

social communities, especially on human health, caused by external stresses. Reducing 

social vulnerability can decrease both human suffering and economic loss (Agency for 

Toxic Substances and Disease Registry). The CDC/ATSDR SVI ranks each tract based on 

15 factors (as detailed in Table 1) considering social aspects, including poverty, 

transportation status, and crowded housing, etc. Then the factors are grouped into four 

major related themes. Every census tract will receive separate ranking scores for each of 

the four themes, as well as an overall ranking score. An example SVI map of the study 

area in the case study is as figure 2 shows. 
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Figure 2 SVI of Texas coastal areas 

 

. Table 1. An illustration of social vulnerability indices and variables. 

CDC SVI Themed indices Variables 

Socioeconomic status Income, unemployed, 

education attainment, 

poverty 

Household composition and disability Age 65 or older, age 17 or younger, 

older than age 5 with a disability, 

single-parent households 

Minority status and Language Minority, non-English speaking 
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Housing type and Transportation Multi-Unit Structures, mobile homes, 

crowding, no vehicle, group quarters 

Table 1. An illustration of social vulnerability indices and variables. 

 

Environmental sensitivity Index (SVI) map 

 Gundlach and Hayes (1978) developed an environmental sensitivity index map to 

illustrate the environmental sensitivity of the region towards the oil spill events. The 

environmental sensitivity index includes the factors telling how sensitive a specific region 

of a coastal area is against an oil spill based on the value assigned to the region with the 

ESI values. The ESI values are calculated based on the factors including the types of 

shores such as exposed rocky lands, mixed sand, gravel beaches, salt marshes, and 

mangroves, etc. The greater the value is, the more sensitive the region is against oil spills. 

An example ESI map of the study area in the case study is as figure 3 shows. 

Figure 3 Texas coastline ESI map 
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3.4 Assessing overall vulnerability score (Module 4) 

The decision-making for oil spill assessment is a typical multiple criteria decision-making 

(MCDM) problem where first responders need to make the decisions under conflict 

decision objectives (Wu et al., 2021). Specifically, first responders can make timely 

decisions based on the evaluation criteria that are most relevant to his/her decision goals. 

The areas that have the highest overall vulnerability score refers to the area that needs the 

most attention for the decision makers. 

The Multi-Criteria Decision-Making (MCDM) model and analysis provide tools 

for the evaluation of potential decision alternatives. As indicated in earlier sections, it is 

an approach used to assist decision-making in which a variety of diverse criteria are 

evaluated and integrated to fulfill one or more objectives. The MCDM's 

decision process integrates criteria that often represent conflicting and complementary 

decision objectives into a single composite assessment index. The index and its associated 

values are then utilized to output a suggested decision (Zhang et al., 2018). According to 

Fishburn et al., (1967), specifically in a weighted sum model (WSM), if there are m 

alternatives and n criteria, the decision-maker is expected to assign a performance value 

aij (for i = 1, 2, 3, … , m and j = 1, 2, 3, … , n) of each alternative in terms of each criterion 

and the weight of the relative performance of the decision criteria Wj. Then a matrix A that 

is formed by aij values multiple the assigned weight Wj is derived. Usually, these weights 

are normalized to add up to one. Finally, the alternatives are ranked. The suggested 

alternative is output based on the following expression (Fishburn et al., 1967): 

𝐴 =∑ 𝑤𝑗𝑎𝑖𝑗
𝑛

𝑗=1
, for i = = 1, ... , m and j = 1, ... , n            (1) 
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Where aij is the assigned value of ith alternative in terms of the jth criterion, n is the 

number of decision criteria, and wj is the assigned weight of the jth criterion. 

Therefore, the study area in the case study section is gridded into sub-spatial cells 

with a cell size of 2 km x 2 km. Each of the cells is a potential alternative for decision-

makers to evaluate. The aij values are scores from each of the aspects detailed in previous 

sections, including environmental, social, and modeled spill risk. Wj are weights that 

decision-makers give to the scores from each aspect based on their evaluation. All scores 

and assigned weights are combined with the WSM to calculate the final score that will be 

included in the matrix A. The final score is the vulnerability score representing the degree 

of vulnerability that the cell is considered to spill impacts. 



 

23 

 

4. CASE STUDY AND RESULTS 

The Gulf of Mexico is an area of high hydrocarbon exploration and production activity. 

According to the NOAA (2017), it is the largest producing reservoir in the United States. 

The Gulf of Mexico also hosts to a wide variety of marine biota and constitutes a variety 

of marine ecosystems. Furthermore, the GOM is host to a wide range of economic activity 

that generates billions in annual revenue for the surrounding communities. Texas coastal 

communities, based on previous studies, are especially prone to oil spill disasters (Nelson 

et al., 2015) because the seasonal characteristic of the GOM region. In this project, a case 

study is presented with the proposed framework to study the spatiotemporal variation of 

vulnerable areas in oil spill scenarios in Texas coastal areas and the western planning area 

(WPA) in the GOM to support decision-making process in oil spill response and 

management. 

4.1 Study area 

This study mainly focuses on coastal areas in Texas and the western planning area 

(WPA) in the GOM region, as shown in Figure 4. The WPA has 5,240 blocks, 213 

active leases and takes up around 28,576,812 acres. The WPA, together with the Central 

Planning Area (CPA) of the GOM, are major parts of the world's major areas of oil and 

gas production in the gulf areas. Oil production serves as the feedstock for the majority 

of the liquid hydrocarbon products on the markets, including aviation and diesel fuel, 

natural gas,  gasoline, and various petrochemicals. Oil from the WPA can help to reduce 

the Nation's dependence on foreign oil imports (Bureau of Ocean Energy Management, 

2022).  
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Figure 4 Illustration of the study area  

In this context, the two decision goals that are introduced as examples this case 

study are:  

Decision goal 1: How the oil spill risk changes across space and time in Texas 

coastal areas in 2016? 

Decision goal 2: Where are the most vulnerable regions for oil spills when 

considering all socioeconomic and environmental variables? 

The structure of the proposed framework is presented in Figure 5. In this 

framework, information for making decisions is collected with the user interface. The 

collected datasets were processed and stored in a database. The model management system 

consists of a decision-making model that is applied to combine multiple evaluation criteria 

(e.g., socioeconomic and environmental vulnerability indicators) for producing an overall 

vulnerability score to support decision-making procedures. 
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 The designed framework enables the users to select indicators and their associated 

weights to produce customized overall vulnerability assessment scores. The indicators that 

users selected from the collected and processed datasets based on their interest along with 

the weights of those indicators will then be applied to the weighted sum model as a multi-

criteria decision analysis model to determine vulnerable areas in the studied region with 

the combination of vulnerability index from socioeconomic(SVI) and environmental 

aspects(ESI) updated by users' preference as well as an additional index generated from 

the spatial-temporal analysis results of oil spill scenarios. 

Figure 5 Overview of the MCDM framework 

 

4.2 Spatiotemporal Oil Spill Risk Assessment (Decision Goal 1) 

This section introduced the details of using BLOSOM model to estimate oil spill risks 

across space and time. The results of this task can be used to answer the questions related 

to the first decision goal: How did the oil spill risks change across space and time in Texas 

coastal areas in 2016?  
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The risk level of oil spill is defined as the frequency that modeled oil spill parcels 

occur in Texas coastal areas in the simulated scenarios. The oil spill scenarios were 

simulated for all active leases in the western planning area every month from in 2016, 

based on the availability of the SVI and ESI data. The Blowout Spill and Occurrence 

Model (BLOSOM) is used to conduct the simulation, which is developed by the 

Department of Energy National Energy Technology Laboratory. Every scenario was 

simulated to release 500 barrels of oil per day for a five-day time period at all 213 active 

leases' locations within the WPA shown in Figure 4. All scenarios was simulated to begin 

on the first day of every month in 2016 and is tracked for thirty days. The simulated oil 

spill parcel that reached Texas coastal areas was output at the end of the thirty-day 

simulation, and then transferred to raster files to be counted in predefined grids with a cell 

size of 2 km X 2 km. 

𝑅𝑖𝑠𝑘(𝑟) =
n(𝐴)

N
                                                  (2) 

The modeled risk score r is then calculated based on the function above. A is the 

simulated scenarios that spills reach the specific cell and n(A) is the counted number of 

scenarios that spills reach the specific cell in the simulation. N is how many simulations 

has been run in total. 
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Figure 6 (a) Modeled risk score of Texas coastal areas based on simulated 

scenarios from March to August in 2016 
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Figure 6 (b) Modeled risk score of Texas coastal areas based on simulated scenarios 

from September to December in 2016 

 

The BLOSOM model presents the trajectory of the simulated oil spill, and only the 

oil that had beached was considered. It is worthy to note that no oil slicks in this simulation 

were simulated to reach the Texas coast in January and February in the 30-day time period. 

Some of the oil slicks in the January and February eventually reached Mexican coasts, and 

some could reach Texas coasts but with longer travel time than the predefined 30-day time 
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period. Here those were not considered valid information to model the risk of oil spill 

impacts in Texas coastal areas. Consequently, January and February were not included in 

the result both in this risk modeling section and the following vulnerability modeling 

sections. As results, an index with scores that describes modeled risk caused by simulated 

oil spills was generated by the number counted in each cell. The larger score is within the 

cell, the greater risk the cell has from simulated oil spills.  

The results of modeled oil spill risk in the simulations are visualized in Figure 6. 

According to Figure 6, areas around Freeport are considered as high-risk areas in March, 

July, August, and October. Areas around Corpus Christi have high risk scores in April, 

May, June, July, September, and December. Areas around Galveston show high risk 

scores in March, July, August, and November.  

4.3 Use of Multi-criteria Decision Analysis to Assess the Overall Vulnerability 

Score (Decision Goal 2) 

This section introduces the process of using MCDM to assess the overall vulnerability 

score of the oil spill cases using socioeconomic, environmental, and oil spill risks (results 

from 4.2) indicators.  The results of this task can be used to answer the questions related 

to the second decision goal: where are the most vulnerable areas in a case of oil spill when 

considering socioeconomic and environmental aspects, and oil spill risks? 

 Table 2 Collected and processed datasets 

Data Variable Name Descriptions Source 

Census data Official count or survey of detailed 

information of individuals in 2016. 

U.S. Census Bureau 
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Ocean model data Information about oceanic boundary 

conditions from a global coupled 

ocean-atmosphere prediction model  

 

HYCOM 

Social Vulnerability 

Index 

Potential negative effects on 

communities, Texas in 2016 

Agency for Toxic 

Substances and 

Disease Registry 

Environmental 

Sensitivity Index 

Sensitivity of specific regions of Texas 

coastal area is against an oil spill in 

2016 

 

Gundlach and 

Hayes (1978) 

Oil spill simulation 

results 

Simulated beached oil spill 

distribution 

BLOSM model 

Table 2 Collected and processed datasets 

Here, each raster cell represents a decision alternative (A in equation 1) and is 

evaluated using three different types of criteria (socioeconomic, environmental, and oil 

spill risk levels). The raster cell is considered as a vulnerable area if the cell receives a 

high overall vulnerability score based on those three evaluation criteria. Each evaluation 

criteria is specified into several evaluation indicators listed in Table 2. Here, an equal 

weight was assigned to each evaluation indicator to generate the overall weight matrix.  

Based on collected datasets, the SVI and ESI information was processed to fit our research 
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purposes and then be visualized as shown in Figure 2 and Figure 3 in the methodology 

section. Similar to the procedure in that the risk is modeled mentioned above, the modeled 

vulnerability scores were also counted and calculated in predefined grids with a cell size 

of 2 km X 2 km.  

The first step was to count SVI information in each of the grid cells. The original 

SVI contains information, such as age information, race information, income information, 

etc., that can be input to form different vulnerability indexes based on different purposes. 

Here users can select input datasets and parameters, defining indicators, and assigning 

weights to the indicators to calculate the overall vulnerability score based on their 

preference using the proposed framework.  

The total SVI scores from the SVI datasets, the ESI scores which is the ESI values 

normalized to a 0-1 scale, and equally assigned weights to the SVI, ESI, and risk scores 

are used to index the overall vulnerabilities in Texas coastal areas. The total SVI scores is 

developed to estimate all important factors that can describe the social vulnerability of a 

community. The counted information in each grid cell was then normalized to a 0-1 scale 

as scores to illustrate the vulnerability in the social-economic sector, as shown in Figure 

2.  

Next, the same procedure was applied to the ESI information and modeled risk 

scores from the simulated oil spill scenarios to calculate scores to illustrate the 

vulnerability in the environmental sectors and oil spill risk possibility.  
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4.4 Results and vulnerability mapping 

Finally, the SVI, ESI, and risk scores were used as input to the MCDM model with the 

assigned weights to index the spatial vulnerability in Texas coastal areas and therefore 

identify the most vulnerable areas. Figure 7 visualizes the identified vulnerable areas with 

vulnerability maps. The vulnerability maps are visualized with an appropriate scale to 

present the entire coastline that may be impacted by the simulated oil spills and other 

necessary geographical information and the results of modeling.  

Figure 7 (a) Results of the spatial distribution of the vulnerable areas in March and 

April in 2016 
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Figure 7 (b) Results of the spatial distribution of the vulnerable areas in May and 

June in 2016  
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Figure 7 (c) Results of the spatial distribution of the vulnerable areas in July and 

August in 2016  

 

 



 

35 

 

Figure 7 (d) Results of the spatial distribution of the vulnerable areas September 

and October of 2016  

 

 



 

36 

 

Figure 7 (e) Results of the spatial distribution of the vulnerable areas in November 

and December of 2016   
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The degree of oil spill vulnerability is color-coded. Yellow cells correspond to regions 

with smaller vulnerability scores to oil spill scenarios, while red cells correspond to 

regions with higher vulnerability scores. The grid cells in darker red color have larger 

vulnerability scores, and the grid cells in lighter yellow color have smaller vulnerability 

scores. In other words, areas in red color are more vulnerable to oil spill disasters than 

areas in yellow areas. Areas with no color (remaining grey on the maps) are safe from oil 

spills in the simulated scenarios. As mentioned in the previous section, January and 

February are not included in the result maps both in this risk modeling and the 

vulnerability modeling sections because no valid information could be observed in the 

simulated oil spill scenarios. Based on the vulnerability maps, summarized areas around 

major cities along the Texas coastline showing high vulnerability to oil spill impacts and 

their temporal distribution in each month of 2016 are shown in Table 3 and Figure 8. 

 

Table 3 Summarized areas around major cities along the Texas coastline showing 

high vulnerability to oil spill impacts in each month of 2016 
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Figure 8 Temporal distribution of areas around the three major cities along the 

Texas coastline showing high vulnerability to oil spill impacts 

According to the vulnerability maps, Table 3, and Figure 8, an obvious finding is 

that although the spatial distribution of the vulnerable areas in each month from March to 

December shows great discrepancy, more areas are under threat of oil spill impacts in the 

summertime than other time period considering temperature difference and seasonal 

characteristic of the GOM (temperature and weather are similar from May to September). 

This completes our second decision goal. Among these, coastal communities and 

coastlines from Galveston to Corpus Christi are nearly all vulnerable to oil spill impacts 

and should be cautious and get well-prepared strategies for oil spill disasters in September 

and August. Fewer areas are in great vulnerability in August compared to September, only 

areas around Galveston and Freeport are extremely vulnerable to oil spills, but other areas 

still need to be paid more attention than other times to prevent damage from oil spill 

disasters. Similarly, in the time of March and November, some areas around Freeport and 

Galveston are vulnerable to oil spills, but the spread of these areas is much smaller 

compared with that in the summertime. Communities and coastline in South Texas around 
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Corpus Christi have the largest potential vulnerability to the oil spill in May, June, and 

July. The difference in the spatial distribution of the vulnerable areas in these three months 

is that areas around Corpus Christi and Port Aransas are the major areas suffer from 

potential impacts of oil spills in June and July, but areas in the north of Corpus Christi, 

such as Port O'Connor are in great danger together with Corpus Christi areas in May. Only 

a few areas in the north of Corpus Christi and Port O'Connor are vulnerable to spill impacts 

in April and December. In addition, communities around Corpus Christi, Freeport, and 

Galveston may be impacted by oil spills in October. These findings answered the second 

decision goal with identified vulnerable areas to oil spills in both spatial and temporal 

perspectives. 

After examining published and original datasets of sea current and winds from the 

Gulf of Mexico, these trajectories of simulated oil spill slicks and the spatial distribution 

of the vulnerable areas showed similar patterns to other oil spill simulation models in 

published works of literature. For example, Nelson et al., (2015) simulated vulnerable 

areas from oil spills in March 2013. Areas around Freeport are also showing vulnerability, 

according to his results. Additionally, results from another vulnerability model based on a 

simulation in the Oil Spill Risk Analysis model (OSRAM) model (Guillen et al., 2004) 

found that launch points of oil spill trajectories tend to focus on the lower Texas coast, 

which is areas around Corpus Christi. 
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4.5 An interactive web-based multi-criteria decision-making analysis (Module 5) 

The proposed decision support system with an MCDM framework (as presented in Figure 

5) is integrated into a web-based application developed with the ArcGIS app builder. The 

designed framework enables the users to decide indicators and their weights to produce 

customized vulnerability indexing. The indicators that users selected from the collected 

and processed datasets based on their interest along with the weights of those indicators 

will then be applied to the weighted sum model as a multi-criteria decision analysis model 

to determine vulnerable areas in the studied region with the combination of vulnerability 

index from socioeconomic(SVI), environmental aspects(ESI) updated by users' preference 

as well as an additional index generated from the spatial-temporal analysis results of oil 

spill scenarios. The decision-makers using our app are able to select different datasets 

stored in our database as input layers to identify the vulnerability indicators according to 

their specific decision goals. By following procedures similar to the case study presented 

in the above sections, they can assign their preferred weights to the vulnerability indicators 

and produce vulnerability indexing to locate vulnerable areas in different oil spill scenarios. 

Selecting input datasets and assigning weights can be directly achieved through the user 

interface, as shown in Figure 9.  
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Figure 9 Selecting input layers and assigning weights panel on the user-interface. 

Figure 10 Corresponding vulnerability map of the example inputs. 

Figure 9 shows the example of selecting SVI, ESI, and modeled spill risk results 

in September from the BLOSOM model with weights of 30%, 30%, and 40%. The 

corresponding results are mapped in the vulnerability map as presented in Figure 10. Since 

the input datasets, vulnerability indicators, and assigned weights are similar to the case 
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study, the results and vulnerability map have little difference compared to the result map 

of September in the case study as presented in Figure 7. 
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5. DISCUSSION 

Several facets of this study are worth discussing in detail. Firstly, for each of the simulated 

scenarios in the western planning area of the GOM, regardless of the original locations of 

the simulated spills, the trajectories of the spills had a very obvious westward movement, 

mainly because of the prevailing winds, ocean currents, and tides in the simulation. 

Although the movement of the oil would be different in different time periods, some of 

the simulated oil slicks would eventually reach the coast of Texas. This finding revealed 

the high level of exposure that the Texas coast was for all the scenarios simulated in this 

study. This has important implications for the Texas coastal communities in terms of oil 

spill preparedness and response.   

Second, for the simulated scenarios focusing on spatial vulnerability, areas that are 

closer to major cities and bays along the Texas coastline with the densest coastal assets 

presented high vulnerability scores. This can be attributed to the relatively strong 

socioeconomic and environmental dependence of communities in Texas coastal regions. 

For example, according to the vulnerability maps and Table 3, there is a significant 

frequency of showing high vulnerability scores around Galveston Bay because the density 

of coastal assets in this area contributed to high social-economic vulnerability. As results, 

a high SVI score can be observed in the area of Galveston.  

Additionally, it is important to note that temporal differences in the vulnerable 

areas are extremely critical in oil spill vulnerability assessment, especially in the GOM 

region. This is due to the transportation of spilled oil being dominated by ocean currents 

and wind forces. Whether the spilled oil can reach the coast and where it may reach is 
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determined by the movement of sea currents and wind, which is dynamic in different time 

periods of a year. Since the evaluation of studies on spill behavior has significance for a 

range of decision-makers, including stakeholders, regulators, and other specialists, to 

assist decision-making and support oil spill preparedness, consideration of temporal 

difference of the movement of spills and consequently, the distribution of vulnerable areas 

along the coast, are sectors that cannot be ignored to support oil spill disaster response and 

management. 

Some shortcomings of the proposed methods are also worth discussing. Firstly, it 

is essential to admit that spatial errors may exist when combining processed information 

and datasets into an overall index included in the 2 km x 2 km cells. This is because 

numerous datasets may be integrated as input layers for the modeling and mapping process, 

and the scales of the datasets from different sources are likely to be different from each 

other. Therefore, maintaining accuracy and consistency across multiple datasets from 

different data sources requires users to more carefully understand each selected input 

dataset and the occurrence of the potential errors when working with multiple data. For 

example, the input datasets, SVI and ESI datasets, in the case study have different spatial 

scales. The SVI data are originally at census tract level as polygon features, and the ESI 

data are linear features that contain the ESI score information. In this case study, every 

cell in the same census tract is assumed to have the same SVI value. The ESI value in 

every cell is based on the ESI line and its ESI score information contained in the cell. If 

multiple lines are contained in one cell, only the maximum value as the ESI value of this 

cell can be accepted at the current stage. It is also important to recognize that associating 
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different features from differing datasets may lead to vagueness based on the 

characteristics of the input geographical features and the interpretation by the user in 

different degrees. Similarly, the accuracy and consistency of the features and datasets are 

also affected not only by original sources but also by the user’s interpretation of the 

appropriate representative position of the features. Further evaluation of the accuracy, 

consistency and spatial errors that may occur when combining these different types of data 

could be critical support to obtaining a better understanding and interpretation of both the 

input datasets and the reported results. These errors and issues could be optimized with 

the application of more advanced gridding methods and spatial analysis models to have a 

more reasonable understanding of the spatial subunits, features, and datasets for different 

research and decision purposes. For example, methods of quantifying spatial accuracy 

using statistical methods such as the Root Mean Square Error (RMSE) could be integrated 

to evaluate and describe the spatial error of the spatial features. Geographically weighted 

regression (GWR) methods are other options to obtain further analysis on not only the 

vagueness but also the correlation between various data and variables. With the 

application of these methods, further understanding of the reliability and variability of the 

data itself, as well as the reported results, can be provided for our users to optimize the 

overall performance of the proposed framework. Furthermore, it is not possible to expect 

all decision makers with a background of geography to have a reasonable understanding 

of the data accuracy and consistency in collaborative decision-making. Consequently, the 

application of the methods to enhance the understanding of the accuracy and consistency 

is also important for collaborative decision-making to keep all members and decision 
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makers in the same stage to complete decision goals. Since the main purpose of this study 

is to construct the decision-making framework, the need to study how advanced 

approaches and robust analysis can be integrated for optimization remains for further 

studies. 

Another shortcoming is the cost comes behind the results of this study to suggest 

the decision is not considered. As mentioned, the proposed framework is more data-based 

and communication-driven. The main purpose is to explore the processed information 

contained in the input datasets with our framework and models so that decision-makers 

could have a better understanding of the data and further support decision-making aims. 

The cost comes behind, and the payoff with risk is not considered in this context because 

those could be the targets for the next decision-making stages after the provided analysis 

of the input datasets from our framework and models. The decision-makers may make 

further decisions with results from our analysis to decide response strategies and whether 

to take action with more data and information needed to achieve cost and payoff analysis 

and further decisions. For example, when an oil spill occurs in September, and according 

to our results, areas around the three major cities are more vulnerable. Decision-makers 

could therefore make further decisions, such as distributing more rescue resources to these 

areas. But the cost of distributing rescue resources to different areas can vary differently. 

Since resources in disaster scenarios are usually limited and invaluable, analysis of the 

cost coming behind is especially critical in real-world decision-making. The application 

of a more advanced model-based decision support analysis could help to improve the 

performance of the DSS framework in terms of cost analysis to solve these problems. For 
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example, the Decision Tree model and the Utility Function, as mentioned in previous 

sections, could be more suitable to support decisions related to cost and payoff analysis. 

This could be another point that future research can explore to improve the performance 

of similar frameworks. 

Furthermore, it is also vital to note that the empirical findings according to this 

study suggest that the application of both oil spill simulations and geographical data could 

enhances the effectiveness of oil spill vulnerability assessments. It is crucial to notice that 

areas receiving a high modeled risk score suggesting high potential occurrence of oil spills, 

but lacking valuable economic and ecological assets, may not need to be considered as 

high priority in disaster management as an area that may be impacted by fewer oil spills 

but has more coastal assets that are vulnerable to oil spills. Since equal weights were 

assigned in the case study to the three aspects (social-economic, environment, and risk 

scores) to calculate the final vulnerability scores in the MCDM model, the results showing 

vulnerability is influenced by whether an area is located around the major cities along the 

Texas coastline because major cities usually have higher SVI scores. Thus, different 

research purposes and preferences from different individuals can have great influences on 

the results of modeled vulnerability. For example, results can be different if only average 

income, poverty level, and employment status information are considered as 

socioeconomic aspect while environmental aspect is ignored. Figure 10 shows the results 

in this context in September since Texas coastal areas have shown the widest spread and 

significant vulnerability in September according to results in the case study (Figure 9). By 

comparing the vulnerable areas in these two maps, it is obvious that fewer areas are  
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Figure 11 Results of vulnerable areas in September in the case study considering all 

indicators from socioeconomic and environmental aspects 

Figure 12 Results of vulnerable areas in September when only poverty information 

is considered in socioeconomic aspect 

reported vulnerable to spills when only average income, poverty level, and employment 

status information are considered as socioeconomic aspect, especially in areas located in 

the north of Port Aransas and areas near Matagorda. The reasons that caused this decrease 
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in vulnerable areas include: 1) Areas in the north of Port Aransas and areas near Matagorda 

are less vulnerable to oil spills in socioeconomic aspect if only poverty-related information 

is considered. 2) Environmental vulnerability is not considered in this context. These 

findings can lead to difference in suggested decisions. 

For instance, decision-makers may decide to distribute emergency aid and rescue 

sources to areas that show significant vulnerability when only poverty information is 

considered (e.g., areas near Freeport and Matagorda Bay) in rapid response to an oil spill 

event in September. Changing the input datasets for specific purposes can help improve 

the efficiency of short-time response and management of oil spill disasters compared to 

the suggested decision based on the information in the results from the case study 

suggesting that near all areas along the Texas coast are vulnerable to oil spills. 

In other context, one from an environment department may assign different 

weights since the main consideration of his research is to support environmental 

management. By considering the environment vulnerability sector with greater weights, 

the results would be very different from our examples. This is the reason the interaction 

between users is emphasized here in this framework, different priorities on indicators to 

vulnerability indexing from individuals are important in decision-making. And in order to 

decide whether an area is vulnerable, it often requires the collaboration of decision-makers 

with different backgrounds and interests. Also, developing a valid oil spill response system 

and other similar assessment approaches typically require the interaction and cooperation 

of multiple stakeholders and organizations with diverse interests. The capability of 

changing and updating different research orientations is crucial in the context of human-
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centered cooperation. Considering this, a human-centered decision support system with 

an MCDM framework that allows users to customize different input datasets as indicators 

to assess vulnerability and risk can therefore make a contribution to the decision-making 

procedure from an empirical perspective by enhancing the ability to identify spill 

prevention efficiencies and strategies in terms of decision-making because, in most 

disaster response scenarios, the time to respond and the resources to support emergency 

response are very limited. 
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6. CONCLUSION 

This study proposed a human-centered decision support system with an MCDM 

framework to produce vulnerability analysis with indicators based on users' preferences 

and to study the spatial-temporal variation of areas prone to spill impacts in simulated oil 

spill scenarios within coastal areas of Texas and the western planning area in the Gulf of 

Mexico region. The framework is flexible in that it can evaluate indicators based on users' 

preferences to assess vulnerability to oil spills in coastal areas. 

By completing pre-identified decision goals, the results of this work can highlight 

the temporal variation in beached spill scenarios in various coastal areas. This may be used 

to provide recommendations for when to restrict or potentially terminate offshore oil 

production activities in order to minimize the probability of catastrophic oil spill disasters 

in coastal regions. 

Moreover, this work suggests that the use of a more human-centered evaluation 

framework integrated with an MCDM model can be crucial for oil spill risk and 

vulnerability assessment. Only few existing assessment frameworks consider taking 

measures from temporal aspects together into a cohesive framework. Especially, few 

approaches take the difference between different individuals and groups' research interests 

into consideration. Oil spill response systems and other similar assessment approach 

typically require the interaction and cooperation of multiple stakeholders and 

organizations with diverse interests. The capability of changing and updating different 

research orientations is crucial in the context of human-centered cooperation. Taken 

together, the framework proposed in this study made it a step further by combining spatial-
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temporal analysis and a customized multi-criteria decision-making framework to identify 

areas prone to oil spills within the studied area. The vulnerability of coastal areas impacted 

by oil spills was determined through simulated oil spill scenarios according to several 

critical impact aspects, for example, socioeconomic assets, coastal and marine resources, 

and the total amount of beached oil in simulations. Indicators in each of these categories 

were weighted and compared using a weighted sum as a multi-criteria decision analysis 

model based on users' preferences to evaluate indicators and produce vulnerability scores. 

Finally, this work is meant to highlight ways of vulnerability assessment for oil 

spill scenarios so that policymakers, communities, response teams and organizations can 

better support oil spill disaster management and preparedness by considering 

spatiotemporal variation and the interests of different individuals. More importantly, the 

application of this framework need not be limited to the studied area. One could 

incorporate many other sites not only in the Gulf of Mexico region but also in the context 

of oil and gas production areas all over the world. Thus, this work can be further supportive 

of oil spill disaster response and management in this way. 
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