
FPGA ACCELERATION FOR RANDOM FOREST INFERENCE

An Undergraduate Research Scholars Thesis

by

DUO WANG

Submitted to the LAUNCH: Undergraduate Research office at

Texas A&M University

in partial fulfillment of requirements for the designation as an

UNDERGRADUATE RESEARCH SCHOLAR

Approved by

Faculty Research Advisor: Dr. Jiang Hu

May 2022

Major: Computer Engineering

Copyright © 2022. Duo Wang.

RESEARCH COMPLIANCE CERTIFICATION

Research activities involving the use of human subjects, vertebrate animals, and/or

biohazards must be reviewed and approved by the appropriate Texas A&M University regulatory

research committee (i.e., IRB, IACUC, IBC) before the activity can commence. This requirement

applies to activities conducted at Texas A&M and to activities conducted at non-Texas A&M

facilities or institutions. In both cases, students are responsible for working with the relevant

Texas A&M research compliance program to ensure and document that all Texas A&M

compliance obligations are met before the study begins.

I, Duo Wang, certify that all research compliance requirements related to this

Undergraduate Research Scholars thesis have been addressed with my Research Faculty

Advisors prior to the collection of any data used in this final thesis submission.

This project did not require approval from the Texas A&M University Research

Compliance & Biosafety office.

TABLE OF CONTENTS

Page

ABSTRACT .. 1

ACKNOWLEDGEMENTS .. 3

NOMENCLATURE ... 4

CHAPTERS

1. INTRODUCTION .. 5

1.1 Problem Description ... 5

1.2 Prior Work .. 7
1.3 Expected Results... 8
1.4 Social Impacts... 9

2. METHODS ... 11

2.1 General Methodology and Setup .. 11

2.2 Dataset Preparation ... 13

2.3 Modified RF Algorithm .. 16

2.4 Top Function... 20
2.5 C Synthesis Optimizations.. 24

2.6 Vitis HLS and Vivado Simulation .. 26

3. RESULTS ... 29

3.1 Vitis HLS Optimization Result... 29

3.2 HLS vs CPU Performance Result ... 31

4. CONCLUSION ... 33

REFERENCES ... 34

1

ABSTRACT

FPGA Acceleration for Random Forest Inference

Duo Wang

Department of Computer Science and Engineering

Texas A&M University

Research Faculty Advisor: Dr. Jiang Hu

Department of Computer Science and Engineering

Texas A&M University

Random forest algorithm has been used broadly in both the research field and in the

industry due to its ability to tackle both categorical and numerical dataset. FPGAs also have the

highest growing potential and can be applied for the acceleration of random forest inference due

to its low power consumption and parallelism support. Research have shown that a compact

random forest algorithm is best executed through multi-threading and pipelining, and a FPGA

implementation shows significant advantages compared to GP-GPU and CPU implementations

in the area. It was able to process each decision tree within the forest independently in parallel.

My research is dedicated to achieving this result by benchmarking individual performance

running the same RF prediction algorithm on different platforms. The HDL code running on the

FPGA will be translated from the source C++ code through Vitis HLS to be synthesized onto the

FPGA board. The training data and the binary files will be processed beforehand for an equal

competition for all platforms. I will be using various optimization techniques including loop

unrolling and data-level parallelism to fully utilize the capabilities of FPGAs. With sufficient

2

data and analysis, my result will show that FPGAs perform better compared to other platforms

such as CPU or GP-GPU.

3

ACKNOWLEDGEMENTS

Contributors

I would like to thank my faculty advisor, Dr. Jiang Hu, and my graduate mentor, Chan-

Wei Hu, for their guidance and support throughout the course of this research.

Thanks also go to my friends and colleagues and the department faculty and staff for

making my time at Texas A&M University a great experience.

Finally, thanks to my parents for their encouragement and to my mother for her patience

and unconditional love.

All other work conducted for the thesis was completed by the student independently.

Funding Sources

I did not receive any fundings throughout my research.

4

NOMENCLATURE

FPGA Field Programmable Gate Arrays

GP-GPU General Purpose Graphical Processing Unit

CPU Central Processing Unit

HDL Hardware Description Language

RF Random Forest

ML Machine Learning

LUT Look Up Table

STL Standard Template Library

IP Intellectual Property

5

1. INTRODUCTION

1.1 Problem Description

Recent years with the raise of machine learning algorithms, computer hardware architects

have been experimenting different platforms for the best performing architecture when deploying

a ML algorithm. In a recent paper Microsoft published in 2018 [1], because of the increasing

complexity and features added on network stacks for the Microsoft Azure networking center,

they were able to utilize FPGAs as network switchers in their AccelNet (Azure Accelerated

Networking) project to provide both programmability and scalable performance compared to

traditional ASIC design and CPU clusters. The FPGA is perfect at adapting the current gate array

configuration into a more fitting design depending on the request volume and request types. In a

research paper published in 2012 [2], studies have shown that although RF algorithm is best

executed through threading on OS supported platforms, the FPGA implementation with

pipelining shows the best results compare to GP-GPU and CPU implementation. As for right

now, although the performance per cost with FGPA application is merely decent, its performance

per power is beyond promising. My thesis was suggested by Dr. Jiang Hu, who recognizes the

endless possibilities of combining machine learning and FPGAs. I focus on recreating the

experiment in [2] with only the forementioned RF prediction algorithm with my adoption to the

existing RF implementation in C++ found in [3] to check if the FPGA has the best performance

in terms of speed and energy.

Getting into the details of such disruptions, one must observe the general approaching

method with the help of HLS software for the implementation of RF on FPGA, and why is HLS

bundled with the software development process. The approach typically consists of three steps.

6

The first step is to implement the training and prediction of the random forest algorithm in

software, presumably in C or C++ since those are the only languages HLS software support.

Although the algorithm was created in 1995, it is not until recent years that there is sufficient

hardware power to support it. One would usually first study the algorithm and discover how it’s

able to fully utilize all the features FPGA supports. The second step involves converting the C or

C++ code into Verilog through the HLS software and deploying the module onto an FPGA

board. It is until now that the developers realize that they have very limited choices. If they were

to implement the whole project in Verilog, which is the native language any FPGA would

support, it will make the scope too complicated and unnecessary due to the existence of HLS

software. This tradeoff from the earlier years on performance loss versus scope complexity often

occurs and the former is always chosen. This loss of performance has not been a growing issue

that hinders the development of FPGA-based software until recent years when the effect of lack

of competition started to make a difference. Although the HLS was cleverly written, in a

problem like implementing a random forest and the challenges that come with it including

algorithm parallelization, and how to make use of the limited BRAMs and flip flops to

accommodate the dynamically allocated address memory produced during the training as the tree

depth and feature size grows have not yet to be solved or optimized. Moving on in this example,

the third step usually involved the introduction of the concept of approximate computing. In a

research paper published in 2020 [5], the study shows due to the intensive floating-point

calculation the algorithm requires in the training process such as the back-propagating

calculation, there is a significant tradeoff between hardware area overhead and classification

accuracy. In exchange for a relatively small amount of accuracy, they were able to greatly reduce

hardware resource allocation and training time, resulting in a lower power budget and shorter

7

overall time consumption. This may sound promising on paper, but with the lack of competition,

the HLS software has become outdated in such a way that could result in a deceased of

performance compared to the GPU and CPU approach of solving this problem due to the lack of

recent optimization on newly updated hardware architectures, which is the opposite as the paper

states in theory.

1.2 Prior Work

Random forest algorithm has been researched for years and is being used in critical

fields. Compared to decision trees, RF has a lower risk of overfitting because it doesn’t strictly

fit into the sample data, and it tends to average the results to reduce the chance of false

predictions. Areas where RF could be useful include finance, as they were used to estimate

customer risk, to detect fraud and to solve option pricing problems. While in the healthcare field,

RF is being used in gene expression classification and sequence annotation, and to help doctors

respond to specific medications. The study in [2] includes training the forest using compact

random forest algorithm on the FPGA first, which results in a compact forest determined by

maximum depth parameters.

Random forest algorithm has been researched for years and is being used in critical

fields. Compared to decision trees, RF has a lower risk of overfitting because it doesn’t strictly

fit into the sample data, and it tends to average the results to reduce the chance of false

predictions. As implemented on other devices including GPUs and CPUs, the FPGA approach

has been the least researched area. Due to the limited options, rarely has anyone been able to

come up with a method to accurately measure the true performance of RFs on FPGAs compared

to other platforms, which is due to the reason that HLS has not been the most optimized method

of approach and was not optimized because of the lack of competition. As for the customers,

8

areas where RF on FPGA could have been useful include finance, as they were used to estimate

customer risk, to detect fraud, and to solve option pricing problems. While in the healthcare

field, RF is being used in gene expression classification and sequence annotation, and to help

doctors respond to specific medications. And since prior works have been done in RF include

training the forest using compact random forest algorithm on the FPGA, which results in a

compact forest determined by maximum depth parameters. For the team managers on such

projects, it would encourage the employees to study more and discover more possibilities with

other software rather than sticking with HLS, and there would have been multiple FPGA

accelerators implemented if only there would be more competitions in the market so that the

developers can collaborate better at making the tool more viable in areas where a machine

learning algorithm can take advantage of the unique structure of an FPGA. The study from [7]

creates a decision tree classifier on the FPGA and stores all parameters in the memory while

comparing different parallel architectures. The authors from [6] explores FPGA implementation

to accelerate the training process of a decision tree using efficient parallel structures for key steps

to determine values for parameters inside of the decision tree. But with the prior work mentioned

aforehand, not all have proven that FPGA has the fastest and most efficient results. All these

studies are conducted or partially conducted with the help of HLS and due to the nature of the

development platform, there is yet much to explore as well.

1.3 Expected Results

The minimum goal of the research is replicate the results in [2] with my own adoption of

a RF algorithm, and then to come up with a valid power and time comparison across CPU, GP-

GPU and FPGA. The ambitious goal is to implement the approximate decision trees onto the

FPGA board. I plan to base the research on studies from the past and investigate the challenges

9

FPGA faces when working with machine learning algorithms. Historically FPGAs are

challenged for its small sized memory issues, which could lead to malfunction of algorithms and

speed loss. The design component includes the bare minimum of a RF algorithm, Vitis HLS

Linux testing platform and a FPGA to test on. The final project will have a fully functional RF

module deployed on the FPGA for RF predictions. The RF algorithm will be tailored to FPGA’s

parallelizing nature and the lack of the ability to dynamically allocate resources as the tree grows

deeper. It will have a better performance per watt compared to a CPU or GPU implementation

and will be ready to use with either categorical or quantitative data. If time permits, the final

project will also include the approximate computing feature by reducing a small percentage of

accuracy for a better performance in terms of power and speed when doing floating point

calculations and possibly the complexity of trees and forest.

1.4 Social Impacts

As mentioned above, this solution, compared to a traditional approach has multiple

advantages including power efficiency, portability, and flexibility. Although this is not the

cheapest solution, it still offers a better performance at the same price point. The impact with this

implementation can be applied in banking, government regulations, and the medical field. When

applied in the banking field, it has the potential to make personal finance easier to operate and

contribute to the economy by creating job opportunities in the hardware industry. When applied

in the medical field, or in the field of public health, personal safety, and the general welfare of

common people, it has the potential to replace current solutions to be the fastest and the most

portable real-time analyzer in the medical fields, and thus it will save more patients and come up

with better medicine compared to today’s rate. Furthermore, due to the increase in power

10

efficiency, we can conserve more nature resources and help reduce emission to protect the

environment to make a global, cultural, and social impact.

11

2. METHODS

2.1 General Methodology and Setup

The raw C++ RF prediction algorithm for my research will be adapted from an existing

repository found in [3], and the prediction portion of the code will be adapted for HLS and later

used to collect timing and energy efficiency data. The raw register transfer level description will

be translated from the same C++ code through Vitis HLS software, which I later optimized and

tailored to the research. The data used for training and prediction is found on Kaggle [4] where

the author compiled a set of binary classification data for heart disease prediction published by

the University of California, Irvine.

The trained RF binary file will be generated with the training portion of the code from

[3], and later used for prediction by transferring the same binary file to different platforms (CPU,

GP-GPU and FPGA) for power and timing comparison. The picture as shown in figure 2.1

depicts the process of the trained forest binary file being generated with the passing arguments

including thread counts, number of trees, tree type for being classification, path to the input file

and the dependent variable name which is called “HeartDisease” in this example.

12

Figure 2.1: Training completion and forest file generation example.

For the training platforms, The CPU will utilize the TAMU computing service with dual

Intel(R) Xeon(R) CPU E5-2650s and 96 Gb onboard memory, the FPGA was selected from a

range of Xilinx FPGA and the Zybo Z7 7010 was chosen for its compatibility and portability. As

shown in figure 2.2, it has 512 MB DDR3 memory and 4400 logic slices of 4 6-input LUTs and

8 flip-flops.

Figure 2.2: The Zybo Z7 7010 FPGA.

13

For the setup of the research, the server is connected to the 110V AC wall-in power. The

server is able to produce efficient power to the board and to prepare the necessary files in binary

and synthesis the C++ code to FPGA logic in order to program the board. The FPGA is

connected to the server via a USB-A cable for power and in order to transfer necessary files in

binary and the synthesis Verilog code in one or several bitstreams. The FPGA usually operates

on a range of 1.2 to 3.3 V from the server but the actual power in watt will highly depend on the

workload and different stages of the application. The server is responsible for converting C++

code into synthesized Verilog to the FPGA and the database. It contains the HLS program for

C++ to Verilog conversion. The FPGA is a physical component responsible for training the ML

module and doing predictions with the model. Once the server grabbed the C++ code and all the

training and prediction data from the server, it starts converting the code into Verilog with Vitis

HLS. After the conversion, it generates a Vivado IP which can be brought into Vivado for more

behavior simulation and implementation that feeds the Verilog to the FPGA board where the

machine learning algorithm is implemented. It also transfers the training data and prediction data

over for predicting in the testbench file written in Verilog. Vitis HLS and Vivado will be

installed on the server to support the C synthesis of the HLS code and Verilog synthesis for the

FPGA. The FPGA will receive the Verilog code and specific instructions for place and route so

that each flip flop can be used as either an array for input data or the intermediate values during

the prediction phase. The FPGA must be always connected to the server.

2.2 Dataset Preparation

Since binary classification is a major application of random forest algorithm. I used a

dataset focusing on predicting if a person would have heart disease based on features such as age

and sex in [4]. It introduces one independent variable, HeartDisease, to indicate if that person has

14

heart disease or not for a particular set of traits. It also has 9 dependent variables which is more

than enough for the scope of this research since the goal is to compare performance instead of

accuracy. The data contains 35.92 kilobytes of data and is perfectly suitable to be split into 80

percent training and 20 percent prediction datasets with my algorithm. Since the algorithm in [3]

only works with numerical data, I first cleaned up the raw data by converting string text in the

data into integers count from 0 to the last possible different strings for each attribute in the data if

there is any. And then I first created dictionaries for each of the string attributes so I can use

them to store the strings into corresponding numerical values, and then I used regex patterns to

match the commas in text and replace them with spaces since comma will be the delimitator for

further string slicing as seen in figure 2.3.

Figure 2.3: Input csv parsing and dictionary construction.

15

After reading in the training dataset csv file and constructed the aforementioned

dictionaries, I then replaced the commas and the string text in different attributes with their

corresponding numeric value as seen in figure 2.4.

Figure 2.4: String replacement and cleaned data generation.

For the splitting of training and prediction datasets, I wrote the algorithm that could first

read in the whole csv, and then randomly select a row of data to be appended into a list of rows

of size 20% of the total rows. While the data is being appended into the new list of rows, it also

removes the randomly selected rows from the original file and since it became the training file

with 80% of the total data and then the list with 20% of total data becomes the data for

prediction. It then generates the two files with the prediction and training data as separate files as

shown in figure 2.5.

16

Figure 2.5: String replacement and cleaned data generation.

2.3 Modified RF Algorithm

Since the RF algorithm has been explored for the last century, there is little reason to

come up with a brand new RF algorithm. From the work of [3], the researchers are able to come

up with an algorithm that divides the whole algorithm into smaller sets of C++ classes. The main

function first takes in user input arguments, including dependent variable, number of trees,

number of threads, forest or data input file location, prediction mode and forest type. It also has

the binary classification support which is perfect for the dataset in [4]. Based on the input, it

creates class instance including a “Data”, “Forest”, “Tree”, “ForestClassification” and

“TreeClassification” that takes in the aforementioned arguments for class construction to either

store data or used for later calculation. If the training feature is selected, like shown in figure 2.6,

the output is able to capture the process of taking in the required arguments and generating the

binary file “ranger_out.forest” for the prediction algorithm with the generated forest.

17

Figure 2.6: The training stage output with another example dataset and 10 threads, 10 trees.

For prediction, it begins to read in the binary forest file generated from the training stage

and retrieve all the required variable including number of columns, number of rows, ordered

variables, number of trees and dependent variable. It then performs a cross-check to make sure if

the input dependent variable matches the variable name from the binary forest input file. Since

the dataset is used for binary classification to determine if a plane was delayed according to other

factors of the event in figure 2.7.

18

Figure 2.7: The Data class which stores the majority of feature for each tree.

It then constructs a “ForestClassification” object and pushes “Tree” objects into a vector

of trees which requires reading in more details from the binary file, which includes

child_nodeIDs, split_varIDs, split_values, class_values and response_classIDs as seen in figure

2.8.

19

Figure 2.8: The Data class which stores the majority of feature for each tree.

They will be used later to retrieve the prediction value by going down the individual tree

and finally returns with the value on the terminal node. On CPU or GPU, the program will first

have to split the process onto different threads and use these threads for speeding up the traversal

by splitting the trees across all the threads. It would then aggregate the results by selecting the

most voted answer from all the trees for the final prediction of the program.

20

Figure 2.9: The original C++ code uses the thread STL for multithreading.

Since the FPGA does not have a CPU on board, it will not be able to process any

multithreading and mutex commands. On the FPGA, instead of multithreading, I converted and

optimized the prediction process into FPGA parallel process, so that it would be able to utilize as

many gate arrays as possible. Essentially, transferring the creation of threads with a for loop with

passes the thread index into the required function. Instead of indicating the true thread ID, the

index passed into the functions in the for loop become literal numerical values which get over the

unsupported thread STL for HLS as seen in figure 2.9. So that, in the test bench file, I included

everything up to the tree traversal and loaded everything from the OS in the testbench file since

FPGA does not have an OS. The top function I included and later synthesized on the FPGA only

contains the tree traversal.

2.4 Top Function

A major part of the HLS process is the synthesis of the top function of the project, which

is the starting point for any simulations in Verilog. The top function I have chosen to be adopted

to fit the HLS requirements is the tree traversal function which is originally a part of the Tree

class from [2] as shown in figure 2.10. It is the lowest level of vector manipulation of the whole

algorithm, and it is the most time consuming function and thus a perfect top function for HLS.

This function is called for each thread to iterate through the attributes of prediction_data, which

21

is a compact Data class containing different forest and tree results stored as C++ STL vector

types, and tree node values stored in vector child_nodeIDs, split_varIDs, split_values to traverse

until the end of a node on a tree and return the values in form of another vector

prediction_terminal_nodeIDs.

Figure 2.10: The original C++ class function header from [2].

Since the C++ STL classes are not synthesizable, I had to convert the vectors into

HLS_vector types, which are natively supported by all Xilinx models and are fully synthesizable.

Another problem with a pure substitution is the port restrictions from Vitis HLS. It specifies all

port length cannot exceed 4096 bits. Since the parameters of the top function will be translated

into input ports where the return vector will be translated into the output port, while the original

size of the vectors is relatively huge compared to the 4096 bits restriction, I have to split them

into smaller sections of vectors. As seen in figure 2.11, the input types have been converted to

HLS_vector and split into 4096 bits length vectors. The x vector, num_rows and

is_ordered_variable are all original attributes of prediction_data and now they are able to be

passed and synthesized without any problems. The length specified for the vectors are hard-

coded for simulation purposes. To minimize the length of the ports, I have to use short int and

float instead of their counterparts int and double. Short int and float both have 2 bytes and 4

bytes, which is not as accurate compared to 4 and 8, since the data I used doesn’t contain values

that require this much of accuracy and range, this is perfectly acceptable for the purpose of the

research.

22

Figure 2.11: The adopted top function header code.

The algorithm consists of two main parts. The first part is responsible for taking in the

broken down vectors as shown in the parameters labeled by an underscore plus the index number

and combine them into one with for loops. For example, as shown in figure 2.12, for loops are

used to repopulate the arrays “x” from the 20 arrays it received into one and are now partitioned

on the DRAMs onto the FPGA. Once all the required data has been imported and repopulated,

the second step involves the tree traversal as seen in figure 2.13. It performs inferencing on the

sample index of the data set and then traverses the tree like structured child_nodeIDs vector that

contains features of a decision tree to determine the values used for the final prediction and then

write it back to return_terminal. I hard-coded the number 18 as the for loop range since it is the

maximum depth in my RF example.

23

Figure 2.12: Local float array x being regenerated from 19 indices passed into the array.

Figure 2.13: Decision tree traversal with a maximum depth of 18 levels.

24

2.5 C Synthesis Optimizations

To achieve optimal performance, in the official Vitis HLS manual [8], the authors have

provided a wide variety of pragma form optimizations. The pragma “HLS PIPELINE” found in

figure 2.12 under the declaration of the for loop tells HLS to unroll the loop and utilize the rich

number of flip-flops in the FPGA to rearrange the loop in a pipelined fashion. With this, HLS

performs a static parallel analysis to maximize throughout by manipulate instructions to fit in as

many instructions as possible in one clock cycle. Since the behavior is closely resembling a

typical CPU behavior, some dependences, such as true data dependences, must be avoided and

will result in latency increase if not handled correctly. The original code from [3] included a

greedy loop with “while (1)” that exhaust all the leaf nodes in a decision tree to reach to the final

leaf node that contains the prediction as shown in figure 2.14.

Figure 2.14: The “while (1)” greedy logic snippet from [3].

25

The same logic cannot be included for C synthesis. It is simply because the generation of

LUTs with the complier needs to know exactly how many times a loop has to operate when

determining how many clocks cycles this operation takes, so that a constant range must be

provided for this tree traversal. This would require first determining the maximum number of

iterations of this while loop for any decision trees during this process, the maximum depth of any

decision trees for the dataset I used, and then converting the greedy “while (1)” condition to a

range based for loop with the depth hard-coded as the range for the dataset I used. I have

determined the maximum depth for my dataset is 18 and the modified code snippet is already

captured in figure 2.13, as the range for the for loop replacing the while loop has the number 18

encoded. This will tell the C Synthesis complier exactly how many clocks cycle this operation

takes when generating the timing analysis.

 Another requirement for the pragma “HLS PIPELINE” to work without any overhead for

a nested for loop is the concept of perfect vs imperfect loop. In [8], the Vitis HLS tool in default

applies loop flatten to any nested loops with the “HLS PIPELINE” specified in the outer loop.

Since there would be extra clock cycles introduced to get in and out of the nested inner loop. For

example, as part of the repopulation step in my top function, a 2D array is repopulated with a

nested for loop for later traversal as shown in figure 2.15. The loop has to be “perfect” in HLS

terms such that first, the inner loop does not have a variable bound, and second, there is no logic

between the outer for loop statements and the inner for loop statement. Once the two conditions

are met, they will be able to be optimized by HLS.

26

Figure 2.15: child_nodeIDs is being repopulated from the input parameter child_nodeIDs_1 in a nested loop.

Other automatically applied optimization pragma include array partitions as denoted by

“#pragma HLS ARRAY_PARTITION variable= dim= complete/cyclic/block”. Since Vitis

compiler results the arrays onto the RAM on the FPGA, it could be time consuming when

elements have to be accessed due to latency being larger then register communication. This

bottleneck is even more apparent when the array is accessed more than one time. The

“ARRAY_PARTITION” pragma, as noted in [8], has the ability to tell the compiler to map the

data to smaller arrays and make them register access on the FPGA. This would require a large

amount of registers on the physical part and the latency is the tradeoff.

Simulation results with different combinations of optimization will be included in the

results chapter.

2.6 Vivado Behavior Simulation

Once the C simulation and C synthesis passed with the modified algorithm written in

C++, the next step is to generate a Vivado IP and export the RTL to Vivado for further

simulations and verification. Vitis HLS also generates a high level wrapper that contains the

inputs and outputs of the final design, and it is able to automatically wire the internal logic with

all the generated Verilog files. As shown in figure 2.16, the testbench file test_tb.sv I wrote is

capable of creating a unit under test with the auto-generated Verilog wrapper bd_0_wrapper.v

from Vitis HLS.

27

Figure 2.16: Verilog wrapper after C Synthesis and testbench hierarchy.

The testbench file is written in SystemVerilog to enable support for short int and float

data type to better work with the inputs of the Verilog wrapper. The testbench file consists of two

major parts. The first part is to load all the required data to be fed into the inputs of the wrapper.

For example, figure 2.17 shows the process of reading the file containing one of the required

parameters “is_ordered_variable” line by line from the server, and then it is able to write to the

SystemVerilog variable “is_ordered_variable_flattened” in bits to send to the wrapper as its

parameter.

Figure 2.17: Loading from file in SystemVerilog.

 The second part is to construct a Unit under test as shown in figure 2.18. It sends all of

the required parameters to the wrapper with a few extra input registers. Register “ap_clk”

specifies the clock frequency for the simulation. Register “ap_rst” specifies the reset signal

which is always set to false for the purpose of this simulation. Register “ap_ctrl_start” is always

28

set to 1 to ensure the control signals are always on. Register “ap_return” is used for final output

and is has to be set with a register from the testbench file of the same size for verification.

Figure 2.18: Passing required parameter to wrapper to create the unit under test.

29

3. RESULTS

3.1 Determining Optimal Clock Period

The process of determining the most optimal clock period involves taking trails and

running the C synthesis to see if there is any timing violations with the target clock period. This

means that Vitis HLS is able to schedule all the required logic in 1 clock cycle within the

provided range of period. The timing report is automatically generated by Vitis HLS. For

example, figure 3.1 shows the timing information with a target period of 15 ns, while the final

latency in cycles and ns can be found on the first line in the table under “Performance &

Resource Estimates” for the top function which is named test.

Figure 3.1: Timing analysis report generated by Vitis HLS (snippet).

30

Taking trails and running the synthesis, the table 3.1 reflects the process and the most

optimal clock period turns out to be 11.3 ns for my current design. Equation 3.1 shows how to

calculate total latency in nanoseconds.

𝑇𝑜𝑡𝑎𝑙 𝑙𝑎𝑡𝑒𝑛𝑐𝑦 𝑖𝑛 𝑛𝑠 = 𝑇𝑜𝑡𝑎𝑙 𝑙𝑎𝑡𝑒𝑛𝑐𝑦 𝑖𝑛 𝑐𝑦𝑐𝑙𝑒𝑠 ∗ 𝑇𝑎𝑟𝑔𝑒𝑡 𝑝𝑒𝑟𝑖𝑜𝑑 𝑖𝑛 𝑛𝑠 (Eq 3.1)

Table 3.1: Target period with the respective total latency in cycles and ns.

3.2 Vitis HLS Optimization Comparison Results

With the optimization methods mentioned in subsection 2.5, the table 3.2 shows how

different optimization methods affect the total latency in ns. The clock period used for to

generate the following results is 11.3 ns as mentioned in subsection 3.1. An example of using

breakdown for loops in array regeneration can be seen in figure 3.2, where individual for loops

are used to regenerate array x. Whereas a single for loop is used to regenerate the entire array can

be seen from figure 2.12, where the same logic is written under with a single for loop.

Target period (ns) Total latency (cycles) Total Latency (ns)

10 (Timing violation) N/A N/A

15 1826 27390

13 1844 23970

11.5 1847 21240

11.3 1847 20870

31

Table 3.2: Vitis HLS optimization effect on final timing.

Figure 3.2: A single for loop is broken down into individual ones for the same logic (snippet).

Breakdown for loop in array

regeneration

For loop pipelining in

array regeneration
Latency (cycles) Latency (ns)

Yes Yes 3129 35360

Yes No 4681 52898

No Yes 1847 20870

No No 2972 33580

32

3.3 HLS vs CPU Performance Result

The HLS timing has been computed above, and the CPU time can be calculated and

reported using the chrono library. With a simple subtraction, the duration can be calculated in

equation 3.2 and the code is found in figure 3.3.

𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛 (𝑛𝑠) = 𝑡𝑖𝑚𝑒_𝑎𝑓𝑡𝑒𝑟_𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛_𝑐𝑎𝑙𝑙 (𝑛𝑠) − 𝑡𝑖𝑚𝑒_𝑏𝑒𝑓𝑜𝑟𝑒_𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛_𝑐𝑎𝑙𝑙 (𝑛𝑠) (Eq 3.2)

Figure 3.3: C++ logic for calculate CPU time in ns.

After taking the average over 1000 runs with the same code running, an average latency

can be computed and the speedup over the HLS latency can be calculated with the equation 3.3.

The data collected is shown in table 3.3.

𝑆𝑝𝑒𝑒𝑑𝑢𝑝 = 𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝐶𝑃𝑈 𝑙𝑎𝑡𝑒𝑛𝑐𝑦 (𝑛𝑠) / 𝐵𝑒𝑠𝑡 𝑉𝑖𝑡𝑖𝑠 𝐻𝐿𝑆 𝑡𝑜𝑡𝑎𝑙 𝑙𝑎𝑡𝑒𝑛𝑐𝑦 (𝑛𝑠) (Eq 3.3)

Table 3.3: Vitis HLS timing results vs CPU timing result.

Average CPU latency (ns) Best Vitis HLS total latency (ns) Speedup

65196.7 20870 3.1239

33

4. CONCLUSION

From the subsection 3.3, since the speedup is relatively small compared to the desired

speedup, there is not enough evidence to say the FPGA implementation has a significant

advantage over the CPU implementation. The result can also be affected by hardware restrictions

that the CPU is not optimized for small, single core operations, and the FPGA device, Zybo Z7

7010, does not have enough flip-flops and LUTs for further on-board testing. Although the

advantage of this implementation over CPU is not prominent, the process of combining different

optimization techniques greatly shows the potential for HLS focused optimization on FPGAs.

For example, the reason why breaking down the loops has worse performance in table 3.2 is

because there is no dependence exists between the statements in the loop, breaking the loops into

separate individual loops will only add in the overhead and thus increasing the overall latency. If

the dependency exists between the statements, the hardware scheduler may take a longer time to

process the pipeline and the overall performance may be worse due to the pipeline overhead.

Since the scheduler has to compensate for the dependency when the pipeline pragma is under

effect, it must delay the pipeline by putting in stalls and increase the total latency. The

experiment from table 3.1 is also interesting. It shows the physical limits of FPGA devices and

the main reason FPGAs can’t be used to replace the existing CPU based machines. But at the

same time, it also opens up other possible optimization techniques focusing on minimizing the

clock frequency on the critical path, and it also shows the impact of LUT size and flip-flop

numbers on FPGAs, such that a larger FPGA board usually would take less optimization efforts

to achieve the same timing requirements.

34

REFERENCES

[1] D. Firestone, “Azure accelerated networking: Smartnics in the public cloud,” Microsoft,

2018. [Online]. Available: https://www.microsoft.com/en-

us/research/uploads/prod/2018/03/Azure_SmartNIC_NSDI_2018.pdf.

[2] B. Van Essen, “Accelerating a random forest classifier: Multi-core, GP-GPU, or

FPGA?,” IEEE Xplore, 2012. [Online]. Available:

https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=6239820.

[3] M. N. Wright, “ranger: A Fast Implementation of Random Forests for High Dimensional

Data in C++ and R,” Journal of Statistical Software, Mar-2017. [Online]. Available:

https://arxiv.org/pdf/1508.04409.pdf.

[4] Fedesoriano, “Heart failure prediction dataset,” Kaggle, 10-Sep-2021. [Online].

Available: https://www.kaggle.com/datasets/fedesoriano/heart-failure-

prediction/metadata.

[5] M. Barbareschi, “Advancing synthesis of decision tree-based multiple classifier systems:

an approximate computing case study,” Springer, 12-Apr-2021. [Online]. Available:

https://link.springer.com/content/pdf/10.1007/s10115-021-01565-5.pdf.

[7] X. Lin, “Random Forest Architectures on FPGA for multiple applications,” Association

for Computing Machinery, May-2017. [Online]. Available:

https://dl.acm.org/doi/epdf/10.1145/3060403.3060416.

[8] “Vitis high-level synthesis user guide - xilinx.eetrend.com,” Xilinx, 22-Oct-2021.

[Online]. Available: http://xilinx.eetrend.com/files/2021-11/wen_zhang_/100555486-

227863-ug1399-vitis-hls.pdf.

