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ABSTRACT 

Analyzing Deep Learning Algorithms for Recommender Systems 

Tianyu Gu 

Department of Computer Science and Engineering 

Texas A&M University 

Research Faculty Advisor: Dr. James Caverlee 

Department of Computer Science and Engineering 

Texas A&M University 

As the volume of online information increases, recommender systems have been an 

effective strategy to overcome information overload by giving selective recommendations based 

on certain criteria such as user ratings and user interactions. Recommender systems are utilized 

in a variety of fields, with common examples being music recommendations and product 

recommendations on E-Commerce websites. These systems are usually constructed using either 

collaborative filtering, content-based filtering, or both. The most traditional way of developing a 

collaborative filtering recommender system is using matrix factorization, which works by 

decomposing a user-item interaction matrix into the product of two lower dimensionality 

rectangular matrix. However, as new technologies appear, matrix factorization is often replaced 

by other algorithms that could perform better than in a recommendation system.  

In recent years, deep learning has garnered considerable interest in many research fields 

such as computer vision and natural language processing. These successes are made possible by 

deep learning algorithms’ outstanding ability to learn feature representations non-linearly. The 
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influence of deep learning is also prevalent in recommender systems, as demonstrated by its 

effectiveness when applied to information retrieval and recommender research. This research 

project performs an analysis and implementation on variants of two deep learning algorithms, 

autoencoder and restricted Boltzmann machines, and how they perform in recommender systems 

compared to matrix factorization.  
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NOMENCLATURE 

BM  Boltzmann Machine 

ERBM             Explainable Restricted Boltzmann Machine 

RBM  Restricted Boltzmann Machine 

RMSE             Root Mean Square Error 

SELU              Scaled Exponential Linear Units 
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1. INTRODUCTION 

Broadly speaking, there are three types of recommender systems: collaborative filtering, 

content-based filtering, and hybrid (a mixture of the two previous methodologies) [1]. 

Collaborative filtering utilizes past user-item interactions to predict new recommendations and 

interactions. On the other hand, content-based filtering requires extra information about users 

and or items to generate recommendations [2]. This research project focuses on applying deep 

learning models to collaborative filtering-based recommender systems. 

1.1 Types of Collaborative Filtering 

There are two types of collaborative filtering approaches: memory-based and model 

based. Memory-based collaborative filtering uses the user-item interaction matrix directly and 

fetches similar users and/or items for predictions [3]. Model-based collaborative filtering 

analyzes interactions between users and items and builds a model based off these interactions 

that provides the recommendations. This research will focus on model-based approaches for 

building recommender systems.  

1.2 Common Issues with Traditional Recommenders 

There are several common issues that recommender systems often face. In this paper, we 

will look at how deep learning techniques can be incorporated into traditional recommenders to 

mitigate these problems.  

• Data Sparsity: This is a problem that occurs when the users and items matrix is filled 

sparsely [3]. Due to the sparse relationships, recommendation accuracy and hit ratio drop. 

• Cold-Start: This issue occurs when the recommender system is unable to recommend to 

new users or when it cannot recommend new items [3].  
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• Inability to Analyze Multimedia: Most of the earliest recommenders are unable to 

handle data that are not text or numbers. With the incorporation of more advanced 

algorithms such as deep learning, recommendation systems are now able to analyze 

heterogeneous data sources (images, audio, video etc.) Although the dataset used in this 

research would only include text and numbers, the models implemented can also be used 

to analyze multimedia data.  

1.3 Deep Learning for Collaborative Filtering 

1.3.1 Strengths of Deep Learning Recommendation Systems 

• Ability to Model Nonlinear Interactions [4]. Unlike linear models, deep learning neural 

networks are able to model nonlinearity in data with nonlinear activation functions. This 

functionality allows the model to capture complex user-item interactions that may 

otherwise be unidentified with linear models. For example, matrix factorization, which is 

a linear model, would be unable to capture the complex nonlinear interactions because it 

linearly combines user and item latent factors. Nevertheless, user preferences are often 

nonlinear and require complex models to detect these underlying patterns.  

• Efficiency in Representation Learning [4]. Deep learning neural networks are efficient 

in learning from underlying latent factors and representations from data. With large 

amounts of user-item interaction data, learning about these factors and representations 

would improve understanding of users and items, thus resulting in a better performing 

recommender.  

• High Flexibility [4]. There is a great variety of deep learning frameworks, including 

Tensorflow, PyTorch, Keras etc. Most of these tools are flexible in the sense that they are 

developed using modular programming, which is a software design technique that 
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separates functionalities of a program into independent and interchangeable modules. 

This enables the development of various hybrid models and neural structures to be more 

efficient. 

1.3.2 Drawbacks to Deep Learning in Recommender Systems 

• Less Interpretable than Traditional Methods [4]. Deep Learning algorithms are 

generally less interpretable because they tend to behave like black boxes. Unlike 

traditional methods (matrix factorization etc.) whose algorithms and matrix vectors are 

clearly explainable, the hidden layers and weight vectors for deep learning models are 

difficult to explain. However, with recent advanced research on neural architectures, 

neural models have become more interpretable than the past, which makes machine 

learning models even more desirable for recommender systems.  

• Massive Data Requirement [4]. In order for a deep learning neural network to be well-

trained, large amounts of data need to be fed into the model. However, this problem is 

not significant in recommender systems research because data are mostly readily 

available. 

• Hyperparameter Tuning [4]. The performance of a deep learning or machine learning 

model is highly dependent on its parameters. This process is highly tedious and model 

performance can be highly depreciated if hyperparameters are not tuned properly.  
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2. MODELS 

Various types of collaborative filtering models have been proposed to make 

recommendations more personalized. This section outlines the general concept behind each type 

of algorithm and model. The specific models and details would be explained further in the 

methods section.  

2.1 Matrix Factorization 

Matrix factorization is one of the traditional collaborative filtering methods for creating 

recommender systems. It is a way to generate latent features by decomposing a user-item 

interaction matrix into two lower dimensional matrices inferred from user-item rating patterns. 

These two lower dimensioned matrices can then be used to estimate user-item interaction values 

that were initially null.   

For example, with the input of users’ ratings on different movies, we can predict how the 

users would rate new movies based on their past ratings. Based on these estimated ratings, the 

recommender can then make predictions on what the users may like and recommend users based 

on these predictions.  

A vanilla matrix factorization model would involve two vectors. Each user u is mapped 

to a vector v_u while each item i is mapped to vector v_i. For each user u, the elements in vector 

v_u represents the correlation the user has to specific latent factors. Similarly, for each item i, the 

elements in v_i represents the correlation the item has to corresponding latent factors. Once the 

two vectors are multipled together using dot product, the resulting dot product is able to capture 

the interaction matrix between each user and item pair [5]. This logic is represented in Equation 

2.1.  
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𝑅𝑢𝑖 = 𝑣𝑖  ∙  𝑣𝑢                      (2.1) 

To obtain the mapping of each item and user to vectors v_i and v_u, we have to complete 

an optimization problem, which minimizes the regularized squared error on the set of available 

ratings [5]. This equation to minimize is shown in Equation 2.2. 

∑(𝑅𝑢𝑖 − 𝑣𝑖 ∙ 𝑣𝑢)2 + 𝑅𝑒𝑔𝑢𝑙𝑎𝑟𝑖𝑧𝑒(𝑣𝑖 + 𝑣𝑢)                      (2.2) 

This model learns by generalizing known ratings to predict unknown ratings, which may 

also be from new users and items. However, overfitting on the training data is a potential 

problem in this case. Therefore, variants of the vanilla matrix factorization model would have 

other parameters that are added to minimize overfitting.   

2.2 Autoencoder 

An autoencoder is a type of directed neural network that has both encoding and decoding 

layers [6]. As this network is best suited for unsupervised learning, it has been shown to be 

exceptional in learning underlying feature representations in fields such as computer vision and 

natural language processing. By learning the latent set of features, the input data can be 

compressed in the mid layers [6]. The reconstruction process happens in the decoding layer, 

where inference for prediction happens.  

There are typically three components in an autoencoder: visible input layer, hidden 

layers, and visible output layer. Figure 2.1 provides a general structure of a vanilla autoencoder. 

There have been many variations on how autoencoders can be applied in recommender systems, 

two of which will be discussed in this paper.  
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Figure 2.1: Structure of a vanilla autoencoder 

In the hidden layers of the encoder, the encoder transforms the higher dimensional input 

data, x, into lower dimensioned encoded data, h, with a function f. This function is shown in 

Equation 2.3. 

ℎ = 𝑓(𝑥) =  𝑆𝑓(𝑊𝑥 + 𝑏)                                      (2.3) 

        Sf : activation function (Sigmoid, TanH, ReLU etc.) 

        W: weight matrix 

                                 b : bias vector 

On the other side, the decoder decodes the encoded data h back using a reconstruction 

function g. The reconstruction function is shown in Equation 2.4. 
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𝑥′ = 𝑔(ℎ) =  𝑆𝑔(𝑊 ′ℎ + 𝑏′)                                 (2.4) 

Sg : activation function (Sigmoid, TanH, ReLU etc.) 

                              W′ : weight matrix for reconstruction 

      b′ : bias vector for reconstruction 

 In order for the reconstruction of the original input data to be as accurate as possible, the 

autoencoder can be trained to minimize the reconstruction error between x and x′ using the 

squared error (Equation 2.5) for regression problems and cross-entropy error (Equation 2.6) for 

classification problems.  

 The formula for squared error between input data, x, and reconstructed data, x′ is: 

𝑆. 𝐸. =  ||𝑥 −  𝑥′||2                                          (2.5) 

 The formula for cross-entropy error is: 

𝐶. 𝐸. =  − ∑ (𝑥𝑖𝑙𝑜𝑔𝑥𝑖
′ + (1 − 𝑥𝑖) log(1 − 𝑥𝑖

′))𝑛
𝑖=1                (2.6) 

2.3 Restricted Boltzmann Machines (RBM) 

According to the inventors of the Boltzmann Machines, “A Boltzmann Machine is a 

network of symmetrically connected, neuron-like units that make stochastic decisions about 

whether to be on or off [7].” In other words, each node in a Boltzmann Machine network has a 

probability associated with it that are used to make binary decisions. It can be used for two types 

of computational problem: the search problem and the learning problem.  

• Search Problem. The weights of the connections connecting the nodes are fixed and 

used to represent the cost function of an optimization problem [7]. 

• Learning Problem. The weights of the connections are not initially given. In this 

problem, the Boltzmann Machine is shown a set of binary data vectors that would be 

used to find the weights of the connections. This is done by calculating the set of weights 
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that would make the binary data vectors the optimal solution for the optimization 

problem [7]. 

The Restricted Boltzmann Machine is a special type of Boltzmann Machine with two layers 

of nodes. The first layer contains visible nodes while the second layer contains hidden nodes. 

There are inter-layer connections between nodes, but no intra-layer connections. The general 

architecture of a RBM is shown in Figure 2.2.  

 

Figure 2.2: Structure of a vanilla Restricted Boltzmann Machine 
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3. METHODS  

3.1 Data Preprocessing 

The dataset used for this research project is the public MovieLens 20M dataset containing 

movie reviews in the schema as shown in Figure 3.1.  

 

Figure 3.1: Snippet of MovieLens 20M dataset 

In this dataset, users give ratings for movies within the range 1-5. In order to apply the 

various models, the dataset needs to be preprocessed into a matrix format to represent user-item 

interactions. In Python, this would be a Pandas data frame. For user-item interactions that were 

initially null, a value “0” would be given to replace the null value.  

3.2 Training and Testing Data 

To split the dataset into training and testing data, the leave-one-out methodology is used 

(Figure 3.2). In this strategy, the most recent review (according to the timestamp) for each user is 

used as testing data while the rest will be used as training data. For example, the movies 

reviewed by user 383 is shown below. The last movie reviewed by the user is the 2014 movie 

Guardians of The Galaxy. This data point will be used as the testing data for this user, and the 

rest of the reviewed movies will be used as training data. 

This train-test split strategy is commonly used in training and evaluating recommender 

systems to avoid biases. If a random split is done on the dataset, a user’s recent reviews could 
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potentially be used for training while the older reviews are used for testing. This is called the 

look-ahead bias, which would then decrease the performance of the trained model significantly.  

Therefore, to reduce this bias, the dataset is split into a train and test set using the leave-

one-out methodology.  

 

Figure 3.2: Train-test split using leave-one-out methodology 

3.3 Matrix Factorization 

There are many different variants of matrix factorization. In this research, the model that 

is utilized is the vanilla matrix factorization model that involves a regularization parameter. This 

is a particularly important model to understand because it serves as one of the foundation 

methods for collaborative filtering in recommender systems. Figure 3.3 gives a visual 

representation of matrix factorization.  
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Figure 3.3: Matrix Factorization 

In the implemented matrix factorization, the original user-item interaction matrix is 

decomposed into a user matrix and item matrix via gradient descent. Then, by estimating values 

in the two lower dimension matrices, the values in the user-item matrix (including values that 

were initially null) are predicted by multiplying the two matrices together.  

The following parameters are used and tuned to perform the matrix factorization process.  

• Steps: maximum number of steps to perform the optimization was set to 5000 

• Alpha: the learning rate was set to 0.0002 

• Beta: the regularization parameter was set to 0.02 

• K: the hidden latent features was set to 8 

• Iterations: the number of iterations is set to 100,000 
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3.4 Training AutoRec 

The AutoRec is one of the earliest models that applied autoencoders onto collaborative 

filtering for recommender systems. This model, which has the structure of a vanilla autoencoder, 

serves as a solid foundation and inspiration for later models that are developed.  

In this model, there are m users, n items, and a partially filled user-item interaction matrix 

with dimension m x n [5]. The users and items vectors are represented by ru and ri respectively. 

There are two types of AutoRecs, namely the item-based AutoRec (I-AutoRec) and the user-

based AutoRec (U-AutoRec). Regardless of the model variant, the structure in Figure 2.1 is 

copied n times, one copy for each user or item. The reconstruction equation for the input for this 

model is shown in Equation 3.1, where f and g are both activation functions.  

                      ℎ(𝑟; 𝜃) = 𝑓(𝑊 ∙ 𝑔(𝑉𝑟 + 𝜇) + 𝑏)                                      (3.1) 

To implement this model, an Encoder class is constructed to automate the creation of 

neural network layers using nn.Module.List. This Encoder class is then used as a template to 

build autoencoder networks. Once an instance of an Autoencoder is created using the Encoder 

class, it can be used to train using the training set and test using the testing set obtained during 

the train-test split. The tuned hyperparameters used to implement this model is shown in Table 

3.1.  
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Table 3.1: Hyperparameters for AutoRec 

Number of Hidden Units 500 

Activation Function Sigmoid 

Learning Rate 0.001 

Batch Size  512 

Learning Rate Decay every 50 epochs 

L2 Regularizer Value 1 

Optimizer Method Adam 

Random Seed 20 

 

3.5 Training DeepRec 

The DeepRec is a model created by Oleissi Kuchaiev and Boris Ginsburg. This model is 

inspired by the AutoRec, with some significant difference and characteristics such as the 

following [6].  

• The network is much deeper than regular autoencoder networks 

• The model uses scaled exponential linear units (SELUs) 

• The dropout rate is high 

• Iterative output re-feeding is used during training  

During forward pass and inference pass, the model takes a user represented by his vector 

of ratings from the training set x, which is very sparse, while the output of the decoder f(x) is 

dense and contains rating predictions for all items in the corpus [6]. Thus, to explicitly enforce 

fixed-point constraint and perform dense training updates, the model improves on every 

optimization iteration with an iterative dense re-feeding step. Table 3.2 shows the 

hyperparameters used to tune this model.  
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Table 3.2: Hyperparameters for DeepRec 

Architecture Layers [512, 512, 1024, 512, 512] 

Activation Function SELU 

Learning Rate 0.001 

Batch Size  512 

L2 Regularizer Value 0.001 

Optimizer Method Stochastic Gradient Descent 

Momentum 0.9 

Dropout Rate 0.8 

 

3.6 Training the Restricted Boltzmann Machine 

The whole user-item interaction matrix is a collection of Vs, where each V corresponds to 

each user’s ratings. Because each user can have different missing values, each will have a unique 

RBM graph. In each RBM graph, the edges connect ratings and hidden features but do not 

appear between items of missing ratings [7]. W is treated as a set of edge potentials that are tied 

across all such RBM graphs. 

In the training phase, RBM characterizes the relationship between the ratings and hidden 

features using conditional probabilities as shown in Equation 3.2 and 3.3. 

𝑝(𝑣𝑗
𝑘 = 1|ℎ) =  

exp(𝑏𝑗
𝑘+∑ ℎ𝑎𝑊𝑗

𝑘𝐹
𝑐=1 )

∑ exp (𝑏𝑗
𝑘5

𝑘=1 +∑ ℎ𝑎𝑊𝑗
𝑘)𝐹

𝑐=1

                                      (3.2) 

𝑝(ℎ = 1│𝑉) =  𝜎(𝑏𝑎 + ∑ ∑ 𝑣𝑗
𝑘5

𝑘=1 𝑊𝑗
𝑘𝑑

𝑗=1 )                          (3.3) 

After obtaining the probabilities, compute the distribution of each hidden feature in h 

based on observed ratings V and the edge potentials W.  
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3.7 Training the Explainable Restricted Boltzmann Machine 

Explanations for recommendations can have multiple benefits. 

1. Effectiveness - helping users to make the right decisions based on explanations  

2. Efficiency - help users to make faster decisions based on explanations 

3. Transparency – reveal the underlying reasoning behind the recommendations given 

 For RBM, this model assigns a low-dimensional set of features to items in a latent space, 

which makes it difficult to interpret these learned features. Therefore, it is necessary to choose an 

interpretable technique with similar prediction accuracy as RBM. 

For the Explainable RBM, the researchers constructed an RBM model for a collaborative 

filtering recommendation system that suggests items that are explainable while maintaining 

accuracy [8]. The model is limited to recommendations where no additional source of data is 

used in explanations, and where explanations for recommended items can be generated from the 

ratings given to these items, by the active user’s neighbors only. 

The interpretability of results for this model is based on the Explainability Score for item 

I and for user u, which is defined in Equation 3.4 [8]. 

𝐸𝑥𝑝𝑆𝑐𝑜𝑟𝑒(𝑢, 𝑖) =  
∑ ∈𝑁𝑘(𝑢)𝑟𝑥,𝑖𝑥

∑ 𝑅𝑚𝑎𝑥𝑁(𝑢)
                                                (3.4)  
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4. RESULTS 

4.1 AutoRec

 

Figure 4.1 AutoRec Cost Function 

One special aspect of the AutoRec model implemented is that there is a cost function 

associated with it. Figure 4.1 displays the exponential decrease in the cost function as the number 

of epochs increases. During the first epoch through the training data, the cost sits high at over 4 

million. After training the model for 500 epochs, the test cost during the first few epochs are 

significantly lower when applied on test data. This shows that the AutoRec model was trained 

successfully to reduce the cost function.  
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4.2 Test RMSE  

 

 Figure 4.2 Test RMSE for Boltzmann Machines 

 

Figure 4.3 Test RMSE for all models implemented 
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All of the implemented models are compared using one metrics: the test RMSE. As 

shown in Figure 4.2, Matrix Factorization and DeepRec start off with test RMSEs that are over 

2.5 before dropping down to a plateau at around 1.0. For AutoRec, its test RMSE begins at a 

smaller value of around 1.25 before stabilizing at a value close to the Matrix Factorization and 

DeepRec.  

On the other end of the spectrum, the two models that have significantly lower test 

RMSEs from the very beginning are the two types of Boltzmann Machines: RBM and ERBM. 

As displayed in Figure 4.3, the test RMSEs for these two variants vary among themselves. While 

the test RMSE for RBM remains relatively stable with small spikes and dips, the RMSE for 

ERBM decreases exponentially to a low of 0.3. Table 4.1 shows the exact values obtained for 

each model’s test RMSE at the last epoch.      

             Table 4.1: Test RMSE during last epoch 

 

 

 

 

 

 

 

 

 

The number of epochs to run for each model is determined by the trend of the test RMSE. 

If the test RMSE has leveled off, the process stops. Based on the test RMSE obtained as shown 

in Table 4.1, Restricted Boltzmann Machines have significantly lower test RMSE compared to 

Model Number of 

Epochs 

Test RMSE 

Matrix Factorization 150 0.9983 

AutoRec 500 0.9101 

DeepRec 500 0.9251 

Restricted BM 50 0.5902 

Explainable RBM 50 0.3116 
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other models. The Autoencoder models produced RMSEs that are lower than that for Matrix 

Factorization model, but not as significant as the RBMs.  

For datasets with only text and numbers, it appears that autoencoders do not have a 

significant advantage over matrix factorization. The strength of deep learning models such as 

autoencoders come from the fact that they are able to analyze heterogenous data that includes 

images, videos, and audio. With only text, the AutoRec and DeepRec are not remarkably 

outstanding compared to matrix factorization, especially with their more complex architecture 

and implementations.  

Exact recommendations were not made in this research. However, if recommendations 

were made based these models, the Explainable RBM would be able to more accurately predict 

the ratings that users would give to movies and thereby recommending movies that they would 

more probably enjoy.  
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5. CONCLUSION 

In this body of work, we have discussed the intuition and logic behind some of the most 

popular deep learning models that are used in recommender systems today. Deep learning 

models such as autoencoder and Boltzmann machine variants allow us to capture nonlinearity 

within data and are extremely efficient in learning from underlying latent features. Nevertheless, 

the disadvantages of using deep learning algorithms in recommender systems are also analyzed 

to shed light on the common problems faced by research scientists today.  

Based on five models proposed by researchers, we implemented our own version of the 

models and hyperparameters. From the results obtained, we can observe that the two variants of 

Restricted Boltzmann machines performed significantly better than other models when evaluated 

using RMSE.  

5.1 Future Work 

While the results obtained show that the two variants Restricted Boltzmann Machines 

produced lower test RMSEs compared to the other models, this is not conclusive. The results 

obtained are only based on specific hyperparameters. If these hyperparameters are altered and 

models retrained, the results may different. Therefore, further research can be done to see how 

variants of these hyperparameters can affect model performance.  

Additionally, the performance of the models for this study is only measured based on 

RMSE. However, there are many other metrics for recommender evaluation such as hit ratio, 

recall, precision etc. In future research endeavors, the model implementations can be evaluated 

using these metrics to provide a more holistic view of the models.  
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