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ABSTRACT

Identifying anomalies with complex patterns is different from the conventional anomaly de-

tection problem. Firstly, for cross-modal anomaly detection problems, a large portion of data

instances within a multi-modal context is often not anomalous when they are viewed separately in

each modality, but they present abnormal patterns or behaviors when multiple sources of informa-

tion are jointly considered and analyzed. Secondly, for the attribution network anomaly detection

problem, the definition of anomaly becomes more complicated and obscure. Apart from anoma-

lous nodes whose nodal attributes are rather different from the majority reference nodes from a

global perspective, nodes with nodal attributes deviate remarkably from their communities are also

considered to be anomalies. Thirdly, given a specific task with the different data structures, the

process of building a suitable and high-quality deep learning-based outlier detection system still

highly relies on human expertise and laboring trials. It is also necessary to automatically search

the suitable outlier detection models for different tasks. In this dissertation, we made a series of

contributions to enable advanced anomaly detection techniques for complex data structures and

discussing how to automatically design anomaly detection frameworks for various data structures.
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1. INTRODUCTION

1.1 Motivation and Challenges

Anomalies refer to the data points, items, events, observations, or behaviors that are rare and

different from the majority in a given dataset. Over the past few decades, various successful

anomaly detection methods have been developed and widely applied in a number of high-impact

domains, including fraud detection, cybersecurity, algorithmic trading, and medical treatment [1].

Identifying anomalies from a swarm of normal instances not only enables the detection and early

alert of malicious behaviors but also helps enhance the performance of myriad downstream ma-

chine learning tasks.

Anomaly detection refers to the problem of finding instances in a dataset that do not conform

to the expected patterns or behaviors of the majority [1]. The anomaly detection problem has a

wide range of applications in many high-impact domains, such as fraud detection [2], intrusion de-

tection [3], and healthcare monitoring and alert [4]. Conventional anomaly detection methods can

be broadly categorized into classification-based methods [5, 6] and clustering-based methods [7].

The classification-based methods are often applied to learn a classifier from a set of labeled training

data and then classify the test data into normal classes or anomalous classes [5, 6]. The clustering-

based methods, on the other hand, often assume that anomalies belong to small and sparse clusters,

while normal instances belong to large and dense clusters [7].

Conventional detection algorithms are mainly based on the assumption that instances are in-

dependent and identically distributed (i.i.d.) [8]. While in many real-world scenarios, the data we

collected often comes from different sources or can be represented by different feature formats,

forming the so-called complex data structure. Traditional methods lack the capability to model

these complex data structures for anomaly detection. For instance, in synthetic ID detection, the

target is to differentiate generated fake identities from the true identities [9] of users. In this task,

each identity is associated with information from different modalities, such as ID photos, bank
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transaction histories, and using online social behaviors. In other practical scenarios, instances are

often explicitly or implicitly connected with each other, resulting in the so-called attributed net-

works [10]. Attributed networks are increasingly used to represent various real-world systems

since the synergy between network structures and nodal attributes. For instance, in social media,

users are not only affiliated with profile information and personalized posts as nodal attributes but

also linked with each other by different social relations [11]. Time-series representation learn-

ing is a fundamental task for time-series analysis. While significant progress has been made to

achieve accurate representations for downstream applications, the learned representations often

lack interpretability and do not expose semantic meanings. In the meanwhile, given a specific task

with different data structures, the process of building a suitable and high-quality deep learning-

based outlier detection system still highly relies on human expertise and laboring trials. It is also

necessary to automatically search the suitable outlier detection models for different tasks.

Identifying anomalies with complex patterns is different from the conventional anomaly detec-

tion problem. Firstly, for cross-modal anomaly detection problem, a large portion of data instances

within a multi-modal context is often not anomalous when they are viewed separately in each

individual modality, but they present abnormal patterns or behaviors when multiple sources of

information are jointly considered and analyzed. For instance, in bank transaction records, each

transaction is associated with different kinds of information like user profile, account summary,

transaction times, and the user signature, which are naturally of different modalities. In this case,

if the user profile is not consistent with other sources of information of the same user, it might

cause a bank fraud associated with a major crime. In other words, these anomalies present incon-

sistent behaviors across different modalities [12], and the accurate detection of these anomalies

has significant implications in practice. Secondly, for attribution network anomaly detection prob-

lem, the definition of anomaly becomes more complicated and obscure. Apart from anomalous

nodes whose nodal attributes are rather different from the majority reference nodes from a global

perspective, nodes with nodal attributes deviate remarkably from their communities are also con-

sidered to be anomalies [13]. The topological structures are within irregular or non-Euclidean
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spaces [14], and traditional anomaly detection methods [15] could not be directly applied to at-

tributed networks. Thirdly, complex data structure with temporal correlations makes latent codes

hard to interpret. Time-series data usually contain temporal correlations, which cannot be directly

captured and interpreted by traditional image-focused disentangle methods. While traditional se-

quential models, like LSTM or LSTM-VAE, could be used to model the temporal correlations,

they neither provide interpretable predictions, as is often criticized, nor have an disentangle mech-

anism. Fourthly, the naturally imbalanced distribution and complex data structures have introduced

new challenges in designing an automated anomaly detection framework. We often need to find a

suitable definition of the anomaly and its corresponding objective function for a given real-world

data. One typical way to define the anomalies is to estimate the relative density of each sample and

declare instances that lie in a neighborhood with low density as anomalies [16]. Yet, these density-

based techniques perform poorly if the data have regions of varying densities. Another way to

define anomalies is through clustering. An instance will be classified as normal data if it is close

to the existing clusters, while the anomalies are assumed to be far away from any existing clus-

ters [17]. However, these clustering-based techniques will be less effective if the anomalies form

significant clusters among themselves [1]. The proper definition of anomalies not only requires

domain knowledge from researchers and experience from data scientists but also needs thorough

and detailed raw data analysis efforts.

1.2 Contributions

To tackle the core challenges of complex data structures, we made four main contributions in

this dissertation:

• To model multi-modality structures, the first contribution of this research dissertation is to

systematically examine and define the cross-modal anomaly detection problem and ana-

lyze the limitations of existing efforts. Then we propose a novel cross-modal deep learning

framework CMAD which could project data from different modalities into a comparable

consensus feature space for anomaly detection when the original multi-modal data have dif-
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ferent distributions.

• To capture topological relations, we propose a spectral convolution and deconvolution-based

framework - SpecAE, to project the attributed network into a tailored space to detect global

and community anomalies. SpecAE leverages Laplacian sharpening to amplify the distances

between representations of anomalies and the ones of the majority.

• To understand sequential correlations, we explore the time-series representation learning

task. We investigate to generate hierarchical semantic concepts as the interpretable and dis-

entangled representations of time-series and thus incorporating sequential data to anomaly

detection tasks.

• To automatically design anomaly detection frameworks for various data structures, we iden-

tify a novel and challenging problem (i.e., automated anomaly detection) and propose a

generic framework AutoOD. To the best of our knowledge, AutoOD describes the first at-

tempt to incorporate AutoML with an anomaly detection task and one of the first to extend

AutoML concepts into applications from data mining fields.

• Considering a large number of anomaly detection tasks in industrial applications and their

similarities, we design a full-stack, end-to-end system for outlier detection. The end-to-end

outlier detection system includes database operations and maintenance, the search process

of automated outlier detection (including the search space and the search strategy design),

and a visualization module which designs for users to understand the detection results better.

The first three contributions lie in modeling complex data structures for anomaly detection

settings, while the remaining one focuses on automatically search an optimal anomaly detection

framework for a given dataset with specific data characteristics.

1.3 Dissertation Overview

The remainder of this dissertation is organized as follows:
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• Chapter 2: Cross-Model Anomaly Detection. In this chapter, we identify anomalies

whose patterns are disparate across different modalities and we refer the studied problem

as cross-modal anomaly detection.

• Chapter 3: Attributed Network Anomaly Detection. In this chapter, we design an anomaly

detection approach which jointly model the nodal attributes and topological dependencies

through graph convolution to enlarge the modeling capacity, which preserves the key infor-

mation of the input nodal attributes and the topological relations without the restriction of

homophily.

• Chapter 4: Disentangled Representation on Time Series. In this chapter, we explore

multi-level disentanglement strategies by covering both individual latent factors and group

semantic segments for time series.

• Chapter 5: Automated Outlier Detection. In this chapter, we explore how to design an au-

tomated outlier detection algorithm to find an optimal deep neural network model for a given

dataset. We carefully design a search space specifically tailored to the automated outlier de-

tection problem, covering architecture settings, outlier definitions, and the corresponding

objective functions. We propose a curiosity-guided search strategy to overcome the curse of

local optimality and stabilize search process.

• Chapter 6: An End-to-end Automated Anomaly Detection System. In this chapter, we

present PyODDS, a full-stack, end-to-end system for outlier detection. PyODDS describes

the first attempt to incorporate automated machine learning with outlier detection, and be-

longs to one of the first attempts to extend automated machine learning concepts into real-

world data mining tasks.

• Chapter 7: Conclusions and Future Research Opportunities. We conclude the disserta-

tion with a summary of contributions and discuss potential research directions to the results

presented.
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2. CROSS-MODAL ANOMALY DETECTION1

2.1 Motivation

Existing anomaly detection methods predominately focus on data from a single source. While

in many real-world scenarios, the data we collected often comes from different sources or can be

represented by different feature formats, forming the so-called multi-modal data. For instance, in

synthetic ID detection, the target is to differentiate generated fake identities from the true identi-

ties [9] of users. In this task, each identity is associated with information from different modalities,

such as ID photos, bank transaction histories, and user online social behaviors. Compared with the

data that is collected from a single source, when different modalities are presented together, they

often reveal complementary insights into the underlying application domains and can further lead

to better learning performance. For example, recent research advances have shown that the cross-

modal correlations among different modalities are valuable for many data mining tasks such as

classification and clustering [18, 19, 20, 21, 22]. Hence, it motivates us to investigate whether the

anomaly detection problem could be benefited from analyzing multi-modal data.

In this chapter, we focus on identifying anomalies whose patterns are disparate across different

modalities and we refer the studied problem as cross-modal anomaly detection, which is different

from the conventional anomaly detection problem. The major reason is that a large portion of data

instances within a multi-modal context are often not anomalous when they are viewed separately

in each individual modality, but they present abnormal patterns or behaviors when multiple sources

of information are jointly considered and analyzed. For instance, in bank transaction records, each

transaction is associated with different kinds of information like user profile, account summary,

transaction times and the user signature, which are naturally of different modalities. In this case, if

the user profile is not consistent with other sources of information of the same user, it might cause

a bank fraud associated with a crucial crime. In other words, these anomalies present inconsis-

1This chapter is reprinted with permission from “Deep structured cross-modal anomaly detection”, by Yuening Li,
Ninghao Liu, Jundong Li, Mengnan Du, Xia Hu, 2019. Proceedings of the International Joint Conference on Neural
Networks (IJCNN). Copyright 2019 by IEEE.
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tent behaviors across different modalities [12], and the accurate detection of these anomalies has

significant implications in practice.

However, cross-modal anomaly detection remains a challenging task. The main reason is that,

to distinguish the cross-modal anomalies from other normal instances, we need to develop a prin-

cipled framework to model the correlations between different modalities as the distributions of dif-

ferent modalities could be very complicated and may vary remarkably. Existing efforts either aim

at maximizing the correlations between different modalities through linear mapping [18, 19], or

try to extract features from different modalities with low-rank approximation techniques [23, 24].

In other words, the main focus of these methods is to embed various modalities into a consensus

low-dimensional consensus feature space with a shallow learning model. In fact, the correlations

might not be well captured in the low-dimensional consensus feature space by these shallow mod-

els due to their limited representation ability. In a nutshell, these shallow models cannot fully

capture the nonlinear correlations among different modalities, which necessitates the investigation

of the cross-modal anomaly detection problem with deep learning models.

2.2 Cross-Modal Anomaly Detection (CMAD ) Framework

In this section, we introduce the proposed cross-modal anomaly detection framework CMAD in

details. We begin with a formal definition of the cross-modal anomaly detection problem, and then

propose a principled method to learn the consensus data representations across different modalities.

After that, we discuss how to leverage deep structure to extract effective feature representations.

Finally, we will introduce how to perform cross-modal anomaly detection with the built deep

learning model.

2.2.1 Problem Definition

Given K different modalities, M1, M2,..., MK are the corresponding feature matrices of these

K modalities in C different classes, where Mk ∈ RN×dk , and dk is the feature dimensionality

of the kth modality. N is the number of instances in the dataset. The feature representation of

the ith instance is denoted as Mi, where i ∈ {1,2,...,N}. Mi
k denotes the feature vector of the ith
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instance from modality Mk. The class label of the ith instance in modality Mk is denoted as yi
k,

where yi
k ∈ {1,2,...,C}. Our task is to find the anomalous instances whose patterns (w.r.t. class

labels) are inconsistent across different modalities. For the notation convenience and without loss

of generality, we only include two modalities MA and MB when introducing the methodology,

where A, B ∈ {1,2,...,K} and A ̸= B, but our method can be easily extended to consider any

number of modalities.

Based on the aforementioned terminologies, we define the problem of cross-modal anomaly

detection as follows:

Theorem 1. Cross-Modal Anomaly Detection: Given a dataset X which contains multiple modal-

ities as data sources, such as MA, MB, we define that the ith instance in X is regarded as an

anomaly when:

F (Mi
A,M

i
B) < ϵ, (2.1)

where F (., .) is a function measuring the cross-modal similarity between a pair of observations,

whereas in this definition, the observations belong to the same instance. The parameter ϵ is a

pre-defined threshold value such that if the measured similarity is larger than or equals to ϵ, we

regard that the ith instance is normal across the two modalities; otherwise, the ith instance is a

cross-modal anomaly.

2.2.2 Data Fusion across Different Modalities

To detect the cross-modal anomalies, the fundamental prerequisite is to develop a principled

way to fuse the information from different modalities. To achieve this target, a prevalent way

is to learn the mapping function which could project instances from different modalities into a

consensus feature space. In this way, it presents us a unified feature space in which we can measure

the cross-modal similarity of the data instances, based on which the cross-modal anomaly detection

can be easily carried out.

To this end, we transform the instances from two modalities A and B into a consensus feature

space with two linear transformation matrices, denoted as U ∈ RdA×r and V ∈ RdB×r, where r is
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the dimensionality of the resultant unified feature space and its value is much smaller than dA and

dB. After transformation, we obtain the following data representations for modalities A and B:

MÃ = UTMA, (2.2)

MB̃ = VTMB. (2.3)

Given a pair of instances i and j, we employ the cosine similarity to measure their cross-modal

similarity in the transformed feature space:

F (Mi
A,M

j
B) = cos(Mi

Ã
,Mj

B̃
)

=
Mi

Ã
·Mj

B̃

||Mi
Ã
|| · ||Mj

B̃
||

=
UTMi

A ·VTMj
B

||UTMi
A|| · ||VTMj

B||
.

(2.4)

To find the cross-modal anomalies, we need to ensure that for the pair of instances with con-

sistent patterns across different modalities (i.e., yi
A = yj

B), their cross-modal similarity in the

transformed feature space should be high. To this end, the loss function can be expressed as fol-

lows:

min
U,V

∑
{i,j}∈S

1− F (Mi
A,M

j
B), (2.5)

where the set S contains the instance pairs {i, j} whose cross-modal observations are consistent,

i.e., yi
A = yj

B.

Also, we need to penalize the instance pairs with inconsistent patterns across different modali-

ties. In particular, in the training process, we not only make use of the instance pairs with consistent

patterns across different modalities, but also incorporate an additional set of negative samples by

negative sampling [25]. Let N = {(p, q)} be the set of the negative samples where their cross-

modal patterns are inconsistent (i.e., yp
A ̸= yq

B), then to learn the mapping matrices, the loss

function for encouraging dissimilarities of negative samples can be presented in the following for-
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mat:

min
U,V

∑
(p,q)∈N

max (0, F (Mp
A,M

q
B)− γ) . (2.6)

In the above formulation, the hyperparameter γ, as a margin value, controls the penalty degree

of the inconsistent patterns. Specifically, if F (Mp
A,M

q
B) > γ, it implies that the instance pairs

with inconsistent patterns across different modalities are regarded as similar and it is necessary to

penalize it in the loss function.

By combining Eq. (2.5) and Eq. (2.6), it leads to the following objective function for the trans-

formation matrices learning:

min
U,V

∑
{i,j}∈S

1− F (Mi
A,M

j
B) + λ0

∑
(p,q)∈N

max (0, F (Mp
A,M

q
B)− γ) + λ1(||U||2F + ||V||2F ). (2.7)

The above loss function consists of three terms. The first term is to “pull” the projections of dif-

ferent modalities together if their cross-modal patterns (w.r.t. instance class labels) are consistent,

while the second term is to “push” them further apart otherwise (as shown in Fig. 2.1(b)). The

resultant unified feature space is shown in Fig. 2.1(c). The parameter λ0 controls the influence

of negative sampling. The third term is a regularization term, which controls the bias-variance

trade-off in order to avoid the over-fitting, and λ1 is the regularization hyper-parameter. The afore-

mentioned objective function can be effectively solved with coordinate descent methods, in which

the variables U and V are updated in an alternating way until the objective function converges to

a local optimum.

2.2.3 Deep Structured Cross-Modal Anomaly Detection Framework - CMAD

Deep neural networks have been successfully applied as a powerful feature learning strategy

for different types of single modality data, including text, image and audio data [26]. The main

reason for the success can be attributed to the fact that deep neural networks are capable of learning

nonlinear mappings by extracting high-level abstractions from the input raw features. Over the past

few decades, many successful deep neural networks such as the deep Boltzmann machines [27],

auto-encoders [26], and recurrent neural networks [28] have been widely applied and achieved the
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Figure 2.1: An illustration of the proposed cross-modal anomaly detection framework - CMAD.

state-of-the-art performance in many learning tasks.

Motivated by the success of deep neural networks, we develop a deep structured framework to

characterize the features of different modalities for cross-modal anomaly detection. In particular,

we employ a series of nonlinear mapping functions in the deep neural networks to map informa-

tion of each modality into a consensus feature space, in which the instance pairs with consistent

patterns across different modalities are pushed away while the pairs with inconsistent cross-modal

patterns are pulled together. In this way, the trained model can help us identify the cross-modal

anomalies in the test data. Compared with previously introduced linear projections, the developed

method employs deep neural networks to learn nonlinear mappings. Thus it empowers a stronger

ability to learn more effective feature representations from the original multi-modal data. In ad-

dition, the nonlinear mapping functions help to fully capture the nonlinear correlations among

different modalities, which is otherwise difficult to characterize with conventional linear projec-

tion functions. It should be noted that the previously mentioned linear mapping is mathematically

equivalent to imposing a single fully connected layer (without nonlinear activation functions) in

the deep neural networks. Specifically, if we replace the linear mapping process (through mapping

matrices U,V) with neural networks, then we have the loss function as:

min
W

∑
{i,j}∈S

1− F
(
f(Mi

A), g(M
j
B)
)
+ λ

∑
{p,q}∈N

max (0, F (f(Mp
A), g(M

q
B))− γ) , (2.8)

where f(·) and g(·) denote neural network-like differentiable functions, W denotes the set of all
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Algorithm 1 The training process of CMAD .
1: Input: Initialize a dataset X, which contains multiple modalities as the data source, such as

MA, MB

2: for each epoch do
3: for each mini batch do
4: for the positive training samples {i, j} in S do
5: loss+ = 1− F (Mi

A,M
j
B);

6: end for
7: for the negative training samples {p, q} in N do
8: loss+ = max(0, F (Mp

A,M
q
B)− γ);

9: end for
10: end for
11: Update the model parameters with Adam;
12: end for
13: Output: The learned model parameters of CMAD .

Algorithm 2 Anomaly detection with CMAD .
1: Input: instances from two modalities, MA,MB

2: Output: the cross-modal anomalies
3: load the learned model parameters from Algorithm 1;
4: for i ∈ {1,2,...N} do
5: if F (Mi

A,M
i
B)− ϵ < 0 then

6: the ith instance is a cross-modal anomaly;
7: end if
8: end for

parameters of the deep neural network. We determine the architecture of the neural networks based

on the data modalities to be handled. Specifically, we extract features from images through a con-

volutional neural network (CNN), and train a fully connected neural network to process text tags.

The parameter λ controls the importance of the second term. In the experiments, we empirically

set λ as 0.5 or 1.

Our goal is to minimize Eq. (2.8) through updating all the model parameters W in the deep

neural networks. With an initialization of model parameters, the proposed deep model CMAD

is optimized by Adam, which is an adaptive momentum based gradient descent method. The

detailed are given in Algorithm 1. We make use of the dropout [29] in the training process to avoid
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over-fitting. After the optimization process, the instances with consistent patterns across different

modalities will be pulled together within a small distance, while the instances with inconsistent

patterns across different modalities will be pushed away from each other. Finally, for example, the

distribution of data instances in the projected latent space is shown as Fig. 2.1(c). Thus, we can

use the CMAD to identify cross-modality anomalies by measuring the similarity across different

modalities as shown in Algorithm 2.

In Fig. 2.1(a), different colors represent different classes of instances (e.g., the blue denotes

the class of number ‘three’ while the red denotes the class of number ‘seven’) and each shape

denotes one particular data modality (e.g., the circle denotes the image modality and the triangle

denotes the text tag modality). Fig. 2.1(b) shows an example of processing inconsistent patterns

(in orange dashed line) and consistent patterns (in green dashed line), where the goal is to find a

consensus feature space in which consistent patterns across different modalities are pulled together

while inconsistent patterns across different modalities are pushed away. Fig. 2.1(c) shows the final

data distribution in the consensus feature space, and we can find that the instances with consistent

patterns across different modalities are indeed grouped together.

2.3 Experiments

In this section, we conduct experiments to evaluate the effectiveness of our proposed CMAD

framework in detecting cross-modal anomalies. We also perform a case study to visualize the

distribution in the latent spaces to illuminate effectiveness of the CMAD .

2.3.1 Datasets

We use two real-world cross-modal datasets to assess the effectiveness of the proposed frame-

work in cross-modal anomaly detection. The details of the datasets are as follow:

• MNIST [30]: In the MNIST dataset, we have 60,000 original images to represent ten dif-

ferent digits of 1×28×28 pixels. After adding the text tag to each image and embed tags

through different word embedding methods(Word2Vec [?], GloVe [?]) to 100 dimension

vectors, we can synthetically generate the training data with two different modalities. The
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Table 2.1: Hyaperparameters of the deep neural models.

Dataset Dimension of the representations
in the hidden layers

MNIST Images 784-1440-1280-320-150-50
MNIST Tags 100-100-50

RGB-D RGB Images 58575-1440-1280-320-150-50
RGB-D Depth Images 58575-1440-1280-320-150-50

image modality is fed into a CNN model, and the text modality is fed into a fully connected

neural network for training.

• RGB-D [31]: In the RGB-D set, we have two modalities, RGB images and depth images to

represent the same objects in the real-world. In our experiments, we include 960 RGB im-

ages and 960 corresponding depth images from five different kinds of objects in the RGB-D

dataset, including apples, staplers, coffee-mugs, soda-cans, and toothpastes. Both modalities

are fed into a CNN model for feature learning.

As there is no ground truth of anomalies in these datasets, thus we need to inject anomalies

for evaluation. To generate the cross-modal anomalies, we adopt a widely used injection method

- negative sampling, to create a number of instance pairs such that their patterns are inconsistent

across different modalities. Originally, we only have instances whose patterns are consistent across

different modalities (with the same class labels). To introduce the inconsistent instance pairs, we

randomly sample a number of k instance pairs {p, q} such that their cross-modal patterns are

different such that yp
A ̸= yq

B. To be more specific, in the testing stage, we inject 1,019 inconsistent

pairs in the MNIST, and 545 inconsistent pairs in the RGB-D datasets. In the meanwhile, we have

the same portion of instances with consistent behavior which have no overlap with the training

stage.
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2.3.2 Baseline Algorithms

We introduce several widely used baseline methods to compare the performance of cross-modal

anomaly detection on multi-modal data:

• CCA & KCCA [18]. CCA models correlation across multiple modalities and implicitly

maps instances into a lower-dimensional space, with the target to find the maximum correla-

tions in the latent space by linear projections. Compared with CCA, KCCA [19, 32] uses an

alternative projection strategy by nonlinearly mapping the multi-modal data into a consensus

feature space with kernel tricks. We maximize the correlations of instances with consistent

patterns in the training phase, and identify cross-modal anomalies by their cross-modal cor-

relation in the test phase. Both CCA and KCCA are supervised.

• PLS [33]. PLS is also a supervised feature representation learning method based on linear

transformation. The major difference between PLS and CCA is that PLS maximizes the

covariance between different modalities through linear transformations. We identify the

cross-modal anomalies in the same way as CCA and KCCA.

• HOAD [12]. HOAD is a supervised anomaly detection algorithm to find anomalies from the

multi-modal data. It first obtains the spectral embeddings from the multi-modal data with an

ensemble similarity matrix, and then calculates the anomaly score of each instance based on

the cosine distance between different embeddings.

• Embedding Network [34, 35]. An supervised representation learning framework based

on deep neural networks to extract features from different modalities, such as image and

text. We distinguish the cross-modal anomalies by measuring the euclidean distances across

different modalities after projecting instances into the latent space.

In our experiment, we evaluate the performance of cross-modal anomaly detection using the

metrics of precision, recall, and accuracy.
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Table 2.2: Performance on MNIST.

Method Accuracy Precision Recall
CCA 0.6654 0.8911 0.6191

Kernel CCA(RBF) 0.6923 0.7062 0.6948
PLS 0.7235 0.6636 0.6233

HOAD 0.5118 0.9220 0.5115
Embedding Network 0.9504 0.9873 0.9127

CMAD 0.9921 0.9971 0.9875

We use TP, FP, TN, FN as the number of true positives, false positives, true negatives and false

negatives, respectively, in the predicted results. Their definitions are listed as follows:

precision =
TP

TP + FP
, (2.9)

recall =
TP

TP + FN
, (2.10)

accuracy =
TP + FP

TP + TN + FP + FN
. (2.11)

2.3.3 Anomaly Detection Performance

The parameter settings in our deep model CMAD vary among different modalities and datasets.

Specifically, we use convolutional neural network (CNN) for the image modality [36, 37], and

fully-connected neural network for the text tag modality. The hyperparameters of the feature di-

mensionality in each layer are listed in Table 2. Table 3 and Table 4 present the performance of

cross-modal anomaly detection using different algorithms, which include the accuracy, precision

and recall of the anomaly detection results.

As we can see from the tables, several observations are drawn as below.

First, CMAD outperforms the baseline methods CCA, KCCA, PLS and HOAD in most cases,
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Table 2.3: Performance on RGB-D.

Method Accuracy Precision Recall
CCA 0.7682 0.7171 0.7988

Kernel CCA(RBF) 0.8456 0.7134 0.9699
PLS 0.6580 0.8304 0.7539

HOAD 0.5137 0.9345 0.5124
Embedding Network 0.5138 0.5075 0.9346

CMAD 0.9512 0.9313 0.9742

which validates the importance of applying deep models for cross-modal anomaly detection by

extracting more effective feature representations from the original multi-modal data.

Second, we compare CMAD against the Embedding Network method. Similar to our proposed

CMAD , the Embedding Network is also a deep structure based approach. Based on the experimental

results, both of the deep structured methods outperform other linear transformation based methods.

These observations validate the limitation of the linear projection based methods, i.e., the linear

transformation, as they cannot fully capture nonlinear correlations among different modalities for

cross-modal anomaly detection.

There are two major differences between the proposed CMAD and the Embedding Network

method. First, Embedding Network is developed to handle the text and image data only, while

CMAD is able to handle different types of data with appropriate deep neural network designs. Sec-

ond, the Embedding Network narrows the Euclidean distance of the pair of instances with con-

sistent information across different modalities, whereas in CMAD , we not only pull samples with

similar patterns across different modalities close to each other, but also push samples with dissim-

ilar patterns across different modalities far away from each other. Thus, CMAD can learn better

representations from the multi-modal data.

2.3.4 Hyperparameter Settings

There are two hyperparameters to be tuned in our method, i.e., the margin γ in Eq. (2.8) and the

threshold ϵ in Eq. (2.2). In Fig. 2.2, we show how the performance of CMAD varies with different
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Figure 2.2: Precision and recall in the MNIST dataset with different hyperparameter settings.

Figure 2.3: An illustration of the distribution of images and the distribution of tags.

hyperparameter settings. In particular, we tune the values of these hyperparameters within the

range of {-0.4, -0.3, ... ,0,5} and {-0.2, -0.1, ... ,0,7}, respectively. In general, the algorithm

performs better w.r.t. precision when the threshold ϵ is set to be small and the margin γ is set to be

large. The accuracy achieves the best value when ϵ is 0.3 and γ equals to 0.3. In the meanwhile,

we can find that the proposed CMAD could achieve a good performance (over 92%) in a wide range

of hyperparameter settings, the loose condition give us more opportunity to find anomalies in the

real-world applications.
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Figure 2.4: Reconstruction result in MNIST.

2.3.5 Case Studies

Finally, we conduct two case studies to visualize the data distribution in the projected consensus

feature space. Both of the cases are based on the MNIST dataset. The case studies are separated

into two parts. The first part is to represent the data distribution of each individual modality in the

latent space, and to demonstrate the effectiveness of the “pull” and “push” actions in our developed

method. In the second part, we demonstrate the representation ability of CMAD across different

modalities.

In the first case, in order to show that CMAD is capable to separate different instances in the

projected consensus feature space, we visualize the data distribution in individual modalities after

the training stage. To represent the data distribution, we first map the original instances into the

projected feature space. Then we further reduce the dimensionality of the projected feature space

to a two-dimensional visible feature space by PCA. As shown in Fig. 2.3, in each modality, the

data instances which have similar patterns are separated from each other. In Fig. 2.3(left), we
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can find that when the images with labels “three” and “seven” are taken as the test data, most of

the images with label “three” (green in the figure) are separated from with the images with label

“seven” (brown in the figure) in the projected two-dimensional space. In Fig. 2.3(right), we use

the text tag as another data modality. We can find that the distributions of different tags could also

be separated in the projected consensus feature space.

The second case is to demonstrate the representation ability of the developed method across

different modalities. In other words, our target is to measure whether the distance between ob-

servations with similar modalities is closer than the distance between observations with dissimilar

modalities after feature mapping. We extract one specific instance from one modality MA in the

projected consensus feature space and find its nearest (based on cosine distance) instances from

the other modality MB.

As shown in Eq. (2.12), given an observation Mi
A where modality A denotes text data, we ex-

tract a set of semantically similar image observations from MB, and aggregate these observations

to generate a new image:

∑
∀Mj

B∈MB

I

(
f(Mi

A) · g(M
j
B)

||f(Mi
A)|| · ||g(M

j
B)||
− ϵ > 0

)
·Mj

B. (2.12)

After normalizing the generated image from Eq. (2.12) in the range of [0, 255] for visualization

in the gray scale, we generate a new image which can represent the estimation of the distribution

close to the given text Mi
A.

According to finding the closest instances from other modalities, we could demonstrate that,

the distances between the same objects from different modalities are closer than those denoting

different objects in the latent space. The upper part are the selected images as the ground truth,

and the lower part are reconstructed images through finding the closest neighbors which originally

distributed in the text tag space.

We extract instances from the text modality to find the instances from the image modality with

the closest cosine distances in the latent space, and reconstruct images from the text features. After
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normalizing the nearest images, we represent them as new, reconstructed images in the gray scale.

The reconstructed results are reported in Fig. ??. The upper part contains the ground-truth images,

and the lower part denotes to the reconstructed results. Comparing the reconstructed results with

the original images, we can intuitively find that our algorithm is effective in pulling images with

the consistent instances across different modalities together, and pushing those with inconsistent

instances apart away.
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3. ATTRIBUTED NETWORK ANOMALY DETECTION1

3.1 Motivation

Anomaly detection targets at identifying the rare instances that behave significantly different

from the majority instances. Conventional detection algorithms are mainly based on the assump-

tion that instances are independent and identically distributed (i.i.d.) [8]. But in many practical

scenarios, instances are often explicitly or implicitly connected with each other, resulting in the

so-called attributed networks [10]. Attributed networks are increasingly used to represent vari-

ous real-world systems since the synergy between network structures and nodal attributes. For

instance, in social media, users are not only affiliated with profile information and personalized

posts as nodal attributes, but also linked with each other by different social relations [11]. De-

tecting anomalies in attributed networks have witnessed a surge of research interests from various

domains, such as suspicious account detection in social media, abuse monitoring in healthcare sys-

tems [38], financial fraud monitoring [39], and network intrusion detection in cyber security [40].

However, the unique data characteristics of attributed networks bring several challenges to

anomaly detection. Firstly, the definition of anomaly becomes more complicated and obscure.

Apart from anomalous nodes whose nodal attributes are rather different from the majority refer-

ence nodes from a global perspective, nodes with nodal attributes deviate remarkably from their

communities are also considered to be anomalies [13]. Secondly, the topological structures are

within irregular or non-Euclidean spaces [14], and traditional anomaly detection methods [15]

could not be directly applied to attributed networks. Thirdly, networks and nodal attributes are

heterogeneous, and effective anomaly detection methods need to fuse these two data modalities

more synergistically.

In this chapter, we aim to design an anomaly detection approach which jointly model the nodal

attributes and topological dependencies through graph convolution to enlarge the modeling ca-

1This chapter is reprinted with permission from “Specae: Spectral autoencoder for anomaly detection in attributed
networks”, by Yuening Li, Xiao Huang, Jundong Li, Mengnan Du, Na Zou, 2019. Proceedings of the 28th ACM
International Conference on Information and Knowledge Management (CIKM). Copyright 2019 by ACM.
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pacity, which preserves the key information of the input nodal attributes and the topological rela-

tions without the restriction of homophily. Specifically, we introduce a graph deconvolution as a

complementary process of graph convolution, which reconstruct the nodal attributes based on the

topological dependencies. Previously, to handle the topological structures and the heterogeneity

challenge, in network analysis, a widely-used and effective approach is to embed all informa-

tion in attributed network into unified low-dimensional node representations. However, it would

achieve suboptimal performance when directly applied to the anomaly detection. To achieve the

join embedding, most existing network embedding algorithms [10] and recent joint embedding

based anomaly detection methods [11] mainly rely on the homophily hypothesis, which implies

that connected nodes tend to have similar nodal attributes [41]. Based on this assumption, topo-

logical relations could be introduced via involving regularization terms to minimize the distance

between embedding representations of linked nodes [42]. Another effective way to encode net-

works is to employ graph convolutional networks (GCN) [43]. It could be considered as a special

form of Laplacian smoothing that learns nodes’ representations from their neighbors [44]. The

homophily hypothesis or smoothing operations are not in line with anomaly detection. They might

over-smooth the node representations, and make anomalous nodes less distinguishable from the

majority within the community. For example, malicious users would have completely different

nodal attributes than their friends. Customers who have written fake reviews might purchase the

same products as the normal ones. Thus, existing joint learning models in network analysis could

not be directly applied to anomaly detection.

3.2 Problem Statement

We use bold upper case letters (e.g., X) to denote matrices, bold lowercase characters for

vectors (e.g., x). We denote the ath row of the matrix X as Xa,:, the bth entry of the vector x as

xb. Let G = {A, X} be an input attributed network, with n nodes interconnected by a network.

A ∈ Rn×n denotes the corresponding adjacency matrix. Each node is associated with a set of

m-dimensional nodal attributes. We collect all these nodal attribute as X ∈ Rn×m.

Theorem 2. Global Anomaly refers to a node whose nodal attributes are rare and significantly
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Figure 3.1: A spectral autoencoder based anomaly detection approach for attributed networks
framework.

different from the nodal attributes of majority nodes, from a global perspective.

Theorem 3. Community Anomaly is defined as a node i with nodal attributes that significantly

deviate from the node i’s neighbors’ nodal attributes, based on the topological network structure.

We define two types of anomalies. Detecting them in attributed networks is crucial. For in-

stance, in social networks, the malicious, zombie, spam, or suspicious users’ behaviors might

deviate with most of the normal users’. We treat this type of users as global anomalies. There

also could be a small portion of accounts with contents significantly different from their commu-

nity, such as advertising/marketing users in college student clubs. We treat this type of users as

community anomalies.

Given the aforementioned definitions, we formally define the anomaly detection in attributed

networks problem as follows. Given a set of nodes V connected by an attribute network G, we

target at identifying the global anomalies and community anomalies in V.

3.3 Spectral Autoencoder Framework

We propose a Spectral autoencoder based anomaly detection framework - SpecAE, for at-

tributed networks. The pipeline of SpecAE is illustrated in Fig.1. Given an attributed network G,
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we leverage a tailored Spectral autoencoder to jointly embed nodal attributes and relations into a

carefully-designed space Z = [ZX ;ZXerror;ZG;ZGerror], which consists of four sources of compo-

nents. To detect the global anomalies, we apply an autoencoder to all nodal attributes X to learn

embedding representations ZX as well as the reconstruction errors ZXerror. In such a way, we could

globally compare all nodes’ attributes. To detect the community anomalies, we design novel graph

convolutional encoder and deconvolutional decoder networks to learn nodes’ community represen-

tations ZG, based on each node’s neighbors. The corresponding reconstruction errors are denoted

as ZGerror. Later on, based on the tailored joint representations Z, we estimate the suspicious level

of each node u by measuring its embedding representation Zi,:’s energy in the Gaussian Mixture

Model.

3.3.1 Tailored Embedding Spaces for Global Anomalies and Community Anomalies

Attributed networks bring both opportunities and challenges to the anomaly detection task.

The two sources A and X bring more information than uni-modality, but make the definition of

anomaly more complex.

To perform anomaly detection in G, an intuitive approach is to apply the attributed network

embedding [42] algorithm to project G into unified node embedding representations, and estimate

the suspicious levels of nodes based on the learned representations. The goal of network embed-

ding is to preserve nodes’ major characteristics and map all nodes into a unified space, based on

the homophily hypothesis [41] that nodes with similar topological structures tend to have similar

node attributes. However, anomaly detection focuses on discriminating nodes with characteristics

that are different from the majority, including nodes that are inconsistent with the homophily hy-

pothesis. Thus, the conventional attributed network embedding methods will lead to a suboptimal

result.

In this subsection, we propose to category anomalies in attributed networks into two classes,

i.e., global anomalies and community anomalies. To distinguish these anomalies, we project G into

two types of tailored low-dimensional spaces.

First, based on the definition of global anomaly, we employ an autoencoder to embed nodal
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attributes X to learn the first type of tailored representations, i.e., ZX and ZXerror. The encoding

and decoding processes are achieved via:

ZX = σ (be +XWe) ,

X̂ = σ (bd + ZXWd) ,

(3.1)

where X̂ denotes the reconstructed nodal attributes. Since anomalies are harder to reconstruct than

normal nodes [45], we also include the reconstruction errors ZXerror.

ZXerror = dis(X, X̂), (3.2)

where the operation dis(·, ·) denotes a series of the distance measuring matrices such as the Eu-

clidean distance and the cosine distance. In such a way, global anomalies would tend to have their

representations in ZX being different from the majority, as well as ZXerror being large.

Second, to identify community anomalies, we need to jointly consider A and X. Based on

their topological dependencies, we develop a novel graph convolutional encoder and graph decon-

volutional decoder to learn the second type of tailored representations, i.e., ZG and ZGerror. Details

are introduced as follows.

3.3.2 Graph Convolution and Deconvolution

Our goal is to learn nodes’ community representations ZG, which describe the expected behav-

iors of nodes according to their neighbors.

A straightforward solution is to apply GCN to embed G. From a formulation perspective [44],

GCN could be treated as a special form of Laplacian Smoothing. The Laplacian smoothing on

each channel of the input features can be written as:

Y = (I− γD̃−1(D̃− Ã))X, (3.3)

where 0 < γ ≤ 1 is a parameter which controls the weighting between the features of the current
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node and the features of its neighbors, with a normalization trick as:

I+D− 1
2AD− 1

2 → D̃− 1
2 ÃD̃− 1

2 , (3.4)

where Ã := A+ I and D̃ :=
∑

j Ãij .

Based on the definition of convolution in graph signals on the spectral domain, to generate a

new matrix Y from X by applying the graph convolution as spectral filters, we have:

Y = D̃− 1
2 ÃD̃− 1

2X, (3.5)

which is a special form of Laplacian Smoothing when γ = 1 after replacing the normalized graph

Laplacian L := D̃
−1
Ã with the symmetric normalized graph Laplacian L := D̃

− 1
2 ÃD̃− 1

2 .

However, GCN does not contain nodal attributes reconstruction procedure, which is useful in

the anomaly detection task with three reasons. i) Training transformation functions base on one-

class observations (only normal instances available) without the reconstruction error may easily

lead the objective function converges to a local optimal when all of the node representations col-

lapse into a small area (one point in extreme cases) in the latent space. ii) Repeatedly applying

Laplacian smoothing might cause the nodal attributes over-mixed with their neighbors and make

them indistinguishable, since it will be more difficult to identify each individual instance after

the smoothness operation which has weakened their uniqueness of the original attributes. iii) Re-

construction error usually contains useful information as indicators for anomaly detection. For

example, in [15] [46] [47] [45], the reconstruction error could be directly used as an anomaly

score to rank the anomalous degree of nodes.

Thus, we decide to design the graph decoding (graph deconvolution) from the smoothed fea-

tures as a complementary inverse process of graph convolution. Inspired by the digital images

field, sharpening is an inverse process of blurring/smoothing [48]. Comparing with the smoothing

process, which is done in the spatial domain by pixel averaging in neighbors, sharpening is to find

the difference by the neighbors, done by spatial differentiation. A Laplacian operator is to restore

27



fine details of an image which has been smoothed or blurred. After Laplacian sharpening, we can

reconstruct the nodal attributes from the fusion features caused by the graph convolution process.

If we replace the original GCN function in Eq. (3.5) as a general Laplacian smoothing, we will

have:
Y = X− α(X− D̃− 1

2 ÃD̃− 1
2X)

= (1− α)X+ αD̃− 1
2 ÃD̃− 1

2X.

(3.6)

Generalizing the above definition of graph convolution with adjacency matrix A ∈ Rn×n and

the nodal attributes X ∈ Rn×m of n instances and m input channels, the propagation rule of the

convolution layer can be written as:

Conv(X,A) = σ
(
(1− α)X+ αD̃− 1

2 ÃD̃− 1
2X
)
Wf , (3.7)

where Wf is the trainable weight matrix in the convolution layer, σ is the activation function, e.g.,

ReLU(·). The parameter α is to control the weighting between the features of the current nodal

attributes and the features of its neighbors. When α = 1, we can treat the Eq. (3.7) as a FC layer

in a MLP framework; if α = 0, we have one graph convolutional layer. We conduct experiments

under different parameter settings in the ablation studies section to illuminate the effect of the α.

Contrary to Laplacian smoothing, we compute the new features of nodal attributes through

sharpening the features with their neighbors in order to reconstruct the features from the smoothed

results. To magnify the difference between the current node and its neighbors, we will have:

Y = X+ α(X− D̃− 1
2 ÃD̃− 1

2X)

= (1 + α)X− αD̃− 1
2 ÃD̃− 1

2X.

(3.8)

Given the above definition of deconvolution to an attributed network G, with adjacency matrix

A ∈ Rn×n and the nodal attributes Z ∈ Rn×m of n instances and m input channels which after the
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convolution process, the propagation rule of the deconvolution layer is:

Deconv(Z,A) = σ
(
(1 + α)Z− αD̃− 1

2 ÃD̃− 1
2Z
)
Wg, (3.9)

where Wg is the trainable weight matrix in the deconvolution layer. After the sharpening process,

we can reconstruct the original attributes from the smoothed features.

Given nodal attributes X with adjacency matrix A , the compression network computes their

low-dimensional representations Z as follows:

f(ZG|X,A) =
n∏

i=1

f(ZGi,:
|Xi,:,A),

with f(ZGi,:
|X,A) = N(ZGi,:

|µi,:, diag(σ2
i,:));

(3.10)

g(X̃|ZG,A) =
n∏

i=1

g(X̃i,:|ZGi,:
,A),

with g(X̃i,:|ZGi,:
,A) = Deconv(ZGi,:

,A);

(3.11)

ZGerror = dis(X, X̃), (3.12)

Z = [ZX ;ZG;ZXerror;ZGerror], (3.13)

where the µi,: := Convµ(X,A) denote the mean vector in Eq. (3.8), similarly, logσi,: := Convσ(X,A).

The latent variable Z of each node is shown in Eq. (3.13), which concatenates from four compo-

nents in Eq. (3.1), Eq. (3.2), Eq. (3.10), and Eq. (3.12). ZG is learned by the graph convolutional

encoder which including the neighbor attribution with the topological relations. ZGerror is the recon-

struction of the nodal attributes X base on the fusion representation ZG and the adjacency matrix

A.

3.3.3 Anomaly Detection via Density Estimation

Given the learned embedding representation Z of N samples and their soft mixture-component

membership prediction γ̂ (estimated from a softmax layer based on the low-dimensional repre-

29



sentation Z), where γ̂ is a K-dimensional vector and K is the number of mixture components in

Gaussian Mixture Model (GMM), we can estimate the mixture probability ϕ̂k, the mean value µ̂k,

the covariance vector Σ̂k for component k in GMM respectively [16].

The sample energy can be inferred by:

E(z) = − log

 K∑
k=1

ϕ̂k

exp−1
2
(z− µ̂k)

T Σ̂−1
k (z− µ̂k)√

|2πΣ̂k|

 , (3.14)

where we estimate the parameters in GMM as follows:

γ̂ = softmax(z), (3.15)

ϕ̂k =
N∑
i=1

γ̂ik
N

, (3.16)

µ̂k =

∑N
i=1 γ̂ikzi∑N
i=1 γ̂ik

, (3.17)

Σ̂k =

∑N
i=1 γ̂ik(zi − µ̂k)(zi − µ̂k)∑N

i=1 γ̂ik

T

. (3.18)

3.3.4 Objective Function

Given an input attributed network G = {A,X}, the objective function is constructed as follow:

J(W) =E[dis(X, X̂)] + E[dis(X, X̃)] + λ1E(E(Z)) + λ2

K∑
i=1

d∑
j=1

1

Σ̂ij

−KL[f(ZG|X,A)||g(ZG)]

+Ef(ZG|X,A) log(g(X̃|ZG,A)).

(3.19)

The objective function includes four components:

• E[dis(X, X̂)],E[dis(X, X̃)] are the loss function that characterizes the reconstruction error.

• E(Z) denotes the sample energy of the GMM estimation in Eq. (3.14). Through minimiz-

ing the sample energy, we maximize the likelihood of non-anomalous samples, and predict
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samples with top-K high energy as anomalies.

• To avoid trivial solutions when the diagonal entries of covariance matrices degenerate to 0,

we penalize small values by the third component as a regularizer.

• We optimize the variational lower bound as the last two terms. KL[f(·)||g(·)] is the Kullback-

Leibler divergence between f(·) and g(·). g(·) is a Gaussian prior g(ZG) =
∏n

i=1 g(ZGi,:
) =

N(ZGi,:
|0, I).

After optimizing the objective function, our proposed approach can be applied to detect anoma-

lous to the input attributed network. For our testing data, we can rank the anomalous degree of each

node according to the corresponding estimation energy in Eq. (3.14). According to the ranked en-

ergy, nodes with larger scores are more likely to be considered as anomalies.

3.4 Experiments

In this section, we evaluate the performance of our model with experiments on real-world

datasets, to verify the effectiveness of the proposed approach.

3.4.1 Datasets

We adopt two real-world datasets to evaluate the effectiveness of SpecAE. The detailed de-

scriptions are shown in Tab. 3.1. Cora is a network consisting of 3,327 scientific publications, with

5,429 links to denote the citation relations. Each article is described by one 0/1-valued word vector

indicating the absence/presence of the corresponding word from the dictionary as node attributes.

Pubmed comprises 19, 717 publications with 44,338 citations from biomedical field, with 500 di-

mension vector descriptions as nodal attributes. We also conduct a case study on another dataset

PolBlog [49], which contains various blog content mainly related to political debates written by

different liberal bloggers during the Iraq war in 2005.

In order to simulate ground truth outlierness, for Cora and Pubmed, we adopt the same strategy

as in [50, 51] to generate a combined set of anomalies from nodal attributes perspective and topo-

logical structure perspective. We inject an equal ratio of anomalies for both perspectives. First,
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Dataset Cora Pubmed
# nodes 3,327 19,717
# edges 5,429 44,338
# attributes 1,433 500
anomaly ratio 5% 5%

Table 3.1: Statistics of Cora and Pubmed.
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Figure 3.2: ROC and AUC on Cora and Pubmed (from left to right).

we randomly select m bags of words from the word dictionary which have low correlations as

new nodal attributes, and replace these generated nodal attributes to the original X, mark them

as anomalies; Then we randomly pick another m nodes and replace the attribution of each node

i to another node j where the node j deviates from the node i with different context attributes

(e.g., in citation networks, node i and j denote different categories of paper), in the meanwhile we

keep their original topological relations (we keep the adjacency matrix A to denote their citation

relations).

3.4.2 Baseline Methods

We compare SpecAE with the five baseline methods:

• LOF [52]: Detects outliers out of the samples which have a substantially lower density. LOF

based methods compute the local density deviation of nodal attributes with respect to their

neighbors.
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• OC-SVM [53]: Estimates the boundary of distribution that encompasses most of the obser-

vations (nodal attributes), and then labels the outliers which lie far from the learned bound-

ary.

• Deep-SVDD [8]: Trains a neural network while minimizing the volume of a hypersphere

that encloses the network representations of the nodal attributes, analyzes the abnormality

of each node based on the distance between the nodal attributes and the center of the learned

sphere.

• Radar [13]: Detects anomalies whose behaviors are different from the majority by charac-

terizing attribute reconstruction residuals and its correlation with topological relations and

nodal attributes.

• GCN [43]: Combines graph structures and nodal features in the convolution, and propagates

over the graph through multiple layers. In our experiment, we modify the structure of the

original GCN to accommodate the task of anomaly detection. We add the same density

estimation layers as SpecAE after the graph convolutions for fair comparisons.

As shown in the introduction above, we compare SpecAE with three types of baselines. First,

to investigate the effectiveness of utilizing features from both topological dependencies and nodal

attributes instead of from single modality, we include LOF and OC-SVM. Second, to show the

capacity of deep structures, we compare the performance between the shallow models (LOF, OC-

SVM and Radar), as well as deep structured methods (Deep-SVDD and GCN). Third, to show

the effectiveness of the proposed SpecAE, we modify the vanilla GCN for the specific anomaly

detection task.

3.4.3 Experimental Results

We evaluate the anomaly detection performance by comparing SpecAE with the five baseline

methods. Accuracy@K is utilized as the evaluation metric and the results are reported in Tab. 3.2.

We output a ranking list based on the anomalous degree of different nodes, and we measure the
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Accuracy@K
Cora Pubmed

K 5 10 15 20 5 10 15 20
LOF 85.60 80.91 76.62 72.01 85.71 81.27 76.89 72.71

OC-SVM 85.45 80.76 76.92 72.45 85.54 81.03 76.47 72.27
Deep-SVDD 87.89 85.49 81.50 77.25 87.93 84.63 80.96 77.07

Radar 87.70 85.27 82.35 78.58 86.02 81.90 78.03 74.06
GCN 85.23 83.38 76.70 71.05 86.95 83.57 80.11 76.41

SpecAE 94.31 90.81 86.67 82.05 94.98 90.50 85.96 81.52

Table 3.2: Accuracy@K performance comparisons on two datasets.

effectiveness of every detection method in its top K ranked nodes. Then, we report the results in

terms of ROC-AUC in Fig. 3.2. For both metrics, SpecAE consistently achieves good performance.

In addition, we make the following observations. (1) In general, the proposed SpecAE outperforms

all of the baseline methods. Comparing with the methods which only utilize uni-modal information

(nodal attributes in LOF, OC-SVM and Deep-SVDD), our proposed approach achieves better per-

formance which validates the importance of applying heterogeneous multi-modal sources (nodal

attributes and topological relations). (2) The performance of deep models (Deep-SVDD, GCN

and SpecAE) are superior to the conventional anomaly detection methods in shallow structures

(LOF and OC-SVM). It verifies the effectiveness of extracting features to represent the nodal at-

tributes on attributes networks in deep structures which can extract features in a more effective

way. (3) SpecAE shows the importance of enlarging the model capacity by introducing the mutual

interactions between nodal attributes with linkage connections and enabling topological relations

to contain additional information. As can be observed, Spectral autoencoder can achieve better

performance on anomaly detection application than pure GCN based model, which justifies the

advantage of our proposed model that overcomes the drawbacks of the GCN, and adopts it into an

anomaly detection scenario. We will quantitatively evaluate the specific properties of the SpecAE

structure in the ablation analysis part.
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Metric Accuracy Precision Recall F1 AUC
SpecAE-S 54.51 12.54 59.63 20.72 58.45
SpecAE-N 90.51 52.40 52.59 52.50 73.65
SpecAE-nr 82.24 11.07 11.11 11.09 50.53

SpecAE α = 1 90.36 51.66 51.85 51.76 73.96
SpecAE α = 0.7 91.93 54.98 55.19 55.08 77.15

Table 3.3: Ablation and hyperparameter analysis.

3.4.4 Ablation Studies

We conduct ablation studies to demonstrate the importance of individual components in SpecAE.

We perform ablation analysis comparing SpecAE with four alternatives. (i) SpecAE-S: SpecAE

without the representations for community anomaly detection, i.e., ZG and ZGerror; (ii) SpecAE-

N: SpecAE without the representations for global anomaly detection, i.e., ZX and ZXerror; (iii)

SpecAE-nr: SpecAE without the reconstruction components ZXerror and ZGerror; and (iv) training

with an extreme value hyper-parameter α = 1 (short-circuit the self features in the graph convolu-

tion and deconvolution). Results on Cora are shown in Tab. 3.3, indicating that the comprehensive

method is superior to the variants, since it outperforms most of the ablation test settings where one

component has been removed or replaced at a time from the full system and performed re-training

and re-testing. Similar results could be observed on other datasets (Pubmed). Due to the reason

of the space limit, we omit the detailed analysis. According to the results, we can find that the

context information ZG provided by the SpecAE is crucial for anomaly detection in the attributed

network (SpecAE-N, SpecAE outperform the other structures by 15% in AUC). In the meanwhile,

when we eliminate the ZX , the performance drops by 3.5%. Removing the reconstruction process

hurts the performance by 27%, which validates the reconstruction introduces useful information as

indicators for anomaly detection.

3.4.5 A Case Study

We conduct a case study using the PolBlog dataset. The attributes of each node represent

words appeared in each blog based on a given word dictionary. As shown in the Tab. 3.4, six
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(Anomaly).com Abnormal Keywords
thismodernworld siberians, fenno, scandinavia,

ultraviolet, primates, colder
directorblue.blogspot boiler, inflatable, choppers, streamline,

rooftop, jettison, sheathed
fafblog.blogspot cheesecake, pies, crusts, barbecues,

carrots, grapefruit pizzas
balloon-juice recapturing, wooly, buffy,

talons, snarled, tails, dismemberment
fringeblog mosquitos, nerf, redwoods, mammoths,

fungi, snail, hawked
nomayo.mu.nu pancakes, cheese, stewed, pork, brunch

Table 3.4: Keywords selected from the anomalous nodes on PolBlog.

sampled anomalies (nodes) are listed for more specific explanations. The abnormal keywords

refer to the key information which appears in the anomaly bloggers, yet has low frequency and

lacks political flavor in a global perspective among all bloggers. To be more specific, some of

the posts actually focus on other fields like climates (thismordernworld), food (nomayo.mu.nu,

fafblog.blogspot), constructions and tools (directorblue.blogspot), huntings and creatures (ballon-

juice, fringeblog). Comparing with the most popular political topics, these selected keywords in

the abnormal bloggers are less relevance to the political events.

36



4. DISENTANGLED REPRESENTATION ON TIME SERIES

Time-series representation learning is a fundamental task for time-series analysis. While

promising progress has been made toward learning accurate representations for downstream ap-

plications, the learned representations of existing methods often lack interpretability, and do not

encode semantic meanings, due to their entangled feature spaces. In this chapter, we aim to extract

the semantic-rich temporal correlations underlying the latent factorized representations. Inspired

by the success of disentangled representation learning in computer vision, we investigate the possi-

bility of learning semantic-rich representations of time-series, which remains unexplored for three

main challenges: 1) the sequential data structure introduces complex temporal dependencies and

makes the latent representations hard to interpret; 2) sequential models suffer from KL vanish-

ing problem; and 3) interpretable semantic concepts for time-series often rely on multiple factors

instead of individuals. To handle them, we propose Disentangle Time-Series (DTS), a novel dis-

entanglement enhancement framework for sequential data. Specifically, to generate hierarchical

semantic concepts as the interpretable and disentangled representation of time-series, DTS intro-

duces multi-level disentanglement strategies by covering both individual latent factors and group

semantic segments. We further propose an evidence lower bound (ELBO) decomposition approach

to balance the preference between correct inference and fitting data distribution problems. We the-

oretically show how to alleviate the KL vanishing problem: DTS introduces a mutual information

maximization term, while preserving a heavier penalty on the total correlation and the dimension-

wise KL to keep the disentanglement property. Experimental results on various real-world datasets

demonstrate that the representations learned by DTS achieve superior performance in downstream

applications, with high interpretability of semantic concepts.

4.1 Introduction

Unsupervised time-series representation learning, as a fundamental task of time-series analysis,

aims to extract low-dimensional representations from complex raw time-series without human
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(a) Semantic factors for images, where a semantic factor controls the eye glasses of a human facial im-
age [54].

(b) Semantic factors of time-series, where a semantic factor controls the sequential trend of a time-series.

Figure 4.1: Two traversal plot examples of disentanglement.

supervision. These representations can then be used to benefit many downstream tasks, such as

classification, clustering [55], and anomaly detection [56]. Recently, deep generative models have

shown great representation ability in modeling complex underlying distributions of time-series

data. The most representative examples include LSTM-VAE and its different variants [57, 58, 59].

While these representation learning techniques have achieved good performance in many down-

stream applications, the learned representations often lack the interpretability to expose tangible se-

mantic meanings. In many cases, especially in high-stake domains, an interpretable representation

is critical for diagnosis or decision-making. For example, learning interpretable and semantic-rich

representations is useful for decomposing the ECG into cardiac cycles with recognizable phases

as independent factors. Furthermore, extracting and analyzing common sequential patterns (i.e.,

normal sinus rhythms) from massive ECG records may assist clinicians to better understand the

irregular symptoms (like sinus tachycardia, sinus bradycardia, and sinus arrhythmia). In contrast,
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diagnostic processes without transparency or accurate explanations may lead to suboptimal or even

risky treatments.

To enable semantically meaningful representations, researchers in computer vision have been

devoted to learning disentangled representations, which decompose the representations into sub-

spaces and encode them as separate dimensions [60]. A disentangled representation can be defined

as one where single latent units are sensitive to changes in a single latent factor while being rel-

atively invariant to changes in other factors; that is, different dimensions in the latent space are

probabilistically independent. Fig. 4.1 (a) shows an example, where a semantic factor controls

the eyeglasses of a human facial image. Learning factors of variations in the images enables the

emergence of semantic meanings in the underlying distribution [54]. Motivated by the success of

disentanglement in the image domain, in this work, we explore disentangled representations for

time-series data. Fig. 4.1 (b) shows an example of how the learned semantic factor can control

the shape of ECG time-series. Medically, inverted, biphasic, or flattened T wave could also pro-

vide insights into the abnormalities of the ventricular repolarization or secondary to abnormalities

in ventricular depolarisation. In addition, the QT interval as a group of individual patterns from

the beginning of the Q wave to the end of the T wave, could represent the physiologic reactions

for the ventricles of the heart to depolarize and repolarize. Thus, there exists a vital need for the

methods that can enhance the interpretability of time-series representations from the perspectives

of both single factor disentanglement and group-level factor disentanglement, to induce multi-level

semantics.

However, time-series presents great challenges for learning disentangled representations. Firstly,

complex data structure with temporal correlations makes latent codes hard to interpret. Time-

series data usually contain temporal correlations, which cannot be directly captured and interpreted

by traditional image-focused disentangle methods [54, 61, 62]. While traditional sequential mod-

els, like LSTM or LSTM-VAE, could be used to model the temporal correlations, they neither

provide interpretable predictions, as is often criticized, nor have an disentangle mechanism. Sec-

ondly, sequential model may suffer from KL vanishing problem. Recent work [63] shows that:
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since the LSTM generative model often has strong expressiveness, the reconstruction term in the

objective will dominate the KL divergence term. In this case, the model would generate time-series

without making effective use of the latent codes. Besides, the latent variables Z will become in-

dependent of the observations x when the KL divergence term collapses to zero. It’s referred to

as the information preference problem [64]. Thirdly, interpretable semantic concepts often rely on

multiple factors instead of individuals. A human-understandable sequential pattern, called seman-

tic components, is usually correlated with multiple factors. It is hard to interpret time-series with a

single latent factor and its variations.

To address these challenges, in this chapter, we propose Disentangle Time-Series (DTS)

for learning semantically interpretable time-series representations. To the best of our knowledge,

DTS is the first attempt to incorporate disentanglement strategies for time-series. It is one of

the first to interpret time-series representations with state-of-the-art deep models. In particular,

we design a multi-level time-series disentanglement strategy that accounts for both individual la-

tent factor and group-level semantic segments, to generate hierarchical semantic concepts as the

interpretable and disentangled representations of time-series. For individual latent factor disen-

tanglement, DTS introduces a mutual information maximization term (MIM) to encourage high

mutual information between the latent codes and the original time-series. By leveraging the MIM,

DTS preserves the disentanglement property via evidence lower bound (ELBO) decomposition,

while alleviates the KL vanishing problem. We further theoretically prove that the decomposition

process can balance the preference between correct inference and fitting data distribution. For

group-level semantic segment disentanglement, DTS learns decomposed semantic segments that

contain batches of independent latent variables via applying gradient reversal layers on irrelevant

tasks. The learned group segment disentanglement can benefit many downstream tasks such as

domain adaptation. Extensive experiments on real-world datasets demonstrate that DTS could

provide more meaningful disentangled representations of time-series, and is quantitatively effec-

tive for downstream tasks.

The contributions of this work are summarized as follows:
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• We introduce a novel and challenging problem (i.e., disentangle time-series) and propose

DTS, to incorporate disentanglement strategies for time-series representation learning task.

• We devise multi-level time-series disentanglement strategies, covering both individual latent

factor and group-level semantic segments, to generate hierarchical semantic concepts as the

interpretable and disentangled representation of time-series.

• We propose an ELBO decomposition strategy to balance the preference between correct in-

ference and fitting data distribution problem. We theoretically show how to alleviate the KL

vanishing problem via introducing the mutual information term. Meanwhile, we preserve a

heavier penalty on the total correlation and the dimension-wise KL to keep the disentangle

property.

• We conduct extensive experiments on the time-series representation and the domain-adaptation

tasks, and provide insights on interpreting the latent representations with semantic meanings.

4.2 Methodology

In this section, we propose DTS (see Fig. 4.2), a multi-level disentanglement approach to en-

hance time-series representation learning. The key idea of DTS is that the latent space should

involve multiple independent factors as semantic concepts rather than conjugated representation.

We first introduce the disentanglement problem (Section 2.1) and the challenges (Section 2.2).

Then, we introduce an individual disentanglement approach for learning interpretable representa-

tions (Section 2.3). Finally, we introduce how to learn disentangled group segments as semantic

components (Section 2.4).

4.2.1 Problem Statement

To facilitate understanding, we focus on univariate time-series in the definitions; one can easily

extend them to multivariate time-series.

Notations: We use lowercase alphabet x ∈ R to denote a scalar value in a time-series, z ∈ R

to denote a scalar latent variable, lowercase boldface letter x = [x1, x2, ..., xT ] ∈ RT to denote a

41



Generation

*! *"

(ii) Group Segment
Disentangle

+#

,#
*#

-$:&

,'

*'

.$:&

+'Input Time Series

(i) Individual Factor
Disentangle

*( common
patterns

discriminative
patterns

Sequential Encoder
(LSTM/TCN)

mutual information maximization

decompose correlations
& dimension-wise KL

Figure 4.2: An overview of DTS.

time-series of length T , lowercase boldface letter z = [z1, z2, ..., zN ] ∈ RN to denote a segment of

latent variables with size N , uppercase alphabet Z to denote a set of latent variables, which either

consists of segments, e.g., Z = {z1, z2, ..., zN}, or consists of scalars, e.g., Z = {z1, z2, ..., zN},

and |Z| to denote the size of all the latent variables, i.e., the dimension of the representations.

Disentanglement Problem: The independent latent factors and semantic segments can be defined

as follows. [Independent Latent Factors and Segments] Two latent variables zi and zj (or semantic

segments zi and zj) are independent if the change of the sequential patterns corresponding to

variable zi (segment zi) is relatively invariant to variable zj (segment zj) and vice versa, denoted

as zizj (zizj).

Based on Definition 4.2.1, we formally define the multi-level time-series disentanglement prob-

lem as follows.
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• Individual Latent Factor Disentanglement: We aim to learn a set of decomposed latent vari-

ables Z = {z1, z2, ..., zN}, such that all the pairs of latent variables in Z are independent,

i.e., zi ⊥ zj,∀i, j, where i ∈ {1, 2, ..., N}, j ∈ {1, 2, ..., N}, and i ̸= j.

• Group Segment Disentanglement: We aim to learn a set of decomposed semantic segments

Z = {z1, z2, ..., zN}, such that all the pairs of segments in Z are independent, i.e., zi ⊥

zj,∀i, j, where i ∈ {1, 2, ..., N}, j ∈ {1, 2, ..., N}, and i ̸= j.

4.2.2 β-VAE and KL Vanishing Problem

In this section, we focus on the latent codes disentanglement task using the generative model

family. Generative models have shown superior performance in learning the complex distributions.

LSTM-VAE [65] is widely used in time-series analytics. A latent variable generative model defines

a joint distribution between a feature space Z ∈ Z, and the observation space x1:T ∈ X. Suppose

we have a simple prior distribution p(Z) is placed over the latent variables. The distribution of the

observations conditioned on latent variables is modeled with a deep network pθ(x1:T | Z). If we

have the true underlying distribution as pD(x) (empirically approximated through the training set),

then a natural training objective is to maximize the marginal likelihood as:

EpD(x) [log pθ(x)] = EpD(x1:T )

[
logEp(Z) [pθ(x1:T | Z)]

]
. (4.1)

Directly optimizing the likelihood is generally intractable, since computing pθ(x) =
∫
z
pθ(x |

Z)p(Z)dz requires integration. A widely-used solution [66] is to approximate the posterior via an

amortized inference distribution qϕ(Z | x) and jointly optimize a lower bound to the log likelihood

as:
LELBO(x) = −DKL (qϕ(Z|x1:T )∥p(Z)) + Eqϕ(Z|x1:T ) [log pθ(x1:T |Z)]

≤ log pθ(x1:T ).

(4.2)

A disentangled representation [67] can be defined as one where single latent units are sensitive

to changes in single generative factor, while being relatively invariant to changes in other factors.

β-VAE [67] is a variant of the variational autoencoder that attempts to learn a disentangled repre-
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sentation by optimizing a heavily penalized objective with β > 1. The penalization is capable of

obtaining models exhibiting disentangled effects in image datasets. With increasing β, the latent

codes could be more disentangled by allowing distributions in the latent space to be further away

from each other by less satisfying the KL-term constraint to fit the marginally Gaussian distribu-

tion. The semantically similar observations might be mapped closer, thus creating a sort of clusters

for interpretations.

Lβ−ELBO(x) = −βDKL (qϕ(Z|x1:T )∥p(Z)) + Eqϕ(Z|x1:T ) [log pθ(x1:T |Z)]

≤ log pθ(x1:T ).

(4.3)

However, for sequential time-series data, prior work [63] shows that: the LSTM generative

model often has a strong expressiveness. The reconstruction term in the objective will dominate

the KL divergence term during the training phase. In this case, the model will generate time-series

without effectively making use of latent codes. Besides, the latent variable Z becomes independent

from observations x, when the KL divergence term collapses to zero. As a result, the latent variable

Z can not serve as an effective representation for the input x, and it can not be used for downstream

tasks such as classification and clustering. It can be further referred to as the information preference

problem [64]. Thus, pushing Gaussian clouds away from each other in the latent space becomes

meaningless if latent distributions are unhooked with the observation space.

4.2.3 Individual Latent Factor Disentanglement

To alleviate the KL vanishing problem, as well as to preserve the disentangle property, in this

section, we introduce the mutual information maximization term to the ELBO decomposition.

The goal is to learn a better representation Z that could more effectively capture the semantic

characteristics of the input x.

4.2.3.1 ELBO TC-Decomposition

To further understand the internal mechanism within the disentangle strategy, we decompose

the evidence lower bound (ELBO) to find evidence linking factorial representations to disentan-

glement.
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Mathematically, the KL term in Eq. (4.2) and 4.3 can be decomposed with a factorized p(Z)

as:
DKL(q(Z | x1:T )||p(Z)) = KL(q(Z,x1:T )||q(Z)p(x1:T ))︸ ︷︷ ︸

(i) Index-Code MI

+KL(q(Z)∥
∏
j

q (zj))︸ ︷︷ ︸
(ii) Total Correlation

+
∑
j

KL (q (zj) ∥p (zj))︸ ︷︷ ︸
(iii) Dimension-wise KL

(4.4)

where zj denotes the jth dimension of the latent variable.

To illustrate how to get the decomposition of the KL term in Eq. (4.2) and 4.3, the KL term can

be further decomposed with a factorized p(Z) step-by-step as:

1

N

N∑
n=1

KL (q (Z | xn
1:T ) ∥p(Z)) = Ep(xn

1:T )[DKL(q(Z | xn
1:T )∥p(Z))]

= Eq(Z,xn
1:T )

[
log

q(Z | xn
1:T )

q(Z)

]
+ Eq(Z)

[
log

q(Z)∏
j q (zj)

]

+ Eq(Z)

[∑
j

log
q (zj)

p (zj)

]

= Eq(Z,xn
1:T )

[
log

q(Z | xn
1:T )p(x

n
1:T )

q(Z)p(xn
1:T )

]
+ Eq(Z)

[
log

q(Z)∏
j q (zj)

]

+
∑
j

Eq(Z)

[
log

q (zj)

p (zj)

]

= Eq(Z,xn
1:T )

[
log

q(Z | xn
1:T )p(x

n
1:T )

q(Z)p(xn
1:T )

]
+ Eq(Z)

[
log

q(Z)∏
j q (zj)

]

+
∑
j

Eq(zj)q(Z\j |zj)

[
log

q (zj)

p (zj)

]

= Eq(Z,xn
1:T )

[
log

q(Z | xn
1:T )p(x

n
1:T )

q(Z)p(xn
1:T )

]
+ Eq(Z)

[
log

q(Z)∏
j q (zj)

]

+
∑
j

Eq(zj)

[
log

q (zj)

p (zj)

]
= DKL(q(Z, x1:T )∥q(Z)p(x1:T )) +DKL(q(Z)∥

∏
j

q (zj))

+
∑
j

DKL (q (zj) ∥p (zj))

(4.5)
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where zj denotes the jth dimension of the latent variable.

The first term can be interpreted as the index-code mutual information (MI). The index-code

MI is the mutual information Iqϕ(Z;x) between the data variable and latent variable based on the

empirical data distribution qϕ(Z,x). From the information theory, the second term is referred to as

the total correlation (TC). TC acts as one of many generalizations of mutual information to more

than two random variables [68]. TC is also to measure the dependencies between the variables.

The penalty on TC forces the model to find statistically independent factors in the data distribution.

A heavier penalty on this term induces a more disentangled representation, and that the existence of

this term is the reason β -VAE has been successful. One recent study empirically verifies [62, 69]

that TC is the most important term in this decomposition for learning disentangled representations

by only penalizing on this term. The last term is referred to as the dimension-wise KL. This

term mainly prevents individual latent dimensions from deviating too far from their corresponding

priors. It plays a role as a complexity penalty on the aggregate posterior, which follows from the

minimum description length [70] formulation of the ELBO.

By decomposing the ELBO into separate components, we can have a new perspective for the

problem when the latent codes are becoming independent from observations. Introducing a heav-

ier penalty on the ELBO tends to neglect the mutual information between Z and x. Thus, the

mutual information becomes vanishingly small. Intuitively, the reason is that the learned pθ(x|Z)

is the same for all z ∈ Z, implying that the Z is not dependent on the observations x. This is

undesirable because a major goal of unsupervised learning is to learn meaningful latent features

that should depend on the observations. If we directly apply β-VAE models to time-series data for

disentanglement, β-VAE can not effectively trade-off weighting of the mutual information and the

reconstruction. Desired disentangled representations emerge when the right balance is found be-

tween information preservation (reconstruction cost as regularisation) and latent channel capacity

restriction (when β > 1). Increasing the β may intensify the mutual information vanishing prob-

lem: when the model has a better quality of disentanglement within the learned latent representa-

tions, it penalizes the mutual information simultaneously. This, in turn, can lead to under-fitting or
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ignoring the latent variables.

4.2.3.2 ELBO DTS-Decomposition

We now introduce how to balance the preference between correct inference and fitting data

distribution, and provide a new ELBO decomposition solution that sheds light on solving the in-

formation preference problem.

Previously, we discussed that optimizing the ELBO tends to push the probability mass of qϕ(Z |

x) too far from 0. This tendency is a property of the ELBO objective and true for any x and Z.

However, this is made worse by the fact that x is often higher dimensional compared to Z, so any

error in fitting x will be magnified compared to Z. To encourage the model to use the latent codes,

we add a mutual information maximization term, which encourages a high mutual information

between x and Z. In other words, we can address the information preference problem through

balancing the preference between correct inference and fitting data. Comparing with the ELBO in

LSTM-VAE (in Eq. (4.2)), we can rewrite it as:

LELBO(x) = −DKL (qϕ(Z | x1:T )∥p(Z)) + αIqϕ(x1:T ;Z)

+ Eqϕ(Z|x1:T ) [log pθ(x1:T | Z)]
(4.6)

where Iqϕ(x;Z) denotes the mutual information between x and Z under the distribution qϕ(x;Z).

But the objective can not be directly optimized. Thus, we rewrite it into another equivalent form:

LELBO(x) = −DKL (qϕ(Z | x1:T )∥p(Z)) + αDKL (qϕ(Z)∥p(Z))

+ Eqϕ(Z|x1:T ) [log pθ(x1:T | Z)] .

(4.7)

We find that the mutual information maximization term (the second part of Eq. 4.7) plays the

same role as the first term in the ELBO-TC decomposition (as shown in Eq. (4.4)). But the op-

timization directions are contrary. Thus, increasing the disentanglement degree may intensify the

KL vanishing problem, and vice versa. To enforce the model to preserve the disentangle property

while alleviating the KL vanishing, here, we combine the mutual information regularizer term with

the ELBO-TC decomposition in Eq. (4.4) and merge the mutual information maximization term,
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then the ELBO can be written as:

LELBO(x) = −βDKL(q(Z)∥
∏
j

q (zj))− β
∑
j

DKL (q (zj) ∥p (zj))

+ (α− β)DKL (qϕ(Z)∥p(Z)) + Eqϕ(Z|x1:T ) [log pθ(x1:T | Z)] ,

(4.8)

where the mutual information regularizer merges with the first term in the decomposition analysis.

Mathematically, we alleviate the KL vanishing problem by introducing the mutual information

maximization term, while preserve a heavier penalty (when β > 1) on the total correlation and the

dimension-wise KL to keep the disentangle property.

4.2.4 Latent Group Segment Disentanglement

The individual factor disentanglement introduced in the last section can’t guarantee inter-

pretability. For time-series applications, it’s hard to interpret the single latent factor, and human-

interpretable semantic concepts typically rely on multiple latent factors instead of one single factor.

Thus, in this section, we introduce how to disentangle latent codes of time-series into group seg-

ments (Section 4.2.4.1). We further show that our proposed group segment disentanglement could

benefit the domain adaptation task (Section 4.2.4.2).

4.2.4.1 Group Segment Disentanglement

Different from individual variable analysis, in this section, we aim to learn decomposed seman-

tic segments that contain batches of latent variables. One main advantage of the group segment

disentanglement is to extract more than one latent factors, which simultaneously contribute to one

complex sequential semantic concept.

Assume that the semantic segments are independent factors, i.e., zm ⊥ zn with every pairs of

m,n sampled from z = {z1...zk}, where k is the number of the segments. For ease of presentation,

we take m,n as two semantic segments for illustration. Our method could be easily extended to

multiple segments scenarios. Given x, the new time-series is generated from two independent

latent group segments, i.e., zm encodes the mth-segment and zn encodes the nth-segment.

Theorem 4. Assume that two group segments are independent, i.e., zm ⊥ zn, and let z = {zm, zn},

48



the empirical error on the disentangled segments with a hypothesis h is:

ϵ(h) = Ezm∼Z [Cm (zm)− h (zm)] + Ezn∼Z [Cn (zn)− h (zn)] (4.9)

where ϵyT(h) denotes the empirical error of DTS with respect to h.

Proof. Since zm ⊥ zn, we can derive the empirical error as follows:

ϵ(h) = E(zm,zn)∼Z [C (z)− h (z)]

= Ezm∼Z [Cm (zm)− h (zm)] + Ezn∼Z [Cn (zn)− h (zn)] .

(4.10)

Based on the independence property between zm and zn, the distribution of Z can be de-

composed into two parts so as to the error. Following the evidence lower bound of the marginal

likelihood in the Eq. (4.7), we get a similar form for group segments:

LELBO−G(x) = −DKL (qϕm(zm | x1:T )∥p(zn))−DKL (qϕn(zn | x1:T )∥p(zn))

+ Eqϕm (zm,zn|x1:T ) [log pθ(x1:T | zm, zn)] + αDKL (qϕ(Z)∥p(Z)) .

(4.11)

We assume that P (zm) , P (zn) ∼ N(0, I), and ϕm and ϕn are the parameters of the en-

coder. By applying a reparameterization trick, we use sequential models (LSTMs or TCNs [71])

Hm (G(x);ϕy) and Hn (G(x);ϕd) as the universal approximator of q to encode the data into zm

and zn, respectively.

Meanwhile, we want to make the zm task-n-invariant, and make the zn task-m invariant. That

is, we want to make the Cm (zn; θm) and Cn (zm; θn) less discriminative. To obtain task-invariant

representations, we seek the parameters θm of the feature mapping that maximize the loss of the

qθm (by making the distributions of different zm as close as possible), while simultaneously seeking

the parameters θn that minimize the loss of zm. We aim to solve:

Em (ϕy, θm, θn) = E (Cm (zm; θm) , ym)− λE (Cn (zm; θn) , yn) . (4.12)
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Moreover, we seek to minimize the loss of zn. Similarly, we have:

En (ϕy, θm, θn) = E (Cn (zn; θn) , yn)− λE (Cm (zn; θm) , ym) . (4.13)

From Eq. (4.12) and 4.13, we are seeking the parameters θ̂f , θ̂y, θ̂d as:

(
θ̂f , θ̂y

)
= argminθf ,θy E

(
θf , θy, θ̂d

)
θ̂d = argmaxθd E

(
θ̂f , θ̂y, θd

)
,

(4.14)

where the parameter λ controls the trade-off between the two objectives that shape the features

during training. The update process is very similar to vanilla stochastic gradient descent (SGD)

updates for feed-forward deep models. One thing that needs to point out is the −λ factor, which

tries to make disentangled features less discriminative for the irrelevant task. Here, we use a gra-

dient reversal layer (GRL) [72] to exclude the discriminative information. During the forward

propagation, GRL acts as an identity transform. During the backpropagation, GRL takes the gra-

dient from the subsequent level, and multiplies the gradient by a negative constant, then passes it

to the preceding layer.

4.2.4.2 Domain Adaptation as Concrete Example

To further illustrate the benefits of the proposed group segments disentanglement for time-

series, we apply it to the domain adaptation problem as a concrete application scenario.

In the unsupervised domain adaptation problem, we use the labeled samples DS =
{
xS
1:T , y

S
i

}nS

i=1

on the source domain to classify the unlabeled samples DT =
{
xT
j

}nT

j=1
on the target domain.

We aim to obtain two independent latent variables with disentanglement, including a domain-

dependent latent variable zd and a class-dependent latent variable zy. These two variables are

expected to encode the domain information and the class information, respectively. Then, we can

use the class-dependent latent variable for classification since it is domain-invariant. Mathemati-

cally, deriving from Theorem 4, we have:

Theorem 5. Assume that the class and the domain factors are independent, i.e., zyzd. Let z =
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{zy, zd} , and the error on the disentangled source and target domain with a hypothesis h is:

ϵS(h) = Ezy∼ZS
[C (zy)− h (zy)] + Ezd∼ZS

[C (zd)− h (zd)]

ϵT (h) = Ezy∼ZT
[C (zy)− h (zy)] + Ezd∼ZT

[C (zd)− h (zd)] .

According to the Theorem 5, we can find that, the disentangled empirical classification error

rate with respect to h in the source domain is lower than before disentanglement (ϵyS(h) = ϵS(h)−

ϵdS(h), where ϵdS(h) ≥ 0). Prior work [73] theoretically proves that the disentanglement of the

representation space could be helpful and necessary for obtaining a lower classification error rate.

Furthermore, a lower classification error rate on the source domain will tighten the error bound at

the target domain.

We measure the discrepancy distance between the source and target distribution with respect

to hypothesis h. Formally, we have:

dH∆H(S,T) = 2 sup
h1,h2∈H

|Pf∼S [h1(f) ̸= h2(f)]− Pf∼T [h1(f) ̸= h2(f)] | (4.15)

A probabilistic bound on the performance εT(h) of classifier h from T is evaluated on the target

domain, given its performance εS(h) on the source domain, where S and T are source and target

distributions, respectively:

εT(h) ≤ εS(h) +
1

2
dH∆H(S,T) + C (4.16)

where C does not depend on a particular h. Prior work [72] proves that optimal discriminator gives

the upper bound for the dH△H(S,T), so that tighter bound εS(h) from the source domain could lead

to a better approximation of εT(h).

4.3 Related work and Theoretical Justification

In this section, we introduce the related work as well as theoretical justifications of DTS com-

paring to unsupervised disentanglement learning.
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4.3.1 Relationship to Existing Models

Here, we discuss the relationship of DTS to existing models based on the information bottle-

neck principle [74]. The proposed DTS, including individual latent factors and group segments,

can be considered as a product of variational decomposition of mutual information terms in the

information bottleneck (IB) framework.

4.3.1.1 Information Bottleneck for Unsupervised Models

The unsupervised IB can be treated as a compression process from x to z via the parametrized

mapping qϕ(z | x). This process leads to a bottleneck representation z yet preserving a certain

level of information Ix in z about x. Accordingly, this problem can be formulated as:

min
ϕ:I(Z;X)≥Ix

Iϕ(X;Z), (4.17)

and in the Lagrangian formulation as a minimization of:

L(ϕ) = Iϕ(X;Z)− βI(Z;X). (4.18)

4.3.1.2 Relation to LSTM-VAE and β-VAE

Encoders in LSTM-VAE maps a data point from the observation space into a probabilistic

output of Gaussian cloud with mean µ(x) and ‘ellipsoid’ orientation determined by the diagonal

covariance matrix diag(σ(x)). Comparing with LSTM-VAE, β-VAE relaxes the stochastic ‘com-

pression’ via mapping everything to a Gaussian heap by applying the relaxation parameter that

might give more preference to the reconstruction loss. Our proposed DTS can be considered as

another form of compression by the minimization of Iϕ(X;Z). DTS relaxes the condition to map

all conditional distributions to one Gaussian heap.
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4.3.1.3 Relation to Domain Adaptation Methods

Existing domain adaptation methods focus on (i) utilizing maximum mean discrepancy to mea-

sure the domain alignment [75]; and (ii) extracting the domain-invariant representation as trans-

ferable common knowledge on the feature space [73, 76]. Motivated by the success of disentan-

glement in the image domain, DTS aims to extract the group segments in the latent disentangled

semantic representation of the data. DTS also introduces interpretability in the latent space via

weak-supervised signals as imposing special constraints on the latent codes.

4.3.1.4 Complexity Analysis

DTS can disentangle latent factors for sequential data, scale to complicated datasets, and typ-

ically requires no more training time than vanilla VAEs. It does not require an exponentially

growing computational cost in the number of factors.

4.3.2 Theoretical Possibility

One recent work essentially shows that without inductive biases on both models and datasets,

the unsupervised disentangle task is fundamentally impossible [77].

Theorem 6. Suppose p(z) is a d-dimensional distribution and d > 1, let z ∼ P denote any

distribution which admits a density p(z) =
∏d

i=1 p (zi) . Then, there exists an infinite family of

bijective functions f : supp(z) → supp(z) such that ∂fi(u)
∂ui
̸= 0 almost everywhere for all i and j

(i.e., z and f(z) are completely entangled) and P (z ≤ u) = P (f(z) ≤ u) for all u ∈ supp(z)

(i.e., they have the same marginal distribution). [77]

Intuitively, after observing x, we can construct infinitely many generative models, which have

the same marginal distribution of x. Any one of these models could be the true causal generative

model for the data, and the right model cannot be identified given only the distribution of x.

While Theorem 6 shows that unsupervised disentanglement learning is fundamentally impos-

sible for arbitrary generative models, it is still theoretically possible for our proposed DTS. First,

from the model structure perspective, our proposed DTS exploits TCN and LSTM-like models,

53



which impose the inductive biases towards preserving contextual information over long sequences

in the design of the neural network architecture. Second, from the data structure perspective, time-

series as sequential data, contain trend and seasonal patterns, with the serial correlation between

subsequent observations. Third, from the implicit supervision perspective, DTS could incorporate

additional weak supervision (like signals from the source domain) to guide a better disentangled

representation. Thus, we make explicit and implicit inductive bias available during the training

phase.

4.4 Experiments

In this section, we conduct experiments to answer research questions as follows:

• Q1: Compared with non-disentangled methods, how quantitatively effective is the proposed

disentangled strategy?

• Q2: Does individual latent factor disentanglement benefit the generation process of the time-

series in a more informative way?

• Q3: Whether or not latent group segment disentanglement strategy could separate semantic

concepts?

4.4.1 Experiment Setup

We provide insights on interpreting the latent representations with semantic meanings: First, to

validate the effectiveness of the disentanglement strategy, we conduct DTS on time-series domain

adaptation tasks, and further illustrate the benefits of DTS on separating and extracting different se-

mantic meaningful sequential patterns as transferable common knowledge and domain-dependent

information (Section 4.2); Second, we provide latent traversals to validate that DTS tends to dis-

cover more informative latent factors and provide more meaningful disentangled representations of

time series (Section 4.3); Finally, we visualize the disentangled segments over the representation

space, to investigate the discriminative ability of the group disentangle strategy.
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4.4.1.1 Datasets

We evaluate DTS on five benchmark datasets for individual latent factor disentanglement and

group segment disentanglement with domain adaptation as a concrete task.

• Human Activity Recognition (HAR) [78]: contains sequential accelerometer, gyroscope,

and estimated body acceleration data from 30 participants at 50 Hz.

• Heterogeneity Human Activity Recognition (HHAR) [79]: includes accelerometer data

from 31 smartphones of different manufacturers and models positioned in various orienta-

tions.

• WISDM Activity Recognition (WISDM AR) [80]: contains 33 participants accelerometer

data, which are sampled at 20 Hz.

• uWave [81]: is a large gesture library with over 4000 samples collected from eight users

over an elongated period of time for a gesture vocabulary with eight gesture patterns.

• ECG Signal [82]: contains heartbeats annotated by at least two cardiologists. The annota-

tions are mapped into 5 groups in accordance with the AAMI standard.

Our adaptation problems consist of the realistic use-case adapting a model from one participant’s

data to another participant’s data. Each dataset consists of data from a number of participants. We

follow the same procedure in [76] to select 7 of the possible adaptation problems between two

domains as [source_id→ target_id] (excluding adapting a domain to itself).

4.4.1.2 Data Splitting

For the time-series representation task, it is label-free. For the domain adaptation task, the

training-test split is 80% and 20% respectively, and the training data is further split into training-

validation with the same proportions. We segment the series into non-overlapping windows of

128 time steps. The datasets were stratified by the labels to maintain the same label proportions

for training, validation, and testing sets. During the training phase, only the training dataset is
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accessible: labeled data for the sources and unlabeled data for the target. During the evaluation,

the test data becomes available for quantitative evaluations and visualizations. Before training, all

data is normalized to have zero mean and unit variance based on statistics computed from just the

training set.

4.4.1.3 Baselines

We compare DTS with three state-of-the-art domain adaptation algorithms and one time-series

generative model:

• Recurrent Domain Adversarial Neural Network(R-DANN) [83]: employs an LSTM net-

work, and promotes the emergence of features that are (i) discriminative for the learning task

on the source domain and (ii) indiscriminate with respect to the shift between the domains.

• Variational Recurrent Adversarial Deep Domain Adaptation (VRADA) [84]: uses a

variational RNN and trains adversarially to capture temporal relationships that are domain-

invariant.

• Convolutional Deep Domain Adaptation (CoDATS) [76]: leverages domain-invariant do-

main adaptation methods to operate on time-series data, and utilizes weak supervisions from

labels.

• LSTM-VAE [65]: is similar to an auto-encoder. It learns an LSTM as the encoder that

maps the sequential data to a latent representation in a probabilistic manner, and decodes the

latents back to data.

4.4.1.4 Hyperparameter Settings

We summarize the hyperparameters of network architecture, optimizer, and how we train DTS

and all the baselines as follows.

For individual latent factor disentanglement experiments, we train the DTS on the ECG dataset.

The framework is shown in Fig. 4.3.
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Figure 4.3: The architecture of Individual Latent Factor Disentanglement experiment.

• LSTM-VAE: The hidden-size is set to be 90, the depth of the hidden layer is 1, the length

of latent variables is set as 12, the batch size is set to be 32, the dropout rate is set to be 0.2.

Weights are initialized uniformly in [−0.1, 0.1].

• Disentanglement: The disentangle penalty term β is set to be 3, and the mutual information

maximization term α is set to be 10.

• Optimizer: We train the model by utilizing a batch size of 64 and a momentum of 0.9 with

the ADAM optimizer. The learning rate starts at 5e − 4, and is dropped by a factor of 10 at

50% and 75% of the training progress, respectively. The number of epochs has set to be 200,

The exactly same optimizer is also adopted in the baselines.

For latent group segment disentanglement experiments, we train the DTS on the HAR, HHAR,

WISDM AR, and uWave datasets. The framework is shown in Fig. 4.4.

• TCN: The depth of the hidden layer is 3, each layer contains a convolution operation as

[filters=128, kernel=8], [filters=256, kernel=5], [filters=128, kernel=3], respectively. The

activation functions are set to ReLU. The length of latent variables is set to be 12, the batch

size is set to be 32, the dropout rate is set to be 0.2. The dropout rate is set to be 0.1. Weights

are initialized uniformly in [−0.1, 0.1].

• Disentanglement: The disentangle penalty term β is set to be 3, and the mutual information
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Figure 4.4: The architecture of Latent Group Segment Disentanglement experiment.

maximization term α is set to be 10. Instead of fixing the adaptation factor in the gradient

reversal layers (GRL), we gradually change it from 0 to 1 using the following schedule:

λp = 2
1+exp(−γ·p) − 1, where γ is set to be 10, where p is the training progress linearly

changing from 0 to 1.

• Optimizer: We train the model by utilizing a batch size of 64 and a momentum of 0.9 with

the ADAM optimizer. The learning rate starts at 5e − 4, and is dropped by a factor of 10 at

50% and 75% of the training progress, respectively. The number of epochs has been set to

be 200. The exactly same optimizer is also adopted in the baselines.

4.4.2 Performance Evaluation

To answer the research question Q1, we apply DTS to domain adaptation tasks to validate

the effectiveness of the group segmentation (Section 2.4), and compare DTS with the state-of-the-

art algorithms. During the training phase, only the training dataset is accessible: labeled data as

the source domain and unlabeled data as the target domain. During the evaluation, the test data

becomes available as the target domain for quantitative evaluations and visualizations.

4.4.2.1 Quantitative Results

Table 4.1 compares the performance of DTS and the baselines on HAR, HHAR, WISDM AR,

and uWave datasets. We include no adaptation as an approximate lower bound, and models trained
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Problem W/O R-DANN VRADA CoDATS DTS Target

HAR 2→ 11 83.3 80.7 64.1 74.5 84.3 100.0
HAR 7→ 13 89.9 75.3 78.3 96.5 98.1 100.0
HAR 12→ 16 41.9 35.1 61.7 77.5 72.9 100.0
HAR 12→ 18 90.0 74.9 74.4 100.0 100.0 100.0
HAR 9→ 18 31.1 56.6 59.8 85.8 89.8 100.0
HAR 14→ 19 62.0 71.3 64.4 98.6 100.0 100.0
HAR 18→ 23 89.3 78.2 72.9 89.3 94.9 100.0
HAR 6→ 23 52.9 79.1 78.2 94.2 94.9 100.0
HAR 7→ 24 94.4 84.8 93.9 99.1 100.0 100.0
HAR 17→ 25 57.3 66.3 52.0 97.6 100.0 100.0
HAR Average 69.2 70.2 70.0 90.2 93.5 100.0
HHAR 1→ 3 77.8 85.1 81.3 90.8 93.7 99.2
HHAR 3→ 5 68.8 85.4 82.3 94.3 95.9 99.0
HHAR 4→ 5 60.4 70.4 71.6 94.2 94.9 99.0
HHAR 0→ 6 33.6 33.4 35.6 76.7 80.0 98.8
HHAR 1→ 6 72.1 81.7 74.9 90.8 92.1 98.8
HHAR 4→ 6 48.0 64.6 62.7 85.3 92.3 98.8
HHAR 5→ 6 65.1 54.4 60.0 91.7 92.5 98.8
HHAR 2→ 7 49.4 46.4 45.0 58.1 64.7 98.5
HHAR 3→ 8 77.8 82.8 82.2 93.4 94.7 99.3
HHAR 5→ 8 95.3 82.5 87.5 95.8 97.9 99.3

HHAR Average 64.8 68.7 68.3 86.8 89.9 99.0
WISDM 1→ 11 71.7 55.6 55.0 93.3 89.6 98.3
WISDM 3→ 11 6.7 28.9 45.0 47.8 58.3 98.3
WISDM 4→ 15 78.2 69.2 82.7 81.4 82.9 100.0
WISDM 2→ 25 81.1 57.8 72.2 90.6 95.8 100.0

WISDM 25→ 29 47.1 61.6 81.9 74.6 82.2 95.7
WISDM 7→ 30 62.5 41.7 61.9 73.2 89.2 100.0

WISDM 21→ 31 57.1 61.0 68.6 92.4 96.4 97.1
WISDM 2→ 32 60.1 49.0 66.7 68.6 70.7 100.0
WISDM 1→ 7 68.5 44.8 63.0 66.1 72.7 96.4
WISDM 0→ 8 34.7 13.3 14.7 62.0 77.4 99.3

WISDM Average 56.8 48.3 61.2 75.8 81.7 98.5
uWave 2→ 5 86.3 33.3 18.5 98.2 100.0 100.0
uWave 3→ 5 82.7 63.7 32.4 92.9 95.6 100.0
uWave 4→ 5 83.3 35.4 12.8 99.1 96.7 100.0
uWave 2→ 6 86.0 34.5 25.3 93.8 97.8 100.0
uWave 1→ 7 95.2 26.8 29.2 98.5 94.4 100.0
uWave 2→ 7 85.1 53.9 12.2 91.4 98.9 100.0
uWave 3→ 7 95.5 64.0 30.4 92.0 98.9 100.0
uWave 1→ 8 100.0 78.6 11.0 93.8 100.0 100.0
uWave 4→ 8 100.0 44.0 12.5 96.7 97.8 100.0
uWave 7→ 8 95.2 49.7 12.5 93.8 96.7 100.0

uWave Average 91.0 48.4 19.7 94.3 97.7 100.0

Table 4.1: Target classification accuracy (based on the class-dependent representation) for time-
series domain adaptation.
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Dataset Acc/D-S Acc/D-T Acc/C-S Acc/C-T AUC/C-S AUC/C-T

HAR 100.0 100.0 100.0 97.2 100 99.2
HAR/r 54.7 66.7 35.9 22.2 54.6 53.7
HHAR 96.9 98.8 97.9 91.1 99.8 98.7

HHAR/r 70.8 70.9 30.5 17.6 58.3 52.7
WISDM 100 100 94.5 70.7 99.0 85.9

WISDM/r 67.3 46.7 38.2 33.3 69.7 67.9
uWave 100 100 99.1 94.4 99.0 85.9

uWave/r 55.4 48.2 18.8 12.5 54.6 53.7

Table 4.2: Ablation studies of the discriminability.

KDD’21, August 2021, Singapore

Figure 5: Latent traversal plots from DTS on ECG. All �gures of latent code traversal each block corresponds to the traversal
of a single latent variable while keeping others �xed to either their inferred. Each row represents a di�erent seed image used
to infer the latent values with traversal over the [-4, 4] range. Blue and green denote two time-series with di�erent sequential
patterns. The �rst two rows denote the decline degree at the �rst turning point, transition from rigid to a more mild manner;
The last two rows denote the rising trend at the second turning point, transition from inconspicuous to obvious.

It can be seen that DTS is able to discover and learn to disentan-
gle all of the factors automatically. Often it could generate more
convincing inverse time-series than LSTM-VAE. Comparing the
visualization from panels (a), (b) and panels (c), (d), DTS could gener-
ate a time-series in a more diverse way. It can be seen that sampling
from an entangled representation results in LSTM-VAE((a), (b)) only
re�ects small di�erences according to the traversal perturbations.
One possible reason to explain this phenomenon is that the LSTM-
VAE is dominated by the reconstruction term during the training
phase. The slight changes only correspond to the reconstruction
distortion due to the latents, and observations are independent.
Comparing with LSTM-VAE, some of the DTS latents tend to learn
a smooth continuous transformation over a wider range of factor
values than LSTM-VAE, which contains a wider range of vibrations
as shown in panels (b) and (d). A clear transition process can be
observed from the manipulation results with respect to z space. As
the value of individual latent factor increases, the semantic of the
latent factor changes across di�erent sequential patterns. Other
latents are robust with the vibrations, as it does not play any role in
the generation process. Single latent units are sensitive to changes
in single generative factors, while being relatively invariant to
changes in other factors. One possible reason is that the represen-
tation of the time-series could be e�ectively expressed with a few
latents in the z. Individual latents factor disentanglement process
may help us to recognize the useful latent codes, and regard the
redundant parts. This phenomenon demonstrates that DTS is able to
disentangle useful knowledge from sequential data, which is more
informative as interpretable factors in the latent space.

4.2.2 Traversal Plots to Discover Semantics. There is currently no
general method for quantifying the degree of learned disentangle-
ment (unless there are concept groud-truth factors E available, then

the mutual information gap (MIG) [13, 23] could be used to deter-
mine if there exists a deterministic, invertible relationship between
I and E). Therefore there is no way to quantitatively compare the
degree of disentanglement achieved by di�erent models or when
optimizing the hyperparameters of a single model. Figure 5 plots
the manipulation results of the latent traversal results from DTS.
All �gures of latent code traversal each block corresponds to the
traversal of a single latent variable while keeping others �xed to
either their inferred. Each row represents a di�erent seed image
used to infer the latent values with traversal over the [-4, 4] range.
It suggests that our manipulation approach performs well on all
attributes in both positive and negative directions. We observe that
moving the latent code can produce continuous change, with the
sequential patterns orthogonal to the others. According to the edit-
ing process, the �rst and the third rows (sampled from class 1 and
2 respectively) denote the decline degree at the �rst turning point,
transition from rigid to a more mild manner; the second and the last
rows (with the same sample strategy) denote the rising trend at the
second turning point, transition from inconspicuous to obvious. It
demonstrates that DTS discovered in unsupervised manner factors
that encode sequential trend and depict an interpretable property
in the generation.

These observations provide strong evidence that DTS does not
produce time-series randomly, but learns some interpretable se-
mantics in the latent space.

4.3 Latent Group Segments Disentanglement
To answer the research question Q3, we get some insights about
the interpretability and e�ectiveness of the group segment disen-
tanglement strategy.

4.3.1 Insights of E�ectiveness via Visualizations. To further under-
stand the discriminative ability of the disentangled group segments,

Figure 4.5: Latent traversal plots from DTS on ECG.

directly on labeled target data as upper bound. After the group disentanglement, two variables

are used to encode the domain information and the class information, respectively. We use the

class-dependent latent variable for classification since it is domain-invariant. We observe that

DTS outperforms the baselines with consistently +3% higher accuracy over all datasets. These

results ascertain the effectiveness of DTS in boosting the performance of domain adaptation by

obtaining domain-invariant transferable components common knowledge. The enhanced results

also validate eliminating irrelevant information from group disentanglement could prevent negative

transferring.
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4.4.2.2 Ablation Studies

We study whether DTS can decompose the representations into domain-dependent and class-

dependent components with a series of ablation studies. We compare the discriminability of the

disentangled features, including domain-dependent (zd) and class-dependent (zy) components (see

Section 2.4.2), sampled from both source and target domains. The ablations include (i) using

domain-dependent features zd and class-dependent features zy, and (ii) domain-invariant and class-

invariant features (shown as /r), respectively. The comparison between DTS and the ablations (/r)

is shown in Table 5.5. We observe that DTS significantly outperforms the ablations over all

datasets. Disentangled task-dependent group segments consistently help to improve the perfor-

mance. Conversely, the class-dependent features are invariant to the change of domains, and the

domain-dependent features are invariant to the change of classes. DTS could preserve the discrim-

inability of the disentangled features corresponding to the specified task, and simultaneously make

disentangled features less discriminative for the irrelevant task. It indicates that these disentangled

group segments do not contain any useful semantic concepts for other irrelevant tasks.

4.4.3 Individual Latent Factor Disentanglement

To answer the research question Q2, we provide latent traversals as qualitative results to val-

idate that DTS tends to consistently discover more informative latent factors and provide more

meaningful disentangled representations of time-series (see Section 2.3).

4.4.3.1 Traversal Plots to Discover Semantics

There is currently no general method for quantifying the degree of learned disentanglement or

optimize the hyperparameters (unless there are concept ground-truth factors v available, then the

mutual information gap (MIG) [62, 61] could be used to determine if there exists a deterministic,

invertible relationship between z and v). Therefore, there is no way to quantitatively compare the

degree of disentanglement achieved by different models or when optimizing the hyperparameters

of a single model. Fig. 4.5 plots the manipulation results of the latent traversal results from DTS.

Each block of the figure corresponds to the traversal of a single latent variable while keeping others
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fixed. Each row represents a different seed image used to infer the latent values with traversal over

the [-4, 4] range. The results show that our manipulation approach performs well on all attributes

in both positive and negative directions. We observe that moving the latent codes can produce

continuous change, with the sequential patterns orthogonal to the others. According to the editing

process, the first and the third rows (sampled from two different time-series of ECG) denote the

decline degree at the first turning point, transition from rigid to a more mild manner; the second

and the last rows (with the same sampling strategy) denote the rising trend at the second turning

point, transition from inconspicuous to obvious. It demonstrates that DTS discovered latent factors

in an unsupervised manner that encode sequential trend and depict an interpretable property in the

generation. These observations provide strong evidence that DTS does not produce time-series

randomly, but learns some interpretable semantics in the latent space.

4.4.3.2 Qualitative Comparison of Latent Codes

We train DTS on ECG data to evaluate disentanglement performance for individual latent

factors. We use the same traversal way to show the disentanglement quality. Fig. 4.6 provides

a qualitative comparison of the disentanglement performance of DTS and LSTM-VAE. We edit

the time-series by altering the latent codes in the Z space. Here, the dimension of the represen-

tation is set to be 12. This setting helps reduce the impact of differences in complexity by model

frameworks. However, for a better comparison, we only select eight dimensions that change more

regularly. The sequences visualized in panels are generated from Z ∼ q (Z | x1:T ). Hence, the

dynamics are imposed by the encoder, but the identity is sampled from the prior.

Fig. 4.6 shows traversals in latent variables that depict an interpretable property in generating

time-series. Often it could generate more semantic convincing time-series than LSTM-VAE. Com-

paring the visualization from panel (a) and panel (b), DTS could generate a time-series in a more

diverse way. It can be seen that sampling from an entangled representation results in LSTM-VAE

(panel (a)) only reflects small differences according to the traversal perturbations. One possible

reason is that the LSTM-VAE is dominated by the reconstruction term during the training phase.

The slight changes only correspond to the reconstruction distortion due to the latent codes and
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(a) Visualizing the generated time-series from LSTM-VAE.

(b) Visualizing the generated time-series from DTS.

Figure 4.6: Comparison of learned latent variables.
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observations are independent. Comparing with LSTM-VAE, some of the DTS latent codes tend

to learn a smooth continuous transformation over a wider range of factor values as vibrations. A

clear transition process can be observed from the manipulation results with respect to the Z space.

As the value of individual latent factor increases, the semantic of the latent factor changes across

different sequential patterns. Other latent codes are robust with the vibrations, as it does not play

any role in the generation process. Single latent units are sensitive to changes in single generative

factor, while being relatively invariant to changes in other factors. One possible reason is that the

representation of the time-series could be effectively expressed with a few latent codes in the Z.

Individual latent factor disentanglement process may help us to recognize the useful latent codes,

and discard the redundant parts. All these results demonstrate that DTS is able to disentangle

useful knowledge from sequential data, which is more informative as interpretable factors in the

latent space.

4.4.4 Latent Group Segment Disentanglement

To answer the research question Q3, we visualize the disentangled segments over the repre-

sentation space (see Section 2.4.1). Fig. 4.7(a) shows the effect of domain-dependent and domain-

invariant disentanglement on the distribution of the extracted features. We observe that, for all the

datasets, the adaptation in DTS makes the disentangled domain(class)-dependent features more

distinguishable, but the domain(class)-invariant features indistinguishable. The results validate the

DTS can learn decomposed segments that contain independent semantic information. Further-

more, we can observe an apparent clustering effect (the different colors denote different categories).

A widely-accepted assumption [85] indicates that observation distribution contains separated data

clusters and data samples in the same cluster share the same class label in domain adaptations.

These results validate the discriminative ability of the disentanglement, since DTS is capable of

yielding strong clustering in the target domain. And it almost matches the prior perfectly, as the

semantically similar observations are mapped closer, and create clusters. This phenomenon gives

us another insight as the disentangled group segments could enhance the interpretability.
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(a) HAR (b) HHAR

(c) WISDM (d) uWave

(a) T-SNE visualizations of the DTS activations on the distribution of domain-
dependent representation (left) and domain-invariant representations(right). Blue
points correspond to the source domain examples, while red ones correspond to the
target domain ones.

(a) HAR (b) HHAR

(c) WISDM (d) uWave

(b) T-SNE visualizations of DTS activations on the distribution of class-dependent
representation (left) and class-invariant representations (right). Each color denotes
one specific class.

Figure 4.7: The effect of (a) domain-dependent and -invariant (b) class-dependent and -invariant
disentanglement on the distribution of the extracted features.
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5. AUTOMATED OUTLIER DETECTION1

5.1 Motivation

One drawback of existing deep learning based outlier detection algorithms is that the design of

neural architectures heavily relies on human experience to fine-tune the hyperparameters, which

is usually time-consuming and may result in sub-optimal performance. In addition, we often need

to find a suitable definition of the outlier and its corresponding objective function to differentiate

between normal and anomalous behaviors. One common way to define the outliers is to estimate

the relative density of each sample, and declare instances that lie in a neighborhood with low

density as anomalies [16]. Yet these density-based techniques perform poorly if the data have

regions of varying densities. Another way to define anomalies is through clustering. An instance

will be classified as normal data if it is close to the existing clusters, while the anomalies are

assumed to be far away from any existing clusters [17]. However, these clustering-based techniques

will be less effective if the anomalies form significant clusters among themselves [1]. Thus, the

proper definition of outliers not only requires domain knowledge from researchers and experience

from data scientists, but also needs thorough and detailed raw data analysis efforts.

While Neural Architecture Search (NAS) has achieved competitive performance on supervised

image and text classification tasks [86, 87], the objective of existing approaches is limited to the

search of neural architectures, which is not suitable for outlier detection systems. Therefore, there

exists a vital need for the methods that can automatize the process of finding an effective outlier

detection model for a target dataset, which covers not only the architecture settings and hyper-

parameters, but also the outlier definitions and the corresponding objective functions.

The challenges of developing an automated outlier detection scheme are three-fold: (1) Lack

1This chapter is reprinted with permission from “AutoOD: Neural Architecture Search for Outlier Detection”, by
Yuening Li, Zhengzhang Chen, Daochen Zha, Kaixiong Zhou, Haifeng Jin, Haifeng Chen, Xia Hu, 2021. Proceedings
of the IEEE 37th International Conference on Data Engineering (ICDE). Copyright 2021 by IEEE. This chapter is
also reprinted with permission from “Automated Anomaly Detection via Curiosity-Guided Search and Self-Imitation
Learning”, by Yuening Li, Zhengzhang Chen, Daochen Zha, Kaixiong Zhou, Haifeng Jin, Haifeng Chen, Xia Hu,
2021. IEEE Transactions on Neural Networks and Learning Systems, 2021. Copyright 2021 by IEEE.
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of intrinsic search space. It is non-trivial to determine the search space for an outlier detection

task. As we mentioned above, different from the search spaces defined by NAS, the search space

of automated outlier detection needs to cover not only the architecture configurations, but also the

outlier definitions with corresponding objective functions. (2) Unstable search process. The search

process may easily become unstable and fragile when outlier detection compounds with architec-

ture search. On the one hand, the unsupervised nature and imbalanced data distributions make the

search process easily fall into the local optima [88]. On the other hand, the internal mechanisms

of the traditional NAS may introduce bias in the search process. For instance, the weight sharing

mechanism makes the architectures who have better initial performance with similar structures

more likely to be sampled [89], which leads to misjudgments of the child model’s performance.

(3) Insufficient abnormal/negative data. In real-world outlier detection tasks, outliers or abnormal

samples are very rare. Thus, it requires the search strategy to exploit samples and historical search

experiences in a more effective way.

5.2 Preliminaries and Problem Formulation

In this section, we present the preliminaries and problem definition of our work.

5.2.1 Deep AutoEncoder Based Outlier Detection

Classical outlier detection methods, such as Local Outlier Factor and One-Class SVMs, suffer

from bad computational scalability and the curse of dimensionality [8]. To make such shallow

methods work in high-dimensional, data-rich scenarios, it often requires substantial feature en-

gineering processes. Deep structured models provide a more efficient way to process features.

Among recent deep structured studies, Deep AutoEncoders are one of the most promising ap-

proaches for outlier detection. The aim of an AutoEncoder is to learn a representation by mini-

mizing the reconstruction error from normal samples [90]. Therefore, these networks are able to

extract the common factors of variation from normal samples and reconstruct them easily, and vice

versa. Besides directly employing the reconstruction error as the denoter, recent work [17, 16, 8]

demonstrate the effectiveness of collaborating Deep AutoEncoders with classical outlier detection
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techniques, by introducing regularizers through plugging learned representations into classical out-

lier definition hypotheses. To be more specific, there are three common outlier assumptions: den-

sity, cluster, and centroid. The density based approaches [16] estimate the relative density of each

sample, and declare instances that lie in a neighborhood with low density as anomalies. Under the

clustering based assumption, normal instances belong to an existing cluster in the dataset, while

anomalies are not contained in any existing cluster [17]. The centroid based approaches [8] rely on

the assumption that normal data instances lie close to their closest cluster centroid, while anoma-

lies are far away from them. In this work, we illustrate the proposed AutoOD by utilizing Deep

AutoEncoder with a variety of regularizers as the basic outlier detection algorithm. The framework

of AutoOD could be easily extended to other deep-structured outlier detection approaches.

5.2.2 Related Work

In this section, we review the related work on Neural Architecture Search (NAS). Recently,

NAS has attracted increasing research interests. Its goal is to find the optimal neural architecture in

a predefined search space to maximize the model performance on a given task. Designing a NAS

algorithm requires two key components: the search space and the search strategy (optimization

algorithm) [91].

The search space defines which architectures can be represented in principles. The existing

work of search space follows two trends: the macro and micro search [86, 92]. The macro search

provides an exhaustive-architecture search space to encourage the controller to explore the space

and discover novel architectures, while the micro search inductively limits the search space to ac-

celerate the search process. The choice and the size of the search space determine the difficulty of

the optimization problem. Yet, even for the case of the search space based on a single cell, it is still

a challenging problem due to the discrete search space and the curse of high-dimensionality (since

more complex models tend to perform better, resulting in more design choices) [91]. Thereby,

incorporating prior knowledge about the typical properties of architectures well-suited for a task

can significantly reduce the size of the search space and simplify the search process. Recent re-

search [93] has validated the importance of the search space in the search process. With exten-
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sive experimental reproducibility studies, a task-tailored, carefully-designed search space plays a

more important role than the other search strategies. Recent works have proposed tailored search

spaces with their applications, including image segmentation [94], adversarial training [95], and

augmentation strategies [96]. To the best of our knowledge, our proposed AutoOD describes

the first attempt to design the search space specifically customized to the anomaly detection task.

AutoOD uses the micro search space to keep consistent with previous works. Yet the contribution

of AutoOD in search space is to design a hierarchical, general-purpose search space, including

global settings for the whole model, and local settings in each layer independently. Moreover, our

proposed search space not only covers the hyperparameters as architecture configurations, such

as the size of convolutional kernels and filters in each layer, but also incorporates the definition-

hypothesis and its corresponding objective function.

The search strategy focuses on how to explore the search space. Recent approaches include

reinforcement learning (RL) [87, 97], Bayesian optimization [98], and gradient-based methods [99,

100, 101]. Although these methods have improved upon human-designed architectures, directly

borrowing existing NAS ideas from image classification to anomaly detection will not work. Due

to the imbalanced data, the search process becomes more unstable in anomaly detection tasks [88].

As an internal mechanism in the traditional NAS, weight sharing, also introduces the inductive

bias in the search process which intensifies the tendency [89]. Weight sharing [86] is proposed to

transfer the well-trained weight before to a sampled architecture, to avoid training the offspring

architecture from scratch. Recent research has validated that the weight sharing mechanism makes

the architectures who have better initial performance with similar structures more likely to be

sampled [89], which leads to misjudgments of the child model’s performance. Our work builds

upon RL-based method, which uses a recurrent neural network controller to choose blocks from

its search space. Beyond that, we propose a curiosity-guided search strategy to stabilize the search

process via encouraging the controller to seek out unexplored regions in the search space. Our

search strategy formulates the search process as a classical exploration-exploitation trade-off. On

one hand, it is encouraged to find the optimal child model more efficiently; on the other hand, it
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avoids the premature convergence to a sub-optimal region due to the inductive bias or insufficient

search.

Previous work has explored reinforcement learning (RL) in the context of anomaly detection.

Oh et al. [102] formulate sequential anomaly detection as an inverse RL problem, where the reward

function is inferred from the behavior data. Pang et al. [103] propose a deep RL approach to

actively explore novel anomaly classes in semi-supervised settings. Zha et al. [104] use deep

RL to meta-learn an active learning strategy. However, these studies mainly focus on identifying

anomalies with RL but do not consider neural architectures. In this work, we use RL to search the

optimal neural architectures, which complements previous studies.

5.2.3 Problem Statement

Different from the traditional Neural Architecture Search, which focuses on optimizing neural

network architectures, automated outlier detection has the following two unique characteristics.

First, the neural architecture in the Autoencoder needs to be adaptive in the given dataset to achieve

competitive performance. The hyperparameter configurations of neural architecture include the

number of layers, the size of convolutional kernels and filters, etc.; Second, the outlier detection

requires the designs of the definition-hypothesis and corresponding objective function. Formally,

we define the outlier detection model and the unified optimization problem of automated outlier

detection as follows.

Theorem 7. Outlier Detection Model: The model of outlier detection consists of three key com-

ponents: the neural network architecture A of AutoEncoder, the definition-hypothesis H of outlier

assumption, and the loss function L. We represent the model as a triple (A,H,L).

Theorem 8. Automated Outlier Detection: Let the triple (A,H,L) denote the search space of

outlier detection models, where A denotes the architecture subspace, H denotes the definition-

hypothesis subspace, and L denotes the loss functions subspace. Given training set Dtrain and

validation set Dvalid, we aim to find the optimal model (A⋆, H⋆, L⋆) to minimize the objective
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Figure 5.1: An overview of AutoOD .

function J as follows:

(A⋆, H⋆, L⋆) = argmin
A∈A,H∈H,L∈L

J(A(ω), H, L,Dtrain,Dvalid), (5.1)

where ω denotes the weights that are well trained on architecture A. J denotes the loss on Dvalid

using the model trained on the Dtrain with definition-hypothesis H and loss function L.

5.3 AutoOD Framework

In this section, we propose an automated outlier detection framework to find the optimal neural

network model for a given dataset. A general search space is designed to include the neural archi-

tecture hyperparameters, definition-hypothesis, and objective function. To overcome the curse of

local optimality under certain unstable search circumstances, we propose a curiosity-guided search

strategy to improve search effectiveness. Moreover, we introduce an experience replay mechanism

based on self-imitation learning to better exploit the past good experiences and enhance the sample

efficiency. An overview of AutoOD is given in Figure 5.1.

5.3.1 Search Space Design

Because there is a lack of intrinsic search space for outlier detection tasks, here we design the

search space for the Deep AutoEncoder based algorithms, which is composed of global settings
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for the whole model, and local settings in each layer independently. Formally, we have:

A = {f 1(·), ..., fN(·), g1(·), ..., gN(·)},

f i(x;ωi) = ACT(NORMA(POOL(CONV(x))),

gi(x;ωi) = ACT(NORMA(UPPOOL(DECONV(f(x)))),

score = DIST(g(f(x;ω)), x) + DEFINEREG(f(x;ω)),

(5.2)

where x denotes the set of instances as input data, and ω denotes the trainable weight matrix. The

architecture space A contains N encoder-decoder layers. f(·) and g(·) denote encoder and decoder

functions, respectively. ACT(·) is the activation function set. NORMA denotes the normalization

functions. POOL(·) and UPPOOL(·) are pooling methods. CONV(·) and DECONV(·) are convo-

lution functions. DIST(·) is the metric to measure the distance between the original inputs and the

reconstruction results. DEFINEREG(·) acts as an regularizer to introduce the definition-hypothesis

from H . We revisit and extract the outlier detection hypotheses and their mathematical formulas

from state-of-the-art approaches as shown in the Table 5.1. We decompose the search space defined

in Eq. (5.2) into the following 8 classes of actions:

Global Settings:

• Definition-hypothesis determines the way to define the “outliers” from a high-level

perspective, including density based, cluster based, centroid based, and reconstruction based

assumptions.

• Distance measurement stands for the matrix to measure the distance for the recon-

struction purpose, including l1 norm, l2 norm, l2,1 norm, and the structural similarity (SSIM).

Local Settings in Each Layer:

• Output channel is the number of channels produced by the convolution operations in

each layer, i.e., 3, 8, 16, 32, 64, 128, 256.
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Definitions H Regularizer Equations

Density [16] − log

(∑K
k=1 ϕ̂k

exp(− 1
2
(f(xi;ω)−µ̂k)

T Σ̂−1
k (f(xi;ω)−µ̂k))√

|2πΣ̂k|

)
Cluster [17]

∑
i

∑
j pij log pij

(
(1+∥f(xi;ω)−µj∥2)

−1∑
j(1+∥f(xi;ω)−µj∥2)

−1

)−1

Centroid [8] R2 +
∑n

i=1max
{
0, ∥f (xi;ω)− c∥2 −R2

}
Reconstruction [90] 1

n

∑n
i=1 ∥g (f (xi;ω))− xi∥22

Table 5.1: The set of four representative outlier detection hypotheses, where f(·) and g(·) denote
encoder and decoder functions, respectively.

• Convolution kernel denotes the size of the kernel produced by the convolution oper-

ations in each layer, i.e., 1× 1, 3× 3, 5× 5, 7× 7.

• Pooling type denotes the type of pooling in each layer, including the max pooling and

the average pooling.

• Pooling kernel denotes the kernel size produced by the pooling operations in each

layer, i.e., 1× 1, 3× 3, 5× 5, 7× 7.

• Normalization type denotes the normalization type in each layer, including three op-

tions: batch normalization, instance normalization, and no normalization.

• Activation function is a set of activation functions in each layer, including Sigmoid,

Tanh, ReLU, Linear, Softplus, LeakyReLU, ReLU6, and ELU.

Thus, we use a (6N + 2) element tuple to represent the model, where N is the number of

layers in the encoder-decoder-wise structure. Our search space includes an exponential number

of settings. Specifically, if the encoder-decoder cell has N layers and we allow action classes as

above, it provides 4× 4× (7× 4× 2× 4× 3× 8)N possible settings. Suppose we have a N = 6,

the number of points in our search space is 3.9e+23, which requires an efficient search strategy to

find an optimal model out of the large search space. Fig. 5.2 illustrates an example of the proposed

search space in AutoOD.
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Figure 5.2: An example of the search space in AutoOD with two layers, which is composed of
global settings for the whole model and local settings in each layer.

5.3.2 Curiosity-guided Search

We now describe how to search the optimal model within the given search space. Inspired by

the recent NAS work, the search strategy is considered as a meta-learning process. A controller

is introduced to explore a given search space by training a child model to get an evaluation for

guiding exploration [86]. The controller is implemented as a recurrent neural network. We use

the controller to generate a sequence of actions for the child model. The whole process can be

treated as a reinforcement learning problem with an action a1:T , and a reward function r. To find

the optimal model, we ask our controller to maximize its expected reward r, which is the expected

performance in the validation set of the child models.

There are two sets of learnable parameters: one of them is the shared parameters of the child

models, denoted by ω, and the other one is from the LSTM controller, denoted by θ. ω is optimized

using stochastic gradient descent (SGD) with the gradient ∇ω as:

∇ωEm∼π(m;θ)[L(m;ω)] ≈ ∇ωL(m,ω), (5.3)
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where child model m is sampled from the controllers actions π(m; θ), L(m,ω) is the loss function

composed from the search space above, computed on a minibatch of training data. The gradient is

estimated using the Monte Carlo method.

Since the reward signal r is non-differentiable, to maximize the expected reward r, we fix ω

and apply the REINFORCE rule [105] to update the controller’s parameters θ as:

∇θEP (a1:t;θ)[r∇θ logP (at|a1:t−1; θ)], (5.4)

where r is computed as the performance on the validation set, rather than on the label-free training

set. We define the reward r as the detection accuracy of the sampled child model. We also adopt

different evaluation metrics, including AUROC, AUPR and RPRO in the following experiment

section. An empirical approximation of the Eq. (5.4) is:

L =
1

n

n∑
k=1

T∑
t=1

(rk − b)∇θ logP (at|a1:t−1; θ), (5.5)

where n is the number of different child models that the controller samples in one batch and T is

the number of tokens. b acts as a baseline function to reduce the variance of this estimate.

5.3.2.1 Curiosity-driven Exploration

Despite being widely utilized due to search efficiency, weight sharing approaches are roughly

built on empirical experiments instead of solid theoretical ground [89]. The unfair bias will make

the controller misjudge the child-model performance: those who have better initial performance

with similar child models are more likely to be sampled. In the meanwhile, due to the imbalanced

label distribution in outlier detection tasks, it is easy to make the controller fall into local optima.

To address these problems, AutoOD builds on the theory of curiosity-driven exploration [106],

aiming to encourage the controller to seek out regions in the searching spaces that are relatively

unexplored. It brings us a typical exploration-exploitation dilemma to guide the controller.

Bayesian reinforcement learning [107, 108] offers us a formal guarantees as coherent proba-
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bilistic model for reinforcement learning. It provides a principled framework to express the classic

exploration-exploitation dilemma, by keeping an explicit representation of uncertainty, and se-

lecting actions that are optimal with respect to a version of the problem that incorporates this

uncertainty [108]. Here, instead of a vanilla RNN, we use a Bayesian LSTM as the structure of

the controller to guide the search. The controllers understanding of the search space is represented

dynamically over the uncertainty of the parameters of the controller. Assuming a prior p(θ), it

maintains a distribution prior over the controller’s parameters through a distribution over θ. The

controller models the actions via p(at|a1:t; θ), paratetrized by θ. According to curiosity-driven

exploration [109], the uncertainty about the dynamics of the controller can be formalized as maxi-

mizing the information:

I(at; θ|a1:t−1) = Eat∼P (·|a1:t−1)

[
DKL[p(θ|a1:t−1) || p(θ)]

]
, (5.6)

where the KL divergence can be interpreted as information gain, which denotes the mutual infor-

mation between the controller’s new belief over the model to the old one.

Thus, the information gain of the posterior dynamics distribution of the controller can be ap-

proximated as an intrinsic reward, which captures the controllers surprise in the form of a reward

function. We can also use the REINFORCE rule to approximate planning for maximal mutual in-

formation by adding the intrinsic reward along with the external reward (accuracy on the validation

set) as a new reward function. It can also be interpreted as a trade-off between exploitation and

exploration as:

rnew(at) = r(at) + ηDKL[p(θ|a1:t−1) || p(θ)], (5.7)

where η ∈ R+ is a hyperparameter controlling the urge to explore. However, it is generally

intractable to calculate the posterior p(θ|a1:t−1) in Eq. (5.7).

5.3.2.2 Variational Bayes-by-Backprop

In this subsection, we propose a tractable solution to maximize the information gain objective

presented in the previous subsection. To learn a probability distribution over network parameters
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θ, we propose a practical solution through a back-propagation compatible algorithm, bayes-by-

backprop [106, 107].

In Bayesian models, latent variables are drawn from a prior density p(θ). During infernece, the

posterior distribution p(θ|x) is computed given a new action through Bayes’ rule as:

p(at|a1:t−1) =
p(θ)p(at|a1:t−1; θ)

p(at|a1:t−1)
. (5.8)

The denominator can be computed through the integral:

p(at|a1:t−1) =

∫
Θ

p(at|a1:t−1; θ)p(θ)dθ. (5.9)

As controllers are highly expressive parametrized LSTM networks, which are usually intractable

as high-dimensionality. Instead of calculating the posterior p(θ|Dtrain) for a training dataset Dtrain.

We approximate the posterior through an alternative probability densities over the latent variables θ

as q(θ), by minimizing the Kullback-Leibler(KL) divergence DKL[q(θ) || p(θ)]. We use D instead

of Dtrain in the following parts of this subsection for brevity.

q(θ) =

|Φ|∏
i=1

N(θi|µi;σ
2
i ). (5.10)

q(θ) is given by a Gaussian distribution, with µ as the Gaussian’s mean vector and σ as the covari-

ance matrix.

Once minimized the KL divergence, q(·) would be the closest approximation to the true pos-

terior. Let log p(D|θ) be the log-likelihood of the model. Then, the network can be trained by

minimizing the variational free energy as the expected lower bound:

L[q(θ),D] = −Eθ∼q(·)
[
log p(D|θ)

]
+DKL

[
q(θ) || p(θ)

]
, (5.11)

which can be approximated using N Monte Carlo samples from the variational posterior with N
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samples drawn according to θ ∼ q(·):

L[q(θ),D] ≈
N∑
i=1

− log p(D|θ(i)) + log q(θ(i))− log p(θ(i)). (5.12)

5.3.2.3 Posterior Sharpening

We discuss how to derive a distribution q(θ|D) to improve the gradient estimates of the in-

tractable likelihood function p(D), which is related to Variational AutoEncoders (VAEs) [66].

Inspired from strong empirical evidence and extensive work on VAEs, the “sharpened” posterior

yields more stable optimization. We now use posterior sharpening strategy to benefit our search

process.

The challenging part of modelling the variational posterior q(θ|D) is the large number of di-

mensions of θ ∈ Rd, which makes the modelling unfeasible. Given the first term of the loss

− log p(D|θ) is differentiable with respect to θ, we propose to parameterize q as a liniear combina-

tion of θ and− log p(D|θ). Thus, we can define the hierarchical posterior of the form in Eq. (5.10):

q(θ|D) =

∫
q(θ|ϕ,D)q(ϕ)dϕ, (5.13)

q(θ|ϕ,D) = N(θ|ϕ− η ∗ −∇ϕ log p(D|ϕ), σ2I) (5.14)

with µ, σ ∈ Rd, and q(ϕ) = N(ϕ|µ, σ) as the same setting in the standard variational inference

method. η ∈ Rd can be treated as a per-parameter learning rate.

In the training phrase, we have θ ∼ q(θ|D) via ancestral sampling to optimise the loss as:

Lexplore = L(µ, σ, η) = ED[Eq(ϕ)q(θ|ϕ,D)[L(D, θ, ϕ|µ, σ, η)]] (5.15)

with L(D, θ, ϕ|µ, σ, η) given by:

L(D, θ, ϕ|µ, σ, η) = − log p(D|θ) + KL[q(θ|ϕ,D) || p(θ|ϕ)] + 1

C
KL[q(ϕ) || p(ϕ)], (5.16)
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where the constant C is the number of truncated sequences.

Thus, we turn to deriving the training loss function for posterior sharpening. With the discus-

sion above, we assume a hierarchical prior for the parameters such that p(D) =
∫
p(D|θ)p(θ|ϕ)p(ϕ)dθdϕ.

Then, the expected lower bound on p(D) is defined as follows:

log p(D) = log

(∫
p(D|θ)p(θ|ϕ)p(ϕ)dθdϕ

)
⩾ Eq(ϕ,θ|D)

[
log

p(D|θ)p(θ|ϕ)p(ϕ)
q(ϕ, θ|D)

]
= Eq(θ|ϕ,D)q(ϕ)

[
log

p(D|θ)p(θ|ϕ)p(ϕ)
q(θ|ϕ,D)q(ϕ)

]
= Eq(ϕ)

[
Eq(θ|ϕ,D)

[
log p(D|θ) + log

p(θ|ϕ)
q(θ|ϕ,D)

]
+ log

p(ϕ)

q(ϕ)

]
= Eq(ϕ)

[
Eq(θ|ϕ,D)

[
log p(D|θ)−KL[q(θ|ϕ,D) || p(θ|ϕ)]

]
−KL[q(ϕ) || p(ϕ)]

]
.

(5.17)

5.3.3 Experience Replay via Self-Imitation Learning

The goal of this subsection is to exploit the past good experiences for the controller to benefit

the search process by enhancing the sample efficiency, especially considering there are only a

limited number of negative samples in outlier detection tasks. In this subsection, we propose to

store rewards from historical episodes into experience replay buffers [110]: B = (a1:t, ra), where

(a1:t and ra) are the actions and the corresponding reward. To exploit good past experiences,

we update the experience replay buffer for child models with better rewards, and amplify the

contribution from them to the gradient of θ. More specifically, we sample child models from the

replay buffer using the clipped advantage (r − b)+, where the rewards r in the past experiences

outperform the current baseline b. Comparing with the Eq. (5.4) and Eq. (5.5), the objective to

update the controller’s parameter θ through the replay buffer is:

∇θEa1:t∼πθ,b∼B[− log πθ (at|a1:t−1) (ra − b)+]. (5.18)
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Algorithm 3 Automated Outlier Detection
1: Input: Input datasets Dtrain,Dvalid, and search space S.
2: Output: Optimal model with the best performance.
3: Initialize parameter θ, ω;
4: Initialize replay buffer B← ∅;
5: for each iteration do
6: Perform curiosity-guided search via a LSTM controller
7: for each step t do
8: Sample an action at ∼ π(a1:t−1; θ);
9: ω ← ω − η∇ωEat∼π(a1:t−1;θ)[L(a1:t−1;ω)]; ▷ Eq. (5.3)

10: θ ← θ − ηLexplore(Dtrain, θ) ; ▷ Eq. (5.15)
11: rnew(at)← r(at) + ηDKL[p(θ|a1:t−1) || p(θ)]; ▷ Eq. (5.7)
12: Update controller via the new reward rnew(at); ▷ Eq. (5.4)
13: if the performance of at on Dval outperforms the actions stored in B then
14: B← {a, r} ∪B; Update replay buffer;
15: end if
16: end for
17: Perform self-imitation learning
18: for each step t do
19: Sample a mini-batch {a, r} from B;
20: ω ← ω − η∇ωEat∼π(a1:t−1;θ)[L(a1:t−1;ω)]; ▷ Eq. (5.3)
21: θ ← θ − ηLreplay(Dvalid, θ); ▷ Eq. (5.19)
22: end for
23: end for

Then, an empirical approximation of the Eq. (5.18) is:

Lreplay =
1

n

n∑
k=1

T∑
t=1

∇θ − log πθ (at|a1:t−1) (ra − b)+, (5.19)

where n is the number of different child models that the controller samples in one batch and T is

the number of tokens.

Overall, the joint optimization process is specified in Algorithm 3, which consists of two

phrases: the curiosity-guided search process and the self-imitation learning process. After get-

ting the optimal model with the best performance on the validation set, we utilize the searched

model for the outlier detection tasks.
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5.4 Experiments

In this section, we conduct extensive experiments to answer the following four research ques-

tions.

• Q1: How effective is AutoOD compared with state-of-the-art handcrafted algorithms?

Q2: Whether or not the two key components of AutoOD, i.e., curiosity-guided search and

experience replay, are effective in the search process?

• Q3: Compared with random search, how effective is the proposed search strategy?

• Q4: Does AutoOD have the potential to be applied in more complicated real-world appli-

cations?

5.4.1 Datasets and Tasks

We evaluate AutoOD on seven benchmark datasets for instance-level abnormal sample de-

tection and pixel-level defect region segmentation tasks. We also conduct a case study on the

CAT [111] dataset.

• MNIST [112]: An image dataset consists of handwritten digits. It has a training set of

60, 000 examples, and a test set of 10, 000 examples.

• Fashion-MNIST [113]: A MNIST-like dataset contains fashion product with a training set

of 60, 000 examples and a test set of 10, 000 examples. Each example is a 28× 28 grayscale

image associated with a label from 10 classes.

• CIFAR-10 [114]: A image dataset consists of 50, 000 training images and 10, 000 test im-

ages in 10 different classes. Each example is a 32× 32 3-channel image.

• Tiny-ImageNet [115]: An image dataset consists of a subset of ImageNet images. It con-

tains 10, 000 test images from 200 different classes. We downsample each image to the size

of 64× 64.
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• MVTec-AD [116]: A benchmark dataset relates to industrial inspection in the application

of anomaly detection. It contains over 5000 high-resolution images divided into fifteen cat-

egories in terms of different objects and textures. Each category comprises two parts: a

training set of defect-free images, as well as a test set composed of defect-free images and

the ones with various defects. We downsample each image to size 224× 224.

• CAT [111]: A cat dataset includes 10, 000 cat images. We downsample each image to size

224× 224.

• Gaussian Noise: A synthetic Gaussian noise dataset consists of 1, 000 random 2D images,

where the value of each pixel is sampled from an i.i.d Gaussian distribution with mean 0.5

and unit variance. We further clip each pixel into the range [0, 1].

• Uniform Noise: A synthetic uniform noise dataset consists of 1, 000 images, at which the

value of each pixel is sampled from an i.i.d uniform distribution on [0, 1].

For the instance-level abnormal sample detection task, we use four benchmark datasets (i.e.,

MNIST [112], Fashion-MNIST [113], CIFAR-10 [114], and Tiny-ImageNet [115]), and two syn-

thetic noise datasets (i.e., Gaussian and Uniform). Synthetic noise datasets consist of 1, 000 ran-

dom 2D images, where the value of each pixel is sampled from an i.i.d Gaussian distribution with

mean 0.5 and unit variance. We further clip each pixel into the range [0, 1], or an i.i.d uniform

distribution on [0, 1]. Different datasets contain different classes of images. We manually injected

abnormal samples (a.k.a. out-of-distribution samples), which consists of images randomly sampled

from other datasets. For all the six datasets, we train an anomaly detection model on the training

set, which only contains in-distribution samples, and use a validation set with out-of-distribution

samples to guide the search, and another test set with out-of-distribution samples to evaluate the

performance. The contamination ratio in the validation set and the test set are both 0.05. The

train/validation/test split ratio is 6 : 2 : 2. Two state-of-the-art methods including MSP [117] and

ODIN [118] are used as baselines.
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For the pixel-level defect region segmentation task, we use a real-world dataset MVTec-AD [116].

MVTec-AD contains high-resolution images with different objects and texture categories. Each

category comprises a set of defect-free training images and a test set of images with various kinds

of defects and images without defects. We train the model on the defect-free training set, and

split the whole test set into two halves for validation and testing. Three state-of-the-art methods

including AutoEncoder [119], AnoGAN [120], and Feature Dictionary [121] are used as baselines.

5.4.2 Baselines

We compare AutoOD with five state-of-the-art handcrafted algorithms and the random search

strategy.

• MSP [117]: The softmax probability distribution is used to detect the anomalies in tasks

of computer vision, natural language processing, and automatic speech. The anomaly de-

tection is performed based on the following assumption: the correctly classified examples

have greater maximum softmax probabilities than those of erroneously classified and out-

of-distribution examples.

• ODIN [118]: The pre-trained neural network is reused to detect the out-of-distribution im-

ages. ODIN separates the softmax probability distributions between in- and out-of-distribution

instance, by using temperature scaling and adding small perturbations on the image data.

• AutoEncoder [119]: The structure of convolutional AutoEncoders is applied for unsuper-

vised defect segmentation on image data. More specifically, it utilizes the loss function based

on structural similarity, and successfully examines inter-dependencies between local image

regions to reveal the defective regions.

• AnoGAN [120]: It is a deep convolutional generative adversarial network used to identify

the anomalous image data. It learns a manifold of normal anatomical variability, and maps

images to a latent space to estimate the anomaly scores.

• Feature Dictionary [121]: It applies the convolutional neural networks and self-similarity
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Category AutoOD AutoEncoder AnoGAN
Feature

Dictionary

Te
xt

ur
es

Carpet 0.69 / 0.92 0.38 / 0.59 0.34 / 0.54 0.20 / 0.72
Grid 0.89 / 0.94 0.83 / 0.90 0.04 / 0.58 0.02 / 0.59

Leather 0.81 / 0.92 0.67 / 0.75 0.34 / 0.64 0.74 / 0.87
Tile 0.26 / 0.94 0.23 / 0.51 0.08 / 0.50 0.14 / 0.73

Wood 0.47 / 0.97 0.29 / 0.73 0.14 / 0.62 0.47 / 0.91

O
bj

ec
ts

Bottle 0.33 / 0.93 0.22 / 0.86 0.05 / 0.86 0.07 / 0.78
Cable 0.17 / 0.87 0.05 / 0.86 0.01 / 0.78 0.13 / 0.79

Capsule 0.16 / 0.95 0.11 / 0.88 0.04 / 0.84 0.00 / 0.84
Hazelnut 0.46 / 0.97 0.41 / 0.95 0.02 / 0.87 0.00 / 0.72
Metal Nut 0.30 / 0.88 0.26 / 0.86 0.00 / 0.76 0.13 / 0.82

Pill 0.30 / 0.92 0.25 / 0.85 0.17 / 0.87 0.00 / 0.68
Screw 0.34 / 0.96 0.34 / 0.96 0.01 / 0.80 0.00 / 0.87

Toothbrush 0.60 / 0.90 0.51 / 0.83 0.07 / 0.90 0.00 / 0.77
Transistor 0.23 / 0.96 0.22 / 0.86 0.08 / 0.80 0.03 / 0.66

Zipper 0.20 / 0.88 0.13 / 0.77 0.01 / 0.78 0.00 / 0.76

Table 5.2: Performance comparison on pixel-level defect region segmentation.
.

to detect and localize anomalies in image data. More specifically, the abnormality degree

of each image region is obtained by estimating its similarity to a dictionary of anomaly-free

subregions in a training set.

• Random Search [122, 93]: Instead of learning a policy to optimize the search progress,

random search generates a neural architecture randomly at each step. It has been widely

demonstrated that random search is a strong baseline hard to be surpassed in NAS.

5.4.3 Experiment Setup

We train the child models on the training set under the anomaly-free settings, and update the

controller on the validation set via the reward signal. The controller RNN is a two-layer LSTM

with 50 hidden units on each layer. It is trained with the ADAM optimizer with a learning rate of

3.5e − 4. Weights are initialized uniformly in [−0.1, 0.1]. The search process is conducted for a

total of 500 epochs. The size of the self-imitation buffer is 10. We use a Tanh constant of 2.5 and a
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sample temperature of 5 to the hidden output of the RNN controller. We train the child models by

utilizing a batch size of 64 and a momentum of 0.9 with the ADAM optimizer. The learning rate

starts at 0.1, and is dropped by a factor of 10 at 50% and 75% of the training progress, respectively.

5.4.4 Evaluation Metrics

We adopt the following metrics to measure the effectiveness:

• AUROC [123] is the Area Under the Receiver Operating Characteristic curve, which is

a threshold-independent metric [123]. The ROC curve depicts the relationship between

TPR and FPR. The AUROC can be interpreted as the probability that a positive example is

assigned a higher detection score than a negative example [124].

• AUPR [125] is the Area under the Precision-Recall curve, which is another threshold-

independent metric [125, 126]. The PR curve is a graph showing the precision=TP/(TP+FP)

and recall=TP/(TP+FN) against each other. The metrics AUPR-In and AUPR-Out denote

the area under the precision-recall curve, where positive samples and negative samples are

specified as positives, respectively.

• RPRO [116] stands for the relative per-region overlap. It denotes the pixel-wise overlap rate

of the segmentations with the ground truth.

5.4.5 Results

5.4.5.1 Performance on Out-of-distribution Sample Detection

To answer the research question Q1, we compare AutoODwith the state-of-the-art handcrafted

algorithms for the instance-level abnomral sample detection task using metrics AUROC, AUPR-

In and AUPR-Out. Considering the automated search framework of AutoOD, we represent its

performance by the best model found during the search process. In these experiments, we fol-

low the setting in [117, 127]: Each model is trained on individual dataset Din, which is taken

from MNIST, Fashion-MNIST, CIFAR-10, and Tiny-ImageNet, respectively. At test time, the
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test images from Din dataset can be viewed as the in-distribution (positive) samples. We sam-

ple out-of-distribution (negative) images from another real-world or synthetic noise dataset, after

down-sampling/up-sampling and reshaping their sizes as the same as Din.

As can be seen from Table 5.3, in most of the test cases, the models discovered by AutoOD con-

sistently outperform the handcrafted out-of-distribution detection methods with pre-trained mod-

els (ODIN [118]) and without pre-trained models (MSP [117]). It indicates that AutoOD could

achieve higher performance in accuracy, precision, and recall simultaneously, with a more precise

detection rate and fewer nuisance alarms.

5.4.5.2 Performance on Defect Sample Detection

To further answer question Q1, we test AutoOD on the pixel-level defect region segmentation

task. The results from Table 5.2 show that AutoOD consistently outperforms the baseline methods

by a large margin in terms of AUROC and RPRO. The higher AUROC demonstrates that the model

found by AutoOD precisely detects images with defect sections out of the positive samples. The

results also show that AutoOD has a better performance in RPRO. This indicates the search process

of AutoOD helps the model to locate and represent the anomaly regions in negative images.

As a step-by-step concrete example, given input datasets from different benchmarks, we first

define the global search space including definition hypothesis and distance measurement; and then

define a 3-layers encoder-decoder in the local space, each layer contains output-channel, convo-

lution kernel, pooling type, pooling kernel, normalization type and activation function. Table 5.4

illustrates the best architectures discovered by AutoOD on both instance-level abnormal sample

detection and pixel-level defect region segmentation tasks.

5.4.5.3 Effectiveness of Curiosity-guided Search

To qualitatively evaluate the effectiveness of the curiosity-guided search for research question

Q2, we perform ablation and hyperparameter analysis on Fashion-MNIST dataset with samples

from CIFAR-10 as anomalies. Specifically, we control the hyperparameter η in Eq. (5.7) for il-

lustration. Note that mathematical expression of η = 0 represents that there is no exploration.
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From Table 5.5 (a) we can observe that: (1) The absence of exploration would negatively impact

the final performance. The AUROC after 200 epochs could drop 1.9%. (2) The curiosity guided

explorations help the controller find the optimal model faster. The better performance could be

achieved in the 20-th, 100-th epochs when the controller has a larger weight η on explorations.

This indicates that curiosity-guided search is a promising way for exploring more unseen spaces.

(3) Comparing AUROC between η = 0.01 and η = 0.1, we observe that there is no significant

increase in the final performance after 200 epochs. This indicates that a higher rate of explorations

can not always guarantee a higher performance. (4) If we treat the performance of the searched

result as Gaussian distributions, the standard deviations of the AutoOD’s performance keep in-

creasing when η increases. This validates that the curiosity-guided search strategy increases the

opportunity for the controller to generate child models in a more diverse way.

5.4.5.4 Effectiveness of Experience Replay

To further answer the question Q2, we evaluate the effectiveness of the experience replay

buffers, by altering the size of the replay buffers B in Eq. (5.19). Corresponding results are reported

in Table 5.5 (b). The results indicate that the increase of the buffer size could enhance model

performance after 200 epochs. We also observe that the size of the buffer is sensitive to the final

performance, as better performance would be achieved in the 20th, 100th epoch with a larger

buffer size. This indicates that self-imitation learning based experience replay is useful in the

search process. Larger buffer size brings benefits to exploit past good experiences.

5.4.5.5 Comparison Against Traditional NAS

Instead of applying the policy gradient based search strategy, one can use random search to

find the best model. Although this baseline seems simple, it is often hard to surpass [122, 93].

We compare AutoOD with random search to answer the research question Q3. The quality of

the search strategy can be quantified by the following three metrics: (1) the average performance

of the top-5 models found so far, (2) the mean performance of the searched models in every 20

epochs, (3) the standard deviation of the model performance in every 20 epochs. From Fig. 5.3, we
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Figure 5.3: Performance comparison with random search.

can observe that: Firstly, our proposed search strategy is more efficient to find the well-performed

models during the search process. As shown in the first row of Fig. 5.3, the performance of the

top-5 models found by AutoOD consistently outperform the random search. The results also show

that not only the best model of our search strategy is better than that of random search, but also the

improvement of average top models is much more significant. This indicates that AutoOD explores

better models faster than the random search. Secondly, there is a clear increasing tendency in the

mean performance of AutoOD, which can not be observed in random search. It indicates that

our search controller can gradually find better strategies from the past search experiences along

the learning process, while the random search’s controller has a relatively low chance to find a

good child model. Thirdly, compared with the random search, there is a clear dropping of standard

deviation along the search process. It verifies that our search strategy provides a more stable search

process.
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Figure 5.4: A case study of anomaly segmentation.

5.4.6 Case Study

To answer the research question Q4, we provide further analysis for the pixel-level defect

region segmentation task, to get some insights about how to further improve the detection per-

formance in more complicated real-world settings. To make the anomaly sections and the rest

sections more distinguishable in the latent space, we use the reconstruction error to learn intrinsic

representation for positive samples to extract common patterns. Yet, it is hard to directly apply

AutoOD into more complicated, real-world settings. Due to the pure data-driven strategy, the re-

construction based denoters might be misled by background noises, other objects, or irrelevance

features. We hereby introduce two strategies into AutoOD for regularization without increasing

the model complexity.

Saliency Refinement via Target Object Recognition. We introduce a mask map s into the re-

construction based denoters from pre-trained models. It is used for localizing and identifying

target salient object, in order to eliminate the negative effect caused by background noises and

other objects in the same image. To concisely localize and identify the salient object, the key idea

is to extract dense features for semantic segmentation. In our experiment, we introduce s from

DeepLabV3 [128], which is pre-trained on PASCAL VOC 2012 [129].

Feature Augmentation via Gradient-based Localization. In order to amplify the contribution

of the irrelevance features from the salient object, we introduce the feature augmentation map

to re-weight the reconstruction result. We also introduce a coarse localization map to highlight
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the irrelevance regions in the image from an interpretability perspective. Feature importance is

reflected as gradients signal via backpropagation. The key idea is to use the gradient informa-

tion flowing into the last convolutional layer of the CNN to assign importance values to each

neuron for a particular decision of interest. Here, we follow the interpretation method from Grad-

CAM [130, 131, 132, 133], which is designed to highlight important features, and pre-trained

on VGG-16 [134]. The feature augmentation map is defined as opposite to the Grad-CAM:

1
mn

∑
m

∑
n

(
1− ∂yi

∂Amn

)
.

After the two steps above, we reweight the reconstructions:

αi = ∥g (f (xi;W))− xi∥22 ⊙
1

mn

∑
m

∑
n

(
1− ∂yi

∂Amn

)
⊙ si (5.20)

where xi ∈ Rm×n is a training sample and yi is its target object class. f(·), g(·) denotes encoder-

decoder structures produced by AutoOD, and A denotes the feature map activation of a latent

layer. We use a real-world dataset CAT [111] for illustration. We find the optimal model via

AutoOD and get the pixel-level reconstruction map. Then, we further refine the map via saliency

recognition and feature localization strategies. As can be seen from Fig. 5.4, AutoOD achieves

better visualization results after applying the reweighting tricks discussed above. We also observe

that the model can successfully identify the anomaly regions (cola bins, collars) within the salient

objects (kitties). Meanwhile, it reduces the effect caused by the background noises and irrelevant

objects.
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(a) In-distribution dataset: MNIST

OOD Dataset AUROC AUPR In AUPR Out
Fashion-MNIST 99.9/97.9/97.9 99.9/99.7/99.6 100/90.5/91.0
notMNIST 99.8/97.2/98.2 99.8/97.5/98.4 100/97.4/98.0
CIFAR-10 99.9/99.9/99.7 91.3/90.3/99.9 99.2/99.9/97.6
LSUN 99.9/99.9/99.8 99.9/96.8/100 99.9/99.2/99.0
Tiny-ImageNet 99.9/99.4/99.6 99.8/99.6/99.9 99.8/96.8/97.5
Gaussian 99.9/99.7/99.9 100/99.8/100 100/99.7/100
Uniform 100/99.9/100 100/99.9/100 100/99.9/100

(b) In-distribution dataset: Fashion-MNIST

OOD Dataset AUROC AUPR In AUPR Out
MNIST 99.9/92.9/72.9 99.9/82.8/91.6 99.9/94.2/46.1
notMNIST 99.8/96.9/80.2 99.1/81.6/94.2 100/99.4/57.7
CIFAR-10 99.9/88.2/96.6 99.5/80.6/99.3 99.9/97.2/80.4
LSUN 99.5/89.7/96.0 97.9/81.9/99.2 99.9/97.7/79.9
Tiny-ImageNet 98.2/87.7/95.5 90.7/80.4/99.0 95.3/97.1/82.5
Gaussian 99.9/97.2/89.6 99.9/82.24/98.0 100/99.5/48.2
Uniform 99.9/95.8/63.6 99.9/82.9/91.4 99.9/99.0/19.8

(c) In-distribution dataset: CIFAR-10

OOD Dataset AUROC AUPR In AUPR Out
MNIST 100/98.4/99.9 100/99.4/100 100/89.4/99.4
Fashion-MNIST 99.6/98.2/99.4 98.1/96.1/99.9 99.9/98.8/97.3
notMNIST 99.9/96.8/98.1 99.4/99.0/99.2 100/89.4/90.2
LSUN 80.0/75.2/85.6 81.2/73.1/83.5 85.8/73.3/85.1
Tiny-ImageNet 84.0/72.6/81.6 87.5/73.5/76.9 87.8/80.6/84.8
Gaussian 99.9/86.3/98.8 99.9/90.5/99.1 99.3/77.0/97.9
Uniform 99.9/86.4/99.0 99.9/90.2/99.2 99.9/78.6/98.6

(d) In-distribution dataset: Tiny-ImageNet

OOD Dataset AUROC AUPR In AUPR Out
MNIST 100/99.8/94.8 100/98.2/98.9 100/98.2/79.9
Fashion-MNIST 99.7/70.4/73.8 98.6/88.4/92.6 100/85.5/39.5
notMNIST 99.9/80.6/82.7 99.7/90.4/95.2 100/85.8/56.0
CIFAR-10 86.7/82.9/58.0 95.8/75.3/85.7 89.1/75.3/28.2
LSUN 88.6/74.2/55.6 92.7/99.5/86.7 93.9/99.5/18.7
Gaussian 99.9/97.0/95.4 100/98.0/99.0 99.9/94.8/80.5
Uniform 100/96.0/87.5 100/97.4/96.8 100/99.3/62.8

Table 5.3: Performance comparison on instance-level abnormal sample detection.
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Actions MNIST Fashion-MNIST CIFAR-10 Tiny-ImageNet MVTec-AD

Definition hypothesis reconstruction cluster centroid reconstruction reconstruction
Distance measurement l1 l2,1 l2,1 l2,1 l2,1+ SSIM
Layer-1

Output-channel 32 16 16 16 32
Convolution kernel 5× 5 1× 1 1× 1 5× 5 1× 1
Pooling type mean average average average average
Pooling kernel 1× 1 1× 1 1× 1 1× 1 3× 3
Normalization type no no no no no
Activation function ReLU Sigmoid Sigmoid Linear LeakyReLU

Layer-2
Output-channel 8 32 32 32 32
Convolution kernel 3× 3 5× 5 5× 5 3× 3 5× 5
Pooling type average mean mean mean mean
Pooling kernel 1× 1 7× 7 7× 7 7× 7 5× 5
Normalization type no no no no batch
Activation function ELU ReLU6 Sigmoid Softplus Tanh

Layer-3
Output-channel 8 16 16 16 16
Convolution kernel 7× 7 1× 1 1× 1 7× 7 1× 1
Pooling type average average average average mean
Pooling kernel 5× 5 1× 1 1× 1 1× 1 5× 5
Normalization type no instance instance instance instance
Activation function ReLU6 LeakyReLU Sigmoid LeakyReLU Tanh

Table 5.4: The architectures discovered by AutoOD for MNIST, Fashion-MNIST, CIFAR-10,
Tiny-ImageNet, and MVTec-AD.

(a) Curiosity-guided Search

AUROC20 AUROC100 AUROC200 mean200 std200

η=0 85.27 96.23 96.51 90.01 0.093
η=0.01 85.46 96.54 98.50 91.20 0.097
η=0.1 85.46 96.93 98.41 91.84 0.131

(b) Experience Replay Buffer

AUROC20 AUROC100 AUROC200

no buffer 85.43 96.57 98.00
buffer size=5 88.05 97.12 98.04
buffer size=10 87.44 97.70 98.12

Table 5.5: Ablations and parameter analysis on Fashion-MNIST (In-distribution: normal data) and
CIFAR-10 (Out-of-distribution: anomalies).
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6. AN END-TO-END AUTOMATED ANOMALY DETECTION SYSTEM1

In this chapter, we aim to propose an end-to-end outlier detection system. Current outlier

detection techniques are often manually designed for specific domains, requiring large human

efforts of database setup, algorithm selection, and hyper-parameter tuning. To fill this gap, the

outcome algorithm is expected as an automated end-to-end Python system for Outlier Detection

with Database Support(PyODDS), which automatically optimizes an outlier detection pipeline for

a new data source at hand.

6.1 Motivation

Outliers refer to the objects with patterns or behaviors that are significantly rare and different

from the rest of the majority. Outlier detection plays an important role in various applications, such

as fraud detection, cyber security, medical diagnosis, and industrial manufacturer. The research of

outlier detection traces far back, and numerous approaches have been proposed to tackle the prob-

lem. Representative categories of outlier detection approaches include density-based, distance-

based and model-based approaches.

Despite the exciting results in outlier detection research, it is challenging and expensive to

apply outlier detection to tackle real-world problems. First, there is no single outlier detection

algorithm outperforms the others on all scenarios, since many outlier detection techniques have

been specifically developed for certain application domains [135, 136, 137]; Second, most outlier

detection methods highly depend on their hyper-parameter settings; Third, the contamination ratio

of outliers in the given task is usually unknown.

Recently, efforts have been made to integrate various outlier detection algorithms into a single

package. Existing approaches [138, 139] contain different outlier detection methods with various

programming languages, yet they do not tackle with optimal pipeline design as searching and

1This chapter is reprinted with permission from “Pyodds: An end-to-end outlier detection system with automated
machine learning”, by Yuening Li, Daochen Zha, Praveen Venugopal, Na Zou, Xia Hu, 2020. Companion Proceedings
of the Web Conference 2020. Copyright 2020 by IW3C2.
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Figure 6.1: Overview of PyODDS

exploration problems, and do not cater specifically to backend-servers for large-scale applications.

In the meanwhile, a large focus of the machine learning community has been to find better

hyper-parameter settings, which has been successfully tackled using Bayesian optimization, rein-

forcement learning, etc., and forms a core component of AutoML systems. However, less attention

has been paid to finding a good solution for an end-to-end, joint optimization problem including

multiple components, especially in real-world data mining tasks.

To bridge the gap, we present PyODDS, a full-stack, end-to-end system for outlier detection.

PyODDS has desirable features from the following perspectives. First, to our best knowledge,

PyODDS describes the first attempt to incorporate automated machine learning with outlier detec-

tion, and belongs to one of the first attempts to extend automated machine learning concepts into

real-world data mining tasks. Second, we carefully design an end-to-end framework for outlier

detection, including database operations and maintenance, the search process of automated outlier

detection (including the search space and the search strategy design). Finally, we present a visual

analytic system based on our proposed framework for demonstration.

6.2 PyODDS System Framework

The pipeline from query data to evaluation and visualization is outlined in Fig. 6.1, which con-

sists of 3 components. The first component is the information extraction, which collects the source

data via query functions with flexible time-slices segmentation, including user-info confirmation,
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database operation, and maintenance. The second component is the suspicious outlier detection. It

detects suspicious instances with traditional outlier detection approaches as an automated machine

learning problem, including the search space design and the search strategy development. The last

component is the visualization part, which designs for users to understand the detection results

better. In the following subsections, we focus on the first and second components.

6.2.1 Information Extraction

In this component, we extract the information from a specific time range through database

operations. PyODDS includes database operation functions for client users: (1) connect_server

function allows the client to connect the server with host address and user information for safety

verification; (2) query_data function designs for flexible time-slices segmentation.

6.2.2 Automated Outlier Detection

To detect suspicious outliers, we need to find the best pipeline configuration. We formulate the

problem of finding the best policy as a conjunctive search problem. In this component, our method

consists of two subsections: a search space and a search strategy.

6.2.2.1 Search Space

In our search space, a policy consists of sub-policies as a batch of outlier detection algorithms.

Additionally, the policy also contains the hyper-parameters as another conditional sub-policy: 1)

specific hyper-parameter settings corresponding to each algorithm sub-policy which controls the

learning process; 2) the contamination ratio which determines the portion of outliers corresponding

to the given data source.

Each algorithm we included also comes with a default range of hyper-parameter settings.

Within each algorithm sub-policy, hyper-parameters which might be discrete, ordinal, or continu-

ous, need to be optimized in the meanwhile.
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6.2.2.2 Search Strategy

Following the search space setting we proposed above, we define the problem of automated

outlier detection with algorithm selection and hyper-parameter tuning as follows.

Let A = {A1, A2, ..., AN} be a set of outlier detection algorithms, and λ = {λ1, λ2, ..., λN}

be the set of corresponding hyper-parameters. We assume λ is given. Let Dtrain and Dval be the

training set and validation set, respectively. Denote M(As,λs,Dtrain,Dval) as the performance

on Dval in terms of metric M when trained on Dtrain with algorithm As ⊆ A and corresponding

hyper-parameters λs ⊆ λ. The algorithm is to find optimal solution A∗,λ∗ via observation history

H. We define the objective as

A∗,λ∗ ∈ argmax
As⊆A,λs⊆λ∗

M(As,λs,Dtrain,Dval). (6.1)

To get a step further, Sequential Model-Based Global Optimization (SMBO) algorithms have

been used in many applications where evaluation of the fitness function is expensive, i.e., auto-

mated machine learning tasks [140]. To optimize the evaluation function M(As,λs,Dtrain,Dval),

we optimize the criterion of Expected Improvement, the expectation under As,λs when y =

M(As,λs,Dtrain,Dval) negatively exceed the threshold y∗:

EIy∗(x) =

∫ y∗

−∞
(y∗ − y) p(y|x)dy =

∫ y∗

−∞
(y∗ − y)

p(x|y)p(y)
p(x)

dy, (6.2)

where the point x∗ that maximizes the surrogate (or its transformation) becomes the proposal for

where the function should be evaluated.

The tree-structured Parzen estimator (TPE) models p(x|y) by transforming to a generative

process, which replaces the distributions of the configuration prior to non-parametric densities. We

borrow the strategy in [140] here to minimize the EI. We keep the Estimation of Distribution (EDA,

[141]) approach on the discrete part of our search space (algorithm selection and discrete hyper-

parameters), where we sample candidate points according to binomial distributions, while we use
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Algorithm 4 Optimization Process

1: Input: H,A,λ,Dtrain,Dval, Tmax

2: T ← 1,
3: while T < Tmax do
4: T ← T + 1
5: At←M(At−1,λt−1,Dtrain,Dval)
6: λt

discrete←M(At,λt−1,Dtrain,Dval)
7: λt

continuous←M(At,λt−1,Dtrain,Dval)
8: H←H ∪ {At, λt}
9: end while

10: Return A∗, λ∗ with the best performance in H
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Figure 6.2: Progression of top-5 averaged performance of different search methods, i.e., Random
Search and PyODDS.

the Covariance Matrix Adaptation - Evolution Strategy, a gradient-free evolutionary algorithm

(CMA-ES, [142]) for the remaining part of our search space (continuous hyper-parameters). The

whole optimization process can be summarized in Algorithm 4.

6.3 Experimental Evaluation

6.3.1 Data Source

The time-series data, which is used to train and evaluate PyODDS , comes from a benchmark

dataset, NAB corpus [143]. NAB corpus contains 58 different individual tasks with ground-truth.

The reasons why we employ this data source are in three folds. First, NAB corpus provides fine-

grained labels, where the core principles in independence, transparency and fairness guarantee.

Second, the data in NAB corpus are ordered, timestamped, which cover a varies of real-world ap-
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plication scenarios, including server monitor logs from AmazonCloudwatch service, online adver-

tisement clicking-rates, real-time traffic transportation, and collection from Twitters with trading

related contents. Third, each raw data file is a dictionary of key-value pair, which is naturally to

be represented as tabular data that meets the requirements of the backend database service in the

PyODDS.

6.3.2 Algorithm Space Configurations

We implemented 13 state-of-the-arts outlier detection algorithms as the search space, including

statistical approaches, and recent neural network frameworks. In the meanwhile, in order to support

both static and time series data analysis, the search space covers algorithms with different settings.

6.3.3 Detection Results Evaluation

In this section, we empirically investigate the performance of PyODDS to answer the following

questions: first, how does the algorithm with hyper-parameters discovered by PyODDS compare

with state-of-the-art handcrafted algorithms? Second, how does the search process affect perfor-

mance?

In Table 6.1, we show the performance on the NAB corpus. We follow the default setting

in NAB as the scoring algorithm, which uses a scaled sigmoidal scoring function to quantify the

detection performance. The smooth score function ensures that small labeling errors will not cause

large changes in reported scores. The evaluation matrix includes the standard profile, reward low

FPs, and reward low FNs. The standard profile assigns TPs, FPs, and FNs with relative weights,

and the latter two profiles accredit greater penalties for FPs and FNs, respectively. For more

detailed definitions, please refer to the default setting [144].

To answer the first question, we use PyODDS to find the best policies on the NAB corpus.

As can be seen from Table 6.1, the outlier detection solution discovered by PyODDS architecture

achieves competitive performance with current state-of-the-art models: the handcrafted algorithms,

and random searched results. It shows that PyODDS could find optimal solutions within a large

range of configurations for different detection tasks.
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Figure 6.3: Demonstration of using PyODDS in visualizing prediction result
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Model Standard Profile Reward Low FP Reward Low FN

Perfect 100 100 100

CBLOF [145] 94.56 93.29 96.68
HBOS [146] 91.86 95.74 93.47

IFOREST [147] 92.44 92.10 94.38
KNN [148] 90.76 96.12 93.42
LOF [52] 92.61 88.78 89.86

OCSVM [149] 88.63 94.60 91.31
PCA [150] 93.15 94.50 96.28

RobustCovariance 96.68 95.27 94.76
SOD [151] 78.46 78.46 82.93

AUTOENCODER [15] 94.74 96.41 93.64
DAGMM [16] 85.27 83.35 90.21

LSTMAD [152] 93.19 95.18 92.43
LSTMENCDOC [153] 94.31 89.23 89.23

RANDOM 87.38 90.79 86.90
PyODDS 96.68 95.27 94.76

Table 6.1: Performance comparison for outlier detection algorithms.

For the second question, we conduct the search process in the same search space with different

search strategies. As can be seen from Fig. 6.2, PyODDS is more efficient in finding the well-

performed architectures during the search progress. Comparing with the random search, the top-5

architectures discovered by PyODDS have better performance (F1-score) and could convergence

faster on different datasets. It shows the effectiveness of the search strategy PyODDS implemented

could enhance the performance and accelerate the search efficiency.

6.4 Demonstration

PyODDS is composed of a frontend and a server backend. Our system is written in Python

and uses Apache Spark as the server backend and TDengine as the database support service. We

demonstrate our system based on the real-world datasets from the Numenta Anomaly Benchmark

(NAB) corpus [143].

First, after selecting the data source and time range, our system will automatically find an

algorithm with default hyper-parameter settings from the search space, and show the detection
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results. Illustrated by Fig. 6.3(a), we provide the normalized value from the original time series

as the blue line, and outlier score as orange line, to help users understand the data distribution in

the original data source, as well as the detection results. Lower outlier score indicates that the data

point is considered “normal”. Higher values indicate the presence of an outlier in the data.

In addition, PyODDS provides time series analysis tools for users to better understand the data

source. Illustrated in Fig. 6.3(b), PyODDS decomposes the original time series as a combination of

level, trend, seasonality, and residual components. The residual values could also act as denoters

for outlier detection in time-series. In the meanwhile, in Fig. 6.3(c), PyODDS estimates the proba-

bility density function of the values in each timestamp, which provides a comprehensive scope of

the data distribution in the original data source. According to the search strategy and search space

we proposed in the previous sections, we also provide trace logs to illustrate the search process

for records. After several iterations of the search process, the selected algorithms with specific

configurations are listed in Fig. 6.3(d)). As shown in the user case, extreme values and spikes

without seasonal patterns (i.e., in the time stamp 2011-07-15, etc) have larger outlier score than

the rest majority as normal cases (shown in (a) and (c)), as well as larger residual value after time

series decomposition (shown in (b)). Current best solution is the sub-policy OCSVM with specific

hyperparameter settings.
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7. CONCLUSIONS AND FUTURE RESEARCH OPPORTUNITIES

In this dissertation, we propose a series of methods and frameworks to address different prob-

lems in the process of anomaly detection in complex data structures. In this chapter, we conclude

the dissertation and propose the problems to be studied in the future following this dissertation.

7.1 Conclusions

First, we introduce an effective framework SpecAE for identifying anomalies in attributed net-

works. To detect global and community anomalies, we map the attributed network into two types

of low-dimensional representations. The first type consists of node representations learned from

an autoencoder and corresponding reconstruction errors. To learn the second type of representa-

tions, we design the novel graph deconvolution neural networks as the complementary operation

to the graph convolution, aiming to reconstruct nodal attributes according to the topological rela-

tions. The two types of learned representations are applied to a Gaussian mixture model to perform

anomaly detection. The tailored representation learning model and the GMM model are trained

collaboratively.

Second, we propose an novel cross-modal anomaly detection approach CMAD based on deep

neural networks. The proposed CMAD framework is able to identify inconsistent patterns or be-

haviors of instances across different modalities by capturing their nonlinear correlations in the

learned consensus latent feature space. Firstly, we train deep structured model to represent fea-

tures from different modalities, and then project the features into a consensus latent feature space.

Secondly, we “pull” the projections of a pair of instances from different modalities together if

their cross-modal patterns are consistent, while “push” them further apart otherwise. Finally, we

distinguish the cross-modality anomalies by measuring the distances across different modalities.

Third, we investigate a novel and challenging problem of learning disentangled time-series

representations. DTS introduces a multi-level disentanglement strategy, covering both individual

latent factor and group semantic segments, to generate hierarchical semantic concepts as the inter-
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pretable and disentangled representation. It alleviates the KL vanishing problem via introducing a

mutual information maximization term, while preserving a heavier penalty on the total correlation

and the dimension-wise KL to keep the disentangle property via balancing the preference between

correct inference and fitting data distribution.

Fourth, we investigated a novel and challenging problem of automated deep model search for

anomaly detection. Different from the existing NAS methods that focus on discovering effective

deep architectures for supervised learning tasks, we proposed AutoOD, an automated unsuper-

vised anomaly detection framework, which aims to find an optimal neural network model within

a predefined search space for a given dataset. AutoOD builds on the theory of curiosity-driven

exploration and self-imitation learning. It overcomes the curse of local optimality, the unfair bias,

and inefficient sample exploitation problems in the traditional search methods.

Fifth, we propose an end-to-end approach to detect outliers, and demonstrate the prediction

results for users to better understand the data source. PyODDS automatically search an optimal

outlier detection pipeline for a new dataset at hand out of a defined proposed search space via the

proposed search strategy.

With these methods and frameworks, we successfully address the challenges in the process of

anomaly detection with complex data structures. It covers modeling complex data structures for

anomaly detection settings, including multimodal structures, topological relation and sequential

correlations. It also discusses how to automatically search an optimal anomaly detection frame-

work for a given dataset with specific data characteristics.

7.2 Future Work

In the future, the following open questions may be studied following this dissertation.

• Distance measures for anomaly detection. Distance measurement stands for the matrix

measuring the distance between observations in the latent spaces for the anomaly detec-

tion purpose. Traditional measurement ways include Euclidean distance, Cosine distance,

l1, l2, l2,1 norms. But different scenarios bring new challenges to directly port traditional
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measurement functions. For instance, MST-based distances [154] approximate the geodesic

distances among vertices, which works better than the Euclidean distance in the presence

of nonlinear manifold structure. SSIM [155] is used for measuring the similarity between

two images. The anomaly degree for images could contain additional structural information

while also incorporating important perceptual phenomena. To further invest various distance

measurements is important for different data structures.

• Enhance interpretability in anomaly detection. With more and more advanced anomaly

detection models being proposed, the interpretation of the detection model, especially deep

structured models, becomes more and more difficult. Despite the successes, machine learn-

ing has its own limitations and drawbacks. The most significant one is the lack of trans-

parency behind their behaviors, which leaves users with little understanding of how partic-

ular decisions are made by these models. For instance, an advanced autonomous vehicles,

the interpretability of uncertainty and unusual object detection could be utilized to guild the

perception, localization, motion planning and controlling systems.

• Model other complex data structures. In many real-world scenarios, the data we collected

often comes from different sources or can be represented by different feature formats. Tra-

ditional methods lack the capability to model these complex data structures for anomaly

detection. For instance, in the financial domain, semi-structured or unstructured text corpora

play importance role for anti-fraud, cyber security and automatic transactions, including fi-

nancial reports, press releases, earnings call transcripts, credit agreements, news articles,

customer interaction logs and social data.

• Create anomaly detection benchmarks for automated model design and tuning. Though

we have many anomaly detection datasets and models, there still lacks a comprehensive

benchmark for anomaly detection model design and tuning, especially for large-scale and

heterogeneous datasets.
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