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Abstract

This file has two sections. Section 1 details out posterior sampling for BMRR with

full conditional posterior distributions. Section 2.1 provides additional figures and

results corresponding to the simulation study in Section 5 of the main article. Section

2.2 offers additional results for data analysis which could not be included in Section 6

of the main article due to space constraint.

1 Posterior Sampling

In this section we elaborate the posterior sampling procedure of BMMR. As preeliminary

notation, for any matrix M let M i,. be the i-th row of M , M .,j be the j-th column of M ,

M−i,. be the M matrix without the i-th column, M .,−j be the M matrix without the jth

column, M i,−j the ith column of M without the jth entry, M−i,j be the jth column of M

without the ith entry. Similarly for a vector v let v−i be vector v without the ith entry.

Also, let ⊗ denote the Kronecker product operator and “·” the entry-wise product operator

for matrices.

Bayesian estimation of the model is performed through Gibbs sampling which cycles

through the following steps.

1. For each p ∈ {1, ..., P} sample from ψa
p,., from the full conditional

p(ψa
p,.|ψa

−p,.,Θ, σ
2,A).
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2. For each p ∈ {1, ..., P} sample from ψg
p,., from the full conditional

p(ψg
p,.|βp, σ

2, gp).

3. For each p ∈ {1, ..., P} sample jointly ξp, Θ−p,p and βp from

p(ξp,Θ−p,p,βp|ν, τ 2, σ2
θ , η

2
p,Λ−p,p, ϕ

2
p,A,G)

= p(Θ−p,p,βp|ξ, τ 2, σ2
θ , η

2
p,Λ−p,p, ϕ

2
p,A,G)

× p(ξp|ν, ξ−p, τ
2, σ2

θ , η
2
p,Λ−p,p, ϕ

2
p,A,G)

4. Sample τ 2 from the full conditional

p(τ 2|ξ,Θ,β1, ...,βP , σ
2
θ , η

2
1, ..., η

2
P ,Λ, ϕ

2
1, ..., ϕ

2
P ,A,G)

5. Sample ν from the full conditional p(ν|ξ).

6. Sample the horseshoe parameters using the latent variable approach as in Makalic and

Schmidt (2016).

Next, we describe all the relevant conditional distributions in steps 1-6. Note that,

ψa
p,.|ψa

−p,.,Θ, σ
2,A ∼ N

(
ψ̂

a

p,., τ
2(W ′W )−1

)
where

ψ̂
a

p,. = (W ′W )−1W ′R

R = [(R1)
′
−p,p, ..., (Rn)

′
−p,p]

′

W = [W ′
1, ...,W

′
n]

′

(Ri)−p,p = (Ai)−p,p −Θ−p,pyi ∀i ∈ {1, ..., n}

W i = ψ
a
−p,. · (1P ⊗ x′

i) ∀i ∈ {1, ..., n}.

ψg
p,.|βp, σ

2, gp ∼ N
(
ψ̂

g

p,., τ
2(W ′W )−1

)
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where

ψ̂
g

p,. = (W ′W )−1W ′R

R = [(R1)
′
−p,p, ..., (Rn)

′
−p,p]

′

W = [W ′
1, ...,W

′
n]

′

(Ri)−p,p = gi,p − βpyi ∀i ∈ {1, ..., n}

W i = 1Vp ⊗ x′
i ∀i ∈ {1, ..., n}.

To sample Θ−p,p,βp we set them to 0 if ξp = 0, if ξ = 1 we sample from

Θ−p,p,βp|ξ−p, τ
2, σ2

θ , η
2
p,Λ−p,p, ϕ

2
p,A,G ∼ N(b̂, τ 2diag(1/(S2

yy + 1/L)))

where

b̂ = Sxy/(S
2
yy + 1/L)

Sxy = [(Say)p,−p[ξ−p = 1]′,S′
gy,p]

′

S2
yy = y

′y

L = [σ2
θΛp,−p[ξ−p = 1]′, η2p(ϕ

2
p)

′]′

(Say)p,p′ =
n∑

i=1

(Ra
i )p,p′yi

(Sgy,p)v =
n∑

i=1

Rg
i,v,pyi

(Ra
i )p,p′ = (Ai)p,p′ −

H∑
h=1

(ψa)p,h(ψ
a)p′,hxi,h

Rg
i,v,p = gi,(v,p) −

H∑
h=1

ψg
p,hxi,h
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We sample ξp from

ξp|ν, ξ−p, τ
2, σ2

θ , η
2
p,Λ−p,p, ϕ

2
p,A,G ∼ Bernoulli(v̂p)

where

v̂p = op/(1 + op)

op = exp(
∑
i=1

ci)

ci = −1

2

(
log(Li) + log

(
S2
yy +

1

Li

))
+ b̂i

S2
yy +

1
Li

2τ 2

where Li and b̂ are as in the sampling of Θ−p,p,βp.

Finally, we sample τ 2 from

τ 2|ξ,Θ,β1, ...,βP , σ
2
θ , η

2
1, ..., η

2
P ,Λ, ϕ

2
1, ..., ϕ

2
P ,A,G ∼ IG(âτ , b̂τ )

where

b̂τ = bτ +

∑n
i=1

∑
p<p′ R

(
iap,p′) +

∑n
i=1

∑P
p=1R

g
i,p

2

+

∑
p<p′ Θ

2
ξ=1,ξ=1/Λξ=1,ξ=1/σ

2
θ

2
+

∑P
p=1 ξpβ

2
p/(ηpϕ

2
p)

2

âτ = aτ +

np(p−1)
2

+ n
∑P

p=1 Vp +
nq(q−1)

2
+ n

∑P
p=1 Vpξp

2

Ra
i =

(
Ai −

H∑
h=1

ψa
h(ψ

a
h)

′xi,h −Θ yi

)2

Rg
i,p =

(
gi,p −

H∑
h=1

1Vpψ
g
p,hxi,h − βp yi

)2
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2 Additional Empirical Results

2.1 Additional Simulation Results

The simulation results in Section 5.3 in the main article presents TPR and TNR for

all the competitors in terms of identifying influential regions. Since there are trade-offs

between the TPR and the TNR performances, Figure 1 in this document presents a single

performance measure, F1-score for influential region identification. Given that the two most

competing methods in terms of the F1-score are Horseshoe and Regional MUA, we show

the plots for F1-score corresponding to BMRR, Horseshoe and Regional MUA. All other

competitors show worse performance than these three. As expected, the performance of

BMRR along with all other competitors deteriorate for higher dimensional simulation cases.

We also observe notable improvement in the performance of Horseshoe, especially in smaller

dimensional cases, when it is used for joint model fitting as opposed to using Horseshoe

for fitting structural and network object models separately. In contrast, Regional MUA

improves only moderately when both set of objects are considered for multiplicity correction,

as opposed to employing them separately. BMRR outperforms both its competitors in all

simulation cases. The performance gap between BMRR and Horseshoe is more in low sparsity

cases than in high sparsity cases.

Figure 2 presents the identification of influential regions in the large dimensional simu-

lation example. Here black spots correspond to the regions which are truly influential and

color in a cell is more dark if the posterior probability for the corresponding region being

influential is higher. The results show excellent identification of influential regions. We did

not offer the posterior probabilities of being influential as the plot looks too clumsy to be

understood in that case.

2.2 Additional Data Analysis Results

Figures 3-5 present the coefficients for gender, age and cognitive decline corresponding

to the GM response across ROIs, respectively. Figures 6-8 present the coefficients for gen-

der, age and cognitive decline corresponding to the network response matrix, respectively.

The purpose of adjusting for the gender, age, and cognitive decline covariates is to allow
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Figure 1: F1 Score for the Horseshoe, the Regional MUA approach and BMRR for different
simulation scenarios. Here “Big” and “Small” refer to high-dimensional and smaller dimen-
sional examples. The top and bottom row correspond to the true sparsity level of 85% and
70%, respectively.
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for an adjusted estimate of the association between the speech rate measure and the two

image outcomes. The three covariates were selected due to their well known association

with both natural and accelerated brain atrophy and network disruption in aging adults

and are frequently included as adjustment variables (Mandelli et al., 2018). Thus, they are

purposefully included as adjustment variables to reduce potential bias in estimates of our

primary predictor of interest, the speech rate measure. Therefore, we discuss the coefficients

for gender, age, and cognitive decline to ensure their estimated effects are biologically sen-

sible but note that they are not the primary focus of our inference. These coefficient maps

are interpreted in a similar manner to the speech rate coefficient maps in Section 6.2 of the

main article, albeit without the hierarchical regularization priors and in terms of ROI-level

rather than voxel-level effects due to modeling restraints discussed in Section 3.1 of the main

article. In Figure 3, we see that on average males generally have higher grey matter prob-

ability throughout the brain as evidenced by the ubiquity of positive associations between

gray matter probability and gender status male which is consistent with previous findings
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Figure 2: The figure presents performance for influential node identification by BMRR under
the two simulation cases in bigger dimensional example. Each row corresponds to a simula-
tion case. The black square in each cell indicate the truly influential regions. A cell is more
dark if the posterior probability of being influential for the corresponding region is high.
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(Good et al., 2001). In Figure 4, we see that there is consistent negative association between

age and grey matter content which reflects increasing brain atrophy as humans age (Hafke-

meijer et al., 2014). In Figure 5, we see both negative and positive association between

cognitive function and grey matter content and note that the effect sizes are small and not

clinically meaningful for interpretation. For Figures 6-8, the existing literature on resting

state functional connectivity describes a heterogeneous landscape of associations and thus

we limit ourselves to characterizing the associations observed but do not consistently try

to interpret their direction. In Figure 6, we see a mixture of positive and negative associa-

tions between gender and functional connectivity among brain ROIs which is consistent with

summaries of the extant literature (Gong et al., 2011). Similarly, Figures 7 and 8 show a

mixture of positive and negative association between age and cognitive function with func-

tional connectivity, respectively, which is consistent with observed heterogeneous functional

reorganization of brain connectivity that occurs due to aging and atrophy (Zonneveld et al.,

2019). In summary, the associations captured in our set of adjustment variables, gender, age,

and cognitive function are plausible and their inclusion helps bolster our primary inference

related to the speech rate measure.

Finally, Figure 9 and 10 show the point estimates of regression coefficients for GM voxels

and for the network matrix, respectively, corresponding to regional MUA. The results show

very little signal identified by regional MUA. This is expected since the simulation studies

show lower TPR observed in regional MUA compared to BMRR.
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Figure 3: Point estimates (median) of the regression coefficients for Gender in selected grey
matter voxels across horizontal slices using BMRR.
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Figure 4: Point estimates (median) of the regression coefficients for Age in selected grey
matter voxels across horizontal slices using BMRR.
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Figure 5: Point estimates (median) of the regression coefficients for Cognitive Decline in
selected grey matter voxels across horizontal slices using BMRR.
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Figure 6: Point estimates (median) of the regression coefficients for Gender for the Network
Matrix Edges using BMRR.

Gender

Tha

BG
Hipp

LOcC 
LOcC

MVOcC 

CG

INS

PoG
PCun

IPL

SPL
pSTS
PhG
FuG

ITG

MTG

STG
PCL
PrG

OrG

IFG

MFG

SFG

S
F

G

M
F

G

IF
G

O
rG

P
rG

P
C

L
S

T
G

M
T

G

IT
G

F
uG

P
hG

pS
T

S
S

P
L

IP
L

P
C

un
P

oG

IN
S

C
G

M
V

O
cC

 
LO

cC
LO

cC
 

A
m

yg

B
G

T
ha

−
0.

2
0

0.
2

References

Gong, G., He, Y., and Evans, A. C. (2011). Brain connectivity: gender makes a difference.

The Neuroscientist , 17(5), 575–591.

Good, C. D., Johnsrude, I., Ashburner, J., Henson, R. N., Friston, K. J., and Frackowiak,

R. S. (2001). Cerebral asymmetry and the effects of sex and handedness on brain structure:

11



a voxel-based morphometric analysis of 465 normal adult human brains. Neuroimage,

14(3), 685–700.

Hafkemeijer, A., Altmann-Schneider, I., de Craen, A. J., Slagboom, P. E., van der Grond,

J., and Rombouts, S. A. (2014). Associations between age and gray matter volume in

anatomical brain networks in middle-aged to older adults. Aging cell , 13(6), 1068–1074.

Makalic, E. and Schmidt, D. F. (2016). A Simple Sampler for the Horseshoe Estimator. IEEE

Signal Processing Letters , 23(1), 179–182. Conference Name: IEEE Signal Processing

Letters.

Mandelli, M. L., Welch, A. E., Vilaplana, E., Watson, C., Battistella, G., Brown, J. A.,

Possin, K. L., Hubbard, H. I., Miller, Z. A., Henry, M. L., Marx, G. A., Santos-Santos,

M. A., Bajorek, L. P., Fortea, J., Boxer, A., Rabinovici, G., Lee, S., Deleon, J., Rosen,

H. J., Miller, B. L., Seeley, W. W., and Gorno-Tempini, M. L. (2018). Altered topology

of the functional speech production network in non-fluent/agrammatic variant of PPA.

Cortex , 108, 252–264.

Zonneveld, H. I., Pruim, R. H., Bos, D., Vrooman, H. A., Muetzel, R. L., Hofman, A.,

Rombouts, S. A., van der Lugt, A., Niessen, W. J., Ikram, M. A., et al. (2019). Patterns

of functional connectivity in an aging population: The rotterdam study. Neuroimage, 189,

432–444.

12



Figure 7: Point estimates (median) of the regression coefficients for Age for the Network
Matrix Edges using BMRR.
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Figure 8: Point estimates (median) of the regression coefficients for Cognitive Decline for
the Network Matrix Edges using BMRR.
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Figure 9: Point estimates (median) of the regression coefficients for grey matter probability
for selected voxels across horizontal slices using MUA with speech rate as outcome.
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Figure 10: Point estimates (median) of the regression coefficients for Network Matrix z-
Scores using MUA with speech rate as outcome. Each cell displays the ROI level network
coefficient maps organized by anatomical brain region where the top and bottom half of
each anatomical region indicated by a horizontal dash corresponds to the left hemisphere
and right hemispheres, respectively.
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