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A B S T R A C T   

This study was conducted to evaluate the feasibility of a mobile phone-based thermal and UAV-based multi
spectral imaging to assess the irrigation performance of African eggplant. The study used a randomized block 
design (RBD) with sub-plots being irrigated at 100% (I100), 80% (I80) and 60% (I60) of the calculated crop 
water requirements using drip. The leaf moisture content was monitored at different soil moisture conditions at 
early, vegetative and full vegetative stages. The results showed that, the crop water stress index (CWSI) derived 
from the mobile phone-based thermal images is sensitive to leaf moisture content (LMC) in I80 and I60 at all 
vegetative stages. The UAV-derived Normalized Difference Vegetation Index (NDVI) and Optimized Soil Adjusted 
Vegetation Index (OSAVI) correlated with LMC at the vegetative and full vegetative stages for all three irrigation 
treatments. In cases where eggplant is irrigated under normal conditions, the use of NDVI or OSAVI at full 
vegetative stages will be able to predict eggplant yields. In cases where, eggplant is grown under deficit irri
gation, CWSI can be used at vegetative or full vegetative stages next to NDVI or OSAVI depending on available 
resources.   

1. Introduction 

Over the years, soil- and plant canopy-based methods have been 
employed for managing water in irrigated agriculture. Soil-based 
methods use either manual or computerized soil moisture monitoring 
technologies (Enciso et al., 2009; Zotarelli et al., 2011; Soulis et al., 
2015). The use of soil moisture sensors provide point based soil moisture 
values and are sensitive to installation, calibration and location in the 
field. Depending on the density of soil moisture sensors, one might fail to 
capture field heterogeneity. Plant canopy-based methods have been 
recommended in recent years in crop water status monitoring because 
signs of canopy stress occur much earlier than soil-based signs (Poblete- 
Echeverría et al., 2017; Petrie et al., 2019). Canopy based methods are 
categorized into contact and non-contact measurements. Contact 
methods include the stomatal conductance and water potential mea
surements using ventilated and pressure chambers among others (Boyer, 
1967; Goulden and Field, 1994). Examples of non-contact methods are 

infrared thermometers, mobile phone-based thermal imaging and 
remote sensing (Stone et al.; 2016; Reyes-González et al., 2018). The 
latter have been recommended due to their ability to indicate the plant 
physiological condition and leaf moisture content (LMC) throughout 
crop growth stages without interference leading to improved irrigation 
decisions (Zhang and Zhou, 2019). Depending on the sensor type and 
resolution, remote sensing methods, have the capability of indicating 
spatial variation of plant condition across the field. This helps the irri
gator to apply water only in stressed zones. However, accuracy depends 
on the resolution of the images and the sensor used. 

Mobile phone-based thermal imaging as part of non-contact 
methods, have been adopted due to its ability to indicate variations in 
canopy temperature within the plant canopy as a result of differences in 
leaf water content. As the leaf water content is related to the plant water 
availability in the soil, the canopy temperature and therefore leaf water 
content is dependent on the level of watering within the field. Well- 
watered plants have a high leaf water content resulting into low 
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canopy temperature due to higher levels of transpiration from the plant 
stomata (Gusso, 2018). As water-stress causes stomatal closure, there 
will be a considerable reduction in transpiration leading to an increase 
in leaf surface temperature (DeJonge et al., 2015; Çolak et al., 2015). 
The crop water stress index (CWSI), a relationship between the canopy 
temperature for well-watered and stressed crops has been used to 
determine irrigation scheduling (Gerhards et al., 2016; Grant et al., 
2016). The use of mobile phone-based thermal imaging has worked well 
in the computation of crop water stress indices with variation in effec
tiveness depending on crop type and climatic conditions. Whilst the 
method has been found useful at plant level, it is labor intensive to 
capture the heterogeneity in farmer fields. 

Remote sensing images from satellites, aircraft and unmanned aerial 
vehicles (UAV) provide valuable information for agricultural decision 
making (Ballester et al., 2019; Jorge et al., 2019; Siegfried et al., 2019). 
Among these methods, UAVs have been recommended in agricultural 
water management because of its ability to collect high-resolution data 
at low-cost without cloud interference (Alvino and Marino, 2017). The 
UAVs carry sensors of different types such as visual, thermal, multi
spectral or hyperspectral with varying sensitivity depending on the ap
plications. Multispectral sensors collect information in three to ten 
broadband reflectance while hyperspectral bands collect information 
from hundreds of narrow-band reflectance (Badzmierowski et al., 2019; 
Zhang and Zhou, 2019). Vegetation indices (VI), derived by calculating 
the ratios of two or more spectral bands, vary in function of canopy 
moisture content as different level of plant water status results in 
different spectral responses. For instance, well-watered plant canopy is 
characterized by a high reflectance of near infrared (NIR) and low 
reflectance of red bands (Genc et al., 2013; Van Beek et al. 2013). Hence, 
different vegetation indices can be derived to assess plant water status. 
Stone et al. (2016) and Reyes-González et al. (2018) recommended the 
use of normalized difference vegetation index (NDVI) in delineating 
water-stressed zones within a corn field. Likewise, studies under turf 
grass systems, recommended the use of NDVI and green-to-red ratio 
index (GRI) in the estimation of soil moisture status (Badzmierowski 
et al., 2019). Jorge et al. (2019) recommended normalized difference 
red-edge (NDRE) among other vegetation indices due to its capability of 
detecting water-stressed zones in olive trees. This is due to the sharp 
response of the reflectance between the red and NIR spectral bands with 
water stress. Additionally, Shi et al. (2019) suggested the use of soil 
adjusted vegetation index (SAVI) and NDVI in identifying field spatial 
variability as they strongly correlate with the CWSI. 

Furthermore, vegetation indices derived from NIR and red spectral 
bands, can be used in crop yield prediction (Katsoulas et al., 2016). 
Kyratzis et al. (2017) recommended the use of GNDVI and NDVI to 
predict durum wheat yield subjected under water stress in the Medi
terranean environment. Similarly, Ballester et al. (2019) recommended 
the NDVI in forecasting cotton yield in semi-arid environments. Like
wise, Ihuoma and Madramootoo (2019) recommended the combination 
of the water index (WI) and NDVI to assess water stress impacts on bell 
pepper yield. Furthermore, Maresma et al. (2016) suggested the use of 
various vegetation indices such as Wide Dynamic Range Vegetation 
Index (WDRVI) for assessing maize yield. 

Vegetation indices maps are an alternative to productivity maps to 
support targeting of agricultural water management interventions 
(Veysi et al., 2017). The maps convert numerical values of vegetation 
indices into color scales depicting water stressed zones to support quick 
evaluations. Different vegetation indices maps such as NDRE, GNDVI 
and NDVI have been used due to their capability of mapping the vari
ation of water supply within a field (Shiratsuchi et al., 2011; Genc et al., 
2013; Damian et al., 2020). So far studies focus predominantly on staple 
crops such as maize and few measure the interaction between fertilizer 
application and deficit irrigation rates on crop yield (Shiratsuchi et al. 
2011; Stone et al., 2016). 

Despite the potential of mobile phone-based thermal and UAV-based 
multispectral vegetation indices in assessing crop water stress in various 

crops, their application for vegetables, grown under deficit irrigation, is 
limited. Little information is found on the ability of vegetation indices to 
depict crop water stress in vegetables (e.g. African eggplant) under drip 
systems using deficit irrigation in tropical sub-humid areas. Each crop 
has different spectral response due to differences in climatic conditions, 
leaf structure, water stress levels and plant water uptake response 
functions influencing leaf water composition (Bellvert et al., 2014). 
Establishing UAV or mobile phone-based thermal imagery assessments 
to assess irrigation performance for irrigated crops such as African 
eggplants can support public or private sector extension services for 
small, medium and large scale farming. As part of Tanzania’s economic 
growth development strategy (Mandalu and Costa, 2018; Wuyts and 
Kilama, 2014) small scale farming is expected to shift to large scale 
farming as a result of increasing demand of food and raw materials for 
industrial development. Management of large scale farms or contract 
farming of smallholders will require the development of contextually 
relevant advisory services to enhance yields and water-use efficiency. 

Therefore, this study aimed at investigating the efficacy of using the 
crop water stress index (CWSI) and vegetation indices (VI) in assessing 
irrigation performance of African eggplant under different irrigation 
strategies in a tropical sub-humid area. Specifically, the study aimed at 
using mobile phone-based thermal imaging and UAV derived multi
spectral imaging to: (1) evaluate whether LMC, CWSI and VI differ at 
different irrigation depths throughout cropping stages; * investigate the 
sensitivity of the CWSI and vegetation indices to LMC variation among 
irrigation treatments; (3) develop vegetation indices maps to capture 
spatial and temporal variations in irrigation application and support 
precision agriculture; and (4) assess the applicability of CWSI and 
vegetation indices to predict crop yield. 

2. Materials and methods 

2. 1 Description of the study site 

The study was conducted at Rudewa watershed in Kilosa District 
within Morogoro Region in Tanzania. The watershed lies between 6◦32′

to 6◦47′South and 36◦8′ to 37◦28′East with an average altitude of 437 m 
above mean sea level (Fig. 1). The average annual temperature of the 
study site is between 15.1 ◦C and 24.4 ◦C and the mean relative humidity 
around 67.5%. The minimum average temperature of 12.9 ◦C is recor
ded in July while the maximum average temperature of 32.1 ◦C is 
recorded in February. The site is characterized by a bimodal rainfall 
regime with an average annual rainfall between 1000 mm and 1400 
mm. The short rains occur from October to December and long rains 
from March to May. Most of the agricultural activities are rainfed with 
rice and maize being the major food crops during the long rainy period. 
However, during the dry period (June to October) and short rainy period 
(December to February), full or supplemental irrigation is required for 
crops like African eggplant and tomato. 

The major source of irrigation water is the Wami River, a perennial 
river originating from the Mamiwa Forest Reserve. The study site has 
sand clayey loamy soils with a medium level of organic carbon. The clay, 
silt and sand content range between 23% and 26%, 10–14% and 58–65% 
respectively within the top 40 cm soils. The average soils bulk density 
within the study sites is 1.3–1.5 g/cm3. 

2. 2 Experimental design, irrigation water requirements and the actual 
irrigation 

The experiment was conducted using a randomized block design 
(RBD) with 3 irrigation application rates: 100% (I100), 80% (I80) and 
60% (I60) of crop water requirements and 3 replicates per treatment 
(Fig. 2). Nitrogen fertilizer was uniformly applied at a rate of 250 kg/ha 
(i.e. 100%) for all treatments and was part of a larger study as described 
in Mwinuka et al. (in press). 

Crop water requirements were estimated using CROPWAT 8.0 
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Fig. 1. The watershed of the study site, Rudewa village in Kilosa – Morogoro region, Tanzania (Source: Mwinuka et al., in press).  

Fig. 2. Experimental plot with irrigation application at 100% (I100), 80% (I80) and 60% (I60) of calculated crop water requirements.  

Table 1 
Crop evapotranspiration and irrigation water requirements at different cropping stages.  

Month Stage Kc ETo ETc Effective rain IWRn GIWR 
coefficient (mm/day) (mm/day) (mm) (mm/day) (mm/day) 

June Early  0.6  3.4  2  0  2  2.4 
July Vegetative  0.7  3.4  2.4  0  2.4  2.8 
July Full vegetative  1.1  3.4  3.7  0.1  3.6  4.2 
August Full vegetative and late-season  1.1  3.7  4.1  0  4.1  4.8 
September Late-season  1.1  4.3  4.7  0  4.7  5.5 
October Late-season  1  4.9  4.9  0.2  4.7  5.5  
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software as recommended by FAO (Diku et al., 2015) using 15 years of 
climatic data from Ilonga meteorological station. The crop actual 
evapotranspiration (ETc) was estimated using the crop coefficient (Kc) 
and crop reference evapotranspiration (ETo). The ETo was calculated 
using a FAO CLIMWAT 2.0 software (Diku et al., 2015). Furthermore, 
the estimated daily net irrigation water requirements (IWRn) and gross 
irrigation requirements (GIWR) were calculated (Table 1). The water 
application and conveyance efficiencies of the system were 94% and 
90% which was estimated from the relationship of the dripline discharge 
and the total volume of water supplied. 

Subsequently, microclimate data were used to fine-tune daily water 
requirement through an automatic weather station installed adjacent to 
the experimental plot. Within the two cropping seasons (June to October 
of 2017 and 2018) the average rainfall, effective rainfall and tempera
ture for the study site were recorded (see Figs. 3 and 4). The effective 
rainfall was estimated by USDA-SCS method as described by Patward
han et al. (1990) but found too low to be significantly contributing to the 
crop water balance. 

Irrigation water was applied through non pressurized drip lines. The 
irrigation application was regulated through a water control valve 
installed in each sub-main line. Irrigation was activated when soil 
moisture reached the maximum allowable depletion (i.e. 17% volu
metric soil moisture content). The amount of water irrigated for each 
treatment was measured using an installed flow meter (Table 2). 

2. 3 Data collection throughout the irrigation season 

2.3. 1 Soil and plant canopy moisture measurements 
Soil sampling was conducted by establishing five sampling quadrants 

of 5 × 5 m to represent the field. From each quadrant, five sampling 
points were marked where undisturbed soil samples were taken using 
100 cm3 metallic cylinders. Soil samples were taken at a depths 0–20 
and 20–40 cm in representative locations at the beginning of the crop
ping season. Samples were analysed for field capacity (FC) and perma
nent wilting point (PWP) using a pressure plate apparatus at a soil matric 
suction of 30 kPa and 1500 kPa respectively. The average volumetric FC 
and PWP moisture content was 28% and 14%. Soil moisture was 
measured from six measuring points in each treatment. Moisture mea
surements were conducted using a calibrated DSMM500 soil moisture 
sensor every 24 h between irrigation. The sensor detects soil moisture to 
a depth of 20 cm. 

Moisture content from the plant leaves was taken through the irri
gation cycle in all treatments. To minimize solar radiation errors caused 
by evaporation, leaves were harvested between 08:00 and 10:00 h. The 
fresh weight (Wl) samples were recorded and dried in the greenhouse to 
prevent samples from deterioration. Samples were finally oven-dried at 
70 ◦C until a constant weight (Dl) was attained. Leaf dry samples were 
then determined according to Ge et al. (2016) as shown in Eq. (1). 

LWC =
Wl − Dl

Wl
× 100% (1)  

2.3. 2 Determining of the crop water stress index using mobile phone-based 
thermal imaging 

Canopy temperature was collected by a FLIR camera (FLIRone 
camera P/N 435-0003-01-00) connected to Samsung Galaxy S5 smart
phone. The FLIRone camera captures both thermal and visible spectrum. 
The sensor has a thermal resolution of 240 × 320 pixels and a temper
ature sensitivity of 0.1 ◦C. Its scene temperature ranges between − 20 
and 120 ◦C and operates at a temperature range of 0–35 ◦C. Addition
ally, an emissivity of 0.98 was used, a common emissivity value when 
estimating canopy temperature of horticultural crops (Chen, 2015; 
Gerhards et al., 2016; Xue and Su, 2017). Thermal images were acquired 
between 12:00 and 14:00 h from six monitoring plants in each plot 
throughout the season as mentioned by Grant et al. (2016). Thermal 
images were acquired throughout the irrigation cycle all subsequent 
days after irrigation so that to record the canopy temperature at 
different levels of soil moisture. FLIRone and FLIR-tools computer soft
ware (P/N 435-0003-01-00) were used to process thermal images. The 
canopy temperature (for instance sp1 to sp8 in Fig. 5) for water stressed 
treatments were higher as compared to non-stressed canopy with values 
ranging between 29.7 ◦C to 32 ◦C and 24.2 ◦C to 25.8 ◦C, respectively 
(Fig. 5A and B). 

The crop water stress index (CWSI) was calculated from the rela
tionship of canopy temperature (Tc), artificial wet reference tempera
ture (Tw) and dry reference temperature (Td) according to (Levy et al., 
2013; Baluja et al., 2012; Petrie et al., 2019) as shown by Eq. (2). 

CWSI =
Tc − Tw
Td − Tw

(2) 

The canopy temperature for each treatment was estimated from the 
temperature images acquired by a FLIRone camera. The average pure 
canopy temperature (Tc) was obtained by eliminating the soil back
ground surface using the thermal fusion and box tool within the FLIR- 
tools computer software (version 5.9.16284.1001). Reference artificial 
wet temperature (Tw) was estimated using the manual aspirated psy
chrometer (Psychron 15691) (Yonah et al., 2018). The canopy dry 
reference temperature (Td) was simulated by covering the leaf by pe
troleum jelly to prevent it from transpiration, a condition of non- 
transpiring canopy (Poblete-Echeverría et al., 2017; Jones et al., 2002). 
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Fig. 3. The average monthly rains for the 2017 and 2018 cropping seasons.  
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Table 2 
The actual amount of water applied for different treatments at each crop 
development stage.  

Treatment Applied water (mm) 

Initial 
stage 

Development 
stage 

Mid- 
season 

Late 
season 

Total 

I100  50.2  58.7  102.5  824.5  1035.9 
I80  40.2  47.0  82.0  659.6  828.8 
I60  30.1  35.2  61.5  494.7  621.5  
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2. 4 Determining vegetation indices using UAV derived multi-spectral 
bands 

2.4. 1 UAV images acquisition 
Images were acquired using a multispec4c sensor attached to the 

fixed wings UAV eBeeTM drone (a senseFly SA, Cheseaux-Lausanne, 
Switzerland). The fields were georeferenced using a global positioning 
system (GPS). The points were then recorded in a csv file format and 
processed using QGIS 2.18 to produce a kml file. The kml files were 
imported in the eMotion 3 computer software for the creation of flight 
plans. 

The multispec4c sensor had four spectral bands (green, red, red edge 
and near-infrared). The corresponding wavelengths for the respective 
spectral band was 550 nm, 660 nm, 735 nm and 790 nm. The sensor was 
set at 1.2 Megapixel providing a full resolution of 12 cm/pixel with a 
lateral and longitudinal overlap of 70% and 65%. The images were taken 
between 12:00 and 13:30 h to minimize the effects of shadow using a 

UAV flown at an average altitude of 115 m above elevation data (AED). 
Radiometric calibration of the sensor was conducted before each flight 
using a calibration board. 

2.4. 2 UAV images processing and computation of vegetation indices 
Production of digital surface model (DSM) orthomosaic maps from 

multispectral images was conducted using the SenseFly PIX4D software. 
The processed orthomosaic maps were trimmed to the field level using 
the extraction clipper application in the QGIS 2.18 software. A geo
metric correction process (image to image registration) was conducted 
to ensure that images for each of the treatments corresponded to the 
same location throughout the irrigation cycle (Dave et al., 2015). Images 
in different spectral bands were extracted using a python script and used 
to compute different vegetation indices through raster and rgdal pack
ages in R software (version 3.6.1) (Table 3). Soil background effect were 
corrected by setting a vegetation index threshold value which separates 
bare soil surface from vegetation (Naji, 2018). The decision of the 
threshold values to use was considered after studying the values of 
vegetation indices from the bare soil and the soil with vegetation cover. 
The choice of vegetation indices was based on their capability to capture 
variations in the canopy leaf water content (Katsoulas et al., 2016; Stone 
et al. 2016; Jorge et al., 2019) and were limited to four spectral bands 
(green (G), red (R), near-infrared (NIR) and red edge (RE)) available in 
multispec4c sensor (Table 3). 

2. 5 Data analysis and statistics 

The sensitivity of CWSI and other vegetation indices (VI) to LMC in 
different irrigation depths at various cropping stages was assessed using 
the analysis of variance (ANOVA) test. CWSI and VI which showed a 
significant difference among the different irrigation treatments 
(p < 0.05) were selected and their correlation with LMC was explored. 
The analyses were performed using R software (version 3.6.1). Vegeta
tion indices maps were developed to assess spatial variation in plant 
water status within the different drip treatments. The image mosaic was 
processed using the rgdal and raster packages for evaluating the vector 
spatial data in the respective bands through Rstudio (version 3.6.1) 
software. The plot function was applied to generate vegetation indices 

Table 3 
Vegetation indices used in the assessment of canopy water status.  

Index Equation Reference 

Green-Red Vegetation Index GRVI =
G − R
G + R  

Xue and Su, 2017 

Normalized Difference Vegetation 
Index 

NDVI =
NIR − R
NIR + R  

Ustuner et al., 
2014 

Green Normalized Difference 
Vegetation Index 

GNDVI =
NIR − G
NIR + G  

Omer et al., 2017 

Normalized Difference Red Edge NDRE =
NIR − RE
NIR + RE  

Ustuner et al., 
2014 

Enhanced Vegetation Index EVI2 =

2.5(
NIR − R

NIR + 2.4R + 1
)

Picoli et al., 2017 

Soil Adjusted Vegetation Index 
SAVI =

1.5(NIR − R)
NIR + R + 0.5  

Mulla, 2013 

Optimized Soil Adjusted 
Vegetation Index OSAVI =

(NIR − R)
NIR + R + 0.16  

Zou and Mõttus, 
2017 

Transformed Difference 
Vegetation Index TDVI =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

0.5 +
NIR − R
NIR + R

√ Xue and Su, 2017  

Fig. 5. Thermal imagery temperature variation on canopy (Sp1 to Sp8) and on soil surface (Sp9 to Sp11) under water stressed (A) and non-stressed conditions (B).  
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Table 4 
The ANOVA table for different variables at different irrigation depth applied .   

LMC CWSI GNDVI GRVI SAVI NDVI OSAVI EVI2 NDRE TDVI 

Early development stage      
I100 *** * NS NS NS NS NS NS NS NS 
I80 *** *** NS NS NS NS NS NS NS NS 
I60 *** *** NS NS NS NS NS NS NS NS 
Vegetative stage      
I100 *** NS NS ** ** * * NS * NS 
I80 *** * *** NS ** ** ** NS NS NS 
I60 *** *** NS ** NS *** *** NS NS NS 
Full vegetative stage      
I100 *** NS NS ** NS *** *** NS NS NS 
I80 *** *** NS NS * ** ** NS NS NS 
I60 *** *** NS ** * ** ** NS NS NS 

*, ** and *** refer to signficance levels 0.05, 0.01 and 0.001, NS = not significant 

Fig. 6. The relationship between the vegetation indices with LMC for fields irrigated at I100 during vegetative (A and B) and full vegetative (C and D) crop 
development stages. 

Fig. 7. The relationship between the vegetation indices with LMC for fields irrigated at I80 during early (A), vegetative (B and C) and full vegetative (D, E and F) crop 
development stages. 
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maps. 
Yield prediction was conducted by developing a linear regression 

model between the vegetation indices with the first season yields. The 
second season yields were used to test the accuracy of the model by 
developing a regression relationship of the predicted and observed 
yields. The root mean square error (RMSE) was then calculated to show 
the yield prediction error of vegetation indices at different treatments 
(Zhao et al., 2020). Yield prediction was conducted through ggplot2 and 
ggpubr packages under Rstudio (version 3.6.1) software. The vegetation 
indices with the coefficient of determination greater than 0.5 was 
considered sensitive in forecasting the end of the season yields. 

3. Results 

3. 1 The response of the LMC, CWSI and VI to irrigation treatment 

The LWC, CWSI and vegetation indices responded differently at 
different irrigation rates within the irrigation cycle (Table 4). The LMC 
was significantly different in all treatments at early, vegetative and full 
vegetative stages (p < 0.001). Similar results were obtained for CWSI 
except at highest irrigation rates (I100) during the vegetative and full 
vegetative stages. From all the VI measured, the GNDVI responded well 
at I80 during the vegetative stage (p < 0.001) but not for other irrigation 
treatments or in other stages. The NDVI and OSAVI were able to pick up 
differences in LMC across all water treatments during the vegetative and 
full vegetative stages. In contrast, the EVI2, TDVI and NDRE had a weak 

response to irrigation applied across all cropping stages. 

3. 2 The sensitivity of CWSI and VI to LMC in different irrigation 
treatments 

The CWSI and VI responded differently to LMC at all three crop 
development stages. At I100, the correlation of NDVI and OSAVI with 
LMC was 0.5 and 0.51, during the vegetative stage, and 0.52 and 0.54, 
during the full vegetative stage, respectively (Fig. 6). For I80, the cor
relation between CWSI and LMC was 0.58 at early crop stage (Fig. 7). 
During the vegetative stage, the correlation with LMC was 0.54 and 0.5 
for the NDVI and OSAVI. At full vegetative stage, the CWSI, NDVI and 
OSAVI correlation with LMC was 0.52, 0.57 and 0.54, respectively. 

At 60% of irrigation depth, the CWSI, NDVI and OSAVI during the 
vegetative stage were 0.81, 0.68 and 0.69 (Fig. 8). This reduced slightly 
during the full vegetative stages of crop development. 

Other vegetation indices, responded well in some occasions (figures 
not shown). For example, the GNDVI responded well to leaf moisture 
content to I80 (r2 = 0.52, p = 0.0006) at the vegetative stage. The GRVI 
responded well in detecting the LMC (r2 = 0.63, p = 8.3 × 10− 5) at I60 
during the full vegetative stage of crop development. On the other hand, 
SAVI had a weak response in all development stages despite the occur
rence of significant differences among treatments. 

Fig. 8. The relationship between the vegetation indices with LMC for fields irrigated at I60 during vegetative (A, B and C) and full vegetative (D, E and F) crop 
development stages. 

Fig. 9. NDVI (A) and OSAVI (B) at vegetative stage of crop development.  

P.R. Mwinuka et al.                                                                                                                                                                                                                            



Agricultural Water Management 245 (2021) 106584

8

3. 3 Mapping of vegetation indices for spatial field water status 
assessments 

As mentioned in the previous sections, both the NDVI and the OSAVI 
outperformed the other selected VI in assessing LMC changes as a result 
of the irrigation treatment. Hence, NDVI and OSAVI were used to assess 
the in-field spatial variation and the difference in irrigation treatment. 
At the vegetative stage (40 days after transplanting), the NDVI and 
OSAVI ranged between − 0.3 to 0.62 and − 0.32 to 0.6, respectively 
with most of negative values representing areas with bare soils (Fig. 9). 
Areas where water stress occurred, and influenced crop performance, 
typically ranged between 0.2–0.35 and 0.2–0.32. Differences in these 
vegetation indices were caused by different irrigation treatments 
applied within the field and uniformity issues among certain drip lines. 

During the full vegetative stages (60 days after planting), the NDVI 
was in the range of − 0.3 to 0.74 and OSAVI in the range of − 0.35 to 
0.72 (Fig. 10). Water stressed areas, influencing crop performance, 
typically ranged between 0.3 and 0.4 for both NDVI and OSAVI. 

3. 4 Yield prediction using CWSI and vegetation indices 

The average fruit yields for I100, I80 and I60 were 63 t/ha, 51.1 t/ha 
and 43.1 t/ha and differed significantly among the three treatments 
(p < 0.001). The results showed that the I80 treatment resulted in a 
higher water use efficiency and was defined as an optimum irrigation 
strategy under water limiting conditions (see details in Mwinuka et al. 
(in press)). The CWSI for the I80 treatment at vegetative and full 
vegetative stages was 0.44 ± 0.14 and 0.39 ± 0.08, respectively 
(Table 6). The corresponding NDVI and OSAVI was 0.44 ± 0.2 and 
0.53 ± 0.1. At the full vegetative stage, the CWSI, NDVI and OSAVI was 
0.39 ± 0.08, 0.58 ± 0.08 and 0.58 ± 0.08, respectively. The indices for 
I100 and I60 are indicated in Table 6. 

The ability to predict yield at vegetative and full vegetative stages 
depended on the index used (Table 5). At the vegetative stage, the use of 
CWSI enabled the prediction of eggplant yields in the I60 treatment (r2 =

0.53). Predicting eggplant yields using CWSI was possible using data in 
either the vegetative or the full vegetative stage in the I80 treatment. As 
plants were not stressed under I100, the use of CWSI did not result in a 

Table 5 
Mean vegetation indices and yield prediction for eggplant under different irrigation treatments.  

Treatment CWSI  NDVI OSAVI  

Mean SD Model r2 p Mean SD Model r2 p Mean SD Model r2 p 

Vegetative stage                
I100 0.23 0.07 NS NS NS 0.56 0.14 y = 43 + 36x 0.60 0.014 0.56 0.14 y = 42 + 37x 0.57 0.018 
I80 0.44 0.14 NS NS NS 0.44 0.2 y = 23 + 51x 0.73 0.0034 0.53 0.10 y = 39 + 27x 0.69 0.0053 
I60 0.49 0.2 y = 58–33x 0.53 0.026 0.32 0.14 y = 39 + 18x 0.64 0.0095 0.32 0.14 y = 39 + 18x 0.63 0.01 
Full vegetative stage               
I100 0.30 0.09 NS NS NS 0.62 0.14 y = 51 + 21x 0.38 0.076 0.62 0.15 y = 51 + 21x 0.44 0.05 
I80 0.39 0.08 y = 66–34x 0.55 0.022 0.58 0.08 y = 26 + 45x 0.76 0.0021 0.58 0.08 y = 28 + 42x 0.71 0.004 
I60 0.61 0.16 y = 56–19x 0.76 0.0022 0.45 0.10 y = 25 + 39x 0.56 0.02 0.44 0.10 y = 24 + 42x 0.59 0.015 

SD = Standard deviation, x = vegetation indices, y = yield (t/ha), NS = non significant at p < 0.05 

Table 6 
Yield model performance based on CWSI, NDVI and OSAVI at vegetative and full vegetative stages.  

Treatment CWSI NDVI OSAVI 

RMSEa r2 p RMSE r2 p RMSE r2 p 

Vegetative stage          
I100 NS NS NS 2.82 0.67 0.0072 2.96 0.69 0.0054 
I80 NS NS NS 5.99 0.77 0.0019 5.09 0.71 0.0045 
I60 2.9 0.62 0.011 3.58 0.63 0.011 3.45 0.65 0.009 
Full vegetative stage          
I100 NS NS NS NS NS NS NS NS NS 
I80 3.93 0.78 0.0016 2.77 0.87 0.00027 2.77 0.86 0.00033 
I60 3.32 0.6 0.015 2.15 0.54 0.025 2.07 0.57 0.019  

a Root mean square error (RMSE) in t/ha. 

Fig. 10. The NDVI (A) and the OSAVI (B) at full vegetative stage of crop development.  
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good prediction model. At the full vegetative stage, yield prediction 
could be derived for I80 or I60 using either CWSI (I80: r2 = 0.55; I60: r2 

= 0.76), NDVI (I80: r2 = 0.76; I60: r2 =0.56) or OSAVI (I80: r2 =0.71; 
I60: r2 =0.59) (Table 5). 

The established regression models were validated using the eggplant 
yields from the second season. The performance of the CWSI, NDVI and 
OSAVI based yield prediction models varied amongst irrigation treat
ments and depended on the crop stage (Table 6). Except for I100, OSAVI 
based prediction models seemed to result in a slightly lower RMSE 
compared to those using NDVI. Furthermore, for NDVI and OSAVI based 
predictions, RMSE improved when using data from the full vegetative 
stage. For I80, the use of the NDVI (r2 = 0.87, RMSE = 2.77 t/ha) and the 
ODVI (r2 = 0.86, RMSE = 2.77 t/ha) at the full vegetative stage per
formed better than CWSI (r2 = 0.78, RMSE = 3.93 t/ha). For I60, at the 
vegetative stage, the yield predictions using CWSI (r2 = 0.62, RMSE =
2.9 t/ha) outperformed those derived using NDVI (r2 = 0.63, RMSE =
3.58 t/ha) and OSAVI (r2 = 0.65, RMSE = 3.45 t/ha) (Table 6). Whilst at 
the full vegetative stage using OSAVI (r2 = 0.57, RMSE = 2.57 t/ha) 
resulted in slightly better yield predictions compared to CWSI (r2 = 0.6, 
RMSE = 3.32 t/ha) and NDVI (r2 = 0.54, RMSE = 2.15 t/ha) (Table 6). 

4. Discussion 

The leaf moisture content (LMC), crop water stress index (CWSI) and 
vegetation indices (VI) differed significantly at different irrigation re
gimes. The CWSI was significantly different to I80 and I60 water regimes 
within the irrigation cycle. These differences were caused by a signifi
cant rise of temperature within the plant canopy as the canopy moisture 
content decreases (DeJonge et al., 2015; Çolak et al., 2015; Prashar and 
Jones, 2014). Furthermore, the highest canopy temperature was 
observed in the treatments leading to increased levels of water stress (i.e. 
I60), resulting in high correlation of CWSI to LMC within the irrigation 
cycle. Insignificant differences occurred at I100 was due to high accu
mulation of leaf moisture within the plant canopy and hence low vari
ation of leaf temperature (Gusso, 2018). 

Other vegetation indices had a different response to varying plant 
canopy moisture content. At early crop development, all vegetation 
indices were not significantly different. This is due to soil background 
interference as most of the reflectance was observed from the soil sur
face (Ballester et al., 2019). At vegetative and full vegetative cropping 
stages, various vegetation indices responded differently due to a dif
ference in spectral response to the plant canopy. The NDVI and OSAVI 
differed significantly within the vegetative and full vegetative stages in 
all irrigation regimes. The GRVI and SAVI was sensitive only for some 
irrigation regimes. This indicates that, the NIR spectral response was 
more sensitive to the variation of canopy temperature as compared to 
the green band (Peng et al., 2013). Badzmierowski et al. (2019) reported 
a good response of NDVI to distinguish LMC across the field of turfgrass. 
On the contrary, the EVI2, TDVI and NDRE had a weak capability of 
differentiating leaf moisture content. The failure of NDRE is due to the 
weak response of the red-edge spectral band to variations in the leaf 
moisture content. This is contrary to the study conducted in irrigated 
maize fields (Siegfried et al., 2019) where the NDRE was capable of 
distinguishing differences in plant water stress. This is because, maize 
was sensitive to the red-edge reflectance due to its leaf greying with 
water stress resulting in a detectable signal by the sensor (Siegfried et al., 
2019). 

Moreover, the spatial variation as a result of irrigation treatment and 
inter drip-line uniformity was reflected in the NDVI and OSAVI based VI 
maps. The variation of the plant condition within the field as a result of 
the different levels of water application resulted in a different color 
scales. For instance, non-water stressed plants resulted in high NDVI and 
therefore green color whilst the water stressed plants in the I60 had 
lower values and a yellowish color. Also, Veysi et al. (2017) recom
mended the use of indices maps for spatial and temporal management of 
irrigation water in sugarcane production by distinguishing areas with 

high, medium and low water stress within the whole cropping season. 
More studies have shown the opportunity of using vegetation indices in 
mapping water deficiency in irrigated fields (Genc et al. 2013; Stone 
et al., 2016; Damian et al. 2020). The application of this technology in 
African eggplant production is anticipated to boost yields, increase 
water use efficiency but also reduce production cost through improved 
targeting of water and fertilizer application. 

The reflection of the plant physiological status during the vegetative 
stages, as a result of water application, was reflected in eggplant yields. 
Hence, those indices which showed sensitivity to the LMC were able to 
predict eggplant yields. The CWSI, as a stress indicator, was able to 
better predict yields at 60% using the vegetative stage. This is likely due 
to the fact that the water stress in the vegetative stage correlated better 
with declines in yield than those observed in the full vegetative stage. 
For 80%, the water stress indicator in the full vegetative stage were 
found to be better yield predictors. The NDVI and OSAVI performed well 
in predicting yield at I100 as well as under water stressed conditions due 
to the high capability of detecting plant water stress responsible for yield 
declines. Siegfried et al. (2019) also observed a good correlation of 
OSAVI with maize yields at different soil moisture levels. Similarly, 
Ballester et al. (2019) recommended the use of NDVI as good predictors 
of lint yield as compared to others. Likewise, Ranjan et al. (2019) rec
ommended the application of NDVI (r = 0.62), TDVI (r = 0.61), GNDVI 
(r = 0.54), SAVI (r = 0.62) and OSAVI (r = 0.62) to predict the pinto 
bean yields. The variation in the best performance of these indices de
pends on leaf size and plant mechanisms responsible for the adaptation 
to water stress. As this results in differences in canopy spectral re
flectances in concordance to the LMC, indices therefore have different 
capabilities in predicting yields under deficit irrigation using drip. 

5. Conclusion 

Variation of leaf moisture content at different levels of irrigation 
enables canopy water stress assessments. It is important to understand 
not only the predictive ability of each of the VI but also its relation to the 
translation of water stress into plant physiology and crop yield which 
differs among crops, soil and climate conditions. This study compared 
various vegetation indices and CWSI to assess irrigation performance 
and detect water stress in African eggplant under deficit irrigation. As 
plant water stress results in increased canopy temperature, CWSI cor
relates well with LMC and can be used to predict yields under deficit 
irrigation. The response of vegetation indices derived from a UAV 
multispectral sensor, to LMC, varied depending on the spectral bands 
combined, the soil interference, and the cropping stage used. For 
example, during the early stages of the crop, vegetation indices 
responded poorly to LMC changes due to soil background reflectance 
interference. NDVI and OSAVI were the two best performing VI, corre
lating well with LMC changes, and predicting yields as affected by deficit 
irrigation under drip systems. In cases were eggplant is irrigated under 
normal conditions, the use of NDVI or OSAVI at full vegetative stages 
will be able to predict eggplant yields. In cases were, eggplant is grown 
under deficit irrigation, CWSI can be used at vegetative or full vegetative 
stages next to NDVI or OSAVI depending on available resources. 

Funding 

This work was supported by the Innovation Laboratory for Small 
Scale Irrigation (ILSSI) project, funded by Feed the Future through the 
United States Agency for International Development (USAID), grant 
number: AID-OAA-A-13-0005. The donor supported on the initial stages 
of experimental design and infield data collection. 

Declaration of Competing Interest 

The authors declare that there are no financial conflict or personal 
relationships that could have appeared to influence the work reported in 

P.R. Mwinuka et al.                                                                                                                                                                                                                            



Agricultural Water Management 245 (2021) 106584

10

this paper. 

Acknowledgments 

The authors would like to acknowledge support provided by Feed the 
Future Innovation Lab for Small Scale Irrigation through the U.S. Agency 
for International Development, under the terms of Contract No. AID- 
OAA-A-13-0005. The opinions expressed herein are those of the authors 
and do not necessarily reflect the views of the U.S. Agency for Interna
tional Development. This work was also co-funded by the CGIAR Pro
gram on Water, Land, and Ecosystems (WLE). The authors are also 
thankful to the Sokoine University of Agriculture from Tanzania and the 
International Water Management Institute for their technical support. 
More gratitude goes to Prof. S.D. Tumbo for his contribution during 
proposal development, experimental design and set-up as well as data 
collection process. We would also like to give thanks to the Soil-Water 
Management Research Team from the Department of Engineering Sci
ences and Technology, under Prof. F.C. Kahimba for facilitating the the 
implementation of this research. Furthermore, the authors do 
acknowledge Mr. Justine Maisha and Ms. Mary Sauga for their tirelessly 
work during data collection. 

References 

Alvino, A., Marino, S., 2017. Remote sensing for irrigation of horticultural crops. 
Horticulturae 3 (2), 40. https://doi.org/10.3390/horticulturae3020040. 

Badzmierowski, M.J., McCall, D.S., Evanylo, G., 2019. Using hyperspectral and 
multispectral indices to detect water stress for an urban turfgrass system. Agronomy 
9 (8), 439. https://doi.org/10.3390/agronomy9080439. 

Ballester, C., Brinkhoff, J., Quayle, W.C., Hornbuckle, J., 2019. Monitoring the effects of 
water stress in cotton using the green red vegetation index and red edge ratio. 
Remote Sens. 11 (7), 873. https://doi.org/10.3390/rs11070873. 

Baluja, J., Diago, M.P., Balda, P., Zorer, R., Meggio, F., Morales, F., Tardaguila, J., 2012. 
Assessment of vineyard water status variability by thermal and multispectral 
imagery using an unmanned aerial vehicle (UAV). Irrig. Sci. 30 (6), 511–522. 
https://doi.org/10.1007/s00271-012-0382-9. 10.1007/s00271-012-0382-9. 

Van Beek, J., Tits, L., Somers, B., Coppin, P., 2013. Stem water potential monitoring in 
pear orchards through WorldView-2 multispectral imagery. Remote Sens. 5 (12), 
6647–6666. https://doi.org/10.3390/rs5126647. 

Bellvert, J., Marsal, J., Girona, J., Zarco-Tejada, P.J., 2014. Seasonal evolution of crop 
water stress index in grapevine varieties determined with high-resolution remote 
sensing thermal imagery. Irrig. Sci. 33 (2), 81–93. https://doi.org/10.1007/s00271- 
014-0456-y. 

Boyer, J., 1967. Leaf water potentials measured with a pressure chamber. Plant Physiol. 
42 (1), 133–137. https://doi.org/10.1104/pp.42.1.133. 

Chen, C., 2015. Determining the leaf emissivity of three crops by infrared thermometry. 
Sensors 15 (5), 11387–11401. https://doi.org/10.3390/s150511387. 
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