
NETWORK VORTEX: DISTRIBUTED VIRTUAL MEMORY FOR 

STREAMING APPLICATIONS 

An Undergraduate Research Scholars Thesis 

by 

ETA GLUCK 

Submitted to the LAUNCH: Undergraduate Research office at 
Texas A&M University 

in partial fulfillment of requirements for the designation as an 

UNDERGRADUATE RESEARCH SCHOLAR 

Approved by 
Faculty Research Advisor: Dr. Dmitri Loguinov 

May 2022 

Major: Computer Science 
 
 
 
 
 
 

Copyright © 2022. Eta Gluck.



RESEARCH COMPLIANCE CERTIFICATION 

Research activities involving the use of human subjects, vertebrate animals, and/or 

biohazards must be reviewed and approved by the appropriate Texas A&M University regulatory 

research committee (i.e., IRB, IACUC, IBC) before the activity can commence. This requirement 

applies to activities conducted at Texas A&M and to activities conducted at non-Texas A&M 

facilities or institutions. In both cases, students are responsible for working with the relevant 

Texas A&M research compliance program to ensure and document that all Texas A&M 

compliance obligations are met before the study begins. 

I, Eta Gluck, certify that all research compliance requirements related to this 

Undergraduate Research Scholars thesis have been addressed with my Research Faculty Advisor 

prior to the collection of any data used in this final thesis submission. 

This project did not require approval from the Texas A&M University Research 

Compliance & Biosafety office.



TABLE OF CONTENTS 

Page 

ABSTRACT .................................................................................................................................... 1 

DEDICATION ................................................................................................................................ 3 

ACKNOWLEDGEMENTS ............................................................................................................ 4 

NOMENCLATURE ....................................................................................................................... 5 

SECTIONS 
 
1. INTRODUCTION .................................................................................................................... 6 

1.1 Distributed Systems ...................................................................................................... 6 
1.2 Vortex ........................................................................................................................... 9 

2. IMPLEMENTATION ............................................................................................................. 10 

2.1 Vortex Usage .............................................................................................................. 10 
2.2 TCP ............................................................................................................................. 11 
2.3 RDMA ........................................................................................................................ 12 

3. BENCHMARKS ..................................................................................................................... 16 

3.1 Ease of Use ................................................................................................................. 16 
3.2 TCP Performance ....................................................................................................... 18 
3.3 RDMA Performance ................................................................................................... 18 

4. RESULTS ............................................................................................................................... 19 

4.1 Ease of Use ................................................................................................................. 19 
4.2 TCP Performance ....................................................................................................... 21 
4.3 RDMA Performance ................................................................................................... 23 

5. CONCLUSION ....................................................................................................................... 27 

REFERENCES ............................................................................................................................. 28 

APPENDIX A: NETWORKWRAPPER INTERFACE ............................................................... 29 

APPENDIX B: FILE TRANSFER RUNNER CODE .................................................................. 32 



1 
 

ABSTRACT 

Network Vortex: Distributed Virtual Memory for Streaming Applications 

Eta Gluck 
Department of Computer Science & Engineering 

Texas A&M University 

Research Faculty Advisor: Dr. Dmitri Loguinov 
Department of Computer Science & Engineering 

Texas A&M University 

Explosive growth of the Internet, cluster computing, and storage technology has led to 

generation of enormous volumes of information and the need for scalable data computing. One 

of the central frameworks for such analysis is MapReduce, which is a programming platform for 

processing streaming data in external/distributed memory. Despite a significant public effort, 

open-source implementations of MapReduce (e.g., Hadoop, Spark) are complicated, bulky, and 

inefficient. To overcome this problem, we explore employing and expanding upon a recent a 

C/C++ programming abstraction called Vortex that offers a simple interface to the user, zero-

copy operation, low RAM consumption, and high data throughput. 

In particular, this research examines algorithms and techniques for enabling Vortex 

operation over the network, including both TCP/IP sockets and data-link RDMA (e.g., 

InfiniBand) interfaces. We developed a new producer-consumer memory stream abstraction 

presented as a Vortex stream split across two hosts, travelling through a hidden network 

communication layer to provide the illusion of writing a continuous stream of data directly into a 

window of memory on a remote machine, thereby enabling the creation of high-performance 
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networking code and size-agnostic data transport under appropriate circumstances written as 

simply as an in-memory copy operation, overcoming complications normally inherent in the 

discrete nature of network packet transfer. While the resulting product is highly workable over 

standard IP-based internet networks, the design limitations of RDMA technology in interfacing 

with virtual memory prove to make Vortex streams a suboptimal abstraction for this 

programming platform, as its central appeal of zero-copy network transfers are rendered largely 

inaccessible. Alternative algorithms to enhance RDMA performance with Vortex are proposed 

for future study.  



3 
 

DEDICATION 

To my dear friend Mikal, who left us too soon. 

  



4 
 

ACKNOWLEDGEMENTS 

Contributors 

My gratitude goes to my faculty advisor, Dmitri Loguinov, for extending to me the 

opportunity and trust to work with him on this brilliant foray into powerful and safe computing 

using the Vortex system. 

A heartfelt thank you as well to my partners, family, and friends without whom I would 

be lost, for their love and encouragement both throughout the course of this research and always. 

The original source code for “Vortex” used for Network Vortex was provided by Carson 

Hanel, Arif Arman, Di Xiao, John Keech, and Dmitri Loguinov. A helpful sample codebase 

demonstrating RDMA networking code was provided to me by Dmitri Loguinov. Servers for 

testing the derivative code explained herein were provided by the Internet Research Lab at Texas 

A&M. 

All other work conducted for the thesis was completed by the student independently.  

Funding Sources 

No funding was received for this research. 

  



5 
 

NOMENCLATURE 

Host  A single computer in a network 

HCA  Host Channel Adapter 

HPC  High-Performance Computing 

LAN  Local Area Network 

TCP  Transport Control Protocol 

IP  Internet Protocol 

RDMA Remote Direct Memory Access 
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1. INTRODUCTION 

The modern computing environment is heavily heterogeneous. From multicore CPUs to 

distributed systems to even the internet, many of the tasks developers set out to solve today 

require more than a local program whose effects are isolated to a single host. Web development 

is its own thriving discipline catering to massively broadcast services, and high-throughput data 

processing is invariably actualized in the form of distributed systems. 

On a low level, however, communication between different hosts is a complicated topic. 

Layers of protocols and the coordination of data transfer calls for specialized algorithms, most 

often implemented as literally as possible in low-level languages, with high-overhead 

abstractions built to accommodate human usage in the high-level languages developers 

ultimately use. 

Network Vortex is a new framework for simple, high-performance streaming networking 

at a low-level. The library is written in C++ with ease of use in center focus. With it, application 

developers will be able to write efficient and effective networking code without compromising 

on performance, allowing for increased complexity and innovation in low- and high-level 

applications alike. 

1.1 Distributed Systems 

One application of high-performance networking given special focus in the development 

of Network Vortex is distributed systems programming, and more specifically, cluster 

computing. 

A distributed system is defined as “a collection of autonomous computing elements that 

appears to its users as a single coherent system” [1]. In distributed systems programming, data 
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must be passed fluidly between several devices in order to achieve a unified goal. In high-

performance computing scenarios, cluster computing, defined here as a group of similar hosts in 

a single location connected over LAN set up to parallelize heavy computation beyond what is 

achievable on a single device, is a type of distributed system with exceptionally demanding 

requirements on the hosts’ ability to synchronize and communicate with one another. 

1.1.1 Motivation 

Scalability is the primary reason for pursuing a distributed system or cluster computing 

setup. While the performance of a single server can be improved by upgrading its components—

CPU, RAM, potentially GPU(s)—the cost to do so may climb disproportionately higher, with 

diminishing returns in increased computing power. Additionally, this creates a single, expensive 

point of failure in the event of a fatal hardware fault. 

1.1.1.1 Limits of Hardware 

As in the past decades single-core CPUs have plateaued in performance, the need to 

parallelize computation has become apparent. Multicore CPUs now exist to this end, boasting up 

to 64 cores (at an incredible price point), after which point compatibility with existing operating 

systems becomes problematic. GPUs, as a high-end accessory, can handle incredible parallel 

workloads for some of the simplest of tasks, but their use in more complex algorithmic tasks 

continues to be limited in practice. Progress in improving the computing power of these devices 

is steadily ongoing. 

Other than such high-end hardware being difficult to acquire, one could foresee limits to 

these devices as well being discovered in time. In fact, a glaring practical limit is simply 

obtaining best hardware available. Modern computational workloads already far exceed these 

specifications; Google’s search engine will not run on a single machine no matter if you plug a 



8 
 

64-core, 128-core, nor 256-core processor into it. Unbounded parallelism is a necessity in order 

to continue to scale. 

Distributed systems offer unbounded parallelism. If you get two identical computers, you 

have twice the computing power. If you get one-thousand identical computers, you have one-

thousand times the computing power. No less, each one of these components may be relatively 

cheap and replaceable, with the entire array capable of being expanded in-place on demand 

simply by adding yet more computers. 

The bottleneck of performance then turns to how well you can synchronize the hosts. 

Communicating your input and output data to the devices ready to handle them needs to be done 

as fast and effectively as possible, and this is where Network Vortex plays a role. 

1.1.2 Distributed Memory 

The main difference for the programmer between utilizing one monolithic system with 

dozens of cores versus a distributed setup is in accessing memory. While any number of cores on 

a single host may access the host’s central memory to share information, a step of deliberate 

intervention is necessary to communicate data from the memory of one host to another before 

setting off a remote routine. 

1.1.2.1 The Role of C++ 

Network Vortex is a C++ library. While this allows it to be used directly in the most 

performance-critical roles, as well as the development of high-performance high-level 

frameworks, it also has a more intrinsic purpose to be chosen over a higher-level or functional 

language. C++ is often considered “low-level” among high-level languages due to it offering a 

direct, unabstracted1 view of central memory on a host. Network Vortex, then, assists idiomatic 

 
1 Up to the domain of the operating system and virtual address space. 
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C++ programming by extending the programmer’s purview with a window to the central 

memory of a secondary host. 

1.2 Vortex 

A tunnel in memory between two hosts is achieved using the Vortex framework 

developed by Carson Hanel, Arif Arman, Di Xiao, John Keech, and Dmitri Loguinov [2]. Vortex 

is a data streaming solution that operates using a hook into system memory access violations to 

detect where in an address range a program is currently reading from or writing to, and 

subsequently triggering some routine to populate empty memory ranges for a reader or to send 

off freshly written blocks data for a writer, all without any form of manual signaling added in on 

behalf of the programmer. 

1.2.1 Original Vortex 

The original derivation of Vortex comes in two notable variants. One is a high-

performance sorting routine for use in large datasets. The other, Vortex-C, creates a pair of 

producer and consumer memory regions for use in parallel algorithms. This one could, for 

instance, be used to have one thread on a machine generate a large amount of data while another 

thread writes said data to disk—transparently synchronized with one another such that the data 

never have to collect completely in memory (and thus capable even of exceeding the size of 

RAM without breaking down). 

The latter of these two is utilized for Network Vortex. Transmitting data from one host to 

another for processing is, at a high level, a producer-consumer scenario; a large stream of data 

comes from one host as a producer and is processed by another consumer host as it arrives, 

splitting the work between the two devices.  



10 
 

2. IMPLEMENTATION 

Negotiating data exchange between two hosts without either noticing the exchange 

occurring inherently calls for multithreaded execution: one independently acting side of a 

producer-consumer pipeline will act on data as normal, while the other invokes network routines 

to send or receive the relevant parcels. 

2.1 Vortex Usage 

To simulate a producer-consumer Vortex-C pipeline split across two hosts, a network 

data exchange routine is inserted as a hidden intermediary layer, taking over the complementary 

half of the host’s role. In this setup, each machine operates an independent Vortex-C producer-

consumer pair. The flow of data from producer to consumer across hosts from the perspective of 

the producer is then: 

1.  The producer writes into its local memory stream region, 

2. Vortex-C transports the produced data to the intermediary network worker layer as a 

consumer, 

3. A network worker acting as the local machine’s consumer sends across all data it receives 

to a predefined consumer host over the network. 

Continuing from the perspective of the consumer host, 

4. A network worker acting as the local producer continuously reads from a socket, 

depositing data into the stream as they arrive, 

5. Vortex-C transports the received data from the intermediary network layer to the host’s 

intended consumer algorithm, and, 
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6. The consumer reads the live data coming from its local memory stream, thus 

synchronizing itself with the producer. 

This arrangement allows two hosts to share a stream of memory in the same way a 

Vortex-C producer-consumer pair allows locally. As two threads running Vortex-C can reach 

throughput rates of up to 23 GB/s, i.e., over 180 Gbps [2], this could theoretically saturate all but 

the most high-end data links between two network nodes. The remaining bottleneck to ensure 

maximum throughput lies in the efficiency of the intermediary layer’s network interfacing 

routine. 

2.2 TCP 

The first, basic implementation of the network component uses TCP. TCP is the well-

refined standard for reliable data transfer used in popular network protocols such as HTTP and 

can robustly negotiate Network Vortex streams over both LAN and the internet. 

TCP is often chosen among application-layer protocols for its robust feature set 

encompassing reliable data transfer through packet loss detection and retransmission, network 

congestion avoidance, packet buffering to handle reordering, and flow control, synchronizing 

both parties in a network transaction. 

TCP is critical at the scale of the internet to ensure that shared data transmission channels 

are utilized fairly, in addition to providing stronger guarantees than IP over unreliable, shared 

channels. This all means that TCP can flawlessly run Network Vortex across a broad variety of 

situations. 

In addition, flow control provides synchronization between hosts’ independent Vortex-C 

streams. In an unconstrained environment consisting of two disjoint Vortex-C streams on 

separate hosts, without flow control information being communicated between them, a producer 
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host would bombard a consumer with packets as fast as it could send them out of its ports. If the 

consumer algorithm were more time-consuming than the producer, this could lead to significant 

desynchronization over time and an excessively long work queue on the consumer’s side, leading 

to either memory usage increasing without bound, or high packet loss. TCP’s flow control will 

ensure that the producer host waits for acknowledgement of delivered packets before continuing, 

corresponding to the rate that the consumer algorithm is draining the operating system’s internal 

TCP buffer, ultimately linking the rate synchronization done in Vortex-C across both hosts. 

However, for select high-performance situations, many of TCP’s features are unnecessary 

bloat. Consider cluster computing; should an array of computers be connected on a single LAN 

subnet, logic to handle packet reordering is superfluous. Furthermore, if hosts each share 

dedicated links, on appropriate equipment, all of packet loss detection, congestion avoidance, 

handling reordering, and the entire concept of buffering packets provide no benefit, and only 

serve as a source of overhead. An alternative to TCP is necessary in these situations.  

2.3 RDMA 

In the case of stable, dedicated links between hosts, a prime candidate for network 

communication is the RDMA data-link layer. RDMA, Remote Direct Memory Access, is a 

protocol for a network interface controller that allows user-mode programs to bypass the 

operating system’s networking stack and write directly into main memory [3]. It can skip TCP, 

UDP, and their associated intermediary buffers, and maximize the rate of data flow across the 

network. 

2.3.1 Who Uses It? 

RDMA is used by several large names in computing, such as Nvidia and Microsoft. 

Microsoft has been developing libraries, protocols, and software interfaces with a focus on 
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RDMA for years, even continuing development of SMB as SMB Direct, featuring RDMA 

support over a variety of fabrics. Microsoft also developed the Network Direct RDMA interface, 

which was used in this research’s RDMA implementation.  

2.3.2 Appropriacy for the Task at Hand 

While RDMA can provide perfect raw performance metrics for directly linked machines, 

it also forgoes the benefit of flow control originally provided by TCP. This means that flow 

control must be done by hand on the application level, as a part of the networking routine. 

This is one reason to begin to consider RDMA a slightly less natural fit at adapting 

Vortex to a network compared to general-purpose protocols—however, flow control algorithms 

are widely known and well-studied, and can ultimately be implemented without much difficulty. 

However, one of the main draws of RDMA network technology is its zero-copy nature, 

meaning that an application designed around RDMA can tunnel data directly out of main 

memory through a dedicated RDMA-capable network card, or host channel adapter (HCA) 

while avoiding CPU involvement. As with sufficiently meticulous design this may avoid 

superfluous CPU interrupts and winding paths through the operating system’s network stack, this 

is what often brings superior performance metrics to RDMA networks that cannot be mirrored 

with TCP/IP. 

However, the conditions for this style of networking are not trivial. A major challenge to 

integrating RDMA with a given system lies in its method of learning memory layouts. 

Registering an application for use with RDMA involves three basic steps: 

1. Identify the other host, as in any network, 

2. Identify yourself, and define your scope, and, 

3. Exchange relevant details about your memory environment with one another. 
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To articulate the scope of your application, RDMA requires that you define a memory 

region, associated with a buffer. In order to act on said memory region, RDMA then pins all 

mentioned pages. Pinning a page in memory freezes the mapping between logical addresses, in 

the language of your program, with a particular physical page configuration in the language of 

the RDMA HCA. This is problematic for three reasons: 

1. If your program encompasses a particularly broad area of memory, RDMA will force this 

to become either a contiguous, monolithic (fully-allocated) buffer, or a collection of 

disjoint, potentially ad-hoc memory regions, with hindered capability for co-operation 

between them. 

2. If the areas of interest in your program are continuously moving, it becomes 

exceptionally difficult to target any spot to become a memory region, and it becomes 

impossible to reuse them. 

3. If your program requires virtual memory or unusual paging, RDMA cannot work as 

intended. 

These unfortunately affect Vortex threefold. Vortex, as a streaming application, is designed 

for use with large expanses of memory that are impractical through straightforward approaches. 

Furthermore, the almost completely linear movement of such scenarios means that you may 

fundamentally never use the same area of memory twice. And finally, Vortex relies almost 

completely on virtual memory and paging. Pinning a page in the middle of a Vortex stream 

simply breaks the framework, as it can no longer reuse or conserve memory as it is designed to. 

Pinning the pages ahead of or behind a Vortex stream is a gross waste of resources, and 

ultimately reduces you to the efficiency of malloc. 
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Accordingly, while many high-performance programs are well suited to for the offerings of 

RDMA and may reap substantial benefits from it, Vortex happens to be one of the least possible 

equipped to benefit from it. So, how does this work out in practice? 
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3. BENCHMARKS 

There are three primary dimensions to measure the effectiveness of the implementation, 

based on its three design goals: 

1. Ease of Use 

The subjective knowledge and additional lines of code required to add networking 

functionality to a program using Network Vortex. 

2. TCP Performance 

The peak transfer speeds achieved by the implementation running through the OS 

networking stack with TCP. 

3. RDMA Performance 

The peak transfer speeds achieved by the implementation running through a dedicated 

InfiniBand link using RDMA. 

The original focus of the Network Vortex implementation is the optimization of 

dimensions 1 and 3, for suitability in high-performance computing. Dimension 2 is also 

considered, and has value for enabling operation over the general internet. However, it is not the 

focus of this research, and can be expected to take readily to improvement in further work. 

3.1 Ease of Use 

The first and arguably most important factor by which we measure a successful 

implementation is the ease with which a programmer can incorporate the Network Vortex 

framework into the architecture of a program to complete a task requiring networking. The 

framework should: 
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1. Not require coordination for when to send intermediate segments of data, 

a. Not require a detailed understanding of packets, maximum segment size, or 

serialization, 

2. Operate seamlessly in an (otherwise) single-threaded program, and 

3. Ideally, require the understanding of fewer than 10 lines of code to operate a connection. 

When these criteria are all met, operating a Network Vortex connection from either side 

in C++ should be as easy as entering an IP address and then typecasting a pointer to read and 

write data at a specified location; one step more than standard Vortex. Regardless of experience 

in networking or time available to the programmer, one shall then have the toolset to make an 

efficient networked application. 

 

 
To benchmark the simplicity of dataflow code, Figure 3.1 displays two basic functions 

for populating and summing an array, respectively, in idiomatic C++ code, using the C++ 

standard library and iterator pattern. If these two functions can be used unchanged with Network 

Vortex streams with 10 or fewer lines of connection overhead, this goal is considered to be 

Figure 3.1: Simplicity of an ideal networked data transfer. 
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satisfied, as they are already intentionally written as simple as possible, with zero knowledge of 

networking protocols in mind, and as such is one of our benchmarks. 

3.2 TCP Performance 

TCP is the only protocol explicitly supported by the framework capable of operating over 

the internet at large. As such, it is important that its overhead in this regard be competitively low 

versus other high-level networking libraries. For this purpose, the TCP implementation can be 

seen as providing an easy, though not necessarily HPC-grade, networking framework in C++. 

90% to 95% of the maximum feasible throughput of typical TCP networking software 

would then make this an excellent tool for general networking use. 

3.3 RDMA Performance 

As a datacenter-grade, high-performance networking technology and the focus of this 

research implementation, the RDMA implementation of Network Vortex should be as fast as 

hardware allows. The goal for RDMA performance is low enough overhead for data transfer 

throughput to be capable of saturating an InfiniBand connection (above 95% of available 

bandwidth). 
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4. RESULTS 

The implementation of Network Vortex provided in the accompanying library effectively 

achieves the two of the three goals set out in section 3. 

4.1 Ease of Use 

The sample functions shown in Figure 3.1 are operable with the Network Vortex library 

in the following minimal reader and writer configurations (see Appendix A for the specification 

of NetworkWrapper): 

 

Figure 4.1: Runner code for simple data transfer. 

The routine as displayed sends 32 GiB of data through the loopback address 127.0.0.1 on 

port 40104 in fewer than 10 lines per side, with a significant block thereof taken for 
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straightforward error checking— which itself does not constitute a conceptual barrier for 

adopting the framework. It is reasonable to assert that after setting up appropriate header files, 

with the example in Figure 4.1. as a “quick-start,” one may get a first simple application running 

Network Vortex configured in as little as 30 minutes 

 However, the functions provided in Figure 3.1 represent only the most basic of data 

transfer. Indeed, a non-trivial application to send files over a network may also be implemented 

with ease using the framework: 

 

Figure 4.2: (Imperfect) reading and writing functions for basic file transfer. 

The runner code to operate a full program from the data transfer functions in Figure 4.2 

can be found in Appendix B. The necessary changes consist of first calculating a transfer size 

based on file size, and then simply using the char stream as normal, without casting to an 
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integral type. However, for completeness, the runner code provided in Appendix B presents a 

fully-featured peer-to-peer file transfer program written in under 70 lines of C++ code, including 

the routines provided in Figure 4.2. 

This also demonstrates one weakness regarding ease of use with Network Vortex 

(common to the use of Vortex in general), in that occasional operating system functions will 

behave strangely with protected memory regions used by Vortex and require basic buffering. 

This code may not run at maximal efficiency as a result; however, base Vortex comes with file 

reader and writer stream types which may be integrated with this code if performance is desired. 

However, this entire design goal was accomplished due to the beauty of Vortex’s original 

interface, and this further goes to show how effective of a framework Vortex is overall. 

4.2 TCP Performance 

The TCP implementation of Network Vortex is both robust, capable of completing data 

transfers over long-distance internet connections, as well as performant. The exact details of the 

testing servers are listed in Table 4.1.  
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Table 4.1: Testing Servers. 

 Server A Server B 

CPU i7-4930K Xeon E5 2680 v2 

Architecture Ivy Bridge-E Ivy Bridge-EP/EX 

Cores 6 10 

Clock Speed 3.4 GHz 2.8 GHz 

RAM 32 GB 192 GB 

RAM Type 2400 MHz DDR3 1866 MHz DDR3 

OS Server 2016 Datacenter Server 2016 Datacenter 

Ethernet Link Intel 82579LM Gigabit Intel 10G 4P X540 

RDMA 
Interface 

HCA Mellanox 
ConnectX-3 40 Gbps 
IPoIB Adapter 

None 

 

Over the limiting 1 Gbps interface, Vortex over TCP achieved a throughput of 935 Mbps 

on a simple memset benchmark. In comparison, the popular network benchmarking tool iPerf3 

achieved 948 Mbps over the same link. This puts Vortex over TCP at 98.6% the efficiency of a 

well-optimized benchmark and at 93.5% the advertised efficiency of a common consumer 

network link—which is outstanding provided the goals of this research. However, it is likely that 

the performance would not scale at higher bandwidths due to the previously discussed limitations 

of TCP. 
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4.3 RDMA Performance 

As only one of the servers involved was capable of using RDMA, tests were conducted 

over RDMA loopback. As RDMA loopback (unlike TCP/IP loopback) takes approximately the 

same path through the network card as a regular transfer, this adds only a slight advantage. 

Using a customized RDMA project as a benchmark, peak rates of approximately 43.8 

Gbps (above 40 Gbps due to loopback) even with flow control added in were observed before 

being integrated with Vortex, with the benchmarking software nd_send_bw reporting 46.13 

Gbps on the same connections. 

However, a straightforward migration of the same benchmark and flow control to the 

Vortex library cut its performance in half, only reaching a maximum of 23.80 Gbps. 

4.3.1 Problems 

There are two main performance issues encountered when adding RDMA as a network 

layer between hosts: copying and pipelining. In the straightforward implementation, a single 

memory region is registered for RDMA transfers on each host, and memory is copied in and out 

of it so that the network hardware may perform transfers with only static address information. 

This incurs a memory copy, which itself should outpace a 40-gigabit link, though adding on CPU 

usage—however, as single-threaded, single-buffer setup, this must constantly alternate between 

copying and waiting on network transfers, so the link cannot be utilized at all times. An ideal 

implementation would always have data ready to transfer so that the network hardware can 

remain at 100% utilization. Two possible solutions are proposed next. 

4.3.2 Improvements 

There are two algorithms that may vastly increase the throughput of Vortex over RDMA. 
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4.3.2.1 Zero-Copy 

One of the limitations of RDMA hardware is the requirement that registered memory 

regions stay pinned throughout a transfer. As such, an entire Vortex stream may not be 

registered, but micro-regions within it may. 

The Zero-Copy algorithm creates as many threads as accessible comeback blocks 

(dictated by the Vortex-C parameters M and L). Each of these threads is assigned to a block and 

executes the following routine: 

1. Check if the block is ready for transfer. 

a. Similar to TCP, this waits for the block furthest back in the comeback region to 

finish processing before continuing to avoid Vortex-C moving the page associated 

with it away before it is ready. 

2. Register the block as a memory region 

3. Exchange memory region details associated with the block number with the other host 

through a control thread 

a. The control thread holds a synchronized queue of messages containing details on 

newly registered memory regions on the local host, and transmits them over to the 

other host whenever one becomes available. 

b. The control thread also awaits messages from the remote host, and marks each 

local block as ready-for-transfer when its remote counterpart’s info is received, 

waking a local thread if one is already waiting. 

4. Wait for a ready-for-transfer indication, then send or receive the block. 

5. Await completion of the transfer, deregister the memory region, then move to the next 

block in the stream with no worker thread present. 
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6. Repeat. 

Sleeping while awaiting ready-for-transfer indications can be achieved via 

WaitOnAddress in the Win32 API, or C++ atomic variables more generally. The cost of 

registering and deregistering memory regions is the main obstacle of this algorithm. However, 

the overhead of memory registrations is less than the overhead of copy operations at block sizes 

above 256 KB [4]. 

4.3.2.2 Pipelined-Copy  

Since memory copies are quite fast, a second approach is to avoid alternating off of 

network sends by pipelining blocks to send across several buffers, while keeping the idea of 

static buffers. The Pipelined-Copy algorithm operates similarly to the Zero-Copy algorithm, first 

allocating as many buffers as threads. 

1. Check if the block is ready for transfer. 

a. Identical to the Zero-Copy algorithm. 

2. Let a control thread operate a queue to constantly initiate asynchronous transfers on ready 

buffers 

a. For the sender, this is a multiple-producer, single-consumer queue, where worker 

threads wait for the control thread to consume (transfer) existing data in each 

buffer. 

i. Senders start at a block and wait for an empty buffer index into which to 

transfer data. 

b. For the receiver, this is a single-producer, multiple-consumer queue, where 

worker threads wait for the control thread to produce data in each buffer to 

transfer into the stream. 
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i. Receivers wait for a full buffer index and block index and jump to the 

corresponding block’s memory address in the stream to move the buffer. 

3. Perform the memory copy of the thread’s assigned block to an open buffer (sender), or 

from the thread’s assigned buffer to its associated block (receiver). 

4. Repeat. 

This is a simpler algorithm and should allow for full utilization of a 40 Gbps link, but its 

primary drawback is requiring copies, thus scaling with CPU performance and network hardware 

rather than network hardware alone and incurring significant CPU utilization. The time overhead 

of copying should however be preferable to page registration at block sizes of less than 256 KB, 

though smaller block sizes may also lead to a decrease in performance overall due to increased 

frequency of required synchronization [4]. 
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5. CONCLUSION 

The operation of Vortex over a network is robust and effective for TCP/IP purposes. For 

high-performance networking using RDMA, there are better choices available at present. 

However, further research to pursue the proposed optimizations to an RDMA network 

transfer layer may yet produce a datacenter-grade technology. The Zero-Copy algorithm, if 

possible, may allow for performance that scales perfectly with RDMA hardware, while the 

Pipelined-Copy algorithm will be robust with few unexpected interactions. It is expected that 

these may reach link utilizations of 95% or higher, depending on the hardware and software 

context. 
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APPENDIX A: NETWORKWRAPPER INTERFACE 

A portion of the library implementation for Network Vortex is provided in this section. As a 
reproduction of licensed code, a mandatory copyright notice is included below: 

Code for Networked Vortex by Eta Gluck, based on: 

Vortex: Extreme-Performance Memory Abstractions for Data-Intensive Streaming 
Applications 

Copyright(C) 2020 Carson Hanel, Arif Arman, Di Xiao, John Keech, Dmitri Loguinov 

Produced via research carried out by the Texas A&M Internet Research Lab 

 

This program is free software: you can redistribute it and/or modify 

it under the terms of the GNU General Public License as published by 

the Free Software Foundation, either version 3 of the License, or 

(at your option) any later version. 

 

This program is distributed in the hope that it will be useful, 

but WITHOUT ANY WARRANTY; without even the implied warranty of 

MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 

GNU General Public License for more details. 

 

You should have received a copy of the GNU General Public License along with this 
program. 
If not, see <http://www.gnu.org/licenses/>. 

http://www.gnu.org/licenses/
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Figure A.1: The header file interface for NetworkWrapper, the central class of Network Vortex. 
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Public methods: 

• openReceiver: Opens a client receiver connection to pair with a ready sender 

server. After calling openSender on a host with data to send, this method should 

be called with the IP address of the host and a matching port number to initiate a 

connection. Returns the readable Vortex stream associated with the network 

connection. 

• openSender: Opens a server listening for connections on all network interfaces 

and advertising the transfer length. After receiving a connection request from a 

corresponding openReceiver call, this returns a writable Vortex stream 

associated with the network connection. 

• closeSender: Commits and sends the last segment of data from the sender’s 

side, called manually after all data has been written. Corresponds to a Vortex 

stream’s FinishedWrite method. 

• getSize: Retrieves the transfer length declared by the sender in the connection 

pair. 

• getStream: Retrieves another handle to the memory address normally returned 

by openSender or openReceiver. 

• waitUntilDone: Frees stream resources on a reader host, called manually after 

exhausting a stream. 
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APPENDIX B: FILE TRANSFER RUNNER CODE 

 

Figure B.2: Full runner code to operate the functions presented in Figure 4.2. Combined, this constitutes a full 
peer-to-peer file transfer program in under 70 lines of C++ code. 
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