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 ABSTRACT 

 

Plant root phenotyping is a difficult task because of the opaque nature of soil, leading 

knowledge of root traits to lag behind above ground traits. While a large multiplicity of 

methods for observing roots have been described, each is limited in some way. This 

difficulty in observing plant roots causes difficulty for researchers and breeders working 

with root crops, such as cassava. Cassava is a crop with a long production cycle and low 

reproduction rates. As a root crop, assessing root properties such as time to bulking and 

marketable mass is a major goal for breeders. It has been proposed that GPR could be 

used to non-destructively estimate cassava root mass. Previous publication has 

demonstrated the potential for such a tool, but further work is required before GPR can 

be useful to breeders. 

In this body of work we explore the realm of root phenotyping and address the issue of 

rapid and non-destructive estimation of root mass by GPR. We demonstrate the ability to 

correlate features of GPR data with bulked root mass in controlled field conditions, and 

demonstrate the effect of soil water on GPR data in regards to root mass. We proceed to 

expand that work from controlled conditions into an actual cassava field. There we were 

able to build upon the predictive model derived in the earlier chapter, confirming that 

GPR data relate to bulked root mass in unoptimized field conditions. Lastly, we evaluate 

the ability of predictive models to generalize across locations and genotypes. While 

strong Pearson correlation up to 0.91 between predicted and observed root mass is 

achieved, the presented models require calibration by location. 
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NOMENCLATURE 

 

DAG Days After Germination 

ERT Electrical Resistance Tomography  

EIT Electrical Impedance Tomography  

GWC Gravimetric Water Content 

Voxel 3D analog to a pixel 

MRI Magnetic Resonance Imaging 

NMR Nuclear Magnetic Resonance 

EM Electromagnetic 

C.I. Confidence Interval 

S.E. Standard Error 

M.A.E. Median Absolute Error 
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1. INTRODUCTION - NON-DESTRUCTIVE BULKED ROOT MASS 

ESTIMATION USING GROUND PENETRATING RADA 

 

1.1. Background 

The continuing increase in world population, coupled with ongoing climate change, is 

putting pressure on food supplies. This is especially true in developing countries where 

subsistence farming is still common [1]. Root and tuber crops are the second most 

important crop group behind cereals, and of these, potato (Solanum tuberosum) and 

cassava (Manihot esculenta Cranz) represent the two most important globally [2]. As 

with all crops, extended time in the fields increases risks. This was well demonstrated in 

2019 when farmers in the American Midwest had to leave potatoes in the field due to 

flooding and Idaho farmers lost potato crops to early cold. Meanwhile, cassava is the 

security food crop of choice in parts of Africa, and climate change is increasing risks for 

subsistence and commercial farmers there [3]. These problems could be alleviated by 

early cultivars which require less time in the field. Further, growers desire short-term 

and early varieties [4, 5] 

Potatoes and cassava share some characteristics which make breeding for earliness 

difficult. The primary difficulty is simply that you cannot see the root or tuber growing 

beneath the soil, and therefore cannot determine when it has bulked. Both crops exhibit 

severe inbreeding depression, are highly heterozygous, and sibling genotypes can vary 

widely, coupled with low vegetative propagation rate, means that genotypic replications 

in breeding populations are very small [6, 7]. The consequence of this is that breeders 
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cannot afford to dig up trials early to discover whether or not they have bulked. It is 

possible that breeders could have early varieties and never know it because they have 

waited the standard time to harvest their trials. To more effectively discover early 

varieties, breeders need a non-destructive tool or method which will allow them to 

estimate bulky root and tuber mass without having to dig up the plant. Additionally, 

because breeding nurseries can be very large, the method must allow for high-throughput 

and timely results. Several methods have been proposed for measuring roots, including 

x-ray, magnetic resonance imaging, electrical resistance tomography, and ground 

penetrating radar (ARPA-E, 2019). Of these, ground penetrating radar (GPR) is the 

closest to being field deployable, affordable, and high throughput. 

Our long term objective is to assist in the release of novel early bulking cassava through 

GPR. The primary objective of this proposal is to increase our understanding of GPR as 

a high-throughput and non-destructive tool for selecting early bulking cassava and potato 

genotypes. We hypothesize that data collected from ground penetrating radar can be 

used to estimate the mass of bulked roots and tubers. To this end, we have formed a 

partnership with IDS Georadar, the International Center for Tropical Agriculture 

(CIAT), the International Institute of Tropical Agriculture (IITA), and the J.R. Simplot 

Company. IDS is a GPR manufacturer and can provide hardware and knowledge. CIAT 

and IITA are both international research centers which specialize in cassava and can 

grow and harvest cassava trials, as well as provide expertise on the crop. Simplot is a 

major potato producer in the US which is willing to grow and harvest potato trials.  This 

collaboration between a hardware manufacturer, crop specialists, and agronomists and 
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remote sensing experts at Texas A&M University will allow us to test our hypothesis 

and achieve our goal through the following specific objectives: 

 

1) Define novel GPR data processing methods for the estimation of plot level 

root mass in bulked cassava plants with ground penetrating radar as a high-

throughput process. 

We previously demonstrated the ability to correlate GPR returns with cassava 

root mass [8]. This works serves as both a validation and the extension of that 

work. Their methodology was meticulous and time consuming. To be a viable 

tool for breeders and producers, methods must support high-throughput data 

acquisition and processing. The foundation of this study will be to develop and 

prove GPR as a high-throughput option for estimating root mass. This will be 

done using multiple cassava phenotypes that represent the range of architecture 

and bulking habits to define the novel methods needed to correlate GPR returns 

to the harvest mass of the roots, and used to build an algorithm for predicting 

bulked root mass. 

2) Define novel GPR base algorithms needed to estimate cassava root bulking 

rate. 

A single snapshot of bulked root mass is of limited usefulness to breeders while 

an estimation of bulking rate and an indication of when bulking begins is much 

more useful. The next obstacle, therefore, is to show that GPR can be used to 

estimate bulking rate. To minimize travel costs, several plots of cassava will 

planted with staggered dates, and harvested at a single date. This will simulate a 

multi-date data acquisition as each plot will be at a different physiological stage 
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of development. We hypothesize that the roots will demonstrate a corresponding 

range of sizes. Using the same field and processing methods developed in the 

previous step, we will estimate the root mass and derive the bulking rate. 

Comparing the estimation to the harvest data will be a test of the robustness of 

the prediction algorithm. 

3) Define the GPR data processing methods tuber mass estimation algorithms 

needed for potato breeding. 

To show the widespread applicability of GPR as an agricultural tool, we will 

mimic the experiments in objective 1 using potatoes. We hypothesize that a 

technology which can measure bulked roots in cassava could also measure 

bulked tubers in potato. It is entirely reasonable, however, that the application 

will require adjustments to both the collection methods and the processing. Using 

the established methods, we will evaluate the results, and if necessary, adjust the 

methods. Demonstrating the viability of the technology in potato will increase 

the visibility and improve chances for further funding and research in mainstream 

crops. 

Our proof of concept using GPR to measure root mass proves the viability and 

applicability of GPR for measuring bulked roots. We expect that our contribution using a 

novel air-launched GPR antenna will lead to a commercially available tool. This tool in 

the hands of producers will provide decision support, reducing costs and improving 

results. The greater impact, however, will be when plant breeders, using this technology, 

discover early varieties, associate genetics, and produce cultivars which improve the 
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lives of millions. The widespread introduction of early root crops will increase 

productivity and reduce producers’ vulnerability to climate change. 

1.2. Literature Review 

1.2.1. Cassava (Manihot esculenta) 

Cassava is a tropical plant grown for its starchy bulked roots. More than 800 million 

people depend on it as a staple food, and it is an important source of starch for even 

more [9]. It is commonly grown by subsistence farmers because it is hardy and harvest 

can be delayed until needed [10]. Cassava is the fourth most important basic food crop in 

the tropics and the global harvest has increased by more than 25% since 1999 and has 

nearly doubled in some regions [6, 11]. 

A perennial shrub which commonly grows from one or two main stems, cassava is 

cultivated as an annual. The leaves can be consumed by humans and are high in protein 

(20-25% dry weight), though it is more common for the foliage to be fed to cattle. The 

leaves, along with the stems and roots, contain cyanogenic glucosides that can be 

poisonous if not processed properly. The root remains the most economically and 

socially important part of the plant [6]. Development of improved varieties has greatly 

benefited growers across the globe; however, many farmers still grow varieties that take 

up to 2 years to produce a harvest [10, 11] Thus, there is a distinct need and desire to 

develop varieties which bulk early [4, 6, 8].  

Cassava breeding has languished behind other important crops. Rigorous breeding 

programs did not begin until the creation of the CGIAR centers in the 1970’s. Cassava is 

diclinous and monoecious, meaning flowers are either male or female and both occur on 
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a single plant. Female flowers bloom before male flowers, but self-pollination can still 

occur. Despite this, cassava is an outcrossing species and exhibits severe inbreeding 

depression. It’s theorized that varieties could be developed which take to inbreeding, as 

was done with corn, though it could take considerable time to do so [11]. Therefore, 

every variety is a hybrid and cultivars are propagated using stem cuttings. Plants grown 

from true seed do not exhibit the same root bulking as those grown from stem cuttings, 

and therefore are not good predictors of yield. This means two growing seasons are 

needed before yield selections can be made. Each plant produces enough material to 

yield 3 to 12 planting stakes. This is a very low multiplication rate and is a key feature of 

cassava breeding [6]. With such low numbers in breeding trials, breeders cannot afford 

to dig up plants early to check for bulking. 

1.2.2. Potato (Solanum tuberosum) 

Potato is an herbaceous crop grown for its enlarged, starchy tubers, which range from 

spherical to ovoid in shape. It originates in the South American Andes and is grown 

mostly in temperate climates, but is increasingly grown in more tropical climates [12]. 

Potato is now the fourth most important food crop worldwide [12, 13]. It has been 

primarily grown by developed nations, but is becoming more popular in developing 

nations as a security crop [12, 14]. Potato is the fourth most important food crop 

globally, with more than 200 million hectares grown annually [13]. The value of potato 

harvest in the United States is estimated at more than $4 Billion in 2017 [15] 

Potato varieties can be classified based on the time to maturity, ranging from very early 

varieties to very late varieties (65 – 130 days). Varieties with longer maturity generally 
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out-yield early types, and the earliest types are harvested young, sold as New potatoes 

[16]. In developed countries, consumption is shifting from fresh potatoes to processed 

products. This shift to processing puts greater emphasis on harvesting the crop when the 

tubers are the correct size [14, 16][14, 16][14, 16][14, 16][14, 16][14, 16][14, 16][14, 

16][14, 16][14, 16][14, 16][14, 16][14, 16][14, 16][14, 16](Camire et al., 2009; Furrer et 

al., 2018)(Camire et al., 2009; Furrer et al., 2018)(Camire et al., 2009; Furrer et al., 

2018). 

Cultivated potatoes are generally tetraploid and highly heterozygous. Because of 

significant inbreeding depression, each seed produces a unique plant and variability has 

been kept high in breeding populations [13]. Fortunately, potato tubers can be used to 

clonally propagate varieties. This has been the major mode of cultivar creation for 

centuries [17]. Consequently, potato breeders face unique challenges in assessing the 

wide variety of phenotypes produced by even a single cross. As with cassava, breeders 

cannot afford to continually monitor tuber progress on all their trials. 

1.2.3. Ground Penetrating Radar 

GPR is primarily a geophysical tool used for exploring the subsurface of the earth 

ranging from several centimeters to kilometers [18]. It functions by emitting a very short 

pulse of electromagnetic energy (EM) and then “listening” for reflections. The 

instrument measures the amplitude and the travel time of the reflections. Reflections are 

caused by changes in the dielectric permittivity of the material the wave is traveling 

through (i.e. the ground and buried objects). Dielectric permittivity describes the ability 

of a material to store EM energy as dipole movement [19]. Besides reflection, the 
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emitted signal can also be scattered, transmitted, refracted, and absorbed [18]. Only a 

small portion of scattered waves are measured, and refracted waves may or may not be 

captured by the receiving antenna. Transmitted waves are lost unless they are later 

reflected or scattered back to the antenna. Absorbed energy is lost [18, 20]. 

The detection threshold and penetration depth are both related directly to the frequency 

of the EM pulse. The two are related in opposing manners so that as one increases, the 

other decreases. Increasing frequency improves detection threshold, meaning that 

smaller objects can be detected and large objects have better definition [21]. In general, 

the smallest object for which a discreet return can be received has a diameter of at least 

¼ of the EM pulse wavelength. The wavelength is defined by the frequency of the pulse 

and the characteristics of the medium through which it is traveling, primarily the relative 

permittivity. Thus, the minimum detection threshold changes with soil water content. 

Increased soil moisture results in better detection (shorter wavelength), but less 

penetration (depth). In each application, these considerations must be balanced [18]. 

GPR has established uses in geoscience, civil engineering, archeology, glaciology, and 

military [22]. GPR has yet to make a widespread debut in agriculture, though it has seen 

use in the study of forest ecosystems and other environmental applications [23, 24]. 

1.3. Approach 

1) Define novel GPR data processing methods for the estimation of plot level 

root mass in bulked cassava plants with ground penetrating radar as a high-

throughput process. 

GPR is a good candidate for field measurements because it has relatively low power 

consumption, has conformation adaptability, and can acquire data rapidly. However, 
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most off the shelf systems are designed for use on relatively smooth surfaces. Physical 

adaptation of the GPR is required to move it through agricultural fields quickly. This is 

the first hurdle which must be overcome. Using hardware which allows rapid 

prototyping and flexibility, we will utilize an iterative design method to build a GPR 

platform appropriate to high throughput use in the field. 

As this first objective is an extension of the earlier work done by Delgado et al, we will 

take their work as a template and measure bulked cassava in several varieties. The main 

purpose is to show that this can be done at a large scale and quickly. Delgado et al 

measured multiple transects around the plants, we will also, but instead of running 

multiple passes, we will use an antenna array which allows multiple channel acquisition. 

This means that with every pass, multiple parallel transects will be measured, greatly 

reducing the amount of time spent in the field. Additionally, rather than using a ground 

coupled antenna, we will use an air launched antenna, removing the need to provide a 

smooth surface to work on. An air launched antenna will move through the field easier, 

be less prone to damage, and increase the throughput. It will introduce some difficulty, 

though. Using an air launched antenna will reduce the precision of the measurements 

and require surface detection and flattening. These challenges are not insurmountable 

and can likely be solved through automated processing. 

Field Design. -The field design will consist of four cassava varieties with diverging 

phenotypes to provide maximum variability. Each variety will be planted in plots, 

replicated four times. Because we are not analyzing the effect of the field on the plants, 

we don’t need to concern ourselves with plot layout for normalizing variance. Put 
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another way, we don’t care where the variance comes from, only that we capture it to 

build a robust correlation between the signal and the root mass. This allows a simplified 

field design with cassava varieties grouped for simpler harvest and data labeling. 

Software/Processing -We will build a GPR processing software which is designed for 

easy, rapid batch processing. This software will utilize open source Python GPR 

libraries, algorithms developed from the literature, and novel processing and analysis 

techniques developed by our team. This software will allow a wide variety of pre and 

post processing techniques, as well as quantitative analysis metrics. Utilizing his 

powerful tool, we can find the best way to process and analyze our unique data. Some of 

the tools we will implement include signal dewow, band pass filter, surface detection, 

Hilbert transformation, and Kirchoff migration. 

We will follow Delgados steps for processing data and attempt to correlate the results 

with the harvested root mass. We will also use different and possibly novel techniques to 

extract features which correspond to the bulked roots. These quantitative features will be 

used to build a predictive algorithm which can be used to estimate bulked root mass. We 

will withhold some harvest data from the correlation to validate the predictive algorithm. 

Anticipated problems and possible solutions –While it is reasonable to expect 

Delgados methods to work for this process, it would not be surprising if it doesn’t. Using 

an air launched antenna may introduce significant error in the data, such as GPR returns 

from above ground objects, movement of the antenna relative to the soil surface, and 

variation in the look angle of the antenna. These problems may be overcome in 
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processing. It is possible to remove objects above the surface and to correct for variation 

in antenna height by detecting the surface and flattening it in processing. 

2) Define novel GPR base algorithms needed to estimate cassava root bulking 

rate. 

Field Design -Having validated the air launched multi-array GPR system as a valid 

method for estimating bulked cassava root mass and built a predictive algorithm, we will 

apply the same technology to a field with plants of varying age. Again using 4 varieties 

and 4 replications, we will plant new material every month for 7 months. All of the 

plants will be scanned and harvested at the same time. The staggered planting will 

provide root sizes from a very young age where bulking is not expected up to a mature 

age where full bulking is expected. This is a simulation of multiple scans across the 

growing period of cassava. 

Processing -We will utilize the software and processing workflow developed for 

Objective 1, applying the predictive algorithm to the scan features. Applied across the 

range of plant maturity, we will discover the lower threshold for bulked root detection, 

and show the ability of GPR to differentiate between root sizes. This will also work as 

further validation of the predictive algorithm. It is possible that the algorithm will not be 

valid for both datasets because of variations between them such as soil moisture. If this 

is the case, we will correlate the extracted features to the harvest data independent of the 

previous algorithm. 

3) Define the GPR data processing methods tuber mass estimation algorithms 

needed for potato breeding. 
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Field Design -Plots of 4 different potato varieties representing a range of tuber sizes and 

shapes will be planted in three replications. These will also be stagger planted across 3 

months for a total of 36 plots by 20 hills each. These will be scanned in the same manner 

as the cassava, using the same hardware, by pushing the cart alongside the row, with the 

antenna array angled towards the base of the plants. Additionally, we will scan using a 

bi-static type antenna array. The bi-static array will straddle the row and capture 

reflections at a different angle. This may provide a more complete picture of the tuber 

zone, but until we try it, it is difficult to say if the information will be appreciably 

different. 

Processing -The GPR data will be processed using our software package and the 

workflow developed for cassava. As mentioned before, potato tubers grow in a different 

orientation than cassava roots. They’re also shaped differently. We therefore expect the 

workflow to need adjustment. The primary correlation metric will be tuber mass at the 

plot level. Because tuber diameter is also very important to producers, we will attempt to 

find features which correlate to the mean tuber diameter, or the weighted range of 

diameters. 

Anticipated problems and possible solutions –Potatoes exhibit different growth habits 

than cassava. Where cassava roots extend from the plant like a star, potato tubers grow 

in bunches directly under the plant. The bunched nature of the tubers may make them 

appear as a single large object in the GPR data. This may require different processing 

than cassava and may render the multiple transects of the antenna array redundant. In 
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this case we will investigate methods of combining transects to improve the data quality 

and may need to correlate to a single scan line instead of interpolating between several. 

1.4. Impacts and Future Directions 

The primary goal of this research is to provide a tool to root crop breeders which will 

allow them to make useful estimates of their crops bulking rate and status without 

having to damage the crop. The impacts of such a tool are wide ranging. Initially, we 

hope to see cassava varieties developed which mature in a fraction of the time current 

popular cultivars take. This would improve the livelihood of cassava farmers by 

reducing the risk of having a crop in the field for a long time, increasing the productivity 

of their land, and increase their income. The corresponding increase in cassava 

production would make it more accessible to non-farmers and represent a real increase in 

their standard of living by reducing food costs. Beyond the impact to cassava growers, 

this technology has the potential to impact all root and tuber crops, as demonstrated in 

the third objective with potatoes. Besides breeders, this can be used as a tool by 

producers to help them decide when to harvest, or for logistics to better predict yield and 

arrange the necessary labor and equipment for handling it. 

From here, the proof of concept, the idea needs further development. Our lab plans to 

continue the development of the software, and to release it to researchers, or license it to 

companies. Ideally, we would like to create a web based application which can 

automatically process GPR data, so that users need not have expertise in data processing. 

The hardware also needs further work. The antenna should be optimized, selecting the 

best radiation patterns and the best number of antennas and channels. This work is 
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beyond the scope of our lab and must be picked up by a company with the expertise and 

resources to design and test GPR antennas. Because of our collaboration, it seems likely 

that IDS Georadar will do this. 
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2. FROM LAB TO FIELD, CURRENT AND EXPERIMENTAL METHODS IN 

PLANT ROOT PHENOTYPING 

2.1. Introduction 

Scientists have long recognized the importance of plant roots in agricultural systems, but 

the difficulty of studying roots as compared with the relative ease of studying 

aboveground plant systems has kept many researchers and breeders focused on the 

surface portion. Our awareness of the complexity and significance of root systems has 

coincided with slowing advances in yield from breeding; thus, a greater focus on roots 

has emerged. Calls for concentrated efforts to phenotype plant roots have  launched a 

decades-long campaign to improve root study abilities, increase general knowledge of 

root systems, and accelerate breeding gains to combat climate change and support a 

growing population [25–27]. 

Despite this enthusiasm, studying roots remains a significant challenge for several 

reasons. Beyond the obvious opacity of most growing mediums, the soil environment is 

hugely complex and varies vastly, spatially and temporally. To overcome this obstacle, 

researchers often modify the growing medium in ways ranging from slight intrusions 

(minirhizotrons) to complete destruction (excavation) to using a completely synthetic 

medium (agar gel). While popular, the power of these studies to convey useful 

information on root traits depends on trait heritability and the ability to make reasonable 

correlations based on field conditions [28].  

Several recent reviews have addressed the advances in root phenotyping, but each is 

limited either in scope or depth [27, 29, 30]. It does not appear that a comprehensive 
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review of root phenotyping methods has been published for some time. This review aims 

to consider all of the major and experimental means of examining roots in lab, 

greenhouse, and field settings. A treatment of the methods and applications is also 

included, giving special attention to recent publications. 

2.2. Clear Medium Methods 

Use of a clear growing medium solves the largest problem in studying root systems: the 

inability to see roots. Researchers have found various methods for growing plants in a 

manner that exposes the roots to visual observation and measurement. Here we attempt 

to present these methods in order of increasing complexity, share some recent examples 

from the literature, and discuss considerations. 

2.2.1. Filter Paper 

Plant seedlings may be grown on simple filter paper, which is prepared with water and 

occasionally nutrients. Filter paper is also known as germination paper or, when slightly 

modified, germination pouches or pouch and wick [31–33]. The method is 

straightforward: paper is soaked in water and a seed is placed on top, allowing the seed 

to draw water from the paper. This can be modified by placing the paper inside a 

transparent bag. The seedling can then be observed visually  up to about 10 days after 

germination (DAG) [31]. In addition to visual observation, imaging of the roots is 

relatively straight forward by means of a digital camera or a flatbed scanner. 

Falk et al. modified germination pouches by standing them upright and suspending them 

(much like a hanging file-folder system), allowing a high density arrangement within a 

growth chamber [33]. The seedlings were easily transported to an imaging platform, 
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which maintained consistent lighting and focal placement for each image. Each 

germination pouch included a barcode label, which the imaging software was able to 

read for automatic labeling of the image files, reducing the workload as well as the 

opportunity for labeling errors. Similarly, Hund et al. also kept the pouches upright for 

growth [31]. In order to image the roots, pouches were held at a fixed distance from a 

traditional flatbed scanner which was rotated onto its side, holding the seeds in place on 

the paper with paperclips.  

 

 

Figure 2.1 Filter paper root phenotping platform. a.10 seeds rolled into germination paper. b. Plants 

germinate in a growth chamber. c. Seedlings are subsampled for transplanting onto blue germination 

paper. d. Single seedlings are covered with moistened germination paper and sandwiched to make an 

experimental unit. e. Each seedling is bound with binder clips and hung file-folder style in a growth 

chamber, the bottoms submerged in water. f. Individual seedlings can be easily removed and imaged in a 

consistent fashion for automatic data processing and filing. Figure is from Falk et al. and used under CC-

BY 4.0 License [33] 

 

2.2.2. Petri Dish 

Petri dishes filled with agar or a similar gel medium have been used in laboratories for 
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decades. They are frequently used to study the roots of young plants due to their 

straightforward nature. In the simplest case, seeds are germinated, then placed in a dish 

to grow, with roots available to observe at any time. Dishes may need to be tipped 

vertically so that plants correctly experience gravity, thus keeping roots on the surface 

[34]. French et al. used petri dishes to test their novel root image analysis software, 

which they used to automatically find root tips, trace the roots, measure curvature, and 

detect the onset of gravitropic response [34]. In that study, imaging was done using a 

standard DSLR camera mounted on a tripod. 

The petri dish method has been adapted and modified many times to overcome issues or 

facilitate workflows. Bengough et al. created thin rectangular chambers of plastic with 

holes at the top to allow gas exchange and growth of the shoot [35]. In recognition of the 

danger of anoxic conditions, a small air gap was left in the center plane, where the roots 

primarily grew. A thin layer of gel was added to each large face of the chamber to 

provide moisture and to prevent condensation on the plastic. This design also facilitated 

imaging on a flatbed scanner, which at the time would have had superior resolution to 

digital cameras. Nagel et al. also modified square petri dishes so that the shoot was able 

to grow outside the plate [36]. Compared to plants grown the more traditional way – 

with shoots inside the dish – the researchers found significant differences, including 

longer primary roots, greater root area, and larger shoot biomass. This modification of 

the petri dish also allowed for the use of an automated imaging platform which the 

authors constructed. The differences compared to more common petri methods illustrate 

the hugely complex nature of studying roots, and the effects of environment. 
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Futsaether and Oxaal did away with the gel completely, instead using a thin rectangular 

chamber with a 1.2mm thick space filled with glass beads, allowing aerated nutrient 

solution to be circulated to the roots while the shoot grew in open space [37]. This 

method has the great advantage of easily controlled nutrient availability. Additionally, it 

allows for variation in both particle size and distribution in the glass beads, as well as 

high color contrast for root imaging. 

The methods so far have allowed two-dimensional study of roots. For three-dimensional 

studies, the methods have been extended to deeper containers. Fang et al. studied root 

response to phosphorus in rice and soybean in 3D [38]. To do this, they grew the plants 

in clear plastic cylinders 12 cm in diameter, 20 cm tall, and filled with a clear gel. Roots 

were imaged by rotating the cylinders in front of a 3D laser scanner, then reconstructing 

them on a computer. Clark et al. extended the cylinder method for use in a high-

throughput phenotyping pipeline [39]. The growth cylinders were placed in a larger 

square container of water, which provided correction for light refraction caused by the 

round growth chamber; this made it possible to use a standard DSLR camera and light 

box. Further, a turntable was constructed to rotate the sample in a controlled, consistent 

fashion, with the authors being able to capture 40 images through 360° of rotation in just 

4 minutes, all with a resolution of 50 μm per pixel. 
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Figure 2.2 The GrowScreen-Agar platform. a & b. The platform is mechanized and able to automatically 

rotate each sample through the imaging chamber at regular intervals. c & d. The modified petri dish is 

held vertically, so the roots experience gravity correctly. In this image, the shoots are kept inside the petri 

dish. e & f. The standardized imaging allows for computer detection and tracing of the roots. Figure is 

from Nagel et al. and used under CC-BY 4.0 License [36]. 

 

2.2.3. Considerations 

These types of methods allow high-resolution and short-duration study of root systems. 

In the experiments summarized in this review, plant ages were generally less than 10 

days at the termination of the study, though they ranged up to 20 DAG in some cases 

[33, 37, 39, 40]. The age of plants is often limited by the size of their container – once 

roots encounter the edge of a container, their structure is undeniably altered. Bengough 

et al. concluded that such methods are useful for determining genetic potential and 
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discovering variation, while Gregory et al. noted their suitability for studying root 

exudates  [35, 41]. Gruber et al. demonstrated the usefulness of gel for studying the 

effect of nutrient deficiencies on roots, while also noting the need for care in choosing 

the appropriate gel due to most types including some level of nutrients [42]. Kuijken et 

al. expounded on the ability to quickly calculate the heritability of root traits from lab 

studies, but also cautioned that traits discovered by non-field methods need to be 

confirmed in field conditions [28]. Passioura warned of the possibility for hypoxic 

conditions in all types of pot studies, regardless of medium [43]. 

Despite the artificial root environment, similarities to soil-grown roots have repeatedly 

been found. Liao et al. found that bean plants grown both on filter paper and in sand 

filled pots produce similar root angles [44]. Clark et al. found that rice plants grown in 

gellan gum had significantly shorter average lateral root length, but similar crown root 

numbers to potted plants grown in sand. Other differences (or similarities) depended on 

whether or not the sand was aerated [39]. Hargreaves et al. compared the roots of barley 

plants grown in gel and soil, observing similar angles and root numbers but greater 

lengths in the gel, hypothesizing that it was caused by lower resistance and nutrient 

availability [40]. On the other hand, Richard et al. compared growth pouches to clear 

pots for studying root traits in wheat seedlings. They calculated greater heritability in the 

clear pots than in the pouches, and found significant differences between root angles and 

length. They were also able to associate the seminal root angle at 5 DAG, and the 

seminal root number at 11 DAG with drought tolerance [45]. These findings agreed with 

previous research done in 2D gel chambers [46]. 
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2.3. Field Methods – Classical 

When studying roots in the field, there are few substitutes for a good shovel – excavation 

and coring techniques continue to be standard methods and are widely applied [47]. 

Excavation gives a complete look at a root system, but the cost and labor can be quite 

high. Whole plant excavation requires care to avoid losing roots during digging or 

washing and may result in changes to root architecture when the roots are removed from 

the supporting matrix. Several alternatives have been described to combat these 

drawbacks. In this section, common methods for observing roots in the field are 

discussed. 

2.3.1. Trench 

The trench method attempts to preserve root architecture by leaving the plant in the soil 

while exposing the roots on a 2D plane, allowing for the mapping of roots. In concept, 

the method is very simple – a transect adjacent to a plant is chosen, and a trench is dug 

along that line to allow access to the roots. In practice, care must be taken to smooth the 

observation plane with a sharp knife or gentle water sprayer [48]. In this method the 

primary measurement is root intersections, or simply root counts. Use of a grid overlay 

can aid the process; alternatively, a plastic sheet can be used to trace roots and mark 

intersections. By taking small core samples within the trench profile, a calibration can be 

made to relate root counts to root length density. 3D sampling is possible by removing 

subsequent layers from the soil wall. Trenching also allows soil features such as 

horizons and pore structure to be studied; however, Van Noordwijk et al. noted that 

mixing of the soil horizons may make the site unsuitable for future studies [49]. Despite 
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this, trenching was shown to be comparable to core methods for estimating root traits, 

and can be completed in a fraction of the time [50]. 

Nemoto et al. used trenches to compare the root systems of 255 rice varieties [51]. Using 

a 60 cm deep trench after harvest they were able to correlate an abundance of roots in 

deep layers with drought resistance. To further reduce labor, visual scoring was used to 

estimate root abundance, rather than counting individual roots. De Azevedo et al. sought 

to establish root length density as a standard metric for root assessment. Utilizing the 

trench method, they demonstrated use of the metric in sugarcane, and were able to derive 

root length density from root intersection counts, comparing them to results from the 

core method [52]. They found good agreement between the methods, and also noted that 

trenching requires just 10% of the man hours needed for core sampling. 

2.3.2. Pinboard 

The pinboard method can be considered an extension of the trench method, whereby a 

grid of pins attached to a board is inserted into a trench wall, and the soil monolith 

surrounding the pins is removed intact. Once removed, the board holding the pins and 

soil is laid flat and the soil is washed away. The root structure remains in place so angles 

and other spatial relationships are preserved [49]. The pinboard method has been popular 

in previous decades [53–56], and while it is still cited as a possible method [57, 58], no 

research published in the last five years was found in this review. Instead, it seems most 

researchers prefer the root-box pinboard method described by Kono et al. [59]. While the 

root-box pinboard method is not necessarily a field method, it will be reviewed here as a 

modification of the well-established trench-pinboard method. 
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The root-box pinboard method (alternatively, rhizobox) utilizes a large soil container 

with one transparent side. Kono et al. used a 25 cm long x 2 cm wide x 40 cm deep box, 

but the size varies by author. The box is either constructed with a grid of pins piercing it, 

or is made such that pins can be inserted later. The clear window allows repeated 

observations to be made while the plant is growing. When the growth period is over, the 

soil is washed out and the roots are held in place by the pins. The rhizobox may be 

considerably less labor intense than the trench-pinboard method and allows for control 

over environmental conditions if performed in a greenhouse. Further instructions were 

given by Delory et al. [60]. 

Kano-Nakata et al. was able to associate increased root mass for rice under drought 

conditions using this method [61]. Singh et al. studied young sorghum in pinboard boxes 

by harvesting subsamples at different times. They were able to associate the first nodal 

root flush with the 4-5 leaf stage, and therefore suggest rhizoboxes as an appropriate 

standard for studying root traits in sorghum, preferable to the lab methods commonly 

used in maize and wheat. Thangthong et al. used 120 cm deep boxes to examine drought 

response in different peanut varieties, finding that the variety with the deepest roots 

under drought was best able to maintain shoot mass [62].  In 2020, Miyazaki and Arita 

used root-box pinboards to study the rooting habits of upland rice variety NERICA 4 

[63]. Not only did they find very strong correlation (r=0.976) between total root length 

and number of root branches, but they also showed that subsurface irrigation can affect 

the distribution of roots, with deeper irrigation correlating to deeper root mass. 
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Figure 2.3 An example of how root structure may be captured by using pinboards. These are root systems 

of rice varieties grown in rhizoboxes with varying degrees of water conditions. A,D,G were waterlogged, 

B,E,F were maintained at 25% GWC, and C,F,I at 20% GWC. Figure is from Kano-Nakata et al. and 

used under CC-BY 4.0 License [61] 
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2.3.3. Rhizotron 

Rhizotrons are sub-surface installations that allow continuous observations of roots in 

the field. In the most simple implementation, a trench is dug and a clear pane is pressed 

against the soil wall, so roots can be observed as they intersect the pane and continue to 

grow [64]. More permanent installations may include concrete structures built 

underground to maintain long term observations and facilitate multiple seasons and 

studies [65]. Some facilities have been constructed that employ multiple chambers, soils 

sensors, sampling devices, and weighing scales. These are sometimes called rhizo-

lysimiters, and can be quite expensive to build [66, 67]. Rhizotrons permit 2D 

observations, but some installations include horizontally installed plastic tubes which 

give extra observation windows. While this type of installation is a powerful tool for root 

observation, they are not common because of the cost [65]. 

Overtime the usage of the term ‘rhizotron’ has shifted to mean any transparent surface 

applied to a soil monolith – most commonly in large boxes or tubes [68–70] – and are 

interchangeable with rhizobox. Apparently, the term is still used to refer to underground 

windows in forestry [71, 72]. Rhizotron boxes and tubes are often left in the field from 

which the soil is taken, and the soil is carefully packed to the same density, or taken as a 

monolith.  

Boldt-Burisch and Naeth used rhizotrons to investigate the effect of arbuscular 

mycorrhizal fungi on Bird’s-foot Trefoil (Lotus corniculatus) and Chee Reed grass 

(Calamagrostis epigeios) root growth [73]. Some treatments were inoculated with fungi 

and others weren’t, but all included clay fragments. The researchers examined the 
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general growth of roots, but also compared the amount of roots in the clay fragments. 

They found that treatments with mychorrhizae not only had greater root mass overall, 

but significantly more root mass in the clay. This led them to conclude that mycorrhizal 

symbiosis increased root spatial distribution and led to better access to heterogeneously 

distributed nutrients. Rasmussen et al. used 4 m tall rhizotrons to study the deep roots of 

Chicory (Cichorium intybus L.) [74]. Combining drought treatments and the deep 

placement of deuterium labeled water, they observed no increase in deep water uptake 

during water stress. They concluded that the deep roots of Chicory allow a competitive 

advantage over shallow rooted plants, but were not adapted to compensate for reduced 

shallow water uptake under drought conditions. Montagnoli et al. used an inverted 

rhizotron (a clear box buried in soil, using digital image capture to maintain a slim 

profile) to study the effect of biochar amendment on grapevine root growth [75]. They 

were able to observe an earlier flush of roots in the spring, and reduced fibrous roots in 

the summer in amended plots. They concluded that the biochar improved nutrient 

availability and water holding capacity, thus reducing the need of the plants to forage for 

water in the summer. 
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Figure 2.4 An example of a small rhizotron installation. Mohamed et al compared the efficacy of 4 

different image acquisition platforms in rhizotrons. a, flatbed scanner, b handheld scanner, c smartphone 

scanner, d time lapse camera. Figure is from Mohamed et al. and used under CC-BY 4.0 License [72]. 

 

2.3.4. Minirhizotron 

A Minirhizotron is a clear tube inserted into the soil near a plant, allowing root 

observations with minimal interference. Taylor et al. report the use of minirhizotrons as 

early as 1937, and they continue to be used in the present day [65, 76]. While significant 

drawbacks have been described [65, 77], the method is very popular due to its low cost 

and ease of use [64]. Early studies employed mirrors and flashlights to observe roots 

contacting the tube, followed later by the use of fiberscopes and cameras [65, 78]. 



29 

 

Several recent studies have focused on the improvement of techniques for both imaging 

and image processing/root analysis. In hardware, advances have been made using 

hyperspectral or high-resolution cameras, as well as in automation of the capture process 

[79–81]. In image processing, the focus centers around automated means of identifying 

and analyze analyzing roots, often with machine learning techniques [82–84]. 

As noted above, significant drawbacks exist to using minirhizotrons, though solutions 

have been proposed. Bragg et al. noted that vertical placement of tubes causes 

preferential water paths and root growth along the tube, and recommended that tubes 

should be inserted at a 45° angle to the horizon [78].  Taylor et al. cautioned that 

minirhizotrons are prone to under-sampling errors, and compared the volume of soil 

observed with other methods: based on a 5 cm diameter, soil cores explore more than 6X 

the soil volume [64, 77]. Regardless, minirhizotrons are considered practical means to 

estimate root branching, longevity, diameter, spatial distribution, length, depth, and rate 

of growth and decay [64, 78, 85, 86]. 
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Figure 2.5 The basic components of a minirhizotron – A clear tube inserted into the soil near the subject 

plant, light source, and imaging device. Figure is from Rahman et al. and used under CC-BY 4.0 License 

[80]. 

 

In 2017, Herrera et al. used a combination of rhizoboxes and minirhizotrons to study the 

relationship between cover crops and spring wheat in relation to root decomposition 

[87]. Continuous observation over 3 years of rotations concluded that cover crop species 

had no effect on the decomposition of spring wheat root, while higher decomposition 

was associated with high root production and carbon/nitrogen ratio. Haarhoff et al. 

observed the roots of maize planted at different densities up to 40,000 plants ha-1 for two 

seasons [76]. While they observed non-significant higher shallow root density for lower 

planting densities, they were able to positively correlate accumulated root length density 

with grain yield, and concluded that planting density had not affected root growth. Postic 

et al. used a semi-automated linear-scan minirhizotron to study the relationship between 
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root depth and yield in wheat [88]. They included soil cores, which were used to 

calibrate the minirhizotron data from root length surface density to root biomass [64]. 

Observing 4 varieties in irrigated and rain fed plots, they were able to significantly 

correlate root length surface density with grain yield, regardless of irrigation treatment. 

They also reported an association between deep root mass and grain yield in rain fed 

plots, but not irrigated plots. 

2.3.5. Core Sampling 

Core sampling is a standard technique and is frequently used as a reference when 

comparing other methods [49]. Performed by using an auger or sharpened tube, it can be 

done by hand or by motor: The popular Giddings probe is an example of a vehicle 

mounted hydraulic sampler [60]. Soil cores are returned to the laboratory where they are 

washed over mesh screens to capture the roots, which can be measured or imaged. Core 

sampling can be hampered by stony soil or an abundance of woody roots. Do Rossario et 

al. recommend core diameters of at least 7 cm, and that cores be stratified every 10 cm 

of depth [49]. It may also be desirable to perform preliminary sampling to determine the 

optimal placement for higher density sampling to confidently capture the whole range of 

variation [49, 89]. Common metrics derived from soil cores include root length density, 

root mass, distribution, and root diameter. 

Fiorini et al. used soil coring to study the effect of no-till management on the depth of 

roots and soil carbon [90]. They converted a previously conventional till field to no-till 

for 3 years, and compared the results to a neighboring tilled field. They found that no-till 

increased the root length and root carbon in the top 5 cm, but not the deeper layers, 
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which is somewhat contrary to other studies [91]. Muhandiram et al. investigated 

whether improved forage grass varieties provided greater resilience to soil compaction 

[92]. Comparing three Festulolium hybrid varieties with perennial ryegrass and tall 

fescue, they compacted field portions after establishing baseline data. Forage yield was 

initially impacted for all varieties, but improved over time in the hybrids. Using soil 

cores to measure root traits, they found the hybrid varieties produced higher root mass 

under compacted conditions. The authors concluded that improved root structure 

provides resilience to machinery-derived soil compaction. 

2.3.6. Core-break 

The core-break method is essentially an observation on a plane, like the rhizotron and 

trench methods. A soil core collected in the field, as described above, is broken in 

segments generally 5 or 10 cm long, and the number of root segments visible on each 

side of the break are counted [93]. By washing a subsample of cores to measure root 

length, the root counts can be converted to root length density, as can be done in the 

trench method [48, 94]. However, researchers have warned that the relationship between 

root count and root length density is crop, plant age, and soil specific, so the calibrations 

cannot be widely applied [95]. Van Noordwijk et al. noted that while core-break counts 

result in greater variance than washing cores, they take significantly less labor to 

perform, and therefore more samples can and should be taken to compensate [48]. 

Indeed, efficiency of sampling time may be the most attractive feature of this method.  

Wasson et al. studied the problem of variability in the core-break method, and tested a 

solution using Bayesian hierarchical nonlinear mixed modeling [96]. Using their model, 
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they were able to distinguish wheat genotypes by their rooting density, and were also 

able to calculate heritability of root traits with high confidence. Li et al. observed 1,184 

soil cores that were 4.2 cm in diameter and 1.8 m deep, in a study of three unrelated 

wheat populations [97]. With more than 600 total genotypes, the researchers monitored 

canopy temperature using aerial infrared imaging. Then, working in just the warmest and 

coolest plot canopies (population tails), they collected 4 soil cores per plot about 2 

months after harvest. Plants with the coolest canopies had significantly deeper roots for 

two populations, ranging from 6.2 cm in one population to 8.1 cm deeper in the other. 

The authors concluded that canopy temperature could be used as a proxy for rooting 

depth in breeding selection under water stress. They also noted the time savings of the 

core-break method. Bai et al. used core-break to investigate whether seedling root 

screens performed in the lab would correlate to field data in rain-fed winter wheat [98]. 

Seedlings were first screened on germination paper for root angle and thickness, then 

screened again for the ability to penetrate a wax layer in a sand column – all traits 

thought to be indicative of deep rooting behavior. Comparing to root counts and rooting 

depth in the field, they found a positive relationship between root diameter and yield, but 

no relationship between the seedling screens and root depth. They also noted an apparent 

limiting relationship between shallow roots and deep roots, where greater numbers of 

shallow roots were associated with fewer deep roots.  



34 

 

 

Figure 2.6 Core break method is performed by removing an intact soil core, then breaking it in the 

approximate middle, or desired depth. The number of visible roots is counted on each side of the break 

and added together for the total root count at that depth. Figure adapted from unpublished work by Matt 

Wolfe, 2021. 

 

2.3.7. Ingrowth Cores 

Ingrowth cores are an adaptation of the coring method that allows repeated observations 

at the same position. They are especially good for comparing the relative growth of roots 

across time, and are often used in longer lived species such as perennials and woody 

plants. Ingrowth cores consist of a mesh bag inserted into a borehole and filled with 

root-free soil. Roots are allowed to grow into the core for some time, often for 2-3 

weeks, then the cores are removed to capture the change in root growth during that time 
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[49, 99]. A tube of similar diameter can be used to insert the bag and keep it expanded 

during filling, and a rope tied to the deep end can be used to withdraw the core. The 

repeated filling and sampling increases the labor requirements compared to core 

washing, and while it is important to match field conditions as closely as possible, 

decreases in soil density and differences in soil moisture were not found to significantly 

affect the root growth [99]. Ingrowth cores are also better than subsequent coring for 

estimating belowground net primary productivity in grasslands [100]. In-growth cores 

are preferable to simple coring primarily when assessing root traits over time. 

Reinsch et al. studied changes in soil organic carbon in a forage maize-grassland rotation 

[101]. Comparing the carbon isotopes before and after conversion from grassland to 

maize, and using ingrowth cores to measure belowground net primary productivity as a 

function of root abundance, they questioned whether using a no-till planting system 

would maintain the high soil carbon of the grassland compared to intense tillage, even 

though maize root productivity may decrease in no-till. They discovered that not only 

does the no-till better conserve the soil carbon, but maize root production was not 

reduced by no-till as compared to conventional tillage. They concluded that using no-till 

in combination with a 2-or-3-year grassland phase will maintain the high soil organic 

carbon benefit of grasslands, while also allowing the forage benefit of maize. Lei et al. 

questioned whether historical land use affected the root production in bioenergy fields, 

as carbon sequestration is sometimes promoted as a benefit of such crops [102]. Using 

ingrowth cores, they monitored grasslands and fields converted to maize, switchgrass, 

and restored prairie for 8 years. They did not find any significant effect of land use 
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history, but did find all three crops to be inferior to grassland in root productivity. 

Additionally, they observed maize to have the lowest root mass production, despite it 

being favored among bioenergy producers. 

2.3.8. Shovelomics 

Shovelomics is a relatively new method proposed by Trachsel et al. in 2011 [103]. 

Looking for a solution to high-throughput root phenotyping in the field, they removed 

the crowns of maize plants with accompanying roots in a 20 cm radius to 25 cm deep, 

washed the soil away with water, then visually scored the roots. Scoring occurred for 10 

traits, including root numbers, angles, and branching. They compared these scores with 

manual measurements and found a significant positive correlation for all of them, with 

strong correlation for at least half. They did suggest that angle scoring could be 

improved by using a protractor as a reference. Reporting an average time of just 2 

minutes to score each crown, they recommend this method as a fast and reliable way to 

phenotype roots in the field. A few years later, Bucksch et al. modified the method by 

placing the crowns on a black piece of wood and imaging the crown with a digital 

camera [104]. By creating a groove in the wood to help standardize the placement of the 

crowns, they report low variability caused by user error, and rapid assessment by 

automatic computer classification of images. The method was again modified by 

Colombi et al. by setting up a light tent in the field to control lighting and further aid 

automatic image classification [105]. Additionally, they split the maize crown in half to 

expose the interior plane, allowing additional traits to be measured. Their MatLab based 

software, Root Estimator for Shovelomics Traits (REST), was then able to automatically 
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compute 33 traits. These adaptations allowed for higher throughput while maintaining 

precision. 

Abiven et al. studied the effect of biochar application to maize fields in Zambia [106]. 

They found a 45% increase in yield, but also large increases in root traits as measured by 

shovelomics, in line with results reported by Colombi et al. Root mass was 

approximately doubled under biochar, and branching and fine roots were increased by 

70±56%. They noted that biochar likely affected the root architecture by significantly 

altering the soil chemistry and physical properties such as density and porosity. 

Arifuzzaman et al. used shovelomics to assess 216 rapeseed genotypes for root traits 

[107]. For this study, they used the method as originally proposed, plus the suggested 

protractor. Combined with genotypic data, they were able to map 31 QTLs associated 

with root architecture, including soil level taproot diameter, root angle, and primary root 

branching. Kengkanna et al. report that cassava has a unique root system because it is 

planted from stem cuttings, and that little has been done to develop effective root 

phenotyping methods for this crop [108]. Using the open source and collaborative DIRT 

(Digital Imaging of Root Traits), they applied shovelomics and measured additional 

traits specific to cassava, such as the number of basal roots and nodal roots. They were 

able to observe both genotypic differences in root traits and response to drought and 

recommend that cassava breeders use shovelomics to define drought-adapted root traits 

and make selections. 
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Figure 2.7 An example of the image analysis possible using shovelomics with the REST software as 

published by Colombi et al [105].A & B Segmented binary image of a maize crown. The root opening 

angle (RoA), maximum width (mW), and the area of the convex hull have been calculated. C Biplot of th 

principal component analysis for several root traits, please see original publication for a full description. 

D & E Color coded display of the median gap size between roots and the medium structure width or 

distance from the root structure to the background. Figure is from Le Marié et al. used under CC-BY 4.0 

License [109]. 

 

2.4. Non-Invasive Methods 

The methods reviewed thus far have all been invasive techniques, even if minimally. In 

this last section we consider non-invasive root measurements – observation methods 

which do not disturb the growing plant. While some of them have been used for some 

time, others are relatively new, and each could be considered experimental. 

Improvement of these methods is ongoing; some were dismissed in the past but have 

seen renewed interest due to advances in technology, while others have been recently 

developed. Several of them require knowledge outside the general scope of plant 

science; therefore, a comprehensive description of the method is not suited to this work 

but can instead be found in the references. 
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2.4.1. Capacitance 

Capacitance is a measure of the electric charge stored between two surfaces separated by 

a dielectric insulator. The insulator permits an electric field to pass, but not a current, 

causing a buildup of charge when one side has a potential (voltage) applied. Chloupek 

first proposed that a root system could be estimated by measuring the capacitance of the 

root-soil interface in 1972 [110]. Extending the work, he used an electrode attached to 

the base of the plant stem, and another inserted into the soil 25 cm away, to measure the 

capacitance of potato, clover, sunflower, and mustard plants [111]. The correlation 

coefficient between capacitance and fresh root mass was 0.7. Kendall et al. attempted to 

verify Chloupek’s work in 1982 by measuring the root capacitance of hydroponic red 

clover grown in environmental chambers, as well as alfalfa grown in the field, at 

different stages of development [112]. Using clamps instead of needles, they found 

partial validation of previous findings – correlation to root dry mass decreased with the 

age of plants, and capacitance did not change proportionally when roots were severed, 

though opposing data have been presented more recently [113]. Dalton investigated the 

method and illuminated several important aspects [114]. They proposed an electrical 

model to explain the capacitance of roots, hypothesizing that internal xylem tissue and 

ionic solution forms a conductor while the root tissue forms a dielectric insulator from 

the soil or rooting medium, suggesting this could be modeled as a series of parallel 

resistor-capacitor circuits. This circuit is in series with the electrode-stem and electrode-

soil circuits, which are measured jointly with the root circuit, thus explaining some of 

the error in the method. Dalton measured the capacitance of hydroponic tomato roots 
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and found a correlation of 0.77 to root dry mass. They also monitored root capacitance 

over time, finding a decrease in capacitance after 50 days, which they posit is an effect 

of suberization in the roots. Further study found a large effect of soil moisture and stem 

electrode placement – increasing soil moisture increases the capacitance measurement, 

and higher stem placement reduces capacitance.  

Beem et al. observed that the correlation was more dependent on soil properties than the 

genotype, and suggested capacitance is a relative measurement unless a calibration is 

made [115]. In their study, they were able to rank maize genotypes by root capacitance 

and found it matched ranking by root mass. Psarras et al. attempted to use root 

capacitance for studying apple seedlings under drought [116]. They calculated an R2 

value of 0.73 in the final harvest but had low significance in previous measurements, 

which they attribute to the low water content of the soil. Ozier-Lafontaine and Bajazet 

measured the complex impedance of the stem-root-soil-electrode system over many 

frequencies [117]. This allowed them to decompose the measurements by apparent 

component capacitance, resulting in a numerical model with up to 0.97 explained 

variation. Ellis et al. also measured complex impedance using a 4-electrode method 

[118]. They were able to determine the stem and soil were primarily resistive circuits, 

and therefore the bulk of capacitance must be caused by the roots. They also found 4-

probe measurements to be comparable to 2-probe when the soil is wet. 
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Figure 2.8 A conceptual diagram of root capacitance measurement in a pot. Electrodes are placed at the 

base of the stem and in the soil. The split-pot design was used here to test whether current was flowing 

primarily through the soil solution or the roots. Figure is from Cseresnyés et al. and used under CC-BY 

4.0 License [113]. 

 

Several studies have confirmed the relationship between root system size and 

capacitance, while a few present dissenting evidence [118–124]. However, authors have 

successfully used the capacitance method to map QTLs, evaluate drought response, and 

even observe root association with arbuscular mycorrhizal fungi [125–127] 

While it is well understood that root capacitance should be used as a relative measure 

within fields, it remains possible that correction factors and calibrations could allow 

absolute measurements [128]. Users need to be considerate of electrode placement, soil 

moisture, and equipment frequency and voltage. We wish to note the link between 

capacitance and impedance because some authors use them somewhat interchangeably. 

Impedance is the resistance to current flow in an alternating current circuit. Because 

capacitors resist changes in voltage, they can add to the impedance of a circuit. By 
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measuring the complex impedance, it is possible to derive capacitance for circuits 

without inductance, such as the plant-root-soil circuit. Additionally, both can usually be 

measured by the same piece of equipment and electrical connections. 

2.4.2. Electrical Resistivity Tomography 

Electrical resistivity tomography (ERT) is a common geophysical method for studying 

near surface features. Resistivity is the electrical property of materials which resists the 

flow of current. It can be measured by injecting a current with two electrodes and 

sensing the charge potential between two other (nearby) electrodes. ERT is performed by 

placing several electrodes in the ground, either in a line or in a grid, then current 

injection and potential measurements are made at many combinations and levels of 

spacing. As electrodes are spread further apart, the current moves deeper in the soil, 

which enables detection of the depth parameter. These measurements are combined 

using tomography, producing either a 2D or 3D map of the subsurface resistivity 

depending on the dimensionality of the electrode array [21]. Because roots affect the 

bulk resistivity of soil, it is possible to detect them using ERT; however, publications are 

limited [129, 130]. 

While earlier authors have noted the possibility of mapping coarse roots in trees, Amato 

et al. appear to be the first to attempt the quantification of tree roots [131]. Using a 48 

electrode array, they captured 2-dimensional tomographs under a group of alder trees. 

The 0.25m spacing and number of electrodes resulted in a tomographic image with 1,264 

cells (like pixels) along a 12 m transect to a depth of 1 m. Soil cores of 7.5 cm diameter 

were taken along the same transect at 0.1 m intervals, washed, and analyzed to map root 
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mass per unit volume of dry soil – root mass density. The dataset was divided, using one 

portion to fit a regression model and the other portion to test the regression model for 

prediction. Coefficients of determination (R2) were 0.93 and 0.97 between cell resistance 

and root mass density. In addition, this method also provided a qualitative description of 

root location. Despite these strong correlations, the authors caution the relationship may 

not hold for low root density, and that soil texture, moisture, temperature, and the 

presence of other confounding factors such as stones, must be considered. Later, Amato 

et al. extended their work by using ERT in alfalfa [132]. Significantly, this seems to be 

the first attempt at mapping or quantifying herbaceous roots with ERT. Using two soil 

types in three rhizo-boxes, they planted two boxes with alfalfa and left the third 

unplanted as a control. Bore-hole electrodes (electrodes placed on a rod and inserted into 

holes in the soil) were employed. Four arrays were used, each with 18 electrodes (total 

72) spaced 1 cm apart, inserted to a depth of 19 cm. This high-density electrode 

placement resulted in 3096 resistivity values in a cube 20 cm to a side. Soil cores of 2.5 

cm diameter were collected to a depth of 20 cm, and in a grid of 5 cm spacing. The cores 

were washed and roots were collected and measured to calculate root length density and 

root mass density. Correlating paired points of the resistivity map and the soil cores, the 

authors found significant correlations of R2=0.57 and 0.37 for root mass density and root 

length density. Therefore, they concluded that 3D ERT is useful in investigating root 

mass, but again caution that low root densities may be confounded by other soil 

properties such as soil water and texture. 
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More recently, Corona-Lopez et al. used electrical impedance tomography (EIT) to 

differentiate between healthy and club-root infected rapeseed plants [133]. As noted 

previously, impedance is the resistance in an alternating current circuit and therefore is 

similar to ERT, though excitation frequency and capacitive components also become a 

consideration in EIT. The authors built cylindrical pots of 18 cm diameter by 13 cm 

deep, with two rings of 16 integrated electrodes evenly spaced around the circumference. 

The pots were filled with compost, some being planted and inoculated with 

Plasmodiophora brassicae while others were kept as uninfected control and unplanted 

control. Differences in root volume and density were detectable and significant, leading 

them to conclude that EIT could be used in other studies, including in much larger pots 

as the method is easily scaled. Rather than trying to estimate root mass, Rao et al. used a 

high density 2D electrode array to monitor soil water depletion in a drought study [134]. 

They used 123 electrodes placed on the soil surface and in bore-holes along a 7.2 m 

transect, resulting in 3,084 electrode combinations. They were able to distinguish 

differences in the depth and width of water depletion between the three cover crops plus 

one crop mix. Notably, the differences were more pronounced and easier to distinguish 

under drought conditions. The authors conclude that ERT is appropriate for estimating 

water depletion by roots, but that it should be measured over time to show changes in 

resistivity instead of trying to use absolute resistivity. 
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Figure 2.9 a) A schematic view of an individual field block showing the placement of ERT electrodes used 

for 2D imaging. Black dots represent surface electrodes while black squares represent borehole ring 

electrodes. c & d) Soil horizons and placement of TDR probes (black triangles) for water content 

measurement in the control and water deficit plots. Figure is from Rao et al. and used under CC-BY 4.0 

License [134]. 

 

2.4.3. X-Ray Tomography 

X-ray imaging is familiar to most people from its use in medicine. Most commonly, this 

is done in a single plane, producing a 2D image of internal structures. Less commonly, 

the imaging plane is rotated several times, or the subject is rotated relative to the 

imaging plane. Using tomographic methods of back-projection, a 3D model is produced, 
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referred to as a CT scan (X-ray Computed Tomography). X-rays are photons, and the 

image is a map of the attenuation (or absorption by dense material), thus X-ray imaging 

is limited by attenuation – subjects that are too thick block out all the light and prevent 

an image capture. This is perhaps one of the main limitations of X-ray tomography for 

studying plant roots as soil quickly attenuates the photons, making sample diameter and 

image resolution two of the primary considerations. Nevertheless, several scientists have 

demonstrated the use of X-ray for imaging and analyzing root systems, the greatest 

advantage of which may be the entirely non-destructive nature and potential for temporal 

repetition. 

Heeraman et al. reported one of the earliest uses of X-ray tomography in imaging plant 

roots in 1997 [135]. Repurposing an industrial scanner, they scanned 14-day-old bean 

plants grown in 5 cm diameter tubes. The scans took 4.1 hours per pot and resulted in a 

3D image 5 cm diameter by 0.8 cm deep with a resolution of 0.16 mm per voxel. 

Compared to destructive sampling, the X-ray tended to overestimate total root length. 

Perret et al. later used a large volume scanner to image 21-day-old chickpea roots [136]. 

One goal of the study was to increase the sample volume, and they were able to image a 

cylinder 14 cm in diameter by 23 cm tall at a voxel resolution of 0.275 mm. They further 

developed software to detect and analyze the roots for number of laterals, volume, 

length, and others. Their method tended to underestimate root length compared to root 

washing, which they attributed to the scan resolution. In their 2012 review of X-ray CT, 

Mooney et al. noted that continually improving X-ray technology was achieving 

resolutions as small as 0.5 μm, or volumes up to 30 cm in diameter, while also 
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reiterating the tradeoff between resolution and sample volume [137]. They also found 

that advances in computing power have led to greater accuracy of root assessment with 

improved root tracing algorithms. Indeed, Mairhofer et al. presented their root tracing 

software RooTrak in 2013, followed by Pfeifer et al. in 2015, who repurposed 

commercial software and claimed a 50% reduction in computing time. Gao et al. 

introduced their software Rootine in 2019 [138–140]. Rootine is adapted from methods 

used in medicine to trace blood vessels, and is a shape-based segmentation approach. 

The authors claim a further 50% reduction in computing time, to just 3 min 40 s for a 

500 x 500 x 500 voxel model. Additionally, they report more complete detection, with 

only 1% underestimation of root length as compared to root washing. 

Koebernick et al. used X-ray to study the influence of root hairs on soil porosity in 2017 

[141]. Growing barley mutants with and without root hairs, they imaged volumes of 0.42 

cm diameter by 8 cm tall, with a resolution of just 0.005 mm. With such fine resolution, 

they were able to see an increase in pore space directly adjacent to the root hairs, as well 

as the resultant decrease in pore space 1 mm away. Additionally, they were able to 

estimate the pore size distribution and connectivity. Later, Helliwell et al. reported 

similar results for pea, tomato, and wheat [142]. In 2019, Kirk et al. used X-ray CT in 

flooded rice pots, along with soil gas analysis, to study the exchange of CO2 produced by 

root respiration [143]. Their 0.04mm resolution was fine enough to map aerenchyma in 

the roots and gas bubbles in the soil. Building models from their observations, they 

showed that rice roots are capable of venting CO2 at much greater rates than previously 

thought. 
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2.4.4. Magnetic Resonance Imaging 

Like X-ray scans, magnetic resonance imaging (MRI) is familiar from its common use in 

medicine. MRI is based on the same principal as nuclear magnetic resonance (NMR), 

but was rebranded to avoid negative associations with the word “nuclear” when it was 

adapted for medical imaging [144]. MRI is performed by creating a strong magnetic 

field around the subject, which causes the alignment of paramagnetic atoms within the 

field, including hydrogen atoms, which are abundant in all living things. Within the 

strong magnetic field, secondary magnets create weaker directional field pulses which 

‘tip’ the spin of the atoms for a short time, causing the atoms to emit a field that can be 

detected by radio-frequency receiver coils. Through the localization of the pulsed fields 

and array of receiver coils, the origin of emitted energy can be calculated and an image 

produced. The length of time each atom emits energy is called the relaxation time, and is 

affected by neighboring atoms and molecules, allowing for the differentiation between 

materials in the image [145]. Using multiple detector arrays results in a 3D image. In 

2015, Metzner et al. compared root imaging  by MRI and X-ray CT and concluded that 

MRI was more suitable for large pots, as it doesn’t suffer from the attenuation problem 

[146]. They also found better agreement to root washing for root length because it was 

easier to discriminate roots in MRI than X-ray, though the previously discussed 

advances in automated segmenting may change that result now. 
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Figure 2.10 A bean plant grown in a 34 mm diameter by 200 mm tall pot and imaged by X-ray CT and 

MRI at 23 and 24 days after sowing. A) The upper portion of the soil column, imaged by CT with a voxel 

size of 0.028 x 0.028 x 0.028 mm3, the roots highlited in red. B) The segmented root system of the same 

plant imaged by CT with voxel size 0.056 x 0.056 x 0.056 mm3. C) The same subset as (b) imaged one day 

later by MRI with a voxel size of 0.333 x 0.333 x 1.000 mm3, the larger dimension being vertical. The scale 

bar is 10mm. Figure is from Metzner et al. and used under CC-BY 4.0 License [146]. 

 

The use of MRI in plants is nearly as old as the technique, with Rogers et al. publishing 

one of the earliest studies in 1987 [147]. Recognizing the potential of ferromagnetic 

particles in soil to interfere with imaging, they tested 30 soils and 8 artificial potting 

media, and imaged the roots of bean plants. They reported significant image degradation 

when magnet fractions were over 4% by weight, and that non-ferrous natural soils 

tended to perform better than artificial substrates such as peat, even though the artificial 

media tended to have very low magnetic fraction. Rather significantly, they discovered 

that soil water was invisible to their scans because of the low relaxation time of bound 
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water, a phenomenon which was not repeated in the artificial media. Recently, Bagnall 

et al. demonstrated the potential of a low-field MRI device, which produces a primary 

magnetic field at a small fraction of the strength of standard MRI facilities [148]. They 

tested natural agricultural soils and were able to image plant roots in soil with >10% clay 

content, with magnetic fraction >4%, at resolutions of 0.63mm. While the capture times 

were extended because of the low power, and hence weaker response, the study 

represents an important increase in MRI capabilities for root studies. 

A 2016 study by van Dusschoten et al. using MRI found significant correlation of root 

mass estimation compared to root washing, which improved to 90% when small roots 

below the detection threshold were omitted [149]. They achieved a resolution of 0.73 

mm in an 11 cm pot and were able to estimate fresh root mass based on signal intensity, 

as well as root length, number of root tips, number of lateral roots, root angle, and root 

distribution, among others. They also imaged the rhizobium nodules of a young bean 

plant (32 days). They noted the possibility of studying the root systems of tuberous or 

storage root plants because of the large pot size. In 2020, Perelman et al. demonstrated 

the ability to map sodium ions (Na+) in soil and around roots [150]. They grew tomatoes 

in pots with saline soils, and imaged the roots and Na+ concentrations after 6 weeks. 

They found an association between high transpiration in the tomato plant with greater 

accumulation of Na+ in the taproot and distal Na+ depletion in the surrounding soil. The 

low transpiration treatment showed lower Na+ movement and less accumulation. 
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2.4.5. Ground Penetrating Radar 

Ground penetrating radar (GPR) is a geophysical method for studying subsurface 

features. It is commonly used in geoscience, civil engineering, architecture, and 

archeology [20]. GPR works by emitting a pulse of electromagnetic energy (EM) into 

the ground, where it is either transmitted, absorbed, scattered, or reflected. Reflection is 

caused by changes in dielectric permittivity. In agricultural soils, the primary drivers of 

dielectric are soil texture and water content, with water content having the greater 

influence [21]. In general, GPR systems consist of system electronics which generate 

and process the signal, a transmitting and receiving antenna or antenna array, and a 

computer-based control and capture software [18]. Each EM pulse returns a 1D signal 

trace called an A-scan. As the transect is measured, A-scans are stacked together to 

create a 2D image called a B-scan. If multiple lines are scanned side-by-side, or an array 

is used, the B-scans may be stacked into a 3D image, or C-scan [20]. The resolution 

depends on the ability of the system to distinguish closely spaced signal peaks, and will 

be determined by the wavelength and the sampling rate of the system, shorter 

wavelengths and faster sampling rate giving finer resolution. The smallest detectable 

object, or detection threshold, is determined by the signal frequency – the rule of thumb 

being ¼ wavelength. However, a tradeoff exists between frequency and attenuation, with 

higher frequencies being more quickly attenuated so that deep observations are not 

possible [21]. Unlike CT and MRI data, GPR data are in the time domain, and the 

images are not representative of spatial relations, making GPR data difficult to interpret 

visually. In many cases, GPR data are used qualitatively for the location of objects rather 
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than for quantitatively measuring objects [19]. 

 

Figure 2.11 An example of an air-launched (not contacting the ground) GPR antenna. This one is attached 

to a computer controlled gantry over a sandbox and used in controlled experimentation to develop 

methods of root measurement. Figure is from Delgado et al. and used under CC-BY 4.0 License [151]. 

 

The use of GPR for detecting plant roots is recent, with Butnor et al. being one of the 

earliest in 2001 [152]. Their research possibly launched the use of GPR for locating and 

quantifying tree roots, with at least 117 citations at the time of this review. In this study, 

a 1.5 GHz antenna was used to detect tree roots as small as 0.5 cm. They correlated GPR 

reflections to excavated root mass and found correlation coefficients ranging from 0.49 

to 0.55. The use of GPR in agriculture and row crops is significantly newer, with only 5 
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apparent publications by the end of 2020. The first peer-reviewed article was published 

in 2008 by Konstantinovic et al. [153]. They used an ultra-wideband antenna to detect 

and estimate the mass of sugar beets in the field. Mounting horn antennas to field 

machinery, they scanned rows of matured sugar beets. Using amplitude threshold 

methods, they were able to detect better than 90% of the beets. Then, using the detected 

position of the beats, they measured the amount of reflected energy at that point, and 

correlated it to fresh root mass, measuring correlation coefficients from 0.60 to 0.70 

(discreet numbers not reported). Curiously, it seems there was no follow up to this 

research, and the next published article is nearly a decade later, in 2017. Delgado et al. 

investigated the use of a small GPR system for detecting the onset of root bulking in 

cassava [8]. Cassava, being a tall bushy plant, is not suited to field equipment such was 

used by Konstantinovic et al. Therefore, Delgado et al. used a ground coupled system, 

which they passed in a tight grid on all sides of the plants, one plant at a time, for a total 

of 60 plants. The cassava was planted at staggered dates, giving a large range of bulked 

root sizes at the time of observation. Using amplitude threshold methods, they correlated 

pixel counts to root fresh mass, with R2 ranging from 0.51 to 0.77 within genotypes and 

0.63 across genotypes. Then, comparing predicted mass to actual mass within each age 

class, they demonstrated the ability to detect the onset of root bulking. Liu et al. used 

threshold analysis and intensity averaging to estimate root mass in a field crop, though 

they are the first to report significant results with fine root mass [154]. Working with 

wheat and energy cane, they found significant correlations, with R2 ranging from 0.12 to 
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0.54 at different locations. Contrary to general GPR wisdom, they found better 

performance in clay soils, possibly because the roots were more concentrated. 

 

 

Figure 2.12 An example of GPR data in the time domain. A) A single sample or amplitude value from the 

collected signal trace or A-scan. B) A collection of A-scans along transect create a B-scan, and can be 

represented as an image, the greyscale representing amplitude values. C) The collection of parallel 

transects is called a C-scan, and can be interpolated into 3D. In this example, bright and dark bands 

approximately 1/3 of the way down result from the strong reflection at the air/soil interface. Figure is from 

Dobreva et al. and used under CC-BY 4.0 License [155]. 

 

2.5. Conclusions and Future Directions 

The last few decades have seen an explosion in root research, advances in methods, and 

challenges to previous assumptions. However, the need still exists for a rapid, affordable 

method to assess roots in the field, without modifications to their growing environment. 

Lab methods have great power to measure numerous root traits, from angles to exudates, 

but are unable to effectively convey the effects of environment and are generally limited 

to very young plants. Additionally, the challenge remains to connect seedling 

observations to mature plants in the field. Pot methods can sometimes approach field 

conditions and offer observations of features such as lateral root development, but are 

still limited by the amount of space required to set up such experiments in greenhouses 
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or environmental chambers. Field observations remain the gold standard, and while 

some new methods have been developed, invasive or destructive observations are still 

required in the majority of studies. The abundance of field methods suggests researchers 

are still looking for the ideal solution which balances the need for descriptive results 

with resource and budget constraints. 

Some field methods have been developed or modified to address one of the widespread 

problem of balancing time and cost with high quality and representative data. Namely, 

minirhizotrons have become less expensive, and image capture technology, especially 

automation, has reduced the time required to collect data, allowing for increased 

samples. Shovelomics has similarly addressed the issue of time and cost, creating a high-

throughput method to analyze root crowns. Finally, image capture, recognition, and 

automated processing techniques have reduced the time requirement of nearly every 

method, a trend which will no doubt continue. Despite these innovations, significant 

drawbacks remain, including the intrusive and/or destructive nature of field methods. 

Non-invasive methods (mainly relying on electrical properties) have shown promise, but 

tend to be limited by resolution, cost, feature discrimination, or some combination of the 

above. X-ray imaging was once seemed poised to provide a comprehensive solution to 

phenotyping roots even in very large plants, with predictions of increasing sample sizes 

allowing large pots, and reduced cost allowing wider access; however, it seems the 

technology favored increasingly detailed scans with smaller sample sizes, and while the 

price has decreased over the decades, X-ray machines are still out of reach for most 

researchers. MRI has continued to improve resolution without the sample size limitation, 
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though scan time, throughput, and access are still a significant limitation. ERT, while 

promising, may not be able to produce the precision many researchers are looking for. 

The level of expertise required to perform and process ERT studies also places it outside 

the reach of many researchers. Capacitance and GPR measurements both suffer from the 

inability to distinguish root characteristics, and at the moment appear only able to 

estimate root mass, though it’s possible this could change with more investment. 

However, both GPR and capacitance could be considered or adapted to a high-

throughput method. 

Despite the large number or root observation methods and the recent advances, it’s clear 

that an ideal method for phenotyping roots in field conditions does not yet exist. The 

next decade will undoubtedly continue to see advances in root studies as new methods 

are developed to achieve fast, non-destructive sampling of belowground plant material. 

Researchers can build upon these previous studies to develop new root imaging systems 

that suit a variety of crops needed to meet rising food demands, as well as contribute to a 

more sustainable agricultural industry. In the meantime, a large variety of methods exist, 

each of which is well suited to specific study parameters and research goals. There is no 

“one size fits all” method for observing plant roots, and each scientist must carefully 

consider the strengths, weaknesses, and applicability of the current methods when 

planning their experiments. 
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Com- mons license, and indicate if changes were made. 
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3. EFFECT OF SOIL WATER ON GPR ESTIMATION OF BULKED ROOTS, 

METHODS AND SUGGESTIONS 

 

3.1. Introduction 

Recent publications have shown the importance of plant root systems in breeding for 

resilience and climate change [25–27, 156]. In addition to the importance of structural 

root systems, many crops are grown for their bulked roots or tubers, such as potato and 

cassava — two globally important crops. Cassava (Manihot esculenta) is a tropical plant 

grown for its starchy bulked roots. More than 800 million people depend on it as a staple 

food, and even more rely on it as an important source of starch [9]. It is commonly 

grown by subsistence farmers because it is hardy and harvest can be delayed until 

needed [10]. Cassava is the world’s fourth most important basic food crop and the global 

harvest has increased by more than 25% since 1999, nearly doubling in some regions [6, 

11]. Varieties commonly require 12 months or more before harvest maturity is reached, 

making early root maturity a primary factor in variety selection by farmers, and a major 

goal for breeders [6, 10, 157]. 

While many advances have been made in methods to study fibrous roots, few have been 

made to assist breeders of bulked root crops like cassava [27–29, 47]. Yield monitoring 

depends on point sampling or post-harvest metrics [158–160]. A relatively new method 

called shovelomics was successfully applied to cassava with some modifications, but it 

remains a completely destructive method with all associated disadvantages [108]. 

Cassava breeding is hampered by very low multiplication rates, and early trials may 
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have only 3 clones to evaluate, making it untenable to destructively sample the roots 

until it is certain they have bulked [6]. This highlights the continued need for non-

destructive methods to assay root crops. 

In 2017, Delgado et al. reported on the use of ground penetrating radar (GPR) for 

estimating cassava root mass and detecting the onset of root bulking [8]. A later 2019 

study by Delgado et al. furthered the work by performing high density scans on buried 

roots in a climate controlled sand box [151]. This study was able to approximate 3D 

models of the buried roots. GPR has also been used to estimate the root mass of sugar 

beet, wheat, and peanut [155, 161, 162]. GPR is a geophysical tool for detecting 

belowground features such as fault lines or buried utilities [21]. GPR works by emitting 

a pulse of electromagnetic energy into the ground, where it is either transmitted, 

absorbed, scattered, or reflected. Reflections are caused by changes in dielectric 

permittivity, a measure of how strongly molecules can be polarized. In agricultural soils, 

the primary drivers of dielectric are soil texture and water content, with water content 

having the greater influence by an order of magnitude. Therefore, the high water content 

of roots has the potential to reflect GPR signals. 

In general, GPR systems consist of system electronics which generate and process the 

signal, a transmitting and receiving antenna or antenna array, and computer-based 

control and capture software. GPR data are in the time domain, and the images are not 

representative of spatial relations, making GPR data difficult to interpret visually. This is 

because the GPR is directly measuring time-of-flight for the signal, the speed of which is 

controlled by the dielectric of the medium, such that the velocity (V) can be estimated by 
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the ratio of the speed of light in a vacuum (C) to the square root of the dielectric (ε) (see 

Eq. 1). In many cases, GPR data are used qualitatively for the location of objects rather 

than quantitatively [19]. Soil moisture has the effect of attenuating GPR signals; 

consequently, it is standard practice to prefer dry soil for GPR measurements [20]. 

However, in an earlier experiment which attempted to estimate fine roots with GPR, Liu 

et al. suggest that wet soil may improve data quality [154]. 

𝑉 =
𝐶

√𝜀
 

Equation 1 The velocity (V) of an electromagnetic wave is dependent on the dielectric (ε) of the medium in 

which it travels, and is relative to the speed of light in a vacuum (C). 

 

Delgado et al. (2017) used a small radar system which was carefully passed along the 

soil surface in a grid around each plant, and then measured the depth of each root to 

allow a supervised processing method. While this method serves as proof of concept, it 

is unsuitable for high-volume phenotypic evaluations common in the early-stage testing 

in plant breeding. GPR systems commonly use antennas which are in contact with the 

ground, called ground coupled. In agricultural systems, because of the soft, uneven soil, 

and the likelihood of standing plant mass, an air-launched antenna (antenna not ground 

coupled) is more appropriate. However, lifting the antenna from the ground has the 

potential to add observational error to the data. Air-launched antennas tend to suffer 

from increased ground clutter, which is the bright reflection caused by the interface of 

the air and soil, and any material at or near that interface, such as plant mass. 

Additionally, variations in the orientation of the antenna, whether caused by wobbling of 

the cart or other factors, can introduce variations in the measurement. Lastly, all GPR 
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systems potentially receive interference from outside sources, such as cell phone signals 

or other nearby instrumentation. These often can be minimized during the collection by 

stacking, which is the rapid and automatic collection and averaging of several GPR 

pulses. 

In this paper, we describe a field ready GPR system which is more suited to high volume 

applications in estimating bulked root mass by using an air launched antenna array. We 

describe preliminary experiments in controlled field settings using a model root crop, 

daikon radish, and novel data processing methods for extracting quantifiable data from 

GPR scans. Importantly, the effect of soil water was explored. We present methods for 

collection, and suggest some good practices which future researchers should consider. 

The strength, limitations, and future potential of GPR will discussed.  

 

3.2. Methods 

3.2.1. Location  

A raised bed of loamy sand was built in the Brazos River Bottoms, near Texas A&M 

University in College Station, Texas (Figure 3.1). The bed is built of concrete blocks, 

stacked approximately 2 meters high, and the bed is approximately 3.5 by 22.5 meters 

long. The soil is sandy loam, transported from nearby farmland, and is kept free of 

weeds, therefore, the soil is homogenous and without distinct horizons. The soil was 

broken with a shallow till, leveled, and settled by watering before experiments began. 21 

plots were measured out at 80 cm intervals, and marked off with stakes and string, then 

holes were carefully dug in the center of each plot. The holes were square shaped, 
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approximately 65 cm on a side, with flat bottoms and measured 15 cm deep from the 

surface. The number of plots was limited by available space.  

  

3.2.2. Root Mass 

Daikon radish were purchased from local grocery stores then weighed and labeled 

individually in random order. Daikon radish were used rather than cassava because of 

local availability, cassava being unavailable in the required quantities. Daikon radish 

Figure 3.1. Study was conducted in large raised beds filled with sandy loam soil. Plots were carefully 

measured and marked by string. 

 

Figure 3.2. Roots were placed horizontally to maximize the angle between adjacent roots, as space 

allowed. Plots contained between 1 and 5 roots. 
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were considered an appropriate model root because of similarities in size and shape. The 

roots were placed in the holes horizontally and arranged to maximize the angle between 

adjacent roots and mimic the root growth of cassava. The number of roots in each plot 

was varied between 1 and 5 to increase variation in plot mass and variation in root 

orientations (Figure 3.2). Enough roots were obtained to fill 19 plots. Per plot root mass 

ranged from 542 g to 2931 g. 

3.2.3. Sensors 

Campbell Scientific CS655 soil moisture sensors (Logan, Utah, USA) were placed in the 

first and last plots, at two depths: 5 cm and 20 cm. The sensors were inserted 

horizontally into the undisturbed soil on the side of the plots. Moisture levels were 

recorded before radar scanning. Additionally, 2 flat metal plates were place in the first 

and second plot at the same depths as the sensors, so that the plates straddled the root 

zone. These were meant to demarcate the root zone in the GPR data by acting as distinct 

reflectors. 

The radar sensor used was an experimental loaded-vee dipole array, manufactured by 

IDS Georadar (Pisa, Italy) [163–165]. The array consists of 4 transmitters and 4 

receivers in alternating pairs, each spaced 4 cm from adjacent antennas (Figure 3.3). The 

antennas are wideband with a center frequency of 1.8 GHz. The radar captures 512 

samples over 18 ns, and pulses every 1 cm, as measured by an encoder wheel. Channel 

configurations paired every antenna with its directly adjacent neighbor, giving a total of 

7 channels, each offset by 4 cm. The sampling time increases with the number of 

channels, and in this case prevented automatic stacking as that would result in lost data 
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due to hardware limitations of sampling speed.

 

Figure 3.3. The antenna array consisted of 4 transmit and 4 receive antennas, spaced evenly 4 cm apart. 7 

scan channels paired each antenna with its neighbors. Tx designates a transmitting antenna, while Rx 

designates a receiving antenna, Ch indicates a channel pairing. 

 

The array was air launched and mounted on a 4 wheeled cart that straddled the plots and 

placed the bottom of the antenna enclosure 39 cm from the ground surface (Figure 3.4). 

The antenna was pointed directly at the ground, and a plastic rod was attached at the 

center of the enclosure to give a ground indication of the nadir of the radar. The plastic 

rod indicated the center of the antenna at ground level, and was used as a reference for 

marking the plots digitally in the capture software.  
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Figure 3.4. The antenna cart had 4 wheels and straddled the plots. The antenna array was hung in the 

middle with a plastic rod on one side to indicate the position of the center of the array on the ground. 

 

Soil Moisture 

The experiment was scanned at 5 different water contents, beginning with a ‘dry’ state. 

Two oscillating sprinklers were placed in the field such that the sprays evenly covered 

the entire expanse without overlap. The sprinklers were measured to provide about 

13.5mm per hour by collecting water in two 5-gallon buckets placed in the sprinklers’ 

path. The sprinklers were run for times varying from 2 hours to 8 hours, then the field 

was allowed to rest between 4 and 48 hours before scanning, allowing surface pools to 

drain and attempting to let subsurface moisture equalize spatially. Table 3.1 shows the 

percent volumetric water content (VWC) of each treatment, and the standard deviation 

across the sensors. 
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Table 3.1 Average volumetric water content of each treatment, and the standard deviation as percent 

water, volume/volume basis. 

 

3.2.4. Capture 

The GPR cart was assembled in the field and given time to equilibrate to ambient 

temperatures. Before collecting data, several scans were passed across the entire transect 

to allow the electronics to “warm up”. More than 1 meter was allowed between the 

starting position of the cart and the first plot, and the ending position and the last plot, to 

ensure the radar captured the entire extent. Using the plastic rod (Figure 3.4 e) and string 

as an indicator, a digital marker (fiducial) was placed in the data in between each plot. 

The experiment was scanned 6 times for each treatment. 

3.2.5. Data Processing and Analysis 

Data was processed using GPR Studio version 1.0 (Crop Phenomics LLC, College 

Station, TX, USA (cropphenomics.com)), a Python software library developed for the 

quantitative analysis of GPR data. The software utilizes published data processing 

libraries and custom-built functions specific to GPR analysis. Analysis was conducted in 

two stages. 

In Stage 1, each scan was separated into plots based on the digital markers placed in the 

data during field capture. The plots were then filtered to only those containing roots. 

Data were subset to the approximate root zone, then passed through a Butterworth 

bandpass filter, removing noise below 0.5 GHz and above 1.05 GHz.  The 7 channels 

 No Irrigation Irrigation 1 Irrigation 2 Irrigation 3 Irrigation 4 

Average VWC 12.5% 17.3% 16.7% 18.6% 16.7% 

Standard Dev. 0.86% 3.68% 3.24% 3.11% 1.7% 
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were each standardized to themselves by subtracting the channel mean from each value, 

and dividing by the channel standard deviation, similar to how a statistical z-score is 

calculated. This removed offset differences between channels caused by automated 

signal calibration in the field. Standardized channels were then squared to move all 

values to the positive domain and minimize the background information which tends to 

gather about the mean, or 0 in standardized data. Channels were interpolated into a 3D 

cube using linear interpolation. A horizontal window, or time slice, 5 rows thick was 

passed from the top of the cube to the bottom, summing the amplitude in each window, 

which can be considered an indicator of total reflected energy in that window. Several 

window depths and alternative measurements, such as window variance, were tested – 

the most effective is reported here. Window values were correlated against observed root 

mass in each plot, the results filtered for p-value < 0.1, while also controlling for 

appropriateness in the depth of the window and consistency between observations. The 

depth with the lowest p-value was stored for further processing. The cumulative energy 

values for each plot were divided by the length of that plot, in scan columns, resulting in 

relative energy density. The workflow pipeline is shown in Figure 3.5 

 

 Figure 3.5. Stage 1 of the data processing workflow. 
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In Stage 2, the results of Stage 1 for repeated observations were averaged together to 

reduce observational variance. Table 3.2 shows the mean relative energy density per plot 

with the standard error of the mean (SEM), and the coefficient of variation (CV) for a 

selection of plots and treatments, demonstrating the observational variance in each 

repeated scan. Observational variance is an indication of noise in the data, which is a 

significant source of error here, and is further discussed below. Repeated observations 

help to remove the error through averaging. 

Linear regression analysis was performed between the averaged energy density and the 

observed root mass.  

Table 3.2. Observational variance per plot, the mean relative energy density for some of the plots and 

treatments, and the coefficient of variation. Plots are arranged in order of increasing root mass to aid 

interpretation. 

 Dry Irrigation 1 Irrigation 4 

 Mean C.V. Mean C.V. Mean C.V. 

Plot 1 7.03±0.31 10.7% 6.77±0.87 31.5% 4.71±0.42 19.8% 

Plot 4 7.11±0.29 9.8% 8.21±0.86 25.6% 6.44±1.05 36.3% 
Plot 8 8.04±0.23 7.1% 6.17±0.88 34.8% 5.85±0.76 29.0% 
Plot 12 7.03±0.30 10.3% 7.68±0.79 25.1% 5.90±0.76 28.7% 
Plot 16 8.42±0.40 11.5% 8.90±1.6 44.1% 5.90±0.62 23.4% 

Plot 19 8.44±0.33 9.6% 8.26±0.97 28.9% 10.22±1.4 30.7% 
 

The metal plates placed above and below the root zone were not identifiable in the radar 

data, possibly because of the type of paint applied to them. Therefore, it was not possible 

to use them to fine tune the root zone as had been planned. 
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Figure 3.6. Sample radargrams from Stage 1 of the processing workflow. In unprocessed GPR data, both 

white and black represent high amplitude energy reflections, albeit at opposite phase angles. Low energy is 

shown as grey. A - Raw data showing a single plot. Notice the surface reflection near line 200.  B- Plot 

cropped to the root zone, corresponds to lines 205 to 305 on left image.  C - Standardized plot. 

 

3.3. Results 

Our results demonstrate a significant relationship between reflected GPR signal and 

bulked root biomass. Additionally, the results demonstrate the importance of a 

homogenous dielectric environment in the soil, independent of water content. Lastly, we 

show that for relatively shallow agricultural studies, dry soil is not necessarily superior 

to wet soil for GPR measurement, a finding which supports the hypothesis of Liu et al, 

2018 [162]. 
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All treatments were significant at the p < 0.05 level after repetition averaging. The final 

treatment, which had the most homogenous wet soil but not the wettest, showed the 

strongest correlation with 63% explained variation, followed by the wettest treatment, 

then the dry treatment, which had the least variation in soil moisture. Larger variation in 

soil moisture decreased the strength of the correlations (Figure 3.7). Although the 

number of plots was low, the repeated measurements and multiple treatments reinforces 

the probability that GPR features are indicative of root mass and are not random. 

Dividing the sum of energy by the scan length modestly improved the correlations by 

adjusting for the effect of scan length, indicating that scan length was not a significant 

contributor to the correlations, but that variations in scan length introduced a small 

amount of error. 
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Figure 3.7 Correlation regression for all 5 treatments. Shaded area indicates 95% confidence interval 

based on 10,000 iterations of bootstrap testing. Note that Θ represents VWC. While the un-irrigated 

treatment had the lowest variation in VWC, the Irrigation 4 treatment had the strongest correlation, 

indicating the potential reduction of noise in wet soils vs dry soil. Irrigation 1 had the highest VWC 

variance, and the weakest correlation. 

 

The window depth of significant correlations varied slightly between treatments, which 

is expected as an effect of the varying dielectric. The depth of the dry treatment was 
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greater than the wet treatments, which is unexpected, and will be discussed below. 

Standard deviation of the plot size, as measured by scan lengths, was 2.86 cm, less than 

4% of the target plot length of 80 cm, and was randomly distributed in relation to plot 

number, observation, and treatment. Standard deviation between observations, within 

treatments, was not correlated to volumetric water content (VWC), variation of VWC, or 

plot biomass. The only exception for this is the Irrigation 4 treatment, in which relative 

energy density deviation was correlated to plot biomass at the p < 0.05 level. 

Table 3.3 Summary of the mean relative energy density of each treatment, the depth of best correlation, 

and the regression results. 

Treatment 
Mean 
Energy 

Energy 
σ 

Depth 
(rows) 

Pearson 
R r2 Slope Intercept p-value 

No 
Irrigation 7.422 0.954 66 0.645 0.415 458.7 -1901.7 0.0029 

Irrigation 1 7.326 1.513 40 0.530 0.281 238.1 -241.6 0.0195 

Irrigation 2 8.201 1.262 45 0.564 0.318 303.3 -984.9 0.0119 

Irrigation 3 7.007 1.270 40 0.653 0.426 349.2 -944.1 0.0024 

Irrigation 4 7.176 1.698 48 0.792 0.626 316.6 -769.3 0.000054 
 

 

3.4. Discussion 

Rapid estimation of bulked root mass is possible with GPR. These results show 

correlation strength up to 79% using these methods. Further, we have demonstrated that 

increased VWC can improve the detection of bulked roots, as long as the dielectric is 

homogeneous across the study. The bulk dielectric of soil is driven primarily by water, 

and the interfaces of dielectric change cause the reflection of GPR energy. With a 

sufficiently high signal frequency, soil structure has the potential to introduce noise in 

GPR data through the minute reflection and scattering of EM energy, driven by soil 

features such as compaction layers, aggregates, and pores. By increasing the VWC, 
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some soil pores fill with water, and the dielectric heterogeneities are reduced, leading to 

less noisy GPR data. Additionally, as the dielectric of the soil increases, the signal 

velocity reduces, effectively increasing the sampling resolution of the system, as the 

sampling is a function of time.  

These two factors may explain why increased VWC improved the strength of 

correlation. Indeed, we hypothesize that as VWC variance decreases, the strength of the 

correlation should increase, possibly maximizing the predictive potential near field 

capacity. Unfortunately, soils near field capacity are easily compacted, and are difficult 

to work in. Therefore, some compromise must be found to maximize predictive power of 

the GPR and minimize the impact and difficulty of field work. This optimal level of soil 

moisture is most likely dependent on soil texture, and could be expressed as a fraction of 

field capacity. Further studies in multiple soil types should lead to standardized 

recommendations of optimum water content for major texture groups. 

This study, like others before it, presents a supervised correlation – that is, the depth and 

mass of roots is known, so it becomes less difficult to determine the optimum depth of 

radar information to analyze. The window of analysis is relatively narrow – only five 

rows, or approximately 2 cm of soil depth – and selecting the correct depth without 

previous knowledge of the root depth is difficult at this time. As research continues, it 

may become possible to distinguish the zone of highest information density, and 

researchers are already working towards that goal [155]. In this study, however, the 

noise was too great to establish the root zone from only GPR data. For this application, 

noise may be considered as all recorded energy which is not reflected by plant roots. As 
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discussed earlier, GPR systems record all intercepted energy in the antenna range, 

regardless of the energy source. Noise may also be generated within the GPR system 

itself, and there has been some indication that the prototype system used here is not 

immune to this type of noise. This can be reduced by careful engineering, and through 

data filtering, if the inherent noise has been characterized. Other sources of noise include 

reflections and scattering caused by variations in soil structure, stones, clay clods, 

surface roughness, and above-ground biomass. Because we placed roots in the soil, 

rather than growing them, aboveground biomass was not an issue in this study, but has 

been in other data which are not yet published. 

As noted, the soil type and water content have a large effect on GPR data. This variation 

makes it difficult to build a unified correlation between studies, fields, or even dates. As 

such, GPR remains a relative measure of root mass, suitable for ranking within a single 

field and date, otherwise requiring a specific calibration at each use. It remains possible 

that a correction factor could change this. Inclusion of multiple blank plots in the study 

may provide that correction factor, such that data can be normalized to the feature values 

of the blank plot, accounting for the soil type and moisture content. Further studies are 

planned to investigate this possibility. Without locational correction, GPR data may still 

be used to rank plots for genotype, and rankings may be compared across locations 

and/or time. 

These results demonstrate the effect of soil moisture not just on the ability to pick out 

roots, but also the effect on the method. As mentioned in the results, the depth of best 

correlation was deeper for the dry treatment than the irrigated treatments, which was 



75 

 

unexpected. GPR energy is reflected at the interface of dielectric contrast. When the 

object causing the reflection, such as a root, has sufficient diameter, the reflection may 

happen at both interfaces on the signal vector – that is, it can reflect from both the top 

and bottom of the root. In other uses of GPR, the thickness of large objects can be 

estimated by measuring the distance between the top and bottom reflection. In this study, 

however, discreet returns were not observed; rather, the total reflected energy for a 

volume was measured. It is possible the reflected energy in the dry treatment was more 

intense at the bottom of the root, whereas the irrigated treatments reflected primarily 

from the upper interface. In all treatments, a nearly continuous range of window depths 

showed significant correlation to root mass, indicating that information about the root 

mass was present across a depth corresponding approximately to the root diameters. This 

also suggests the possibility of some distinct characteristic for that region, such that it 

may be possible to find that region using machine learning techniques, so that supervised 

correlation is no longer required, and furthering the usefulness of GPR as a predictive 

tool. 

In 2019, Delgado et al. reported a similar study designed to test commercially available 

GPR models in bulked root imaging [151]. A C-Thrue GPR system (IDS Georadar) was 

mounted to a computer controlled gantry and passed over a climate controlled sandbox. 

Cassava roots of varying sizes were buried at orientations parallel, orthogonal, and 45° 

to the scan direction. A single antenna pair was passed in transects at 2.5 cm intervals 

over the sandbox, with signal pulses every 0.2 cm. The GPR data were interpolated to 

form 3D models of the buried roots and interpolated image dimensions were compared 
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to physical dimensions. The study illuminates several important factors for the 

application of GPR to root measurement, namely, the superiority of vertical antenna 

polarization over horizontal, and the effect of root orientation on measurement accuracy. 

However, the study differs significantly from the current – the focus was on 3D imaging 

rather than mass estimation, a single antenna pair was used in a high-density grid rather 

than an antenna array, the antenna was ground coupled rather than air-launched, and the 

soil medium was air dry such that no effect of soil water content was studied. Finally, 

the data collection method was not appropriate for high volume phenotyping. 

The application of GPR for the quantification of roots is still in its infancy, and 

significant research is required before it can be used as a predictive tool. We have shown 

here that GPR data contain information about root mass, but it is also clear that other 

factors influence the data, and noise is a problem. Radar data is highly sensitive to 

processing parameters, such that adding or removing a step readily effects correlation. 

The presented methods utilized a multi-channel radar to rapidly collect 3D information. 

To produce the 3D information, the channels were interpolated using simple linear 

interpolation. Similar to other 3D data, such as LiDAR, care must be taken to align the 

interpolated entities. In the case of GPR, the primary point of alignment is usually the 

soil surface, because it is discrete and constant. In this study, the field was level, and the 

antenna was facing straight down at nadir, resulting in well-aligned channels with 

consistent positioning of the surface between channels. This is not always possible. In 

many cases, the antenna array cannot pass directly over the center of the root mass 

because plants are still present, so the antenna may be angled to point towards the plant 
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center. Additionally, errors in channel calibration can produce small offsets that change 

the apparent height of the antenna relative to the ground surface. Finally, uneven ground 

surface can cause differences between channels. In these cases, the ground surface must 

be identified in each channel so they can be aligned before interpolation, as described by 

Dobreva et al [155]. Automated methods of identifying the ground surface would greatly 

reduce the time required for channel alignment. 

Though each application will have its unique problems, there remain several constant 

considerations which we suggest become standard practice when using GPR to measure 

roots. Foremost among these is to understand your radar system. Unlike visual tools such 

as LiDAR, GPR emissions are not highly focused and are generally shaped like an 

ellipsoid bubble, meaning the energy extends in front of, behind, and to the sides of the 

antenna. This is why at least 1 m was allowed between the cart and the first study plot, 

so that initial readings would be outside the plot. This also means care must be taken for 

transitory reflectors, such as workers, to not enter the volume of sensitivity while 

collecting the data. 

GPR data are highly dependent on the dielectric of the soil; therefore, it is strongly 

recommended that dielectric measurements always be made at the time of scanning. This 

can be done in many ways, such as measuring dielectric directly with a probe, measuring 

water content and converting using the Topp equation, or by burying a reflector at a 

known depth, which allows a velocity estimation by dividing the known depth below the 

surface by the difference in signal time from the surface to the reflector [20, 166]. 

Knowing the dielectric, or the signal velocity (see Eq. 1), allows the conversion of data 
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from the time domain to the space domain, enabling estimation of depth. Further, some 

GPR processing techniques require these parameters. Many studies will be interested in 

the root mass at certain depths, as is currently measured with destructive techniques. 

This is only possible if the signal velocity is known. 

Published methods to date have relied on measuring reflected energy, whether by 

amplitude threshold and pixel counting, or summations of other features. These 

techniques are inherently tied to the volume of soil analyzed, meaning that plot size will 

auto-correlate with feature count. Plot size must therefore be carefully controlled. In this 

study, plot size was controlled in the field through careful measurement and marking. 

Other studies have controlled plot size by cropping the data, and others have controlled 

by conversion to either feature density, root density, or both. We recommend the former 

whenever possible, as it protects the integrity of the data. However, current root 

phenotyping methods frequently use root density as a measurement and is acceptable to 

many researchers [167]. 

Whichever way the plot length is controlled, the data must be related to the field. Some 

GPR systems are capable of integrating GPS data into the scan data, while others can 

utilize digital markers. Some have neither capability, thus plot positions must be derived 

another way, possibly by placing reflectors at plot ends. Experience dictates caution in 

the latter method – the reflector must be easily identifiable in the radargram, and 

reflectors placed on the soil surface are easily lost in the surface reflection. In such cases, 

an aerial reflector is recommended. 



79 

 

Finally, based on the results of this study, care must be taken to ensure homogeneous 

dielectric environment at the time of scanning. Depending on the hydraulic conductivity 

of the soil, several days may be required after an irrigation event. 

3.5. Conclusion 

The use of GPR technology to quantify root mass in agricultural fields is still very young 

and is yet to be widely accepted. However, interest is growing as more studies are 

published showing the potential. With up to 63% explained variability (r2=0.626, 

r=0.792), this study confirms previous publications, and demonstrates the feasibility of 

an air-launched antenna array for rapidly collecting GPR-based root estimations. 

Further, it is the first study to show improved data quality for wet soil over dry soil. It is 

novel in demonstrating the importance of dielectric homogeneity for estimating root 

mass. Though this study was small and should be confirmed with more samples, it 

serves as a proof of concept that merits further investigation. Importantly, we have 

demonstrated considerations in the use of agricultural GPR and begun the work of 

establishing a standardized method. 
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4. NON-DESTRUCTIVE GPR ESTIMATION OF CASSAVA ROOT MASS 

 

4.1. Introduction and Background 

More than 800 million people depend on Cassava (Manihot esculenta Cranz) as a staple 

food crop and it is the 3rd most important source of calories in the tropics [9, 11]. 

Throughout the tropics, cassava is frequently grown by subsistence farmers as a drought 

resistant crop, and is now increasingly grown as a cash crop for its unique culinary 

starch properties [10, 168]. The adoption of improved varieties by smallholder cassava 

producers in Nigeria has led to a measurable reduction in poverty levels [169]. Once 

considered an orphaned crop with little investment, cassava is now a major interest for 

several national and international crop improvement centers, and has shown a 150% 

increase in yield since the 1970’s [170]. Despite all this, phenotyping tools to monitor or 

predict yield before harvest are seriously lacking, and the lack is hampering breeding 

efforts [6, 108]. The deficit of tools exists because cassava is a root crop. 

Phenotyping and yield prediction tools abound for crops with aboveground yield, but 

root and tuber crops have been left in the dark [171–173]. Attempts have been made to 

predict belowground yield from above ground parameters with varying degrees of 

success [174–176]. Other methods remain destructive, limiting usefulness for breeders 

and researchers who are often restricted by cassava’s vegetative propagation to small 

plant numbers [108, 170]. Yield prediction and monitoring are important aspects of 

cassava breeding for several reasons: many varieties of cassava require 12 months or 

more to produce a full harvest, making selection of early genotypes a major goal for 
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breeders and because the reproduction rate of cassava is very low, destructive 

monitoring for early bulking is unavailable [157, 170]. Due to these constraints, a rapid 

non-destructive method to estimate bulked root mass continues to exist. 

Ground penetrating radar (GPR) is a geophysical tool that uses electromagnetic 

reflections to explore below ground features and has been proposed as a solution for 

estimating bulked roots in agricultural fields. This application of GPR is still in its 

infancy but represents a growing field - GPR has been significantly correlated to root 

mass in cassava, wheat, energy cane, sugar beet, and peanut [8, 153–155]. With more 

research, it promises to be an effective tool for non-destructive monitoring of root and 

tuber crops, including cassava [170]. 

GPR works by emitting a pulse of electromagnetic energy into the ground, where it is 

either transmitted, absorbed, scattered, or reflected. Reflected and backscattered energy 

is recorded along with the time from the pulse. Reflections are caused by changes in 

dielectric permittivity, a measure of how strongly molecules can be polarized. In 

agricultural soils, the primary drivers of dielectric are soil texture and water content, 

with water content having the greater influence by an order of magnitude [19]. 

Therefore, the high water content of roots has the potential to reflect GPR signals. The 

reflections caused by roots are measured as the compound waveform caused by the 

constructive and destructive interference of all other reflections simultaneously being 

received by the GPR antenna, making the extraction of the root information non-trivial. 

As GPR is a mature technology in other fields, methods for processing GPR data exist, 

but tend to focus on a qualitative analysis, such as the location of belowground features 
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or objects. Quantitative analysis of GPR reflections is less common. For a further 

explanation of how GPR works, we refer the reader to the referenced publications on 

that topic [20–22, 177]. 

In 2021, Teare et al. presented a foundation on which to build common methodology for 

agricultural GPR, discussed some of the limitations, and suggested some directions for 

future work [178]. In this paper, we follow the data processing method they proposed 

and build upon it using GPR data collected from a cassava field trial in Cali, Colombia. 

We demonstrate significant correlation between extracted GPR features and bulked 

cassava root mass in four contrasting genotypes. 

4.2. Methods 

4.2.1. Location and Planting 

The cassava field was located on the campus of the International Center for Tropical 

Agriculture (CIAT) near Cali, Colombia. The soil texture borders between loam and clay 

loam, with a gradient running north-south, the north having slightly greater clay content 

and the south having greater sand content. An aerial image of the field captured 3 

months before harvest is shown in Figure 4.1. 

Four cassava varieties were planted in four replications, with the replications running 

along the soil texture gradient. The varieties were GM3893-65 from the CIAT breeding 

germplasm, CM523-7, MPER-183, and HMC-1, commercial varieties popular in 

Colombia. Each plot or replicate was made of 5 rows, with 9 plants per row. Planting 

was done at the end of December 2017 using fresh stems. The field was kept weed free, 

irrigated, and fertilized as needed until GPR scanning in January 2019. 
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Figure 4.1 Replications ran across the major soil gradient. The difference in branching habits between 

genotypes is apparent in this aerial photo. Photo was captured 3 months before harvest. 
 

4.2.2. GPR Sensor 

The radar sensor used was an experimental loaded-vee dipole array, manufactured by 

IDS Georadar (Pisa, Italy) and has been previously described [163–165]. The array 
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consists of 4 transmitters and 4 receivers in alternating pairs, each spaced 4 cm from 

adjacent antennas (Figure 4.2). The antennas are wideband with a center frequency of 

1.8 GHz. The radar records 512 samples over 18 ns, and pulses every 1 cm, as measured 

by an encoder wheel. Channel configurations paired every transmit antenna with an 

adjacent receive antenna, giving a total of 4 channels, each offset by 8 cm, as shown in 

Figure 4.2. 

 

Figure 4.2 Arrangement of GPR antennas and the configuration of the data channels. Red triangles are 

transmitting antennas and blue triangles are receiving antennas. 
 

The array was air launched and mounted on a 2 wheeled cart that moved along each 

plant row (Figure 4.3). The antenna was angled towards the center of the plant row, such 

that the look angle was 30 degrees off nadir. The highly branching genotypes required 

some branches be pulled back to allow the cart to pass. 
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Figure 4.3 The GPR cart ran on two wheels and carried the antenna array approximately 35 cm above the 

ground, allowing the array to be angled towards the center of the plant. The bycicle-like configuration 

allowed the cart access between plant rows. Some branches required lifting to allow passage. 
 

Data Collection 

The GPR cart was assembled at CIAT headquarters and transferred to the field, giving 

the electronics time to equilibrate to the temperature and humidity. Preliminary scans 

were collected on the border rows to allow the electronics to “warm up” before 

collecting experimental data. GPR capture was started with the front wheel adjacent to 

the first plant so that the forward looking nature of the antenna could capture the entire 

plot. Digital markers (fiducials) were placed in the data to mark the beginning and end of 
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each plot. All five rows were scanned in each plot. The field was only scanned one time 

because of time constraints. 

Plants were harvested immediately after scanning was completed to avoid any change in 

root mass. Experienced field workers harvested the roots according to the standard 

method employed at CIAT. The fresh root mass of each plant was weighed in the field 

using a portable scale. 

4.2.3. Data Processing and Analysis 

Data were processed using GPR Studio version 1.0 (Crop Phenomics LLC, College 

Station, TX, USA (cropphenomics.com)), a Python software library developed for the 

quantitative analysis of GPR data. The software utilizes existing data processing libraries 

combined with custom-built functions specific to GPR analysis. Analysis was done in 

Python using the SciPy and Scikit-learn libraries. The workflow is summarized in Figure 

4.4 below.  

 

Figure 4.4 Data were processed and analyzed in a single flow using Python libraries. 
 

Each scan was separated into plot rows using the digital markers placed during the data 

acquisition, then organized into a database according to genotype. Two of the channels 

exhibited significant noise and were discarded. Background correction was performed by 

mean subtraction filter, which corrected for banding noise inherent to this GPR system. 
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Using an automated surface detection algorithm, the data were subset to the approximate 

root zone, removing the ground surface reflection. Gain correction was applied to 

compensate for energy loss with signal depth and prevent bias in the model due to 

rooting depth. Each channel was then standardized to itself by subtracting the channel 

mean from each value, and dividing by the channel standard deviation, then squared to 

move all values to the positive domain and minimize the background information, as 

described in Teare et al. [178]. Standardization was only applied within channels, not 

between channels. 

 

After standardization, the channels were interpolated into a 3D data cube via linear 

interpolation. A sliding window was passed from the top of the cube to the bottom, as 

shown in Figure 4.6. The window was 5 samples (image rows) thick, representing 0.175 

ns of signal capture, or between 1 and 2 cm of soil depth depending on soil dielectric. At 

each depth, four features, or predictors described below and summarized in Table 4.1, 

were calculated within the window. These features carry information about the reflected 

energy and the below ground cause of the reflection. Feature 1 is the sum of all signal 

Figure 4.5A - A single channel of raw GPR data. 5B - Automatic surface detection was used to remove the surface 

reflection and subset the data to the approximate root zone. 5C - Signal gain was applied to offset the effect of 

energy loss with depth. 
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amplitude within the window, and can be considered an indicator of the total reflected 

energy. Feature 2 is the standard deviation of signal amplitude, and can be considered a 

measure of the heterogeneity of the subsurface at that window location. Feature 3 is the 

mean of all signal amplitude, divided by the standard deviation, which is a measure of 

noise caused by the background soil matrix. Feature 4 is the inverse of the maximum 

amplitude, a parameter which may help control for outliers. These features are collected 

at either the genotype or field level and scaled between 0 and 1 within that group.  

Table 4.1 Summary table of the GPR features extracted from the sliding window. 

Feature 1 Feature 2 Feature 3 Feature 4 

Sum of amplitudes Standard deviation 

of amplitudes 

Amplitude mean 

divided by the 

standard deviation 

Inverse of the 

maximum 

amplitude 

The scaled features are passed into a ridge regression model with the observed root 

masses, and the model is built using 10-fold cross-validation repeated 4 times, then the 

model performance is evaluated. Ridge regression was used to protect against bias 

caused by collinearity between predictors. The model is built and evaluated at each 

depth of the sliding window. Those depths which produced a correlation with p-value 

less than 0.01 are saved with the model inputs and outputs. For each genotype, the depth 

which produced the strongest correlation is selected as most representative of the true 

root depth then saved for further analysis. This process will be discussed further below. 
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Figure 4.6 A sliding window 5 rows thick was passed from the top of the interpolated GPR data cube to 

the bottom, calculating indepent feature values at each depth. 
 

Data were analyzed at both the genotype level and the field level. When considering the 

field level, two methods were used. The first evaluated the entire field as a single body, 

causing each genotype to use the same sliding window depth. The second method used 

the optimal depth previously calculated at the genotype level, accounting for genotypic 

differences in rooting depth. 

4.3. Results 

The genotypic effect on harvest mass is easily evident in the harvest data, with MPER-

183 producing the greatest root mass, and GM3892-65 the lowest. The distribution of 

harvest mass for each genotype overlaps with the others, to create a wide and nearly 

continuous variation in root mass from 6 to 63 kg per row. This overlap in distribution is 

displayed in Figure 4.7 below, and is significant because it reduces gaps in model 

training data. 
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Our model prediction results demonstrate a significant relationship between the reflected 

GPR signal and the bulked root mass of cassava plants. Figure 4.8 below illustrates the 

relationship between each feature and the root biomass. The scatter matrix shows the 

relationship between each component of the model in piecewise fashion, each 

component occupying both a column and a row, the intersection displaying the 

scatterplot relationship between. The lower triangle groups the genotypes together and 

fits a linear regression line to display the correlation coefficient of each component. Note 

the high correlation between the GPR features, demonstrating the need for penalized 

regression to protect against bias and overfitting. The upper triangle shows the data by 

Figure 4.7 The distribution of root mass by genotype. This shown as a kernal density plot, which smooths 

the distribution between bins, but simplifies the display making interpretation easier. 
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genotype, illustrating how genotypic variation serves to cover a wider spectrum than any 

genotype alone. The bottom row and the last column show feature relationships to the 

observed root mass, while the top row and first column show the predicted root mass. 

 

Figure 4.8 A scatter matrix showing the relationship between each feature and individual relationships to 

root mass. Correlation values are calculated by simple linear regression between the values shown. 

Shaded areas represent the 95% CI of the mean calculated by 10,000 iterations of bootstrap resampling. 
 

Model correlation to observed root mass was significant at the p < 0.005 level within all 

genotypes and between all genotypes. CM523-7 showed the strongest correlation, likely 

driven by a single low weight sample acting as a leverage point, and also the shallowest 

roots. MPER-183 had the weakest correlation, possibly because of high phenotypic 

variation in the roots. Correlation between genotypes reduced significantly compared to 
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within genotypes when calculated from a single window depth, but remained high when 

the model was built using GPR features for each genotype were derived at representative 

window depths. The regression coefficient between predicted and observed values 

compares favorably to a 1:1 line, indicating little tendency to favor either under or over-

estimation. 

Figure 4.9 Regression plots between the observed root mass and the model predicted root mass, 

demonstrating the accuracy of the model. The top 4 plots show the model at the genotype level, while the 

bottom 2 plots show the model at the field level. Model at the bottom left used features extracted at the field 

level, with no window depth adjustment between genotypesShaded areas indicate the 95% C.I. of the mean 

based on 10,000 iterations of bootrapping. SE = Standard Error of regression. 
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4.4. Discussion 

Reflected GPR energy contains information about cassava bulked root mass, making the 

estimation of that mass possible. Our results show correlation strength up to 83% within 

a single genotype, and 73% between 4 genotypes. Importantly, this demonstrates that the 

generality of the model extends to multiple genotypes. However, it remains to be seen if 

the model can be generalized between locations, and especially divergent soil types and 

soil moisture. This must be a focus of future work – if the predictive model cannot be 

made robust against location or soil conditions, a calibration would be required for 

nearly every application. The model may even need to be retrained for different soil 

moisture conditions within the same field. We therefore recommend further work 

exploring this aspect of agricultural GPR; it is entirely possible that a correction factor 

may be found to account for varying soil moisture or even varying soil textures. One 

such solution could be the inclusion of no-root control plots in every acquisition. These 

control plots could be used to standardize the radar data to the soil conditions present at 

that time and location. Another possibility lies in adding a soil moisture parameter to the 

model, which would require the measurement of soil moisture at each application, 

though it is possible the radar system itself could be used to estimate that parameter 

[179, 180]. 

This report represents the first non-destructive use of GPR for cassava root estimation as 

previous authors removed plant stands to aid data capture [8]. However, like the 

preceding reports, this method requires a supervised method for determining the correct 

root depth to optimize the model. In this case, we require the correlation of features from 
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several depths to observed root mass. Even so, the model built from a single window 

depth (Figure 4.9, bottom left) resulted in a small standard error of 0.18. Reliance on 

supervised root depth detection is a weakness when considering GPR as a predictive 

tool; however, the application is still in its infancy – future work will undoubtedly 

present a method to predict the correct depth without a priori knowledge of root mass or 

depth. Indeed, we hypothesize that a machine learning model could be trained to 

recognize the proper depth using the derived GPR features described above, and perhaps 

other features. Such a tool would allow for the use of the ideal depth on each sample, 

leading to even more robust models. 

The smallest usable sample in this study was a plot row because the individual plants 

were not reliably discernable within the GPR data, therefore, each sample represents up 

to 9 plants within a single plot row. Because the repetitions were planted across the soil 

texture gradient, models for each genotype include samples from the range of soil type. 

Previous publications suggest model specificity to soil textures and moisture content, 

which if true, could explain some of the error in our models [8, 178, 181]. However, it’s 

also possible the standardization of the channels in processing, and the transformation of 

the extracted features for model building help to counteract that effect. Further work is 

planned to explore whether this model will continue to perform well when considering 

more varied soil conditions. As it is now, GPR models for root mass estimation should 

not be considered as generalized to multiple locations. 

We have suggested here two directions for future work, the automatic detection of root 

depth without prior knowledge of the roots, and the generalization of predictive models 
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across locations and soil conditions. While these directions focus on processing and 

modeling, further research is also required in agricultural GPR hardware. Optimization 

of antenna design, frequency, and arrangement could improve the suitability to widely 

varying field conditions while simultaneously reducing error, thus increasing the 

usefulness of GPR as a predictive tool.  

4.5. Conclusion 

The methodology and results presented here support and build upon previous 

publications, especially those of Delgado et al. and Teare et al. [8, 178]. They represent 

an important milestone in the development of a non-destructive agricultural GPR 

instrument and data analysis method for cassava. The use of GPR for estimating the 

bulked root mass of agricultural crops is still in its infancy and significant investment 

and research will be needed before breeders will be able to use it reliably. However, 

interest among researchers and breeders is increasing, and progress is continuing. 

With up to 69% explained variability (r2=0.689, r=0.83) and standard error as low as 

0.06, this study is beginning to approach a level of accuracy which will allow the high-

throughput nature to overcome the error when used in multi-location heritability studies 

[182]. The continuing improvement of agricultural GPR will enable cassava breeders to 

evaluate breeding trials for early bulking, among other traits, and contribute to food 

security throughout the tropics. 
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5. CROSS LOCATIONAL VALIDATION OF THE RELATIVE ENERGY 

DESNITY MODEL FOR ESTIMATION OF BULKED CASSAVA ROOTS WITH 

GPR 

 

5.1. Introduction 

Cassava (Manihot esculenta Cranz) is a tropical shrub grown mainly for its large starchy 

roots. Often considered a food security crop, cassava accounts for a large portion of 

daily caloric intake for over 800 million people globally [9]. Recent years have seen the 

adoption of the crop into the industrial supply chain as a major source of plant starch in 

manufacturing [183]. Besides being tolerant of poor growing conditions, cassava has a 

long harvest window between 6 and 24 months after planting, however, maximum root 

mass generally occurs at 12 months [7]. This long maturity period is a significant 

challenge for producers and breeders, exacerbated by the low reproduction rate of the 

vegetatively propagated crop [6]. Early maturity is therefore a major goal for cassava 

breeders, but is hampered by the inability to estimate root mass without destructive 

harvest – something untenable in trials with as few as 3 plants per genotype [170]. 

Therefore, the need exists for a method to non-destructively estimate cassava root mass, 

and ground penetrating radar (GPR) has been proposed as such a method [8]. 

GPR has been used for some time in the detection and mapping of coarse tree roots 

[152]. More recently it has been used to estimate the root mass of agricultural crops, 

including sugar beet, wheat, peanut, energy cane, and cassava [8, 155, 161, 162, 178]. 

These studies showed that GPR data taken in an agricultural field contains information 
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about the plant root mass, and demonstrate the potential to predict root mass from GPR 

data. However, the authors also acknowledge that further development is needed to 

achieve the high precision required of phenotyping tools used by plant breeders and 

researchers. Each of the studies was somewhat limited in size, with few, if any, 

replications in different locations. It has been noted that GPR prediction models are 

likely tuned to local soil conditions such as texture and moisture, and as such, may not 

generalize well [8, 181, 184]. 

GPR works by emitting an electromagnetic (EM) pulse into the ground. The energy is 

either transmitted, scattered, absorbed, or reflected by the subsoil features, including root 

mass. Reflection is caused by changes in dielectric, a property which describes a 

materials ability to be polarized at the molecular level. Therefore, in a uniform material, 

such as air, there is no significant interaction between the EM energy and the material, 

and no reflections would be recorded by a GPR. Agricultural soils, however, are far from 

uniform, and EM scattering and reflection are caused by variations in texture, structure, 

aggregates, soil water, roots, and more [155, 178]. Additionally, the amount of 

interaction between the EM energy and subsoil features will be affected by the GPR 

frequency, with higher frequencies (smaller wavelengths) interacting with smaller 

features [20]. These characteristics of GPR data in agricultural soils result in a large 

amount of noise, that is, energy reflections not caused by root mass. Thus, predictive 

models which do not account for variability in soil conditions may not generalize well 

across locations. 
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In this paper, we build a root mass prediction model for cassava using GPR data 

collected at two distinct locations. We then test the performance of the models across the 

locations. 

5.2. Methods 

5.2.1. Location 

Cassava fields were planted and maintained at the Center for International Tropical 

Agriculture (CIAT) in Cali, Colombia, and at the International Institute of Tropical 

Agriculture (IITA) in Ibadan, Nigeria. The soil at CIAT is loamy, bordering on clay 

loam, while the soil at IITA is sandy loam, with frequent ironstone concretions and some 

gravel. Both soils are tropical derived savannah. 

At CIAT four cassava varieties were planted in four replications. The varieties were 

GM3893-65, a CIAT breeding line, CM523-7, MPER-183, and HMC-1, commercial 

varieties. Each plot was made of 5 rows, with 9 plants per row. Plant spacing within row 

was 1 m, and between row spacing was 2 m. Planting was done at the end of December 

2017 using fresh stems. The field was kept weed free, irrigated, and fertilized according 

to standard practice at CIAT until GPR scanning in January 2019. 

At IITA, three cassava varieties were planted in 3 replications with 7 planting dates. The 

varieties were TMEB419, TMEB693, and IBA070539, all sourced from IITA 

germplasm. The plots consisted of 6 plants per row, and 5 rows per plot. Plant spacing 

within rows was 0.8 m, and between row spacing was 1 m. A staggered planting design 

was utilized to increase root mass variation at harvest. Planting 1, consisting of 3 

replications for each of the 3 varieties, began in June 2018, the subsequent 7 plantings 
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occurred every 3 weeks, with 3 replications for each of the 3 varieties. The field was 

kept weed free and irrigated, but no fertilizer was applied, according to standard practice 

at IITA, until harvest in April 2019. 

5.2.2. GPR Sensor 

The GPR sensor used an array of loaded vee dipole prototype antennas, developed by 

IDS Georadar (Pizza, Italy). The antennas have been previously described [163, 165]. 

The array was air-launched on a two wheeled cart which also carried the electronics and 

data collection portion of the GPR system. The GPR system is wide-band, centered at 

1.8 GHz, with 4 transmit, and 4 receive antennas in the array, each spaced 4 cm from its 

neighbor. In both locations, data channels paired each transmitter with the immediately 

following receiver, so that there were four equally spaced channels centered 8 cm apart 

(see Figure 4.2 above). The system was configured to collect a data trace every 1 cm of 

travel, as measured by an encoder wheel. The time window was 18 ns, and 512 samples 

were collected per trace, or one sample per 0.035 ns. Because the plants were too tall to 

move the cart directly over, the cart moved along side each row, and the antenna was 

angled towards the bases of the plants, or approximately 30° up from nadir (Figure 5.1). 
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Figure 5.1 The GPR cart traveled on 2 wheels to accommodate the narrow row spacing, but still required 

some branches be pulled back to allow passage. The electronics were mounted on top, the tablet computer 

at the rear, and the antenna slung beneath at an angle towards the plant row. 

 

5.2.3. Data Collection 

At both locations, the GPR cart was assembled before transport to the field, allowing 

time for the GPR system to come to equilibrium with outdoor temperature and humidity. 

Several preliminary scans were performed to “warm up” the antenna before scanning the 

fields. Data collection began outside the plot row, and digital markers (fiducials) were 

placed in the data to mark the start and end of each plot. The fields were scanned only 

once because of time constraints. At IITA, only the inner 3 plot rows were scanned, but 

at CIAT all rows were scanned. Scanning is performed by walking the GPR cart along 



101 

 

the plant row while the data collection program is running. Plants were harvested 

immediately after GPR scanning was completed. Harvest was performed by experienced 

field technicians according to the standard practice at each research center, and fresh 

root mass was weighed in the field by a portable scale. 

5.2.4. Data Processing and Analysis 

Data processing was performed in Python 3.8 using GPR Studio (Crop Phenomics LLC, 

College Station, TX (cropphenomics.com)), a software package designed especially for 

the quantitative analysis of agricultural GPR data. GPR transects were split into plot 

rows using the digital markers placed during collection, then plot rows were assembled 

into plot replications and genotypes using the database management in GPR Studio. 

Analysis was also performed in Python using the Scikit-learn library. The workflow is 

summarized in Figure 5.2 below. 

 

 

Figure 5.2 Data processing and analysis workflow done in Python. 

 

In both data sets, channels 3 and 4 exhibited significant and apparently random noise and 

were therefore unfit for use in data analysis. The data were first passed through a dewow 

filter which removes the effect of very low frequency noise and also centers the data 

traces at 0. The data offset can vary by channel and is an artifact of the GPR control 
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system. Background correction was applied as a mean subtraction filter to remove 

horizontal banding noise inherent to this prototype hardware. The data were then subset 

to the approximate root zone to remove the surface reflection and ground clutter. For the 

CIAT data, an automatic surface detection algorithm was used to find and remove the 

ground surface, but the IITA data exhibited greater variation in the position of the 

surface reflection within each radargram, requiring manual detection of the soil surface. 

Gain correction was applied to adjust signal amplitude for attenuation and avoid a depth 

bias in the model. Finally, the channels were interpolated into a 3D block. The results of 

each step can be seen in Figure 5.3 below. 

GPR feature extraction was done by a sliding window, based on the description in 

Chapter 4 above. The window thickness was set at 5 data rows, representing 0.175 ns of 

signal capture, and passed from the top to the bottom of the subset. At each depth 

multiple features were calculate based on the signal amplitude values contained within 

the window. The features extracted at each window depth were correlated to fresh root 

mass using ridge regression and evaluated by k-fold cross validation. Data processing 

and feature parameters were tuned based on the cross validation results. Cross validation 

was also used to select the appropriate penalty parameter, lambda, for the ridge 

regression. Lambda values ranging from 1e-3 to 1e2 on a log scale were considered, 0 

inclusive, and were scored and selected by the median absolute error of the model. 
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Figure 5.3 The visualized results of each processing step in the workflow. Notice especially the effect of 

the background correction in c) as compared to b), and the effect of gain correction in e) as compared to 

d). The lines connecting c) and d) indicate the area from which d) is taken. The red box in f) shows the 5 

line thick sliding window in its downward movement. 

Feature tuning at both locations resulted in four features used as predictors in the final 

model, summarized in Table 5.1 below. The first feature is the sum of amplitudes 

divided by the length of the scan. The division by scan length is important to avoid 

introducing error or potential bias caused by variance in the scan length, which can be 
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caused by both error in plant spacing and errors in placing the digital markers. This 

feature has previously been considered a measure of total reflected energy, but because 

these data were not forced into the positive domain and are relatively centered about 

zero amplitude, this feature trends towards the mean, in which case, it represents the soil 

matrix. The second feature is the standard deviation of signal amplitude, which can be 

considered a measure of heterogeneity in the subsoil such as is caused by roots. The 

third feature is the 75th percentile, the value at which 75% of amplitudes lie below, and 

25% above. Similarly, the fourth feature is the 25th percentile. These values are robust 

against outliers compared to the maximum and minimum, and, because the amplitudes 

are centered about zero (including both positive and negative values), they both relate to 

amplitude values caused by reflections significantly brighter than the soil matrix, such as 

caused by root mass. Extracted features were conditioned for model building using 

Scikit-learn RobustScaler function, which is similar to standardization except that it uses 

the inner-quartile range rather than the mean, making it robust to outliers. Even so, some 

extreme outliers were removed from both datasets during quality control. 

Table 5.1 Summary of the GPR features extracted. Features are relative to the amplitudes contained 

within the sliding window. 

Feature 1 Feature 2 Feature 3 Feature 4 

Sum of window 

amplitudes, divided 

by scan length. 

Standard deviation of 

signal amplitudes. 

Amplitude value at 

the 75th percentile. 

Amplitude value at 

the 25th percentile. 

The most appropriate depth estimate for root location was selected by correlation 

strength between model predictions and observed values, accounting for appropriateness 

and filtering for significance level p < 0.01. The data were analyzed at the genotype level 

to account for variation in rooting depth by genotype. 
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Independent models were built and tested for each location using 10 by 3 k-fold cross 

validation. Then, a model was trained using the features from Location 1 and used to 

predict mass at Location 2 based on the features from Location 2. The model was tested 

in both directions, that is, training on IITA to predict CIAT, and training on CIAT to 

predict IITA. Training and validation were performed using the same k-fold cross 

validation procedure. 

5.3. Results 

Analysis of the model performance by linear regression between predicted and observed 

root mass showed significant prediction strength which varied by model, shown below in 

Figure 5.4 (p < 0.001). The CIAT model performed best with 91% correlation (R = 

0.91), while the IITA model predictions correlated at 59% (R = 0.59). When the models 

were applied across locations, performance decreased markedly while maintaining 

significance. The CIAT model predicted IITA root mass at R = 0.56, while IITA 

predicted CIAT root mass at R=0.45. The median absolute error calculated during k-fold 

cross validation is summarized in Table 5.1. 

Table 5.2 A table summary of performance metrics for each model. The mean absolute error was 

calculated from 30 iterations of k-fold cross validation, while Pearson's was measured from the final 

model predictions. 

 CIAT Model IITA Model CIAT predicts 

IITA 

IITA predicts 

CIAT 

Mean Median Absolute 

Error (MAE) 

11.89 1.58 11.88 1.58 

Standard Deviation of MAE 4.23 0.44 4.36 0.45 

Lambda 1.0 1.0 0.1 0.1 

Pearson’s R 0.91 0.59 0.56 0.45 

Mean Observed Mass 32.65 kg 3.34 kg 3.34 32.65 

Mean Predicted Mass 32.65 kg 3.34 kg 30.24 3.64 
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 The GPR features extracted showed varying degrees or relationship to the observed root 

mass, and the strength of relationship for each variable differed between locations. The 

locational variance of features and their relationship to observed mass meant that finding 

a feature set which worked for both locations precluded optimizing the model for either 

location. The relationship between each feature is illustrated below in Figures 5.5 and 

Figure 5.4 The regression results of the predicted root mass versus the observed root mass for each model. 

The top two represent models built and validated at a single location, while the bottome two represent 

models trained at one location and tested at the other. 
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5.6. The relationship of each feature to the observed and predicted root mass is also 

shown. These scatter matrixes arrange several scatter plots, the variables of each plot 

being labeled on the outer axes. Each variable is represented on both the X and Y axis, 

and the relationship between any two features can be seen at the intersection of their row 

and column. This arrangement is convenient in showing the complexity of multiple 

relationships in multilinear regression but duplicates the results in an upper and lower 

triangle, albeit rotated by 90 degrees. We have taken advantage of this duplication to 

show different aspects of the data.  

Figure 5.5 A scatter matrix showing the relationship between each feature and individual relationships to 

root mass for the model built from IITA data. Correlation values are calculated by simple linear 

regression between the values shown. Shaded areas represent the 95% CI of the mean calculated by 

10,000 iterations of bootstrap resampling. The feature values displayed here are not regularized. 
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The lower triangle shows the entire data set without distinction by genotype or 

replication, allowing the regression between the entire feature set. This triangle also 

shows the relationship of each feature to the observed mass in the bottom row, and the 

predicted mass in the second to bottom row. Note that none of the features show a strong 

relationship to observed root mass at both locations, illustrating the need for multilinear 

regression. The strength of relationships between features explains the need for 

penalized regression. Cross validation was used to estimate the optimal penalty value 

(lambda). The penalty term shrinks the regression coefficients to reduce bias and avoid 

Figure 5.6 A scatter matrix showing the relationship between each feature and individual relationships to 

root mass for the model built from CIAT data. Correlation values are calculated by simple linear 

regression between the values shown. Shaded areas represent the 95% CI of the mean calculated by 

10,000 iterations of bootstrap resampling. The feature values displayed here are not regularized. 
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overfitting, shown in Table 5.1. The upper triangle shows the same data as the lower 

triangle, but colorized based on genotype, which illustrates how the genotypic variance 

extends the range within each feature, including the root mass. It is interesting to note 

that Feature 1, the sum of amplitudes divided by scan length, is not strongly correlated to 

root mass in either model, however, models tested without it did not produce significant 

predictions at both locations. The diagonal shows the smoothed distribution of each 

feature as a density plot. The values of the features were not regularized for these figures 

so that the differences in amplitude would be apparent and demonstrate the need for 

regularization. Large differences in amplitude between predictors in penalized regression 

reduces the effectiveness of the penalty parameter because it will not affect each 

predictor equally, requiring regularization to prevent bias. 

Figure 5.8 shows the distribution of each feature by location on a common axis so the 

features can be compared across locations. Again, this feature shows un-regularized 

features. Comparing the features across location is informative in diagnosing the cross-

location performance of the models. It can be seen that the features have very similar 

distribution centers, as well as similar range, at both locations. In contrast, the 

distribution of observed mass is well separated by location, with very little overlap. The 

CIAT data tends to be more widely distributed, no doubt a function of the greater range 

in observed mass values. 
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5.4. Discussion 

The results presented here demonstrate correlation between GPR data and bulked root 

mass in cassava, a finding which agrees with previous findings. To date, this appears to 

be the first study to examine this relationship at multiple locations, and to assess the 

Figure 5.7 Distribution of the GPR features by location, including the observed root mass. Distribution is 

displayed by kernel density estimation, such that the area under each curve sums to 1. It can be easily seen 

that feature distributions are heavily overlapped while the mass distribution is almost entirely separate. 
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ability of the predictive model to generalize across locations. Within locations, the CIAT 

model performed best, with 82% explained variation. The IITA model did not perform 

as well, with only 35% explained variation between predicted mass and observed mass. 

The distribution of root mass at each location becomes significant in this evaluation, 

because even though IITA had a much larger sample population, the sample unit 

consisted of fewer plants with lower yield, causing a marked mismatch in ground truth 

values between locations. Indeed, as shown in Figure 5.7 above, there is barely any 

overlap at all in root mass values, with IITA having a total range of 0 – 13.1 kg, and 

CIAT having a total range of 6.0 – 63.41 kg, with a distance between the means of 29.3 

kg, a value twice the range of mass at IITA. The larger range of sample values at CIAT 

likely contributed to the improved model performance within the location. 

This method is exceptionally dependent on successfully removing the surface reflection 

from the radargram before feature extraction – the surface reflection tends to be an order 

of magnitude brighter than the subsurface reflections. As noted above, the surface 

reflection at IITA displayed greater variance in relative position within the radargram, 

which resulted in lower quality estimations and removal of the surface reflection. This 

lower data quality may have contributed to the reduced model performance at that 

location. We should also note here that feature tuning resulted in models with improved 

performance for a location, but severely reduced performance at the other, indicating the 

feature set was not generalized. These differences are likely the result of differing soil 

properties, as noted in the introduction. 
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The cross locational performance of the models was greatly reduced from the within 

location performance, though the CIAT trained model still outperformed the IITA 

trained model when predicting the opposing location. The difference in root mass again 

becomes significant here, as each model is essentially attempting to extrapolate outside 

the training data set. As seen in Table 5.1, the extrapolation is a significant problem, 

such that the mean of predicted mass is closer to the mean of the training data than the 

test data, i.e. the CIAT model predicts a mean closer to the observed root mass at CIAT 

than at IITA when attempting to predict the root mass at IITA. The problem is also 

apparent when examining the slope of the regression lines in Figure 5.6 – the CIAT 

model tends to overestimate the root mass at IITA by a factor of 4, while the IITA model 

tends to underestimate the root mass at CIAT by the same factor. This may be an 

indication of overfitting, however, examination of the feature distribution at each 

location, as seen in Figure 5.7, demonstrates a more fundamental issue. While the 

distributions vary slightly, the central tendencies are very similar, despite root mass 

distribution barely overlapping. The resulting implication is that model predictions are 

location specific, and the model should be calibrated at each location where it will be 

applied. 

The most likely explanation for this locational specificity is variation in soil conditions, 

such as texture, structure, and moisture content as noted in the introduction. Another 

possibility is the difference in sample unit of one plot row – at CIAT a single row 

consisted of 9 plants, while a single row at IITA was limited to 4 plants, which also 

helps to explain the difference in observed root mass. However, it is as yet impossible to 
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rule out the possible effect of genotypic variance in cassava root structure, as different 

genotypes were used at each location, and the effect of root orientation on GPR mass 

estimation has not been extensively studied [151]. Genotypic differences may exhibit as 

differences in root number, length, diameter, growing angle, and depth. The possibility 

remains that other methods, such as those reported by Delgado et al. and Dobreva et al., 

may be more robust to locational variance [8, 155]. It is also possible that these methods 

could yet be modified to better generalize. One possible solution is to normalize either 

the radar data or the extracted features to the location. This could be accomplished 

through the inclusion of soil blanks in the radar data, from which could be derived 

normalization characteristics for that soil environment. 

5.5. Conclusion 

The work presented here is significant in two important ways. First, it supports and 

expands on the growing body of evidence that GPR data contain information about 

bulked root mass, suggesting that the question is no longer whether root mass can be 

estimated by GPR, but rather, what is the best way to extract that information. Secondly, 

it begins to answer the question as to whether predictive models can be generalized 

across locations and soil environments. As the study is not comprehensive to all reported 

methods and models, it’s not yet possible to conclusively answer that question. Indeed, 

as work in this area continues, old conclusions will need to be updated for new methods. 

Already previously held assumptions about GPR work in agricultural settings have been 

upset when Teare et al. demonstrated improved GPR performance under wet soil 
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conditions [178]. What has been demonstrated clearly is the possibility of building a 

predictive model which is valid at multiple locations, even if it requires local calibration. 

With up to 82% explained variation, the model performance based on the CIAT data 

represents one of the most precise prediction models reported. Undoubtedly, data 

collection methods, processing methods, and model prediction will continue to improve. 

 



6. CONCLUSIONS 

 

6.1. Current Status of GPR in Cassava 

The application of GPR for the estimation of root mass in agricultural fields is yet in its 

infancy. To date, only 5 studies have been published, though several more are expected 

soon, including the contents of this work. While most of these publications have 

operated on the null hypothesis that GPR data cannot be related to root mass, the 

conversation is beginning to move towards how to optimize processing and models. 

While the body of work supporting the ability to estimate root mass is not 

overwhelming, the results have been consistent. What’s more, at least 3 different models 

have been demonstrated with success [8, 155, 178]. 

The body of work presented here has demonstrated that agricultural GPR data contains 

information about bulked root mass, though at varying degrees of quality. It is clear that 

GPR data contain a lot of information not related to root mass – noise. The ability of a 

processing pipeline to reduce the noise and isolate the root information is a major driver 

of the prediction quality. Chapter 3 showed the effect of soil water, that increased soil 

water can improve the quality of GPR data, but also that extracted features will vary 

with water content. In Chapter 5, the cross locational validation of prediction models 

was possibly hampered by differences in soil water content. While water content was not 

measured at either CIAT or IITA, the average reflection brightness was greater at IITA 

than at CIAT, a difference which, based on Chapter 3 results, could be caused by a drier 

soil at IITA. This is in line with GPR theory as increased water content causes increased 
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signal attenuation, which should result in lower total energy return to the receiving 

antenna. 

Chapter 4 confirmed the model presented in Chapter 3, called the Relative Energy 

Density Model, and expanded on the predictive features that could be extracted using the 

sliding window method. Chapter 5 confirmed that features based on the range and mean 

of the windowed amplitudes are descriptive of root mass. The difference in features used 

in Chapters 3, 4, and 5 suggests that any number of correlative features may exist, and 

these are just a few. While a model can be made which works at multiple locations is 

possible, the current methods require location specific calibration, an arduous 

requirement in practical applications of the technology. 

6.2. Future Directions for Further Research 

While several important questions have been answered here, many more remain. Perhaps 

foremost of the needed improvements is the need to detect root depth, or rather, the 

ability to identify the subset of the radargram with information about the roots, without 

prior knowledge of the root location or mass. We have suggested that machine learning 

is one possible solution. Using supervised datasets, a model could be trained to 

recognize the relationships of GPR features which are peculiar to root zones. 

Another need is a way to account for differences in soil conditions, especially soil 

moisture. There are certainly many ways this could be done, though one proposed 

method is the use of blank control plots which can be used to standardize data to soil 

conditions. Another possibility exists that a model could be derived which is robust 
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against differences in soil conditions, and therefore does not require adjustments to 

account for variation across applications. 

Finally, the effect of root orientation requires further study. Though Delgado et al. have 

reported some findings on this topic already, they did not provide a solution to account 

for the effect on mass estimation caused by root orientation outside of suggesting the 

most effective antenna polarization. Currently, we have no suggestions on how to correct 

for estimation error caused by root orientation. Indeed, the error has not even been 

quantified, though it is almost certainly significant. 

The range of prediction accuracies achieved both in this work and by others indicates 

that no method has succeeded in accounting for all the sources of noise. As we’ve 

concluded here, likely sources include soil conditions, root orientation, and improper 

selection of the root zone within the radargram. Other sources may include variations in 

the position and orientation of the radar antenna, changes in the ground surface 

roughness or slope, and electromagnetic interference from outside sources. These 

problems remain to be solved before agricultural GPR can become a useful phenotyping 

and breeding tool. 
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