
NOVEL APPROACHES IN CLASSIFICATION ERROR ESTIMATION,

PREDICTING GENERALIZATION IN DEEP LEARNING,

AND HYBRID COMPARTMENTAL MODELS

A Dissertation

by

PARISA GHANE

Submitted to the Graduate and Professional School of
Texas A&M University

In partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

Chair of Committee, Ulisses Braga-Neto
Committee Members, Nicolaas EP Deutz

Ivan Ivanov
Yang Shen

Head of Department, Miroslav Begovic

August 2022

Major Subject: Electrical Engineering

Copyright 2022 Parisa Ghane



ABSTRACT

In data-poor environments, it may not be possible to set aside a large enough test data set to

produce accurate test-set error estimates. On the other hand, in modern classification applications

where training is time and resource intensive, as when training deep neural networks, classification

error estimators based on resampling, such as cross-validation and bootstrap, are too computation-

ally expensive, since they require training tens or hundreds of classifiers on resampled versions of

the training data. The alternative in this case is to train and test on the same data, without resam-

pling, i.e., to use resubstitution-like error estimators. Here, a family of generalized resubstitution

classifier error estimators are proposed and their performance in various scenarios is investigated.

This family of error estimators is based on empirical measures. The plain resubstitution error es-

timator corresponds to choosing the standard empirical measure that puts equal probability mass

over each training points. Other choices of empirical measure lead to bolstered resubstitution,

posterior-probability, Bayesian error estimators, as well as the newly proposed bolstered posterior-

probability error estimators.

Empirical results of this dissertation suggest that the generalized resubstitution error estima-

tors are particularly useful in the presence of small sample size for various classification rules.

In particular, bolstering led to remarkable improvement in error estimation in the majority of ex-

periments on traditional classifiers as well as modern deep neural networks. Bolstering is a type

of data augmentation that systematically generates meaningful samples, primarily through data-

driven bolstering parameters. The bolstering parameter for low to average dimensional data was

defined based on the Euclidean distance between samples in each class. But Euclidean distance

between images is not straightforward and semantically meaningful. Hence, for experiments with

image data, parameters of data augmentation were selected in a different fashion. I introduce three

approaches to image augmentation, among which weighted augmented data combined with the

posterior probability was most effective in predicting the generalization gap in deep learning.

For the study of protein turn over, I propose hybrid compartmental models (HCM), that are

ii



useful for multi-substrate experiments. Unlike the conventional compartmental models, HCM

starts with a partially specified structure for tracer models, estimates the tracer parameters given

the data, and finally determines the details of model’s structure by choosing the most physiolog-

ically meaningful tracee model among the resulting alternative tracee models. The parameters in

the alternatives tracee models are computed by simple mathematical operations on tracer parame-

ters. The proposed HCM was employed to estimate kinetics of Phenylalanine and Tyrosine using

tracer-tracee-ratio (TTR) data. Results show that HCM tracer model was able to fit the TTR-time

data points, and the best tracee model was selected by comparing the alternative tracee models’

parameters with those reported in the literature.

iii



DEDICATION

To my parents and my grandmother.

iv



ACKNOWLEDGMENTS

First and foremost, I would like to express my deepest gratitude to my academic advisor,

Dr. Ulisses Braga-Neto, for his unconditional support, guidance, teaching, and encouragement

throughout this dissertation. Working under his supervision was a great honor for me. I would

also like to thank my supervisor, Dr. Nicolaas EP Deutz, for providing guidance and feedback

throughout development of compartmental models. He was more than generous with his precious

time and knowledge. I express my deepest appreciation to Dr. Ivan Ivanov and Dr. Yang Shen,

for their encouragements and constructive comments. I owe a special debt of gratitude to my dear

parents for making the ultimate sacrifice and for bearing with me during my absence as well as

my sister for motivating me throughout my entire graduate and professional school. Also, special

thanks go to my friends who have been there cheerfully throughout my doctoral studies.

v



CONTRIBUTORS AND FUNDING SOURCES

Contributors

This work was supported by a dissertation committee consisting of Professor Ulisses Braga-

Neto and Professor Yang Shen of the Department of Electrical and Computer Engineering and

Professor Nicolaas Deutz of the Department of Health and Kinesiology and Professor Ivan Ivanov

of the Department of Biomedical Engineering.

The analyses depicted in Chapter 2 were conducted in part by Dr. Ulisses Braga-Neto. The

data analyzed for Chapter 4 was provided by Professor Nicolaas Deutz.

All other work conducted for the dissertation was completed by the student independently.

Funding Sources

This graduate study was supported by graduate assistantship from department of electrical and

computer engineering at Texas A&M University.

vi



NOMENCLATURE

GR Generalize Resubstitution

CV Cross-Validation

VC Vapnik–Chervonenkis

DNN Deep Neurtal Network

CNN Convolutional Neural Network

SVM Support Vector Machines

RBF Radial Basis Function

kNN k Nearest Neighbors

CART Classification and Regression Tree

RMS Root Mean Square

resub Resubstitution Error Estimator

bolster Bolstered Error Estimator

PP Posterior Probability

boot Bootstrap

CNN Convolutional Neural Network

Acc Accuracy

Var Variance

PGDL Predicting Generalization in Deep Learning

CMI Conditional Mutual Information

HCM Hybrid Compartmental Model

CCM Conventional Compartmental model

EC Extra-Cellular

vii



IC Inter-Cellular

TTR Tracer-Tracee Ratio

Fij Flux to pool i from pool j

Fs1→s2 Flux from substrate 1 to substrate 2

kij Tracer fractional rate to pool i from pool j

ks1→s2 Tracer fractional rate from substrate 1 to substrate 2

Qj Pool j size

Sj Substrate j

UIC de-novo production into Inter-cellular pool

viii



TABLE OF CONTENTS

Page

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii

DEDICATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

ACKNOWLEDGMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

CONTRIBUTORS AND FUNDING SOURCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

NOMENCLATURE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

TABLE OF CONTENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

LIST OF TABLES. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii

1. INTRODUCTION. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Classification Error Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Predicting Generalization in Deep Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.3 Hybrid Compartmental Model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2. GENERALIZED RESUBSTITUTION ERROR ESTIMATORS . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.1 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2 Generalized Resubstitution based on Smoothing the Error Count . . . . . . . . . . . . . . . . . . . . . . 14

2.2.1 Bolstered Resubstitution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.2.2 Posterior-Probability Generalized Resubstitution. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.2.3 Bolstered Posterior-Probability Generalized Resubstitution . . . . . . . . . . . . . . . . . . . 20
2.2.4 Empirical Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.2.4.1 Synthetic Data Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.2.4.2 MNIST Data Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.2.4.3 UCI Data Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.3 Bayesian Generalized Resubstitution for Neural Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
2.3.1 Definitions and Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
2.3.2 Empirical Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3. PREDICTING GENERALIZATION IN DEEP LEARNING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.1 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

ix



3.1.1 Notations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.1.2 Conditional Mutual Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.2 Image Data Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.2.1 Networks Configurations and Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
3.2.2 Augmentation Parameter Search. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
3.2.3 Multiple Augmented Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
3.2.4 Weighted Augmented - Semi Posterior Probability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
3.2.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4. HYBRID COMPARTMENTAL MODELS FOR ESTIMATION OF PROTEIN TURNOVER 60

4.1 Conventional Compartmental Models (CCM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
4.2 Hybrid Compartmental Models (HCM). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
4.3 HCM versus CCM for Multi-Substrate Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
4.4 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.4.1 Tracer model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
4.4.2 Tracee model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
4.4.3 CCM Equivalent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

5. SUMMARY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

5.1 Classification Error Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
5.2 Predicting Generalization in Deep Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
5.3 Hybrid Compartmental Model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

x



LIST OF FIGURES

FIGURE Page

1.1 Deviation distribution showing bias and variance. The error estimator in this ex-
ample is optimistically biased.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.1 Boxplots for SVM and CART classification rules in the synthetic data experiment. . . 27

2.2 Boxplots for nearest-neighbor classification rules in the synthetic data experiment. . . 28

2.3 Examples of Monte-Carlo images used in the Naive-Bayes bolstered resubstitution
error estimator, with n = 600. The parameter κ∗ is the optimal correction factor
for the calibrated naive Bayes bolstered error estimator (r=1). The cases κ = 0
and κ = 1 refer to the original image and the uncorrected Naive-Bayes bolstered
image, respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.4 Magnitude of deviation of error estimators from the true error for selected networks
with fixed depth (D) and width (W). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.5 Magnitude of deviation of each error estimator from the true error versus true error
for all netowrks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.6 Magnitude of deviation of all error estimators from the true error versus true error
for all networks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.7 Bias, variance, and RMS of error estimators for Lenet-5 classifier and MNIST dataset. 42

2.8 Bias, variance, and RMS of error estimators for fully connected network (depth =
2, width = 512) classifier and MNIST dataset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

2.9 Bias, variance, and RMS of error estimators for fully connected network classifiers
with one hidden layer and various width (W) using binary-class synthetic data . . . . . . . 44

3.1 Rings that were used as ranges for augmentation factor in multiple augmented
datasets generation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.2 Strong augmentations; the augmentation factor becomes larger from left to right. . . . 54

3.3 Weak augmentations; the augmentation factor becomes larger from left to right. . . . . 55

3.4 Examples of the two fixed augmentation types: Sobel filter and left right flip. These
two augmentation types may affect various images differently depending on how
symmetric and contrasted they are. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

xi



3.5 Examples of images generated with combination of all eight augmentation types.
Flip and sobel filter was randomly applied to images with probability of 0.5. . . . . . . . . 56

3.6 Example of an augmented image with large misclassification penalty. . . . . . . . . . . . . . . . . 57

3.7 Example of an augmented image with small misclassification penalty. . . . . . . . . . . . . . . . . 57

4.1 Single-substrate two-compartment models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
4.2 Models for a two-substrate four-compartment model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.3 HCM tracer model for the Phe-Tyr four-compartmental model . . . . . . . . . . . . . . . . . . . . . . . . 66

4.4 HCM fits on the experimental TTR samples. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.5 HCM tracee alternative models. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.6 Compartmental model of [1]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.7 Non-compartmental and compartmental fits in [1]. Solid dots are the TTR data
points averaged on all subjects. The slashed line represents the multi-exponential
fit for non-compartmental approach when samples at t=5 and 10 minutes of Tyr
curves are not considered (NC (no t=5, 10 min)). Error bars represent SE.. . . . . . . . . . . . 71

xii



LIST OF TABLES

TABLE Page

2.1 Classification errors in the synthetic data experiment. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.2 Bias results in the synthetic data experiment. The best bias value in each row is
printed in bold. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.3 Variance results in the synthetic data experiment. The smallest variance in each
row is printed in bold. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.4 RMS results in the synthetic data experiment. The best RMS value in each row is
printed in bold. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.5 Average computation time (in milliseconds) in the synthetic data experiment. . . . . . . . . 30

2.6 Bias results in the MNIST data experiment. The best bias value in each row is
printed in bold. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.7 Variance results in the MNIST data experiment. The best variance value in each
row is printed in bold. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.8 RMS results in the MNIST data experiment. The best RMS value in each row is
printed in bold. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.9 Average computation time (in seconds) in the MNIST data experiment. . . . . . . . . . . . . . . 34

3.1 Network architecture and datasets that were used for PGDL tasks. . . . . . . . . . . . . . . . . . . . . 48
3.2 Image augmentations types and categories with their range set. . . . . . . . . . . . . . . . . . . . . . . . . 52

3.3 Scores for the tree approaches of data augmentation presented in this section com-
pared to the top three NeurIPS first PGDL competition. A higher score shows the
better generalization prediction. The highest score is printed in bold. . . . . . . . . . . . . . . . . . 58

3.4 Percentage change of the scores in tasks 6-9 compared to the phase 1 score. The
lower percentage indicates the more robustness of the corresponding method to
changes in data and network configuration. The lowest percentage change is printed
in bold. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.1 mean± SE for the tracer fractional rate parameters identified by HCM. The units
are min−1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

xiii



1. INTRODUCTION

1.1 Classification Error Estimation

Given enough training data, good classification algorithms produce classifiers with small error

rate on future data, which is also known in machine learning as the generalization error. But

a classifier is useful only if its generalization error can be stated with confidence. Hence, at a

fundamental level, one can only speak of the goodness of a classification algorithm together with

an error estimation procedure that produces an accurate assessment of the true generalization error

of the resulting classifier. Error estimation for classification has a long history and many different

error estimation procedures have been proposed [2, 3, 4, 5, 6]. The subject has recently become a

topic of concern in the deep learning community [7]. Error estimators based on resampling, such

as cross-validation [8, 9, 10, 11], and bootstrap [12, 13, 14], have long been popular choices of

error estimation procedures.

In contemporary classification applications, particularly in the case of deep learning, training

can be time and resource intensive [15]. As a result, error estimators based on resampling are

no longer a viable choice, since they require training tens or hundreds of classifiers on resampled

versions of the training data. It has become instead the norm to use the test-set error, i.e., the

error rate on data not used in training, to benchmark classifiers [16]. The test-set error estimator

is an unbiased, consistent estimator of the generalization error regardless of the sample size or

distribution of the problem [6]. However, this is only true if the test data is truly independent of

training, and is not reused in any way [17]. It has been recognized recently that this has not been

always the case in image classification using popular benchmarks, where the same public test sets

are heavily re-used to measure classification improvement, creating a situation known as “training

to the test data” [18]. Strictly speaking, true independent test sets are one-way: they can only be

used once. In addition, if training and testing sample sizes are small, the test-set error estimator

can display large variance, and become unreliable. All of this means that accurate test-set error

1



estimation requires cheap access to plentiful labeled data.

The alternative to resampling and test-set error estimation is testing on the training data. The

error rate on the training data is known as the resubstitution error estimator [19]. This does not

require retraining the classifier and is as fast as using a test-set error estimator, but does not assume

any separate independent test data. The resubstitution estimator is however usually optimisticaly

biased, the more so the more the classification algorithm overfits to the training data. Optimistic

bias implies that the difference between resubstitution estimate and the true error, which has been

called the “generalization gap” [20], is negative with a high probability. It is key therefore to

investigate mechanisms to reduce the bias.

The subject of classification error estimation has a long history and has produced a large body

of literature; four main review papers summarize major advances in the field up to 2000 [2, 3, 4, 5];

recent advances in error estimation since 2000 include work on model selection [21], bolstered er-

ror estimation [22, 23], feature selection [24, 25, 26, 27], confidence intervals [28, 29, 30], model-

based second-order properties [31, 32], and Bayesian error estimators [33, 34]. In this section, we

provide a brief review of the basic concepts related to error estimation. A booklength treatment of

the topic is provided in [35]; see also [36, 37].

If the distribution of the features and label was known, then one could in principle compute the

classification error εn by evaluating (2.4). In practice, such knowledge is rarely available, so one

employs an error estimation rule Ξn in order to obtain a classification error estimate

ε̂n = Ξn(Ψn, Sn, ξ) , (1.1)

where ξ denote internal random factors (if any) that represent randomness that is not introduced

by the training data Sn; if there are no such internal random factors, the error estimation rule is

said to be nonramdomized, in which case the error estimate is a determined by the data, otherwise,

it is said to be randomized, in which case the error estimator is a random variable given the data.

2



Figure 1.1: Deviation distribution showing bias and variance. The error estimator in this example
is optimistically biased.

The resubstitution rule Ξ r
n is an example of nonrandomized error estimation rule:

Ξ r
n(Ψn, Sn) =

1

n

n∑
i=1

I(Ψn(Sn)(Xi)− Yi) . (1.2)

Note that the dependence of ε̂n on Ψn in (1.1) makes explicit the fact that, while the error estimation

rule Ξn may be fixed (e.g., resubstitution), the properties of ε̂n change for different classification

rules. This allows us to speak of a resubstitution error estimator ε̂ rn = Ξ r
n(Ψn, Sn) for each

classification rule Ψn.

The performance of an error estimator can be assessed by the distribution of ε̂n − εn, called

the deviation distribution [38]. For good performance, this distribution should be peaked (low-

variance) and centered near zero (low-bias). See Figure 1.1 for an illustration.

The bias is defined as the first moment of the deviation distribution:

Bias(ε̂n) = E[ε̂n − εn] = E[ε̂n]− E[εn] . (1.3)

The error estimator ε̂n is said to be optimistically biased if Bias(ε̂n) < 0 and pessimistically

biased if Bias(ε̂n) > 0. It is unbiased if Bias(ε̂n) = 0. The resubstitution error estimator is

3



usually optimistically biased.

The deviation variance is the variance of the deviation distribution:

Vardev(ε̂n) = Var(ε̂n − εn) = Var(ε̂n) + Var(εn)− 2Cov(εn, ε̂n) . (1.4)

Unlike in classical statistics, where estimators for fixed parameters are sought, here the quan-

tity being estimated, namely εn, is random and thus a “moving target.” This is why it is appro-

priate to consider the variance of the difference, Var(ε̂n − εn). However, if the classification

rule is not overfitting, then Var(εn) ≈ 0 — in fact, overfitting could be defined as present if

Var(εn) is large, since in that case the classification rule is learning the changing data and not the

fixed underlying feature-label distribution. It follows, from the Cauchy-Schwartz Inequality that

Cov(εn, ε̂n) ≤
√

Var(εn)Var(ε̂n) ≈ 0, and thus, from (1.4), Var(ε̂n − εn) ≈ Var(ε̂n). If an esti-

mator is randomized, then it has additional internal variance Vint = Var(ε̂n|Sn), which measures

the variability due only to the internal random factors, while the full variance Var(ε̂n) measures

the variability due to both the sample Sn and the internal random factors ξ. The following formula

can be easily shown using the Conditional Variance Formula of probability theory:

Var(ε̂n) = E[Vint] + Var(E[ε̂n|Sn]) . (1.5)

The first term on the right-hand side contains the contribution of the internal variance to the total

variance. For nonrandomized ε̂n, Vint = 0; for randomized ε̂n, E[Vint] > 0.

The root mean-square error is the square root of the second moment of the deviation distribu-

tion:

RMS(ε̂n) =
√
E[(ε̂n − εn)2] =

√
Bias(ε̂n)2 +Vardev(ε̂n) (1.6)

The RMS is generally considered the most important error estimation performance metric. The

other performance metrics appear within the computation of the RMS; indeed, all of the five basic

moments — the expectations E[εn] and E[ε̂n], the variances Var(εn) and Var(ε̂n), and the covari-

4



ance Cov(εn, ε̂n) — appear within the RMS. Good error estimation performance requires that the

bias, deviation variance, and RMS be as close as possible to zero.

This dissertation proposes and studies generalized resubstitution error estimators, which are

defined in terms of arbitrary empirical measures. In addition to plain resubstitution, this family

includes well-known error estimators, such as posterior-probability [39], Gaussian-process [40],

bolstered resubstitution [22], and Bayesian [33, 34] error estimators. The empirical measures used

in generalized resubstitution often contain hyperparameters that can be tuned to reduce the bias

and variance of the estimator with respect to plain resubstitution.

The problem of practical error estimation is approached, in this dissertation, from the point of

view of choosing an empirical measure ν̂n and applying the corresponding generalized resubsti-

tution estimator, while tuning the hyperparameters of ν̂n to obtain low error estimation bias and

variance. In addition to a general theoretical framework for generalized resubstitution, our contri-

bution includes previously unavailable multi-class versions for some existing error estimators, and

a new family of error estimators, called bolstered posterior-probability error estimation, which is

an extension of the bolstered and posterior-probability estimators.

Chapter 2 includes an extensive empirical study using synthetic data and traditional classifiers,

MNIST data and LeNet-5 convolutional neural network classifier, as well as a selection of UCI

datasets1 and fully connected neural network classifiers with various width and depth. In sec-

tion 2.2.4.1, a generative model, consisting of multivariate Gaussian distributions for each of two

classes, was used. Subsequently, performance of the generalized error estimators were analyzed for

four classification rules were considered: linear support vector machine (SVM), nonlinear SVM

with radial basis kernel function (RBF-SVM), classification tree (CART) with stopped splitting at

5 points per leaf node, and k-nearest neighbors (k-NN), with k = 3, 5, 7. Sections 2.2.4.2 presents

empiricl results using the MNIST dataset and LeNet-5 convolutional neural network, whereas sec-

tion 2.2.4.3 utilize real data sets from UCI repository and fully connected neural network classifiers

with various depth and width, where depth is the number of deep layers and width is the number

1https://archive.ics.uci.edu/ml/datasets.php

5



of neurons in each layer.

1.2 Predicting Generalization in Deep Learning

Estimation of error and generalization in deep learning is undoubtedly among the most chal-

lenging topics in the field. Although true error and generalization gap may be well correlated, their

fundamental basis is different. As described in section 1.1, the goal of error estimation is to mea-

sure the ability of a trained classifier in predicting the true label for future and unseen data. The

generalization gap, on the other hand, explains how overfitted a model is on the training data. Gen-

eralization gap for a classifier is related to the deviation of standard resubstitution error estimate

from the classifier’s true error.

Formally, given a train dataset Dtrain and a test dataset Dtest, let ψw(x) be the network’s pre-

diction for an input x, where w represents the parameters of the trained network. Then the gener-

alization gap is defined as [41]:

g(ψw;Dtest) =
1

|Dtest|
∑

(x,y)∈Dtest

δ(ψw(x) = y)− 1

|Dtrain|
∑

(x,y)∈Dtrain

δ(ψw(x) = y) (1.7)

where(x, y) is pair of an input x and its true label.

Despite a substantial body of research, a thorough analysis of the underlying root factors that

drive neural network generalization remains unanswered question [18, 42, 43, 44]. Through an

extensive empirical study, [7] recently investigated several prominent complexity measures by

controlling hyperparameters of the networks; this study suggested the insufficiency of traditional

methods for evaluation of generalization in deep learning. Yet, empirical studies of generalization

metrics can provide insights into why certain models generalize well [45], and therefore, help with

development of better models.

Recent literature shows the increasing concern in deep learning community regarding the error

estimation and predicting generalization of models; though the majority of generalization bounds

are only tested on a small number of models [45, 46]. [47] recently provided a summary of gen-

eralization in deep neural networks. Among the proposed generalization measures, principled

6



complexity measures like PAC bounds are most attractive to statisticians due to their theoretical

properties [48, 49, 50, 51]. On the other hand, practitioners have investigated several generaliza-

tion measures through extensive empirical studies [7, 52], among which data augmentation appear

to be continuously under active research.

Some of the recent approaches that use data augmentation include Always Generalize [53]

which proposes a generalization measure that assesses a classifier’s robustness to various types

of data augmentation, GAN-based [54] which generates augmented data using GAN, mixup [55]

which creates convex combinations of pairs of examples and their labels, manifold-mixup [56]

which proposes using a regularizer that is based on interpolations of hidden representations. The

latter leads to training flatter class-representations and avoids overconfident neural networks. Along

the same direction, [57, 58] have practiced modifications of mixup and maifold-mixup methods to

augment data towards predicting generalization in deep learning (PGDL).

Chapter 3 of this dissertation presents extensive empirical study on hundreds of convolutional

neural networks, using the NeurIPS 2020 PGDL competition database [41]. The focus, in this

chapter, is shifted from error estimation to predicting generalization gap by means of data augmen-

tation. Bolstering, which provides systematic data augmentation, showed success in the majority

of the experiments in sections 2.2.4 and 2.2.4.3. Yet, the bolstering approach that was employed re-

quires a measure of distance between the training samples. For colored images, however, distance

between samples is not straightforward and semantically meaningful [59].

For PGDL, section 3.2 proposes three novel approaches, for data augmentation based measures,

from three viewpoints, and discuss the advantages and drawbacks of each method: 1- searching for

an optimal set of parameters for augmentation factors, 2- generating multiple datasets using several

ranges for the augmentation factor, and 3- generating a few data sets using distinct augmentation

factors and multiplying each dataset by a weight according to the amount and strength of the

corresponding augmentation factor and its type. The latter was inspired by the work in [53], the

first runner up solution to the PGDL competition.

7



1.3 Hybrid Compartmental Model

Compartmental modeling is a popular method for estimating the kinetics of a naturally occur-

ring substance (tracee) by tracking the kinetics of its isotope (tracer). It has been widely used for

describing kinetics of drugs in pharmacokinetics [60, 61, 62] and protein turnover in metabolism

assessments [1, 63, 64]. A compartmental model is characterized by its graphical structure and is

identified by the values of its parameters. Each compartment is defined ideally as a well-mixed

and kinetically homogeneous pool [63].

Currently, SAAM II [65, 66, 67] is the most common software for compartmental modeling.

Examples of other tools for pharmacokinetic parameter estimation are SimuSolv [68][69] and Ex-

cel add-in program PKSolver [70]. Despite the success of conventional compartmental models

(CCMs) in describing the metabolism of a single amino acid, quantifying the rate of conversion

from one amino acid to another is not yet fully understood, particularly if the conversion occurs be-

tween non-accessible pools. This can be partially attributed to the graphical structures commonly

used in CCMs.

CCMs require a modeler to specify the structure of the compartmental graph in every detail

prior to fitting the experimental data. In particular, a modeler needs to specify the exact location

of the fluxes between the pools. This demands extra effort to try and test multiple graphs until the

best fit is achieved. A Hybrid Compartmental Model (HCM) structure, on the other hand, considers

whole-body conversion rates, fits the data, and associates the conversion rate to one of the pools

that leads to the best estimate of the conversion flux.

8



2. GENERALIZED RESUBSTITUTION ERROR ESTIMATORS

This chapter 1 explains the concept of generalized resubstitution error estimators and presents

theorems as well as extensive empirical results illustrating the behaviour of generalized resubstitu-

tion error estimators.

2.1 Definitions

Working formally, given a feature vector x ∈ Rd, a classifier ψ outputs a label y = ψ(x) ∈

{0, 1, . . . , c − 1}. A classification rule takes sample data Sn = {(X1, Y1), . . . , (Xn, Yn)} and

produces a trained classifier ψn. The quantity of interest is the classification error probability:

εn = ν({(x, y) : ψn(x) ̸= y}) , (2.1)

where the probability measure ν is supported on Rd × {0, 1, . . . , c − 1} and is the distribution of

the pair of random variables (X, Y ). A generalized resubstitution estimator ε̂n is defined as:

ε̂n = ν̂n({(x, y) : ψn(x) ̸= y}) , (2.2)

where ν̂n is a generalized empirical probability measure, i.e., a random probability measure sup-

ported on Rd × {0, 1, . . . , c− 1} that is a function of the sample data. If ν̂n is sufficiently close to

ν, in a suitable sense, then ε̂n is a good estimator of εn.

The basic example is provided by the standard empirical measure νn putting mass 1/n on each

training point (Xi, Yi), which yields the plain resubstitution error estimator:

ε̂ rn = νn({(x, y) : ψn(x) ̸= y}) =
1

n

n∑
i=1

I(ψn(Xi) ̸= Yi) , (2.3)

where I(·) is an indicator variable. Notice that νn has no hyperparameters that allow estimator

1Part of this chapter is reprinted with permission [71].

9



bias and variance to be tuned. In the two-class case, the Vapnik-Chervonenkis (VC) theorem [37]

guarantees that the empirical measure converges uniformly almost surely to the true measure, i.e.,

supA∈A |νn(A)− ν(A)| → 0 as n → ∞, with probability 1 and regardless of ν, provided that the

family of sets A is small in a precise sense. If A is the family of sets {(x, y) : ψn(x) ̸= y} over

all possible classifiers ψn, and A is small in the sense that the associated classification algorithm

has a finite VC dimension, then the VC Theorem implies that ε̂ rn becomes arbitrarily close to εn as

n → ∞ with probability 1, in a distribution-free manner. It is a simple corollary that if, in turn,

the generalized empirical measure converges uniformly almost surely to the empirical measure,

i.e., supA∈A |ν̂n(A)− νn(A)| → 0 as n → ∞, with probability 1 and regardless of ν, then ε̂n also

becomes arbitrarily close to εn as n→ ∞, in a distribution-free manner. In other words, as sample

size increases, the generalized resubstitution error estimator should look more and more like the

plain resubstitution estimator.

Let the feature vector X ∈ Rd and the label Y ∈ R be jointly distributed with corresponding

probability measure ν, such that ν(Rd × {0, 1, . . . , c − 1}) = 1. An event is a Borel set A ⊆

Rd×{0, 1, . . . , c−1}. A classifier ψ is a Borel-measurable function fromRd to {0, 1, . . . , c−1}. In

practice, one collects i.i.d. training data Sn = {(X1, Y1), . . . , (Xn, Yn)}, where each pair (Xi, Yi)

is distributed as (X, Y ), and designs a classifier ψn = Ψn(Sn), by means of a classification rule Ψn.

The classification error εn is the probability of the misclassification event A = {(x, y) : ψn(x) ̸=

y}:

εn = ν({(x, y) : ψn(x) ̸= y}) . (2.4)

We define a generalized empirical measure ν̂n to be a random probability measure supported

on Rd × {0, 1, . . . , c − 1} almost surely that is a function of the data Sn. This definition includes

the standard empirical measure νn that puts discrete mass 1/n on each data point:

νn =
1

n

n∑
i=1

δXi,Yi , (2.5)

10



where δXi,Yi is the (random) point measure located at (Xi, Yi), defined by

δXi,Yi(A) = I((Xi, Yi) ∈ A) , (2.6)

for each event A. Hence, νn(A) is simply the fraction of points in Sn that are contained in A.

Plugging in the standard empirical measure νn for ν in (2.4) yields the fraction of errors com-

mitted by ψn on Sn, i.e., the standard resubstitution error estimator:

ε̂ rn = νn({(x, y) : ψn(x) ̸= y}) =
1

n

n∑
i=1

I(ψn(Xi) ̸= Yi) . (2.7)

By analogy, plugging in a generalized empirical measure ν̂n for ν in (2.4) results in a generalized

resubstitution error estimator:

ε̂n = ν̂n({(x, y) : ψn(x) ̸= y}) . (2.8)

As we will see later, many generalized empirical measures have tunable hyperparameters, which

can be adjusted in order to reduce error estimation bias and variance.

We consider below several examples of generalized resubstitution estimators, which are based

on a broad family of generalized empirical measures of the form:

ν̂n =
1

n

n∑
i=1

βn,Xi,Yi . (2.9)

where βn,Xi,Yi is a random probability measure depending on the training point Xi, Yi. Comparing

this to (2.5), we realize that the empirical probability measure in (2.9) can be seen as smoothed

version of the standard empirical probability measure, where βn,Xi,Yi provides a smoothed version

of the point measure δXi,Yi . This is not the only case of useful empirical probability measure for

generalized resubstitution error estimation; Section 2.3 gives examples that are not of the form in

(2.9).

11



Notice that a sufficient condition for (2.14) in Theorem 1 is the uniform convergence of the

smoothed measure βn,Xi,Yi to the point measure δXi,Yi for any training point (Xi, Yi):

sup
A∈A

|βn,Xi,Yi(A)− δXi,Yi(A)| → 0 a.s. (2.10)

Next, we consider the natural large-sample question of whether a generalized resubstitution

error estimator approaches the true classification error as the training sample size increases to

infinity. In particular, we are interested in the questions of consistency, i.e., whether ε̂n → εn a.s.

as well as asymptotic unbiasedness, i.e., whether E[ε̂n] → E[εn], as n → ∞. It turns out that the

basic tool to address these questions is provided by the Vapnik-Chervonenkis Theorem [72, 37].

Note that for any fixed event A ⊆ Rd × {0, 1, . . . , c − 1}, the standard empirical measure

satisfies

νn(A) =
1

n

n∑
i=1

I((Xi, Yi) ∈ A) → ν(A) a.s., (2.11)

by the Strong Law of Large Numbers (SLLN). Hence, for a fixed classifier ψ, we can plug in

the fixed set A = {(x, y) : ψ(x) ̸= y} in the previous equation and conclude that the empirical

classification error converges to the true error with probability 1. But this is not enough to obtain

results concerning classifiers ψn designed from the data Sn, since these concern events An =

{(x, y) : ψn(x) ̸= y}, which are not fixed. What is needed instead is a uniform SLLN:

sup
A∈A

|νn(A)− ν(A)| → 0 a.s., (2.12)

where A is a family of sets that must contain all events An = {(x, y) : ψn(x) ̸= y} that can be

produced by the classification rule. In the case c = 2, it is known that (2.12) holds if A is small

enough, in the sense that its VC dimension VA is finite. The VC dimension is a nonnegative integer

that measures the size of A; a smaller VC dimension implies that the classification rule is more

constrained and less sensitive to the data Sn, i.e., it is less prone to overfitting at a fixed sample

size. For example, a linear classification rule in Rd has VC dimension d + 1, which is finite, and

12



small in low-dimensional spaces. If VA < ∞, the Vapnik-Chervonenkis Theorem [37, 73] yields

the inequality:

P

(
sup
A∈A

|νn(A)− ν(A)| > τ

)
≤ 8(n+ 1)VAe−nτ

2/32, for all τ > 0 . (2.13)

The term e−nτ
2/32 dominates, and the bound decreases exponentially fast as n → ∞. It then

follows from the First Borel-Cantelli Lemma that supA∈A |νn(A)−ν(A)| → 0 a.s. [73, Thm A.8].

(Strictly speaking, it is necessary to assume that events of the kind supA∈A |νn(A) − ν(A)| > τ

are measurable. General conditions to ensure that are discussed in [74]; such conditions are tacitly

assumed throughout this work.)

Theorem 1. In the case c = 2, if the family A of all events An = {(x, y) : ψn(x) ̸= y} that can be

produced by a classification rule has finite VC dimension, and the generalized empirical measure

converges uniformly to the standard empirical measure as sample size increases, i.e.,

sup
A∈A

|ν̂n(A)− νn(A)| → 0 a.s., (2.14)

then the generalized resubstitution error estimator is consistent, ε̂n → εn a.s., as well as asymp-

totically unbiased, E[ε̂n] → E[εn], as n→ ∞, regardless of the feature-label distribution.

Proof. . From

|ν̂n(A)− ν(A)| = |ν̂n(A)− νn(A) + νn(A)− ν(A)|

≤ |ν̂n(A)− νn(A)|+ |νn(A)− ν(A)| ,
(2.15)

it follows that

sup
A∈A

|ν̂n(A)− νn(A)| ≤ sup
A∈A

|ν̂n(A)− νn(A)|+ sup
A∈A

|νn(A)− ν(A)| . (2.16)

The first term on the right converges to zero a.s. by hypothesis, while the second term does so by

13



virtue of the VC Theorem. Hence, the left-hand side must also converge to zero a.s.,

sup
A∈A

|ν̂n(A)− ν(A)| → 0 a.s. (2.17)

Since

|ε̂n − εn| = |ν̂n(An)− ν(An)| ≤ sup
A∈A

|ν̂n(A)− ν(A)|, (2.18)

it follows that |ε̂n − εn| → 0 a.s. and the generalized resubstitution estimator is consistent.

Furthermore, since all random variables are uniformly bounded, the Dominated Convergence

Theorem implies [73, Thm A.7] that

|E[ε̂n − εn]| ≤ E[|ε̂n − εn|] → 0 , (2.19)

i.e., the generalized resubstitution error estimator is asymptotically unbiased. All of these results

are distribution-free, holding for any feature-label distribution ν.

2.2 Generalized Resubstitution based on Smoothing the Error Count

In this section, several error estimators based on the smoothing error count are described.

2.2.1 Bolstered Resubstitution

Given an event A ⊆ Rd × {0, 1, . . . , c− 1}, define its slices by

Ay = {x ∈ Rd | (x, y) ∈ A} , y = 0, 1, . . . , c− 1 . (2.20)

It is clear that Ay is an event (i.e., a Borel set) in Rd for each y. Note that δXi,Yi(A) = δXi
(AYi),

where δXi
is a point measure in Rd. Similarly, let βn,Xi,Yi(A) = µn,Xi,Yi(AYi), where µn,Xi,Yi

is an empirical measure on Rd. Though discrete bolstering is possible, in practice the bolstering

measure µn,Xi,Yi is assumed to be absolutely continuous, with density function pn,Xi,Yi(x), so that

βn,Xi,Yi(A) =

∫
AYi

pn,Xi,Yi(x) dx . (2.21)

14



The probability densities pn,Xi,Yi are called bolstering kernels. Plugging βn,Xi,Yi(A) in (2.9), and

then in (2.8), yields the bolstered resubstitution error estimator proposed in [38] (here extended to

the multi-class case). Note that the misclassification event {(x, y) : ψn(x) ̸= y} has slices Ay =

{x : ψn(x) ̸= y} (If c = 2, these reduce to the complementary decision regions {x : ψn(x) = 0}

and {x : ψn(x) = 1}.) The bolstered resubstitution error estimator can be thus written as:

ε̂ brn =
1

n

n∑
i=1

∫
{x:ψn(x)̸=Yi}

pn,Xi,Yi(x) dx . (2.22)

The integral in (2.22) gives the error contribution made by training point (Xi, Yi); these are real-

valued numbers between 0 and 1, unlike plain resubstitution, in which contributions are 0 or 1.

Notice that this allows counting partial errors, including errors for correctly classified points that

are near the decision boundary. The error contribution made by each point is the area of the shaded

region divided by the area of the entire disk. The bolstered resubstitution error is the sum of all

contributions divided by the number of points. Reproduced from [22].

In some cases (see an example below), it is possible to solve the integrals in (2.22) analytically,

and the estimator is fast and low-variance. Otherwise, one has to apply approximations. For

example, simple Monte-Carlo integration yields:

ε̂ brn ≈ 1

nM

n∑
i=1

M∑
j=1

I(ψn(X
MC
ij ) ̸= Yi) , (2.23)

where {XMC
ij ; j = 1, . . . ,M} are random points drawn from the density pn,i, for i = 1, . . . , n. In

this case, the estimation procedure is randomized due to MC sampling.

The most common choice for bolstering kernels are multivariate Gaussian densities with mean

Xi and covariance matrix Kn,Xi,Yi:

pn,Xi,Yi(x) =
1√

(2π)d det(Kn,Xi,Yi)
exp

(
−1

2
(x−Xi)

TK−1
n,Xi,Yi

(x−Xi)

)
, (2.24)

If the matrices Kn,Xi,Yi are diagonal, with freely adjustable diagonal elements, then the procedure

15



is known as Naive-Bayes bolstering [75].

It can be shown that if c = 2 and ψn(x) = I(aTnx + bn > 0) is a linear classifier, then the

Gaussian-bolstered resubstitution error estimator can be computed efficiently as

ε̂GS
n =

1

n

n∑
i=1

Φ

(
(−1)1−Yi(aTnXi + bn)√

aTnKn,Xi,Yian

)
, (2.25)

where Φ(x) is the cumulative distribution function of a standardN(0, 1) Gaussian random variable.

In more general cases, one needs to employ approximations, such as Monte-Carlo sampling.

We consider below in detail the multivariate spherical Gaussian case with Kn,Xi,Yi = σ2
n,Yi

Id.

The hyperparameters here are the c standard deviations σn,j for each class (here, kernel variance is

not a function of Xi). This demands much less effort than the Naive-Bayes case, which requires

in general nd hyperparameters. (Nevertheless, the analysis below could be extended to the Naive-

Bayes case with more effort.) In [22] (which considers only the case c = 2), the hyperparameters

σn,j are estimated by making the median distance of a point sampled from the corresponding kernel

to the origin match the mean minimum distance d̂n,j among training points in class j:

d̂n,j =
1

nj

nj∑
i=1

||Xij −X′
ij|| , j = 0, 1, . . . , c− 1 , (2.26)

where nj is the number of points from class j (nj ≥ 2 is assumed), Xij is a point in class j, and

X′
ij is its nearest neighbor in class j.

Now, let R be the random variable corresponding to the distance to the origin of a point ran-

domly selected from a unit-variance spherically-symmetric density with cumulative distribution

function FR(x). The median distance of such a point to the origin is αd = F−1
R (1/2), where the

subscript d indicates explicitly that αd depends on the dimensionality. If the density has variance

σ2, all distances get multiplied by σ. Hence, σn,j is the solution of the equation σn,jαd = d̂n,j , i.e.,

σn,j =
d̂n,j
αd

, j = 0, 1, . . . , c− 1 (2.27)

16



As shown in the proof of Theorem 2, under the assumption that ν is absolutely continuous, σjn

decreases to zero as sample size increases, and the bolstering kernel tends to a point mass at Xj .

The constant αd can be interpreted as a “dimensionality correction,” which adjusts the value of

the estimated mean distance to account for the feature space dimensionality. Indeed, this approach

to selecting the hyperparameters is applicable to any spherically-symmetric kernel. In the case of

spherical Gaussian densities, R is distributed as a chi random variable with d degrees of freedom,

and the median αd = F−1
R (1/2) can be easily computed numerically. For example, the values up

to five dimensions are α1 = 0.674, α2 = 1.177, α3 = 1.538, α4 = 1.832, α5 = 2.086.

Next, we consider the asymptotic properties of the bolstered resubstitution estimator with

spherical Gaussian kernels in the case c = 2. First, we define a classification rule to be regu-

lar if it produces “thin” decision boundaries. In the general case c ≥ 2, the decision boundary D

of classifier ψn is

D =
c−1⋃
y=0

∂Ay (2.28)

where Ay = {x : ψn(x) ̸= y} are the misclassification event slices, as defined previously, and a

point is in ∂Ay if it does not belong to the interior of either Ay or Acy. A classification rule Ψn

is regular if D has Lebesgue measure zero for all its classifiers ψn. If the distribution of X is

absolutely continuous (with respect to Lebesgue measure), i.e., if X is a continuous feature vector

in the usual sense, then the probability that a training point Xi sits on the decision boundary is

zero. The vast majority, if not all, classification rules encountered in practice are regular.

Theorem 2. In the case c = 2, if Ψn is a regular classification rule with finite VC dimension

and the distribution of X is absolutely continuous, then the bolstered resubstitution estimator with

spherical Gaussian kernels, with hyperparameters σn,j selected as in (2.27), is consistent and

asymptotically unbiased.

Proof. By virtue of Theorem 1 and (2.9), it suffices to show that (2.10) holds, which in the present

17



case reduces to proving that

sup
A∈A

|µn,Xi,Yi(AYi)− δXi
(AYi)| → 0 a.s. , (2.29)

where A s the family of all events {(x, y) : ψn(x) ̸= y} that can be produced by the classification

rule. Notice that, for any given τ > 0, whenever supA∈A |µn,Xi,Yi(AYi)−δXi
(AYi)| > τ , there is an

A∗ ∈ A, which is a function of the data, such that |µn,Xi,Yi(A
∗
Yi
)− δXi

(A∗
Yi
)| > τ , with probability

1. In other words,

P

(
|µn,Xi,Yi(A

∗
Yi
)− δXi

(A∗
Yi
)| > τ

∣∣∣∣ sup
A∈A

|µn,Xi,Yi(AYi)− δXi
(A∗

Yi
)| > τ

)
= 1 , (2.30)

which in turn implies that

P

(
sup
A∈A

|µn,Xi
(AYi)− δXi

(AYi)| > τ

)
≤ P

(
|µn,Xi

(A∗
Yi
)− δXi

(A∗
Yi
)| > τ

)
. (2.31)

By regularity of the classification rule, Xi belongs to the interior ofA∗
Yi

or (A∗
Yi
)c with probability 1.

Hence, we can find an open ballB(Xi, ρ) centered on Xi that is entirely contained inAYi orAcYi . If

the variance σ2
n,i tends to zero as at leastO(n), the Gaussian measure will concentrate exponentially

fast inside such a ball, such that P
(
|µn,Xi

(A∗
Yi
)− δXi

(A∗
Yi
)| > τ

)
→ 0 exponentially fast, for any

τ > 0, and the Theorem is proved, via (2.31) and the First Borel-Cantelli Lemma.

From (2.26) and (2.27), it suffices to show that the nearest neighbor X′
ij to Xij converges to

Xij exponentially fast as n→ ∞. Note that, for any τ > 0,2

P (||X′
ij −Xij|| > τ) = P (||Xkj −Xij|| > τ ; for all k ̸= i) = (1− P (||Xlj −Xij|| < τ))nj,

(2.32)

for some l ̸= i. Notice that, since P (Y = j) > 0, nj → ∞ as O(n) a.s. as n → ∞. If we can

show that P (||Xlj − Xij|| < τ) > 0, then it follows from (2.32) that P (||Xlj − X|| > τ) → 0

2Equation (2.32) appears in a similar context in the proof of the Cover-Hart Theorem for nearest-neighbor classi-
fication [76]. The rest of the argument is distinct.

18



exponentially fast a.s. and the claim is proved. To ease notation, let Z′ = X′
ij and Z = Xij . Since

Z′ and Z are independent and identically distributed with density pX, Z′ − Z has a density pZ′−Z,

given by the classical convolution formula:

pZ′−Z(w) =

∫
pX(w + u) pX(w) du . (2.33)

From this, we have pZ′−Z(0) =
∫
p2X(u) du > 0. It follows, by continuity of the integral, that

pZ′−Z must be nonzero in a neighborhood of 0, i.e., P (||Z′−Z|| < τ) > 0, as was to be shown.

2.2.2 Posterior-Probability Generalized Resubstitution

The bolstered empirical measure relies on measures µn,Xi
on Rd, which provide smoothing in

the X direction. If one performs smoothing in the Y direction, the so-called posterior-probability

empirical measure results.

Given an event A ⊆ Rd × {0, 1, . . . , c− 1}, define the slices

Ax = {y ∈ {0, 1, . . . , c− 1} | (x, y) ∈ A} , x ∈ Rd . (2.34)

(Compare to the slices in (2.20).) Note that δXi,Yi(A) = δYi(AXi
), where δYi is a point measure

on {0, 1, . . . , c − 1}. Similarly, let βn,Xi,Yi(A) = ηn,Xi,Yi(AXi
), where ηn,Xi,Yi is an empirical

measure on {0, 1 . . . , c − 1}. This is called a posterior-probability measure as ηn,Xi,Yi(AXi
) is to

be interpreted as a “posterior-probability” estimate P̂n(Yi ∈ AXi
| X = Xi). Plugging βn,Xi,Yi(A)

in (2.9), and then in (2.8), yields the posterior-probability resubstitution error estimator (e.g., see

[39], here extended to the multi-class case).

If A = {(x, y) : ψn(x) ̸= y} is the misclassification event, then Ax = {ψn(x)}c. Using the P̂n

notation, it is easy to see that the posterior-probability resubstitution error estimator can be written

as:

ε̂ ppr
n =

1

n

n∑
i=1

P̂n(ψn(Xi) ̸= Yi | X = Xi) . (2.35)

Here, P̂n(ψn(Xi) ̸= Yi | X = Xi) is the error contribution made by training point (Xi, Yi), rather

19



than 0 or 1 as in plain resubstitution. The idea is that if one is more confident that the classifier

disagrees with the training label, this error should count more, and the reverse is true if one is not.

This smoothes the error count of plain resubstitution and reduces variance.

The simplest concrete example is afforded by k-nearest neighbor (kNN) posterior probability

estimation. Let {y1(x), . . . , yk(x)} denote the labels of the k nearest training points to x, for

k = 1, . . . , n. The k-nearest-neighbor (kNN) posterior probability measure is defined by

P̂n(Y = y | X = x) =
1

k

k∑
j=1

I(yj(x) = y) , (2.36)

for x ∈ Rd. This makes sense since the more labels y there are in the neighborhood of x, the

more likely it should be that its label is y. Plugging (2.36) into (2.35) leads to the kNN posterior-

probability error estimator:

ε̂ kNN
n =

1

nk

n∑
i=1

k∑
j=1

I(ψn(Xi) ̸= yj(Xi)) , (2.37)

Clearly, the case k = 1 reduces to plain resubstitution.

2.2.3 Bolstered Posterior-Probability Generalized Resubstitution

A novel class of generalized resubstitution estimator results if one performs smoothing in both

the X and Y directions. Notice that δXi,Yi(A) = δXi
(AYi)δYi(AXi

), where the slices Ay and Ax

are defined in (2.20) and (2.34), respectively. Let βn,Xi,Yi(A) = µn,Xi,Yi(AYi)ηn,Xi,Yi(AXi
), where

µn,Xi,Yi and ηn,Xi,Yi are respectively the bolstered and posterior-probability empirical measures

defined previously. Plugging βn,Xi,Yi(A) in (2.9), and then in (2.8), yields the bolstered posterior-

probability resubstitution error estimator, a new estimator that combines features of bolstered and

posterior-probability resubstitution. Using the P̂n notation, it is easy to see that the bolstered

posterior-probability resubstitution error estimator can be written as:

ε̂bppr
n =

1

n

n∑
i=1

(∫
{x:ψn(x)̸=Yi}

pn,Xi,Yi(x) dx

)
P̂n(ψn(Xi) ̸= Yi | X = Xi) . (2.38)

20



This estimator seeks to combine the bias-reducing properties of the bolstered estimator with the

variance-reducing properties of the posterior-probability estimator.

For example, with c = 2, and the Gaussian bolstering and k-nearest neighbor empirical mea-

sures, the bolstered posterior-probability error estimator for a linear classifier ψn(x) = I(aTnx +

bn > 0) can be computed efficiently as

ε̂GS−kNN
n =

1

nk

n∑
i=1

[
Φ

(
(−1)1−Yi(aTnXi + bn)√

aTnKn,Xi,Yian

)(
k∑
j=1

I((−1)y
j(Xi)(aTnx+ bn) > 0)

)]
. (2.39)

2.2.4 Empirical Results

In this section, the performance of several of the generalized resubstitution error estimators are

evaluated empirically.

2.2.4.1 Synthetic Data Experiments

In this section, synthetic data was employed to investigate the performance of the plain resub-

stitution (“resub”), bolstered resubstitution with spherical Gaussian kernels, with hyperparameter

estimated as in (2.27) (“bolster”), a variant of bolstering that applies the kernels only to correctly-

classified training points (“semi-bolster”), the k-NN posterior-probability estimator, with k = 3

(“3NNpp”), and the bolstered k-NN posterior probability estimator with spherical Gaussian ker-

nels, with hyperparameters as in the previous two cases (“bolster 3NNpp”). For comparison with

resampling error estimators, we also include the 10-fold cross-validation estimator (“cross valid”)

[6] and the zero bootstrap estimator (“boot”) [13] in the experiments.

The generative model consists of multivariate Gaussian distributions for each of two classes,

containing dn noisy features and d−dn informative features, for each sample size. The values of the

noisy features are sampled independently from a zero-mean, unit-variance Gaussian distribution

across both classes. For the informative features, the class mean vectors are (−δ, . . . ,−δ) and

(δ, . . . , δ), where the parameter δ > 0 is adjusted to obtain a desired level of classification difficulty.

21



The covariance matrices for both classes are block matrices

Σd×d = σ2 ×



Σl1×l1 0
Σl2×l2

0
. . .

Idn×dn


,

where σ2 is a variance parameter and Σli is an li × li matrix,

Σli×li =



1 ρ · · · ρ

ρ 1 · · · ρ

...
... . . . ...

ρ ρ · · · 1


,

representing li correlated features, with correlation coefficient −1 < ρ < 1, such that
∑

i li =

d− dn.

In the experiments below, we considered d = 10 features, consisting of dn = 4 noisy and

d − dn = 6 informative features. The latter are correlated in pairs, i.e., l1 = l2 = l3 = 2, with

correlation coefficient ρ = 0.2. Four classification rules were considered: linear support vector

machine (SVM), nonlinear SVM with radial basis kernel function (RBF-SVM), classification tree

(CART) with stopped splitting at 5 points per leaf node, and k-nearest neighbors (k-NN), with

k = 3, 5, 7. We adjusted δ to produce moderate classification difficulty over a range of sample

sizes n = 20, 40, 60, 80, and 100; the corresponding average classification errors and 100; see

Table 2.1.

The bias, variance, and RMS of each error estimator were estimated as sample-average ap-

proximations of (2.48), (2.49) and (1.6), respectively, by training the classifier 200 times using

independently generated data sets and approximating the true classification error using a large

test data set of size 5000. The bolstered resubstitution and bolstered posterior-probability error

estimators for nonlinear classifiers used M = 100 Monte-Carlo points in their computation (the

22



Sample Linear RBF CART 3NN 5NN 7NN
Size SVM SVM
n = 20 0.311 0.311 0.377 0.329 0.315 0.315
n = 40 0.268 0.255 0.350 0.297 0.286 0.273
n = 60 0.244 0.234 0.341 0.288 0.267 0.263
n = 80 0.233 0.232 0.332 0.283 0.264 0.251
n = 100 0.224 0.225 0.330 0.277 0.261 0.249

Table 2.1: Classification errors in the synthetic data experiment.

estimators are computed exactly for the linear SVM). The results are displayed in Tables 2.2, 2.3,

and 2.4; boldface indicates the best error estimator for each combination of classification rule and

sample size. We can see in Table 2.2 that in almost all cases, the best bias value is obtained by

one of the three bolstered error estimators. For a very small sample size n = 20, bootstrap is the

best estimator in four out of the six classification rules; however, as will be seen later, bootstrap is

much more computationally intensive than all other error estimators. Plain resubstitution is heav-

ily negatively-biased at small sample sizes, as expected. All three bolstered estimators are able to

significantly reduce this bias, except in the case of nearest neighbor classification, with small num-

bers of neighbors. What happens in this case is that the classification boundary is very complex,

which affects negatively the bias-reducing properties of bolstering (incidentally, nearest-neighbor

classification rules have infinite VC dimension, and Theorem 2 does not apply). As already in-

dicated in [77], this can be corrected by using the semi-bolstered resubstitution error estimator,

which only applies bolstering kernels to correctly-classified points. Indeed, as can be seen in Ta-

ble 2.2, semi-bolstered resubstitution produces the best bias values in nearly all cases in the 3NN

and 5NN experiments. One can also see in the table that, as the number of neighbors increases

from 3 to 7, the original bolstered error estimator becomes less biased; this occurs because the

classification boundary becomes less rough. At k = 7 neighbors, the best results are obtained by

the bolstered-3NNpp estimator, a member of the family of bolstered posterior probability resub-

stitution estimators proposed in this work. The plain 3NNpp estimator has good bias properties

only in the linear SVM case (indeed, [39] warned that the resubstitution-like posterior-probability

23



Classification Sample resub bolster semi- 3NNpp bolster cross boot
Rule Size bolster 3NNpp valid

n = 20 -0.292 -0.076 -0.066 -0.070 -0.025 0.011 0.010
n = 40 -0.169 -0.030 0.008 -0.039 0.002 0.021 0.027

Linear SVM n = 60 -0.107 -0.004 0.043 -0.009 0.021 0.028 0.029
n = 80 -0.079 -0.001 0.048 -0.004 0.021 0.029 0.025
n = 100 -0.063 0.008 0.058 0.006 0.028 0.030 0.019
n = 20 -0.277 -0.107 -0.100 -0.086 -0.066 0.070 0.042
n = 40 -0.204 -0.085 -0.069 -0.035 -0.018 0.067 0.033

RBF SVM n = 60 -0.168 -0.078 -0.058 -0.032 -0.016 0.072 0.036
n = 80 -0.157 -0.056 -0.033 -0.015 0.001 0.053 0.023
n = 100 -0.143 -0.059 -0.033 -0.021 -0.006 0.054 0.023
n = 20 -0.354 -0.060 -0.054 -0.124 -0.026 0.017 0.014
n = 40 -0.323 -0.040 -0.033 -0.119 -0.013 0.034 0.017

CART n = 60 -0.314 -0.028 -0.020 -0.116 -0.004 0.031 0.013
n = 80 -0.305 -0.022 -0.013 -0.111 0.001 0.036 0.014
n = 100 -0.304 -0.016 -0.008 -0.108 0.005 0.030 0.011
n = 20 -0.175 -0.112 -0.034 -0.132 -0.124 0.031 0.032
n = 40 -0.150 -0.105 -0.028 -0.122 -0.114 0.048 0.040

3NN n = 60 -0.144 -0.097 -0.023 -0.112 -0.105 0.046 0.037
n = 80 -0.143 -0.096 -0.021 -0.113 -0.106 0.046 0.035
n = 100 -0.136 -0.096 -0.022 -0.114 -0.107 0.049 0.036
n = 20 -0.124 -0.091 0.023 -0.086 -0.076 0.047 0.045
n = 40 -0.110 -0.074 0.018 -0.071 -0.062 0.051 0.040

5NN n = 60 -0.099 -0.059 0.023 -0.061 -0.05 0.057 0.044
n = 80 -0.095 -0.057 0.023 -0.060 -0.051 0.056 0.041
n = 100 -0.091 -0.055 0.022 -0.059 -0.050 0.057 0.040
n = 20 -0.107 -0.073 0.044 -0.066 -0.056 0.055 0.045
n = 40 -0.083 -0.047 0.046 -0.044 -0.033 0.062 0.044

7NN n = 60 -0.081 -0.042 0.043 -0.042 -0.030 0.059 0.038
n = 80 -0.070 -0.032 0.048 -0.034 -0.022 0.064 0.043
n = 100 -0.072 -0.034 0.044 -0.035 -0.022 0.062 0.039

Table 2.2: Bias results in the synthetic data experiment. The best bias value in each row is printed
in bold.

estimator was expected to be significantly biased). The cross-validation and bootstrap estimators

are positively biased, which is expected since both estimators employ classifiers trained on data

sets of smaller effective sample size than the original one [6].

On the other hand, Table 2.3 shows that the bolstered estimators, but not semi-bolstering,

achieve the smallest variance in nearly all cases. Indeed, semi-bolstering trades off less bias for

more variance, since its bolstered empirical measure is more sparse than in full bolstering, as was

24



also noted in [77]. Notice that both cross-validation and bootstrap display large variable at small

sample sizes, which is expected, since they are resampling estimators; resubtitution-like estimators

avoid resampling and should be less variable [38].

Finally, in Table 2.4, we can see that the RMS (which combines bias and variance in a single

metric) reveals a clear superiority of the bolstered estimators, and in particular the new bolstered-

3NNpp estimator, over plain resubstitution, cross-validation, and bootstrap, except in the case of

nearest-neighbor classification with a small number of neighbors, due to the aforementioned bias

issue. In this case, semi-bolstering produces the best compromise between bias and variance.

Nevertheless, with k = 7, we can see that the new bolstered-3NNpp estimator achieves the best

RMS values, except at the very small sample size n = 20.

In order to examine the results further, Figures 2.1 and 2.2 display the box plots. These confirm

the observations made previously about the bias and variance of the different error estimators. We

can see, additionally, that at small sample size n = 20, all error error estimators, except for cross-

validation, tend to be skewed towards optimistic biases, an effect that which disappears as sample

size increases. Cross-validation is always skewed towards pessimistic bias, at all sample sizes.

In addition to the statistical issues discussed above, a very important issue is the computational

complexity of the various error estimators, particularly in cases where thousands (or more) error

estimates must be computed, as in wrapper feature selection. Table 2.5 displays the average com-

putation time obtained by the error estimators in the experiment. The results confirm that plain

resubstitution is lightning fast; its drawback is its large negative bias, as already mentioned. We

can see that the plain posterior-probability error estimator, despite some bias issues, is also very

fast. Combined with its small variance, this makes this estimator attractive for computationally-

expensive classification tasks. Cross-validation (at 10 folds and no repetition) is the next fastest

error estimator. Its poor variance properties under small sample sizes — and, in the case of wrapper

feature selection, the issue of selection bias [78] — makes it unattractive. The bolstered resubsti-

tution estimators are less fast but still much faster than the bootstrap. The latter is tens of times

slower than the other estimators, in most cases, a fact that was already noted in [38].

25



Classification Sample resub bolster semi- 3NNpp bolster cross boot
Rule Size bolster 3NNpp valid

n = 20 0.0038 0.0035 0.0049 0.0056 0.0033 0.0168 0.0101
n = 40 0.0053 0.0016 0.0033 0.0038 0.0018 0.0091 0.0059

Linear SVM n = 60 0.0033 0.0013 0.0023 0.0027 0.0013 0.0053 0.0034
n = 80 0.0018 0.0010 0.0016 0.0019 0.0010 0.0033 0.002
n = 100 0.0017 0.0008 0.0013 0.0015 0.0008 0.0028 0.0017
n = 20 0.0043 0.0043 0.0044 0.0092 0.0067 0.0262 0.0141
n = 40 0.0017 0.0013 0.0016 0.0031 0.0018 0.0113 0.0055

RBF SVM n = 60 0.0012 0.0008 0.0011 0.002 0.0011 0.007 0.0036
n = 80 0.0008 0.0006 0.0009 0.0015 0.0007 0.0045 0.0023
n = 100 0.0007 0.0005 0.0007 0.0011 0.0006 0.0035 0.0019
n = 20 0.0028 0.0030 0.0032 0.0070 0.0036 0.0228 0.0082
n = 40 0.0018 0.0012 0.0024 0.0032 0.0014 0.0108 0.0037

CART n = 60 0.0012 0.0008 0.0009 0.0020 0.0009 0.0066 0.0022
n = 80 0.0009 0.0007 0.008 0.0015 0.0007 0.0048 0.0017
n = 100 0.0008 0.0005 0.006 0.0012 0.0005 0.0039 0.0014
n = 20 0.0064 0.0022 0.0059 0.0035 0.0027 0.0154 0.0081
n = 40 0.0033 0.0010 0.0030 0.0015 0.0010 0.0074 0.0036

3NN n = 60 0.0023 0.0006 0.0017 0.0009 0.0006 0.0051 0.0026
n = 80 0.0017 0.0005 0.0013 0.0007 0.0004 0.0036 0.0017
n = 100 0.0013 0.0004 0.0011 0.0005 0.0003 0.0030 0.0014
n = 20 0.0082 0.0042 0.0064 0.0068 0.0047 0.018 0.0098
n = 40 0.0033 0.0013 0.0029 0.0022 0.0013 0.0075 0.0035

5NN n = 60 0.0023 0.0009 0.0020 0.0014 0.0008 0.0054 0.0026
n = 80 0.0019 0.0007 0.0016 0.0011 0.0006 0.0039 0.0019
n = 100 0.0014 0.0005 0.0013 0.0009 0.0004 0.0032 0.0015
n = 20 0.0091 0.0052 0.0066 0.0090 0.0064 0.0192 0.0113
n = 40 0.0037 0.0016 0.0032 0.0030 0.0016 0.0076 0.0037

7NN n = 60 0.0025 0.0010 0.0021 0.0020 0.0010 0.0051 0.0026
n = 80 0.0019 0.0007 0.0016 0.0012 0.0006 0.0039 0.0019
n = 100 0.0014 0.0005 0.0012 0.0010 0.0005 0.0030 0.0015

Table 2.3: Variance results in the synthetic data experiment. The smallest variance in each row is
printed in bold.

26



Figure 2.1: Boxplots for SVM and CART classification rules in the synthetic data experiment.

27



Figure 2.2: Boxplots for nearest-neighbor classification rules in the synthetic data experiment.

28



Classification Sample resub bolster semi- 3NNpp bolster cross boot
Rule Size bolster 3NNpp valid

n = 20 0.2981 0.0963 0.0963 0.1029 0.0626 0.1302 0.1010
n = 40 0.1836 0.0506 0.0579 0.073 0.0422 0.0976 0.0811

Linear SVM n = 60 0.1213 0.0362 0.0650 0.0532 0.0421 0.0783 0.0651
n = 80 0.0896 0.0309 0.0623 0.0440 0.0378 0.0641 0.0508
n = 100 0.0751 0.0289 0.0680 0.0396 0.0391 0.0611 0.0453
n = 20 0.2844 0.1258 0.1196 0.1289 0.1050 0.1765 0.1259
n = 40 0.2086 0.0921 0.0798 0.0652 0.0455 0.1255 0.0816

RBF SVM n = 60 0.1718 0.0831 0.0666 0.0545 0.0364 0.1101 0.0702
n = 80 0.1596 0.0614 0.0441 0.0412 0.0271 0.0852 0.0535
n = 100 0.1455 0.0632 0.0432 0.0388 0.0242 0.0806 0.0495
n = 20 0.3581 0.0812 0.0785 0.1494 0.0650 0.1520 0.0914
n = 40 0.326 0.053 0.0492 0.1314 0.0401 0.1093 0.0631

CART n = 60 0.3164 0.0401 0.0363 0.1242 0.0306 0.0867 0.0489
n = 80 0.3067 0.0334 0.0301 0.1175 0.0265 0.0783 0.0431
n = 100 0.3049 0.0277 0.0251 0.1134 0.0239 0.0692 0.039
n = 20 0.1924 0.1227 0.0869 0.1450 0.1337 0.1239 0.0955
n = 40 0.1616 0.1092 0.0573 0.1284 0.1179 0.1020 0.0721

3NN n = 60 0.1524 0.1015 0.0461 0.1159 0.1069 0.0838 0.0622
n = 80 0.1485 0.0981 0.0452 0.1169 0.1079 0.0756 0.0532
n = 100 0.1418 0.0981 0.0378 0.1157 0.1089 0.0775 0.0538
n = 20 0.1532 0.1090 0.0832 0.1175 0.1033 0.1382 0.1097
n = 40 0.1253 0.0841 0.0531 0.0868 0.0738 0.1034 0.0721

5NN n = 60 0.1109 0.0662 0.0550 0.0729 0.0583 0.0903 0.0666
n = 80 0.1031 0.0644 0.0461 0.0671 0.0548 0.0821 0.0573
n = 100 0.0994 0.0585 0.0477 0.0662 0.0539 0.0828 0.0566
n = 20 0.1465 0.1011 0.0913 0.1116 0.0977 0.1504 0.1188
n = 40 0.1024 0.0617 0.0756 0.0666 0.0519 0.1093 0.0744

7NN n = 60 0.0952 0.0516 0.0659 0.0580 0.0424 0.0915 0.0628
n = 80 0.0806 0.0439 0.0625 0.0525 0.0297 0.0877 0.0587
n = 100 0.0824 0.0394 0.0595 0.0461 0.0312 0.0796 0.0559

Table 2.4: RMS results in the synthetic data experiment. The best RMS value in each row is printed
in bold.

2.2.4.2 MNIST Data Experiments

In this section we present results of a simple experiment that indicate the potential of general-

ized resubstitution estimators in image classification with convolutional neural networks (CNN).

The experiment uses the well-known MNIST data set and the LeNet-5 CNN architecture.

The MNIST training data set contains 60, 000 28 × 28 grayscale images of handwritten digits

29



Classification Sample resub bolster semi- 3NNpp bolster cross boot
Rule Size bolster 3NNpp valid

n = 20 0.00012 7.72 7.17 2.18 6.94 3.98 111.75
n = 40 0.00013 13.23 13.01 1.84 13.28 5.17 111.83

Linear SVM n = 60 0.00013 19.95 19.27 1.73 18.84 6.23 136.64
n = 80 0.00013 28.06 26.59 1.76 28.15 9.41 194.78
n = 100 0.00014 35.67 33.98 1.95 36.04 14.51 259.07
n = 20 0.00021 9.37 7.81 1.98 9.34 5.76 141.81
n = 40 0.00029 17.53 15.23 1.74 17.96 7.11 166.50

RBF SVM n = 60 0.00040 27.99 28.09 1.65 30.94 9.90 222.74
n = 80 0.00053 37.45 36.41 1.67 45.82 12.60 272.67
n = 100 0.00070 53.53 50.92 1.87 68.38 18.73 367.78
n = 20 0.00014 5.99 4.26 1.87 7.33 3.15 91.54
n = 40 0.00014 12.15 11.37 1.97 16.45 4.79 99.37

CART n = 60 0.00015 18.06 15.79 1.96 22.57 4.89 112.91
n = 80 0.00015 24.08 21.96 1.51 27.54 4.94 113.20
n = 100 0.00016 34.82 31.87 1.98 36.51 6.00 133.62
n = 20 0.0012 63.17 55.19 3.30 121.20 10.54 263.76
n = 40 0.0017 125.55 120.16 3.91 239.93 11.28 300.8

3NN n = 60 0.0028 188.34 185.14 4.50 360.82 11.96 346.19
n = 80 0.0029 254.18 252.59 5.21 397.00 12.82 390.31
n = 100 0.0034 319.55 319.53 5.90 445.04 13.56 517.62
n = 20 0.0011 61.95 51.02 3.24 118.45 10.4 261.14
n = 40 0.0016 123.18 113.18 3.84 235.02 11.12 297.05

5NN n = 60 0.0021 185.08 176.05 4.43 253.90 11.79 346.69
n = 80 0.0027 249.10 238.91 5.11 391.04 12.61 417.84
n = 100 0.0034 310.63 300.12 5.76 436.26 13.35 499.96
n = 20 0.0011 53.07 41.08 2.76 101.20 9.01 230.98
n = 40 0.0016 116.56 104.69 3.67 221.75 10.65 287.32

7NN n = 60 0.0022 175.79 163.67 4.23 329.95 11.23 335.52
n = 80 0.0027 237.74 224.36 4.89 377.69 12.03 416.78
n = 100 0.0034 299.76 286.09 5.53 422.69 12.72 477.60

Table 2.5: Average computation time (in milliseconds) in the synthetic data experiment.

between 0 and 9 (hence, 10 classes). It is well-known that LeNet-5 can achieve accuracies of

upwards of 99% on this data set; e.g., see [79]. Problems with small classification error tend to

be easier in terms of error estimation performance [6]. To make the problem more challenging,

we train the LeNet-5 classifier on random subsets of n = 200, 400, 600 and 800 images from the

original data set. The remaining data are used to obtain accurate test-set estimates of the true

classification error, in order to compute estimates of the bias, variance, and RMS of each error

30



estimator, using 200 independently drawn training data sets for each sample size. The LeNet-5

network was trained using 200 epochs of stochastic gradient descent, with batch size 32, employing

10% of the training data in each case as a validation data set to stop training early if the validation

loss was not reduced for 10 consecutive epochs.

We investigate the performance of bolstered resubstitution with diagonal Gaussian kernels,

which leads to a “Naive-Bayes” bolstering resubstitution estimator, as explained in Section 2.2.1.

This is done since spherical kernels tend to perform poorly in very high-dimensional spaces [80].

Likewise, k-nearest neighbor posterior-probability estimators led to too much bias in this high-

dimensional space, and are not considered further.

If Xijk denotes pixel k in image i of class j, the mean minimum distance dn,jk among pixels k

in class j is:

d̂n,jk =
1

nj

nj∑
i=1

|Xijk −X ′
ijk| , j = 0, 1, . . . , c− 1 , k = 1, . . . , 28× 28 ,

where nj is the number of images in class j (nj ≥ 2 is assumed) and X ′
ijk is the nearest pixel (in

value) in position k to Xijk among images in class j. The bolstering kernel standard deviations are

then given by:

σn,jk =
d̂n,jk
α1

, j = 0, 1, . . . , c− 1 , k = 1, . . . , 28× 28 , (2.40)

where α1 = 0.674, as seen in Section 2.2.1.

In order to further reduce the bias of the Naive-Bayes bolstered resubstitution estimator in this

high-dimensional space, we employ a data-driven calibration procedure: we multiply the kernel

standard deviation by a constant κ > 0, which is adjusted so as to minimize the estimated bias of

the estimator. The bias is roughly estimated by training the classifier on a random sample of 80%

of the images form the available training data, and testing it on remaining 20%. Depending on

the computational cost of training the classifiers, this process can be repeated a number of times

r and the results averaged. The point is that the bias does not need to be accurately estimated in

31



order to find a useful value for κ. The calibration process consists of starting at κ = 1, computing

the corrected Naive-Bayes bolstered resubstitution estimate, and increasing κ by a fixed step-size

(here, 0.1) until the magnitude of the roughly estimated bias does not decrease for two consecutive

iterations. A similar model-based calibration method was proposed in [80]; however, the procedure

proposed here is entirely data-driven and makes no modeling assumptions.

Finally, the naive-Bayes bolstered resubstitution estimator is computed by Monte-Carlo, as in

(2.23), where {XMC
ij ; j = 1, . . . ,M} are random images generated by drawing each pixel from a

Gaussian distribution with mean equal to the original pixel value and standard deviation in (2.40).

This generates “noisy images” where the intensity of the noise in each pixel is correlated with the

variability of pixel values at that position across the training data (for that digit class). Here we

employed M = 100 Monte-Carlo images for each training image. A few of these Monte-Carlo

images can be seen in Figure 2.3.

The results of the experiment are displayed in Tables 2.6, 2.7 and 2.8. We can see that, while

Naive-Bayes bolstered resubstitution is able to improve somewhat the optimistic bias of resubsti-

tution, calibration succeeded into reducing the bias to nearly zero, especially as sample size in-

creases. The generalized resubstitution estimators were not able to match the low variance of plain

resubstitution. Calibration increased the variance of the plain Naive-Bayes estimator, as might be

expected (though much less in the case r = 5 than in the case r = 1). When bias and variance

are combined in the RMS metric, the clear winners are the calibrated estimators, particularly at

r = 5. Even at r = 1, (i.e., just one additional step of classifier training), there is a substantial im-

provement. If more than r = 5 repetitions are used, it is expected that results will improve further,

though at a higher computational cost. Notice that the bias, variance, and RMS of all estimators

decrease monotonically with increasing sample size.

Finally, Table 2.9 displays the average computation time for the error estimators in the experi-

ment. The results again confirm that plain resubstitution is very fast. The superior performance of

the calibrated naive-Bayes bolstered resubstitution estimators come at a computational price; this

is due to the fact that additional classifiers need to be trained in order to perform the calibration

32



κ = 0 κ = 1 κ = κ∗ κ = 0 κ = 1 κ = κ∗

Figure 2.3: Examples of Monte-Carlo images used in the Naive-Bayes bolstered resubstitution
error estimator, with n = 600. The parameter κ∗ is the optimal correction factor for the calibrated
naive Bayes bolstered error estimator (r=1). The cases κ = 0 and κ = 1 refer to the original image
and the uncorrected Naive-Bayes bolstered image, respectively.

Sample resub nBbolster calibrated calibrated
Size nBbolster (r=1) nBbolster (r=5)

n = 200 −0.131 −0.082 0.019 0.014
n = 400 −0.100 −0.064 0.007 0.012
n = 600 −0.080 −0.052 0.005 0.005
n = 800 −0.072 −0.051 0.003 0.001

Table 2.6: Bias results in the MNIST data experiment. The best bias value in each row is printed
in bold.

Sample resub nBbolster calibrated calibrated
Size nBbolster (r=1) nBbolster (r=5)

n = 200 0.0006 0.0013 0.0064 0.0027
n = 400 0.0002 0.0008 0.0029 0.0013
n = 600 0.0002 0.0006 0.0018 0.0006
n = 800 0.0001 0.0003 0.0011 0.0006

Table 2.7: Variance results in the MNIST data experiment. The best variance value in each row is
printed in bold.

33



Sample resub nBbolster calibrated calibrated
Size nBbolster (r=1) nBbolster (r=5)

n = 200 0.1336 0.0897 0.0822 0.0519
n = 400 0.1010 0.0702 0.0505 0.0418
n = 600 0.0812 0.0576 0.0403 0.3040
n = 800 0.0728 0.0539 0.0301 0.0200

Table 2.8: RMS results in the MNIST data experiment. The best RMS value in each row is printed
in bold.

Sample resub nBbolster calibrated calibrated
Size nBbolster (r=1) nBbolster (r=5)

n = 200 0.00043 7.24 65.91 298.51
n = 400 0.00085 15.42 127.78 597.24
n = 600 0.00131 25.54 216.99 928.61
n = 800 0.00175 35.59 296.86 1342.19

Table 2.9: Average computation time (in seconds) in the MNIST data experiment.

procedure.

2.2.4.3 UCI Data Experiments

This section presents a set of empirical study to examine the performance of generalized resub-

stitution error estimators using fully connected neural network classifiers and a selection of UCI

datasets 3. The networks were created from a permutation of various hyperparameter values. The

varying hyperparameters were depth and width, whereas hyperparameters batch size and dropout

rate were kept fixed. Depth and width were selected from sets of 5 and 8 values, respectively;

depth ∈ {1, 2, 3, 4, 5} and width ∈ {10, 20, 30, 40, 2d, 4d, 6d, 8d}, where d is the dimension of the

input data. Batch size was set to the closes integer to n
10

, for n being the training sample size, and

dropout rate was set to 5%.

The networks were trained for maximum of 800 epochs or until the training accuracy reaches

95%, whichever occurs first, using ADAM optimizer with initial learning rate of 0.001 and a

3https://archive.ics.uci.edu/ml/datasets.php

34



scheduled learning rate decay of 0.5 at every 100 iterations. The training dataset was selected from

the UCI database [81]. The choice of datasets was based on the size of training samples. Inspired

by [82, 83], I selected the datasets with less than 5000 total data points as the datasets with small

sample size, which included total of 90 datasets. Hence, this empirical study includes training

5× 8 = 40 networks for each datasets, generating total of 3600 networks for all 90 datasets.

Subsequently, to assure the consistency of the trained networks, the networks that reached 800

training epochs with a training accuracy below 95% were discarded. Among the 3066 remaining

networks, 172 of them had a true error of larger than 0.5, and therefore were not included in

the plots. The vertical and horizontal axis in Figures 2.4, 2.5 and 2.6 show the |Deviation| and

True Error, respectively, where |.| takes the absolute value and Deviation = estimated error −

true error. Good candidates of error estimators are the one with deviations as small as possible.

Each point in the figures refers to the error estimate by one of the error estimators per network per

dataset. The error estimators, in this set of experiments, include standard resubstitution, spherical

bolstered, posterior probability, and spherical bolstered-posterior probability error estimators.

Figure 2.4 includes subplots for networks with fixed depth (D) and width (W). Each column

of subplots show the result for a fixed width but various depths. Each row of subplots, on the

other hand, include the result for a fixed depth but various widths. This figure illustrates that wider

networks include more points for each error estimator, which suggests that the wider networks had

more capacity to reach 95% accuracy in under 800 epochs. Additionally, the performance of the

error estimators seem not to be affected much by the depth or width of the network. Yet, one can

observe that the performance of some error estimators, including the bolstered ones show a pattern

with respect to the true error.

Figures 2.5 and 2.6 displays the absolute value of deviation from the true error versus the true

error for all 2894 networks. Figure 2.6 maps all subplots from Figure 2.5 in a single plot for

easier comparison of error estimators. Bolstered posterior probability error estimator presented the

lowest deviation when the true error was not very small. Otherwise, when the true error was small,

the deviation of bolstered resubstitution varies from very small (∼ 0) to large (∼ 0.4), indicating

35



Figure 2.4: Magnitude of deviation of error estimators from the true error for selected networks
with fixed depth (D) and width (W).

that bolstering parameter was not optimal for some datasets and networks that generate both small

standard resubstitution and small true error.

Since the networks are trained for a high training accuracy, small true error indicates that

the trained classifier has learned the important features through training dataset. In other words,

the training data represented all important features of the underlying distribution, from which the

test set was also generated, and meanwhile, the classifier had enough capacity to learn all those

features. In such case, no bolstering is needed and the standard resubstituion error estimator is a

good representative of the true error due to its small deviation from the true error.

36



Standard Resubstitution Spherical Bolster

Posterior Probability Bolstered Posterior Probability

Figure 2.5: Magnitude of deviation of each error estimator from the true error versus true error for
all netowrks.

Figure 2.6: Magnitude of deviation of all error estimators from the true error versus true error for
all networks.

37



2.3 Bayesian Generalized Resubstitution for Neural Networks

All previous examples of generalized resubstitution were based on smoothing the error count.

This section gives an example that shows that the family of generalized resubstitution estimators is

more general than that. For the flow of this subsection, many notations are defined again. For con-

sistency of terminologies with deep learning literature, in this section, "accuracy" is used instead of

"error" in some parts of this section. Classification accuracy and error estimates are related through

Acc = 1− ε̂. In the following, notations and formulations for Bayesian generalized resubstitution

are described in section 2.3.1. Subsequently, section 2.3.2 presents empirical results.

2.3.1 Definitions and Methods

Let X ∈ Rd be a random feature vector, Y ∈ {0, 1, . . . , c − 1} be the corresponding random

label, and P be the joint probability that determines the relationship between X and Y . A classifier

ψ is a (Borel-measurable) function fromRd to {0, 1, . . . , c−1}, designed such that the classification

accuracy Acc = P (ψ(X)=Y ) is maximized. It can be shown that an optimal maximum-accuracy

classifier satisfies

ψ∗(x) = arg max
y=0,1,...,c−1

P (Y = y | X = x) . (2.41)

which is equivalent minimum-error classifier; ψ∗(x) = argminy P (Y ̸= y | X = x), for

y = 0, 1, . . . , c − 1. In practice, P is unknown, and one designs a classifier ψn that is accurate

as possible based on the information contained in training data Sn = {(X1, Y1), . . . , (Xn, Yn)},

where each pair (Xi, Yi) is distributed as (X, Y ). In the discriminative approach to classification,

estimates P̂n(Y = y | X = x) of the unknown conditional probability are derived using the

training data Sn and plugged in (2.41) to obtain a classifier

ψn(x) = arg max
y=0,1,...,c−1̂

Pn(Y = y | X = x) , (2.42)

with the justification being that the closer the estimates are to the true conditional probability,

the closer the obtained classifier will be to the optimal classifier. The classical and Bayesian

38



approaches to discriminative classification derive distinct estimates P̂n(Y = y | X = x) based on

a parametric model {Pθ(Y = y | X = x); θ ∈ Θ}. In the classical approach, it is assumed that the

true conditional probability is a member of the parametric family, i.e., there is a parameter θ∗ such

that P (Y = y | X = x) = Pθ∗(Y = y | X = x). A point estimator θn is formed from the training

data, typically by optimizing a data-fit score, and one chooses

P̂ cl
n (Y = y | X = x) = Pθn(Y = y | X = x) . (2.43)

By contrast, in the Bayesian approach, the parameter is a random variable, with a prior density

p(θ) and one sets

P̂ bay
n (Y = y | X = x) =

∫
Θ

νθ(Y = y | X = x) p(θ |Sn) dθ , (2.44)

where p(θ | Sn) is the parameter posterior density. Hence, the difference between the classical

and Bayesian approaches is that the former is based on optimization, while the latter is based on

marginalization. As a result, the Bayesian approach may overcome overfitting issues that result

from optimization based on a small amount of data.

A neural network with L layers and nk neurons in the k-th layer is defined recursively by

αki (x) =

nk−1∑
j=0

wkjiβ
k−1
j (x) + wk0i , i = 0, 1, . . . , nk − 1 ,

βk−1
i (x) = σ(αk−1

i (x)) , i = 0, 1, . . . , nk − 1 ,

(2.45)

for k = 1, . . . , L, where β0
i (x) = xi for i = 1, . . . , d are the inputs to the network and σ is a

component-wise nonlinearity. The outputs of the network are

fi(x, θ) = αLi (x) , i = 0, 1, . . . , nL = c− 1 , (2.46)

39



where θ = {wkji} is the vector of all parameters in the neural network. The softmax model

Pθ(Y = y | X = x) =
exp (fy(x, θ))∑c−1
i=0 exp (fi(x, θ))

, y = 0, 1, . . . , c− 1 , (2.47)

provides a parametric discriminative model for both classical and Bayesian neural network classi-

fication.

We seek an accuracy estimator Âccn that reliably approximate Accn = P (ψn(X) = Y | Sn)

based on the training data Sn, in the sense that the deviation Âccn−Accn is minimized. The usual

metrics to be minimized are moments of the deviation. The bias is defined as the first moment of

the deviation:

Bias(Âccn) = E[Âccn − Accn] = E[Âccn]− E[Accn] . (2.48)

The accuracy estimator Âccn is optimistic, unbiased, or pessimistic according to whether Bias(Âccn)

is positive, zero, or negative, respectively. The deviation variance is

Vardev(Âccn) = Var(Âccn − Accn) = Var(Âccn) + Var(Accn)− 2Cov(Accn, Âccn) . (2.49)

Previous subsections defined baseline and bolstered posterior-probability classification error

estimators as examples of generalized resubstitution estimators. The baseline posterior-probability

estimator (here formulated as an accuracy estimator) was given by:

Âcc pp
n =

1

n

n∑
i=1

P̂n(Y = ψ(Xi) | X = Xi) , (2.50)

where P̂n(Y = ψ(Xi) | X = Xi) is computed via the parametric estimates (2.43) or (2.44)

for classical and Bayesian neural networks, respectively. This estimator is based on the simple

and reasonable idea of averaging the estimated posterior probabilities of correct classification for

each training point. If all training points are classified with high confidence in their respective

classes, the estimated posterior probabilities, and thus the estimated accuracy, will be large, and

the converse will be true, otherwise. However, this may produce an optimistically-biased estimator,

40



if the classification algorithm is overfitting for the given sample size and complexity. An alternative

method is provided by the bolstered posterior-probability accuracy estimator:

Âcc bpp
n =

1

n

n∑
i=1

αn,i P̂n(Y = ψn(Xi) | X = Xi) . (2.51)

with coefficients

αn,i =

∫
AYi

pn,Xi,Yi(x;φ) dx , (2.52)

where Aj = {x : ψn(x) = j}, for j = 0, 1, . . . , c−1, are the decision regions corresponding to the

classifier ψn, and the probability densities pn,Xi,Yi are called bolstering kernels, which depend on

hyperparameters φi, for i = 1, . . . , n. Notice that 0 ≤ αn,i ≤ 1, so that Âcc bpp
n ≤ Âcc pp

n ; this has

the effect of reducing optimistic bias in the baseline posterior-probability estimator Âcc pp
n . The

most common choice for bolstering kernels are multivariate Gaussian densities with mean Xi and

covariance matrix Kn,i(φi):

pn,Xi,Yi(x;φi) =
1√

(2π)d det(Kn,i(φi))
exp

(
−1

2
(x−Xi)

TKn,i(φi)
−1(x−Xi)

)
,

Here, we only consider the case where the matrices Kn,i(φi) are diagonal, with freely ad-

justable diagonal elements (variances), Kn,i(φi) = diag(φi1, . . . , φid); this is known as Naive-

Bayes bolstering [75]. In the limiting case where all variances φik tend to zero, all coefficients αn,i

tend to 1, and the bolstered estimator reduces to the baseline posterior-probability estimator, which

is typically optimistic. On the other hand, the large the variances are, the more mass “escapes”

from each decision region, and the bolstered estimator eventually becomes pessimistic. Hence, the

variances can in principle be optimized to produce an exactly unbiased estimator. The integrals re-

quired to compute the coefficients αn,i can be computed analytically in very few cases (e.g., when

c = 2, the decision boundary is linear, and Gaussian bolstering kernels are used). In practice,

41



Figure 2.7: Bias, variance, and RMS of error estimators for Lenet-5 classifier and MNIST dataset.

Monte-Carlo estimates are used:

αn,i ≈
1

M

M∑
j=1

I(XMC
ij ∈ AYi) , (2.53)

where {XMC
ij ; j = 1, . . . ,M} are random points drawn from the density pn,Xi,Yi , for i = 1, . . . , n.

2.3.2 Empirical Results

This section presents the empirical results of the Bayesian generalized resubstitution on Bayesian

neural networks that were trained on synthetic and MNIST datasets. The networks include a Lenet-

5 CNN (on MNIST data) and a fully connected network with two hidden layers and 512 nodes in

each layer (on MNIST data). Additionally, using synthetic data and a one-hidden layer networks

was used to study the effect of width of the network on classification error (or accuracy). The

results of experiments with MNIST dataset are displayed in Figures 2.7 and 2.8, whereas Figure

2.9 presents error estimates from the experiments with synthetic data. The synthetic data was

generated in the same way as explained in section 2.2.4.1.

Figures 2.7 and 2.8 compare the bias, variance and RMS values of the standard resubstitution

error estimator with the Bayesian posterior probability and bolstered Bayesian posterior proba-

bility. Bias, variance, and RMS of the error estimators were computed over 50 repeats of the

experiments. Increasing the number of experiments leads to smoother diagram for variance in fig-

ure 2.8 and would better show the decrease in variance as the sample size increases. However, the

42



Figure 2.8: Bias, variance, and RMS of error estimators for fully connected network (depth = 2,
width = 512) classifier and MNIST dataset.

Bayesian approach is computationally very expensive, and therefore we did not repeat the experi-

ment for more than 50 times.

MNIST data can be regarded as high dimensional data with 28 × 28 dimensions, which con-

tributes to the high cost of running experiments on Bayesian networks. Also, bolstering and

Bayesian network together lead to high computation and time complexity. The experiments with

shallow networks and synthetic data, as illustrated in Figure 2.8, suggest that more than 50 repeats

of experiments may be required to draw a clear conclusion for behaviour of the bolstered posterior

probability error estimator. However, I used the synthetic data to investigate the behaviour of the

Bayesian posterior probability error estimator as the network gets wider (i.e. number of nodes in

each layer increases). To do so, I ran the experiments for a shallow network (with only 1 hidden

layer) with 10, 30, and 100 neurons wide.

Figure 2.9 illustrates that as the network’s width increased, the standard resubstitution error

was also increased, which indicates more overfitting on the training data. This is consistent with

what one expects because a wider network has more capacity to fit the features that are present in

the training dataset. The Bayesian posterior probability error estimate consistently presented less

bias than the standard resubstitution. Although the Bayesian posterior probability error estimator

was unbiased when the network was not very wide (W=10), its variance was large. Hence it

did not consistently beat the standard resubstitution. As the network became wider, the variance

decreased notably and therefore the RMS value followed the behavior of the bias. Since the bias of

43



W = 10

W = 30

W = 100

Figure 2.9: Bias, variance, and RMS of error estimators for fully connected network classifiers
with one hidden layer and various width (W) using binary-class synthetic data

standard resubstitution was consistently lowered by Bayesian posterior probability error estimator,

the latter was a better error estimator in terms of RMS values for wider networks, as a result of

lowered variance compared to the networks with smaller width.

44



3. PREDICTING GENERALIZATION IN DEEP LEARNING

In this chapter, generalized resubstitution error estimators were employed to empirically esti-

mate the generalization of deep neural network models. Section 3.2 presents three data augmen-

tation approaches towards predicting generalization gap in deep learning, where I used a large set

of pre-trained deep models, provided by the NeurIPS 2020 competition [41], which was the first

competition on PGDL.

3.1 Definitions

This section defines the notations and evaluation metrics that are used in the rest of this chapter.

For consistency with deep learning literature, new notations are used for some of the previously

defined variables. For example, here instead of Sn, the training data is denoted by Dtrain.

3.1.1 Notations

Denote the ith hyperparameter of a network by θi ∈ Θi, for i = 1, 2, . . . , H , where H is

the total number of types of varying hyperparameters. A network can be created by a vector of

selected hyperparameters θθθ ≜ (θ1, θ2, θ3, . . . , θH), where θθθ is a member of the hyperparameter

space Θ ≜ Θ1 × Θ2 × Θ3 × · · · × ΘH . For the experiments in this chapter, all members of Θ

are used to create networks. Hence, given the set of hyperparameters, the total number of created

networks is equal to |Θ|. For example, if θ1 and θ2 are a network’s width and depth, with possible

values of {2, 3, 4} and {10, 20}, respectively, then a total of 6 networks will be created.

As defined by equation 2.46, let the output of a network be fi(x, θ), where x is a data point

and θ is one set of selected hyperparameters. Let Dtrain = {(xi, yi)} and Dval = {(xj, yj)} be the

training and validation datasets, respectively, where i = 1, 2, Nt and j = 1, 2, Nv. Given a vector θ

and a data sample x, a trained network produces wights w and outputs the prediction fw(x). The

45



true accuracy of the model is defined as

Acc =
1

|Dval|
∑

(x,y)∈Dval

δ(fw(x) = y) (3.1)

The goal is to find a measure µ : (fw,D) → R such that [µ(w,Dtrain) − Acc] is minimized.

Alternatively, a good measure µ can order the models in from highest to lowest generalization

ability.

3.1.2 Conditional Mutual Information

To be consistent with the NeurIPS 2020 competitions, I used Conditional Mutual Information

(CMI) 1 to evaluate the proposed generalization predictors for the image data experiments. Inspired

by the algorithms for Inductive Causation (IC) [84], CMI evaluates the existence and strength of

causal relationship between the measure µ and observed generalization of a network in a causal

probabilistic graph [7]. The main goal is to determine whether or not there is an edge between µ and

generalization by a conditional independence test. To do so, given the observed hyperparameters

conditional mutual information between µ and generalization should be computed. Conditioned on

the set of hyperparameters θi, the mutual information between µ and generalization gap measures

the ability of µ in predicting the difference of generalization between pairs of models.

Borrowing the notations from [41], let Vϕ(θ, θ′) ≜ sgn(ϕ(θ1) − ϕ(θ′)) for any function ϕ :

Θ → R and any pair of (θ, θ′) ∈ Θ × Θ. Also, denote the generalization gap by g and the

set of observed hyperparameters by O. Then, the total CMI metric is defined as the average of

J ≜ minO Î(Vg, Vµ|O) across all datasets:

CMI(µ) =
∑
D

J (µ;D) (3.2)

where Î(Vg, Vµ|O) =
∑

Ok
pc I(Vg ,Vµ|O)

H(Vg |O)
, pc = 1∏N

i=1 |Θi|
because all Ok are equally probable. H is a

normalization factor defined by the conditional entropy and I is the mutual information between

1CMI derivation and equations are brought from the original references [7, 41]

46



Vg and Vµ, defined as:

H(Vg|O) =
∑
Ok

pc
∑
Vg

p(Vg|Ok) log (p(Vg|Ok))

and

I(Vg, Vµ|Ok) =
∑
Vg

∑
Vµ

p(Vg, Vµ|Ok) log

(
p(Vg, Vµ|Ok)

p(Vµ|Ok)p(Vg|Ok)

)
For the detailed derivation of the MCI metric, see [7].

3.2 Image Data Experiments

This section presents the simple, yet effective, augmented posterior probability generalization

predictors, which are inspired by the bolstered posterior probability error estimators that was de-

scribed in section 2. I employed the package provided by the PGDL competition [41] to run

experiments for evaluation of several variations of augmented posterior probability generalization

predictors. The PGDL package includes trained networks and their configurations, utilities, scor-

ing code, as well as datasets for all tasks in phase 1 and 2. The package is open-sourced and is

available under the Apache 2.0 license 2.

In PGDL competition, participants were required to build a function which takes as inputs a

trained neural network and training data, and returns as output the generalization ability of the

trained network for an unseen test data. The competition consisted of two phases: 1- development

phase, when participants develop functions given network configurations and datasets, and 2- the

evaluation phase, in which the submitted functions were tested on new datasets which were not

initially available to the participants.

In this dissertation, the experiments were performed on three variations of the proposed gener-

alization predictor: 1- when augmentation parameters were found via greedy search in the space of

possible parameters’ values, 2- when the amount of augmentation was computed using a random

sample from normal distribution with mean 0 and standard deviation σ, 3- Weighted augmented

2https://sites.google.com/view/pgdl2020/

47



Task # Architecture # of Models Dataset # of samples
1 VGG-like 96 Cifar10 [85] 60,000
2 Network in Network 54 SVHN [86] 99,000
6 Network in Network 96 Oxford Flowers [87] 8,189
7 Network in Network 48 Oxford Pets [88] 7,400
8 VGG-like 64 Fashion MNIST [89] 70,000
9 Network in Network 32 Cifar10 [85] 60,000

Table 3.1: Network architecture and datasets that were used for PGDL tasks.

- semi posterior probability with weights on augmented samples, when augmented samples were

generated in the same way as the second variation. The latter approach was inspired by the first

runner-up solution in PGDL competition [53] as well as the semi-bolstered approach for the k-NN

classifiers in section 2. The rest of this section describes each of the above approaches in more

details.

3.2.1 Networks Configurations and Datasets

Phase 1 consisted of two tasks (tasks 1 and 2), whereas phase 2 was performed on four tasks

(tasks 6-9). Table 3.1 presents more details of the tasks3.

3.2.2 Augmentation Parameter Search

Note: this approach is referred to by "Par-Search" throughout the rest of this chapter.

Generalization predictors that are based on simple data augmentations are prone to overfit the

training data. Similarly, error estimates based on simple and general augmentations of the training

data does not notably improve the standard resubstitutin error and are typically largely biased. In

practice, the general framework is to set the augmentation factor equal to a random sample from a

uniform distribution over a wide range of possible values for the corresponding factor.

In addition to the increased variability, the aforementioned data augmentation reduces the abil-

ity of the image generator to create meaningful images for the error estimation task. An image

is meaningful if it is generated with a large enough augmentation factor and yet be realistic. For

3https://github.com/google-research/google-research/tree/master/pgdl

48



example, a horse with 80 degrees rotation is not realistic but an airplane with the same rotation can

exist. Hence, providing a narrow but meaningful range for augmentation factors can improve the

error estimate, and perhaps the generalization prediction.

Par-Search was initially inspired by the calibration approach that was introduced in section

2.2.4 for the MNIST data experiments. The procedure is to first define sets of possible and narrow

ranges for each augmentation factor, and then search for the best combination of ranges that results

in the lowest estimate of the bias of the error estimator. The bias is roughly estimated by training

the classifier on a random sample of 80% of the images form the available training data, and testing

it on the remaining 20%.

An exhaustive search would consider all combinations of augmentation parameters’ ranges,

but would require many steps to test all possibilities. Alternatively, a greedy search explores the

parameters’ space in a shorter time, but the final set does not guarantee the lowest bias estimate.

Indeed, the main drawback of this approach is that the model should to be trained and tested on

many combinations of the parameter ranges, which can be cumbersome. For deep neural network

models, Par-Search is infeasible due to the large requirements for memory over a long period of

time. Next subsection describes an alternative approach that increases the amount of augmented

data but requires only one training step for the model.

3.2.3 Multiple Augmented Sets

Note: this approach is referred to by "Multi-Augment" throughout the rest of this chapter.

Training multiple models in Par-Search approach was impractical for deep neural networks.

Alternatively, I generated multiple augmented datasets with distinct parameter ranges and used

them for trained model error estimation. Inspired by the bolstering approach in chapter 2, the

choice of parameters’ range in Multi-Augment method is determined by a sample from a normal

distribution. The procedure is to, for each input image x, generate M augmented images and

average the outcomes. Each of the M images is generated by adding an augmentation to "x" with

a distinct augmentation factor. The augmentation factor for each of the M images is a random

sample drawn from a normal distribution N (0, σ), where σ is the standard deviation equal to one-

49



Figure 3.1: Rings that were used as ranges for augmentation factor in multiple augmented datasets
generation.

third of the maximum value, in magnitude, that would make sense for that type of augmentation.

For example, if the rotation must be between -90 and 90 degrees, then the rotation augmentation

factor would be a sample from N (0, 30), and therefore, %99 of the randomly generated factors are

between -90 and 90 degrees.

In the following experiments, I resembled a normal distribution by manually specifying the

augmentation range. To do so, I defined a meaningful maximum value for each factor according

to the corresponding augmentation type. Then assuming that, in a normal distribution, 99% con-

fidence interval is within three standard deviation of the mean, I defined three rings around each

data point x. The first ring covers [−σ, σ] and includes 68% of the augmented data. The second

ring covers ([−2σ,−σ), (σ, 2σ]) and contains 27% of the augmented data points. The third ring

covers ([−3σ,−2σ), (2σ, 3σ]) and includes 4% of the augmented data points. (See Figure 3.1 for

illustration.)

50



I let M = 25, and generated 17, 7, and 1 samples by using the first, second, and third rings,

respectively, as the range for the augmentation factor. The samples in each ring were generated

from a uniform distribution defined by the minimum and maximum of the ring. The second and

third rings contain two intervals, one with negative and one positive. For the factors that accept

both positive and negative values, I generated, respectively, 7 and 1 random boolean digits (b). If

b = 0, then the corresponding factor’s range was set to the negative interval. Otherwise, it was set

to the positive interval. For the augmentation types that only accept positive values, I modified the

rings to (0, σ], (σ, 2σ], and (2σ, 3σ] for the first, second, and third rings, respectively.

3.2.4 Weighted Augmented - Semi Posterior Probability

Note: this approach is referred to by "Weighted Augment - Semi PP" throughout the rest of this

chapter.

In this approach, a penalty is calculated for each augmented data depending on whether or not it

is correctly classified by the trained network. Given an original input (x, y), denote the augmented

image by x∗. A trained model ψn(.) classifies x∗ in the correct class with posterior probability

P̂n (ψn(x
∗) = y|X = x∗). This posterior probability estimate is used to define the penalty for

correctly classified augmented images, whereas for the incorrectly classified x∗, the penalty is

computed as a function of the strength and amount of augmentation.

As suggested by [53], reasonable augmentation of input data does not change the labels pre-

dicted by a trained models, if the trained model is generalizable. In other words, if the model has

learned the right features, then it should be robust to augmented data that is from the underlying

data distribution. The strength of augmentation was defined according to the change in an image’s

texture after. The larger difference between the texture of an input image and its augmented image

the stronger the augmentation is.

Although the strength of augmentation may depend on the present, given the datasets for all

tasks of PGDL, I defined categories of strong, moderate, and weak augmentation types. Each

category is assigned a strength rank from 1 to 3, which will be used later for computation of

misclassification penalties. For each augmentation type, let r be the rank and fi be the amount

51



Augmentation Category Range
Cut Height Strong [0, 0.5× image height]
Cut Width Strong [0, 0.5× image width]

Height Shift Strong [0, 0.5× image height]
width Shift Strong [0, 0.5× image width]

Zoom out or in (Horizontal) Strong [50%, 150%]
Zoom out or in (Vertical) Strong [50%, 150%]

Sobel Filter Moderate boolean (0, 1)
Darkness or Brightness Weak [50%, 150%]

Rotation Weak [−π/4, π/4]
Horizontal Flip Weak boolean (0, 1)

Table 3.2: Image augmentations types and categories with their range set.

of augmentation that was applied to the image. Also, let superscripts S, M , and W represent

the strong, moderate and weak augmentation types. The strong category, with rS = 1, includes

random cutout, horizontal shift, vertical shift, and zoom in. Sobel filter was assumed to be a

moderate augmentation type with rM = 2. The weak category, with rW = 3, includes brightness,

rotation, and horizontal flip. Table 3.2 presents the more details about the augmentation types.

Figures 3.2, 3.3, and 3.4 display some random examples of generated images using augmentation

types form each category.

For each augmentation type i, a factor fi was randomly selected from the range that is specified

in table 3.2. For zoom augmentation, if fzoom ∈ [50%, 100%], the image is zoomed in (i.e. the

center of the image becomes larger and the sides of the image are removed). Otherwise, the image

is zoomed out (i.e. the image becomes smaller and the edge pixels are repeated to fill the empty

pixels on the sides). Similarly, for brightness, if fbrightness ∈ [50%, 100%] the image becomes darker

and if fbrightness ∈ [100%, 150%] the image becomes brighter. Subsequently, a normalized factor f ′
i

was calculated as following, where |.| takes the absolute value:

• f ′
cut = 4× area of cutout

area of image , where subscript cut refers to the random cutout.

• f ′
hs = 2× fheight shift, where subscript hs refers to random shift.

• f ′
ws = 2× fwidth shift, where subscript ws refers to the height shift.

52



• f ′
zh = 2× |100−fzoom

100
|, where subscript zh refers to the horizontal zoom.

• f ′
zv = 2× |100−fzoom

100
|, where subscript zv refers to the vertical zoom.

• f ′
b = 2× |100−fbrightness

100
|, where subscript b refers to the brightness.

• f ′
r = 4× |frotation

π
|, where subscript r refers to the rotation.

• f ′
f = fflip ∈ {0, 1} and f ′

s = fsobel filter ∈ {0, 1}.

Let F ′S = {f ′
cut, f

′
hs, f

′
ws, f

′
zh, f

′
zv} and F ′W = {f ′

b, f
′
r} be the set of normalized factors for strong

and weak augmentations, respectively. Then, the penalty for an incorrectly classified augmented

image x∗ is:

λ′x∗ =

(
1− max

f ′∈F ′S
f ′
)
rS +

(
1− max

f ′∈F ′W
f ′
)
rW + (1− f ′

f )r
W + (1− f ′

s) r
M , (3.3)

where 0 ≤ λ′x∗ ≤ 9, and x∗ is the augmented image generated from the original input image x.

Figures 3.6 and 3.7 display two examples of calculated λ∗ for two images with various augmenta-

tions. The penalty associated to each (x, y) ∈ D) is:

λx =

 1− P̂n(ψn,θ(x
∗) = y|X = x∗) if ψn,θ(x∗) = y

max(1, λ′x∗) if ψn,θ(x∗) ̸= y
(3.4)

and the generalization measure µ is computed as negative of the sum of all penalties.

µ(ψn,θ,D) = −
∑

(x,y)∈D

λx (3.5)

Therefore µ returns a larger penalty, in magnitude, for models with poor generalization.

3.2.5 Discussion

The experimental results suggest that the Weighted Augment - Semi PP method performed

better than the other two methods of this chapter. Table 3.3 compares the CMI score of the methods

53



Height Shift

Width Shift

Random Cutout

Zoom

Figure 3.2: Strong augmentations; the augmentation factor becomes larger from left to right.

of this chapter with the top winners of the PGDL competition. The competition ranks were based

on the average of the CMI score on phase 2 tasks (tasks 6-9). Beside the score, the percentage

change in performance between phase 1 and 2 is notably an important factor. A significant drop

in phase 2 scores (large negative percent change) for a particular method indicates that the method

overfits the data in phase 1. A large improvement in the phase 2 scores (large positive percent

54



Brightness

Rotation

Figure 3.3: Weak augmentations; the augmentation factor becomes larger from left to right.

Original Image Sobel Filter Flip Left Right

Original Image Sobel Filter Flip Left Right

Figure 3.4: Examples of the two fixed augmentation types: Sobel filter and left right flip. These
two augmentation types may affect various images differently depending on how symmetric and
contrasted they are.

55



Figure 3.5: Examples of images generated with combination of all eight augmentation types. Flip
and sobel filter was randomly applied to images with probability of 0.5.

56



Figure 3.6: Example of an augmented image with large misclassification penalty.

Figure 3.7: Example of an augmented image with small misclassification penalty.

change) suggests that the method underfit the data from phase 1.

Weighted Augment - Semi PP is fairly robust to the change of network architecture and training

dataset. The percentage change in tasks 6 and 7 were 1.25% and -9.66%, respectively, which is con-

siderably smaller than the top three winners, Interplex (13.58% and -67.49%), Always-Generalize

(-80.88% and 18.45%), and BrAIn (49.95% and 18.45%). Multiple-Augmentation did not achieve

a high score in either tasks, which can be due to the fact that the augmented data in this method is

close to the original images and the increased number of augmented data did not help in general-

ization prediction. Additionally, the percent difference was large indicating that this approach may

be vulnerable to overfitting or underfitting. The Par-Search method returns good score when the

dataset is small. Otherwise, it did not finish the job in the allocated time and memory.

57



Name phase 1 score Task 6 Task 7 Task 8 Task 9
Weighted aug - semi pp 24.91 21.25 21.60 15.38 20.14

Multiple Aug 4.21 4.72 3.44 2.34 3.06
Par search – 62.51 59.46 – –

Interplex [57] 38.73 43.99 12.59 9.24 22.92
Always-Generalize [90] 41.79 7.99 7.85 12.41 10.12

BrAIn [91] 9.27 13.90 7.56 16.23 2.28

Table 3.3: Scores for the tree approaches of data augmentation presented in this section compared
to the top three NeurIPS first PGDL competition. A higher score shows the better generalization
prediction. The highest score is printed in bold.

Name phase 1 score Task 6 Task 7 Task 8 Task 9
Weighted aug - semi pp 24.91 +1.25% -9.66% -38.25% 19.04%

Multiple Aug 4.21 12.11% -18.29% 44.41% 27.32%
Par search – – – – –
Interplex 38.73 13.58% -67.49% -76.17% -33.23%

Always-Generalize 41.79 -80.88% -81.21% -70.95% -75.78%
BrAIn 9.27 49.95% 18.45% +75.10% -75.40%

Table 3.4: Percentage change of the scores in tasks 6-9 compared to the phase 1 score. The lower
percentage indicates the more robustness of the corresponding method to changes in data and
network configuration. The lowest percentage change is printed in bold.

The high requirements of the Par-Search approach makes it impractical for deep neural net-

works and large datasets. It also requires the network to be trained from scratch multiple time,

which is extremely unfavorable among the deep learning communities. The Multi-Augment ap-

proach alleviates the requirements of Par-Search by removing all steps for the model training.

Instead of searching for the best ranges of augmentation factors, it generates multiple augmented

datasets using several possible ranges for augmentation factors and combine them to create a large

augmented dataset. In this dissertation, I considered three possible ranges, and named them rings.

The number augmented samples that are generated using the factors in each ring should depend

on how well the ring can describe the optimal range for the factor. In this dissertation, I defined

the rings based on the first, second, and third standard deviation of a Gaussian distribution around

any input image. Subsequently, I defined the importance of each ring (i.e. the number of samples

58



generated using each ring) based on the confidence interval of the mean of Gaussian distributions.

Although Muti-Augment improved the time and memory efficiency, compared to Par-Search,

it increases the training sample size by 25 fold and remains inefficient for the tasks that contain

large training datasets. In fact, the majority of augmented images were close to the original images

and did not capture the generalization gap of the models. Of course, this happened in the tasks that

are presented in this dissertation, where almost all of the networks were trained up to more than

95% training accuracy. Most models were over-fitted on the training data and therefore the Multi-

Augment approach in the present form does not correlate well with the true error and neither with

the generalization gap. However, in future research, one may try the performance of Multi-Aug

method in error estimation tasks where the models are not over-fitting the training data.

59



4. HYBRID COMPARTMENTAL MODELS FOR ESTIMATION OF PROTEIN TURNOVER

This chapter starts with definitions and equations of conventional compartmental models (CCM).

Subsequently, hybrid compartmental models (HCM) are introduced and compared with the CCMs.

Additionally, HCM was used to model the metabolism of Phenylalanine (Phe) and Tyrosine (Tyr).

Details of model structure and parameter estimation procedure, for the Phe-Tyr system, are illus-

trated in the subsection for experimental results.

4.1 Conventional Compartmental Models (CCM)

Consider the two-compartment model with EC and IC pools depicted in Figure 4.1a. The EC

pool represents the blood and fluids surrounding the cells, and its irreversible loss is assumed to be

zero. The IC pool represents the tissue and fluid inside the cell, which is also the site of metabolism.

Sampling from the IC pool requires surgery or a biopsy from the tissue and therefore, IC pool

remains mostly non-accessible in clinical studies. The model on figure 4.1a is defined by a second

order differential equation, for which the time-domain solution is given by

q1(t) = A1e
λ1t + A2e

λ2t (4.1)

This time domain-equation is regressed on the TTR-time data. Once a good fit is achieved, the

fractional rates (kijs) are calculated as k11 = −(A1λ1 +A2λ2)/(A1 +A2) for the sum of all tracer

out-flows from pool 1, k22 = (A2λ1+A1λ2)/(A1+A2) for the sum of all tracer out-flows from pool

2, and k12k21 = (A1A2(λ1 − λ2)
2)/((A1 + A2)

2) as the product of tracer transfer rates between

extra and intracellular pools. With the assumption that there is no loss from the EC pool (i.e.

k01 = 0), all parameters kijs in the model in Figure 4.1a are uniquely identifiable: k21 = −(k11),

k12 = (k12k21)/k21), and k02 = −k22− k12. If the extracellular pool were mixed with another fast-

mixing pool with some loss of substrate, then the parameters would not be uniquely identifiable,

but could be interval-identifiable as explained by [1, 63]. Finally, the tracee fluxes are calculated

as Fij = kijQj , and the protein breakdown into a pool is computed as the accumulated out-flow

60



EC
(pool 1)

IC
(pool 2)

Isotope 
Pulse

UIC 

TTR
k21 
F21

k12 
F12

k
02 F

02

(a) CCM

Isotope 
Pulse

UIC 

TTR
k21 
F21

k12 
F12

k02 F
02

EC
(pool 1)

IC
(pool 2)

Whole body

(b) HCM

Figure 4.1: Single-substrate two-compartment models

fluxes from the pool minus the in-flow fluxes to that pool.

4.2 Hybrid Compartmental Models (HCM)

An HCM is similar to CCM for single-substrate two-compartmental models, except for the

sketch of the models (see Figure 4.1b). For a multi-substrate model, however, the two modeling

approaches are different in both structure and parameters estimation. A multi-substrate model

CCM often face challenges in finding the best graph representation that fits the sampled TTR.

Unfortunately, the solution to this problem is not known prior to regressing the model on the TTR

data. In such case, the structure is solely determined by physiological insights.

Our proposed HCM address this issue by considering multiple tracee alternatives when needed.

Indeed, it assigns a Whole body (Wb) mode for the conversion rate and simultaneously remains

in the Multi-compartment (Mc) mode the Mc-mode for the rest of the parameters. Figure 4.2

illustrates the HCM version of the two CCMs for a two-substrate four-compartment mode. The

ks1s2 parameter in HCM is the tracer fractional conversion rate from substrate 1 to substrate 2 and

corresponds to the CCM conversion parameters k42 and k31 in figures 4.2a and 4.2b, respectively.

This HCM can easily be generalized to a two-substrate multi-compartments model.

Once the tracer HCM is identified, all possible tracee alternative models are produced and the

tracee parameters are calculated by simple math operations. Note that three tracee models can be

generated from the HCM depicted on figure 4.2c by moving the conversion flux: 1- between the

intracellular pools, 2- between the extracellular pools, and 3- between two substrates pools, each

61



k
42 , F

42

(S1) Isotope 
Pulse

(S1) UIC 

(S1) TTR k21 
F21

k12 
F12

k
02 F

02

S2 Isotope 
Pulse

(S2) TTR k43 
F43

k34 
F34

k
04 F

04
(S3) TTR

(S2) UIC 

IC
(pool 4)

EC
(pool 3)

IC
(pool 2)

EC
(pool 1)

(a) CCM when conversion oc-
curs between intracellular pools.

(S1) Isotope 
Pulse

(S1) UIC 

(S1) TTR k21 
F21

k12 
F12

k02 F
02

S2 Isotope 
Pulse

(S2) TTR k43 
F43

k34 
F34

k
04 F

04

k
31 , F

31

(S3) TTR

(S2) UIC 

IC
(pool 4)

EC
(pool 3)

IC
(pool 2)

EC
(pool 1)

(b) CCM when conversion
occurs between extracellular
pools.

(S1) Isotope 
Pulse

(S1) UIC 

(S1) TTR
k21 
F21

k12 
F12

k
02 F

02

𝑘
!! !"S2 Isotope 

Pulse

(S2) TTR
k43 
F43

k34 
F34

k
04 F

04

(S3) TTR

(S2) UIC 

𝐹!! !"

S1 whole body

S2 whole body

IC
(pool 2)

EC
(pool 1)

IC
(pool 4)

EC
(pool 3)

(c) HCM that associates the con-
version to the whole body.

Figure 4.2: Models for a two-substrate four-compartment model.

consisting of the merged IC and EC pool of one substrate.

In the following, we present the mathematical derivations for HCMs. Since the isotopic tracers

do not alter the biochemical function of the tracee, their behaviour is similar to the linear time

invariant (LTI) systems. Let h(t) be the impulse responses an LTI system. Then the response of

the LTI system to an arbitrary input function i(t) can be computed as:

f(t) = i(t) ∗ h(t) =
∫ +∞

−∞
i(τ)h(t− τ)dτ (4.2)

Hence, the equations for the Phe-Tyr model in figure 4.3 can be defined as:

hphe6(t) = A1e
λ1t + A2e

λ2t (4.3a)

htyr4(t) = B1e
γ1t +B2e

γ2t (4.3b)

fphe6(t) = hphe6(t) (4.3c)

ftyr4(t) = htyr4(t) (4.3d)

ftyr6(t) = kphe→tyr (fPhe6(t) ∗ ftyr4(t)) (4.3e)

= kphe→tyr

(
2∑
i=1

αie
−λit +

2∑
j=1

ωje
−γjt

)
(4.3f)

62



where the third and fourth equalities are true because the input is a bolus of isotopic tracer, and

therefore i(t) = δ(t). Also, α1 = A1B1

γ1−λ1 + A1B2

γ2−λ1 , α2 = A2B1

γ1−λ2 + A2B2

γ2−λ2 , ω1 = −
(
A1B1

γ1−λ1 +
A2B1

γ1−λ2

)
,

and ω2 = −
(
A1B2

γ2−λ1 +
A2B2

γ2−λ2

)
.

Theorem 3. For a two-substrate model with n and m compartments for the first and second sub-

strate, respectively, when hS1(t) =
∑n

i=1Aie
λit and hS2(t) =

∑m
j=1Bje

γjt, and when one sub-

strate is a natural product of the other one, the product substrate can be described by:

fproduct(t) = kS1→S2

(
n∑
i=1

αie
−λit +

m∑
j=1

ωje
−γjt

)
(4.4)

where αi =
∑m

j=1
AiBj

γj−λi and ωj =
∑n

i=1
AiBj

λi−γj .

Proof. Let L{.} denote the Laplace transform. Then

L{ftyr6} = L{fPhe6(t) ∗ ftyr4(t)}

= L{fPhe6(t)}L{ftyr4(t)}

=

(
n∑
i=1

Ai
s+ λi

)(
m∑
i=1

Bj

s+ γj

)

=
n∑
i=1

m∑
j=1

AiBi

(s+ λi)(s+ γj)

which, by partial fraction expansion, can be simplified to:

L{ftyr6} =
n∑
i=1

m∑
j=1

AiBj

γj − λi

(
1

s+ λi
− 1

s+ γj

)

63



and using the inverse Laplace transform, we have:

L−1

{
n∑
i=1

m∑
j=1

AiBj

γj − λi

(
1

s+ λi
− 1

s+ γj

)}

=
n∑
i=1

m∑
j=1

AiBj

γj − λi

(
e−λit − e−γjt

)
=

n∑
i=1

m∑
j=1

(
AiBj

γj − λi
e−λit +

−AiBj

γj − λi
e−γjt

)

=
n∑
i=1

m∑
j=1

AiBj

γj − λi
e−λit +

m∑
j=1

n∑
i=1

AiBj

λi − γj
e−γjt

By replacing αi =
∑m

j=1
AiBj

γj−λi and ωj =
∑n

i=1
AiBj

λi−γj and multiplying by the conversion rate

kS1→S2 , one obtains equation 4.4.

Corollary 3.1. The HCM described in theorem 3 has total of 2(n + m) + 1 parameters to be

identified, including two parameters per compartment and one parameter for the conversion rate.

Compartmental models significantly reduce the number of unknown parameters (a.k.a degrees

of freedom) compared to the non-compartmental approach with 2(n+m)+2p unknown parameters

for the model of theorem 3, where p is the number of exponential terms for the metabolite product.

4.3 HCM versus CCM for Multi-Substrate Models

HCM and CCM share many similarities. The pipeline to build each one of them involves four

major steps: 1- specifying the model’s graphical representation, 2- fitting the tracer model on the

TTR-time data, 3- computing the tracer irreversible losses and fractional transfer rates (kij), and

4- calculating the tracee fluxes by Fij = kijQj as well as the protein break-down rates. In both

methods, the tracer model was identified by non-linear iterative regressions, which involves with

minimizing a cost function, meaning that a tracer parameter is reported as a variable with mean and

standard deviations. Once a good fit on the tracer model is achieved, the exact tracee parameters are

computed by basic mathematical operations, though the standard deviation of the tracer parameters

are propagated during the tracee calculations.

64



In CCM, a modeler needs to specify the tracer model in every detail, fit it on the TTR-time data,

and proceed only if the model can properly fit the data. Otherwise, the modeler needs to adjust

the model’s structure and repeat the process until a good fit is achieved. In contrast to the CCM,

the HCM does not require the exact location of the conversion rate in the tracer model. Instead, it

identifies the conversion rate in the Wb-mode and fits a two-mode tracer model on the TTR-time

data. This reduces the required time and efforts for the tracer model construction and identification.

Consequently, it generates alternative tracee models by considering all of the possibilities of the

exact location of the conversion flux. For each one of those alternative models, HCM computes all

of the tracee parameters by simple mathematical operations. Importantly, the modeler can choose

the tracee alternative that makes more physiological sense.

As an example, consider a four-compartment, two-substrate model in Figure 4.2 for Phe and

Tyr. The model in 4.2a is more physiologically sound than the one in 4.2b but the latter latter

fitted our PHE-TYR TTR data whereas the former completely failed the fitting (see [1] for more

details). This problem does not exist for the HCM approach, because it considers whole-body

conversion, fits the data, and associates the conversion to specific pools by evaluating the tracee

alternative. In other words, HCM takes a partial-step for determining the structure of the model,

a full step for parameter identification, and then completes the structure at the end (i.e. it starts

with a partially physiologically right model, fits the data, and picks the completely physiologically

sound alternative at the end).

4.4 Experimental Results

The data was obtained in the Center for Translational Research in Aging and Longevity (CTRAL)

at Texas A&M University. The study protocol and pulse method have previously been described in

[92]. As a brief description, a peripheral line was placed in a vein of the lower arm and for blood

sampling in a superficial dorsal vein of the contralateral hand, and the hand was placed in a thermo-

statically controlled hot box. After a venous blood sample was collected to measure baseline en-

richment, an intravenous (IV) pulse, containing the stable tracers of the amino acids Phenylalanine

(L-[ring-13C6]-Phenylalanine (Phe-6)) and Tyrosine (L-[ring-2H4]-Tyrosine (Tyr-4)), was admin-

65



k21

k12 
k
02

k43

k34 

k
04

Phe whole body

Tyr whole body

IC
(pool 2)

EC
(pool 1)

IC
(pool 4)

EC
(pool 3)

Phe-6 Pulse

Phe-6 
TTR

Tyr-4 Pulse
Tyr-4 
TTR

Tyr-6 
TTR

𝑘
("#$→

&'()

(a)

EC
(pool 1)

IC
(pool 2)

Phe-6 Pulse

Phe-6 
TTR

k21

k12 
k
02

EC
(pool 3)

IC
(pool 4)

Tyr-4 Pulse

Tyr-4 TTR
k43

k34 k
04

Tyr-6 TTR

k
02 

k
04 

Phe
Wb

Tyr 
Wb

𝑘
("#$→

&'()
Phe-6 Pulse

Phe-6 
TTR

Tyr-4 Pulse

Tyr-4 TTR

Tyr-6 TTR

(b)

Figure 4.3: HCM tracer model for the Phe-Tyr four-compartmental model

istered. Enrichments of Phe-6, Tyr-4, and also Tyr-6 (metabolite product of 13C6Phenylalanine)

were measured in the plasma samples, in non-equally-spaced times. Measurements were started

after 5 minutes and continued for two hours.

4.4.1 Tracer model

We used the HCM of Figure 4.3 to model Phe-Tyr metabolism. As pointed out by previous

studies [93, 94, 1], tyrosine tracers may experience mixing issues. Hence, the early blood samples

may extract some injected Tyr isotopes before they fully circulate in the system. We removed

the first two samples (i.e samples taken at times 5 and 10 minutes) from Tyr-4 TTRs to avoid the

overestimation of the tyrosine pool sizes. Yet, the initial points in the Tyr-6 TTR data set may

carry important metabolic information as they are the metabolite product of Phe-6 isotopes, and

therefore we did not remove points from the Tyr-6 data set.

The final tracer HCM of figure 4.3a was fitted on the three TTR data sets by simultaneously

fitting the three sub-models in figure 4.3b. Figure 4.4 shows the final fits and their residuals.

See table 4.1 for the calculated tracer fractional rates. All implementations were done in the open-

source software R. We used R packages quadprog [95] for calculation of initial values, minpack.lm

for non-linear regressions, and stats [96] for the rest of calculations.

66



20 40 60 80 100 120

0.
0

0.
1

0.
2

0.
3

0.
4

PHE6

Time (min)

(a) PHE6

0 20 40 60 80 100 120

0.
00

0
0.

00
5

0.
01

0
0.

01
5

TYR6

Time (min)

(b) TYR6

20 40 60 80 100 120

0.
00

0.
02

0.
04

0.
06

0.
08

TYR4

Time (min)

(c) TYR4

Figure 4.4: HCM fits on the experimental TTR samples.

Variable Value
k02 0.026± 0.005
k04 0.02± 0.001
k21 0.131± 0.036
k12 0.027± 0.007

kphe→tyr 0.033± 0.0082
k34 0.023± 0.01
k43 0.127± 0.013

Table 4.1: mean ± SE for the tracer fractional rate parameters identified by HCM. The units are
min−1.

67



Note that prior to the HCM fitting, we first performed an outlier detection and initial value

estimation for each of the three TTR data sets, i.e. Phe-6, Tyr-4, and Tyr-6, separately from the

other two. Once outliers were removed and initial values were estimated, we fitted the HCM

model on all three TTR data sets using a weighted least square regression approach. The weights

were given to the residuals, where the residuals are defined as the difference between the model’s

prediction and the TTR data. For each TTR data set, the weight was fixed on the inverse of the

TTR range for t < 60min whereas the half of that value for t > 60min. For example, for Phe-4,

we calculated w = [max(TTRPhe6)−min(TTRPhe6] and set the residual weights to 1
w

for t < 60

and 0.5
w

for t > 60.

For the outlier detection, a sum of two exponential functions like equation 4.1 was fitted on the

pulsed TTRs (Phe-6 and Tyr-4) whereas the Tyr-6 data set (which is the Phe-6 metabolite product)

was fitted by a sum of three exponential functions (in the form of TTRTyr6 = −A1e
λ1t+A2e

λ2t+

A3e
λ3t). Finally, the points that were outside the 95% confidence interval of the estimated function

were assumed to be outliers and removed. Note that the regressions in this step were only for the

outlier detection and not for the final fit. Afterwards, the initial values were estimated by means of

the curve peeling method.

4.4.2 Tracee model

The tracer HCM model was identified with the parameters in table 4.1. Consequently, three

alternative tracee models (Figure 4.5) were created. The fluxes for each alternative model were

calculated by tracee equations in the physiologically steady state, where the pool sizes stay constant

and the sum of in-flow and out-flow fluxes is zero. The extracellular pool sizes and EC-to-IC fluxes

are similar in all alternative models. More specifically, the extracellular pool sizes Q1 for Phe and

Q3 for Tyr were calculated as the ratio of the isotopic tracer dose and the estimated TTR at t = 0,

i.e. dosetracer/(A1 + A2). Also, the EC-to-IC Phe flux F21 = k21Q1 and the EC-to-IC Phe flux

F43 = k43Q3 were similar in three tracee alternative models. The rest of fluxes are calculated

differently for the alternative tracee models and are shown in figure 4.5. In 4.5c, the conversion

flux was calculated as (QPheEC + QPheIC)kPhe→Tyr. Units for pool sizes are µmol.kgFFM−1,

68



104.5 ± 21.6

104.7
±
6.4

104.5 ± 21.6

UPhe 

UTyr 

Tyr EC 
18.0 ±
5.0

Phe EC 
13.3 ±
5.0

Phe IC 
67.0 ±
11.6

137.3 ± 39.1

101.5 ±
31.0

Tyr IC 
98.0 ±
32.0 115.6 ±

11.7

137.3 ± 39.1

(a) Alternative 1: Conver-
sion occurs between IC pools.
UPhe = 206.2 ± 35.7 and
UTyr = 10.9± 5.1.

104.5 ± 21.6

UPhe 

UTyr 

Tyr EC 
18.0 ±
5.0

Phe EC 
13.3 ±
5.0

Phe IC 
71.8 ±
14.7125.8 ± 22.0

137.3 ± 39.1

116.0 ± 34.8

21.3
±
2.6

121.7 ±
29.5

102.6 ±
13.7

Tyr IC 
83.8 ±
23.1

(b) Alternative 2: Conver-
sion occurs between EC pools.
UPhe = 143.0 ± 27.1 and
UTyr = 81.3± 30.6.

Phe
EC + IC 

UPhe

Tyr 
EC + IC

UTyr 
124.8

±
11.7

123.2 ±
37.2

139.2 ±
19.8

(c) Alternative 3: Conversion
occurs from Phe to Tyr in Whole
body pools. UPhe = 248.0 ±
41.3 and UTyr = 14.4± 7.0.

Figure 4.5: HCM tracee alternative models.

and for fluxes are µmol.kgFFM−1.h−1.

Alternative 1: The conversion is assumed to take place between intracellular pools ( see Figure 4.5a). Since

the pools are in steady state, F12 = F21 = k21Q1, and Q2 = F12/k12. Similarly, F34 =

F43 = k43Q3, and Q4 = F34/k34. In addition, the protein breakdown to Phe is UPhe =

F02 + FPhe→Tyr, and to Tyr is UTyr = F04 − FPhe→Tyr.

Alternative 2: The conversion is assumed to take place between extracellular pools ( see Figure 4.5b). Due

to the Q1 steady state, F12 = F21 + FPhe→Tyr. Subsequently, calculate Q2 = F12/k12,

F02 = k02Q2, and finally UPhe = F12 + F02 − F21. Similarly, due to the steady state of Q3,

F34 = F43− FPhe→Tyr, Q4 = F34/k34, F04 = k04Q4, and UTyr = F34 + F04 − F43.

Alternative 3: The Wb pool size is assumed to be equal to the sum of EC and IC pool sizes. The EC-IC

transfer fluxes are calculated similar to the alternative model 1, whereas the irreversible loss,

conversion flux, and the protein break-down are calculated with the Wb pool sizes (see figure

4.5c). Therefore, the conversion flux is FPhe→Tyr = kPhe→Tyr(Q1 + Q2), irreversible loss

69



for Phe is F02 = k02(Q1 +Q2), and for Tyr is F04 = k04(Q3 +Q4). The protein break-down

to Phe is UPhe = FPhe→Tyr − F02, and to Tyr is UTyr = F04 − FPhe→Tyr.

4.4.3 CCM Equivalent

Although the present HCM modeling is different from the CCM approach in [1], the current

HCM is more comparable to the sub-model B because we assumed no loss from the EC pool. In

this subsection, some of the previously published CCM results on the same Phe and Tyr data are

reprinted. See [1] for more details on the respective CCM model.

Figure 4.6a is unidentifiable, and therefore, is described by two uniquely identifiable models

in 4.6b. Dashed lines denote sampling sites. TTR1, TTR2, and TTR3 are the tracer-to-tracee

ratio samples for Phe-6, Tyr-4, and Tyr-6, respectively. Solid and open large arrows represent the

pulsed isotopic tracer injection for Phe and Tyr, respectively. Compartments 1 and 3 are plasma

and fast tissues whereas compartments 2 and 4 represent slow tissues. This model is not uniquely

identifiable, and therefore, is described by interval identification strategy using the two uniquely

identifiable models in 4.6b. Subscripts “max” and “min” refer to the lower and upper bounds for

the intervals.

(a) (b)

Figure 4.6: Compartmental model of [1].

A comparison of our results with the previously published literature suggest that the Tracee al-

ternative 2 yields the most physiologically-sound values (mean±SE): 21.3±2.6µmol/kg ffm/h

70



(a) PHE6 (b) TYR6 (c) TYR4

Figure 4.7: Non-compartmental and compartmental fits in [1]. Solid dots are the TTR data
points averaged on all subjects. The slashed line represents the multi-exponential fit for non-
compartmental approach when samples at t=5 and 10 minutes of Tyr curves are not considered
(NC (no t=5, 10 min)). Error bars represent SE.

for Phe to Tyr conversion flux, 143.0 ± 27.1 and 81.3 ± 30.6 for the protein breakdown into Phe

and into Tyr, respectively. Previously published work focuses on non-compartmental analysis to

compute the Wb rate of appearance (WbRa) and Phe to Tyr conversion flux ,a.k.a. the net protein

breakdown (netPB) flux. Note that the non-compartmental approaches are likely to underestimate

the fluxe [63, 1, 97]. Our alternative model 2 estimates all of the protein breakdown values slightly

larger than those reported by the previously published non-compartmental approaches.

The Phe to Tyr conversion flux was calculated based on non-compartmental approaches applied

to primed constant infusion studies as 5.2±0.7 in 20 healthy individuals [98], 8.0±0.8 in 10 young

adults [92], and 7.1± 0.6 in 17 older adults [92]. In [99] higher estimates of 11.1± 5.8 for a fasted

and 12.7 ± 7.7 for a fed state are reported. In [1], a non-compartmental analysis was performed

(on the exact data that we used in this work), and the protein breakdown flux was reported as

5.7± 1.5µmol/kg ffm/h.

The non-compartmental WbRa underestimates the protein breakdown because it does not con-

sider the IC biochemical activities including the irreversible loss. The non-compartmental analysis

of WbRa production (mean±SE µmol/kg ffm/h) is reported by [98] as 99.1± 5.1 for Phe and

65.6± 4.9 for Tyr. Furthermore,[92] reports WbRa 87.9± 2.3 and 53.8± 3.6 in young adults for

Phe and Tyr, respectively. The same study also reports 93.5±4.6 and 63.7±4.8 for WbRa Phe and

71



Tyr, respectively, in old adults. The non-compartmental WbRa for both Phe and Tyr were reported

in [1] as 50.4 ± 4.9 and 47.8 ± 9.0, respectively, which were a bit lower than those of previously

mentioned publications.

Our HCM outperformed the respective CCM in terms of fitting the TTR data, particularly when

comparing the Tyr-6 fits by the two modeling approaches (figure 4.4 vs. figure 4.7). In contrast

to the CCM, the HCM tracer model reproduced well the early time points Tyr-6 data. This is an

important feature of the model because experimental observations show that Tyr-6 is detectable in

the blood samples only after it is produced as a result of the metabolic conversion of Phe-6, which

suggest that the early time point samples may carry important metabolic information and should

not be discarded.

When comparing the fractional rates in groups, one can bypass computation of fluxes, keep

the conversion fractional rate and pool sizes separate, and replace the flux computations with a

multivariate analysis. More specifically, instead of computing the fluxes using the steady-state

formula (Fij = kijQj) and comparing the groups’ fluxes, one can use machine learning algorithms

to distinguish the groups differences given the pool size and fractional rates. However, if the fluxes

are the quantities of interest, the tracee alternative models should be generated.

72



5. SUMMARY

5.1 Classification Error Estimation

We introduced and investigated the family of generalized resubstitution error estimators. This

is a broad family of classification error estimators who can all be computed in the same way by us-

ing different empirical measures. They do not require resampling and retraining of classifiers. As

such, these are generally fast error estimators, which can be used in settings where computational

complexity is an issue, such as in wrapper feature selection for large data sets. We showed empiri-

cally, by means of numerical experiments, that generalized resubstitution error estimators display

excellent small-sample performance for traditional classification algorithms. Furthermore, gen-

eralized resubstitution estimators typically have hyper-parameters that can be tuned, which adds

flexibility. In this dissertation, a data-driven calibration procedure was proposed for the bolstering

hyper-parameter to further control the bias and variance. Furthermore, the application of general-

ized resubstitution error estimators was examined in deep fully connected neural network using a

selection of datasets from the UCI database, where the spherical bolstered error estimator had the

smallest deviation from the true error.

5.2 Predicting Generalization in Deep Learning

To extend the idea of bolstering to colored image data, three types of data augmentation ap-

proaches were proposed: Par-search, Multi-Augment, and Weighted Augment - posterior probabil-

ity. The first approach searches for the best set of augmentation parameter to generate new datasets

that help most with predicting the generalization of a trained model. Although this approach was

successful in small datasets, it is not practical for average to large datasets due to its large time

complexity. Alternatively, the Multi-Augment approach generates multiple datasets using various

pre-defined sets of augmentation parameters and averages the outputs. This approach improved the

time efficiency of the generalization prediction, compared to the Par-Search method. Yet, it did not

result in a high CMI score in any of the tasks. The third attempt was to use weighted augmented

73



data, where weights are calculated based on the strength and amount of augmentation. This ap-

proach resulted in a relatively good CMI score, and more importantly did not overfit or underfit a

specific dataset, as suggested by the small percentage differences between tasks.

5.3 Hybrid Compartmental Model

For the study of protein turn over in humans, we proposed hybrid compartmental model (HCM),

which consists of one tracer model and several tracee alternative models. The tracer model struc-

ture is created prior to the TTR observations. Its parameters are identified by fitting the model on

the TTR-time observations. Then, the tracee alternative models are generated and their computed

parameters are analyzed according to physiological insights. This approach reduces the time and

effort for finding a detailed conventional compartmental model that fits the TTR-time data points,

and allows us to pick the most meaningful tracee model after all fractional rates and fluxes are

identified.

We employed the HCM framework to evaluate the protein metabolism using a pulse of pheny-

lalanine (Phe) and tyrosine (Tyr) stable isotopes. Our results show that the HCM tracer model

outperformed the CCM in fitting the TTR data and estimated the Phe to Tyr conversion rate as

0.033 ± 0.0082min−1. The selected HCM tracee alternative model calculated the protein break-

down (mean±SE µmol/kg ffm/h) to Phe and Tyr as 143.0±27.1 and 81.3±30.6, respectively.

It also yielded 21.3 ± 2.6µmol/kgffm/h for the net whole-body protein breakdown. The pro-

posed HCM could be particularly helpful in situations where the group metabolic difference is of

interest. In that case, one could bypass the steady state flux equations, and instead, perform multi-

variate analysis or employ machine learning approaches that utilize the known pool sizes (Qi) and

the conversion fractional rates (kij).

74



REFERENCES

[1] A. Mason, M. P. Engelen, I. Ivanov, G. M. Toffolo, and N. E. Deutz, “A four-compartment

compartmental model to assess net whole body protein breakdown using a pulse of phenylala-

nine and tyrosine stable isotopes in humans,” American Journal of Physiology-Endocrinology

and Metabolism, vol. 313, no. 1, pp. E63–E74, 2017.

[2] G. Toussaint, “Bibliography on estimation of misclassification,” IEEE Transactions on Infor-

mation Theory, vol. IT-20, no. 4, pp. 472–479, 1974.

[3] D. Hand, “Recent advances in error rate estimation,” Pattern Recognition Letters, vol. 4,

pp. 335–346, 1986.

[4] G. McLachlan, “Error rate estimation in discriminant analysis: recent advances,” in Advances

in Multivariate Analysis (A. Gupta, ed.), Dordrecht: D. Reidel, 1987.

[5] R. Schiavo and D. Hand, “Ten more years of error rate research,” International Statistical

Review, vol. 68, no. 3, pp. 295–310, 2000.

[6] U. Braga-Neto and E. Dougherty, Error Estimation for Pattern Recognition. New York:

Wiley, 2015.

[7] Y. Jiang, B. Neyshabur, H. Mobahi, D. Krishnan, and S. Bengio, “Fantastic generalization

measures and where to find them,” arXiv preprint arXiv:1912.02178, 2019.

[8] P. Lachenbruch and M. Mickey, “Estimation of error rates in discriminant analysis,” Techno-

metrics, vol. 10, pp. 1–11, 1968.

[9] T. Cover, “Learning in pattern recognition,” in Methodologies of Pattern Recognition

(S. Watanabe, ed.), pp. 111–132, New York, NY: Academic Press, 1969.

[10] G. Toussaint and R. Donaldson, “Algorithms for recognizing contour-traced hand-printed

characters,” IEEE Transactions on Computers, vol. 19, pp. 541–546, 1970.

75



[11] M. Stone, “Cross-validatory choice and assessment of statistical predictions,” Journal of the

Royal Statistical Society. Series B (Methodological), vol. 36, pp. 111–147, 1974.

[12] B. Efron, “Bootstrap methods: Another look at the jacknife,” Annals of Statistics, vol. 7,

pp. 1–26, 1979.

[13] B. Efron, “Estimating the error rate of a prediction rule: Improvement on cross-validation,”

Journal of the American Statistical Association, vol. 78, no. 382, pp. 316–331, 1983.

[14] B. Efron and R. Tibshirani, “Improvements on cross-validation: The .632+ bootstrap

method,” Journal of the American Statistical Association, vol. 92, no. 438, pp. 548–560,

1997.

[15] K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-scale image

recognition,” arXiv preprint arXiv:1409.1556, 2014.

[16] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A. Karpathy,

A. Khosla, M. Bernstein, et al., “Imagenet large scale visual recognition challenge,” Interna-

tional journal of computer vision, vol. 115, no. 3, pp. 211–252, 2015.

[17] M. R. Yousefi, J. Hua, and E. R. Dougherty, “Multiple-rule bias in the comparison of classi-

fication rules,” Bioinformatics, vol. 27, no. 12, pp. 1675–1683, 2011.

[18] B. Recht, R. Roelofs, L. Schmidt, and V. Shankar, “Do imagenet classifiers generalize to

imagenet?,” arXiv preprint arXiv:1902.10811, 2019.

[19] C. Smith, “Some examples of discrimination,” Annals of Eugenics, vol. 18, pp. 272–282,

1947.

[20] N. S. Keskar, D. Mudigere, J. Nocedal, M. Smelyanskiy, and P. T. P. Tang, “On large-

batch training for deep learning: Generalization gap and sharp minima,” arXiv preprint

arXiv:1609.04836, 2016.

[21] P. Bartlett, S. Boucheron, and G. Lugosi, “Model selection and error estimation,” Machine

Learning, vol. 48, pp. 85–113, 2002.

76



[22] U. Braga-Neto and E. Dougherty, “Bolstered error estimation,” Pattern Recognition, vol. 37,

no. 6, pp. 1267–1281, 2004.

[23] C. Sima, U. Braga-Neto, and E. Dougherty, “Bolstered error estimation provides superior

feature-set ranking for small samples,” Bioinformatics, vol. 21, no. 7, pp. 1046–1054, 2005.

[24] C. Sima, S. Attoor, U. Braga-Neto, J. Lowey, E. Suh, and E. Dougherty, “Impact of error

estimation on feature-selection algorithms,” Pattern Recognition, vol. 38, no. 12, pp. 2472–

2482, 2005.

[25] X. Zhou and K. Mao, “The ties problem resulting from counting-based error estimators and

its impact on gene selection algorithms,” Bioinformatics, vol. 22, pp. 2507–2515, 2006.

[26] Y. Xiao, J. Hua, and E. Dougherthy, “Quantification of the impact of feature selection on

cross-validation error estimation precision,” EURASIP J. Bioinformatics and Systems Biol-

ogy, 2007.

[27] B. Hanczar, J. Hua, and E. Dougherty, “Decorrelation of the true and estimated classifier

errors in high-dimensional settings,” EURASIP Journal on Bioinformatics and Systems Biol-

ogy, vol. 2007, 2007. Article ID 38473, 12 pages.

[28] M. Kaariainen and J. Langford, “A comparison of tight generalization bounds,” in Proceed-

ings of the 22nd International Conference on Machine Learning, Bonn, Germany, 2005.

[29] M. Kaariainen, “Generalization error bounds using unlabeled data,” in Proceedings of

COLT’05, 2005.

[30] Q. Xu, J. Hua, U. Braga-Neto, Z. Xiong, E. Suh, and E. Dougherty, “Confidence intervals

for the true classification error conditioned on the estimated error,” Technology in Cancer

Research and Treatment, vol. 5, no. 6, pp. 579–590, 2006.

[31] A. Zollanvari, U. Braga-Neto, and E. Dougherty, “Analytic study of performance of error

estimators for linear discriminant analysis,” IEEE Transactions on Signal Processing, vol. 59,

no. 9, pp. 1–18, 2011.

77



[32] A. Zollanvari, U. Braga-Neto, and E. Dougherty, “Exact representation of the second-order

moments for resubstitution and leave-one-out error estimation for linear discriminant anal-

ysis in the univariate heteroskedastic gaussian model,” Pattern Recognition, vol. 45, no. 2,

pp. 908–917, 2012.

[33] L. Dalton and E. Dougherty, “Bayesian minimum mean-square error estimation for classifi-

cation error – part I: Definition and the bayesian mmse error estimator for discrete classifica-

tion,” IEEE Transactions on Signal Processing, vol. 59, no. 1, pp. 115–129, 2011.

[34] L. Dalton and E. Dougherty, “Bayesian minimum mean-square error estimation for classifi-

cation error – part II: Linear classification of gaussian models,” IEEE Transactions on Signal

Processing, vol. 59, no. 1, pp. 130–144, 2011.

[35] U. M. Braga-Neto and E. R. Dougherty, Error estimation for pattern recognition. John Wiley

& Sons, 2015.

[36] G. McLachlan, Discriminant Analysis and Statistical Pattern Recognition. New York: Wiley,

1992.

[37] L. Devroye, L. Györfi, and G. Lugosi, A probabilistic theory of pattern recognition. Springer,

1996.

[38] U. Braga-Neto and E. Dougherty, “Is cross-validation valid for microarray classification?,”

Bioinformatics, vol. 20, no. 3, pp. 374–380, 2004.

[39] G. Lugosi and M. Pawlak, “On the posterior-probability estimate of the error rate of non-

parametric classification rules,” IEEE Transactions on Information Theory, vol. 40, no. 2,

pp. 475–481, 1994.

[40] A. Hefny and A. F. Atiya, “A new monte carlo-based error rate estimator,” in IAPR Workshop

on Artificial Neural Networks in Pattern Recognition, pp. 37–47, Springer, 2010.

[41] Y. Jiang, P. Foret, S. Yak, D. M. Roy, H. Mobahi, G. K. Dziugaite, S. Bengio, S. Gunasekar,

I. Guyon, and B. Neyshabur, “Neurips 2020 competition: Predicting generalization in deep

learning,” arXiv preprint arXiv:2012.07976, 2020.

78



[42] B. Neyshabur, Z. Li, S. Bhojanapalli, Y. LeCun, and N. Srebro, “Towards understand-

ing the role of over-parametrization in generalization of neural networks,” arXiv preprint

arXiv:1805.12076, 2018.

[43] C. Zhang, S. Bengio, M. Hardt, B. Recht, and O. Vinyals, “Understanding deep learning (still)

requires rethinking generalization,” Communications of the ACM, vol. 64, no. 3, pp. 107–115,

2021.

[44] C. A. Corneanu, S. Escalera, and A. M. Martinez, “Computing the testing error without a

testing set,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern

Recognition, pp. 2677–2685, 2020.

[45] Y. Jiang, P. Natekar, M. Sharma, S. K. Aithal, D. Kashyap, N. Subramanyam, C. Lassance,

D. M. Roy, G. K. Dziugaite, S. Gunasekar, et al., “Methods and analysis of the first com-

petition in predicting generalization of deep learning,” in NeurIPS 2020 Competition and

Demonstration Track, pp. 170–190, PMLR, 2021.

[46] G. K. Dziugaite, A. Drouin, B. Neal, N. Rajkumar, E. Caballero, L. Wang, I. Mitliagkas, and

D. M. Roy, “In search of robust measures of generalization,” Advances in Neural Information

Processing Systems, vol. 33, pp. 11723–11733, 2020.

[47] V. C. Madala, A study of Generalization in Deep Neural Networks. University of California,

Santa Barbara, 2021.

[48] G. K. Dziugaite and D. M. Roy, “Computing nonvacuous generalization bounds for deep

(stochastic) neural networks with many more parameters than training data,” arXiv preprint

arXiv:1703.11008, 2017.

[49] B. Neyshabur, S. Bhojanapalli, and N. Srebro, “A pac-bayesian approach to spectrally-

normalized margin bounds for neural networks,” arXiv preprint arXiv:1707.09564, 2017.

[50] P. L. Bartlett, D. J. Foster, and M. J. Telgarsky, “Spectrally-normalized margin bounds for

neural networks,” Advances in neural information processing systems, vol. 30, 2017.

79



[51] V. Nagarajan and J. Z. Kolter, “Deterministic pac-bayesian generalization bounds for deep

networks via generalizing noise-resilience,” arXiv preprint arXiv:1905.13344, 2019.

[52] Y. Jiang, D. Krishnan, H. Mobahi, and S. Bengio, “Predicting the generalization gap in deep

networks with margin distributions,” arXiv preprint arXiv:1810.00113, 2018.

[53] S. Aithal, D. Kashyap, and N. Subramanyam, “Robustness to augmentations as a generaliza-

tion metric,” CoRR, abs/2101.06459, 2021.

[54] Y. Zhang, A. Gupta, N. Saunshi, and S. Arora, “On predicting generalization using gans,”

arXiv preprint arXiv:2111.14212, 2021.

[55] H. Zhang, M. Cisse, Y. N. Dauphin, and D. Lopez-Paz, “mixup: Beyond empirical risk min-

imization,” arXiv preprint arXiv:1710.09412, 2017.

[56] V. Verma, A. Lamb, C. Beckham, A. Najafi, I. Mitliagkas, D. Lopez-Paz, and Y. Bengio,

“Manifold mixup: Better representations by interpolating hidden states,” in International

Conference on Machine Learning, pp. 6438–6447, PMLR, 2019.

[57] P. Natekar and M. Sharma, “Representation based complexity measures for predicting gener-

alization in deep learning,” arXiv preprint arXiv:2012.02775, 2020.

[58] Y. Schiff, B. Quanz, P. Das, and P.-Y. Chen, “Predicting deep neural network generalization

with perturbation response curves,” Advances in Neural Information Processing Systems,

vol. 34, 2021.

[59] R. Rahaman et al., “Uncertainty quantification and deep ensembles,” Advances in Neural

Information Processing Systems, vol. 34, 2021.

[60] J. Matis, T. Wehrly, and C. Metzler, “On some stochastic formulations and related statistical

moments of pharmacokinetic models,” Journal of pharmacokinetics and biopharmaceutics,

vol. 11, no. 1, pp. 77–92, 1983.

[61] A. Rescigno, “Compartmental analysis and its manifold applications to pharmacokinetics,”

The AAPS journal, vol. 12, no. 1, pp. 61–72, 2010.

80



[62] M. Joly and J. M. Pinto, “A general framework for multi-compartmental analysis of drug

chemotherapy dynamics in human immunodeficiency virus type-1 infected individuals,” Ap-

plied Mathematical Modelling, vol. 36, no. 12, pp. 5830–5843, 2012.

[63] C. Cobelli, D. Foster, and G. Toffolo, Tracer kinetics in biomedical research: from data to

model. Springer Science & Business Media, 2007.

[64] C. Cobelli, G. Toffolo, D. M. Bier, and R. Nosadini, “Models to interpret kinetic data in stable

isotope tracer studies,” American Journal of Physiology - Endocrinology And Metabolism,

vol. 253, no. 5, pp. E551–E564, 1987.

[65] P. H. R. Barrett, B. M. Bell, C. Cobelli, H. Golde, A. Schumitzky, P. Vicini, and D. M.

Foster, “Saam ii: simulation, analysis, and modeling software for tracer and pharmacokinetic

studies,” Metabolism, vol. 47, no. 4, pp. 484–492, 1998.

[66] M. Berman and M. F. Weiss, Users Manual for SAAM (Simulation, Analysis and Modeling),

vol. 78. Department of Health, Education, and Welfare, Public Health Service . . . , 1978.

[67] C. Cobelli and D. M. Foster, “Compartmental models: theory and practice using the saam ii

software system,” in Mathematical modeling in experimental nutrition, pp. 79–101, Springer,

1998.

[68] E. Steiner, T. Rey, and P. McCroskey, “Simusolv reference guide,” Dow chemical company,

1990.

[69] W. Neely, G. Blau, and G. Agin, “The use of simusolv to analyze fish bioconcentration data,”

Chemometrics and Intelligent Laboratory Systems, vol. 1, no. 4, pp. 359–366, 1987.

[70] Y. Zhang, M. Huo, J. Zhou, and S. Xie, “Pksolver: An add-in program for pharmacokinetic

and pharmacodynamic data analysis in microsoft excel,” Computer methods and programs in

biomedicine, vol. 99, no. 3, pp. 306–314, 2010.

[71] P. Ghane and U. Braga-Neto, “Generalized resubstitution for classification error estimation,”

arXiv preprint arXiv:2110.12285, 2021.

81



[72] V. Vapnik and A. Chervonenkis, “On the uniform convergence of relative frequencies of

events to their probabilities,” Probability and its Applications, vol. 16, pp. 264–280, 1971.

[73] U. M. Braga-Neto, Fundamentals of Pattern Recognition and Machine Learning. Springer,

2020.

[74] D. Pollard, Convergence of Stochastic Processes. New York: Springer, 1984.

[75] X. Jiang and U. Braga-Neto, “A naive-bayes approach to bolstered error estimation in high-

dimensional spaces,” 2014. Proceedings of the IEEE International Workshop on Genomic

Signal Processing and Statistics (GENSIPS’2014), Atlanta, GA.

[76] T. Cover and P. Hart, “Nearest-neighbor pattern classification,” IEEE Trans. on Information

Theory, vol. 13, pp. 21–27, 1967.

[77] U. Braga-Neto and E. Dougherty, “Bolstered error estimation,” Pattern Recognition, vol. 37,

no. 6, pp. 1267–1281, 2004.

[78] C. Ambroise and G. McLachlan, “Selection bias in gene extraction on the basis of microarray

gene expression data,” Proc. Natl. Acad. Sci., vol. 99, no. 10, pp. 6562–6566, 2002.

[79] S. Tabik, D. Peralta, A. Herrera-Poyatos, and F. Herrera, “A snapshot of image pre-processing

for convolutional neural networks: case study of mnist,” International Journal of Computa-

tional Intelligence Systems, vol. 10, no. 1, pp. 555–568, 2017.

[80] C. Sima, T. Vu, U. Braga-Neto, and E. Dougherty, “High-dimensional bolstered error estima-

tion,” Bioinformatics, vol. 27, no. 21, pp. 3056–3064, 2014.

[81] D. Dua and C. Graff, “UCI machine learning repository,” 2017.

[82] M. Fernández-Delgado, E. Cernadas, S. Barro, and D. Amorim, “Do we need hundreds of

classifiers to solve real world classification problems?,” The journal of machine learning

research, vol. 15, no. 1, pp. 3133–3181, 2014.

[83] S. Arora, S. S. Du, Z. Li, R. Salakhutdinov, R. Wang, and D. Yu, “Harnessing the power of

infinitely wide deep nets on small-data tasks,” arXiv preprint arXiv:1910.01663, 2019.

82



[84] T. S. Verma and J. Pearl, “Equivalence and synthesis of causal models,” in Probabilistic and

Causal Inference: The Works of Judea Pearl, pp. 221–236, 2022.

[85] A. Krizhevsky, “Learning multiple layers of features from tiny images,” tech. rep., 2009.

[86] Y. Netzer, T. Wang, A. Coates, A. Bissacco, B. Wu, and A. Y. Ng, “Reading digits in natural

images with unsupervised feature learning,” 2011.

[87] M.-E. Nilsback and A. Zisserman, “Automated flower classification over a large number of

classes,” in Indian Conference on Computer Vision, Graphics and Image Processing, Dec

2008.

[88] O. M. Parkhi, A. Vedaldi, A. Zisserman, and C. V. Jawahar, “Cats and dogs,” in IEEE Con-

ference on Computer Vision and Pattern Recognition, 2012.

[89] H. Xiao, K. Rasul, and R. Vollgraf, “Fashion-mnist: a novel image dataset for benchmarking

machine learning algorithms,” CoRR, vol. abs/1708.07747, 2017.

[90] D. Kashyap, N. Subramanyam, et al., “Robustness to augmentations as a generalization met-

ric,” arXiv preprint arXiv:2101.06459, 2021.

[91] C. Lassance, L. Béthune, M. Bontonou, M. Hamidouche, and V. Gripon, “Ranking deep

learning generalization using label variation in latent geometry graphs,” arXiv preprint

arXiv:2011.12737, 2020.

[92] N. E. Deutz, J. J. Thaden, G. A. ten Have, D. K. Walker, and M. P. Engelen, “Metabolic

phenotyping using kinetic measurements in young and older healthy adults,” Metabolism,

vol. 78, pp. 167–178, 2018.

[93] W. James, P. Garlick, P. Sender, and J. Waterlow, “Studies of amino acid and protein

metabolism in normal man with l-[u-14c] tyrosine,” Clinical science and molecular medicine,

vol. 50, no. 6, pp. 525–532, 1976.

83



[94] L. L. Moldawer, I. Kawamura, B. R. Bistrian, and G. L. Blackburn, “The contribu-

tion of phenylalanine to tyrosine metabolism in vivo. studies in the post-absorptive and

phenylalanine-loaded rat,” Biochemical Journal, vol. 210, no. 3, pp. 811–817, 1983.

[95] B. A. Turlach and A. Weingessel, “quadprog: Functions to solve quadratic programming

problems. r package version 1.5-5,” 2013.

[96] R Core Team, R: A Language and Environment for Statistical Computing. R Foundation for

Statistical Computing, Vienna, Austria, 2013. ISBN 3-900051-07-0.

[97] G. A. Ten Have, M. P. Engelen, R. R. Wolfe, and N. E. Deutz, “Phenylalanine isotope pulse

method to measure effect of sepsis on protein breakdown and membrane transport in the pig,”

American Journal of Physiology-Endocrinology and Metabolism, vol. 312, no. 6, pp. E519–

E529, 2017.

[98] M. P. Engelen, R. Jonker, J. J. Thaden, G. A. Ten Have, M. S. Jeon, S. Dasarathy, and N. E.

Deutz, “Comprehensive metabolic flux analysis to explain skeletal muscle weakness in copd,”

Clinical Nutrition, 2020.

[99] J. Marchini, L. Castillo, T. Chapman, J. Vogt, A. Ajami, and V. Young, “Phenylalanine con-

version to tyrosine: comparative determination with l-[ring-2h5] phenylalanine and l-[1-13c]

phenylalanine as tracers in man,” Metabolism, vol. 42, no. 10, pp. 1316–1322, 1993.

84


	ABSTRACT
	DEDICATION
	ACKNOWLEDGMENTS
	CONTRIBUTORS AND FUNDING SOURCES
	NOMENCLATURE
	TABLE OF CONTENTS
	LIST OF FIGURES
	LIST OF TABLES
	INTRODUCTION
	Classification Error Estimation
	Predicting Generalization in Deep Learning
	Hybrid Compartmental Model

	GENERALIZED RESUBSTITUTION ERROR ESTIMATORS 
	Definitions 
	Generalized Resubstitution based on Smoothing the Error Count
	Bolstered Resubstitution
	Posterior-Probability Generalized Resubstitution
	Bolstered Posterior-Probability Generalized Resubstitution
	Empirical Results
	Synthetic Data Experiments
	MNIST Data Experiments
	UCI Data Experiments


	Bayesian Generalized Resubstitution for Neural Networks
	Definitions and Methods
	Empirical Results


	PREDICTING GENERALIZATION IN DEEP LEARNING
	Definitions
	Notations
	Conditional Mutual Information

	Image Data Experiments
	Networks Configurations and Datasets
	Augmentation Parameter Search
	Multiple Augmented Sets
	Weighted Augmented - Semi Posterior Probability
	Discussion


	HYBRID COMPARTMENTAL MODELS FOR ESTIMATION OF PROTEIN TURNOVER
	Conventional Compartmental Models (CCM)
	Hybrid Compartmental Models (HCM)
	HCM versus CCM for Multi-Substrate Models
	Experimental Results
	Tracer model
	Tracee model
	CCM Equivalent


	SUMMARY
	Classification Error Estimation
	Predicting Generalization in Deep Learning
	Hybrid Compartmental Model

	REFERENCES

