
  
 

MULTI-OBJECTIVE DENSITY DIAGRAMS DEVELOPED WITH MACHINE LEARNING 

MODELS TO OPTIMIZE SUSTAINABILITY AND COST-EFFICIENCY OF UHPC  

MIX DESIGN 

 

A Dissertation 

by 

CESARIO SARMENTO GONCALVES MARTINS E TAVARES 

 

Submitted to the Graduate and Professional School of  
Texas A&M University  

in partial fulfillment of the requirements for the degree of  
 

DOCTOR OF PHILOSOPHY 

 

Chair of Committee,  Zachary Grasley 
Committee Members,  Dan Zollinger 
    Robert Lytton 
    Thomas Lacy 
Head of Department,  Zachary Grasley 

 

May 2022 

 

Major Subject: Civil Engineering 

 

© 2022 by Cesario Sarmento Goncalves Martins e Tavares. All rights reserved 

 



ii 
 

ABSTRACT 

The emergence of ultra-high-performance concrete (UHPC) as an attractive solution for precast 

and prestressed applications has coincided with global efforts towards sustainable construction. 

The increasing need for tools capable of intuitively demonstrating the effect of concrete mixture 

composition on mechanical performance, cost and eco-efficiency concurrently has motivated this 

work in an effort to promote design of more sustainable solutions to help meet environmental 

goals. Such tools are needed to effectively evaluate the environmental impact of UHPC given the 

outstanding mechanical properties of the material coupled with high volumetric embodied CO2. 

Meanwhile, artificial intelligence (AI) techniques have emerged as a great opportunity for game-

changing tools capable of effectively modeling the synergistic relationships between mix 

proportions and material performance. This work couples machine learning models with 

orthogonal arrays to generate machine-learning-based tools to evaluate the tradeoffs between 

emissions, cost and mechanical performance concurrently. Random forest and k-nearest 

neighbors’ models are ensembled to predict the compressive strength of UHPC mixtures and 

generate Performance Density Diagrams (PDDs). These predicted strengths are then coupled 

with volumetric environmental factors and unit costs to generate eco- and cost-efficiency density 

diagrams. The makeup of these tools facilitates the evaluation of rather complicated trends 

associated with mix proportions and multi-objective outcomes, allowing AI-based tools to be of 

easy use by industry personnel on a daily basis, while serving as decision-making aids during mix 

design stages and provide proof of mixture optimization that could be introduced in 

Environmental Product Declarations. The PDD developed herein enabled the design of a mix with 

compressive strength of 155 MPa, while keeping the aggregate-to-cementitious ratio above unit. 

Other mixtures were developed from these models and compared to several different concretes 

from the literature. Results show that high paste content, high strength (and ultra-high strength) 

concrete technologies are not necessarily detrimental to cost or eco efficiencies. For the different 

indices evaluated, optimum solutions were mostly obtained with these types of concrete, which 

means that industry trends toward requiring minimization of embodied CO2 in concrete on a per 

volume basis are misguided and do not minimize the embodied CO2 in concrete structures.  
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CHAPTER I.  

INTRODUCTION 

1.1. Problem Statement 

In the last three decades, cement production has grown faster than any other construction 

material, leading concrete to become the second highest consumed material in the world after 

water (Andrew 2019; Monteiro, Miller, and Horvath 2017). Carbon dioxide (CO2) emissions 

associated with Portland cement manufacturing is a major sustainability issue facing the concrete 

industry, accounting for approximately 8-9% of the global total anthropogenic greenhouse gas 

(GHG) emissions (Brinkman and Miller 2021). In the same timeframe, advanced concrete 

materials such as ultra-high performance concrete (UHPC) have emerged as an attractive option 

for precast and prestressed applications due to its outstanding mechanical properties and 

superior durability. The advanced properties of UHPC stimulate the development of innovative 

superstructural elements by promoting design with more efficient shapes and cross-sectional 

dimensions. This can be achieved due to the high ultimate compressive strength of UHPC 

materials, which provides new opportunities for bridges by allowing increased prestressing levels 

that enable the design of longer spans and thinner depth elements (ACI-Committee-239 2018). 

Yet, most UHPC compositions (ACI-Committee-239 2018; Ibrahim et al. 2017; Alsalman, Dang, 

and Micah Hale 2017; JJ Park 2008; Talebinejad 2004) involve high dosages of cement and 

increased costs per unit volume. This has contributed to an overall skepticism within the 

construction industry, often mis-associating the application of this material with high GHG 

emissions and raising questions regarding the sustainability of this material. Similarly, the higher 
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costs per unit volume of UHPC compared to traditional concrete is still a source of hesitancy 

between designers and project owners, inhibiting them from fully embracing this technology, 

despite structural elements being geometrically more efficient when cast with UHPC, requiring 

less volume of material. Thus, it is imperative to promote smart design strategies and proper 

tools to effectively compare performance, durability, cost and sustainability of UHPC against 

other traditional concrete technologies. 

Several studies have been done throughout the years to evaluate the global warming potential 

(GWP) associated with the production of raw constituents of concrete (Celik et al. 2015; Purnell 

2012; Liu et al. 2012; Flower and Sanjayan 2007). Methods for reducing CO2 emissions have been 

gradually implemented (Miller, Horvath, and Monteiro 2016). While most methods did not take 

into account the influence of material properties and environmental impacts concurrently, 

comparison indices have been proposed by Miller et al. (Miller et al. 2016), for unreinforced 

concrete, and later by Kourehpaz and Miller (Kourehpaz and Miller 2019) for reinforced concrete 

members, allowing environmental impacts and mechanical properties to be evaluated 

concurrently. While these new metrics represents an important step towards a better 

assessment of sustainability in construction, new tools for improved visualization and evaluation 

of the contribution of each mixture constituent towards GWP are still a major need in the 

concrete industry. 

Considering that quality and proportioning of UHPC ingredients is one of the main factors 

dictating mechanical performance, cost and sustainability, it is vital to promote smart mixture 

design optimization strategies to make an efficient use of this material. The main challenge 

related to mixture optimization is that it not only involves satisfying multi-objective performance 
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levels (materials properties, carbon footprint and cost), but it also entails a synergistic 

relationship between the various constituents and the various desired outcomes, making linear 

regression modeling ineffective. Recently, artificial intelligence (AI) branches such as machine 

learning and deep learning techniques have gained momentum in optimization and prediction 

studies (Ghafari et al. 2012; Solhmirzaei et al. 2020; Ren et al. 2021). Yet, machine learning 

models are often viewed as “black-boxes” that receive inputs and returns predictions, with 

different models characterized by unique parameters, which typically are not as interpretable as, 

for instance, linear regression equations. Furthermore, the efficiency of AI models depend on the 

size, distribution, and quality of the data, with most models requiring very large sets of 

experimental data to attain acceptable prediction performance. This has led researchers to 

collect data from various sources in the literature to develop their models (Abuodeh, Abdalla, 

and Hawileh 2020; Solhmirzaei et al. 2020; Sadrossadat et al. 2021). Considering that cost, 

availability and intrinsic properties of raw materials can vary tremendously with source and 

region, most of the available models are limited to the specific pre-existing conditions in the 

datasets. That is, the accuracy of these models is greatly influenced by whether the input 

variables are within the domain of the applicable boundary values used to train these models, 

making these models impractical to explore new materials in a constantly growing field such as 

the UHPC industry. Considering the amount of time, effort and resources required to produce 

and test laboratory specimens of UHPC following current standardized methods, tied with the 

costly investment on specialty equipment for end grinding, it is imperative to develop strategies 

and protocols that facilitate experimental data collection for advanced modeling, allowing 
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designers and producers to efficiently generate enough data capable of characterizing material 

behavior within the experimental domain of interest.  

Implementing strategic experimental frameworks for efficient data collection tied with rapid 

testing protocols and advances in AI techniques to address the needs aforementioned, 

represents an incredible opportunity for innovative design protocols and tools that facilitate the 

evaluation of the tradeoffs between cost, sustainability and mechanical performance for a range 

of mix proportions, while also offering enough flexibility for exploring new constituents and 

accounting for differences in source, availability and cost of material per region. Although sharing 

data within the research community has a great value to advance collective knowledge, it is 

important to promote a mix design process that does not rely exclusively on models that are 

applicable to a limited set of pre-conditions. Furthermore, facilitating the visualization of the 

internal predictive structure of machine learning models can help address their “black-box” 

nature and facilitate the communication between different parts involved in projects (owner, 

regulating entities and designers). Addressing these needs can contribute to a more efficient and 

fair comparison between different concrete solutions, lifting the existing mis-conceptional 

barriers regarding UHPC and promote its use where this material is clearly a better option 

compared to conventional concrete. 

1.2. Project Objectives and Primary Contributions 

This study presents an innovative approach to design and optimize concrete materials with 

strengths up to UHPC levels, using a framework that allows one to efficiently design UHPC 

mixtures considering multi-objective performance levels. In particular, this work focuses on the 
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development of machine-learning-based tools to maximize compressive strength, cost and eco-

efficiency of UHPC mixtures, through cement replacement with waste by-product powders and 

aggregates.  

A strategic framework of experimental data collection is coupled with machine learning models 

to generate performance density diagrams (PDDs). These diagrams intend to provide a flexible 

tool to, intuitively, evaluate and communicate the influence of mixture proportioning on 

mechanical and durability properties directly affecting cost and environmental impact. 

Orthogonal arrays used in the Taguchi method are applied in this study to establish the 

experimental data collection framework, allowing reduced experimental runs to capture relevant 

datapoints capable of describing the entire experimental domain. A model that combines 

multiple machine learning techniques to predict and optimize the compressive strength of UHPC 

mixtures will be developed. The experimental data are modeled with two machine learning 

algorithms, k-nearest neighbors (kNN) and random forest. The two models are then combined 

into a single ensemble model for improved prediction of compressive strengths, benefiting from 

the best features from each model. The generated matrix of predictors and outcomes is used to 

develop the aforementioned PDDs, intended to not only serve as a decision-making aid tool 

during mix design stages, but also to help overcome the lack of visual interpretability of machine 

learning algorithms. PDDs allow performance, durability and environmental impact of different 

mixture compositions to be evaluated simultaneously, while facilitating proper considerations 

involving material availability and trade-offs between cost-performance. 
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Additional models will be created to evaluate cost and environmental impact of different mixture 

compositions. First, a global warming potential (GWP) parameter, representing the volumetric 

environmental impact, is combined with compressive strengths to attain eco-efficiency indices 

to allow accurate assessments of the total environmental impact associated with a produced 

concrete element. Similarly, volumetric costs associated with each mixture composition and the 

corresponding unit costs from each ingredient is coupled with the predicted compressive 

strengths from the developed machine learning models to calculate cost-efficiency indices.  The 

calculated cost and eco-efficiency indices are introduced into the generated matrix of predictors, 

aforementioned, to generate diagrams resembling PDDs. Finally, these indices are combined into 

multi-objective functions to allow an overall evaluation of UHPC mixtures that accounts for 

mechanical performance, cost and environmental impacts concurrently.  

To showcase the value and flexibility of these tools, UHPC mixtures with particular characteristics 

will be identified and tested in laboratory for validation. For this study, a new protocol was 

developed to characterize the compressive strength of very-high strength binders. The results 

obtained with this protocol will be compared to results obtained following protocols defined in 

current standards ASTM C39 and ASTM C1856 to validate the method. The existence of a single 

end-specimen condition in the current standard limits research engagement from universities 

that do not possess a fixed-end grinder equipment, which is currently costly (approx. $30,000) 

when compared to other methods that exist for testing conventional concrete.  The testing 

protocols developed in this study will facilitate the assessment of compressive strengths of UHPC, 

promoting research development in the field of UHPC materials. Fig. 1 illustrates the flowchart 

describing the approach and workflow followed in this study. 
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Contributions will be made to the field on the overall understanding regarding the influence of 

cement replacement with supplemental cementitious materials (SCMs), natural and 

manufactured sands, and ground quartz on compressive strength of UHPCs cured without special 

thermal and/or moisture treatments. 

As a contribution to practicing engineers, designers and regulating entities, the approach used in 

this study will enable performance, durability, cost and environmental impacts to be evaluated 

concurrently without adding exhausting experimental campaigns or limiting models to a set of 

pre-existing conditions from the literature data. This method will facilitate the decision making 

Fig. 1. Flowchart describing the approach and workflow followed in this study 
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process surrounding material availability, cost-performance trade-off and sustainability 

requirements. 

The primary objectives of the proposed research are summarized below: 

• Provide new test protocols that promote expeditious and efficient assessment of 

compressive strengths of UHPC materials to enhance and facilitate advanced, data-

science based modeling of new formulations; 

• Enable an innovative mix design methodology supported by performance, cost and eco-

efficiency density diagrams as ideal tools for product characterization, offering a game-

changing approach to the design and decision making process with respect to assessing 

performance, cost, availability and environmental impact of concrete materials; 

• For global optimization of mixture designs, provide guidance on developing multi-

objective and multi-member comparison indices and density diagrams, capable of 

demonstrating the influence of performance, cost and eco-efficiencies concurrently, 

while filtering out mixtures that fail to meet performance requirements imposed by 

design. 

1.3. Thesis Outline 

This dissertation is organized in the following manner: Chapter II provides a review on UHPC and 

mix proportioning implications on environment impact, along with mix design optimization, 

orthogonal arrays for reduced experimental runs and concrete performance predictions using 

machine learning models. Meanwhile, Chapter III describes the strategic experimental 

framework established with orthogonal arrays and new test protocols for efficient data 
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collection, along with materials used and specimen preparation protocols followed. The 

experimental results obtained and presented in Chapter III are used as inputs for the models 

developed in the subsequent chapters. In Chapter IV, machine learning models are developed 

using data collected in Chapter III to predict the compressive strength of mix compositions within 

the defined experimental domain. Prediction performance of various models are evaluated 

through common metrics and complemented with three-dimensional performance density plots 

to evaluate model behavior. The compressive strengths predicted by the optimum models in 

Chapter IV are used in Chapters V, VI and VII to develop new machine-learning-based graphical 

tools created to intuitively demonstrate the effect of mix proportioning on mechanical 

performance, cost and environmental impact. Finally, Chapter VIII summarizes the primary 

conclusions of this dissertation and suggests future work to possibly extend the methodology 

performed in this study into practical applications. 
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CHAPTER II.  

LITERATURE REVIEW 

2.1. Ultra-High Performance Concrete (UHPC) 

The UHPC definition is currently limited to concretes with compressive strengths over 150 MPa 

(22,000 psi), with specified durability, tensile ductility and toughness requirements (ACI-

Committee-212). UHPC typically includes fibers and displays strain-hardening characteristics 

under uniaxial tension.  

The development of this class of materials started in the 1970s with investigations on high 

strength cement pastes with low water-to-cementitious materials ratio (w/cm), achieving 

compressive strengths up to 29 ksi (200MPa) (Yudenfreund, Odler, and Brunauer 1972; 

Yudenfreund, Skalny, et al. 1972; Yudenfreund, Hanna, et al. 1972; Odler, Yudenfreund, et al. 

1972; Odler, Hagymassy, et al. 1972; Brunauer, Yudenfreund, et al. 1973; Brunauer, Skalny, et al. 

1973), followed by investigations of hot pressing techniques that resulted in pastes with 

strengths up to 98ksi (680MPa) (Roy, Gouda, and Bobrowsky 1972; Roy and Gouda 1973). The 

emergence of high range water reducers (HRWR) in the 1980s, along with pozzolanic admixtures 

such as silica fume, led to the development of Macro-Defect-Free concretes (MDF) (Kendall et al. 

1983; Alford and Birchall 1984), followed by Densified with Small Particles concretes (DSP) which 

ultimately became the basis for the development of modern UHPC (Bache 1987). Since then, the 

density of UHPC matrixes has been theoretically investigated and optimized (de Larrard and 

Sedran 1994), while the brittleness of this material has been identified and addressed with the 

use of several combinations of fibers (Bache 1987; Richard and Cheyrezy 1995). 
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Commercial application of UHPC started in Europe in the 1990s and it became available in North 

America for the first time around 2000. UHPC has been used in many applications such as bridges 

and infrastructure, security and blast resistance, buildings, facades and elements exposed to 

aggressive environments. These applications involve new construction and rehabilitation, using 

both precast components and cast-in-place processes. 

2.1.1. Mixture Design Principles, Materials and Common Mix Proportioning 

The following mixture design principles are typically considered to attain the outstanding 

properties of UHPC (Richard and Cheyrezy 1995; ACI-Committee-239 2018): 

• Increase in homogeneity obtained by eliminating coarse fraction of aggregates from the 

matrix 

• Improved microstructure obtained by optimizing the packing density of the matrix 

through dense gradation of solid particles and maximization of pozzolanic reactions 

triggered by the presence of reactive silica existing in mineral admixtures such as silica 

fume, slag and fly ash. 

• Enhanced ductility obtained from using discontinuous fibers to promote strain-hardening 

behavior in tension.  

Most of the materials used to produce UHPC are identical as for traditional concrete, although 

the water-to-binder ratio usually ranges between 0.15 and 0.25 (ACI-Committee-239 2018). 

UHPC typically consists of cement, silica fume, fine quartz sand, HRWR, and fibers (ACI-

Committee-239 2018; Ibrahim et al. 2017; Alsalman, Dang, and Micah Hale 2017; JJ Park 2008; 

Talebinejad 2004). However, several mixture compositions have been developed containing 
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other SCMs such as slag and fly ash (Ibrahim et al. 2017; Alsalman, Dang, and Micah Hale 2017; 

Yazıcı 2007), as well as coarse fractions of aggregates (Ma et al. 2004; Li, Yu, and Brouwers 2018). 

High-strength steel fibers are often added to the matrix to improve the ductility and ability to 

eliminate some of the mild steel reinforcement often present in conventional reinforced 

concrete members (Graybeal 2006b). In UHPC compositions, the typical ranges of cement mass 

replacement with mineral admixtures are 10-25% of silica fume, 25-30% of ground quartz, 10-

40% of fly ash and 55-59% of slag. The method of curing also impacts the resulting material 

properties of UHPC (Cheyrezy, Maret, and Frouin 1995; Graybeal 2006a; Graybeal and Stone 

2012). 

Certain commercially available UHPC mixtures are proprietary, in which their exact composition 

is not reported. Meanwhile, other mixture designs are readily published and available. Different 

formulations often make trade-offs to achieve improvement of one property that may adversely 

impact others. 

2.1.2. Mechanical Properties, Durability and Applications 

Just like with any class of concrete, the mechanical properties of UHPC vary with mixture 

formulation, curing conditions and testing age. The strength and elastic modulus measured in 

UHPC are significantly higher than conventional concrete. Table 1 (ACI-Committee-239 2018) 

summarizes typical ranges observed for selected mechanical properties of UHPC versus 

conventional concrete. 
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Table 1.  Comparison of conventional concrete and UHPC (adapted from (ACI-Committee-239 2018)) 

Material characteristic Conventional concrete UHPC 

Compressive strength 
20 to 40 MPa  

(3000 to 6000 psi) 
150 to 250 MPa  

(22,000 to 36,000 psi) 

Direct tensile strength 
1 to 3 MPa 

(150 to 440 psi) 
6 to 12 MPa  

(900 to 1700 psi) 

Elastic modulus 
(ASTM C469/C469M) 

25 to 30 GPa  
(3,600,000 to 4,400,000 psi) 

40 to 50 GPa  
(6,000,000 to 7,200,000 psi) 

    

UHPC typically has a considerably higher tensile strength and sustained tensile capacity 

compared to fiber reinforced concrete (FRC) and conventional concrete. In UHPC, the tensile 

strength is often included in structural design calculations as opposed to conventional concrete, 

where this property is usually neglected. Additionally, the more important feature of the tensile 

behavior of UHPC is its post-cracking ductility, obtained with a particular combination of fibers 

and matrix microstructure, typically characterized by a strain-hardening behavior (continuous 

increase in resistance after reaching the cracking stress) or strain-softening behavior (gradual and 

steady decrease of resistance after reaching the cracking stress). The method of curing also 

impacts the resulting material properties of UHPC (Cheyrezy, Maret, and Frouin 1995; Graybeal 

2006a; Graybeal and Stone 2012). 

The durability performance of UHPC is far superior of that from conventional concrete due to the 

discontinuous pore structure, dense matrix and multi-cracking behavior at the microscale. The 

greater density of the interstitial transition zone between aggregates and matrix and higher 

density of hydration products results in improved resistance to several harmful gases and liquids, 

freeze-thaw cycles and chloride attack (Schmidt and Fehling). The porosity of UHPC is typically 

around 9 percent as opposed to the 15 percent commonly measured in conventional concrete 
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(Roux, Andrade, and Sanjuan 1996), with little to no capillary pores (Cheyrezy, Maret, and Frouin 

1995). Durability properties are typically measured by permeability, freezing-and-thawing, 

scaling, abrasion, resistance to chloride ingress, alkali-silica reaction, and carbonation tests 

(Russell and Graybeal 2013). 

The outstanding properties of UHPC makes this material suitable for a variety of applications such 

as highway bridge girders, pedestrian bridges, seismic retrofit of columns, rehabilitation of 

structures, bridge piles/foundations, field-cast connections, safety and security infrastructure, 

spent nuclear fuel storage, facades, canopies and shells, impact resistant infrastructure and 

elements subjected to aggressive environments (ACI-Committee-239 2018).  

2.2. Mixture Proportioning Effect on Environmental Impact of UHPC 

The last couple of decades have been characterized by a global awareness on rising GHG 

emissions, with the Intergovernmental Panel on Climate Change (IPCC) calling for 50-85% 

reductions in these emissions by 2050 to prevent threatening climate changes (Allwood et al. 

2013). The building and construction industries have been among the leading consumers of 

material by mass for almost 100 years (Horvath 2004), with cement manufacturing representing 

approximately 8-9% of the global total anthropogenic GHG emissions (Brinkman and Miller 

2021). With global population growth and the rapid development of third world countries, it is 

unlikely that advancements in the process efficiency of material manufacture will occur fast 

enough to meet emission reduction needs considering that demand for materials is expected to 

double by 2050 (Allwood et al. 2013).  
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New metrics that account for material performance and environmental impact concurrently 

during design and material selection stages is of great importance and represents a great 

opportunity for impactful methods to reduce emissions (W.B.C.S.D. 2009). Considering this 

challenge, numerous international entities such as the World Business Council for Sustainable 

Development (WBCSD) and the International Energy Agency have recommended further 

evaluation of material property changes associated with constituent alteration as a timely-

convenient strategy to minimize GHG emissions (W.B.C.S.D. 2009). Mehta et al. (Mehta 2009) 

recommended three approaches to the concrete industry for achieving sustainability: 1) develop 

innovative architectural concepts and structural designs that minimizes concrete consumption in 

new construction and rehabilitation of existing United States structures; 2) specify 56-or-90-day 

compressive strengths when conceivable to reduce the amount of cementitious material 

required in a mixture and; 3) follow smart concrete mixture proportioning approaches that 

consider blended cements containing high proportions of pozzolans. Although the latest is a 

promising approach to significantly reduce environmental impact of concrete materials, it is still 

limited due to lack of understanding of the compositional complexity of SCMs.  

Recently, emphasis has been placed on Environmental Product Declarations (EPDs) as a product 

“label” to promote transparency with pertains to the efforts made by concrete producers 

towards improving the sustainability of their products. The International Organization for 

Standardization (ISO) 14025 and European Standards (EN) 15804 define EPDs as independently 

verified documents that report environmental data of products based on life cycle assessment 

(LCA). Usually, EPDs contains information on a wide range of environmental impacts (e.g., GHG, 

ozone depletion, water impacts, habitat destruction, toxic substances, etc.) throughout the 
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product’s life cycle (cradle to grave) to measure the sustainability of a product while enabling 

comparisons with other products fulfilling the same function (CARBONCURE 2021; 

rediscover_concrete 2021; The_Concrete_Center 2021). While EPDs are currently reported using 

environmental impacts in units of kg CO2-eq. per cubic meter of concrete produced, this metric 

does not promote a consistent and accurate quantification of environmental impacts for the 

totality of a project. For instance, minimization of CO2-eq. per volume of concrete might not lead 

to a minimization of CO2-eq. produced in the building of a given structure due to the trade-off 

between mechanical properties and embodied emissions that might require larger structural 

elements when using a low CO2 concrete.1There is still no consistent analysis or reporting method 

used at a global scale to quantify and compare emissions generated in construction based on 

constituent proportioning in mixtures and the resulting performance of the final product.  

This omission is particularly important for advanced concrete materials such as UHPC, which 

typically involves high dosages of cement in its composition. High cement dosages and increased 

costs are the two main sources of skepticism surrounding the implementation of UHPC in the 

construction industry. In the last few years, researchers have developed sustainable and 

economical approaches to design UHPC by reducing the amount of cement and silica fume, while 

compensating these reductions with fly ash and sand (Soliman and Tagnit-Hamou 2017; Abbas, 

Nehdi, and Saleem 2016; Wille, Naaman, and Parra-Montesinos 2011). However, these studies 

did not focus on developing tools to quantify the actual environmental impact of the various 

 
1 An additional limitation of concrete material EPDs is the neglecting of emissions associated with transportation of 
the material to a specific jobsite, which can vary significantly from one producer. Neglecting this contribution 
penalizes those companies that move materials in a more efficient manner (e.g., water-based transport versus rail 
or road).  



19 
 

mixtures to justify the trade-off provided by UHPC in terms of performance-dimensionality of 

structural members. This aspect clearly influences the amount of GHG emissions for the totality 

of a project considering the dimensional reductions obtained with structural members made out 

of UHPC in comparison to conventional concrete. In several applications, using UHPC may well 

represent a better option from a performance, durability, cost and sustainability standpoint. 

However, tools to easily demonstrate this reality are still not available or well developed. 

Therefore, new metrics that account for material performance, cost and environmental impact 

concurrently, along with visualization tools that display the influence of mix proportioning in 

these outcomes are of vital importance to the UHPC industry. 

While several researchers have conducted evaluations of both material properties and 

environmental impacts to compare different concrete mixtures (Celik et al. 2015; Purnell 2012; 

Liu et al. 2012; Flower and Sanjayan 2007), the results obtained in these studies lack a broader 

application with respect to elements or mixture compositions differing from the ones 

investigated. To address these limitations, new indices relating environmental impacts and 

mechanical properties have been recently developed (Damineli et al. 2010; Fantilli and Chiaia 

2013; Gursel, Maryman, and Ostertag 2016; Miller et al. 2016b) to provide more comprehensive 

methods for comparison of mixture compositions with varying ingredients and processing 

methods. Although these studies denoted significant progress in eco-mechanical impact 

assessment, they did not consider the influence of mechanical properties on the volume of 

material needed for a given structural member, which is the determining factor on the 

environmental impact produced in the totality of a project. Considering that the volume of 

material needed for an application is a function of mechanical properties and loading conditions, 
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a ratio of volumetric environmental impact to material property is not a proper comparison 

measure for different mixture compositions. 

Recent studies by Miller et al. (Miller et al. 2016a) and Kourehpaz and Miller (Kourehpaz and 

Miller 2019) provide novel approaches for environmental impact assessment, setting the path 

for the future of sustainable construction. New indices that consider interdependencies between 

mechanical properties and environmental impacts for different structural elements were 

developed. These indices were established from environmental impacts associated with cradle-

to-gate production of one cubic meter of concrete, in addition to mixture parameters and 

material properties. Despite the significant progress that these studies represent to the field, the 

graphical representation of the data still needs significant improvement for a thorough 

characterization and proper assessment of the contribution from each mixture constituent on 

the environmental indices evaluated. A machine-learning-based tool is developed in this study to 

complement the contribution made with these comparison indices.  

2.3. Mix Design Optimization and Performance Prediction using Machine 

Learning Models 

Mixture proportioning optimization is driven by an ever-increasing need for decision-makers and 

designers to produce concrete mixtures capable of fulfilling multiple, and often times, competing 

performance requirements, including fresh and hardened material properties, durability, cost 

and environmental impact. Traditional methods for concrete mixture design are classified into 

two main approaches: prescriptive and performance-based. Prescriptive-based methods consist 

of frameworks that guide the designer in proportioning an acceptable mixture by following a 
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step-by-step process. The main limitation of this method resides in the fact that, while useful for 

general construction applications, it lacks flexibility, given that a designer cannot tailor and adjust 

individual mixture proportions. In contrast, performance-based approaches impose no strict 

guidelines on constituent proportions. That is, this approach provides substantial freedom to the 

designer in establishing unique compositions to meet design specifications. This process was 

mainly motivated by the emergence of several advanced concrete materials such as self-

consolidating concrete (SCC), HPC, and more recently UHPC. The exceptional properties of UHPC 

are a function of the type, quality and proportions of its constituents. While these outstanding 

properties encourage broader applications for this material, the production cost remains 

considerably high due to large cement contents often used and also the elevated cost of other 

ingredients such as silica fume, fibers, ground quartz and high quality HRWR. Therefore, 

optimization of constituent dosages in UHPC compositions is crucial to not only ensure 

satisfactory performance levels, but also to increase the cost-effectiveness of this product to 

justify application. 

Mixture proportioning optimization in UHPC materials started with Richard and Cheyrezy 

(Richard and Cheyrezy 1995) when compressible packing models (CPM) were used to optimize 

the granular mixture. Later on, Sonja et al. (Sonja AAM 2009) explained how interaction between 

very small particles caused by surface forces influences packing density, suggesting that CPM 

results can deviate considerably from experiments when very small particles are evaluated. 

According to Sonja et al., CPM could not accurately predict performance of mixtures with nano 

or micro sized particles. Since then, several authors have developed different strategies towards 

mixture optimization (Talebinejad 2004; Teichmann T 2004; JJ Park 2008; Kay Wille and Gustavo 
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2011). However, the design of experiment (DOE) strategies implemented in most of these studies 

does not allow the results to be generalized. Mathematical optimization and statistical mixture 

design (SMD) methods have been used for years, especially on multiple-objective problems. 

Comprehensive experimental optimization of concrete mixtures following standardized testing 

protocols can be costly, time-consuming and resource intensive. While SMD methods (Ghafari et 

al. 2015; Ghafari, Costa, and Júlio 2015) have progressed the way material properties are 

modeled while providing explicit equations relating decision variables to objectives, the 

performance of these equations are oftentimes insufficient to describe complex relationships. 

Moreover, these methods are not effective in modeling the nonlinear response in compressive 

strength with changes to the mixture proportions. To overcome this limitation, significant 

research has been done on non-linear regressions and computational methods that leverage the 

multitude of experimental data concerning advanced concrete materials, advanced 

mathematical techniques, and the power of high-performance computing (Deshpande, Londhe, 

and Kulkarni 2014; Mohammed et al. 2020; Saadat and Bayat 2019; Yagiz, Sezer, and Gokceoglu 

2012). 

Significant advances in AI has propelled the extensive use of machine learning models in 

numerous fields to estimate outcomes that closely resemble real world experiments. Machine 

learning models have consistently presented higher predictive performance compared to 

traditional mathematical and statistical methods (Sadrossadat et al. 2021; Solhmirzaei et al. 

2020; DeRousseau et al. 2019; Ghafari et al. 2015). A variety of machine learning algorithms can 

be used to accomplish the same goal: detect patterns in datasets and improve predictive 

performance. However, the structure and functionality of each type of algorithm can differ 



23 
 

significantly. When the objective function of a model consists of continuous outcomes, the 

predictive performance is typically judged based on a loss function such as the root mean squared 

error (RMSE). In practice, the RMSE represents the standard deviation of the residuals (prediction 

errors), and is defined by 
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where ˆiy  represents the predictions, iy  represents the actual outcomes and N  represents the 

number of observations (Irizarry 2019). In machine learning, the RMSE is evaluated across 

different sets: training, validation and testing sets. The reasoning behind the data split across 

these sets is later explained in Chapter IV. 

Machine learning algorithms such as k-Nearest Neighbor (kNN), random forest and artificial 

neural network (ANN) have gained popularity over time, as researchers have been exploring 

these techniques to solve a variety of problems in civil engineering (J.A. Abdalla 2012; Das 2013; 

Abdalla, Attom, and Hawileh 2015; Deng et al. 2018; Naderpour, Rafiean, and Fakharian 2018; 

DeRousseau et al. 2019). The emergence of UHPC compelled further development of machine 

learning modeling towards behavioral predictions (Ghafari et al. 2012; Solhmirzaei et al. 2020; 

Ren et al. 2021). Despite the growing popularity of machine learning in civil engineering, the 

black-box nature of these algorithms has inhibited researchers from describing the content of 

the models mathematically. These often contain complex internal structures, described by 

parameters that offer little insight on what takes place inside the model during computations. 

Recognizing this limitation, various authors have employed several strategies intending to 

address it. Abuodeh et al. (Abuodeh, Abdalla, and Hawileh 2020) used sequential feature 
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selection and a neural interpretation diagram to identify the critical features affecting material 

response prediction when applying an ANN model. This approach allowed reducing the 

dimensionality of the database from eight to four features, simplifying the model while 

simultaneously increasing the accuracy. However, the black-box nature of these models was not 

resolved. In addition, the plots produced to interpret the data allow only two features and one 

response to be evaluated concurrently while fixing the other variables, which inhibits an overall 

look at the data and the ability to accurately assess the trends. Meanwhile, Kim et al. (Kim et al. 

2020) characterized fly ash on a particle-by-particle basis using automated scanning electron 

microscopy (ASEM) and analyzed 20 different fly ashes following a principal component analysis 

(PCA) to assess interrelationships among particle chemical composition. This study represents an 

important step on mixture design optimization strategies, in which a more general classification 

of mixture constituents based on the individual particle make-up is encouraged to address the 

inconsistency of bulk properties in constituents such as fly ash. Furthermore, the graphical tools 

used to describe the results greatly facilitate the interpretation of material response, particularly 

with the use of ternary density plots. Yet, these plots are limited to applications where responses 

are a function of a maximum of three variables. This inhibits a full performance characterization 

in materials such as UHPC, which has a high number of variables affecting material response. 

A key aspect to consider when defining suitability of machine learning models is robustness. This 

is especially important for highly complex algorithms with several parameters. The most 

challenging tasks in modeling large datasets with intelligent algorithms consist of preventing 

overfitting and data leakage. Overfitting occurs when the model performs significantly well on 

the training dataset but poorly on the testing dataset, implying poor generalized performance on 
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unseen data. While researchers are usually well aware of basic overfitting, data leakage is 

regarded as one of the top ten mistakes practiced in machine learning (Nisbet 2009). Data 

leakage occurs when information available in test sets is leaked into train sets. While it may lead 

to overfitting (overly optimistic accuracy on training set), data leakage is mostly characterized by 

causing overly optimistic accuracy on test sets. Thus, data leakage often results in unrealistically 

high accuracies on both training and testing sets, but very poor predictive performance on 

new/blind data. Overfitting and data leakage verifications are crucial in ensuring that models do 

not memorize how to interpret a specific range of inputs such that this range can be later 

implemented to predict results in a newly collected database.  

Ghafari et al. (Ghafari et al. 2015) built two analytical models using ANN and SMD to predict fresh 

and hardened material properties. A total set of 53 different mixtures was used to build the 

models, in which 80% was used for training, while 20% was used for validation and testing. 

Considering that, neither a feature selection process nor a variable importance assessment was 

performed to evaluate the influence of each feature on the material response, the methodology 

used in this study could have induced data leakage. Several mixtures with identical contents on 

the main features but differing quantities on features with little influence on the model response 

(i.e., no feature was filtered) could have fallen into different modeling sets (training and testing 

data). This allows the model to see the same data in the training and testing sets, leading to over 

optimistic estimations (R2 > 95%). Further evidence of data leakage in this study comes from the 

fact that the optimized mixtures returned by the model were experimentally tested and results 

indicate that these were outperformed by several mixtures from the initial experiments.  
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Meanwhile, Abuodeh et al. (Abuodeh, Abdalla, and Hawileh 2020) collected 110 experimental 

results from the literature and performed a 70%-15%-15% split for training, validation and testing 

sets, respectively. In this study, numerical solver verification and overfitting verification 

processes were combined to resemble a k-fold cross validation approach in attempting to 

prevent overfitting. However, similarly to the previous study, a basic random splitting process 

does not ensure that mixture designs with identical input ranges (at least four pairs were 

identified in this case) are kept within the same splitting group prior to fitting the model to the 

data. As mentioned earlier in this section, a feature selection process was implemented to reduce 

the number of features in the model. Considering that only cement, fly ash, silica fume and water 

were selected as inputs for the final model, mixtures differing in other features (fiber content, 

sand, steel fiber, quartz powder and admixture) could have fallen into different sets of data as 

well. These two cases suggest that, when modeling large sets of data collected from the 

literature, a detailed data mining process is required to avoid overfitting and data leakage. 

2.4. Orthogonal Array Design for Reduced Experimental Runs 

Product manufacturing is a field that generally involves a multi-objective, multi-factor design 

approach to optimize the final properties of a given material in order to achieve desired 

performance levels. This challenging process involves defining an optimal setting of control 

factors and tailoring their values, where often the improvement of one property/response may 

result in performance loss in another property/response below acceptable levels. The Taguchi 

method is one of the most popular optimization methods within the field of production 

engineering (Rowlands, Antony, and Knowles 2000; Ranjit 2010). This method consists of 

performing a limited number of experimental runs based on orthogonal array design, providing 
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a well-balanced framework of data collection, and a signal-to-noise ratio (S/N ratio) analysis that 

serves the objective function to be optimized within the experimental domain. 

The main feature of orthogonal array experiments is that it allows considerable optimization of 

the experimental data collection stage by reducing the experimental runs by several orders of 

magnitude, when compared to testing all possible combinations of the control factors. 

Unfortunately, the Taguchi method does not offer enough flexibility to readily identify and 

consider multiple optimum options that satisfy a required level of performance. In addition, this 

method does not provide an estimation of the magnitude for the predicted optimum response. 

Also, this method alone is not sufficient for multi-objective optimization problems. To overcome 

this limitation, authors have coupled the Taguchi method with Grey relational analysis for multi-

objective optimization studies (Tarng, Juang, and Chang 2002; Lim S-H 2006; Datta, 

Bandyopadhyay, and Pal 2008). Yet, this combined method still does not predict the magnitude 

of the optimum responses nor it enables multiple optimum alternatives to be easily identified 

without exhaustive analysis of S/N ratios. 
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CHAPTER III.  

EXPERIMENTAL PROGRAM: OPTIMIZED FRAMEWORK & PROTOCOLS 

This chapter describes the strategic experimental framework established with orthogonal arrays 

(from the Taguchi method) and new test protocols developed for expeditious and efficient data 

collection. Materials, methods and specimen preparation are described herein. Furthermore, the 

experimental results obtained are presented and will be used as inputs to feed the machine 

learning models developed in the subsequent chapters. 

3.1. Multi-Phase Experimental Framework Designed with Orthogonal Arrays  

This study entails a multi-scale, multi-phase mix design approach to optimize the compressive 

strength of UHPC. It consists of two main phases, A and B, for which the objectives are, 

respectively: A) Maximize the compressive strength at the binder scale; B) Optimize the 

compressive strength at the mortar scale considering the inclusion of fine aggregates. In UHPC 

mix design, binder selection typically involves microstructural packing and rheology analysis 

(Arora et al. 2018; Arora et al. 2019; Shi et al. 2021). Additionally, the optimization of compressive 

strengths in cementitious binders should involve porosity measurements to assess the 

normalized strength by porosity, which represents the actual strength of the solid structure in 

the matrix. This is relevant considering that the volume of capillary pores in cementitious pastes 

can be reduced by adding air detrainers during the mixing process or reducing the w/cm in design 

stages. Nevertheless, to maintain focus on the tools developed in this study and facilitate 

comparisons between phases, the compressive strengths obtained in Phase A are not further 

normalized by porosity nor involve microstructural packing or rheology analysis. Thus, at this 
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phase, the optimum binders are selected solely based on the maximum compressive strength 

predicted by the models developed herein.  

The initial range of proportions defined for each constituent was chosen based on numerous 

studies done in the field (summarized by Carey et al. (Carey et al. 2020)). The content of SCMs 

was defined on a % by weight (wt.) of cement replaced basis. The max content of slag, microsilica 

and fly ash were fixed at 60%, 20% and 15%, respectively. Although higher contents of fly ash can 

greatly improve mechanical performance in later ages, the max content used in this study is kept 

low to differentiate these mixtures from high-volume fly ash concretes (HVFA). On the other 

hand, literature (Carey et al. 2020) indicates that optimum contents of silica fume in UHPC can 

be obtained with up to 25% cement replacement. However, densified silica fume (or microsilica) 

has a much lesser role as a filler due to the increased size of the particles. Phase A included an 

additional iteration [A(II)] to increase the number of data points in a particular region of interest 

in the experimental domain. Considering that this study entails maximizing the compressive 

strength, preliminary models obtained in Phase A(I) were used to define this region by estimating 

the range of SCM contents that produces mixtures with compressive strengths in the top 20 

percentile. Consequently, the maximum contents of slag, microsilica and fly ash for Phase A(II) 

were fixed in 52%, 10.5% and 15%, respectively. For Phase B, the maximum contents of ground 

quartz, concrete sand (silica sand) and crushed sand were fixed in 25% by wt. of cementitious 

binder replaced in the system. Phase B included an additional step [B(II)] to evaluate the optimum 

mixtures predicted by some of the models. In addition, this sub-phase serves to compare the 

results obtained following the test protocol developed in this study with the results obtained 

following the standard testing protocol for UHPC in ASTM C1856/1856M (ASTM 2017).  
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Fig. 2 shows the mix design phases and strategy defined in the study herein to maximize the 

compressive strength of UHPC mixtures. 

The experimental frameworks used for data collection in Phases A(I) and B(I) were designed using 

a L25 orthogonal array (52 levels) with 3 variables. Meanwhile, Phase A(II) is a complementary 

experimental phase, designed with a smaller array in L16 (42 levels) while maintaining the design 

variables. Table A1 through Table A5 in APPENDIX A contain detailed information on the 

orthogonal arrays used and the corresponding design levels for each phase of this study. Fig. 3 

shows the design matrix used in Phase A(I), where the mixture compositions tested 

experimentally were defined based on the content of Portland cement replaced with SCMs on a 

% by weight basis.  

The arrangement of orthogonal arrays is ideal for machine learning modeling. It reduces the 

chances of overtraining without the need to resort to techniques such as feature selection or 

assessing variable importance parameters. While these methods tend to improve predictive 

Phase A Phase B

Phase A(I): Evaluate machine learning models and 
maximize the compressive strength (fc) at the binder scale

Variables (Content by wt. of replaced cement): 
• a Slag (0-60%)
• a Microsilica (0-20%)
• a Fly ash (0-15%)
• b w/cm
• b HRWR/cm

Criteria: Max fc

Phase A(II): additional data collection using SCM contents 
in ranges predicted within the top 20% in Phase A(I) to 
improve model accuracy in the region of interest (max fc)

Phase B(I): Optimize the compressive strength at the 
mortar scale considering aggregate inclusions

Variables (Content by wt. of replaced cement): 
• a Ground quartz -> (0-25%)
• a Concrete sand ->  (0-25%)
• a Crushed sand -> (0-25%)
• b w/cm

Criteria: Max (fc) ; Max s/cm = 2.2

Phase B(II): Evaluate optimum predictions identified in 
PDD with ASTM C1856

a orthogonal array variables
b additional variables evaluated in ML modeling

Fig. 2. Design and experimental phases of the optimization study 
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performance by selecting the absolute necessary features to maximize model accuracy, they are 

not vital to prevent overtraining in orthogonal array datasets given that each row differs from 

the others regardless of the number of variables/columns used. 

 

3.2. Surrogate Samples Suitable for Collecting Large Data on Compressive 

Strength of Binders and Mortars with Strengths up to UHPC Levels 

Motivated by the resource and time-consuming nature of available standard methods, this study 

was performed using a novel test protocol that facilitates extensive data collection to feed 

machine learning models. A test protocol using cylindrical specimens of reduced dimensions was 

Phase A(I)

Levels 1 2 3 4 5

Features

Slag 0 15 30 45 60

Microsilica 0 5 10 15 20

Fly Ash 0 3.75 7.5 11.25 15

Fig. 3. L25 orthogonal array used to design the experimental framework for Phase A(I) (Table A1 - APPENDIX A). The coordinates 
for each mix design number indicate the content % by wt. of SCMs replacing cement, considering only the dry ingredients content. 
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evaluated for testing cement pastes and mortars with strengths up to the level of UHPC materials. 

This protocol involved a fast production process of 23 x 46 mm cylinders, cast in silicone molds 

as shown in Fig. 4. Later, both top ends of the cylinders were cut to obtain smooth surfaces and 

the aforementioned dimensions.  

Capping systems evaluated for this protocol consisted of commercially available felt cushion pads 

(often designated as heavy duty pads) and neoprene pads, cut out of sheet rolls. Fig. 5 shows 

these capping systems, along with specimen dimensions. 

Fig. 5. Capping pads used with new test protocol: neoprene square pads (left) vs felt cushion circular pads (right) 

Fig. 4. Silicone molds used to cast binders and mortars in this study 
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This method permits large datasets to be generated in short periods of time. The entire mixing 

and casting time is approximately seven times faster than the standardized method in ASTM 

C1856/1856M involving 76 x 152 mm cylinders. Additionally, the specimens used in this study 

consume approximately forty times less volume of materials when compared to the cylinders 

used in the aforementioned standard. Fig. 6 illustrates specimens cast during Phase A(I), which 

were easily produced in approximately one week. 

Casting large numbers of mixtures involving 76 x 152 mm cylinders can become cumbersome, 

exhausting, and time- and resource-intensive. Fig. 7 illustrates preliminary results suggesting that 

the proposed test protocol can be a viable option to test UHPC pastes and mortars when the 

number of experiments is considerably high.  

As shown in Fig. 7, when specimens were capped using felt cushion pads, great agreement was 

observed between the new test protocol and the reference standard ASTM C39/C39M (ASTM 

2021), for normal strength, and ASTM C1856/1856M, for strength levels up to 125 MPa (18,100 

psi). On the other hand, neoprene pads were typically destroyed when testing mixtures with 

strengths exceeding 50 MPa. For this reason, felt cushion pads were used for all the remaining 

Fig. 6. Specimens cast during Phase A(I) 
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experiments in this study to generate accurate data to feed the models developed in the 

subsequent chapters.  

 

3.3. Materials and Specimen Preparation  

UHPC pastes and mortars were prepared in a 20-Quart high shear stand mixer with a stainless-

steel container. The w/cm was initially targeted at 0.20, however, adjustments in the HRWR 

content were necessary to achieve spread values in the range of a self-consolidating material. 

This resulted in w/cm ranging between 0.19 and 0.22. The HRWR content was specified as the 

minimum needed to achieve spread values of at least 20 cm. For cementitious pastes produced 

in Phase A, the maximum HRWR content was controlled by visually inspecting the fresh binder 

for evidence of bleeding. On the other hand, for mortars produced during Phase B, the maximum 

HRWR content was controlled by visually inspecting the fresh mortar for evidence of bleeding or 

segregation. Mixtures in Phase B that exhibited evidence of segregation were discarded and re-

Fig. 7. Preliminary results showing measured compressive 
strengths of pastes and mortars using ASTM C1856M and a 
new proposed protocol involving miniature 22mm diameter 
cylinders. The new protocol results in strengths that agree 
well with the standards but are much more material efficient. 
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batched with reduced HRWR contents. Overall, the HRWR content appears to not have a 

significant impact on the compressive strength for the range of contents used in this work (Fig. 

A1 - APPENDIX A), where little to no correlation is observed between compressive strength and 

measured flow values. The cementitious materials used consisted of Portland cement type I/II 

(composition: portland cement clinker 90%–96%, gypsum 2%–5%, calcium carbonate 0%–5%, 

blast furnace slag 0%–5%), densified silica fume described as microsilica (composition: microsilica 

content 100%, amorphous silicon dioxide 92%-98%), blast furnace slag (composition: slag 100%, 

calcium oxide 30%-50%, magnesium oxide 0%-20%, crystalline silica <1%) and class F fly ash 

(silicon dioxide 55%, aluminum oxide 26%, ferric oxide 7%, calcium oxide 9%, magnesium oxide 

2%, sulfite ion 1%). The liquids involved in the mix designs consisted of tap water (City-of-College-

Station 2018) and a polycarboxylate based HRWR. For mortar mixtures, fine aggregates were 

added; namely, a manufactured crushed sand, a natural silica sand and a ground quartz powder. 

The total mixing time for each batch was 25 min, consisting of 12 min pre-mixing the dry 

ingredients to ensure a uniform distribution of the fine particles, 1 min of adding water and 

HRWR to ensure uniform dispersion of the liquids in the matrix, 8 min mixing in medium speed, 

2 min rest, and 2 min of high speed mixing (maximum) to improve homogeneity while 

simultaneously avoiding adding entrapped air to the system. After mixing, the material is poured 

into a flow cone to measure the spread value, following ASTM C1856/1856M (ASTM 2017). The 

cone is filled to the top and lifted, allowing the paste to flow. After 2 min, the spread value is 

obtained by measuring and averaging two diameters at a right angle. Finally, three specimens 

per mixture (plus a few spare samples) were cast in 23 x 46 mm cylinders to assess the 

compressive strength. The exposed ends were covered in plastic sheet to prevent moisture loss. 
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All samples were left to cure in their molds for 24 h at room temperature, set to 73°F±2°F (23°C) 

by default. After 24 h, all samples were demolded and moved to a controlled chamber with 98% 

relative humidity at a temperature of 23°C for a controlled curing process, until tested. 

3.4. Experimental Results 

Table 2 illustrates the experimental results obtained for the binders produced and tested during 

Phase A. For each mixture design, the average compressive strength (in MPa), standard deviation 

(in MPa) and measured spread flow (in cm) are presented. Furthermore, the fracture type 

observed for each specimen was determined according to ASTM C39/39M and the results are 

displayed in the APPENDIX A (Fig. A1). 

Meanwhile, Table 3 illustrates the experimental results obtained for the mortars produced and 

tested during Phase B. These results are used to train the models discussed in the subsequent 

chapter. 
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Table 2. Experimental Results for Phase A 

Mixture # - mix design number 
avg fc – average compressive strength (MPa) 
sd – standard deviation (MPa) 

 

  

Mixture 
# 

SCM replacing cement (% by wt.) 

w/cm 
HRWR 

/cm 
flow 
(cm) 

testing at  
age 1 day 

  
testing at  

age 56 days 

Slag Microsilica Fly Ash 
avg fc 
(MPa) 

sd 
(MPa) 

  
avg fc 
(MPa) 

sd 
(MPa) 

A1 0 0 0 0.19 1.2% 26 63.3 2.4  86.4 2.8 
A2 0 5 3.75 0.20 1.7% 31 79.6 3.6  110.5 6.2 
A3 0 10 7.5 0.20 2.3% 31.5 71.2 1.7  97.3 2.6 
A4 0 15 11.25 0.20 2.9% 28.5 36.9 3.7  94.2 2.1 
A5 0 20 15 0.21 3.4% 25 25.7 3.0  68.9 13.7 
A6 15 0 3.75 0.19 1.4% 36.5 56.9 4.8  113.7 2.8 
A7 15 5 7.5 0.20 1.7% 36 45.1 3.3  113.8 10.8 
A8 15 10 11.25 0.20 2.3% 34 32.1 3.4  96.1 7.9 
A9 15 15 15 0.20 2.9% 31 22.8 2.4  91.7 4.6 

A10 15 20 0 0.21 3.5% 25 35.1 1.7  93.4 4.8 
A11 30 0 7.5 0.19 1.3% 38 43.8 11.8  104.0 11.0 
A12 30 5 11.25 0.19 1.4% 37 36.7 6.9  115.6 5.2 
A13 30 10 15 0.20 2.0% 35 29.3 2.6  96.4 4.2 
A14 30 15 0 0.21 3.3% 30.5 24.4 1.4  100.4 7.4 
A15 30 20 3.75 0.21 3.7% 26 12.6 0.3  90.4 7.6 
A16 45 0 11.25 0.19 1.0% 35 28.2 3.5  76.9 19.5 
A17 45 5 15 0.19 1.3% 36.5 30.1 1.0  111.5 12.0 
A18 45 10 0 0.20 2.0% 33 33.7 1.7  109.7 2.3 
A19 45 15 3.75 0.20 2.3% 31 20.6 0.8  88.1 12.8 
A20 45 20 7.5 0.22 5.1% 31 2.5 0.3  69.4 6.6 
A21 60 0 15 0.20 1.6% 38 8.7 0.1  106.5 7.2 
A22 60 5 0 0.19 1.4% 32.5 32.0 1.8  96.7 8.5 
A23 60 10 3.75 0.19 1.5% 29.5 21.5 0.5  90.5 11.3 
A24 60 15 7.5 0.21 4.0% 33 4.3 0.4  75.1 9.2 
A25 60 20 11.25 0.21 3.3% 29 4.7 0.9  72.9 7.1 
A26 0 3.5 3.75 0.20 1.1% 40 93.6 2.5  119.4 9.2 
A27 0 7 7.5 0.20 1.6% 40 84.5 4.0  122.4 3.6 
A28 0 10.5 15 0.20 1.6% 40 68.6 2.5  120.7 10.2 
A29 17.33 0 3.75 0.20 0.8% 27 76.6 3.0  121.5 5.2 
A30 17.33 3.5 7.5 0.20 1.0% 38 77.8 2.9  121.4 5.1 
A31 17.33 7 15 0.20 1.1% 40 67.2 2.1  123.1 2.3 
A32 17.33 10.5 0 0.20 1.6% 38 72.0 3.9  120.8 7.8 
A33 34.67 0 7.5 0.20 0.8% 30 63.7 4.7  126.6 7.4 
A34 34.67 3.5 15 0.20 1.2% 40 54.7 2.0  133.7 8.2 
A35 34.67 7 0 0.20 1.5% 40 63.0 1.7  123.5 9.3 
A36 34.67 10.5 3.75 0.20 1.1% 26 53.8 2.1  115.9 5.4 
A37 52 0 15 0.20 1.1% 40 41.4 0.8  127.9 5.1 
A38 52 3.5 0 0.20 1.1% 40 52.3 3.2  123.3 14.2 
A39 52 7 3.75 0.20 1.1% 35 46.0 2.0  113.2 9.9 
A40 52 10.5 7.5 0.20 1.1% 40 35.4 1.9   121.6 8.5 
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Table 3. Experimental results from Phase B 

 

 

 

 

 

 

 

 

 

 

 

 

3.5. Summary of Important Outcomes 

This section was motivated by the resource and time-consuming nature of available standard 

methods. A strategic experimental framework was established with orthogonal arrays (from the 

Taguchi method) and a new test protocol was developed to facilitate extensive data collection to 

feed machine learning models in an expeditious and efficient way. The main findings from this 

part of the work are: 

  
Aggregates replacing 

cementitious (% by wt.)   
HRWR/ 

cm 

  
testing at age  

56 days 
Mixture # 

Ground 
quartz 

Concrete 
sand 

Crushed 
sand w/cm 

flow 
(cm) 

avg fc 
(MPa) 

sd 
(MPa) 

Mix B1 0 0 0 0.20 0.97% 38 114.4 5.4 
Mix B2 0 6.25 6.25 0.20 0.93% 29 99.7 3.8 
Mix B3 0 12.5 12.5 0.20 0.83% 20 109.5 3.3 
Mix B4 0 18.75 18.75 0.20 0.90% 26 94.3 3.3 
Mix B5 0 25 25 0.20 0.97% 26 74.7 5.2 
Mix B6 6.25 0 6.25 0.20 0.98% 23 112.8 2.5 
Mix B7 6.25 6.25 12.5 0.20 1.01% 23 87.9 2.9 
Mix B8 6.25 12.5 18.75 0.20 1.11% 31 75.1 3.4 
Mix B9 6.25 18.75 25 0.20 1.24% 21 74.4 0.8 

Mix B10 6.25 25 0 0.20 1.07% 20 106.4 6.9 
Mix B11 12.5 0 12.5 0.20 1.22% 27 106.2 4.8 
Mix B12 12.5 6.25 18.75 0.21 2.16% 26 86.1 2.7 
Mix B13 12.5 12.5 25 0.21 1.94% 32 103.3 3.7 
Mix B14 12.5 18.75 0 0.20 1.37% 36 121.1 0.7 
Mix B15 12.5 25 6.25 0.20 0.15% 34 107.6 3.4 
Mix B16 18.75 0 18.75 0.20 1.55% 34 114.4 2.8 
Mix B17 18.75 6.25 25 0.21 2.39% 30 103.5 2.7 
Mix B18 18.75 12.5 0 0.21 1.94% 36 119.3 1.8 
Mix B19 18.75 18.75 6.25 0.21 2.19% 33 110.1 4.1 
Mix B20 18.75 25 12.5 0.21 3.01% 26.5 61.9 4.8 
Mix B21 25 0 25 0.23 2.71% 26.5 76.9 9.5 
Mix B22 25 6.25 0 0.24 1.61% 36 125.8 9.1 
Mix B23 25 12.5 6.25 0.23 2.11% 30 89.2 3.8 
Mix B24 25 18.75 12.5 0.25 2.52% 29 69.0 5.8 
Mix B25 25 25 18.75 0.30 5.82% 26 55.1 4.9 
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• This method allows large datasets to be generated in short periods of time. Mixing and 

casting processes are approximately seven times faster compared to the standardized 

method in ASTM C1856/1856M involving 76 x 152 mm cylinders.  

• The specimens used in this study consume approximately forty times less volume of 

materials when compared to the cylinders used in the aforementioned standard. 

• The new test protocol developed for pastes and mortars using reduced size samples and 

simplified end specimen conditions agrees well with standard methods up to strengths of 

125 MPa. Further evaluation of the end-specimen conditions is required to improve this 

test protocol for materials with strengths over 125 MPa. 

This protocol encourages innovation in mixture design with new materials in a constantly growing 

industry such as UHPC. Considering that nanomaterials such as nanosilica and carbon nanofibers 

are often costly and somewhat challenging to disperse, this protocol provides an efficient way to 

explore different concentrations and dispersion methods while quickly assessing the effect of 

these inclusions on the compressive strength of mixtures. This assuming that compressive 

strength is used as a quick indicator of dispersion efficiency, considering that poorly dispersed 

fiber reinforced SCCs tend to experience decrease in strength with respect to control samples 

due to the presence of fiber clumps. 
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CHAPTER IV.  

MACHINE LEARNING MODELS 

4.1. Theory and Methodology 

Machine learning is a subset of AI (the science and engineering of making intelligent machines, 

especially intelligent computer programs) and computer science. In particular, machine learning 

focuses on the use of data and algorithms to imitate the way that humans learn, gradually 

improving its accuracy (IBM 2020). The computations performed in this study were done in the 

data analysis software “R” using the machine learning algorithms built in the caret package (Kuhn 

2008).  

The ability of a model to minimize bias and variance is a tradeoff. Proper understanding of these 

errors is vital to build accurate models that avoid overfitting and oversmoothing. In machine 

learning, bias is represented by the inability of a model to capture the true relationship (actual 

outcomes) in the dataset, whereas variance represents the difference in fits (variability of model 

prediction) across different datasets (training vs testing/validation sets). Models with high bias 

tend to oversimplify the existing trends (very little attention to the training data), leading to high 

error on training and test data (also known as oversmoothing). Models with high variance pay a 

lot of attention to training data and lack the ability to generalize on unseen datasets. As a result, 

such models perform very well on training data, while exhibiting very high error on test data (also 

known as overfitting). Ideal models have low bias and can accurately model the true relationship, 

while also showing low variance by producing consistent predictions across different datasets. In 

machine learning, different algorithms use different methods to achieve balanced bias-variance 
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tradeoffs, aiming for developing models with low bias and low variance, and thus, improved 

predictive performance. The objective consists in reducing the remaining error to as close as 

possible to the irreducible error, which is associated with the noise in the experimental dataset 

(standard deviation). 

To optimize the mixture proportions of UHPC binders and mortars, two different machine 

learning algorithms were considered: kNN and Random Forest. kNN is a supervised-learning 

machine learning algorithm within the set of instance-based learning methods. This algorithm 

estimates conditional probabilities by averaging the properties of “k” nearest neighbors (Irizarry 

2019). Larger values of “k” lead to smoother estimates, while smaller values of “k” provide more 

flexible and sinuous estimates. When using this model, the risk of overtraining is often associated 

with small values of “k”, where the accuracy is significantly higher in the train set than in the test 

set. For instance, overtraining is at its worst when k is equal to 1. In this case, each estimate is 

obtained using only the information corresponding to that same point (i.e., each point is its own 

nearest neighbor). On the other hand, very large numbers of “k” neighbors affect the flexibility 

of the model, in which several points are averaged to compute each single estimated conditional 

probability. This often leads to oversmoothing, where the accuracy in both training and testing 

sets drop to unsatisfactory levels. A commonly used technique to optimize the value of “k” 

nearest neighbors (and thus achieve the best possible bias-variance tradeoff) is the k-fold cross 

validation method (Stone 1974; Mosteller and Tukey 1968; Mosteller and Wallace 1963; Larson 

1931). In this method, the training data is split into k-non overlapping folds that store data for 

the validation sets. The model works in each fold individually by fitting the data in the training 

set, predicting the outcome in the validation set and storing the RMSE for a range of possible “k” 
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values. After performing an iteration in each fold, the average RMSE for each “k” across all folds 

is obtained to identify the optimum “k” that minimizes the RMSE across all validation sets. After 

establishing the model with the optimum “k” value, the test set is used only to estimate the 

predictive performance of the model when presented to new independent datasets containing 

data that have not been “seen” by the model during training. Fig. 8a) illustrates 5 initial folds 

randomly generated during Phase A(I) to split training and testing datasets, prior to cross 

validation. Mixtures that were “blind” to Fold 1 in this original split were stored in a test set as 

shown in Fig. 8b). With this split, 16% of the data (mixtures #13, 14, 15 and 25) were stored in 

the testing set, while 84% of the data (remaining 21 mixtures) were assigned for training, where 

validation and training subsets were randomly generated to perform the cross-validation process 

described above.  

 

b) a) 

Fig. 8. Folds randomly created in performing a k-fold cross validation method used to train and test the models. Five folds were 
originally created in the entire dataset of Phase A(I). Mixtures that were “blind” to Fold 1 were stored in the test set. Four new 
folds were randomly generated with the remaining data to create the required dataset (training and validation sets) for cross 
validation to optimize the tuning parameters and generate the model 
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Another strategy established in this study, aiming to prevent data leakage, consisted of grouping 

the data of individual specimens by mix design during cross-validation. This was performed using 

the GroupKFold function, which is a variation of the k-fold cross-validation with non-overlapping 

groups. This method ensures that, when accessing the individual information of each specimen, 

the same mixture is not represented in both validation/testing and training sets.  This permits 

evaluating additional models that access the individual response of each specimen to model the 

grouped response of each mix design without compromising the defined experimental unit 

(which in this case is each mix design), while avoiding data leakage occurrences, and thus 

preventing bias performance estimations.  

Another popular algorithm in machine learning is the random forest, which combines several 

random regression (continuous) or decision (categorical) trees. Regression trees operate by 

recursively partitioning the feature/predictor space to estimate an outcome. To avoid 

overtraining, these models set minimum requirements before adding  new partitions, which are 

based on: 1) level of improvement on residual sum of squares; 2) number of observations to be 

partitioned; and 3) number of observations in each partition (Irizarry 2019). These models are 

advantageous in data pre-processing efforts and data preparation considering that they do not 

require normalization or scaling of the data. On the other hand, these models are highly unstable 

given that small changes in the data can cause large change in the main structure. To overcome 

the shortcomings of regression trees, random forest models were developed to reduce instability 

and improve prediction performance. Random forest models average multiple regression trees 

(a forest of trees) constructed with randomness, using a bootstrap process to optimize the 

number of variables randomly sampled in each split. For simplicity purposes, random forest 
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models will be denoted as RF for the remainder of this work, although it is not a universal 

acronym such as kNN. Additionally, the test sets defined for the kNN models were maintained 

for the RF models to allow an unbiased evaluation of predictive performance and comparison 

between the different models. 

A popular approach to improve predictive performance is to build ensemble models, which 

consists in creating a model that benefits from the best features from multiple models. To avoid 

overextending the evaluation of machine learning techniques, the simplest ensemble method is 

followed in this study by averaging the predictions obtained from the best-performing models, 

as discussed in the following section. 

4.2. Regression Models 

4.2.1. Developing Models: Variables and Datasets 

In this study, various models were developed using different modeling techniques: kNN, RF and 

linear regression. The designation attributed to each model was established based on: a) whether 

the data were modeled using kNN, RF or linear models; b) whether the model was created using 

the average results for each mixture (avg) or accessing each individual specimen (sp) to model 

the grouped response; c) whether the model was trained using 80-84% of the orthogonal array 

dataset (train set) and evaluated on the remaining 16-20% (test set), or trained using the entire 

orthogonal array dataset (100%) and tested on a new testing set defined by the optimum 

mixtures (optimum test set) predicted by several of the generated models; and d) whether the 

model involved results from Phase A(I) or from the entire Phase A [A(I) + A(II)]. 

Models were developed in a similar manner for Phase B (described in APPENDIX B). All models 

were further evaluated in three stages: 1) using SCM replacement (slag, microsilica and fly ash) 
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as the only variables; 2) adding a 4th variable in w/cm; 3) adding a 5th variable in HRWR/cm. This 

intended to provide insight regarding the influence of small variations in w/cm and HRWR/cm on 

the predictive performance of the models. As mentioned earlier, the experimental w/cm ranged 

between 0.19 to 0.22 due to the adjustment required in the HRWR content to achieve spread 

values over 20cm. This is especially important for UHPC to allow proper consolidation considering 

that vibration is not recommended for self-consolidating concretes. 

Phase A involved two iterations: A(I) and A(II). First for A(I), 25 mixtures (A1-A25) were designed 

and tested with varying combinations of SCM contents, following the L25 orthogonal array 

described in Fig. 3. Forty eight models were developed based on the data collected at this stage 

and are indicated in Table 4 with a designation ending in “Phase A(I)”. Next, an additional 

iteration [Phase A(II)] was performed to improve predictive performance in a region of the 

experimental domain that is more likely to contain mixtures with the highest compressive 

strengths, resulting in fifty four additional models. For the purpose of defining the experimental 

domain for Phase A(II), the model described as kNN_avg_84_PhaseA(I), including w/cm as a 

feature, was selected to estimate the SCM contents that produce the top 20% highest 

compressive strength mixtures at age 56 days. Consequently, the new range of SCM contents (% 

replacing cement by wt.) predicted by this model consisted of (0-52%) slag, (0-10.5%) microsilica 

and (0-15%) fly ash. Considering this new experimental domain and to prevent overlapping with 

Phase A(I), 16 mixtures were designed for Phase A(II) using a L16 orthogonal array (Table A2 - 

APPENDIX A).   
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Furthermore, the first mixture of Phase A(II) was discarded considering that it involves the same 

design levels of the first mixture in Phase A(I). Table 4 contains detailed information on each 

model developed. Particularly, the RMSE obtained when fitting these models to the training, 

testing and optimum testing sets are listed. In addition, more accurate estimations of the RMSE 

in the entire training datasets were obtained for the ML models through cross-validation and 

bootstrap aggregation. Although a similar process can be followed to improve the estimation of 

the RMSE in the testing sets, this level of detail is out of scope for this work.  

4.2.2. Evaluation of kNN, random forest and linear models 

Average compressive strengths per mix design were used to develop the main models in this 

study. However, kNN cross validations were also performed while activating a GroupKFold 

argument that enables the model to access the individual specimen response while still fitting 

the data by group/experimental unit (in this case, each mix design). With this method, extra care 

is required when randomly splitting the data to avoid data leakage. For instance, if the results are 

not properly grouped by mixture design prior to splitting the data into training, validation and 

testing sets (and maintained that way during the cross validation process), one specimen of a 

given mixture can fall into the training set while the other two specimens might fall into the 

testing or validation sets, resulting in data leakage. While using average results typically 

eliminates the risk of data leakage, the aforementioned approach is used herein to compare 

predictive performance following both methods. On the other hand, the RF models used herein 

involve a bootstrap process that, as presently constructed, does not allow the data to be grouped 

by folds during the process. Yet, models were developed using individual specimen results with 

RF models exclusively to illustrate data leakage detection using the developed tools in this study. 
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Another pertinent consideration regarding data split is related to the orthogonal array datapoints 

excluded from training. As mentioned earlier, orthogonal arrays provide a strategic framework 

for reduced experimental runs. Essentially, each point provides important information describing 

that region of the experimental domain, which ultimately allow these reduced experiments to be 

sufficient to generate relevant ML models. With this in mind, models involving average results 

and a designation ending in “2.0” were generated by forcing testing sets that use only data 

corresponding to the additional iteration [Phase A(II)]. In this step, data from Phase A(II) was 

randomly split into 8 mixtures for the testing set and 7 mixtures for the training set. Thus, 32 

mixtures [7 from A(II) + 25 from A(I)] were available for training, maintaining the ratio at 80% for 

training, similar to the ratio defined for the initial models (84% for training). As can be observed, 

the models obtained following this approach [for instance kNN-avg_80_Phase A(I)+A(II) 2.0] 

exhibited considerably lower RMSE in the testing datasets when compared to the models [for 

instance kNN-avg_80_Phase A(I)+A(II)] obtained by randomly splitting the data across Phases A(I) 

and A(II). This comparison was not performed for models using individual specimens since the 

data were initially split by folds through a random process. This allowed the author to pick a 

randomly generated fold (in this case, fold #3), for which the blind mixtures fell within Phase A(II) 

and were stored in the testing set, thus avoiding possible removal of important datapoints from 

the orthogonal array defined in Phase A(I). This iteration is shown in the APPENDIX A (Fig. A2). 

Further model evaluations can be done through parameters such as the variable importance, 

which describes how much a given feature is used by a model to accurately make predictions 

(Table A6 - APPENDIX A).  
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Typically, models that exhibit more consistency in the RMSE across training and testing sets 

provide more confidence in the robustness of the model and are more likely to prevent 

overtraining, oversmoothing and data leakage. Fig. 9 summarizes how the best performing 

models for each modeling technique (kNN, RF and linear models) fit the different data sets 

(training, testing and optimum testing) in this study. In this figure, predicted values versus actual 

outcomes are plotted against each other to evaluate predictive performance. In addition, the 

RMSE obtained across each dataset (train, test and optimum sets) are listed in each plot to 

facilitate comparisons between models. As illustrated, the best performing linear model (3rd 

degree polynomial) does not effectively model the nonlinear response in compressive strength 

with changes to the mixture proportions. 

Not only the obtained RMSE is unbalanced between the training and both testing sets, but also 

very poor correlation is observed between predictions and actual outcomes. On the other hand, 

kNN and RF models present great balance in the obtained RMSE across training and testing sets, 

as well as very strong correlations between predicted versus actual outcomes. While adding 

w/cm as the 4th variable helped improve predictive performance, adding HRWR/cm had a 

negligible effect on predictive response (see results in Table 4).  
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Fig. 9. Predicted compressive strengths (ӯ) versus actual outcomes (y), in MPa, for the best performing models following 
different modeling techniques (kNN, RF and linear models). Model nomenclature is described in section 4.2 



61 
 

Evaluating Fig. 9 and Table 4, the models selected to later develop the PDDs in this study were 

the “kNN_avg_100_PhaseA(I)+PhaseA(II)” and the “RF_avg_100_PhaseA(I)+PhaseA(II)”. Fig. A3 

through Fig. A5 (APPENDIX A) display the plots summarizing the predictive performance of the 

developed models for each modeling technique evaluated in this study. Further evaluation of the 

models is discussed in subsequent sections using 3D plots and PDDs. Based on the considerations 

above, Table 5 presents the optimum mixtures predicted by each model. Several of these 

mixtures were stored in the “optimum set” mentioned earlier. 

 

 
 Table 5. Optimum mixtures predicted by each model 

  

Models 

Models without w/cm Models with w/cm 

% weight replacing cement  % weight replacing cement 

Slag Microsilica Fly Ash Slag Microsilica Fly Ash 

kNN_avg_84_Phase A(I) 32.0 0.6 3.6 31.0 0.0 7.0 

kNN_avg_100_Phase A(I) 27.9 4.6 0.5 28.0 3.0 3.0 

kNN_avg_85_Phase A(I)+A(II) 5.5 1.2 14.8 5.0 1.0 14.0 

kNN_avg_85_Phase A(I)+A(II)_2.0 4.2 0.2 14.5 53.0 2.0 8.0 

kNN_avg_100_Phase A(I)+A(II) 4.2 0.6 14.5 44.0 0.0 8.0 

kNN_sp_84_Phase A(I) 30.9 1.2 3.6 42.4 5.3 6.4 

kNN_sp_100_Phase A(I) 37.0 0.0 6.2 14.5 7.3 4.1 

kNN_sp_85_Phase A(I)+A(II)_2.0 41.2 5.3 4.6 28.5 5.3 5.2 

kNN_sp_100_Phase A(I)+A(II) 4.2 0.6 14.6 30.3 0.8 12.9 

  

RF_avg_84_Phase A(I) 30.3 5.1 9.4 23.0 2.6 9.4 

RF_avg_100_Phase A(I) 7.9 2.6 3.8 7.9 2.6 7.6 

RF_avg_85_Phase A(I)+A(II) 37.6 1.8 13.2 37.6 2.6 13.2 

RF_avg_85_Phase A(I)+A(II)_2.0 35.2 3.6 13.2 32.7 2.6 13.2 

RF_avg_100_Phase A(I)+A(II) 32.7 3.6 13.2 37.6 2.6 13.2 

RF_sp_84_Phase A(I) 23.0 5.1 9.4 7.9 2.6 9.4 

RF_sp_100_Phase A(I) 23.0 2.6 11.4 15.2 0.0 2.0 

RF_sp_85_Phase A(I)+A(I)_2.0 52.7 0.0 13.2 52.7 0.0 13.2 

RF_sp_100_Phase A(I)+A(II) 37.6 2.6 13.2 32.7 1.8 13.2 
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4.2.3. Three-Dimensional Performance Density Plots for Model Evaluation 

Fig. 10 illustrates the predictive structure of the linear and machine learning models developed 

in this study in a three-dimensional space, characterized by a slice in the experimental domain 

for which fly ash content is equal to zero. The results correspond to the 1-day compressive 

strengths, for which the disparity in strength between mixtures (0-93 MPa) is significantly higher 

than the one from the 56-day results (70-130 MPa). This allows a better comparison between the 

models. As shown in Fig. 10, the machine learning models do not follow a linear response across 

the entire domain, in contrast to the polynomial models, for which the response is characterized 

by a smooth surface. The flexibility provided by machine learning models allows one to predict 

responses that are a function of synergistic relationships, which is the case for the compressive 

strength of UHPC as a function of its material constituents. Considering the lack of predictive 

flexibility provided by linear models, these are not further evaluated in this work. Comparing the 

machine learning models, it is visible that the kNN models provide more flexibility in modeling 

the response than the RF models. This is expected, considering that the RF model is based on 

regression trees built with splitting nodes (yes/no conditions), leading to fixed outcomes 

provided at the end of each node in a given tree. However, RF models tend to predict the 

response magnitude with more accuracy than kNN models given that these latter models tend 

to oversmooth the response with increasing number of neighbors. Fig. 10 also shows how 

differently the RF models behave when built using individual specimen results compared to when 

they are built using the average results for each mixture. As can be observed, the model loses 

flexibility and shows a tendency for overtraining. This is not observed for the kNN models due to 

the GroupKFold cross validation method used in training.  
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Predicted Strength (MPa)

Fig. 10. 3D performance density plots generated to compare machine learning models in kNN (c,d) and RF (e,f) against polynomial 
models (a,b). Plots in the left (a,c,e) represent models generated with individual specimen data, while plots in the right (b,d,f) consist 
of models generated using average data for each mix design. The plots illustrate a slice taken in the domain, for which fly ash content 
= 0% 

a) b) 

c) d)

) 

e) f) 
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To improve predictive performance, an ensemble model was built by combining the best kNN 

and RF models, which is discussed in the next section. Fig. 11 illustrates the effect of using the 

ensemble method on the final model response. Once again, the 1-day compressive strength 

results were used, allowing a higher disparity between different mixtures that enables a better 

visualization of the ensemble effect. 

 

4.3. Classification Models 

4.3.1. Categorical Performance Density Diagrams for Failure Predictions 

The fracture type observed during compression tests was recorded following ASTM C39/C39M 

(ASTM 2021) and used in this work to illustrate the development of categorical PDDs. Considering 

that there was no variation observed for the fracture type of specimens tested at age 56 days 

(Fig. A1 - APPENDIX A), the data from specimens tested at age 1 day was used to develop this 

model. In addition, Fig. A1 (APPENDIX A) shows a strong correlation between the fracture type 

kNN Model

Predicted Strength (MPa)

RF Model

Predicted Strength (MPa)

Ensemble Model

Predicted Strength (MPa)

Fig. 11. 3D performance density plots generated to evaluate the effect of the ensemble model 
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and the compressive strength. Thus, in addition to the SCM variables, the compressive strength 

was also used to predict the fracture type. First, different kNN models were evaluated in 

predicting the compressive strength at age 1 day, similar to the process described in the previous 

section. The best performing model was used to predict the compressive strength and generate 

a vector that was later added to the expanded predictors matrix. Next, a kNN model was built 

using slag, microsilica, fly ash and compressive strength as features, while training the model on 

85% of the Phase A data. Fig. 12 illustrates the k-fold cross validation process used to optimize 

the tuning parameter “k” for this classification model.  

For categorical outcomes, the goal consists of maximizing the accuracy in the validation set to 

define the optimum “k” value. After defining this “k” value, a new cross-validation process can 

be used to get a better estimate of the accuracy of the model by testing it in different testing 

sets. Note that other metrics such as a balanced accuracy or F-1 score are often preferred to 

Fig. 12. Tuning parameter optimization performed for a kNN model using k-fold cross validation. The maximum average accuracy 
in the validation sets was obtained with k=6. After defining the kNN model with k=6, k-fold cross validation was performed in a 
similar manner, creating different test set folds to estimate the overall model accuracy. 
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evaluate the performance of classification models. However, such discussion is out of the scope 

of this study. 

4.4. Summary of Important Outcomes 

This chapter was motivated by several challenges related to the use of AI models in predicting, 

describing and displaying concrete material’s performance, especially with small experimental 

datasets. The objective consisted of developing a new tool that permits optimizing the 

compressive strength of UHPC while maximizing the fa/cm. The main findings from this part of 

the study are: 

• After evaluating predictive performance of the models evaluated, results suggest that the 

experimental framework used in this study, supported by orthogonal arrays and the use 

of surrogate samples has shown to be an effective method for rapidly generating data to 

support AI algorithms for concrete mixture design optimization. This method can be used 

to overcome the uncertainty of models generated with large, multiple-source datasets by 

enabling reduced experimental runs capable of effectively describing the experimental 

domain.  

• Results suggest that predictive performance of models improved with increased number 

of observations in the dataset. RMSEs indicate that the two-step iteration process 

contributed to increased performance in the region of interest (high compressive 

strengths) for blind data (optimum test sets).  

The machine learning algorithms used in this study were dictated by the author’s proficiency in 

these particular techniques, whereas the number of experimental runs were dictated by the time 
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constraints associated with the graduate program timeline. Further studies should be conducted 

using different machine learning techniques that, perhaps, are even more suitable for small 

datasets. Furthermore, increased design levels of orthogonal arrays (e.g. 72) can be used to 

increase the dataset and improve predictive performance in the entire domain. 
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CHAPTER V.  

PERFORMANCE DENSITY DIAGRAMS 

5.1. Concept and Application 

A matrix containing the ranges of slag, microsilica and fly ash contents defined earlier was 

generated in increments of 0.5% by wt. replacing cement. A function that takes this matrix and 

produces all possible combinations for the existing contents was used to expand this matrix, 

producing a new matrix of predictors/features. Each model developed as described in the 

previous section was used to predict the compressive strength of each row of the predictor’s 

matrix, which essentially represents a mixture design. For the models developed with w/cm and 

HRWR/cm as features, additional columns were generated for the predictor’s matrix with fixed 

values of 0.20 and 0.015, respectively. 

For each model, the vector containing the predicted outcomes was combined with the matrix of 

features to develop a new mix design tool described as PDD. PDD is a diagram that resembles a 

matrix of contour plots, with the outcome displayed as the z-coordinate with varying density 

levels, built using orthogonal arrays to reduce experimental runs and machine learning 

algorithms to efficiently model responses that are not characterized by smooth surfaces in space. 

The efficiency of this tool is a function of the data provided within the experimental domain and 

shall be generated following proper strategies for reduced experimental runs such as orthogonal 

arrays or any other suitable factorial design method. The synergistic effect of multiple features 

on a given outcome can be evaluated concurrently using PDDs with multiple faceting strategies. 

Fig. 13 illustrates the reasoning for the variable display defined for this study, which consists of 
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placing the most important variables (Table A6 – APPENDIX A) in the x and y axes, while faceting 

the least important variables by blocks. The magnitude of the outcome (z axis) is shown in the 

diagram as the density factor.  

5.2. Predicting Compressive Strength with Performance Density Diagrams 

The models created in section 4.2 were developed to predict the compressive strength of every 

possible mixture within the range of the experimental domain. As mentioned in that section, 

models that exhibit more consistency in the RMSE across training, testing and optimum sets 

typically provide more confidence in the robustness of the model and are more likely to prevent 

overtraining, oversmoothing and data leakage. However, PDDs developed in this study indicate 

that performance evaluation of the models should not rely solely on balanced RMSE results. Fig. 

14 illustrates an example where this assumption can lead to poorly developed models. The PDD 

illustrated corresponds to the model RF_sp_100_Phase_A(I). Judging by the results in Table 4, 

this model does not give any indication of overtraining or data leakage occurrences considering 

the balanced RMSE obtained across training and testing (optimum) sets. Yet, the predictive 

structure of the model displayed by the PDD in Fig. 14 shows inconsistency in the trends 

Var 3 (i)

i=1 i=2 i=3 i=4

j=
1

j=
2

j=
3

V
ar

 4
 (

j)

i=5

z = outcome

Fig. 13. Example of a faceting strategy to evaluate 4 variables (features/predictors) concurrently using PDDs 
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associated with changes in mix proportions and mechanical response. For instance, for mixtures 

with fixed contents of fly ash and microsilica (e.g., 0%) the changes in predicted strength are not 

consistent with the changes in slag content, which is shown by sequential increases and 

decreases in strength. The consistent RMSEs obtained across training and testing sets are, most 

probably, a consequence of the data leakage phenomena, where the same information is present 

in both training and testing sets. After careful evaluation of the models in Table 4, based on the 

obtained RMSE, and the tendencies also observed for each model in Fig. 10, the models selected 

to build the PDDs for compressive strength prediction at age 56-days are the 

“kNN_avg_100_PhaseA(I)+PhaseA(II)” and the “RF_avg_100_PhaseA(I)+PhaseA(II)”, both using 

w/cm as a feature. Fig. 15 and Fig. 16 show the PDDs generated for the kNN and RF models, 

respectively.  

Fig. 14. PDD generated with the “RF_sp_100_Phase_A(I)” model (with w/cm as a variable) to predict the 56-day compressive 
strength of UHPC binders during Phase A. Inconsistency in observed in the trends suggest occurrence of data leakage 
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Fig. 15. PDD generated with the kNN model to predict the 56-day compressive strength of UHPC binders during Phase A 

Fig. 16. PDD generated with the RF model to predict the 56-day compressive strength of UHPC binders during Phase A 
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As mentioned earlier, in order to benefit from the best qualities from each model and enhance 

the overall predictive performance, an ensemble model was built by averaging the predictions 

from the kNN and RF models mentioned above. The PDD generated with the ensemble model is 

shown in Fig. 17.  

Each point represents a mixture design. SCM contents (as % by wt. replacing cement) are 

indicated as coordinates, whereas the corresponding compressive strength is shown as the 

density factor. Several mixtures described as optimum by each model (Table 5) were 

experimentally tested and stored in the optimum set. As shown in Fig. 17, most of the 

experimental results from the optimum set are effectively predicted by the Ensemble PDD, both 

in magnitude and in rank [O6>(O5=O9)>O4>O7]. The exceptions are mixtures O3, O8 and O2. 

This could be explained by experimental outliers or with natural errors expected from a model 

created with such a reduced dataset. Most models were developed after initiating Phase B. A 

O1 O2

O3

O4

O5
O6

O7

O8
O9

Slag Microsilica Fly Ash 56 days

O1 0 7.7 0 109

O2 0 10.1 0 120

O3 31.5 0.6 3.5 105

O4 8.5 2.6 9.2 114

O5 23 7.7 0 119

O6 27.9 4.6 0.5 126

O7 23 5 9.4 111

O8 22.4 5.3 2 105

O9 26 7 0 119

Mix #

SCM replacing cement 

(% by wt) fc (MPa)

Fig. 17. PDD generated with the Ensemble model to predict the 56-day compressive strength of UHPC binders from Phase A. 
Optimum mixtures denoted with "O" were tested to evaluate the model efficiency 
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preliminary model was used to estimate the best binder from Phase A, which was then selected 

as the base binder (constant SCM/cm) to evaluate the inclusion of aggregates during Phase B. 

This model suggested mixture O8 as the optimum, which in reality does not represent the binder 

with the highest compressive strength in Phase A, as it can be observed in Fig. 17.  

Phase B was designed following a L25 orthogonal array, for which the variables consist of ground 

quartz, concrete sand and a crushed sand. After developing an ensemble model, following the 

methodology described for Phase A, a PDD for this model was created and used to identify the 

final optimum mixtures for the optimization process. Fig. 18 illustrates the ensemble PDD created 

for Phase B, as well as the experimental results for three particular mixtures of interest.  

Predicted_Strength_(MPa)

New test method ASTM C1856

Slag Microsilica Fly Ash Ground Quartz Concrete Sand Crushed Sand fc (MPa) fc (MPa)

C1 0 10.1 0 22 6.5 0 128.4 133.8

C2 22.4 5.25 1.97 22 6.5 0 129.2 158.1

C3 22.4 5.25 1.97 21.5 8.5 22 128.5 154.8

SCM replacing cement (% by wt) Aggregates replacing cementitious (% by wt)
56 day results

Mixture #

C2

C3

Fig. 18. PDD generated with an Ensemble model to predict the 56-days compressive strength of UHPC concrete during Phase B 
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These mixtures were designated with a “C” to differentiate them from mixtures produced in 

Phase B using the orthogonal array. Mixture C1 consists of a mortar containing the same binder 

proportioning of mixture O2, which entails a very common silica fume content in UHPC materials 

(10% replacing cement) according to the literature (Ibrahim et al. 2017; Alsalman, Dang, and 

Micah Hale 2017). This mixture is not shown in the PDD for Phase B considering that this PDD 

was generated using a different base binder (Mixture O8). On the other hand, mixture C2 

contains the binder of mixture O8, which was initially presumed as the ideal binder from Phase 

A. The optimum aggregate content to maximize the compressive strength for both C1 and C2 was 

chosen by observing the PDD in Fig. 18. To evaluate the possibility of designing a much more 

sustainable mixture, the PDD in Fig. 18 was used to identify the mixture C3, for which the 

aggregate content is higher than the cementitious content, while still predicting compressive 

strengths over 120 MPa. All three mixtures were further tested following the standard test 

method described in ASTM C1856/1856M, which consists of using 76 x 152 mm cylinders with 

the top ends ground by a fixed-end grinder2. It is noticeable that not only the strength rank was 

maintained, but more importantly, three mixtures with outstanding performance levels were 

designed by quickly observing the PDDs. In particular, mixture C3 averaged a compressive 

strength of 155 MPa using a fine-aggregate-to-cementitious ratio of 1.04. This fine aggregate 

content is significantly higher than values traditionally reported for UHPC materials (0.5-0.9) 

(Carey et al. 2020). In addition, several other factors must be considered when comparing the 

 
2 Despite the fact that the new compressive strength test protocol developed herein showed great agreement with 
the standard method for the preliminary phase (Fig. 7), it appears that the end capping condition must be further 
improved for strengths over 125 MPa, considering the discrepancies obtained between this test protocol and the 
standard method. 
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obtained mixture design with other proprietary and non-proprietary mixtures published in the 

literature: 1) special curing conditions such as heat curing or post-thermal treatment (von Werder 

et al. 2021) were not applied; 2) nanomaterials such as carbon nanofibers, which are often used 

in new generation UHPC improving packing in the nanostructure (MacLeod et al. 2020; Wu et al. 

2018; Meng and Khayat 2018; Muhd Norhasri et al. 2016; Yu, Spiesz, and Brouwers 2014), were 

not used; 3) high strength fibers, which are known to typically improve the compressive strength 

in UHPC matrices (Pyo, Kim, and Lee 2017; Ibrahim et al. 2017; Yoo, Lee, and Yoon 2013), were 

not used; 4) a dense gradation was not pursued through sieving the aggregates; 5) air detrainers, 

often used to reduce the pores in the matrix (ACI-Committee-212 ; Pham, Toumi, and Turatsinze 

2018a; Pham, Toumi, and Turatsinze 2018b), were not used; and 6) the binder used as the base 

for Phase B was not the optimum measured experimentally. The author hypothesize that 

developing new PDDs with ingredients and conditions that overcome the shortcomings 

mentioned above can lead to innovative and sustainable UHPC mix designs, with compressive 

strengths over 200 MPa while keeping the aggregate-to-cementitious ratio over unity. 

5.3. Predicting Fracture Type with Categorical Performance Density Diagrams 

PDDs are also useful to predict categorical outcomes. As mentioned earlier, the fracture 

type/pattern observed during compression tests is used here to illustrate the development of 

these type of diagrams. Description of different fracture patterns can be found in ASTM C39 

(ASTM 2021). Fig. 19 illustrates the fracture types observed experimentally against the 

predictions provided by the model through a categorical PDD. It is important to note that, for 

each mixture design, the fracture type displayed corresponds to the one with higher frequency 

of occurrence between the three tested specimens. For a more conservative estimation, these 
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PDDs can be built based on the probability of occurrence of a given fracture type. This type of 

PDD is illustrated in Fig. 20. 

Fig. 19. Comparison between experimental results and predictions from categorical PDDs: a) most frequent fracture type observed 
for each one of the 25 mixtures tested experimentally in Phase A(I). Each datapoint defines a mix design with the % by wt. of SCM 
content replacing cement, while the color describes the fracture type; b) Categorical PDD generated to predict fracture type 

a) 

b) 
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As it can be observed, PDDs also provide new opportunities for several areas in civil engineering 

other than mixture proportioning optimization. For instance, a similar approach can be used to 

develop models that predict distress type in pavements under a given set of conditions or to 

develop models that predict the failure mode for structural elements given other design factors 

influencing performance that are not necessarily material proportioning. 

All codes used to develop PDDs associated with Phase A are shown in APPENDIX D. Code for Phase 

B followed the same methodology, with changes in the input variables and objective functions. 

5.4. Summary of Important Outcomes 

This part of the study was motivated by the increasing need of easily interpretable tools and 

methods to be used by industry personnel on their day-to-day operations that allow quick 

assessments of the effect of changes in mixture proportions on mechanical performance. The 

objective consisted of developing a new tool that permits optimizing the compressive strength 

of UHPC while maximizing the fa/cm. The main findings from this part of the study are: 

• In regression models, consistency in the RMSE across training and testing sets typically 

provide more confidence in the robustness of the model and is a good indicator of 

potential overtraining, oversmoothing and data leakage occurrences. However, PDDs 

developed in this study suggest that model predictive performance evaluation should not 

rely solely on RMSE. A potential data leakage occurrence was detected using PDDs, where 

inconsistent trends in the domain where observed. The consistent RMSE obtained across 

training and testing sets are most probably a consequence of the data leakage 

phenomena, where the same information was present in the training and testing set. 
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• A PDD developed with an ensemble model enabled the design of an UHPC mixture 

averaging a compressive strength of 155 MPa (22,480 psi) at age 56 days, while 

maintaining the fine-aggregate-to-cementitious ratio above unity (fa/cm = 1.04).  

The approach and methodology used in this study represents a great opportunity for innovative 

and impactful design protocols, capable of offering enough flexibility for exploring new 

constituents and account for differences in source, availability and cost of material per region. 

This is particularly important for advanced concrete materials such as UHPC, for which mixture 

optimization is key to justify its application, considering its high cost per unit volume along with 

its volumetric environmental impact. PDDs can further be used to evaluate mechanical and 

durability properties directly affecting cost and environmental impact and, combined with 3D 

density plots, they not only serve as decision-making aid tools to be used during mix design 

stages, but also help overcome the challenges mentioned throughout this manuscript. In 

particular, these tools provided further insight on the inner workings of machine learning models 

by displaying their predictive structure, helping identify overfitting and data leakage occurrences 

where the RMSE was not sufficiently informative.  The approach used in this chapter will be used 

to further develop new diagrams that allow designing mixtures that are more eco-friendly and 

cost-effective. Multi-objective diagrams will also be developed to evaluate mechanical 

performance, cost and environmental impacts concurrently.  
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CHAPTER VI.  

COST AND ECO-EFFICIENCY DENSITY DIAGRAMS 

In this chapter, the domain of mix proportions defined in section 3.1 and their respective 56th-

day compressive strengths (predicted in section 5.2) will be used to estimate the changes in 

strength associated with changes in mix proportioning. Unit cost and GWP factors, displayed in 

Table 6, will be combined with these predicted strengths to calculate the comparison indices, 

described in section 6.1, for the proposed domain of mix proportions. New machine-learning-

based density diagrams will be developed following the methodology described in section 5.1 to 

evaluate the effect of mix proportioning on cost and eco-efficiency indices. 

6.1. Comparison Indices: Theory, Methodology and Proposed Modifications 

6.1.1. Comparison Indices for Reinforced Concrete Members (Kourehpaz and Miller 2019) 

In recent years, Miller et al. (Miller et al. 2016) proposed metrics that account for the role of 

material properties on the volume of material required for a given structural member and the 

associated volumetric environmental impact for the given mixture. These comparison indices 

were based on simplified cases, where only one material property was defined as the controlling 

factor for performance. Initially, these indices were developed for non-reinforced concrete 

applications. Later on, Kourehpaz and Miller (Kourehpaz and Miller 2019) proposed modified 

indices to account for steel reinforcement in short columns and beams under flexure.  

To show how mechanical performance and volumetric environmental impact influence the 

design of structural members, a comparison index was derived in (Kourehpaz and Miller 2019) 

for a simply supported reinforced beam subjected to a uniformly distributed load. For this case, 
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width, load and length were assumed as specified by design, while the depth was modeled as a 

free variable allowed to vary based on the required moment of inertia as determined by the 

strength of the concrete material. For this scenario and assuming a rectangular cross-section, the 

moment resisted by the concrete ( cM ) in the outer fiber can be defined as 

 

2

6

r
c

f bh
M = , {1} 

where h  and b  are, respectively, the depth and width of the member, and rf  is the modulus of 

rupture. For a simply supported beam subjected to a uniformly distributed load, the maximum 

moment in the outer fiber is 

 

2

max
8

wl
M = , {2} 

in which w  is the distributed load and l  is the length of the member. If we relate equations {1} 

and {2} and solve for h  we find  

 
0.5

0.5 0.5
0.866

r

w l
h

b f
= . {3} 

Meanwhile, the total environmental impact I  associated with a given member can be written as 

 ( )s c s sI l bh A i lA i= − + , {4} 

where sA  is the cross-sectional area of steel, ci  is the volumetric environmental impact of 

concrete and si  is the volumetric environmental impact of steel. To incorporate the compressive 
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strength cf  of different concretes into this assessment, the modulus of rupture in {3} was 

estimated as 

 0.62 ( )r cf f MPa=  {5} 

following the relationship defined by the American Concrete Institute 318-11 building code (ACI 

2011) for normal strength concretes (NSC). Substituting equations {3} and {5} into equation {4}, 

the total environmental impact I  of the reinforced concrete member can be defined as 

 2 0.5

0.25
1.1 ( ) c

s c s s

c

i
I l wb lA i lA i

f

 
= − + 

 
. {6} 

The total environmental impact associated with building a member is a function of not only the 

impacts per unit volume associated with each concrete mixture and steel rebar, but also depends 

on the quantity required for each material (concrete and steel) to satisfy design performance and 

is thus inversely related to the compressive strength. Considering applications where the area 

and strength of steel are held constant while the environmental impacts of different concrete 

mixtures are assessed, the final term in equation {6} can be dropped. In addition, the area of steel 

required for a member designed exclusively for initial cracking is very small compared to the total 

area of concrete (<2%) and can be neglected. Therefore, the total environmental impact from a 

concrete member in such conditions can be approximated with the first term in equation {6}. 

Hence, Kourehpaz and Miller proposed an index to compare different concrete mixtures based 

on initial cracking due to bending as 

 0.25

c
cracking

c

i

f
 = , {7} 
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where the objective consists in minimizing this term to reduce environmental impact associated 

with the designed member. Indices were also developed for the yield and nominal stages of 

bending in (Kourehpaz and Miller 2019). At these stages of bending, the required volume of 

material is not only a function of the concrete compressive strength. For instance, for the yield 

stage, the required volume of material is also highly dependent of the yield strength and area of 

steel, for which moment-curvature relationships must be considered. The comparison indices for 

these stages of bending were developed from empirical relationships between volume, 

compressive strength of concrete and area of steel, with boundary conditions that limit these 

equations to normal strength concretes, constant steel area and strength, w/cm between 0.25 

and 1.25, and depth as required by ACI (ACI 2011). To maintain focus on the tools developed in 

this study rather than developing a new set of indices for UHPC, indices associated with these 

stages of bending will not be evaluated in this study. Thus, neither the influence of mix 

proportioning on the amount of steel required nor the environmental impact associated with 

steel will be assessed in the present study.  

One shortcoming from the approach used by Kourehpaz and Miller is that it assumes the same 

equation {5} to estimate the modulus of rupture rf  of very different classes of concretes, with 

strengths ranging from between 0 and 100 MPa, while this equation was empirically derived for 

normal strength concretes. State-of-the-art reports from ACI 363 (ACICommittee363 2010) and 

ACI 239 (Russell, Graybeal, and Russell 2013) have defined new equations to estimate the 

modulus of rupture associated with high strength concretes (HSC) and UHPC, respectively. Hence, 

modifications to the cracking  index will be proposed later in this study to account for the influence 

of compressive strength in estimating the modulus of rupture. 
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Similarly, an index that compares the axial capacity of short columns (effects of buckling are 

negligible) will be used in this study, assuming a constant strength and cross-sectional area of 

steel. Detailed derivations for this case are discussed in (Kourehpaz and Miller 2019), where the 

index was defined as 

 c
column

c

i

f
 = . {8} 

 

6.1.2. Proposed Modification to the Initial Cracking Comparison Index 

As mentioned earlier in section 6.1, the cracking  developed by Kourehpaz and Miller (Kourehpaz 

and Miller 2019) was derived assuming the same equation ({5}) to estimate the modulus of 

rupture rf  of very different classes of concretes, for which the compressive strengths ranged 

from 0 to 100 MPa, when this equation was empirically derived for normal strength concretes. 

According to ACI 363 (ACICommittee363 2010), the modulus of rupture rf  for concretes with 

compressive strengths over 55MPa (HSC) ranges between 0.62 ( )cf MPa  and 0.99 ( )cf MPa

, and is typically estimated as 

 0.94 ( )r cf f MPa= . {9} 

On the other hand, ACI 239 (Russell, Graybeal, and Russell 2013) estimates rf  for UHPC as 

 6.7 ( )r cf f ksi= , {10} 
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which is equivalent to 2.55 ( )cf MPa . This equation is only applicable to untreated specimens. 

For UHPCs subjected to special curing, other coefficients are suggested (Russell, Graybeal, and 

Russell 2013).  

Considering these different equations for different classes of concrete, the resulting coefficient 

in the first term (1.1) of equation {6} should be kept inside the comparison index to account for 

the differences in the equations for the modulus of rupture. Hence, substituting equation {3} 

along with equations {5} (for NSC), {9} (for HSC) or {10} (for UHPC) inside equation {4}, results in 

a modified cracking  equation, defined as 

 
0.25

c
cracking fr

c

i

f
 

 
=  

 
, {11} 

where fr  is a coefficient associated with the equation selected to estimate the modulus of 

rupture. For equations {5}, {9} and {10} the values of fr  are 1.1, 0.89 and 0.54, respectively. This 

modification makes a significant difference for UHPC materials considering that this coefficient is 

less than half of that from NSC.  

Meanwhile, defining fr  as a step function is not the best approach. For instance, assuming a 

step function approach for fr , if we define a 54 MPa as a NSC and a 56 MPa as an HSC, the 

difference in modulus of rupture would look significantly higher than what it actually is. Instead, 

it makes more sense to model fr  as a function of compressive strength. Between other 

performance requirements, ACI 363 (ACICommittee363 2010) defines HSC as concretes with 

compressive strengths over 55 MPa, while ACI 239 (Russell, Graybeal, and Russell 2013) defines 

UHPC for concretes with compressive strengths in excess of 150 MPa. Given the fr  values 
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obtained from the different rf  equations and the compressive strength boundaries defined for 

each class of concrete, an equation for 
fr  as a function of cf  was derived as  

 
0.004

1.1125 cf

fr e −
= , {12} 

with cf  in units of MPa.  

Therefore, the environmental analysis performed in the study will consider the proposed 

modified cracking  from equation {11}, using a non-constant fr  as proposed in equation {12}, and 

the column  originally proposed by Kourehpaz and Miller (Kourehpaz and Miller 2019). 

6.1.3. Proposed Comparison Indices for Cost-Efficient Design of Concrete Members 

Equations {8} and {11} were adopted and modified to evaluate the cost-efficiency of different 

concrete mixtures. For these indices, the volumetric environmental impact is replaced with the 

volumetric cost associated with each concrete mixture. The volumetric cost for each mixture was 

calculated as a product of the quantities used for each ingredient per cubic meter of concrete 

and their unit price. For simplification purposes, the costs associated with concrete production, 

transportation and placement were assumed to be the same for all mixtures. In reality, proper 

considerations should be done in design stages to account for the differences in cost associated 

with different concrete technologies, required production equipment, amount of labor, 

construction timeframe, etc. 

Hence, the comparison indices used to evaluate cost-efficiency for the applications 

aforementioned are defined as 
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column

c

u

f
 =  {13} 

and 

 
0.25

c
cracking fr

c

u

f
 

 
=  

 
, {14} 

where cu  is the mixture cost per unit volume of concrete, column  is the index used for short 

columns while  cracking  is the index associated with the initial cracking of simply supported and 

uniformly loaded beams subjected to bending. 

6.2. Environmental Impact Factors and Unit Costs of Raw Ingredients 

To maintain the focus of this work on developing machine-learning-based tools that demonstrate 

the influence of mixture proportioning and mechanical performance on carbon footprint, the 

environmental factors used were derived from Celik et al. (Celik et al. 2015). In that study, a life-

cycle assessment (LCA) approach was used to assess the environmental impact and use of 

resources (including raw materials, energy, and water) during the entire life-cycle of each 

product, that is, from raw material production, use, maintenance, recycling, and ultimate 

disposal. Table 6 illustrates how the volumetric GWP (kg CO2-eq/m3 of concrete) from each 

ingredient was used to derive the GWP factor on a weight basis (kg CO2-eq/kg) required to assess 

the mixtures from the present study. The GWP associated with slag and microsilica were assumed 

equivalent to the one estimated for fly ash in Celik et al (Celik et al. 2015). While SCMs are often 

modeled as waste products with negligible GHG emissions associated, studies have shown that 

the impacts associated with their primary industrial processes can be significant and care should 
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be taken when making these assumptions (Brinkman and Miller 2021). To estimate the GWP 

associated with the crushed sand and ground quartz aggregates used in this study, a production 

GWP associated with the coarse aggregate from Celik et al. (Celik et al. 2015) was assumed while 

adding aggregate crushing factors estimated from Santero et al. (Santero et al. 2011) to 

differentiate the environmental impact from these aggregates. Considering that transportation 

is the main source of GWP associated with the use of aggregates, a transportation component 

was added to all aggregates. For simplicity purposes, unit costs from each ingredient were 

estimated based on various sources (alibaba.com ; District ; HomeGuide 2021; KEMCORE 2021; 

Tadros and Morcous 2009; van Oss 2003) rather than selecting a specific location and the 

corresponding associated costs. 

Table 6. Estimated GWP and unit cost factors defined on a per-weight basis 

 

 GWP (kg CO2-eq/m3 of concrete) *batching 
weights 

(kg/m
3
 of 

concrete) 

*GWP factor 
(kg CO2-
eq/kg) 

b
unit cost 
($/ton) 

  
*Production 

(Mix 70-30-0*) 
*Production 

(present work) 
a
Aggregate 
crushing 

*Aggregate 
transportation 

Slag - 3 - - - 0.022 $70  
Microsilica - 3 - - - 0.022 $600  

Fly Ash 3 3 - - 136 0.022 $25  
cement 363 363 - - 317 1.145 $90  
Water - - - - - 0.005

a

 $0.80  
HRWR 5 5 - - 6.3 0.794 $3,000  

Fine Agg. 4.3 4.3 - 29.7 906 0.038 $10  
Coarse Agg. 2.5 - - 29.7 906 - - 

Crushed sand - 2.5 2.72 29.7 906 0.039 $40  
Ground quartz - 2.5 5 29.7 - 0.041 $220  
*derived from Celik et. al (Celik et al. 2015) using mix 70-30-0. This mixture contained: 

 ▪ a binder proportioned (by wt.) at 70% cement and 30% fly ash.  

 ▪ a fine-aggregate-to-cementitious ratio of 2.00   

 ▪ a course-aggregate-to-cementitious ratio of 2.00   

 ▪ a HRWR content of 1.39% by wt. of cementitious   
a
obtained from Santero et al. (Santero et al. 2011) 

b
estimated based on (alibaba.com ; District ; HomeGuide 2021; KEMCORE 2021; Tadros and Morcous 2009; van Oss 2003) 
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6.3. Predicted Compressive Strengths 

As previously mentioned, all mixtures in Phase B have the same proportioning of cementitious 

materials in the binder phase (68.3% cement, 22.4% slag, 5.3% microsilica and 2% fly ash) and a 

fixed w/cm equaling 0.20. Fig. 21 illustrates the PDD describing the predicted compressive 

strengths of UHPC mortars with varying aggregate content, while faceting the ground quartz 

content.  

As shown, the mixtures with the highest compressive strengths are mostly associated with low 

contents of crushed sand (<10%) and intermediate contents of concrete sand and ground quartz 

(approximately 10% to 17.5%). High strengths can also be obtained with high crushed sand 

contents (20-25%) as long as sufficient ground quartz is introduced in the system (15 to 21.5%) 

while simultaneously keeping concrete sand at very low contents (<3%).  

Fig. 21. PDD describing the predicted compressive strengths for varying contents of concrete sand, crushed sand and ground quartz 



92 
 

This trend intuitively makes sense. Increasing the content of both sands simultaneously 

decreases the strength of the matrix given the increasing area of interfacial transition zones 

(ITZs). Meanwhile, the overall improvement provided by ground quartz is expected due to its 

“filler” role, improving particle packing. The red half-diamond regions located in the right side of 

the 4 lowest blocks (ground quartz between 20 and 25%) suggest that strengths over 100 MPa 

can still be obtained as long as high contents of crushed sand and concrete sand are not used 

simultaneously and there is sufficient ground quartz in the system. Overall, decreased 

performance is observed when the high contents of both sands are used simultaneously. 

6.4. Volumetric Environmental Impacts vs Eco-Efficiency Density Diagrams 

Fig. 22 illustrates the linear relationship between volumetric GWP and mix proportions based on 

the contribution from each material, which is demonstrated in faceted counterplots to facilitate 

comparisons with the diagrams developed herein. As expected, lower values of volumetric GWP 

are associated with high sand contents (concrete sand and crushed sand), located at the top right 

corners of the lower-right blocks (increasing ground quartz content). However, eco-efficiency 

should not be defined on a per-volume of material basis. While mix proportioning defines 

mechanical properties, the effect of mechanical performance on design defines the amount of 

concrete required for a given application and the associated total GHG emissions. Therefore, eco-

efficiency indices discussed in section 6.1 are used to allow proper environmental evaluations 

associated with different mix proportions while accounting for mechanical performance. To 

calculate these indices, the weight of each ingredient required to produce one cubic meter of 

concrete is multiplied by the corresponding GWP factors from Table 6. Summing the contribution 
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from all ingredients results in the volumetric GWP (kg CO2-eq/m3), ci , associated with the 

corresponding mixture. Meanwhile, the corresponding compressive strength is estimated as 

previously mentioned. The resulting column  index, as a function of mix proportioning, is illustrated 

in Fig. 23 through an Eco-Efficiency Density Diagram (EEDD). Its definition follows the one used 

for PDDs in, with exception of the objective function (outcome evaluated), which in this case 

consists in an eco-efficiency index. Observing Fig. 23, for short column applications, the most eco-

efficient mixtures can be obtained in two ways: 1) using high contents of ground quartz (20 to 

25%), high contents of crushed sand (20-25%), and medium-to-high contents of concrete sand 

(15-20%); or 2) using high contents of ground quartz (20 to 25%), low contents of crushed sand 

(<9%), and high contents of concrete sand (17.5-25%). The trends observed in Fig. 21 regarding 

the use of high contents of both sands simultaneously are still visible for this comparison index, 

Fig. 22. Volumetric GWP (kg CO2-eq/m3) for varying mixture proportioning associated with the contribution from each ingredient 
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where half-diamond regions with lower densities are evident in the right side of the 4 lowest 

blocks, suggesting that the most eco-efficient solutions are obtained when high contents of both 

sands are not used simultaneously.  

For cracking , an EEDD is built using the same method described above and is shown in Fig. 24. As 

it can be observed, this diagram is somewhat in between the EEDD from Fig. 23 and the linear 

relationship from Fig. 22, as the trends are similar to the ones observed for column , although with 

a decreased influence from mechanical performance. This is expected considering the small 

differences between the GWP factors associated with these aggregates, along with the fact that 

cf  is to the power of ¼ in the cracking  equation. Yet, and similar to what is observed for column , 

the EEDD for cracking  still suggests that eco-efficiency is not automatically improved by simply 

increasing aggregate content to replace binder. 

Fig. 23. EEDD to evaluate mix proportioning versus the eco-efficiency index χcolumn 
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6.5. Volumetric Mixture Cost vs Cost-Efficiency Density Diagrams 

The same approach followed to develop EEDDs can be used to develop Cost-Efficiency Density 

Diagrams (CEDDs) to evaluate the effect of mixture proportioning and mechanical performance 

on cost-efficiency associated with building a given structural member. Fig. 25a) and b) illustrate 

the CEDDs corresponding to the column  and cracking  indices, respectively. Meanwhile, Fig. 26 

shows the linear relationship existing between volumetric unit cost ($/m3), c
u , and mix 

proportioning. The difference in trends observed for unit cost and cost-efficiency is even more 

accentuated than the one observed between volumetric environmental impact and eco-

efficiency. This is mostly due to the significant differences in cost between these three 

aggregates, in addition to the effect of mechanical performance on the required volume of 

Fig. 24. EEDD illustrating mix proportioning effect on eco-efficiency index χcracking 
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concrete. As observed in Table 6, concrete sand costs about four times less than crushed sand, 

which in turn costs over five times less than ground quartz.  

a) 

b) 

Fig. 25. CEDD illustrating mix proportioning effect on: a) ρcolumn; b) ρcracking  
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As expected, Fig. 26 indicates that mixtures with the lowest cost per unit volume ($/m3) are 

associated with low contents of ground quartz (top left faceted blocks) and high contents of both 

sands (top right corners). In contrast, Fig. 25 indicates that the most cost-efficient solutions are 

associated with low contents of crushed sand (<7.5%) and ground quartz (<2.5%), combined with 

medium-to-high contents of concrete sand (17.5 to 22.5%). As previously noted, the costs 

defined in this study are associated with mix proportioning only and do not account for 

differences in required equipment, technology, labor and service-life maintenance. Proper 

considerations should be incorporated in the analysis when comparing concrete technologies 

that significantly differ in these aspects (e.g., NSC vs UHPC). 

6.6. Comparing Solutions using Efficiency Indices vs Volumetric Indicators 

Table 7 and Table 8 show mixtures of particular interest, selected to discuss efficiency indices.  

Fig. 26. Volumetric cost ($/m3) for varying mixture proportioning associated with the contribution from each ingredient 
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Table 7. Optimum solutions for columns defined with different indicators 

    

aggregates (% by wt) 
replacing cementitious 

content       

Mix # Description 
concrete 

sand 
crushed 

sand 
ground 
quartz 

Total Cost    
($/m3) 

ρ_column 
fc 

(MPa) 

ρ-Col-1 with min(ρ_column) 21.5 2.5 0 233 2.08 112 

ρ-Col-2 with min(Total Cost) 25 25 0 190 2.37 80 

ρ-Col-3 same ρ_column ρ-Col-2 & higher cost 11 2.5 11.5 279 2.37 118 

ρ-Col-4 with lowest predicted strength 22 17.5 14 240 3.21 74.8 

ρ-Col-5 with highest predicted strength 9.5 0 19 303 2.56 118 

      Total GWP 
(kg CO2e/m3) 

χ_column 
fc 

(MPa) 

χ-Col-1 with min(χ_column) 20.5 25 25 625 6.58 95 

χ-Col-2 with min(Total GWP) 25 25 25 552 6.75 82 

χ-Col-3 same χ_column as χ-Col-2 & higher GWP 19.5 25 25 641 6.75 95 

χ-Col-4 with lowest predicted strength 22 17.5 14 875 11.70 74.8 

χ-Col-5 with highest predicted strength 9.5 0 19 1197 10.10 118 

 
Table 8. Optimum solutions for initial cracking due to bending, defined with different indicators 

    

aggregates (% by wt) 
replacing cementitious 

content       

Mix # Description 
concrete 

sand 
crushed 

sand 
ground 
quartz 

Total Cost    
($/m3) 

ρ_cracking fc (MPa) 

ρ-Crk-1 with min(ρ_cracking) 25 7 0 219 50 105 

ρ-Crk-2 with min(Total Cost) 25 25 0 190 51.2 80 

          

ρ-Crk-3 
false inefficiency suggested 

by linear equations 

7.5 0 15 297 62.7 118 

ρ-Crk-4 0 0 10 300 64.5 115 

ρ-Crk-5 4 13 19 297 67.9 105 

          

ρ-Crk-6 
false efficiency suggested by 

linear equations 

25 21 15 230 64.4 74.9 

ρ-Crk-7 25 25 7.5 236 65.7 75.7 

ρ-Crk-8 15.5 3 10 266 56.1 118 

  
    Total GWP        

(kg CO2e/m3) 
χ_cracking fc (MPa) 

χ-Crk-1 with min(χ_cracking) 25 25 25 552 147 81.7 

χ-Crk-2 with min(Total GWP) 25 25 25 552 147 81.7 

 

Table 7 confirms the trends previously identified in EEDDs and CEDDs, where mixtures with the 

minimum volumetric cost (ρ-Col-2) and minimum volumetric GWP (χ-Col-2) are neither the most 
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cost nor eco-efficient solutions, respectively. The column  value for the mixture with the lowest 

cu  (ρ-Col-2) is 2.37, while the mixture with the minimum column  (ρ-Col-1) has a corresponding 

column  value of 2.08. The increased unit cost of ρ-Col-1 ( cu  = $219/m3) compared to ρ-Col-2 ( cu  

= $190/m3) is offset by the increased compressive strength ( cf  = 112 MPa vs cf  = 80 MPa, 

respectively). Therefore, this mixture would result in a lower overall cost associated with building 

this type of member, given the reduction in volume of concrete required. Similarly, mixture χ-

Col-1, which has an ci  of 625 kg CO2-eq/m3, is shown to be more eco-efficient than the mixture 

with minimum ci , χ-Col-2, in 552 kg CO2-eq/m3, based on their corresponding column  values (6.58 

and 6.75, respectively). The optimum mixture proportion in terms of column  follows the trends 

discussed for Fig. 25, where high contents of concrete sand and low contents of ground quartz 

and crushed sand tend to minimize column , and thus improve cost-efficiency. Similarly, the 

optimum column  follows the trend observed in Fig. 23. Mixture p-Col-3 shows that a cost-

efficiency similar to the one obtained with the minimum total cost (ρ-Col-2) can be achieved with 

a much more expensive solution ( cu  = $279/m3) on a unit volume basis, as long as the mechanical 

performance ( cf  = 118 MPa) offsets the difference in unit cost. Meanwhile, ρ-Col-4 and ρ-Col-5, 

corresponding to the lowest and highest performing mixtures in compressive strengths, 

respectively, are neither amongst the cheapest solutions ( cu  = $303/m3 and $240/m3, 

respectively) nor amongst the most cost-efficient solutions ( column = 3.21 and 2.56, respectively). 

This is a strong indicator on how optimization efforts should not be oversimplified. Mix 

proportioning optimization should be conducted considering costs, emissions and mechanical 
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performance concurrently. Focusing all efforts on identifying a mixture with the best mechanical 

performance, alone, may result in inferior solutions in terms of cost-efficiency, while similar 

mechanical performance may be obtained through a properly designed, more cost-effective 

alternative.  

Considering the initial cracking application, Table 8 indicates that cracking  is less affected by 

changes in mechanical performance. For this case, the most eco-efficient solution coincided with 

the mixture with minimum volumetric environmental impact. However, this is not an overall 

trend, as observed in Fig. 24. Moreover, this trend might not necessarily translate to cases where 

indices account for the environmental impact of steel in design (Kourehpaz and Miller 2019). This 

aspect is of vital importance for UHPC materials, considering the significant reductions attained 

in the required amount of steel. In addition, longer spans can be achieved with this material in 

bridge elements (beams, girders) due to the increased prestressed levels, which not only reduces 

the weight of the superstructure, but also reduces the number and volume of supporting 

substructure elements in columns, footing and piles. This trend might also change for other sets 

of ingredients with significantly different GWP factors. Further evidence supporting this 

argument is provided by Table 8, where cost-efficiency for cracking does not follow the cu  

trends. While the cheapest solution is associated with mix ρ-Crk-2, characterized by the absence 

of ground quartz and high contents of concrete sand and crushed sand, the most efficient cracking  

corresponds to mix ρ-Crk_1, which has a high content of concrete sand, medium-to-low content 

of crushed sand and no ground quartz.  
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EEDDs and CEDDs provide a flexible tool to evaluate different alternatives that may not 

necessarily target the minimum performance requirements. For instance, if the minimum cf  

required by design is prescribed as 75 MPa for initial cracking due to bending, using the PDD in 

Fig. 21 alone to optimize cf  and Fig. 26 to evaluate unit cost, could lead to selecting a mixture 

somewhat similar to ρ-Crk-6, with an cf  of 75.7 MPa and a cu  equal to $236/m3. However, using 

the CEDD from Fig. 25 b) could lead to selecting mixture ρ-Crk-8, with an cf  of 118 MPa and cu  

of $266/m3, while still more cost-effective than ρ-Crk-6. 

From observing the developed CEDDs, EEDDs and Table 7 and Table 8, it is clear that the optimum 

mixtures for each one of the objective functions (compressive strength, cost and eco-efficiency), 

ρ-Col-5, ρ-Col/Crk-1 and χ-Col/Crk-1, respectively, can be significantly different. Similarly, the 

optimum mixtures for different structural members/applications can significantly differ from 

each other. 

6.7. Summary of Important Outcomes  

The emergence of UHPC as an attractive solution for precast and prestressed applications has 

coincided with global efforts towards sustainable construction. The increasing need for tools 

capable of intuitively demonstrating the effect of concrete mixture composition on mechanical 

performance, cost and eco-efficiency concurrently has motivated this work in an effort to 

promote design of more sustainable solutions to help meet environmental goals. Modifications 

to eco-efficiency indices developed by Kourehpaz and Miller (Kourehpaz and Miller 2019) were 

proposed, while cost-efficiency indices were adapted from these for a simplified demonstration 
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of cost implications. Eco- and cost-efficiency indices were used as outputs in orthogonal machine-

learning based tools, developed to evaluate changes in cost and eco-efficiency associated with 

changes in mixture proportioning. Key findings from this work consist of: 

• The EEDDs and CEDDs developed in this study have shown to be ideal tools for concrete 

mixture optimization, where cost-effective and eco-friendly mix designs can easily be 

determined. These diagrams also facilitate the identification of several alternative 

solutions to account for material availability and accessibility when production takes 

place in different locations; 

• Optimum mixtures for cost and eco-efficiency can significantly differ from each other. 

Similarly, optimum mixtures, in terms of cost and eco-efficiency, for different structural 

members can significantly differ from each other; 

• Due to differences in mechanical performance, mixtures with high volumetric 

environmental impact can still be more sustainable than mixtures with nearly half the 

volumetric environmental impact. The same trend was observed in terms of cost-

efficiency. For policy makers, the implication is that simply targeting concrete mixtures 

with the lowest cost or lowest embodied emissions on a per volume basis does not, 

generally, result in the lowest cost or lowest embodied emissions for a given structural 

element or infrastructure project; 

• Mix proportioning optimization should be conducted considering costs, emissions and 

mechanical performance concurrently. Focusing all efforts on identifying a mixture with 

the best mechanical performance alone may result in less efficient solutions, while similar 
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mechanical performance may be obtained with much more cost and eco-effective 

alternatives; 

Future work should focus on developing new indices that account for the environmental impact 

of reinforcing steel on eco-efficiency and further development of machine-learning based density 

diagrams for material properties other than compressive strength. 

As a contribution to concrete producers, project owners, practicing engineers, designers and 

regulating entities, the tools developed herein could serve as decision-making aids during mix 

design stages and provide proof of mixture optimization that can be introduced alongside 

Environmental Product Declarations (EPD). 
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CHAPTER VII.  

MULTI-OBJECTIVE DENSITY DIAGRAMS 

The process of methodically and concurrently optimizing a set of objective functions is known as multi-

objective optimization or vector optimization. Different approaches can be followed in these types of 

problems to model a decision maker’s preference depending on how the user articulates these 

preferences. Prior articulation of preferences implies that the relative importance of each objective 

function is determined by the decision-maker prior to the optimization process. On the other hand, a 

posteriori articulation of preferences involves selecting a particular solution from a set of mathematically 

equivalent solutions. Methods that require no articulation of preferences have also been investigated 

(Nash 1950; Rao 1987). Further discussion on multi-objective methods can be found in the literature 

(Marler and Arora 2003), including important concepts such as Pareto optimality (Laponce 1972). To 

maintain focus on the scope of this work, the multi-objective formulation herein follows a classic weighted 

summation of each objective function (cost- and eco-efficiency indices), which are normalized by the 

worst solutions available in their corresponding domains. This simplified approach was followed 

considering that both cost and emissions are objective functions for which optimum solutions are 

associated with minimizing their outcomes. 

Other function transformation methods can be followed (Koski 1981; Koski and Silvennoinen 1987; 

Osyczka 1978; Proos et al. 2001) to improve robustness of the optimization process. In addition, other 

methods can be followed for multi-objective optimization problems involving competing objective 

functions. For instance, if an optimization problem consists in minimizing one outcome (e.g., cost) while 

maximizing another outcome (e.g., flowability), methods such as Grey relational analysis (Ju-Long 1982) 

can be used to normalize these outcomes to factors generated with different objectives (lower-the-better 

vs higher-the-better) and use them concurrently in one single objective function. Other approaches can 
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also be followed for the multi-objective function formulation to address problems where the weighted 

summation is unable to capture optimum points. Example of such methods are the  -constraint (Haimes 

and Hall 1974), weighted min-max method (Kaliszewski 1987), exponential weighted criterion (Athan and 

Papalambros 1996) and the weighted product method (Bridgman 1922). 

In this chapter, global optimizations will be performed through multi-objective and multi-member 

comparison indices and the obtained results will be compared to data in the literature to evaluate cost 

and eco-efficiency of different concrete technologies. 

7.1. Proposed Comparison Indices 

7.1.1. Combined Cost and Eco-Efficient Indices for Multi-Objective Mixture Design 

The concept of sustainable design, as defined by the US Green Building Council (USGBC), involves 

three components: environmental, economic and health, and community impacts. Choices made 

in the structural design and construction phases directly affect all three of these facets. 

Therefore, mixture design selection should be a balanced optimization function to accommodate 

all three of these objectives. Recently, governments and policy makers have pushed towards low 

carbon policies, where intensive-energy consumption industries are likely to be subjected to 

higher pricing policies while eco-friendly industries will be receiving incentives for their 

sustainable solutions. From the concrete producer’s perspective, it is important to meet 

performance and sustainability requirements while maintain a cost-efficient business. Therefore, 

design efficiency should ultimately be measured using comparison indices that account for cost 

and emissions concurrently. To address this challenge, a multi-objective comparison index for a 

short column member columnMO  can be defined as 

 . column columncolumnMO    = +  {1} 
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where  column  is the cost-efficiency index for short columns ( column ) normalized by the worst 

solution ( max ) within the experimental domain, column  is the column eco-efficiency index column  

normalized by the worst solution ( ,maxcolumn ) within the experimental domain, and   and   

are the weighting coefficients. The approach used to normalize the indices ensures that columnMO  

varies between zero and one, facilitating comparisons involving indices with different 

magnitudes. The same logic can be applied to calculate crackingMO . It is tempting to predefine the 

weighting coefficient  , either by allocating the same weight to cost and environmental 

efficiencies 0.5 = , or by shifting most of the weight to the environmental index in an effort to 

pursue the absolute, most environmentally-friendly solution. As shown in the subsequent 

section, this approach is not the most efficient considering that small shifts in environmental 

efficiency can be accompanied by enormous cost implications. 

7.1.2. Combined Indices for Multi-Member Mixture Design Optimization 

In the next subsections, results will suggest that the optimum concrete mixture identified for a 

given structural member might differ from the optimum for a different member/application. Yet, 

implementing different concrete grades in the same structure is highly dependent on the 

application and on local regulations and codes. To account for applications where one type of 

concrete must be used for the entire infrastructure, multi-member indices must be considered. 

Hence, multi-member eco-efficiency, emissionsMM , and multi-member cost-efficiency, costMM , can 

be defined, respectively, as 
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 . column crackingemissionsMM   = +  {2} 

and 

  

 . column crackingcostMM    = + . {3} 

 

7.2. Multi-Objective Density Diagrams for Sustainable, Cost-Effective Solutions 

As described in the previous section, multi-objective indices are a function of weighting 

coefficients allocated to cost and eco-efficiency. Similarly to cost- and eco-efficiency indices, 

optimum mixtures are obtained by minimizing these multi-objective indices. Fig. 27 through Fig. 

29 illustrate how changes in the weighting coefficients affect the columnMO . 

α=0.8 | β=0.2 

Fig. 27.  MODD illustrating the mix proportioning effect on ρcolumn and Xcolumn, simultaneously, for α=0.8 and β=0.2 
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α=0.5 | β=0.5 

Fig. 28. MODD illustrating the mix proportioning effect on ρcolumn and Xcolumn, simultaneously, for α=0.5 and β=0.5 

α=0.2 | β=0.8 

Fig. 29. MODD illustrating the mix proportioning effect on ρcolumn and Xcolumn, simultaneously, for α=0.2 and β=0.8 
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For developing policies and regulations, it would be tempting to fix these weighting coefficients. 

This could be done either by allocating the same weight to cost and environmental efficiencies, 

or by shifting most of the weight to the environmental index in an effort to pursue top eco-

friendly solutions. However, there are advantages to viewing the optimization problem more 

holistically by carefully evaluating the tradeoffs when optimizing a given mixture for a given 

application. Table 9 provides information to support this argument.  

Table 9. Optimum MO_column for varying values allocated to the weighting coefficients α and β  

        
optimized  

cost   
optimized  

GWP   
 Agg content (% by 
  wt. replacing OPC)    

Mix #           
column

MO  column  
*top 
pct column

  column  
*top 
pct column

  CS CrS GQ c
f  

(MPa)  

MO-Col-1 1 0 0.631 2.08 0% 0.631 11.1 52% 0.726 21.5 2.5 0 112 
 

MO-Col-2 0.9 0.1 0.641 2.08 0% 0.631 11.1 52% 0.726 21.5 2.5 0 112 
 

MO-Col-3 0.8 0.2 0.648 2.11 2% 0.642 10.2 42% 0.671 25 9 3.5 106 
 

MO-Col-4 0.7 0.3 0.650 2.21 11% 0.673 9.08 29% 0.595 23.5 9 11.5 110 
 

MO-Col-5 0.6 0.4 0.641 2.24 13% 0.680 8.90 27% 0.583 25 7.5 13 110 
 

MO-Col-6 0.5 0.5 0.625 2.59 42% 0.787 7.08 6% 0.464 20 25 21.5 97 
 

MO-Col-7 0.4 0.6 0.590 2.72 53% 0.828 6.58 0% 0.431 20.5 25 25 94.9 
 

MO-Col-8 0.3 0.7 0.550 2.72 53% 0.828 6.58 0% 0.431 20.5 25 25 94.9 
 

MO-Col-9 0.2 0.8 0.510 2.72 53% 0.828 6.58 0% 0.431 20.5 25 25 94.9 
 

MO-Col-10 0.1 0.9 0.471 2.72 53% 0.828 6.58 0% 0.431 20.5 25 25 94.9 
 

MO-Col-11 0 1 0.431 2.72 53% 0.828 6.58 0% 0.431 20.5 25 25 94.9 
 

*top pct – top percentile 
CS – Concrete Sand 
CrS – Crushed Sand 
GQ – Ground Quartz           

      
  

column  column  
 

         
min 2.08 6.58 

 

         
max 3.29 15.3 

 
                

For the short column case, while shifting most of the weight to the environmental index (  >0.5) 

can result in the best eco-efficient solution, it also results in significantly low rated mixtures in 

terms of cost-efficiency. As shown, the mixture corresponding to  >0.5 (MO-Col-7 to 11) is 

under the top 50th percentile in cost-efficient solutions, which is not an ideal scenario for any for-

profit industry. Meanwhile, allocating equal weights to   and   helps identifying a better 
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solution in mixture MO-Col-6. While this mixture is still in the top 6th percentile for eco-efficiency, 

it represents a significant jump in cost-efficiency (11%) compared the previously mentioned 

mixtures, sitting at the top 42nd percentile. Yet, setting   at 0.6 and   at 0.4 provides, arguably, 

the most balanced solution for this scenario, where MO-Col-5 is in the top 27th percentile in terms 

of eco-efficiency, while sitting at the top 13th percentile for cost-efficiency. 

Similar to what is provided in Table 9, Table 10 displays the optimum multi-objective index in 

terms of initial cracking due to bending, cracking
MO , for varying values of   and  . 

Table 10. Optimum MO_cracking for varying values allocated to the weighting coefficients α and β 

        

optimized 
cost   

optimized 
GWP   

 Agg content (% by 
  wt. replacing OPC)   

Mix #     
cracking

MO  cracking
  

*top 
pct cracking

  cracking
  

*top 
pct cracking

  CS CrS GQ c
f  

(MPa) 

MO-Crk-1 1 0 0.673 50.0 0% 0.673 263 61% 0.781 25 7 0 105 

MO-Crk-2 0.9 0.1 0.683 50.3 1% 0.676 252 56% 0.748 25 9 2 105 

MO-Crk-3 0.8 0.2 0.691 50.3 1% 0.676 252 56% 0.748 25 9 2 105 

MO-Crk-4 0.7 0.3 0.697 50.7 3% 0.682 246 52% 0.732 25 9 3.5 106 

MO-Crk-5 0.65 0.35 0.697 58.2 34% 0.785 179 17% 0.533 25 25 16 86 

MO-Crk-6 0.6 0.4 0.684 60.4 43% 0.812 165 10% 0.491 20 25 21.5 97 

MO-Crk-7 0.5 0.5 0.650 63.0 53% 0.848 152 3% 0.453 20.5 25 25 94.9 

MO-Crk-8 0.4 0.6 0.611 63.0 53% 0.848 152 3% 0.453 20.5 25 25 94.9 

MO-Crk-9 0.3 0.7 0.571 66.1 66% 0.848 147 0% 0.453 20.5 25 25 94.9 

MO-Crk-10 0.2 0.8 0.528 66.1 66% 0.888 147 0% 0.438 25 25 25 81.7 

MO-Crk-11 0.1 0.9 0.483 66.1 66% 0.888 147 0% 0.438 25 25 25 81.7 

MO-Crk-12 0 1 0.438 66.1 66% 0.888 147 0% 0.438 25 25 25 81.7 
           

*top pct – top percentile 
CS – Concrete Sand 
CrS – Crushed Sand 
GQ – Ground Quartz       

  

cracking  cracking  

         min 50 147 

         max 74.4 336 

            

For this case, finding a balanced cost and eco-efficient solution required further iterations 

between MO-Crk-4 and MO-Crk-6 to find the inflection point associated with the sudden changes 

observed (from top 3rd percentile in cost and top 52nd in eco-efficiency to top 43rd in cost and top 
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10th in eco-efficiency). Setting   at 0.65 and   at 0.35 results in a more balanced mixture (MO-

Crk-5), which represents a top 17th percentile solution in terms of eco-efficiency while still in the 

top 34th percentile for cost-efficiency purposes.  

As shown in this discussion, efficiency indices tied with machine-learning based diagrams (EEDDs, 

CEDDs and MODDs) can greatly facilitate communication between concrete producers, 

designers, owners and policy makers to promote efficient efforts towards sustainability without 

imposing unreasonable cost implications on any parts involved in a given project. The trends 

observed in this study suggest that, for the construction industry, thresholds on carbon footprint 

would preferentially be imposed on total GHG emissions associated with a given structural 

member type (bending, compressive, etc.) instead of a per volume basis. Additionally, the tools 

derived herein can provide proof of optimization to structural designers and concrete producers 

while giving them a reasonable margin for the optimization threshold (e.g., imposing a top 25th 

percentile solution in eco-efficiency). This provides enough flexibility to achieve the required 

mechanical performance, optimize the cost-efficiency of their mixtures and still meet 

environmental demands. Incentives could be added for achieving upper tier thresholds (e.g., top 

10th percentile in eco-efficiency), promoting further innovation in sustainable solutions while 

fostering optimization efforts for currently available technologies. 

There is still a major challenge related to using these diagrams as presented so far. When 

selecting an optimum mixture based on the density of the diagrams (which represents the 

magnitude of a given index) the mechanical performance is not intuitively determined. Deriving 

the compressive strength from the value of a given index requires the estimated volumetric 

impact of the corresponding mix. This iteration can become cumbersome if optimum mixtures 
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fail to meet performance requirements. To account for mechanical performance thresholds 

determined by design, these diagrams can be built while filtering the mixtures below a defined 

limit. For instance, if a given application requires an cf  over 100 MPa, a filtered version of Fig. 

28 can be plotted as shown in Fig. 30. 

 

 

This diagram illustrates several optimum alternatives to obtain a combined cost and eco-efficient 

solution while still satisfying the performance demands imposed by design. Observing Fig. 30, 

examples of optimum mixtures for this case could be: 1) 20% concrete sand, 8% crushed sand 

and 10% ground quartz; or 2) 25% concrete sand, 8% crushed sand and 12.5% ground quartz; or 

15% concrete sand, 25% crushed sand and 17.5% ground quartz. Similar analysis can be done for 

the multi-member indices developed in the previous section. APPENDIX C contains tables 

Fig. 30. MODD from Fig. 28 filtered for compressive strengths over 100 MPa 
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illustrating the results for these indices, suggesting that optimum concrete mixtures for a given 

member may differ from the optimum obtained for a different application. Yet, the most efficient 

mixtures for emissionsMM  are also very efficient for costMM  and vice-versa, in contrast to what is 

observed for multi-objective indices. Implementing different concrete grades in the same 

structure is highly dependent on the application and local regulations. To account for applications 

where one type of concrete must be used for an entire infrastructure, multi-member indices are 

ideal. From a practical standpoint, combined multi-member, multi-objective indices can be 

derived to evaluate the best solution for an entire project. 

7.3. Comparison Between Different Concrete Technologies Using the Proposed 

Comparison Indices 

Fig. 31 and Fig. 32 display the proposed indices, for different types of concretes, as a function of 

compressive strength, volumetric GWP and volumetric cost. As previously discussed, the best 

suited mixtures for each index/application shown in Fig. 31 and Fig. 32 are the ones that minimize 

these efficiency indices. The data were collected from various studies from the literature 

(Abdulkareem et al. 2018; Einsfeld and Velasco 2006; Lam, Wong, and Poon 1998; Miller, 

Horvath, and Monteiro 2016; Poon, Lam, and Wong 2000; Siddique 2004), including results from 

Phase B(II), and mixtures defined from Table 7 to Table 10.   
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Multi-objective and multi-member indices were calculated using equal weighting coefficients, 

that is,   and   equal to 0.5. Table C3 in APPENDIX C contains detailed information regarding 

source and properties from each mixture presented in Fig. 31 and Fig. 32. Mixtures from the 

literature were tested at ages 28 and 90 days. To allow comparison between these results and 

the results obtained in this study, strengths were averaged between these two testing periods to 

obtain an estimated 56th day strength. 

Fig. 31 suggests that high paste content, high strength (and ultra-high strength) concrete 

technologies are not detrimental to cost or eco efficiencies and these are not a function of the 

type of concrete applied. For the different indices evaluated, optimum solutions can be obtained 

with almost all types of concrete, mostly with UHPCs, HSC and SCCs. Focusing on the UHPC 

mixtures developed in section 5.2 (solid blue diamonds and triangular icons) and the HPCs and 

UHPCs identified in this study through optimization of the proposed indices (green solid 

diamonds), it is evident that these technologies are between middle-of-the-pack to top solutions 

for all the proposed indices. For column , the aforementioned mixtures are among the most eco-

efficient solutions, along with a few HSCs from the literature (hollow green diamonds). Similar 

trends are observed for cracking , with the addition of NSC and SCCs as alternative top solutions 

for eco-efficiency. In terms of cost-efficiency, column  shows that the most cost-efficient HPCs and 

UHPCs mixtures remain somewhere around the top 25th percentile of most cost-efficient 

solutions overall, while cracking  pushes these mixture to a middle-of-the-pack tier of ideal 

solutions. Meanwhile, columnMO  and crackingMO , suggest that the most efficient UHPC mixture 
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developed in section 5.2 is one of the top multi-objective solutions for short columns and a 

middle of the pack multi-objective solution for initial cracking applications. Likewise, emissionsMM

and costMM  indicate that this mixture is one of the top multi-member solutions for eco-efficiency, 

while sitting in the middle of the pack for cost-efficiency. 

Meanwhile, observing Fig. 32 and the plots associated with short column indices ( column , column  

and columnMO ), it is evident that there is very little correlation between volumetric impact 

indicators (Total GWP and Total material cost) and these efficiency indices. Meanwhile, observing 

the plots associated with initial cracking indices ( cracking , cracking  and crackingMO ), there is a 

stronger correlation between volumetric impact indicators and efficiency indices for initial 

cracking applications. This is mostly due to the reduced influence of compressive strength on 

these indicators, considering that cf  is to the power of ¼. Yet, there is a clear shift between the 

curves with changes in material type, which is associated with increased compressive strengths. 

This is due to the difference in the modulus of rupture between these different types of concrete, 

which was accounted for in this study using fr . Therefore, cost and eco-efficiencies between 

different types of concrete should not be compared based on volumetric indicators. Evidence of 

this is given by observing Fig. 32 and the plots associated with initial cracking applications, where 

a UHPC mixture with approximately 893 kg CO2-eq/m3 appears to be as eco-efficient as an HSC 

with 500 kg CO2-eq/m3 or a NSC with 288 kg CO2-eq/m3. The same analysis can be done in terms 

of costs, where a UHPC mixture costing approximately $330/m3 is as cost-efficient as an HSC 
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costing around $180/m3. Several other similar conclusions could be derived by using these scatter 

plots.   

It is important to emphasize that the optimum UHPC mixture developed in section 5.2 was 

developed under several limitations in terms of materials and curing conditions, with a 

compressive strength value that is just inside the bottom threshold of UPHC materials (155 MPa). 

Meanwhile, mixtures with compressive strengths over 250 MPa have been reported with modern 

proprietary and non-proprietary mixtures. These were not included in this study due to the 

presence of different types of fibers and other fillers such as glass powder in their compositions, 

which require further considerations that are out of the scope of this work. The main message 

from these scatter plots is that, with proper optimization, advanced concrete materials such as 

HPCs and UHPCs can be the most eco-friendly and cost-efficient solutions for new infrastructure 

and superstructures, in applications where the gains in dimensionality meets constructability 

limitations. For instance, it may be difficult to justify these materials in small infrastructure, 

where the reductions in dimensions of the structural elements can only go as low as 

constructability permits (e.g., cross sectional area of small columns and beams as a function of 

required steel). On the other hand, superstructural elements such as bridge girders can greatly 

benefit from the outstanding mechanical properties of UHPC, especially considering the 

significant increase in prestressed levels, which contributes to longer spans and reduced cross 

sectional areas and, thus, lighter platforms. UHPC also reduces the amount of steel required, 

which is extremely important considering the embodied emissions associated with this material. 

Further reductions in required dimensionality of substructural elements can be obtained with 

UHPC given the longer spans attained with this material, which allows increased spacing between 
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supporting points, and thus, reduced number of structural elements required (e.g., columns and 

foundations). Such advantages are not yet captured in the analysis presented herein. 

New indices that account for the impact of steel reinforced concrete on cost and eco-efficiency 

must be further developed to elucidate these arguments for applications involving UHPC. The 

path has been set with the initial efforts made by Kourehpaz and Miller (Kourehpaz and Miller 

2019), where indices that account for steel in design have been developed. However, the 

currently available indices were developed while keeping the required area of steel constant, 

which inhibits accurate comparisons between NSC and UHPC solutions.  

7.4. Summary of Important Outcomes 

The concept of sustainable design involves environmental, economic and health, and community 

impacts. Knowing that decisions made during structural design and construction phases directly 

affect all these facets, mixture design selection should target a balanced optimization function to 

accommodate all three of these objectives. As governments and policy makers push towards low 

carbon policies, it is important for concrete producers to meet performance and sustainability 

requirements while maintain a cost-efficient business. Therefore, this study proposed a 

methodology based on multi-objective and multi-members comparison indices to develop 

machine-learning-based tools that demonstrate the effect of mix proportioning on performance, 

cost and emissions concurrently. Modifications to comparison indices developed by Kourehpaz 

and Miller (Kourehpaz and Miller 2019) were proposed and cost and eco-efficiency indices were 

combined to develop multi-objective and multi-member indices to be used as inputs in 

orthogonal machine-learning based tools. Key findings from this work consist of: 
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• MODDs developed in this study have shown to be an ideal tool for global concrete mixture 

optimizations, where cost-effective and eco-friendly mix designs can easily be identified 

while filtering out mixtures that do not meet mechanical performance requirements 

imposed by design. These diagrams also allow several alternative solutions to be easily 

identified to account for material availability and accessibility when production takes 

place in different locations; 

• For multi-objective functions, iterations may be performed to find the most balanced 

solutions for cost and eco-efficiency. In this sense, MODDs can serve as proof of 

optimization tools to help justify the tradeoffs considered between cost and emissions 

when selecting a given mixture for a particular application; 

• Results show that high paste content, high strength (and ultra-high strength) concrete 

technologies are not detrimental to cost or eco efficiencies. For the different indices 

evaluated, optimum solutions were mostly obtained with these types of concrete; 

• Results showed that there is very little correlation between volumetric impact indicators 

and efficiency indices for the short column application. On the other hand, there is a 

stronger correlation between volumetric impact indicators and efficiency indices for 

initial cracking applications. This is mostly due to the reduced influence of compressive 

strength on cracking indices. Yet, there is still a visible shift/offset in the observed trends 

for different types of material, which is associated with increased compressive strengths 

and increased differences in the modulus of rupture between these different concretes. 

Therefore, cost and eco-efficiency comparisons between different types of concrete 

should not be performed on a volumetric impact basis. 
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Future work should focus on developing new indices that account for the environmental impact 

of reinforcing steel on eco-efficiency and further development of machine-learning based density 

diagrams for material properties other than compressive strength. 

As a contribution to concrete producers, project owners, practicing engineers, designers and 

regulating entities, MODDs could serve as decision-making aids during mix design stages and 

provide proof of mixture optimization that can be introduced alongside Environmental Product 

Declarations (EPD). 
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CHAPTER VIII.  

CONCLUSIONS & FUTURE RESEARCH 

The emergence of UHPC as an attractive solution for precast and prestressed applications has 

coincided with global efforts towards sustainable construction. The increasing need for tools 

capable of intuitively demonstrating the effect of concrete mixture composition on mechanical 

performance, cost and eco-efficiency concurrently has motivated this work in an effort to 

promote design of more sustainable solutions to help meet environmental goals. In addition, this 

study was also motivated by the several challenges related to the use of AI models in predicting, 

describing and displaying concrete material’s performance, as well as the resource and time-

consuming nature of available standard methods to characterize certain material properties. The 

main objective consisted of developing new tools that facilitate evaluation of the tradeoffs 

between mechanical performance, cost and environmental impact simultaneously, as a function 

of mix proportioning when designing UHPC materials. Comparison indices proposed by 

Kourehpaz and Miller (Kourehpaz and Miller 2019) were modified to develop eco-efficiency, cost-

efficiency and multi-objective indices, while compressive strengths were predicted with machine-

learning models and used to calculate these indices. Finally, the calculated indices were used as 

outputs in orthogonal machine-learning-based tools. Key findings from this work consist of: 

• The new test protocol developed for pastes and mortars using reduced size samples and 

simplified end specimen conditions agrees well with standard methods up to strengths of 

125 MPa, promoting an expeditious and efficient assessment of UHPC binders and 

mortars that greatly facilitates data collection and advanced modeling of new 



126 
 

formulations. Further evaluation of the end-specimen conditions is required to improve 

this test protocol for materials with strengths over 125 MPa. 

• The experimental framework used in this study, supported by orthogonal arrays and the 

use of surrogate samples has shown to be an effective method for rapidly generating data 

to support AI algorithms for concrete mixture design optimization. This method can be 

used to overcome the uncertainty of models generated with large, multiple-source 

datasets by promoting reduced experimental runs capable of effectively describing the 

experimental domain. Considering the high variability of material properties with source 

and region and the often prohibitive costs of nanomaterials, this protocol encourages 

innovative mixture designs with new materials in a constantly growing industry such as 

UHPC.  

• PDDs developed in this study suggest that performance evaluation of regression models 

should not rely solely on RMSE. A potential data leakage occurrence was detected in the 

diagram, where inconsistent trends in the domain where observed. The balanced RMSEs 

obtained across training and testing sets are most probably consequence of the data 

leakage phenomena, where the same information is present in both training and testing 

sets. 

• A PDD developed with an ensemble model enabled the design of an UHPC mixture 

averaging a compressive strength of 155 MPa (22,480 psi) at age of 56 days, while 

maintaining the fine-aggregate-to-cementitious ratio above unity (fa/cm = 1.04). 

• The EEDDs, CEDDs and MODDs developed in this study have shown to be ideal tools for 

concrete mixture optimization, where cost-effective and eco-friendly mix designs can 
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easily be determined while filtering out mixtures that do not meet mechanical 

performance requirements imposed by design. These diagrams also facilitate the 

identification of several alternative solutions to account for material availability and 

accessibility when production takes place in different locations; 

• Optimum mixtures for cost and eco-efficiency can significantly differ from each other. 

Similarly, optimum mixtures, in terms of cost and eco-efficiency, for different structural 

members can significantly differ from each other; 

• Due to differences in mechanical performance, mixtures with high volumetric 

environmental impact can still be more sustainable than mixtures with nearly half the 

volumetric environmental impact. The same trend was observed in terms of cost-

efficiency. For policy makers, the implication is that simply targeting concrete mixtures 

with the lowest cost or lowest embodied emissions on a per volume basis does not, 

generally, result in the lowest cost or lowest embodied emissions for a given structural 

element or infrastructure project; 

• For multi-objective functions, iterations may be performed to find the most balanced 

solutions for cost- and eco-efficiency. In this sense, MODDs can serve as proof of 

optimization tools to help justify the tradeoffs considered between cost and emissions 

when selecting a given mixture for a particular application; 

• Mix proportioning optimization should be conducted considering costs, emissions and 

mechanical performance concurrently. Focusing all efforts on identifying a mixture with 

the best mechanical performance alone may result in less efficient solutions, while similar 
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mechanical performance may be obtained with much more cost and eco-effective 

alternatives; 

• Results show that high paste content, high strength (and ultra-high strength) concrete 

technologies are not detrimental to cost or eco efficiencies. For the different indices 

evaluated, optimum solutions were mostly obtained with these types of concrete; 

• Results showed that there is very little correlation between volumetric impact indicators 

and efficiency indices for the short column application. On the other hand, there is a 

stronger correlation between volumetric impact indicators and efficiency indices for 

initial cracking applications. This is mostly due to the reduced influence of compressive 

strength on cracking indices. Yet, there is still a visible shift/offset in the observed trends 

for different types of material, which is associated with increased compressive strengths 

and increased differences in the modulus of rupture between these different concretes. 

Therefore, cost and eco-efficiency comparisons between different types of concrete 

should not be performed on a volumetric impact basis. 

The methodology used in this study represents a significant opportunity for potential game-

changing design protocols, capable of offering enough flexibility for exploring new constituents 

and account for differences in source, availability and cost of material per region. This is 

particularly important for advanced concrete materials such as UHPC, for which mixture 

optimization is key to justify its application, considering its high cost per unit volume along with 

its volumetric environmental impact. PDDs, CEDDs, EEDDs and MODDs can be used to evaluate 

mechanical and durability properties directly affecting cost and environmental impact and, 

combined with 3D density plots, they not only serve as decision-making aid tools to be used 
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during mix design stages, but also help overcome the challenges mentioned throughout this 

manuscript. In particular, these tools provided further insight on the inner workings of machine 

learning models by displaying their predictive structure, unveiling some of their black-box nature 

and helping identify overfitting and data leakage occurrences where the RMSE was not 

sufficiently informative.  

As a contribution to practicing engineers, the tools developed herein can facilitate the decision 

making process surrounding material availability and cost-performance-sustainability trade-offs, 

promoting better design practices towards stronger, long-lasting and greener concrete products. 

Once properly developed by experienced engineers in the field of civil materials and machine 

learning, these diagrams can easily be used and interpreted by industry personnel on a regular 

basis for their day-to-day operations and decisions. They can also facilitate the communication 

between projects owners, regulating entities and designers, which ultimately will contribute to 

lift the existing mis-conceptional barriers regarding advanced concrete materials such as UHPC, 

and promote its application in cases where this material is clearly a better option over other 

traditional concrete technologies. 

Future work is suggested as follows: 

• Focus should be placed on developing new indices that: 1) account for the environmental 

impact of reinforcing steel on eco-efficiency of members/elements associated with 

typical UHPC applications; 2) account for the buckling effect in columns considering the 

potential application of UHPC in slender columns (Aboukifa et al. 2019; Hung, Hu, and Yen 

2018); 3) account for the effect of increased prestress levels on the total span achieved in 
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bridge elements (beams, girders), which dictates the distance between structural 

supports and total weight of the superstructure, impacting the volume of required 

substructural elements (columns, footing, piles); and 4) account for life-cycle costs 

(maintenance and repair) and durability (service life) of structural elements; 

• Machine-learning-based tools to optimize material properties other than compressive 

strength should be explored. This methodology has a great potential on fields such as 

fiber reinforced concretes (including UHPC), where simultaneous changes in the matrix 

proportioning and fiber content greatly impacts strain-hardening behavior; 

• New models should be developed using inputs related to individual particle make-up 

(fineness, characteristic particle size and compound composition of the raw ingredients). 

These have the potential to overcome the variability in raw materials with source and 

region; 

• Inclusion of nanomaterials and fibers should also be evaluated through this method and 

tested through standardized test protocols to develop eco-friendly and cost-efficient 

concretes with much higher strengths than the ones obtained with the limited resources 

in this study; 

• Using large, trustworthy datasets from the literature, generated through standardized 

test methods, are also of great important to develop informative PDDs for material 

properties that are time- and resource-exhausting, and/or hard to measure. Making these 

diagrams available in technotes or state-of-the-art documents can greatly contribute to 

improve material performance and quality across the concrete industry; 
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• Developing software capable of automating the process of generating these diagrams 

while still providing enough flexibility to account for customized data and experimental 

campaigns can have a significant impact on mix design processes and on the concrete 

industry in general; 

• Efforts should be made by entities representing each concrete specialty/application 

(committees, associations, etc.) to draft specifications for engineers/architects 

prescribing how to use these tools. Multi-objective comparison indices should be 

described and explained in these specifications. 
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APPENDIX A 

The following figures and tables were previously discussed and provide relevant information to this work.  
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Table A1. L25 orthogonal array followed in Phase A(I). 
Variables: slag, microsilica and fly ash Table A2. Design levels defined for Phase A(II) 

Mix Design 
# 

Design levels 

Slag Microsilica Fly Ash 

Mix A-1 1 1 1 
Mix A-2 1 2 2 
Mix A-3 1 3 3 
Mix A-4 1 4 4 
Mix A-5 1 5 5 
Mix A-6 2 1 2 
Mix A-7 2 2 3 
Mix A-8 2 3 4 
Mix A-9 2 4 5 

Mix A-10 2 5 1 
Mix A-11 3 1 3 
Mix A-12 3 2 4 
Mix A-13 3 3 5 
Mix A-14 3 4 1 
Mix A-15 3 5 2 
Mix A-16 4 1 4 
Mix A-17 4 2 5 
Mix A-18 4 3 1 
Mix A-19 4 4 2 
Mix A-20 4 5 3 
Mix A-21 5 1 5 
Mix A-22 5 2 1 
Mix A-23 5 3 2 
Mix A-24 5 4 3 
Mix A-25 5 5 4 

Features 
Levels 

1 2 3 4 
Slag 0 17.3 34.7 52 

Microsilica 0 3.5 7 10.5 
FA 0 3.75 7.5 15 

Table A3. L25 orthogonal array followed in Phase B. 
Variables: ground quartz, concrete sand and crushed sand 

Mix Design 
# 

Variables 

Ground 
Quartz 

Concrete 
Sand 

Crushed 
Sand 

Mix B-1 1 1 1 
Mix B-2 1 2 2 
Mix B-3 1 3 3 
Mix B-4 1 4 4 
Mix B-5 1 5 5 
Mix B-6 2 1 2 
Mix B-7 2 2 3 
Mix B-8 2 3 4 
Mix B-9 2 4 5 

Mix B-10 2 5 1 
Mix B-11 3 1 3 
Mix B-12 3 2 4 
Mix B-13 3 3 5 
Mix B-14 3 4 1 
Mix B-15 3 5 2 
Mix B-16 4 1 4 
Mix B-17 4 2 5 
Mix B-18 4 3 1 
Mix B-19 4 4 2 
Mix B-20 4 5 3 
Mix B-21 5 1 5 
Mix B-22 5 2 1 
Mix B-23 5 3 2 
Mix B-24 5 4 3 
Mix B-25 5 5 4 

Mix Design 
# 

Design levels 

Slag Microsilica Fly Ash 

- 1 1 1 

Mix A-26 1 2 2 

Mix A-27 1 3 3 

Mix A-28 1 4 4 

Mix A-29 2 1 2 

Mix A-30 2 2 3 

Mix A-31 2 3 4 

Mix A-32 2 4 1 

Mix A-33 3 1 3 

Mix A-34 3 2 4 

Mix A-35 3 3 1 

Mix A-36 3 4 2 

Mix A-37 4 1 4 

Mix A-38 4 2 1 

Mix A-39 4 3 2 

Mix A-40 4 4 3 

Table A4. L25 orthogonal array followed in Phase A(II). 
Variables: slag, microsilica and fly ash 

Table A5. Design levels defined for Phase B 

Features 
Levels  

1 2 3 4 5 

Ground Quartz 0 6.25 12.5 18.75 25 

Silica Sand 0 6.25 12.5 18.75 25 

Crushed Sand 0 6.25 12.5 18.75 25 
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Models # obs 

Models without w/cm  Models with w/cm 

Variable importance 

 

 Variable importance 

 Slag Microsilica Fly Ash  w/cm Slag Microsilica Fly Ash 

kNN_avg_84_Phase A(I) 21 12.1 100.0 0.0   89.4 12.1 100.0 0.0  

kNN_avg_100_Phase A(I) 25 24.5 100.0 0.0   100.0 20.7 84.5 0.0  

kNN_avg_80_Phase A(I)+A(II) 34 19.8 100.0 0.0   100.0 19.8 100.0 0.0  

kNN_avg_80_Phase A(I)+A(II)_2.0 34 21.8 100.0 0.0   100.0 19.3 88.4 0.0  

kNN_avg_100_Phase A(I)+A(II) 40 14.9 100.0 0.0   100.0 13.4 89.4 0.0  

kNN_sp_84_Phase A(I) 63 0.2 100.0 0.0   100.0 0.1 45.4 0.0  

kNN_sp_100_Phase A(I) 75 4.5 100.0 0.0   100.0 2.5 54.9 0.0  

kNN_sp_80_Phase A(I)+A(II)_2.0 102 0.0 100.0 0.2   100.0 0.0 66.5 0.1  

kNN_sp_100_Phase A(I)+A(II) 120 3.5 100.0 0.0   100.0 2.1 61.2 0.0  

RF_avg_84_Phase A(I) 21 3.5 100.0 0.0   99.1 7.2 100.0 0.0  

RF_avg_100_Phase A(I) 25 22.2 100.0 0.0   100.0 0.0 55.7 2.3  

RF_avg_80_Phase A(I)+A(II) 34 23.6 100.0 0.0   93.7 20.5 100.0 0.0  

RF_avg_80_Phase A(I)+A(II)_2.0 34 29.8 100.0 0.0   100.0 27.1 89.4 0.0  

RF_avg_100_Phase A(I)+A(II) 40 22.5 100.0 0.0   100.0 16.5 94.0 0.0  

RF_sp_84_Phase A(I) 63 3.3 100.0 0.0   100.0 0.0 29.3 5.8  

RF_sp_100_Phase A(I) 75 0.0 100.0 14.7   100.0 0.0 61.5 5.2  

RF_sp_80_Phase A(I)+A(II)_2.0 102 18.1 100.0 0.0   100.0 12.8 75.2 0.0  

RF_sp_100_Phase A(I)+A(II) 120 20.5 100.0 0.0   100.0 14.8 83.8 0.0  

Table A6. Variable importance and variability explained of each feature in each model using the 56 days results 

Mix
Folds - Phases A(I) + A(II) - 85% of the data

1 2 3 4 5 6
1

Training 
data

2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

Testing 
data

29
30
31

Training 
data

32
33
34

Testing 
data

35
36
37

Training 
data

38
39
40

Mix
Folds - Phases A(I) + A(II) - 100% of the data

1 2 3 4 5 6 7 8
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40

Train set

Validation set

Test set

Fig. A2. Folds randomly created in performing a k-fold cross validation method used to train and test the models. Eight folds were 
created in the entire dataset combining Phases A(I) and A(II). Mixtures that were “blind” to Fold 3 were stored as test sets. Six 
new folds were created within the dataset available for training (training and validation sets) to optimize the tuning parameters 
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Fig. A3. Predicted compressive strengths (ӯ) versus actual outcomes (y), in MPa, and RMSEs for the best performing linear 
models in this study when predicting the compressive strength of mixtures cast in Phase A and tested at age 56 days. These 
models were built using only SCMs as the features. 
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Fig. A4. Predicted compressive strengths (ӯ) versus actual outcomes (y), in MPa, and RMSEs for the best performing kNN 
models in this study when predicting the compressive strength of mixtures cast in Phase A and tested at age 56 days. These 
models were built considering three scenarios: 1) using only SCMs as the features; 2) adding w/cm as the 4th variable; 3) 
adding w/cm and HRWR/cm as the 4th and 5th variable, respectively 
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Fig. A5. Predicted compressive strengths (ӯ) versus actual outcomes (y), in MPa, and RMSEs for the best performing random 
forest models in this study when predicting the compressive strength of mixtures cast in Phase A and tested at age 56 days. 
These models were built considering three scenarios: 1) using only SCMs as the features; 2) adding w/cm as the 4th variable; 
3) adding w/cm and HRWR/cm as the 4th and 5th variable, respectively 
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APPENDIX B 

Models were developed for Phase B in a similar manner to what was discussed in subsection 4.2.1 for 

Phase A. In particular, models were developed for six scenarios: 1) excluding mix #25 from the dataset 

(due to very high HRWR content); 2) Using three fine aggregates (ground quartz, concrete sand and 

crushed sand) as the variables; 3) Using the three fine aggregates and the w/cm as the variables; 4) Using 

the three fine aggregates, the w/cm and the HRWR/cm as the variables; 5) Using the three fine aggregates 

and the cementitious content as the variables; and 6) Using the three fine aggregates, the w/cm and the 

cementitious content as the variables. Table B1 show the RMSE obtained following these approaches. The 

final models selected to be ensembled were models “kNN_avg_80_Phase B” and “RF_avg_80_Phase B”. 

Fig. B1 illustrates the correlation between models’ prediction versus actual experimental outcomes, along 

with the corresponding RMSE obtained in the training and testing sets.  

 

Fig. B1. Predicted compressive strengths (ӯ) versus actual outcomes (y), in MPa, and RMSEs for the best performing kNN and RF 
models, used to develop PDDs for Phase B. These models were built using three fine aggregates (ground quartz, concrete sand 
and crushed sand) as the variables. 
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These models were selected due to the balanced RMSE obtained across training and testing sets. 

Predictive performance could have been greatly improved with an additional iteration, similar to what 

was done with Phase A(II), or with higher design levels in the orthogonal array. Yet, time and resource 

limitations prevented further experimental campaigns for this research. Nevertheless, Fig. B1 indicates 

that the trends existing in the domain are well captured by these models, satisfying their purpose for 

optimization tools.  

 

 

 

  

test set test set test set

RMSE
(cv|ba)

RMSE RMSE RMSE
(cv|ba)

RMSE RMSE RMSE
(cv|ba)

RMSE RMSE

kNN_avg_84_Phase B 20 4 7 16.3 16 22.1 3 16.1 12.3 10.4 4 15.9 13.8 11.3

kNN_avg_100_Phase B 25 - 3 15.4 12.9 - 3 14.7 10.7 - 3 15.3 11.6 -

kNN_sp_84_Phase B 60 4 30 17.8 15.6 16.6 18 16.4 15 8.6 15 16.9 15.4 7.7

kNN_sp_100_Phase B 75 - 7 14.5 12.9 - 9 13.8 10.7 - 12 14.8 11.7 -

RF_avg_84_Phase B 20 4 2 16.4 8.7 17.1 3 16 7.3 11.1 3 15.9 7.2 12.8

RF_avg_100_Phase B 25 - 2 16.6 8.3 - 2 14.9 7.8 - 2 16.8 7.6 -

kNN_avg_84_Phase B 21 3 3 16.4 12.4 10.4 5 18.1 16.4 11.1 3 16.9 12.6 11.9

kNN_avg_100_Phase B 25 - 3 15.2 11.4 - 5 17.1 15 - 3 15.4 11 -

kNN_sp_84_Phase B 63 3 30 17.8 17.6 10.4 27 17.6 18.6 11 18 18.2 16.1 8.4

kNN_sp_100_Phase B 75 - 9 14.1 11.4 - 6 14.9 10.2 - 12 14.6 11.8 -

RF_avg_84_Phase B 21 3 1 17.8 10.2 12.6 3 17.5 7.8 13.9 3 16.1 6.9 15.2

RF_avg_100_Phase B 25 - 3 16.5 7.7 - 2 17.4 7.9 - 3 15.9 7.1 -

tp - tuning parameter ("k" for kNN; "mtry" for RF)

#obs - number of observations

opt test set - optimum test set

RMSE
(cv)

 - root mean squared error of the model estimated during cross validation (kNN models)

RMSE
(ba)

 - root mean squared error of the model estimated during bootstrap aggregation (RF models)

Aggs - aggregates (ground quartz, concrete sand, crushed sand)

cm - cementitious

Var - variables

Var = 3 Aggs (fitting all mixtures) Var = (3 Aggs + w/cm) Var = (3 Aggs + w/cm + hrwr/cm)

tp

            train set              

tp

            train set              

Var = 3 Aggs (filtering out mix 25) Var = (3 Aggs + cm content) Var = (3 Aggs + cm content + w/cm)

          #obs             Models with 3 variables Models with 4 variables Models with 5 variables

Models

train 

set

test 

set tp

            train set              

Table B1. RMSE obtained for each model when predicting the compressive strength of mixtures cast in Phase B and tested at 
age 56 days. These models were built considering six scenarios in which different variables are evaluated (as described in 
Appendix B)  
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APPENDIX C 

Table C2. Optimum MM_cost for varying values allocated to the weighting coefficients α and β 

        Optimized cost   Optimized GWP           

Mix #     
costMM  

column
  

*top 
pct column  cracking  

*top 
pct cracking  CS CrS GQ 

cf  (MPa) 

MM-Cost-1 1 0 0.632 2.08 0% 0.632 50.9 4% 0.684 21.5 2.5 0 112 

MM-Cost-2 0.9 0.1 0.632 2.08 0% 0.632 50.9 4% 0.684 21.5 2.5 0 112 

MM-Cost-3 0.8 0.2 0.632 2.08 0% 0.632 50.9 4% 0.684 21.5 2.5 0 112 

MM-Cost-4 0.7 0.3 0.643 2.09 1% 0.635 50 0% 0.673 25 7 0 105 

MM-Cost-5 0.6 0.4 0.643 2.09 1% 0.635 50 0% 0.673 25 7 0 105 

MM-Cost-6 0.5 0.5 0.643 2.09 1% 0.635 50 0% 0.673 25 7 0 105 

MM-Cost-7 0.4 0.6 0.643 2.09 1% 0.635 50 0% 0.673 25 7 0 105 

MM-Cost-8 0.3 0.7 0.643 2.09 1% 0.635 50 0% 0.673 25 7 0 105 

MM-Cost-9 0.2 0.8 0.643 2.09 1% 0.635 50 0% 0.673 25 7 0 105 

MM-Cost-10 0.1 0.9 0.643 2.09 1% 0.635 50 0% 0.673 25 7 0 105 

MM-Cost-11 0 1 0.643 2.09 1% 0.635 50 0% 0.673 25 7 0 105 

*top pct - top percentile 
CS – Concrete Sand 
CrS – Crushed Sand 
GQ – Ground Quartz           

         
  

column  cracking  

         
min 2.08 50 

         max 3.29 74.4 

Table C1. Optimum MM emissions for varying values allocated to the weighting coefficients α and β 

        Optimized cost   Optimized GWP           

Mix #     emissionsMM  column  
*top 
pct column  cracking  

*top 
pct cracking  CS CrS GQ cf  

(MPa) 

MM-GWP-1 1 0 0.431 6.58 0% 0.431 152 3% 0.453 20.5 25 25 94.9 

MM-GWP-2 0.9 0.1 0.431 6.58 0% 0.431 152 3% 0.453 20.5 25 25 94.9 

MM-GWP-3 0.8 0.2 0.431 6.58 0% 0.431 152 3% 0.453 20.5 25 25 94.9 

MM-GWP-4 0.7 0.3 0.431 6.58 0% 0.431 152 3% 0.453 20.5 25 25 94.9 

MM-GWP-5 0.6 0.4 0.431 6.58 0% 0.431 152 3% 0.453 20.5 25 25 94.9 

MM-GWP-6 0.5 0.5 0.44 6.75 2% 0.442 147 0% 0.442 25 25 25 81.7 

MM-GWP-7 0.4 0.6 0.44 6.75 2% 0.442 147 0% 0.442 25 25 25 81.7 

MM-GWP-8 0.3 0.7 0.44 6.75 2% 0.442 147 0% 0.442 25 25 25 81.7 

MM-GWP-9 0.2 0.8 0.44 6.75 2% 0.442 147 0% 0.442 25 25 25 81.7 

MM-GWP-10 0.1 0.9 0.44 6.75 2% 0.442 147 0% 0.442 25 25 25 81.7 

MM-GWP-11 0 1 0.44 6.75 2% 0.442 147 0% 0.442 25 25 25 81.7 

*top pct - top percentile 
 CS – Concrete Sand 
CrS – Crushed Sand 
GQ – Ground Quartz            

         
  

column  cracking  

         
min 6.58 147 

         
max 15.3 336 
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SL SF FA
w/ 

cm

HRWR/

cm
C CcS CrS GQ SL SF FA C W

HRWR 

(kg/m3)
CcS CrS GQ

Section 5.2 - Fig.16 0 10.1 0 0.2 1.38% 89.9 0 6.5 22 0.0 145.0 0.0 1290.8 275.9 19.8 0.0 132.5 441.8

Section 5.2 - Fig.16 22.4 5.25 1.97 0.2 1.38% 70.4 0 6.5 22 320.1 75.0 28.2 1005.9 274.6 19.7 0.0 131.9 439.8

Section 5.2 - Fig.16 22.4 5.25 1.97 0.2 1.38% 70.4 22 8.5 21.5 230.7 54.1 20.3 724.9 203.3 14.2 476.1 185.1 461.4

Section 5.2 - Fig.16 0 10.1 0 0.2 1.38% 89.9 0 6.5 22 0.0 145.0 0.0 1290.8 275.9 19.8 0.0 132.5 441.8

Section 5.2 - Fig.16 22.4 5.25 1.97 0.2 1.38% 70.4 0 6.5 22 320.1 75.0 28.2 1005.9 274.6 19.7 0.0 131.9 439.8

Section 5.2 - Fig.16 22.4 5.25 1.97 0.2 1.38% 70.4 22 8.5 21.5 230.7 54.1 20.3 724.9 203.3 14.2 476.1 185.1 461.4

Section 6.6 - Table 7 22.4 5.25 1.97 0.2 1.38% 70.38 21.5 2.5 0 332.7 78.0 29.3 1045.2 287.6 20.5 423.6 49.6 0.0

Section 6.6 - Table 7 22.4 5.25 1.97 0.2 1.38% 70.4 25 25 0 238.3 55.9 21.0 748.8 215.6 14.7 536.5 540.0 0.0

Section 6.6 - Table 7 22.4 5.25 1.97 0.2 1.38% 70.38 11 2.5 11.5 330.6 77.5 29.1 1038.9 284.1 20.4 218.3 49.9 226.3

Section 6.6 - Table 7 22.4 5.25 1.97 0.2 1.38% 70.4 20.5 25 25 151.7 35.6 13.3 476.8 141.9 9.3 474.7 582.7 574.1

Section 6.6 - Table 7 22.4 5.25 1.97 0.2 1.38% 70.4 25 25 25 130.5 30.6 11.5 410.2 125.0 8.0 587.7 591.5 582.8

Section 6.6 - Table 7 22.4 5.25 1.97 0.2 1.38% 70.4 19.5 25 0 260.1 61.0 22.9 817.4 233.0 16.0 411.5 531.0 0.0

Section 6.6 - Table 8 22.4 5.25 1.97 0.2 1.38% 70.4 25 25 0 238.3 55.9 21.0 748.8 215.6 14.7 536.5 540.0 0.0

Section 6.6 - Table 8 22.4 5.25 1.97 0.2 1.38% 70.4 25 25 0 238.3 55.9 21.0 748.8 215.6 14.7 536.5 540.0 0.0

Section 6.6 - Fig.21 22.4 5.25 1.97 0.2 1.38% 70.4 15 15 12.5 268.2 62.9 23.6 842.7 235.8 16.5 315.0 317.0 260.3

Section 6.6 - Fig.21 22.4 5.25 1.97 0.2 1.38% 70.4 19 5 10 298.7 70.0 26.3 938.6 259.2 18.4 387.1 102.5 202.1

Section 6.6 - Fig.21 22.4 5.25 1.97 0.2 1.38% 70.4 16 1.5 13.5 309.6 72.6 27.2 972.7 266.8 19.1 323.2 30.5 270.4

Section 6.6 - Table 8 22.4 5.25 1.97 0.2 1.38% 70.4 25 25 25 130.5 30.6 11.5 410.2 125.0 8.0 587.7 591.5 582.8

Section 6.6 - Table 8 22.4 5.25 1.97 0.2 1.38% 70.4 25 25 25 130.5 30.6 11.5 410.2 125.0 8.0 587.7 591.5 582.8

Section 7.2 - Table 9 22.4 5.25 1.97 0.2 1.38% 70.4 25 7.5 13 255.8 60.0 22.5 803.7 224.7 15.8 528.3 159.5 272.4

Section 7.2 - Table 9 22.4 5.25 1.97 0.2 1.38% 70.4 20 25 21.5 169.8 39.8 14.9 533.5 157.0 10.5 456.4 574.2 486.5

CA

Siddique 2004 0 0 0 0.41 0.56% 100 27.5 54.7 0 0.0 0.0 0.0 389.9 177.2 2.2 605.6 1210.4 0.0

Siddique 2004 0 0 40 0.4 0.64% 60 27.4 54.7 0 0.0 0.0 153.1 229.6 169.8 2.4 592.4 1184.0 0.0

Siddique 2004 0 0 45 0.41 0.66% 55 27.5 54.7 0 0.0 0.0 170.6 208.5 172.0 2.5 588.9 1177.0 0.0

Siddique 2004 0 0 50 0.4 0.69% 50 27.5 54.7 0 0.0 0.0 189.7 189.7 168.3 2.6 589.3 1177.9 0.0

Miller 2016 0 0 0 0.35 1.43% 100 40 40 0 0.0 0.0 0.0 443.7 172.1 6.3 894.8 900.7 0.0

Miller 2016 0 0 30 0.35 1.43% 70 40 40 0 0.0 0.0 130.3 304.1 168.5 6.2 876.1 881.8 0.0

Miller 2016 0 0 50 0.35 1.32% 50 40 40 0 0.0 0.0 214.2 214.2 166.5 5.7 864.1 869.7 0.0

Poon (2000) 0 0 0 0.24 2.95% 100 31.1 41.0 0 0.0 0.0 0.0 631.6 156.4 18.6 710.9 942.0 0.0

Poon (2000) 0 0 25.0 0.24 2.95% 75 30.4 41.3 0 0.0 0.0 156.6 470.7 155.9 18.5 680.6 929.5 0.0

Poon (2000) 0 0 44.9 0.23 3.84% 55 29.2 42.0 0 0.0 0.0 281.9 345.6 150.6 24.1 641.8 930.1 0.0

Poon (2000) 0 0 0 0.19 5.10% 100 27.97 41.40 0 0.0 0.0 0.0 704.5 131.4 35.9 648.7 966.7 0.0

Poon (2000) 0 0 25.3 0.19 5.17% 75 27.7 41.7 0 0.0 0.0 174.0 515.0 129.5 35.6 628.9 951.6 0.0

Poon (2000) 0 0 45.1 0.19 5.09% 55 27.5 41.9 0 0.0 0.0 305.9 373.2 126.6 34.6 615.0 943.8 0.0

Lam (1997) 0 5.0 0 0.30 0.00% 95 31.3 47.0 0 0.0 24.3 0.0 461.5 163.7 0.0 704.5 1061.0 0.0

Lam (1997) 0 5.0 0 0.4 0.00% 95 30.6 51.5 0 0.0 19.5 0.0 370.9 174.8 0.0 677.3 1141.9 0.0

Lam (1997) 0 5.0 0 0.5 0.00% 95.0 28.2 52.7 0 0.0 19.9 0.0 378.0 216.4 0.0 592.0 1110.6 0.0

Einsfeld (2006) 0 10.1 0 0.3 2.51% 89.9 37.1 42.8 0 0.0 45.0 0.0 402.4 151.2 11.2 831.0 961.0 0.0

Einsfeld (2006) 0 9.9 0 0.3 2.49% 90.1 35.2 42.9 0 0.0 47.8 0.0 437.3 155.8 12.1 785.5 959.8 0.0

Einsfeld (2006) 0 10.0 0 0.3 2.52% 90.0 31.3 42.8 0 0.0 57.7 0.0 519.5 152.4 14.5 702.5 965.0 0.0

Abdulkareem (2018) 0 15.8 0 0.13 2.38% 84.2 46.8 0 2.7 0.0 181.3 0.0 967.9 135.0 27.3 1073.9 0.0 60.4

Abdulkareem (2018) 0 16.1 0 0.14 1.01% 83.9 47.3 0 2.7 0.0 181.0 0.0 941.4 160.0 11.4 1071.9 0.0 60.3

Abdulkareem (2018) 0 16.4 0 0.13 2.19% 83.6 47.7 0 2.7 0.0 183.4 0.0 937.3 141.4 24.6 1086.2 0.0 61.1

Abdulkareem (2018) 0 16.7 0 0.13 2.52% 83.3 48.2 0 2.7 0.0 185.2 0.0 921.4 137.9 27.9 1097.1 0.0 61.7

References

UHPC mixtures tested following New Test protocol

Batching weigths (kg/m3) - after adjusting for yield

SCMs (% by wt) 

replacing cement 

content

aggregates (% by 

wt) replacing cm 

content

SCC mixtures from the literature

HSCs mixtures from the literature

UHPC mixtures from the literature

UHPC mixtures tested following ASTM C1856

NSC mixturesfrom the literature

HPCs and UHPCs developed in sections 6.6 and 7.2 following new test protocol

Table C3. Mixtures illustrated in Fig. 29 and Fig. 30. NSC, SCC and HSC from the literature have coarse aggregates (CA) in 
their composition instead of crushed sand (differentiated with an outlined box in the table) 
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SL SF FA
w/ 

cm

HRWR/c

m
C CcS CrS GQ

Section 5.2 - Fig.16 0 10.1 0 0.2 1.38% 89.9 0 6.5 22 128.4 0.54 1521.5 11.8 244.1 365.3 2.8 58.6

Section 5.2 - Fig.16 22.4 5.25 1.97 0.2 1.38% 70.4 0 6.5 22 129.2 0.54 1201.2 9.3 192.4 320.1 2.5 51.3

Section 5.2 - Fig.16 22.4 5.25 1.97 0.2 1.38% 70.4 22 8.5 21.5 128.5 0.54 893.0 6.9 143.2 270.8 2.1 43.4

Section 5.2 - Fig.16 0 10.1 0 0.2 1.38% 89.9 0 6.5 22 133.8 0.54 1521.5 11.4 241.6 365.3 2.7 58.0

Section 5.2 - Fig.16 22.4 5.25 1.97 0.2 1.38% 70.4 0 6.5 22 158.1 0.54 1201.2 7.6 182.9 320.1 2.0 48.7

Section 5.2 - Fig.16 22.4 5.25 1.97 0.2 1.38% 70.4 22 8.5 21.5 154.8 0.54 893.0 5.8 136.7 270.8 1.7 41.5

Section 6.6 - Table 7 22.4 5.25 1.97 0.2 1.38% 70.38 21.5 2.5 0 112.0 0.72 1241.8 11.1 274.8 232.8 2.1 51.5

Section 6.6 - Table 7 22.4 5.25 1.97 0.2 1.38% 70.4 25 25 0 80.0 0.72 916.4 11.5 220.6 189.3 2.4 45.6

Section 6.6 - Table 7 22.4 5.25 1.97 0.2 1.38% 70.38 11 2.5 11.5 118.0 0.72 1236.0 10.5 270.0 279.2 2.4 61.0

Section 6.6 - Table 7 22.4 5.25 1.97 0.2 1.38% 70.4 20.5 25 25 95.0 0.72 620.5 6.5 143.1 257.7 2.7 59.4

Section 6.6 - Table 7 22.4 5.25 1.97 0.2 1.38% 70.4 25 25 25 82.0 0.72 547.4 6.7 131.0 246.7 3.0 59.0

Section 6.6 - Table 7 22.4 5.25 1.97 0.2 1.38% 70.4 19.5 25 0 95.0 0.72 991.6 10.4 228.7 202.6 2.1 46.7

Section 6.6 - Table 8 22.4 5.25 1.97 0.2 1.38% 70.4 25 25 0 80.0 0.72 916.4 11.5 220.6 189.3 2.4 45.6

Section 6.6 - Table 8 22.4 5.25 1.97 0.2 1.38% 70.4 25 25 0 80.0 0.72 916.4 11.5 220.6 189.3 2.4 45.6

Section 6.6 - Fig.21 22.4 5.25 1.97 0.2 1.38% 70.4 15 15 12.5 88.9 0.72 1020.7 11.5 239.3 255.8 2.9 60.0

Section 6.6 - Fig.21 22.4 5.25 1.97 0.2 1.38% 70.4 19 5 10 111.0 0.72 1125.7 10.1 249.7 255.9 2.3 56.8

Section 6.6 - Fig.21 22.4 5.25 1.97 0.2 1.38% 70.4 16 1.5 13.5 118.0 0.72 1163.6 9.9 254.2 274.8 2.3 60.0

Section 6.6 - Table 8 22.4 5.25 1.97 0.2 1.38% 70.4 25 25 25 81.7 0.72 547.4 6.7 131.1 246.7 3.0 59.1

Section 6.6 - Table 8 22.4 5.25 1.97 0.2 1.38% 70.4 25 25 25 81.7 0.72 547.4 6.7 131.1 246.7 3.0 59.1

Section 7.2 - Table 9 22.4 5.25 1.97 0.2 1.38% 70.4 25 7.5 13 110.0 0.72 978.0 8.9 217.4 245.8 2.2 54.7

Section 7.2 - Table 9 22.4 5.25 1.97 0.2 1.38% 70.4 20 25 21.5 97.0 0.72 682.4 7.0 156.6 250.2 2.6 57.4

CA

Siddique 2004 0 0 0 0.41 0.56% 100 27.5 54.7 0 35.9 1.10 514.7 14.4 231.4 96.3 2.7 43.3

Siddique 2004 0 0 40 0.4 0.64% 60 27.4 54.7 0 28.2 1.10 333.3 11.8 159.2 85.2 3.0 40.7

Siddique 2004 0 0 45 0.41 0.66% 55 27.5 54.7 0 25.6 1.10 309.2 12.1 151.2 83.7 3.3 40.9

Siddique 2004 0 0 50 0.4 0.69% 50 27.5 54.7 0 23.8 1.10 288.2 12.1 143.6 82.8 3.5 41.3

Miller 2016 0 0 0 0.35 1.43% 100 40 40 0 60.1 0.89 579.5 9.6 185.2 104.1 1.7 33.3

Miller 2016 0 0 30 0.35 1.43% 70 40 40 0 57.8 0.89 420.1 7.3 135.6 93.4 1.6 30.2

Miller 2016 0 0 50 0.35 1.32% 50 40 40 0 48.2 0.89 317.8 6.6 107.3 85.2 1.8 28.8

Poon (2000) 0 0 0 0.24 2.95% 100 31.1 41.0 0 90.2 0.72 798.9 8.9 186.7 157.6 1.7 36.8

Poon (2000) 0 0 25.0 0.24 2.95% 75 30.4 41.3 0 100.1 0.72 616.4 6.2 140.3 145.9 1.5 33.2

Poon (2000) 0 0 44.9 0.23 3.84% 55 29.2 42.0 0 85.4 0.72 478.9 5.6 113.4 154.1 1.8 36.5

Poon (2000) 0 0 0 0.19 5.10% 100 27.97 41.40 0 91.8 0.72 894.5 9.7 208.1 216.5 2.4 50.4

Poon (2000) 0 0 25.3 0.19 5.17% 75 27.7 41.7 0 98.1 0.72 679.8 6.9 155.6 202.0 2.1 46.2

Poon (2000) 0 0 45.1 0.19 5.09% 55 27.5 41.9 0 85.9 0.72 518.6 6.0 122.7 189.0 2.2 44.7

Lam (1997) 0 5.0 0 0.30 0.00% 95 31.3 47.0 0 78.8 0.89 593.8 7.5 177.4 105.7 1.3 31.6

Lam (1997) 0 5.0 0 0.4 0.00% 95 30.6 51.5 0 62.2 0.89 491.9 7.9 155.9 97.7 1.6 31.0

Lam (1997) 0 5.0 0 0.5 0.00% 95.0 28.2 52.7 0 54.1 0.89 496.0 9.2 162.8 96.5 1.8 31.7

Einsfeld (2006) 0 10.1 0 0.3 2.51% 89.9 37.1 42.8 0 62.9 0.89 536.7 8.5 169.6 143.8 2.3 45.5

Einsfeld (2006) 0 9.9 0 0.3 2.49% 90.1 35.2 42.9 0 82.3 0.72 575.6 7.0 137.6 150.7 1.8 36.0

Einsfeld (2006) 0 10.0 0 0.3 2.52% 90.0 31.3 42.8 0 85.2 0.72 669.0 7.9 158.5 170.7 2.0 40.5

Abdulkareem (2018) 0 15.8 0 0.13 2.38% 84.2 46.8 0 2.7 121.0 0.54 1177.4 9.7 191.7 302.0 2.5 49.2

Abdulkareem (2018) 0 16.1 0 0.14 1.01% 83.9 47.3 0 2.7 123.0 0.54 1134.3 9.2 183.9 251.5 2.0 40.8

Abdulkareem (2018) 0 16.4 0 0.13 2.19% 83.6 47.7 0 2.7 117.0 0.72 1140.7 9.7 249.7 292.5 2.5 64.0

Abdulkareem (2018) 0 16.7 0 0.13 2.52% 83.3 48.2 0 2.7 70.0 0.89 1125.6 16.1 346.3 302.5 4.3 93.1

SCMs (% by wt) 

replacing cement 

content

aggregates (% by 

wt) replacing cm 

content

HPCs and UHPCs developed in sections 6.6 and 7.2 following new test protocol

UHPC mixtures tested following New Test protocol

ρcolumn ρcrackingReferences
56th-day 

fc (MPa)
λfr

Total GWP 

for the 

mixture                     

(kg 

CO2e/m3)

χcolumn χcracking

Total cost 

for the 

mixture 

($/m3)

NSC mixtures from the literature

SCC mixtures from the literature

HSCs mixtures from the literature

UHPC mixtures from the literature

UHPC mixtures tested following ASTM C1856
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APPENDIX D 

Codes used to develop the models in the study herein 

#### This report summarizes the results from Phase A of the Optimization study on UHPC samples 
tested at the age of 56 day old. 

 
```{r setup, include=FALSE} 
knitr::opts_chunk$set( 
 echo = FALSE, 
 message = FALSE, 
 warning = FALSE 
) 
``` 
 
```{r loading results, echo=FALSE, message=FALSE, warning=FALSE} 
library(dslabs) 
library(tidyverse) 
library(dplyr) 
library(tidyverse) 
library(tidytext) 
library(ggthemes) 
library(ggrepel) 
library(gridExtra) 
library(gtools) 
library(rvest) 
library(purrr) 
library(pdftools) 
library(stringr) 
library(lubridate) 
library(tinytex) 
library(readxl) 
library(broom) 
library(reshape2) 
library(lpSolve) 
library(caret) 
library(e1071) 
library(matrixStats) 
library(randomForest) 
library(openxlsx) 
library(rio) 
library(gam) 
library("plot3D") 
library("writexl") 
 
options(digits = 3) 
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Phase_A_Results <- read_excel("D:/NSF Project/UHPC/PASTE EVALUATION/taguchi method - Mostafa 
paper/Results/Phase A - 1 day results - Rstudio.xlsx") 
 
Phase_AA_Results <- read_excel("D:/NSF Project/UHPC/PASTE EVALUATION/taguchi method - Mostafa 
paper/Results/Phase AA - 1 day results - Rstudio.xlsx") 
 
Phase_O_Results <- read_excel("D:/NSF Project/UHPC/PASTE EVALUATION/taguchi method - Mostafa 
paper/Results/Phase O - 1 day results - Rstudio.xlsx") 
``` 
 
```{r data wrangling, echo=FALSE, message=FALSE, warning=FALSE} 
Phase_A_Results <- data.frame(Phase_A_Results,stringsAsFactors = TRUE) 
Phase_A_Results$Original_description<-as.factor(Phase_A_Results$Original_description) 
Phase_A_Results$Material_number<-as.factor(Phase_A_Results$Material_number) 
Phase_A_Results$Test_Protocol<-as.factor(Phase_A_Results$Test_Protocol) 
Phase_A_Results$End_specimen_condition<-as.factor(Phase_A_Results$End_specimen_condition) 
Phase_A_Results$Pre_treatment<-as.factor(Phase_A_Results$Pre_treatment) 
Phase_A_Results$Molding_material<-as.factor(Phase_A_Results$Molding_material) 
Phase_A_Results$Reference<-as.factor(Phase_A_Results$Reference) 
Phase_A_Results$Mixing_Process<-as.factor(Phase_A_Results$Mixing_Process) 
Phase_A_Results$Fracture_Pattern_56D<-as.factor(Phase_A_Results$Fracture_Pattern_56D) 
 
Phase_AA_Results <- data.frame(Phase_AA_Results,stringsAsFactors = TRUE) 
Phase_AA_Results$Original_description<-as.factor(Phase_AA_Results$Original_description) 
Phase_AA_Results$Material_number<-as.factor(Phase_AA_Results$Material_number) 
Phase_AA_Results$Test_Protocol<-as.factor(Phase_AA_Results$Test_Protocol) 
Phase_AA_Results$End_specimen_condition<-as.factor(Phase_AA_Results$End_specimen_condition) 
Phase_AA_Results$Pre_treatment<-as.factor(Phase_AA_Results$Pre_treatment) 
Phase_AA_Results$Molding_material<-as.factor(Phase_AA_Results$Molding_material) 
Phase_AA_Results$Reference<-as.factor(Phase_AA_Results$Reference) 
Phase_AA_Results$Mixing_Process<-as.factor(Phase_AA_Results$Mixing_Process) 
Phase_AA_Results$Fracture_Pattern_56D<-as.factor(Phase_AA_Results$Fracture_Pattern_56D) 
 
Phase_O_Results <- data.frame(Phase_O_Results,stringsAsFactors = TRUE) 
Phase_O_Results$Original_description<-as.factor(Phase_O_Results$Original_description) 
Phase_O_Results$Material_number<-as.factor(Phase_O_Results$Material_number) 
Phase_O_Results$Test_Protocol<-as.factor(Phase_O_Results$Test_Protocol) 
Phase_O_Results$End_specimen_condition<-as.factor(Phase_O_Results$End_specimen_condition) 
Phase_O_Results$Pre_treatment<-as.factor(Phase_O_Results$Pre_treatment) 
Phase_O_Results$Molding_material<-as.factor(Phase_O_Results$Molding_material) 
Phase_O_Results$Reference<-as.factor(Phase_O_Results$Reference) 
Phase_O_Results$Mixing_Process<-as.factor(Phase_O_Results$Mixing_Process) 
Phase_O_Results$Fracture_Pattern_56D<-as.factor(Phase_O_Results$Fracture_Pattern_56D) 
 
Phase_A_Results_combined <- full_join(Phase_A_Results,Phase_AA_Results) 
``` 
 



145 
 

 
## Experimental results 
 
```{r Summary of experimental results, echo=FALSE, fig.height=8, fig.width=16, message=FALSE, 
warning=FALSE} 
 
options(digits = 2) 
Experimental_mix_rank <- Phase_A_Results_combined %>% filter(Mixing_Process=="High shear 
mixing")%>% group_by(Material_number)%>% 
summarize(Slag=mean(Slag_percent_wt),Microsilica=mean(Microsilica_percent_wt),FlyAsh=mean(FlyAs
h_percent_wt),wcm=mean(w_cm),Stress_1D=mean(Stress_1D_MPa),Stress_56D=mean(Stress_56D_MP
a)) %>% as.data.frame() 
 
Phase_A_Results %>% filter(Mixing_Process=="High shear mixing")%>% 
group_by(Material_number)%>% 
summarize(Stress_MPa=mean(Stress_56D_MPa),sd_MPa=sd(Stress_56D_MPa)) %>% 
select(Material_number,Stress_MPa,sd_MPa) %>% as.matrix() 
 
Phase_A_Results %>% filter(Mixing_Process=="High shear mixing")%>% 
group_by(Material_number)%>% 
summarize(Stress_MPa=mean(Stress_56D_MPa),sd_MPa=sd(Stress_56D_MPa)) %>% select(sd_MPa) 
%>% summarize(sd_mean=mean(sd_MPa)) 
 
Phase_AA_Results %>% filter(Mixing_Process=="High shear mixing")%>% 
group_by(Material_number)%>% 
summarize(Stress_MPa=mean(Stress_56D_MPa),sd_MPa=sd(Stress_56D_MPa)) %>% 
select(Material_number,Stress_MPa,sd_MPa) %>% as.matrix() 
 
Phase_AA_Results %>% filter(Mixing_Process=="High shear mixing")%>% 
group_by(Material_number)%>% 
summarize(Stress_MPa=mean(Stress_56D_MPa),sd_MPa=sd(Stress_56D_MPa)) %>% select(sd_MPa) 
%>% summarize(sd_mean=mean(sd_MPa)) 
 
Phase_O_Results %>% filter(Mixing_Process=="High shear mixing")%>% 
group_by(Material_number)%>% 
summarize(Stress_MPa=mean(Stress_56D_MPa),sd_MPa=sd(Stress_56D_MPa)) %>% 
select(Material_number,Stress_MPa,sd_MPa) %>% as.matrix() 
 
Phase_O_Results %>% filter(Mixing_Process=="High shear mixing")%>% 
group_by(Material_number)%>% 
summarize(Stress_MPa=mean(Stress_56D_MPa),sd_MPa=sd(Stress_56D_MPa)) %>% select(sd_MPa) 
%>% summarize(sd_mean=mean(sd_MPa)) 
``` 
 
###  Fracture Pattern vs Stress 
 
```{r Fracture Pattern vs Stress, echo=FALSE, fig.height=8, fig.width=16, message=FALSE, warning=FALSE} 
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full_join(Phase_A_Results_combined,Phase_O_Results) %>% filter(Mixing_Process=="High shear 
mixing") %>% mutate(Material_number=reorder(Material_number,Stress_56D_MPa,FUN = mean)) %>% 
ggplot(aes(Fracture_Pattern_56D,Stress_56D_MPa,color=w_cm))+geom_point()+geom_text_repel(aes(
Fracture_Pattern_56D,Stress_56D_MPa,label=Material_number)) 
 
full_join(Phase_A_Results_combined,Phase_O_Results) %>% filter(Mixing_Process=="High shear 
mixing") %>% mutate(Material_number=reorder(Material_number,Stress_56D_MPa,FUN = mean)) %>% 
ggplot(aes(Fracture_Pattern_56D,Stress_56D_MPa,color=HRWR_per_cm_by_wt))+geom_point()+geom
_text_repel(aes(Fracture_Pattern_56D,Stress_56D_MPa,label=Material_number)) 
 
full_join(Phase_A_Results_combined,Phase_O_Results) %>% filter(Mixing_Process=="High shear 
mixing") %>% mutate(Material_number=reorder(Material_number,Stress_56D_MPa,FUN = mean)) %>% 
ggplot(aes(Fracture_Pattern_56D,Stress_56D_MPa,color=Slump_cm))+geom_point()+geom_text_repel(
aes(Fracture_Pattern_56D,Stress_56D_MPa,label=Material_number)) 
 
``` 
 
### Cross validation method with k-folds to optimize Knn model model to fit matrix with average stress 
results per Mix 
 
```{r Evaluate k values for matrix with average stress, echo=FALSE, fig.height=8, fig.width=16, 
message=FALSE, warning=FALSE} 
 
set.seed(1997, sample.kind = "Rounding") 
FSixDaysPredictors <- Phase_A_Results %>% filter(Mixing_Process=="High shear mixing")%>% 
group_by(Material_number)%>% summarize(Stress=mean(Stress_56D_MPa),Slag=mean( 
Slag_percent_wt),Microsilica=mean(Microsilica_percent_wt),FlyAsh=mean(FlyAsh_percent_wt),wcm=m
ean(w_cm)) %>% select(Slag,Microsilica,FlyAsh,wcm) %>% as.matrix() 
FSixDaysOutcome <- Phase_A_Results %>% filter(Mixing_Process=="High shear mixing")%>% 
group_by(Material_number)%>% summarize(stress=mean(Stress_56D_MPa)) %>% select(stress) %>% 
as.matrix() 
FSixDaysOutcome <- as.numeric(FSixDaysOutcome) 
 
set.seed(1997, sample.kind = "Rounding") 
inTrain_80 <- createDataPartition(FSixDaysOutcome,p=0.8,list = FALSE) 
trainX_80 <- FSixDaysPredictors[inTrain_80,] 
trainY_80 <- FSixDaysOutcome[inTrain_80] 
testX_80 <- FSixDaysPredictors[-inTrain_80,] 
testY_80 <- FSixDaysOutcome[-inTrain_80] 
train_set_80 <- cbind(trainX_80,stress=trainY_80) %>% as.data.frame() 
test_set_80 <- cbind(testX_80,stress=testY_80) %>% as.data.frame() 
trControl <- trainControl(method = "repeatedcv", number = 5, repeats = 10, p=0.8) 
fit_knn_avg_80 <- train(stress ~. ,data = 
train_set_80,tuneGrid=expand.grid(k=1:15),method="knn",trControl=trControl,preProc=c('center','scale
')) 
 
set.seed(1997, sample.kind = "Rounding") 
inTrain_100 <- createDataPartition(FSixDaysOutcome,p=1,list = FALSE) 



147 
 

trainX_100 <- FSixDaysPredictors[inTrain_100,] 
trainY_100 <- FSixDaysOutcome[inTrain_100] 
testX_100 <- FSixDaysPredictors[-inTrain_100,] 
testY_100 <- FSixDaysOutcome[-inTrain_100] 
train_set_100 <- cbind(trainX_100,stress=trainY_100) %>% as.data.frame() 
test_set_100 <- cbind(testX_100,stress=testY_100) %>% as.data.frame() 
trControl <- trainControl(method = "repeatedcv", number = 5, repeats = 10, p=0.8) 
fit_knn_avg_100 <- train(stress ~. ,data = 
train_set_100,tuneGrid=expand.grid(k=1:18),method="knn",trControl=trControl,preProc=c('center','scal
e')) 
 
set.seed(1997, sample.kind = "Rounding") 
FSixDaysPredictorscombined <- Phase_A_Results_combined %>% filter(Mixing_Process=="High shear 
mixing")%>% group_by(Material_number)%>% summarize(Stress=mean(Stress_56D_MPa),Slag=mean( 
Slag_percent_wt),Microsilica=mean(Microsilica_percent_wt),FlyAsh=mean(FlyAsh_percent_wt),wcm=m
ean(w_cm)) %>% select(Slag,Microsilica,FlyAsh,wcm) %>% as.matrix() 
FSixDaysOutcomecombined <- Phase_A_Results_combined %>% filter(Mixing_Process=="High shear 
mixing")%>% group_by(Material_number)%>% summarize(stress=mean(Stress_56D_MPa)) %>% 
select(stress) %>% as.matrix() 
FSixDaysOutcomecombined <- as.numeric(FSixDaysOutcomecombined) 
 
set.seed(1997, sample.kind = "Rounding") 
inTrain_80_combined <- createDataPartition(FSixDaysOutcomecombined,p=0.8,list = FALSE) 
trainX_80_combined <- FSixDaysPredictorscombined[inTrain_80_combined,] 
trainY_80_combined <- FSixDaysOutcomecombined[inTrain_80_combined] 
testX_80_combined <- FSixDaysPredictorscombined[-inTrain_80_combined,] 
testY_80_combined <- FSixDaysOutcomecombined[-inTrain_80_combined] 
train_set_80_combined <- cbind(trainX_80_combined,stress=trainY_80_combined) %>% as.data.frame() 
test_set_80_combined <- cbind(testX_80_combined,stress=testY_80_combined) %>% as.data.frame() 
trControl_80 <- trainControl(method = "repeatedcv", number = 8, repeats = 8, p=0.8) 
fit_knn_avg_80_combined <- train(stress ~. ,data = 
train_set_80_combined,tuneGrid=expand.grid(k=1:24),method="knn",trControl=trControl_80,preProc=c
('center','scale')) 
 
set.seed(1997, sample.kind = "Rounding") 
FSixDaysPredictorsAA <- Phase_AA_Results %>% filter(Mixing_Process=="High shear mixing")%>% 
group_by(Material_number)%>% summarize(Stress=mean(Stress_56D_MPa),Slag=mean( 
Slag_percent_wt),Microsilica=mean(Microsilica_percent_wt),FlyAsh=mean(FlyAsh_percent_wt),wcm=m
ean(w_cm)) %>% select(Slag,Microsilica,FlyAsh,wcm) %>% as.matrix() 
FSixDaysOutcomeAA <- Phase_AA_Results %>% filter(Mixing_Process=="High shear mixing")%>% 
group_by(Material_number)%>% summarize(stress=mean(Stress_56D_MPa)) %>% select(stress) %>% 
as.matrix() 
FSixDaysOutcomeAA <- as.numeric(FSixDaysOutcomeAA) 
 
set.seed(1997, sample.kind = "Rounding") 
inTrain_AA <- createDataPartition(FSixDaysOutcomeAA,p=(10/15),list = FALSE) 
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trainX_final <- 
as.matrix(full_join(as.data.frame(FSixDaysPredictors),as.data.frame(FSixDaysPredictorsAA[inTrain_AA,]))
) 
FSixDaysOutcomeFinal <- FSixDaysOutcome %>% as.data.frame() %>% mutate(stress=FSixDaysOutcome) 
%>% select(stress) 
FSixDaysOutcomeFinalAA <- FSixDaysOutcomeAA[inTrain_AA] %>% as.data.frame() %>% 
mutate(stress=FSixDaysOutcomeAA[inTrain_AA]) %>% select(stress) 
trainY_final <- 
as.matrix(full_join(as.data.frame(FSixDaysOutcomeFinal),as.data.frame(FSixDaysOutcomeFinalAA))) 
testX_final <- FSixDaysPredictorsAA[-inTrain_AA,] 
testY_final <- FSixDaysOutcomeAA[-inTrain_AA] 
train_set_final <- cbind(trainX_final,stress=trainY_final) %>% as.data.frame() 
test_set_final <- cbind(testX_final,stress=testY_final) %>% as.data.frame() 
trControl <- trainControl(method = "repeatedcv", number = 8, repeats = 8, p=0.875) 
fit_knn_avg_final <- train(stress ~. ,data = 
train_set_final,tuneGrid=expand.grid(k=1:24),method="knn",trControl=trControl,preProc=c('center','sca
le')) 
 
set.seed(1997, sample.kind = "Rounding") 
inTrain_100_combined <- createDataPartition(FSixDaysOutcomecombined,p=1,list = FALSE) 
trainX_100_combined <- FSixDaysPredictorscombined[inTrain_100_combined,] 
trainY_100_combined <- FSixDaysOutcomecombined[inTrain_100_combined] 
testX_100_combined <- FSixDaysPredictorscombined[-inTrain_100_combined,] 
testY_100_combined <- FSixDaysOutcomecombined[-inTrain_100_combined] 
train_set_100_combined <- cbind(trainX_100_combined,stress=trainY_100_combined) %>% 
as.data.frame() 
test_set_100_combined <- cbind(testX_100_combined,stress=testY_100_combined) %>% 
as.data.frame() 
trControl <- trainControl(method = "repeatedcv", number = 10, repeats = 10, p=0.9) 
fit_knn_avg_100_combined <- train(stress ~. ,data = 
train_set_100_combined,tuneGrid=expand.grid(k=1:24),method="knn",trControl=trControl,preProc=c('c
enter','scale')) 
 
set.seed(1997, sample.kind = "Rounding") 
FSixDaysPredictorsO <- Phase_O_Results %>% filter(Mixing_Process=="High shear mixing")%>% 
group_by(Material_number)%>% summarize(Stress=mean(Stress_56D_MPa),Slag=mean( 
Slag_percent_wt),Microsilica=mean(Microsilica_percent_wt),FlyAsh=mean(FlyAsh_percent_wt),wcm=m
ean(w_cm)) %>% select(Slag,Microsilica,FlyAsh,wcm) %>% as.matrix() 
FSixDaysOutcomeO <- Phase_O_Results %>% filter(Mixing_Process=="High shear mixing")%>% 
group_by(Material_number)%>% summarize(stress=mean(Stress_56D_MPa)) %>% select(stress) %>% 
as.matrix() 
FSixDaysOutcomeO <- as.numeric(FSixDaysOutcomeO) 
 
testX_O <- FSixDaysPredictorsO 
testY_O <- FSixDaysOutcomeO 
test_set_O <- cbind(testX_O,stress=testY_O) %>% as.data.frame() 
 
``` 
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### Evaluate knn model generated by fitting matrix with average stress results 
 
```{r Evaluate knn model fitting matrix with average stress results, echo=FALSE, fig.height=8, 
fig.width=16, message=FALSE, warning=FALSE} 
 
options(digits = 3) 
knn_avg_methods <- 
c("fit_knn_avg_80","fit_knn_avg_100","fit_knn_avg_80_combined","fit_knn_avg_final","fit_knn_avg_1
00_combined") 
best_tunes <- 
c(as.numeric(fit_knn_avg_80$bestTune),as.numeric(fit_knn_avg_100$bestTune),as.numeric(fit_knn_av
g_80_combined$bestTune),as.numeric(fit_knn_avg_final$bestTune),as.numeric(fit_knn_avg_100_comb
ined$bestTune)) 
knn_avg_train_rmse <- 
c(min(fit_knn_avg_80$results$RMSE),min(fit_knn_avg_100$results$RMSE),min(fit_knn_avg_80_combin
ed$results$RMSE),min(fit_knn_avg_final$results$RMSE),min(fit_knn_avg_100_combined$results$RMSE
)) 
 
pred_knn_avg_80 <- predict(fit_knn_avg_80,newdata = test_set_80) 
pred_knn_avg_80_combined <- predict(fit_knn_avg_80_combined,newdata = test_set_80_combined) 
pred_knn_avg_final <- predict(fit_knn_avg_final,newdata = test_set_final) 
 
pred_knn_avg_80_O <- predict(fit_knn_avg_80,newdata = test_set_O) 
pred_knn_avg_100_O <- predict(fit_knn_avg_100,newdata = test_set_O) 
pred_knn_avg_80_combined_O <- predict(fit_knn_avg_80_combined,newdata = test_set_O) 
pred_knn_avg_final_O <- predict(fit_knn_avg_final,newdata = test_set_O) 
pred_knn_avg_100_combined_O <- predict(fit_knn_avg_100_combined,newdata = test_set_O) 
 
knn_avg_test_rmse <- 
c(RMSE(pred_knn_avg_80,test_set_80$stress),NA,RMSE(pred_knn_avg_80_combined,test_set_80_com
bined$stress),RMSE(pred_knn_avg_final,test_set_final$stress),NA) 
 
knn_avg_O_rmse <- 
c(RMSE(pred_knn_avg_80_O,test_set_O$stress),RMSE(pred_knn_avg_100_O,test_set_O$stress),RMSE(
pred_knn_avg_80_combined_O,test_set_O$stress),RMSE(pred_knn_avg_final_O,test_set_O$stress),RM
SE(pred_knn_avg_100_combined_O,test_set_O$stress)) 
 
knn_avg_methods_rmse_summary <- 
data.frame(method=knn_avg_methods,k=best_tunes,train_rmse=knn_avg_train_rmse,test_rmse=knn_
avg_test_rmse,optimum_test_rmse=knn_avg_O_rmse) 
 
knn_avg_methods_rmse_summary 
plot(fit_knn_avg_80) 
plot(fit_knn_avg_100) 
plot(fit_knn_avg_80_combined) 
plot(fit_knn_avg_final) 
plot(fit_knn_avg_100_combined) 
varImp(fit_knn_avg_80) 



150 
 

varImp(fit_knn_avg_100) 
varImp(fit_knn_avg_80_combined) 
varImp(fit_knn_avg_final) 
varImp(fit_knn_avg_100_combined) 
 
``` 
 
### Evaluate RMSE on test data knn avg 
 
```{r Evaluate RMSE on test data knn avg, echo=FALSE, fig.height=8, fig.width=16, message=FALSE, 
warning=FALSE} 
 
plot(pred_knn_avg_80,test_set_80$stress,ylim = c(0,160),xlim = c(0,160)) 
abline(0,1) 
plot(pred_knn_avg_80_combined,test_set_80_combined$stress,ylim = c(0,160),xlim = c(0,160)) 
abline(0,1) 
plot(pred_knn_avg_final,test_set_final$stress,ylim = c(0,160),xlim = c(0,160)) 
abline(0,1) 
 
plot(pred_knn_avg_80_O,test_set_O$stress,ylim = c(0,160),xlim=c(0,160)) 
abline(0,1) 
plot(pred_knn_avg_100_O,test_set_O$stress,ylim = c(0,160),xlim=c(0,160)) 
abline(0,1) 
plot(pred_knn_avg_80_combined_O,test_set_O$stress,ylim = c(0,160),xlim=c(0,160)) 
abline(0,1) 
plot(pred_knn_avg_final_O,test_set_O$stress,ylim = c(0,160),xlim=c(0,160)) 
abline(0,1) 
plot(pred_knn_avg_100_combined_O,test_set_O$stress,ylim = c(0,160),xlim=c(0,160)) 
abline(0,1) 
 
``` 
 
### Generating expanded matrix with predictors 
 
```{r Generating expanded matrix with predictors, echo=FALSE, fig.height=8, fig.width=16, 
message=FALSE, warning=FALSE} 
 
SlagPredictor <- as.matrix(seq(0,60,length.out = 100)) 
MicrosilicaPredictor <- as.matrix(seq(0,20,length.out = 100)) 
FlyAshPredictor <- as.matrix(seq(0,15,length.out = 100)) 
PredictorsMatrix <- 
data.frame(Slag=SlagPredictor,Microsilica=MicrosilicaPredictor,FlyAsh=FlyAshPredictor) 
options(digits = 1) 
ExpandedPredictorsMatrix <- expand.grid(df=PredictorsMatrix) %>% mutate(wcm=0.2) 
``` 
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### Generating the predictive vector for the expanded matrix knn avg 
 
```{r Generating the predictive vector for the expanded matrix knn avg, echo=FALSE, fig.height=8, 
fig.width=16, message=FALSE, warning=FALSE} 
 
FSixDaysYhat_knn_avg_80 <- predict(fit_knn_avg_80,ExpandedPredictorsMatrix) 
FSixDaysTrialResults_knn_avg_80 <- ExpandedPredictorsMatrix %>% 
mutate(y_hat=FSixDaysYhat_knn_avg_80) 
FSixDaysTrialResults_knn_avg_80 <- FSixDaysTrialResults_knn_avg_80 %>% as.data.frame() %>% 
rename(Expected_Stress_MPa=y_hat) 
 
FSixDaysYhat_knn_avg_100 <- predict(fit_knn_avg_100,ExpandedPredictorsMatrix) 
FSixDaysTrialResults_knn_avg_100 <- ExpandedPredictorsMatrix %>% 
mutate(y_hat=FSixDaysYhat_knn_avg_100) 
FSixDaysTrialResults_knn_avg_100 <- FSixDaysTrialResults_knn_avg_100 %>% as.data.frame() %>% 
rename(Expected_Stress_MPa=y_hat) 
 
FSixDaysYhat_knn_avg_80_combined <- predict(fit_knn_avg_80_combined,ExpandedPredictorsMatrix) 
FSixDaysTrialResults_knn_avg_80_combined <- ExpandedPredictorsMatrix %>% 
mutate(y_hat=FSixDaysYhat_knn_avg_80_combined) 
FSixDaysTrialResults_knn_avg_80_combined <- FSixDaysTrialResults_knn_avg_80_combined %>% 
as.data.frame() %>% rename(Expected_Stress_MPa=y_hat) 
 
FSixDaysYhat_knn_avg_final <- predict(fit_knn_avg_final,ExpandedPredictorsMatrix) 
FSixDaysTrialResults_knn_avg_final <- ExpandedPredictorsMatrix %>% 
mutate(y_hat=FSixDaysYhat_knn_avg_final) 
FSixDaysTrialResults_knn_avg_final <- FSixDaysTrialResults_knn_avg_final %>% as.data.frame() %>% 
rename(Expected_Stress_MPa=y_hat) 
 
FSixDaysYhat_knn_avg_100_combined <- 
predict(fit_knn_avg_100_combined,ExpandedPredictorsMatrix) 
FSixDaysTrialResults_knn_avg_100_combined <- ExpandedPredictorsMatrix %>% 
mutate(y_hat=FSixDaysYhat_knn_avg_100_combined) 
FSixDaysTrialResults_knn_avg_100_combined <- FSixDaysTrialResults_knn_avg_100_combined %>% 
as.data.frame() %>% rename(Expected_Stress_MPa=y_hat) 
``` 
 
### Performance Density Diagram - faceted by Slag Content 
 
```{r Performance Density Diagram - faceted by Slag Content, echo=FALSE, fig.height=8, fig.width=16, 
message=FALSE, warning=FALSE} 
FSixDaysTrialResults_knn_avg_80 %>% filter(Slag %in% 
c(0,ExpandedPredictorsMatrix$Slag[26],ExpandedPredictorsMatrix$Slag[51],ExpandedPredictorsMatrix$
Slag[76],60)) %>% 
ggplot(aes(Microsilica,FlyAsh,z=Expected_Stress_MPa,fill=Expected_Stress_MPa))+geom_raster()+scale
_fill_gradientn(colors=c("#F8766D","white","#00BFC4"),limits=c(70,130))+facet_wrap(.~Slag,labeller = 
label_both) 
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FSixDaysTrialResults_knn_avg_100 %>% filter(Slag %in% 
c(0,ExpandedPredictorsMatrix$Slag[26],ExpandedPredictorsMatrix$Slag[51],ExpandedPredictorsMatrix$
Slag[76],60)) %>% 
ggplot(aes(Microsilica,FlyAsh,z=Expected_Stress_MPa,fill=Expected_Stress_MPa))+geom_raster()+scale
_fill_gradientn(colors=c("#F8766D","white","#00BFC4"),limits=c(70,130))+facet_wrap(.~Slag,labeller = 
label_both) 
 
FSixDaysTrialResults_knn_avg_80_combined %>% filter(Slag %in% 
c(0,ExpandedPredictorsMatrix$Slag[26],ExpandedPredictorsMatrix$Slag[51],ExpandedPredictorsMatrix$
Slag[76],60)) %>% 
ggplot(aes(Microsilica,FlyAsh,z=Expected_Stress_MPa,fill=Expected_Stress_MPa))+geom_raster()+scale
_fill_gradientn(colors=c("#F8766D","white","#00BFC4"),limits=c(70,130))+facet_wrap(.~Slag,labeller = 
label_both) 
 
FSixDaysTrialResults_knn_avg_final %>% filter(Slag %in% 
c(0,ExpandedPredictorsMatrix$Slag[26],ExpandedPredictorsMatrix$Slag[51],ExpandedPredictorsMatrix$
Slag[76],60)) %>% 
ggplot(aes(Microsilica,FlyAsh,z=Expected_Stress_MPa,fill=Expected_Stress_MPa))+geom_raster()+scale
_fill_gradientn(colors=c("#F8766D","white","#00BFC4"),limits=c(70,130))+facet_wrap(.~Slag,labeller = 
label_both) 
 
FSixDaysTrialResults_knn_avg_100_combined %>% filter(Slag %in% 
c(0,ExpandedPredictorsMatrix$Slag[26],ExpandedPredictorsMatrix$Slag[51],ExpandedPredictorsMatrix$
Slag[76],60)) %>% 
ggplot(aes(Microsilica,FlyAsh,z=Expected_Stress_MPa,fill=Expected_Stress_MPa))+geom_raster()+scale
_fill_gradientn(colors=c("#F8766D","white","#00BFC4"),limits=c(70,130))+facet_wrap(.~Slag,labeller = 
label_both) 
``` 
 
### Performance Density Diagram - faceted by Fly Ash Content 
 
```{r Performance Density Diagram - faceted by Fly Ash Content, echo=FALSE, fig.height=8, fig.width=16, 
message=FALSE, warning=FALSE} 
FSixDaysTrialResults_knn_avg_80 %>% filter(FlyAsh %in% 
c(0,FlyAshPredictor[14,],FlyAshPredictor[26,],FlyAshPredictor[51,],FlyAshPredictor[62,],15)) %>% 
ggplot(aes(Microsilica,Slag,z=Expected_Stress_MPa,fill=Expected_Stress_MPa))+geom_raster()+scale_fil
l_gradientn(colors=c("#F8766D","white","#00BFC4"),limits=c(70,130))+facet_wrap(.~FlyAsh,labeller = 
label_both) 
 
FSixDaysTrialResults_knn_avg_100 %>% filter(FlyAsh %in% 
c(0,FlyAshPredictor[14,],FlyAshPredictor[26,],FlyAshPredictor[51,],FlyAshPredictor[62,],15)) %>% 
ggplot(aes(Microsilica,Slag,z=Expected_Stress_MPa,fill=Expected_Stress_MPa))+geom_raster()+scale_fil
l_gradientn(colors=c("#F8766D","white","#00BFC4"),limits=c(70,130))+facet_wrap(.~FlyAsh,labeller = 
label_both) 
 
FSixDaysTrialResults_knn_avg_80_combined %>% filter(FlyAsh %in% 
c(0,FlyAshPredictor[14,],FlyAshPredictor[26,],FlyAshPredictor[51,],FlyAshPredictor[62,],15)) %>% 
ggplot(aes(Microsilica,Slag,z=Expected_Stress_MPa,fill=Expected_Stress_MPa))+geom_raster()+scale_fil
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l_gradientn(colors=c("#F8766D","white","#00BFC4"),limits=c(70,130))+facet_wrap(.~FlyAsh,labeller = 
label_both) 
 
FSixDaysTrialResults_knn_avg_final %>% filter(FlyAsh %in% 
c(0,FlyAshPredictor[14,],FlyAshPredictor[26,],FlyAshPredictor[51,],FlyAshPredictor[62,],15)) %>% 
ggplot(aes(Microsilica,Slag,z=Expected_Stress_MPa,fill=Expected_Stress_MPa))+geom_raster()+scale_fil
l_gradientn(colors=c("#F8766D","white","#00BFC4"),limits=c(70,130))+facet_wrap(.~FlyAsh,labeller = 
label_both) 
 
FSixDaysTrialResults_knn_avg_100_combined %>% filter(FlyAsh %in% 
c(0,FlyAshPredictor[14,],FlyAshPredictor[26,],FlyAshPredictor[51,],FlyAshPredictor[62,],15)) %>% 
ggplot(aes(Microsilica,Slag,z=Expected_Stress_MPa,fill=Expected_Stress_MPa))+geom_raster()+scale_fil
l_gradientn(colors=c("#F8766D","white","#00BFC4"),limits=c(70,130))+facet_wrap(.~FlyAsh,labeller = 
label_both) 
``` 
 
### Performance Density Diagram - faceted by Microsilica Content 
 
```{r Performance Density Diagram - faceted by Microsilica Content, echo=FALSE, fig.height=8, 
fig.width=16, message=FALSE, warning=FALSE} 
 
FSixDaysTrialResults_knn_avg_80 %>% filter(Microsilica %in% 
c(0,ExpandedPredictorsMatrix$Microsilica[2510],ExpandedPredictorsMatrix$Microsilica[5010],Expande
dPredictorsMatrix$Microsilica[7510],ExpandedPredictorsMatrix$Microsilica[10000])) %>% 
ggplot(aes(FlyAsh,Slag,z=Expected_Stress_MPa,fill=Expected_Stress_MPa))+geom_raster()+scale_fill_gr
adientn(colors=c("#F8766D","white","#00BFC4"),limits=c(70,130))+facet_wrap(.~Microsilica,labeller = 
label_both) 
 
FSixDaysTrialResults_knn_avg_100 %>% filter(Microsilica %in% 
c(0,ExpandedPredictorsMatrix$Microsilica[2510],ExpandedPredictorsMatrix$Microsilica[5010],Expande
dPredictorsMatrix$Microsilica[7510],ExpandedPredictorsMatrix$Microsilica[10000])) %>% 
ggplot(aes(FlyAsh,Slag,z=Expected_Stress_MPa,fill=Expected_Stress_MPa))+geom_raster()+scale_fill_gr
adientn(colors=c("#F8766D","white","#00BFC4"),limits=c(70,130))+facet_wrap(.~Microsilica,labeller = 
label_both) 
 
FSixDaysTrialResults_knn_avg_80_combined %>% filter(Microsilica %in% 
c(0,ExpandedPredictorsMatrix$Microsilica[2510],ExpandedPredictorsMatrix$Microsilica[5010],Expande
dPredictorsMatrix$Microsilica[7510],ExpandedPredictorsMatrix$Microsilica[10000])) %>% 
ggplot(aes(FlyAsh,Slag,z=Expected_Stress_MPa,fill=Expected_Stress_MPa))+geom_raster()+scale_fill_gr
adientn(colors=c("#F8766D","white","#00BFC4"),limits=c(70,130))+facet_wrap(.~Microsilica,labeller = 
label_both) 
 
FSixDaysTrialResults_knn_avg_final %>% filter(Microsilica %in% 
c(0,ExpandedPredictorsMatrix$Microsilica[2510],ExpandedPredictorsMatrix$Microsilica[5010],Expande
dPredictorsMatrix$Microsilica[7510],ExpandedPredictorsMatrix$Microsilica[10000])) %>% 
ggplot(aes(FlyAsh,Slag,z=Expected_Stress_MPa,fill=Expected_Stress_MPa))+geom_raster()+scale_fill_gr
adientn(colors=c("#F8766D","white","#00BFC4"),limits=c(70,130))+facet_wrap(.~Microsilica,labeller = 
label_both) 
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FSixDaysTrialResults_knn_avg_100_combined %>% filter(Microsilica %in% 
c(0,ExpandedPredictorsMatrix$Microsilica[2510],ExpandedPredictorsMatrix$Microsilica[5010],Expande
dPredictorsMatrix$Microsilica[7510],ExpandedPredictorsMatrix$Microsilica[10000])) %>% 
ggplot(aes(FlyAsh,Slag,z=Expected_Stress_MPa,fill=Expected_Stress_MPa))+geom_raster()+scale_fill_gr
adientn(colors=c("#F8766D","white","#00BFC4"),limits=c(70,130))+facet_wrap(.~Microsilica,labeller = 
label_both) 
``` 
 
###Optimum mix knn avg 
 
```{r Optimum mix, echo=FALSE, fig.height=8, fig.width=16, message=FALSE, warning=FALSE} 
 
optimum_knn_avg_80 <- 
as.data.frame(ExpandedPredictorsMatrix[which.max(FSixDaysTrialResults_knn_avg_80$Expected_Stress
_MPa),]) 
optimum_knn_avg_100 <- 
as.data.frame(ExpandedPredictorsMatrix[which.max(FSixDaysTrialResults_knn_avg_100$Expected_Stre
ss_MPa),]) 
optimum_knn_avg_80_combined <- as.data.frame( 
ExpandedPredictorsMatrix[which.max(FSixDaysTrialResults_knn_avg_80_combined$Expected_Stress_M
Pa),]) 
optimum_knn_avg_final <- 
as.data.frame(ExpandedPredictorsMatrix[which.max(FSixDaysTrialResults_knn_avg_final$Expected_Stre
ss_MPa),]) 
optimum_knn_avg_100_combined <- as.data.frame( 
ExpandedPredictorsMatrix[which.max(FSixDaysTrialResults_knn_avg_100_combined$Expected_Stress_
MPa),]) 
 
optimum_knn_avg_mixtures <- 
rbind(optimum_knn_avg_80,optimum_knn_avg_100,optimum_knn_avg_80_combined,optimum_knn_a
vg_final,optimum_knn_avg_100_combined) %>% as.data.frame() 
 
optimum_knn_avg_max <- 
c(max(FSixDaysTrialResults_knn_avg_80),max(FSixDaysTrialResults_knn_avg_100),max(FSixDaysTrialRes
ults_knn_avg_80_combined),max(FSixDaysTrialResults_knn_avg_final),max(FSixDaysTrialResults_knn_a
vg_100_combined)) 
 
optimum_knn_avg_summary <- 
data.frame(methods=knn_avg_methods,optimum_knn_avg_mixtures,predicted_stress_MPa=optimum_
knn_avg_max) 
optimum_knn_avg_summary 
 
test_set_O 
 
Experimental_mix_rank <- Phase_A_Results_combined %>% filter(Mixing_Process=="High shear 
mixing")%>% group_by(Material_number)%>% 
summarize(Slag=mean(Slag_percent_wt),Microsilica=mean(Microsilica_percent_wt),FlyAsh=mean(FlyAs
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h_percent_wt),Stress=mean(Stress_56D_MPa),wcm=mean(w_cm)) %>% arrange(desc(Stress)) %>% 
as.data.frame() %>% head(n=10) 
Experimental_mix_rank 
 
``` 
### Cross validation method with groupKfolds (by mix) to optimize Knn model with individual specimen 
results. All Phase A data was used as training data, while test data will be evaluated from optimum 
mixes batching 
 
```{r Evaluate k values for matrix with individual stress results, echo=FALSE, fig.height=8, fig.width=16, 
message=FALSE, warning=FALSE} 
 
set.seed(1997, sample.kind = "Rounding") 
 
FSixDaysPredictors_sp <- Phase_A_Results %>% filter(Mixing_Process=="High shear mixing") %>% 
select(Slag=Slag_percent_wt,Microsilica=Microsilica_percent_wt,FlyAsh=FlyAsh_percent_wt,wcm=w_c
m)%>% as.matrix() 
FSixDaysOutcome_sp <- Phase_A_Results %>% filter(Mixing_Process=="High shear mixing") %>% 
select(stress=Stress_56D_MPa)%>% as.matrix() 
FSixDaysOutcome_sp <- as.numeric(FSixDaysOutcome_sp) 
 
FSixDaysPredictors_sp_combined <- Phase_A_Results_combined %>% filter(Mixing_Process=="High 
shear mixing") %>% 
select(Slag=Slag_percent_wt,Microsilica=Microsilica_percent_wt,FlyAsh=FlyAsh_percent_wt,wcm=w_c
m)%>% as.matrix() 
FSixDaysOutcome_sp_combined <- Phase_A_Results_combined %>% filter(Mixing_Process=="High 
shear mixing") %>% select(stress=Stress_56D_MPa)%>% as.matrix() 
FSixDaysOutcome_sp_combined <- as.numeric(FSixDaysOutcome_sp_combined) 
 
set.seed(1997, sample.kind = "Rounding") 
x <- Phase_A_Results %>% filter(Mixing_Process=="High shear mixing") %>% 
select(Material_number)%>% mutate(Material_number=as.numeric(Material_number))%>% 
as.data.frame() 
x <- x$Material_number 
folds <- groupKFold(x,k=5) 
inTrain_sp_80 <- which((Phase_A_Results$Material_number %in% folds$Fold1)) 
trainX_sp_80 <- FSixDaysPredictors_sp[inTrain_sp_80,] 
trainY_sp_80 <- FSixDaysOutcome_sp[inTrain_sp_80] 
testX_sp_80 <- FSixDaysPredictors_sp[-inTrain_sp_80,] 
testY_sp_80 <- FSixDaysOutcome_sp[-inTrain_sp_80] 
train_set_sp_80 <- cbind(trainX_sp_80,stress=trainY_sp_80) %>% as.data.frame() 
test_set_sp_80 <- cbind(testX_sp_80,stress=testY_sp_80) %>% as.data.frame() 
 
set.seed(1996, sample.kind = "Rounding") 
x_80 <- x[which((Phase_A_Results$Material_number %in% folds$Fold1))] 
folds_80 <- groupKFold((x_80),k=4) 
 
trControl_sp_80 <- trainControl(method = "cv", number = 4, index = (folds_80)) 
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fit_knn_sp_80 <- train(stress ~. ,data = 
train_set_sp_80,tuneGrid=expand.grid(k=1:38),method="knn",trControl=trControl_sp_80,preProc=c('ce
nter','scale')) 
 
#I changed foldsFt to folds 
Phase_A_Results_80 <- Phase_A_Results[which((Phase_A_Results$Material_number %in% 
folds$Fold1)),] 
 
mix_excluded_fold1_80 <- Phase_A_Results_80 %>% filter (!(Material_number %in% folds_80$Fold1)) 
%>% summarize (unique(Material_number)) %>% as.matrix 
mix_excluded_fold2_80 <- Phase_A_Results_80 %>% filter (!(Material_number %in% folds_80$Fold2)) 
%>% summarize (unique(Material_number)) %>% as.matrix 
mix_excluded_fold3_80 <- Phase_A_Results_80 %>% filter (!(Material_number %in% folds_80$Fold3)) 
%>% summarize (unique(Material_number)) %>% as.matrix 
mix_excluded_fold4_80 <- Phase_A_Results_80 %>% filter (!(Material_number %in% folds_80$Fold4)) 
%>% summarize (unique(Material_number)) %>% as.matrix 
 
trainX_sp_100 <- FSixDaysPredictors_sp 
trainY_sp_100 <- FSixDaysOutcome_sp 
train_set_sp_100 <- cbind(trainX_sp_100,stress=trainY_sp_100) %>% as.data.frame() 
 
set.seed(1997, sample.kind = "Rounding") 
trControl_sp_100 <- trainControl(method = "cv", number = 5, index = (folds)) 
fit_knn_sp_100 <- train(stress ~. ,data = 
train_set_sp_100,tuneGrid=expand.grid(k=1:45),method="knn",trControl=trControl_sp_100,preProc=c('
center','scale')) 
 
set.seed(1997, sample.kind = "Rounding") 
x_combined <- Phase_A_Results_combined %>% filter(Mixing_Process=="High shear mixing") %>% 
select(Material_number)%>% mutate(Material_number=as.numeric(Material_number))%>% 
as.data.frame() 
x_combined <- x_combined$Material_number 
folds_combined <- groupKFold(x_combined,k=8) 
 
#double check the test and train folds prior to further grouping 
mix_excluded_fold1_100_combined <- Phase_A_Results_combined %>% filter (!(Material_number 
%in% folds_combined$Fold1)) %>% summarize (unique(Material_number)) %>% as.matrix 
mix_excluded_fold2_100_combined <- Phase_A_Results_combined %>% filter (!(Material_number 
%in% folds_combined$Fold2)) %>% summarize (unique(Material_number)) %>% as.matrix 
mix_excluded_fold3_100_combined <- Phase_A_Results_combined %>% filter (!(Material_number 
%in% folds_combined$Fold3)) %>% summarize (unique(Material_number)) %>% as.matrix 
mix_excluded_fold4_100_combined <- Phase_A_Results_combined %>% filter (!(Material_number 
%in% folds_combined$Fold4)) %>% summarize (unique(Material_number)) %>% as.matrix 
mix_excluded_fold5_100_combined <- Phase_A_Results_combined %>% filter (!(Material_number 
%in% folds_combined$Fold5)) %>% summarize (unique(Material_number)) %>% as.matrix 
mix_excluded_fold6_100_combined <- Phase_A_Results_combined %>% filter (!(Material_number 
%in% folds_combined$Fold6)) %>% summarize (unique(Material_number)) %>% as.matrix 
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mix_excluded_fold7_100_combined <- Phase_A_Results_combined %>% filter (!(Material_number 
%in% folds_combined$Fold7)) %>% summarize (unique(Material_number)) %>% as.matrix 
mix_excluded_fold8_100_combined <- Phase_A_Results_combined %>% filter (!(Material_number 
%in% folds_combined$Fold8)) %>% summarize (unique(Material_number)) %>% as.matrix 
 
inTrain_sp_80_combined <- which((Phase_A_Results_combined$Material_number %in% 
folds_combined$Fold3)) 
trainX_sp_80_combined <- FSixDaysPredictors_sp_combined[inTrain_sp_80_combined,] 
trainY_sp_80_combined <- FSixDaysOutcome_sp_combined[inTrain_sp_80_combined] 
testX_sp_80_combined <- FSixDaysPredictors_sp_combined[-inTrain_sp_80_combined,] 
testY_sp_80_combined <- FSixDaysOutcome_sp_combined[-inTrain_sp_80_combined] 
train_set_sp_80_combined <- cbind(trainX_sp_80_combined,stress=trainY_sp_80_combined) %>% 
as.data.frame() 
test_set_sp_80_combined <- cbind(testX_sp_80_combined,stress=testY_sp_80_combined) %>% 
as.data.frame() 
 
set.seed(1996, sample.kind = "Rounding") 
x_80_combined <- x_combined[which(Phase_A_Results_combined$Material_number %in% 
folds_combined$Fold3)] 
folds_80_combined <- groupKFold((x_80_combined),k=6) 
 
trControl_80_combined <- trainControl(method = "cv", number = 8, index = (folds_80_combined)) 
fit_knn_sp_80_combined <- train(stress ~. ,data = 
train_set_sp_80_combined,tuneGrid=expand.grid(k=1:80),method="knn",trControl=trControl_80_comb
ined,preProc=c('center','scale')) 
 
Phase_A_Results_80_combined <- 
Phase_A_Results_combined[which((Phase_A_Results_combined$Material_number %in% 
folds_combined$Fold3)),] 
 
mix_excluded_fold1_80_combined <- Phase_A_Results_80_combined %>% filter (!(Material_number 
%in% folds_80_combined$Fold1)) %>% summarize (unique(Material_number)) %>% as.matrix 
mix_excluded_fold2_80_combined <- Phase_A_Results_80_combined %>% filter (!(Material_number 
%in% folds_80_combined$Fold2)) %>% summarize (unique(Material_number)) %>% as.matrix 
mix_excluded_fold3_80_combined <- Phase_A_Results_80_combined %>% filter(!(Material_number 
%in% folds_80_combined$Fold3)) %>% summarize (unique(Material_number)) %>% as.matrix 
mix_excluded_fold4_80_combined <- Phase_A_Results_80_combined %>% filter(!(Material_number 
%in% folds_80_combined$Fold4)) %>% summarize (unique(Material_number)) %>% as.matrix 
mix_excluded_fold5_80_combined <- Phase_A_Results_80_combined %>% filter(!(Material_number 
%in% folds_80_combined$Fold5)) %>% summarize (unique(Material_number)) %>% as.matrix 
mix_excluded_fold6_80_combined <- Phase_A_Results_80_combined %>% filter(!(Material_number 
%in% folds_80_combined$Fold6)) %>% summarize (unique(Material_number)) %>% as.matrix 
 
trainX_sp_100_combined <- FSixDaysPredictors_sp_combined 
trainY_sp_100_combined <- FSixDaysOutcome_sp_combined 
train_set_sp_100_combined <- cbind(trainX_sp_100_combined,stress=trainY_sp_100_combined) %>% 
as.data.frame() 
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set.seed(1996, sample.kind = "Rounding") 
trControl_sp_100_combined <- trainControl(method = "cv", number = 8, index = (folds_combined)) 
fit_knn_sp_100_combined <- train(stress ~. ,data = 
train_set_sp_100_combined,tuneGrid=expand.grid(k=1:45),method="knn",trControl=trControl_sp_100_
combined,preProc=c('center','scale')) 
 
``` 
 
### Evaluate knn model generated by fitting matrix with individual stress results 
 
```{r Evaluate knn model generated by fitting matrix with individual stress results, echo=FALSE, 
fig.height=8, fig.width=16, message=FALSE, warning=FALSE} 
 
options(digits = 3) 
knn_sp_methods <- 
c("fit_knn_sp_80","fit_knn_sp_100","fit_knn_sp_80_combined","fit_knn_sp_100_combined") 
best_tunes_sp <- 
c(as.numeric(fit_knn_sp_80$bestTune),as.numeric(fit_knn_sp_100$bestTune),as.numeric(fit_knn_sp_8
0_combined$bestTune),as.numeric(fit_knn_sp_100_combined$bestTune)) 
knn_sp_train_rmse <- 
c(min(fit_knn_sp_80$results$RMSE),min(fit_knn_sp_100$results$RMSE),min(fit_knn_sp_80_combined$
results$RMSE),min(fit_knn_sp_100_combined$results$RMSE)) 
 
pred_knn_sp_80 <- predict(fit_knn_sp_80,newdata = test_set_sp_80) 
pred_knn_sp_80_combined <- predict(fit_knn_sp_80_combined,newdata = test_set_sp_80_combined) 
 
pred_knn_sp_80_O <- predict(fit_knn_sp_80,newdata = test_set_O) 
pred_knn_sp_100_O <- predict(fit_knn_sp_100,newdata = test_set_O) 
pred_knn_sp_80_combined_O <- predict(fit_knn_sp_80_combined,newdata = test_set_O) 
pred_knn_sp_100_combined_O <- predict(fit_knn_sp_100_combined,newdata = test_set_O) 
 
knn_sp_test_rmse <- 
c(RMSE(pred_knn_sp_80,test_set_sp_80$stress),NA,RMSE(pred_knn_sp_80_combined,test_set_sp_80_
combined$stress),NA) 
 
knn_sp_O_rmse <- 
c(RMSE(pred_knn_sp_80_O,test_set_O$stress),RMSE(pred_knn_sp_100_O,test_set_O$stress),RMSE(pr
ed_knn_sp_80_combined_O,test_set_O$stress),RMSE(pred_knn_sp_100_combined_O,test_set_O$stre
ss)) 
 
knn_sp_methods_rmse_summary <- 
data.frame(method=knn_sp_methods,k=best_tunes_sp,train_rmse=knn_sp_train_rmse,test_rmse=knn
_sp_test_rmse,optimum_test_rmse=knn_sp_O_rmse) 
 
knn_sp_methods_rmse_summary 
plot(fit_knn_sp_80) 
plot(fit_knn_sp_100) 
plot(fit_knn_sp_80_combined) 
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plot(fit_knn_sp_100_combined) 
varImp(fit_knn_sp_80) 
varImp(fit_knn_sp_100) 
varImp(fit_knn_sp_80_combined) 
varImp(fit_knn_sp_100_combined) 
 
 
``` 
 
### Evaluate RMSE on test data knn sp 
 
```{r Evaluate RMSE on test data with individual results, echo=FALSE, fig.height=8, fig.width=16, 
message=FALSE, warning=FALSE} 
 
plot(pred_knn_sp_80,test_set_sp_80$stress,ylim = c(0,160),xlim = c(0,160)) 
abline(0,1) 
plot(pred_knn_sp_80_combined,test_set_sp_80_combined$stress,ylim = c(0,160),xlim = c(0,160)) 
abline(0,1) 
 
plot(pred_knn_sp_80_O,test_set_O$stress,ylim = c(0,160),xlim=c(0,160)) 
abline(0,1) 
plot(pred_knn_sp_100_O,test_set_O$stress,ylim = c(0,160),xlim=c(0,160)) 
abline(0,1) 
plot(pred_knn_sp_80_combined_O,test_set_O$stress,ylim = c(0,160),xlim=c(0,160)) 
abline(0,1) 
plot(pred_knn_sp_100_combined_O,test_set_O$stress,ylim = c(0,160),xlim=c(0,160)) 
abline(0,1) 
 
``` 
 
### Generating the predictive vector for the expanded matrix knn sp 
 
```{r Generating the predictive vector for the expanded matrix knn sp, echo=FALSE, fig.height=8, 
fig.width=16, message=FALSE, warning=FALSE} 
 
FSixDaysYhat_knn_sp_80 <- predict(fit_knn_sp_80,ExpandedPredictorsMatrix) 
FSixDaysTrialResults_knn_sp_80 <- ExpandedPredictorsMatrix %>% 
mutate(y_hat=FSixDaysYhat_knn_sp_80) 
FSixDaysTrialResults_knn_sp_80 <- FSixDaysTrialResults_knn_sp_80 %>% as.data.frame() %>% 
rename(Expected_Stress_MPa=y_hat) 
 
FSixDaysYhat_knn_sp_100 <- predict(fit_knn_sp_100,ExpandedPredictorsMatrix) 
FSixDaysTrialResults_knn_sp_100 <- ExpandedPredictorsMatrix %>% 
mutate(y_hat=FSixDaysYhat_knn_sp_100) 
FSixDaysTrialResults_knn_sp_100 <- FSixDaysTrialResults_knn_sp_100 %>% as.data.frame() %>% 
rename(Expected_Stress_MPa=y_hat) 
 
FSixDaysYhat_knn_sp_80_combined <- predict(fit_knn_sp_80_combined,ExpandedPredictorsMatrix) 
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FSixDaysTrialResults_knn_sp_80_combined <- ExpandedPredictorsMatrix %>% 
mutate(y_hat=FSixDaysYhat_knn_sp_80_combined) 
FSixDaysTrialResults_knn_sp_80_combined <- FSixDaysTrialResults_knn_sp_80_combined %>% 
as.data.frame() %>% rename(Expected_Stress_MPa=y_hat) 
 
FSixDaysYhat_knn_sp_100_combined <- predict(fit_knn_sp_100_combined,ExpandedPredictorsMatrix) 
FSixDaysTrialResults_knn_sp_100_combined <- ExpandedPredictorsMatrix %>% 
mutate(y_hat=FSixDaysYhat_knn_sp_100_combined) 
FSixDaysTrialResults_knn_sp_100_combined <- FSixDaysTrialResults_knn_sp_100_combined %>% 
as.data.frame() %>% rename(Expected_Stress_MPa=y_hat) 
 
``` 
 
### Performance Density Diagram - faceted by Slag Content knn sp 
 
```{r Performance Density Diagram - faceted by Slag Content knn sp, echo=FALSE, fig.height=8, 
fig.width=16, message=FALSE, warning=FALSE} 
 
FSixDaysTrialResults_knn_sp_80 %>% filter(Slag %in% 
c(0,ExpandedPredictorsMatrix$Slag[26],ExpandedPredictorsMatrix$Slag[51],ExpandedPredictorsMatrix$
Slag[76],60)) %>% 
ggplot(aes(Microsilica,FlyAsh,z=Expected_Stress_MPa,fill=Expected_Stress_MPa))+geom_raster()+scale
_fill_gradientn(colors=c("#F8766D","white","#00BFC4"),limits=c(70,130))+facet_wrap(.~Slag,labeller = 
label_both) 
 
FSixDaysTrialResults_knn_sp_100 %>% filter(Slag %in% 
c(0,ExpandedPredictorsMatrix$Slag[26],ExpandedPredictorsMatrix$Slag[51],ExpandedPredictorsMatrix$
Slag[76],60)) %>% 
ggplot(aes(Microsilica,FlyAsh,z=Expected_Stress_MPa,fill=Expected_Stress_MPa))+geom_raster()+scale
_fill_gradientn(colors=c("#F8766D","white","#00BFC4"),limits=c(70,130))+facet_wrap(.~Slag,labeller = 
label_both) 
 
FSixDaysTrialResults_knn_sp_80_combined %>% filter(Slag %in% 
c(0,ExpandedPredictorsMatrix$Slag[26],ExpandedPredictorsMatrix$Slag[51],ExpandedPredictorsMatrix$
Slag[76],60)) %>% 
ggplot(aes(Microsilica,FlyAsh,z=Expected_Stress_MPa,fill=Expected_Stress_MPa))+geom_raster()+scale
_fill_gradientn(colors=c("#F8766D","white","#00BFC4"),limits=c(70,130))+facet_wrap(.~Slag,labeller = 
label_both) 
 
FSixDaysTrialResults_knn_sp_100_combined %>% filter(Slag %in% 
c(0,ExpandedPredictorsMatrix$Slag[26],ExpandedPredictorsMatrix$Slag[51],ExpandedPredictorsMatrix$
Slag[76],60)) %>% 
ggplot(aes(Microsilica,FlyAsh,z=Expected_Stress_MPa,fill=Expected_Stress_MPa))+geom_raster()+scale
_fill_gradientn(colors=c("#F8766D","white","#00BFC4"),limits=c(70,130))+facet_wrap(.~Slag,labeller = 
label_both) 
 
``` 
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### Performance Density Diagram - faceted by Fly Ash Content knn sp 
 
```{r Performance Density Diagram - faceted by Fly Ash Content knn sp, echo=FALSE, fig.height=8, 
fig.width=16, message=FALSE, warning=FALSE} 
FSixDaysTrialResults_knn_sp_80 %>% filter(FlyAsh %in% 
c(0,FlyAshPredictor[14,],FlyAshPredictor[26,],FlyAshPredictor[51,],FlyAshPredictor[62,],15)) %>% 
ggplot(aes(Microsilica,Slag,z=Expected_Stress_MPa,fill=Expected_Stress_MPa))+geom_raster()+scale_fil
l_gradientn(colors=c("#F8766D","white","#00BFC4"),limits=c(70,130))+facet_wrap(.~FlyAsh,labeller = 
label_both) 
 
FSixDaysTrialResults_knn_sp_100 %>% filter(FlyAsh %in% 
c(0,FlyAshPredictor[14,],FlyAshPredictor[26,],FlyAshPredictor[51,],FlyAshPredictor[62,],15)) %>% 
ggplot(aes(Microsilica,Slag,z=Expected_Stress_MPa,fill=Expected_Stress_MPa))+geom_raster()+scale_fil
l_gradientn(colors=c("#F8766D","white","#00BFC4"),limits=c(70,130))+facet_wrap(.~FlyAsh,labeller = 
label_both) 
 
FSixDaysTrialResults_knn_sp_80_combined %>% filter(FlyAsh %in% 
c(0,FlyAshPredictor[14,],FlyAshPredictor[26,],FlyAshPredictor[51,],FlyAshPredictor[62,],15)) %>% 
ggplot(aes(Microsilica,Slag,z=Expected_Stress_MPa,fill=Expected_Stress_MPa))+geom_raster()+scale_fil
l_gradientn(colors=c("#F8766D","white","#00BFC4"),limits=c(70,130))+facet_wrap(.~FlyAsh,labeller = 
label_both) 
 
FSixDaysTrialResults_knn_sp_100_combined %>% filter(FlyAsh %in% 
c(0,FlyAshPredictor[14,],FlyAshPredictor[26,],FlyAshPredictor[51,],FlyAshPredictor[62,],15)) %>% 
ggplot(aes(Microsilica,Slag,z=Expected_Stress_MPa,fill=Expected_Stress_MPa))+geom_raster()+scale_fil
l_gradientn(colors=c("#F8766D","white","#00BFC4"),limits=c(70,130))+facet_wrap(.~FlyAsh,labeller = 
label_both) 
 
FSixDaysTrialResults_knn_sp_100_combined %>% filter(FlyAsh %in% 
c(0,FlyAshPredictor[14,],FlyAshPredictor[26,],FlyAshPredictor[51,],FlyAshPredictor[62,],15)) %>% 
ggplot(aes(Microsilica,Slag,z=Expected_Stress_MPa,fill=Expected_Stress_MPa))+geom_raster()+scale_fil
l_gradientn(colors=c("#F8766D","white","#00BFC4"),limits=c(70,130))+facet_wrap(.~FlyAsh,labeller = 
label_both) 
``` 
 
### Performance Density Diagram - faceted by Microsilica Content knn sp 
 
```{r Performance Density Diagram - faceted by Microsilica Content knn sp, echo=FALSE, fig.height=8, 
fig.width=16, message=FALSE, warning=FALSE} 
FSixDaysTrialResults_knn_sp_80 %>% filter(Microsilica %in% 
c(0,ExpandedPredictorsMatrix$Microsilica[2510],ExpandedPredictorsMatrix$Microsilica[5010],Expande
dPredictorsMatrix$Microsilica[7510],ExpandedPredictorsMatrix$Microsilica[10000])) %>% 
ggplot(aes(FlyAsh,Slag,z=Expected_Stress_MPa,fill=Expected_Stress_MPa))+geom_raster()+scale_fill_gr
adientn(colors=c("#F8766D","white","#00BFC4"),limits=c(70,130))+facet_wrap(.~Microsilica,labeller = 
label_both) 
 
FSixDaysTrialResults_knn_sp_100 %>% filter(Microsilica %in% 
c(0,ExpandedPredictorsMatrix$Microsilica[2510],ExpandedPredictorsMatrix$Microsilica[5010],Expande
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dPredictorsMatrix$Microsilica[7510],ExpandedPredictorsMatrix$Microsilica[10000])) %>% 
ggplot(aes(FlyAsh,Slag,z=Expected_Stress_MPa,fill=Expected_Stress_MPa))+geom_raster()+scale_fill_gr
adientn(colors=c("#F8766D","white","#00BFC4"),limits=c(70,130))+facet_wrap(.~Microsilica,labeller = 
label_both) 
 
FSixDaysTrialResults_knn_sp_80_combined %>% filter(Microsilica %in% 
c(0,ExpandedPredictorsMatrix$Microsilica[2510],ExpandedPredictorsMatrix$Microsilica[5010],Expande
dPredictorsMatrix$Microsilica[7510],ExpandedPredictorsMatrix$Microsilica[10000])) %>% 
ggplot(aes(FlyAsh,Slag,z=Expected_Stress_MPa,fill=Expected_Stress_MPa))+geom_raster()+scale_fill_gr
adientn(colors=c("#F8766D","white","#00BFC4"),limits=c(70,130))+facet_wrap(.~Microsilica,labeller = 
label_both) 
 
FSixDaysTrialResults_knn_sp_100_combined %>% filter(Microsilica %in% 
c(0,ExpandedPredictorsMatrix$Microsilica[2510],ExpandedPredictorsMatrix$Microsilica[5010],Expande
dPredictorsMatrix$Microsilica[7510],ExpandedPredictorsMatrix$Microsilica[10000])) %>% 
ggplot(aes(FlyAsh,Slag,z=Expected_Stress_MPa,fill=Expected_Stress_MPa))+geom_raster()+scale_fill_gr
adientn(colors=c("#F8766D","white","#00BFC4"),limits=c(70,130))+facet_wrap(.~Microsilica,labeller = 
label_both) 
``` 
 
###Optimum mix knn sp 
 
```{r Optimum mix  knn sp, echo=FALSE, fig.height=8, fig.width=16, message=FALSE, warning=FALSE} 
 
optimum_knn_sp_80 <- 
as.data.frame(ExpandedPredictorsMatrix[which.max(FSixDaysTrialResults_knn_sp_80$Expected_Stress_
MPa),]) 
optimum_knn_sp_100 <- 
as.data.frame(ExpandedPredictorsMatrix[which.max(FSixDaysTrialResults_knn_sp_100$Expected_Stress
_MPa),]) 
optimum_knn_sp_80_combined <- as.data.frame( 
ExpandedPredictorsMatrix[which.max(FSixDaysTrialResults_knn_sp_80_combined$Expected_Stress_MP
a),]) 
optimum_knn_sp_100_combined <- as.data.frame( 
ExpandedPredictorsMatrix[which.max(FSixDaysTrialResults_knn_sp_100_combined$Expected_Stress_M
Pa),]) 
 
optimum_knn_sp_mixtures <- 
rbind(optimum_knn_sp_80,optimum_knn_sp_100,optimum_knn_sp_80_combined,optimum_knn_sp_1
00_combined) %>% as.data.frame() 
 
optimum_knn_sp_max <- 
c(max(FSixDaysTrialResults_knn_sp_80),max(FSixDaysTrialResults_knn_sp_100),max(FSixDaysTrialResult
s_knn_sp_80_combined),max(FSixDaysTrialResults_knn_sp_100_combined)) 
 
optimum_knn_sp_summary <- 
data.frame(methods=knn_sp_methods,optimum_knn_sp_mixtures,predicted_stress_MPa=optimum_kn
n_sp_max) 
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optimum_knn_sp_summary 
 
test_set_O 
 
Experimental_mix_rank <- Phase_A_Results_combined %>% filter(Mixing_Process=="High shear 
mixing")%>% group_by(Material_number)%>% 
summarize(Slag=mean(Slag_percent_wt),Microsilica=mean(Microsilica_percent_wt),FlyAsh=mean(FlyAs
h_percent_wt),Stress=mean(Stress_56D_MPa)) %>% arrange(desc(Stress)) %>% as.data.frame() %>% 
head(n=10) 
Experimental_mix_rank 
``` 
 
### Random Forest method - optimize mtry parameter to fit matrix with average stress results per Mix 
 
```{r Random Forest method - optimize mtry parameter to fit matrix with average stress results per Mix, 
echo=FALSE, fig.height=8, fig.width=16, message=FALSE, warning=FALSE} 
 
#FSixDaysPredictors <- Phase_A_Results %>% filter(Mixing_Process=="High shear mixing")%>% 
group_by(Material_number)%>% summarize(Stress=mean(Stress_56D_MPa),Slag=mean( 
Slag_percent_wt),Microsilica=mean(Microsilica_percent_wt),FlyAsh=mean(FlyAsh_percent_wt),wcm=m
ean(w_cm)) %>% select(Slag,Microsilica,FlyAsh,wcm) %>% as.matrix() 
#FSixDaysOutcome <- Phase_A_Results %>% filter(Mixing_Process=="High shear mixing")%>% 
group_by(Material_number)%>% summarize(stress=mean(Stress_56D_MPa)) %>% select(stress) %>% 
as.matrix() 
#FSixDaysOutcome <- as.numeric(FSixDaysOutcome) 
#inTrain <- createDataPartition(FSixDaysOutcome,p=1,list = FALSE) 
#trainX <- FSixDaysPredictors[inTrain,] 
#trainY <- FSixDaysOutcome[inTrain] 
#testX <- FSixDaysPredictors[-inTrain,] 
#testY <- FSixDaysOutcome[-inTrain] 
#train_set <- cbind(trainX,stress=trainY) %>% as.data.frame() 
#test_set <- cbind(testX,stress=testY) %>% as.data.frame() 
 
set.seed(1997, sample.kind = "Rounding") 
tuning <- data.frame(mtry = c(1:100)) 
 
fit_rf_avg_80 <- train(stress ~. ,data = 
train_set_80,tuneGrid=tuning,method="rf",preProc=c('center','scale')) 
 
fit_rf_avg_100 <- train(stress ~. ,data = 
train_set_100,tuneGrid=tuning,method="rf",preProc=c('center','scale')) 
 
fit_rf_avg_80_combined <- train(stress ~. ,data = 
train_set_80_combined,tuneGrid=tuning,method="rf",preProc=c('center','scale')) 
 
fit_rf_avg_final <- train(stress ~. ,data = 
train_set_final,tuneGrid=tuning,method="rf",preProc=c('center','scale')) 
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fit_rf_avg_100_combined <- train(stress ~. ,data = 
train_set_100_combined,tuneGrid=tuning,method="rf",preProc=c('center','scale')) 
 
``` 
 
### Evaluate random forest model generated by fitting matrix with average stress results 
 
```{r Evaluate random forest model generated by fitting matrix with average stress results, echo=FALSE, 
fig.height=8, fig.width=16, message=FALSE, warning=FALSE} 
 
options(digits = 3) 
rf_avg_methods <- 
c("fit_rf_avg_80","fit_rf_avg_100","fit_rf_avg_80_combined","fit_rf_avg_final","fit_rf_avg_100_combin
ed") 
best_tunes_rf <- 
c(as.numeric(fit_rf_avg_80$bestTune),as.numeric(fit_rf_avg_100$bestTune),as.numeric(fit_rf_avg_80_c
ombined$bestTune),as.numeric(fit_rf_avg_final$bestTune),as.numeric(fit_rf_avg_100_combined$bestT
une)) 
rf_avg_train_rmse <- 
c(min(fit_rf_avg_80$results$RMSE),min(fit_rf_avg_100$results$RMSE),min(fit_rf_avg_80_combined$re
sults$RMSE),min(fit_rf_avg_final$results$RMSE),min(fit_rf_avg_100_combined$results$RMSE)) 
 
pred_rf_avg_80 <- predict(fit_rf_avg_80,newdata = test_set_80) 
pred_rf_avg_80_combined <- predict(fit_rf_avg_80_combined,newdata = test_set_80_combined) 
pred_rf_avg_final <- predict(fit_rf_avg_final,newdata = test_set_final) 
 
pred_rf_avg_80_O <- predict(fit_rf_avg_80,newdata = test_set_O) 
pred_rf_avg_100_O <- predict(fit_rf_avg_100,newdata = test_set_O) 
pred_rf_avg_80_combined_O <- predict(fit_rf_avg_80_combined,newdata = test_set_O) 
pred_rf_avg_final_O <- predict(fit_rf_avg_final,newdata = test_set_O) 
pred_rf_avg_100_combined_O <- predict(fit_rf_avg_100_combined,newdata = test_set_O) 
 
rf_avg_test_rmse <- 
c(RMSE(pred_rf_avg_80,test_set_80$stress),NA,RMSE(pred_rf_avg_80_combined,test_set_80_combine
d$stress),RMSE(pred_rf_avg_final,test_set_final$stress),NA) 
 
rf_avg_O_rmse <- 
c(RMSE(pred_rf_avg_80_O,test_set_O$stress),RMSE(pred_rf_avg_100_O,test_set_O$stress),RMSE(pred
_rf_avg_80_combined_O,test_set_O$stress),RMSE(pred_rf_avg_final_O,test_set_O$stress),RMSE(pred
_rf_avg_100_combined_O,test_set_O$stress)) 
 
rf_avg_methods_rmse_summary <- 
data.frame(method=rf_avg_methods,mtry=best_tunes_rf,train_rmse=rf_avg_train_rmse,test_rmse=rf_
avg_test_rmse,optimum_test_rmse=rf_avg_O_rmse) 
 
rf_avg_methods_rmse_summary 
plot(fit_rf_avg_80) 
plot(fit_rf_avg_100) 
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plot(fit_rf_avg_80_combined) 
plot(fit_rf_avg_final) 
plot(fit_rf_avg_100_combined) 
varImp(fit_rf_avg_80) 
varImp(fit_rf_avg_100) 
varImp(fit_rf_avg_80_combined) 
varImp(fit_rf_avg_final) 
varImp(fit_rf_avg_100_combined) 
fit_rf_avg_80$finalModel 
fit_rf_avg_100$finalModel 
fit_rf_avg_80_combined$finalModel 
fit_rf_avg_final$finalModel 
fit_rf_avg_100_combined$finalModel 
 
``` 
 
### Evaluate RMSE on test data rf avg 
 
```{r Evaluate RMSE on test data rf avg, echo=FALSE, fig.height=8, fig.width=16, message=FALSE, 
warning=FALSE} 
 
plot(pred_rf_avg_80,test_set_80$stress,ylim = c(0,160),xlim = c(0,160)) 
abline(0,1) 
plot(pred_rf_avg_80_combined,test_set_80_combined$stress,ylim = c(0,160),xlim = c(0,160)) 
abline(0,1) 
plot(pred_rf_avg_final,test_set_final$stress,ylim = c(0,160),xlim = c(0,160)) 
abline(0,1) 
 
plot(pred_rf_avg_80_O,test_set_O$stress,ylim = c(0,160),xlim=c(0,160)) 
abline(0,1) 
plot(pred_rf_avg_100_O,test_set_O$stress,ylim = c(0,160),xlim=c(0,160)) 
abline(0,1) 
plot(pred_rf_avg_80_combined_O,test_set_O$stress,ylim = c(0,160),xlim=c(0,160)) 
abline(0,1) 
plot(pred_rf_avg_final_O,test_set_O$stress,ylim = c(0,160),xlim=c(0,160)) 
abline(0,1) 
plot(pred_rf_avg_100_combined_O,test_set_O$stress,ylim = c(0,160),xlim=c(0,160)) 
abline(0,1) 
 
 
``` 
 
### Generating the predictive vector for the expanded matrix rf avg 
 
```{r Generating the predictive vector for the expanded matrix rf avg, echo=FALSE, fig.height=8, 
fig.width=16, message=FALSE, warning=FALSE} 
 
FSixDaysYhat_rf_avg_80 <- predict(fit_rf_avg_80,ExpandedPredictorsMatrix) 
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FSixDaysTrialResults_rf_avg_80 <- ExpandedPredictorsMatrix %>% 
mutate(y_hat=FSixDaysYhat_rf_avg_80) 
FSixDaysTrialResults_rf_avg_80 <- FSixDaysTrialResults_rf_avg_80 %>% as.data.frame() %>% 
rename(Expected_Stress_MPa=y_hat) 
 
FSixDaysYhat_rf_avg_100 <- predict(fit_rf_avg_100,ExpandedPredictorsMatrix) 
FSixDaysTrialResults_rf_avg_100 <- ExpandedPredictorsMatrix %>% 
mutate(y_hat=FSixDaysYhat_rf_avg_100) 
FSixDaysTrialResults_rf_avg_100 <- FSixDaysTrialResults_rf_avg_100 %>% as.data.frame() %>% 
rename(Expected_Stress_MPa=y_hat) 
 
FSixDaysYhat_rf_avg_80_combined <- predict(fit_rf_avg_80_combined,ExpandedPredictorsMatrix) 
FSixDaysTrialResults_rf_avg_80_combined <- ExpandedPredictorsMatrix %>% 
mutate(y_hat=FSixDaysYhat_rf_avg_80_combined) 
FSixDaysTrialResults_rf_avg_80_combined <- FSixDaysTrialResults_rf_avg_80_combined %>% 
as.data.frame() %>% rename(Expected_Stress_MPa=y_hat) 
 
FSixDaysYhat_rf_avg_final <- predict(fit_rf_avg_final,ExpandedPredictorsMatrix) 
FSixDaysTrialResults_rf_avg_final <- ExpandedPredictorsMatrix %>% 
mutate(y_hat=FSixDaysYhat_rf_avg_final) 
FSixDaysTrialResults_rf_avg_final <- FSixDaysTrialResults_rf_avg_final %>% as.data.frame() %>% 
rename(Expected_Stress_MPa=y_hat) 
 
FSixDaysYhat_rf_avg_100_combined <- predict(fit_rf_avg_100_combined,ExpandedPredictorsMatrix) 
FSixDaysTrialResults_rf_avg_100_combined <- ExpandedPredictorsMatrix %>% 
mutate(y_hat=FSixDaysYhat_rf_avg_100_combined) 
FSixDaysTrialResults_rf_avg_100_combined <- FSixDaysTrialResults_rf_avg_100_combined %>% 
as.data.frame() %>% rename(Expected_Stress_MPa=y_hat) 
``` 
 
### Performance Density Diagram - faceted by Slag Content rf avg 
 
```{r Performance Density Diagram - faceted by Slag Content rf avg, echo=FALSE, fig.height=8, 
fig.width=16, message=FALSE, warning=FALSE} 
 
FSixDaysTrialResults_rf_avg_80 %>% filter(Slag %in% 
c(0,ExpandedPredictorsMatrix$Slag[26],ExpandedPredictorsMatrix$Slag[51],ExpandedPredictorsMatrix$
Slag[76],60)) %>% 
ggplot(aes(Microsilica,FlyAsh,z=Expected_Stress_MPa,fill=Expected_Stress_MPa))+geom_raster()+scale
_fill_gradientn(colors=c("#F8766D","white","#00BFC4"),limits=c(70,130))+facet_wrap(.~Slag,labeller = 
label_both) 
 
FSixDaysTrialResults_rf_avg_100 %>% filter(Slag %in% 
c(0,ExpandedPredictorsMatrix$Slag[26],ExpandedPredictorsMatrix$Slag[51],ExpandedPredictorsMatrix$
Slag[76],60)) %>% 
ggplot(aes(Microsilica,FlyAsh,z=Expected_Stress_MPa,fill=Expected_Stress_MPa))+geom_raster()+scale
_fill_gradientn(colors=c("#F8766D","white","#00BFC4"),limits=c(70,130))+facet_wrap(.~Slag,labeller = 
label_both) 
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FSixDaysTrialResults_rf_avg_80_combined %>% filter(Slag %in% 
c(0,ExpandedPredictorsMatrix$Slag[26],ExpandedPredictorsMatrix$Slag[51],ExpandedPredictorsMatrix$
Slag[76],60)) %>% 
ggplot(aes(Microsilica,FlyAsh,z=Expected_Stress_MPa,fill=Expected_Stress_MPa))+geom_raster()+scale
_fill_gradientn(colors=c("#F8766D","white","#00BFC4"),limits=c(70,130))+facet_wrap(.~Slag,labeller = 
label_both) 
 
FSixDaysTrialResults_rf_avg_final %>% filter(Slag %in% 
c(0,ExpandedPredictorsMatrix$Slag[26],ExpandedPredictorsMatrix$Slag[51],ExpandedPredictorsMatrix$
Slag[76],60)) %>% 
ggplot(aes(Microsilica,FlyAsh,z=Expected_Stress_MPa,fill=Expected_Stress_MPa))+geom_raster()+scale
_fill_gradientn(colors=c("#F8766D","white","#00BFC4"),limits=c(70,130))+facet_wrap(.~Slag,labeller = 
label_both) 
 
FSixDaysTrialResults_rf_avg_100_combined %>% filter(Slag %in% 
c(0,ExpandedPredictorsMatrix$Slag[26],ExpandedPredictorsMatrix$Slag[51],ExpandedPredictorsMatrix$
Slag[76],60)) %>% 
ggplot(aes(Microsilica,FlyAsh,z=Expected_Stress_MPa,fill=Expected_Stress_MPa))+geom_raster()+scale
_fill_gradientn(colors=c("#F8766D","white","#00BFC4"),limits=c(70,130))+facet_wrap(.~Slag,labeller = 
label_both) 
 
``` 
 
### Performance Density Diagram - faceted by Fly Ash Content rf avg 
 
```{r Performance Density Diagram - faceted by Fly Ash Content rf avg, echo=FALSE, fig.height=8, 
fig.width=16, message=FALSE, warning=FALSE} 
 
FSixDaysTrialResults_rf_avg_80 %>% filter(FlyAsh %in% 
c(0,FlyAshPredictor[14,],FlyAshPredictor[26,],FlyAshPredictor[51,],FlyAshPredictor[62,],15)) %>% 
ggplot(aes(Microsilica,Slag,z=Expected_Stress_MPa,fill=Expected_Stress_MPa))+geom_raster()+scale_fil
l_gradientn(colors=c("#F8766D","white","#00BFC4"),limits=c(70,130))+facet_wrap(.~FlyAsh,labeller = 
label_both) 
 
FSixDaysTrialResults_rf_avg_100 %>% filter(FlyAsh %in% 
c(0,FlyAshPredictor[14,],FlyAshPredictor[26,],FlyAshPredictor[51,],FlyAshPredictor[62,],15)) %>% 
ggplot(aes(Microsilica,Slag,z=Expected_Stress_MPa,fill=Expected_Stress_MPa))+geom_raster()+scale_fil
l_gradientn(colors=c("#F8766D","white","#00BFC4"),limits=c(70,130))+facet_wrap(.~FlyAsh,labeller = 
label_both) 
 
FSixDaysTrialResults_rf_avg_80_combined %>% filter(FlyAsh %in% 
c(0,FlyAshPredictor[14,],FlyAshPredictor[26,],FlyAshPredictor[51,],FlyAshPredictor[62,],15)) %>% 
ggplot(aes(Microsilica,Slag,z=Expected_Stress_MPa,fill=Expected_Stress_MPa))+geom_raster()+scale_fil
l_gradientn(colors=c("#F8766D","white","#00BFC4"),limits=c(70,130))+facet_wrap(.~FlyAsh,labeller = 
label_both) 
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FSixDaysTrialResults_rf_avg_final %>% filter(FlyAsh %in% 
c(0,FlyAshPredictor[14,],FlyAshPredictor[26,],FlyAshPredictor[51,],FlyAshPredictor[62,],15)) %>% 
ggplot(aes(Microsilica,Slag,z=Expected_Stress_MPa,fill=Expected_Stress_MPa))+geom_raster()+scale_fil
l_gradientn(colors=c("#F8766D","white","#00BFC4"),limits=c(70,130))+facet_wrap(.~FlyAsh,labeller = 
label_both) 
 
FSixDaysTrialResults_rf_avg_100_combined %>% filter(FlyAsh %in% 
c(0,FlyAshPredictor[14,],FlyAshPredictor[26,],FlyAshPredictor[51,],FlyAshPredictor[62,],15)) %>% 
ggplot(aes(Microsilica,Slag,z=Expected_Stress_MPa,fill=Expected_Stress_MPa))+geom_raster()+scale_fil
l_gradientn(colors=c("#F8766D","white","#00BFC4"),limits=c(70,130))+facet_wrap(.~FlyAsh,labeller = 
label_both) 
 
``` 
 
### Performance Density Diagram - faceted by Microsilica Content rf avg 
 
```{r Performance Density Diagram - faceted by Microsilica Content rf avg, echo=FALSE, fig.height=8, 
fig.width=16, message=FALSE, warning=FALSE} 
 
FSixDaysTrialResults_rf_avg_80 %>% filter(Microsilica %in% 
c(0,ExpandedPredictorsMatrix$Microsilica[2510],ExpandedPredictorsMatrix$Microsilica[5010],Expande
dPredictorsMatrix$Microsilica[7510],ExpandedPredictorsMatrix$Microsilica[10000])) %>% 
ggplot(aes(FlyAsh,Slag,z=Expected_Stress_MPa,fill=Expected_Stress_MPa))+geom_raster()+scale_fill_gr
adientn(colors=c("#F8766D","white","#00BFC4"),limits=c(70,130))+facet_wrap(.~Microsilica,labeller = 
label_both) 
 
FSixDaysTrialResults_rf_avg_100 %>% filter(Microsilica %in% 
c(0,ExpandedPredictorsMatrix$Microsilica[2510],ExpandedPredictorsMatrix$Microsilica[5010],Expande
dPredictorsMatrix$Microsilica[7510],ExpandedPredictorsMatrix$Microsilica[10000])) %>% 
ggplot(aes(FlyAsh,Slag,z=Expected_Stress_MPa,fill=Expected_Stress_MPa))+geom_raster()+scale_fill_gr
adientn(colors=c("#F8766D","white","#00BFC4"),limits=c(70,130))+facet_wrap(.~Microsilica,labeller = 
label_both) 
 
FSixDaysTrialResults_rf_avg_80_combined %>% filter(Microsilica %in% 
c(0,ExpandedPredictorsMatrix$Microsilica[2510],ExpandedPredictorsMatrix$Microsilica[5010],Expande
dPredictorsMatrix$Microsilica[7510],ExpandedPredictorsMatrix$Microsilica[10000])) %>% 
ggplot(aes(FlyAsh,Slag,z=Expected_Stress_MPa,fill=Expected_Stress_MPa))+geom_raster()+scale_fill_gr
adientn(colors=c("#F8766D","white","#00BFC4"),limits=c(70,130))+facet_wrap(.~Microsilica,labeller = 
label_both) 
 
FSixDaysTrialResults_rf_avg_final %>% filter(Microsilica %in% 
c(0,ExpandedPredictorsMatrix$Microsilica[2510],ExpandedPredictorsMatrix$Microsilica[5010],Expande
dPredictorsMatrix$Microsilica[7510],ExpandedPredictorsMatrix$Microsilica[10000])) %>% 
ggplot(aes(FlyAsh,Slag,z=Expected_Stress_MPa,fill=Expected_Stress_MPa))+geom_raster()+scale_fill_gr
adientn(colors=c("#F8766D","white","#00BFC4"),limits=c(70,130))+facet_wrap(.~Microsilica,labeller = 
label_both) 
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FSixDaysTrialResults_rf_avg_100_combined %>% filter(Microsilica %in% 
c(0,ExpandedPredictorsMatrix$Microsilica[2510],ExpandedPredictorsMatrix$Microsilica[5010],Expande
dPredictorsMatrix$Microsilica[7510],ExpandedPredictorsMatrix$Microsilica[10000])) %>% 
ggplot(aes(FlyAsh,Slag,z=Expected_Stress_MPa,fill=Expected_Stress_MPa))+geom_raster()+scale_fill_gr
adientn(colors=c("#F8766D","white","#00BFC4"),limits=c(70,130))+facet_wrap(.~Microsilica,labeller = 
label_both) 
``` 
 
###Optimum mix rf avg 
 
```{r Optimum mix rf avg, echo=FALSE, fig.height=8, fig.width=16, message=FALSE, warning=FALSE} 
 
optimum_rf_avg_80 <- 
as.data.frame(ExpandedPredictorsMatrix[which.max(FSixDaysTrialResults_rf_avg_80$Expected_Stress_
MPa),]) 
optimum_rf_avg_100 <- 
as.data.frame(ExpandedPredictorsMatrix[which.max(FSixDaysTrialResults_rf_avg_100$Expected_Stress
_MPa),]) 
optimum_rf_avg_80_combined <- as.data.frame( 
ExpandedPredictorsMatrix[which.max(FSixDaysTrialResults_rf_avg_80_combined$Expected_Stress_MP
a),]) 
optimum_rf_avg_final <- 
as.data.frame(ExpandedPredictorsMatrix[which.max(FSixDaysTrialResults_rf_avg_final$Expected_Stress
_MPa),]) 
optimum_rf_avg_100_combined <- as.data.frame( 
ExpandedPredictorsMatrix[which.max(FSixDaysTrialResults_rf_avg_100_combined$Expected_Stress_M
Pa),]) 
 
optimum_rf_avg_mixtures <- 
rbind(optimum_rf_avg_80,optimum_rf_avg_100,optimum_rf_avg_80_combined,optimum_rf_avg_final,
optimum_rf_avg_100_combined) %>% as.data.frame() 
 
optimum_rf_avg_max <- 
c(max(FSixDaysTrialResults_rf_avg_80),max(FSixDaysTrialResults_rf_avg_100),max(FSixDaysTrialResults
_rf_avg_80_combined),max(FSixDaysTrialResults_rf_avg_final),max(FSixDaysTrialResults_rf_avg_100_co
mbined)) 
 
optimum_rf_avg_summary <- 
data.frame(methods=rf_avg_methods,optimum_rf_avg_mixtures,predicted_stress_MPa=optimum_rf_a
vg_max) 
optimum_rf_avg_summary 
 
test_set_O 
 
Experimental_mix_rank <- Phase_A_Results_combined %>% filter(Mixing_Process=="High shear 
mixing")%>% group_by(Material_number)%>% 
summarize(Slag=mean(Slag_percent_wt),Microsilica=mean(Microsilica_percent_wt),FlyAsh=mean(FlyAs
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h_percent_wt),Stress=mean(Stress_56D_MPa)) %>% arrange(desc(Stress)) %>% as.data.frame() %>% 
head(n=10) 
Experimental_mix_rank 
 
``` 
 
### Random Forest method - optimize mtry parameter to fit matrix with individual specimens 
 
```{r Random Forest method - optimize mtry parameter to fit matrix with individual specimens, 
echo=FALSE, fig.height=8, fig.width=16, message=FALSE, warning=FALSE} 
 
#set.seed(1997, sample.kind = "Rounding") 
#FSixDaysPredictors <- Phase_A_Results %>% filter(Mixing_Process=="High shear mixing") %>% 
select(Slag=Slag_percent_wt,Microsilica=Microsilica_percent_wt,FlyAsh=FlyAsh_percent_wt,wcm=w_c
m)%>% as.matrix() 
#FSixDaysOutcome <- Phase_A_Results %>% filter(Mixing_Process=="High shear mixing") %>% 
#select(stress=Stress_56D_MPa)%>% as.matrix() 
#FSixDaysOutcome <- as.numeric(FSixDaysOutcome) 
#inTrain <- createDataPartition(FSixDaysOutcome,p=1,list = FALSE) 
#trainX <- FSixDaysPredictors[inTrain,] 
#trainY <- FSixDaysOutcome[inTrain] 
#testX <- FSixDaysPredictors[-inTrain,] 
#testY <- FSixDaysOutcome[-inTrain] 
#train_set <- cbind(trainX,stress=trainY) %>% as.data.frame() 
#test_set <- cbind(testX,stress=testY) %>% as.data.frame() 
#tuning <- data.frame(mtry = c(1:100)) 
#fit_rf_sp <- train(stress ~. ,data = #train_set,tuneGrid=tuning,method="rf",preProc=c('center','scale')) 
 
set.seed(1997, sample.kind = "Rounding") 
tuning <- data.frame(mtry = c(1:100)) 
 
fit_rf_sp_80 <- train(stress ~. ,data = 
train_set_sp_80,tuneGrid=tuning,method="rf",preProc=c('center','scale')) 
 
fit_rf_sp_100 <- train(stress ~. ,data = 
train_set_sp_100,tuneGrid=tuning,method="rf",preProc=c('center','scale')) 
 
fit_rf_sp_80_combined <- train(stress ~. ,data = 
train_set_sp_80_combined,tuneGrid=tuning,method="rf",preProc=c('center','scale')) 
 
fit_rf_sp_100_combined <- train(stress ~. ,data = 
train_set_sp_100_combined,tuneGrid=tuning,method="rf",preProc=c('center','scale')) 
 
``` 
 
 
 
 



171 
 

### Evaluate random forest model generated by fitting matrix with individual specimens 
 
```{r Evaluate random forest model generated by fitting matrix with individual specimens, echo=FALSE, 
fig.height=8, fig.width=16, message=FALSE, warning=FALSE} 
 
options(digits = 3) 
rf_sp_methods <- c("fit_rf_sp_80","fit_rf_sp_100","fit_rf_sp_80_combined","fit_rf_sp_100_combined") 
best_tunes_rf_sp <- 
c(as.numeric(fit_rf_sp_80$bestTune),as.numeric(fit_rf_sp_100$bestTune),as.numeric(fit_rf_sp_80_com
bined$bestTune),as.numeric(fit_rf_sp_100_combined$bestTune)) 
rf_sp_train_rmse <- 
c(min(fit_rf_sp_80$results$RMSE),min(fit_rf_sp_100$results$RMSE),min(fit_rf_sp_80_combined$result
s$RMSE),min(fit_rf_sp_100_combined$results$RMSE)) 
 
pred_rf_sp_80 <- predict(fit_rf_sp_80,newdata = test_set_sp_80) 
pred_rf_sp_80_combined <- predict(fit_rf_sp_80_combined,newdata = test_set_sp_80_combined) 
 
pred_rf_sp_80_O <- predict(fit_rf_sp_80,newdata = test_set_O) 
pred_rf_sp_100_O <- predict(fit_rf_sp_100,newdata = test_set_O) 
pred_rf_sp_80_combined_O <- predict(fit_rf_sp_80_combined,newdata = test_set_O) 
pred_rf_sp_100_combined_O <- predict(fit_rf_sp_100_combined,newdata = test_set_O) 
 
rf_sp_test_rmse <- 
c(RMSE(pred_rf_sp_80,test_set_sp_80$stress),NA,RMSE(pred_rf_sp_80_combined,test_set_sp_80_co
mbined$stress),NA) 
 
rf_sp_O_rmse <- 
c(RMSE(pred_rf_sp_80_O,test_set_O$stress),RMSE(pred_rf_sp_100_O,test_set_O$stress),RMSE(pred_r
f_sp_80_combined_O,test_set_O$stress),RMSE(pred_rf_sp_100_combined_O,test_set_O$stress)) 
 
rf_sp_methods_rmse_summary <- 
data.frame(method=rf_sp_methods,mtry=best_tunes_rf_sp,train_rmse=rf_sp_train_rmse,test_rmse=rf
_sp_test_rmse,optimum_test_rmse=rf_sp_O_rmse) 
 
rf_sp_methods_rmse_summary 
plot(fit_rf_sp_80) 
plot(fit_rf_sp_100) 
plot(fit_rf_sp_80_combined) 
plot(fit_rf_sp_100_combined) 
varImp(fit_rf_sp_80) 
varImp(fit_rf_sp_100) 
varImp(fit_rf_sp_80_combined) 
varImp(fit_rf_sp_100_combined) 
fit_rf_sp_80$finalModel 
fit_rf_sp_100$finalModel 
fit_rf_sp_80_combined$finalModel 
fit_rf_sp_100_combined$finalModel 
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``` 
 
### Evaluate RMSE on test data rf sp 
 
```{r Evaluate RMSE on test data rf sp, echo=FALSE, fig.height=8, fig.width=16, message=FALSE, 
warning=FALSE} 
 
plot(pred_rf_sp_80,test_set_sp_80$stress,ylim = c(0,160),xlim = c(0,160)) 
abline(0,1) 
plot(pred_rf_sp_80_combined,test_set_sp_80_combined$stress,ylim = c(0,160),xlim = c(0,160)) 
abline(0,1) 
 
plot(pred_rf_sp_80_O,test_set_O$stress,ylim = c(0,160),xlim=c(0,160)) 
abline(0,1) 
plot(pred_rf_sp_100_O,test_set_O$stress,ylim = c(0,160),xlim=c(0,160)) 
abline(0,1) 
plot(pred_rf_sp_80_combined_O,test_set_O$stress,ylim = c(0,160),xlim=c(0,160)) 
abline(0,1) 
plot(pred_rf_sp_100_combined_O,test_set_O$stress,ylim = c(0,160),xlim=c(0,160)) 
abline(0,1) 
 
``` 
 
### Generating the predictive vector for the expanded matrix rf sp 
 
```{r Generating the predictive vector for the expanded matrix rf sp, echo=FALSE, fig.height=8, 
fig.width=16, message=FALSE, warning=FALSE} 
 
FSixDaysYhat_rf_sp_80 <- predict(fit_rf_sp_80,ExpandedPredictorsMatrix) 
FSixDaysTrialResults_rf_sp_80 <- ExpandedPredictorsMatrix %>% mutate(y_hat=FSixDaysYhat_rf_sp_80) 
FSixDaysTrialResults_rf_sp_80 <- FSixDaysTrialResults_rf_sp_80 %>% as.data.frame() %>% 
rename(Expected_Stress_MPa=y_hat) 
 
FSixDaysYhat_rf_sp_100 <- predict(fit_rf_sp_100,ExpandedPredictorsMatrix) 
FSixDaysTrialResults_rf_sp_100 <- ExpandedPredictorsMatrix %>% 
mutate(y_hat=FSixDaysYhat_rf_sp_100) 
FSixDaysTrialResults_rf_sp_100 <- FSixDaysTrialResults_rf_sp_100 %>% as.data.frame() %>% 
rename(Expected_Stress_MPa=y_hat) 
 
FSixDaysYhat_rf_sp_80_combined <- predict(fit_rf_sp_80_combined,ExpandedPredictorsMatrix) 
FSixDaysTrialResults_rf_sp_80_combined <- ExpandedPredictorsMatrix %>% 
mutate(y_hat=FSixDaysYhat_rf_sp_80_combined) 
FSixDaysTrialResults_rf_sp_80_combined <- FSixDaysTrialResults_rf_sp_80_combined %>% 
as.data.frame() %>% rename(Expected_Stress_MPa=y_hat) 
 
FSixDaysYhat_rf_sp_100_combined <- predict(fit_rf_sp_100_combined,ExpandedPredictorsMatrix) 
FSixDaysTrialResults_rf_sp_100_combined <- ExpandedPredictorsMatrix %>% 
mutate(y_hat=FSixDaysYhat_rf_sp_100_combined) 
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FSixDaysTrialResults_rf_sp_100_combined <- FSixDaysTrialResults_rf_sp_100_combined %>% 
as.data.frame() %>% rename(Expected_Stress_MPa=y_hat) 
``` 
 
### Performance Density Diagram - faceted by Slag Content rf sp 
 
```{r Performance Density Diagram - faceted by Slag Content rf sp, echo=FALSE, fig.height=8, 
fig.width=16, message=FALSE, warning=FALSE} 
 
FSixDaysTrialResults_rf_sp_80 %>% filter(Slag %in% 
c(0,ExpandedPredictorsMatrix$Slag[26],ExpandedPredictorsMatrix$Slag[51],ExpandedPredictorsMatrix$
Slag[76],60)) %>% 
ggplot(aes(Microsilica,FlyAsh,z=Expected_Stress_MPa,fill=Expected_Stress_MPa))+geom_raster()+scale
_fill_gradientn(colors=c("#F8766D","white","#00BFC4"),limits=c(70,130))+facet_wrap(.~Slag,labeller = 
label_both) 
 
FSixDaysTrialResults_rf_sp_100 %>% filter(Slag %in% 
c(0,ExpandedPredictorsMatrix$Slag[26],ExpandedPredictorsMatrix$Slag[51],ExpandedPredictorsMatrix$
Slag[76],60)) %>% 
ggplot(aes(Microsilica,FlyAsh,z=Expected_Stress_MPa,fill=Expected_Stress_MPa))+geom_raster()+scale
_fill_gradientn(colors=c("#F8766D","white","#00BFC4"),limits=c(70,130))+facet_wrap(.~Slag,labeller = 
label_both) 
 
FSixDaysTrialResults_rf_sp_80_combined %>% filter(Slag %in% 
c(0,ExpandedPredictorsMatrix$Slag[26],ExpandedPredictorsMatrix$Slag[51],ExpandedPredictorsMatrix$
Slag[76],60)) %>% 
ggplot(aes(Microsilica,FlyAsh,z=Expected_Stress_MPa,fill=Expected_Stress_MPa))+geom_raster()+scale
_fill_gradientn(colors=c("#F8766D","white","#00BFC4"),limits=c(70,130))+facet_wrap(.~Slag,labeller = 
label_both) 
 
FSixDaysTrialResults_rf_sp_100_combined %>% filter(Slag %in% 
c(0,ExpandedPredictorsMatrix$Slag[26],ExpandedPredictorsMatrix$Slag[51],ExpandedPredictorsMatrix$
Slag[76],60)) %>% 
ggplot(aes(Microsilica,FlyAsh,z=Expected_Stress_MPa,fill=Expected_Stress_MPa))+geom_raster()+scale
_fill_gradientn(colors=c("#F8766D","white","#00BFC4"),limits=c(70,130))+facet_wrap(.~Slag,labeller = 
label_both) 
``` 
 
### Performance Density Diagram - faceted by Fly Ash Content rf sp 
 
```{r Performance Density Diagram - faceted by Fly Ash Content rf sp, echo=FALSE, fig.height=8, 
fig.width=16, message=FALSE, warning=FALSE} 
 
FSixDaysTrialResults_rf_sp_80 %>% filter(FlyAsh %in% 
c(0,FlyAshPredictor[14,],FlyAshPredictor[26,],FlyAshPredictor[51,],FlyAshPredictor[62,],15)) %>% 
ggplot(aes(Microsilica,Slag,z=Expected_Stress_MPa,fill=Expected_Stress_MPa))+geom_raster()+scale_fil
l_gradientn(colors=c("#F8766D","white","#00BFC4"),limits=c(70,130))+facet_wrap(.~FlyAsh,labeller = 
label_both) 
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FSixDaysTrialResults_rf_sp_100 %>% filter(FlyAsh %in% 
c(0,FlyAshPredictor[14,],FlyAshPredictor[26,],FlyAshPredictor[51,],FlyAshPredictor[62,],15)) %>% 
ggplot(aes(Microsilica,Slag,z=Expected_Stress_MPa,fill=Expected_Stress_MPa))+geom_raster()+scale_fil
l_gradientn(colors=c("#F8766D","white","#00BFC4"),limits=c(70,130))+facet_wrap(.~FlyAsh,labeller = 
label_both) 
 
FSixDaysTrialResults_rf_sp_80_combined %>% filter(FlyAsh %in% 
c(0,FlyAshPredictor[14,],FlyAshPredictor[26,],FlyAshPredictor[51,],FlyAshPredictor[62,],15)) %>% 
ggplot(aes(Microsilica,Slag,z=Expected_Stress_MPa,fill=Expected_Stress_MPa))+geom_raster()+scale_fil
l_gradientn(colors=c("#F8766D","white","#00BFC4"),limits=c(70,130))+facet_wrap(.~FlyAsh,labeller = 
label_both) 
 
FSixDaysTrialResults_rf_sp_100_combined %>% filter(FlyAsh %in% 
c(0,FlyAshPredictor[14,],FlyAshPredictor[26,],FlyAshPredictor[51,],FlyAshPredictor[62,],15)) %>% 
ggplot(aes(Microsilica,Slag,z=Expected_Stress_MPa,fill=Expected_Stress_MPa))+geom_raster()+scale_fil
l_gradientn(colors=c("#F8766D","white","#00BFC4"),limits=c(70,130))+facet_wrap(.~FlyAsh,labeller = 
label_both) 
``` 
 
### Performance Density Diagram - faceted by Microsilica Content rf sp 
 
```{r Performance Density Diagram - faceted by Microsilica Content rf sp, echo=FALSE, fig.height=8, 
fig.width=16, message=FALSE, warning=FALSE} 
 
FSixDaysTrialResults_rf_sp_80 %>% filter(Microsilica %in% 
c(0,ExpandedPredictorsMatrix$Microsilica[2510],ExpandedPredictorsMatrix$Microsilica[5010],Expande
dPredictorsMatrix$Microsilica[7510],ExpandedPredictorsMatrix$Microsilica[10000])) %>% 
ggplot(aes(FlyAsh,Slag,z=Expected_Stress_MPa,fill=Expected_Stress_MPa))+geom_raster()+scale_fill_gr
adientn(colors=c("#F8766D","white","#00BFC4"),limits=c(70,130))+facet_wrap(.~Microsilica,labeller = 
label_both) 
 
FSixDaysTrialResults_rf_sp_100 %>% filter(Microsilica %in% 
c(0,ExpandedPredictorsMatrix$Microsilica[2510],ExpandedPredictorsMatrix$Microsilica[5010],Expande
dPredictorsMatrix$Microsilica[7510],ExpandedPredictorsMatrix$Microsilica[10000])) %>% 
ggplot(aes(FlyAsh,Slag,z=Expected_Stress_MPa,fill=Expected_Stress_MPa))+geom_raster()+scale_fill_gr
adientn(colors=c("#F8766D","white","#00BFC4"),limits=c(70,130))+facet_wrap(.~Microsilica,labeller = 
label_both) 
 
FSixDaysTrialResults_rf_sp_80_combined %>% filter(Microsilica %in% 
c(0,ExpandedPredictorsMatrix$Microsilica[2510],ExpandedPredictorsMatrix$Microsilica[5010],Expande
dPredictorsMatrix$Microsilica[7510],ExpandedPredictorsMatrix$Microsilica[10000])) %>% 
ggplot(aes(FlyAsh,Slag,z=Expected_Stress_MPa,fill=Expected_Stress_MPa))+geom_raster()+scale_fill_gr
adientn(colors=c("#F8766D","white","#00BFC4"),limits=c(70,130))+facet_wrap(.~Microsilica,labeller = 
label_both) 
 
FSixDaysTrialResults_rf_sp_100_combined %>% filter(Microsilica %in% 
c(0,ExpandedPredictorsMatrix$Microsilica[2510],ExpandedPredictorsMatrix$Microsilica[5010],Expande
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dPredictorsMatrix$Microsilica[7510],ExpandedPredictorsMatrix$Microsilica[10000])) %>% 
ggplot(aes(FlyAsh,Slag,z=Expected_Stress_MPa,fill=Expected_Stress_MPa))+geom_raster()+scale_fill_gr
adientn(colors=c("#F8766D","white","#00BFC4"),limits=c(70,130))+facet_wrap(.~Microsilica,labeller = 
label_both) 
``` 
 
###Optimum mix rf sp 
 
```{r Optimum mix rf sp, echo=FALSE, fig.height=8, fig.width=16, message=FALSE, warning=FALSE} 
 
optimum_rf_sp_80 <- 
as.data.frame(ExpandedPredictorsMatrix[which.max(FSixDaysTrialResults_rf_sp_80$Expected_Stress_M
Pa),]) 
optimum_rf_sp_100 <- 
as.data.frame(ExpandedPredictorsMatrix[which.max(FSixDaysTrialResults_rf_sp_100$Expected_Stress_
MPa),]) 
optimum_rf_sp_80_combined <- as.data.frame( 
ExpandedPredictorsMatrix[which.max(FSixDaysTrialResults_rf_sp_80_combined$Expected_Stress_MPa)
,]) 
optimum_rf_sp_100_combined <- as.data.frame( 
ExpandedPredictorsMatrix[which.max(FSixDaysTrialResults_rf_sp_100_combined$Expected_Stress_MP
a),]) 
 
optimum_rf_sp_mixtures <- 
rbind(optimum_rf_sp_80,optimum_rf_sp_100,optimum_rf_sp_80_combined,optimum_rf_sp_100_com
bined) %>% as.data.frame() 
 
optimum_rf_sp_max <- 
c(max(FSixDaysTrialResults_rf_sp_80),max(FSixDaysTrialResults_rf_sp_100),max(FSixDaysTrialResults_rf
_sp_80_combined),max(FSixDaysTrialResults_rf_sp_100_combined)) 
 
optimum_rf_sp_summary <- 
data.frame(methods=rf_sp_methods,optimum_rf_sp_mixtures,predicted_stress_MPa=optimum_rf_sp_
max) 
optimum_rf_sp_summary 
 
test_set_O 
 
Experimental_mix_rank <- Phase_A_Results_combined %>% filter(Mixing_Process=="High shear 
mixing")%>% group_by(Material_number)%>% 
summarize(Slag=mean(Slag_percent_wt),Microsilica=mean(Microsilica_percent_wt),FlyAsh=mean(FlyAs
h_percent_wt),Stress=mean(Stress_56D_MPa)) %>% arrange(desc(Stress)) %>% as.data.frame() %>% 
head(n=10) 
Experimental_mix_rank 
 
``` 
 
 



176 
 

### Linear models to fit matrix with average stress results per Mix 
 
```{r Linear models to fit matrix with average stress results per Mix, echo=FALSE, fig.height=8, 
fig.width=16, message=FALSE, warning=FALSE} 
 
set.seed(1997, sample.kind = "Rounding") 
grid <- expand.grid(span = 5, degree = 2) 
 
fit_loess_avg_80 <- train(stress ~. ,data = train_set_80,method="gamLoess",tuneGrid=grid, 
preProc=c('center','scale')) 
 
fit_glm_avg_80 <- train(stress ~. ,data = train_set_80,method="glm",preProc=c('center','scale')) 
 
fit_lm_poly1_avg_80 <- train_set_80 %>% lm(stress~poly(Slag+Microsilica+FlyAsh, degree=1, 
raw=TRUE), data = .) 
fit_lm_poly2_avg_80 <- train_set_80 %>% lm(stress~poly(Slag+Microsilica+FlyAsh, degree=2, 
raw=TRUE), data = .) 
fit_lm_poly3_avg_80 <- train_set_80 %>% lm(stress~poly(Slag+Microsilica+FlyAsh, degree=3, 
raw=TRUE), data = .) 
 
``` 
 
### Evaluate linear models by fitting matrix with average stress results 
 
```{r Evaluate linear models by fitting matrix with average stress results, echo=FALSE, fig.height=8, 
fig.width=16, message=FALSE, warning=FALSE} 
 
options(digits = 3) 
linearmodels_avg_methods_80 <- 
c("fit_loess_avg_80","fit_glm_avg_80","fit_lm_poly1_avg_80","fit_lm_poly2_avg_80","fit_lm_poly3_av
g_80") 
 
linearmodels_avg_train_rmse_80 <- 
c(min(fit_loess_avg_80$results$RMSE),min(fit_glm_avg_80$results$RMSE),RMSE((predict(fit_lm_poly1
_avg_80,train_set_80)),train_set_80$stress),RMSE((predict(fit_lm_poly2_avg_80,train_set_80)),train_se
t_80$stress),RMSE((predict(fit_lm_poly3_avg_80,train_set_80)),train_set_80$stress)) 
 
pred_loess_avg_80 <- predict(fit_loess_avg_80,newdata = test_set_80) 
pred_glm_avg_80 <- predict(fit_glm_avg_80,newdata = test_set_80) 
pred_lm_poly1_avg_80 <- predict(fit_lm_poly1_avg_80,newdata = test_set_80) 
pred_lm_poly2_avg_80 <- predict(fit_lm_poly2_avg_80,newdata = test_set_80) 
pred_lm_poly3_avg_80 <- predict(fit_lm_poly3_avg_80,newdata = test_set_80) 
 
linearmodels_avg_test_rmse_80 <- 
c(RMSE(pred_loess_avg_80,test_set_80$stress),RMSE(pred_glm_avg_80,test_set_80$stress),RMSE(pre
d_lm_poly1_avg_80,test_set_80$stress),RMSE(pred_lm_poly2_avg_80,test_set_80$stress),RMSE(pred_
lm_poly3_avg_80,test_set_80$stress)) 
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linearmodels_avg_methods_rmse_summary_80 <- 
data.frame(method=linearmodels_avg_methods_80,train_rmse=linearmodels_avg_train_rmse_80,test_
rmse=linearmodels_avg_test_rmse_80) 
 
linearmodels_avg_methods_rmse_summary_80 
 
``` 
 
### Evaluate RMSE on test data linear models avg 
 
```{r Evaluate RMSE on test data linear models avg, echo=FALSE, fig.height=8, fig.width=16, 
message=FALSE, warning=FALSE} 
 
plot(pred_glm_avg_80,test_set_80$stress,ylim = c(0,160),xlim = c(0,160)) 
abline(0,1) 
plot(pred_loess_avg_80,test_set_80$stress,ylim = c(0,160),xlim = c(0,160)) 
abline(0,1) 
plot(pred_lm_poly1_avg_80,test_set_80$stress,ylim = c(0,160),xlim = c(0,160)) 
abline(0,1) 
plot(pred_lm_poly2_avg_80,test_set_80$stress,ylim = c(0,160),xlim = c(0,160)) 
abline(0,1) 
plot(pred_lm_poly3_avg_80,test_set_80$stress,ylim = c(0,160),xlim = c(0,160)) 
abline(0,1) 
 
``` 
 
### Generating the predictive vector for the expanded matrix linear models avg 
 
```{r Generating the predictive vector for the expanded matrix linear models avg, echo=FALSE, 
fig.height=8, fig.width=16, message=FALSE, warning=FALSE} 
 
FSixDaysYhat_glm_avg_80 <- predict(fit_glm_avg_80,ExpandedPredictorsMatrix) 
FSixDaysTrialResults_glm_avg_80 <- ExpandedPredictorsMatrix %>% 
mutate(y_hat=FSixDaysYhat_glm_avg_80) 
FSixDaysTrialResults_glm_avg_80 <- FSixDaysTrialResults_glm_avg_80 %>% as.data.frame() %>% 
rename(Expected_Stress_MPa=y_hat) 
 
FSixDaysYhat_loess_avg_80 <- predict(fit_loess_avg_80,ExpandedPredictorsMatrix) 
FSixDaysTrialResults_loess_avg_80 <- ExpandedPredictorsMatrix %>% 
mutate(y_hat=FSixDaysYhat_loess_avg_80) 
FSixDaysTrialResults_loess_avg_80 <- FSixDaysTrialResults_loess_avg_80 %>% as.data.frame() %>% 
rename(Expected_Stress_MPa=y_hat) 
 
FSixDaysYhat_lm_poly1_avg_80 <- predict(fit_lm_poly1_avg_80,ExpandedPredictorsMatrix) 
FSixDaysTrialResults_lm_poly1_avg_80 <- ExpandedPredictorsMatrix %>% 
mutate(y_hat=FSixDaysYhat_lm_poly1_avg_80) 
FSixDaysTrialResults_lm_poly1_avg_80 <- FSixDaysTrialResults_lm_poly1_avg_80 %>% as.data.frame() 
%>% rename(Expected_Stress_MPa=y_hat) 
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FSixDaysYhat_lm_poly2_avg_80 <- predict(fit_lm_poly2_avg_80,ExpandedPredictorsMatrix) 
FSixDaysTrialResults_lm_poly2_avg_80 <- ExpandedPredictorsMatrix %>% 
mutate(y_hat=FSixDaysYhat_lm_poly2_avg_80) 
FSixDaysTrialResults_lm_poly2_avg_80 <- FSixDaysTrialResults_lm_poly2_avg_80 %>% as.data.frame() 
%>% rename(Expected_Stress_MPa=y_hat) 
 
FSixDaysYhat_lm_poly3_avg_80 <- predict(fit_lm_poly3_avg_80,ExpandedPredictorsMatrix) 
FSixDaysTrialResults_lm_poly3_avg_80 <- ExpandedPredictorsMatrix %>% 
mutate(y_hat=FSixDaysYhat_lm_poly3_avg_80) 
FSixDaysTrialResults_lm_poly3_avg_80 <- FSixDaysTrialResults_lm_poly3_avg_80 %>% as.data.frame() 
%>% rename(Expected_Stress_MPa=y_hat) 
``` 
 
### Performance Density Diagram - faceted by FlyAsh Content linear models avg 
 
```{r Performance Density Diagram - faceted by FlyAsh Content linear models avg, echo=FALSE, 
fig.height=8, fig.width=16, message=FALSE, warning=FALSE} 
 
FSixDaysTrialResults_glm_avg_80 %>% filter(FlyAsh %in% 
c(0,FlyAshPredictor[14,],FlyAshPredictor[26,],FlyAshPredictor[51,],FlyAshPredictor[62,],15)) %>% 
ggplot(aes(Microsilica,Slag,z=Expected_Stress_MPa,fill=Expected_Stress_MPa))+geom_raster()+scale_fil
l_gradientn(colors=c("#F8766D","white","#00BFC4"),limits=c(70,140))+facet_wrap(.~FlyAsh,labeller = 
label_both) 
 
FSixDaysTrialResults_loess_avg_80 %>% filter(FlyAsh %in% 
c(0,FlyAshPredictor[14,],FlyAshPredictor[26,],FlyAshPredictor[51,],FlyAshPredictor[62,],15)) %>% 
ggplot(aes(Microsilica,Slag,z=Expected_Stress_MPa,fill=Expected_Stress_MPa))+geom_raster()+scale_fil
l_gradientn(colors=c("#F8766D","white","#00BFC4"),limits=c(70,140))+facet_wrap(.~FlyAsh,labeller = 
label_both) 
 
FSixDaysTrialResults_lm_poly1_avg_80 %>% filter(FlyAsh %in% 
c(0,FlyAshPredictor[14,],FlyAshPredictor[26,],FlyAshPredictor[51,],FlyAshPredictor[62,],15)) %>% 
ggplot(aes(Microsilica,Slag,z=Expected_Stress_MPa,fill=Expected_Stress_MPa))+geom_raster()+scale_fil
l_gradientn(colors=c("#F8766D","white","#00BFC4"),limits=c(70,140))+facet_wrap(.~FlyAsh,labeller = 
label_both) 
 
FSixDaysTrialResults_lm_poly2_avg_80 %>% filter(FlyAsh %in% 
c(0,FlyAshPredictor[14,],FlyAshPredictor[26,],FlyAshPredictor[51,],FlyAshPredictor[62,],15)) %>% 
ggplot(aes(Microsilica,Slag,z=Expected_Stress_MPa,fill=Expected_Stress_MPa))+geom_raster()+scale_fil
l_gradientn(colors=c("#F8766D","white","#00BFC4"),limits=c(70,140))+facet_wrap(.~FlyAsh,labeller = 
label_both) 
 
FSixDaysTrialResults_lm_poly3_avg_80 %>% filter(FlyAsh %in% 
c(0,FlyAshPredictor[14,],FlyAshPredictor[26,],FlyAshPredictor[51,],FlyAshPredictor[62,],15)) %>% 
ggplot(aes(Microsilica,Slag,z=Expected_Stress_MPa,fill=Expected_Stress_MPa))+geom_raster()+scale_fil
l_gradientn(colors=c("#F8766D","white","#00BFC4"),limits=c(70,140))+facet_wrap(.~FlyAsh,labeller = 
label_both) 
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``` 
 
###Optimum mix linear models avg 
 
```{r Optimum mix linear models avg, echo=FALSE, fig.height=8, fig.width=16, message=FALSE, 
warning=FALSE} 
 
optimum_glm_avg_80 <- 
as.data.frame(ExpandedPredictorsMatrix[which.max(FSixDaysTrialResults_glm_avg_80$Expected_Stress
_MPa),]) 
optimum_loess_avg_80 <- 
as.data.frame(ExpandedPredictorsMatrix[which.max(FSixDaysTrialResults_loess_avg_80$Expected_Stre
ss_MPa),]) 
optimum_lm_poly1_avg_80 <- 
as.data.frame(ExpandedPredictorsMatrix[which.max(FSixDaysTrialResults_lm_poly1_avg_80$Expected_
Stress_MPa),]) 
optimum_lm_poly2_avg_80 <- 
as.data.frame(ExpandedPredictorsMatrix[which.max(FSixDaysTrialResults_lm_poly2_avg_80$Expected_
Stress_MPa),]) 
optimum_lm_poly3_avg_80 <- 
as.data.frame(ExpandedPredictorsMatrix[which.max(FSixDaysTrialResults_lm_poly3_avg_80$Expected_
Stress_MPa),]) 
 
optimum_linearmodels_avg_mixtures_80 <- 
rbind(optimum_glm_avg_80,optimum_loess_avg_80,optimum_lm_poly1_avg_80,optimum_lm_poly2_a
vg_80,optimum_lm_poly3_avg_80) %>% as.data.frame() 
 
optimum_linearmodels_avg_max_80 <- 
c(max(FSixDaysTrialResults_glm_avg_80),max(FSixDaysTrialResults_loess_avg_80),max(FSixDaysTrialRes
ults_lm_poly1_avg_80),max(FSixDaysTrialResults_lm_poly2_avg_80),max(FSixDaysTrialResults_lm_poly
3_avg_80)) 
 
optimum_linearmodels_avg_summary_80 <- 
data.frame(methods=linearmodels_avg_methods_80,optimum_linearmodels_avg_mixtures_80,predict
ed_stress_MPa=optimum_linearmodels_avg_max_80) 
optimum_linearmodels_avg_summary_80 
 
Experimental_mix_rank 
 
``` 
 
### linear models - optimize mtry parameter to fit matrix with individual specimens 
 
```{r linear models to fit matrix with individual specimens, echo=FALSE, fig.height=8, fig.width=16, 
message=FALSE, warning=FALSE} 
 
set.seed(1997, sample.kind = "Rounding") 
grid <- expand.grid(span = 5, degree = 2) 
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fit_loess_sp_80 <- train(stress ~. ,data = train_set_sp_80,method="gamLoess",tuneGrid=grid, 
preProc=c('center','scale')) 
 
fit_glm_sp_80 <- train(stress ~. ,data = train_set_sp_80,method="glm",preProc=c('center','scale')) 
 
fit_lm_poly1_sp_80 <- train_set_sp_80 %>% lm(stress~poly(Slag+Microsilica+FlyAsh, degree=1, 
raw=TRUE), data = .) 
fit_lm_poly2_sp_80 <- train_set_sp_80 %>% lm(stress~poly(Slag+Microsilica+FlyAsh, degree=2, 
raw=TRUE), data = .) 
fit_lm_poly3_sp_80 <- train_set_sp_80 %>% lm(stress~poly(Slag+Microsilica+FlyAsh, degree=3, 
raw=TRUE), data = .) 
 
``` 
 
### Evaluate linear models generated by fitting matrix with individual specimens 
 
```{r Evaluate linear models generated by fitting matrix with individual specimens, echo=FALSE, 
fig.height=8, fig.width=16, message=FALSE, warning=FALSE} 
 
options(digits = 3) 
linearmodels_sp_methods_80 <- 
c("fit_loess_sp_80","fit_glm_sp_80","fit_lm_poly1_sp_80","fit_lm_poly2_sp_80","fit_lm_poly3_sp_80") 
 
linearmodels_sp_train_rmse_80 <- 
c(min(fit_loess_sp_80$results$RMSE),min(fit_glm_sp_80$results$RMSE),RMSE((predict(fit_lm_poly1_sp
_80,train_set_sp_80)),train_set_sp_80$stress),RMSE((predict(fit_lm_poly2_sp_80,train_set_sp_80)),trai
n_set_sp_80$stress),RMSE((predict(fit_lm_poly3_sp_80,train_set_sp_80)),train_set_sp_80$stress)) 
 
pred_loess_sp_80 <- predict(fit_loess_sp_80,newdata = test_set_sp_80) 
pred_glm_sp_80 <- predict(fit_glm_sp_80,newdata = test_set_sp_80) 
pred_lm_poly1_sp_80 <- predict(fit_lm_poly1_sp_80,newdata = test_set_sp_80) 
pred_lm_poly2_sp_80 <- predict(fit_lm_poly2_sp_80,newdata = test_set_sp_80) 
pred_lm_poly3_sp_80 <- predict(fit_lm_poly3_sp_80,newdata = test_set_sp_80) 
 
linearmodels_sp_test_rmse_80 <- 
c(RMSE(pred_loess_sp_80,test_set_sp_80$stress),RMSE(pred_glm_sp_80,test_set_sp_80$stress),RMSE
(pred_lm_poly1_sp_80,test_set_sp_80$stress),RMSE(pred_lm_poly2_sp_80,test_set_sp_80$stress),RM
SE(pred_lm_poly3_sp_80,test_set_sp_80$stress)) 
 
linearmodels_sp_methods_rmse_summary_80 <- 
data.frame(method=linearmodels_sp_methods_80,train_rmse=linearmodels_sp_train_rmse_80,test_r
mse=linearmodels_sp_test_rmse_80) 
 
linearmodels_sp_methods_rmse_summary_80 
 
``` 
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### Evaluate RMSE on test data linear sp 
 
```{r Evaluate RMSE on test data linear sp, echo=FALSE, fig.height=8, fig.width=16, message=FALSE, 
warning=FALSE} 
 
plot(pred_glm_sp_80,test_set_sp_80$stress,ylim = c(0,160),xlim = c(0,160)) 
abline(0,1) 
plot(pred_loess_sp_80,test_set_sp_80$stress,ylim = c(0,160),xlim = c(0,160)) 
abline(0,1) 
plot(pred_lm_poly1_sp_80,test_set_sp_80$stress,ylim = c(0,160),xlim = c(0,160)) 
abline(0,1) 
plot(pred_lm_poly2_sp_80,test_set_sp_80$stress,ylim = c(0,160),xlim = c(0,160)) 
abline(0,1) 
plot(pred_lm_poly3_sp_80,test_set_sp_80$stress,ylim = c(0,160),xlim = c(0,160)) 
abline(0,1) 
 
``` 
 
### Generating the predictive vector for the expanded matrix linear sp 
 
```{r Generating the predictive vector for the expanded matrix linear sp, echo=FALSE, fig.height=8, 
fig.width=16, message=FALSE, warning=FALSE} 
 
FSixDaysYhat_glm_sp_80 <- predict(fit_glm_sp_80,ExpandedPredictorsMatrix) 
FSixDaysTrialResults_glm_sp_80 <- ExpandedPredictorsMatrix %>% 
mutate(y_hat=FSixDaysYhat_glm_sp_80) 
FSixDaysTrialResults_glm_sp_80 <- FSixDaysTrialResults_glm_sp_80 %>% as.data.frame() %>% 
rename(Expected_Stress_MPa=y_hat) 
 
FSixDaysYhat_loess_sp_80 <- predict(fit_loess_sp_80,ExpandedPredictorsMatrix) 
FSixDaysTrialResults_loess_sp_80 <- ExpandedPredictorsMatrix %>% 
mutate(y_hat=FSixDaysYhat_loess_sp_80) 
FSixDaysTrialResults_loess_sp_80 <- FSixDaysTrialResults_loess_sp_80 %>% as.data.frame() %>% 
rename(Expected_Stress_MPa=y_hat) 
 
FSixDaysYhat_lm_poly1_sp_80 <- predict(fit_lm_poly1_sp_80,ExpandedPredictorsMatrix) 
FSixDaysTrialResults_lm_poly1_sp_80 <- ExpandedPredictorsMatrix %>% 
mutate(y_hat=FSixDaysYhat_lm_poly1_sp_80) 
FSixDaysTrialResults_lm_poly1_sp_80 <- FSixDaysTrialResults_lm_poly1_sp_80 %>% as.data.frame() 
%>% rename(Expected_Stress_MPa=y_hat) 
 
FSixDaysYhat_lm_poly2_sp_80 <- predict(fit_lm_poly2_sp_80,ExpandedPredictorsMatrix) 
FSixDaysTrialResults_lm_poly2_sp_80 <- ExpandedPredictorsMatrix %>% 
mutate(y_hat=FSixDaysYhat_lm_poly2_sp_80) 
FSixDaysTrialResults_lm_poly2_sp_80 <- FSixDaysTrialResults_lm_poly2_sp_80 %>% as.data.frame() 
%>% rename(Expected_Stress_MPa=y_hat) 
 
FSixDaysYhat_lm_poly3_sp_80 <- predict(fit_lm_poly3_sp_80,ExpandedPredictorsMatrix) 
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FSixDaysTrialResults_lm_poly3_sp_80 <- ExpandedPredictorsMatrix %>% 
mutate(y_hat=FSixDaysYhat_lm_poly3_sp_80) 
FSixDaysTrialResults_lm_poly3_sp_80 <- FSixDaysTrialResults_lm_poly3_sp_80 %>% as.data.frame() 
%>% rename(Expected_Stress_MPa=y_hat) 
 
``` 
 
### Performance Density Diagram - faceted by Slag Content linear models sp 
 
```{r Performance Density Diagram - faceted by Slag Content linear models sp, echo=FALSE, fig.height=8, 
fig.width=16, message=FALSE, warning=FALSE} 
 
FSixDaysTrialResults_glm_sp_80 %>% filter(Slag %in% 
c(0,ExpandedPredictorsMatrix$Slag[26],ExpandedPredictorsMatrix$Slag[51],ExpandedPredictorsMatrix$
Slag[76],60)) %>% 
ggplot(aes(Microsilica,FlyAsh,z=Expected_Stress_MPa,fill=Expected_Stress_MPa))+geom_raster()+scale
_fill_gradientn(colors=c("#F8766D","white","#00BFC4"),limits=c(70,130))+facet_wrap(.~Slag,labeller = 
label_both) 
 
FSixDaysTrialResults_loess_sp_80 %>% filter(Slag %in% 
c(0,ExpandedPredictorsMatrix$Slag[26],ExpandedPredictorsMatrix$Slag[51],ExpandedPredictorsMatrix$
Slag[76],60)) %>% 
ggplot(aes(Microsilica,FlyAsh,z=Expected_Stress_MPa,fill=Expected_Stress_MPa))+geom_raster()+scale
_fill_gradientn(colors=c("#F8766D","white","#00BFC4"),limits=c(70,130))+facet_wrap(.~Slag,labeller = 
label_both) 
 
FSixDaysTrialResults_lm_poly1_sp_80 %>% filter(Slag %in% 
c(0,ExpandedPredictorsMatrix$Slag[26],ExpandedPredictorsMatrix$Slag[51],ExpandedPredictorsMatrix$
Slag[76],60)) %>% 
ggplot(aes(Microsilica,FlyAsh,z=Expected_Stress_MPa,fill=Expected_Stress_MPa))+geom_raster()+scale
_fill_gradientn(colors=c("#F8766D","white","#00BFC4"),limits=c(70,130))+facet_wrap(.~Slag,labeller = 
label_both) 
 
FSixDaysTrialResults_lm_poly2_sp_80 %>% filter(Slag %in% 
c(0,ExpandedPredictorsMatrix$Slag[26],ExpandedPredictorsMatrix$Slag[51],ExpandedPredictorsMatrix$
Slag[76],60)) %>% 
ggplot(aes(Microsilica,FlyAsh,z=Expected_Stress_MPa,fill=Expected_Stress_MPa))+geom_raster()+scale
_fill_gradientn(colors=c("#F8766D","white","#00BFC4"),limits=c(70,130))+facet_wrap(.~Slag,labeller = 
label_both) 
 
FSixDaysTrialResults_lm_poly3_sp_80 %>% filter(Slag %in% 
c(0,ExpandedPredictorsMatrix$Slag[26],ExpandedPredictorsMatrix$Slag[51],ExpandedPredictorsMatrix$
Slag[76],60)) %>% 
ggplot(aes(Microsilica,FlyAsh,z=Expected_Stress_MPa,fill=Expected_Stress_MPa))+geom_raster()+scale
_fill_gradientn(colors=c("#F8766D","white","#00BFC4"),limits=c(70,130))+facet_wrap(.~Slag,labeller = 
label_both) 
 
``` 
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###Optimum mix linear models sp 
 
```{r Optimum mix linear models sp, echo=FALSE, fig.height=8, fig.width=16, message=FALSE, 
warning=FALSE} 
 
optimum_glm_sp_80 <- 
as.data.frame(ExpandedPredictorsMatrix[which.max(FSixDaysTrialResults_glm_sp_80$Expected_Stress_
MPa),]) 
optimum_loess_sp_80 <- 
as.data.frame(ExpandedPredictorsMatrix[which.max(FSixDaysTrialResults_loess_sp_80$Expected_Stres
s_MPa),]) 
optimum_lm_poly1_sp_80 <- 
as.data.frame(ExpandedPredictorsMatrix[which.max(FSixDaysTrialResults_lm_poly1_sp_80$Expected_S
tress_MPa),]) 
optimum_lm_poly2_sp_80 <- 
as.data.frame(ExpandedPredictorsMatrix[which.max(FSixDaysTrialResults_lm_poly2_sp_80$Expected_S
tress_MPa),]) 
optimum_lm_poly3_sp_80 <- 
as.data.frame(ExpandedPredictorsMatrix[which.max(FSixDaysTrialResults_lm_poly3_sp_80$Expected_S
tress_MPa),]) 
 
optimum_linearmodels_sp_mixtures_80 <- 
rbind(optimum_glm_sp_80,optimum_loess_sp_80,optimum_lm_poly1_sp_80,optimum_lm_poly2_sp_8
0,optimum_lm_poly3_sp_80) %>% as.data.frame() 
 
optimum_linearmodels_sp_max_80 <- 
c(max(FSixDaysTrialResults_glm_sp_80),max(FSixDaysTrialResults_loess_sp_80),max(FSixDaysTrialResult
s_lm_poly1_sp_80),max(FSixDaysTrialResults_lm_poly2_sp_80),max(FSixDaysTrialResults_lm_poly3_sp_
80)) 
 
optimum_linearmodels_sp_summary_80 <- 
data.frame(methods=linearmodels_sp_methods_80,optimum_linearmodels_sp_mixtures_80,predicted
_stress_MPa=optimum_linearmodels_sp_max_80) 
optimum_linearmodels_sp_summary_80 
 
Experimental_mix_rank 
 
``` 
 
### Generating the predictive vector for the expanded matrix ENSEMBLE (knn+rf) avg 
 
```{r Generating the predictive vector for the expanded matrix ENSEMBLE, echo=FALSE, fig.height=8, 
fig.width=16, message=FALSE, warning=FALSE} 
 
FSixDaysYhat_ensemble_avg_80 <- 
data.frame(KNN=FSixDaysYhat_knn_avg_80,RF=FSixDaysYhat_rf_avg_80) 
a <- rowMeans(FSixDaysYhat_ensemble_avg_80) 
FSixDaysYhat_ensemble_avg_80 <- FSixDaysYhat_ensemble_avg_80 %>% mutate(ENSEMBLE=a) 
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FSixDaysTrialResults_ensemble_avg_80 <- ExpandedPredictorsMatrix %>% 
mutate(y_hat=FSixDaysYhat_ensemble_avg_80$ENSEMBLE) 
FSixDaysTrialResults_ensemble_avg_80 <- FSixDaysTrialResults_ensemble_avg_80 %>% as.data.frame() 
%>% rename(Expected_Stress_MPa=y_hat) 
 
FSixDaysYhat_ensemble_avg_100 <- 
data.frame(KNN=FSixDaysYhat_knn_avg_100,RF=FSixDaysYhat_rf_avg_100) 
a <- rowMeans(FSixDaysYhat_ensemble_avg_100) 
FSixDaysYhat_ensemble_avg_100 <- FSixDaysYhat_ensemble_avg_100 %>% mutate(ENSEMBLE=a) 
FSixDaysTrialResults_ensemble_avg_100 <- ExpandedPredictorsMatrix %>% 
mutate(y_hat=FSixDaysYhat_ensemble_avg_100$ENSEMBLE) 
FSixDaysTrialResults_ensemble_avg_100 <- FSixDaysTrialResults_ensemble_avg_100 %>% 
as.data.frame() %>% rename(Expected_Stress_MPa=y_hat) 
 
FSixDaysYhat_ensemble_avg_80_combined <- 
data.frame(KNN=FSixDaysYhat_knn_avg_80_combined,RF=FSixDaysYhat_rf_avg_80_combined) 
a <- rowMeans(FSixDaysYhat_ensemble_avg_80_combined) 
FSixDaysYhat_ensemble_avg_80_combined <- FSixDaysYhat_ensemble_avg_80_combined %>% 
mutate(ENSEMBLE=a) 
FSixDaysTrialResults_ensemble_avg_80_combined <- ExpandedPredictorsMatrix %>% 
mutate(y_hat=FSixDaysYhat_ensemble_avg_80_combined$ENSEMBLE) 
FSixDaysTrialResults_ensemble_avg_80_combined <- FSixDaysTrialResults_ensemble_avg_80_combined 
%>% as.data.frame() %>% rename(Expected_Stress_MPa=y_hat) 
 
FSixDaysYhat_ensemble_avg_final <- 
data.frame(KNN=FSixDaysYhat_knn_avg_final,RF=FSixDaysYhat_rf_avg_final) 
a <- rowMeans(FSixDaysYhat_ensemble_avg_final) 
FSixDaysYhat_ensemble_avg_final <- FSixDaysYhat_ensemble_avg_final %>% mutate(ENSEMBLE=a) 
FSixDaysTrialResults_ensemble_avg_final <- ExpandedPredictorsMatrix %>% 
mutate(y_hat=FSixDaysYhat_ensemble_avg_final$ENSEMBLE) 
FSixDaysTrialResults_ensemble_avg_final <- FSixDaysTrialResults_ensemble_avg_final %>% 
as.data.frame() %>% rename(Expected_Stress_MPa=y_hat) 
 
FSixDaysYhat_ensemble_avg_100_combined <- 
data.frame(KNN=FSixDaysYhat_knn_avg_100_combined,RF=FSixDaysYhat_rf_avg_100_combined) 
a <- rowMeans(FSixDaysYhat_ensemble_avg_100_combined) 
FSixDaysYhat_ensemble_avg_100_combined <- FSixDaysYhat_ensemble_avg_100_combined %>% 
mutate(ENSEMBLE=a) 
FSixDaysTrialResults_ensemble_avg_100_combined <- ExpandedPredictorsMatrix %>% 
mutate(y_hat=FSixDaysYhat_ensemble_avg_100_combined$ENSEMBLE) 
FSixDaysTrialResults_ensemble_avg_100_combined <- 
FSixDaysTrialResults_ensemble_avg_100_combined %>% as.data.frame() %>% 
rename(Expected_Stress_MPa=y_hat) 
 
FSixDaysYhat_ensemble_optimum <- 
data.frame(KNN=FSixDaysYhat_knn_sp_100_combined,RF=FSixDaysYhat_rf_avg_100_combined) 
a <- rowMeans(FSixDaysYhat_ensemble_optimum) 
FSixDaysYhat_ensemble_optimum <- FSixDaysYhat_ensemble_optimum %>% mutate(ENSEMBLE=a) 
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FSixDaysTrialResults_ensemble_optimum <- ExpandedPredictorsMatrix %>% 
mutate(y_hat=FSixDaysYhat_ensemble_optimum$ENSEMBLE) 
FSixDaysTrialResults_ensemble_optimum <- FSixDaysTrialResults_ensemble_optimum %>% 
as.data.frame() %>% rename(Expected_Stress_MPa=y_hat) 
 
``` 
 
### Performance Density Diagram - faceted by Slag Content ENSEMBLE avg 
 
```{r Performance Density Diagram - faceted by Slag Content ENSEMBLE avg, echo=FALSE, fig.height=8, 
fig.width=16, message=FALSE, warning=FALSE} 
 
FSixDaysTrialResults_ensemble_avg_80 %>% filter(Slag %in% 
c(0,ExpandedPredictorsMatrix$Slag[26],ExpandedPredictorsMatrix$Slag[51],ExpandedPredictorsMatrix$
Slag[76],60)) %>% 
ggplot(aes(Microsilica,FlyAsh,z=Expected_Stress_MPa,fill=Expected_Stress_MPa))+geom_raster()+scale
_fill_gradientn(colors=c("#F8766D","white","#00BFC4"),limits=c(70,130))+facet_wrap(.~Slag,labeller = 
label_both) 
 
FSixDaysTrialResults_ensemble_avg_100 %>% filter(Slag %in% 
c(0,ExpandedPredictorsMatrix$Slag[26],ExpandedPredictorsMatrix$Slag[51],ExpandedPredictorsMatrix$
Slag[76],60)) %>% 
ggplot(aes(Microsilica,FlyAsh,z=Expected_Stress_MPa,fill=Expected_Stress_MPa))+geom_raster()+scale
_fill_gradientn(colors=c("#F8766D","white","#00BFC4"),limits=c(70,130))+facet_wrap(.~Slag,labeller = 
label_both) 
 
FSixDaysTrialResults_ensemble_avg_80_combined %>% filter(Slag %in% 
c(0,ExpandedPredictorsMatrix$Slag[26],ExpandedPredictorsMatrix$Slag[51],ExpandedPredictorsMatrix$
Slag[76],60)) %>% 
ggplot(aes(Microsilica,FlyAsh,z=Expected_Stress_MPa,fill=Expected_Stress_MPa))+geom_raster()+scale
_fill_gradientn(colors=c("#F8766D","white","#00BFC4"),limits=c(70,130))+facet_wrap(.~Slag,labeller = 
label_both) 
 
FSixDaysTrialResults_ensemble_avg_final %>% filter(Slag %in% 
c(0,ExpandedPredictorsMatrix$Slag[26],ExpandedPredictorsMatrix$Slag[51],ExpandedPredictorsMatrix$
Slag[76],60)) %>% 
ggplot(aes(Microsilica,FlyAsh,z=Expected_Stress_MPa,fill=Expected_Stress_MPa))+geom_raster()+scale
_fill_gradientn(colors=c("#F8766D","white","#00BFC4"),limits=c(70,130))+facet_wrap(.~Slag,labeller = 
label_both) 
 
FSixDaysTrialResults_ensemble_avg_100_combined %>% filter(Slag %in% 
c(0,ExpandedPredictorsMatrix$Slag[26],ExpandedPredictorsMatrix$Slag[51],ExpandedPredictorsMatrix$
Slag[76],60)) %>% 
ggplot(aes(Microsilica,FlyAsh,z=Expected_Stress_MPa,fill=Expected_Stress_MPa))+geom_raster()+scale
_fill_gradientn(colors=c("#F8766D","white","#00BFC4"),limits=c(70,130))+facet_wrap(.~Slag,labeller = 
label_both) 
 
``` 
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### Performance Density Diagram - faceted by Fly Ash Content ENSEMBLE avg 
 
```{r Performance Density Diagram - faceted by Fly Ash Content ENSEMBLE avg, echo=FALSE, 
fig.height=8, fig.width=16, message=FALSE, warning=FALSE} 
 
FSixDaysTrialResults_ensemble_avg_80 %>% filter(FlyAsh %in% 
c(0,FlyAshPredictor[14,],FlyAshPredictor[26,],FlyAshPredictor[51,],FlyAshPredictor[62,],15)) %>% 
ggplot(aes(Microsilica,Slag,z=Expected_Stress_MPa,fill=Expected_Stress_MPa))+geom_raster()+scale_fil
l_gradientn(colors=c("#F8766D","white","#00BFC4"),limits=c(70,130))+facet_wrap(.~FlyAsh,labeller = 
label_both) 
 
FSixDaysTrialResults_ensemble_avg_100 %>% filter(FlyAsh %in% 
c(0,FlyAshPredictor[14,],FlyAshPredictor[26,],FlyAshPredictor[51,],FlyAshPredictor[62,],15)) %>% 
ggplot(aes(Microsilica,Slag,z=Expected_Stress_MPa,fill=Expected_Stress_MPa))+geom_raster()+scale_fil
l_gradientn(colors=c("#F8766D","white","#00BFC4"),limits=c(70,130))+facet_wrap(.~FlyAsh,labeller = 
label_both) 
 
FSixDaysTrialResults_ensemble_avg_80_combined %>% filter(FlyAsh %in% 
c(0,FlyAshPredictor[14,],FlyAshPredictor[26,],FlyAshPredictor[51,],FlyAshPredictor[62,],15)) %>% 
ggplot(aes(Microsilica,Slag,z=Expected_Stress_MPa,fill=Expected_Stress_MPa))+geom_raster()+scale_fil
l_gradientn(colors=c("#F8766D","white","#00BFC4"),limits=c(70,130))+facet_wrap(.~FlyAsh,labeller = 
label_both) 
 
FSixDaysTrialResults_ensemble_avg_final %>% filter(FlyAsh %in% 
c(0,FlyAshPredictor[14,],FlyAshPredictor[26,],FlyAshPredictor[51,],FlyAshPredictor[62,],15)) %>% 
ggplot(aes(Microsilica,Slag,z=Expected_Stress_MPa,fill=Expected_Stress_MPa))+geom_raster()+scale_fil
l_gradientn(colors=c("#F8766D","white","#00BFC4"),limits=c(70,130))+facet_wrap(.~FlyAsh,labeller = 
label_both) 
 
FSixDaysTrialResults_ensemble_avg_100_combined %>% filter(FlyAsh %in% 
c(0,FlyAshPredictor[14,],FlyAshPredictor[26,],FlyAshPredictor[51,],FlyAshPredictor[62,],15)) %>% 
ggplot(aes(Microsilica,Slag,z=Expected_Stress_MPa,fill=Expected_Stress_MPa))+geom_raster()+scale_fil
l_gradientn(colors=c("#F8766D","white","#00BFC4"),limits=c(70,130))+facet_wrap(.~FlyAsh,labeller = 
label_both) 
 
FSixDaysTrialResults_ensemble_optimum %>% filter(FlyAsh %in% 
c(0,FlyAshPredictor[14,],FlyAshPredictor[26,],FlyAshPredictor[51,],FlyAshPredictor[62,],15)) %>% 
ggplot(aes(Microsilica,Slag,z=Expected_Stress_MPa,fill=Expected_Stress_MPa))+geom_raster()+scale_fil
l_gradientn(colors=c("#F8766D","white","#00BFC4"),limits=c(70,130))+facet_wrap(.~FlyAsh,labeller = 
label_both) 
 
``` 
 
### Performance Density Diagram - faceted by Microsilica Content ENSEMBLE avg 
 
```{r Performance Density Diagram - faceted by Microsilica Content ENSEMBLE avg, echo=FALSE, 
fig.height=8, fig.width=16, message=FALSE, warning=FALSE} 
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FSixDaysTrialResults_ensemble_avg_80 %>% filter(Microsilica %in% 
c(0,ExpandedPredictorsMatrix$Microsilica[2510],ExpandedPredictorsMatrix$Microsilica[5010],Expande
dPredictorsMatrix$Microsilica[7510],ExpandedPredictorsMatrix$Microsilica[10000])) %>% 
ggplot(aes(FlyAsh,Slag,z=Expected_Stress_MPa,fill=Expected_Stress_MPa))+geom_raster()+scale_fill_gr
adientn(colors=c("#F8766D","white","#00BFC4"),limits=c(70,130))+facet_wrap(.~Microsilica,labeller = 
label_both) 
 
FSixDaysTrialResults_ensemble_avg_100 %>% filter(Microsilica %in% 
c(0,ExpandedPredictorsMatrix$Microsilica[2510],ExpandedPredictorsMatrix$Microsilica[5010],Expande
dPredictorsMatrix$Microsilica[7510],ExpandedPredictorsMatrix$Microsilica[10000])) %>% 
ggplot(aes(FlyAsh,Slag,z=Expected_Stress_MPa,fill=Expected_Stress_MPa))+geom_raster()+scale_fill_gr
adientn(colors=c("#F8766D","white","#00BFC4"),limits=c(70,130))+facet_wrap(.~Microsilica,labeller = 
label_both) 
 
FSixDaysTrialResults_ensemble_avg_80_combined %>% filter(Microsilica %in% 
c(0,ExpandedPredictorsMatrix$Microsilica[2510],ExpandedPredictorsMatrix$Microsilica[5010],Expande
dPredictorsMatrix$Microsilica[7510],ExpandedPredictorsMatrix$Microsilica[10000])) %>% 
ggplot(aes(FlyAsh,Slag,z=Expected_Stress_MPa,fill=Expected_Stress_MPa))+geom_raster()+scale_fill_gr
adientn(colors=c("#F8766D","white","#00BFC4"),limits=c(70,130))+facet_wrap(.~Microsilica,labeller = 
label_both) 
 
FSixDaysTrialResults_ensemble_avg_final %>% filter(Microsilica %in% 
c(0,ExpandedPredictorsMatrix$Microsilica[2510],ExpandedPredictorsMatrix$Microsilica[5010],Expande
dPredictorsMatrix$Microsilica[7510],ExpandedPredictorsMatrix$Microsilica[10000])) %>% 
ggplot(aes(FlyAsh,Slag,z=Expected_Stress_MPa,fill=Expected_Stress_MPa))+geom_raster()+scale_fill_gr
adientn(colors=c("#F8766D","white","#00BFC4"),limits=c(70,130))+facet_wrap(.~Microsilica,labeller = 
label_both) 
 
FSixDaysTrialResults_ensemble_avg_100_combined %>% filter(Microsilica %in% 
c(0,ExpandedPredictorsMatrix$Microsilica[2510],ExpandedPredictorsMatrix$Microsilica[5010],Expande
dPredictorsMatrix$Microsilica[7510],ExpandedPredictorsMatrix$Microsilica[10000])) %>% 
ggplot(aes(FlyAsh,Slag,z=Expected_Stress_MPa,fill=Expected_Stress_MPa))+geom_raster()+scale_fill_gr
adientn(colors=c("#F8766D","white","#00BFC4"),limits=c(70,130))+facet_wrap(.~Microsilica,labeller = 
label_both) 
``` 
 
###Optimum mix ENSEMBLE avg 
 
```{r Optimum mix ENSEMBLE avg, echo=FALSE, fig.height=8, fig.width=16, message=FALSE, 
warning=FALSE} 
 
optimum_ensemble_avg_80 <- 
as.data.frame(ExpandedPredictorsMatrix[which.max(FSixDaysTrialResults_ensemble_avg_80$Expected
_Stress_MPa),]) 
optimum_ensemble_avg_100 <- 
as.data.frame(ExpandedPredictorsMatrix[which.max(FSixDaysTrialResults_ensemble_avg_100$Expecte
d_Stress_MPa),]) 
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optimum_ensemble_avg_80_combined <- as.data.frame( 
ExpandedPredictorsMatrix[which.max(FSixDaysTrialResults_ensemble_avg_80_combined$Expected_Str
ess_MPa),]) 
optimum_ensemble_avg_final <- 
as.data.frame(ExpandedPredictorsMatrix[which.max(FSixDaysTrialResults_ensemble_avg_final$Expecte
d_Stress_MPa),]) 
optimum_ensemble_avg_100_combined <- as.data.frame( 
ExpandedPredictorsMatrix[which.max(FSixDaysTrialResults_ensemble_avg_100_combined$Expected_St
ress_MPa),]) 
 
optimum_ensemble_avg_mixtures <- 
rbind(optimum_ensemble_avg_80,optimum_ensemble_avg_100,optimum_ensemble_avg_80_combine
d,optimum_ensemble_avg_final,optimum_ensemble_avg_100_combined) %>% as.data.frame() 
 
optimum_ensemble_avg_max <- 
c(max(FSixDaysTrialResults_ensemble_avg_80),max(FSixDaysTrialResults_ensemble_avg_100),max(FSix
DaysTrialResults_ensemble_avg_80_combined),max(FSixDaysTrialResults_ensemble_avg_final),max(FSi
xDaysTrialResults_ensemble_avg_100_combined)) 
 
ensemble_avg_methods <- 
c("fit_ensemble_avg_80","fit_ensemble_avg_100","fit_ensemble_avg_80_combined","fit_ensemble_av
g_final","fit_ensemble_avg_100_combined") 
 
optimum_ensemble_avg_summary <- 
data.frame(methods=ensemble_avg_methods,optimum_ensemble_avg_mixtures,predicted_stress_MP
a=optimum_ensemble_avg_max) 
optimum_ensemble_avg_summary 
 
Experimental_mix_rank <- Phase_A_Results_combined %>% filter(Mixing_Process=="High shear 
mixing")%>% group_by(Material_number)%>% 
summarize(Slag=mean(Slag_percent_wt),Microsilica=mean(Microsilica_percent_wt),FlyAsh=mean(FlyAs
h_percent_wt),Stress=mean(Stress_56D_MPa)) %>% arrange(desc(Stress)) %>% as.data.frame() %>% 
head(n=10) 
Experimental_mix_rank 
 
``` 
 
### Generating the predictive vector for the expanded matrix ENSEMBLE (knn+rf)sp 
 
```{r Generating the predictive vector for the expanded matrix ENSEMBLE sp, echo=FALSE, fig.height=8, 
fig.width=16, message=FALSE, warning=FALSE} 
 
FSixDaysYhat_ensemble_sp_80 <- 
data.frame(KNN=FSixDaysYhat_knn_sp_80,RF=FSixDaysYhat_rf_sp_80) 
a <- rowMeans(FSixDaysYhat_ensemble_sp_80) 
FSixDaysYhat_ensemble_sp_80 <- FSixDaysYhat_ensemble_sp_80 %>% mutate(ENSEMBLE=a) 
FSixDaysTrialResults_ensemble_sp_80 <- ExpandedPredictorsMatrix %>% 
mutate(y_hat=FSixDaysYhat_ensemble_sp_80$ENSEMBLE) 
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FSixDaysTrialResults_ensemble_sp_80 <- FSixDaysTrialResults_ensemble_sp_80 %>% as.data.frame() 
%>% rename(Expected_Stress_MPa=y_hat) 
 
FSixDaysYhat_ensemble_sp_100 <- 
data.frame(KNN=FSixDaysYhat_knn_sp_100,RF=FSixDaysYhat_rf_sp_100) 
a <- rowMeans(FSixDaysYhat_ensemble_sp_100) 
FSixDaysYhat_ensemble_sp_100 <- FSixDaysYhat_ensemble_sp_100 %>% mutate(ENSEMBLE=a) 
FSixDaysTrialResults_ensemble_sp_100 <- ExpandedPredictorsMatrix %>% 
mutate(y_hat=FSixDaysYhat_ensemble_sp_100$ENSEMBLE) 
FSixDaysTrialResults_ensemble_sp_100 <- FSixDaysTrialResults_ensemble_sp_100 %>% as.data.frame() 
%>% rename(Expected_Stress_MPa=y_hat) 
 
FSixDaysYhat_ensemble_sp_80_combined <- 
data.frame(KNN=FSixDaysYhat_knn_sp_80_combined,RF=FSixDaysYhat_rf_sp_80_combined) 
a <- rowMeans(FSixDaysYhat_ensemble_sp_80_combined) 
FSixDaysYhat_ensemble_sp_80_combined <- FSixDaysYhat_ensemble_sp_80_combined %>% 
mutate(ENSEMBLE=a) 
FSixDaysTrialResults_ensemble_sp_80_combined <- ExpandedPredictorsMatrix %>% 
mutate(y_hat=FSixDaysYhat_ensemble_sp_80_combined$ENSEMBLE) 
FSixDaysTrialResults_ensemble_sp_80_combined <- FSixDaysTrialResults_ensemble_sp_80_combined 
%>% as.data.frame() %>% rename(Expected_Stress_MPa=y_hat) 
 
FSixDaysYhat_ensemble_sp_100_combined <- 
data.frame(KNN=FSixDaysYhat_knn_sp_100_combined,RF=FSixDaysYhat_rf_sp_100_combined) 
a <- rowMeans(FSixDaysYhat_ensemble_sp_100_combined) 
FSixDaysYhat_ensemble_sp_100_combined <- FSixDaysYhat_ensemble_sp_100_combined %>% 
mutate(ENSEMBLE=a) 
FSixDaysTrialResults_ensemble_sp_100_combined <- ExpandedPredictorsMatrix %>% 
mutate(y_hat=FSixDaysYhat_ensemble_sp_100_combined$ENSEMBLE) 
FSixDaysTrialResults_ensemble_sp_100_combined <- 
FSixDaysTrialResults_ensemble_sp_100_combined %>% as.data.frame() %>% 
rename(Expected_Stress_MPa=y_hat) 
 
``` 
 
### Performance Density Diagram - faceted by Slag Content ENSEMBLE sp 
 
```{r Performance Density Diagram - faceted by Slag Content ENSEMBLE sp, echo=FALSE, fig.height=8, 
fig.width=16, message=FALSE, warning=FALSE} 
 
FSixDaysTrialResults_ensemble_sp_80 %>% filter(Slag %in% 
c(0,ExpandedPredictorsMatrix$Slag[26],ExpandedPredictorsMatrix$Slag[51],ExpandedPredictorsMatrix$
Slag[76],60)) %>% 
ggplot(aes(Microsilica,FlyAsh,z=Expected_Stress_MPa,fill=Expected_Stress_MPa))+geom_raster()+scale
_fill_gradientn(colors=c("#F8766D","white","#00BFC4"),limits=c(70,130))+facet_wrap(.~Slag,labeller = 
label_both) 
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FSixDaysTrialResults_ensemble_sp_100 %>% filter(Slag %in% 
c(0,ExpandedPredictorsMatrix$Slag[26],ExpandedPredictorsMatrix$Slag[51],ExpandedPredictorsMatrix$
Slag[76],60)) %>% 
ggplot(aes(Microsilica,FlyAsh,z=Expected_Stress_MPa,fill=Expected_Stress_MPa))+geom_raster()+scale
_fill_gradientn(colors=c("#F8766D","white","#00BFC4"),limits=c(70,130))+facet_wrap(.~Slag,labeller = 
label_both) 
 
FSixDaysTrialResults_ensemble_sp_80_combined %>% filter(Slag %in% 
c(0,ExpandedPredictorsMatrix$Slag[26],ExpandedPredictorsMatrix$Slag[51],ExpandedPredictorsMatrix$
Slag[76],60)) %>% 
ggplot(aes(Microsilica,FlyAsh,z=Expected_Stress_MPa,fill=Expected_Stress_MPa))+geom_raster()+scale
_fill_gradientn(colors=c("#F8766D","white","#00BFC4"),limits=c(70,130))+facet_wrap(.~Slag,labeller = 
label_both) 
 
FSixDaysTrialResults_ensemble_sp_100_combined %>% filter(Slag %in% 
c(0,ExpandedPredictorsMatrix$Slag[26],ExpandedPredictorsMatrix$Slag[51],ExpandedPredictorsMatrix$
Slag[76],60)) %>% 
ggplot(aes(Microsilica,FlyAsh,z=Expected_Stress_MPa,fill=Expected_Stress_MPa))+geom_raster()+scale
_fill_gradientn(colors=c("#F8766D","white","#00BFC4"),limits=c(70,130))+facet_wrap(.~Slag,labeller = 
label_both) 
 
``` 
 
### Performance Density Diagram - faceted by Fly Ash Content ENSEMBLE sp 
 
```{r Performance Density Diagram - faceted by Fly Ash Content ENSEMBLE sp, echo=FALSE, fig.height=8, 
fig.width=16, message=FALSE, warning=FALSE} 
 
FSixDaysTrialResults_ensemble_sp_80 %>% filter(FlyAsh %in% 
c(0,FlyAshPredictor[14,],FlyAshPredictor[26,],FlyAshPredictor[51,],FlyAshPredictor[62,],15)) %>% 
ggplot(aes(Microsilica,Slag,z=Expected_Stress_MPa,fill=Expected_Stress_MPa))+geom_raster()+scale_fil
l_gradientn(colors=c("#F8766D","white","#00BFC4"),limits=c(70,130))+facet_wrap(.~FlyAsh,labeller = 
label_both) 
 
FSixDaysTrialResults_ensemble_sp_100 %>% filter(FlyAsh %in% 
c(0,FlyAshPredictor[14,],FlyAshPredictor[26,],FlyAshPredictor[51,],FlyAshPredictor[62,],15)) %>% 
ggplot(aes(Microsilica,Slag,z=Expected_Stress_MPa,fill=Expected_Stress_MPa))+geom_raster()+scale_fil
l_gradientn(colors=c("#F8766D","white","#00BFC4"),limits=c(70,130))+facet_wrap(.~FlyAsh,labeller = 
label_both) 
 
FSixDaysTrialResults_ensemble_sp_80_combined %>% filter(FlyAsh %in% 
c(0,FlyAshPredictor[14,],FlyAshPredictor[26,],FlyAshPredictor[51,],FlyAshPredictor[62,],15)) %>% 
ggplot(aes(Microsilica,Slag,z=Expected_Stress_MPa,fill=Expected_Stress_MPa))+geom_raster()+scale_fil
l_gradientn(colors=c("#F8766D","white","#00BFC4"),limits=c(70,130))+facet_wrap(.~FlyAsh,labeller = 
label_both) 
 
FSixDaysTrialResults_ensemble_sp_100_combined %>% filter(FlyAsh %in% 
c(0,FlyAshPredictor[14,],FlyAshPredictor[26,],FlyAshPredictor[51,],FlyAshPredictor[62,],15)) %>% 
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ggplot(aes(Microsilica,Slag,z=Expected_Stress_MPa,fill=Expected_Stress_MPa))+geom_raster()+scale_fil
l_gradientn(colors=c("#F8766D","white","#00BFC4"),limits=c(70,130))+facet_wrap(.~FlyAsh,labeller = 
label_both) 
 
``` 
 
### Performance Density Diagram - faceted by Microsilica Content ENSEMBLE sp 
 
```{r Performance Density Diagram - faceted by Microsilica Content ENSEMBLE sp, echo=FALSE, 
fig.height=8, fig.width=16, message=FALSE, warning=FALSE} 
 
FSixDaysTrialResults_ensemble_sp_80 %>% filter(Microsilica %in% 
c(0,ExpandedPredictorsMatrix$Microsilica[2510],ExpandedPredictorsMatrix$Microsilica[5010],Expande
dPredictorsMatrix$Microsilica[7510],ExpandedPredictorsMatrix$Microsilica[10000])) %>% 
ggplot(aes(FlyAsh,Slag,z=Expected_Stress_MPa,fill=Expected_Stress_MPa))+geom_raster()+scale_fill_gr
adientn(colors=c("#F8766D","white","#00BFC4"),limits=c(70,130))+facet_wrap(.~Microsilica,labeller = 
label_both) 
 
FSixDaysTrialResults_ensemble_sp_100 %>% filter(Microsilica %in% 
c(0,ExpandedPredictorsMatrix$Microsilica[2510],ExpandedPredictorsMatrix$Microsilica[5010],Expande
dPredictorsMatrix$Microsilica[7510],ExpandedPredictorsMatrix$Microsilica[10000])) %>% 
ggplot(aes(FlyAsh,Slag,z=Expected_Stress_MPa,fill=Expected_Stress_MPa))+geom_raster()+scale_fill_gr
adientn(colors=c("#F8766D","white","#00BFC4"),limits=c(70,130))+facet_wrap(.~Microsilica,labeller = 
label_both) 
 
FSixDaysTrialResults_ensemble_sp_80_combined %>% filter(Microsilica %in% 
c(0,ExpandedPredictorsMatrix$Microsilica[2510],ExpandedPredictorsMatrix$Microsilica[5010],Expande
dPredictorsMatrix$Microsilica[7510],ExpandedPredictorsMatrix$Microsilica[10000])) %>% 
ggplot(aes(FlyAsh,Slag,z=Expected_Stress_MPa,fill=Expected_Stress_MPa))+geom_raster()+scale_fill_gr
adientn(colors=c("#F8766D","white","#00BFC4"),limits=c(70,130))+facet_wrap(.~Microsilica,labeller = 
label_both) 
 
FSixDaysTrialResults_ensemble_sp_100_combined %>% filter(Microsilica %in% 
c(0,ExpandedPredictorsMatrix$Microsilica[2510],ExpandedPredictorsMatrix$Microsilica[5010],Expande
dPredictorsMatrix$Microsilica[7510],ExpandedPredictorsMatrix$Microsilica[10000])) %>% 
ggplot(aes(FlyAsh,Slag,z=Expected_Stress_MPa,fill=Expected_Stress_MPa))+geom_raster()+scale_fill_gr
adientn(colors=c("#F8766D","white","#00BFC4"),limits=c(70,130))+facet_wrap(.~Microsilica,labeller = 
label_both) 
 
``` 
 
###Optimum mix ENSEMBLE sp 
 
```{r Optimum mix ENSEMBLE sp, echo=FALSE, fig.height=8, fig.width=16, message=FALSE, 
warning=FALSE} 
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optimum_ensemble_sp_80 <- 
as.data.frame(ExpandedPredictorsMatrix[which.max(FSixDaysTrialResults_ensemble_sp_80$Expected_S
tress_MPa),]) 
optimum_ensemble_sp_100 <- 
as.data.frame(ExpandedPredictorsMatrix[which.max(FSixDaysTrialResults_ensemble_sp_100$Expected
_Stress_MPa),]) 
optimum_ensemble_sp_80_combined <- as.data.frame( 
ExpandedPredictorsMatrix[which.max(FSixDaysTrialResults_ensemble_sp_80_combined$Expected_Stre
ss_MPa),]) 
optimum_ensemble_sp_100_combined <- as.data.frame( 
ExpandedPredictorsMatrix[which.max(FSixDaysTrialResults_ensemble_sp_100_combined$Expected_Str
ess_MPa),]) 
 
optimum_ensemble_sp_mixtures <- 
rbind(optimum_ensemble_sp_80,optimum_ensemble_sp_100,optimum_ensemble_sp_80_combined,o
ptimum_ensemble_sp_100_combined) %>% as.data.frame() 
 
optimum_ensemble_sp_max <- 
c(max(FSixDaysTrialResults_ensemble_sp_80),max(FSixDaysTrialResults_ensemble_sp_100),max(FSixDa
ysTrialResults_ensemble_sp_80_combined),max(FSixDaysTrialResults_ensemble_sp_100_combined)) 
 
ensemble_sp_methods <- 
c("fit_ensemble_sp_80","fit_ensemble_sp_100","fit_ensemble_sp_80_combined","fit_ensemble_sp_10
0_combined") 
 
optimum_ensemble_sp_summary <- 
data.frame(methods=ensemble_sp_methods,optimum_ensemble_sp_mixtures,predicted_stress_MPa=
optimum_ensemble_sp_max) 
optimum_ensemble_sp_summary 
 
Experimental_mix_rank <- Phase_A_Results_combined %>% filter(Mixing_Process=="High shear 
mixing")%>% group_by(Material_number)%>% 
summarize(Slag=mean(Slag_percent_wt),Microsilica=mean(Microsilica_percent_wt),FlyAsh=mean(FlyAs
h_percent_wt),Stress=mean(Stress_56D_MPa)) %>% arrange(desc(Stress)) %>% as.data.frame() %>% 
head(n=10) 
 
Optimum_mixtures_summary <- 
rbind(optimum_knn_avg_summary,optimum_rf_avg_summary,optimum_ensemble_avg_summary,opti
mum_knn_sp_summary,optimum_rf_sp_summary,optimum_ensemble_sp_summary) 
 
Optimum_mixtures_summary 
Experimental_mix_rank 
 
``` 
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### 3D Evaluation of fitting models (individual specimens) 
 
```{r 3D Evaluation of knn model fitting the averaged results vs fitting the individual specimens, 
echo=FALSE, fig.height=8, fig.width=16, message=FALSE, warning=FALSE} 
 
FSixDaysTrialResults_knn_avg_100_combined_3D_FA0 <- FSixDaysTrialResults_knn_avg_100_combined 
%>% filter(FlyAsh==0) 
FSixDaysTrialResults_knn_sp_100_combined_3D_FA0 <- FSixDaysTrialResults_knn_sp_100_combined 
%>% filter(FlyAsh==0) 
FSixDaysTrialResults_knn_avg_100_combined_3D_FA5 <- FSixDaysTrialResults_knn_avg_100_combined 
%>% filter(FlyAsh==5) 
FSixDaysTrialResults_knn_sp_100_combined_3D_FA5 <- FSixDaysTrialResults_knn_sp_100_combined 
%>% filter(FlyAsh==5) 
FSixDaysTrialResults_knn_avg_100_combined_3D_FA10 <- 
FSixDaysTrialResults_knn_avg_100_combined %>% filter(FlyAsh==10) 
FSixDaysTrialResults_knn_sp_100_combined_3D_FA10 <- FSixDaysTrialResults_knn_sp_100_combined 
%>% filter(FlyAsh==10) 
FSixDaysTrialResults_knn_avg_100_combined_3D_FA15 <- 
FSixDaysTrialResults_knn_avg_100_combined %>% filter(FlyAsh==15) 
FSixDaysTrialResults_knn_sp_100_combined_3D_FA15 <- FSixDaysTrialResults_knn_sp_100_combined 
%>% filter(FlyAsh==15) 
 
FSixDaysTrialResults_rf_avg_100_combined_3D_FA0 <- FSixDaysTrialResults_rf_avg_100_combined 
%>% filter(FlyAsh==0) 
FSixDaysTrialResults_rf_sp_100_combined_3D_FA0 <- FSixDaysTrialResults_rf_sp_100_combined %>% 
filter(FlyAsh==0) 
FSixDaysTrialResults_rf_avg_100_combined_3D_FA5 <- FSixDaysTrialResults_rf_avg_100_combined 
%>% filter(FlyAsh==5) 
FSixDaysTrialResults_rf_sp_100_combined_3D_FA5 <- FSixDaysTrialResults_rf_sp_100_combined %>% 
filter(FlyAsh==5) 
FSixDaysTrialResults_rf_avg_100_combined_3D_FA10 <- FSixDaysTrialResults_rf_avg_100_combined 
%>% filter(FlyAsh==10) 
FSixDaysTrialResults_rf_sp_100_combined_3D_FA10 <- FSixDaysTrialResults_rf_sp_100_combined %>% 
filter(FlyAsh==10) 
FSixDaysTrialResults_rf_avg_100_combined_3D_FA15 <- FSixDaysTrialResults_rf_avg_100_combined 
%>% filter(FlyAsh==15) 
FSixDaysTrialResults_rf_sp_100_combined_3D_FA15 <- FSixDaysTrialResults_rf_sp_100_combined %>% 
filter(FlyAsh==15) 
 
FSixDaysTrialResults_ensemble_optimum_3D_FA0 <- FSixDaysTrialResults_ensemble_optimum %>% 
filter(FlyAsh==0) 
FSixDaysTrialResults_ensemble_optimum_3D_FA3 <- FSixDaysTrialResults_ensemble_optimum %>% 
filter(FlyAsh==FSixDaysTrialResults_ensemble_optimum[24,]) 
FSixDaysTrialResults_knn_sp_100_combined_3D_FA3 <- FSixDaysTrialResults_knn_sp_100_combined 
%>% filter(FlyAsh==FSixDaysTrialResults_knn_sp_100_combined[24,]) 
FSixDaysTrialResults_rf_avg_100_combined_3D_FA3 <- FSixDaysTrialResults_rf_avg_100_combined 
%>% filter(FlyAsh==FSixDaysTrialResults_knn_sp_100_combined[24,]) 
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#KNN 
scatter3D(FSixDaysTrialResults_knn_sp_100_combined_3D_FA3$Microsilica, 
FSixDaysTrialResults_knn_sp_100_combined_3D_FA3$Slag, 
          FSixDaysTrialResults_knn_sp_100_combined_3D_FA3$Expected_Stress_MPa, clab = "Predicted 
Stress (MPa)", 
          pch = 200, cex = 0.2, bty = "b2", 
          col = ramp.col(c("red", "orange", "green")), theta = 155, phi = 10, 
          main = "Fly Ash = 3.5 %", xlab = "% Microsilica", 
          ylab ="% Slag", zlab = "Stress (MPa)", ticktype = "detailed",zlim=c(70,130), 
          colkey = list(side = 1, length = 0.25)) 
 
scatter3D(FSixDaysTrialResults_knn_sp_100_combined_3D_FA0$Microsilica, 
FSixDaysTrialResults_knn_sp_100_combined_3D_FA0$Slag, 
FSixDaysTrialResults_knn_sp_100_combined_3D_FA0$Expected_Stress_MPa, clab = "Predicted Stress 
(MPa)", 
           pch = 200, cex = 0.5, bty = "b2",type="h", 
           col = ramp.col(c("red", "orange", "green")), theta = 45, phi = 10, 
           main = "Fly Ash = 0 %", xlab = "% Microsilica", 
           ylab ="% Slag", zlab = "Stress (MPa)", ticktype = "detailed",zlim=c(70,130), 
           colkey = list(side = 1, length = 0.25)) 
 
#RF 
scatter3D(FSixDaysTrialResults_rf_avg_100_combined_3D_FA3$Microsilica, 
FSixDaysTrialResults_rf_avg_100_combined_3D_FA3$Slag, 
          FSixDaysTrialResults_rf_avg_100_combined_3D_FA3$Expected_Stress_MPa, clab = "Predicted 
Stress (MPa)", 
          pch = 200, cex = 0.2, bty = "b2", 
          col = ramp.col(c("red", "orange", "green")), theta = 135, phi = 10, 
          main = "Fly Ash = 3.5 %", xlab = "% Microsilica", 
          ylab ="% Slag", zlab = "Stress (MPa)", ticktype = "detailed",zlim=c(70,130), 
          colkey = list(side = 1, length = 0.25)) 
 
scatter3D(FSixDaysTrialResults_rf_sp_100_combined_3D_FA0$Microsilica, 
FSixDaysTrialResults_rf_sp_100_combined_3D_FA0$Slag, 
FSixDaysTrialResults_rf_sp_100_combined_3D_FA0$Expected_Stress_MPa, clab = "Predicted Stress 
(MPa)", 
           pch = 200, cex = 0.5, bty = "b2",type="h", 
           col = ramp.col(c("red", "orange", "green")), theta = 45, phi = 10, 
           main = "Fly Ash = 0 %", xlab = "% Microsilica", 
           ylab ="% Slag", zlab = "Stress (MPa)", ticktype = "detailed",zlim=c(70,130), 
           colkey = list(side = 1, length = 0.25)) 
 
#ensemble 
 
scatter3D(FSixDaysTrialResults_ensemble_optimum_3D_FA3$Microsilica, 
FSixDaysTrialResults_ensemble_optimum_3D_FA3$Slag, 
          FSixDaysTrialResults_ensemble_optimum_3D_FA3$Expected_Stress_MPa, clab = "Predicted Stress 
(MPa)", 
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          pch = 200, cex = 0.2, bty = "b2", 
          col = ramp.col(c("red", "orange", "green")), theta = 135, phi = 10, 
          main = "Fly Ash = 3.5 %", xlab = "% Microsilica", 
          ylab ="% Slag", zlab = "Stress (MPa)", ticktype = "detailed",zlim=c(70,130), 
          colkey = list(side = 1, length = 0.25)) 
 
``` 
 
###CEDDs 
 
```{r load data and plot CEDDs, echo=FALSE, fig.height=8, fig.width=16, message=FALSE, warning=FALSE} 
 
Phase_A_CDD <- read_excel("D:/PhD - papers in progress/Emission Density Diagrams 
Paper/computations/phase A - CDD values.xlsx") 
Phase_A_CDD <- data.frame(Phase_A_CDD,stringsAsFactors = TRUE) %>% 
rename(TotalCost=Total_Cost_per_m3) 
 
index_CDD <- which(FSixDaysTrialResults_ensemble_optimum$FlyAsh %in% 
c(0,FlyAshPredictor[26,],FlyAshPredictor[51,],FlyAshPredictor[62,],FlyAshPredictor[84,],15)) 
 
Phase_A_CDD[index_CDD,] %>% 
ggplot(aes(Microsilica,Slag,z=TotalCost,fill=TotalCost))+geom_raster()+scale_fill_gradientn(colors=c("#0
0BFC4","white","#F8766D"),limits=c(min(Phase_A_CDD$TotalCost),max(Phase_A_CDD$TotalCost)))+fac
et_wrap(.~FlyAsh,labeller = label_both) 
 
#p_axial 
 
Phase_A_CDD[index_CDD,] %>% 
ggplot(aes(Microsilica,Slag,z=p_axial,fill=p_axial))+geom_raster()+scale_fill_gradientn(colors=c("#00BFC
4","white","#F8766D"),limits=c(min(Phase_A_CDD$p_axial),max(Phase_A_CDD$p_axial)))+facet_wrap(.
~FlyAsh,labeller = label_both) 
 
Phase_A_CDD[which.min(Phase_A_CDD$p_axial),] 
Phase_A_CDD[which.min(Phase_A_CDD$TotalCost),] 
Phase_A_CDD %>% filter (p_axial<Phase_A_CDD[which.min(Phase_A_CDD$TotalCost),]$p_axial) %>%  
  arrange(desc(TotalCost))%>% as.data.frame() %>% head(n=1) 
Phase_A_CDD[which.min(FSixDaysTrialResults_ensemble_optimum$Expected_Stress_MPa),] 
 
#p_bending 
 
Phase_A_CDD[index_CDD,] %>% 
ggplot(aes(Microsilica,Slag,z=p_bending,fill=p_bending))+geom_raster()+scale_fill_gradientn(colors=c("#
00BFC4","white","#F8766D"),limits=c(min(Phase_A_CDD$p_bending),max(Phase_A_CDD$p_bending)))+
facet_wrap(.~FlyAsh,labeller = label_both) 
 
Phase_A_CDD[which.min(Phase_A_CDD$p_bending),] 
Phase_A_CDD[which.min(Phase_A_CDD$TotalCost),] 
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Phase_A_CDD %>% filter 
(p_bending<(Phase_A_CDD[which.min(Phase_A_CDD$TotalCost),]$p_bending)+0.1) %>%  
  arrange(desc(TotalCost))%>% as.data.frame() %>% head(n=1) 
Phase_A_CDD[which.min(FSixDaysTrialResults_ensemble_optimum$Expected_Stress_MPa),] 
 
#p_deflection 
 
Phase_A_CDD[index_CDD,] %>% 
ggplot(aes(Microsilica,Slag,z=p_deflection,fill=p_deflection))+geom_raster()+scale_fill_gradientn(colors=
c("#00BFC4","white","#F8766D"),limits=c(min(Phase_A_CDD$p_deflection),max(Phase_A_CDD$p_defle
ction)))+facet_wrap(.~FlyAsh,labeller = label_both) 
 
Phase_A_CDD[which.min(Phase_A_CDD$p_deflection),] 
Phase_A_CDD[which.min(Phase_A_CDD$TotalCost),] 
Phase_A_CDD %>% filter 
(p_deflection<(Phase_A_CDD[which.min(Phase_A_CDD$TotalCost),]$p_deflection)+0.1) %>%  
  arrange(desc(TotalCost))%>% as.data.frame() %>% head(n=1) 
Phase_A_CDD[which.min(FSixDaysTrialResults_ensemble_optimum$Expected_Stress_MPa),] 
 
``` 
 
###EEDDs 
 
```{r load data and plot EEDDs, echo=FALSE, fig.height=8, fig.width=16, message=FALSE, warning=FALSE} 
 
Phase_A_EDD <- read_excel("D:/PhD - papers in progress/Emission Density Diagrams 
Paper/computations/phase A - GWP values.xlsx") 
Phase_A_EDD <- data.frame(Phase_A_EDD,stringsAsFactors = TRUE)%>% 
rename(TotalGWP=Total_GWP_per_m3) 
 
index_EDD <- which(FSixDaysTrialResults_ensemble_optimum$FlyAsh %in% 
c(0,FlyAshPredictor[26,],FlyAshPredictor[51,],FlyAshPredictor[62,],FlyAshPredictor[84,],15)) 
 
Phase_A_EDD[index_EDD,] %>% 
ggplot(aes(Microsilica,Slag,z=TotalGWP,fill=TotalGWP))+geom_raster()+scale_fill_gradientn(colors=c("#
009966","white","#F8766D"),limits=c(min(Phase_A_EDD$TotalGWP),max(Phase_A_EDD$TotalGWP)))+f
acet_wrap(.~FlyAsh,labeller = label_both) 
 
#X_axial 
 
Phase_A_EDD[index_EDD,] %>% 
ggplot(aes(Microsilica,Slag,z=X_axial,fill=X_axial))+geom_raster()+scale_fill_gradientn(colors=c("#00996
6","white","#F8766D"),limits=c(min(Phase_A_EDD$X_axial),max(Phase_A_EDD$X_axial)))+facet_wrap(.
~FlyAsh,labeller = label_both) 
 
Phase_A_EDD[which.min(Phase_A_EDD$X_axial),] 
Phase_A_EDD[which.min(Phase_A_EDD$TotalGWP),] 
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Phase_A_EDD %>% filter (X_axial<Phase_A_EDD[which.min(Phase_A_EDD$TotalGWP),]$X_axial+0.01) 
%>%  
  arrange(desc(TotalGWP))%>% as.data.frame() %>% head(n=1) 
Phase_A_EDD[which.min(FSixDaysTrialResults_ensemble_optimum$Expected_Stress_MPa),] 
 
#X_bending 
 
Phase_A_EDD[index_EDD,] %>% 
ggplot(aes(Microsilica,Slag,z=X_bending,fill=X_bending))+geom_raster()+scale_fill_gradientn(colors=c("#
009966","white","#F8766D"),limits=c(min(Phase_A_EDD$X_bending),max(Phase_A_EDD$X_bending)))+
facet_wrap(.~FlyAsh,labeller = label_both) 
 
Phase_A_EDD[which.min(Phase_A_EDD$X_bending),] 
Phase_A_EDD[which.min(Phase_A_EDD$TotalGWP),] 
Phase_A_EDD %>% filter 
(X_bending<(Phase_A_EDD[which.min(Phase_A_EDD$TotalGWP),]$X_bending)+0.1) %>%  
  arrange(desc(TotalGWP))%>% as.data.frame() %>% head(n=1) 
Phase_A_EDD[which.min(FSixDaysTrialResults_ensemble_optimum$Expected_Stress_MPa),] 
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