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A B S T R A C T   

UAV-based multispectral vegetation indices are often used to assess crop performance and water consumptive 
use. However, their ability to assess the interaction between water, especially deficit irrigation, and nitrogen 
application rates in irrigated agriculture has been less explored. Understanding the effect of water-nitrogen in
teractions on vegetation indices could further support optimal water and N management. Therefore, this study 
used a split plot design with water being the main factor and N being the sub-factor. African eggplants were drip 
irrigated at 100% (I100), 80% (I80) or 60% (I60) of the crop water requirements and received 100% (F100), 75% 
(F75), 50% (F50) or 0% (F0) of the crop N requirements. Results showed that the transformed difference 
vegetation index (TDVI) was best in distinguishing differences in leaf moisture content (LMC) during the 
vegetative stage irrespective of the N treatment. The green normalized difference vegetation index (GNDVI) 
worked well to distinguish leaf N during vegetative and full vegetative stages. However, the detection of the 
interactive effect of water and N on crop performance required a combination of GNDVI, NDVI and OSAVI across 
both stages as each of these 3 VI showed an ability to detect some but not all treatments. The fact that a certain 
amount of irrigation water can optimize the efficiency of N uptake by the plant is an important criterion to 
consider in developing crop specific VI based decision trees for crop performance assessments and yield 
prediction.   

1. Introduction 

Assessing the interactive effect of water and nitrogen for agriculture 
has been on top of the world agenda. This is because, there is a large gap 
between currently observed crop yields and the attainable yields when 
water and nitrogen are supplied in adequate amounts in different areas, 
especially in less developed countries (Qin, 2015). Water and nitrogen 
(N) deficiency are frequently limiting factors for crop production and 
they often occur together (Klem et al., 2018). To minimize risk of yield 
reductions due to N limitations, farmers often apply excessive fertilizer. 
However, the translation of N application into vegetable crop produc
tion is strongly dependent on adequate and timely water management 
(Zotarelli et al., 2009). Hence, effective, and efficient translation of 

water and nitrogen into agricultural productions requires studies to look 
at the interactive effects of water and nitrogen influencing plant growth 
and therefore biomass accumulation. Higher level of biomass accumu
lation has been linked with an increase in crop yield (Cambui et al., 
2011; Chen et al., 2018). This is more evident in horticultural crops 
production where higher seasonal yields are associated with the level of 
biomass accumulation (Liu et al., 2014; Moncada et al., 2020). 

Most farmers in Sub-saharan Africa use traditional practices to 
manage water and nitrogen (El Nahry et al., 2011). Traditional methods 
of decision making use visual observation of plant canopy responses to 
manage water and nitrogen inputs. Studies have shown that visual signs 
of nutrient deficiency occur while the plant is already experiencing 
significant levels of stress (Mee et al., 2017; Park et al., 2015). At that 
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point often yield reductions will already be inevitable. Furthermore, the 
methods are not capable of estimating the amount of inputs to apply, 
resulting into under or over application of water and/or nitrogen (Tri
pathi et al., 2017). Over irrigation on its turn results into low fertilizer 
use efficiency, reduced productivity, and increased production costs 
(Yuan and Peng, 2017). Higher water application may also result into 
nitrogen leaching leading to pollution of water bodies and wider envi
ronmental pollution. 

To improve water and N use efficiencies it requires effective man
agement of both resources in tandem. Several methods to determine 
water stress have been used in irrigation scheduling over years. The 
methods have been categorized into soil-based and plant based tech
niques (Mwinuka et al., 2021b). Some of the soil based methods are soil 
moisture monitoring using soil moisture sensors such as time domain 
reflectometry (TDR), tension meters and neutron probes (Benor et al., 
2013; Restuccia, 2021). However, the use of soil moisture sensors pro
vides point based soil moisture values and might fail to capture field 
heterogeneity resulting in spatial variation of plant water stress and 
therefore crop performance (Mwinuka et al., 2021b). On the other hand, 
plant canopy-based methods have been used in crop water status 
monitoring as signs of canopy stress occur earlier than soil-based signs 
(Poblete-Echeverría et al., 2017; Petrie et al., 2019). These methods are 
characterized into contact and non-contact. Examples of contact 
methods are leaf diffusion porometers and pressure chamber for 
measuring stomatal conductance and water potential (Berni et al., 2009; 
Poblete-Echeverría et al., 2017). Non-contact methods include infrared 
thermometers, mobile phone-based thermal imaging and remote sensing 
among others (Çolak et al., 2015; Stone et al., 2016; Petrie et al., 2019). 

Field nitrogen assessment has predominantly focused on plant can
opy based indicators due to the complexity of measuring soil parameters 
even with the latest advances in rapid in-situ soil diagnostics. Plant 
canopy nitrogen management has been possible due to physiological 
and biochemical changes occurring within the plant under certain 
conditions (Fang et al., 2017; Klem et al., 2018). These changes within 
the plant canopy result into differences in solar radiation reflectance of 
the electromagnetic spectrum. The analysis of these differences in 
reflectance results into identification of the level of N composition 
within the plant canopy and hence enhances management decisions. 
Canopy reflectance and derived plant N status can be captured by 
portable spectroradiometers, hand-held plant chlorophyll meters and 
remote sensing techniques (Julitta et al., 2016; Irfan et al., 2018). 

So far, mainly canopy based methods are used to look at the inter
active effect of water and nitrogen, these include isotopic techniques as 
well as low altitude remote sensing methods (Bronson et al., 2017; Klem 
et al., 2018). Low altitude remote sensing techniques have been effec
tively conducted using multispectral and hyperspectral sensors, with the 
earlier being more affordable and capable in collecting detailed plant 
information (Badzmierowski et al., 2019; Bhandari et al., 2018). This 
technology uses different spectral bands such as visible spectral (red, 
green and blue), near infrared (IR) and short-wave infrared ranges. 
Multispectral range contains 3–10 bands while hyperspectral comprise 
hundreds of narrow bands (Corti et al., 2017). Within the multispectral 
region, high reflectance from the leaf mesophyll in healthy plant canopy 
falls within the near infrared region (Reyes-Gonzalez, 2017). 

Several vegetation indices have been used to assess water and ni
trogen in different crops such as wheat, corn, tomatoes, lettuce and 
spinach under different climatic conditions (Bronson et al., 2017; 
Cabrera-Bosquet et al., 2011; Elvanidi et al., 2018; Ge et al., 2019; Klem 
et al., 2018; Shiratsuchi et al., 2011; Bhandari et al., 2018). Most of these 
studies have shown variation of various vegetation indices in assessing 
water and N separately. Few studies have assessed the ability of the 
vegetation indices in assessing the interactive effects of water and N 
despite the fact that deficiencies frequently occur together (Klem et al., 
2018). Likewise, spectral behavior of crops differs with climatic condi
tions and crop type (Bellvert et al., 2015). 

Studies of spectral responses of horticultural crops to different 

combinations of water and nitrogen stress in tropical sub-humid regions 
are less studied. Therefore, this study aimed to assess the efficacy of 
vegetation indices in evaluating different levels of crop water and N 
management. This study is aimed at enhancing service delivery by 
public or private sector extension services for small, medium and large- 
scale farming to enhance yields, and water use and N use efficiencies 
(Mwinuka et al., 2021b). The study investigated the use of UAV-derived 
multispectral vegetation indices in assessing the effect of different water 
and nitrogen management strategies in horticultural crops. The specific 
objectives were to: (1) assess the variation of vegetation indices to ni
trogen treatments at different irrigation depths (2) investigate vegeta
tion indices response to water, N and their interaction (3) assess the 
effectiveness of vegetation indices maps to distinguish different water 
and N strategies, and (4) assess the relationship of potential vegetation 
indices with fruit yield as a result of water and N management. 

2. Materials and methods 

2.1. Experimental site 

The study was conducted at Rudewa ward, Kilosa district in Moro
goro region, Tanzania (Fig. 1). The ward is between 6◦32’ to 6◦47’ South 
and 36◦8’ to 37◦28’ East. The average altitude of the study site is 437 m 
above mean sea level and average annual temperature ranges between 
15.1 ◦C and 24.4 ◦C. The minimum temperature is recorded in July 
while the maximum temperature of 32.1 ◦C is recorded in February. The 
mean relative humidity is 67.5%. The area has a bimodal rainfall regime 
with short rains occurring from October to December while long rains 
from March to May. The annual average rainfall ranges between 1000 
mm and 1400 mm. 

Irrigated agriculture is commonly practiced during the dry period 
June to November and the short rainy period December to February. The 
major source of irrigation water is the Wami River which flows from the 
Mamiwa Forest Reserve throughout the year. Soils are predominantly 
sand clayey loamy soils with a medium level of organic carbon. The clay, 
silt and sand content range between 23% and 26%, 10% − 14% and 
58–65% respectively within the top 40 cm. The average soils bulk 
density within the study sites was 1.3 – 1.5 g/cm3. 

2.2. Experimental design 

The experiment was laid out in a 3 × 4 arrangement of treatments 
under a split plot design (Fig. 2) with irrigation water being the main 
plot and N the subplot (Kadiyala, 2012). There were 3 irrigation treat
ments each with 4 levels of N application. Irrigation water treatments 
were 100% (I100), 80% (I80) and 60% (I60) of crop water requirements 
for eggplant under drip irrigation. N fertilizer treatments were 100% 
(F100), 75% (F75), 50% (F50) and 0% (F0) of crop N requirements, 
respectively. Each treatment was repeated three times. 

The plot size for each replicate was 35 m2 with plant and row spacing 
of 60 cm and 90 cm respectively. Transplanting was conducted on the 
top of the ridges where driplines were installed. The experiment was 
conducted during the dry seasons June to October 2017 and 2018. 

2.3. Irrigation water requirements and nitrogen application 

Crop water requirements were estimated using CROPWAT 8.0 soft
ware as recommended by FAO using 15 years of climatic data from 
Ilonga meteorological station (Mwinuka et al., 2021a). The crop coef
ficient (Kc) and the reference evapotranspiration (ETo) were used to 
estimate the crop actual evapotranspiration (ETc) (Table 1). The ETc 
was used to calculate the daily net irrigation water requirements (IWRn) 
and ultimately the gross irrigation requirements (GIWR) as shown in 
Table 1. 

Microclimate data from an automatic weather station installed 
500 m away from the field site were used to adjust daily irrigation water 
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requirement (Fig. 3). The crop evapotranspiration (ETc) at any time was 
adjusted using the crop coefficient (Kc) and crop reference evapotrans
piration (ETo) using data recorded by an automatic weather station. The 
effective rainfall was estimated using USDA-SCS method as described by 
Patwardhan et al. (1990). The water requirement was further adjusted 
using the soil water balance method and moisture data from the 
DSMM500 moisture meter. The amount of irrigation water to be applied 
in each irrigation cycle was finally reduced depending on the treatment 
(i.e. 100%, 80% or 60% of the crop water requirement). The total 
amount of water applied throughout the season was 1035 mm, 828 mm 
and 621 mm for I100, I80 and I60, respectively. 

Nitrogen was applied through Urea (46− 0− 0) at 7, 30, 60 and 90 
days after transplanting, distributed as 16%, 34%, 34% and 16% of N 
respectively. The seasonal N applied was 250 kg/ha, 187 kg/ha, 
125 kg/ha and 0 kg/ha for F100, F75, F50 and F0, respectively. Fertil
izer recommendations for F100 were based on other crops within the 
solanaceae family such as eggplant and tomatoes (RSA, 2012; Fondio 
et al., 2016) grown under different climatic conditions in absence of 
local fertilizer recommendations. 

2.4. Assessment of vegetation indices response to water, N and their 
interaction 

2.4.1. Leaf nitrogen and water content assessment 
Plant leaves from each plot were collected 3 times during early, 

vegetative and full vegetative stages. Leaf N content was determined 
using the Kjeldahl procedure on the third youngest fully developed leaf 
(Omer et al., 2017). The plant leaf water content was measured 
destructively by oven drying of the leaf samples at 70 

◦

C until constant 
weight was attained (Ge et al., 2016). Leaves were harvested between 
08:00 – 10:00 h, to minimize solar radiation errors through evaporation. 
Soon after harvesting, fresh leaves were weighted using class B digital 
weighing balance complying with Canadian ices-003. The leaf water 
content (LWC) was estimated using the fresh (Wl) and dry (Dl) sample 
weights as shown in Eq. (1 ). 

LWC =
Wl − Dl

Wl
× 100% (1)  

2.4.2. UAV based images acquisition and processing 
Images were acquired using a multispec4c sensor attached to the 

fixed wing UAV eBeeTM drone (a senseFly SA, Cheseaux-Lausanne, 
Switzerland) (Mwinuka et al., 2021b). The multispec4c sensor had 
green, red, red edge and near-infrared spectral bands with wavelengths 
of 550 nm, 660 nm, 735 nm and 790 nm respectively. The sensor had a 
ground sampling distance (GSD) of 12 cm/pixel and was set at a lateral 
and longitudinal overlap of 70% and 65%. The images were acquired 
within two hours (between 12:00–13:30) to minimize shadow effects 
using a UAV flown at an average altitude of 115 m above elevation data 
(AED). Production of orthomosaic maps from multispectral images was 
conducted using the PIX4D software (Pix4D SA, Lausanne, Switzerland). 

Fig. 1. The map showing the Rudewa ward study site within Kilosa district 
(Source: Mwinuka et al., 2021a). 
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The details of the methodology is described by Mwinuka et al. (2021b). 
The choice of vegetation indices (VI) was based on their capability to 

estimate leaf water content, leaf N and their interaction as reported by 
different scholars. The indices were limited to four spectral bands 

(green, red, near-infrared and red edge) within multispec4c sensor. 
Considering these 2 factors, the following indices were explored 
(Table 2): 

Fig. 2. Layout of the experimental field and respective sub-plot treatments. Note: Plots 12, 13 and 34 represent I100F100; 6,8 and 33 represent I100F75; 11,14 and 
22 represent I100F50; 5,7 and 21 represent I100F0; 3, 23 and 30 represent I80F100; 4,29 and 32 represent I80F75; 16,26 and 31 represent I80F50; 15, 24 and 25 
represent I100F0; 9, 17 and 19 represent I60F100; 2,28,36 represent I60F75; 18,20 and 27 represent I60F50; 1,10 and 35 represent I60F0. 

Table 1 
Crop evapotranspiration and irrigation water requirements at different cropping stages.  

Month Stage Kc ETo ETc Effective rainfall IWRn GIWR 

coefficient mm/day mm/day mm mm/day mm/day 

June Early  0.6  3.4  2  0  2  2.4 
July Vegetative  0.7  3.4  2.4  0  2.4  2.8 
July Full vegetative  1.1  3.4  3.7  0.1  3.6  4.2 
August Full vegetative and late-season  1.1  3.7  4.1  0  4.1  4.8 
September Late-season  1.1  4.3  4.7  0  4.7  5.5 
October Late-season  1  4.9  4.9  0.2  4.7  5.5 

Source: Mwinuka et al. (2021b). 

Fig. 3. Average microclimatic data for years 2017 and 2018 of the study site.  

Table 2 
Vegetation indices of choice for assessing water and nitrogen.  

S/N Index Reference 

1 GRVI =
G − R
G + R  

Xue and Su (2017) 

2 NDVI =
NIR − R
NIR + R  

Ustuner et al. (2014) 

3 GNDVI =
NIR − G
NIR + G  

Omer et al. (2017) 

4 NDRE =
NIR − RE
NIR + RE  

Ustuner et al. (2014) 

5 EVI2 = 2.5(
NIR − R

NIR + 2.4R + 1
)

Picoli et al. (2017) 

6 
SAVI =

1.5(NIR − R)
NIR + R + 0.5  

Mulla (2013) 

7 
OSAVI =

(NIR − R)
NIR + R + 0.16  

Zou and Mõttus (2017) 

8 
TDVI =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

0.5 +
NIR − R
NIR + R

√ Xue and Su (2017) 

0.16 for OSAVI = Soil adjustment coefficient to minimize the effect of soil background reflectance 

P.R. Mwinuka et al.                                                                                                                                                                                                                            



Agricultural Water Management 266 (2022) 107516

5

2.4.3. Capability of vegetation indices to assess water, N and their 
interaction 

The derived leaf water and N content were used to assess the suit
ability of the VIs in assessing water and N and their interaction at 
different crop stages. The analysis of variance (ANOVA) was used to 
assess whether the VIs differed significantly in function of the water and 
nitrogen treatment. The capability of VI to distinguish leaf water, N 
contents and the interactive effect of water and N was performed using 
the least significant difference (LSD) test at p < 0.05 and radar charts. 

2.5. Effectiveness of vegetation indices maps to distinguish different water 
and N combinations 

Vegetation indices maps were developed to spatially differentiate 
areas with different water and N combinations in the field (Mwinuka 
et al., 2021b). The image mosaic was processed in Rstudio software 
(version 3.6.1) handled in respective bands using raster and rgdal 
packages (Team, 2018). The plot function was further applied to 
generate vegetation indices maps. 

2.6. The relationship between vegetation indices and fruit yield 

The correlation between vegetation indices and fruit yield was 
assessed using the regression model. The software used was ggplot2 
package under Rstudio version 3.6.1. The software was used to evaluate 
a linear relationship of fruit yield against the vegetation indices. Only 
results were considered where the coefficient of correlation (R2) was at 
least 0.5. 

3. Results 

3.1. Variation of vegetation indices to nitrogen treatments at different 
irrigation depths 

Vegetation indices have shown to respond differently to N at 
different cropping stages. The indices GNDVI, NDVI and OSAVI 
responded best to different N application rates at different irrigation 
treatments. Due to soil background reflectance, the early crop devel
opment stage had no significant difference found among N treatments 
for any of the irrigation treatments. At 100% (I100) irrigation depth, the 
GNDVI increased significantly with increased N application at vegeta
tive and full vegetative stages (Fig. 4). In the vegetative and full vege
tative stages for I80, two groups could be distinguished: F100 and F75 
vs. F50 and F0 (Fig. 5). However, between F100 and F75 as well as 
between F50 and F0 no significant differences were found. Within the 
I60 treatment, the calculated VIs differed in function of N application 
between F100, F75 and F50 but not between F50 and F0 (Fig. 6). 

Similarly, NDVI and OSAVI increased significantly when more N was 
applied at vegetative and full vegetative stages (Figure not shown). 
During the vegetative stage, the NDVI at I100 did not differ significantly 
between F100 and F75 (Figure not shown). Similar trends were observed 
for I80 and I60 irrigation treatments (Figure not shown). In all irrigation 
treatments, the NDVI for F0 was significantly lower compared to the 
rest. The OSAVI also showed a good response to N application at all 
irrigation regimes (Figure not shown). This is due to significant differ
ences in the reflectance from the crop canopy as a result of water and 
nitrogen variation within the plant. Other vegetation indices such as 
GRVI, NDRE, EVI2, SAVI and TDVI also increased when higher amounts 
of N were applied under different irrigation regimes (Figure not shown). 
However, these indices were unable to differentiate between specific N- 
treatments. 

3.2. The response of vegetation indices to the interactive effect of water 
and N 

3.2.1. The response of vegetation indices to leaf moisture content at 
different irrigation levels 

Vegetation indices had different responses to varying leaf moisture 
content (Table 3). At the vegetative stage, the TDVI had best perfor
mance in distinguishing the levels of canopy water stress at all levels of 
water application (I100, I80 and I60). The GNDVI, NDVI and OSAVI 
were not capable of distinguishing between I100 and I80 while they 
distinguished I60. SAVI distinguished the plant canopy under I100 from 
other treatments during vegetative and full vegetative stages. The EVI2, 
GRVI and NDRE did not pick up on canopy differences caused by water 
stress in the vegetative stage. 

At the full vegetative stage, the EVI2, GNDVI, GRVI, NDVI, OSAVI 
and SAVI were all able to distinguish the high water stressed canopies 
under I60 from the other two treatments (Table 3). The TDVI and NDRE 
failed to differentiate treatments at full vegetative stage. 

3.2.2. The response of vegetation indices to leaf N content at different N 
rates 

The variation of leaf N content differed in function of the N applied 
resulting in differences in VI (Table 4). At the vegetative stage, GNDVI 
performed well in differentiating between F100, F75, F50 and F0. The 
GRVI, NDVI and OSAVI were capable of discriminating F0 from the rest 
of the treatments. SAVI, TDVI and NDRE had a weak capability to 
distinguish the plant N content irrespective of the irrigation treatment. 

At the full vegetative stages, GNDVI performed best in differentiating 
between F100, F75, F50 and F0 (Table 4). The NDVI and OSAVI were 
capable of distinguishing F50 and F0 from the rest of the treatments. The 
rest of the vegetation indices (EVI2, GRVI, SAVI, TDVI and NDRE) had a 
weak performance in differentiating the variation of leaf N among 

Fig. 4. GNDVI for treatments irrigated with 100% crop water requirements at early (A), vegetative (B) and full vegetative (C) stages of crop development.  

P.R. Mwinuka et al.                                                                                                                                                                                                                            



Agricultural Water Management 266 (2022) 107516

6

Fig. 5. GNDVI for treatments irrigated with 80% crop water requirements at early (A), vegetative (B) and full vegetative (C) stages of crop development.  

Fig. 6. GNDVI for treatments irrigated with 60% crop water requirements at early (A), vegetative (B) and full vegetative (C) stages of crop development.  

Table 3 
The average vegetation indices as a response to leaf moisture content at different irrigation levels.  

WATER EVI2 GNDVI GRVI NDVI OSAVI SAVI TDVI NDRE 

Vegetative stage       
I100 0.4a 0.3a 0.3a 0.56a 0.55a 0.4b 0.7c -0.02a 

I80 0.5a 0.3a 0.3a 0.58a 0.57a 0.5a 0.72b 0.01a 

I60 0.4a 0.2b 0.3a 0.49b 0.45b 0.5a 0.75a 0.01a 

Full vegetative       
I100 0.5a 0.3a 0.3a 0.49a 0.47a 0.4b 0.8a -0.02a 

I80 0.4a 0.3a 0.34a 0.46a 0.44a 0.5a 0.8a 0.01a 

I60 0.3b 0.2b 0.29b 0.25b 0.29b 0.5a 0.7a 0.01a 

Numbers with the same letters are not statistically different at p = 0.05 

Table 4 
The average vegetation indices as a response to leaf N at different levels of N application.  

N EVI2 GNDVI GRVI NDVI OSAVI SAVI TDVI NDRE 

Vegetative stage       
F100 0.5a 0.4a 0.32a 0.57a 0.54a 0.5a 0.7a -0.01a 

F75 0.5a 0.3b 0.32a 0.56a 0.53a 0.5a 0.7a 0.01a 

F50 0.4a 0.2c 0.31ab 0.53ab 0.55a 0.5a 0.7a -0.01a 

F0 0.4b 0.18d 0.3b 0.5b 0.44b 0.5a 0.7a 0.00a 

Full vegetative       
F100 0.5a 0.4a 0.34a 0.5a 0.48a 0.5a 0.8a -0.01a 

F75 0.4a 0.36b 0.34a 0.46a 0.46a 0.5a 0.7a 0.01a 

F50 0.4a 0.23c 0.33a 0.36b 0.34b 0.5a 0.7a -0.01a 

F0 0.3a 0.18d 0.30a 0.27c 0.28c 0.5a 0.8a 0.00a 

Numbers with the same letters are not statistically different at p = 0.05 
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treatments. 

3.2.3. The response of vegetation indices to the interaction between water 
and N 

Different vegetation indices performed differently in distinguishing 
the interactive effect of water and N (Table 4). The GNDVI, NDVI and 
OSAVI showed a stronger capability in distinguishing between the 
different water and N treatments at vegetative and full vegetative stages. 
The EVI2, GRVI, SAVI, TDVI and NDRE showed weak responses to the 
different treatments in all crop development stages (Table 5, Fig. 7). 

During the vegetative stage, GNDVI showed the strongest capability 
in distinguishing between the various water and nitrogen treatments 
(Table 5 and Fig. 7). It was the only VI which was able to indicate a 
difference in canopy reflectance for I100F100 compared to the other 
treatments. Furthermore, GNDVI detected significant differences be
tween the following 5 groups: 1) 100F100; 2) I100F75, I80F100 and 
I80F75; 3) I100F50 and I60F100; 4) I80F50 and I60F75; and 5) I100F0 
and I60F0. Only I60F50 fell in both group 4 and group 5. NDVI per
formed reasonably well and was also able to detect 5 groups: 1) 
I100F100 and I100F75; 2) I80F100 and I80F75; 3) I80F50; 4) I80F0; 5) 
I100F0 and I60F0. However, NDVI was not able to detect differences 
among I60F100, I60F75, I60F50 and I100F75. OSAVI was also able to 
detect a few groups but overall performed less well compared to GNDVI 
and NDVI in the vegetative stage. OSAVI detected differences between 
groups: 1) I100F100 and I10075; 2) I100F50 and I80F50; 3) I60F0 but 
was unable to significantly detect differences in canopy reflectance for 
the other treatments. 

At full vegetative stage, GNDVI performed less compared to the 
vegetative stage in detecting water and nitrogen treatment effects. 
GNDVI was able to only detect significant differences between 
I100F100, I100F50, I80F0 and I60F100. NDVI detected significant dif
ferences between 5 groups: 1) I100F100 and I100F75; 2) I60F75; 3) 
I100F50 and 4) I80F0 and I60F100 and 5) I60F0. However, these groups 
differed with those compared in the vegetative stage. OSAVI detected 
the same three groups as in the vegetative stage which were: 1) 
I100F100 and I100F75; 2) I100F50 and 3) I60F0. 

3.3. Vegetation indices maps to assess the interactive effect of water and N 

Based on the ability of the VI to detect differences in water and 
nutrient management, GNDVI and NDVI were used to develop the VI 
maps. The vegetation indices maps depicted well the spatial variability 
of water and N treatments in the field. At the full vegetative stage, 

GNDVI values ranged from − 0.29–0.52 with values between 
− 0.29–0.09 reflecting bare soils, and canopy reflectance under the 
various treatments between 0.1 and 0.52 (Fig. 8). The water and N 
combination which resulted in high yielding healthy plants showed a 
GNDVI in the range 0.35–5.2, moderate yielding plants between 0.25 
and 0.35, and in stressed low yielding between 0.1 and 0.25. 

Likewise, the NDVI showed spatial variability in function of the 
water and N treatment. Values during the full vegetative stage were in 
the range of − 0.3–0.76 (Fig. 8) with the canopy covered areas between 
0.15 and 0.76. NDVI for the highest yielding treatments fell between 0.6 
and 0.75, moderate yielding from 0.45 to 0.6 and low yielding treat
ments in the 0.1–0.3 range. The maps therefore, can be used to assess 
differences in canopy reflectance as a result of varying water and N 
conditions in the fields. 

3.4. The correlation of the vegetation indices to the end of the season fruit 
yield 

The correlation between the end of season yields and vegetation 
indices varied significantly. During the early development stage, there 
was a weak correlation of vegetation indices to the end of the season 
yields (Table 6). At the vegetative stage, the NDVI (R2 = 0.46, p = 4.7 x 
10-11) and OSAVI (R2 = 0.47, p = 4.1 x 10-11) showed a moderate cor
relation with the end of season yields. 

During the full vegetative stage, GNDVI showed a better correlation 
with the end of season yields (R2 = 0.47, p = 2.3 x 10-11) compared to 
those in the vegetative stage (Table 6). The NDVI (R2 = 0.53, p = 5.9 
x10-13) and OSAVI (R2 = 0.52, p = 2.8 x 10-9) also showed a better 
correlation with the end of season yields at the full vegetative stage. 
However, the ability to use VI in yield predictions remains limited as 
they are able to predict around 50% of the obtained yields. 

4. Discussion 

4.1. The variation of vegetation indices to nitrogen treatments at different 
irrigation depths 

Vegetation indices showed a varying capability to distinguish N at 
different irrigation depths. During the early cropping stages, none of the 
vegetation indices were capable of differentiating N at varying levels of 
irrigation. This is because most of the reflectance recorded was from the 
soil surface (Prudnikova et al., 2019). The GNDVI, NDVI and OSAVI 
could distinguish differences in canopy reflectance in function of N 

Table 5 
The average vegetation indices as a response to the interactive effect of water and N.   

Water x N treatment  

I100F100 I100F75 I100F50 I100F0 I80F100 I80F75 I80F50 I80F0 I60F100 I60F75 I60F50 I60F0 

Vegetative stage            
EVI2 0.48a 0.46abc 0.4bcde 0.39cde 0.47ab 0.48a 0.49a 0.37de 0.45abcd 0.46abc 0.43abcde 0.35e 

GNDVI 0.43a 0.35b 0.27c 0.16e 0.37b 0.38b 0.21d 0.16e 0.3c 0.22d 0.18de 0.15e 

GRVI 0.34ab 0.33abc 0.3 cd 0.31bcd 0.33abc 0.33abc 0.35a 0.31bcd 0.31bcd 0.32bc 0.31 cd 0.28d 

NDVI 0.59a 0.57a 0.45de 0.23 g 0.52b 0.54b 0.45c 0.25 f 0.42 cd 0.41cde 0.43 cd 0.2 g 

OSAVI 0.58a 0.57a 0.47c 0.22ef 0.52b 0.54ab 0.46c 0.23ef 0.41 cd 0.43 cd 0.42 cd 0.20 f 

SAVI 0.46abcd 0.42bcd 0.4d 0.45abcd 0.41 cd 0.47abcd 0.54a 0.5abcd 0.48abcd 0.51abc 0.52ab 0.48abcd 

TDVI 0.74abc 0.66d 0.7bcd 0.72abcd 0.68 cd 0.72abcd 0.76ab 0.74abc 0.74abc 0.78a 0.76ab 0.73abc 

NDRE -0.02a -0.02a -0.03a -0.02a 0.03a 0.03a 0.01a -0.01a -0.04a 0.04a 0.00a 0.03a 

Full vegetative stage          
EVI2 0.53a 0.53a 0.40a 0.35a 0.47a 0.45a 0.47a 0.38a 0.36a 0.3a 0.31a 0.28a 

GNDVI 0.46a 0.4bc 0.29d 0.18ef 0.41bc 0.44ab 0.21ef 0.17 f 0.37c 0.23de 0.19ef 0.18ef 

GRVI 0.37a 0.37a 0.33ab 0.31ab 0.33ab 0.34ab 0.36ab 0.33ab 0.31ab 0.31ab 0.3ab 0.28b 

NDVI 0.63a 0.62a 0.43d 0.29 f 0.58ab 0.55abc 0.40de 0.29 f 0.28 f 0.23c 0.26fg 0.23 g 

OSAVI 0.61a 0.60a 0.42d 0.27de 0.57ab 0.52abc 0.40 cd 0.31de 0.26de 0.26de 0.25de 0.21e 

SAVI 0.52ab 0.33b 0.38ab 0.36ab 0.49ab 0.55ab 0.40ab 0.54ab 0.40ab 0.47ab 0.61a 0.54ab 

TDVI 0.81a 0.71a 0.77a 0.77a 0.79a 0.76a 0.72a 0.77a 0.70a 0.73a 0.72a 0.76a 

NDRE 0.07a 0.07a 0.09a 0.02a 0.10a 0.10a 0.09a 0.05a 0.13a 0.11a 0.15a 0.15a 

Note: Numbers with the same letter are not statistically different at p = 0.05 
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application at vegetative and full vegetative stages across irrigation 
treatments. This is related to the response of these VIs to the chlorophyll 
and xanthophyll content which are related to crop water status (Zhang 
et al., 2019). 

These findings are similar to earlier studies which assessed plant 
water status at varying N levels in different crops. Zhang et al. (2019) 
recommended the use of NDVI in irrigation water management of maize 
crops due to its response to water stress. Bhandari et al. (2018) got weak 
correlation of all NDVI and GNDVI on their response to water, N and 
their interaction in lettuce. Weak correlation of these vegetation indices 
in the lettuce crop might be caused by differences in chemical charac
teristics and leaf morphology of the canopy surface resulting in different 
responses to the incoming solar radiation. Shiratsuchi et al. (2011) 
selected the red edge NDVI and the red band NDVI as they were capable 
at distinguishing the crop performance variation due to different 

irrigation levels and showed average capability to distinguish between N 
rates in corn production. 

Canopy N content was distinguished by different vegetation indices 
within the vegetative and full vegetative stages. The study observed the 
capability of GNDVI, NDVI and OSAVI in distinguishing leaf N at 
different water regimes during the vegetative and full vegetative stages. 
Furthermore, in the full vegetative, GNDVI performed slightly better 
than NDVI and OSAVI in its ability to detect differences in N application 
rates in the I100 and I60 treatments, less so in the I80 treatment. This is 
evidence that the spectral reflectance of African eggplant canopy in the 
visible and near infrared parts of the spectrum responds accordingly to N 
variation (Prudnikova et al., 2019). Additionally, Elvanidi et al. (2018) 
recommended the need for more research on the use of spectral based 
indices to detect N status, for improving tomato growth under deficit 
irrigation. Contradicting results across different types of crops confirm 

Fig. 7. Radar chart showing the average vegetation indices in function of the water and nitrogen treatment at a) the vegetative stage and b) the full vegetative stage.  
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that plants respond differently to incoming light spectra hence there is a 
need for plant specific calibrations. 

4.2. The response of vegetation indices to detect the interactive effect of 
water and N and predict Eggplant yield 

In general, the findings of this study indicated that water and ni
trogen causes plant tissues in horticultural crops to reflect more in the 
NIR and green spectral bands. This has been reported for other crops 
such as wheat, lint and pinto bean (Ballester et al., 2019; Kyratzis et al., 
2017; Ranjan et al., 2019). The interaction of water and N combination 
significantly affects the internal leaf structure causing a significant dif
ference in the reflectance of the NIR band of the electromagnetic radi
ation. The reflectance within the green band was also significantly 
different in various treatments thus increasing the response of the 
GNDVI. The response of these bands in numerous water and N combi
nations, was thus capable to distinguish between healthy and unhealthy 
plants. 

Among the vegetation indices tested, the GNDVI, NDVI and OSAVI 
were moderately sensitive to the interaction of water and N at vegetative 
and full vegetative stages. At the vegetative cropping stage, the GNDVI 
and NDVI performed slightly better compared to OSAVI in detecting 
differences in canopy reflectance. Across treatments GNDVI was able to 
detect both the high and low N application levels. The GNDVI therefore 
can be used to show areas with water and N stress within the field 
(Candiago et al., 2015). Furthermore, GNDVI performed better in 
detecting the response of African eggplant to different N levels under 
I100 whilst NDVI seemed to perform stronger in detecting differences of 
plant response to N levels under I80. The results are in agreement with 

Candiago et al. (2015) who found that GNDVI was capable in detecting 
changes in plant chlorophyll and those of Bhandari et al. (2018) for 
NDVI. OSAVI was also sensitive in distinguishing treatments with 
highest levels of inputs (water and N) from the rest. The index was 
sensitive to showing a decline in water and N as most treatments with 
60% water have low values of indices as compared to those with 80% 
and 100% water. 

Furthermore, GNDVI in the vegetative stage allowed for a clearer 
distinction between groups in function of the water and N treatment. 
GNDVI was able to classify 11 out of 12 treatments into 5 groups. 
Treatments in these groups resembled similarities in canopy reflectance. 
For example, whilst I100F100 was clearly differentiated from all other 
treatments, the reflectance between 75% application of N under I100 
and I80 was found to be similar to 100% of N application under I80. 
Similarly, 50% of N application under I100 showed a similar average 
reflectance to 100% N application under I60. This further confirms the 
partial ability of plants to compensate for either water or nitrogen 
deficiency if one of these two inputs is available in higher amounts 
(Mwinuka et al., 2021a). The fact that a certain amount of irrigation 
water can optimize the efficiency of nutrients uptake by the plant is an 
important criterion to consider in agricultural water management 
(Xiang et al., 2019). At the full vegetative stage, GNDVI performed less 
well than NDVI as the latter was able to classify 7 treatments out of 12 
into 5 groups. These groups resembled mainly the combinations of high 
water and nitrogen inputs and those with higher deficiencies in water or 
nitrogen. 

The complexity of N and water interaction on plant performance 
resulted in GNDVI, NDVI and OSAVI showing a moderate potential to 
predict end of the season fruit yield. These results are similar to Sultana 

Fig. 8. Spatial maps using GNDVI (left) and NDVI (right) values indicating different interaction levels of water and nitrogen. Note: Plots 12, 13 and 34 represent 
I100F100; 6,8 and 33 represent I100F75; 11,14 and 22 represent I100F50; 5,7 and 21 represent I100F0; 3, 23 and 30 represent I80F100; 4,29 and 32 represent 
I80F75; 16,26 and 31 represent I80F50; 15, 24 and 25 represent I100F0; 9, 17 and 19 represent I60F100; 2,28,36 represent I60F75; 18,20 and 27 represent I60F50; 
1,10 and 35 represent I60F0. 

Table 6 
Correlation (R2) between fruit yield and vegetation indices.  

Vegetation indices Crop stage 

Initial stage Vegetative stage Full vegetative stage 

R2 R2 P-value Equation R2 P-value Equation 

EVI2 NS NS   NS   
GNDVI NS 0.34 7.2 x 10-8 y = 0.21 + 0.0032x 0.47 2.3 x 10-11 y = 0.096 + 0.0033x 
GRVI NS NS   NS   
NDVI NS 0.46 4.7 x 10-11 y = 0.2 + 0.0062x 0.53 5.9 x10-13 y = 0.12 + 0.0087x 
OSAVI NS 0.47 4.1 x 10-11 y = 0.24 + 0.004x 0.52 2.8 x 10-9 y = 0.14 + 0.0062x 
SAVI NS NS   NS   
TDVI NS NS   NS   
NDRE NS NS   NS   

NS = Not significant at 0.05 significance level 
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et al. (2014) and Tuvdendorj et al. (2019) who found that the NDVI 
could predict wheat yield. Except for NDVI and OSAVI at full vegetative 
stages, correlation was below 50%. Results in this study showed a lower 
correlation compared to the earlier findings of Mwinuka et al. (2021b) 
for predicting African eggplant based on irrigation treatment alone. 

The variability in capability of GNDVI, NDVI and OSAVI to detect 
differences in canopy performance and the moderate correlation suggest 
the need for a combined VI approach. Developing a decision tree using a 
combination of all three VI and both stages could support better treat
ment identification, as individual threshold detection is difficult given 
the interactive effect of water and nitrogen on plant development. 

4.3. Vegetation indices maps 

Vegetation indices maps were able to identify different water and 
nitrogen treatments during the vegetative and full vegetative stages of 
crop development. These findings are similar to Wang et al. (2016), 
Omer et al. (2017) among others. The differences in canopy reflectance 
are due to different plant chemical and physiological properties caused 
by the variation of water and N. Within the field, the healthier plants are 
identified by a higher value of VI (i.e. green color on the map) whilst 
unhealthy plants showed lower values (i.e. yellow color on the map). 
The VI was significantly higher (p < 0.01) when they were calculated 
using the NIR and red spectral bands such as NDVI and OSAVI. In 
agreement with these findings, Ge et al. (2019) found that the highest 
reflectance of NIR was observed in healthy plants due to multiple re
flections of the turgid cell structure. This concludes that identification of 
spatial variation in water and N management for horticultural crops 
under tropical sub-humid conditions can be carried out using vegetation 
indices maps. 

5. Conclusions 

This study aimed to assess the ability of UAV-based multispectral 
vegetation indices in detecting the interactive effect of water and ni
trogen management in irrigated horticultural crop production under 
tropical sub-humid climate. Vegetation indices showed a varying capa
bility of distinguishing between crop responses following different water 
and N treatments and their combination. For instance, the TDVI per
formed best in detecting leaf moisture changes as a function of irrigation 
treatment irrespective of the N treatment at the vegetative stage. Ni
trogen variation within the plant canopy was best distinguished by 
GNDVI during vegetative and full vegetative stages irrespective of irri
gation treatment. The NDVI and OSAVI worked well to differentiate 
canopy N at full vegetative stage. 

When it came to water and nitrogen interaction, GNDVI, NDVI and 
OSAVI potential in detecting significant differences between treatments 
varied. This is related to the spectral bands used, and ability to detect 
changes in the plant tissue as well as the plants ability to moderately 
compensate for water or nitrogen limitations. The study revealed that if 
one of the inputs are less limiting, the effect on canopy reduction is less 
pronounced, challenging the differentiation using a VI and therefore 
ability to predict season yields. 

Generally, the study observed that vegetation indices are most 
effective when they are used to assess water and N separately. The 
interactive effect of water and N on African eggplant would require crop 
specific multi VI calibration given the advantages that all three VI 
showed for specific treatments. The fact that a certain amount of irri
gation water can optimize the efficiency of nutrients uptake by the plant 
is an important criterion to consider in developing crop specific VI based 
decision trees for crop performance assessments and yield prediction. 
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