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ABSTRACT

We develop, analyze, and test iterative methods for three kinds of multigroup transport prob-

lems: (1) k-eigenvalue neutronics, (2) thermal radiation transport, and (3) problems with “upscat-

tering,” in which particles can gain energy from collisions.

For k-eigenvalue problems, many widely used methods to accelerate power iteration use “low-

order” equations that contain nonlinear functionals of the transport solution. The nonlinear func-

tionals require that the transport discretization produce strictly positive solutions, and the low-order

problems are often more difficult to solve than simple diffusion problems. Similar iterative meth-

ods have been proposed that avoid nonlinearities and employ simple diffusion operators in their

low-order problems. However, due partly to theoretical concerns, such methods have been largely

overlooked by the reactor analysis community. To address theoretical questions, we present anal-

yses showing that a power-like iteration process applied to the linear low-order problem (which

looks like a k-eigenvalue problem with a fixed source) provides rapid acceleration and produces

the correct transport eigenvalue and eigenvector. We also provide numerical results that support the

existing body of evidence that these methods give rapid iterative convergence, similar to methods

that use nonlinear functionals.

Thermal-radiation problems solve for radiation intensity and material temperature using cou-

pled equations that are nonlinear in temperature. Some of the most powerful iterative methods in

use today solve the coupled equations using a low-order equation in place of the transport equation,

where the low-order equation contains nonlinear functionals of the transport solution. The nonlin-

ear functionals need to be updated only a few times before the system converges. We develop, an-

alyze, and test a new method that works in the same way but employs a simple diffusion low-order

operator without nonlinear functionals. Our analysis and results show rapid iterative convergence,

comparable to methods that use nonlinear functionals in more complicated low-order equations.

For problems with upscattering, we have investigated the importance of linearly anisotropic

scattering for problems dominated by scattering in Graphite. Our results show that the linearly

ii



anisotropic scattering encountered in problems of practical interest does not degrade the effec-

tiveness of the iterative acceleration method. Additionally, we have tested a method devised by

Hanuš and Ragusa using the semi-consistent Continuous/Discontinuous Finite Element Method

(CDFEM) diffusion discretization we have devised, in place of the Modified Interior Penalty (MIP)

discretization they employed. Our results with CDFEM show an increased number of transport it-

erations compared to MIP when there are cells with high-aspect ratio, but a reduction in overall

runtime due to reduced degrees of freedom of the CDFEM operator compared to the MIP operator.
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1. INTRODUCTION

In this thesis we discuss systems that have particle transport as one of the physical phenomena,

which can be described by a Boltzmann transport equation of the form:

Ω⃗ · ∇⃗ψ
(
r⃗, Ω⃗, E

)
+ T (r⃗, E)ψ

(
r⃗, Ω⃗, E

)
=

∞∫
0

dE ′
∫
4π

dΩ′X
(
r⃗, Ω⃗′ → Ω⃗, E ′ → E

)
ψ
(
r⃗, Ω⃗′, E ′

)
+ qfixed

(
r⃗, Ω⃗, E

)
.

(1.1)

Here ψ is angular intensity, Ω⃗ is a unit vector in the direction of particle motion, E is the

energy variable, T (r⃗, E) is the total interaction operator, andX
(
r⃗, Ω⃗′ → Ω⃗, E ′ → E

)
is a generic

transfer operator, and qfixed
(
r⃗, Ω⃗, E

)
is an external fixed source. It is necessary to discretize the

problem, and iterative methods are required to solve the discrete system. The iterative methods may

have difficulty converging depending on physical properties of the system, and how the transport

quantities are coupled to other physics.

Solution methods for linear systems have been widely studied for the transport equation. When

discrete ordinates (SN ) angle discretization and discontinuous finite element (DFEM) spatial dis-

cretization are applied, the system is hyperbolic and asymmetric and is typically solved with

Richardson iteration or an asymmetric Krylov iterative method such as GMRES.

Richardson iteration converges at a rate of the spectral radius of the discrete iteration operator.

Problems with spectral radii close to unity require an impractical amount of time to converge with

Richardson iteration alone, and the phenomenon of false convergence can be difficult to address in

such problems. [1] Krylov iterations converge at rates that depend on the clustering of eigenvalues

and the condition number of the discrete system. Problems with large condition numbers may

converge slowly and have iteration errors larger than their residuals. Problems with evenly spaced

eigenvalues require a large Krylov subspace to approximate the solution, which implies a large

number of iterations to generate that subspace. To hasten convergence of linear solution methods,

the community has sought effective preconditioners that reduce the spectral radius, reduce the
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condition number, and condense the eigenvalue clustering of the transport operator.

One preconditioning approach for the transport equation is to use a lower-order angle method,

such as a diffusion operator, which approximates the angular dependence of the iteration error

as linear in angle (Ω⃗). This is historically referred to as diffusion synthetic acceleration (DSA),

especially when used with Richardson iteration. For this strategy to be effective, the low-order

operator must be consistent in some sense [2, 1] with the spatial discretization. There are numer-

ous variations of DSA, with varying advantages and disadvantages. Fully-consistent DSA, while

rapidly convergent, can require the solution of its own ill-conditioned system of equations with a

relatively large number of degrees of freedom, and thus can introduce more expense than is de-

sirable. Inconsistent DSA effectiveness degrades depending on approximations chosen, but may

have diffusion-like equations that are significantly easier to solve.

Another preconditioning approach also uses a lower-order angle method, but obtains the ac-

tual solution using a nonlinear transport closure that ensures consistency with the transport so-

lution upon convergence. This family of methods, dubbed Projected Discrete Ordinates iterative

methods by Larsen in 1986 [3], Nonlinear Projective Iterative (NPI) methods by Anistratov and

Gol’din [4], and more well known in the community as High-Order/Low-Order (HOLO) [5] meth-

ods, includes methods such as Quasi-Diffusion (QD) [6, 7, 8] and Coarse Mesh Finite Difference

(CMFD).[9, 10] In general, this family of methods requires positive solutions at every step of the

iteration to prevent division by zero.[3, 11] Additionally, the low-order equations that result may

be more difficult to solve than simple elliptic diffusion problems. However, these methods are

rapidly convergent for appropriate problems, the choice of low-order system is flexibile since the

consistency is maintained by the nonlinear closure, and theoretical stability has been demonstrated.

[12, 13, 14, 15]

Some problems that have particle transport as one of the physical phenomena are coupled to

other physics nonlinearly. These problems are also solved iteratively, using nonlinear methods such

as linearization, Newton’s method, Newton Krylov (NK), and inexact formulations of Newton’s

Method such as Jacobian-Free Newton Krylov (JFNK). In general, nonlinear iteration schemes
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can require an initial guess near the global minimum error, are bound by stability criteria that

are dependent on mesh and material properties, or make approximations to reduce cost that limit

stability. For instance, the Jacobian-Free Newton-Krylov iterative method does not evaluate the

Jacobian exactly and as a result degrades in the presence of sharp nonlinear solution structure such

as a shock or reaction front [16]. Much like linear iterative methods, nonlinear iterative methods

may benefit from acceleration by improving stability or hastening convergence.

Historically, nonlinear problems with a transport phenomena have predominantly been acceler-

ated using HOLO methods, since HOLO methods are inherently nonlinear, the choice of low-order

operator is flexible, and it is relatively straightforward to derive and implement. Linear accelera-

tion schemes have been used by the community for some time, but have not had a theoretical basis

to show stability and prove uniqueness of the solution.

We focus on three kinds of problems that have transport-driven physics that frequently require

preconditioning to solve the inner iteration system and instead apply the preconditioner as a linear

correction to the outer iteration: 1) thermal radiative transport, which describes the movement

of energy in a system driven by the transport of thermal radiation; 2) k-eigenvalue for neutron

transport, which solves for the effective multiplication factor (eigenvalue) and fundamental-mode

(eigenfunction or eigenvector for discrete systems) of reactors; and 3) thermal upscattering of

neutrons, which describes the transport of low-energy neutrons. We propose a novel method for

thermal radiative transfer that uses a linear equation for a correction, and investigate a method for

k-eigenvalue problems that uses a linear equation for a correction.
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2. LITERATURE REVIEW

2.1 Thermal Radiative Transport

The current state of the art of radiative transfer iteration uses a two-level iteration at each time

step: an outer modified Newton’s method iteration for material temperature, and an inner Krylov

iteration for a transport operator to obtain radiation intensity.

For the outer temperature iteration, a modified Newton’s method is used in which only the

Planckian is included in the Jacobian. The modified Newton’s method performs exceptionally

well when the starting iterate is close to the solution, and convergence is observed in practice as

long as non-physical negativities are prevented. At each step of the modified Newton’s method,

the inner iteration for radiation intensity is carried through until convergence.

The inner iteration is usually a Krylov or Preconditioned Richardson iterative method to solve

a transport equation for the radiation intensity. A one-group (gray) diffusion or transport precon-

ditioner, which is used after each multigroup transport sweep, is usually defined to eliminate the

“flat” (λ⃗ = 0⃗) error mode. Here λ⃗ is the wave number of a given Fourier mode, whose spatial

shape is a planar wave in the mode direction: e(iλ⃗·r⃗).

The key to an effective preconditioner is a low-order operator that eliminates the slowest con-

verging iteration error modes. Two notable preconditioners that identically eliminate the slowest

mode (the flat mode) are Gray Transport Acceleration (GTA) [17] and Linear Multifrequency Gray

(LMFG) [18]. The GTA preconditioner is a gray transport preconditioner for multigroup transport,

and the LMFG preconditioner is a gray-diffusion preconditioner first proposed for multigroup dif-

fusion. We have previously developed a method, Gray Diffusion Acceleration (GDA), which is a

gray diffusion preconditioner for multigroup transport, using the same opacities prescribed by the

GTA scheme. The GDA method exhibits multi-group error reduction similar to the GTA precondi-

tioner and degradation for high aspect ratio geometry similar to the semi-consistent DSA method

from Wareing [19, 17, 20].
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One recent acceleration method for thermal radiative transport was developed by Brunner et

al.[21] They eliminate the temperature Jacobian locally and perform updates to the temperature

and the emission source using a low-order equation. In their paper, they explicitly cover a method

where a multi-group diffusion operator is accelerated by a gray diffusion operator that updates

temperature and emission sources. Their work is a generalization of the method initially developed

by Nowak that performed local updates to temperature and emission sources. The thermal radiative

transport method we have developed is of this family of methods, where a multi-group transport

operator is accelerated by a gray diffusion operator that updates temperature and emission sources.

In this family of methods, the low-order closure is included as an extra source term. Brunner

demonstrates unconditional stability, provided either the high-order or low-order equations are

converged fully at each step of the outermost iteration for temperature. [21]

Another family of acceleration methods for thermal radiative transport has been developed by

Park et al.[22] Their approach is fundamentally different than the above methods, as their methods

instead use a “consistency” term in the low-order operators to close the equations. Many low-order

operators have been investigated in this family, including Quasi-Diffusion (QD) and Coarse Mesh

Finite Difference (CMFD). The consistency term in QD is included through an Eddington tensor

in the operator of the low-order equation. The consistency term in CMFD is included through

a transport correction to Fick’s law to particle flow at cell boundaries. The HOLO consistency

terms act as a drift term in the diffusion operator. Haut et al. have shown conditional stability for

predictor/corrector HOLO methods for thermal radiative transfer.[15] Similarly, CMFD has been

shown to be conditionally stable depending on the consistency term. [12]

The close relationship between DSA and QD has been known for some time. [1, 3] It has been

shown that DSA is equivalent to QD if the solution is linear in angle. Larsen and Kelley [11] have

generalized this relationship and have shown that Coarse-Mesh DSA (CMDSA) is equivalent to a

linearization of CMFD.
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2.2 k-Eigenvalue

Iterative methods for general eigenvalue problems have been widely studied. Successful meth-

ods include power iteration, nonlinear Arnoldi iteration, and Chebyshev iteration. For neutronic k-

eigenvalue problems power iteration has often been the method of choice due to simplicity and ro-

bustness in finding the largest eigenvalue and its associated eigenvector (the “fundamental” mode).

However, the convergence rate of power iteration is dependent on the dominance ratio of eigen-

values, which may be arbitrarily close to one. Thus, acceleration methods for power iteration have

been developed to hasten convergence.

The iterative convergence rate of Power Iteration alone can be improved by employing a Krylov

method [23, 24], or casting the problem as a nonlinear PDE constraint problem and use a nonlinear

solver such as a Newton-like method. However, these improvements are limited if the problem

dominated by the convergence rate of the scattering problem and not the dominance ratio of the

eigenvalues. [25] For realistic problems, the scattering ratio and dominance ratio are frequently

close to one, and it is necessary to also accelerate the scattering problem. This has been accom-

plished by using low-order methods, usually involving a reduction in angle, in an inner iteration.

The current state of the art is a nested scheme that begins with a high-order solve (transport

sweep) to generate parameters for a low-order k-eigenvalue problem. The transport sweep is fol-

lowed by an eigenvalue solution of the low-order eigenvalue problem. The high-order eigenvalue

and eigenvector are then updated, either linearly or nonlinearly depending on the formulation of

the low-order eigenvalue problem, using the low-order solution.

Nonlinear schemes of this kind can produce true low-order eigenvalue problems. Low-order

schemes have been shown to be superior to power iteration alone. Notable low-order schemes

include the following: HOLO methods [26, 25], quasi-diffusion [27, 6], and coarse-mesh finite-

difference (CMFD) [10, 9].

HOLO methods for k-Eigenvalue problems have been investigated by the community exten-

sively. Willert et al. have a comprehensive comparison of combinations of Power Iteration, JFNK,

and NKA when unaccelerated and preconditioned by HOLO methods. [28] They find that the most
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efficient algorithm for all problems studied is when the nonlinear solver is used to solve a low-order

nonlinear diffusion equation, which they call nonlinear-diffusion nonlinear-criticality acceleration

(NDA-NCA).

Another approach investigated by Cornejo and Anistratov uses a hierarchy of coarse energy

grids [29, 30]. They have formulated Low-Order Nonlinear Diffusion Acceleration (LONDA)

equations, and Multi-Level Quasi-Diffusion (MLQD) equations, and solved these equations with

multiple different multigrid algorithms. They find that more levels shifts more work to the acceler-

ation method and decreases the number of transport iterations required, and note that the optimal

choice of solution method is problem dependent.

Recognizing stability issues that might occur for Quasi-diffusion methods, Dodson et al. de-

veloped a method that they describe as semi-linear. [31] Instead of a nonlinear closure, it defines a

non-invertible diffusion operator that has a finite source term. Then, using the Fredholm Alterna-

tive theorem and one solution of an adjoint diffusion operator, they find the solvability condition

of the original non-invertible diffusion operator through Rayleigh Quotient power iteration. The

additional cost of solving one adjoint problem is amortized over the entire eigenvalue iteration.

Alternatively, Prince et al. uses a nonlinear solver, preconditioned JFNK (PJFNK), to solve the

low-order eigenvalue equation for k and the correction to the scalar variable. [32]

In contrast, linear low-order schemes produce eigenvalue-like problems with fixed source

terms. Although there is yet no compelling theory that explains why the modified eigenvalue

problem works, and a cursory look suggests that this system could produce any number for the

eigenvalue, in practice the linear low-order modified power iteration scheme accelerates conver-

gence to the correct largest eigenvalue and the corresponding eigenvector of the discrete operator.

[33, 34, 35, 32]

2.3 Thermal Neutron Upscattering

The current state of the art for thermal neutron scattering is a two-grid method in energy: a

Gauss-Seidel iteration for a multi-group transport equation, and a one-group diffusion precondi-

tioner. Gauss-Seidel iteration significantly reduces spatial error modes with small spatial variation,
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and the one-group diffusion preconditioner is derived to reduce the spatially flat error modes for

all angles and energy groups.

For scattering dominated problems the spatially flat error mode is approximately a thermal

Maxwellian in energy and is nearly isotropic in angle [36], with perturbations in the energy and

angle variation caused by leakage and absorption. The two-grid preconditioner was derived to

eliminate the flat error mode of infinite medium problems exactly, whose spatially flat error mode

is also approximately thermal Maxwellian in energy and is nearly isotropic in angle, perturbed

only by absorption.

The two-grid method uses the infinite medium eigenfunction of the largest eigenvalue as a

weight function for averaging and as an interpolation function for prolongation of the coarse-grid

(one-group) error estimate onto the fine-grid (multi-group).

The two-grid method was derived and analyzed specifically for Gauss-Seidel iteration in one

and two dimensions for linear discontinuous spatial discretizations [36]. Extension of the two-grid

method to arbitrary dimension and spatial discretization requires no modification of the scheme.

However, changing the operator splitting, for example from Gauss-Seidel to Jacobi, alters the

transfer operator’s eigenvalues and eigenfunctions, and thus the behavior of the two-grid scheme.

Because Gauss-Seidel requires successive solution of each group’s transfer equation, it is dif-

ficult to distribute the computation effort among parallel processors. Jacobi iteration is trivially

parallel, but performs poorly for problems dominated by scattering even with preconditioners that

eliminate the flat mode, as many of the eigenvalues of other modes are close to one in magnitude.

We seek to analyze and test the two-grid method applied to the Jacobi thermal scattering operator

to determine its spectral radius, eigenvalue clustering, eigenfunctions, and effectiveness at solving

practical problems.
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3. DISCRETIZATION AND ITERATION METHODS

This chapter describes the discretizations we have used for the neutral particle transport equa-

tion, which are the same for each of the equations of interest, and a complete description of the

equations and boundary conditions of the low-order equations that arise in our low-order problems.

Descriptions of iterative methods used for different problem types are located in the corresponding

chapters.

3.1 Discretization

In this section, we describe the representation of scattering using a truncated spherical harmon-

ics expansion, the representation of energy dependence using multi-group energy discretization,

the representation of angle dependence using discrete ordinates (SN ), and representation of spatial

dependence using a discontinuous finite element method (DFEM).

We note that all variables in the upcoming equations have spatial dependence, so we suppress

this dependence until the spatial discretization is discussed.

3.1.1 Spherical Harmonic Representation of the Scattering Source

The complete scattering matrix describing the incoming source into the angle Ω⃗ and energy

E from angle Ω⃗′ and energy E ′ would be prohibitive and unnecessary to store. Instead, the angle

dependence of the scattering matrix is projected onto a basis of Legendre polynomials of the cosine

of the scattering angle:

X
(
Ω⃗′ · Ω⃗, E ′ → E

)
≈

L∑
l̆=0

2l̆ + 1

4π
σs,l̆ (E

′ → E)Pl̆

(
Ω⃗ · Ω⃗′

)
, (3.1)

Similarly we expand ψ
(
Ω⃗′, E ′

)
in terms of spherical harmonic functions:

ψ
(
Ω⃗′, E ′

)
=

∞∑
l=0

l∑
n=−l

2l + 1

4π
ϕl,n (E

′)Y n
l

(
Ω⃗′
)

(3.2)

where,
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ϕl,n (E
′) =

∫
4π

dΩ′ψ
(
Ω⃗′, E ′

)(
Y n
l

(
Ω⃗′
))∗

. (3.3)

We recognize the spherical harmonic addition theorem,

Pl̆

(
Ω⃗ · Ω⃗′

)
=

4π

2l̆ + 1

l̆∑
m̆=−l̆

Y m̆
l̆

(
Ω⃗
)(

Y m̆
l̆

(
Ω⃗′
))∗

, (3.4)

where l̆ and m̆ are the indices of the degree and order of the spherical harmonic function Y m̆
l̆

(
Ω⃗
)

,

and ∗ denotes the complex conjugate. The spherical harmonic functions are defined as:

Y m̆
l̆

(
Ω⃗
)
= (−1)m̆

√√√√√2l̆ + 1

4π

(
l̆ − m̆

)
!(

l̆ + m̆
)
!
P m̆
l̆

(
cos(θ̆)

)
eim̆φ̆, (3.5)

where θ̆ and φ̆ are the azimuthal and polar angles of Ω⃗ respectively, and P m̆
l̆

(
cos(θ̆)

)
are associ-

ated Legendre polynomials. The first few associated Legendre polynomials are, where µ = cos(θ̆):

P 0
0 (µ) = 1, (3.6)

P 0
1 (µ) = µ, (3.7)

P 1
1 (µ) = −(1− µ2)1/2, (3.8)

P−1
1 (µ) =

1

2
(1− µ2)1/2, (3.9)

We insert these expansions into the angle integral in Eq. (1.1):
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∫
4π

dΩ′X
(
r⃗, Ω⃗′ → Ω⃗, E ′ → E

)
ψ
(
r⃗, Ω⃗′, E ′

)
=

L∑
l̆=0

2l̆ + 1

4π
σs,l̆ (E

′ → E)

×
∫
4π

dΩ′ 4π

2l̆ + 1

l̆∑
m̆=−l̆

Y m̆
l̆

(
Ω⃗
)(

Y m̆
l̆

(
Ω⃗′
))∗ ∞∑

l=0

l∑
n=−l

2l̆ + 1

4π
ϕl,n (E

′)Y n
l

(
Ω⃗′
) (3.10)

From orthogonality of spherical harmonics, the only non-zero integrals over Ω⃗′ are when l = l̆

and n = m̆:

∫
4π

dΩ′X
(
r⃗, Ω⃗′ → Ω⃗, E ′ → E

)
ψ
(
r⃗, Ω⃗′, E ′

)
=

L∑
l=0

2l + 1

4π
σs,l (E

′ → E)
l∑

n=−l

Y n
l

(
Ω⃗
)
ϕl,n (E

′)

(3.11)

3.1.2 Multigroup Energy Discretization

The energy dependence is resolved using a multi-group discretization, which solves the trans-

port equation in an integral sense, with integrals over energy in G discrete ranges (groups). In

general these integrals should include the spatial variation of the intensity function, but in practice

are often evaluated at an asymptotic distribution or at element-averaged intensities; thus, we spatial

dependence of radiation intensity in the following definitions. If we number the energy boundaries

in descending order, we define a group angular intensity:

ψg

(
Ω⃗
)
=

Eg−1∫
Eg

ψ
(
Ω⃗, E

)
. (3.12)

We define a total group interaction probability:

σt,g =

Eg−1∫
Eg

T (E)ψ
(
Ω⃗, E

)
Eg−1∫
Eg

ψ
(
Ω⃗, E

) . (3.13)
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We define scattering moments:

ϕl,n,g =

Eg−1∫
Eg

dEϕl,n (E) (3.14)

and a group-to-group scattering cross section for each of the scattering moments:

σs,g′,g,l =

Eg′−1∫
E′

g

dE ′
Eg−1∫
Eg

dEσs,l (E
′ → E)

l∑
n=−l

Y n
l

(
Ω⃗
)
ϕl,n (E

′)

Eg′−1∫
E′

g

dE ′
l∑

n=−l
Y n
l

(
Ω⃗
)
ϕl,n (E ′)

, (3.15)

such that:

σs,g′,g,l

l∑
n=−l

Y n
l ϕl,n,g =

Eg′−1∫
E′

g

dE ′

Eg−1∫
Eg

dEσs,l (E
′ → E)

l∑
n=−l

Y n
l

(
Ω⃗
)
ϕl,n (E

′) (3.16)

An external source contributes a quantity that is the integral over the group range:

qfixedg

(
Ω⃗
)
=

Eg−1∫
Eg

dEqfixed
(
Ω⃗, E

)
. (3.17)

To summarize the discretizations thus far, we write the transport equation in block matrix form,

where capital letters signify matrices and vectors in energy groups:

Ω⃗ · ∇⃗Ψ
(
Ω⃗
)
+ TΨ

(
Ω⃗
)
=

L∑
l=0

2l + 1

4π
Sl

l∑
n=−l

Y n
l

(
Ω⃗
)
Φl,n +Qfixed

(
Ω⃗
)
. (3.18)

The integrals in this section contain the energy-dependence of ψ
(
Ω⃗, E

)
and ϕl,n (E), which

are not known during the current solution. In practice, the cross sections are calculated using an

approximate spectrum in their places.
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3.1.3 Discrete Ordinates Angular Discretization

Since the choice of angular discretization affects the spatial discretization due to upwinding, we

describe the angular discretization first. We choose the method of discrete-ordinates (Sn), where

the radiative transfer equations are discretized in angle and solved along the direction of particle

travel. In the discrete-ordinates method, integrals over solid angle become become quadrature

sums over all M discrete angles, e.g. the angular intensity integral becomes:

∫
4π

dΩ′ψ
(
Ω⃗
)
≈

M∑
m=0

wmΨ
(
Ω⃗m

)
=

M∑
m=0

wmΨm, (3.19)

where wm is the quadrature weight associated with the discrete angle Ω⃗m, and quantities dependent

on Ω⃗m are denoted with a subscriptm. The transport equation with discrete-ordinates discretization

is:

Ω⃗m · ∇⃗ψm,g + TΨm =
L∑
l=0

2l + 1

4π
Sl

l∑
n=−l

Y n
l

(
Ω⃗m

)
Φl,n +

1

4π
Qfixed
m . (3.20)

We also define several commonly used moments of the angular intensity:

M∑
m=0

wmΨm = Φ, (3.21)

M∑
m=0

wmΩ⃗mΨm = J⃗ , (3.22)

M∑
m=0

wmΩ⃗mΩ⃗mΨm =
⃗⃗
P. (3.23)

The transport operator with spherical harmonic scattering, multi-group energy discretization,

and discrete ordinates angle discretization is:

(
Ω⃗m · ∇⃗+ T

)
Ψm =

L∑
l=0

2l + 1

4π
Sl

l∑
n=−l

Y n
l

(
Ω⃗m

)
Φl,n +

1

4π
Qfixed
m . (3.24)
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3.1.4 Discontinuous Finite Element Method Spatial Discretization

We discretize the spatial dependence of the transport solution using a discontinuous Galerkin

finite element method. The discontinuous Galerkin method uses the same basis functions with local

support to an individual element of the mesh to represent the test function and solution function

in the weak bilinear form. Galerkin methods are a common choice as this guarantees the discrete

system is well-posed. Having the test and solution functions equal will also be important when

deriving the low-order equation, as we perform integration by parts on the leakage operator. Using

basis functions that are discontinuous allow upwinding schemes that are important physically,

where it is important to capture the forward travel of particles, and mathematically, to obtain fully

implicit spatial dependencies that do not require prohibitively large number of degrees of freedom

to satisfy stability criteria.

We discretize the solution function by expressing it as a vector of coefficients multiplying a

vector of piecewise polynomial discontinuous basis functions. The discontinuous functions we

choose have local support (are only non-zero) within a spatial element (τ ) that they represent.

Because of the discontinuous basis functions, it is useful to express the solution discretization as a

sum of all elements in the global domain, Γ:

Ψm (r⃗) =
∑
τ∈Γ

bTτ (r⃗)Ψm,τ . (3.25)

Φl,n (r⃗) =
∑
τ∈Γ

bTτ (r⃗) Φτ (3.26)

To simplify the following derivation, we assume constant spatial dependence of interaction

probabilities within an individual element.

We obtain the discontinuous Galerkin weak bilinear equations by taking the inner product of

the vector of basis functions we used to discretize the solution and the discrete equation itself.

The local nature of the basis functions produces many systems of local equations where the inner

products are only nonzero within the element the basis functions have support; we look at one of
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these local systems of equations now:

Ω⃗m ·
∫
τ

dV bτ (r⃗) ∇⃗bTτ (r⃗)Ψm,τ + Tτ

∫
τ

dV bτ (r⃗) b
T
τ (r⃗)Ψm,τ

=
L∑
l=0

2l + 1

4π
Sl

l∑
n=−l

Y n
l

(
Ω⃗m

)∫
τ

dV bτ (r⃗) b
T
τ (r⃗) Φl,n,τ +

∫
τ

dV bτ (r⃗) b
T
τ (r⃗)Q

fixed

m,τ
.

(3.27)

We use integration by parts on the left hand side gradient term, introducing discontinuous

surface quantities on each of the boundary faces (∂τk) of the element:

∫
τ

dV bτ (r⃗) Ω⃗m·∇⃗bTτ (r⃗)Ψm,τ =
∑
k∈∂τ

∫
∂τk

dSΩ⃗m·n⃗kbτ (r⃗) bTτ (r⃗)Ψm,τ,k−
∫
τ

dV ∇⃗bτ (r⃗) bTτ (r⃗)Ψm,τ .

(3.28)

At the interfaces between neighbors, we “upwind” the surface quantities by choosing “up-

stream” of the direction of flow.

Ψm,τ,k =


Ψm,τ , Ω⃗m · n⃗k > 0

Ψm,τ,k+, Ω⃗m · n⃗k < 0

, (3.29)

where n⃗k is the outward unit normal averaged across the given face, and Ψm,τ,k+ are the upwind

unknowns in the neighboring element with shared face k. This forms a closure that couples neigh-

boring cells across discontinuities.

In order to “lump” the mass matrix, an operation that diagonalizes the mass matrix and surface

matrices, we perform an additional step. Without this step, lumping the surface matrix in the

above equation would effectively modify the leakage operator. Instead, we add and subtract a

surface term:
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∫
τ

dV bτ (r⃗) ∇⃗bTτ (r⃗)Ψm,τ =
∑
k∈∂τ

∫
∂τk

dSn⃗kbτ (r⃗) b
T
τ (r⃗)Ψm,τ,k −

∑
k∈∂τ

∫
∂τk

dSn⃗kbτ (r⃗) b
T
τ (r⃗)Ψm,τ

+
∑
k∈∂τ

∫
∂τk

dSn⃗kbτ (r⃗) b
T
τ (r⃗)Ψm,τ −

∫
τ

dV ∇⃗bτ (r⃗) bTτ (r⃗)Ψm,τ

,

(3.30)

and reverse integration by parts of terms that only include within cell quantities:

∫
τ

dV bτ (r⃗) ∇⃗bTτ (r⃗)Ψm,τ =
∑
k∈∂τ

∫
∂τk

dSn⃗kbτ (r⃗) b
T
τ (r⃗)

[
Ψm,τ,k −Ψm,τ

]
+

∫
τ

dV bτ (r⃗) ∇⃗bTτ (r⃗)Ψm,τ

. (3.31)

We define a system of naming matrices. A denotes a finite element matrix with one underline

per extent (row, column) of the matrix. A pair of numbers in the superscript denote the gradients

of the test function and solution function respectively, which for our equation is only either 0 or 1.

An arrow over the matrix denotes a spatial vector of matrices. The subscript denotes the range of

the integral (surface, volume).

∫
τ

dV bτ (r⃗) b
T
τ (r⃗) = A00

τ
, (3.32)

∫
∂τk

dSbτ (r⃗) b
T
τ (r⃗) = A00

∂τk
, (3.33)

∫
τ

dV bτ (r⃗) ∇⃗bTτ (r⃗) = A⃗
01

τ
. (3.34)

Then we have matrix of equations for the weak bilinear form of the transport equation for the

element τ :
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Ω⃗m ·
∑
k∈∂τ

n⃗kA
00

∂τk

[
Ψm,τ,k −Ψm,τ

]
+Ω⃗m · A⃗

01

τ
Ψm,τ + TτA

00

τ
Ψm,τ =

L∑
l=0

2l + 1

4π
Sl

l∑
n=−l

Y n
l

(
Ω⃗m

)
A00

τ
Φl,n,τ +

1

4π
A00

τ
Qfixed

m,τ

. (3.35)

The global discontinuous finite element matrix is the sum of all of the individual element matrices,

which are coupled through the upwinding scheme. In practice, the global system is never explicitly

formed as doing so is computationally prohibitive, and instead each element’s local matrix is used

during calculation. In the subsequent sections, we will also derive low-order operators from the

local element matrices.

3.2 Source Iteration Scheme

Equation (3.35) is difficult to solve because of coupling across all angles through the scattering

term. The source iteration scheme lags some component of the scattering term to a previous itera-

tion to solves a simpler fixed source problem. Here we describe the source iteration scheme, where

the down-scattering from groups that are fully determined are at iteration index i+1, up-scattering

between groups is calculated in an outer iteration and are at index i, and the within-group scattering

is calculated in an inner iteration at index l:

Ω⃗m ·
∑
k∈∂τ

n⃗kA
00

∂τk

[
Ψ

(l+1/2)
m,τ,k −Ψ(l+1/2)

m,τ

]
+Ω⃗m · A⃗

01

τ
Ψ(l+1/2)
m,τ + TτA

00

τ
Ψ(l+1/2)
m,τ

=
L∑
l=0

2l + 1

4π
Sl,D

l∑
n=−l

Y n
l

(
Ω⃗m

)
A00

τ
Φ

(l)
l,n,τ

+
L∑
l=0

2l + 1

4π
Sl,L

l∑
n=−l

Y n
l

(
Ω⃗m

)
A00

τ
Φ

(i+1)
l,n,τ

+
L∑
l=0

2l + 1

4π
Sl,U

l∑
n=−l

Y n
l

(
Ω⃗m

)
A00

τ
Φ

(i)
l,n,τ +

1

4π
A00

τ
Qfixed

m,τ

. (3.36)

The next moments are found with a discrete to moment operator, W :
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Φ(l+1/2)
τ = WΨ(l+1/2)

m,τ (3.37)

If no moments are accelerated, the moments of the next iterate are set to the current best solu-

tion:

Φ(i+1)
τ = Φ(l+1/2)

τ . (3.38)

The source iteration scheme can be arbitrarily slow to converge based on the scattering ratio

of the problem. Krylov iterative algorithms may have better convergence properties, but may still

have difficulty converging problems with high effective scattering media. It is best to combine

an advanced iterative method with an acceleration method using a low-order operator that is de-

rived from physical intuition of the system and is consistent with the discretization of the original

equation. [2, 1]

3.2.1 Fourier Analysis of a Gray Source Iteration Scheme

We now derive the behavior of source iteration when no discretization is introduced; the behav-

ior that results demonstrates the error reduction purely of source iteration without contamination

from discretization errors. For simplicity we only consider isotropic scattering (first degree spher-

ical harmonic scattering sources are addressed in chapter 6), a homogeneous problem domain, and

do not consider energy dependence of the system (gray). We begin with the gray homogeneous

transport problem definition, which the converged solution (index C) satisfies:

Ω⃗ · ∇⃗ψ(C)
(
r⃗, Ω⃗

)
+ σtψ

(C)
(
r⃗, Ω⃗

)
=

∫
4π

dΩ′σsψ
(C)
(
r⃗, Ω⃗′

)
+Qfixed

(
r⃗, Ω⃗

), (3.39)

and the Source Iteration scheme applied to this problem:
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Ω⃗ · ∇⃗ψ(l+1/2)
(
r⃗, Ω⃗

)
+ σtψ

(l+1/2)
(
r⃗, Ω⃗

)
=

∫
4π

dΩ′σsψ
(l)
(
r⃗, Ω⃗′

)
+

1

4π
Qfixed

(
r⃗, Ω⃗

). (3.40)

We define an equation for the iteration error by subtracting source iteration scheme from the

converged equation that satisfies the initial problem:

Ω⃗ · ∇⃗ψ(l+1/2)
†

(
r⃗, Ω⃗

)
+ σtψ

(l+1/2)
†

(
r⃗, Ω⃗

)
= σsϕ

(l)
† (r⃗) . (3.41)

Here terms denoted by † are errors to their respective transport quantities, which are defined

as:

ϕ
(l)
† (r⃗) = ϕ(C) − ϕ(l) (r⃗) , (3.42)

ψ
(l+1/2)
†

(
r⃗, Ω⃗

)
= ψ(C)

(
Ω⃗
)
− ψ(l+1/2)

(
r⃗, Ω⃗

)
, (3.43)

ϕ
(l+1)
† (r⃗) = ϕ(C) − ϕ(l+1) (r⃗) . (3.44)

We expand transport errors into infinite Fourier modes:

ϕ
(l)
† (r⃗) =

∫∫∫ ∞

0

d3λa
(
λ⃗
)
ωleiσtλ⃗·r⃗, (3.45)

ψ
(l+1/2)
†

(
r⃗, Ω⃗

)
=

∫∫∫ ∞

0

d3λb
(
Ω⃗, λ⃗

)
ωleiσtλ⃗·r⃗, (3.46)

ϕ
(l+1)
† (r⃗) =

∫∫∫ ∞

0

d3λa
(
λ⃗
)
ωl+1eiσtλ⃗·r⃗, (3.47)

and use the fact that each of these modes is orthogonal to obtain an equation that each of the modes
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must independently satisfy:

(
iσtλ⃗ · Ω⃗ + σt

)
b
(
Ω⃗, λ⃗

)
ωleiσtλ⃗·r⃗ =

1

4π
σsa

(
λ⃗
)
ωleiλ⃗·r⃗. (3.48)

We solve for b
(
Ω⃗, λ⃗

)
:

b
(
Ω⃗, λ⃗

)
=

1

4π

1

iσtλ⃗ · Ω⃗ + σt
σta
(
λ⃗
)
, (3.49)

After we multiply and divide by iσtλ⃗ · Ω⃗− σt:

b
(
Ω⃗, λ⃗

)
=

1

4π

1− iλ⃗ · Ω⃗

1 +
(
λ⃗ · Ω⃗

)2 σsσt a
(
λ⃗
)
. (3.50)

Then ϕ(l+1/2)
† is the integral of ψ†

(
Ω⃗
)

:

ϕ
(l+1/2)
† =

∫
4π

dΩωleiσtλ⃗·r⃗ 1

4π

1− iλ⃗ · Ω⃗

1 +
(
λ⃗ · Ω⃗

)2 σsσt a
(
λ⃗
)
,

=
tan−1

(
λ⃗
)

λ⃗
ωleiσtλ⃗·r⃗σs

σt
a
(
λ⃗
)
.

(3.51)

We use the update equation to solve for the iteration error reduction per iteration, ωSI :

ωSI =

∫
4π

dΩ
1

4π

1

1 +
(
λ⃗ · Ω⃗

)2 σsσt =
tan−1

(∣∣∣λ⃗∣∣∣)∣∣∣λ⃗∣∣∣ σs
σt
. (3.52)

The slowest error reduction occurs when λ⃗ = 0:

max (ωSI) =
σs
σt
. (3.53)

3.2.2 Fourier Analysis of Diffusion Acceleration for a One Group Source Iteration Scheme

We obtain an equation for a correction defined by:
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f (l+1/2)
(
r⃗, Ω⃗

)
= ψ(C)

(
r⃗, Ω⃗

)
− ψ(l+1/2)

(
r⃗, Ω⃗

)
, (3.54)

by subtracting the the source iteration equation from the converged transport equation:

Ω⃗ · ∇⃗f (l+1/2)
(
r⃗, Ω⃗

)
+ σtf

(l+1/2)
(
r⃗, Ω⃗

)
= σs

∫
4π

dΩψ(C)
(
r⃗, Ω⃗

)
− σsϕ(l) (r⃗) . (3.55)

We add and subtract σs
∫
4π
dΩψ(l+1/2)

(
r⃗, Ω⃗

)
on the right hand side:

Ω⃗ · ∇⃗f (l+1/2)
(
r⃗, Ω⃗

)
+ σtf

(l+1/2)
(
r⃗, Ω⃗

)
= σs

∫
4π

dΩf (l+1/2)
(
Ω⃗
)
+ σsϕ

(l+1/2) (r⃗)− σsϕ(l) (r⃗) .

(3.56)

To generate a simpler equation for an approximate correction, we make the approximation that

the correction, f (l+1/2)
(
r⃗, Ω⃗

)
, is linear in angle:

f (l+1/2)
(
r⃗, Ω⃗

)
≈ 1

4π

(
F (l+1/2) (r⃗) + 3Ω⃗ · G⃗(l+1/2) (r⃗)

)
, (3.57)

and take 0th and 1st angular moments of the error equation:

∇⃗ · G⃗(l+1/2) (r⃗) + (σt − σs)F (l+1/2) (r⃗) = σsϕ
(l+1/2) − σsϕ(l) (r⃗) , (3.58)

1

3
∇⃗F (l+1/2) (r⃗) + σtG⃗

(l+1/2) (r⃗) = 0. (3.59)

We eliminate G⃗(l+1/2) (r⃗) using the 1st moment and obtain a one group diffusion equation for

a scalar correction:

− 1

3σt
∇⃗2F (l+1/2) (r⃗) + (σt − σs)F (l+1/2) (r⃗) = σsϕ

(l+1/2) (r⃗)− σsϕ(l) (r⃗) . (3.60)
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Instead of the simple update equation used before, we use a linear combination of the high-

order iterate and low-order correction:

ϕ(l+1) (r⃗) = ϕ(l+1/2) (r⃗) + F (l+1/2) (r⃗) . (3.61)

Following the same steps for the error in the scalar correction and the corresponding update

obtains similar equations:

− 1

3σt
∇⃗2F

(l+1/2)
† (r⃗) + (σt − σs)F (l+1/2)

† (r⃗) = σsϕ
(l+1/2)
† (r⃗)− σsϕ(l)

† (r⃗) , (3.62)

ϕ
(l+1)
† (r⃗) = ϕ

(l+1/2)
† (r⃗) + F

(l+1/2)
† (r⃗) . (3.63)

We expand the diffusion correction error in infinite Fourier modes:

F
(l+1/2)
† (r⃗) =

∫∫∫ ∞

0

d3λdλc
(
λ⃗
)
ωlh

(
λ⃗
)
eiσtλ⃗·r⃗. (3.64)

The following equation must be satisfied mode by mode, where we have already determined

ϕ
(l+1/2)
† (r⃗) in the previous subsection:

1

3
σt

∣∣∣λ⃗∣∣∣2 ωlh(λ⃗)+ (σt − σs)h
(
λ⃗
)
= σsϕ

(l+1/2)
† (r⃗)− σsϕ(l)

† (r⃗) . (3.65)

We solve for h
(
λ⃗
)

:

h
(
λ⃗
)
=

1(
1
3

∣∣∣λ⃗∣∣∣2 + (1− σs
σt

)) σsσt
σs
σt

tan−1
(∣∣∣λ⃗∣∣∣)∣∣∣λ⃗∣∣∣ − 1

 a
(
λ⃗
)
, (3.66)

and we use the update equation to solve for ωDSA:
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ωDSA =
σs
σt

tan−1
(∣∣∣λ⃗∣∣∣)∣∣∣λ⃗∣∣∣ +

1(
1
3

∣∣∣λ⃗∣∣∣2 + (1− σs
σt

)) σsσt
σs
σt

tan−1
(∣∣∣λ⃗∣∣∣)∣∣∣λ⃗∣∣∣ − 1

 . (3.67)

We compare the error reduction per mode for Source Iteration and DSA for Source Iteration in

Figure 3.1.

Figure 3.1: Error reduction per mode for Source Iteration with and without DSA.

3.3 Discretization of Low-Order Acceleration Equations

We describe a particular low-order operator we have developed and implemented that uses a

continuous-diffusion operator to approximate surface quantities in the fully-consistent diffusion

operator. Included in this section is a derivation of the fully-consistent operator, the continuous-

diffusion operator, the surface-approximated diffusion operator, with vacuum, reflecting, and op-

posed reflecting boundary conditions for each operator.
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From the discrete transport source iteration scheme in Eq. (3.36), we make several notable

changes. First, we eschew the angular discretization to determine angular moments that arise

analytically. While the angular moments can be calculated using the discrete quadrature, it is

useful to determine them analytically. In addition, we have found from previous work that the

analytic terms do not cause sufficient inconsistency to cause the method to degrade.[19] Because

we derive the equation for each energy group and spatial mesh as an independent set of equations,

we make omit the indices g and τ from all of the variables and treat any source from other groups as

an external source for the current iteration. Finally, we only consider isotropic scattering because

we are only considering acceleration of the scalar intensity.

Ω⃗ ·
∑
k∈∂τ

n⃗kA
00

∂τk

[
ψ(l+1/2)

k

(
Ω⃗
)
− ψ(l+1/2)

(
Ω⃗
)]

+Ω⃗ · A⃗
01

τ
Ψ(l+1/2)

(
Ω⃗
)
+ σtA

00

τ
Ψ(l+1/2)

(
Ω⃗
)
= σsϕ

(l) +Qfixed
(
Ω⃗
). (3.68)

where the external source is determined from terms not in the inner iteration:

Qfixed
(
Ω⃗
)
=

G∑
g′=g+1

σs,g′,g,τ

(
Ω⃗
)
ϕ
(i+1)
g′,τ +

g−1∑
g′=1

σs,g′,g,τ

(
Ω⃗
)
ϕ
(i)
g′,τ +Qfixed

(
Ω⃗
)
. (3.69)

As in the Fourier analysis above, we define a correction to the converged solution:

f (l+1/2)
(
Ω⃗
)
= ψ(C)

(
Ω⃗
)
− ψ(l+1/2)

(
Ω⃗
)
. (3.70)

We subtract the iteration equation from the converged equation to obtain an equation for a cor-

rection. Note that this equation has only one surface sum that depends on the “upwind” correction:
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∑
k∈∂τ

Ω⃗ · n⃗kA00

∂τk
f (l+1/2)

k

(
Ω⃗
)

−Ω⃗ ·

[
−
∑
k∈∂τ

n⃗kA
00

∂τk
+ A⃗

01

τ

]
f (l+1/2)

(
Ω⃗
)
+ σtA

00

τ
f (l+1/2)

(
Ω⃗
)

=
σs
4π
A00

τ

∫
4π

dΩ′f (l+1/2)
(
Ω⃗′
)
+ ψ(l+1/2)

(
Ω⃗′
)
− ψ(l)

(
Ω⃗′
)

. (3.71)

At this point we make an approximation, since this equation is as difficult to solve as the

original transport equation. Alcouffe showed that the low-order equation must be “consistent” in

some sense with the discrete transport equation to effectively accelerate scattering iteration. [2]

Next we obtain the fully consistent DFEM DSA method using a four step procedure developed by

Larsen. [37, 38, 1]

3.3.1 Fully Consistent Discontinuous Finite Element Method Diffusion Synthetic Accelera-

tion

We obtain a fully consistent diffusion-like set of equations by approximating the correction as

linear varying in angle, the P1 approximation:

f (l+1/2)
(
Ω⃗
)
≈ 1

4π

(
F + 3Ω⃗ · G⃗

)
. (3.72)

We then find the zeroth angular moment:

∫
4π

dΩ
∑
k∈∂τ

Ω⃗ · n⃗kA00

∂τk
f (l+1/2)

k

(
Ω⃗
)

−

[
−
∑
k∈∂τ

n⃗kA
00

∂τk
+ A⃗

01

τ

]
· G⃗+ σaA

00

τ
F

=σsA
00

τ

(
ϕ(l+1/2) − ϕ(l)

)
, (3.73)

and the first angular moment:
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∫
4π

dΩΩ⃗
∑
k∈∂τ

Ω⃗ · n⃗kA00

∂τk
f (l+1/2)

k

(
Ω⃗
)

−1

3

[
−
∑
k∈∂τ

n⃗kA
00

∂τk
+ A⃗

01

τ

]
F + σtA

00

τ
G⃗

=0

. (3.74)

The update equation for the next iterate when only the scalar intensity is corrected:

ϕ(l+1) = ϕ(l+1/2) + F (l+1/2). (3.75)

We note that while it is possible to reverse integration by parts (again) to make fewer sums over

faces; however, doing so creates errors that must be accounted for if the surface matrix is lumped.

These equations form a coupled system of equations through the upstream face quantities that must

be solved globally. Evaluation of the integrals of the surface quantities requires that we input the

upwinding scheme we have chosen, and depends on the boundary condition for that surface. In

the following sections, we devise the exact form of the boundary term for some boundaries we en-

counter in common problems: interior face boundaries, vacuum boundaries, reflecting boundaries,

and opposing reflected boundaries.

3.3.1.1 Interior Boundaries

In the 0th moment equation, the interior boundary term is expressed as:

∫
4π

dΩ
∑

k∈Interior

Ω⃗ · n⃗kA00

∂τk
f (l+1/2)

k

(
Ω⃗
)

=
∑

k∈Interior

A00

∂τk

[
αF0
incF k+ + αF0

outF + α⃗G0
inc,k · G⃗k+ + α⃗G0

out,k · G⃗
]
,

(3.76)

where the α constants are defined by the half range continuous angle integrals:
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αF0
out =

1

4π

∫
n⃗k·Ω⃗>0

dΩΩ⃗ · n⃗k =
1

4
,

αF0
inc =

1

4π

∫
n⃗k·Ω⃗<0

dΩΩ⃗ · n⃗k = −
1

4
,

α⃗G0
out,k =

3

4π

∫
n⃗k·Ω⃗>0

dΩΩ⃗Ω⃗ · n⃗k =
1

2
n⃗k,

α⃗G0
inc,k =

3

4π

∫
n⃗k·Ω⃗<0

dΩΩ⃗Ω⃗ · n⃗k =
1

2
n⃗k.

(3.77)

In the 1st moment equation, the interior boundary term is:

∫
4π

dΩ
∑

k∈Interior

Ω⃗Ω⃗ · n⃗kA00

∂τk
f (l+1/2)

k

(
Ω⃗
)

=
∑

k∈Interior

A00

∂τk

[
α⃗F1
inc,kF k+ + α⃗F1

out,kF + ⃗⃗αG1
incG⃗k+ + ⃗⃗αG1

outG⃗
], (3.78)

where,

α⃗F1
inc,k =

1

4π

∫
n⃗k·Ω⃗<0

dΩΩ⃗Ω⃗ · n⃗k =
1

6
n⃗k,

α⃗F1
out,k =

1

4π

∫
n⃗k·Ω⃗>0

dΩΩ⃗Ω⃗ · n⃗k =
1

6
n⃗k.

(3.79)

We evaluate the remaining coefficient more carefully. To evaluate the resulting 2D tensor of

Ω⃗Ω⃗Ω⃗ · n⃗k, we choose substitutions:

Ω⃗ · n⃗k = µ, (3.80)

Ω⃗ =
[
µn⃗k +

(
1− µ2

)1/2
cos(γ)e⃗1 +

(
1− µ2

)1/2
sin(γ)e⃗2

]
, (3.81)

where e⃗1, e⃗2 are unit vectors orthogonal to n⃗k and themselves, and γ is the azimuthal angle about

n⃗k. We insert the substitutions into the interior boundary outgoing half-range integral:
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⃗⃗αG1
out =

3

4π

∫
n⃗k·Ω⃗>0

dΩΩ⃗Ω⃗Ω⃗ · n⃗k,

=
3

4π

∫
µ>0

dµ

∫
2π

dγ


µ

×
[
µn⃗k +

(
1− µ2

)1/2
cos(γ)e⃗1 +

(
1− µ2

)1/2
cos(γ)e⃗2

]
×
[
µn⃗k +

(
1− µ2

)1/2
cos(γ)e⃗1 +

(
1− µ2

)1/2
cos(γ)e⃗2

]


. (3.82)

First we evaluate the integral of γ. We note that terms that are linear in either cos(γ), sin(γ),

or both are identically zero:

⃗⃗αG1
out =

3

4π

∫
µ>0

dµ2π

µ3n⃗kn⃗k +
(
µ− µ3

)
e⃗1e⃗1 +

(
µ− µ3

)
e⃗2e⃗2

+ 0× (n⃗ke⃗1 + n⃗ke⃗2 + e⃗1n⃗k + e⃗1e⃗2 + e⃗2n⃗k + e⃗2e⃗1)

 . (3.83)

After we evaluate the integral of µ, we have:

⃗⃗αG1
out =

3

2

[
1

4
n⃗kn⃗k +

1

8
e⃗1e⃗1 +

1

8
e⃗2e⃗2

]
,

=
3

16
⃗⃗
In⃗k

+
3

16
n⃗kn⃗k,

(3.84)

where ⃗⃗In⃗k
is the identity tensor corresponding to ⟨n⃗k, e⃗1, e⃗2⟩. The incoming coefficient is found

similarly, except the integral of µ results in negative values:

⃗⃗αG1
inc =

3

4π

∫
n⃗k·Ω⃗<0

dΩΩ⃗Ω⃗Ω⃗ · n⃗k,

= −3

2

[
1

4
n⃗kn⃗k +

1

8
e⃗1e⃗1 +

1

8
e⃗2e⃗2

]
,

= − 3

16
⃗⃗
In⃗k
− 3

16
n⃗kn⃗k.

(3.85)

It is of interest, though not quantified in this work, how important the terms in the first moment

equation are to the consistency of the low-order operator. During previous research, we imple-

mented and tested this method with a slightly different value of ⃗⃗αG1
out and ⃗⃗αG1

inc, and obtained an
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operator that was an effective preconditioner to Source Iteration for transport. [19] In that previous

work, we approximated the 1st moment surface terms as:

⃗⃗αG1
out ≈

3

8
n⃗kn⃗k,

⃗⃗αG1
inc ≈ −

3

8
n⃗kn⃗k.

(3.86)

3.3.1.2 Boundary Conditions: Vacuum

On vacuum boundaries, the upstream incoming angular flux and correction are zero:

ψ(l+1/2)

k+

(
Ω⃗
)
= 0, (3.87)

f (l+1/2)

k+

(
Ω⃗
)
= 0. (3.88)

Having already defined the outgoing integrals of Ω⃗, the 0th moment of the upstream surface

quantity with vacuum boundary is:

∫
4π

dΩ
∑

k∈V acuum

Ω⃗ · n⃗kA00

∂τk
f (l+1/2)

k

(
Ω⃗
)
=

∑
k∈V acuum

∫
n⃗k·Ω⃗>0

dΩΩ⃗ · n⃗kA00

∂τk
f (l+1/2)

(
Ω⃗
)
,

=
∑

k∈V acuum

A00

∂τk

[
αF0
outF + α⃗G0

out,k · G⃗
]
,

(3.89)

and the 1st moment of the upstream surface quantity with vacuum boundary is:

∫
4π

dΩ
∑

k∈V acuum

Ω⃗Ω⃗ · n⃗kA00

∂τk
f (l+1/2)

k

(
Ω⃗
)
=

∑
k∈V acuum

∫
n⃗k·Ω⃗>0

dΩΩ⃗Ω⃗ · n⃗kA00

∂τk
f (l+1/2)

(
Ω⃗
)
,

=
∑

k∈V acuum

A00

∂τk

[
α⃗F1
out,kF + ⃗⃗αG1

out · G⃗
]
.

(3.90)
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3.3.1.3 Boundary Conditions: Reflecting

The upstream angular flux and incoming angular correction on a reflected surface is the equal

to the corresponding downstream quantity in the reflected direction:

ψ(l+1/2)

k+

(
Ω⃗
)
= ψ(l+1/2)

(
Ω⃗Ref

)
, Ω⃗ · n⃗k < 0, (3.91)

f (l+1/2)

k+

(
Ω⃗
)
= f (l+1/2)

(
Ω⃗Ref

)
, Ω⃗ · n⃗k < 0. (3.92)

Using the terminology in Eq. (3.81), the angle that is reflected about the plane with normal n⃗k is:

Ω⃗Ref =
[
−µn⃗k +

(
1− µ2

)1/2
cos(γ)e⃗1 +

(
1− µ2

)1/2
sin(γ)e⃗2

]
. (3.93)

We evaluate the integral on the boundary in the 0th moment after substituting the upstream

angular correction and the expression for the reflected direction:

∫
4π

dΩn⃗k · Ω⃗f (l+1/2)

k

(
Ω⃗
)
=

∫
n⃗k·Ω⃗<0

dΩn⃗k · Ω⃗f (l+1/2)

k+

(
Ω⃗
)
+

∫
n⃗k·Ω⃗>0

dΩn⃗k · Ω⃗f (l+1/2)
(
Ω⃗
)

=

∫
n⃗k·Ω⃗<0

dΩn⃗k · Ω⃗
1

4π

[
F + 3Ω⃗Ref · G⃗

]
+

∫
n⃗k·Ω⃗>0

dΩn⃗k · Ω⃗
1

4π

[
F + 3Ω⃗ · G⃗

]

=

1

4π

2π∫
0

dγ

0∫
−1

dµ

µ
F + 3


−µn⃗k

+
(
1− µ2

)1/2
cos(γ)e⃗1

+
(
1− µ2

)1/2
sin(γ)e⃗2

 · G⃗




+
1

4π

2π∫
0

dγ

1∫
0

dµ

µ
F + 3


µn⃗k

+
(
1− µ2

)1/2
cos(γ)e⃗1

+
(
1− µ2

)1/2
sin(γ)e⃗2

 · G⃗




.

(3.94)

We can quickly see that each integral evaluates to zero. All terms that are linear in either

cos(γ), sin(γ), or both are zero; in addition, we may combine integrals to obtain functions that are
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odd powers of µ, whose integrals also evaluate to zero; finally, the integrals of n⃗k · G cancel each

other due to the minus sign from the reflected angle cosine:

∫
4πdΩn⃗k · Ω⃗f (l+1/2)

k

(
Ω⃗
)
=

1

4π

2π∫
0

dγ

��
���

����
��*

0 0∫
−1

dµµ+

1∫
0

dµµ

F

+
1

4π

�����������������������:0 0∫
−1

dµµ
(
1− µ2

)1/2
+

1∫
0

dµµ
(
1− µ2

)1/2


�
�
�

�
�
��>

0
2π∫
0

dγcos(γ)e⃗1 +

�
�

�
�
�

��>
0

2π∫
0

dγsin(γ)e⃗2

 · G⃗

+
1

4π

2π∫
0

dγ

���������������:0 0∫
−1

dµ
(
−µ2

)
+

1∫
0

dµ
(
µ2
)n⃗k · G⃗

= 0.

(3.95)

We follow similar steps to evaluate the integral on the boundary in the 1st moment. After

substituting the expression for the upstream angular correction and the reflected direction, we

evaluate the following integrals:
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∫
4π

dΩn⃗k · Ω⃗Ω⃗f (l+1/2)

k

(
Ω⃗
)

=

∫
n⃗k·Ω⃗<0

dΩn⃗k · Ω⃗Ω⃗f (l+1/2)

k+

(
Ω⃗
)
+

∫
n⃗k·Ω⃗>0

dΩn⃗k · Ω⃗Ω⃗f (l+1/2)
(
Ω⃗
)

=

∫
n⃗k·Ω⃗<0

dΩn⃗k · Ω⃗Ω⃗
1

4π

[
F + 3Ω⃗Ref · G⃗

]
+

∫
n⃗k·Ω⃗>0

dΩn⃗k · Ω⃗Ω⃗
1

4π

[
F + 3Ω⃗ · G⃗

]

=

1

4π

2π∫
0

dγ

0∫
−1

dµ

µ


µn⃗k(
1− µ2

)1/2
cos(γ)e⃗1(

1− µ2
)1/2

sin(γ)e⃗2



F + 3


−µn⃗k(

1− µ2
)1/2

cos(γ)e⃗1(
1− µ2

)1/2
sin(γ)e⃗2

 · G⃗




+
1

4π

2π∫
0

dγ

1∫
0

dµ

µ


µn⃗k(
1− µ2

)1/2
cos(γ)e⃗1(

1− µ2
)1/2

sin(γ)e⃗2



F + 3


µn⃗k(

1− µ2
)1/2

cos(γ)e⃗1(
1− µ2

)1/2
sin(γ)e⃗2

 · G⃗




.

(3.96)

We eliminate integrals with F that are not in direction n⃗k because they are linear functions of

cos(γ) or sin(γ). We also eliminate all off-diagonal terms of the resulting tensor multiplying G⃗

that are linear functions of cos(γ), sin(γ), or both. After we eliminate integrals over the full range

of odd fuctions of µ, the remaining integrals are as follows:

∫
4π

dΩn⃗k · Ω⃗Ω⃗f (l+1/2)

k

(
Ω⃗
)
=

1

4π

2π∫
0

dγ

 0∫
−1

dµ
[
µ2
]
+

1∫
0

dµ
[
µ2
] n⃗kF

+
3

4π

2π∫
0

dγ

 0∫
−1

dµ
[
−µ3

]
+

1∫
0

dµ
[
µ3
] n⃗kn⃗k · G⃗

(3.97)

We evaluate these integrals to find the upstream surface quantity on reflecting boundaries ex-

pressed in terms of only within-cell quantities:

∫
4π

dΩn⃗k · Ω⃗Ω⃗f (l+1/2)

k

(
Ω⃗
)
=

1

3
n⃗kF +

3

4
n⃗kn⃗k · G⃗. (3.98)
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3.3.1.4 Fully Consistent Discontinuous Finite Element Method Diffusion Synthetic Acceleration

Equations with Boundary Conditions

The resulting system of equations for one element is coupled to all other elements through

boundary terms. As a reference, we show the equations with all boundary conditions considered:

∑
k∈Interior

A00

∂τk

[
αF0
incF k+ + αF0

outF + α⃗G0
inc,k · G⃗k+ + α⃗G0

out,k · G⃗
]

+
∑

k∈V acuum

A00

∂τk

[
αF0
outF + α⃗G0

out,k · G⃗
]

+
∑

k∈Reflect

0

+

[
−
∑
k∈∂τ

n⃗kA
00

∂τk
+ A⃗

01

τ

]
· G⃗+ σaA

00

τ
F

=σsA
00

τ

(
ϕ(l+1/2) − ϕ(l)

)
,

(3.99)

∑
k∈Interior

A00

∂τk

[
α⃗F1
inc,kF k+ + α⃗F1

out,kF + ⃗⃗αG1
inc · G⃗k+ + ⃗⃗αG1

out · G⃗
]

+
∑

k∈V acuum

A00

∂τk

[
α⃗F1
out,kF + ⃗⃗αG1

out · G⃗
]

+
∑

k∈Reflect

A00

∂τk

[
1

3
n⃗kF +

3

4
n⃗kn⃗k · G⃗

]

+
1

3

[
−
∑
k∈∂τ

n⃗kA
00

∂τk
+ A⃗

01

τ

]
F + σtA

00

τ
G⃗ = 0,

(3.100)

ϕ(l+1) = ϕ(l+1/2) + F (l+1/2). (3.101)

This system has been shown to be difficult to solve.[23] To accelerate only the scalar intensity

for one energy group, the fully consistent method has a solution size (NFC) equal to:

NFC = NSpatialDoF × (Ndimensions + 1) (3.102)

In general, the coupling to the first moment equations cause the global matrix to be asymmet-
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ric. Another source of asymmetry arises when interaction probabilities are not constant within an

element. The equations are often ill-conditioned, as the strength of coupling can vary dramatically

between the 0th and 1st moment equations.

3.3.2 Continuous Finite Element Method Diffusion Synthetic Acceleration

To address the difficulty solving the fully consistent discontinuous method, we devise a contin-

uous finite element method in the most consistent way we know. We map the local operators for

each element of the fully consistent method discontinuous finite element space using a mapping

operator H
τ

to a continuous space that has continuity between unknowns that share interior neigh-

boring faces (no jump condition). We have returned the subscripts τ to denote which quantities are

from the discontinuous elements and add subscript C to denote a vectors in the global continuous

finite element space. For each element we determine the zeroth moment equation:

H
τ

∫
4π

dΩ
∑
k∈∂τ

Ω⃗ · n⃗kA00

∂τk
HT

τ
f (l+1/2)

k,C

(
Ω⃗
)

−H
τ

[
−
∑
k∈∂τ

n⃗kA
00

∂τk
+ A⃗

01

τ

]
·HT

τ
G⃗

(l+1/2)

C +H
τ
σa,τA

00

τ
HT

τ
F

(l+1/2)
C

=H
τ
σs,τA

00

τ

(
ϕ(l+1/2)

τ
− ϕ(l)

τ

)
, (3.103)

and the first moment equation:

H
τ

∫
4π

dΩΩ⃗
∑
k∈∂τ

Ω⃗ · n⃗kA00

∂τk
HT

τ
f (l+1/2)

k,C

(
Ω⃗
)

−H
τ

1

3

[
−
∑
k∈∂τ

n⃗kA
00

∂τk
+ A⃗

01

τ

]
HT

τ
F

(l+1/2)
C +H

τ
σt,τA

00

τ
HT

τ
G⃗

(l+1/2)

C

=0

. (3.104)

Element by element, the continuous correction is mapped back to the discontinuous space to

update the scalar intensity:

ϕ(l+1) = ϕ(l+1/2) +HT

τ
F

(l+1/2)
C . (3.105)
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3.3.2.1 Interior Boundaries

To enforce the continuity of the basis functions, we set the continuous angular correction to be

equal on interior surfaces:

f (l+1/2)

k+,C
= f (l+1/2)

C
, (3.106)

and thus:

F
(l+1/2)
k+,C = F

(l+1/2)
C (3.107)

G⃗
(l+1/2)

k+,C = G⃗
(l+1/2)

C (3.108)

We enforce continuity into the expression for the 0th moment fully consistent interior boundary,

where integrals of linear functions of Ω⃗ are zero:

H
τ

∫
4π

dΩ
∑

k∈Interior

Ω⃗ · n⃗kA00

∂τk
HT

τ
f (l+1/2)

k,C

(
Ω⃗
)

= H
τ

∑
k∈Interior

∫
4π

dΩΩ⃗ · n⃗kA00

∂τk
HT

τ

1

4π

(
F

(l+1/2)
C + 3Ω⃗ · G⃗

(l+1/2)

C

)
,

= H
τ

∑
k∈Interior

n⃗kA
00

∂τk
HT

τ
G⃗

(l+1/2)

C .

(3.109)

Similarly, the 1st moment with continuous interior boundaries is:

H
τ

∫
4π

dΩΩ⃗
∑

k∈Interior

Ω⃗ · n⃗kA00

∂τk
f (l+1/2)

k,C

(
Ω⃗
)

= H
τ

∑
k∈Interior

∫
4π

dΩΩ⃗Ω⃗ · n⃗kA00

∂τk

1

4π

(
F

(l+1/2)
C + 3Ω⃗ · G⃗

(l+1/2)

C

)
,

= H
τ

∑
k∈Interior

1

3
n⃗kA

00

∂τk
F

(l+1/2)
C .

(3.110)

We note that when all elements are added to the global operator, the contributions from neigh-
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boring interior faces operator cancel because of equal and opposite surface normals.

3.3.2.2 Boundary Conditions: Vacuum

As in the fully consistent method, on vacuum boundaries the upstream incoming angular cor-

rection is zero:

f (l+1/2)

k+,C

(
Ω⃗
)
= 0. (3.111)

The surface term for a vacuum boundary in the zeroth moment is:

∫
4π

dΩ
∑

k∈V acuum

Ω⃗ · n⃗kA00

∂τk
f (l+1/2)

k,C

(
Ω⃗
)
=

∑
k∈V acuum

∫
n⃗k·Ω⃗>0

dΩΩ⃗ · n⃗kA00

∂τk
f (l+1/2)

C

(
Ω⃗
)

=
∑

k∈V acuum

A00

∂τk

[
αF0
outF

(l+1/2)
C + α⃗G0

out,k · G⃗
(l+1/2)

C

]
,

(3.112)

and in the first moment is:

∫
4π

dΩ
∑

k∈V acuum

Ω⃗Ω⃗ · n⃗kA00

∂τk
f (l+1/2)

k,C

(
Ω⃗
)
=

∑
k∈V acuum

∫
n⃗k·Ω⃗>0

dΩΩ⃗Ω⃗ · n⃗kA00

∂τk
f (l+1/2)

C

(
Ω⃗
)

=
∑

k∈V acuum

A00

∂τk

[
α⃗F1
out,kF

(l+1/2)
C + ⃗⃗αG1

out · G⃗
(l+1/2)

C

]
.

(3.113)

3.3.2.3 Boundary Conditions: Reflecting

From the fully consistent method on reflecting boundaries, the reflecting boundary in the 0th

moment is:

∫
4π

dΩ
∑

k∈Reflect

Ω⃗ · n⃗kA00

∂τk
f (l+1/2)

k

(
Ω⃗
)
= 0, (3.114)

and the reflecting boundary in the 1st moment is:
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∫
4π

dΩ
∑

k∈Reflect

Ω⃗Ω⃗ · n⃗kA00

∂τk
H
τ
f (l+1/2)

k

(
Ω⃗
)
=

∑
k∈Reflect

A00

∂τk
H
τ

[
1

3
n⃗kF

(l+1/2)
C +

3

4
n⃗kn⃗k · G⃗

(l+1/2)

C

]
,

(3.115)

3.3.2.4 Continuous Finite Element Method Diffusion Synthetic Acceleration with Boundary Con-

ditions

The zeroth moment equations with boundary conditions:

H
τ

∑
k∈Interior

0

+H
τ

∑
k∈V acuum

A00

∂τk
HT

τ

[
αF0
outF

(l+1/2)
C + α⃗G0

out,k · G⃗
(l+1/2)

C

]
+H

τ

∑
k∈Reflect

0

−H
τ

[
−
∑
k∈∂τ

n⃗kA
00

∂τk
+ A⃗

01

τ

]
·HT

τ
G⃗

(l+1/2)

C +H
τ
σaA

00

τ
F

(l+1/2)
C

=H
τ
σsA

00

τ

(
ϕ(l+1/2) − ϕ(l)

)

, (3.116)

and the first moment equations with boundary conditions:

∑
k∈Interior

1

3
n⃗kA

00

∂τk
F

(l+1/2)
C

+
∑

k∈V acuum

A00

∂τk
HT

τ

[
α⃗F1
out,kF

(l+1/2)
C + ⃗⃗αG1

outG⃗
(l+1/2)

C

]
+

∑
k∈Reflect

A00

∂τk
HT

τ

[
1

3
n⃗kF

(l+1/2)
C +

3

4
n⃗kn⃗k · G⃗

(l+1/2)

C

]
+

∑
k∈OpposedReflect

1

3
n⃗kA

00

∂τk
F

(l+1/2)
C

−1

3

[
−
∑
k∈∂τ

n⃗kA
00

∂τk
+ A⃗

01

τ

]
F

(l+1/2)
C + σtA

00

τ
G⃗

(l+1/2)

=0

, (3.117)

form a coupled system of equations for the additive correction FC , with update equation:
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ϕ(l+1) = ϕ(l+1/2) +HT

τ
F

(l+1/2)
C . (3.118)

The 0th moment equation is coupled globally through the leakage term. However, if a lumped

mass and surface matrix are employed, then the 1st moment forms a purely diagonal matrix forGC

that may be inverted analytically for each entry, obtaining an expression that is similar to a Fick’s

law, and 0th moment matrix that is similar to the stiffness matrix that results from application of a

finite element method to the Laplacian operator.

While this low-order operator has the benefit of being formed directly from finite element

matrices used in the transport discretization, doing this can be a source of asymmetry of the system

if the interaction probabilities are allowed to be varied in the cell. Thus, we also investigate the

necessity to keep the continuous finite element method semi-consistent, and instead use a stiffness

matrix in the 0th moment equation and eschew the 1st moment equations entirely.

The continuous finite element discretization greatly reduces the number of spatial degrees of

freedom, but produces an ineffective acceleration method, as shown in numerical results here in

the following chapters, and in previous work. [19] To improve effectiveness, we employ an ad-

ditional smoothing step during the prolongation of the continuous correction from the continuous

space to the discontinuous space. This smoothing step uses the continuous correction as boundary

conditions for each element of the fully-consistent method to form locally invertible equations.

3.3.3 Discontinuous Update Equation (CDFEM)

In this section we describe changes to interior face boundary conditions of the fully consistent

method that make locally invertible equations. We refer to this method as a Continuous and Dis-

continuous Finite Element Method (CDFEM). From the fully consistent system of equations, we

use the continuous finite element correction to approximate the upstream scalar correction:

F k+ = 2HT

τ
F

(l+1/2)
C − F (l+1/2), (3.119)

and enforce continuity of the 1st moment corrections:
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G⃗
(l+1/2)

k+ = G⃗
(l+1/2)

. (3.120)

After we substitute these expressions, the interior boundaries terms for the 0th moment equa-

tion are:

∫
4π

dΩ
∑

k∈Interior

Ω⃗ · n⃗kA00

∂τk
f (l+1/2)

k

(
Ω⃗
)

=
∑

k∈Interior

A00

∂τk

[
αF0
incF

(l+1/2)
k+ + αF0

outF
(l+1/2) + α⃗G0

inc,k · G⃗
(l+1/2)

k+ + α⃗G0
out,k · G⃗

(l+1/2)
]
,

=
∑

k∈Interior

A00

∂τk

 αF0
inc

(
2HT

τ
F

(l+1/2)
C − F (l+1/2)

)
+ αF0

outF
(l+1/2)

+α⃗G0
inc,k · G⃗

(l+1/2)
+ α⃗G0

out,k · G⃗
(l+1/2)

 ,
=

∑
k∈Interior

A00

∂τk

[
−2αF0

outH
T

τ
F

(l+1/2)
C + 2αF0

outF
(l+1/2) + 2α⃗G0

out,k · G⃗
(l+1/2)

]
.

(3.121)

and the interior boundary terms for the 1st moment equations are:

∫
4π

dΩ
∑

k∈Interior

Ω⃗Ω⃗ · n⃗kA00

∂τk
f (l+1/2)

k

(
Ω⃗
)

=
∑

k∈Interior

A00

∂τk

[
α⃗F1
inc,kF

(l+1/2)
k+ + α⃗F1

out,kF
(l+1/2) + ⃗⃗αG1

inc · G⃗
(l+1/2)

k+ + ⃗⃗αG1
out · G⃗

(l+1/2)
]
,

=
∑

k∈Interior

A00

∂τk

 α⃗F1
inc,k

(
2HT

τ
F

(l+1/2)
C − F (l+1/2)

)
+ α⃗F1

out,kF
(l+1/2)

+⃗⃗αG1
inc · G⃗

(l+1/2)
+ ⃗⃗αG1

out · G⃗
(l+1/2)

 ,
=

∑
k∈Interior

A00

∂τk

[
2α⃗F1

out,kH
T

τ
F

(l+1/2)
C

]
.

(3.122)

This results in a locally invertible system of equations for each element.
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3.3.3.1 Boundary Conditions: Alternate Interior Approximation

Though enforcing continuity of the correction on interior boundaries has shown to be effective,

it is possible to approximate the 1st moment corrections using the continuous correction. We may

solve the first moment equations of the continuous operator for G⃗C :

G⃗C = A−1

G,C,1
A⃗
F,C,1

FC , (3.123)

where A
G,C,1

is the combination of terms that multiply G⃗C in the continuous 1st moment equa-

tion, and A⃗
F,C,1

is the combination of terms that multiply FC in the continuous 1st moment equa-

tion.

We would then approximate the upstream discontinuous 1st moment corrections in a similar

manner to the scalar correction:

G⃗k+ = 2HT

τ
G⃗C − G⃗, (3.124)

Because initial results did not show improvement of the semi-consistent CDFEM, this modifi-

cation was not investigated further. However, we want to note that improving the approximation

of the 1st moment correction is one of the ways to possibly prevent the degradation that has been

shown for high-aspect ratio geometries. [19]

3.4 Summary

In this chapter we provided a detailed description of the discretization schemes we use for

space, angle and energy. We also provided a description of source iteration, which is used by all

methods that follow, and demonstrate the effectiveness of accelerating that iteration with a low-

order operator. Finally, we showed the semi-consistent diffusion-like low-order operator. This

method uses a combination of a continuous finite element method global solution and discontin-

uous finite element local solution. The global CFEM solution provides a reduced solution cost

compared to fully-consistent diffusion, and the local DFEM solution has been shown to provide
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enough consistency to effectively accelerate source iteration.

In the chapters that follow, we apply this semi-consistent diffusion-like low-order operator to

thermal radiative transfer, k-eigenvalue, and thermal upscattering problems with the goal of using

this method as the primary error reduction step per iteration by applying the low-order acceleration

to the outermost iteration.
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4. ADDITIVE SOURCE K-EIGENVALUE ITERATION FOR NEUTRON PROBLEMS

4.1 Method Motivation

In this chapter, we discuss solution methods for the multigroup discrete-ordinates k-eigenvalue

neutron transport equation, which can be written as follows:

(
Ω⃗m · ∇⃗+ T

)
Ψm =

1

4π
SmΦ +

1

4π

1

k
FΦ0, m = 1 . . .M , (4.1)

Φ = WΨ . (4.2)

Here Ψ is the vector of unknowns that represent the position-, direction-, and energy- dependent

neutron angular flux, M is the number of directions in the quadrature set (which can differ for

different energy groups), Φ is the vector of angular moments needed to build the scattering source,

Φ0 is the scalar flux (0th angular moment), Ω⃗m is a unit vector in the mth quadrature direction,

T is total collision operator, S is the transfer operator (describing scattering, (n,2n), and other

non-fission neutron-emitting interactions), F is the fission interaction operator, W is the angular-

moment operator, and k is the eigenvalue to be determined.

A straightforward solution method for this problem is power iteration (PI):

(
Ω⃗m · ∇⃗+ T − 1

4π
WSm

)
Ψ(t+1)
m =

1

4π

1

k(t)
FΦ

(t)
0 , (4.3)

Φ
(t+1)
0 = W0Ψ

(t+1) , (4.4)

k(t+1) = k(t)
||FΦ(t+1)

0 ||
||FΦ(t)

0 ||
. (4.5)

Upon convergence, k is the largest of the k-eigenvalues and Ψ is the associated eigenfunction.

As written here, each power iteration requires solving for Ψ(t+1), which itself requires iteration. A
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straightforward option for this “inner iteration” is source iteration (SI):

(
Ω⃗m · ∇⃗+ T

)
Ψ(i+1)
m =

1

4π
WSmΨ

i +
1

4π

1

k(t)
FΦ

(t)
0 , (4.6)

with Ψ
(t+1)
m set to Ψ

(i+1)
m upon convergence.

The PI convergence rate depends on the eigenvalue dominance ratio, which can be arbitrarily

close to one, in which case PI converges arbitrarily slowly. (See chapter VIII of [1].) The SI

convergence rate depends on the scattering ratio (fraction of interactions that are scatters), which

can also be close to one, in which case SI converges slowly. (See chapter II of [1].)

For many problems of practical interest, both the dominance ratio and scattering ratio are suf-

ficiently close to one that it is beneficial to replace or modify both the outer and inner iteration

methods to achieve faster convergence.[25, 39, 40, 29, 30] In this chapter we consider methods

that retain the basic outer / inner structure but employ “low-order” approximations of the transport

operator to accelerate convergence. Our purpose is to help fill a gap in the theoretical foundation

for a family of these methods that employ linear low-order operators.

Both linear and nonlinear low-order operators have been used effectively in k-eigenvalue prob-

lems. When nonlinear low-order operators are employed to accelerate convergence of outer it-

erations, the result is a series of low-order problems that are themselves k-eigenvalue problems,

each with a unique largest eigenvalue and associated eigenfunction. This dominant {eigenvalue,

eigenfunction} pair is the desired solution, and various techniques (including PI) can be employed

to find this solution.[1, 25, 39, 40, 29, 30, 41, 27, 10, 9, 26]

In contrast, when linear low-order operators are employed to accelerate convergence of outer

iterations, each resulting low-order problem is not itself an eigenvalue problem, for in addition to

the fission term with its 1/k multiplier there is also a fixed (“inhomogeneous”) source term.[33, 42,

43, 35, 32] For this problem there is not a unique largest k for which the problem has a solution. In

fact, the equation admits a solution for every value of k greater than a certain well-defined value. In

spite of this apparent theoretical issue, all applications of the linear methodology that we know of

have been successful, with iterative performance comparable to that seen with nonlinear methods.
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Each application that we know of has employed a power-like iteration scheme for the eigenvalue-

like low-order problem, and this power-like iteration method apparently converges to a meaningful

k and associated function.

In this chapter we provide theoretical foundations for methods that employ linear operators to

accelerate the convergence of outer iterations in k-eigenvalue problems. This includes analysis of

the convergence of a power-like iteration scheme applied to the eigenvalue-like low-order prob-

lems as well as the convergence of the outer iteration (in which each iteration requires solution

of a low-order eigenvalue-like problem) to the desired high-order eigenvalue and eigenfunction.

Our approach is to perform convergence analyses of model problems for which we have devised

analysis techniques. These problems are much simpler than real-world reactor problems, but they

serve as a starting point for understanding the behavior of the iterative methods of interest here.

The same kinds of simple model problems proved very helpful in the early days of understanding

and developing rapidly convergent iterative methods for fixed-source problems.[1, 44, 37, 38, 34]

We remark that there are many approaches to solving k-eigenvalue problems that do not em-

ploy low-order operators in the way described above. These include subspace methods (Arnoldi

iteration, Chebyshev iteration),[23, 24] casting the eigenvalue problem as a nonlinear PDE con-

straint problem and solving using a nonlinear solver such as a Newton-like method, and treating

part of the fission source implicitly to reduce the dominance ratio (Weilandt shift). We do not

address these methods here, but will mention that acceleration using low-order operators has been

shown to improve these methods as well. [32, 28]

In the next section we describe the linear low-order methodology, including its developmental

history as we understand it, and illustrate it using P1 as the low-order approximation for transport.

We compare and contrast this to the nonlinear low-order methodology, using QuasiDiffusion as the

example. In Sec. 4.3 we present convergence analyses for two model problems. The first model

problem employs transport and diffusion operators without spatial discretization and applies them

to a one-energy-group problem in an infinite homogeneous medium. The second model problem

employs spatial discretization for the transport and low-order operators and applies the method to
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a single-cell problem with vacuum boundaries. We close the section with a discussion of spatial-

discretization considerations. In Sec. 4.4 we present numerical results from reactor test problems

including those with strong heterogeneities, fine spatial features, large numbers of spatial cells,

and large numbers of energy unknowns.

4.2 Linear Synthetic Acceleration for Eigenfunction Correction and Updated Eigenvalue

4.2.1 Description and History

In what follows we use equations without spatial discretization for illustration. The family

of methods we study here employ nested iterations. If we let (t) be the index of the outermost

iteration and (i) be the index of the scattering iteration, then the methods we consider have the

following at the end of the transport portion of the t-th iteration:

(
Ω⃗m · ∇⃗+ T

)
Ψ(i+1)
m =

1

4π

(
Sm,conΦ

(i+1) + Sm,recΦ
(i+1/2) + Sm,lagΦ

(i) +
1

k(t)
FΦ

(t)
0

)
, (4.7)

Here Ψm is a vector containing the angular flux for all energy groups for direction m, Φ is a vector

containing all the angular moments needed to form the scattering source for all groups, Φ0 is a vec-

tor of scalar fluxes for all groups, T contains the total cross section for each group, 1
4π
Sm,conΦ

(i+1)

is the scattering source rate density for directionm that has been previously determined (e.g. down-

scattering from fast groups), 1
4π
Sm,recΦ

(i+1/2) is the scattering source rate density for direction m

that has been updated from the most recent transport step (iteration index i+1/2, e.g. within-group

scattering), 1
4π
Sm,lagΦ

(i) is the scattering source rate density for direction m that is evaluated at a

previous iterate (e.g. upscattering), and 1
4π

1
k(t)
FΦ

(t)
0 is the fission source rate density.

As far as we know, the first derivation, implementation, and testing of a method in the family

considered here appeared in a 1986 dissertation.[33] The author developed eigenproblem accel-

eration equations via a process that previous researchers had employed for scattering iterations:

1) define “converged” equations by setting all iteration indices to the same value; 2) subtract the

equations satisfied by the latest solution, obtaining an exact equation for an additive correction;
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3) replace the transport operator in this equation by a low-order operator. In the notation we have

introduced, the first step produces:

(
Ω⃗m · ∇⃗+ T

)
Ψ(t+1)
m =

1

4π

(
Sm,conΦ

(t+1) + Sm,recΦ
(t+1) + Sm,lagΦ

(t+1) +
FΦ

(t+1)
0

k(t+1)

)
, (4.8)

The second step subtracts Eq. (4.7) from this “converged” equation. We define the following

corrections:

y(t+1) = Ψ(t+1) −Ψ(i+1), (4.9)

f (t+1) = Φ(t+1) − Φ(i+1), (4.10)

f
(t+1)
0 = Φ

(t+1)
0 − Φ

(i+1)
0 . (4.11)

Then we have an equation for a correction:

(
Ω⃗m · ∇⃗+ T

)
y(t+1)
m =

1

4π

Smf (t+1) +
F
(
f
(t+1)
0 + Φ

(i+1)
0

)
k(t+1)

+R(i+1)
m

 , (4.12)

where:

R(i+1)
m ≡ Sm,rec

(
Φ(i+1) − Φ(i+1/2)

)
+ Sm,lag

(
Φ(i+1) − Φ(i)

)
− 1

k(t)
FΦ

(t)
0 . (4.13)

The third step replaces the transport operator with a low-order operator, which for Adams was

a diffusion operator.[33] We illustrate with a P1 operator:

∇⃗ · g⃗(t+1) + (T − S0) f
(t+1)
0 =

1

k(t+1)
F
(
Φ

(i+1)
0 + f

(t+1)
0

)
+R

(i+1)
0 , (4.14)
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1

3
∇⃗ · f (t+1)

0 + T g⃗(t+1) = S1g⃗
(t+1) + R⃗

(i+1)
1 , (4.15)

where R0 and R⃗1 are the 0th and 1st angular moments of Rm/4π.

Finally, an iterative method must be defined to solve for the new eigenvalue, k(t+1), and eigen-

function additive correction, f (t+1)
0 . An obvious choice, and the one made in Adams,[33] is a

process that resembles power iteration, with starting guesses f (0)
0 = 0 and k(n)|n=0 = k(t):

∇⃗ · g⃗ (n+1) + (T − S0) f
(n+1)
0 =

1

k(n)
F
(
Φ

(i+1)
0 + f

(n)
0

)
+R

(i+1)
0 , (4.16)

1

3
∇⃗ · f (n+1)

0 + T g⃗ (n+1) = S1g⃗
(n+1) + R⃗

(i+1)
1 , (4.17)

k(n+1) = k(n)

∥∥∥F (f (n+1)
0 + Φ

(i+1)
0

)∥∥∥∥∥∥F (f (n)
0 + Φ

(i+1)
0

)∥∥∥ . (4.18)

Upon convergence, this low-order eigenvalue-like problem yields the next eigenvalue and eigen-

function iterates:

k(t+1) ← k(n+1) and Φ
(t+1)
0 ← Φ

(i+1)
0 + f

(t+1)
0 . (4.19)

We summarize the solution procedure in algorithm 1.

While the aforementioned 1986 dissertation reported excellent results, the method remained

unpublicized because of theoretical concerns. Committee member E. W. Larsen observed that

given the presence of a fixed source in Eq. (4.14) (R0 plus part of the fission source), the low-order

problem is not an eigenvalue problem, and it appears to admit arbitrary solutions. For example,

one could set k(t+1) to some arbitrary large value and solve the resulting fixed-source subcritical

diffusion problem for the associated f . Setting a different value for k(t+1) would produce a dif-

ferent function for f . That is, infinitely many solutions (k and f ) that are unrelated to the

eigenproblem of interest are seen to satisfy Eqs. (4.14) and (4.15).

Numerical tests indicated that when the specific iteration process defined above was followed,
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Algorithm 1 Linear Acceleration of Power Iteration for k-Eigevalue Problems

1: t← 0
2: Initialize ϕ(0), k(0)

3: repeat
4: Scattering Iteration for Φ(i+1): Lmψ

(i+1)
m = Sm

4π
Φ(i+1) −R(i+1)

m

5: n← 0
6: Φ(n)← Φ(i+1)

7: k(n)← k(t)

8: repeat

9:

Solve low-order system of equations:

∇⃗ · g⃗(n+1) + (T − S0) f
(n+1)
0 =

1

k(n)
F
(
Φ

(i+1)
0 + f

(n)
0

)
+R

(i+1)
0

1

3
∇⃗ · f (n+1)

0 + (T − S1) g⃗
(n+1) = R⃗

(i+1)
1

10: Φ(n+1)← Φ(i+1) + f
(n+1)
0

11: k(n+1)← k(n)
∥FΦ(n+1)∥
∥FΦ(n)∥

12: until

∣∣∣∣1− k(n)

k(n+1)

∣∣∣∣ ≤ ϵk

(
1−

∣∣k(n+1) − k(n)
∣∣

|k(n) − k(n−1)|

)
,

∥ϕ(n+1) − ϕ(n)∥
∥ϕ(n+1)∥

< ϵϕ

(
1− ∥ϕ

(n+1) − ϕ(n)∥
∥ϕ(n) − ϕ(n−1)∥

)
,

else n← n+ 1

13: k(t+1)← k(n+1)

14: Φ(t+1)← Φ(n+1)

15: until

∣∣∣∣1− k(t)

k(t+1)

∣∣∣∣ ≤ ϵk

(
1−

∣∣k(t+1) − k(t)
∣∣

|k(t) − k(t−1)|

)
,

∥ϕ(t+1) − ϕ(t)∥
∥ϕ(t+1)∥

< ϵϕ

(
1− ∥ϕ

(t+1) − ϕ(t)∥
∥ϕ(t) − ϕ(t−1)∥

)
,

else t← t+ 1
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the method worked quite well. Nevertheless, the absence of a theoretical understanding left a

concern that the method might fail on some problems (for example, if the low-order power-like

iteration failed to converge or converged to some additive correction that degraded instead of im-

proved the latest transport solution). We remark that Adams and Larsen did publish a related linear

method that was shown to converge rapidly, but it was defined only for the one-group case.[42]

Later, Suslov independently created the same basic method (with a different low-order opera-

tor) and provided an argument for why one would expect the low-order problem to converge to a

useful solution.[43] We paraphrase Suslov’s argument as follows: We cast Eqs. (4.7), (4.16), and

(4.17) in operator notation, and for simplicity only include 0th moment scattering:

AΦ
(i+1)
0 = −R(i+1)

0 , (4.20)

Bf
(n+1)
0 =

1

k(n)
F
(
Φ

(i+1)
0 + f

(n)
0

)
+R

(i+1)
0 , (4.21)

Adding these two equations gives

AΦ
(i+1)
0 +Bf

(n+1)
0 =

1

k(n)
F
(
Φ

(i+1)
0 + f

(n)
0

)
. (4.22)

If we had B = A (low-order = high-order), then this method would be equivalent to solving

a standard eigenvalue equation for the next eigenfunction iterate. That is, even though Eq. (4.21)

does admit solutions that are not related to the eigenproblem, as Larsen had observed, solving

it using a power-like iteration is algebraically equivalent to solving a problem—Eqs. (4.22) and

(4.18)—that has no fixed source and is similar to (but if B ̸= A not quite that same as) a standard

eigenvalue problem. Thus, Suslov justified using a low-order transport operator forB and reported

excellent results.[43]

Masiello and Rossi have also reported excellent results from the application of a method

in the family of linear acceleration schemes that we study here for k-eigenvalue problems.[35]

They applied the “Boundary-Projection Acceleration” (BPA) low-order operator to multigroup k-

eigenvalue discrete-ordinates problems with anisotropic scattering.[34] They presented a Fourier
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analysis of the iterative convergence rate of their BPA method for fixed-source problems, providing

a sound theoretical basis for the application of BPA to such problems. They did not present the-

oretical analysis of convergence of the method for eigenvalue problems, but they provided results

that demonstrated excellent performance.

4.2.2 Theoretical Questions

Theoretical questions remain if B ̸= A. If an operator “C” existed such that

AΦ
(i+1)
0 +Bf

(n+1)
0 = C

(
Φ

(i+1)
0 + f

(n+1)
0

)
(4.23)

for all possible f (n+1)
0 , then the given iteration method would be algebraically equivalent to power

iteration on the operator C−1F . This would find the largest eigenvalue and the associated eigen-

function, and the only theoretical question would be how rapidly this well-posed low-order prob-

lem would accelerate the overall iteration.

We now show that given theA andB operators studied here, there does exist an operatorC(n+1)

such that AΦ(i+1)
0 +Bf

(n+1)
0 = C(n+1)(Φ

(i+1)
0 +f

(n+1)
0 ). However, this operator depends on f (n+1)

0

and thus changes from iteration to iteration. If we take the 0th and 1st angular moments of Eq. (4.7)

we see that the following equations are satisfied at the end of the transport step:

∇⃗ · J⃗ (i+1) + TΦ
(i+1)
0 = S0Φ

(i+1)
0 −R(i+1)

0 , (4.24)

∇⃗ · ⃗⃗P (i+1) + T J⃗ (i+1) = S1J⃗
(i+1) − R⃗(i+1)

1 , (4.25)

where J⃗ ≡
∑
m

wmΩ⃗mΨm and ⃗⃗
P ≡

∑
m

wmΩ⃗mΩ⃗mΨm , (4.26)

and subscripts 0 and 1 refer to 0th and 1st angular moments. We define an Eddington tensor

using the latest transport information: ⃗⃗E(i+1) ≡ ⃗⃗
P (i+1)/Φ

(i+1)
0 , then add Eqs. (4.16) and (4.17) to
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Eqs. (4.24) and (4.25) to obtain:

∇⃗ ·
(
J⃗ (i+1) + g⃗ (n+1)

)
+ (T − S0)

(
Φ

(i+1)
0 + f

(n+1)
0

)
=

1

k(n)
F
(
Φ

(i+1)
0 + f

(n)
0

)
,

(4.27)

∇⃗ ·
(
⃗⃗
E(i+1)Φ

(i+1)
0 +

1

3
⃗⃗
If

(n+1)
0

)
+ (T − S1)

(
J⃗ (i+1) + g⃗(n+1)

)
= 0 . (4.28)

Here ⃗⃗I is the identity tensor. We define a new tensor, ⃗⃗
M (n+1), that is a weighted average of

⃗⃗
I/3 and the Eddington tensor from the the latest transport step using the diffusion correction and

transport scalar flux as weights:

⃗⃗
M (n+1) ≡

(
⃗⃗
E(i+1)Φ

(i+1)
0 + 1

3

⃗⃗
If

(n+1)
0

)
Φ

(i+1)
0 + f

(n+1)
0

. (4.29)

We also define the latest Φ0 and J⃗ quantities:

Φ
(n+1)
0 ≡ Φ

(i+1)
0 + f

(n+1)
0 and J⃗ (n+1) ≡ J⃗ (i+1) + g⃗(n+1) . (4.30)

Then we see that our low-order k iteration scheme satisfies the following equations:

∇⃗ · J⃗ (n+1) + (T − S0) Φ
(n+1)
0 =

1

k(n)
FΦ

(n)
0 , (4.31)

∇⃗ ·
(
⃗⃗
M (n+1)Φ

(n+1)
0

)
+ (T − S1) J⃗

(n+1) = 0 , (4.32)

k(n+1) = k(n)

∥∥∥FΦ(n+1)
0

∥∥∥∥∥∥FΦ(n)
0

∥∥∥ . (4.33)

This method looks like power iteration, in particular the power iteration for the inner iteration

of a Quasi-Diffusion method, except that the tensor ⃗⃗M (n+1) changes every iteration. A few remarks

are in order.

1. While this is not a true eigenvalue problem, it is similar to problems and solution methods
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that arise in multi-physics simulations, in which neutronics operators change as temperatures

and densities change during the overall multi-physics iterative solution.

2. The change in ⃗⃗
M from iteration to iteration is small when the correction, f0, is small relative

to the solution, Φ0, as is the case when the overall iteration is almost converged. In this limit

the power-like iteration becomes algebraically equivalent to standard power iteration, which

will converge.

3. The change in ⃗⃗
M from iteration to iteration may not be small during the first overall iteration

or two if the correction, f0, is not small relative to Φ
(i+1)
0 . We do not know of a proof that

the iteration given by Eqs. (4.31)-(4.33) will converge in such a case.

4. In the limit as f0 → 0, ⃗⃗M (n+1) → ⃗⃗
Ei+1. In this limit, this method produces precisely the QD

method, which does not change as the n iteration proceeds and has been shown to be rapidly

convergent.

5. The arguments presented here depend on a power-like iteration method being used for the

low-order problem. It is not clear that these arguments would apply if a different solution

technique were used to solve Eqs. (4.14-4.15). Given our previous observation that infinitely

many solutions exist to these equations, it seems all but certain that different iterative tech-

niques would find different solutions.

In the next section we analyze the convergence behavior of the eigenvalues and eigenvectors of

the two-step iteration process for simple model problems.

4.3 Convergence Analysis

4.3.1 Fourier Analysis of Infinite Homogeneous Model Problem

We analyze a particular setting of the linear low-order method where we perform one transport

sweep per low-order diffusion problem solution. In the literature and our own experience, this

“one-sweep” method has shown the most reduction to the total solution time. We apply this method

to an infinite, homogeneous medium with isotropic scattering to determine the convergence rate
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of both the diffusion eigenvalue and the transport eigenvalue problems. Because we only perform

one-sweep per outer iteration, and because there is only within group scattering in the one-group

problem, we write our transport iteration equation with only one iteration index. We denote the lack

of group dependence with different symbols (Ψm ≡ ψm,Φm ≡ ϕm, T ≡ σt, Sm ≡ σs, F ≡ νσf ),

and change of iteration index ((i+1) ≡ (i+1/2), (t) ≡ (i)). The one-group, one-sweep transport

equation is then given by the following:

(
Ω⃗m · ∇⃗+ σt

)
ψ(i+1/2)
m =

1

4π

(
σs +

νσf
k(i)

)
ϕ
(i)
0 . (4.34)

We also derive the one-group diffusion problem that follows from Eq. (4.16-4.17), where we

have solved the 1st moment equation analytically and substituted the resulting Ficks law equation

into g⃗(n+1):

(
− 1

3σt
∇⃗2 + σa

)
f
(i+1/2,n+1)
0 =

νσf
k(i+1/2,n)

(
ϕ̃
(i+1/2,n)
0

)
+R

(i+1/2)
0 , (4.35)

where the low-order corrected unknown, ϕ̃(i+1/2,n)
0 , is defined as:

ϕ̃
(i+1/2,n)
0 =

(
ϕ
(i+1/2)
0 + f

(i+1/2,n)
0

)
. (4.36)

and again, the residual source is:

R
(i+1/2)
0 = −νσf

k(i)
ϕ
(i)
0 + σs

(
ϕ
(i+1/2)
0 − ϕ(i)

0

)
. (4.37)

Similar to Eq. (4.22), we add the 0th moment of the one group transport equation in Eq. (4.34):

∇⃗ · J⃗ (i+1/2) + σaϕ
(i+1/2)
0 = −R(i+1/2)

0 . (4.38)

to the diffusion equation in Eq. (4.35):
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∇⃗·J⃗ (i+1/2)+

(
− 1

3σt
∇⃗2

)
f
(i+1/2,n+1)
0 +σaϕ

(i+1/2)
0 +σaf

(i+1/2,n+1)
0 =

νσf
k(i+1/2,n)

ϕ̃
(i+1/2,n)
0 . (4.39)

We add
(
− 1

3σt
∇⃗2
)
ϕ
(i+1/2)
0 to both sides and use the definition for ϕ̃i+1/2,n+1 to obtain an equivalent

equation that is a power-like iteration for a diffusion operator:

(
− 1

3σt
∇⃗2 + σa

)
ϕ̃
(i+1/2,n+1)
0 =

νσf
k(i+1/2,n)

ϕ̃
(i+1/2,n)
0 +Q

(i+1/2)
L , (4.40)

where:

Q
(i+1/2)
L =

(
− 1

3σt
∇⃗2ϕ

(i+1/2)
0 − ∇⃗ · J⃗ (i+1/2)

)
. (4.41)

Now that we have obtained equations in a form that will be more easy to manipulate, we express

the transport unknowns as integrals of infinite Fourier modes:

ψ(i+1/2)
m =

∫∫∫ ∞

0

d3λψm,†

(
λ⃗
)
ωiHe

iσtλ⃗·r⃗ , (4.42)

ϕ
(i)
0 =

∫∫∫ ∞

0

d3λϕ0,†

(
λ⃗
)
ωiHe

iσtλ⃗·r⃗ , (4.43)

and the low-order correction and corrected unknown as integrals of infinite Fourier modes:

f (i+1/2,n) =

∫∫∫ ∞

0

d3λf†

(
λ⃗
)
ωnLe

iσtλ⃗·r⃗ , (4.44)

ϕ̃
(i+1/2,n)
0 =

∫∫∫ ∞

0

d3λϕ̃0,†

(
λ⃗
)
ωnLe

iσtλ⃗·r⃗ . (4.45)

Here ωH and ωL are constants that describe the error reduction per iteration of the high-order sys-

tem and low-order system respectively. The linear independence of each mode implies a separate

equation for each λ⃗. That is, each mode evolves independently.
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After substituting the Fourier integrals, the high-order equation implies:

(
iΩ⃗m · λ⃗+ 1

)
σtψ

(i+1/2)
m,†

(
λ⃗
)
=

1

4π

(
σs +

νσf
k(i)

)
ϕ
(i)
0,†

(
λ⃗
)
, (4.46)

and the low-order equation implies:

(
1

3

∣∣∣λ⃗∣∣∣2 σt + σa

)
ϕ̃
(i+1/2,n+1)
†,0

(
λ⃗
)
=

νσf
k(i+1/2,n)

ϕ̃
(i+1/2,n)
†,0

(
λ⃗
)
+Q

(i+1/2)
L,†

(
λ⃗
)
. (4.47)

We invert the high-order operator for each Fourier mode to determine ψ(i+1/2)
m,†

(
λ⃗
)

:

ψ
(i+1/2)
m,†

(
λ⃗
)
=

1

4π

1

1 + iΩ⃗m · λ⃗
1

σt

(
σs +

νσf
k(i)

)
ϕ
(i)
0,†

(
λ⃗
)
,

=
1

4π

1− iΩ⃗m · λ⃗

1 +
(
Ω⃗m · λ⃗

)2 1

σt

(
σs +

νσf
k(i)

)
ϕ
(i)
0,†

(
λ⃗
)
,

(4.48)

and then determine modes of the next high-order iterate (assuming a symmetric quadrature set,

which means the quadrature sum of the odd function in Ω⃗m is zero):

ϕ
(i+1/2)
0,†

(
λ⃗
)
=

1

4π

∑
m

wm
1

1 +
(
Ω⃗m · λ⃗

)2 1

σt

(
σs +

νσf
k(i)

)
ϕ
(i)
0,†

(
λ⃗
)
. (4.49)

Next we determine the source term for the power-like iteration that depends on the modes of

ϕ
(i+1/2)
0,†

(
λ⃗
)

:

Q
(i+1/2)
L,†

(
λ⃗
)
=

1

3

∣∣∣λ⃗∣∣∣2 σt
1− 3

∑
m

1
4π
wm

(λ⃗·Ω⃗m)
2

1+(λ⃗·Ω⃗m)
2∑

m
1
4π
wm

|λ⃗|2
1+(λ⃗·Ω⃗m)

2

ϕ
(i+1/2)
0,†

(
λ⃗
)
. (4.50)

or defining µm as the cosine between λ⃗ and Ω⃗m:
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Q
(i+1/2)
L,†

(
λ⃗
)
=

1

3

∣∣∣λ⃗∣∣∣2 σt
1− 3

∑
m

1
4π
wm
|λ⃗|2µ2m

1+|λ⃗|2µ2m∑
m

1
4π
wm

|λ⃗|2
1+|λ⃗|2µ2m

ϕ
(i+1/2)
0,†

(
λ⃗
)
. (4.51)

Consider the first step of the power-like iteration for the flat mode, where all spatial gradients

are 0:

ϕ̃
(i+1/2,1)
0 =

νσf
σa

1

k(i+1/2,0)
ϕ̃
(i+1/2,0)
0 . (4.52)

The calculation of the next eigenvalue involves integrals that are non-zero only for the flat

mode:

k(i+1/2,1) = k(i+1/2,0) ϕ̃
(i+1/2,1)
0

ϕ̃
(i+1/2,0)
0

. (4.53)

On the next iteration, the diffusion equation produces:

ϕ̃
(i+1/2,2)
0 =

νσf
σa

1

k(i+1/2,1)

(
ϕ̃
(i+1/2,1)
0

)
. (4.54)

which is equal to ϕ̃(i+1/2,1)
0 . Thus the power-like iteration must converge to the eigenvalue after

one step, since ϕ̃(i+1/2,2)
0 = ϕ̃

(i+1/2,1)
0 and therefore k(i+1/2,2) = k(i+1/2,1). We substitute initial

conditions and ϕ̃(i+1/2,1)
0 into Eq. (4.53) to find the converged eigenvalue:

k(i+1/2,1) = k(i+1/2,0)

νσf
σa

1
k(i+1/2,0) ϕ̃

(i+1/2,0)
0

ϕ̃
(i+1/2,0)
0

,

=
νσf
σa

.

(4.55)

Thus the power-like iteration produces the correct infinite medium eigenvalue in one iteration.

For this infinite homogeneous problem where there is no net leakage, Suslov’s argument above

shows that the power-like iteration is equivalent to power iteration and immediate convergence

should be expected.

Next we consider non-flat modes for subsequent iterations, where the converged eigenvalue has
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already been obtained. We define a converged diffusion equation:

(
− 1

3σt
∇⃗2 + σa

)
ϕ̃
(i+1/2,C)
0 =

νσf
kC

ϕ̃
(i+1/2,C)
0 +Q

(i+1/2)
L , (4.56)

and an iteration error:

ϕ̃
(i+1/2,n)
ϵ,0 = ϕ̃

(i+1/2,C)
0 − ϕ̃(i+1/2,n)

0 =������:0
f (i+1/2,C) − f (i+1/2,n) . (4.57)

We subtract the diffusion iteration equation from the converged equation to obtain an equation

for the error in the diffusion iteration, which for converged k is equivalent to a diffusion equation

for the correction in a purely scattering medium with scattering cross section σa:

(
− 1

3σt
∇⃗2 + σa

)
f (i+1/2,n+1) =

νσf
kC

f (i+1/2,n) = σaf
(i+1/2,n) . (4.58)

Using the Fourier integral representation for f (i+1/2,n) in Eq. (4.44), the equation above implies:

(
1

3

σt
σa

∣∣∣λ⃗∣∣∣2 + 1

)
σaωL = σa , (4.59)

which we solve for ωL and obtain an expression that is less than one for all values of λ⃗:

ωL =
1

1
3
σt
σa

∣∣∣λ⃗∣∣∣2 + 1
. (4.60)

An error reduction per iteration less than one shows that all non-flat modes decrease in magni-

tude per iteration. Given the iteration converges, we now determine the coefficient of each eigen-

mode of the iteration.

From the the converged diffusion equation in Eq. (4.56):

(
− 1

3σt
∇⃗2

)
ϕ̃
(i+1/2,C)
0 = Q

(i+1/2)
L , (4.61)

we may solve for the Fourier coefficient for the low-order problem solution. From the eigenvector
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update equation, and substituting expressions for Q(i+1/2)
L,†

(
λ⃗
)

and ϕ(i+1/2)
(
λ⃗
)

that we found

above:

ϕ̃
(i+1)
0,†

(
λ⃗
)
=

1− 3

∑
m

1
4π
wm
|λ⃗|2µ2m

1+|λ⃗|2µ2m∑
m

1
4π
wm

|λ⃗|2
1+|λ⃗|2µ2m


×

 1

4π

∑
m

wm
1

1 +
∣∣∣λ⃗∣∣∣2 µ2

m


���������:11

σt

(
σs +

νσf
k(i)

)
ϕ
(i)
0,†

(
λ⃗
) . (4.62)

The cross section terms cancel from the prior finding of a converged eigenvalue. The resulting

equation gives the reduction per combined high- and low-operations for each non-zero mode of

the eigenvector:

ϕ̃
(i+1)
0,†

(
λ⃗
)
=

1− 3

∑
m

1
4π
wm
|λ⃗|2µ2m

1+|λ⃗|2µ2m∑
m

1
4π
wm

|λ⃗|2
1+|λ⃗|2µ2m


 1

4π

∑
m

wm
1

1 +
∣∣∣λ⃗∣∣∣2 µ2

m

ϕ
(i)
0,†

(
λ⃗
)
. (4.63)

The maximum value of this expression is .2247 times a constant, which is the same value ob-

tained from DSA for fixed-source problems.[1] Thus, the power-like iteration provides an error

reduction similar to DSA for fixed-source problems per combined high- and low-operations. An-

other way to demonstrate the similarity to DSA for fixed-source problems is by substituting the

converged eigenvalue νσf/k(C) = σa and the converged low-order equation:

(
Ω⃗m · ∇⃗+ σt

)
ψ(i+1/2)
m =

1

4π
σtϕ

(i)
0 . (4.64)

(
− 1

3σt
∇⃗2

)
f
(i+1/2,C)
0 = σt

(
ϕ
(i+1/2)
0 − ϕ(i)

0

)
, (4.65)

ϕ
(i+1)
0 = ϕ̃

(i+1/2,n)
0 =

(
ϕ
(i+1/2)
0 + f

(i+1/2,C)
0

)
. (4.66)
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This system of equations is equivalent to a DSA method for a purely scattering medium.

The preceding analysis for infinite homogeneous problems shows the power-like iteration algo-

rithm produces the converged transport eigenvalue in one iteration, all modes are reduced similar

to DSA for fixed-source problems, and the overall iteration becomes equivalent to DSA for fixed-

source problems in a purely scattering medium once the eigenvalue is obtained.

4.3.2 Algebraic Analysis of One-Cell Problem

Consider a discretized one-cell homogeneous problem surrounded by vacuum, where we have a

high-order operator accelerated with the power-like iteration by a low-order operator. We assume

problem symmetry, a symmetric initial guess, and a spatial discretization such that a symmetric

solution is characterized by a single scalar amplitude (for example, the scalar flux at each vertex).

We can then write the net leakage rate as an escape cross section times a scalar-flux amplitude,

denoted with H for high-order and L for low-order. The result from one high-order operation

satisfies:

(
σHesc + σt

)
ϕ(i+1/2) =

(
σs +

νσf
k(i)

)
ϕ(i) . (4.67)

The low-order problem that follows, following steps that led to Eq. (4.40):

(
σLesc + σa

)
ϕ̃(i+1/2,n+1) =

νσf
k(i+1/2,n)

ϕ̃(i+1/2,n) +
(
σLesc − σHesc

)
ϕ(i+1/2) , (4.68)

with initial iterates:

ϕ̃(i+1/2,1) = ϕ(i+1/2) , (4.69)

k(i+1/2,n) = k(i) . (4.70)

This simplified system allows us to solve for ϕ̃(i+1/2,n+1) directly:
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ϕ̃(i+1/2,n+1) =

νσf
k(i+1/2,n) ϕ̃

(i+1/2,n) +
(
σLesc − σHesc

)
ϕ(i+1/2)

(σLesc + σa)
. (4.71)

We show that the diffusion problem converges on the first diffusion power iteration. Using the

initial conditions above, the diffusion eigenvector and eigenvalue after the first iteration:

ϕ̃(i+1/2,1) =

νσf
k(i)

+
(
σLesc − σHesc

)
(σLesc + σa)

ϕ(i+1/2) , (4.72)

k(i+1/2,1) = k(i)
νσf
k(i)

+
(
σLesc − σHesc

)
(σLesc + σa)

. (4.73)

On the second iteration we determine the diffusion eigenvector:

ϕ̃(i+1/2,2) =

νσf
k(i+1/2,1) ϕ̃

(i+1/2,1) +
(
σLesc − σHesc

)
ϕ(i+1/2)

(σLesc + σa)
. (4.74)

From the update equation definition, ϕ̃
(i+1/2,1)

k(i+1/2,1) = ϕ(i+1/2)

k(i)
, and thus the second iteration eigenvector

is the equal to the first:

ϕ̃(i+1/2,2) =

νσf
k(i)
ϕ(i+1/2) +

(
σLesc − σHesc

)
ϕ(i+1/2)

(σLesc + σa)
= ϕ̃(i+1/2,1) . (4.75)

Because the eigenvector does not change, the second eigenvalue is also equal to the first, and that

eigenvalue is the converged low-order eigenvalue:

k(i+1/2,2) = k(i+1/2,1) ϕ̃
(i+1/2,2)

ϕ̃(i+1/2,1)
= k(i+1/2,1) = k(i+1/2,C) = k(i)

νσf
k(i)

+
(
σLesc − σHesc

)
(σLesc + σa)

. (4.76)

We obtain the eigenvalue error reduction per combined high- and low-operations as follows.

From the equation to update the high-order eigenvalue to the converged low-order eigenvalue:

k(i+1) = k(i+1/2,C) , (4.77)
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we subtract the converged transport eigenvalue, k(C) =
νσf

σH
esc+σa

, from both sides:

k(i+1) − k(C) = k(i)
νσf
k(i)

+
(
σLesc − σHesc

)
(σLesc + σa)

− νσf
σHesc + σa

,

=
νσf + k(i)

(
σLesc − σHesc

)
− νσf

σH
esc+σa

(
σLesc + σa

)
(σLesc + σa)

.

(4.78)

We add and subtract σHesc and regroup terms:

k(i+1) − k(C) =
νσf + k(i)

(
σLesc − σHesc

)
− νσf

σH
esc+σa

(
σLesc + σa + σHesc − σHesc

)
(σLesc + σa)

,

=
νσf + k(i)

(
σLesc − σHesc

)
− νσf

σH
esc+σa

(
σLesc − σHesc

)
− νσf

σH
esc+σa

(
σHesc + σa

)
(σLesc + σa)

,

=
σLesc − σHesc
σLesc + σa

(
k(i) − k(C)

)
.

(4.79)

Thus the eigenvalue iteration converges if the following term is less than one in magnitude:

∣∣∣∣σLesc − σHescσLesc + σa

∣∣∣∣ < 1 . (4.80)

Since σLesc + σa is strictly positive, the convergence condition can be written as:

∣∣σLesc − σHesc∣∣ < σLesc + σa . (4.81)

This analysis shows that for this simplified problem the iteration will diverge if the high-order

leakage and low-order leakage disagree to a large degree–more specifically, the requirement for

convergence is that the two leakage probabilities must differ by less than the sum of the low-order

absorption and leakage probabilities. (Simple algebra shows that this is equivalent to the low- and

high-order k eigenvalues differing by less than a factor of two.) It is not surprising that convergence

requires the low-order operator to be sufficiently “consistent” with the high-order operator. This

kind of “consistency” requirement also exists for fixed-source problems.[1] In the next section we

compare the consistency requirement derived here to the requirement for a similar fixed-source
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problem.

4.3.3 Algebraic Analysis of One-Cell Fixed-Source Problem

An interesting question is how the consistency requirements compare for fixed-source and

k-eigenvalue versions of the one-cell problem studied in the previous section. We demonstrate

a derivation of the consistency requirement from a one-cell fixed-source problem with a DSA

scheme.

The converged fixed-source problem satisfies the following equation:

(
σHesc + σt

)
ϕ(C) = σsϕ

(C) +QH , (4.82)

and the DSA iteration scheme is given by the following equations:

(
σHesc + σt

)
ϕ(i+1/2) = σsϕ

(i) +QH , (4.83)

(
σLesc + σa

)
f (i+1/2) = σs

(
ϕ(i+1/2) − ϕ(i)

)
, (4.84)

ϕ(i+1) = ϕ(i+1/2) + f (i+1/2) . (4.85)

We obtain an expression for the high-order error—
(
ϕ(C) − ϕ(i+1/2)

)
—by subtracting the high-

order equation in Eq. (4.83) from the converged equation in Eq. (4.82):

(
σHesc + σt

) (
ϕ(C) − ϕ(i+1/2)

)
= σs

(
ϕ(C) − ϕ(i)

)
. (4.86)

Next we obtain an equation for the error after the low-order operation and subsequent update.

From the high-order equation in Eq. (4.83), we perform algebra to obtain the following form:

(
σLesc + σa

)
ϕ(i+1/2) =

(
σLesc − σHesc

)
ϕ(i+1/2) + σs

(
ϕ(i) − ϕ(i+1/2)

)
+QH , (4.87)
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and we add this to the low-order equation in Eq. (4.84):

(
σLesc + σa

)
ϕ(i+1) =

(
σLesc − σHesc

)
ϕ(i+1/2) +QH . (4.88)

Similarly, from the converged equation in Eq. (4.82) we obtain:

(
σLesc + σa

)
ϕ(C) =

(
σLesc − σHesc

)
ϕ(C) +QH . (4.89)

We subtract the previous two equations–Eq. (4.88) and (4.89)–to obtain an equation for the itera-

tion error of the next high-order iterate:

(
σLesc + σa

) (
ϕ(C) − ϕ(i+1)

)
=
(
σLesc − σHesc

) (
ϕ(C) − ϕ(i+1/2)

)
. (4.90)

We combine Eq. (4.90) and (4.86) and obtain an equation for the error after the combined high-

and low-operations:

(
ϕ(C) − ϕ(i+1)

)
=

σs
(σHesc + σt)

(
σLesc − σHesc

)
(σLesc + σa)

(
ϕ(C) − ϕ(i)

)
. (4.91)

The previous equation implies the iteration converges if:

∣∣∣∣∣ σs
(σHesc + σt)

(
σLesc − σHesc

)
(σLesc + σa)

∣∣∣∣∣ < 1 , (4.92)

and after multiplying by terms that are strictly positive, we obtain a convergence criteria similar to

that of the k-eigenvalue criteria in the previous section:

∣∣σLesc − σHesc∣∣ < 1

σs

(
σLesc + σa

) (
σHesc + σt

)
. (4.93)

Previously we found that the one-cell k problem converges if the magnitude of the difference

in high- and low-order escape cross sections is less than the sum of the absorption and low-order

escape cross sections. Here we find a less stringent requirement for convergence of the one-cell
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fixed-source problem, because the magnitude of the difference in escape cross sections is permitted

to be larger by a factor of (σHesc + σt)/σs, which is greater than 1. We remark that in the problems

that are most difficult to converge, σt ≈ σs ≫ σHesc, so this factor approaches unity and the “consis-

tency” conditions for convergence of the fixed-source and k problems become approximately the

same.

4.4 Results

In the numerical results that follow, we employ the PieceWise Linear Discontinuous (PWLD)

finite element method for our transport spatial discretization.[45, 46, 47] We use the Semi-Consistent

“CDFEM” diffusion operator that we previously developed, which solves a continuous finite ele-

ment (CFEM) discretization of the diffusion equation and then employs a cell-by-cell calculation

to create a discontinuous (DFEM) additive correction.[19] The use of a CFEM greatly reduces the

number of degrees of freedom of the global diffusion matrix, and ensures this matrix is symmetric

positive definite, unlike the matrix resulting from fully consistent DSA for DFEMs.

The first test problem is the well-known 2D C5G7 reactor benchmark problem.[48] We model

one quarter of the lattice, with reflecting boundary conditions on left and bottom sides, and vacuum

boundary conditions on right and top sides. We use a mesh refinement that was shown to produce

very small spatial discretization error, shown in Fig. (4.1).[49] Multi-group cross sections are de-

fined in the problem specification. We use discrete ordinates with a Gauss-Legendre-Chebyshev

product quadrature, with 8 polar and 16 azimuthal directions per quadrant, which has been shown

to be sufficient to resolve the angular discretization error to within a few pcm.[49] These problems

were run on the Quartz supercomputer at LLNL (Lawrence Livermore National Lab), on 6 nodes

and 196 concurrent processes. The problem was split by into 14 processes in x by 14 processes

in y. We note that this is not the optimal layout for parallelism of transport sweeps, but is a better

distribution for parallelism of the diffusion solution.

Table 4.1 presents results for four different iterative strategies—two strategies for scattering

iterations within the transport steps, with and without the use a diffusion problem for accelera-

tion. One scattering strategy is to fully converge the scattering source during each transport step
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Figure 4.1: Mesh and materials for one quarter geometry of the C5G7 reactor benchmark (left) and
mesh detail for a single pin cell (right).

(labeled Converged and meaning Scon = S and Srec = Slag = 0 in Eq. (4.7)); the other is to

perform a single transport sweep independently across all groups (labeled 1-Sweep and meaning

Slag = S and Scon = Srec = 0 in Eq. (4.7)). (There are possible levels of scattering convergence

between these two limits. We have not explored these in detail.) Problems that use the diffusion

eigenvalue-like acceleration are labeled k-Accel. We compare the effect of performing the cell-

by-cell DFEM update step at various points in the iteration: end of iteration (labeled End); after

every diffusion operation (labeled CDFEM, since this is the original CDFEM method); and per-

forming no consistency step (labeled CFEM, as this is the same as using a CFEM basis for the

diffusion problem). For this problem, we used Richardson iteration when we fully converged the

within-group scattering transport problems.

As expected, we have found that the optimal method is to perform only one transport sweep per

power iteration. The number of transport sweeps required to converge the eigenvalue to 1.0E − 7

and the eigenvector to 1.0E − 5 without acceleration is around 2000. For this problem, a CFEM
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diffusion additive correction is remarkably effective, reducing the overall iteration count to 17 even

when only one transport sweep is executed per iteration. Employing the one-cell discontinuous-

correction updates, either after every CFEM diffusion solution or only after convergence of the

CFEM diffusion power iterations, does improve the correction, reducing the iteration count even

further, to 15. We note that discontinuous update step is an inexpensive operation, requiring only

the independent solutions of single-cell linear systems, with number of unknowns equaling the

number of vertices in each cell.

Table 4.1: Results from 2D C5G7 problem

Transport Scattering Converged Converged 1-Sweep 1-Sweep 1-Sweep 1-Sweep
Accel. Method N/A k-Accel. N/A k-Accel. k-Accel. k-Accel.
Disc. Update N/A End N/A End CDFEM CFEM

Transport Steps 49 6 2038 15 15 17
Sweep Time [s] 8515 1187 2677 41.7 41.3 47.2

Diffusion Time [s] N/A 90.7 N/A 15.2 15.1 15.8

Next we study a problem that is a modification of the C5G7 design. In this problem the spatial

mesh resolves fuel, gap, guide tubes, instrumentation tubes, and cladding. We employ the Finite-

Element-with-Discontiguous-Support (FEDS) energy discretization with 191 energy unknowns

(including 59 in the resolved-resonance range).[50] We used only UO2 assemblies to simplify

cross-section generation. The mesh is illustrated in Fig. 4.2. The FEDS energy discretization pro-

vides increased accuracy over standard multigroup, but adds upscattering in the resolved-resonance

range even when scattering is physically only downscattering. This problem is meant to test the

applicability of the linear DSA for eigenvalues with a more complicated scattering operator, and

also to test the ability of the CDFEM DSA to handle small transparent regions such as the gap

between fuel and cladding.

We set the eigenvalue residual tolerance to 1.0E − 5 and the eigenvector residual tolerance of

the L2 norm to 1.0E−5. We use adaptive error estimates to guard against false convergence, which
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Figure 4.2: Mesh and materials for one quarter geometry of the C5G191 reactor (left) and mesh
detail for a single pin cell (right).

requires smaller relative difference between successive iterates if the observed error-reduction fac-

tor is close to one.[1]

The previous problem made it clear that a single transport sweep per overall iteration is the

most efficient strategy, so here we test that strategy with and without DSA. Results are summarized

in Table 4.2. We observe that the within group scattering problem is computationally expensive

to converge. Iterating on only the scattering operator does not efficiently reduce the eigenvalue

residual.

Without acceleration, the 1-Sweep method has an error-reduction factor near unity. This is

remedied by using the diffusion eigenvalue-like problem to accelerate the solution, not only speed-

ing convergence but removing the issue of false convergence.
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Table 4.2: Results from 2D C5G191 problem

Transport Scattering 1-Sweep 1-Sweep
Accel. Method N/A k-Accel.

Error-Reduction Factor 0.991 0.743
Transport Steps 852 23

Total Time [hours] 12.2 1.14

The final problem we test is a C5G7 problem in three dimensions, which we include to demon-

strate that the linear DSA methodology with our chosen CDFEM low-order operator also works

well in 3D. This is the C5G7 problem with the same mesh in the xy plane, extruded in the third

dimension according to the benchmark designation with axial meshing sufficient to accurately

resolve the solution. As before, we set the eigenvalue residual tolerance to 1.0E − 5 and the

eigenvector residual tolerance of the L2 norm to 1.0E − 5. Results are shown in Table 4.3. The

performance of the iterative method is similar to that in 2D, reducing the required number of trans-

port sweeps for 1.0E − 5 convergence to only 14. The unaccelerated method was converging so

slowly that we terminated the run to avoid wasting compute cycles.

Table 4.3: Results from 3D C5G7 problem

Transport Scattering 1-Sweep 1-Sweep
Accel. Method N/A k-Accel.

Error-Reduction Factor 0.980 0.633
Transport Steps 128∗ 14

Total Time [hours] 24∗ 2.35
∗ Terminated without converging after 24 hours of run time

4.5 Summary

In this chapter we have studied the use of diffusion operators to accelerate the convergence

of eigenvalue iterations. Here we have explored a family of methods, developed by Adams in

1986 and independently by Suslov in 2003, that employs a low-order eigenvalue-like problem
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with a fixed source to obtain an updated eigenvalue estimate and an additive correction to the

eigenfunction. We have shown that the low-order linear diffusion problem becomes algebraically

equivalent to the QuasiDiffusion low-order problem as the solution approaches the converged solu-

tion. Through a Fourier analysis in an infinite homogeneous medium, we have shown the iteration

rapidly converges to the correct eigenvalue and eigenvector and not an arbitrary solution. We have

shown that for one-cell homogeneous problems the iteration procedure is convergent and converges

to the correct eigenvalue if the high-order and low-order operators satisfy a mild consistency re-

quirement, namely, that they produce eigenvalues that are within a factor of two of each other.

We have also shown the effectiveness of our Continuous / Discontinuous finite-element diffu-

sion operator for reactor problems. We have demonstrated that the method provides convergence

of k problems to 1E−5 with only≈ 15 transport sweeps for the well-known C5G7 benchmarks in

2D and 3D, and also for a similar problem with more spatial detail and with 191 energy unknowns.

We emphasize that if a transport code already uses a diffusion preconditioner to accelerate con-

vergence of scattering iterations, then using the low-order eigenvalue-like problem it is easy to

apply the same diffusion operator to eigenvalue acceleration using the equations described herein,

without the need to develop nonlinear functionals or discretize operators more complicated than

diffusion.
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5. LINEAR ACCELERATION OF THERMAL RADIATIVE TRANSFER ITERATION

5.1 Method Motivation

In this chapter, we discuss solution methods for time dependent thermal radiative transfer. For

photon frequencies at which photon absorption dominates photon scattering, and motion of the

material is ignored, the thermal radiation follows a Boltzmann transport equation:

1

c

∂

∂t
ψ
(
r⃗, Ω⃗, E, t

)
+ Ω⃗ · ∇⃗ψ

(
r⃗, Ω⃗, E, t

)
+ σ (r⃗, E, t, T (r⃗, t))ψ

(
r⃗, Ω⃗, E, t

)
=

1

4π
σ (r⃗, E, t, T (r⃗, t))B (T (r⃗, t) , E) + q

(
r⃗, Ω⃗, E, t

)
,

(5.1)

and an equation that describes the change in material energy, ignoring thermal conduction:

Cv (r⃗, t)
∂

∂t
T (r⃗, t) = ρ (r⃗, t)−

∞∫
0

dEσ (r⃗, E, t, T (r⃗, t))B (T (r⃗, t) , E) +Qext (r⃗, t) . (5.2)

The independent variables in these equations are the spatial position, r⃗, direction of particle motion,

Ω⃗, photon energy, E, and time, t. These equations couple the unknown quantities of radiation

intensity, ψ
(
r⃗, Ω⃗, E, t

)
, and material temperature, T (r⃗, t). The macroscopic material opacity

σ (r⃗, E, t, T (r⃗, t)) is calculated from the space- and time-dependent material density, ρM (r⃗, t),

and the microscopic opacity of the material, κ (r⃗, E, T (r⃗, t)) at position r⃗ and time t for photons

of energy E given a material temperature of T (r⃗, t):

σ (r⃗, E, t, T (r⃗, t)) = ρM (r⃗, t)κ (r⃗, E, T (r⃗, t)) . (5.3)

The Planckian emission spectrum, B (T (r⃗, t) , E), is a known function:

B (T (r⃗, t) , E) ≈ 2E3

h3c2
(
eE/(kT (r⃗,t)) − 1

)−1
. (5.4)

In the material energy equation, Cv (r⃗, t) is the material specific heat at constant volume, and
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ρ (r⃗, t) is the absorption rate density (ARD) of thermal radiation in the material, which is the

integral quantity of the radiation intensity that couples angular and energy dependence:

ρ (r⃗, t) =

∞∫
0

dEσ (r⃗, E, t, T (r⃗, t))

∫
4π

dΩψ
(
r⃗, Ω⃗, E, t

)
, (5.5)

For completeness we have included a fixed radiation source, q
(
r⃗, Ω⃗, E, t

)
, and an external

source of material heating, Qext (r⃗, t), but omit these interior sources from equations henceforward

as they do not introduce significant difficulty in the solution procedure.

We solve this system with Newton’s Method, resulting in a transport equation that contains

absorption/re-emission terms that are a pseudo-scattering problem for the ARD (details of the

pseudo-scattering problem are found in subsection 5.2.3). The pseudo-scattering problem is then

solved with an iterative method, which is itself sometimes called lambda iteration, at each step of

the Newton iteration.

Linear acceleration methods have been devised to effectively accelerate the convergence of the

iterative method used to solve the pseudo-scattering problem, such as Grey Transport Accelera-

tion (GTA),[17] and Linear Multifrequency-Grey Acceleration (LMFGA).[18] These methods are

devised to exactly capture the dominant energy spectrum of an infinite homogeneous medium prob-

lem while using only one energy group. However, these methods accelerate the pseudo-scattering

iteration and thus have no effect on the Newton iteration itself.

Gol’din devised a scheme that uses Newton’s Method again in an inner iteration with a low-

order Quasi-Diffusion (QD) operator to approximate the transport operator.[51, 52] The low-order

solution is then used to update the high-order using a nonlinear closure, and the outer Newton

iteration is resumed. While effective, these methods introduce an additional nonlinearity to the

low-order operator that is poorly behaved when the solution is near zero.

Paul Nowak has devised a linear modification to the Newton iteration that also introduces an

inner Newton iteration, but uses a local (infinite medium) low-order operator for each degree of

freedom. Brunner et al. have described this method as a local inversion of the material energy
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operator.[21] They also state that the local solve is sufficient in the thick limit, where the material

energy coupling (high absorption/re-emission fraction) dominates the equations.

The method we propose is an amalgamation of these methods. We make a linear modification

to the outer Newton iteration and introduce an inner Newton-like iteration with a global low-order

operator, which is a grey low-order operator similar to GTA and LMFGA. In future sections we

show the similarity of this method to the QD method described above, where our method obtains

a different Eddington tensor that changes at each iteration.

In the coming sections we discuss discretizations that are unique to this chapter’s derivation.

Then we discuss the application of Newton’s Method to this nonlinear system and how it is equiva-

lent to a Taylor series linearization of the Planckian emission term. We then derive a grey low-order

operator from a P1 approximation to the GTA equations. Finally, we discuss the method we have

devised that uses an inner Newton iteration with a low-order operator to obtain a linear correction

to the high-order solution, and compare this method to QD for thermal radiative transfer. In our

results, we demonstrate an analytic Fourier analysis and numerical results of Marshak wave and

crooked pipe (tophat) problems.

5.2 Thermal Radiative Transfer Discretizations and Nonlinear Iteration Scheme

5.2.1 Multigroup Discretization of Thermal Radiative Transfer Equations

The spatial discretization is covered in Chapter chapter 3, but will not be expressed here as this

chapter focuses on the iterative method used to solve the nonlinear coupled system. However, we

do include the angle and energy discretizations, as these discretizations influence and simplify the

upcoming iterative method derivation.

Several terms arise in these equations that are different enough from previous discretizations

to warrant a detailed description. The multigroup Planckian emission term can be evaluated as a

direct integral:

Eg−1∫
Eg

dEσ (r⃗, E, t, T (r⃗, t))B (T (r⃗, t) , E) = [σB]g (r⃗, t, T (r⃗, t)) . (5.6)
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However, we define an opacity that is a weighted integral of B (T (r⃗, t) , E), which also allows us

to separate the opacity and Planckian emission spectrum into separate group integrated quantities:

σg (r⃗, t, T (r⃗, t)) =

Eg−1∫
Eg

dEσ (r⃗, E, t, T (r⃗, t))B (T (r⃗, t) , E)

Eg−1∫
Eg

dEB (T (r⃗, t) , E)

, (5.7)

Bg (T (r⃗, t)) =

Eg−1∫
Eg

dEB (T (r⃗, t) , E) . (5.8)

The multigroup Planckian emission term is then expressed as:

Eg−1∫
Eg

dEσ (r⃗, E, t, T (r⃗, t))B (T (r⃗, t) , E) = σg (r⃗, t, T (r⃗, t))Bg (r⃗, T (r⃗, t)) . (5.9)

It is a common practice to weight the opacity multiplying the radiation intensity with a Planckian

spectrum as well, since the true radiation intensity spectrum is unknown. Thus, we make the

approximation that the radiation intensity spectrum opacitiy is equal to the Planckian spectrum

opacity:

σψ,g (r⃗, t, T (r⃗, t)) =

Eg−1∫
Eg

dEσ (r⃗, E, t, T (r⃗, t))ψ
(
r⃗, Ω⃗, E, t

)
Eg−1∫
Eg

dEψ
(
r⃗, Ω⃗, E, t

) ≈ σg (r⃗, t, T (r⃗, t)) . (5.10)

Using these definitions, the multigroup discrete ordinates equations for radiation intensity and

material energy are:

1

c

∂

∂t
ψm,g (r⃗, t) + Ω⃗ · ∇⃗ψm,g (r⃗, t) + σg (r⃗, t, T (r⃗, t))ψm,g (r⃗, t)

=
1

4π
σg (r⃗, t, T (r⃗, t))Bg (r⃗, T (r⃗, t)) ,

(5.11)
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Cv (r⃗, t)
∂

∂t
T (r⃗, t) = ρ (r⃗, t)−

G∑
g=1

σg (r⃗, t, T (r⃗, t))Bg (r⃗, T (r⃗, t)) , (5.12)

ρ (r⃗, t) =
G∑
g=1

σg (r⃗, t, T (r⃗, t))
M∑
m=1

wmψm,g (r⃗, t) . (5.13)

5.2.2 Time Discretization of Thermal Radiative Transfer Equations

We now introduce a discretization in the time domain by evaluating the time-average of the

equations over a discrete time-step. We denote quantities at the time-step boundaries with half

integer indices, and time-averaged quantities at integer indices. In general the size of each time-

step can change, and we define the time-step size for each discrete interval:

∆t(n) = t(n+1/2) − t(n−1/2). (5.14)

The time-averaged integrals that appear in the transport equation are:

1

∆t(n)

t(n+1/2)∫
t(n−1/2)

dt
∂

∂t
ψm,g (r⃗, t) =

1

∆t(n)
ψn+1/2
m,g (r⃗)− 1

∆t(n)
ψn−1/2
m,g (r⃗) , (5.15)

ψ(n)
m,g (r⃗) ≡

1

∆t(n)

t(n+1/2)∫
t(n−1/2)

dtψm,g (r⃗, t) , (5.16)

Because the time distribution of ψm,g (r⃗, t) and T (r⃗, t) are not known, in practice σng (r⃗, T (r⃗))

is approximated by evaluating the opacity at the time-averaged temperature for that step.

σ(n)
g (r⃗) ≡

1
∆t(n)

t(n+1/2)∫
t(n−1/2)

dtσg (r⃗, t, T (r⃗, t))ψm,g (r⃗, t)

1
∆t(n)

t(n+1/2)∫
t(n−1/2)

dtψm,g (r⃗, t)

≈ σg
(
r⃗, T (n) (r⃗)

)
, (5.17)

Similarly, the time-averaged Planckian emission spectrum is approximated at the time-averaged

temperature:
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B(n)
g (r⃗) ≈ Bg

(
r⃗, T (n) (r⃗)

)
, (5.18)

[σgBg]
(n) (r⃗, T (r⃗)) ≡ 1

∆t(n)

t(n+1/2)∫
t(n−1/2)

dtσg (r⃗, t, T (r⃗, t))Bg (r⃗, T (r⃗, t)) ≈ σ(n)
g (r⃗)B(n)

g (r⃗) .

(5.19)

The time-averaged integrals in the material energy equation that have not already been defined

are:

1

∆t(n)

t(n+1/2)∫
t(n−1/2)

dt
∂

∂t
T (r⃗, t) =

1

∆t(n)
T (n+1/2) (r⃗)− 1

∆t(n)
T (n−1/2) (r⃗) , (5.20)

ρ(n) (r⃗) ≡ 1

∆t(n)

t(n+1/2)∫
t(n−1/2)

dtρ (r⃗, t) . (5.21)

We choose weighted diamond differencing to close the equations between the time average and

time boundary terms. The weighted diamond closure defines time averaged terms as a weighted

average of the terms at the time-step boundaries, e.g. for a generic time averaged term, x(n), the

weighted average with weight θ is:

x(n) = θx(n+1/2) + (1− θ)x(n−1/2). (5.22)

We use this closure to solve for the next time-step, and substitute the next time-step values where

applicable:

x(n+1/2) =
1

θ
x(n) − 1

θ
x(n−1/2) + x(n−1/2). (5.23)

By varying the weight value, we implement different time discretizations using the same equa-

tion. Some notable time integration methods are Backward Euler when θ is 1, and Crank-Nicholson
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when θ is 1/2. Other higher order time integration methods can be made from combinations of

choices of θ and additional subdivisions of the time-step. We define a term, τ (n), that frequently

appears in the TRT equations:

τ (n) =
1

c∆t(n)θ
. (5.24)

Using these definitions, the discrete time-integrated, multigroup, discrete ordinates equations

for radiation intensity and material energy are:

τ (n)
(
ψ(n)
m,g (r⃗)− ψ(n−1/2)

m,g (r⃗)
)

+ Ω⃗ · ∇⃗ψ(n)
m,g (r⃗) + σ(n)

g (r⃗)ψ(n)
m,g (r⃗)

=
1

4π
σ(n)
g (r⃗)B(n)

g (r⃗) ,

(5.25)

ρ(n) (r⃗) =
G∑
g=1

σ(n)
g (r⃗)

M∑
m=1

wmψ
(n)
m,g (r⃗) , (5.26)

C
(n)
v

∆t(n)θ

(
T (n) (r⃗)− T (n−1/2) (r⃗)

)
= ρ(n) (r⃗)−

G∑
g=1

σ(n)
g (r⃗)B(n)

g (r⃗) . (5.27)

5.2.3 Linearized Planckian Iteration Equations

In the system of equations above, all unknowns are at the time averaged index, n. However,

it is not feasible to solve the nonlinear system directly when the Planckian is evaluated implicitly.

Similarly, evaluating the Planckian explicitly results in an iterative method where the stability

condition is dominated by the speed of radiation, and is prohibitively expensive to take such small

time-steps. Thus we introduce an iteration with index p to resolve the nonlinearities of the coupled

radiation intensity and material energy.

For simplicity, we ignore the nonlinearity introduced by the temperature dependence of

σng (r⃗, T (r⃗)) . Though it is possible to devise methods that include this nonlinear dependence,

in practice the opacities are evaluated at index p and if desired they are updated when a new

76



temperature is obtained. In the equations that follow, we no longer explicitly state the spatial

dependence of terms and define an operator for the radiation intensity transfer equation to lower

the length of the equations:

L(n)
m,g = Ω⃗m · ∇⃗+ σ(p)

g + τ (n). (5.28)

The coupled system of nonlinear equations for an iterative method at index p+ 1 are:

L(n)
m,gψ

(p+1)
m,g =

1

4π
σ(p)
g B(p+1)

g + τ (n)ψ(n−1/2)
m,g , (5.29)

ρ(p+1) =
G∑
g=1

σ(p)
g

M∑
m=1

wmψ
(p+1)
m,g , (5.30)

Cv
∆t(n)θ

(
T (p+1) − T (n−1/2)

)
= ρ(p+1) −

G∑
g=1

σ(p)
g B(p+1)

g . (5.31)

We make a linear semi-implicit (this is semi-implicit because we have ignored some temper-

ature dependence) approximation by using the linear terms of a Taylor series expansion of the

Planckian about an intermediate temperature, T (p):

B(p+1)
g ≈ Bg

(
T (p)

)
+
dBg

dt

(
T (p)

) (
T (p+1) − T (p)

)
= B(p)

g +
dBg

dt

(p) (
T (p+1) − T (p)

)
. (5.32)

We substitute the linearized Planckian into the radiation intensity and material energy equa-

tions:

L(n)
m,gψ

(p+1)
m,g =

1

4π
σ(p)
g

(
B(p)
g +

dBg

dt

(p) (
T (p+1) − T (p)

))
+ τ (n)ψ(n−1/2)

m,g , (5.33)
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Cv
∆t(n)θ

(
T (p+1) − T (n−1/2)

)
= ρ(p+1) −

G∑
g=1

σ(p)
g

(
B(p)
g +

dBg

dt

(p) (
T (p+1) − T (p)

))
. (5.34)

We add and subtract Cv

∆t(n)θ
T (p) on the left hand side of the material energy equation and solve

for
(
T (p+1) − T (p)

)
so that we may eliminate this term from the radiation intensity equation:

(
T (p+1) − T (p)

)
=

ρ(p+1) − Cv

∆t(n)θ

(
T (p) − T (n−1/2)

)
−

G∑
g=1

σ
(p)
g B

(p)
g(

Cv

∆t(n)θ
+

G∑
g=1

σ
(p)
g

dBg

dt

(p)
) . (5.35)

Next we substitute the expression for T (p+1) − T (p) into the equation for radiation intensity:

L(n)
m,gψ

(p+1)
m,g

=
1

4π
σ(p)
g

B(p)
g +

dBg

dt

(p)


ρ(p+1) − Cv

∆t(n)θ

(
T (p) − T (n−1/2)

)
−

G∑
g=1

σ
(p)
g B

(p)
g(

Cv

∆t(n)θ
+

G∑
g=1

σ
(p)
g

dBg

dt

(p)
)




+ τ (n)ψ(n−1/2)
m,g .

(5.36)

We define several quantities, η(p), ι(p), and χ(p), to simplify the radiation intensity equation:

η(p) =

G∑
g=1

σ
(p)
g

dBg

dt

(p)

Cv

∆t(n)θ
+

G∑
g=1

σ
(p)
g

dBg

dt

(p)
, (5.37)

ι(p) =
Cv

∆t(n)θ

Cv

∆t(n)θ
+

G∑
g=1

σ
(p)
g

dBg

dt

(p)
= 1− η(p), (5.38)
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χ(p)
g =

σ
(p)
g

dBg

dt

(p)

G∑
g=1

σ
(p)
g

dBg

dt

(p)
, (5.39)

Q
(p)
rad,g = σ(p)

g

B(p)
g +

dBg

dt

(p)

−ι(p) (T (p) − T (n−1/2)
)
−

G∑
g=1

σ
(p)
g B

(p)
g(

Cv

∆t(n)θ
+

G∑
g=1

σ
(p)
g

dBg

dt

(p)
)

 .

(5.40)

This results in the following iterative system of equations:

L(n)
m,gψ

(p+1)
m,g =

1

4π
η(p)χ(p)

g ρ(p+1) +
1

4π
Q

(p)
rad,g + τ (n)ψ(n−1/2)

m,g , (5.41)

Cv
∆t(n)θ

(
T (p+1) − T (n−1/2)

)
= ρ(p+1) −

G∑
g=1

σ(p)
g

(
B(p)
g +

dBg

dt

(p) (
T (p+1) − T (p)

))
. (5.42)

We introduce an iteration at index k that is sometimes called a pseudo-scattering iteration or

lambda iteration, where the effective total cross section is σ(p)
g + τ (n), and the effective g′− to

g−scattering cross section is η(p)χ(p)
g σ

(p)
g′ . The pseudo-scattering iteration determines the ARD at

k + 1 from the previous ARD at k:

L(n)
m,gψ

(k+1)
m,g =

1

4π
η(p)χ(p)

g ρ(k) +
1

4π
Q

(p)
rad,g + τ (n)ψ(n−1/2)

m,g , (5.43)

ρ(k+1) =
G∑
g=1

σ(p)
g

M∑
m=1

wmψ
(k+1)
m,g . (5.44)

Upon convergence of the pseudo-scattering iteration, the ARD at iteration p+ 1 is set:

∣∣ρ(k+1) − ρ(k)
∣∣ ≤ ϵ⇒ ρ(p+1) = ρ(k+1). (5.45)
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We now show that this system is equivalent to Newton’s method for temperature if we also

ignore any temperature dependence of Cv and σ(n). We apply Newton’s Method to the original

system of equations. Using the previously defined transport operator, the ARD is determined as

follows:

ρ(p) =
M∑
m=1

wm

G∑
g=1

[
L(n)
m,g

]−1 [
σ(p)
g B(p)

g + τ (n)ψ(n−1/2)
m,g

]
(5.46)

We may then write the system of equations as:

F
(
x(p)
)
= 0, (5.47)

where we define a vector of the unknown variables:

x(p) =

 ρ(p)
T (p)

 , (5.48)

and we define a function, F , that the thermal radiative transfer equations satisfy:

F
(
x(p)
)
=

ρ
(p) −

M∑
m=1

wm
G∑
g=1

[
L
(n)
m,g

]−1 [
σ
(p)
g B

(p)
g + τ (n)ψ

(n−1/2)
m,g

]
Cv

∆t(n)θ

(
T (p) − T (n−1/2)

)
− ρ(p) +

G∑
g=1

σ
(p)
g B

(p)
g

 . (5.49)

The Jacobian of F , if we ignore temperature dependence of Cv and σ(p)
g , is:

JF
(
x(p)
)
=

 dF1

dρ(p)
dF1

dT (p)

dF2

dρ(p)
dF2

dT (p)

 =

 1 −
M∑
m=1

wm
G∑
g=1

[
L
(n)
m,g

]−1 [
σ
(p)
g

dBg

dT

(p)
]

−1 Cv

∆t(n)θ
+

G∑
g=1

σ
(p)
g

dBg

dT

(p)

 . (5.50)

Then we determine Newton’s Method on this system:

JF
(
x(p)
) [
x(p+1) − x(p)

]
= −F

(
x(p)
)
. (5.51)
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After we substitute the expressions for JF
(
x(p)
)
, x(p), and F

(
x(p)
)
:

 1 −
M∑
m=1

wm
G∑
g=1

[
L
(n)
m,g

]−1 [
σ
(p)
g

dBg

dT

(p)
]

−1 Cv

∆t(n)θ
+

G∑
g=1

σ
(p)
g

dBg

dT

(p)


 ρ(p+1) − ρ(p)

T (p+1) − T (p)



= −

ρ
(p) −

M∑
m=1

wm
G∑
g=1

[
L
(n)
m,g

]−1 [
σ
(p)
g B

(p)
g + τ (n)ψ

(n−1/2)
m,g

]
Cv

∆t(n)θ

(
T (p) − T (n−1/2)

)
− ρ(p) +

G∑
g=1

σ
(p)
g B

(p)
g

 ,
(5.52)

we expand the left hand side:

ρ
(p+1) − ρ(p) −

M∑
m=1

wm
G∑
g=1

[
L
(n)
m,g

]−1 [
σ
(p)
g

dBg

dT

(p) (
T (p+1) − T (p)

)]
−
(
ρ(p+1) − ρ(p)

)
+

(
Cv

∆t(n)θ
+

G∑
g=1

σ
(p)
g

dBg

dT

(p)
)(

T (p+1) − T (p)
)


= −

ρ
(p) −

M∑
m=1

wm
G∑
g=1

[
L
(n)
m,g

]−1 [
σ
(p)
g B

(p)
g + τ (n)ψ

(n−1/2)
m,g

]
Cv

∆t(n)θ

(
T (p) − T (n−1/2)

)
− ρ(p) +

G∑
g=1

σ
(p)
g B

(p)
g

 ,
(5.53)

and we simplify the equations:

ρ(p+1) =
M∑
m=1

wm

G∑
g=1

[
L(n)
m,g

]−1

[
σ(p)
g

(
B(p)
g +

dBg

dT

(p) (
T (p+1) − T (p)

))
+ τ (n)ψ(n−1/2)

m,g

]
, (5.54)

Cv
∆t(n)θ

(
T (p+1) − T (n−1/2)

)
= ρ(p+1) −

G∑
g=1

σ(p)
g

(
B(p)
g +

dBg

dT

(p) (
T (p+1) − T (p)

))
. (5.55)

From here it is apparent that these are the same equations in Eqs. (5.33) and (5.34) that were

obtained by approximating the Planckian emission spectrum as a linear Taylor series.

We summarize the iterative method to determine the unknown variables at the end of the current

time-step, (n+ 1/2), which is a pseudo-scattering iteration to determine ARD, and a Newton-like
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iteration to couple ARD and temperature in algorithm 2:

Algorithm 2 Newton’s Method for Thermal Radiative Transfer

1: p← 0
2: T (p) ← T (n−1/2), ρ(p) ← ρ(n−1/2)

3: repeat
4: Compute B(p)

g , dBg

dT

(p)
, η(p), χ

(p)
g , Q

(p)
g,rad

5: k← 0
6: ρ(k)← ρ(p)

7: repeat

8: Sweep L(n)
m,gψ

(k+1)
m,g =

η(p)χ
(p)
g ρ(k)+Q

(p)
g,rad

4π
+ qm,g + τψ

n−1/2
m,g

9: ρ(k+1)←
G∑
g=1

σ
(p)
g

M∑
m=1

wmψ
(k+1)
m,g

10: until
∣∣ρ(k+1) − ρ(k)

∣∣ ≤ ϵρ, else k ← k + 1

11: ρ(p+1)← ρ(k+1)

12: T (p+1)← T (p) +
− Cv

∆t(n)θ
(T (p)−T (n−1/2))+ρ(p+1)−

G∑
g=1

σ
(p)
g B

(p)
g +Qext

Cv

∆t(n)θ
+

G∑
g=1

σ
(p)
g

dBg
dT

(p)

13: until
∣∣T (p+1) − T (p)

∣∣ ≤ ϵT ,
∣∣ρ(p+1) − ρ(p)

∣∣ ≤ ϵρ, else p← p+ 1

14: T (n) ← T (p+1) ⇒ T (n+1/2) ← 1
θ
T (n) −

(
1
θ
− 1
)
T (n−1/2)

15: ρ(n) ← ρ(p+1) ⇒ ρ(n+1/2) ← 1
θ
ρ(n) −

(
1
θ
− 1
)
ρ(n−1/2)

5.3 Gray Diffusion Synthetic Acceleration

We apply techniques to devise a DSA scheme for the pseudo-scattering iteration. Larsen[17]

and Morel[18] each identified the slowest converging modes of the high-order system and devel-

oped energy collapse scheme to exactly eliminate these modes with a low-order additive correction.

We follow the logic of Larsen and determine an equation for the transport error.

The converged pseudo-scattering iteration obtains radiation intensity and ARD that satisfy the

following transport equation:

L(n)
m,gψm,g =

1

4π

[
χ(p)
g η(p)ρ+Q

(p)
g,rad

]
+ τ (n)ψ(n−1/2)

m,g . (5.56)
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We introduce an equation for a half-step radiation intensity:

L(n)
m,gψ

(k+1/2)
m,g =

1

4π

[
χ(p)
g η(p)ρ(k) +Q

(p)
g,rad

]
+ τ (n)ψ(n−1/2)

m,g , (5.57)

and define errors for angular radiation intensity and ARD, and the Fourier decomposition of these

terms:

δρ(k) = ρ− ρ(k) =
∫∫∫ ∞

0

d3λωkeiλ⃗·r⃗, (5.58)

δψ(k+1/2)
m,g = ψm,g − ψ(k+1/2)

m,g =

∫∫∫ ∞

0

d3λδψm,g,†

(
λ⃗
)
ωkeiλ⃗·r⃗. (5.59)

After we subtract the half-step radiation intensity equation from the converged radiation inten-

sity equation we obtain an equation for the error:

L(n)
m,gδψ

(k+1/2)
m,g =

1

4π
χ(p)
g η(p)δρ(k). (5.60)

The linear independence of each mode of the Fourier expanded error implies a separate equa-

tion for each λ⃗. That is, each mode evolves independently. After substituting the Fourier integrals,

the high-order equation implies:

δψm,g,†

(
λ⃗
)
=

1

4π

χ
(p)
g η(p)

iλ⃗ · Ω⃗ + σ
(p)
g + τ (n)

δρ(k). (5.61)

Larsen recognized the slowest converging modes were for |λ⃗| = 0. He found shape function of

the two largest leading order terms of this expression by expanding this function as a Taylor series

about |λ⃗| ≈ 0:

δψm,g,†

(
|λ⃗| ≈ 0

)
=

1

4π
η(p)

χ
(p)
g

σ
(p)
g + τ (n)

− 1

4π
η(p)iλ⃗ · Ω⃗m

χ
(p)
g(

σ
(p)
g + τ (n)

)2 +O
(
|λ⃗|2
)
. (5.62)
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The shape function of the two most slowly converging Fourier modes are, as determined by

Larsen:

y
(p)
g,0 =

χ
(p)
g

σ
(p)
g + τ (n)

, (5.63)

y
(p)
g,1 =

χ
(p)
g(

σ
(p)
g + τ (n)

)2 . (5.64)

Larsen then defines a gray equation by integrating the half-step radiation intensity iteration

equation over energy, expressed here as a summation over energy groups:

G∑
g=1

(
Ω⃗m · ∇⃗+ σ(p)

g + τ (n)
)
ψ(k+1/2)
m,g =

G∑
g=1

1

4π

[
χ(p)
g η(p)ρ(k) +Q

(p)
g,rad

]
+ τ (n)ψ(n−1/2)

m,g , (5.65)

and defines group integrated quantities:

⟨ψ⟩(k+1/2)
m =

G∑
g=1

ψ(k+1/2)
m,g , (5.66)

⟨Q⟩(p)m =
G∑
g=1

[
1

4π
Q

(p)
g,rad + τ (n)ψ(n−1/2)

m,g

]
. (5.67)

Larsen then rearranges the equation and adds terms to both sides containing gray opacities that

will soon be determined:
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Ω⃗m · ∇⃗ ⟨ψ⟩(k+1/2)
m + ⟨σ⟩(p)T ⟨ψ⟩

(k+1/2)
m − 1

4π
⟨σ⟩(p)S

∑
m

wm ⟨ψ⟩(k+1/2)
m

=
1

4π

G∑
g=1

[
⟨σ⟩(p)T − σ

(n)
g − τ (n)

]
ψ(k)
m,g

+
1

4π

G∑
g=1

∑
m

wm

[
η(p)σ(n)

g − ⟨σ⟩
(p)
S

]
ψ(k)
m,g

+ ⟨Q⟩(p)m .

(5.68)

Similarly, he adds and subtracts a term in the ARD update equation:

ρ(k+1/2) =
1

4π
⟨σ⟩(p)

∑
m

wm ⟨ψ⟩(k+1/2)
m +

1

4π

G∑
g=1

∑
m

wm

[
σ(n)
g − ⟨σ⟩

(p)
]
ψ(k+1/2)
m,g . (5.69)

The gray opacities are defined such that the terms in brackets in the previous two equations are

exactly zero for the two slowest converging modes determined above. This results in the following

system of equations:

0 =
G∑
g=1

([
⟨σ⟩(p)T − σ

(n)
g − τ (n)

]
+
[
η(p)σ(n)

g − ⟨σ⟩
(p)
S

])
y
(p)
g,0, (5.70)

0 =
G∑
g=1

([
⟨σ⟩(p)T − σ

(n)
g − τ (n)

])
y⃗
(p)
g,1, (5.71)

0 =
G∑
g=1

([
σ(n)
g − ⟨σ⟩

(p)
])
y⃗
(p)
g,0, (5.72)

that have the following solutions:

⟨σ⟩(p) =

G∑
g=1

σ
(n)
g χ

(p)
g

σ
(n)
g +τ (n)

G∑
g=1

χ
(p)
g

σ
(n)
g +τ (n)

(5.73)
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⟨σ⟩(p)T =

G∑
g=1

χ
(p)
g

σ
(n)
g +τ (n)

G∑
g=1

χ
(p)
g(

σ
(n)
g +τ (n)

)2

(5.74)

⟨σ⟩(p)S = ⟨σ⟩(p)T − ι
(p) ⟨σ⟩(p) − τ (5.75)

The final step Larsen takes is to define an equation for a gray additive correction:

Ω⃗m · ∇⃗δ ⟨ψ⟩(k+1)
m + ⟨σ⟩(p)T δ ⟨ψ⟩(k+1)

m − 1

4π
⟨σ⟩(p)S

∑
m

wmδ ⟨ψ⟩(k+1)
m =

1

4π
η(p)

(
ρ(k+1/2) − ρ(k)

)
,

(5.76)

where,

δ ⟨ψ⟩(k+1)
m = ⟨ψ⟩(k+1)

m − ⟨ψ⟩(k+1/2)
m . (5.77)

We make the additional step of replacing the high-order angle operator by making a P1 approx-

imation to the correction:

δ ⟨ψ⟩(k+1)
m =

1

4π

(
δ ⟨ϕ⟩(k+1) + 3Ω⃗ · δ

〈
J⃗
〉(k+1)

)
. (5.78)

The resulting system of equations, after evaluating the 0th and 1st angular moments of the

correction equation:

∇⃗ · δ
〈
J⃗
〉(k+1)

+
(
⟨σ⟩(p)T − ⟨σ⟩

(p)
S

)
δ ⟨ϕ⟩(k+1) = η(p)

(
ρ(k+1/2) − ρ(k)

)
, (5.79)

∇⃗δ ⟨ϕ⟩(k+1) + ⟨σ⟩(p)T δ
〈
J⃗
〉(k+1)

m
= 0, (5.80)

with update equation:
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ρ(k+1) = ρ(k+1/2) + ⟨σ⟩(p) (5.81)

We summarize the Newton’s method iteration scheme that includes gray DSA (GDSA) in al-

gorithm 3.

Algorithm 3 Newton’s Method with Gray DSA for Thermal Radiative Transfer

1: p← 0
2: T (p) ← T (n−1/2), ρ(p) ← ρ(n−1/2)

3: repeat
4: Compute B(p)

g , dBg

dT

(p)
, η(p), χ

(p)
g , Q

(p)
g,rad

5: Compute ⟨σ⟩(p)T , ⟨σ⟩(p)S , ⟨σ⟩(p)
6: k← 0
7: ρ(k)← ρ(p)

8: repeat

9: Sweep L(n)
m,gψ

(k+1)
m,g =

η(p)χ
(p)
g ρ(k)+Q

(p)
g,rad

4π
+ qm,g + τψ

n−1/2
m,g

10: ρ(k+1/2)←
G∑
g=1

σ
(p)
g

M∑
m=1

wmψ
(k+1/2)
m,g

11:

Solve Gray LO System:

∇⃗ · δ
〈
J⃗
〉(k+1)

+
(
⟨σ⟩(p)T − ⟨σ⟩

(p)
S

)
δ ⟨ϕ⟩(k+1) = η(p)

(
ρ(k+1/2) − ρ(k)

)
∇⃗δ ⟨ϕ⟩(k+1) + ⟨σ⟩(p)T δ

〈
J⃗
〉(k+1)

m
= 0

12: ρ(k+1)← ρ(k+1/2) + ⟨σ⟩ δ ⟨ϕ⟩(k+1)

13: until
∣∣ρ(k+1) − ρ(k)

∣∣ ≤ ϵρ, else k ← k + 1

14: ρ(p+1)← ρ(k+1)

15: T (p+1)← T (p) +
− Cv

∆t(n)θ
(T (p)−T (n−1/2))+ρ(p+1)−

G∑
g=1

σ
(p)
g B

(p)
g +Qext

Cv

∆t(n)θ
+

G∑
g=1

σ
(p)
g

dBg
dT

(p)

16: until
∣∣T (p+1) − T (p)

∣∣ ≤ ϵT ,
∣∣ρ(p+1) − ρ(p)

∣∣ ≤ ϵρ, else p← p+ 1

17: T (n) ← T (p+1) ⇒ T (n+1/2) ← 1
θ
T (n) −

(
1
θ
− 1
)
T (n−1/2)

18: ρ(n) ← ρ(p+1) ⇒ ρ(n+1/2) ← 1
θ
ρ(n) −

(
1
θ
− 1
)
ρ(n−1/2)

Accelerating the pseudo-scattering iteration can greatly reduce the number of transport sweeps.

However, if the pseudo-scattering iteration is converged at each step, the next temperature iterate is
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the same whether the iteration was accelerated or not. Thus, this form of acceleration has no affect

on how many temperature iterations are necessary to converge the Newton iteration, and future

pseudo-scattering iterations may be just as difficult to solve once the temperature is updated and

new properties and sources are calculated.

In the next section we devise a Linear HOLO method that instead solves a low-order problem

for a new ARD and temperature, similar to nonlinear HOLO methods.

5.4 Linear HOLO Derivation

We follow a process that many researchers have employed for scattering iterations: 1) define

“converged” equations; 2) subtract the equations satisfied by the latest solution, obtaining an exact

equation for an additive correction; 3) replace the transport operator in this equation by a low-order

operator.

We begin with equations for radiation intensity and material energy that satisfy the converged

Newton iteration:

Ω⃗m · ∇⃗ψ(n)
m,g +

(
σ(p)
g + τ (n)

)
ψ(n)
m,g =

1

4π

[
χ(n)
g η(n)ρ(n) +Q

(n)
g,rad

]
+Q(n−1/2)

m,g , (5.82)

Cv
∆t(n)θ

(
T (n) − T (n−1/2)

)
= ρ(n) −

G∑
g=1

σ(p)
g B(n)

g +Qext, (5.83)

where we recall:

ρ(n) =
G∑
g=1

σ(p)
g

∑
m

wmψ
(n)
m,g, (5.84)

Q(n−1/2)
m,g = τψ(n−1/2)

m,g + qm,g, (5.85)
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Q
(n)
rad,g = σ(p)

g

B(n)
g +

dBg

dt

(n)

−ι(n) (T (n) − T (n−1/2)
)
−

G∑
g=1

σ
(p)
g B

(n)
g(

Cv

∆t(n)θ
+

G∑
g=1

σ
(p)
g

dBg

dt

(n)
)

 .

(5.86)

We reiterate the iteration transport equation for the latest pseudo-scattering iteration at index

k + 1/2; we note that if the pseudo-scattering iteration is converged, then quantities at (p + 1/2),

(k + 1/2), and (k) are equivalent:

Ω⃗m · ∇⃗ψ(k+1/2)
m,g +

(
σ(p)
g + τ (n)

)
ψ(k+1/2)
m,g =

1

4π

[
χ(p)
g η(p)ρ(k) +Q

(p)
g,rad

]
+Q(n−1/2)

m,g , (5.87)

In the second step, we subtract the iteration transport equation from the converged Newton

iteration equation:

Ω⃗m · ∇⃗
(
ψ(n)
m,g − ψ(k+1/2)

m,g

)
+
(
σ(p)
g + τ (n)

) (
ψ(n)
m,g − ψ(k+1/2)

m,g

)
=

1

4π

[
χ(n)
g η(n)ρ(n) − χ(n)

g η(n)ρ(k+1/2)
]

+
1

4π

[
χ(n)
g η(n)ρ(k+1/2) − χ(p)

g η(p)ρ(k) +Q
(n)
g,rad −Q

(p)
g,rad

]
,

(5.88)

define additive corrections:

δψ(n)
m,g = ψ(n)

m,g − ψ(k+1/2)
m,g , (5.89)

δρ(n) = ρ(n) − ρ(k+1/2), (5.90)

and obtain an equation for an additive correction:

Ω⃗m · ∇⃗δψ(n)
m,g +

(
σ(p)
g + τ (n)

)
δψ(n)

m,g −
1

4π
χ(n)
g η(n)δρ(n)

=
1

4π

[
χ(n)
g η(n)ρ(k+1/2) − χ(p)

g η(p)ρ(k) +Q
(n)
g,rad −Q

(p)
g,rad

]
.

(5.91)
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The previous equation suggests another iterative process, denoted by index s:

Ω⃗m · ∇⃗δψ(s+1/2)
m,g +

(
σ(p)
g + τ (n)

)
δψ(s+1/2)

m,g − 1

4π
χ(s)
g η(s)δρ(s+1/2)

=
1

4π

[
χ(s)
g η(s)ρ(k+1/2) − χ(p)

g η(p)ρ(k) +Q
(s)
g,rad −Q

(p)
g,rad

]
,

(5.92)

with update equations:

δρ(s+1/2) =
G∑
g=1

σ(p)
g

M∑
m=1

wmδψ
(s+1/2)
m,g , (5.93)

ρ(s+1) = ρ(k+1/2) + δρ(s+1/2), (5.94)

and material energy equation:

T (s+1) = T (s) − ι(s)
(
T (s) − T (n−1/2)

)
+

ρ(s+1) −
G∑
g=1

σ
(p)
g B

(s)
g +Qext

Cv

∆tθ
+

G∑
g=1

σ
(p)
g

dBg

dT

(s)
. (5.95)

This system of equations is as difficult to solve as the original system; thus we make a P1

approximation to the angular dependence of the correction:

δψ(s+1/2)
m,g ≈ 1

4π

(
δϕ(s+1/2)

g + 3Ω⃗m · δJ⃗ (s+1/2)
g

)
. (5.96)

Then the 0th and 1st angular moments of the low-order iteration equation are given by:

∇⃗ · δJ⃗ (s+1/2)
g +

(
σ(p)
g + τ (n)

)
δϕ(s+1/2)

g − χ(s)
g η(s)

G∑
g=1

σ(p)
g δϕ(s+1/2)

g

=
[
χsgη

(s)ρ(k+1/2) − χ(p)
g η(p)ρ(k) +Q

(s)
g,rad −Q

(p)
g,rad

]
,

(5.97)

∇⃗1

3
δϕ(s+1/2)

g +
(
σ(p)
g + τ (n)

)
δJ⃗ (s+1/2)

g = 0. (5.98)

The preceding system is very costly to solve, requiring a diffusion solution for each group,
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and solving a scattering problem through the absorption/re-emission phenomenon. Following the

steps of Larsen for Grey Transport Acceleration [17], we can obtain a gray diffusion equation, with

opacities determined in the same manner. The resulting spectrum is different from that determined

by Larsen, as the spectrum is dependent on the right hand side of the equation. In practice, we

have found the spectrum determined by Larsen to be sufficient, as it obtains the same opacities

upon convergence, and the increased complexity only provides minor corrections to the Larsen

spectrum. We derive the gray opacities using the energy error spectrum of these equations in the

next section, but in general this gray system can be written as:

∇⃗ · δ
〈
J⃗
〉(s+1/2)

+
(
⟨σ⟩(s)T − ⟨σ⟩

(s)
S

)
δ ⟨ϕ⟩(s+1/2) = η(s)ρ(k+1/2) − η(p)ρ(k) + ⟨Q⟩(s)rad − ⟨Q⟩

(p)
rad ,

(5.99)

∇⃗1

3
δ ⟨ϕ⟩(s+1/2) + ⟨σ⟩(s)T δ

〈
J⃗
〉(s+1/2)

= 0, (5.100)

ρs+1 = ρk+1/2 + ⟨sigma⟩ δ ⟨ϕ⟩(s+1/2) , (5.101)

T (s+1) = T (s) − ι(s)
(
T (s) − T (n−1/2)

)
+

ρ(s+1) −
G∑
g=1

σ
(p)
g B

(s)
g +Qext

Cv

∆tθ
+

G∑
g=1

σ
(p)
g

dBg

dT

(s)
. (5.102)

We propose the iteration given by algorithm 4.

This algorithm uses a low-order (gray P1 diffusion) operator to iterate on the material temper-

ature in an inner Newton-like iteration, which reduces the number of Newton iterations that uses a

high-order operator. We have included the steps to fully converge the pseudo-scattering iteration in

this algorithm, but our numerical results show that performing only one sweep per outer iteration

to be the fastest iterative method.

If we insert the converged iteration solution, ρ(n+1/2) and T (n+1/2), as the solution we obtain a
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Algorithm 4 Linear Acceleration of Newton’s Method for Thermal Radiative Transfer

1: p← 0
2: T (p) ← T (n−1/2), ρ(p) ← ρ(n−1/2)

3: repeat
4: Compute B(p)

g , dBg

dT

(p)
, η(p), χ

(p)
g , Q

(p)
g,rad

5: k← 0
6: ρ(k)← ρ(p)

7: repeat

8: Sweep L(n)
m,gψ

(k+1)
m,g =

η(p)χ
(p)
g ρ(k)+Q

(p)
g,rad

4π
+ qm,g + τψ

n−1/2
m,g

9: ρ(k+1)←
G∑
g=1

σ
(p)
g

M∑
m=1

wmψ
(k+1)
m,g

10: until
∣∣ρ(k+1) − ρ(k)

∣∣ ≤ ϵρ, k ≥ kmax, else k ← k + 1

11: ρ(p+1/2)← ρ(k+1)

12: T (p+1/2)← T (p) +
− Cv

∆t(n)θ
(T (p)−T (n−1/2))+ρ(p+1/2)−

G∑
g=1

σ
(p)
g B

(p)
g +Qext

Cv

∆t(n)θ
+

G∑
g=1

σ
(p)
g

dBg
dT

(p)

13: s← 0
14: T (s)← T (p+1/2)

15: repeat
16: Compute η(s), Q(s)

rad

17: Solve −∇⃗ · ⟨D⟩ ∇⃗F (s+1) + ⟨σ⟩a F (s+1) = η(s)ρ(p+1/2) − η(p)ρ(p) +Q
(s)
rad −Q

(p)
rad

18: ρ(s+1)← ρ(p+1/2) + ⟨σ⟩F (s+1)

19: T (s+1)← T (s) +
−Cv

∆t (T (s)−T (n−1/2))+ρ(s+1)−⟨σ⟩BB(s)+Qext

Cv
∆t

+⟨σ⟩B
dB
dT

(s)

20: until
∣∣T (s+1) − T (s)

∣∣ ≤ ϵT ,
∣∣ρ(s+1) − ρ(s)

∣∣ ≤ ϵρ else s← s+ 1

21: T (p+1)← T (s+1)

22: ρ(p+1)← ρ(s+1)

23: until
∣∣T (p+1) − T (p)

∣∣ ≤ ϵT ,
∣∣ρ(p+1) − ρ(p)

∣∣ ≤ ϵρ, else p← p+ 1

24: T (n) ← T (p+1) ⇒ T (n+1/2) ← 1
θ
T (n) −

(
1
θ
− 1
)
T (n−1/2)

25: ρ(n) ← ρ(p+1) ⇒ ρ(n+1/2) ← 1
θ
ρ(n) −

(
1
θ
− 1
)
ρ(n−1/2)
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zero correction because the right hand side is zero.

5.4.1 Linear HOLO Energy Error Spectrum and Gray Opacities

We now seek an energy collapse scheme that will eliminate the slowest converging error modes

of the following transport equation for a correction:

Ω⃗m · ∇⃗δψ(s+1/2)
m,g +

(
σ(p)
g + τ (n)

)
δψ(s+1/2)

m,g − 1

4π
χ(s)
g η(s)δρ(s+1/2)

=
1

4π

[
χ(s)
g η(s)ρ(k+1/2) − χ(p)

g η(p)ρ(k) +Q
(s)
g,rad −Q

(p)
g,rad

]
.

(5.103)

One choice of solving this system is a pseudo-scattering iteration, that we denote with index

l + 1/2:

Ω⃗m · ∇⃗δψ(l+1/2)
m,g +

(
σ(p)
g + τ (n)

)
δψ(l+1/2)

m,g − 1

4π
χ(s)
g η(s)δρ(l)

=
1

4π

[
χ(s)
g η(s)ρ(k+1/2) − χ(p)

g η(p)ρ(k) +Q
(s)
g,rad −Q

(p)
g,rad

]
.

(5.104)

The although there are many more terms on the right hand side of the equation than the equation

in Larsen’s paper, the resulting system has the same form for the pseudo-scattering iteration as

Larsen’s equations. Thus, we obtain the same energy collapsed cross sections as Larsen, which we

have detailed above, except quantities are evaluated at index s.

5.5 Analysis of Gray Diffusion Synthetic Acceleration

We are interested in the convergence properties of the gray-diffusion linear preconditioning

method for multi-group energy discretization. The success of the linear HOLO iterative method

is predicated on the ability of the linear preconditioning method to approximate the slowest con-

verging error mode in space, angle, and energy. We analyze an infinite homogeneous system to

determine the effects of energy discretization on the gray preconditioner.

We postulate a Fourier ansatz for the errors of the pseudo-scattering iteration at k from the

converged pseudo-scattering solution at iteration p+ 1/2:

δρ(k) = ρ(p+1/2) − ρ(k) =
∫∫∫ ∞

0

d3λωkeiλ⃗·r⃗, (5.105)
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δψ(k+1/2)
m,g = ψ(p+1/2)

m,g − ψ(k+1/2)
m,g =

∫∫∫ ∞

0

d3λωkδψm,g,†

(
λ⃗
)
eiλ⃗·r⃗, (5.106)

δϕ(k+1) = ϕ(p+1/2) − ϕk+1/2 =

∫∫∫ ∞

0

d3λδϕ†

(
λ⃗
)
ωk+1eiλ⃗·r⃗. (5.107)

We substitute the Fourier ansatz into the transport error equation:

(
iΩ⃗m · λ⃗+ σ(p)

g + τ
)
δψm,g,†

(
λ⃗
)
=

1

4π
η(p)χ(p)

g , (5.108)

and solve for δψm,g,†
(
λ⃗
)

:

δψm,g,†

(
λ⃗
)
=

1

4π

χpgη
p

iΩ⃗m · λ⃗+ σ
(p)
g + τ

. (5.109)

We use the definition of δρ(k+1/2):

δρ(k+1/2)
(
λ⃗
)
=
∑
g

∑
m

σ(p)
g δψm,g,†

(
λ⃗
)
. (5.110)

and solve the P1 diffusion equations for δϕ†:

δϕ†

(
λ⃗
)
=

ηp(
|λ⃗|2
3⟨σ⟩T

+ ⟨σ⟩T − ⟨σ⟩S
) (δρ(k+1/2)

(
λ⃗
)
− 1
)
. (5.111)

Finally, we substitute into the update equation for ρ(k+1):

ω = δρ(k+1/2)
(
λ⃗
)
+ ⟨σ⟩ δϕ†

(
λ⃗
)
. (5.112)

We analyze a Fourier problem that has two energy groups. The problem’s two opacities are

chosen such that ⟨σ⟩ = 1000[cm2/g], and σ2 = σ1 ∗Mσ, where Mσ is a multiplier that ranges from

1e − 6 to 1e6. Cv

∆t
was chosen to be 10, ∆t was chosen to be 1/c such that τ = 1/c∆t = 1, and η

was chosen to be .9. To satisfy these constraints, we assumed a group structure such that dB/dT
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Figure 5.1: Spectral radius from Fourier analysis of a 2 energy group problem.
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is the same for each energy group, and we solve the quadratic equation that arises from solving the

averaged opacity for σ1:

dB

dT
= [1, 1]

dB1

dT
, (5.113)

σ = [1,Mσ]σ1, (5.114)

χ =

[
1

1 +Mσ

,
Mσ

1 +Mσ

]
, (5.115)

⟨σ⟩ =
σ1

1
1+Mσ

1
σ1+τ

+Mσσ1
Mσ

1+Mσ

1
σ1Mσ+τ

1
1+Mσ

1
σ1+τ

+ Mσ

1+Mσ

1
σ1Mσ+τ

= 1000. (5.116)

Figure 5.1 shows the spectral radii of the GDSA scheme as a function of the opacity ratio

Mσ = σ2/σ1. We demonstrate that even with no discretization error, as the difference in opacities

between groups increases the spectral radius of the GDSA scheme degrades to approximately the

energy averaged “scattering ratio”
(

⟨σ⟩S
⟨σ⟩T

)
, but is always less than one in magnitude.

Next, we compare behavior of the linear preconditioning method between a 2D Fourier anal-

ysis and a 2D infinite homogeneous problem run with PDT, a massively parallel transport code

developed at Texas A&M University [53] using the STAPL parallel library [54, 55, 56]. We use

50 group multi-group plastic opacities at 5[eV ] generated during the CRASH project led by the

University of Michigan. We have found it necessary to set a maximum opacity value of the cross

section set, which we choose to be 1 × 106[cm2/g]. For the test problems, we choose problem

dimensions such that cells have an optical thickness of 10 mean free paths in each dimension, and

we choose 30 by 30 cells. In Table 5.1, column S(A) is the spectral radius of the transport operator,

and column S(PA) is the spectral radius of the GDSA scheme.

This set of test problems shows that the gray diffusion preconditioner’s effectiveness does not

degrade as the number of energy groups is increased. These results are similar to previous results
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Table 5.1: Plastic Spectral Radius Comparison

S(A) S(PA)
groups Fourier Model Fourier Model

2 .5107 .5107 .1772 .1147
10 .9999 .9999 .4120 .4241
50 .9999 .9999 .4112 .4152
99 .9999 .9999 .4112 .4150

for Linear Multifrequency Gray (LMFG) [18] and Gray Transport Acceleration (GTA) [17].

5.6 Results

We have tested our two methods for a variety of difficult radiative transfer problems, and we

present results from the following: a Marshak wave in plastic using realistic opacities, a tophat

problem using a one-group analytic function for opacity, and a tophat problem using multi-group

plastic opacities. We investigate the behavior of the unpreconditioned GMRES iteration with no

restarts (A), linear-preconditioned GMRES iteration with no restarts (PA), and the proposed linear

HOLO acceleration iteration (NLA). All problems were run with Backward Euler time differenc-

ing, with opacities evaluated at beginning-of-step temperatures.

Convergence is determined by three conditions. The inner iteration for ARD is tested with the

L2 norm of the ARD residual relative to the ARD associated with the uncollided intensity given

the effective fixed source at iteration p:

∥ρs+1 − ρs∥2
∥bp∥2

≤ ϵρ,2, (5.117)

the L∞ norm of the relative ARD residual:

∥∥∥∥ρs+1 − ρs

ρs+1

∥∥∥∥
∞
≤ ϵρ,∞. (5.118)

The outer Newton iteration is tested with the L∞ norm of the relative difference in temperature

iterates:
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∥∥∥∥T p+1 − T p

T p+1

∥∥∥∥
∞
≤ ϵT,∞. (5.119)

The tolerances used are specified in each problem description.

Unaccelerated problems were solved with GMRES, as Richardson iteration is prohibitively

expensive for problems with spectral radii near unity. Problems solved with linear-preconditioning

used a preconditioned GMRES iteration. From our observations, the convergence is often limited

by theL∞ norm of the relative ARD residual. Preconditioned GMRES iteration may re-excite error

modes of the L∞ norm even when the L2 norm is satisfied. Preconditioned Richardson iteration

monotonically decreases the iteration residual of the L∞ and L2 norms. Once the L2 norm is

satisfied, the iteration to converge the L∞ norm becomes a preconditioned Richardson iteration.

We note that the linear HOLO reduces to a preconditioned Richardson iteration for ARD when the

temperature is converged.

In all problems, the low-order one-group diffusion system is solved with preconditioned Con-

jugate Gradient (PCG) using algebraic-multigrid (AMG) as the preconditioner. We link to the

implementation of PCG and AMG in HYPRE. A L2 norm tolerance of 1× 10−15 is chosen for all

diffusion solutions. This tight tolerance was chosen to eliminate the possibility of confusion from

poorly converged diffusion. We are exploring how much we can relax this to improve run time

without degrading performance.

In the iteration statistics for each problem, we list the number of sweeps (Sweeps), temperature

iterations (Te It.), diffusion solutions (Diffusion), total solution time in seconds (Time), sweep

reduction factor (Swp. RF), and time reduction factor (Time RF). Reduction factors are calculated

as ratio of unpreconditioned iteration value to preconditioned iteration value.

5.6.1 Marshak wave in plastic

The Marshak wave problem is a plastic square .0012[cm] by .0012[cm], discretized into 20 by

20 cells, an S8 quadrature and one energy group. The plastic is initially at 1[eV ] with an incoming

blackbody intensity of 100[eV ] at the left boundary. We solve the system to 3×10−9[s] using fixed
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Table 5.2: Marshak Wave Plastic Iteration Statistics

A PA NLA
Sweeps 1864 926 87
Te It. 93 92 87

Diffusion - 926 158
Time[s] 36 56 11
Swp. RF - 2.0130 21.4253
Time RF - 0.6429 3.2727

timesteps of 1×10−10[s]. We choose convergence tolerances of ϵρ,2 = 1×10−10, ϵρ,∞ = 1×10−2,

and ϵT,∞ = 1× 10−2.

Table 5.2 shows the number of sweeps, temperature iterations, diffusion solutions, and to-

tal time to completion to solve the problem described above. The linear-preconditioning method

shows a significant reduction in the number of transport sweeps (a factor of 2). However, the com-

putational effort expended in reducing the error of ARD at each Newton iteration for temperature

is wasted to some extent if later temperature updates produce a significantly different tempera-

ture field. Because the solution of the diffusion operator is relatively expensive compared to a

one group transport sweep, the linear-preconditioning method was not effective at reducing total

solution time for this problem.

Iterative convergence in this particular test problem is dominated by error reduction of the tem-

perature field. The linear HOLO acceleration method reduced the temperature error using a diffu-

sion operator before resolving the ARD error, and thus avoided over converging ARD. Because the

problem is highly diffusive, the temperature field and diffusion error is effectively approximated

by the linear HOLO acceleration method. The linear HOLO acceleration method resulted in a fac-

tor of three reduction in solution time compared to unpreconditioned iteration, and a factor of 20

fewer transport sweeps. The time reduction is much greater in multi-frequency problems, because

transport sweeps are relatively more expensive in such problems.
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Figure 5.2: Tophat Geometry and Meshing

5.6.2 Tophat with Model Opacity

The tophat model-opacity problem embodies many of the challenges that arise from spatial

dependence in realistic thermal radiation transport problems, but treats the opacity as a simple

analytic function. The optically thick region introduces boundary layers and makes the ARD

iteration difficult to converge. The optically thin region allows streaming, which is challenging for

angular and temporal discretizations. Transient effects of radiation propagation must be resolved

with sufficiently small time-steps to obtain an accurate solution.

We begin with a tophat-geometry problem that has one-group opacities that are independent of

temperature. The tophat model-opacity problem is a cylinder 7[cm] long with 4[cm] radius, which

we approximate with cartesian geometry in 2D with 50 x 35 cells and an S8 discrete ordinates

quadrature. We solve the system to 1 × 10−8[s] using adaptive timesteps with an initial time

of 1 × 10−12[s], a maximum increase in timestep of 1.25, and a maximum relative difference in

temperature and ARD of 0.125 per timestep. The remaining problem definition is listed in Table

5.3, and the geometry is shown in Fig. (5.2). We choose convergence tolerances of ϵρ,2 = 1×10−5,

ϵρ,∞ = 1× 10−3, and ϵT,∞ = 1× 10−3.
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Table 5.3: Tophat Model Problem Description

Property Thin Thick Units
Density .01 10 [g/cc]
Opacity 20 20 [cm2/g]
T0 .05 .05 [keV ]
Cv .05 .05 1e16[ergs/g − keV ]

ψ(x = 0)0 .3 .3 [keV ]

Table 5.4: Tophat Model Opacity Iteration Statistics

A PA NLA
Sweeps 2125 971 415
Te It. 254 254 415

Diffusion - 971 572
Time[s] 494 400 362
Swp. RF - 2.1885 5.1205
Time RF - 1.2350 1.3646

The spectral radius of the unpreconditioned operator was close to one in magnitude. The GDSA

scheme did not degrade from spatial discretization due to high-aspect ratio mesh or from energy

discretization because the problem only had one group. However, the GDSA scheme still requires

converging the high-order scattering problem sufficiently at each temperature iteration. The linear

HOLO acceleration method was effective at reducing the number of transport sweeps, cutting them

by approximately a factor of two compared to the linear-preconditioning method because only one

sweep was performed per temperature iteration, and the primary solution was performed during

the low-order Newton iteration.

5.6.3 Tophat with Plastic Opacities

We show the iterative method behavior for a 50-group multi-group plastic opacity. Except for

the opacities and energy group structure, this problem definition (cells, angles, time-step control)

is identical to the tophat model-opacity problem in Table 5.3. We choose convergence tolerances

of ϵρ,2 = 1× 10−5, ϵρ,∞ = 1× 10−4, and ϵT,∞ = 1× 10−3.
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Table 5.5: Tophat Plastic Opacity Iteration Statistics

A PA NLA
Sweeps 3194 2112 1334
Te It. 302 292 1334

Diffusion - 2112 1680
Time[s] 8929 4491 3209
Swp. RF - 1.5052 2.3943
Time RF - 1.9882 2.7825

We noticed the opacity values in the this data set were non-physical, with low energy opacities

reaching 1 × 1022[cm2/g]. We set a maximum opacity of 1 × 106cm2/g to limit the otherwise

extreme ill-conditioning of the problem. Table 5.5 shows the number of sweeps, temperature it-

erations, diffusion precoditioner solutions, and total solution time. The sweep operation for this

problem is considerably more expensive than the one-group model problem, and the sweep oper-

ation occupies essentially all of the solution time. Thus, a reduction in the number of sweeps had

more effect on reducing the solution time.

This problem shows the importance of reducing the error of the temperature field not only the

ARD. The linear HOLO method reduced the number of transport sweeps taken at the significantly

lower cost of added temperature iterations, source calculations, and diffusion solutions. We note

that the transport problem that was solved had relatively low number of energy groups and angles

in the quadrature. As the fidelity of angle and energy treatment increases the sweep time will

dominate the problem, and thus time reduction factor will limit to the same value as the sweep

reduction factor.

5.7 Summary

Previous work has shown that accelerating the pseudo-scattering iteration with a gray low-

order operator can effectively reduce the number of sweeps during that iteration. However, HOLO

methods that use nonlinear functionals in a low-order Newton iteration can perform significantly

fewer transport sweeps. We devise a linear HOLO method that only uses linear functionals of

the transport solution to determine the ARD and material temperature in an Newton iteration on a
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low-order operator.

The linear HOLO method is effective when the problem is highly diffusive, and when iteration

error is dominated by error in the temperature field. For problems that are limited by error in the

ARD, the linear HOLO method quickly resolves the temperature field, and effectively becomes

a DSA scheme for a preconditioned Richardson iterative method. The linear HOLO method is

an improvement to the linear preconditioned method for all problems studied, because it avoids

excessive iteration on the pseudo-scattering problems when the problem is dominated by the error

in the temperature field.
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6. ONE-GROUP DIFFUSION ACCELERATION OF JACOBI ITERATION FOR THERMAL

NEUTRON UPSCATTERING ITERATION

6.1 Method Motivation

We are interested in methods that solve thermal neutron upscattering iterations efficiently on

state of the art computer architectures. As processes increase, we seek higher fidelity of our phys-

ical models. Thus we seek to refine space, angle, and energy resolution. As the number of energy

groups increases, it is necessary to use methods that have good weak scaling efficiency with in-

creasing energy groups. It is well known that a Gauss-Seidel operator splitting with a DSA precon-

ditioner produces an efficient solution method, but has poor weak scaling efficiency because the

method requires sequential operations. Although there are paths to extend the scaling of Gauss-

Seidel methods (prefix sums [57], FEDS [50, 58]), at some point poor scaling efficiency dominates.

Alternatively, Jacobi operator splitting (block and non-block) produce methods with poor solution

efficiency (operator spectral radii near unity) even when preconditioned with DSA, and excellent

weak scaling efficiency.

Hanuš and Ragusa have devised a method that combines within-group DSA and a one-group

DSA to accelerate thermal neutron upscattering.[59] In their paper, they perform thorough analysis

of Gauss-Seidel and Jacobi methods, combinations of within-group and two-grid (TG) DSA, and

study the effects of converging or partially converging the within-group scattering iteration. They

present numerical results using the Modified Interior Penalty (MIP) Diffusion operator, which is

a low-order operator that has spatial degrees of freedom equal to the DFEM discretization. Their

results show that the optimal procedure for a Jacobi iteration is to perform one DSA iteration

independently across all energies (J1+wgDSA), and accelerate the upscattering iteration using one-

group (also known as Two-Grid, or TG) DSA. This combination, labeled as “J1+wgDSA+TG” in

their paper, is shown to recover the iterative performance of fully converging the within-group

scattering iteration while requiring far fewer transport sweeps.
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In this work, we analyze linearly anisotropic scattering for Gauss-Seidel and Jacobi splitting

using the Two-Grid energy collapsed low-order scheme, to determine if accelerating only the scalar

moment is sufficient. We also perform numerical tests of the optimal Jacobi method devised by

Hanuš and Ragusa, J1+wgDSA+TG, using the CDFEM Diffusion operator in chapter 3, which has

fewer spatial degrees of freedom than the MIP discretization.

6.2 Thermal Neutron Upscattering Iteration

From the transport equation in Eq. (3.24), neutrons in steady state with upscattering satisfy the

following equation:

(
Ω⃗ · ∇⃗+ T

)
Ψm = SmΦ +Qfixed

m . (6.1)

where,

SmΦ ≡
L∑
l=0

2l + 1

4π
Sl

l∑
n=−l

Y n
l

(
Ω⃗m

)
Φl,n (6.2)

This system is solved iteratively by lagging some part of the scattering source, resulting two

nested iterations at index k and i. The way the scattering operator is split has a large effect on the

performance of the method, but in general the operator is split into three parts: a “recent” part that

represents the current iterate from a “within-group” iteration denoted here by index k, which are

on the diagonal; a “lagged” part that represents terms that are calculated using the previous iterate

(i), which are typically terms below the diagonal of the scattering matrix; and a “converged” part

that represents terms that are at the next iterate (i+1), which are typically terms below the diagonal.

In operator notation, the within-group iteration at index k is determined as follows:

(
Ω⃗m · ∇⃗+ T

)
Ψ(k+1)
m = Sm,recΦ

(k) + Sm,conΦ
(i+1) + Sm,lagΦ

(i) +
1

4π
Qfixed
m . (6.3)

This iteration may be slow to converge, dependent on the ratio of the within-group scatter-

ing cross section to the group total cross section. As previously discussed, acceleration of the
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within-group scattering using a diffusion operator has been called Diffusion Synthetic Accelera-

tion (DSA). Instead, methods have been devised to accelerate the outer (upscattering) iteration.

One such method, is the Two-Grid (TG) method devised by B.T. Adams and J.E. Morel, which we

discuss in the next section.[36]

6.3 Two-Grid Acceleration

Although the two-grid method has previously been devised, we find it instructional to derive

this method again using the steps from the previous chapters. Step (1): We write the “converged”

equation:

(
Ω⃗m · ∇⃗+ T

)
Ψ(i+1)
m = SmΦ

(i+1) +
1

4π
Qm,ext, (6.4)

and a half-step equation at the end of the within-group iteration:

(
Ω⃗m · ∇⃗+ T

)
Ψ(i+1/2)
m = Sm,recΦ

(k) + Sm,conΦ
(i+1/2) + Sm,lagΦ

(i) +
1

4π
Qfixed
m . (6.5)

We note that if the within-group scattering iteration is converged, then Φ(k) = Φ(i+1/2), and if

only one sweep is performed per outer iteration then Φ(k) = Φ(i).

Step (2): We subtract the equation satisfied by the latest solution from the converged equation

to obtaining an exact equation for an additive correction:

(
Ω⃗m · ∇⃗+ T

)
δΨ(i+1)

m

= Sm,rec
(
Φ(i+1) − Φ(i+1/2) + Φ(i+1/2) − Φ(k)

)
+ Sm,con

(
Φ(i+1) − Φ(i+1/2)

)
+ Sm,lag

(
Φ(i+1) − Φ(i+1/2) + Φ(i+1/2) − Φ(i)

)
+

1

4π
Qfixed
m ,

(6.6)

where:
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δΨ(i+1)
m = Ψ(i+1)

m −Ψ(i+1/2)
m , (6.7)

δΦ(i+1) = Φ(i+1) − Φ(i+1/2). (6.8)

After we simplify the equation and define a residual source, the equation for the exact correc-

tion is:

(
Ω⃗m · ∇⃗+ T

)
δΨ(i+1)

m = SmδΦ
(i+1) +R(i+1/2)

m (6.9)

where the residual source is defined as:

R(i+1/2)
m ≡= Sm,rec

(
Φ(i+1/2) − Φ(k)

)
+ Sm,lag

(
Φ(i+1/2) − Φ(i)

)
. (6.10)

3) replace the transport operator in this equation by a low-order operator. Here we have em-

ployed a P1 diffusion equation by finding the W0 and W⃗1 moments of the transport equation:

∇⃗ · δJ⃗ (i+1) + TδΦ(i+1) = S0δΦ
(i+1)
0 +R

(i+1/2)
0 , (6.11)

1

3
∇⃗δΦ(i+1) + TδJ⃗ (i+1) = S1δJ⃗

(i+1) + R⃗
(i+1/2)
1 , (6.12)

with update equation:

Φi+1
0 = Φ

(i+1/2)
0 + δΦ

(i+1)
0 , (6.13)

and moments of the residual source are given by:
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R
(i+1/2)
0 ≡W0

L∑
l=0

2l + 1

4π
Sl,rec

l∑
n=−l

Y n
l

(
Ω⃗m

)(
Φ

(i+1/2)
l,n − Φ

(k)
l,n

)
+W0

L∑
l=0

2l + 1

4π
Sl,lag

l∑
n=−l

Y n
l

(
Ω⃗m

)(
Φ

(i+1/2)
l,n − Φ

(i)
l,n

)
= S0,rec

(
Φ

(i+1/2)
0 − Φ

(k)
0

)
+ S0,lag

(
Φ

(i+1/2)
0 − Φ

(i)
0

)
,

(6.14)

R⃗
(i+1/2)
1 ≡W⃗1

L∑
l=0

2l + 1

4π
Sl,rec

l∑
n=−l

Y n
l

(
Ω⃗m

)(
Φ

(i+1/2)
l,n − Φ

(k)
l,n

)
+ W⃗1

L∑
l=0

2l + 1

4π
Sl,lag

l∑
n=−l

Y n
l

(
Ω⃗m

)(
Φ

(i+1/2)
l,n − Φ

(i)
l,n

)
= S1,rec

(
J⃗ (i+1/2) − J⃗ (k)

)
+ S1,lag

(
J⃗ (i+1/2) − J⃗ (i)

)
,

(6.15)

This low-order system still requires costly iteration to resolve upscattering. We note that this

low-order system has a choice of how to split the scattering operator, but we are unaware of any

low-order methods that do not employ the same operator splitting as the high-order operator.

Instead of solving the upscattering problem, Adams and Morel[36] recognized that the slowest

converging error mode could be eliminated by solving a one-group problem with cross sections

collapsed with an energy spectrum, ξ, equal to the energy eigenvector of the slowest converging

mode, which they approximate with the slowest converging mode of an infinite homogeneous

problem. In practice, ξ must be determined for each unique material within the problem, each

requiring an eigenvalue solution to determine the largest eigenvalue and its eigenvector. Using the

two-grid energy collapse scheme we obtain a one-group system of P1 diffusion equations:

∇⃗ · δ
〈
J⃗
〉(i+1)

+ ⟨T ⟩ δ ⟨Φ⟩(i+1)
0 = ⟨S⟩0 δ ⟨Φ⟩

(i+1)
0 + ⟨R⟩(i+1/2)

0 , (6.16)

1

3
∇⃗δ ⟨Φ⟩(i+1)

0 + ⟨T ⟩ δ
〈
J⃗
〉(i+1)

= ⟨S⟩1 δ
〈
J⃗
〉(i+1)

+
〈
R⃗
〉(i+1/2)

1
, (6.17)

For completeness we have included
〈
R⃗
〉(i+1/2)

1
in the 1st moment equation, but the original

TG derivation ignores this term; in future equations we also choose to ignore this term. The next
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iterate is calculated with update equation given by:

Φ
(i+1)
0 = Φ

(i+1/2)
0 + ξδ ⟨Φ⟩(i+1)

0 . (6.18)

The group collapsed cross sections are defined as follows, also given in block matrix form

using a vector of ones, P :

⟨T ⟩ =
N∑
g=1

ξgσt,g = P TTξ, (6.19)

⟨S⟩0 δ ⟨Φ⟩
(i+1)
0 = W0

N∑
g=1

N∑
g′=1

ξ′g

L∑
l=0

2l + 1

4π
σs,g′→g,l

l∑
n=−l

Y n
l

(
Ω⃗m

)
δϕ

(i+1)
g′,l,n = P TS0ξ

T δΦ
(i+1)
0 ,

(6.20)

⟨S⟩1 δ
〈
J⃗
〉(i+1)

0
= W⃗1

N∑
g=1

N∑
g′=1

ξ′g

L∑
l=0

2l + 1

4π
σs,g′→g,l

l∑
n=−l

Y n
l

(
Ω⃗m

)
δϕ

(i+1)
g′,l,n = P TS1ξ

T δJ⃗ (i+1),

(6.21)

⟨D⟩ = 1

3 (⟨T ⟩ − ⟨S⟩1)
, (6.22)

⟨A⟩ = ⟨T ⟩ − ⟨S⟩0 (6.23)

⟨R⟩(i+1/2)
0 = PR

(i+1/2)
0 (6.24)

〈
R⃗
〉(i+1/2)

1
= PR⃗

(i+1/2)
1 (6.25)

This system of equations defines the two-grid DSA method, and includes linearly anisotropic

scattering sources, but only accelerates the 0th moment of Φ.
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6.4 Analysis

6.4.1 Block Matrix Form of the Iteration Operator

We define our system of equations in block matrix form. For simplicity, we treat the within-

group scattering as either fully converged so that Sl,rec is included in Sl,con, or only one transport

step and Sl,rec is included in Sl,lag. We also limit this analysis to P1 scattering, and do not discretize

the angle dependence. We find the angular intensity after a within-group solve for P1 scattering:

Ψ(i+1/2)
(
Ω⃗
)
= L−1 1

4π

[
S0,conΦ

(i+1/2)
0 + S1,con3Ω⃗ · J⃗ (i+1/2)

]
+ L−1 1

4π

[
S0,lagΦ

(i)
0 + S1,lag3Ω⃗ · J⃗ (i)

]
+

1

4π
L−1Qfixed

(
Ω⃗
)
.

(6.26)

We find the 0th and 1st moments of the previous equation:

Φ
(i+1/2)
0 = W0L

−1
[
S0,conΦ

(i+1/2)
0 + S1,con3Ω⃗ · J⃗ (i+1/2)

]
+W0L

−1
[
S0,lagΦ

(i)
0 + S1,lag3Ω⃗ · J⃗ (i)

]
+W0L

−1
(
Ω⃗
)
Qfixed

(
Ω⃗
)
.

(6.27)

J⃗ (i+1/2) = W⃗1L
−1
[
S0,conΦ

(i+1/2)
0 + S1,con3Ω⃗ · J⃗ (i+1/2)

]
+ W⃗1L

−1
[
S0,lagΦ

(i)
0 + S1,lag3Ω⃗ · J⃗ (i)

]
+ W⃗1L

−1Qfixed
(
Ω⃗
)
.

(6.28)

In in block matrix form, these equations are:

[I − Acon] Φ(i+1/2) = AlagΦ(i) +Q, (6.29)

where:

I =

I 0

0
⃗⃗
I

 , (6.30)
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F =

W0L
−1 W0L

−1Ω⃗

W⃗1L
−1 W⃗1L

−1Ω⃗

 , (6.31)

S0,con/lag =

S0,con/lag 0

0 3S1,con/lag
⃗⃗
I

 (6.32)

Acon =

W0L
−1S0,con W0L

−1S1,con3Ω⃗

W⃗1L
−1S0,con W⃗1L

−1S1,con3Ω⃗

 =

W0L
−1 W0L

−1Ω⃗

W⃗1L
−1 W⃗1L

−1Ω⃗


S0,con 0

0 3S1,con
⃗⃗
I


= FScon,

(6.33)

Alag =

W0L
−1S0,lag W0L

−1S1,lag3Ω⃗

W⃗1L
−1S0,lag W⃗1L

−1S1,lag3Ω⃗

 = FSlag, (6.34)

Q =

W0L
−1Qfixed

(
Ω⃗
)

W⃗1L
−1Qfixed

(
Ω⃗
)
 , (6.35)

Next we solve for Φ(i+1/2):

Φ(i+1/2) = [I − Acon]−1 [AlagΦ(i) +Q
]
, (6.36)

We show a two-grid step with no spatial discretization and P1 scattering:

δ ⟨Φ⟩(i+1)
0 =

[
∇⃗ · 1

3
(⟨T ⟩ − ⟨S⟩1)

−1 ∇⃗+ (⟨T ⟩ − ⟨S⟩0)
]−1

PS0,lag

(
Φ

(i+1/2)
0 − Φ

(i)
0

)
, (6.37)

and define a two-grid operator ÂTG:

ÂTG = ξ

[
∇⃗ · 1

3
(⟨T ⟩ − ⟨S⟩1)

−1 ∇⃗+ (⟨T ⟩ − ⟨S⟩0)
]−1

PS0,lag, (6.38)
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that is a component of a block matrix operator:

ATG =

ÂTG 0

0 0

 (6.39)

Then the update equations for the next scattering moments are:

Φ
(i+1)
0 = Φ

(i+1/2)
0 + ÂTG

(
Φ

(i+1/2)
0 − Φ

(i)
0

)
, (6.40)

J⃗ (i+1) = J⃗ (i+1/2), (6.41)

We write this system in block matrix form:

Φ(i+1) =
[
[I − Acon]−1Alag +ATG

[
[I − Acon]−1 [Alag]− I

]]
Φ(i)

+ [I +ATG] [I −Acon]−1Q
(6.42)

This class of iteration schemes is equivalent to a Richardson iteration for an operatorAall such

that:

Φ(i+1) = (I − Aall) Φ(i) + Q̃, (6.43)

where:

Aall = I −
[
[I − Acon]−1Alag +ATG

[
[I −Acon]−1Alag − I

]]
, (6.44)

Q̃ = [I +ATG] [I − Acon]−1Q. (6.45)

and eigenvalues of I − Aall determine how quickly the Richardson iteration will converge.
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6.4.2 Fourier Decomposition of Modes

To evaluate the spatial operators of the infinite system, we expand the solution error using the

Fourier ansatz:

δ ⟨Φ⟩ (r⃗)(i) =
∫∫∫ ∞

0

d3λδΦ†e
ıλ⃗·r⃗. (6.46)

We use the linear independence of modes to define equations for one mode, and we can ana-

lytically determine the spatial dependence from that equation as a function of the error mode. We

substitute this ansatz into the expression for F to determine inverse of the transport operator for a

mode λ⃗:

F =

W0L
−1 W0L

−1Ω⃗

W⃗1L
−1 W⃗1L

−1Ω⃗

 =
1

4π

∫
4π

dΩ
(
ıλ⃗ · Ω⃗ + T

)−1



1 Ωx Ωy Ωz

Ωx ΩxΩx ΩxΩy ΩxΩz

Ωy ΩyΩx ΩyΩy ΩyΩz

Ωz ΩzΩx ΩzΩy ΩzΩz


(6.47)

Because this expression is rotationally symmetric, we choose to orient our e⃗z axis to coincide

with the λ⃗ mode, and define a cosine in the direction of λ⃗:

Ω · λ⃗ = |λ⃗|µ, (6.48)

Then we may write the direction Ω as a function of µ and γ, the azimuthal angle about the e⃗z

axis from the e⃗x axis:

Ω⃗ =
[(
1− µ2

)1/2
cos(γ)e⃗x +

(
1− µ2

)1/2
sin(γ)e⃗y + µe⃗z

]
. (6.49)

We manipulate the inverse of the operator in F :
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(
ıλ⃗ · Ω⃗ + T

)−1

≡
(
ıλ⃗ · Ω⃗ + T

)−1 (
−ıλ⃗ · Ω⃗ + T

)−1 (
−ıλ⃗ · Ω⃗ + T

)
, (6.50)

and because these are all diagonal matrices:

(
ıλ⃗ · Ω⃗ + T

)−1

≡
((

λ⃗ · Ω⃗
)2

+ T 2

)−1 (
−ıλ⃗ · Ω⃗ + T

)
(6.51)

Writing the integral in this form lets us immediately determine which functions are odd func-

tions of µ, and are thus zero. Similarly, all terms that are linear in cos(γ) or sin(γ) or both are

zero. What remains are the 1 ∗ 1, Ω2
x, Ω2

y, Ω
2
z, 1 ∗Ωz, and Ωz ∗ 1 terms. We evaluate these non-zero

integrals for illustration:

F11 =
1

4π

∫
4π

dΩ
(
|λ⃗|2µ2 + T 2

)−1 (
−ı|λ⃗|µ+ T

)
=

arctan
(
T−1|λ⃗|

)
|λ⃗|

(6.52)

FΩzΩz =
1

4π

∫
4π

dΩ
(
µ2
) (
|λ⃗|2µ2 + T 2

)−1 (
−ı|λ⃗|µ+ T

)
= −T · (T arctan (T−1|λ|)− |λ|)

|λ|3

(6.53)

FΩxΩx = FΩyΩy =
1

4π

∫
4π

dΩ
(
1− µ2

)
cos2(γ)

(
|λ⃗|2µ2 + T 2

)−1 (
−ı|λ⃗|µ+ T

)
=

1

2
F11 −

1

2
FΩzΩz

(6.54)

F1∗Ωz = FΩz∗1 =
1

4π

∫
4π

dΩµ
(
|λ⃗|2µ2 + T 2

)−1 (
−ı|λ⃗|µ+ T

)
= −ı|λ⃗|FΩzΩz

(6.55)

Next we determine the spatial dependence of the two-grid operator for the same Fourier mode:

ÂTG = ξ

[
|λ⃗|21

3
(⟨T ⟩ − ⟨S⟩1)

−1 + (⟨T ⟩ − ⟨S⟩0)
]−1

PS0,lag, (6.56)
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Using these expressions, we determine the eigenvalues of the operator given by Eq. (6.44) in

subsection 6.4.4.

6.4.3 Maxwell–Boltzmann Group Structure

In the analysis that follows, we choose an energy discretization such that the population in a

Maxwell–Boltzmann distribution would have a constant value by setting each energy group range

to have an equal amount of neutron flux. A Maxwell–Boltzmann population distribution is given

by:

NM (E) = N0
2π

(πkT )3/2

√
Ee−E/kT . (6.57)

The non-relativistic velocity can be determined as a function of energy:

v =
√
E

√
2

m
. (6.58)

From the population defined above, the Maxwell–Boltzmann scalar flux distribution is given

by the following equation:

ϕM (E) = vNM (E) = N0

√
2

m

2π

(πkT )3/2
Ee−E/kT (6.59)

If we normalize the spectrum to one, the constants will cancel resulting in:

ϕ̃M (E) = Ee−E/kT , (6.60)

The integral of this equation over an energy range:
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E2∫
E1

dEEe−E/kT =
[
−EkTe−E/kT

]E2

E1
−

E2∫
E1

dE − kTe−E/kT

=
[
−EkTe−E/kT

]E2

E1
−
[
k2T 2e−E/kT

]E2

E1

=
[
−E2kTe

−E2/kT
]
−
[
−E1kTe

−E1/kT
]
−
[
k2T 2e−E2/kT

]
+
[
k2T 2e−E1/kT

]
= −E2kTe

−E2/kT + E1kTe
−E1/kT − k2T 2e−E2/kT + k2T 2e−E1/kT

= kT
(
E1e

−E1/kT − E2e
−E2/kT

)
+ k2T 2

(
e−E1/kT − e−E2/kT

)
(6.61)

The normalized flux in a group range is then given by:

ϕ̃M(E1, E2) =
(
kTE1 + k2T 2

)
e−E1/kT −

(
kTE2 + k2T 2

)
e−E2/kT (6.62)

The integral over all energies is given by:

ϕ̃M,tot =
ϕM(Emin, Emax)

C
=
(
kTEmin + k2T 2

)
e−Emin/kT −

(
kTEmax + k2T 2

)
e−Emax/kT

(6.63)

Our goal is to obtain energy group ranges such that the particle flux is equal in each energy

group:

ϕPG =
ϕM,tot

G
(6.64)

where G is the number of groups. With the flux per group defined, and the initial energy is

known, we solve for E2:

(
kTE2 + k2T 2

)
e−E2/kT =

(
kTE1 + k2T 2

)
e−E1/kT − ϕPG (6.65)

This involves evaluation of a Lambert W function of 0th kind, or numerical solution to obtain
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(a) Jacobi (J1) Spectral Radii (b) Gauss-Seidel (GSFull) Spectral Radii

Figure 6.1: Spectral Radii for Graphite at 296 K

E2. Once obtained, the process is then repeated until all G group boundaries are determined.

Using the group structure devised here gives an equal amount of neutron flux per energy group.

This group structure is useful for checking analysis, which should obtain a flat spectrum for the

eigenvector of the largest eigenvalue and the two-grid quantity ξg, and numerical tests by giving

equal compute time to equal amounts of residual reduction.

6.4.4 Fourier Analysis of Infinite Homogeneous Graphite

We analyze the Jacobi and Gauss-Seidel operators with Isotropic and Linearly-Anisotropic

scattering for graphite at 296 K using a 160 group multi-group cross section set that used the energy

group structure described in the previous section. We have confirmed the largest eigenvalue occurs

for all unaccelerated operators for the |λ| = 0 mode, as shown in Fig. (6.1), and the spectral radii

do not change significantly when including linearly anisotropic scattering.

We plot the energy eigenvalues of the mode that had the largest eigenvalue in Fig. (6.2). We see

that the largest Jacobi eigenvalue is suppressed for isotropic and anisotropic scattering, but there

are many more large eigenvalues which do not decrease significantly.

We plot the eigenvector associated with the largest eigenvalue of the slowest converging mode
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(a) Jacobi (J1) Maximal Eigenvalues (b) Gauss-Seidel (GSFull) Maximal Eigenvalues

Figure 6.2: Eigenvalues of the slowest converging mode for Graphite at 296 K

(maximum eigenvalue) in Fig. (6.3), to see the energy shape of the largest eigenvalue mode.

The largest eigenvalue’s eigenvectors of the unaccelerated operators are “flat,” which is a result

of the Maxwell–Boltzmann energy group structure described above. We see the largest eigen-

value’s eigenvector of the accelerated operators are no longer flat in energy, and the Gauss-Seidel

and Jacobi operators have a different energy shape for the slowest converging mode. Addition-

ally, the eigenvectors are zero in the linearly anisotropic region, indicating the slowest converging

eigenvectors have no terms from linearly anisotropic scattering.

For the Jacobi operator with TG acceleration, although the slowest converging mode is elim-

inated, there are many eigenvalues that remain with large magnitude. However, our intuition of

the eigenvalue distribution is that a Krylov method could solve the Jacobi+TG system effectively.

Additionally, the Jacobi spectral radius could be reduced by accelerating the within-group scat-

tering. Such a method was devised by Hanuš and Ragusa, which combines Jacobi splitting with

within-group DSA and TG acceleration.

We now test the J1+wgDSA+TG method using the CDFEM operator we have devised and

compare to the MIP operator that has previously been tested.
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(a) Jacobi (J1) Maximal Eigenvector (b) Gauss-Seidel (GSFull) Maximal Eigenvector

Figure 6.3: Flat-mode eigenvectors of the largest eigenvalue for Graphite at 296 K. The first 160
points correspond to Φ0, then remaining 160 points are for Jx, Jy, and Jz.

6.5 Numerical Results

6.5.1 2D Homogeneous Graphite Upscattering

Our first problem is a 20 [cm] x 20 [cm] homogeneous graphite block that is discretized into 12

x 12 spatial cells. We use a 168 group multi-group cross section set generated with NJOY as part

of a Predictive Science Academic Alliance Program (PSAAP) project at the Center for Exascale

Radiation Transport (CERT) at Texas A&M University. This cross section set has 63 groups in

the fast energies, and 105 groups in the thermal energy range. We employ the J1 + wgDSA + TG

method from Hanuš and Ragusa. For this method, every outer within-group-set (WGS) iteration

performs 1 transport sweep and 106 diffusion solves (105 Thermal Group solves + 1 TG solve).

We note that the cost of the transport sweep is low compared to the cost of one diffusion solution

because we chose S4 quadrature, or 24 discrete angles.

We utilize this problem to compare effects of consistency of the CFEM solution that is part of

the CDFEM low-order operator and the relative effectiveness of the CDFEM operator to MIP and

unaccelerated iteration.

In Table 6.1, Rich.A solves the problem with unaccelerated Richardson iteration that per-
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formed 1 transport sweep per Jacobi iteration, PMIPA uses the J1 + wgDSA + TG with Richardson

iteration and the MIP operator, PP1CDFEM uses the J1 + wgDSA + TG method with Richardson

iteration and a CDFEM operator that uses a P1 diffusion discretization for the global CFEM so-

lution, and PStiffnessCDFEM uses the J1 + wgDSA + TG method with Richardson iteration and a

CDFEM operator that uses a diffusion discretization that has a Laplacian resulting in a standard

stiffness matrix for the global CFEM solution.

Table 6.1: Results from 2D Homogeneous Graphite

Rich.A PMIPA PP1CDFEMA PStiffnessCDFEMA
Outer It. 200 66 60 61

Total Diff. It. - 24302 23173 23010
Sweep Time [s] 7.8 3.77 3.68 3.59

Transport Source Calc. [s] 24.1 10.1 9.71 9.52
Diffusion Time [s] - 22 15.2 15.7

Total Time [s] 31.9 35.87 28.59 28.81

Because of the relatively low cost of transport sweeps, the largest component of unaccelerated

iteration was from calculation of the scattering source, which is a cost of each outer iteration that

should not be ignored. Unaccelerated Richardson iteration is a poor choice for this problem, and

thus the iteration took significantly more iterations than the accelerated methods. The MIP operator

is more expensive to solve, and thus took more total time than either CDFEM choice. The mesh

had cells with aspect ratio of 1, and thus the efficiency of the CDFEM operator was not degraded.

The inconsistent CFEM discretization only required one additional outer iteration, as the ad-

dition of the Discontinuous update still provided effective acceleration. The “stiffness” diffusion

discretization can be a viable candidate if a code does not have P1 diffusion discretization avail-

able. We note that it is possible to obtain the P1 CFEM diffusion from the discontinuous update

equations.
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(a) Isometric view (b) Top down view of graphite and detector mesh

Figure 6.4: PSAAP Level 2 Problem

6.5.2 PSAAP Level 2 Detector-Column

The objective of this problem was to compare the CDFEM operator to the MIP operator on a

real world simulation that includes complex geometry and high-aspect ratio meshes. We simulate

a problem, designated as “Level 2,” that was part of the PSAAP project performed by CERT at

Texas A&M. The Level 2 problem models a large block of graphite, a detector above, a source in

a perpendicular direction as seen in Figure 6.4a. We modify the Level 2 by simulating only the

prismatic column of meshes that includes the detector, shown by Figure 6.4b.

This problem was composed of 105 thermal groups, 128 directions, 30576 spatial cells. This

problem was solved using a single core on the LLNL Quartz supercomputer, which is composed

of Intel Xeon E5-2695 CPU cores. We solved this problem using the “best” algorithm from Hanuš

and Ragusa, J1 + wgDSA + TG. Convergence criteria and iteration settings were set to match those

for the “Real World” problem in Hanuš and Ragusa’s paper.[59]

121



To make a direct comparison, we find the time per work unit for sweeps, Usweep, as follows:

Usweep = tsweep ∗Nprocesses/Nsweeps/Ngroups/Ncells/Ndirections (6.66)

And similarly, we find the time per work unit for diffusion, Udiffusion, as follows:

Udiffusion = tdiffusion ∗Nprocesses/Nsweeps/Ngroups/Ncells (6.67)

A summary of iteration statistics and comparison to reference values can be found in Table 6.2.

Table 6.2: Results from 3D Level 2 full problem (Reference results) and detector-column problem
(other results)

GMRES(A) PMIPA PCDFEMA Reference PMIPA
Outer It. 94 20 27 51

Total Diff. It. - 7590 14227 1345
Sweep Time [s] 38400 8930 12000 10089

Transport Source Calc. [s] 9930 2830 3500 -
Diffusion Time [s] - 15600 5650 1253

Total Time [s] 48330 27360 21150 11425
Usweep [s/wu] 9.94E-7 1.09E-6 1.08E-6 1.23E-6

Udiffusion [s/wu] - 2.53E-4 7.37E-5 5.86E-4

The solution times per work unit for our MIP execution was comparable to the reference MIP

values. The slightly higher values of the reference times per work unit are primarily because the

reference problem, which includes a larger volume of graphite and additional geometry of the

surrounding room, is more difficult to solve. The reference problem was run on 3528 cores with

1 process each and may have had reduced parallel efficiency, particularly in the diffusion solution

using HYPRE.

The solution using CDFEM has a factor of 3 less diffusion time per work unit. Even though

the solution required significantly more iterations to converge each diffusion problem, the overall

time was reduced compared to the similar MIP problem. Because the global CFEM operator has
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approximately 8 times fewer degrees of freedom in 3D geometry, solution of that system has a

significantly reduced cost. We find the acceleration efficiency of the CDFEM operator was not

significantly reduced due to high aspect-ratio meshes, since the problem was solved in 27 thermal

iterations compared to 20 using the MIP operator.

6.5.3 Summary

We studied linearly anisotropic neutron scattering for Gauss-Seidel and Jacobi iteration with

TG acceleration. We studied infinite medium graphite problems to determine if it is necessary to

accelerate linear moments of neutron flux distribution. After including linearly isotropic scattering,

the spectral radius did not increase and the largest error mode remained unchanged. The eigenvec-

tors of these largest error modes had near zero coefficients for the linearly anisotropic terms. Thus

we conclude it is sufficient to accelerate only the scalar moment for problems where graphite is the

primary source of difficulty when converging neutron scattering problems.

We tested the J1+wgDSA+TG method developed by Hanuš and Ragusa using the CDFEM

operator instead of MIP. While using the CDFEM operator increased the number of transport

sweeps, caused by degradation of acceleration in the high-aspect ratio mesh of the CERT Level 2

detector problem, the reduced degrees of freedom in the CDFEM operator result in greatly reduced

diffusion time, and thus the overall solution time was reduced.
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7. CONCLUSIONS

We have studied the three kinds of problems that have transport-driven physics: 1) k-eigenvalue

calculation using power iteration, 2) thermal radiative transport, and 3) thermal upscattering of

neutrons. Instead of accelerating the within-group scattering problems using a low-order opera-

tor, the methods we study accelerate the outermost iteration, effectively reducing the total number

of high-order sweeps to converge the problem. We have devised a novel method for thermal ra-

diative transfer that uses a linear equation for a correction, created a theoretical foundation for

k-eigenvalue problems that use a linear equation for a correction, and tested thermal neutron up-

scattering iteration using the CDFEM operator we have devised.

7.1 k-Eigenvalue

The use of diffusion operators as preconditioners of transport operators for scattering iterations

has been widespread. We have studied the use of diffusion operators to accelerate the convergence

of eigenvalue iterations. Currently the most widely used methods to accelerate eigenvalue itera-

tions employ nonlinear functionals in the low-order operators and solve low-order problems that

are themselves standard eigenvalue problems.

We have explored a family of methods, developed by Adams in 1986 and independently by

Suslov in 2003, that employs a low-order eigenvalue-like problem with a fixed source to obtain

an updated eigenvalue estimate and an additive correction to the eigenfunction. This method uses

linear functionals and operators that were developed for scattering iterations, and has demonstrated

convergence rates similar to methods with nonlinear functionals.

We have addressed several theoretical concerns regarding the multiple possible solutions that

could be admitted by the eigenvalue-like problem that results from this family of methods. We

have shown that the low-order linear diffusion problem becomes algebraically equivalent to the

QuasiDiffusion low-order problem when the solution is close to the converged solution. Through

a Fourier analysis in an infinite homogeneous medium, we have shown the iteration rapidly con-
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verges to the correct eigenvalue and eigenvector and not an arbitrary solution. We have shown that

for one-cell homogeneous problems the iteration procedure is convergent and converges to the cor-

rect eigenvalue if the high-order and low-order operators satisfy a mild consistency requirement,

namely, that they produce eigenvalues that are within a factor of two of each other.

Finally, we add to the body of evidence that these methods work well for reactor problems,

in particular in combination with the Continuous / Discontinuous finite-element diffusion operator

we have developed. We have demonstrated that the method provides convergence of k problems

to 1E − 5 with ≈ 15 transport sweeps for the well-known C5G7 benchmarks in 2D and 3D, and

also for a similar problem with more spatial detail and with 191 energy unknowns.

We find the family of linear eigenvalue-like methods to be robust, rapidly convergent, and

easy to implement. We emphasize that if a transport code already uses a diffusion operator (or

other low-order operator) as a preconditioner to accelerate convergence of scattering iterations,

it is straightforward to apply the same operator to eigenvalue acceleration, using the equations

described herein, without the need to develop nonlinear functionals.

7.2 Thermal Radiative Transfer

We have developed, analyzed, implemented, and tested iterative methods for radiative transfer

iterations, in each case building on a low-order diffusion operator that we previously developed for

accelerating the pseudo-scattering iteration of thermal radiative transfer. Introducing a Newton-like

iteration with this low-order operator, similar to the low-order iteration used by quasi-diffusion and

the local temperature iteration used by Nowak, we have obtained a linear acceleration method that

uses a gray diffusion equation coupled to the matter energy equation to update both temperature

and absorption-rate density.

The linear acceleration method is especially effective when the problem is highly diffusive,

and when iteration error is dominated by error in the temperature field. For problems that are

limited by pointwise ARD convergence, the nonlinear acceleration method quickly resolves the

temperature field, and effectively becomes Richardson iteration with a grey DSA preconditioner

for pseudo-scattering. For all problems studied, the linear acceleration method provides a factor of
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2 improvement in solution time compared to the linear within-group preconditioning method.

7.3 Thermal Neutron Upscattering

We have studied linearly anisotropic neutron scattering for Gauss-Seidel and Jacobi iteration.

We studied infinite medium graphite problems to determine if it is necessary to accelerate mo-

ments of neutron flux distribution other than the scalar flux. We found that the addition of linearly

anisotropic scattering did not increase the spectral radius even when only the scalar flux is updated

by the one-group soution. The eigenvectors of the dominant error modes had near zero coefficients

for the linearly anisotropic terms. Thus we conclude it is sufficient to accelerate only the scalar

moment for problems where graphite is the primary source of difficulty when converging neutron

scattering problems.

We have tested the J1+wgDSA+TG method developed by Hanuš and Ragusa using the CD-

FEM operator on several highly scattering problems of interest: a finite medium homogeneous

graphite problem, and the PSAAP Level 2 problem developed at the CERT. While using the CD-

FEM operator increased the number of transport sweeps, caused by degradation of acceleration

from the high-aspect ratio mesh of the Level 2 problem, the reduced degrees of freedom in the

CDFEM operator result in reduced diffusion and overall solution times.

7.4 Future Work

A list of suggested topics for further study follows.

• Analyze k-Eigenvalue algorithm for non-infinite problems where low- and high-order oper-

ators are not equivalent for the fundamental mode.

• Test the k-eigenvalue method with more reactor designs.

• Analyze a one cell problem for thermal radiative transfer to study consistency limitations of

the low-order Newton-like iteration and linear update.

• Determine if the linear HOLO methods can be derived from a linearization of QuasiDiffu-

sion.
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• Attempt to reduce degradation of CDFEM operator in high-aspect ratio geometries by im-

proving the approximations made to the corrections for the current on interior boundaries.
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