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ABSTRACT

Linear estimators, like the extended Kalman filter (EKF), find continual use (especially in the

field of navigation) mostly for their familiarity and computational efficiency. Often, these estima-

tion must be safeguarded from the realistic elements of physical systems, such as nonlinearities,

non-Gaussian noises, and unmodeled effects. To this end, existing linear estimators are frequently

outfitted with procedure-first robustness techniques—ad hoc mechanisms designed specifically to

prevent filter failure—such as measurement editing, gain underweighting, filter resets, and more.

As an alternative, this dissertation elects a model-first ethos, proposing nonlinear Gaussian mixture

(GM) filters that are derived from first principles to be robust. These inherently robust algorithms

are split into two approaches—1) non-Bayesian filters and 2) fault-cognizant filters—the end result

being a collection of filters that challenge the status quo of current practical estimation; instead

of reusing preexisting filter frameworks for the sake of ease, customized filters can be designed

specifically for the system at hand.

1) Bayes’ rule, while the archetypal basis for measurement fusion, relies on a fundamental

assumption; all specified models, such as prior distributions and measurement likelihoods, are pre-

sumed to exactly reflect reality. In practice, this is rarely the case, warranting an investigation into

non-Bayesian alternatives to traditional measurement updates. Fortunately, generalized variational

inference (GVI) provides an established foundation for such updates and is used in this work to

prototype several robust non-Bayesian filters. As closed-form filters are usually preferred, an it-

erative confidence-based update is derived, which, through Monte Carlo analyses, is shown to be

selectively conservative, such that a desired level of robustness can be user-appointed.

2) Whereas traditional filtering screens out undesirable, or faulty, measurements, fault-cognizant

filtering attempts to directly model these erroneous measurements, yielding estimators inherently

capable of processing returns that conflict with the conventional model of a sensor. As the nature

of both valid and faulty measurements can differ significantly between systems, several different

fault-cognizant updates (FCUs) are derived, each purposed for a specific application. Subsequent

analyses illustrate the robustness of the FCU to faulty measurements, both known and unknown.
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NOMENCLATURE

IFR intrinsic fault resistance

GNC guidance, navigation, and control

NASA National Aeronautics and Space Administration

IMU inertial measurement unit

VI variational inference

GVI generalized variational inference

FISST finite set statistics

MMSE minimum mean square error

pdf probability density function

pmf probability mass function

IID independent and identically distributed

GMM Gaussian mixture model

GM Gaussian mixture

KF Kalman filter

EKF extended Kalman filter

GSF Gaussian sum filter

GMF Gaussian mixture filter

FCMM fault-cognizant measurement model

FCU fault-cognizant update

FAR false alarm rate

FAR field-of-view

MC Monte Carlo
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KLD Kullback-Leibler divergence

NLL negative log loss

EM expectation-maximization

a italics, lowercase, unbolded characters→ scalar variables

a italics, lowercase, bolded characters→ vector variables

A italics, uppercase, bolded characters→ matrix variables

x state vector

z measurement vector

AT matrix transpose

A−1 matrix inverse

In identity matrix of size n× n

|a| absolute value

|A| determinant

‖A‖ or ‖A‖S matrix spectral norm

‖A‖F matrix Frobenius norm

Pr(·) probability

p(·) probability density function

σ standard deviation

D[·‖·] divergence

L(·, ·) loss function

Ep(a)

[
f(a)

]
expectation operator:

∫
p(a)f(a)da

pg(a|m,P ) multivariate Gaussian distribution of a with meanm and co-
variance matrix P

a ∼ p(·) random variable a is distributed to pdf p(·)

O(an) collection of all terms dependent on a of order n and higher(
n
k

)
combination operator or binomial expansion: n!

k!(n−k)!
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nPk permutation operator: n!
(n−k)!

A = diag{a1, a2, . . . , an} denotes diagonal matrix where ai is ith diagonal ofA

δ(a) Dirac delta function where δ(a) =

{
+∞ , if a = 0

0 , if a 6= 0
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1. INTRODUCTION

The term filtering, as it pertains to the estimation of uncertain systems, generally refers to

methodologies that fuse incoming data with preexisting knowledge of the system at hand in or-

der to produce an estimate of some variables of interest. Since its rise to popularity in the mid-

20th century, which many credit to Kalman and Bucy [2, 3], statistical filtering has been an es-

sential component in solving many of today’s modern engineering problems. Indeed, it was the

Apollo missions of the 1960s that necessitated the creation of the extended Kalman filter (EKF) by

Schmidt [4, 5], which not only remains a staple of spaceflight navigation to this day [6, 7], but has

arguably become the most popular filter for a wide range of engineering fields.

Regardless of the specific application or estimator employed, one of the most common traits

sought after in filtering is robust behavior; failure of the filtering algorithms is to be avoided when-

ever possible. Failures may be caused by various factors, such as unmodeled effects or compu-

tational errors, and can quickly lead to system-wide problems with large consequences. To avoid

this, most filtering architectures install robust mechanisms into their filters. In practice, where

the field of estimation is dominated by linear estimators like the EKF, this typically involves the

addition of ad hoc procedures that screen incoming data or soften the rate of information gain.

This dissertation is concerned with investigating alternative methods of robust filtering, compar-

ing them against common practices from navigation applications, and obtaining nonlinear filtering

realizations that surpass the limitations of linear estimators.

1.1 Filtering

First and foremost, it is worthwhile to describe filtering as interpreted by this work. Most

generally, filters are the solution to the problem of estimating a set of latent variables contained

in x, referred to herein as the state vector, that are indirectly observed via some vector z of noisy

measurements, which are a function of the state dictated by the real measurement model of the

system. The variables in the state vector x are often assumed to vary over time according to the
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system’s real dynamics, which, in a discrete sense, describes the transformation of the state at time

tk−1 to time tk, and thus, elements are commonly indexed by k to denote the corresponding time

step. As it is impossible to directly observe xk, a filter can be applied to the real system as shown

in Fig. (1.1).

xk−1
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Dynamics

Model
xk
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Measurement
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p(xk−1)
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Measurement
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p+(xk)

≈ ≈
Propagation Update

Unobservable

Figure 1.1 Example of a statistical filter being applied to a real system

Note that the filter models for the dynamics and measurements in Fig. (1.1) may not be equiv-

alent to the models of the real system. This is reflective of reality; oftentimes, exact knowledge of

the real system models is impossible and/or impractical, and thus, the filter assumes models that

approximate the behavior of the physical system. Defining these assumed models is a key step in

building a filter, as its derivation can be completely described by the assumptions it establishes.

While some filters may directly seek a state estimate x̂k, such as least squares estimators [8],

it is more informative to operate with respect to a probability density function (pdf) of which it is

assumed xk is a random variable, such that

xk ∼ p(xk) . (1.1)

2



This concept is typically referred to as a probabilistic state-space model [9, 10]. By appropriately

manipulating the pdf, the filter inherently retains a complete statistical description of the state

from which quantities such as a state estimate or uncertainty measure can be extracted. This pdf

manipulation is typically separated into two main stages—the propagation and the update. This

work is primarily concerned with the update portion of filtering, but both are described here for

reference.

1.1.1 Propagation

Assuming the filtering process of Fig. (1.1) can be initialized with the pdf p(xk−1), which con-

tains preexisting knowledge of the state at the preceding time step, the filter propagation proceeds

to transform p(xk−1) according to the assumed dynamical model, producing the propagated pdf

of the state p−(x), which is referred to as the prior distribution. To propagate the distribution, the

Chapman-Kolmogorov equations are typically paired with the classic Markovian assumption on

the dynamical system [9, 11], producing

p−(xk) =

∫
p(xk|xk−1)p(xk−1)dxk−1 . (1.2)

The term p(xk|xk−1) is known as the transition density that corresponds to the assumed dynamics

model of Fig. (1.1) and is a pdf of xk that quantifies its likelihood for a given xk−1. Practically

speaking, p(xk|xk−1) is completely defined by the (assumed) dynamics of the state of Fig. (1.1),

meaning dynamic models for xmust be established before the transition density can be calculated.

1.1.1.1 Discrete Dynamics

In some cases, it is possible (and highly useful) to describe the dynamics of the state in a

discrete sense, such that xk−1 is assumed to transform into xk over a time interval from tk to tk−1

according to the difference equation

xk = f(xk−1) +wk−1 , (1.3)

3



where wk−1 is a random variable used to model the process noise of a dynamical system.

Note that in the special case where: 1) f(xk−1) is constrained to be a linear function of the

state Fxk−1 and 2)wk−1 is taken to be zero-mean, Gaussian noise with covarianceQk−1, then the

transition density can be expressed as

p(xk|xk−1) = pg(xk|Fxk−1,Qk−1) .

If it is additionally assumed that the distribution p(xk−1) is a Gaussian, Eq. (1.2) will become

equivalent to the propagation equations of the discrete Kalman filter.

1.1.1.2 Continuous Dynamics

While it is convenient to express dynamics in the discrete fashion of Eq. (1.3), there are many

systems where the time-evolution of the state is naturally described by the differential equation

ẋ(t) = f
(
x(t)

)
+w(t) , (1.4)

wherew(t) is a white noise process that accounts for the stochasticity of the dynamical system. In

systems with continuous dynamics, the transition density of Eq. (1.2) is not as straightforward to

calculate. Instead of Eq. (1.4), the Fokker-Planck equation must be used, given by [9]

∂p(x)

∂t
= −

n∑
i=1

∂

∂xi

{
p(x)fi(x)

}
+

1

2

n∑
i=1

n∑
j=1

∂2

∂xi∂xj

{
p(x)[Qs]i,j

}
, (1.5)

where E[w(t)wT (τ)] = Qsδ(t − τ), x ∈ Rn, Qs is the power spectral density of the process

noise, and fi(·) is the ith element of f(·). Therefore, given the distribution p(xk−1) as an initial

condition, the prior distribution p−(xk) is produced via integration of Eq. (1.5) over the interval

[tk−1, tk]. Unfortunately, few exact solutions to Eq. (1.5) exist, with the most popular solution

requiring the same linear-Gaussian assumptions mentioned in Section 1.1.1.1.
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1.1.2 Update

Again, referring to Fig. (1.1), at time tk the filter update incorporates the observed information

contained in measurement zk to form the posterior distribution p+(xk). This is accomplished by

fusing zk according to the assumed measurement model with the prior information of the state in

p−(xk). Most often, this process takes the form of Bayes’ rule as

p+(xk) ∝ p−(xk)`(zk|xk) , (1.6)

where `(·|·) is the measurement likelihood function, a detailed description of which is left for

Section 4.1. However, while Bayes’ rule is certainly prominent, the posterior is not required to

take the form of Eq. (1.6); the primary motivation behind Chapter 3 is, in fact, non-Bayesian

approaches to measurement updates. Following the update, the entire filtering procedure is usually

iterated by recursively defining p(xk−1) = p+(xk), as filters are often designed to be sequential in

practice.

1.1.3 Estimate Extraction

Often a part of a much larger architecture—i.e. guidance, navigation, and control (GNC)—

each filter iteration typically includes the extraction of a point estimate x̂k from the posterior

distribution, which can be passed to other subsystems. Point estimates can be generated many

ways, but most methods involve minimizing the expectation of some risk functionR(·, ·) as [10]

x̂k = min
x̃

{
Ep+(xk)

[
R(xk, x̃)

]}
. (1.7)

The precise nature of the point estimate is directly determined by the definition of the risk function;

for example, if

R(xk, x̃) = (xk − x̃)T (xk − x̃) , (1.8)
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then the point estimate of Eq. (1.7) is the mean of p+(xk). Note that this is analogous to minimum

mean square error (MMSE) estimation (or unbiased minimum variance estimation), and is known

to have the optimal estimate of

x̂k = Ep+(xk)

[
xk
]
, (1.9)

which is the mean of the posterior distribution ofxk. A supplementary derivation of this is provided

in Section B.1 for reference.

1.2 Robust Statistics

The term “robust” is often liberally used across various engineering fields to the point that it

can take on different meanings even within the realm of estimation alone. In response, this section

begins with a general description of robustness as it relates to statistics to better frame the objectives

of the research. As mentioned in Section 1.1, filtering algorithms are completely described by

their inherent assumptions, whether they align with the reality of the physical system or not. These

assumptions include any foundational presuppositions made concerning the distribution of random

variables, such as the prior state or observed measurements, and extend to assumptions made

relevant by practical application, such as the size and nature of computational errors. In the vast

majority of systems, it is impossible to form a practical filtering algorithm while guaranteeing the

underlying assumptions will not be violated. Thus, the robustness of a filter becomes a critical

element in determining successful estimation [12]—how resilient is the filtering solution when

subjected to deviations in various assumptions? The less robust a filter is, the more prone it is to

failure or corruption when implemented in real systems, and thus, highly robust filters are often

sought after in many practical applications.

Since robustness is directly related to violations of the assumptions, an obvious question arises

when trying to develop a robust filter: how does one rectify the filtering architecture to protect

against these violations? The answer to this can differ significantly within the field of statistics.

For instance, Box, who many credit with coining the term robust as understood by statisticians
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[13], believes that robustness should be imparted to the underlying statistical models (model-first)

such that resulting filtering algorithms can be strictly adhered to [14]. Conversely, others consider

the best approach is to tailor the filtering procedures directly (procedure-first), as some fallacies

in underlying model assumptions may be unavoidable [15]. Figure (1.2) is a concise visualization

contrasting the model-first and procedure-first schools of thought. Robust filtering techniques de-

rived from both philosophies exist, as well as techniques not belonging to either ideology, though

most practical applications of robust filters involve the stability of a filter update to measurement

outliers [16–18]. The research herein takes motivation from this previous work and seeks to de-

velop and investigate model-first techniques that promote more robust filtering.

(A) Establish Relevant
Assumptions &

Models

(B) Apply
Statistical Theory

& Identities

(C) Obtain Operable
Filtering Algorithms

Model-first
Robustness

Procedure-first
Robustness

Filter Derivation

Figure 1.2 Procedure-first vs. model-first approaches to deriving robust filters
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1.3 Current Filtering Practices

Following the birth of the Kalman filter, filtering quickly found popularity in the engineering

community [19]. To many, the relatively straightforward application of statistics to state-space

theory was attractive, in part, as it was readily adapted to many pre-existing systems. The promi-

nence of filtering in engineering applications continues to this day, especially within the field of

spacecraft navigation, resulting in decades of advancements being made in the field.

1.3.1 Spacecraft Navigation

Spacecraft navigation is a long-standing field and one of the first to push filtering theory into

practical application. During the Apollo era, as NASA set its sights on landing a crewed-spacecraft

on the moon, human-reliant navigation was no longer a sufficient means by which to navigate [20].

These missions required a reliable solution to real-time sensor fusion, as accurately estimating

vehicle pose was necessary for a safe and successful lunar landing. This need pushed Schmidt and

his team to develop the first version of the EKF, which many consider to be the birth of modern

navigation.

Today, spacecraft navigation remains a thriving field, having been a core subsystem on many

missions, such as the Space Shuttle and Orion [6, 7]. Though the precise configuration varies from

mission to mission, most spacecraft navigation architectures contain some common elements [21].

For instance, the state vector x almost always consists of three-dimensional position and attitude,

and frequently contains velocity as well. The propagation of the state estimate through time (i.e.

the assumed dynamics model of Fig. (1.1)) is typically governed by an inertial measurement unit

(IMU), which contains a gyroscope that receives measurements of the vehicle’s rotational rate and

an accelerometer that senses linear accelerations. The remaining sensor suite—which may include

star cameras, rangefinders, GPS, optical cameras, LiDAR, magnetometers, and more—provides

measurement data that is incorporated into the state estimate during the update stage of Fig. (1.1).

The collection of algorithms responsible for propagating and updating the state estimate is referred

to as the navigation filter.
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Though many filtering methodologies exist, the vast majority of spacecraft navigation is re-

alized through the EKF, or, more precisely, one of its variants. The multiplicative EKF (MEKF)

is a filter frequently used in spaceflight as it designed specifically for the difficulties of attitude

estimation [22]. Factorized forms of the EKF, such as square-root or UDU filters, are popular for

their increased computational efficiency and numerical stability [23]. To prevent the navigation

filter from failing, the two most common robustness procedures are residual editing (Section 4.7.1)

—where measurement residuals are screened and any outliers are ignored by the filter—and un-

derweighting (Section 3.4.1)—where information gain from measurements is artificially slowed

to defend against linearization and modeling errors, both procedure-first approaches for designing

robust filters. With these methodologies in mind, it is clear that linear, procedure-first filters are the

dominant class of estimators in spacecraft navigation. Thus, throughout this work, the operation

and limitation of these linear, procedure-first estimators is examined thoroughly, and improved

estimation performance is sought by way of nonlinear, model-first approaches.

1.3.2 Additional Applications

While many current filtering practices are historically rooted in spaceflight, the application of

such estimation algorithms extends far beyond navigation alone. Generally speaking, a filter is

useful for any system where a state consisting of latent variables, often dynamically time-varying,

is indirectly observed via noisy measurements. Such systems are frequently encountered and, in the

modern era of computer-based technology, are typically well-suited to directly incorporate filtering

architecture. Relevant examples include engineering applications like space domain awareness

and autonomous vehicular navigation [24–26], along with systems found in more commonplace

technologies such as phones [27, 28], virtual reality [29], and GPS [30]. Albeit a large motivation

behind this research is spaceflight navigation and its continued reliance on the EKF, the principles

can be applied to a wide variety of systems, and the work herein is presented in a generality that is

readily adapted to many applications.
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1.4 Dissertation Objectives

Considering the fact that current practice still almost universally relies on linear estimators with

procedure-first robustness, this dissertation proposes alternative robust filtering methods with the

following objectives:

1. Utilize methods of nonlinear filtering to allow for more accurate estimation of non-Gaussian

systems and wider applicability.

2. Develop model-first approaches to robustness by addressing the statistical foundation and

modeling assumptions of the filter.

3. Realize closed-forms to be compared with current filtering practices relevant to navigation.

The culmination of this dissertation is a set of novel filtering methodologies that seek to compete

against and replace conventional filtering practices, with an emphasis on achieving robustness by

directly addressing the inadequacy of modeling assumptions.

The remainder of the dissertation is segmented into three main chapters. Chapter 2 is a prelimi-

nary discussion on nonlinear filtering, which begins by contrasting the class of nonlinear estimators

with that of linear estimators. The scope of Chapter 2 is then narrowed by focusing on nonlinear

filters realized through Gaussian mixture (GM) approximations which includes the algorithms of

the classic Gaussian sum filter as well as some common component management methods. Chap-

ter 2 concludes with a Monte Carlo simulation that emphasizes the advantages of nonlinear filters

relative to their linear counterparts.

Next, Chapter 3 investigates the practicality of non-Bayesian filtering, which begins by dis-

cussing Bayes’ rule and the issues inherent to its use. Referring to Fig. (1.2), model-first robustness

is applied at (B) by replacing the traditional Bayesian update with generalized variational inference

(GVI), an optimization-based data fusion paradigm capable of more conservative estimation. Four

GVI updates are investigated, showcasing the varying behavior that GVI is capable of, before a

linear, closed-form, confidence-based update is derived that is more suitable for practical imple-

mentation. This new update is then adapted to nonlinear systems and made nonlinear itself by
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Gaussian mixture approximations, and is subsequently analyzed via several simulations. During

these analyses, the non-Bayesian update is specifically tested against the procedure-first robustness

technique of underweighting, emphasizing its applicability to navigation.

Whereas Chapter 3 achieves robustness by restating its statistical update, Chapter 4 proposes

robustness by altering the models and assumptions necessary to filter derivations (which targets

(A) of Fig. (1.2)). Instead of traditional measurement models that only account for valid mea-

surements, four different fault-cognizant measurement models (FCMMs) are proposed, ranging

from sensors with single measurement returns to scans of unlabeled measurements that are more

common to image-based feature tracking applications. Possible spatial and temporal measurement

distributions are explored, and various nonlinear fault-cognizant updates (FCUs) are derived by

pairing an appropriate FCMM with user-selected measurement distributions. The performance of

the FCU is evaluated across several different simulations, where its robustness is compared against

residual editing.

The dissertation concludes with Chapter 5, which summarizes the key findings of the research

and remarks on potential future work to be done. In general, it is found that higher levels of robust-

ness can be achieved, both through non-Bayesian and fault-cognizant filtering. If, additionally, an

update is realized via a nonlinear GM filter, it also becomes more robust to non-Gaussianity and

linearization errors.
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2. NONLINEAR FILTERING

The term “nonlinear,” with respect to filtering, can take on different meanings, so it is useful

to clarify the definition to avoid any confusion. In this work, nonlinear filtering is best defined

by differentiating it from linear filtering. As such, this chapter begins by summarizing linear

estimators to enhance the subsequent discussion on nonlinear estimation.

2.1 Linear Estimators

In many respects, the prominence of linear estimators can be attributed to minimum mean

square error (MMSE) estimation. MMSE estimators accomplish Bayesian inference via the op-

timization described by Eqs. (1.7) and (1.8). Analogous to minimum variance estimators (MVE)

under unbiased conditions, most MMSE estimates are difficult to calculate analytically. How-

ever, if it is assumed that measurements are linear with respect to the state, closed forms for the

MMSE become more-readily available. This is the foundation for linear minimum mean square

error (LMMSE) estimators, which are referred to as linear estimators in this work.

Linear estimators are the predominant class of estimators used in filtering and are attractive in

part due to their computational efficiency and algorithmic simplicity relative to nonlinear filters.

Operating only on the first two moments, mean and (co)variance, of a pdf [31], linear estimators

are only approximately optimal unless the linearity of a system is guaranteed. The Kalman filter,

for example, is the optimal sequential MMSE estimator for linear systems. As dynamical and

observational linearity is rare in physical systems, these LMMSE algorithms are often specifically

tailored to perform well in the presence of system nonlinearities, giving rise to estimators like the

extended Kalman filter (EKF). Such estimators are oftentimes poorly dubbed as nonlinear filters;

in truth, any filter that forms estimates via a linear combination of the measurements is a linear

estimator, such that the EKF is best described as a linear estimator for nonlinear systems.

There exist many variants of such linear estimators, the key differentiation between them being

the manner in which they resolve nonlinearities. The EKF, for example, is an estimator that relies
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on first-order Taylor series approximations to linearize the dynamical and measurement models of

the system about the estimate. The iterated EKF, discussed in [32], attempts to improve upon the

EKF by recursively linearizing about the estimate until a desired iteration objective is reached. In

situations where higher-order effects are deemed non-negligible, the first-order approximation of

the EKF may not be sufficient. In such cases, filters that employ second-order Taylor series lin-

earizations, such as the Gaussian and truncated second-order filters [9, 33], are sometimes selected,

although there is a tendency to avoid these algorithms as they require calculating significantly more

derivatives than their first-order counterparts. To avoid calculating all derivatives inherent to Tay-

lor series-based filters, Gaussian filters are considered preferable alternatives [34]. These filters

are so named for the assumption of Gaussianity that permits point-based statistical linearization of

the system models, with the most notable methods being the unscented, quadrature, and cubature

Kalman filters [35–37].

2.1.1 A Traditional Linear Estimator: The EKF

As mentioned in Section 1.3.1, the EKF came about as a tool for spacecraft navigation in

the 1960s as an adaptation of Kalman’s linear filtering theory to nonlinear systems [20]. As it

is such a prominent filter, it is used frequently in this work as a “baseline” to which other filters

are compared, and thus, this section gives a brief summary of the core algorithms, which can be

segmented into discrete stages similar to Fig. (1.1). In this work, the Bayesian-derived EKF is

considered, where the system dynamics are built upon the models presented in Section 1.1.1. For

the discrete dynamics of Eq. (1.3), the process noise wk−1 is assumed to be Gaussian distributed

such that

xk = fk(xk−1) +wk−1 where wk−1 ∼ pg(wk−1|0,Qk−1) , (2.1a)

whereQk−1 is the discrete process noise covariance. If the dynamics of the system are continuous,

as in Eq. (1.4), w(t) is assumed to be a Brownian motion process (and thus Gaussian [9]), such
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that

ẋ(t) = f
(
x(t)

)
+w(t) where E[w(t)wT (τ)] = Qsδ(t− τ) , (2.1b)

where Qs is the power spectral density of the process noise. Much like the dynamics models, the

measurement model is also taken to be a nonlinear function of the state with additive, Gaussian

noise as

zk = hk(xk) + vk where vk ∼ pg(vk|0,Rk) . (2.1c)

Again, it should be noted that a key assumption of the models in Eqs. (2.1) is that the noises are

zero-mean, Gaussian, and additive.

2.1.2 EKF Initialization

The EKF is initialized at time t0 with an initial state estimate of the form

x0 ∼ pg(x0|m0,P0) , (2.2)

such that it is assumed that the initial state x0 is randomly drawn from a Gaussian distribution of

mean m0 and covariance P0. To initialize the recursions of the filter, note that m+
0 = m0 and

P+
0 = P0, which is a notational change made purely for clarity.

2.1.3 EKF Propagation

The discrete propagation stage of the EKF is responsible for transitioning the state estimate

through time as

m−k = fk(m
+
k−1) (2.3a)

P−k = Fk(m
+
k−1)P+

k−1F
T
k (m+

k−1) +Qk−1 , (2.3b)
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where Fk(m) is the Jacobian of the dynamics function fk(·) evaluated at x = m. Thus, the

propagated state pdf is given as

p−(xk) = pg(xk|m−k ,P
−
k ) . (2.3c)

If the dynamical model is continuous, as in Eq. (2.1b), the mean and covariance of Eq. (2.3c) must

be calculated by integrating

ṁ(t) = f
(
m(t)

)
(2.3d)

Ṗ (t) = F
(
m(t)

)
P (t) + P (t)F T

(
m(t)

)
+Qs , (2.3e)

where F (·) is the Jacobian of f(·).

2.1.4 EKF Update

The EKF’s update stage fuses the information contained in measurement zk of Eq. (2.1c) into

the propagated state estimate from Eq. (2.3c) to form the posterior state estimate

p+(xk) = pg(xk|m+
k ,P

+
k ) , (2.4a)

where

m+
k = m−k +K∆zk (2.4b)

P+
k = P−k −KHk(m

−
k )P−k (2.4c)

K = P−k H
T
k (m−k )W−1 (2.4d)

W = Hk(m
−
k )P−k H

T
k (m−k ) +Rk (2.4e)

∆zk = zk − hk(m−k ) , (2.4f)

whereHk(m) is the Jacobian of the measurement function hk(·) evaluated at x = m.
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Traditional EKF Vs. Bayesian EKF

Many times, there is little to no differentiation between the Bayesian EKF of

Eqs. (2.3) and (2.4) and the traditional, MMSE-derived EKF, as they are algorithmi-

cally identical. The distinction between the two lies in the assumptions—most preva-

lently that the Bayesian EKF requires an assumption of Gaussianity that the traditional

EKF does not. As a consequence, the means and covariances of the traditional EKF are

often mistakenly prescribed to Gaussian distributions, which is not necessarily true.

2.2 Nonlinear Estimators

While describing linear estimators in Section 2.1 is rather straightforward, it can be more dif-

ficult to precisely explain what a nonlinear estimator is, as they can be quite varied in appearance.

In fact, it is perhaps easiest to classify a nonlinear estimator as any filter that does not strictly fall

within the definition of a linear estimator. But even with this differentiation between linear and

nonlinear filters, this does not explain why nonlinear filters are needed, or what advantages they

have over their linear counterparts. As such, this section helps clarify these points.

While linear estimators are extremely useful in their own right, there will always exist certain

drawbacks when subjected to the nonlinear reality of physical systems. For example, many of

these filters rely on assumptions of Gaussianity, such that failure is likely to occur in the presence

of non-Gaussian noises. Furthermore, errors from repeated linearizations can accumulate to the

point of debasing the filtering solution, resulting in less robust, less accurate estimation. It is for

these reasons that nonlinear filtering is such a prominent field of research and a focal point of this

work.

2.2.1 Particle Filtering

There exist numerous approaches to nonlinear filtering [38–40], but particle filtering and Gaus-

sian mixture (GM) filtering are considered the most prevalent. In fact, many consider the particle

filter, and its many variants, to be the truest form of nonlinear filtering, as it involves generat-

ing a large number of “particles” by directly sampling the prior distribution, performing filtering
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operations on each individual particle, and forming a posterior distribution constructed from the

propagated/updated particles. One advantage to particle filtering is that a closed-form generally

requires less restrictive assumptions, such as not needing identical input and output distributions

as required by many filters. However, particle filtering performance improves as the number of par-

ticles increases, such that some applications require a vast number of particles to ensure accurate

estimation, which in turn escalates the computational burden. Furthermore, as the filter iteratively

operates on the particles, the state distribution often morphs such that some particles may no longer

effectively describe the statistical nature of the system, which warrants a resampling procedure. As

such, particle filtering is generally viewed as too computationally demanding for use in onboard,

real-time spacecraft navigation, but is used frequently in robotics applications.

2.2.2 Gaussian Mixture Filtering

GM filtering is, in many ways, quite similar to particle filtering. Where particle filtering ap-

proximates pdfs with a collection of sampled particles, a GM filter uses a summation of weighted

Gaussian distributions to represent the pdf. A useful, though overly simplified, comparison of the

two methods is that a GM can be interpreted as a collection of particles, with the exception that

each GM “particle”—usually referred to as a GM component—possesses a probabilistic “volume”,

attributed to the Gaussian of each component, which a standard particle does not have. Generally,

this implies that a GM can more efficiently describe a distribution, as it typically requires a fewer

number of “particles” to accurately represent a distribution than a particle filter does, albeit each

GM component contains multiple parameters. Additionally, the nature of the Gaussian distribu-

tion is such that it possesses many useful and advantageous properties, which can significantly aid

the derivation and implementation of filtering equations. For instance, the Gaussian distribution

is well-known for its use in reaching a closed-form solution to the Bayesian-derived Kalman fil-

ter [10]. Furthermore, while extracting estimates from particle filters can be complicated, many

times involving complex clustering operations, GM representations have efficient and straightfor-

ward techniques for estimate extraction [41]. Therefore, this work elects GM filters as the primary

method for nonlinear filtering.
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2.2.2.1 The Gaussian Distribution

The Gaussian, or normal, distribution is perhaps the most well-known and widely-used dis-

tribution in all of statistics. With its discovery dating as far back as the early 1700s [42], the

popularity of the Gaussian is not by chance; it frequently appears in natural systems and has many

appealing mathematical characteristics [43]. Given in (multivariate) pdf form by

pg(a|b,C) =
∣∣2πC∣∣− 1

2 exp
{
− 1

2
[a− b]TC−1[a− b]

}
, (2.5)

which is a Gaussian distribution of random vector a having mean b and covarianceC, the Gaussian

distribution is unimodal and symmetric about its mean. Coincidentally, the Gaussian distribution is

completely (and succinctly) described by its first and second moments: mean and covariance. By

the central limit theorem and law of large numbers, many sequences of random variables converge

to (or can be approximated by) the Gaussian distribution, thus making it a common choice when

modeling many random variables, such as sensor noise. This common appearance of Gaussian

noise is only one reason for its wide use in estimation, another reason being the ease with which

Gaussians are mathematically manipulated. For example, Gaussian random variables are known to

remain Gaussian under linear transformations, and the product of multiple Gaussians is known to

be a scaled Gaussian itself, an identity noted in Eq. (A.6). Traits such as these make closed-form

estimators more attainable, as Gaussians tend to remain Gaussian under select transformations. As

such, this work frequently relies on Gaussians—and the properties they possess—to derive various

filtering architectures. However, as to not relegate these filters to the assumption of Gaussian

distributed priors and noise, Gaussian mixture models (GMMs) are used.

2.2.2.2 Gaussian Mixture Models

Gaussian mixture models are widely used in estimation to approximate different types of pdfs.

The concept is based on describing a generic pdf, say p(x), as a summation of weighted Gaussian
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pdfs of the form [44]

p(x) =
L∑
ξ=1

wξpg(x|mξ,Pξ) , (2.6)

where wξ, mξ, and Pξ correspond to the weight, mean and covariance of the ξth GM component.

Note that, to be considered a valid pdf, Eq. (2.6) must remain positive and integrate to unity over

the support of x, which is easily enforced via

wξ ≥ 0 ∀ ξ and
L∑
ξ=1

wξ = 1 .

Though there exist numerous configurations, a closed-form GM filter is effectively any filtering

framework where the prior and posterior distributions are both proper GMs in the form of Eq. (2.6).

While this restricts the manner by which statistical information is stored and operated on, it allows

for a significantly more liberal description of the estimated distribution. For instance, even though

the pdfs p−(x) and p+(x) must both be GMs, the weights, means, and covariances can change

such that p−(x) may appear nothing like p+(x). In this way, a GM filter is able to operate on

complex, multi-modal, asymmetrical distributions while still making use of the handy properties

of Gaussians mentioned in Section 2.2.2.1.

2.2.2.3 Generating GMMs using the EM Algorithm

The GMM’s ability to flexibly represent a wide variety of pdfs makes it a powerful statistical

tool. However, how the GMM takes on the appropriate form is less clear. In some cases, such

as when a GMM posterior is formed via Bayes’ rule, the GMM posterior is naturally shaped

by the Bayesian fusion of the prior and measurement likelihood. However, this implies that a

correctly formed GMM posterior is contingent upon both the prior and measurement likelihood

being properly shaped as well. Thus, the question still remains as to how to generate a GMM that

appropriately represents the statistics it is intended to model.

The solution to this can vary and depends on the system at hand. For instance, if the accuracy
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with which the GMM approximates the true statistics is relatively unimportant, then invoking a

generic, yet plausible, GMM with large amounts of uncertainty may be sufficient. For example,

when initializing a filter, the pdf of the state p(x0) can take on various configurations without,

in general, causing filter failures, as long as the uncertainty is sufficiently large. However, this

lack of rigor is inappropriate in other cases, such as when defining measurement distributions.

If the measurement distribution is malformed (i.e., the filter measurement model does not reflect

reality), even slightly so, filter performance will degrade significantly after enough measurements

are ingested. In this regard, some approach to accurately shape a GMM is needed. Luckily, the

expectation-maximization (EM) algorithm is well-suited for this purpose.

The EM algorithm is a general approach to finding a maximum-likelihood estimate for a set of

latent variables, which is adapted in [45] specifically for GMMs. Given an initial GM of the form of

Eq. (2.6) (with time indices removed), the EM algorithm iteratively modifies the GM components

using N samples of the target distribution xn ∼ p(x), where n = 1, 2, . . . , N . The exact process

is given by

γn,ξ =
wξpg(xn|mξ,Pξ)∑L
i=1 wipg(xn|mi,Pi)

Nξ =
N∑
n=1

γn,ξ

wnew
ξ =

Nξ

N

mnew
ξ =

1

Nξ

N∑
n=1

γn,ξxn

P new
ξ =

1

Nξ

N∑
n=1

γn,ξ(xn −mnew
ξ )(xn −mnew

ξ )T ,

which is iterated until

εEM =
N∑
n=1

ln

{ L∑
ξ=1

wξpg(xn|mξ,Pξ)

}
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has converged to a steady-state value. Note that the GM size L is user-specified, and should be

set according to the desired computational complexity of the model. An example of the EM’s

capabilities is shown in Section 4.8.2.2.2, where an exponential distribution is approximated by a

five component GM.

2.2.2.4 Classic example: The Gaussian Sum Filter

First attributed to Alspach and Sorenson in [44], the Gaussian sum filter (GSF) is considered

by most to be the first Gaussian mixture filter. The GSF here is specifically outfitted for the same

nonlinear Gaussian systems as the EKF, which are given in Eqs. (2.1).

2.2.2.4.1 GSF Propagation

Consider p+(xk−1), which is the posterior pdf of state x at time tk−1. The GSF assumes that

the distribution is represented by a GM of L+
k−1 components as

p+(xk−1) =

L+
k−1∑
ξ=1

w+
k−1,ξpg(xk−1|m+

k−1,ξ , P
+
k−1,ξ) , (2.7)

where w+
k−1,ξ,m

+
k−1,ξ, and P+

k−1,ξ are the weight, mean, and covariance of the ξth GM component,

respectively. Therefore, if the dynamical system of Eq. (2.1a) is taken, the GSF prediction step is

given by [44]

L−k = L+
k−1 (2.8a)

w−k,ξ = w+
k−1,ξ (2.8b)

m−k,ξ = fk(m
+
k−1,ξ) (2.8c)

P−k,ξ = Fk(m
+
k−1,ξ)P

+
k−1,ξF

T
k (m+

k−1,ξ) +Qk−1 , (2.8d)
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such that the predicted pdf of x at time tk becomes the GM

p−(xk) =

L−k∑
ξ=1

w−k,ξpg(xk|m
−
k,ξ , P

−
k,ξ) , (2.9)

where Fk(m) is the Jacobian of the nonlinear dynamics function fk(·) of Eq. (2.1a) evaluated at

x = m. In the case that the dynamics of the state are in the continuous form of Eq. (2.1b), then

the means and covariances of each component in Eq. (2.7) must be integrated to tk according to

Eqs. (2.3d) and (2.3e). Note that, according to Eqs. (2.8a) and (2.8b), the component number and

weights remain unchanged during propagation.

2.2.2.4.2 GSF Update

Assuming that the GM predicted pdf p−(xk) of Eq. (2.9) is available, the posterior pdf produced

by the GSF update is

p+(xk) =

L+
k∑

ξ=1

w+
k,ξpg(xk|m

+
k,ξ , P

+
k,ξ) , (2.10)

where

L+
k = L−k (2.11a)

w+
k,ξ =

w−k,ξκξ

η
(2.11b)

m+
k,ξ = m−k,ξ +Kξ[zk − hk(m−k,ξ)] (2.11c)

P+
k,ξ = P−k,ξ −KξHk(m

−
k,ξ)P

−
k,ξ , (2.11d)
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and where

η =

L+
k∑

ξ=1

w−k,ξκξ (2.12a)

κξ = pg(zk|hk(m−k,ξ),Wξ) (2.12b)

Kξ = P−k,ξH
T
k (m−k,ξ)W

−1
ξ (2.12c)

Wξ = Hk(m
−
k,ξ)P

−
k,ξH

T
k (m−k,ξ) +Rk . (2.12d)

The matrix Hk(m) is the Jacobian of the nonlinear observation function hk(·) of Eq. (2.1a) eval-

uated at x = m, and since all elements of Eq. (2.12b) are known, κξ is an evaluated likelihood,

not a pdf. Note that Eqs. (2.8a) and (2.11a) make it clear that the number of GM components

remains unchanged during each filter iteration, such that any increase or decrease to the number of

components must be done by some additional filtering mechanism.

GSF vs. GMEKF

While originally named the Gaussian sum filter (GSF) by Sorenson and Alspach [46],

these algorithms are also frequently referred to as the Gaussian mixture extended

Kalman filter (GMEKF) as they closely resemble a collection of EKFs due to both us-

ing first-order Taylor series linearizations about the means. However, the GSF/GMEKF

of Section 2.2.2.4 is derived directly from Bayes’ rule under Gaussian assumptions,

not from the EKF, which makes “GMEKF” a bit of a misnomer. A key difference

between the GSF/GMEKF and a collection of EKFs is that the GSF/GMEKF inher-

ently performs a type of “hypothesis testing” when calculating the posterior weights of

Eq. (2.11b), something that the EKF cannot account for on its own.

2.2.3 GMM Component Management Schemes

Generally, a higher number of GM components leads to improved filtering accuracy at the cost

of computational complexity. This improvement in accuracy is a result of not only increasing the
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number of linearization points in the pdf, but from the fact that it becomes more appropriate to

neglect higher order moments/effects for symmetric, concentrated (i.e. small variance) distribu-

tions [9]. As a GMM acquires more components, the variances of each component will generally

decrease, leading to less linearization error throughout filtering procedures [47]. It is therefore im-

portant to monitor the number of components, seeking a compromise between filtering accuracy

and computational efficiency—a task accomplished by component management schemes such as

pruning, merging, and splitting.

In practice, some GM filters, such as the GM probability hypothesis density (GMPHD) filter

of [41], naturally produce additional GM components during propagation/update, such that the

number of components increases with each iteration. As such, it is often good practice to intro-

duce component management schemes, such as pruning and merging, to limit the number of GM

components generated. Additionally, depending on the system at hand, it may be necessary to

implement GM splitting, where a single Gaussian component is separated into multiple Gaussian

components, which is often used to reduce linearization errors.

2.2.3.1 Pruning

The process of pruning a GM is typically straightforward and can be accomplished in several

ways, but all methods involve eliminating the components of Eq. (2.6) belonging to the lowest

weights [48]. In this work, it is desired to omit any components with negligible associated proba-

bilities, and thus a weight threshold is defined as 0 < wthresh � 1, such that any ξth GM component

where wξ < wthresh is eliminated from the GM of Eq. (2.6). Therefore, noting that any ξth com-

ponent having weight wξ ≥ wthresh belongs to the set of non-pruned components D, the pruned

posterior GM is expressed as

pp(x) =
∑
ξ∈D

wpξpg(x|mξ, Pξ) , with wpξ =
wξ∑

ξ∈D
wξ

∀ ξ ∈ D , (2.13)

where the weights wpξ are normalized to ensure Eq. (2.13) remains a valid GM.
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2.2.3.2 Merging

The precise manner in which GM components are merged is open to considerable interpreta-

tion, leading to many different possible merging frameworks [49, 50]. The unifying focus behind

these different methods is the compression of a GM with L components into a GM of size Lm—

where Lm < L—by combining Gaussian components. Typically, these processes attempt to merge

the components deemed statistically similar. The method used in this work is from [48] and is in-

cluded for its conceptual simplicity relative to other, more involved, methods. The entire merging

process can be explained in two stages: a similarity search and the compression of the GM.

First, a selection criteria is established that segregates GM components into groups to be

merged. This is accomplished via the squared Mahalanobis distance between pairs of GM compo-

nents from Eq. (2.6), which is calculated as

dMij
= (mi −mj)

T (Pi + Pj)
−1(mi −mj) , (2.14)

and a similarity threshold dthresh that is appointed such that any two GM components i and j having

dMij
< dthresh are designated “similar enough” to be merged. After this similarity search is per-

formed over the entire GM of Eq. (2.6), components deemed similar enough to merge are assigned

to the same set C`, where ` = 1, . . . , Lm and Lm ≤ L.

The compression of the GM involves the direct calculation of the merged GM components.

Through the similarity search, it is determined that the GM of Eq. (2.6) can be expressed as

pm(x) =
Lm∑
`=1

wm` pg(x|mm
` , P

m
` ) , (2.15)

where each `th GM component of Eq. (2.15) is the merged product of the components belonging
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to set C`. The components of Eq. (2.15) are thus calculated as

wm` =
∑
i∈C`

wi

mm
` =

∑
i∈C`

wi
wm`
mi

Pm
` =

∑
i∈C`

wi
wm`

(
Pi + (mi −mm

` )(mi −mm
` )T

)
. (2.16)

Note that it is advised to execute any pruning procedures before merging the GM, as this avoids

merging computations that are made irrelevant when the components are pruned [48].

2.2.3.3 Splitting

Much in the way resampling procedures are common practice for particle filtering methods,

GM filters often benefit from the ability to generate additional GM components in order to improve

filtering operations. Increasing the number of components not only increases the number of lin-

earization points, but also decreases the overall linearization error accrued throughout the filtering

procedures [47]. Many methods exist for splitting Gaussians; some operate through precomputed

splitting libraries [51], while others utilize optimization methods [50]. Selecting an appropriate

splitting method can be difficult, as it typically depends on the system at hand, as well as a desired

balance between estimation accuracy and computational efficiency. A best practice is to define a

automated splitting process, such as in [52], which seeks to split the GM along directions of the

highest relevant nonlinearity.

The GM splitting procedure elected by this work utilizes the aforementioned splitting libraries

of [53], where each library contains precomputed weights w̃`, means m̃`, and variances σ̃2 that are
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formed via the optimization

Lsdim∑
`=1

w̃`p̃g(x|m̃`, σ̃
2) = min

p̃g

{
Dβ=2

[
pg(x|0, 1)

∥∥ Lsdim∑
`=1

w̃`p̃g(x|m̃`, σ̃
2)
]

+ λσ̃2
}

(2.17)

subject to
Lsdim∑
`=1

w̃` = 1 ,

where Dβ=2[·‖·] is the β divergence with parameter β = 2. The weighting term λ effectively

adjusts the importance that the variance has within the cost function; increasing λ will decrease

the size of variances σ̃2. Note that the optimization of Eq. (2.17) corresponds to the splitting of a

univariate Gaussian, but is used to split multivariate Gaussians as well, one dimension at a time.

Splitting along the kth dimension of a n dimensional multivariate Gaussian produces

wξpg(x|mξ,Pξ) ≈
Lsdim∑
`=1

wsξ,`pg(x|ms
ξ,`, P

s
ξ,`) , (2.18)

where

wsξ,` = w̃`wξ ms
ξ,` = m̃`mξ P s

ξ,` = S̃ξS̃
T
ξ , (2.19)

and where S̃ξ is the square-root factor formed from the ξth covariance as

S̃ξ =

[
s1
ξ s2

ξ · · · σ̃skξ · · · snξ

]
.

where skξ corresponds to the kth row of the square-root factor Pξ = SξS
T
ξ . To split the GM

component of Eq. (2.18) across multiple dimensions, the procedure of Eqs. (2.18) and (2.19) can

be applied consecutively.

A straightforward, albeit naive, approach to splitting is taken in this work. To ensure a suffi-

ciently large number of components exists within the nonlinear filter, splitting is enforced any time

the number of components becomes too few according to a user specified threshold Lsthresh. For ex-
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ample, consider the case where the GM of Eq. (2.6) is selected to be split across the kth dimension

because L < Lsthresh. Each Gaussian component wξpg(x|mξ,Pξ) would be split into a GM of Lsdim

components such that

L∑
ξ=1

wξpg(x|mξ,Pξ) ≈
L∑
ξ=1

Lsdim∑
`=1

wsξ,`pg(x|ms
ξ,`, P

s
ξ,`) , (2.20)

according to Eq. (2.19). In this work, it is usually elected to apply splitting across every dimension

of the state x ∈ Rn, meaning that a newly split GM pdf ps(x) would be of the form

ps(x) =
Ls∑
ξ=1

wsξpg(x|ms
ξ, P

s
ξ ) , (2.21)

where Ls = L× (Lsdim)n. More nuanced approaches to splitting GMs certainly exist [51, 52], and

are advisable for practical applications, but as much of this work is not focused on the development

and testing of splitting procedures, this naive approach is deemed appropriate.

2.2.3.4 Estimate Extraction

Recalling the discussion of Section 1.1.3, while it is most fitting to perform estimation over

the entire pdf of the state, other subsystems (i.e. guidance and control) often require a single point

estimate to be reported. Again, as illustrated by Eq. (1.7), there are various ways to extract this

estimate depending on how one defines the risk functionR(·, ·). Unfortunately, few risk functions

produce both useful and computationally practical point estimates. If R(·, ·) takes on the form

of Eq. (1.8), however, it is shown in Section B.1 that the point estimate of the state is simply the

mean, which for the GM pdf of Eq. (2.6) is calculated as

x̂ = Ep(x)[x]

=

∫
x

L∑
ξ=1

wξpg(x;mξ,Pξ)dx

=
L∑
ξ=1

wξ

∫
xpg(x;mξ,Pξ)dx
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=
L∑
ξ=1

wξmξ , (2.22)

which is not only statistically meaningful (all puns aside), but also has an efficient closed-form

solution.

Though the point estimate of Eq. (2.22) is useful, there are times when a concise measure

of uncertainty is required as well. For example, linear estimators generally produce the mean and

covariance of the estimated state naturally, making both quantities familiar and regularly utilized by

those in the field of estimation. These quantities are not readily available to GM filters, however, as

evidenced by Eq. (2.22) where the overall mean of the GM pdf requires extra calculation. Similarly,

the overall covariance, while convenient for compact uncertainty quantification, must be calculated

as well. Therefore, noting that the definition of covariance is

P = Ep(x)

[
(x− Ep(x)[x])(x− Ep(x)[x])T

]
, (2.23a)

the definition of the mean is recalled from Eq. (2.22) such that Eq. (2.23a) becomes

P̂ = Ep(x)

[
(x− x̂)(x− x̂)T

]
= Ep(x)[xx

T ]− 2x̂Ep(x)[x
T ] + x̂x̂T

= Ep(x)[xx
T ]− x̂x̂T , (2.23b)

where the notation P̂ signifies that Eq. (2.23b) is the estimated covariance. Expanding the expec-
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tation of Eq. (2.23b) with the GM pdf of Eq. (2.6) yields

P̂ =

∫
xxT

L∑
ξ=1

wξpg(x|mξ,Pξ)dx− x̂x̂T

=
L∑
ξ=1

{
wξ

∫
xxTpg(x|mξ,Pξ)dx

}
− x̂x̂T

=
L∑
ξ=1

{
wξEpg,ξ(x)[xx

T ]

}
− x̂x̂T , (2.23c)

where Epg,ξ(x)[·] is the expectation with respect to the ξth Gaussian pdf. Noting that, similar to

Eq. (2.23b), the covariance of the ξth GM component is given by

Pξ = Epg,ξ(x)[xx
T ]−mξm

T
ξ ,

Eq. (2.23c) can be shown to be

P̂ =
L∑
ξ=1

{
wξ
(
Pξ +mξm

T
ξ

)}
− x̂x̂T . (2.23d)

Fortunately, much like the mean of Eq. (2.22), Eq. (2.23d) demonstrates that the covariance of

a GM pdf has a closed-form calculation. After straightforward manipulation, Eq. (2.23d) can be

equivalently expressed as

P̂ =
L∑
ξ=1

wξ
(
Pξ + (mξ − x̂)(mξ − x̂)T

)
, (2.24)

which is particularly useful for its computational efficiency.

2.3 Linear vs. Nonlinear: GSF and EKF

The differences between linear and nonlinear estimators are detailed in Sections 2.1 and 2.2,

with nonlinear filters boasting several advantages over their linear counterparts. This section fur-

ther illustrates these advantages by directly comparing the GSF to its linear equivalent, the EKF, via
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two Monte Carlo simulations, the architecture of which is described in Section 2.3.1 and showcased

via the first simulation—a simple two dimensional Keplerian system. The second simulation is one

revisited throughout the dissertation, wherein a falling body experiencing unidimensional motion

is tracked and is used to showcase the GSF’s superior treatment of nonlinearities. Additionally, the

procedures of pruning, merging, splitting, and estimate extraction described in Section 2.2.3 are

also implemented such that they can be verified simultaneously.

2.3.1 Monte Carlo Analysis

The Monte Carlo (MC) method is widely regarded as one of the best probabilistic analysis

techniques, dating back to the 1940s [54, 55]. It is used to empirically quantify the uncertainties in

a system by way of simulating a multitude of Monte Carlo trials, where each trial is the outcome

of a single system simulation that is unique from all other trials by way of sampling the random

variables inherent to the system models. As it is so well-known and useful, there are several

sections in this work that use the MC technique to analyze filtering performance, the exact manner

by which is described here.

To initialize the ith MC trial, an initial state xi0 is drawn from the initial distribution p(x0),

which is then propagated through the duration of the trial according to some dynamic model (see

Section 1.1.1), generating noisy measurements from the simulated truth xik at each time step tk

according to some measurement model (see Section 4.1). At each of these time steps, the average

filter error standard deviations σfilt,ι and Monte Carlo error standard deviations σMC,ι of the ιth state

of x are calculated as

σfilt,ι =

√√√√ 1

NMC

NMC∑
i=1

P̂ i
k(ι, ι) and σMC,ι =

√√√√ 1

NMC

NMC∑
i=1

(
eiι − eι

)2

, (2.25)

whereNMC is the number of MC trials, and where eiι is the ιth element of the estimation error vector

for the ith MC trial defined as

eik = xik − x̂ik ,
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with the average filter error at time tk calculated as

eι =
1

NMC

NMC∑
i=1

eiι . (2.26)

Note that x̂ik and P̂ i
k are the extracted state and covariance estimate, respectively, of the ith trial at

tk, which for GM filters is calculated using Eqs. (2.22) and (2.24), and that P̂ i
k(ι, ι) denotes the ιth

diagonal of P̂ i
k.

Generally, a well-behaved filter yields σfilt,ι ≈ σMC,ι, where σfilt,ι > σMC,ι indicates under-

confident (or conservative) estimation, while σfilt,ι < σMC,ι signifies overconfident (or smug) filter

performance. In practice, a conservative filter is customarily more desirable than one that is over-

confident, as overconfidence often leads to issues such as filter divergence [56].

In addition to the metrics given in Eqs. (2.25) and (2.26), the behavior of propagated states

xik can describe much about the nature of a system. For example, consider a system governed by

point-mass gravitational dynamics, given by

ṙ = v (2.27a)

v̇ = − µ

‖r‖3
r , (2.27b)

where r = [rx ry]
T , v = [vx vy]

T , and µ is the gravitational parameter of Earth. The state vector

x = [r v]T is taken to have the initial Gaussian distribution

x0 ∼ pg(x0|m0, P0) , (2.28)
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where

m0 =



14600 km

−3000 km

3 km/s

1 km/s


and P0 =



250000 km2 0 0 0

0 250000 km2 0 0

0 0 0.01 (km/s)2 0

0 0 0 0.01 (km/s)2


.

500 MC samples are then drawn from Eq. (2.28), the positions of which are plotted are in Fig. (2.1)

along with the 1-, 2-, and 3-σ intervals of p(x0).
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·104
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y
[k

m
]

Figure 2.1 500 Monte Carlo samples drawn from p(x0)

The MC samples are then propagated via Eq. (2.27) for 2 hours, the collection of which are

used to compare the performance of a GSF to that of an EKF. To do this, the initial distribution of

Eq. (2.28) is propagated according to Eqs. (2.3) for an EKF, the contours of which are plotted over

the propagated MC samples in Fig. (2.2).

Due to the obvious non-Gaussian nature of the propagated MC samples, the mean and co-

variance of the EKF is unable to properly describe the actual distribution of the propagated sam-
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Figure 2.2 Propagated Monte Carlo samples against contours of EKF estimate

ples. On the other hand, if a GSF is used—which propagates the initial distribution pursuant to

Eqs. (2.8) and (2.9) after splitting it into 625 components via a five component splitting library

across all four dimensions of the state according to Section 2.2.3.3—the resulting estimated distri-

bution matches the propagated MC samples much more appropriately, which is seen in Fig. (2.3).

This is just one example of the benefits to using nonlinear filters.

2.3.2 Falling Body Simulation

In this simulation, a system similar to that found in [57] is used wherein a stationary, ground-

based observer obtains nonlinear range measurements of an object falling freely through the atmo-

sphere, a diagram of which is provided in Fig. (2.4). This system is selected for several reasons,

the first being that simulation and analysis is relatively straightforward for low dimensional sys-

tems. Higher dimensional systems, while more complex, can make the interpretation of results

more tedious to convey, diluting the apparent importance of any results. Secondly, since this dis-

sertation covers a wide variety of filters, it is useful to maintain a familiar simulation throughout,
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Figure 2.3 Propagated Monte Carlo samples against contours of GSF estimate

as this helps highlight the differences between the filters within a common context. As such, the

system of Fig. (2.4) is revisited throughout this dissertation, with minor changes being made when

appropriate.

True to Fig. (2.4), it is assumed that the object is falling straight down, such that its motion

is one-dimensional, and the position (y) and velocity (ẏ) of the object relative to the ground are

estimated, as well as the object’s constant ballistic coefficient (βc), such that the state vector takes

the form

xk =

[
y ẏ βc

]T
. (2.29)

It is further assumed that the dynamic model is not affected by process noise, and the effects of

drag are taken into account using a simple model given by

ÿ =
ρ0e−

y
kρ ẏ2

2βc
− g , (2.30)
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Figure 2.4 Falling body tracked via one-dimensional, nonlinear range measurement

where g = 32.2ft/s2 is the acceleration due to gravity, ρ0 = 3.106 × 10−3lb/ft3 is the atmospheric

density, and kρ = 22, 000 ft is a decay constant. The initial state is drawn from a multivariate

Gaussian distribution as

x0 ∼ pg(x0|m0,P0) , (2.31)

where

m0 =


100000 ft

−6000 ft/s

2000 lb/ft2

 and P0 =


500 ft2 0 0

0 20000 (ft/s)2 0

0 0 250000 (lb/ft2)2

 . (2.32)

Measurements are generated every second using the model given by Eq. (2.1), where hk(·) is given

by

hk(xk) =
√
r2

obs,1 + (y − robs,2)2 , (2.33)

where robs,1 = 500 ft and robs,2 = 250 ft describe the static position of the observer. The measure-
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ment noise covariance is taken to be Rk = 100 ft2. The duration of the simulation is 30 seconds,

and the Monte Carlo analysis consists of 500 trials.

2.3.2.1 Filter Configuration

Two different filters, an EKF and a GSF, are both implemented within this simulation to esti-

mate the state vector of Eq. (2.29). The EKF is assembled in its standard Bayesian form given in

Eqs. (2.2)–(2.4). The GSF takes on the form described in Section 2.2.2.4, but with the component

management methods of pruning, merging, and splitting applied after the update of Eqs. (2.10)–

(2.12) for each iteration of the filter. Of the three procedures, pruning is implemented first ac-

cording to Section 2.2.3.1 with a threshold value of wthresh = 1 × 10−6, followed by the merging

of Section 2.2.3.2 using a threshold value of dthresh = 0.25. Splitting is applied last—according

to Section 2.2.3.3—across all three dimensions of x using a splitting library of three components

(Lsdim = 3) with a threshold value of Lsthresh = 20. Note that this method of splitting is also used

upon the initial prior of Eq. (2.31) for the GSF, with the exception that a five component splitting

library is used, such that it is initialized with a GM of 125 components. At each time step, the

estimate of the EKF is simply taken as the posterior mean and covariance from Eq. (2.4), while the

GSF estimate is extracted from the posterior GM according to Eqs. (2.22) and (2.24).

Many times, especially with high dimensional states common to spacecraft navigation, nu-

merical propagation of the filter estimate becomes a computationally expensive process. Since

real-time state estimation is typically necessary for GNC, integration fidelity of the dynamic state

may need to be lowered to achieve sufficient computational speed. Such a scenario is mimicked

here, where all filter propagation is performed using the Matlab function ode45, and the relative

and absolute integration tolerances are modified to increase propagation speed at the cost of preci-

sion. The intended effect is to degrade the filtering propagation to the point that correct estimation

becomes difficult, especially for the EKF.
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2.3.2.2 Monte Carlo Results

The main results of the falling body Monte Carlo analysis are contained in Fig. (2.5), with a

zoomed version provided by Fig. (2.6) for an increased level of detail, where the plotted quantities

are calculated from Eqs. (2.25) and (2.26). While the two filters perform remarkably similar for

the first 12 seconds, it is immediately clear that the GSF outperforms the EKF towards the end

of the simulation, which, to be clear, is an expected outcome. Around the 12 second mark, the

MC uncertainties begin to grow larger than those of the average filter (σMC,ι > σfilt,ι) for the EKF,

a trend that is especially noticeable in the velocity channel of Fig. (2.6a). This indicates that the

EKF is producing overconfident estimates, which is caused by a number of factors. As previously

mentioned, the integration tolerances are specifically selected to decrease the accuracy of state

estimates. This is coupled with the higher linearization errors of the EKF and the relatively low

observability of the ballistic coefficient—a characteristic visible in Fig. (2.5), where the uncertainty

of the βc estimate doesn’t decrease until about 10 seconds. Figure (2.6a) shows a relatively large

average error in the EKF’s ballistic coefficient, which causes the propagation of Eq. (2.30) to

further degrade and causes the EKF to diverge.

Meanwhile, the GSF results of Figs. (2.5b) and (2.6b) show much healthier performance, with

σMC,ι ≈ σfilt,ι throughout the entire simulation–a benefit of using a nonlinear filter. Figure (2.6b)

shows how the GSF is more capable of estimating the ballistic coefficient, completely avoiding

filter divergence altogether.

Beyond the average errors and uncertainties, the GM component behavior of the GSF should be

discussed. In an unadorned GSF (in which noises are assumed to be single Gaussians), where no

component management techniques are employed, the number of components remains unchanged,

as previously mentioned in Section 2.2.2.4.2. However, as this simulation has induced pruning,

merging, and splitting, the number of GM components changes significantly throughout the tri-

als. Figure (2.7) contains the average number of GM components at each time step, as well as

the average number of components removed by pruning/merging and created by splitting. Upon

the acquisition of the first measurement (t1 = 1sec), it is seen that a large number of components
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Figure 2.5 Monte Carlo results between standard EKF and GSF, expressed as eι ( ), 3σfilt,ι

( ), and 3σMC,ι ( )
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Figure 2.6 Zoomed view of Monte Carlo results between standard EKF and GSF, expressed as
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Figure 2.7 Average component behavior across all Monte Carlo trials

are merged and pruned. The cause behind this is clear: a large amount of information is gained

from the first measurement relative to the amount of uncertainty present in the initial estimate. As

such, the GSF update quickly down-weights GM components that exist in highly-unlikely regimes,

which are removed via pruning. At the same time, the GSF also mean-shifts the GM components to

regions of higher-probability (according to the measurement), which tends to decrease the relative

squared Mahalanobis distance between the components; thus, many components become candi-

dates for merging. In general, this trend of increased pruning and merging activity can be expected

during periods of large information gain. Once enough components are removed via pruning and

merging such that L+
k falls below Lsthresh, the existing components are split to improve the statistical

spread of the GM components and decrease linearization errors.

To further illustrate the capabilities of the GSF relative to the standard EKF, 500 samples are
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drawn from the initial distributions of Eq. (2.31) and are propagated for 75 seconds according to the

nonlinear dynamics of Eq. (2.30). The initial distribution p(x0) is then propagated to 75 seconds

via both filters, where splitting has been applied only at the initial time for the GSF. The contours

of the propagated distributions are plotted in Fig. (2.8) for the EKF and Fig. (2.9) for the GSF. It is

clear that after 75 seconds the sampled points have lost their Gaussianity, especially between the

y and βc states, such that the mean and covariance of the EKF is no longer sufficient in describing

the system. The GSF, however, produces an overall pdf that fits the samples nicely, as the contours

of Fig. (2.9) denote a good level of adaptation to the nonlinear effects of the dynamic model.
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ẏ
[f

t/s
]

Figure 2.8 Contours of propagated EKF vs. 500 propagated MC samples drawn from p(x0)
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ẏ [ft/s]

y
[f

t]

500 1,000 1,500 2,000 2,500 3,000 3,500

−1.3

−1.2

−1.1

−1

−0.9

·105

βc [lb/ft2]

y
[f

t]

500 1,000 1,500 2,000 2,500 3,000 3,500

−420

−410

−400

−390

βc [lb/ft2]

ẏ
[f

t/s
]

Figure 2.9 Contours of propagated GSF vs. 500 propagated MC samples drawn from p(x0)
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3. NON-BAYESIAN FILTERING*

This chapter is devoted to the discussion and derivation of filters that perform information

fusion using techniques other than Bayes’ rule and how these alternative updates can lead to more

robust algorithms. Since the major focus of this chapter, as well as those remaining, is centered

almost entirely upon the filter update, the time indices k are omitted for brevity. Before introducing

non-Bayesian filters, it is essential to first discuss Bayesian filtering to provide insight into why

alternate solutions are needed in the first place. Note that a portion of this work is previously

published as [58].

3.1 Bayesian Filtering

When it comes to the theory of estimation, there are few concepts more foundational than

Bayes’ rule, where many consider it the orthodox approach to fuse prior knowledge with incoming

information [59]. Mathematically, Bayes’ rule takes the form

p+(x) ∝ p−(x)`(z|x) , (3.1)

where p+(x) is the posterior distribution of the state x formed via a Bayes-optimal fusion of the

prior distribution p−(x) and some likelihood `(z|x) that evaluates incoming information z. While

Bayes’ rule is by far the most prevalent update used within the field of filtering [10], it does not

preclude the potential for other classes of updates [60]. In fact, it can be argued that very few

filter implementations are truly Bayesian, as practical applications often require approximations or

extensions that prevent the update from strictly adhering to the Bayesian algorithm. For example,

consider again the content of Eq. (3.1). Note that while no exact forms of the posterior, prior, and

likelihood distributions have been defined, the Bayesian paradigm is predicated on the assumptions

*Part of the material reported in this chapter is reprinted with permission from “Adaptive Confidence Filter Update
for High Uncertainty Environments” by Gunner S. Fritsch and Kyle J. DeMars, 2020. Proceedings of the AIAA
SciTech Forum, Orbit Determination and Estimation Theory II, Copyright [2020] by Gunner S. Fritsch and Kyle J.
DeMars.
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that both the prior p−(x) and the likelihood model `(z|x) are correctly specified. This presents a

problem; in reality, these distributions are very often approximated, as their precise forms make

exact treatment either impossible or impractical. These issues are particularly prevalent in envi-

ronments of high uncertainty, where little prior information is available and incoming information

may be limited and sparse. Due to the lack of knowledge in such environments, deriving ap-

propriately correct models can be more difficult. Therefore, while the Bayesian update remains

the gold-standard for many filtering applications, this chapter explores alternative non-Bayesian

(yet still probabilistic) filtering updates that are intended to be robust within environments of high

uncertainty.

3.2 Generalized Variational Inference

Considering the natural limitations of Bayesian inference mentioned in Section 3.1, there is a

clear demand for non-Bayesian updates. However, as many consider Bayes’ theorem a founda-

tional axiom within estimation theory, this prompts the question: without Bayes’ rule, how can

incoming data be incorporated into the estimated distribution? Fortunately, the field of generalized

variational inference (GVI) is a substantiated candidate, offering a well-defined methodology for

forming measurement updates posed as optimization problems [61]. In general, GVI establishes

that the posterior distribution can be found as

p+(x) = min
p(x)∈Π

{
Ep(x)

[
L(z,x)

]
+D

[
p(x)

∥∥p−(x)
]}
, (3.2)

where Π constrains the distribution p(x), and where L(·, ·) is a loss function and D[·‖·] is a diver-

gence. The behavior of the GVI update of Eq. (3.2) is entirely characterized through these three

components, often referred to as the “rule of three", making GVI a flexible tool to investigate the

practicality and behavior of non-Bayesian filters. Due to the optimization of Eq. (3.2), the convex-

ity of functions is also of particular interest and is discussed frequently throughout this chapter as

well as Section A.3.
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3.2.1 The Rule of Three

The rule of three, as established in [61], is the notion that by selecting 1) a divergence, 2) a loss

function, and 3) a family of feasible distributions, one is able to establish a GVI update of the form

in Eq. (3.2). As such, this section seeks to define and investigate each of these three components.

3.2.1.1 Divergence

The general definition of a divergence, as it pertains to information theory, is a measure of

directed distance between two probability distributions p, q ∈ P quantified by the operatorD
[
·
∥∥·] :

P× P→ R+ pursuant to [62]

D
[
p
∥∥q] ≥ 0 ∀ p, q ∈ P

and

D
[
p
∥∥q] = 0 if and only if p = q .

As this definition is rather broad, it is often useful to refer to different classes of divergences that

exist in certain forms. Two well-known classes are the f - and Bregman divergences.

f -Divergences

For any function f(u) that is convex over u ∈ (0,∞) and satisfies f(1) = 0, the

f -divergence is denoted as

Df
[
p
∥∥q] =

∫
P
q(x)f

(
p(x)

q(x)

)
dx . (3.3)

Note that Df
[
p
∥∥q] is jointly convex (convex with respect to both p and q) according to

[63].
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Bregman Divergences

For any strictly convex, real valued function F : P → R, the Bregman divergence is

defined as

Db
[
p
∥∥q] = F (p)− F (q)− (p− q)F ′(q) , (3.4)

where F ′(q) is the derivative of F with respect to q, evaluated at q. According to

[63], any valid Bregman divergence is guaranteed to be convex with respect to the first

argument p.

The exact definition and classification aside, with regard to GVI, the divergence D quantifies

how similar p(x) is to the prior distribution p−(x), such that when the cost function of Eq. (3.2)

is optimized, the prior information is appropriately accounted for. By appointing a divergence to

Eq. (3.2), one is essentially specifying a function quantifying the importance of prior information

when forming the posterior distribution. Therefore, three different divergences are introduced here,

each possessing a unique behavior worthy of investigation.

3.2.1.1.1 Kullback-Leibler Divergence

Perhaps the most well-known statistical divergence, the Kullback-Leibler divergence (KLD) is

given by [64]

DKL[p‖q] =

∫
p(x) ln

(
p(x)

q(x)

)
dx , (3.5)

which belongs to the family of f -divergences of Eq. (3.3) for f(u) = u ln(u), the convexity of

which is already established. For a fixed q, it can be further shown that the KLD is strictly convex

with respect to p, a proof of which is provided in Section B.4. This is especially applicable to GVI,

as it optimizes over the term D[p‖p−], where p− is the fixed prior pdf of the state, implying strict

convexity relative to p.
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To comment further on the nature of the KLD, note that Shannon entropy is given by [65]

Hs[p] = −
∫
p(x) ln

[
p(x)

]
dx , (3.6)

which is described best as the expected value of the self-information of x contained in p(x). It

is clear that replacing ln[p(x)] of Eq. (3.6) with ln[q(x)] − ln[p(x)] directly recovers the KLD of

Eq. (3.5), showing that the two are directly related, and that the KLD is essentially the amount of

information “lost”. The relationship between Eqs. (3.5) and (3.6) is why the KLD is often referred

to as the relative entropy.

The characteristics of the KLD are well-established, with it being considered an extremely

efficient and convenient divergence that is relatively sensitive to outliers [63, 66]. As such, it is

included in this work to provide a performance baseline with which other, potentially more robust,

divergences can be compared.

3.2.1.1.2 Rényi Divergence

The Rényi divergence (RD) is given by [67]

DR[p‖q] =
1

α− 1
ln

(∫
pα(x)q1−α(x)dx

)
, (3.7)

which is a divergence used widely throughout information theory, and, much like the KLD is

related to Shannon entropy, Eq. (3.7) is closely related to Rényi entropy [68]. Here, the RD is

found to be especially useful, as it is jointly convex in p and q for α ∈ [0,∞], and as α approaches

one,DR[p‖q] recovers the KLD of Eq. (3.5) [67]. As such, the Rényi divergence is often referred to

as a generalization to the KLD that is inherently capable of shifting exponential emphasis between

p and q. For example, as α ∈ [0, 1] decreases, more emphasis is placed on q, with α = 0 yielding a

divergence entirely dependent on q. In this way, by carefully selecting α, the RD of Eq. (3.7) can

be shifted away from the often-standard behavior of the KLD, which makes it of special interest to

this work.
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3.2.1.1.3 γ-Divergence

Lesser known than the KLD and the RD, the γ-divergence (γ-D) is given by [63, 69]

Dγ[p‖q] =
1

γ(γ − 1)
ln

([ ∫
pγ(x)dx

][ ∫
qγ(x)dx

]γ−1[ ∫
p(x)qγ−1(x)dx

]γ
)

(3.8)

and is specifically designed to be robust to outliers, something that the KLD is known to lack. As

robust estimation is of special interest to this work, the γ-D is a good candidate for investigating

non-Bayesian, GVI updates.

3.2.1.2 Loss Function

In general terms, the loss function L(z,x) models a relationship between observation z and

state x in such a way that scores how likely z is for a given state x. This implies that the loss

function must relate the measurements to the state in some way, but the exact form of L can vary

depending on the desired behavior of Eq. (3.2) [70]. A more mathematically rigorous defintion

is, for a state x ∈ X of which observations zi ∈ Z are taken, a loss function is any operator

L : X× Z→ R having the empirical risk minimizer

x̂N = min
x∈X

[ N∑
i=1

L(zi,x)
]
. (3.9)

Note that while L(z,x) is a function of x, it should not be a function of its probability density

function p(x), but rather the measurement likelihood `(z|x)—a concept discussed further in Sec-

tion 4.1.

Recalling the GVI update of Eq. (3.2), it is reminded that GVI does not directly optimize over

the loss function itself, but rather its expectation with respect to the posterior pdf. In this way it

can be shown, at least in regard to p(x), that the expected loss function is actually convex, making

it ideal for convex optimization approaches [71]. A proof of this is provided in Section B.5.

There exist many functions that fit the definition of Eq. (3.9), each of which can produce unique

behavior in the GVI posterior. To investigate various possible GVI updates, two different loss
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functions are presented in this section.

3.2.1.2.1 Negative Log-Loss

The negative log loss (NLL) function is given by

LNL(z,x) = − ln
(
`(z|x)

)
(3.10)

and is perhaps the most widely used loss function. It is popular mainly because the logarithm of

the likelihood is more numerically stable than the likelihood itself, and by minimizing the negative

log likelihood of Eq. (3.10), the likelihood itself is maximized. As such, it is no surprise that the

NLL is, in fact, a staple of maximum likelihood estimation (MLE) [72]. Additionally, much like

the KLD is used as a performance baseline for other divergences, the NLL is included here as the

“standard” GVI loss function, with which other loss functions are compared.

3.2.1.2.2 γ-Loss

There are many other loss functions besides the NLL, one of which is the γ-loss function (γ-

LF) presented in [61, 73]. It is mathematically given as

Lγ(z,x) =
γ

1− γ

(
`(z|x)

[ ∫
`(s|x)γds

] 1
γ

)γ−1

, (3.11)

and is selected here as it is of a form that does not include p(x), as well as the availability of a

numerically stable log form − ln[−Lγ(·, ·)] [61]. Of special note is that the γ-LF of Eq. (3.11) can

be derived from the γ-D of Eq. (3.8) following the steps in [73], making the γ-LF a robust choice

for GVI when γ > 1. For this reason, the γ-LF is a suitable loss function candidate for this work,

as it will generally produce more conservative GVI posteriors than the NLL would.

3.2.1.3 Feasible Distributions

While GVI seeks to avoid defining a precise form for the posterior distribution, it is still use-

ful, if not computationally necessary, to make some constraining assumptions on the pdf p(x) of
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Eq. (3.2). This is accomplished by designating a family of distributions, Π, that are considered

feasible solutions to the GVI optimization problem. At the very least, Π must constrain p(x) to

∫
X
p(x) dx = 1 and p(x) ≥ 0∀x ∈ X , (3.12)

which maintains p(x) as a valid pdf.

3.2.1.3.1 Gaussian

While there are many possible distributions that can be used when appointing Π, many times

the selection depends on the particular stochastic characteristics of the system being considered.

However, as discussed in Section 2.2.2, the Gaussian distribution is known for its wide applicability

and useful properties. In fact, many of the integrals found in the divergences and loss functions of

Sections 3.2.1.1 and 3.2.1.2 are found to close under Gaussian assumptions, which will be shown

in Section 3.2.2. Therefore, if the posterior is constrained to be Gaussian, then p(x) ∈ Πg, where

Πg = pg(x|m,P ) . (3.13)

Note that the Gaussian constraint of Eq. (3.13) inherently enforces the requirements of Eq. (3.12)

that ensures p(x) is a valid pdf.

3.2.2 Robust GVI Updates

As the purpose of introducing GVI is to find robust alternatives to Bayes’ rule for information

fusion, this section seeks to develop cost functions for Eq. (3.2) by combining a divergence from

Section 3.2.1.1 with a loss function from Section 3.2.1.2, under the constraint that posterior must

be Gaussian subject to Eq. (3.13). While GVI is an incredibly useful tool, analytical solutions

to Eq. (3.2) are often difficult, or even impossible to find. To this end, instead of seeking exact

solutions to the GVI optimization, a numerical approach is deemed appropriate, as it allows for

quick implementation and testing of different GVI updates by varying the rule of three. Unfortu-

nately, even when the cost function of GVI is shown to be convex, the numerical stability of the
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optimization process is not always sufficient. To address this, the Gaussian assumptions made in

this section provide exact forms for the integrals of the divergences and loss functions, making nu-

merical optimization more feasible. Additionally, these Gaussian assumptions also allow the GVI

updates to be directly compared to the EKF, which is useful for performance analysis purposes.

3.2.2.1 Gaussian Divergences

For the divergences D
[
p
∥∥p−] presented in this section, it is assumed that the prior p−(x) is a

Gaussian of the form

p−(x) = pg(x|m−,P−) . (3.14)

which is identical to the prior of the EKF from Eq. (2.3c), but with the omission of the time index.

3.2.2.1.1 Gaussian KLD

Under the posterior constraint of Eq. (3.13) and the Gaussian prior assumption of Eq. (3.14),

the KLD from Eq. (3.5) is shown to be [74]

DKL[p‖p−] =
1

2

[
ln

(
|P−|
|P |

)
− nx + tr

{
(P−)−1P

}
+ (m− −m)T (P−)−1(m− −m)

]
,

(3.15)

where nx is the dimension of the state vector. The exact derivation of Eq. (3.15) is shown in

Section B.3, but is relatively well known.

3.2.2.1.2 Gaussian RD

Again, under the posterior constraint of Eq. (3.13) and prior assumption of Eq. (3.14), the RD

from Eq. (3.7) is shown to be [75]

DR[p‖p−] =
α

2
(m−m−)T P̃ (m−m−)− 1

2(α− 1)
ln

(
|P̃ |

|P |1−α|P−|α

)
, (3.16)
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where

P̃ = αP− + (1− α)P .

While not provided explicitly here, the derivation of Eq. (3.16) follows similarly to Section B.3.

3.2.2.1.3 Gaussian γ-D

Once again, under the posterior constraint of Eq. (3.13) and prior assumption of Eq. (3.14), the

γ-D from Eq. (3.8) takes the form [61]

Dγ[p‖p−] =
1

2γ(1− γ)

[
nxγ(γ − 2) ln(2π) + (m−m−)T P̃ (m−m−)

+ nx ln
(
|γ|1+γ|γ − 1|−γ(−γ)−1

)
+ γ2 ln

∣∣P−∣∣
− γ ln

∣∣∣[P−]2(I +
1

γ − 1
P−P−1)

∣∣∣+ ln
∣∣P−P−1

∣∣] , (3.17)

where

P̃ =

[
1

γ(1− γ)
P− − 1

γ
P

]−1

.

Due to the increased number of integrals in Eq. (3.8), the Gaussian form of the γ-D in Eq. (3.17)

is more complex than the previous divergences.

3.2.2.2 Gaussian Expected Loss Functions

For the loss functions L
(
z,x) presented in this section, it is assumed that the measurement

likelihood `(z|x) is a linear-Gaussian of the form

`(z|x) = pg(z|Hx,R) . (3.18)

These linear-Gaussian expected loss functions are then adapted to the nonlinear measurement

model described in Eq. (2.1c) via first-order approximations.
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3.2.2.2.1 Gaussian NLL

Under the posterior constraint of Eq. (3.13) and the linear-Gaussian measurement assumption

of Eq. (3.18), the expected value of the NLL from Eq. (3.10) is

Ep(x)

[
LNL(z,x)

]
= Ep(x)

[
− ln

(
pg(z|Hx,R)

)]
= −Ep(x)

[
− 1

2
ln |2πR| − 1

2

(
zTR−1z − 2zTR−1Hx+ xTHTR−1Hx

)]
=

1

2

{
ln |2πR|+ zTR−1z − 2zTR−1HEp(x)[x] + Ep(x)[x

THTR−1Hx
]}

.

(3.19)

Noting that Ep(x)[x] = m and Ep(x)[x
THTR−1Hx] = tr{HTR−1HP } + mTHTR−1Hm,

Eq. (3.19) becomes

Ep(x)

[
LNL(z,x)

]
=

1

2

[
ln |2πR|+ (z −Hm)TR−1(z −Hm) + tr

{
HTR−1HP

}]
. (3.20)

The form of Eq. (3.20) can be extended to the nonlinear measurement model of Eq. (2.1c) as

Ep(x)

[
LNL(z,x)

]
=

1

2

[
ln |2πR|+

(
z − h(m)

)T
R−1

(
z − h(m)

)
+ tr

{
HT (m)R−1H(m)P

}]
.

(3.21)

3.2.2.2.2 Gaussian γ-LF

Again, under the posterior constraint of Eq. (3.13) and the linear-Gaussian measurement as-

sumption of Eq. (3.18), the expectation of the γ-LF from Eq. (3.11) can be shown to be [61]

Ep(x)

[
Lγ(z,x)

]
= −γ

nz(γ−1)
2γ

+1(γ − 1)−
nz
2
−1
∣∣2πR∣∣ (1−γ)2−γ22γ pg

(
z
∣∣∣Hm,HPHT +

1

γ − 1
R
)
,

(3.22)
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assuming γ ≥ 1. Note that nz is the dimension of the measurement vector and the Gaussian term

of Eq. (3.22) is an evaluated likelihood, not a pdf. Unfortunately, Eq. (3.22) is found to scale poorly

when subjected to numerical optimization. As such, the log-stable form is introduced as

Ep(x)

[
− ln

(
− Lγ(z,x)

)]
= ln(γ − 1)− ln(γ) +

γ − 1

2

[
2γ − 1

γ
ln |2πR|+ nz

γ
ln |γ|

+ (z −Hm)TR−1(z −Hm) + tr
{
HTR−1HP

}]
, (3.23)

the derivation of which follows closely to that of Eq. (3.19). Again, Eq. (3.23) can also be adapted

to the nonlinear measurement model of Eq. (2.1c) as

Ep(x)

[
− ln

(
− Lγ(z,x)

)]
= ln(γ − 1)− ln(γ) +

γ − 1

2

[
2γ − 1

γ
ln |2πR|+ nz

γ
ln |γ|

+
(
z − h(m)

)T
R−1

(
z − h(m)

)
+ tr

{
HT (m)R−1H(m)P

}]
.

(3.24)

3.2.3 Simplified Falling Body Simulation

Much like Section 2.3.2, this simulation is designated to the falling body system of Fig. (2.4),

yet it is simplified for the purposes of this analysis. More specifically, as the analyses of this

section are principally concerned with the performance of the filter update, the dynamical model

of Eq. (2.30) is altered to be linear by neglecting the effects of drag, such that the state vector x of

Eq. (2.29) is reduced to

x = [ y ẏ ]T .

and the dynamical model for Eq. (2.30) becomes

ÿ = −g ,
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GVI Update D[p‖p−] L(z,x) p(x) ∈ Π
1 DKL LNL Πg

2 DKL Lγ Πg

3 DR LNL Πg

4 Dγ LNL Πg

Table 3.1 Divergence, loss function, and feasible distributions for four GVI updates

where g = 32.2ft/s2 is the acceleration due to gravity. The initial distribution corresponding to the

reduced state vector is taken as

p+(x0) = pg(x0|m0,P0) , (3.25)

where

m0 =

1000 ft

0 ft/s

 and P0 =

2000ft2 0

0 500(ft/s)2

 .

Measurement scans are generated every second, where valid sensor returns conform to the non-

linear, Gaussian model given by Eq. (2.33), with the measurement noise covariance for valid sensor

returns taken to be R = 10 ft2. The duration of the simulation is 10 seconds, and each analysis is

performed over 500 MC trials, with MC statistics calculated as described in Section 2.3.1.

3.2.3.1 Filter Configurations

Five different filters are tested for the system, each with propagation algorithms identical to

that of the EKF in Eqs. (2.3). In fact, the first filter is a true EKF, having the update of Eqs. (2.4),

and is used as a point of reference when evaluating the GVI filters. The remaining four filters,

shown in Table 3.1, have GVI updates corresponding to Eq. (3.2), with the appropriate Gaussian

assumptions made such that the Gaussian forms of the divergences of Section 3.2.2.1 and expected

loss functions of Section 3.2.2.2 are inserted directly into the GVI cost function.

To calculate the GVI posteriors, numerical optimization via Matlab’s fmincon is performed
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with the default interior-point method and a optimality tolerance of 10−15. An inequality constraint

enforces positive-definiteness of the posterior covariance by requiring the eigenvalues of P be

positive. It is found that the dynamic and measurement models of the system play a large role

in the behavior of the GVI updates, such that preliminary tuning of the GVI updates that require

parameter selection of α and γ is advisable.

3.2.3.1.1 GVI Update 1: DKL and LNL

The first GVI update (GVIU-1) consists of the DKL of Eq. (3.15) and the expected LNL of

Eq. (3.20). This specific combination of D and L is selected as it is equivalent to a Bayesian

update, a proof of which is presented in Section 3.3. Therefore, the results of this filter should

closely match those of the EKF, as the EKF is (approximately) Bayes optimal under Gaussian

assumptions.

3.2.3.1.2 GVI Update 2: DKL and Lγ

The second GVI update (GVIU-2) consists of the same DKL of Eq. (3.15) as used in GVIU-1,

but with the robust expected Lγ of Eq. (3.24). After trial and error, γ ∈ [1, 2) is found to work well

for the simplified falling body system, and γ = 1.1 is selected for the MC analyses.

3.2.3.1.3 GVI Update 3: DR and LNL

The third GVI update (GVIU-3) consists of the same LNL of Eq. (3.20) as used in GVIU-1,

but with the DR of Eq. (3.16). While this Rényi divergence-based update seems to work well for

most values of α ∈ [0, 1), lower values of α are found to produce more conservative estimates.

Thus, α = 0.2 is selected as it shows significantly different behavior than the GVI update of

Section 3.2.3.1.1, where the KLD is used.

3.2.3.1.4 GVI Update 4: Dγ and LNL

The fourth GVI update (GVIU-4) consists of the same LNL of Eq. (3.20) as used in GVIU-1,

but with the robust Dγ of Eq. (3.16). Again, preliminary tuning shows that this GVI update works
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well for γ ∈ (1, 2), but γ = 1.001 is selected for its specific behavior.

3.2.3.2 Analysis 1: Ideal Measurements

In this analysis, the performance of all five filters are compared to each other under ideal con-

ditions; no spurious measurements are generated, and the filter is not misinformed concerning the

system models. Beginning with the performance of the baseline EKF in Fig. (3.1a), the consistency

of the MC and average filter uncertainties indicate a well-behaved filter, with the filter estimate ac-

curately reflecting the true error in the system. Of course, the first result of note is the similarity

between the EKF update of Fig. (3.1a) and the GVIU-1 of Fig. (3.1b). Since these are both (ap-

proximately) Bayesian updates, their identical behavior is expected and serves as a sign of correct

numerical optimization. It is also worth noting that GVIU-1 is by far the quickest and most stable

of all GVI updates, achieving optimality significantly faster and failing the least.

Examining the results of GVIU-2 in Fig. (3.1c) next, it is clear that this non-Bayesian update is

far more conservative (σfilt,ι > σMC,ι) than its Bayesian counterparts in Figs. (3.1a) and (3.1b). In

fact, it does seem to be the most conservative of all the filters, which could possibly be a desired

outcome, especially if measurements are mismodeled to a significant degree—a scenario that is

studied further in the following analysis of Section 3.2.3.3. While the true average uncertainty

( ) of GVIU-2 decreases more slowly than the other filters, it eventually reaches a comparable

steady-state value as more measurements are processed.

Next, the Rényi-based GVIU-3 is examined, where it is shown to have a similar uncertainty

profile to the Bayesian updates of Figs. (3.1a) and (3.1b), but with slightly more conservative

estimates. Recalling that the RD reduces to the KLD as α → 1, this is precisely the type of

behavior desired from such an update. It shows promise for systems where prior distributions of

the state are misspecified, such as systems with imprecise dynamical models.

Lastly, the MC results of GVIU-4 are shown in Fig. (3.1e), where it also appears remarkably

similar to the Bayesian updates of Figs. (3.1a) and (3.1b). The only clear difference occurs at the

first time step, where, instead of the estimated uncertainty in the velocity decreasing as it does with

the other filters, GVIU-4 initially becomes more uncertain of the velocity. In short, the posterior

58



formed by GVIU-4 causes less information gain in velocity until the uncertainty in the position is

reduced at tk = 1 sec. The exact mechanics behind this are hard to pinpoint, but it is interesting

behavior, nonetheless.

3.2.3.3 Analysis 2: Measurement Model Mismatch

With Section 3.2.3.2 demonstrating successful estimation with the GVI filters under ideal con-

ditions, their robustness is next to be tested. This second analysis accomplishes this by introducing

faulty measurements into the system. While detailed discussion on faulty measurements is left for

Section 4.2, they are invoked here to create a mismatch between the measurement model assumed

by the filter and the model used to simulate measurement generation. To this end, there is a 10%

that any given measurement received by the filter is faulty, being generated by the range measure-

ment model of Eq. (2.33), but with an increased noise covariance of Rf = 100R = 1000 ft2. Note

that, as the filters are unaware of the existence of faulty measurements, all filters assume R = 10

ft2.

Within this model mismatch analysis, two GVI updates are tested. First, GVIU-1 of Sec-

tion 3.2.3.1.1 is selected as a performance reference for Bayesian updates, the MC results of which

are shown in Fig. (3.2a). Upon inspection, it is immediately clear that GVIU-1 fails in the presence

of model mismatch. Figure (3.2a) is clearly indicative of an overconfident filter, with average error

standard deviations well outside the filter expectations. GVIU-1 clearly cannot compensate for

the presence of faulty measurements, showing the inadequacy of Bayesian estimation under poor

measurement modeling.

The second update is GVIU-2, which corresponds to the Lγ-based update described in Sec-

tion 3.2.3.1.2. GVIU-2 is a good candidate for measurement model mismatch as it optimizes over

a robust loss function in place of the standard NLL. The MC results produced by GVIU-2 are pro-

vided in Fig. (3.2b), where it is clear that this more robust GVI update is remarkably well-behaved,

even in the presence of faulty measurements. While slightly overconfident overall, the error is es-

timated far more accurately by GVIU-2 than GVIU-1. In short, the non-Bayesian GVIU-2 is more

robust to the faulty measurements of this system than the Bayesian estimate of GVIU-1.
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b) GVI Update 1: DKL and LNL

−100

0

100

y
E

rr
or

[f
t]

0 2 4 6 8 10
−100

−50

0

50

100

Time [sec]

ẏ
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c) GVI Update 2: DKL and Lγ
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d) GVI Update 3: DR and LNL
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e) GVI Update 4: Dγ and LNL

Figure 3.1 MC results of GVI falling body simulation plotted as eι ( ), 3σfilt,ι ( ), and 3σMC,ι

( )
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a) GVI Update 1: DKL and LNL
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b) GVI Update 2: DKL and Lγ

Figure 3.2 MC results of GVI falling body simulation with measurement model mismatch plot-
ted as eι ( ), 3σfilt,ι ( ), and 3σMC,ι ( )

3.2.3.4 Analysis 3: Dynamics Model Mismatch

Much like the measurement model mismatch analysis of Section 3.2.3.3, this analysis evaluates

the robust capabilities of GVI by mismatching the dynamics model. By providing the filter with

a disingenuous dynamics model, each update is essentially supplied with an incorrect prior distri-

bution p−(x). This dynamics mismatch is accomplished by imparting undisclosed process noise

to the state propagation; at each time step, discrete process noise is sampled from a zero-mean

Gaussian with covarianceQk = diag{75ft2, 1(ft/s)2}, while the filter still assumes no process noise

is present in the system.

Under these conditions, two GVI filters are evaluated, the comparative MC results of which

are presented in Fig. (3.3). Again, in order to showcase Bayesian performance as a reference, the

first filter of Fig. (3.3a) is the GVIU-1 of Section 3.2.3.1.1. The second filter in Fig. (3.3b) consists

of the RD-based update of Section 3.2.3.1.3 (GVIU-3). While the actual errors of the two filters

are about the same, the average estimated uncertainty differs significantly between the two. It is

61



clear that, as the simulation progresses, GVIU-3 remains mostly conservative, while the Bayesian

GVIU-1 becomes increasingly overconfident. These results suggest that GVIU-3 is more resistant

to dynamics model mismatch, making it a more robust alternative to Bayes’ rule for such systems.
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a) GVI Update 1: DKL and LNL
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b) GVI Update 3: DR and LNL

Figure 3.3 MC results of GVI falling body simulation with dynamics model mismatch plotted
as eι ( ), 3σfilt,ι ( ), and 3σMC,ι ( )

3.3 Confidence-based Update

The utility of non-Bayesian updates is clearly showcased in Section 3.2, where multiple GVI

updates are quickly introduced and tested. However, the posteriors are only calculated via direct

numerical optimization, which can be computationally intensive and inappropriate for applications

which require real-time estimation. Therefore, this section attempts to find practical, closed-form

filters derived from GVI that can be implemented more efficiently. As the KLD and NLL are

found to be exceptionally stable choices for GVI, they are used as the basis for the confidence-

based update presented in this section, but are weighted to increase robustness.

62



At the core of most filters is the ability to construct a posterior distribution of the state x by

fusing incoming data, z, with some prior knowledge of the state. Predicating this discussion with

the GVI posterior of Eq. (3.2), here it is assumed that incoming data is generated via `(z|x),

and the prior knowledge of the state is contained within the distribution p−(x). If it is desired to

construct a posterior distribution, p+(x), solely on prior information of x, it can be shown that

minimizing the divergence, via the relative entropy (i.e., Kullback-Leibler divergence) in this case,

produces a posterior that minimizes the information gain from p− to p+ such that [61]

p+(x) = min
p(x)∈Π

{
DKL

[
p(x)

∥∥p−(x)
]}

= min
p(x)∈Π

{∫
p(x) ln

(
p(x)

p−(x)

)
dx
}
. (3.26)

Note that in Eq. (3.26) the end result will be p+(x) = p−(x), which is equivalent to filtering

processes where no update is performed—an outcome that holds for any valid divergence D. On

the other hand, if a posterior is to be constructed purely from the incoming data, the expected

negative-log-likelihood can be minimized to yield

p+(x) = min
p(x)∈Π

{
Ep(x)

[
LNL(z,x)

]}
= min

p(x)∈Π

{
−
∫
p(x) ln

(
`(z|x)

)
dx
}
. (3.27)

In the case of Eq. (3.27), p+(x) = δx̂ML(x), where x̂ML is the maximum likelihood estimate of x

[61]. To form a solution reliant upon both incoming information and prior knowledge, elements

from both Eqs. (3.26) and (3.27) must be taken into consideration. This is accomplished through

an optimization problem that defines the posterior distribution p(x) as the solution that minimizes

the cost function

J
(
p(x)

)
= γ

∫
p(x) ln

(
p(x)

p−(x)

)
dx− ν

∫
p(x) ln

(
`(z|x)

)
dx (3.28)

where γ and ν are scalar coefficients and p(x) is restricted by Π to be a valid pdf such that

∫
p(x)dx = 1 and p(x) ≥ 0 ∀x ∈ X . (3.29)
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For the optimization problem to be considered convex, the cost function of Eq. (3.28) must be con-

vex, and the constraint of Eq. (3.29) must be affine. Fortunately, the forms of Eqs. (3.26) and (3.27)

are chosen in part as they are both well known to be convex functions, such that they conform to

the identity in Eq. (A.9). In fact, the KLD is strictly convex with respect to p(x) for fixed p−(x),

a characteristic proven in Eq. (B.55). As such, since Eq. (3.28) is a non-negative weighted sum

of a convex and strictly convex functions, by the proof in Eq. (A.13), the cost function is strictly

convex.

The constraint in Eq. (3.29), when restated such that

h
(
p(x)

)
=

∫
p(x)dx− 1

= 0 ,

can be shown to be affine such that

θh
(
p(x)

)
+ (1− θ)h

(
q(x)

)
= θ

∫
p(x)dx− θ + (1− θ)

∫
q(x)dx− 1 + θ

=

∫
θp(x)dx+

∫
(1− θ)q(x)dx− 1

=

∫ (
θp(x) + (1− θ)q(x)

)
dx− 1

= h
(
θp(x) + (1− θ)q(x)

)
.

Thus, the constraint of Eq. (3.29) satisfies the definition of an affine function from Eq. (A.11). Note

that q(x) is simply an arbitrary function that exists on the same domain as p(x). Therefore, the

conditions for the optimization of Eqs. (3.28) and (3.29) to be convex are not only met, but as the

cost function is strictly convex, there exists at most one unique solution that satisfies optimality.

This is a convenient result, as any optimal solution found will be guaranteed to be unique.

Before minimizing, the Lagrange dual function is utilized such that the constraint of Eq. (3.29)
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is inherently accounted for. Thus, the Lagrange dual function of Eq. (3.28) is

L(p(x), λ) = γ

∫
p(x) ln

(
p(x)

p−(x)

)
dx− ν

∫
p(x) ln

(
`(z|x)

)
dx+ λ

(∫
p(x)dx− 1

)
,

(3.30)

which can be rearranged as

L(p(x), λ) =

∫
p(x) ln

([ p(x)

p−(x)

]γ)
dx+

∫
p(x) ln

(
`(z|x)−ν

)
dx+

∫
λp(x)dx− λ

=

∫
p(x)

{
ln

([ p(x)

p−(x)

]γ
`(z|x)−ν

)
+ λ

}
dx− λ

=

∫
p(x)

[
γ ln

(
p(x)

p−(x)`(z|x)
ν
γ

)
+ λ

]
dx− λ . (3.31)

The distribution p(x) that minimizes the Lagrange dual function is found by taking the deriva-

tive of Eq. (3.31) and equating it to zero. To do this, calculus of variations is most useful, as any

local minima of a convex function will also be a global minima. Making use of the definition from

Eq. (A.14), the first variation of Eq. (3.31) is

δL(p(x), q(x), λ) =
d
dε

{∫ (
p(x) + εq(x)

)[
γ ln

(
p(x) + εq(x)

p−(x)`(z|x)
ν
γ

)
+ λ

]
dx− λ

}
=

∫
d
dε

{(
p(x) + εq(x)

)[
γ ln

(
p(x) + εq(x)

p−(x)`(z|x)
ν
γ

)
+ λ

]}
dx− dλ

dε

=

∫ {
d
dε

(
p(x) + εq(x)

)[
γ ln

(
p(x) + εq(x)

p−(x)`(z|x)
ν
γ

)
+ λ

]
+
(
p(x) + εq(x)

) d
dε

[
γ ln

(
p(x) + εq(x)

p−(x)`(z|x)
ν
γ

)
+ λ

]}
dx

=

∫ {
q(x)

[
γ ln

(
p(x) + εq(x)

p−(x)`(z|x)
ν
γ

)
+ λ

]
+ γ
(
p(x) + εq(x)

) d
dε

[
ln

(
p(x) + εq(x)

p−(x)`(z|x)
ν
γ

)]}
dx

=

∫
q(x)

[
γ ln

(
p(x) + εq(x)

p−(x)`(z|x)
ν
γ

)
+ λ+ γ

]
dx . (3.32)
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Enforcing the requirement that ε = 0 on Eq. (3.32) and setting δL(p(x), q(x), λ) = 0 yields

∫
q(x)

[
γ ln

(
p(x)

p−(x)`(z|x)
ν
γ

)
+ λ+ γ

]
dx = 0 ,

such that for any instantaneous support over x

q(x)

[
γ ln

(
p(x)

p−(x)`(z|x)
ν
γ

)
+ λ+ γ

]
= 0 . (3.33)

Here, it is noted that q(x) is an arbitrary function. and that the expression in Eq. (3.33) must remain

zero for all possible values of q(x). Therefore, the remaining term must satisfy

γ ln

(
p(x)

p−(x)`(z|x)
ν
γ

)
+ λ+ γ = 0 ,

where algebraic manipulation yields

p(x) = exp

{
− γ + λ

γ

}
p−(x)`(z|x)

ν
γ . (3.34)

From Eq. (3.34), it is simple to confirm that p(x) ≥ 0, thus satisfying one of the conditions of

a valid pdf. To satisfy the remaining constraint from Eq. (3.29), for the distribution p(x) to be a

valid solution to the constrained optimization problem, it must obey

∫
exp

{
− γ + λ

γ

}
p−(x)`(z|x)

ν
γ dx = 1

exp

{
− γ + λ

γ

}
=

1∫
p−(x)`(z|x)

ν
γ dx

, (3.35)

which is also a result of ∂L
∂λ

= 0. Since p(x) is the unique solution to the optimization problem

being sought, it is here that p+(x) = p(x) can be stated. Thus substitution of Eq. (3.35) into
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Eq. (3.34) yields the optimal posterior as

p+(x) =
p−(x)`(z|x)

ν
γ∫

p−(s)`(z|s)
ν
γ ds

. (3.36)

With the optimal solution found, it is useful to set γ = φ and ν = 1− φ such that the optimization

problem can be restated as

p+(x) = min
p(x)∈Π

{
(1− φ)Ep(x)

[
LNL(z,x)

]
+ φDKL

[
p(x)

∥∥p−(x)
]}

= min
p(x)∈Π

{
− (1− φ)

∫
p(x) ln

(
`(z|x)

)
dx+ φ

∫
p(x) ln

(
p(x)

p−(x)

)
dx
}
. (3.37)

The solution to Eq. (3.37) is therefore

p+(x) =
`(z|x)

1−φ
φ p−(x)∫

`(z|s)
1−φ
φ p−(s)ds

. (3.38)

Upon inspection, it is clear that when φ = 1/2, Eq. (3.38) reduces to Bayes’ rule of Eq. (3.1),

which indicates that when both the prior and likelihood are considered equally important, the

posterior is Bayes optimal. In some situations it may be useful to utilize a filter that is slightly

more confident in the prior information than the incoming measurements, and in such a case, φ is

set to some value greater than 1/2. A filter update of this nature is more conservative than the typical

Bayesian update, generally making it more robust to unmodeled effects and linearization errors.

Furthermore, closed-form solutions under certain conditions produce a framework with varying

confidence, where, under desired conditions, the filter can establish more or less confidence in its

prior, or reduce back to a Bayesian update. With this in mind, the update of Eq. (3.38) is referred

to as the confidence-based update.

3.3.1 Closed-Forms for Linear Filters

While the probabilistic form of the proposed update given in Eq. (3.38) is useful in terms of

its generality, it should be refined into a more practical form before it can be directly compared
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to existing filtering methods. Therefore, a linear-Gaussian form of the update is presented, which

is then extended to nonlinear systems via first-order Taylor series linearization. These filters are

well-suited to directly replace KFs or EKFs in existing estimation frameworks.

3.3.1.1 Linear-Gaussian Derivation

For the purposes of this derivation, a linear-Gaussian system is taken to govern the observations

z that are generated regarding the state x, such that the likelihood function is

`(z|x) = pg(z|Hx, R) , (3.39)

where R is the measurement noise covariance and H is the matrix corresponding to the linear

mapping of the state into the measurement space. Additionally, it is also assumed that the prior

distribution is available in the form of a Gaussian as

p−(x) = pg(x|m−, P−) , (3.40)

where m− and P− are the mean and covariance, respectively. With the prior and likelihood as

given, and using the power of a Gaussian identity from Eq. (A.5), it can be shown that

p−(x)`(z|x)
1−φ
φ =

[
φ

1− φ

]nz
2 ∣∣2πR∣∣ 2φ−1

2φ pg
(
x
∣∣m+, P+

)
pg

(
z
∣∣Hm−, HP−HT +

φ

1− φ
R

)
,

(3.41)

the components of which are defined in Eqs. (3.43), and where the Gaussian component corre-

sponds to an evaluated likelihood, not a pdf. The identity of Eq. (3.41) is very similar to that

found by Ho and Lee in [76], and a more detailed derivation can be found in Section B.2. If the

expression in Eq. (3.41) is used in the general form of the proposed update from Eq. (3.38), then

p+(x) ∝
[

φ

1− φ

]nz
2 ∣∣2πR∣∣ 2φ−1

2φ pg
(
x
∣∣m+, P+

)
pg

(
z
∣∣Hm−, HP−HT +

φ

1− φ
R

)
. (3.42)
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Noting that any terms in Eq. (3.42) not dependent on x are eliminated when p+(x) is normalized,

it is shown that the resulting posterior distribution is a Gaussian pdf of the form

p+(x) = pg(x|m+,P+) , (3.43a)

where

m+ = m− +K(z −Hm−) (3.43b)

P+ = P− −KHP− (3.43c)

K = P−HT

(
HP−HT +

φ

1− φ
R

)−1

. (3.43d)

It is also worth noting that the form of the gain K calculated in Eq. (3.43d) is similar to a form of

underweighting mentioned in [77] and successfully used by [78]. This derivation shows possible

confidence-based reasoning to support the use of this particular form of underweighting.

3.3.1.2 Scaling Factor for Adaptive Confidence

In order to allow for more autonomy within the filter update, a definition for the confidence

factor φ is made such that the filter’s overconfidence in the prior information vanishes as the es-

timate uncertainty becomes more compatible with the measurement uncertainty. In other words,

φ is selected so that as the “difference” between prior and measurement uncertainties transitions

from large to small, the update intelligently adapts from one that favors the prior information to

one that approaches Bayesian optimality—a behavior that promotes more robust and conservative

filtering operations in high uncertainty environments. Thus, φ should not be constant, but rather a

function of the estimate and measurement uncertainties.

According to the φ presented in Eqs. (3.37) and (3.38), when the uncertainty “difference” be-

tween prior and measurement grows, the value of φ should approach 1−. Conversely, as the “differ-

ence” between the two uncertainties becomes small, the value of φ should approach (1/2)+. Under

the Gaussian assumption utilized in Eq. (3.43), a useful tool to compare the prior and measurement
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uncertainties is the residual covariance, given by

W = HP−HT +R . (3.44)

As the “difference” between the prior and measurement uncertainties transitions from large to

small, the “ratio” of the measurement noise covariance, R, to the the residual covariance, W ,

goes from “zero” to “identity”, as P− is symmetric, positive definite andR is symmetric, positive

definite. Since φ is a scalar value, the ratio betweenR andW must also be reduced to a scalar. This

can be done several ways, such as taking the traces of the matrices, but an appropriate approach

should sufficiently capture all values of the covariances, not just the diagonals. Matrix norms

are well-known operations that accomplish this, with the most popular being the spectral norm.

However, for a matrix A ∈ Rn×n with eigenvalues λ = λ1, λ2, . . . , λrank(A) the spectral norm is

given by

‖A‖S = max{λ} ,

such that only the largest eigenvalue is accounted for. A more appropriate selection is the Frobenius

norm, given by [79]

‖A‖F =
√
λ2

1 + λ2
2 + · · ·+ λ2

rank(A) ,

which accounts for all eigenvalues of the matrix. Indeed, it is found that taking the ratio of the

Frobenius norm of R to the Frobenius norm of W is sufficient, and the ratio of the norms always

produces values between zero and one. Therefore, if φ is defined as

φ = 1−
(

1

2

)(
‖R‖F
‖W ‖F

)
, (3.45)
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then φ will behave as

lim
W→∞

φ = 1− (3.46a)

lim
W→R+

φ =
(

1/2
)+
. (3.46b)

For brevity, the scalar ψ is defined to be

ψ =
‖R‖F

‖HP−HT +R‖F
. (3.47)

While the properties of φ described in Eqs. (3.46) satisfy the conditions desired in the confidence-

based update, it is found that the update operates better when φ is augmented to produce values

closer to 1/2, as values close to 1 prevent the filter from converging in a timely manner. Therefore,

utilizing the definition of ψ in Eq. (3.47), a scaling factor denoted by β and an exponential term

(1− ψ) are introduced into Eq. (3.45) to produce

φ = 1− 1

2
ψβ(1−ψ) , (3.48)

where decreasing β drives the confidence-based update closer to Bayes’ rule, and increasing β

promotes a more conservative posterior. Plotting Eq. (3.48) yields Fig. (3.4), where β = 0.80 is

plotted as ( ) as it is found to be of particular use in many scenarios, but the exact value of β

selected ultimately depends on the system at hand.

3.3.1.3 Extending Closed-Form Confidence-Based Update to Nonlinear Systems

While the closed-form update of Section 3.3.1.1 provides an insightful look into non-Bayesian

filtering, as it is an exact filtering solution, it is strictly designed for systems with linear observation

models pursuant to Eq. (3.39). Unfortunately, most observation models are nonlinear functions of
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Figure 3.4 Visualization of Eq. (3.48) for varying values of β

x as shown in Eq. (2.1c), such that the measurement likelihood of Eq. (3.39) is replaced by

`(z|x) = pg(z|h(x), R) . (3.49)

In fact, the traditional (Bayesian) Kalman filter is built on the linear measurement distribution of

Eq. (3.39), while the EKF assumes the nonlinear measurement distribution of Eq. (3.49), which

is precisely the reason why the EKF is considered more useful for practical applications. In this

way, just as the EKF is a linearized extension of the KF, a first-order Taylor series approximation

can be used to extend the update of Eqs. (3.43) to nonlinear measurement models. Thus, given the

prior of Eq. (3.40) and the likelihood of Eq. (3.49), the confidence-based update of Eq. (3.38) can

be shown to be

p+(x) = pg(x|m+, P+) , (3.50a)

72



where

m+ = m− +K[z − h(m−)] (3.50b)

P+ = P− −KH(m−)P− (3.50c)

K = P−HT (m−)W−1 (3.50d)

W = H(m−)P−HT (m−) +
φ

1− φ
R , (3.50e)

and where H(m−) is the Jacobian of h(·) evaluated at x = m−. Recalling the definition of ψ

from Eq. (3.47), an alternate form of the residual covariance in Eq. (3.50e) is given by

W = H(m−)P−HT (m−) +
(
2ψβ(ψ−1) − 1

)
R .

It should be noted that the identities of Eqs. (A.2) and (A.5) are essential when calculating the

posterior of Eq. (3.50a).

3.3.1.4 Scalar Measurement Processing

When processing vector measurement data from sensors, it is not uncommon for there to exist a

significant difference in the levels of measurement uncertainty between the scalar components. For

instance, a sensor that outputs measurements of angle and range may possess a standard deviation

of a fraction of a radian corresponding to the angle component, yet the range may have a standard

deviation of thousands of meters or more. Such large disparities between measurement noise

uncertainties can make the confidence-based gain of Eqs. (3.50d) and (3.50e) less effective, as it

condenses information existing in matrices R, H(m−), and P into the scalar φ, which can cause

the update to be dominated by a single component of the measurement vector. This disparity is

well quantified by the condition numbers ofR andW , which are given by

κcond(R) =
|max(λR)|
|min(λR)|

and κcond(W ) =
|max(λW )|
|min(λW )|

,
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where λR and λW are the vectors of eigenvalues forR andW , respectively. IfR andW are well

conditioned matrices–such that κcond is close to 1–then the measurement noise and residual uncer-

tainties for each scalar measurement are similarly sized, such that the Frobenius norm approach of

Eq. (3.45) works well. However, in cases where κcond � 1, the Frobenius norm is mostly dictated

by the behavior of the measurement components with larger eigenvalues, with the other measure-

ment components having little effect on the adaptive confidence coefficient φ. High condition

numbers can be attributed to several things, such as poorly scaled measurement noise covariances

or large variations in prior state uncertainty between state components. Therefore, to appropriately

calculate the confidence-based update of Section 3.3.1.3 in these conditions, the process of scalar

measurement processing is leveraged.

One common trait of measurement models, especially within the field of spacecraft navigation,

is that the scalar components of a measurement vector are often uncorrelated, resulting in a diag-

onal measurement noise covariance R. Even in the few instances where this is not the case, it is

often possible to formulate the measurement function in such a way that decorrelates the individ-

ual components. A frequent application of an uncorrelated R is the scalar processing of vector

measurements within a filter [21]. Therefore, under the assumption of uncorrelated measurements,

it is possible to apply the confidence-based update to the scalar components of the measurement

vector independently by forming an alternate residual covariance U as

Ui,i =

(
φi

1− φi

)
Ri,i , (3.51)

where Ui,i and Ri,i are the ith diagonal elements of U and R, respectively. In order to reflect the

filtering behavior previously described in Section 3.3.1.2, φi is defined as the scalar counterpart to

Eq. (3.48), such that

φi = 1− 1

2
ψ
β(1−ψi)
i , (3.52)
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where ψi is the scalar equivalent of Eq. (3.47) given by

ψi =
Ri,i

HiP−HT
i +Ri,i

, (3.53)

and where Hi is the ith row of the measurement Jacobian H(m−). Equations (3.51)–(3.53) are

used to form an alternate version of the full confidence-based update—wherein the adaptive confi-

dence treatment of Section 3.3.1.2 is applied to each scalar measurement component individually—

with the gain given by

K = P−HT (m−)W−1 (3.54a)

W = H(m−)P−HT (m−) +U . (3.54b)

Note that the Frobenius norm calculations found in Eq. (3.47) are not present in the calculation of

ψi in Eq. (3.53), making this form of the confidence-based update more efficient, albeit limited by

the assumption of uncorrelated measurements.

3.3.2 Closed-Forms for Nonlinear Filters

The two confidence-based filters derived in Section 3.3.1, while useful, still belong to the class

of linear estimators described in Section 2.1. As one of the goals of this research is to promote the

use of nonlinear filters—more specifically GM filters as described in Section 2.2.2—this section

adapts the robust confidence-based update of Eq. (3.38), recalled here as

p+(x) =
`(z|x)αp−(x)∫
`(z|s)αp−(s) ds

, (3.55)

into a GM update, where α = 1−φ
φ

is substituted for brevity. To achieve a GM realization of

Eq. (3.55), the prior p−(x) is assumed to take the form

p−(x) =
L−∑
ξ=1

w−ξ pg(x|m
−
ξ , P

−
ξ ) , (3.56)
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wherew−ξ ,m−ξ , andP−ξ correspond to the weight, mean, and covariance of the ξth GM component,

respectively. Much like Section 3.3.1, two updates are derived in the remainder of this section; the

first update assumes a linear-Gaussian measurement model, whereas the second update assumes

the measurement model is nonlinear.

3.3.2.1 GM Update for Linear-Gaussian Systems

For this specific GM update, the measurement likelihood `(z|x) is taken to be the linear-

Gaussian form of Eq. (3.39), recalled here as

`(z|x) = pg(z|Hx, R) . (3.57)

Therefore, taking the numerator of Eq. (3.55) and substituting in Eqs. (3.56) and (3.39), it can be

shown that

`(z|x)αp−(x) =
L−∑
ξ=1

w−ξ pg(z|Hx, R)αpg(x|m−ξ , P
−
ξ ) . (3.58)

Using Eq. (A.5) to rewrite the power of a Gaussian distribution, Eq. (3.58) can be reformed as

`(z|x)αp−(x) =
L−∑
ξ=1

w−ξ |α|
−nz

2 det
{

2πR
} 1−α

2 pg

(
z
∣∣Hx, 1

α
R

)
pg(x|m−ξ , P

−
ξ ) . (3.59)

Utilizing Ho’s identity from Eqs. (A.2) and noting that a linear substitution can easily be made

such that h(m) = Hm, Eq. (3.59) can be rearranged to show

`(z|x)αp−(x) =
L−∑
ξ=1

w−ξ |α|
−nz

2 det
{

2πR
} 1−α

2 pg

(
z
∣∣Hm−ξ ,HP−ξ HT +

1

α
R

)
pg(x|m+

ξ , P
+
ξ ) ,

(3.60)
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where

m+
ξ = m−ξ +Kξ(z −Hm−ξ )

P+
ξ = P−ξ −KξHP

−
ξ

Kξ = P−ξ H
T
(
HP−ξ H

T +
1

α
R
)−1

.

Now, evaluating the denominator, Eq. (3.60) can be integrated over the state x such that

∫
`(z|s)αp−(s)ds =

L−∑
ξ=1

w−ξ |α|
−nz

2 det
{

2πR
} 1−α

2 pg

(
z
∣∣Hm−ξ ,HP−ξ HT +

1

α
R

)
. (3.61)

It is worth mentioning that the factor α is not explicitly state-dependent, as it is removed from the

integral.

Taking the results from Eqs. (3.60) and (3.61) and substituting back into the confidence-based

update of Eq. (3.55) yields

p+(x) =
L−∑
ξ=1

w+
ξ pg(x|m

+
ξ , P

+
ξ ) , (3.62a)

where

w+
ξ =

w−ξ κξ∑L−

i=1w
−
i κi

(3.62b)

m+
ξ = m−ξ +Kξ(z −Hm−ξ ) (3.62c)

P+
ξ = P−ξ −KξHP

−
ξ (3.62d)

Kξ = P−ξ H
TW−1

ξ (3.62e)

Wξ = HP−ξ H
T +

1

α
R (3.62f)

κξ = |α|−
nz
2 det{2πR}

1−α
2 pg

(
z
∣∣Hm−ξ ,Wξ

)
(3.62g)

α =
1− φ
φ

. (3.62h)
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3.3.2.1.1 State-dependency of α

If it is desired to model α as a state-dependent value, such that α = α(x), it should be noted

that this will produce many complications when seeking a closed-form solution, as the integral

of Eq. (3.61) is no longer be straight-forward to evaluate. In cases such as these, it is advised

to use a zeroth-order approximation of the form α(x) ≈ α(m), an approach that is discussed in

greater detail in Section 4.4.2.3. For this reason, the term |α|−nz2 det
{

2πR
} 1−α

2 is kept within the

definition of κξ in Eq. (3.62g), as it may be defined to differ for each Gaussian component and

measurement, making it dependent on the summation over ξ. In this case, the components of the

update in Eqs. (3.62e)–(3.62g) become

Kξ = P−ξ H
TW−1

ξ

Wξ = HP−ξ H
T +

1

αξ
R

κξ = |αξ|−
nz
2 det

{
2πR

} 1−αξ
2 pg

(
z
∣∣Hm−ξ ,Wξ

)
,

where αξ = α(w−ξ ,m
−
ξ ,P

−
ξ ) denotes the relation between αξ and the ξth GM component. Recall-

ing Eq. (3.62h), it is important to note that αξ can also be expressed as

αξ =
1− φξ
φξ

,

which can be directly compared to the GVI form of the confidence-based update of Eq. (3.37), and

for which adaptive forms have already been investigated by Section 3.3.1.2.

3.3.2.2 GM Update for Nonlinear Systems

Similar to the GM update for linear measurements of Section 3.3.2.1, the update presented

in this section is also a confidence-based posterior p+(x) resulting from Eq. (3.55) subject to the

GM prior p−(x) of Eq. (3.56). However, instead of the linear-Gaussian measurement model of
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Eq. (3.57), the nonlinear measurement model of Eq. (3.49) is taken, recalled here as

`(z|x) = pg(z|h(x), R) .

Utilizing Eqs. (A.5) and (A.2), and following steps similar to Section 3.3.2.1, it can be shown that

p+(x) =
L−∑
ξ=1

w+
ξ pg(x|m

+
ξ , P

+
ξ ) , (3.63)

where

w+
ξ =

w−ξ kξ∑L−

i=1 w
−
i ki

m+
ξ = m−ξ +Kξ[z − h(m−ξ )]

P+
ξ = P−ξ −KξH(m−ξ )P−ξ

Kξ = P−ξ H
T (m−ξ )W−1

ξ

Wξ = H(m−ξ )P−ξ H
T (m−ξ ) +

1

αξ
R

κξ = |αξ|−
nz
2 det

{
2πR

} 1−αξ
2 pg

(
z
∣∣h(m−ξ ),Wξ

)
αξ =

1− φξ
φξ

,

and where φξ = φ(w−ξ ,m
−
ξ ,P

−
ξ ) can be defined to achieve some specific behavior, which is

discussed in Section 3.3.1.2.

3.4 Application to Navigation

As previously discussed in Section 1.3.1, filtering has seen long-time use in the field of space-

craft navigation, with many practices being established specifically for the needs of spaceflight

missions. One such well-established method is known as underweighting, which is presented in

greater detail in this section, as one of the goals of this work is to improve upon current navigation
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methodologies. The second-order EKF (SOEKF) is also included in this section, as it possesses a

higher-order update that is useful for comparison purposes.

3.4.1 Navigation and the Underweighted EKF

Along with issues such as unmodeled effects and sensor failures, a common point of failure in

linear estimators such as the EKF is the linearization itself. As mentioned previously, the EKF—

emphasized in particular due to its popularity in spacecraft navigation—utilizes a first-order Taylor

series approximation to derive the update of Eqs. (2.4), which is a valid approximation under the

condition that any effects of second-order or higher remain negligible. And indeed, these higher-

order effects are typically negligible under small updates: the residual covarianceW of Eq. (2.4e)

is comparable in size to the corresponding measurement noise covarianceR. Unfortunately, many

applications frequently encounter situations where a large prior uncertainty is combined with a

relatively precise measurement, resulting in a update that may produce substantial higher-order

terms, such that neglecting them causes the filtering solution to become overconfident and, in

many cases, fail by way of filter divergence [56]. To ensure robust operations, this issue cannot

go unaddressed. As a solution, the spacecraft navigation community created underweighting to

protect against these problems caused by large updates, and the technique has found regular use

still today [6, 7, 80].

Underweighting is an ad hoc, procedure-first robustness technique, as it was developed as a

direct solution to the aforementioned issues stemming from the EKF linearization. The entire

methodology is based on the concept that during sufficiently large updates, such that higher-order

effects may come into play, instead of performing the standard EKF update per Eqs. (2.4), the gain

K of Eq. (2.4d) is “underweighted” which slows the rate by which information is gained by the

filter. This effectively enlarges the updated covarianceP+ of Eq. (2.4c) artificially, which generally

makes the filtering solution under-confident (or conservative). However, conservative estimation

is usually considered acceptable (within reason) provided the filter is less likely to become smug

(or overconfident).

While underweighting can be accomplished in a variety of ways, there are certain variants
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of underweighting considered to be “best practice” [21, 77, 80]. Common to most is a test on

the components of the EKF update from Eqs. (2.4), which determines if underweighting need be

applied. A preferred underweighting scheme has certain characteristics, which are typically

• the “size” of the update—or disparity between HP−HT and R—is inherently accounted

for by the check,

• vector measurements are naturally treated by the operation, and

• the algorithms only require a single parameter be specified.

Fortunately, with respect to the EKF, these criteria can all be achieved simultaneously by replacing

the residual covariance of Eq. (2.4e) with the underweighted alternative [19, 58]

Wuw = γuwH(m−)P−HT (m−) +R , (3.64a)

where the time index k is omitted for brevity, and where

γuw =


1 , if ‖H(m−)P−HT (m−)‖ > 1−puw

puw
‖R‖

puw , if ‖H(m−)P−HT (m−)‖ ≤ 1−puw
puw
‖R‖

. (3.64b)

The scalar puw is a user-defined design parameter that is typically set after some filter analysis and

tuning. In order to enforce a “softer” update, the parameter puw should be assigned some value

greater than one, as puw = 1 would yield an underweighted update that uses the Kalman gain, and

puw < 1 would enforce an overconfident gain. For both Orion and the Shuttle program, puw = 1.2

was deemed a sufficient value such that most failures caused by large updates are avoided [7, 81].

3.4.2 Second-Order Extended Kalman Filter

While underweighting has indeed been shown to work well, instead of neglecting second-order

(and higher) terms and artificially inflating the posterior covariance, a more informed procedure

can be performed that includes second-order terms. This class of filter, appropriately referred to
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as the second-order extended Kalman filter (SOEKF), neglects the Taylor series terms that are

of the third-order and higher, thus allowing nonlinear effects up to the second-order to form the

filtering solution. Accordingly, the SOEKF requires calculating second-order partial derivatives of

the functions being approximated, which is often difficult and tedious.

In this work, the SOEKF equations are used as an additional benchmark against which the

confidence-based update is compared. The propagation stage of the SOEKF is given by [10]

m−k = f(m+
k−1) +

1

2

nx∑
i=1

ei tr
{
F (i)
xx (m+

k−1)P+
k−1

}
P−k = F (m+

k−1)P+
k−1F

T (m+
k−1)

+
1

2

nx∑
i=1

nx∑
i′=1

eie
T
i′ tr
{
F (i)
xx (m+

k−1)P+
k−1

(
F (i′)
xx (m+

k−1)
)T
P+
k−1

}
+Qk , (3.65)

where nx is the number of states in x, ei is a column vector of zeros with a 1 in the ith row, and

F
(i)
xx (·) is the Hessian matrix of the ith row of the dynamic function, fi(·), which is given by

[
F (i)
xx (m+

k−1)
]
j,j′

=
∂2fi(xk−1)

∂xj∂xj′

∣∣∣∣
xk−1=m+

k−1

.

Note that
[
F

(i)
xx (·)

]
j,j′

denotes the component corresponding to the j th row and the j’thth column of

the F (i)
xx (·) matrix. The update portion of the SOEKF algorithm is given by [10]

m+
k = m−k +Kk

(
zk − hk(m−k )− 1

2

nz∑
i

ei tr
{
H(i)

xx (m−k )P−k

} )
P+
k = P−k −KkSkK

T
k , (3.66)

where nz is the number of scalar measurements in zk. The residual covariance and filter gain are
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defined as

Sk = H(m−k )P−k H
T (m−k )

+
1

2

nz∑
i=1

nz∑
i′=1

eie
T
i′ tr
{
H(i)

xx (m−k )P−k

(
H(i′)

xx (m−k )
)T
P−k

}
+Rk (3.67)

Kk = P−k H
T (m−k )S−1

k , (3.68)

whereH(i)
xx (·) is the Hessian matrix of the ith row of the measurement function, hi(·), and is given

by

[
H(i)

xx (m−k )
]
j,j′

=
∂2hi(xk)

∂xj∂xj′

∣∣∣∣
xk=m−k

.

Note that
[
H

(i)
xx (·)

]
j,j′

denotes the component corresponding to the j th row and the j’th column of

theH(i)
xx (·) matrix.

3.5 Analysis of Linear Confidence-based Update

In order to test the capabilities of linear non-Bayesian updates, two simulations are designed

to specifically compare the performance of an EKF equipped with the proposed, confidence-based

update to both an underweighted EKF and a second-order EKF.

3.5.1 Falling Body Simulation

In this analysis, the falling body simulation of Fig. (2.4) is revisited. To be clear, all of the

system models and constraints are as given in Section 2.3.2 with a few exceptions. As this analysis

will look at the residual behavior of various filters, a single run is performed instead of multiple

MC trials. Additionally, in an attempt to cause the filters to fail, a high level of uncertainty is

generated by enforcing a measurement gap between 10 and 25 seconds, wherein it is assumed

that the observer is unable to receive range measurements of the object. As this measurement gap

significantly reduces the number of measurements in the simulation, the measurement frequency

is increased to once every half second, and the simulation duration is extended to 40 seconds.
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3.5.1.1 Filter Configurations

For this simulation, the performance of an EKF with the proposed update found in Eq. (3.50)

is compared to that of an EKF with the underweighted update described in Eq. (3.64), as well

as an SOEKF described in Eqs. (3.65)–(3.67). The scaling factor β—defined in Eq. (3.48) for

the confidence-based update—is given a value of 0.8, and the underweighting factor puw from

Eq. (3.64b) is set to 1.2. Each filter is supplied with the initial estimate given by Eq. (2.32) and

the entire measurement set. A single simulation run is performed for all three filters, for which the

initial conditions and measurement history is identical.

As the primary interest of this work is to compare the robustness of the proposed update to

comparable, pre-established filters specifically built for handling environments of high uncertainty,

it is somewhat difficult to find instances that cause the filters to fail, even with the excessive gap

in measurement data. Note here that a filter is considered to fail if the estimate and measurement

residuals leave a 3σ uncertainty interval for an appreciable amount of time. In general, it is found

that only about one of every five instances of the simulation cause any filters to fail, and in about

half of those cases, all of the filters fail.

3.5.1.2 Simulation Analysis

The estimation errors for a single run of the simulation are presented in Fig. (3.5) for the three

filters, where a more detailed view is given in Fig. (3.6). The effect of the measurement gap

between 10 and 25 seconds is clear in both the position and velocity channels, as the uncertainty

grows quite large during this time frame. At 25 seconds, there is an immediate “snap-down” of

the covariance in all three channels, which is the result of a sudden accurate measurement being

received. Figures (3.5b) and (3.6b) show that the second-order update suffers the sharpest reduction

in covariance at this time, with the underweighted filter appearing, at first, to have the most gradual

uncertainty reduction. In terms of estimation performance, it is evident that while the errors for

both the underweighted EKF and the SOEKF begin to drift outside the 3σ interval, the errors for

the confidence-based filter do not.
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c) Confidence-based update

Figure 3.5 Comparison of filtering results, expressed as estimation error ( ) and 3σ standard
deviations of error covariance ( )
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Figure 3.6 Zoomed-in view of the comparison of filtering results, expressed as estimation error
( ) and 3σ standard deviations of error covariance ( )
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Figures (3.7) and (3.8) contain the measurement residuals and the 3σ interval of the residual

covariance, defined in Eq. (3.44). The residuals of both the underweighted EKF and the SOEKF

are seen to drift outside of the 3σ interval in Figs. (3.8a) and (3.8b), explaining the poor perfor-

mance observed in Figs. (3.6a) and (3.6b). In contrast, the residuals for the adaptive confidence

filter in Fig. (3.8c) remain within the 3σ confidence intervals for the duration of the simulation.

An especially interesting behavior is observed in Fig. (3.7), where the intensity of the covariance

“snap-downs” is most prevalent. Here, it is clear from Fig. (3.7b) that the residual covariance of

the SOEKF experiences the sharpest reduction in covariance—a trait of the second-order update

previously observed in Fig. (3.6b).

A more unexpected result is found when comparing Figs. (3.7a) and (3.7c); the uncertainty

of the adaptive confidence update experiences a faster reduction than that of the underweighted

update. In general, a more conservative filter tends to be more robust than a less conservative one,

which is the notion motivating the common practice of inflating the covariance via methods such

as tuning noise and underweighting. However, for this select instance, it is apparent in Fig. (3.7)

that the adaptive confidence update is actually less conservative than the underweighted update,

even while producing a more accurate estimate. In short, the non-Bayesian update is more robust

and less conservative.

Figure (3.8) shows a more detailed view of the residual covariance behavior later on in the

simulation. It is seen in Fig. (3.8c) that the residual covariance of the confidence-based update

does become more conservative than that of the underweighted one, as it takes more time to reduce

to a level of steady state. This is attributed to the fact that at this point in the simulation, the

uncertainty in Fig. (3.8a) no longer surpasses the underweighting threshold, and, therefore, the

update is no longer being underweighted. However, the status of the residuals in Fig. (3.8c) is

significantly healthier than those of Figs. (3.8a) and (3.8b), which quickly fall outside the 3σ

interval, a testament to the robust nature of the proposed update.

Here, it is worthwhile to make a brief discussion concerning the results of the SOEKF. Recall

that second-order filters, by design, improve filtering operations by explicitly including second-
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Figure 3.7 Comparison of measurement residuals (×), plotted alongside 3σ representations of
the residual covariance ( ) and measurement noise covariance ( )
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c) Adaptive confidence update

Figure 3.8 Zoomed-in view of the comparison of measurement residuals (×), plotted alongside
3σ representations of the residual covariance ( ) and measurement noise covariance ( )
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order terms that are known to cause errors in filters built on first-order linearization, such as the

EKF. In this way, it is generally more robust than a standard EKF, albeit at the cost of an increase

in computational complexity. As expected, additional runs of the simulation show that the SOEKF

is, in fact, the most robust filter overall—failing the least out of the three filters (the SOEKF fails

in about 10% of runs) . However, there are cases where the SOEKF is outperformed, such as

the run presented in Figs. (3.5)–(3.8). Being that second-order effects are supposedly accounted

for by the SOEKF, its failure to maintain an accurate estimate must be attributed to some other

cause. Based on this, it is a reasonable conjecture that there are errors in this specific run caused

by third-order and higher terms such that the filtering solution of the SOEKF is degraded. As

second-order filters themselves are generally avoided due to the tedious second-order derivatives

and computational expense, it is unreasonable to solve this problem by deriving third-order or

higher filters. Instead, it is more practical to implement methods such as underweighting or the

proposed adaptive confidence update, as these circumvent the need for such complex filters while

still enforcing robust estimation.

3.5.2 Relative Satellite Motion Simulation

In addition to the falling body simulation, this work also investigates the comparative perfor-

mance of the confidence-based update via the well-known system of relative motion between two

satellites, shown in Fig. (3.9). As the main aspect of interest in this paper is comparing the update

stages of the filter, this particular system is specifically chosen for its linear dynamics, allowing for

algorithmically identical estimate propagations between the different filters.

3.5.2.1 Configuration

The state vector consists of three-dimensional Cartesian position and velocity in the E =

{êx, êy, êz} frame of Fig. (3.9), written as

x =

[
x y z ẋ ẏ ż

]T
. (3.69)
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Figure 3.9 Reference frame for relative motion of two satellites

The system’s dynamics are described by the Clohessy-Wiltshire equations, which can be found

in [82], and there is no process noise included in the system. The observation model is taken to

consist of two relative angle measurements (θ and φ) and a range ρ given by

h(x) =


θ

φ

ρ

 =


tan−1

(
y
x

)
sin−1

(
z√

x2+y2+z2

)
√
x2 + y2 + z2

 , (3.70)

where measurements are generated according to the Gaussian model of Eq. (2.1c) with the corre-

sponding measurement noise covariance being

R =


10−3 rad2 0 0

0 10−3 rad2 0

0 0 0.5 m2

 . (3.71)
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The initial estimate is described by a multivariate Gaussian distribution with mean and covariance

given by

m0 =

m0,p

m0,v

 =



55000 m

45000 m

40000 m

−2149 m/s

−1863 m/s

−1600 m/s


(3.72)

and

P0 =

P0,p 0

0 P0,v

 =



107 m2 0 0 0 0 0

0 107 m2 0 0 0 0

0 0 107 m2 0 0 0

0 0 0 16031(m/s)2 0.5755(m/s)2 0

0 0 0 0.5755(m/s)2 16004(m/s)2 0

0 0 0 0 0 15991(m/s)2


,

(3.73)

respectively.

In order to force rendezvous scenarios, only the initial positional components of the mean,

m0,p, and covariance, P0,p, are user-specified. The velocity components of the initial mean, m0,v,

are calculated as a linear function of the initial positions such that m0 results in a rendezvous,

where this linear function is then used to transform the positional covariance P0,p into the appro-

priate velocity covariance P0,v [82]. Accordingly, the positional elements of the initial true state

are drawn from a multivariate Gaussian distribution given by

x0,p ∼ pg(x0,p|m0,p, P0,p) ,
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and the initial true velocity states x0,v are calculated using the same linear function used to ensure

rendezvous, such that the overall initial truth is xT0 = [xT0,p x
T
0,v].

Each run lasts a duration of 20 seconds, where measurements are processed at a frequency of

2 Hz. The setup for the three filters used in the previous simulation of Section 3.5.1 is used here as

well, with the exception that the confidence-based update is equipped with the scalar measurement

treatment from Eqs. (3.51)–(3.54). In order to evaluate the consistency of the filters, a Monte

Carlo simulation of 2500 trials is performed, where the Monte Carlo statistics are compared to the

average estimates for each filter, per the discussion of Section 2.3.1.

3.5.2.2 Performance Comparison

The results from this simulation highlight the ability of the linear confidence-based update

to perform more conservatively than both the SOEKF and the EKF with underweighting. Fig-

ures (3.10)–(3.12) show comparisons between the average filter standard deviations σfilt,ι compared

to the computed MC standard deviations σMC,ι, where both are plotted as 3σ intervals. Recall that

σfilt,ι < σMC,ι is indicative of filter overconfidence, whereas conservative behavior in a filter is de-

noted by σfilt,ι > σMC,ι. While slightly conservative filters are generally acceptable in spacecraft

navigation, overconfident filters are typically avoided at all costs.

Upon examining Fig. (3.10a), it is apparent that the underweighted EKF generates increas-

ingly overconfident position estimates beginning around seven seconds, and both the SOEKF of

Fig. (3.10b) and the confidence-based update of Fig. (3.10c) outperform underweighting by a large

margin. The position estimate performance of the SOEKF and the proposed update can be seen in

greater detail in Figs. (3.11b) and (3.11c), respectively. Here it is seen that the second-order update

becomes slightly overconfident, even with the higher order calculations. The confidence-based

update, however, does not suffer from overconfidence to the degree that the SOEKF does, and the

average filter standard deviations end up matching the Monte Carlo statistics much more closely.

Similar behavior is examined in the velocity profiles of Fig. (3.12), where the underweighted

EKF displays the most overconfidence, while the confidence-based update appears to be the least

overconfident. Altogether, these results indicate that the confidence-based filter is less prone to
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overconfidence than the traditional underweighted EKF.

3.6 Analysis of Nonlinear Confidence-based GM Update

In order to test the robustness of the nonlinear confidence-based update of Eq. (3.63), the rela-

tive motion simulation of Section 3.5.2 is adapted to incorporate model mismatch. The simulation

parameters remain unchanged from Section 3.5.2.1 with the exception of measurements being gen-

erated as faulty 1% of the time according to Section 4.5.2.2, such that measurements are statisically

distributed by

zk ∼ vpg(zk|h(xk),R) + [1− v]pg(zk|h(xk),Rf ) ,

where h(·) is the observational model of Eq. (3.70), R is the measurement noise covariance of

Eq. (3.71),Rf = 100R is the faulty measurement noise covariance, and v = 0.99 is the probability

of validity, described in greater detail by Section 4.4.2. Two analyses are performed to evaluate the

GM confidence-based filter under different forms of φ, where each analysis consists of 2500 MC

trials, as described by Section 2.3.1.

3.6.1 Analysis 1: Static φ

The two filters tested in this simulation are the second-order update and the nonlinear confidence-

based updates, where the second-order update is configured identically to that in Section 3.5.2.1.

The nonlinear confidence-based filter uses the GSF propagation of Section 2.2.2.4.1 and the GM

update of Section 3.3.2.2, where φξ = 0.7 is selected to increase filter robustness in the pres-

ence of faulty measurements. To initialize the GM filter, the initial mean and covariance of

Eqs. (3.72) and (3.73) are split five ways across the three positional dimensions according to

Section 2.2.3.3, resulting in an initial GM of 125 components. Note that splitting is only used

to initialize the filter and is not applied within the iterative update, such that the number of GM

components at any given iteration is L+
k ≤ 125. To avoid zero-weighted components, the pruning

procedure of Section 2.2.3.1 is employed with wthresh = 10−9.

The MC results of this analysis are provided in Figs. (3.13) and (3.14) for the position and ve-
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c) Linear confidence-based update

Figure 3.10 MC results for satellite rendevous plotted as eι ( ), 3σfilt,ι ( ), and 3σMC,ι ( )
of position components
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c) Linear confidence-based update

Figure 3.11 Zoomed-in view of MC results for satellite rendevous plotted as eι ( ), 3σfilt,ι

( ), and 3σMC,ι ( ) of position components
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ż
E

rr
or

[m
/s

]

a) Underweighted update

−400

−200

0

200

400

ẋ
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c) Linear confidence-based update

Figure 3.12 MC results for satellite rendevous plotted as eι ( ), 3σfilt,ι ( ), and 3σMC,ι ( )
of velocity components
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locity components, respectively. Recalling the SOEKF performance of Figs. (3.10b) and (3.12b),

upon the inclusion of measurement model mismatch, the performance of the second-order filter is

degraded to that of Figs. (3.13a) and (3.14a), where the average MC standard deviations now far

exceed those estimated by the SOEKF. While the average errors of Figs. (3.13a) and (3.14a) remain

relatively low, the filter itself is extremely overconfident. The GM confidence-based filter (GM-

CBF), on the other hand, exhibits healthier behavior, remaining conservative in the positional errors

of Fig. (3.13b) and exhibiting slightly overconfident behavior in the velocity errors of Fig. (3.14b).

Note that increasing the severity of the model mismatch—which in this case is done by decreasing

v–results in higher errors that may force the GMCBF into overconfident estimation. To prevent

this, it is advisable to tune the filter, which is relatively straightforward for a static value of φ. By

doing so, a desired level of conservatism can be imparted to the GMCBF.
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Figure 3.13 Model mismatch MC results for relative motion simulation with static φ plotted as
eι ( ), 3σfilt,ι ( ), and 3σMC,ι ( ) of position components
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ẏ
E

rr
or

[m
/s

]

0 5 10 15 20

−500

0

500

Time [s]

ż
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b) GM confidence-based update

Figure 3.14 Model mismatch MC results for relative motion simulation with static φ plotted as
eι ( ), 3σfilt,ι ( ), and 3σMC,ι ( ) of velocity components

3.6.2 Analysis 2: Adaptive φ

While the preceding analysis of Section 3.6.1 evaluates the GMCBF under a set value of φ,

much work is done in Section 3.3.1.2 to develop an adaptive form of φ. Therefore, this analysis

extends the adaptive φ to the same GMCBF as Section 3.6.1 and simultaneously evaluates the linear

confidence-based update of Section 3.3.1.3 for comparison under model mismatch. Both filters

utilize the φ defined in Eq. (3.48) with β = 1.1, the effect of which is seen in Fig. (3.4). The MC

results of this analysis are provided in Figs. (3.15) and (3.16), which show that both confidence-

based filters perform well when subjected to measurements that are faulty 1% of the time. In fact,

the performance of both filters is remarkably similar, with the main difference between the two

being a faster drop in positional uncertainty of the GM filter of Fig. (3.15b) when compared to the

linear filter of Fig. (3.15a). The GM filter is also found to have slightly lower MC errors overall,

which is most evident in the final velocity standard deviations of Fig. (3.16b) when compared
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to Fig. (3.16a). These slight improvements to the filter estimate are attributed to the benefits of

nonlinear filtering; unlike the linear confidence-based filter, the GMCBF is capable of decreased

linearization error and non-Gaussian pdfs of the state. Therefore, while both filters perform well,

the improved performance of the GMCBF is to be expected.

Aside from the superior performance of the GMCBF, of additional note is its change in behav-

ior when constructed with an adaptive φ rather than the static φ of Section 3.6.1. Examining the

positional elements first, Fig. (3.13b) indicates that the static φGMCBF is much more conservative

than its adaptive counterpart in Fig. (3.15b). However, the adaptive φ produces positional estimates

with σfilt,ι ≈ σMC,ι that are more accurate overall. The behavior of the velocity channel estimates

of the GMCBF also differs significantly between Figs. (3.14b) and (3.16b). Whereas the static φ

becomes more overconfident as the simulation progresses, the adaptive φ begins reducing overcon-

fidence around 10 seconds. Regardless of which behavior is deemed preferable, these comparisons

highlight the importance that φ has on the nature of the confidence-based posterior.
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Figure 3.15 Model mismatch MC results for relative motion simulation with adaptive φ plotted
as eι ( ), 3σfilt,ι ( ), and 3σMC,ι ( ) of position components
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Figure 3.16 Model mismatch MC results for relative motion simulation with adaptive φ plotted
as eι ( ), 3σfilt,ι ( ), and 3σMC,ι ( ) of velocity components
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4. FAULT-COGNIZANT FILTERING*

Whereas Chapter 3 investigates how removing inherent Bayesian assumptions can result in

more robust filters, this chapter is concerned with the level of fidelity and overall approach by

which measurement generation is modeled. Instead of simply ignoring the manner in which faulty

measurements are generated—eliminating their effects via faulty measurement screening—what

benefits are there in attempting to model these faults? This chapter answers this question by de-

veloping filters that are fault-cognizant, beginning by reconsidering how the measurement likeli-

hood is traditionally handled. It is quickly apparent that, depending on the system at hand, the

measurement likelihood can be customized to account for a wide variety of sensors and faults,

such that, by appropriately adjusting the assumptions of the sensor model, multiple fault-cognizant

measurement models (FCMMs) are produced, each with a corresponding likelihood. In turn, each

likelihood results in a unique fault-cognizant update (FCU) when evaluated via Bayes’ rule, closed-

forms of which are readily realized through the GMMs of Section 2.2.2. The performance of these

proposed filters is then tested through multiple simulations, where they are compared to other

well-established filters. Note that a portion of this work is previously published as [83].

4.1 Traditional Measurement Modeling

Commonly referred to as the measurement likelihood, `(z|x) of Eqs. (1.6) and (3.1) describes

the probability of a given state x based on information observed from measurement z. In fact, from

a statistical standpoint, the measurement z is a vector of random variables that is stochastically

generated as

z ∼ `(z|x) . (4.1)

*Part of the material reported in this chapter is reprinted with permission from “Nonlinear Gaussian Mixture
Filtering with Intrinsic Fault Resistance” by Gunner S. Fritsch and Kyle J. DeMars, 2021. Journal of Guidance,
Control, and Dynamics, 44, 2172–2185, Copyright [2021] by Gunner Fritsch and Kyle J. DeMars.
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The precise form that the likelihood of Eq. (4.1) takes is entirely determined by the modeling

assumptions inferred from the system at hand. For example, considering the notation of `(z|x)

alone, the assumptions that z is a single measurement corresponding to x, a single state (or single

target), has already been established. A more general form of the measurement likelihood could

be `(Z|X), where Z is some set (or scan) of measurements, and X is some set of targets/states.

In many applications, including spacecraft navigation, the primary interest is a single vector of

states (i.e., X → x) that generate observations via measurement models that have usually been

structured such that single measurements can be sequentially processed by the filter (i.e., Z → z).

There are also plenty of applications that do not operate within these specific limitations, such as

the field of multi-target multi-sensor fusion [84], which operates using measurement likelihoods

and algorithms built on different assumptions, such as the inclusion of missed detections and false

alarms [48]. Regardless of the specific application or sensor suite at hand, correctly administering

these assumptions is the core element to deriving filtering algorithms, which begins with defining

the measurement likelihood in this chapter.

Correct Likelihood Terminology

A likelihood `(A|B) describes the joint probability of A as a function of B. While the

term `(z|x) is dubbed the measurement likelihood in this work, it is important to note

that `(z|x) is technically a likelihood of the state x and a pdf of the measurement z.

While still acknowledging the existence of a wide variety of possible assumptions, it is appar-

ent that a suprisingly large number of filtering methodologies are built upon a relatively narrow

set of assumptions. Much like the frequent use of Bayes’ rule to construct filter updates, most

measurement models, especially in the realm of navigation, are constructed upon two core as-

sumptions. Firstly, that all incoming measurements are assumed valid and generated by a single

valid likelihood distribution as

zv ∼ `v(zv|x) , (4.2)
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and secondly that the filter ingests a single measurement per update (possibly via preprocessing

of the sensor output). Figure (4.1) is a visualization of the described traditional measurement

model, which is useful as a reference when more advanced measurement models are proposed

later on. Whether realistic or not, Fig. (4.1) emphasizes the fact that, according to this traditional

model, the measurement space consists of a single valid measurement zv, which is assumed always

detected and reported to the filter. If it is additionally assumed that the sensor noise is additive-

Meas. Space Sensor View

Z = {z}

Output To Filter

valid measurement

unlabeled sensor detection

Figure 4.1 Visualization of a traditional measurement model

Gaussian, this entire collection of assumptions necessarily constrains the measurement model to

a form similar to Eq. (2.1c), which is fine in ideal sensing conditions when measurements are

perfectly described by their models. Unfortunately, this is rarely the case, as unmodeled effects

and computational errors frequently produce sensor returns that do not align with the simplistic

model of Eq. (2.1c)—measurements that are classified as “faulty” by this work.

4.2 The Reality of Faulty Measurements

Faulty measurements, by definition, are difficult to identify and diagnose. This is a direct result

of good sensor development; sensors are designed to produce consistent and accurate measure-

ments, keeping faults and erroneous returns to a minimum whenever possible. In general, the more
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infrequently faulty measurements occur, the more difficult they are to model. Of course, certain

sensors may be more susceptible to faulty measurements than others, such as vision-based cam-

eras which can be subject to large amounts of clutter across their sensor space, or low-cost sensors

that are designed to be cheaply manufactured at the potential cost to measurement consistency.

Regardless of the specific sensor, however, it is always bad practice not to account for faulty mea-

surements to some degree; indeed, as previously mentioned in Section 1.2, most practical filtering

applications employ some level of operational robustness to protect against these faults, though

it is typically a procedure-first approach such as residual editing. Most of these procedure-first

methods are disadvantaged by binary decisions: either a measurement is included or it is not. This

binary operation presents a couple of theoretical issues for the filter, as it is essentially informing

the filter that any approved measurement is guaranteed to be valid and that any edited measurement

is guaranteed to be false. For instance, consider a faulty measurement that, for whatever reason,

is not flagged as faulty by the filter. In this case, as the likelihood of Eq. (4.2) is assumed, the

filter wrongly classifies this data as a valid measurement, and from that point forward, the filtering

solution has no means of amending this fallacious measurement history. Similarly, valid sensor

returns may be incorrectly classified as faulty, such that no information whatsoever is gained from

that sensor return. Due to cases such as these, it can be argued that such procedure-first robust-

ness techniques only work well in situations where there is a clear difference between faulty data

and valid data, and even then, the performance is completely dependent upon tuning parameters

instead of statistical models built specifically for the sensor/system at hand. As such, this chapter

seeks a model-first approach to fault-resistance, which begins at the level of measurement model-

ing. For the purposes of this work, faulty measurements are spatially independent and identically

distributed (IID) as

zf ∼ `f (zf |x) , (4.3)

the exact nature of which will be discussed further in Section 4.5.
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4.3 Fault-Cognizant Measurement Models

Recalling the typical sensor modeling assumptions mentioned in Section 4.1, which results

in algorithms that typically rely on screening incoming measurements to ensure robustness, what

if the assumptions were changed such that faulty measurements were modeled directly? This

would require extra effort when developing sensor models, but would permit a more nuanced

approach to the treatment of faulty returns and could potentially decrease the amount of filter

tuning required by procedure-first robustness while simultaneously improving filtering accuracy.

Ideally, faulty data handling needs to possess two characteristics: (1) soft decisions that allow the

filter to process the complete set of incoming measurements [85], and (2) intrinsic existence within

the filtering framework, potentially requiring less human interference and thus promoting greater

levels of autonomy. The probability hypothesis density (PHD) filter is an excellent example of

such a technique, as it employs models that include, but down-weight, measurements with low

probability of being correct [41, 86]. This significantly reduces the damaging effects of faulty

data, while retaining the information to be processed by the filter and reducing the time and cost

associated with filter tuning. In response, this section proposes a fault-cognizant measurement

model that inherently accounts for erroneous data. More precisely, each time the filter receives

data, the model will account for the possibilities that (1) the incoming data is valid and (2) the

incoming data is faulty, where the updated estimate is comprised of a weighted combination of the

two possibilities, retaining all incoming information while remaining protected from faulty data.

It should be noted that the traditional method of multiple-model filtering can be considered,

under specific assumptions, as closely related to the development of the FCMMs of this section.

However, most multiple-model filters are described as “banks” of Kalman filters (or extended

Kalman filters), necessarily enforcing Gaussian assumptions upon the measurement models to

achieve closed-form Bayesian updates [33, 55]. Furthermore, these traditional multiple-model

filters are frequently constructed as linear estimators, the drawbacks of which are discussed in

Section 2.1, with inputs/outputs of the update existing as a single mean and covariance pair. Some

work has been done to create nonlinear multiple-model filters, but focus has mainly been on particle
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filtering implementations [87], where this work focuses on GM realizations per Section 2.2.2.

The remainder of this section derives four different fault-cognizant measurement models, each

with a different application in mind. As a precursor to the derivations, it is useful to remember the

foundational concept of probability that

Pr{Outcome Y} =
All Events With Outcome Y

All Events
,

where Pr{·} denotes probability. This simple concept is presented here to emphasize that correctly

accounting for all possible outcomes is crucial when developing probabilistic models, and that it

may or may not be trivial to do so. As such, the derivations of this section mostly involve the

consideration and classification of different possible events. It will be seen that by making small

changes in the assumptions concerning these events, various measurement likelihoods can be deter-

mined, each useful for different sensor-system pairs. The first FCMM proposed is the simplest, as

it is intended to directly replace the traditional measurement model of Fig. (4.1) and fit easily into

pre-existing filtering frameworks. Each subsequent FCMM becomes more complex, but also more

general, with the third and fourth models being distinct generalizations of the first two FCMMs.

Specifically, the FCMM of Section 4.3.1 introduces faulty measurement modeling, but still re-

ports scans of single measurements to the filter. The following FCMM derived in Section 4.3.2

allows for measurement scans of varying size, yet assumes at most one valid measurement can

be generated. The remaining FCMMs of Sections 4.3.3 and 4.3.4 further allow for the possibil-

ity of multiple valid measurements within a measurement scan, where Section 4.3.3 assumes all

valid measurements are IID, and Section 4.3.4 assumes the valid measurements are generated from

unique distributions.

4.3.1 FCMM-1: Single Measurement Returns

As mentioned in Section 4.3, it is ill-advised not to account for faulty measurements at some

level. However, it is advantageous to design a FCMM that can easily be implemented into existing

sensor/filter architectures. To accomplish this, the traditional measurement model of Fig. (4.1) can
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be expanded upon to include the possibility of faulty measurements, yet still produce measurement

scans consisting of a single measurement [83]. Thus, FCMM-1 is established, where, at each

instance of a filtering update, two mutually exclusive events exist:

1. the sensor produces a single valid measurement or

2. the sensor produces a single invalid measurement.

It is clear that if no measurement is reported by sensor, the filter is unable to update the prior dis-

tribution with new information; thus, in this case, the filtering architecture skips the update stage.

Therefore, FCMM-1 only considers cases where some type of measurement data is received by the

filter. Accordingly, the newly proposed FCMM is visually represented by Fig. (4.2). Recalling the

traditional measurement model of Fig. (4.1), the core difference of FCMM-1 is that the measure-

ment space now includes a single faulty measurement, zf , which is spatially generated according

to Eq. (4.3).

Meas. Space Sensor View

Z = {z}

Output To Filter

valid measurement

faulty measurement

unlabeled sensor detection

sensor missed detection

Figure 4.2 Visualization of FCMM-1 with single measurement returns
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In order to be properly accounted for within an update, the fault-cognizant measurement model

must be represented by a likelihood function. In this first FCMM derivation, it is useful to define a

probability mass function (pmf) as

ρz(θ|x) = Pr
{
z ∈ θ|x

}
, (4.4)

such that Eq. (4.4) is the probability that the random vector z exists in the domain of θ when

conditioned on x. Probability mass functions are directly related to likelihood functions via

ρz(θ|x) =

∫
θ

`(z|x)dz . (4.5)

Following techniques similar to Mahler [48], it can be significantly easier to first identify a specific

pmf through straightforward probability rules and then solve for the likelihood via differentiation,

such that Eq. (4.5) becomes

`(z|x) =
d

dz

{
ρz(θ|x)

}
. (4.6)

As such, this is the solution method utilized for deriving FCMM-1. Recall that z can either cor-

respond to a valid or an invalid measurement and that these events are mutually exclusive. Since

these events are disjoint, the law of total probability dictates that the pmf of Eq. (4.4) is equivalently

stated as

ρz(θ|x) = Pr
{

(z ∈ θ) ∩ (z = zv)|x
}

+ Pr
{

(z ∈ θ) ∩ (z = zf )|x
}
, (4.7)

where Pr
{

(z ∈ θ) ∩ (z = zv)|x
}

is the probability that z exists in θ and is a valid measurement

for a given x, while Pr
{

(z ∈ θ) ∩ (z = zf )|x
}

is the conditional probability for the same x that

z exists in θ but is an invalid measurement. As the events z = zv and z = zf are dependent upon
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z ∈ θ, by the definition of conditional probability, Eq. (4.7) becomes

ρz(θ|x) = Pr
{

(z = zv)|x
}

Pr
{

(z ∈ θ)|(z = zv),x
}

+ Pr
{

(z = zf )|x
}

Pr
{

(z ∈ θ)|(z = zf ),x
}
. (4.8)

Next, each term of Eq. (4.8) is examined individually. For brevity, the probability that a measure-

ment is valid subject to a given state x is taken to be

Pr
{

(z = zv)|x
}

= v(x) , (4.9)

where v(x) is constrained by

0 ≤ v(x) ≤ 1 . (4.10)

Clearly, the probability that random measurement z is faulty must be the complement of Eq. (4.9),

such that

Pr
{

(z = zf )|x
}

= 1− Pr
{

(z = zv)|x
}

= 1− v(x) . (4.11)

Using the newly defined probability of validity v(x) of Eqs. (4.9) and (4.11), Eq. (4.8) takes on the

form

ρz(θ|x) = v(x) Pr
{

(z ∈ θ)|(z = zv),x
}

+
[
1− v(x)

]
Pr
{

(z ∈ θ)|(z = zf ),x
}
. (4.12)

Noting that the definitions of the pmf in Eqs. (4.4) and (4.5) can be equated, the pmfs of z ∈ θ in
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Eq. (4.12) can be represented as integrated likelihoods, such that Eq. (4.12) becomes

ρz(θ|x) = v(x)

∫
θ

`
(
z|(z = zv),x

)
dz +

[
1− v(x)

] ∫
θ

`
(
z|(z = zf ),x

)
dz

= v(x)

∫
θ

`v(z|x)dz +
[
1− v(x)

] ∫
θ

`f (z|x)dz , (4.13)

where the valid and faulty measurement likelihoods of Eqs. (4.2) and (4.3) are inserted. Now that

an adequately complete pmf is found, the identity of Eq. (4.6) indicates that by differentiating

Eq. (4.13) with respect to z, the likelihood for FCMM-1 is solved for as

`(z|x) = v(x)`v(z|x) +
[
1− v(x)

]
`f (z|x) . (4.14)

Note that no precise models for v(x), `v(z|x), or `f (z|x) are administered in the derivation of

Eq. (4.14), aside from the assumption that valid and faulty measurements are spatially independent

from one another. Possible forms for these models are investigated in Sections 4.4 and 4.5, which

must be done before the closed-form updates of Section 4.6.2 can be reached.

4.3.2 FCMM-2: Single-Valid Measurement

In this second FCMM (FCMM-2), the concepts behind the derivation in Section 4.3.1 are ex-

panded upon, wherein a fault-cognizant likelihood is derived that accounts for both faulty and valid

returns. The key difference in this model is that, instead of allowing only a single measurement per

sensor scan, as is done in Section 4.3.1, FCMM-2 permits multiple measurements to be included

in each sensor scan. While FCMM-1 is simpler, as it is intended to be a direct replacement for

existing architecture, the temporal distributions for valid and faulty measurements are necessarily

interdependent when a scan is restricted to a single return, such that the frequencies of zv and zf

are both quantified by a single function—the probability of validity v(x). This interdependency

prevents the independent modeling of valid and faulty detection occurrences, which in turn disal-

lows the use of the probabilities of detection and false alarm. More discussion on this topic is found

in Section 4.4.2.1, where it is shown that this interdependency can be obviated by permitting multi-
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ple returns per sensor scan, as the receipt of valid and faulty measurements are no longer mutually

exclusive events. Thus, FCMM-2 assumes sensor operations abide by the following constraints:

1. a scan can contain, at most, one valid measurement;

2. a scan can contain any number of invalid, or faulty, measurements; and

3. a scan can contain no measurements.

Meas. Space Sensor View

Z =

{
{∅} , if no returns
{z1, . . . ,zm} , otherwise

Output To Filter

valid measurement

faulty measurements

unlabeled sensor detections

sensor missed detections

Figure 4.3 Visualization of FCMM-2 with measurement scans containing, at most, one valid
measurement

These sensor operating conditions ultimately result in the FCMM-2 visualization of Fig. (4.3).

This model is well-suited for applications where a sensor returns a measurement scan with little

pre-processing, resulting in multiple possible faulty measurements, yet still only producing a sin-

gle valid measurement. For example, consider a ground-based observer tracking the state x of a

satellite via imagery, which might produce images similar to Fig. (4.4) taken from [1]. In such a

case, m clusters of bright pixels are returned as measurements from the sensor. However, at most
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one of these returns will correspond to a valid measurement generated by the satellite of interest,

with the possibility of no valid measurement being generated, especially if the satellite is outside

of the sensor’s view. Therefore, all remaining m − 1 measurements (m if no valid detection) are

generated by the surrounding star-field and image noise, all of which are classified as faulty mea-

surements in regard to FCMM-2. It is with systems such as Fig. (4.4) in mind that FCMM-2 is

developed.

Figure 4.4 Typical telescope imagery for satellite tracking, where satellite of interest is marked
by green rectangle—reprinted from [1]

Consider that, upon each activation, a sensor returns a measurement set of m measurements

as Z = {z1, z2, . . . ,zm}. Furthermore, it is assumed that a single target is present, and the

target can, at most, produce a single valid measurement return zv ∈ V pursuant to the likelihood

function `v(z|x) of Eq. (4.2). Similarly, faulty measurements are generated via likelihood `f (z|x)

of Eq. (4.3), are denoted by zf ∈ F, and are assumed to be independent of one another. Thus, the

total likelihood of FCMM-2 (in the event of m measurements) is

`(Z|x) = Pr
(
Z ∩m ∩

[
(zv ⊆ Z) ∪ (zv * Z)

]∣∣x) , (4.15)
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where (zv ⊆ Z) denotes the event that the measurement set contains a valid target generated

measurement, and the event where the detection is missed is (zv * Z). As the target is either

detected or is not, these are mutually exclusive events, such that Eq. (4.15) becomes

`(Z|x) = Pr
(
Z ∩m ∩ (zv ⊆ Z)

∣∣x)+ Pr
(
Z ∩m ∩ (zv * Z)

∣∣x) . (4.16)

As a direct result of conditional probability, Eq. (4.16) becomes

`(Z|x) = Pr
(
Z ∩m

∣∣(zv ⊆ Z) ∩ x
)

Pr
(
(zv ⊆ Z)

∣∣x)
+ Pr

(
Z ∩m

∣∣(zv * Z) ∩ x
)

Pr
(
(zv * Z)

∣∣x) , (4.17)

where

Pr
(
(zv ⊆ Z)

∣∣x) = pD(1,x) (4.18)

is the state-dependent probability that a single valid detection is generated by the sensor. Therefore,

the probability that the target is not detected must be complementary, such that

Pr
(
(zv * Z)

∣∣x) = pD(0,x)

= 1− pD(1,x) . (4.19)

Therefore, by the definitions of Eqs. (4.18) and (4.19), Eq. (4.17) can be expressed as

`(Z|x) = pD(1,x) Pr
(
Z ∩m|(zv ⊆ Z) ∩ x

)
+ [1− pD(1,x)] Pr

(
Z ∩m|(zv * Z) ∩ x

)
.

(4.20)

Attention is now directed towards Pr
(
Z∩m

∣∣(zv ⊆ Z)∩x
)

of Eq. (4.20), which is the probability

that (in this case) exactly one valid measurement is returned by the target. As a result, m − 1

measurements must be faulty. For now, consider the event where the ith measurement is valid,
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denoted by (zi = zv), where the collection of events for i = 1, 2, . . . ,m is mutually exclusive,

such that the probability becomes

Pr
(
Z ∩m

∣∣(zv ⊆ Z) ∩ x
)

=
m∑
i=1

Pr
(
Z ∩m ∩ (zi = zv)

∣∣(zv ⊆ Z) ∩ x
)
. (4.21)

The properties of conditional events can again be utilized such that Eq. (4.21) becomes

Pr
(
Z ∩m

∣∣(zv ⊆ Z) ∩ x
)

=
m∑
i=1

Pr
(
Z ∩m

∣∣(zi = zv) ∩ (zv ⊆ Z) ∩ x
)

Pr
(
(zi = zv)

∣∣(zv ⊆ Z) ∩ x
)
. (4.22)

Here, if it is assumed that measurements are unordered and that any zi has an equal probability of

being the valid measurement, then the probability of the event (zi = zv), given Z contains a valid

measurement, is uniformly distributed over the number of measurements as

Pr
(
(zi = zv)

∣∣(zv ⊆ Z) ∩ x
)

=


1
m
, if m > 0

0 , otherwise
, (4.23)

such that Eq. (4.22) becomes

Pr
(
Z ∩m

∣∣(zv ⊆ Z) ∩ x
)

=
1

m

m∑
i=1

Pr
(
Z ∩m

∣∣(zi = zv) ∩ (zv ⊆ Z) ∩ x
)
. (4.24)

Yet again making use of conditional probabilities, Eq. (4.24) takes the form

Pr
(
Z ∩m

∣∣(zv ⊆ Z) ∩ x
)

=
1

m

m∑
i=1

Pr
(
Z
∣∣m ∩ (zi = zv) ∩ (zv ⊆ Z) ∩ x

)
× Pr

(
m
∣∣(zi = zv) ∩ (zv ⊆ Z) ∩ x

)
. (4.25)

The term Pr
(
m
∣∣(zi = zv)∩ (zv ⊆ Z)∩x

)
is the probability that m measurements are generated,

provided one of the measurements is valid. Equivalently, this can be considered the probability
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that m− 1 measurements are faulty, or

Pr
(
m
∣∣(zi = zv) ∩ (zv ⊆ Z) ∩ x

)
= pF (m− 1,x) , (4.26)

where pF (m−1,x) signifies the state-dependent probability ofm−1 false alarms occurring. Thus,

Eq. (4.25) becomes

Pr
(
Z ∩m

∣∣(zv ⊆ Z) ∩ x
)

=
pF (m− 1,x)

m

m∑
i=1

Pr
(
Z
∣∣m ∩ (zi = zv) ∩ (zv ⊆ Z) ∩ x

)
.

(4.27)

At this point, it is recalled that faulty measurements are independently and identically distributed

according to the faulty likelihood function `f (z|x) and valid target-generated measurements are

distributed according to the valid likelihood function `v(z|x). Therefore, it can be shown that the

remaining term inside the summation of Eq. (4.27) becomes

Pr
(
Z
∣∣m ∩ (zi = zv) ∩ (zv ⊆ Z) ∩ x

)
= Pr

(
z1 ∩ z2 ∩ · · · ∩ zm

∣∣m ∩ (zi = zv) ∩ (zv ⊆ Z) ∩ x
)

=
m∏
j=1

Pr
(
zj
∣∣m ∩ (zi = zv) ∩ (zv ⊆ Z) ∩ x

)
= Pr

(
zi
∣∣m ∩ (zi = zv) ∩ (zv ⊆ Z) ∩ x

) m∏
j=1
j 6=i

Pr
(
zj
∣∣m ∩ (zi = zv) ∩ (zv ⊆ Z) ∩ x

)

= `v(zi|x)
m∏
j=1
j 6=i

`f (zj|x) . (4.28)

Substituting the result of Eq. (4.28) into Eq. (4.27) yields

Pr
(
Z ∩m

∣∣(zv ⊆ Z) ∩ x
)

=
pF (m− 1,x)

m

m∑
i=1

{
`v(zi|x)

m∏
j=1
j 6=i

`f (zj|x)

}
. (4.29)
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Next, Eq. (4.20) is revisited to address the term Pr
(
Z ∩ m

∣∣(zv * Z) ∩ x
)
. By conditional

probability

Pr
(
Z ∩m

∣∣(zv * Z) ∩ x
)

= Pr
(
Z
∣∣m ∩ (zv * Z) ∩ x

)
Pr
(
m
∣∣(zv * Z) ∩ x

)
, (4.30)

where Pr
(
m
∣∣(zv * Z) ∩ x

)
is the probability that m measurements are generated, provided that

none of them are valid. This is also the probability that all m measurements are faulty, denoted by

Pr
(
m
∣∣(zv * Z) ∩ x

)
= pF (m,x) . (4.31)

Similar to the developments of Eq. (4.28), the expression Pr
(
Z
∣∣m ∩ (zv * Z) ∩ x

)
can be

transformed as

Pr
(
Z
∣∣m ∩ (zv * Z) ∩ x

)
= Pr

(
z1 ∩ z2 ∩ · · · ∩ zm

∣∣m ∩ (zv * Z) ∩ x
)

=
m∏
j=1

Pr
(
zj
∣∣m ∩ (zv * Z) ∩ x

)
=

m∏
j=1

`f (zj|x) , (4.32)

assuming, again, that the faulty measurements are independently and identically distributed ac-

cording to the faulty likelihood of Eq. (4.3). Equations (4.31) and (4.32) are sufficient to show that

Eq. (4.30) becomes

Pr
(
Z ∩m

∣∣(zv * Z) ∩ x
)

= pF (m,x)
m∏
j=1

`f (zj|x) . (4.33)

Accordingly, the results of Eqs. (4.29) and (4.33) allow the FCMM-2 likelihood of Eq. (4.20) to
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ultimately be expressed as

`(Z|x) = pD(1,x)
pF (m− 1,x)

m

m∑
i=1

{
`v(zi|x)

m∏
j=1
j 6=i

`f (zj|x)

}

+ [1− pD(1,x)]pF (m,x)
m∏
j=1

`f (zj|x) . (4.34)

4.3.2.1 Special Case 1 [m = 0]:

It should be noted that due to a division bym, the case where there are no measurements seems

to produce a singularity, at a glance. While many filters will not perform an update unless at least

one measurement is received, the fact that no measurement is returned can provide information in

and of itself. Therefore, in situations where Z = {∅}, Eq. (4.34) becomes

`(∅|x) = [1− pD(1,x)]pF (0,x) , (4.35)

as the first term vanishes—since the probability of−1 false alarms is zero as well as the probability

of Eq. (4.23)—and by definition
∏0

j=1 `f (zj|x) = 1. In typical single-target filtering applications

that do not account for state-dependent probabilities, when no measurements are produced, no

update is performed. Leveraging the developments here, however, an update can be performed due

to the presence of the probabilities of detection and false alarm.

4.3.2.2 Special Case 2 [m = 1]:

In the instance where exactly a single measurement is received, or Z = {z}, it can be shown

that the likelihood of Eq. (4.34) becomes

`(z|x) = pD(1,x)pF (0,x)`v(z|x) + [1− pD(1,x)]pF (1,x)`f (z|x) , (4.36)

which looks very similar to the FCMM-1 likelihood derived using the probability of validity in

Section 4.3.1. As mentioned previously, the main difference between the two likelihoods is that
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the probabilities of detection and false alarm are modeled independently of one another as two

distinct parameters, whereas the probability of validity attempts to achieve a similar likelihood

using only a single parameter. Additional discussion on this is provided in Section 4.4.2.1.

4.3.3 FCMM-3: Multiple-Valid Measurement - IID

The FCMM-2 of Section 4.3.2 is useful for scans of multiple measurements collected in clut-

tered environments. However, it inherently assumes that at most one valid measurement can be

generated. This section derives a third fault-cognizant measurement model (FCMM-3) under the

conditions that multiple valid measurements are IID, such that they correspond to a single mea-

surement distribution pursuant to Eq. (4.2). The commonly used methodology of extended target

tracking is used for similar situations, where a single object is able to generate multiple valid mea-

surements [88]. This procedure can be thought of as similar to this and is visualized in Fig. (4.5).

As an example, consider a simplistic LiDAR system, wherein the location of a car is to be tracked,

such as in Fig. (4.6). A typical LiDAR return consists of a point cloud corresponding to the object

surfaces, so it can be expected for a car to return multiple valid measurements. Various environ-

mental features will also return measurements, but since they do not correspond to the target, they

are considered non-valid (or faulty in this case) returns by the FCMM.

As an additional example, consider once more the satellite tracking system of Fig. (4.4).

There may be situations where the optical observer returns two or more valid measurements,

caused by some unmodeled effect such as multiple, separated reflective surfaces of the satel-

lite. If two or more valid measurements are generated by the target, the previous FCCMs of

Sections 4.3.1 and 4.3.2 have no way to reconcile such an event, as their architecture only al-

lows for a single possible valid measurement. Therefore, this section explores a solution to such a

problem by developing an appropriate measurement model. This model can be considered a more

general form of FCMM-2 and will be seen to reduce to Eq. (4.34) under the correct conditions.

Consider that, upon each activation, a sensor returns a set ofmmeasurements asZ = {z1, z2, . . . ,zm}.

Furthermore, it is assumed that a single target x is present. However, this target can produce mul-

tiple valid measurements given by zv ∈ V pursuant to some yet unspecified likelihood function
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Meas. Space Sensor View

Z =

{
{∅} , if no returns
{z1, . . . ,zm} , otherwise

Output To Filter

identically distributed valid measurements

faulty measurements

unlabeled sensor detections

sensor missed detections

Figure 4.5 Visualization of FCMM-3 with multiple IID valid measurements

`v(z|x). The subset of these valid measurements is denoted by Zv = {z1,v, z2,v, . . . ,zn,v} ⊆ Z

such that 0 ≤ n ≤ m. Accordingly, multiple faulty measurements are also possible, are generated

via likelihood `f (z|x), and are denoted by zf ∈ F. The subset of these faulty measurements is

given by Zf = {z1,f , z2,f , . . . ,zm−n,f} ⊆ Z, such that Z = Zv ∪ Zf and Zv ∩ Zf = {∅}. The

total likelihood of FCMM-3 is therefore

`(Z|x) = Pr
(
Z ∩m

m⋃
n=0

n|x
)
, (4.37)

where
m⋃
n=0

n represents all the possible events of the number of valid measurements contained in

Z. Clearly the events (n = 0), (n = 1), . . . , (n = m) are all mutually exclusive, as Zv can not be

of two different sizes at the same time. Thus, Eq. (4.37) becomes

`(Z|x) =
m∑
n=0

Pr
(
Z ∩m ∩ n|x

)
. (4.38)
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LiD
AR

Figure 4.6 Simplistic LiDAR example, where blue dots correspond to valid target returns of the
vehicle, and red dots correspond to faulty (or non-valid) returns created by various environmental
objects

By the rules of conditional probability, Eq. (4.38) is given by

`(Z|x) =
m∑
n=0

Pr
(
Z ∩m|n ∩ x

)
Pr
(
n|x
)
, (4.39)

where Pr
(
n|x
)

is the probability that, for some given state x, measurement set Z will contain

n valid measurements, or that n detections will occur. For this, we can recall the notation of

Eq. (4.18), or that the probability of n valid detections is

Pr
(
n|x
)

= pD(n,x) , (4.40)

where pD(·,x) denotes that the probability is (potentially) state-dependent. With the definition of
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Eq. (4.40), the form of Eq. (4.39) becomes

`(Z|x) =
m∑
n=0

pD(n,x) Pr
(
Z ∩m|n ∩ x

)
. (4.41)

Now, the term Pr
(
Z ∩m|n ∩ x

)
of Eq. (4.41) is examined specifically. By conditional prob-

ability, it becomes

Pr
(
Z ∩m|n ∩ x

)
= Pr

(
m|n ∩ x

)
Pr
(
Z|m ∩ n ∩ x

)
. (4.42)

Based on the fact that Zv ∪ Zf = Z and that Zv ∩ Zf = {∅}, it is clear that if there are n valid

measurements, then there must be m−n faulty measurements. So, the probability that Z contains

m measurements conditioned on the event n is equivalent to the probability that Z contains m−n

false alarms. Recalling the notation of Eq. (4.26), the probability of m− n faulty measurements is

mathematically expressed as

Pr
(
m|n ∩ x

)
= pF (m− n,x) ,

such that Eq. (4.42) becomes

Pr
(
Z ∩m|n ∩ x

)
= pF (m− n,x) Pr

(
Z|m ∩ n ∩ x

)
. (4.43)

Next, the term Pr
(
Z|m∩n∩x

)
of Eq. (4.43) is inspected. Since this probability is conditional

upon the number of valid measurements being n, out of a measurement setZ of sizem, it must now

account for all of the different combinations in which nmeasurements of the setZ can be assigned

as valid. From a combinatorics perspective, it is known that there are
(
m
n

)
unique combinations (or

hypotheses), with each event being mutually exclusive, such that the probability can be written as

Pr
(
Z|m ∩ n ∩ x

)
=

(mn)∑
j=1

Pr
(
Z ∩Hj|m ∩ n ∩ x

)
, (4.44)

122



Note that Hv,j = {Zv ⊆ Z}j denotes the hypothesis for the j th unique assignment of n valid

measurements within the set Z of m measurements. Note that for every unique assignment of

valid measurements Hv,j there exists an assignment of faulty measurements that is also unique,

which is defined as Hf,j = Z\Hv,j = {Zf ⊆ Z}j . Ultimately, this indicates that specifying

the hypothesis Hv,j = {Zv ⊆ Z}j is sufficient to create a unique assignment combination for

all m measurements of Z and includes all possible assignment hypotheses, which will be denoted

by Hj = Hv,j ∪ Hf,j . With this in mind, and again utilizing the rules of conditional probability,

Eq. (4.44) becomes

Pr
(
Z|m ∩ n ∩ x

)
=

(mn)∑
j=1

Pr
(
Hj|m ∩ n ∩ x

)
Pr
(
Z|Hj ∩m ∩ n ∩ x

)
, (4.45)

Noting that all of the hypotheses Hj for j = 1, 2, . . . ,
(
m
n

)
are equally likely, the probability of

each (conditional on some given state x and m measurements, n of which are valid) takes on a

discrete uniform distribution as

Pr
(
Hj

∣∣n ∩ x) =
1(
m
n

) ,
such that Eq. (4.45) becomes

Pr
(
Z|m ∩ n ∩ x

)
=

1(
m
n

) (mn)∑
j=1

Pr
(
Z
∣∣Hj ∩m ∩ n ∩ x

)
. (4.46)

Next, consider the term Pr
(
Z
∣∣Hj ∩ m ∩ n ∩ x

)
of Eq. (4.46) and recall that valid and faulty

measurements are independently and identically spatially distributed according to the likelihood

functions `v(z|x) and `f (z|x), respectively. As this probability is already conditioned upon the
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j th unique assignment hypothesis Hj , it can be shown that

Pr
(
Z
∣∣Hj ∩m ∩ n ∩ x

)
= Pr

(
z1 ∩ z2 ∩ · · · ∩ zm

∣∣Hj ∩m ∩ n ∩ x
)

=
m∏
γ=1

Pr
(
zγ
∣∣Hj ∩m ∩ n ∩ x

)
=

n∏
k=1

zk∈Hv,j

`v(zk|x)
m−n∏
`=1

z`∈Hf,j

`f (z`|x) . (4.47)

Taking the results of Eqs. (4.43), (4.46), and (4.47), it can be shown that the likelihood of Eq. (4.41)

becomes

`(Z|x) =
m∑
n=0

pD(n,x) Pr
(
Z ∩m|n ∩ x

)
=

m∑
n=0

pD(n,x)pF (m− n,x) Pr
(
Z|m ∩ n ∩ x

)
=

m∑
n=0

{
pD(n,x)pF (m− n,x)(

m
n

) (mn)∑
j=1

Pr
(
Z
∣∣Hj ∩m ∩ n ∩ x

)}

=
m∑
n=0

{
pD(n,x)pF (m− n,x)(

m
n

) (mn)∑
j=1

[ n∏
k=1

zk∈Hv,j

`v(zk|x)
m−n∏
`=1

z`∈Hf,j

`f (z`|x)

]}
. (4.48)

It is clear that this measurement model of Eq. (4.48) is fairly complex. However, if it is

limited to cases where n = {0, 1}—such that only the first two terms of the summation over n

in Eq. (4.48) are taken—it does reduce to the likelihood of Eq. (4.34), indicating that it is a

more generalized form of the expression. This simplification can be done simply by setting the

probability of detection pD(n,x) = 0 ∀n ≥ 2, such that the probability of more than one valid

detection is zero.

4.3.4 FCMM-4: Multiple Unique Valid Measurements

The model FCMM-3 of Section 4.3.3 is designed specifically to allow for multiple valid mea-

surements. A key constraint of FCMM-3, however, is that all valid measurements are assumed to
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belong to the same valid measurement distribution of Eq. (4.2), such that they are IID. This section

attempts another approach, wherein all valid measurements are assumed to be uniquely spatially

distributed according to

zv,i ∼ `v,i(zv,i|x) ∀ i = 1, 2, . . . , q . (4.49)

The motivation behind this fourth fault-cognizant measurement model (FCMM-4) is to allow for

the definition of individual valid measurement models, should the need arise. Consider, for in-

stance, vision-based terrain relative navigation (TRN), wherein an optical camera acquires images

of some fixed terrain with q topographical features generating unlabeled sensor returns correspond-

ing to the locations of those features, a simplified example of which is shown in Fig. (4.7). These

feature locations are known a priori and logged in a map, where each feature is expected to gener-

ate sensor returns that are unique from the others, requiring the individual measurement likelihoods

of Eq. (4.49). Any sensor returns contained in the image that do not correspond to one of the q fea-

tures are considered faulty by FCMM-4. Typically in TRN applications, the image is pre-processed

to match measurements to their most likely feature locations, such that the filter receives pairs of

feature locations and feature labels, a process known as data association. FCMM-4, however,

assumes that no data association is performed by the image pre-processing, such that the filter as-

sumes any measurement could be generated by any of the q valid measurement distributions (i.e.

features) or be a faulty return. In this way, the update resulting from FCMM-4 inherently performs

data association itself. An appropriate visualization of FCMM-4 is provided in Fig. (4.8), which

accentuates the uniqueness of valid measurments when compared to FCMM-3 of Fig. (4.5).

To begin, the generation and nature of a measurement scan must be characterized. Assume that

upon a single measurement scan, the filter receives measurement set Z comprised of m different

measurements as

Z = {z1, z2, . . . , zm} . (4.50)
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Terrain Image Feature Extraction Sensor Returns

detected features

undetected features

faulty measurements

unlabeled sensor returns

Filter w/ Feature Map

Figure 4.7 Example of possible crater-based TRN application for FCMM-4

Furthermore, assume that there exist q different valid measurement subsets Zv,i ⊆ Z that can

contain at most a single measurement, such that

Zv,i = {∅} or Zv,i = {zv,i} ∀i = 1, 2, . . . q . (4.51)

This directly corresponds to the frequent reality that TRN features can only generate a single

measurement, and where in this case, each valid measurement subsetZv,i corresponds to a different

mapped feature.

Additionally, assume that there exists a single faulty measurement subset Zf ⊆ Z that can

include any number (up to m) of faulty measurements. Note that the intersections and unions of
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Meas. Space Sensor View

Z =

{
{∅} , if no returns
{z1, . . . ,zm} , otherwise

Output To Filter

uniquely distributed valid measurements

faulty measurements

unlabeled sensor detections

sensor missed detections

Figure 4.8 Visualization of FCMM-4 with multiple non-ID valid measurements

the measurement subsets lead to

[ q⋃
i=1

Zv,i

]
∪Zf = Z

[ q⋂
i=1

Zv,i

]
∩Zf = {∅} . (4.52)

Now consider the event where n measurements of Z are valid and are contained by one of the

measurement subsetsZv,i. In this case, the faulty measurement subset must be comprised ofm−n

measurements, such that

Zf = {zf,1, zf,2, . . . , zf,m−n}. (4.53)

Note that the number of valid measurements cannot be greater than the number of valid measure-

ment subsets or the number of received measurements, such that 0 ≤ n ≤ min(m, q).

Furthermore, it is obvious that n different valid measurement subsetsZv,i must contain a single

measurement, while q−nmust not contain any. From a combinatorics perspective, it can be shown

that there are
(
q
n

)
unique ways to select n of the q valid measurement subsets. Therefore, allow the
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hypothesis Hn,j to denote the j th unique selection of n choices of Zv,i as considered to generate a

valid measurement, where j = 1, 2, . . . ,
(
q
n

)
accounts for all possible unique selections.

It is important to note that the hypotheses Hn,j only specify which of the subsets Zv,i contain

a measurement and which ones do not. It does not make any assumption as to which measurement

belongs to which subset. Therefore, in order to consider all possible events, each unique measure-

ment assignment must be considered. Therefore, let HUA
n,j,k denote the kth unique assignment of m

measurements to n subsets, given that Hn,j has already been specified.

Taking into consideration all of the possible events, the likelihood of FCMM-4 can be fashioned

as

`(Z|x) = Pr

(
Z ∩m ∩

[min(m,q)⋃
n=0

n ∩
[ (qn)⋃
j=1

Hn,j ∩ [
mPn⋃
k=1

HUA
n,j,k]

]]∣∣∣∣x) . (4.54)

It is clear that the events n = 0, 1, . . . ,min(m, q) are mutually exclusive, such that

`(Z|x) =

min(m,q)∑
n=0

Pr

(
Z ∩m ∩ n ∩

[ (qn)⋃
j=1

Hn,j ∩ [
mPn⋃
k=1

HUA
n,j,k]

]∣∣∣∣x) .
Furthermore, since the valid measurement subset hypotheses Hn,j are also mutually exclusive, it

can also be shown that

`(Z|x) =

min(m,q)∑
n=0

(qn)∑
j=1

Pr

(
Z ∩m ∩ n ∩Hn,j ∩ [

mPn⋃
k=1

HUA
n,j,k]

∣∣∣∣x) .
Similarly, since the unique measurement assignments of hypothesis HUA

n,j,k are mutually exclusive

as well,

`(Z|x) =

min(m,q)∑
n=0

(qn)∑
j=1

mPn∑
k=1

Pr
(
Z ∩m ∩ n ∩Hn,j ∩HUA

n,j,k|x
)
. (4.55)
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Following the rules of conditional probability, Eq. (4.55) becomes

`(Z|x) =

min(m,q)∑
n=0

(qn)∑
j=1

mPn∑
k=1

Pr
(
m ∩ n|x

)
Pr
(
Z ∩Hn,j ∩HUA

n,j,k|m ∩ n ∩ x
)
. (4.56)

Here, it is noted that the term Pr
(
m ∩ n|x

)
of Eq. (4.56) refers to the probability of having m

measurements, where n of them are valid. This is the same as considering the probability of the

event where there are m − n faulty measurements, which, recalling the notation of Eq. (4.26), is

expressed as

Pr
(
m ∩ n|x

)
= pF (m− n,x) ,

which is the state-dependent probability of receiving m− n faulty measurements. Thus, it can be

shown that Eq. (4.56) becomes

`(Z|x) =

min(m,q)∑
n=0

(qn)∑
j=1

mPn∑
k=1

pF (m− n,x) Pr
(
Z ∩Hn,j ∩HUA

n,j,k|m ∩ n ∩ x
)

=

min(m,q)∑
n=0

pF (m− n,x)

(qn)∑
j=1

mPn∑
k=1

Pr
(
Z ∩Hn,j ∩HUA

n,j,k|m ∩ n ∩ x
)
,

where once again, conditional probability yields

`(Z|x) =

min(m,q)∑
n=0

pF (m− n,x)

(qn)∑
j=1

mPn∑
k=1

Pr
(
Hn,j|m ∩ n ∩ x

)
Pr
(
Z ∩HUA

n,j,k|Hn,j ∩m ∩ n ∩ x
)
,

(4.57)

where the term Pr
(
Hn,j|m ∩ n ∩ x

)
is the probability that hypothesis Hn,j describes the unique

selection of valid measurement subsets, given the fact that nmeasurements are assumed to be valid.

At this point, it is useful to redefine the probability of detection, given originally by Eq. (4.18). For

a given valid measurement subset Zv,i, the state-dependent probability that the sensor detects a
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feature, and thus generates a single valid measurement, is denoted as

Pr(Zv,i = {zv,i}|x) = pD,i(1,x) .

Conversely, the probability that a given Zv,i will not generate a detection is the complement

Pr(Zv,i = {∅}|x) = pD,i(0,x)

= 1− pD,i(1,x) .

It then follows that the term Pr
(
Hn,j|m ∩ n ∩ x

)
of Eq. (4.57) is directly interpreted as the

probability that n valid measurement subsets (Zv,i ∈ Hn,j) generate a detection while q − n valid

measurement subsets do not, or

Pr
(
Hn,j|m ∩ n ∩ x

)
= Pr

([ n⋂
Zv,i∈Hn,j

Zv,i = {zv,i}
]
∩
[ q−n⋂
Zv,i /∈Hn,j

Zv,i = {∅}
]∣∣∣∣m ∩ n ∩ x)

=
n∏

Zv,i∈Hn,j

Pr
(
Zv,i = {zv,i}|m ∩ n ∩ x

) q−n∏
Zv,i /∈Hn,j

Pr
(
Zv,i = {∅}|m ∩ n ∩ x

)
=
[ n∏
Zv,i∈Hn,j

pD,i(1,x)
][ q−n∏

Zv,i /∈Hn,j

1− pD,i(1,x)
]
. (4.58)
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Equation (4.58) can substituted back into the likelihood of Eq. (4.57) to yield

`(Z|x) =

min(m,q)∑
n=0

pF (m− n,x)

(qn)∑
j=1

mPn∑
k=1

[ n∏
Zv,i∈Hn,j

pD,i(1,x)
][ q−n∏

Zv,i /∈Hn,j

1− pD,i(1,x)
]

× Pr
(
Z ∩HUA

n,j,k|Hn,j ∩m ∩ n ∩ x
)

=

min(m,q)∑
n=0

pF (m− n,x)

(qn)∑
j=1

[ n∏
Zv,i∈Hn,j

pD,i(1,x)
][ q−n∏

Zv,i /∈Hn,j

1− pD,i(1,x)
]

×
mPn∑
k=1

Pr
(
Z ∩HUA

n,j,k|Hn,j ∩m ∩ n ∩ x
)
,

which again, by conditional probability, becomes

`(Z|x) =

min(m,q)∑
n=0

pF (m− n,x)

(qn)∑
j=1

[ n∏
Zv,i∈Hn,j

pD,i(1,x)
][ q−n∏

Zv,i /∈Hn,j

1− pD,i(1,x)
]

×
mPn∑
k=1

Pr
(
HUA
n,j,k|Hn,j ∩m ∩ n ∩ x

)
Pr
(
Z|HUA

n,j,k ∩Hn,j ∩m ∩ n ∩ x
)
. (4.59)

The term Pr
(
HUA
n,j,k|Hn,j ∩m ∩ n ∩ x

)
of Eq. (4.59) denotes the probability that the unique mea-

surement assignment hypothesisHUA
n,j,k occurs, given the valid subset selection hypothesisHn,j and

the fact that n of the m measurements are valid. If it is assumed that the order of the measurements

is purely random, then all of the unique measurement assignments are equally likely. Therefore,

the probability is taken to be a uniform distribution as

Pr
(
HUA
n,j,k|Hn,j ∩m ∩ n ∩ x

)
=

1

mPn
=

(m− n)!

m!
,
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which, when inserted back into Eq. (4.59), yields

`(Z|x) =

min(m,q)∑
n=0

pF (m− n,x)

(qn)∑
j=1

[ n∏
Zv,i∈Hn,j

pD,i(1,x)
][ q−n∏

Zv,i /∈Hn,j

1− pD,i(1,x)
]

×
mPn∑
k=1

(m− n)!

m!
Pr
(
Z|HUA

n,j,k ∩Hn,j ∩m ∩ n ∩ x
)
. (4.60)

Now, upon examining the final term Pr
(
Z|HUA

n,j,k ∩Hn,j ∩m∩ n∩x
)

of Eq. (4.60), it is clear

that this probability can be represented by the collective intersection of m measurements, or

Pr
(
Z|HUA

n,j,k ∩Hn,j ∩m ∩ n ∩ x
)

= Pr
( m⋂
r=1

zr|HUA
n,j,k ∩Hn,j ∩m ∩ n ∩ x

)
=

m∏
r=1

Pr
(
zr|HUA

n,j,k ∩Hn,j ∩m ∩ n ∩ x
)
,

which becomes a product as the measurements are assumed to be generated independently.

Here it is useful to recall the individual valid measurement likelihoods of Eq. (4.49). For

instance, if it is known that valid measurement subset Zv,i generated a particular measurement zr,

then the likelihood of zr given the state x would be defined as

`v,i(zr|x) = Pr(zr|(zr ∈ Zv,i) ∈ HUA
n,j,k ∩Hn,j ∩m ∩ n ∩ x) ,

where the notation (zr ∈ Zv,i) ∈ HUA
n,j,k is used to further clarify the event that the measurement

assignment of zr to valid measurement subset Zv,i exists in the unique measurement assignment

hypothesis HUA
n,j,k. Similarly, the likelihood of some measurement zr (given state x), if it is known

to belong the faulty measurement subset Zf , is defined as

`f (zr|x) = Pr(zr|(zr ∈ Zf ) ∈ HUA
n,j,k ∩Hn,j ∩m ∩ n ∩ x) .
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Therefore, it is possible to show that

Pr
(
Z|HUA

n,j,k ∩Hn,j ∩m ∩ n ∩ x
)

=
[ n∏

(zr∈Zv,i)∈HUA
n,j,k

`v,i(zr|x)
][ m−n∏

(zr∈Zf )∈HUA
n,j,k

`f (zr|x)
]
,

which can be reinserted into the FCMM-4 likelihood of Eq. (4.60) to yield

`(Z|x) =

min(m,q)∑
n=0

pF (m− n,x)

(qn)∑
j=1

[ n∏
Zv,i∈Hn,j

pD,i(1,x)
][ q−n∏

Zv,i /∈Hn,j

1− pD,i(1,x)
]

×
mPn∑
k=1

(m− n)!

m!

[ n∏
(zr∈Zv,i)∈HUA

n,j,k

`v,i(zr|x)
][ m−n∏

(zr∈Zf )∈HUA
n,j,k

`f (zr|x)
]
. (4.61)

It is quite clear that FCMM-4 of Eq. (4.61) is considerably more complex than the preceding mod-

els. However, if the constraint that q = 1 is introduced, such that only a single valid measurement

distribution is allowed, Eq. (4.61) reduces back to FCMM-2 of Eq. (4.35).

4.4 Valid Measurement Modeling

“Valid” measurements, or measurements corresponding to ideal sensor returns as in Eq. (4.2),

are briefly discussed in Section 4.1. Essentially, these are the measurements that a sensor is in-

tended to produce by design. Both the temporal statistics (frequency of measurements) and spatial

statistics (value of zv) are considered in this section.

4.4.1 Valid Spatial Distribution

The spatial distribution of valid measurements is

zv ∼ `v(zv|x) , (4.62)

which is the “traditional measurement model” mentioned in Section 4.1. For many sensors, the

spatial statistics of Eq. (4.62) are readily available, as many efforts in the design, manufacturing,

and calibration of sensors prioritize the correct characterization of Eq. (4.62). As such, modeling

the spatial distribution of valid measurements is not a focal point of this work, and the discussion
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of this section will remain brief.

4.4.1.1 Spatially Gaussian Valid Measurements

While not all sensors are subject to Gaussian noise—such as the pulsar-based navigation used

by SEXTANT [89]—as previously stated in Section 2.2.2.1, most of the time assuming measure-

ments are subject to additive, zero-mean, Gaussian noise is an acceptable assumption, such as in

the EKF assumptions of Eq. (2.1c). Therefore, while admitting other noise distributions for mea-

surements are possible, this work often assumes that valid measurements are spatially distributed

as

`v(zv|x) = pg(zv|hv(x),Rv) , (4.63)

where hv(·) is the valid measurement function and Rv is the valid noise covariance. Note that

this will be the primary valid measurement model for the remainder of the fault-cognizant filtering

derivations.

4.4.1.2 Spatially Modeling Valid Measurements as GMMs

If, for some reason, sensor noise is unable to be modeled as a single Gaussian distribution,

it may be prudent to model the noise via the Gaussian mixture models previously discussed in

Section 2.2.2.2. Again, the main benefits of using a GMM are that it allows for a relatively flex-

ible measurement noise (i.e. multi-modal, heavy-tails, etc.) while still utilizing the properties of

Gaussians to enact closed-form GMF updates. Thus, if a GMM representation is elected, the valid

measurement likelihood of Eq. (4.62) becomes

`v(zv|x) =
Lv∑
k=1

wvkpg
(
zv|hvk(x),Rv

k

)
,

where wvk, hvk(·), andRv
k are the weight, mean, and covariance of the kth GM component.
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4.4.2 Valid Temporal Distribution

The temporal distribution of valid measurements refers to the statistical frequency at which

valid measurement(s) are generated, and is characterized by probability of validity for single

measurement returns, such as for FCMM-1 of Section 4.3.1, and probability of detection for the

FCMMs with variable sized measurement scans of Sections 4.3.2–4.3.4.

4.4.2.1 Probability of Validity vs Probability of Detection

First, it is useful to distinguish between the values of probability of detection pD(·,x), prob-

ability of false alarm pF (·,x), and probability of validity v(x). Both probabilities pD(·,x) and

pF (·,x) (in all their forms) are created specifically for likelihoods that permit multiple sensor

returns, while v(x) is intended for an FCMM limited to a single sensor return (i.e., FCMM-1).

Therefore, in order to relate v(x) to pD(·,x) and pF (·,x), it must be done within purview of scans

of single measurement returns, such that

pD(i,x) = 0 , ∀ i ≥ 2 (4.64a)

pF (i,x) = 0 , ∀ i ≥ 2 , (4.64b)

where it is recalled that pD(i,x) is the probability that i valid measurements are generated, and

pF (i,x) is the probability that i faulty measurements are generated. By total probability, it must

hold that

∞∑
i=0

pD(i,x) = 1 (4.65a)

∞∑
i=0

pF (i,x) = 1 , (4.65b)
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such that combining Eqs. (4.64) and (4.65) results in

pD(0,x) = 1− pD(1,x) (4.66a)

pF (0,x) = 1− pF (1,x) . (4.66b)

As it is desired to relate pD(·,x) and pF (·,x) to the probability of validity, the constraint that only

one measurement can be generated must be enforced. In other words, if a valid measurement is

generated, then a faulty measurement is not, and vice versa. This can be done by representing v(x)

as

v(x) = pF (0,x)pD(1,x) (4.67a)

1− v(x) = pF (1,x)[1− pD(1,x)] . (4.67b)

Solving Eqs. (4.67a) and (4.67b) for v(x) and equating the expressions, it directly follows that

pF (0,x)pD(1,x) = 1− pF (1,x)[1− pD(1,x)] ,

from which it is seen that

pD(1,x) =
pF (0,x)

2pF (0,x)− 1
,

or, that the probability of detection is reliant upon the probability of false alarm when the FCMM

is limited to single sensor returns. Whether or not this interdependency is desirable must be con-

sidered on a case by case basis, but if it is desired to model pD(·,x) and pF (·,x) independently of

one another, an FCMM that allows for variable sized measurement scans must be selected.

Since probability of validity closely aligns with the probability of detection, much of the up-

coming discussion on the modeling of pD(·,x) also applies to v(x), making discussion of both

rather redundant. Therefore, most temporal modeling of valid measurements will be done in re-
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gard to the probability of detection, while acknowledging that the proposed models also apply to

v(x).

4.4.2.2 Low Fidelity Model: Neglecting pD

It is not uncommon to implement filters that, instead of accounting for events like missed-

detections, elect to ignore such sensor behavior, resulting in updates that are only performed in the

presence of some return from the sensor. In such filters, no model for probability of detection is

needed; instead, these filters commonly rely upon ad hoc extensions like residual editing to screen

out erroneous sensor data in order to protect filtering operations [21]. While these filters tend to be

computationally efficient enough for most real-time navigation applications, they often exchange

the burden of constructing more accurate sensor models for an increase in manual parameter tuning

and the requirement for extra machinery to ensure robust filtering operations. Nevertheless, these

filters, wherein probabilities such as pD(·,x) are completely disregarded, remain some of the most

proven estimation architectures in existence and should not be dismissed outright [5, 7, 81]. To this

end, a nonlinear GM filter with residual editing is introduced in Eq. (4.7.2) as a fair representative

of a filter with a so-called low fidelity model for the temporal distribution of valid measurements.

4.4.2.3 Medium Fidelity Model: Zeroth-Order Approximation

There are many cases where estimation processes must be performed on a system where

the probability of detection is state-dependent, and neglecting this reality outright—as in Sec-

tion 4.4.2.2—is deemed overly detrimental to filtering operations. In cases such as these, the most

common practice is to repeatedly approximate pD(·,x) during each update so that it may be treated

as state-independent, which this work considers to be a medium fidelity approach to modeling the

temporal distribution of valid measurements.

Considering that the probability of i detections pD(i,x) is some (possibly nonlinear) function

of state x, it can be expressed via a Taylor series as

pD(i,x) =
∞∑
k=0

(x−m)k

k!

[
dkpD(i,x)

dxk

]
x=m

.
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A zeroth-order approximation of pD(i,x) is made by evaluating the k = 0 term of the Taylor series

and neglecting higher-order terms such that

pD(i,x) = pD(i,m) +O(x)

≈ pD(i,m) , (4.68)

where m can be selected in a number of ways, depending on the desired behavior of the filter

[90]. As GMMs are of primary interest to this work, two potential, appropriate choices for m are

considered.

4.4.2.3.1 Zeroth-Order Approximation About Overall Prior

This first method is considered to be a more conservative approach, in that it approximates

pD(·,x) before the measurement update actually occurs. It is done by evaluating pD(·,x) at the

single point x = m−, which is the overall mean of Eq. (2.22) extracted from a prior GM p−(x)

such as the one of Eq. (2.9). This method produces an approximation of pD(·,x) before the pro-

cessing of measurements, while also treating the GM as a single distribution by operating on the

overall mean instead of the means of individual components. However, this does require the extra

step of merging the GM prior, and thus is not used much in this work.

4.4.2.3.2 Zeroth-Order Approximation About Individual GM Components

Alternative to Section 4.4.2.3.1, noting that pD(·,x) is often directly multiplied with individual

GM components, the probability of detection may be approximated such that

L∑
`=1

w`pD(·,x)pg
(
x
∣∣m`,P`

)
≈

L∑
`=1

w`pD(·,m`)pg
(
x
∣∣m`,P`

)
. (4.69)

Note that this method allows for the calculation of pD(x) following measurement processing, while

also evaluating pD(·,x) at each GM component across the entire distribution. As such, this second

method is selected as the main manner by which the zeroth-order approximation of pD(·,x) is
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carried out.

When is a Zeroth-Order Approximation Acceptable?

The approximation of Eq. (4.68) is generally considered acceptable in cases where

the probability of detection is relatively constant compared to the state x [91]. In

reality, this criteria is frequently violated; the probability of detection often switches

between high and low values immediately as an object transitions over a sensor’s field-

of-view. Furthermore, no state information can be gleaned directly from the probability

of detection during the measurement update. As such, estimation operations in some

systems may fail under this treatment of pD(·,x).

4.4.2.4 High Fidelity Model: Gaussian Modeled Probabilities

In order to derive a state-dependent probability of detection that lends itself to a closed-form

update, the beneficial properties of Gaussians mentioned in Section 2.2.2.1 are recalled. Consider

the case where the probability of detection is modeled as a Gaussian distribution of the form

pD(·,x) = pg
(
pDz
∣∣g(x), RD

)
, (4.70)

where g(·) is some nonlinear function of the state, RD is an associated variance, and pDz is a ran-

dom variable drawn from the distribution of pD(·,x). Immediately, it is clear that some restrictions

should be placed upon the elements of Eq. (4.70), as the probability of detection must exist within

the interval [0, 1] to be a valid probability. However, as the support of a Gaussian extends into

infinity, the assumption of Eq. (4.70) poses a possible violation to this condition. To address this

incompatibility, note that most sensor models are founded on similar fallacies; most sensor returns,

while assumed to have Gaussian noise, are in reality bounded to exist within some finite interval

pursuant to either some physical constraint of the system or behavior enforced upon the sensor.

Therefore, pending careful treatment of Eq. (4.70), the Gaussian assumption on pD(·,x) should

be comfortable enough for practical use. Even so, it is highly recommended to define g(·) and
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RD such that the vast majority of the pdf pD(·,x) lies within [0, 1], as well as enforcing all pDz

realizations to remain within that interval when simulated, even if the filtering algorithms treat pDz

as unbounded.

In regard to FCMM-2, specifically, consider the case of single valid measurements, such that

the constraints of Eqs. (4.64a) and (4.66a) hold. Furthermore, assume that pD(1,x) is Gaussian

distributed as in Eq. (4.70). Recalling Section 2.2.2.1, where it is noted that a Gaussian random

variable will remain a Gaussian under a linear transformation, the probability of missed detection

pD(0,x) is known to be distributed as

pD(0,x) =
[
1− pD(1,x)

]
= pg

([
1− pDz

]∣∣[1− g(x)
]
, RD

)
. (4.71)

The transformation of Eq. (4.71) is especially useful when developing the high fidelity FCU corre-

sponding to FCMM-2 in Section 4.6.3.2, as it reduces the number of GM components created with

each update, as well as directly enforces non-negativity upon the posterior pdf. If, alternatively, the

“1” and “−pD(1,x)” of Eq. (4.71) are treated independently of one another, linearization errors

can cause the pdf to go negative, while also producing more GM components within the posterior

pdf.

4.5 Faulty Measurement Modeling

At this point, the existence of faulty measurements has been discussed in Section 4.2, which

justified the derivations of four fault-cognizant measurement models in Section 4.3. However, the

manner by which these faulty measurements are actually distributed, both spatially and temporally,

is yet to be clarified—a necessary step to produce filtering solutions. As such, this section explores

possible statistical distributions for faulty measurements.
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4.5.1 Faulty Temporal Distribution

The temporal distribution of faulty measurements is completely characterized by the probabil-

ity of validity v(x) for FCMM-1 of Section 4.3.1, and the probability of false alarm pF (·,x) for

the other FCMMs. This section contains discussions on both.

4.5.1.1 Example: Physical Interpretation of Probability of False Alarm

In order to better understand how false alarms due to background sensor noise can be created,

a basic concept in signal processing is presented, similar to the hypothesis testing example of

[55]. Consider the case where a scalar signal z is received, neglecting dependence on state x for

simplicity. In the event that the signal is a false alarm (z = zf ), it is distributed according to

some density `f (z|z ∈ F). Conversely, if the signal that is generated is valid (z = zv), then it is

distributed according to `v(z|z ∈ V). It is further assumed that a valid signal generally produces a

“stronger” signal, where “stronger” is taken as

E{zv} > E{zf} ,

where E{·} denotes expectation.

Next, the concept of a detection threshold γ is introduced, where signal z is only returned by

the sensor when z ≥ γ. This detection threshold can be set in a variety of ways, but is generally

intended to limit the number of false alarms (faulty measurements) returned while still including

the majority of the valid signals. Figures (4.9) and (4.10) give a visual representation of a possible

signal processing scenario, where `f (z|z ∈ F) and `v(z|z ∈ V) are pdfs, and γ is a possible

detection threshold. Again omitting state-dependencies for simplicity, the probability that a valid

signal is returned (i.e., probability of detection) is essentially calculated via

pD(1) =

∫ ∞
γ

`v(z|z ∈ V)dz ,

which is the shaded region of Fig. (4.9). Similarly, the probability that a single false alarm signal
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is returned is

pF (1) =

∫ ∞
γ

`f (z|z ∈ F)dz ,

which is the shaded region of Fig. (4.10).
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Figure 4.9 Signal likelihoods with shaded probability of detection for threshold γ

While not representative of all sensor models, this method of addressing the probabilities of

detection/false alarm is relatively common within the field of estimation. A direct comparison can

be made between this example and the voltage thresholding of photodiode photoreceivers in [92]

used for LiDAR and laser rangefinders .

4.5.1.2 Probability of False Alarm vs. False Alarm Rate

When developing temporal faulty measurement models for a wide breadth of sensors, it is not

unusual for a sensor to provide a false alarm rate (FAR) rather than probability of false alarm

pF (·,x) [93]. While the reasoning behind this may be different from sensor to sensor, the use of

FAR is usually attributed to the method by which a sensor is calibrated. For example, laser range-

finders (LRFs) are able to set a detection threshold based on the number of returns received when
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Figure 4.10 Signal likelihoods with shaded probability of false alarm for threshold γ

no valid returns are expected [94]. If no optical signal is produced by the LRF, then clearly all m

sensor returns received are false alarms. Therefore, the FAR is the ratio of the number of returns

to the time interval of the calibration process, which is

FAR =
m

∆tcal
.

A more restrictive detection threshold will decrease the number ofm false alarms and consequently

lower the FAR. Accordingly, the detection threshold can be tuned such that a desired FAR is

reached.

As filtering algorithms are more readily built on probabilities of m false alarms rather than

FARs it is useful to be able to construct pF (m,x) from FAR. The concept behind this is simple,

as it is clear that the FAR must be multiplied by some amount of time to recover a probability. In

fact, the probability that a single false alarm will occur is

pF (1,x) = FAR×∆top(x) ,

where ∆top(x) is a sensor operation window that may be dependent upon the state. If it is assumed
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that the false alarms are independently generated, then the probability of m false alarms is simply

pF (m,x) =
m∏
i=1

pF (1,x) = pF (1,x)m .

For any measurement set Z containing m measurement returns, the probability that none are false

alarms is given by

pF (0,x) = 1− pF (m,x) .

It is noted that typical FARs provided by sensors will be state-independent, and thus the probability

of false alarm is only dependent upon the state if ∆top = ∆top(x). Furthermore, FARs usually

correspond to faulty measurements generated during “idle” sensor calibration, and as such, may

only attribute for faulty measurements generated by background signal noise.

4.5.1.3 State-Dependency of Probability of False Alarm

The probability of false alarm in the FCMMs of Sections 4.3.2–4.3.4 is assumed to be state-

dependent, as pF (·,x) is a function of the state. While it is useful to allow the temporal distribu-

tion of false alarms to change with respect to the state vector, it is a major inconvenience when

attempting to find a closed-form Bayesian update, a problem that also arises for probability of

detection. As such, the same approaches to deal with a state-dependent probability of detection in

Sections 4.4.2.2–4.4.2.4 can be used for probability of false alarm. Specifically, the zeroth-order

approximation of Eq. (4.68) can be directly applied to pF (·,x) as well and is the most advisable

approach should state-dependency be deemed non-negligible.

4.5.1.4 Temporally Poisson Faulty Measurements

Even with the modeling discussions of Sections 4.5.1.1 and 4.5.1.2, models for probability of

false alarm are typically difficult to find and can vary significantly between sensors and systems.

In lieu of deriving a realistic, state-dependent model, a typical approach is to model faulty mea-

surements as temporally state-independent events that occur at a rate that is described by a Poisson
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distribution, such that probability of i false alarms is

pF (i) =
λi

i!eλ
, (4.72)

where λ is the average number of false alarms expected to be contained in sensor return Z. As

the credibility of this assumption is well-established in [48], this work is justified in utilizing this

assumption for the majority of the fault-cognizant update derivations. Note that the Poisson prob-

ability of false alarm is used frequently in other clutter-related literature [19, 95]. The probability

of Eq. (4.72) is not only applicable to a variety of systems, but also eliminates the troublesome

state-dependency.

4.5.2 Faulty Spatial Distribution

Previously, Section 4.2 assumed that faulty measurements are spatially IID according to Eq. (4.3)

but did not further prescribe any specific statistical distributions. As such, this section explores dif-

ferent possible spatial distributions that may be used when modeling faulty measurements.

4.5.2.1 Spatially Uniform Faulty Measurements

Consider the potential behavior and traits of a physical sensor that returns scalar measurements

zi. In most cases, there exists a bounded domain of possible sensor returns that can be generated,

such that all measurements (valid and faulty) must lie within some field-of-view of the sensor.

Practically, this can either be (1) the natural result of a sensor’s impossibility to generate returns

outside of a certain region of the measurement space, or (2) strictly enforced by only permitting

sensor returns that occur within some specified domain of allowable operation. For example, a

typical range sensor will not report ranges that are negative, as that is outside the sensor’s natural

field-of-view, or that are greater than a maximum effective distance, which is an enforced bound

beyond which any returns are considered untrustworthy [96]. Thus, all incoming range measure-

ments, both valid and faulty, will occur within the region [0,Max Range]. Due to this, the first

spatial faulty measurement model considered is one where all scalar faulty measurements zf,i must
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be sensor returns that exist within a bounded domain as

zf,i ∈ [ai, bi] . (4.73)

Furthermore, while a valid measurement is more likely to occur at some values as opposed

to others subject to the likelihood `v(z|x), it is sometimes sensible to assume that any faulty

measurement has an equally likely chance to exist at all possible values within the sensor domain

[97]. In accordance, the faulty likelihood function for a sensor with scalar returns can be assumed

to be generated by a uniform distribution as

`f,i(zi) =


1

bi−ai , ∀ zi ∈ [ai, bi]

0 , otherwise
, (4.74)

for bi > ai. This notion of uniformly distributed scalar faulty measurements can be extended to

m-dimensional vector sensor returns of the form

zf =

[
zf,1 zf,2 · · · zf,m

]T
. (4.75)

Note that, due to the FCMMs being derived under the assumption that (z = zv) and (z = zf ) are

mutually exclusive events, it follows that the entire measurement vector is either completely valid

or completely faulty; there cannot exist valid and invalid scalar elements within the same vector

measurement. If it is desired that such an effect be modeled, it is recommended to process the

individual scalar components of the measurement vector as individual measurements.

The likelihood corresponding to the vector measurement of Eq. (4.75) can be expressed as

`f (z) = `f (z1 ∩ z2 ∩ · · · ∩ zm) , (4.76)

or, the overall faulty spatial distribution for the vector measurement is the likelihood of the in-

tersection of the events given all of the individual scalar components are faulty. This essentially

146



enforces the aforementioned condition, that either all or none of the scalar measurements are faulty

for a given sensor return. If it is assumed that the scalar components of the faulty measurements

are generated independently of one another, the multivariate likelihood function of Eq. (4.76) can

be expressed as

`f (z) = `f,1(z1)`f,2(z2) · · · `f,m(zm)

=
m∏
i=1

`f,i(zi)

=
m∏
i=1


1

bi−ai , ∀ zi ∈ [ai, bi]

0 , otherwise
. (4.77)

Based on the form of Eq. (4.77), it is clear that any time a scalar measurement zi falls outside of

its respective bounds, such that either zi > bi or zi < ai, the result will be the zero likelihood event

`f (z) = 0. However, as the condition that physical sensor returns, valid or faulty, will always exist

inside the domain [ai, bi] is enforced, such an event is impossible, and the likelihood of Eq. (4.77)

can be restated simply as

`f (z) =
m∏
i=1

1

bi − ai
. (4.78)

If the size of the domain for each scalar measurement is regarded as a one-dimensional sensor

“length”, then an m-dimensional sensor “volume” can be defined as

V =
m∏
i=1

(
bi − ai

)
,

such that Eq. (4.78) can be expressed in terms of this so-called sensor volume as

`f (z) =
1

V
. (4.79)

It is important to note that the uniformly distributed faulty likelihood of Eq. (4.79) is independent
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of the state, signifying that no information concerning the explicit condition of the state x can be

inferred from faulty measurements of this type.

4.5.2.2 Spatially Normal Faulty Measurements

Instead of assuming uniformly distributed faulty measurements as in Section 4.5.2.1, consider

the case where each individual faulty measurement is generated according to some state-dependent

Gaussian distribution, such that

zf = hf (x) +wf , (4.80)

where hf (·) is some (potentially) nonlinear function and wf ∼ pg(wf |0,Rf ). Therefore, the

state-dependent faulty likelihood subject to this zero-mean Gaussian noise becomes

`f (z|x) = pg(z|hf (x),Rf ) . (4.81)

When the faulty spatial distribution takes the form of Eq. (4.81), it can be shown that the FCMM-1

of Eq. (4.14) becomes

`(z|x) = v(x)`v(z|x) +
[
1− v(x)

]
pg(z|hf (x),Rf ) . (4.82)

Operating on the assumption that the faulty measurements are normally distributed is advanta-

geous, as, again, Gaussian distributions have many preferred mathematical properties. Unlike the

uniformly distributed likelihood of Eq. (4.79), the Gaussian likelihood no longer requires bounds

on sensor returns, instead requiring a mean and covariance. Furthermore, it also permits depen-

dency upon the state, allowing for information gain explicating x from the spatial distribution of

faulty measurements. While aspects of this faulty measurement model seem favorable relative to

the uniform measurements of Section 4.5.2.1, there may be doubt as to whether faulty measure-

ments actually occur in this fashion. To assuage legitimacy concerns, a possible Gaussian model

for faulty measurements is explained in terms of the FCMM-1 likelihood of Eq. (4.82).
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Consider a valid scalar measurement generated as

zv = hv(x) + wv , (4.83)

where wv is a zero-mean white noise sequence with covariance Rv. Based on Eq. (4.83), the valid

likelihood takes on the form

`v(z|x) = pg
(
z|hv(x), Rv

)
, (4.84)

which is the scalar counterpart to the fairly common assumption made in Eq. (2.1c). Now, it is

proposed that faulty measurements occur in a similar fashion, such that they are normally dis-

tributed around the mean hv(x). However, the faulty measurement noise covariance will differ as

Rf > Rv, such that

zf = hv(x) + wf (4.85)

and

`f (z|x) = pg
(
z|hv(x), Rf

)
. (4.86)

The rationale for this normally distributed faulty measurement model arises from the assumption

that invalid measurements are more likely to occur near the actual measurement mean [97]. If both

of these likelihoods are plotted over one another, Fig. (4.11a) shows a comparison for the case of√
Rf = 10

√
Rv.

Taking the Gaussian likelihoods of Eqs. (4.84) and (4.86), the FCMM-1 likelihood of Eq. (4.82)

becomes

`(z|x) = v(x)pg
(
z|hv(x), Rv

)
+
[
1− v(x)

]
pg
(
z|hv(x), Rf

)
. (4.87)
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Figure 4.11 Example likelihoods for normally distributed faulty measurements for v(x) = 0.7

Notice that Eq. (4.87) is essentially a two component Gaussian mixture (GM) with state-dependent

weights v(x) and 1− v(x). For simplicity, the probability of validity is taken to be constant such

that v(x) = 0.7, and the resulting FCMM-1 likelihood of Eq. (4.87) is plotted in Fig. (4.11b).

The vast majority of measurements will exist within the main central peak, yet this distribution

also appreciates the small chance that measurements are generated farther from the mean than

`v(z|x) alone would expect. Increasing the variance Rf has the effect of enlarging the portion of

the measurement space where faulty measurements are expected. This increase does not change

the expected frequency of faulty measurements, as that is attributed to v(x) alone, but instead

“flattens” the faulty likelihood profile of Fig. (4.11a) and elongates the “tails” of Fig. (4.11b).

4.5.2.3 Approximating Spatial Distribution of Faulty Measurements with GMMs

As previously noted in Section 4.5.2.2, there are many benefits to using Gaussians when mod-

eling measurement distributions. Yet to assume that a distribution is Gaussian, no matter how

broadly it may apply, still enforces a restrictive assumption upon the update. In order to take

advantage of Gaussian properties while avoiding restricting the faulty likelihood to a specific dis-

tribution, the popular concept of approximating distributions via Gaussian mixture models is again

introduced, but this time for the spatial distribution of faulty measurements.

Recalling the discussion on GMMs from Section 2.2.2.2, this section presumes that the actual
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faulty likelihood `f (z|x) is able to be approximated by an Lf -component GM as

`f (z|x) ≈
Lf∑
j=1

wfj pg
(
z|hfj (x),Rf

j

)
, (4.88)

where wfj , hfj (x), andRf
j are the weight, mean, and covariance of the j th GM component, respec-

tively. In general, an increase in the number of components enables a more accurate approximation

of `f (z|x). With this in mind, the key to this method is to find an appropriate distribution that

models faulty measurement returns. Two notions occur immediately: first, that each faulty mea-

surement distribution will be sensor specific, and second, that an accurate model will most likely

require in-depth knowledge of the sensor behavior. However, as long as some GM representation

of the likelihood can be produced, a closed-form solution to the update equation (assuming proper

treatment of the state-dependencies in pD(·,x), pF (·,x), and v(x)) is possible.

While the GM likelihood of Eq. (4.88) may be used to only approximate the actual faulty

measurement spatial distribution, examining the manner in which the GM likelihood model would

generate physical faulty measurements is still insightful. Consider a special case where a faulty

measurement is guaranteed to be returned by a sensor. Then, there exist Lf mutually independent

events denoted by

zf = zf,j ,

indicating the event where the faulty measurement is generated according to the j th model, or

zf = hfj (x) +wf,j if zf = zf,j ,

where wf,j ∼ pg(wf,j|0, Rf
j ). The probability of event zf = zf,j is equivalent to the j th GM

weight as

Pr(zf = zf,j) = wfj .
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Assuming faulty measurements are distributed in this manner, the FCMM-1 likelihood of Eq. (4.14)

yields

`(z|x) = v(x)`v(z|x) +
[
1− v(x)

] Lf∑
j=1

wfj pg
(
z|hfj (x),Rf

j

)
. (4.89)

4.6 Fault-Cognizant Updates

While much discussion is contained in the previous sections of this chapter concerning fault-

cognizant modeling, no operable filter forms have been presented as of yet. As such, this section

details several closed-form updates by selecting 1) a FCMM from Section 4.3, 2) a valid measure-

ment model from Section 4.4, and 3) a faulty measurement model from Section 4.5, the collection

of which are inserted into Eq. (3.1) to form a Bayesian update.

4.6.1 Closed-Form Related GMM Assumptions

For the sake of practical, recursive algorithms, the filters derived in this section are specifically

designed to have closed forms; that is, the form of the inputs to the update should match the form

of its outputs. To accomplish this, the prior distribution p−(x) is taken to be a GMM of the form

p−(x) =
L−∑
ξ=1

w−ξ pg(x|m
−
ξ , P

−
ξ ) , (4.90)

which is the same form as a prior that is propagated by a GSF in Eq. (2.9) (with the omission of

time index k). Therefore, not only will Eq. (4.90) grant closed-form filtering solutions, but each

filter will be nonlinear by default.

4.6.2 FCU-1: Scans of Single Measurements

The first type of fault-cognizant update (FCU-1) corresponds to FCMM-1 of Section 4.3.1,

where it is assumed that sensor scans contain exactly one measurement, the nature of which can

either be valid or faulty. As such, the general fault-cognizant measurement likelihood of each filter
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corresponds to Eq. (4.14), such that a Bayesian update takes the form

p+(x) ∝ p−(x)`(Z|x)

∝ v(x)p−(x)`v(z|x) +
[
1− v(x)

]
p−(x)`f (z|x) . (4.91)

Additionally, all valid measurements are assumed to be Gaussian distributed as per Eq. (4.63),

and since this update type is limited to single measurement returns, the probabilities of detection

and false alarm are replaced by the probability of validity per the discussion of Section 4.4.2.1,

which, for the sake of simplicity, is assumed state-independent by the zeroth-order approximation

of Section 4.4.2.3, such that v(x) = v. Note that investigations into state-dependent probabilities

of detection are addressed in Section 4.6.3. Under these conditions, the update of Eq. (4.91)

becomes

p+(x) ∝
L−∑
ξ=1

[
vw−ξ pg(x|m

−
ξ ,P

−
ξ )pg(z|hv(x),Rv)

]
+

L−∑
ξ=1

[
[1− v]w−ξ pg(x|m

−
ξ ,P

−
ξ )`f (z|x)

]
.

(4.92)

Therefore, the only modeling assumption that remains unspecified is the spatial distribution of

faulty measurements `f (z|x), three of which are presented in Section 4.5.2. Thus, three distinct

FCU-1 updates are derived in this section, each one corresponding to a different faulty spatial

distribution.

4.6.2.1 FCU-1 with Spatially Uniform Faulty Measurements

Here, the algorithms for a FCU-1 are derived by taking the update of Eq. (4.92) and as-

suming that faulty measurements are uniformly distributed across the sensor space, pursuant to

Section 4.5.2.1. In this case, when `f (z|x) is defined according to Eq. (4.79), the posterior of
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Eq. (4.92) becomes

p+(x) ∝
L−∑
ξ=1

[
vw−ξ pg(x|m

−
ξ ,P

−
ξ )pg(z|hv(x),Rv)

]
+

L−∑
ξ=1

[1− v
V

w−ξ pg(x|m
−
ξ ,P

−
ξ )
]
. (4.93)

Making use of the identity of Eqs. (A.2), it can be shown that Eq. (4.93) becomes

p+(x) ∝ v
L−∑
ξ=1

[
κξw

−
ξ pg(x|m

+
ξ ,P

+
ξ )
]

+
1− v
V

L−∑
ξ=1

[
w−ξ pg(x|m

−
ξ ,P

−
ξ )
]
, (4.94)

where

m+
ξ = m−ξ +Kξ[z − hv(m−ξ )] (4.95a)

P+
ξ = P−ξ −KξHv(m

−
ξ )P−ξ (4.95b)

Wξ = Hv(m
−
ξ )P−ξ H

T
v (m−ξ ) +Rv (4.95c)

Kξ = P−ξ H
T
v (m−ξ )W−1

ξ (4.95d)

κξ = pg
(
z
∣∣hv(m−ξ ),Wξ

)
, (4.95e)

and where Hv(m) is the Jacobian of the valid measurement function hv(·) evaluated at x = m.

Therefore, the normalized posterior is

p+(x) =
v
∑L−

ξ=1

[
κξw

−
ξ pg(x|m

+
ξ ,P

+
ξ )
]

+ 1−v
V

∑L−

ξ=1

[
w−ξ pg(x|m

−
ξ ,P

−
ξ )
]

v
∑L−

ξ=1

[
κξw

−
ξ

∫
pg(s|m+

ξ ,P
+
ξ )ds

]
+ 1−v

V

∑L−

ξ=1

[
w−ξ
∫
pg(s|m−ξ ,P

−
ξ )ds

] . (4.96)

As pg(s|m+
ξ ,P

+
ξ ) and pg(s|m−ξ ,P

−
ξ ) are both pdfs of the state, they integrate to unity over the

support of s. Therefore, Eq. (4.96) becomes

p+(x) =
L−∑
ξ=1

[
wvξpg(x|m+

ξ ,P
+
ξ )
]

+
L−∑
ξ=1

[
wfξ pg(x|m

−
ξ ,P

−
ξ )
]
, (4.97)
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where

wvξ =
vκξw

−
ξ

η
, wfξ =

(1− v)w−ξ
V η

, and η = v

L−∑
ξ=1

[
κξw

−
ξ

]
+

1− v
V

, (4.98)

such that the posterior distribution of Eq. (4.97) is a GM with 2L− number of components. As a

result, each application of the update doubles the number of components within the GM description

of the estimate distribution.

4.6.2.2 FCU-1 with Spatially GM Faulty Measurements

This section provides a description of an FCU-1 update where the faulty spatial distribution is

taken to be a Gaussian mixture, following the model presented in Section 4.5.2.3. Assuming that

`f (z|x) does indeed equate to Eq. (4.88), the posterior distribution of Eq. (4.92) becomes

p+(x) ∝ v
L−∑
ξ=1

[
w−ξ κ

v
ξpg(x|µvξ ,Πv

ξ)
]

+ (1− v)
L−∑
ξ=1

Lf∑
j=1

[
w−ξ w

f
j κ

f
ξ,jpg(x|µ

f
ξ,j,Π

f
ξ,j)
]
, (4.99)

where

µvξ = m−ξ +Kv
ξ

[
z − hv(m−ξ )

]
µfξ,j = m−ξ +Kf

ξ,j

[
z − hfj (m−ξ )

]
Πv
ξ = P−ξ −K

v
ξHv(m

−
ξ )P−ξ Πf

ξ,j = P−ξ −K
f
ξ,jH

f
j (m−ξ )P−ξ

W v
ξ = Hv(m

−
ξ )P−ξ

[
Hv(m

−
ξ )
]T

+Rv W f
ξ,j = Hf

j (m−ξ )P−ξ
[
Hf

j (m−ξ )
]T

+Rf
j

Kv
ξ = P−ξ

[
Hv(m

−
ξ )
]T [
W v

ξ

]−1
Kf

ξ,j = P−ξ
[
Hf

j (m−ξ )
]T [
W f

ξ,j

]−1

κvξ = pg(z|hv(m−ξ ),W v
ξ ) κfξ,j = pg(z|hfj (m−ξ ),W f

ξ,j) ,

and whereHf
j (m) is the Jacobian of hfj (·) evaluated at x = m. Note that two applications of the

identity in Eqs. (A.2) are used to produce Eq. (4.99). The normalizing denominator of Bayes’ rule
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is found by integrating Eq. (4.99) as

η =

∫
p−(s)`(z|s)ds

= v

L−∑
ξ=1

[
w−ξ κ

v
ξ

]
+ (1− v)

L−∑
ξ=1

Lf∑
j=1

[
w−ξ w

f
j κ

f
ξ,j

]
. (4.100)

Combining the results of Eqs. (4.99) and (4.100), this FCU-1 posterior becomes

p+(x) =
L−∑
ξ=1

[
wvξpg(x|µvξ ,Πv

ξ)
]

+
L−∑
ξ=1

Lf∑
j=1

[
wfξ,jpg(x|µ

f
ξ,j,Π

f
ξ,j)
]
, (4.101)

where

wvξ =
vw−ξ κ

v
ξ

η
and wfξ,j =

(1− v)w−ξ w
f
j κ

f
ξ,j

η
,

which is a GM with L− × (Lf + 1) components. Thus, for each iteration of the filter, the update

produces L− × Lf more components.

4.6.2.3 FCU-1 with Spatially Normal Faulty Measurements

Instead of developing this FCU-1 variant directly, it is more pragmatic to observe that when

the GM of Eq. (4.88) is taken to consist of only a single component, it reduces to the expression of

Eq. (4.81), demonstrating that the normally distributed faulty measurement model is a special case

of the GM faulty measurement model. Therefore, under the conditions that the faulty likelihood

function is given by the Gaussian model of Section 4.5.2.2, it is relatively straightforward to show

that the updated posterior of Eq. (4.101) reduces to

p+(x) =
L−∑
ξ=1

[
wvξpg(x|µvξ ,Πv

ξ)
]

+
L−∑
ξ=1

[
wfξ pg(x|µ

f
ξ ,Π

f
ξ )
]
, (4.102)
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where

wvξ =
vw−ξ κ

v
ξ

η
wfξ =

(1− v)w−ξ κ
f
ξ

η

µvξ = m−ξ +Kv
ξ

[
z − hv(m−ξ )

]
µfξ = m−ξ +Kf

ξ

[
z − hf (m−ξ )

]
Πv
ξ = P−ξ −K

v
ξHv(m

−
ξ )P−ξ Πf

ξ = P−ξ −K
f
ξHf (m

−
ξ )P−ξ

W v
ξ = Hv(m

−
ξ )P−ξ

[
Hv(m

−
ξ )
]T

+Rv W f
ξ = Hf (m

−
ξ )P−ξ

[
Hf (m

−
ξ )
]T

+Rf

Kv
ξ = P−ξ

[
Hv(m

−
ξ )
]T [
W v

ξ

]−1
Kf

ξ = P−ξ
[
Hf (m

−
ξ )
]T [
W f

ξ

]−1

κvξ = pg(z|hv(m−ξ ),W v
ξ ) κfξ = pg(z|hf (m−ξ ),W f

ξ ) ,

and where

η =
L−∑
ξ=1

w−ξ

[
vκvξ + (1− v)κfξ

]
.

Equation (4.102) indicates the posterior pdf of this update is a GM with 2L− components, such

that each iteration of the filter doubles the number of GM components.
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Merging FCU-1 Components for Inclusion in Traditional Filter

The updates of Section 4.6.2 are attractive, by design, in that they are well-suited to

replace a preexisting EKF update with relative ease. For instance, if a (Bayesian) EKF

is already implemented in a system, then the single valid Gaussian measurement model

should already be available, and the prior is necessarily a Gaussian distribution—or a

GM of a single component. Then, the only obstacle to a closed-form solution, where all

algorithms of the EKF remain the same with the exception of the update, is the fact that

the FCU-1 updates produce GM posteriors, when the EKF requires single Gaussian

priors. Fortunately, this discrepancy is readily addressed by the addition of a single

step following the FCU-1 equations of either Eq. (4.97), Eq. (4.101), or Eq. (4.102).

By immediately merging the components of the GM posteriors into a single Gaussian

distribution, per Section 2.2.3.2, the posterior of the FCU-1 becomes identical in form

to that of the EKF. In this way, as long as a suitable faulty measurement model is

specified, the merged FCU-1 becomes a straightforward substitution for the update

within the traditional EKF of Section 2.1.4.

4.6.3 FCU-2: Single-Valid Measurement

The second type of fault-cognizant update (FCU-2) corresponds to FCMM-2 of Section 4.3.2,

where it is assumed that sensor scans contain at most one valid return and any number of faulty

returns. As such, the general fault-cognizant measurement likelihood `(Z|x) of each FCU-2 filter

corresponds to Eq. (4.34). Similar to the FCU-1 derivation of Section 4.6.3, assumptions are

strategically enforced until a closed-form solution is achieved.

First, the assumptions that faulty measurements are spatially uniform and temporally Poisson,
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pursuant to Sections 4.5.2.1 and 4.5.1.4, are applied such that the FCMM of Eq. (4.34) becomes

`(Z|x) = pD(1,x)
λm−1

m(m− 1)!eλ

m∑
i=1

{
`v(zi|x)

m∏
j=1,j 6=i

1

V

}
+ [1− pD(1,x)]

λm

m!eλ

m∏
j=1

1

V

= pD(1,x)
λm−1

m!eλ

m∑
i=1

{
`v(zi|x)

1

V m−1

}
+ [1− pD(1,x)]

λm

m!eλ
1

V m

=
λm

m!eλ
1

V m

{
pD(1,x)

V

λ

m∑
i=1

[
`v(zi|x)

]
+ [1− pD(1,x)]

}
=
pF (m)

V m

{
pD(1,x)

κc

m∑
i=1

[
`v(zi|x)

]
+ [1− pD(1,x)]

}
, (4.103)

where κc is a commonly used parameter referred to as the clutter intensity, which relates the tem-

poral and spatial distribution of false measurements as [48]

κc = λ`f (z) , (4.104a)

which, in this case, is

κc =
λ

V
. (4.104b)

If the valid measurements are assumed to be spatially Gaussian according to Eq. (4.63), then

Eq. (4.103) further reduces to

`(Z|x) =
pF (m)

V m

{
1

κc

m∑
i=1

[
pD(1,x)pg

(
zi
∣∣h(x),R

)]
+ [1− pD(1,x)]

}
. (4.105)

The likelihood of Eq. (4.105) can be multiplied with the GM prior of Eq. (4.90), such that a
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Bayesian posterior is formed as

p+(x) ∝ 1

κc

m∑
i=1

L−∑
ξ=1

{
pD(1,x)w−ξ pg

(
zi
∣∣h(x),R

)
pg
(
x
∣∣m−ξ ,P−ξ )}

+
L−∑
ξ=1

{
[1− pD(1,x)]w−ξ pg

(
x
∣∣m−ξ ,P−ξ )} . (4.106)

Here, the identity of Eq. (A.2) is applied to the product of Gaussians in Eq. (4.106) to produce

p+(x) ∝ 1

κc

m∑
i=1

L−∑
ξ=1

{
pD(1,x)κ+

ξ,iw
−
ξ pg
(
x
∣∣m+

ξ,i,P
+
ξ,i

)}

+
L−∑
ξ=1

{
[1− pD(1,x)]w−ξ pg

(
x
∣∣m−ξ ,P−ξ )} . (4.107)

where

m+
ξ,i = m−ξ +Kξ

(
zi − h(m−ξ )

)
(4.108a)

P+
ξ,i = P−ξ −KξH(m−ξ )P−ξ (4.108b)

Wξ = H(m−ξ )P−ξ H
T (m−ξ ) +R (4.108c)

Kξ = P−ξ H
T (m−ξ )W−1

ξ (4.108d)

κ+
ξ,i = pg

(
zi
∣∣h(m−ξ ),Wξ

)
, (4.108e)

and whereH(·) is the Jacobian of h(·). Note that no precise model for the probability of detection

has been established. As such, the remainder of the section derives two different FC updates, one

with a zeroth-order approximation of pD(1,x) and the other with Gaussian model for pD(1,x).

The update of Eq. (4.107) and the corresponding components of Eqs. (4.108) are the basis for each

variation of the proposed FCU-2 to be presented.
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4.6.3.1 FCU-2 with Zeroth-Order Approximated pD:

If a zeroth-order approximation of pD(1,x) is made, as per Section 4.4.2.3 and Eq. (4.69), the

FCU-2 from Eqs. (4.107) and (4.108) becomes

p+(x) ∝ 1

κc

m∑
i=1

L−∑
ξ=1

{
pD(1,m+

ξ,i)κ
+
ξ,iw

−
ξ pg
(
x
∣∣m+

ξ,i,P
+
ξ,i

)}

+
L−∑
ξ=1

{
[1− pD(1,m−ξ )]w−ξ pg

(
x
∣∣m−ξ ,P−ξ )} , (4.109)

which, once normalization is performed, yields

p+(x) =
m∑
i=1

L−∑
ξ=1

{
w+
ξ,ipg

(
x
∣∣m+

ξ,i,P
+
ξ,i

)}
+

L−∑
ξ=1

{
w+
ξ pg
(
x
∣∣m−ξ ,P−ξ )} , (4.110a)

where

w+
ξ,i =

pD(1,m+
ξ,i)κ

+
ξ,iw

−
ξ

κcη

w+
ξ =

[
1− pD(1,m−ξ )

]
w−ξ

η

η =
L−∑
ξ=1

w−ξ

{[
1− pD(1,m−ξ )

]
+

1

κc

m∑
i=1

[
pD(1,m+

ξ,i)κ
+
ξ,i

]}
. (4.110b)

The posterior of Eq. (4.110a) is a GM of L− × (m + 1) components, such that an additional

L− × m components are generated with each filter iteration. Note that in the trivial case where

pD(1,x) is taken to be a constant, the resulting update can simply be stated as simplified version

of Eqs. (4.110a) and (4.110b) with pD(1,m) = pD(1).

4.6.3.2 FCU-2 with Gaussian pD:

This variant of the FCU-2 assumes that the probability of detection can be modeled as a Gaus-

sian distribution with a mean that is a function of the state x, per the discussion of Section 4.4.2.4.
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In this case, the update of Eqs. (4.107) and (4.108) becomes

p+(x) ∝ 1

κc

m∑
i=1

L−∑
ξ=1

{
κ+
ξ,iw

−
ξ pg
(
pDz
∣∣g(x), RD

)
pg
(
x
∣∣m+

ξ,i,P
+
ξ,i

)}

+
L−∑
ξ=1

{
w−ξ pg

([
1− pDz

]∣∣[1− g(x)
]
, RD

)
pg
(
x
∣∣m−ξ ,P−ξ )} (4.111)

following the proper substitutions of Eqs. (4.70) and (4.71). Next, two simultaneous applications

of Eq. (A.2) are used to evaluate both Gaussian products to give

p+(x) ∝ 1

κc

L−∑
ξ=1

m∑
i=1

{
w−ξ κ

+
ξ,iκ

D+

ξ,i pg(x|mD+

ξ,i ,P
D+

ξ,i )
}

+
L−∑
ξ=1

{
w−ξ κ

D−

ξ pg(x|mD−

ξ ,P D−

ξ )
}
,

(4.112)

where

mD+

ξ,i = m+
ξ,i +KD+

ξ,i

(
pDz − g(m+

ξ,i)
)

mD−

ξ = m−ξ +KD−

ξ

(
pDz − g(m−ξ )

)
P D+

ξ,i = P+
ξ,i −K

D+

ξ,i G(m+
ξ,i)P

+
ξ,i P D−

ξ = P−ξ −K
D−

ξ G(m−ξ )P−ξ

WD+

ξ,i = G(m+
ξ,i)P

+
ξ,iG

T (m+
ξ,i) +RD WD−

ξ = G(m−ξ )P−ξ G
T (m−ξ ) +RD

KD+

ξ,i = P+
ξ,iG

T (m+
ξ,i)
[
WD+

ξ,i

]−1
KD−

ξ = P−ξ G
T (m−ξ )

[
WD−

ξ

]−1

κD
+

ξ,i = pg

(
pDz
∣∣g(m+

ξ,i),W
D+

ξ,i

)
κD
−

ξ = pg

([
1− pDz

]∣∣[1− g(m−ξ )
]
,WD−

ξ

)
.

Note that m+
ξ,i and P+

ξ,i are from Eqs. (4.110), and that G(·) is the Jacobian of g(·) such that the

Jacobian of 1− g(x) is simply

∂

∂x

(
1− g(x)

)
= −G(x) .
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Therefore, given the update of Eq. (4.112), the normalized Bayesian posterior is found to be

p+(x) =
L−∑
ξ=1

m∑
i=1

{
wD+

ξ,i pg(x|mD+

ξ,i ,P
D+

ξ,i )
}

+
L−∑
ξ=1

{
wD−

ξ pg(x|mD−

ξ ,P D−

ξ )
}
, (4.113a)

where

wD+

ξ,i =
w−ξ κ

+
ξ,iκ

D+

ξ,i

κcη
, wD−

ξ =
w−ξ κ

D−
ξ

η
, and η =

L−∑
ξ=1

w−ξ

{
κD
−

ξ +
1

κc

m∑
i=1

[
κ+
ξ,iκ

D+

ξ,i

]}
.

(4.113b)

which corresponds to a Gaussian mixture of L−× (m+ 1) components. In order for this update to

be accomplished, some value of pDz must be reported to the filter by some external source.

4.6.4 FCU-3: Multiple-Valid Measurement – IID

Proceeding similarly to Sections 4.6.2 and 4.6.3, this section derives a fault-cognizant filter

update (FCU-3) subject to the FCMM-3 of Section 4.3.3 and Eq. (4.48), where a sensor produces

measurement scans that can contain multiple IID valid measurements. While the discussion of

Section 4.6.1 forces the prior p−(x) into the form of the GM in Eq. (4.90), FCU-3 additionally

assumes that the spatial distribution of valid measurements `v(z|x) also takes the form of a GM

according to Section 4.4.1.2, one with Lv number of components, such that

`v(z|x) =
Lv∑
γ=1

wvγpg(z|hγ(x),Rγ) , (4.114)

where wvγ , hγ(x), and Rγ are the weight, mean, and covariance of the γth GM component respec-

tively. Note that if Lv = 1, Eq. (4.114) reduces to the traditional Gaussian measurement model

of Eq. (2.1c), but taking it to be a GMM allows for a valid spatial distribution that can adapt to

different sensor models, should the need arise.

As various faulty spatial distributions are already surveyed by FCU-1 of Section 4.6.2, for

simplicity, FCU-3 assumes that faulty measurements occur uniformly across the sensor space ac-
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cording to Eq. (4.79) such that the faulty spatial distribution becomes

`f (z|x) = `f (z) =
1

V
, (4.115)

where V is the sensor volume. With the inclusion of Eqs. (4.114) and (4.115), the FCMM-3 of

Eq. (4.48) becomes

`(Z|x) =
m∑
n=0

{
pD(n,x)pF (m− n,x)(

m
n

) (mn)∑
j=1

[ n∏
k=1

zk∈Hv,j

`v(zk|x)
m−n∏
`=1

z`∈Hf,j

`f (z`|x)

]}

=
m∑
n=0

{
pD(n,x)pF (m− n,x)(

m
n

) (mn)∑
j=1

[ n∏
k=1

zk∈Hv,j

Lv∑
γ=1

wvγpg(zk|hγ(x),Rγ)
m−n∏
`=1

z`∈Hf,j

1

V

]}

=
m∑
n=0

{
pD(n,x)pF (m− n,x)(

m
n

)
V m−n

(mn)∑
j=1

[ n∏
k=1

zk∈Hv,j

Lv∑
γ=1

wvγpg(zk|hγ(x),Rγ)

]}
. (4.116)

The Bayesian posterior of FCU-3 is proportional to the product of Eqs. (4.90) and (4.116), which

is

p+(x)

∝
L−∑
ξ=1

w−ξ pg(x|m
−
ξ ,P

−
ξ )

m∑
n=0

{
pD(n,x)pF (m− n,x)(

m
n

)
V m−n

(mn)∑
j=1

[ n∏
k=1

zk∈Hv,j

Lv∑
γ=1

wvγpg(zk|hγ(x),Rγ)

]}

∝
m∑
n=0

{
pD(n,x)pF (m− n,x)(

m
n

)
V m−n

(mn)∑
j=1

[ L−∑
ξ=1

w−ξ pg(x|m
−
ξ ,P

−
ξ )

n∏
k=1

zk∈Hv,j

Lv∑
γ=1

wvγpg(zk|hγ(x),Rγ)

]}
.

(4.117)

In order to further reduce the expression of Eq. (4.117), the Gaussian mixture terms must be di-

rectly multiplied together. This is difficult, however, as Ho’s equation of Eq. (A.2) requires a

direct multiplication of the terms pg(x|·, ·) and pg(zk|·, ·) only. If the square bracketed portion of
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Eq. (4.117) is expanded, it is found that

L−∑
ξ=1

w−ξ pg(x|m
−
ξ ,P

−
ξ )

n∏
k=1

zk∈Hv,j

Lv∑
γ=1

wvγpg(zk|hγ(x),Rγ)

=
L−∑
ξ=1

w−ξ pg(x|m
−
ξ ,P

−
ξ )

( Lv∑
γ1=1

wvγ1pg(z1|hγ1(x),Rγ1)

)
· · ·
( Lv∑
γn=1

wvγipg(zn|hγn(x),Rγn)

)

=
L−∑
ξ=1

w−ξ pg(x|m
−
ξ ,P

−
ξ )

( Lv∑
γ1=1

· · ·
Lv∑
γn=1

wvγ1pg(z1|hγ1(x),Rγ1) · · ·wvγnpg(zn|hγi(x),Rγn)

)

=
Lv∑
γ1=1

· · ·
Lv∑
γn=1

L−∑
ξ=1

wvγ1pg(z1|hγ1(x),Rγ1) · · ·wvγnpg(zn|hγn(x),Rγn)w−ξ pg(x|m
−
ξ ,P

−
ξ )

=
Lv∑
γ1=1

· · ·
Lv∑
γn=1

L−∑
ξ=1

wvγ1 · · ·w
v
γnw

−
ξ pg(z1|hγ1(x),Rγ1) · · · pg(zn|hγn(x),Rγn)pg(x|m−ξ ,P

−
ξ ) ,

(4.118)

where it is recalled that all zk ∈ Hv,j ∀k = 1, 2, . . . , n, as this is for one unique combination

of valid assignments. It is seen that this expression in Eq. (4.118) has a n + 1 summations that

sum over of a product of n Gaussians of the form pg(zk|hγk(x),Rγk) for k = 0, 1, . . . , n with a

single Gaussian of the form pg(x|m−ξ ,P
−
ξ ). At this stage, it is noted that each measurement must

be processed and incorporated into the distribution some way. This can be done via a sequential

implementation of Ho’s rule of Eqs. (A.2) with n steps. Starting with the product of Gaussians in

Eq. (4.118), the first iteration takes the form

pg(x|m−ξ ,P
−
ξ )pg(z1|hγ1(x),Rγ1) · · · pg(zn|hγn(x),Rγn)

= κ1pg(x|µξ1,Π
ξ
1)pg(z2|hγ2(x),Rγ2) · · · pg(zn|hγn(x),Rγn) , (4.119)
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where

µξ1 = m−ξ +K1

(
z1 − hγ1(m−ξ )

)
Πξ

1 = P−ξ −K1Hγ1(m
−
ξ )P−ξ

W1 = Hγ1(m
−
ξ )P−ξ H

T
γ1

(m−ξ ) +Rγ1

K1 = P−ξ H
T
γ1

(m−ξ )W−1
1

κ1 = pg(z1|hγ1(m−ξ ),W1) .

The notation change to µξθ and Πξ
θ is to better differentiate them from the predicted (m−ξ , P−ξ ) and

updated (m+
ξ ,P

+
ξ ) means and covariances of the ξth GM component of the estimated distribution,

as µξθ and Πξ
θ denote the mean and covariance of the GM distribution before it has incorporated all

of the measurement data into the estimated distribution. The process can be iterated to some θth

step such that Eq. (4.119) becomes

κ1 · · ·κθ−1pg(x|µξθ−1,Π
ξ
θ−1)pg(zθ|hγθ(x),Rγθ) · · · pg(zn|hγn(x),Rγn)

= κ1 · · ·κθpg(x|µξθ,Π
ξ
θ)pg(zθ+1|hγθ+1

(x),Rγθ+1
) · · · pg(zn|hγn(x),Rγn) , (4.120a)

where

µξθ = µξθ−1 +Kθ

(
zθ − hγθ(µ

ξ
θ−1)

)
(4.120b)

Πξ
θ = Πξ

θ−1 −KθHγθ(µ
ξ
θ−1)Πξ

θ−1 (4.120c)

Wθ = Hγθ(µ
ξ
θ−1)Πξ

θ−1H
T
γθ

(µξθ−1) +Rγθ (4.120d)

Kθ = Πξ
θ−1H

T
γθ

(µξθ−1)W−1
θ (4.120e)

κθ = pg(zθ|hγθ(µ
ξ
θ−1),Wθ) . (4.120f)
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The process of Eqs. (4.119) and (4.120a) is performed n times, where the final iteration is

κ1 · · ·κn−1pg(x|µξn−1,Π
ξ
n−1)pg(zn|hγn(x),Rγn)

= κ1 · · ·κnpg(x|m+
ξ ,P

+
ξ ) , (4.121)

where

m+
ξ = µξn−1 +Kn

(
zn − hγn(µξn−1)

)
P+
ξ = Πξ

n−1 −KnHγn(µξn−1)Πξ
n−1

Wn = Hγn(µξn−1)Πξ
n−1H

T
γn(µξn−1) +Rγn

Kn = Πξ
n−1H

T
γn(µξn−1)W−1

n

κn = pg(zn|hγn(µξn−1),Wn) .

After completing the final iteration of Eq. (4.121), the summation of Eq. (4.118) can be represented

as

Lv∑
γ1=1

· · ·
Lv∑
γn=1

L−∑
ξ=1

wvγ1 · · ·w
v
γnw

−
ξ pg(z1|hγ1(x),Rγ1) · · · pg(zn|hγn(x),Rγn)pg(x|m−ξ ,P

−
ξ )

=
Lv∑
γ1=1

· · ·
Lv∑
γn=1

L−∑
ξ=1

wvγ1 · · ·w
v
γnw

−
ξ κ1 · · ·κnpg(x|m+

ξ ,P
+
ξ ) . (4.122)

It should be noted that this process can become computationally burdensome, as the iterative

application of Ho’s rule described must be performed L−×[Lv]n times, each requiring n sequential

updates. This also produces L−× [Lv]n GM components. As such, it becomes important to explore

possible methods of curbing computation costs.
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Taking the result of Eq. (4.122), it can be shown that Eq. (4.117) becomes

p+(x) =
m∑
n=0

{
pD(n,x)pF (m− n,x)(

m
n

)
V m−n

×
(mn)∑
j=1
Hv,j

[ Lv∑
γ1=1

· · ·
Lv∑
γn=1

L−∑
ξ=1

wvγ1 · · ·w
v
γnw

−
ξ κ1 · · ·κnpg(x|m+

ξ ,P
+
ξ )

]}
, (4.123)

where the hypothesis notationHv,j has been added to the summation over j to indicate the selection

of the j th unique assignment hypothesis of valid measurements. The denominator of Bayes’ rule

can be found by taking the integral of Eq. (4.123) over the support of x, which yields

∫
p−(s)`(Z|s)ds =

∫ m∑
n=0

{
pD(n, s)pF (m− n, s)(

m
n

)
V m−n

×
(mn)∑
j=1
Hv,j

[ Lv∑
γ1=1

· · ·
Lv∑
γn=1

L−∑
ξ=1

wvγ1 · · ·w
v
γnw

−
ξ κ1 · · ·κnpg(s|m+

ξ ,P
+
ξ )

]}
ds ,

(4.124)

where it is clear that having state-dependent probability of detection and false alarm makes in-

tegration problematic. To address this issue, two different approaches may be taken. Either the

probabilities of pD(n,x) and pF (m − n,x) can be forced to be state-independent (via a zeroth-

order approximation or otherwise), or they can be modeled as Gaussian distributions. As Gaussian

models for pD(·,x) are previously surveyed in the FCU-2 of Section 4.6.3.2, state-dependency is

neglected here for simplicity. Therefore, if the probabilities of detection and false alarm are taken

to be state-independent such that pD(n,x) = pD(n) and pF (m−n,x) = pF (m−n), then the only

term in Eq. (4.124) dependent on the state is the Gaussian distribution, which integrates to unity,
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such that

∫
p−(s)`(Z|s)ds

=
m∑
n=0

{
pD(n)pF (m− n)(

m
n

)
V m−n

(mn)∑
j=1
Hv,j

[ Lv∑
γ1=1

· · ·
Lv∑
γn=1

L−∑
ξ=1

wvγ1 · · ·w
v
γnw

−
ξ κ1 · · ·κn

]}
. (4.125)

The results of Eqs. (4.123) and (4.125) can be combined into the complete closed-form update of

FCU-3 as

p+(x) =∑m
n=0

{
pD(n)pF (m−n)

(mn)Vm−n
∑(mn)

j=1
Hv,j

[∑Lv

γ1=1 · · ·
∑Lv

γn=1

∑L−

ξ=1 w
v
γ1
· · ·wvγnw

−
ξ κ1 · · ·κnpg(x|m+

ξ ,P
+
ξ )

]}
∑m

n=0

{
pD(n)pF (m−n)

(mn)Vm−n
∑(mn)

j=1
Hv,j

[∑Lv

γ1=1 · · ·
∑Lv

γn=1

∑L−

ξ=1w
v
γ1
· · ·wvγnw

−
ξ κ1 · · ·κn

]} ,

(4.126)

which is a GM of L− ×
∑m

n=0{
(
m
n

)
× [Lv]n} components, making merging and pruning highly

advisable.

4.6.5 FCU-4: Multiple Uniquely-Distributed Valid Measurement

Using the FCMM-4 of Section 4.3.4, wherein measurement scans can contain multiple valid

measurements corresponding to unique distributions, this section derives a corresponding fault-

cognizant update (FCU-4). To immediately simplify the update, the spatial distribution of faulty

measurements is taken to be uniform according to Eq. (4.79), and the probabilities of detection and

false alarm are assumed to be state-independent, such that FCMM-4 of Eq. (4.61) becomes
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`(Z|x) =

min(m,q)∑
n=0

pF (m− n)

(qn)∑
j=1

[ n∏
Zv,i∈Hn,j

pD,i(1)
][ q−n∏

Zv,i /∈Hn,j

1− pD,i(1)
]

×
mPn∑
k=1

(m− n)!

m!

[ n∏
(zr∈Zv,i)∈HUA

n,j,k

`v,i(zr|x)
][ m−n∏

(zr∈Zf )∈HUA
n,j,k

1

V

]

=

min(m,q)∑
n=0

pF (m− n)

(qn)∑
j=1

[ n∏
Zv,i∈Hn,j

pD,i(1)
][ q−n∏

Zv,i /∈Hn,j

1− pD,i(1)
]

×
mPn∑
k=1

(m− n)!

m!V m−n

[ n∏
(zr∈Zv,i)∈HUA

n,j,k

`v,i(zr|x)
]
. (4.127)

Next, since Gaussian-distributed valid measurements are so common, it is assumed here that

all valid measurements correspond to Gaussian distributions per Section 4.4.1.1. That is to say,

consider a valid measurement generated by subset Zv,i to follow the equation

zv,i = hv,i(x) +wv,i ,

where hv,i(·) is a nonlinear observation function specific toZv,i, andwv,i is a zero-mean Gaussian

white noise process defined by

wv,i ∼ pg(wv,i|0,Rv,i) ,

where Rv,i is the corresponding measurement noise covariance. It can be shown that the single

measurement likelihood for Zv,i is

`v,i(z|x) = pg(z|hv,i(x),Rv,i) . (4.128)
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Thus, applying this model to the likelihood of Eq. (4.127) yields

`(Z|x) =

min(m,q)∑
n=0

(qn)∑
j=1

mPn∑
k=1

pF (m− n)

[
n∏

Zv,i∈Hn,j

pD,i(1)

][
q−n∏

Zv,i /∈Hn,j

1− pD,i(1)

]

× (m− n)!

m!V m−n

[
n∏

(zr∈Zv,i)∈HUA
n,j,k

pg(zr|hv,i(x),Rv,i)

]
. (4.129)

Under the current assumptions, the form of the likelihood of Eq. (4.129) lends itself to a

Bayesian filter that produces a multiple component Gaussian-mixture posterior. Therefore, in or-

der to derive a closed-form update, the GM prior assumption of Section 4.6.1 is reasserted such

that p−(x) again takes the form of Eq. (4.90). Examining the Bayesian posterior directly, it is clear

that

p+(x) ∝
min(m,q)∑
n=0

(qn)∑
j=1

mPn∑
k=1

L−∑
ξ=1

pF (m− n)

[
n∏

Zv,i∈Hn,j

pD,i(1)

][
q−n∏

Zv,i /∈Hn,j

1− pD,i(1)
]

× (m− n)!

m!V m−nw
−
ξ pg(x|m

−
ξ ,P

−
ξ )

[
n∏

(zr∈Zv,i)∈HUA
n,j,k

pg(zr|hv,i(x),Rv,i)

]
(4.130)

results in n sequential applications of Ho’s rule once the product over (zr ∈ Zv,i) ∈ HUA
n,j,k is

expanded, similar to Eq. (4.118); however, the explanation of the process here is shortened for

brevity. Consider the multiplication of the Gaussians in Eq. (4.130) one at a time. Thus, these n

multiplications can be carried out iteratively as

κξθpg(x|µ
ξ
θ,Π

ξ
θ) = κξθ−1pg(x|µ

ξ
θ−1,Π

ξ
θ−1)pg(zθ|hv,θ(x),Rv,θ) , ∀ θ = 1, 2, . . . , n , (4.131a)

where zθ, hv,θ(x), and Rv,θ are selected as the θth unique assignment of zr ∈ Zv,i of hypothesis
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HUA
n,j,k. The components of Eq. (4.131a) are generated via Eqs. (A.2) as

µξθ = µξθ−1 +Kθ

(
zθ − hv,θ(µξθ−1)

)
(4.131b)

Πξ
θ = Πξ

θ−1 −KθHv,θ(µ
ξ
θ−1)Πξ

θ−1 (4.131c)

Wθ = Hv,θ(µ
ξ
θ−1)Πξ

θ−1H
T
v,θ(µ

ξ
θ−1) +Rv,θ (4.131d)

Kθ = Πξ
θ−1H

T
v,θ(µ

ξ
θ−1)W−1

θ (4.131e)

κξθ = κξθ−1pg(zθ|hv,θ(µ
ξ
θ−1),Wθ) , (4.131f)

whereHv,θ(·) is the Jacobian of hv,θ(·). The recursion of Eq. (4.131a) is initialized with κξ0 = w−ξ ,

µξ0 = m−ξ , and Πξ
0 = P−ξ , which, after n applications, results in κξnpg(x|µξn,Πξ

n). Since this

Gaussian is formed within the purview of hypothesis HUA
n,j,k, it is important that the notation reflect

this, which is done by defining

κ+
n,j,k,ξpg(x|m

+
n,j,k,ξ,P

+
n,j,k,ξ) =

{
κξnpg(x|µξn,Πξ

n)
∣∣HUA

n,j,k

}
(4.132a)

κ+
n,j,k,ξ = κξn (4.132b)

m+
n,j,k,ξ = µξn (4.132c)

P+
n,j,k,ξ = Πξ

n , (4.132d)

such that Eq. (4.130) can be expressed in terms of Eqs. (4.132) as

p+(x) ∝
min(m,q)∑
n=0

(qn)∑
j=1

mPn∑
k=1

L−∑
ξ=1

pF (m− n)
[ n∏
Zv,i∈Hn,j

pD,i(1)
][ q−n∏

Zv,i /∈Hn,j

1− pD,i(1)
]

× (m− n)!

m!V m−n κ
+
n,j,k,ξpg(x|m

+
n,j,k,ξ,P

+
n,j,k,ξ) . (4.133)

At this point, statistical distributions have been assumed for most models with the exception of

pD,i(1) and pF (m−n) (beyond being state-independent). If specialized models for both probabili-

ties are required for a specific system, it is advised that the form of FCU-4 in Eq. (4.133) be used. In

172



fact, the probabilities of detection pD,i(1) will, most likely, require individually modeled functions

for most applications, so no further specification of their models are made. However, following the

discussion of Section 4.5.1.4, faulty measurements can frequently be temporally modeled by the

Poisson distribution of Eq. (4.72). Enforcing the Poisson assumption results in

pF (m− n) =
λm−n

(m− n)!eλ
, (4.134)

which results in the update of Eq. (4.133) becoming

p+(x) ∝ λm

eλm!V m

min(m,q)∑
n=0

(qn)∑
j=1

mPn∑
k=1

L−∑
ξ=1

V n

λn

[ n∏
Zv,i∈Hn,j

pD,i(1)
][ q−n∏

Zv,i /∈Hn,j

1− pD,i(1)
]

× κ+
n,j,k,ξpg(x|m

+
n,j,k,ξ,P

+
n,j,k,ξ)

∝
min(m,q)∑
n=0

(qn)∑
j=1

mPn∑
k=1

L−∑
ξ=1

1

κnc

[ n∏
Zv,i∈Hn,j

pD,i(1)
][ q−n∏

Zv,i /∈Hn,j

1− pD,i(1)
]

× κ+
n,j,k,ξpg(x|m

+
n,j,k,ξ,P

+
n,j,k,ξ) . (4.135)

The term λm

eλm!Vm
can be removed, as it is constant for all x, and the definition of clutter intensity

from Eqs. (4.104) is recalled as

κnc =

(
λ

V

)n
.

After proper normalization of Eq. (4.135), the closed-form update of FCU-4 is

p+(x) =

min(m,q)∑
n=0

(qn)∑
j=1

mPn∑
k=1

L−∑
ξ=1

w+
n,j,k,ξpg(x|m

+
n,j,k,ξ,P

+
n,j,k,ξ) , (4.136a)
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where

w+
n,j,k,ξ =

[ n∏
Zv,i∈Hn,j

pD,i(1)
][ q−n∏

Zv,i /∈Hn,j

1− pD,i(1)
]κ+

n,j,k,ξ

κnc η
, (4.136b)

and where the normalization constant η is calculated as

η =

min(m,q)∑
n=0

1

κnc

(qn)∑
j=1

[ n∏
Zv,i∈Hn,j

pD,i(1)
][ q−n∏

Zv,i /∈Hn,j

1− pD,i(1)
]mPn∑
k=1

L−∑
ξ=1

κ+
n,j,k,ξ . (4.136c)

Note that the FCU-4 posterior of Eq. (4.136) is a GM of size L+ = L− ×
∑min(m,q)

n=0 {
(
q
n

)
×mPn},

which quickly becomes computationally intractable if component management is not enforced. In

fact, in addition to the pruning and merging methods described in Sections 2.2.3.1 and 2.2.3.2,

in this case it is advisable to enforce an upper component limit L+
limit, where, after each update’s

typical merging and pruning, only the L+
limit components with the largest weights w+

n,j,k,ξ are carried

forward to the next iteration of the filter. Additional discussion on tractability concerns are made

in the following section.

4.6.6 Tractable Implementations

While the FCUs presented in Section 4.6 are exact, closed-form solutions to Bayes’ rule, un-

der some circumstances, the number of GM components generated by each update may become

unwieldy, especially in the cases of FCU-3 and FCU-4. In such cases, merging and pruning as

described in Sections 2.2.3.1 and 2.2.3.2 may not be sufficient to ensure computational tractability.

Thus, this section investigates additional approaches to managing computations when designing

fault-cognizant filters. Note that the appropriate manner by which tractability is achieved is heav-

ily system dependent; factors such as size of the prior, forms of the valid and faulty likelihoods,

temporal distribution of measurements, etc., determine which tractability method is best. Since

these factors vary between the eight different updates of Section 4.6, the tractability procedures of

this section are limited to FCU-4, as it one of the more computationally complex updates presented.

Similar methods can be developed for FCU-1, FCU-2, and FCU-3 if the need arises.
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The posterior pdf of each FCU update is a GM of the same form as Eq. (2.10), where w+
ξ is the

weight of the ξth GM component. Generally speaking, a larger weight corresponds to a component

contributing more to the overall pdf, while components with smaller weights contribute less. This is

the very relation that motivates pruning—where components with the smallest weights are removed

from the GM—and is also the main consideration in this section; any posterior weights that are

exceedingly small are less useful to the GM description of the pdf, and, thus, the computational

power required to calculate these low-weighted GM components can be avoided at little cost to the

accuracy of the posterior.

4.6.6.1 Approximating Posterior Weights

To avoid as many computations as possible, it is good practice to calculate all of the pos-

terior GM weights before performing the full update, as low-weighted GM components can be

neglected, thus saving computations. Essentially, these components are pruned from the pdf be-

fore they are fully calculated, which is referred to here as preliminary pruning. For example,

recall FCU-1 of Section 4.6.2.1. The posterior weights of Eq. (4.98) can be calculated with equa-

tions Eqs. (4.95c) and (4.95e) alone, skipping the calculations of Eq. (4.95a), Eq. (4.95b), and

Eq. (4.95d), which involve a relatively burdensome inversion of the residual covariance. FCU-1

therefore benefits greatly from pre-calculation of the posterior weights, but this is not the case for

every FCU update. FCU-3 and FCU-4, in particular, require iterative applications of Ho’s rule

that cannot be avoided when calculating the exact posterior weights, which involves the majority

of calculations required by the full update. Therefore, instead of computing the precise poste-

rior weights, it is more useful to approximate the posterior weights in a computationally efficient

manner and predict which posterior GM components are worth their computational cost.

Since the exact manner by which weights are approximated is up to the user and varies be-

tween updates, weight approximation for FCU-4 is done specifically, where similar approaches

can be designed for the other FCUs. Consider the (unnormalized) posterior weights of FCU-4
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from Eq. (4.136b), given by

w+
n,j,k,ξ =

1

κnc

[ n∏
Zv,i∈Hn,j

pD,i(1)
][ q−n∏

Zv,i /∈Hn,j

1− pD,i(1)
]
κ+
n,j,k,ξ , (4.137)

the complete calculation of which is relatively intensive, as κ+
n,j,k,ξ requires n iterative applications

of Ho’s rule. Thus, a less burdensome approach is to approximate Eq. (4.137) by

w+
n,j,k,ξ ≈

w−ξ
κnc

[ q−n∏
Zv,i /∈Hn,j

1− pD,i(1,m−ξ )
]

×
[ n∏

(zr∈Zv,i)∈HUA
n,j,k

pD,i(1,m
−
ξ )pg

(
zr|hv,i(m−ξ ), Hv,i(m

−
ξ )P−ξ H

T
v,i(m

−
ξ ) +Rv,i

)]
,

(4.138)

where w−ξ is the ξth weight of the prior GM pdf that is present in κ+
n,j,k,ξ, such that the iterative

calculations of Eq. (4.131b), Eq. (4.131c), and Eq. (4.131e) are avoided. Preliminary pruning can

be performed on the weights of Eq. (4.138) before the full calculation of the update.

While approximating the posterior weights via Eq. (4.138) does indeed save computations, it

still requires approximating all of the weights. In cases where there is a large number of prior GM

components in p−(x), it may be more practical to further reduce computations by

ω+
n,j,k ≈

L−∑
ξ=1

w+
n,j,k,ξ

≈ 1

κnc

[ q−n∏
Zv,i /∈Hn,j

1− pD,i(1, m̂−)
]

×
[ n∏

(zr∈Zv,i)∈HUA
n,j,k

pD,i(1, m̂
−)pg

(
zr|hv,i(m̂−), Hv,i(m̂

−)P̂−HT
v,i(m̂

−) +Rv,i

)]
,

(4.139)

where m̂− and P̂− are the estimated mean and covariance extracted from the prior GM via

Eqs. (2.22) and (2.24), respectively. Compared to Eq. (4.138), Eq. (4.139) reduces the number
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of required calculations by a factor of L− − 1. Then, if preliminary pruning is performed on

the weights of Eq. (4.139), any ω+
n,j,k that is selected to be pruned will result in the omission of

w+
n,j,k,ξ, m

+
n,j,k,ξ, and P+

n,j,k,ξ for ξ = 1, 2, . . . , L− from the calculation of the update. Similar

approximations to the posterior weights can be made for FCU-1, FCU-2, and FCU-3.

4.6.6.2 Subset of Feasible Features

Recalling the optical TRN system described by Fig. (4.7), note that this application of fault-

cognizant filtering is predicated on a pre-existing map of feature locations. In cases where this

map contains thousands of features (or more), which is certainly possible in many optical naviga-

tion applications, the number of GM components generated by FCU-4 becomes computationally

unreasonable. Of course, many features, especially those outside the estimated FOV of the sensor,

have extremely low probabilities of detection, as illustrated by Fig. (4.12).

1 ≥ pD,i(1, ·) > 0.95

0.95 ≥ pD,i(1, ·) > 0

pD,i(1, ·) ≈ 0

Sensor

Figure 4.12 Example of possible probability of detection behavior for optical TRN

To limit the number of features considered in FCU-4, a subset of feasible features can be

formed by simply neglecting any features that occur in the red region within the feature map. To
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quickly accomplish this, the state estimate m̂− can be extracted from the prior pdf via Eq. (2.22),

which is used to evaluate the probabilities of detection. It then follows that any ith feature having

pD,i(1, m̂
−) ≤ Υneglect

should be excluded from the subset of feasible features, where Υneglect is some user-specified, near-

zero threshold value. Note that this process quickly decreases the number of features q, which

subsequently limits the number of unique selection hypotheses Hn,j for j = 1, 2, . . . ,
(
q
n

)
that

must be considered.

4.6.6.3 Ranked Assignment Approach

The posterior of FCU-4 described in Section 4.6.5 considers all possible hypotheses match-

ing measurements to features and clutter. While this provides a complete probabilistic description

of all possible events, many of these hypotheses are highly unlikely, yielding low posterior GM

weights. It is common practice in fields such as multi-target tracking (MTT) to identify and ne-

glect these unlikely hypotheses and therefore only consider the most probable unique measurement

assignments. For example, measurement gating is typically employed in multi-target filters such

as joint probabilistic data association (JPDA) [98] and multiple hypothesis tracking (MHT) [99],

where only measurements that occur within a bounded region of probability about a target are

considered possible returns from that target.

Another method when evaluating measurement hypotheses is to solve the ranked assignment

problem, which seeks the K most probable measurement association hypotheses via optimization

of a cost matrix. First solved by Murty in [100], this approach is used to great effect in FISST

filters such as the δ-generalized labeled multi-Bernoulli (δ-GLMB) filter, which provides an exact,

tractable solution to the multi-target Bayes’ rule [101]. The process begins by defining a cost

matrix C ∈ Rq×m, the entries of which can be calculated as

Cij = − ln

{∫
p−(x)pD,i(1,x)`v,i(zj|x) dx

κc
∫
p−(x)

[
1− pD,i(1,x)

]
dx

}
, (4.140)
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where Eq. (4.140) is the “cost” of assigning measurement zj ∈ Z to feature i corresponding to

`v,i(·|·) and pD,i(1, ·). Making note of the GM prior of Eq. (4.90), the Gaussian likelihoods of

Eq. (4.128), and enforcing a zeroth-order approximation of pD,i(1,x) about the ξth GM mean,

Eq. (4.140) can be shown to be

Cij = − ln

{∑L−

ξ=1 w
−
ξ pD,i(1,m

−
ξ )pg

(
zj|hv,i(m−ξ ), Hv,i(m

−
ξ )P−ξ H

T
v,i(m

−
ξ ) +Rv,i

)
κc
∑L−

ξ=1w
−
ξ

[
1− pD,i(1,m−ξ )

] }
.

(4.141)

Once the cost matrix is calculated, the optimal assignment matrix can be solved for via

S∗ = min
S

{
STC

}
,

where S ∈ Rq×m is the assignment matrix whose rows and columns must sum to 1 or 0. Each

entry is defined as

Sij =


1 , if measurement j is assigned to feature i

0 , otherwise
.

Instead of only seeking the optimal assignment, Murty’s algorithm [100] can be used to solve

for the K assignments with the lowest cost function, which are represented by hypotheses HM
ζ ,

where ζ = 1, 2, . . . , K. In some cases, dummy variables may need to be introduced, as Murty’s

algorithm requires square matrices.

The end result is a posterior that is no longer of the form of Eqs. (4.136), which has multiple

summations over all possible hypotheses. Instead, the new posterior sums over the HM
ζ hypothesis

as

p+(x) ∝
K∑
ζ=1

L−∑
ξ=1

w+
ζ,ξpg(x|m

+
ζ,ξ,P

+
ζ,ξ) , (4.142)
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where

w+
ζ,ξ =

[ ∏
Zv,i∈HM

ζ

pD,i(1)

κc

][ ∏
Zv,i /∈HM

ζ

1− pD,i(1)
]
κ+
ζ,ξ , (4.143)

and where

κ+
ζ,ξ = κξn (4.144a)

m+
ζ,ξ = µξn (4.144b)

P+
ζ,ξ = Πξ

n . (4.144c)

Note that κξn, µξn, and Πξ
n are solved for via the iterative procedure of Eqs. (4.131) under the unique

assignment of hypothesis HM
ζ .

4.6.7 Order of Measurement Processing

It is well known that the order in which measurements are processed can affect the estimate

quality of the EKF [21]. In short, due to the linearization of the EKF, measurements resulting in

large updates—i.e. W of Eq. (2.4e) is much larger than the corresponding measurement noise

covariance R—can accrue large linearization errors that may negatively effect the processing of

subsequent measurements from other sensors. While the FCU updates presented in this section

are not EKFs but GM filters, they are still constructed using first-order Taylor series approxima-

tions via Eqs. (A.2), so the same concerns exist here, especially for FCU-3 and FCU-4 of Sec-

tions 4.6.4 and 4.6.5, where posterior Gaussian components are formed via successive applications

of Eqs. (A.2). Therefore, it is a good practice to set the order by which measurements are ingested

into FCU-3 and FCU-4 as “smallest” to “largest” via

‖Rγ1‖
‖W1‖

≥ · · · ≥‖Rγθ‖
‖Wθ‖

≥ · · · ≥ ‖Rγn‖
‖Wn‖

(4.145a)

‖Rv,1‖
‖W1‖

≥ · · · ≥‖Rv,θ‖
‖Wθ‖

≥ · · · ≥ ‖Rv,n‖
‖Wn‖

, (4.145b)
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where Eq. (4.145a) is the ordering for FCU-3 of Eqs. (4.120), and Eq. (4.145b) is the ordering

for FCU-4 of Eqs. (4.131). In this way, the measurement updates most likely to have the smallest

linearization error will be processed first, which will generally reduce the linearization errors for

the “larger” updates later on.

4.7 Application to Navigation

As discussed in Section 1.3.1, filters are considered the backbone of spaceflight navigation

systems, as they perform the crucial task of estimating a vehicle’s pose by processing incoming

observation data from various sensors and fusing it with prior knowledge of the vehicle’s state.

Since a navigation filter must be capable of accurate and robust operation before being considered

flight-ready, it is a best practice to implement a level of fault tolerance within the architecture of a

navigation system to account for different faults that may occur. One of the most common faults is

the acquisition of erroneous measurements where, due to some issue such as sensor malfunction or

unmodeled effects, some sensor returns do not match the observation model of the filter, as already

discussed in Section 4.2. These faulty measurements are detrimental to navigation performance

and quickly debase a filtering solution if not addressed. It has already been mentioned that, as

a response, most filters adopt some method of screening out invalid sensing data. In the field

of navigation specifically, where the vast majority of filters are variants of the extended Kalman

filter (EKF) [32], the most prominent method is known as residual editing, which has been used

in spaceflight since the Apollo missions and remains just as relevant today in large-scale missions,

such as Orion [7, 102].

In general terms, residual editing is an auxiliary construct that acts as an intermediary between

the sensors and the filter update [21]. If the difference between an incoming measurement and the

filter’s prediction of that measurement is found to exceed a specified threshold, then the navigation

filter rejects the measurement completely, and the filter update is not performed. Otherwise, when

the residual is within the threshold, the filter update proceeds normally, processing the measure-

ment and assuming it valid. While the efficacy of residual editing has been demonstrated numerous

times in practical applications, it is not a guaranteed safeguard against the adverse effects of faulty
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measurements, as was seen during NASA’s DART mission, where the navigation solution was cor-

rupted by erroneous data, unfortunately resulting in a collision during close proximity operations

and the premature retirement of the mission [85, 103].

In order to better prevent mishaps such as these in future missions, the short-comings of resid-

ual editing must be examined. First and foremost, residual editing is a supplementary procedure

that employs binary decision making, i.e., either a measurement is included and considered valid

by the filter or it is edited and removed from the measurement set completely. This binary operation

presents a couple of theoretical issues for the filter, as it is essentially informing the filter that any

approved measurement is guaranteed to be valid and that any edited measurement is guaranteed to

be false.

For a long time, such drawbacks were considered unavoidable, as the top priority of onboard

navigation systems is computational efficiency, as evidenced by the continued use of the EKF—a

linear filter formatted for a nonlinear system [32]. However, advancements in high performance

spaceflight computing (HPSC) are promising to ease the traditional computational restrictions that

limited the navigation architecture of past spaceflight missions [104, 105]. Leading organizations

in the spaceflight industry, such as NASA, are now expressing more interest in alternatives to the

EKF and residual editing that are more suitable for the environment of space and its inherent com-

plexities [106]. The fault-cognizant filters presented in this chapter are one possible alternative

to residual editing, just as the GSF is one possible alternative to the EKF. In fact, FCU-1 of Sec-

tion 4.6.2 is designed specifically to replace existing residual editing methods, and, as such, the

performance of the FCU-1 is compared to that of residual editing to test its efficacy as a replace-

ment. In fact, residual editing is included in all of the simulations of this chapter, as it provides an

excellent baseline that illustrates how all of the fault-cognizant filters perform relative to current

practice. As such, the next section of this chapter discusses residual editing in greater technical

detail, even deriving a form of residual editing for GM filtering.
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4.7.1 Residual Editing

As one of the main responsibilities of a filter is to incorporate new information via measure-

ments generated by the real measurement model of Fig. (1.1), ensuring these sensor returns behave

as expected by the filter—which is dictated by the assumed measurement model of Fig. (1.1)—

is perhaps the most obvious approach to improve filter robustness. Again, to accomplish this,

many linear estimators, such as the EKF, employ a procedure-first robustness technique known as

residual editing [102, 107]. With regard to the EKF update of Eqs. (2.4), this process involves

computing the measurement residual of Eq. (2.4f), which quantifies the difference between the

predicted measurement hk(m−k ) and the actual measurement zk. This residual is then compared

to some specified threshold, where, if it is found to exceed said threshold, the measurement is

omitted from the update entirely, and the filter update is skipped. Conversely, if the residual exists

within the set threshold, then the filter ingests the measurement and the update proceeds as normal

per Eqs. (2.4).

While all residual editing schemes screen measurements more or less as described, the manner

in which the editing threshold is calculated can vary considerably between applications. The sim-

plest threshold is one that is set to a specific measurement value, such that the residual of Eq. (2.4f)

(or the norm of the residual in the case of vector measurements) is compared to that constant

threshold value directly. Such a method is ill-advised, as it does not automatically adapt as the fil-

ter uncertainty changes. A more appropriate method, and one by which many filters operate [7, 19],

is specifying a residual editing threshold relative to the filter’s uncertainty in the residual, which,

with respect to the EKF, is quantified by the residual covarianceW of Eq. (2.4e). Furthermore, an

ideal residual editing threshold not only accounts for the filtering uncertainty, but also

• requires a single, scalar value be specified to set the editing threshold,

• naturally accounts for vector measurements and the cross-correlations between their compo-

nents, and

• can be selected intuitively according to some established statistical principle.
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Consequently, all of these objectives can be satisfied simultaneously to a certain degree. Since

the measurement residual ∆zk is taken to be unbiased, it can be shown under linear-Gaussian

assumptions that the squared Mahalanobis distance satisfies a χ2 distribution [108], which inspires

a residual editing threshold check of

∆zTkW
−1∆zk > Υ , (4.146)

where, if true, the measurement is rejected by the filter. Due to the linearizations inherent within

the EKF, the (squared) Mahalanobis distance of Eq. (4.146) only approximately satisfies the χ2

distribution. Nevertheless, it is considered good practice to assign the threshold value Υ according

to a χ2 probability gate [21].

4.7.2 Extending Residual Editing to GM Filters

To emphasize this work’s relevance to navigation, a baseline filter with residual editing is

constructed, with which comparison analyses can be performed on the proposed FCU filters of

Section 4.6. However, the proposed fault-cognizant filters are actualized as nonlinear filters and

therefore have a clear advantage over the traditional EKF-based residual editing described in Sec-

tion 4.7.1 before the benefits of fault-cognizance are even considered. In order to sustain equality

when comparing the FCUs to the baseline filter, residual editing must be applied to a comparable

nonlinear filter, which, in this case, is the GSF of Section 2.2.2.4. As little to no previous work out-

side of [83] exists that outfits the GSF with a residual editing scheme, this work seeks to construct

such an extension. It is important to note that the exact manner in which residual editing should

be accomplished is up to interpretation, but the discussion herein attempts to justify the proposed

residual editing architecture.

At some point, the question must be asked if residual editing should be applied separately to

each individual GM component, or if an entire measurement should be edited completely. The

answer to this depends on how one views the role of residual editing. If its purpose is to diminish

the effects caused by large residuals during the update, then applying editing to each GM compo-
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nent may seem the answer. However, it is arguable that the ultimate goal of residual editing is to

eliminate faulty data from being processed, as it does not adhere to the observation model. There-

fore, if a measurement is deemed faulty, then it should be edited globally from the update, such

that each GM component receives identical treatment. Additionally, while the GM components are

individual distributions themselves, they collectively describe a single distribution, and updating

certain portions of a distribution differently than others is a questionable practice, at best. In short,

a measurement’s validity must be categorized relative to the entire distribution; it cannot be treated

as valid for some components and faulty for others. As such, the update presented here operates

upon the assumption that residual editing should be a global application within the realm of GM

filtering.

As discussed in Section 4.7.1, traditional residual editing within the EKF commonly utilizes

the squared Mahalanobis distance of the measurement residual to perform a threshold check such

that if [19, 21]

[z − hv(m−)]TW−1[z − hv(m−)] > Υ (4.147)

is true, where Υ is some specified residual editing threshold and

W = Hv(m
−)P−HT

v (m−) +Rv

is the residual covariance, then the measurement is rejected. Otherwise, if the residual falls within

the desired threshold, the usual EKF update takes place. Note that Eq. (4.147) is a restatement

of Eq. (4.146), but omits the time index k while emphasizing that residuals are computed relative

to the valid distribution. It can be shown that when valid measurements zv are generated by the

Gaussian model of Eq. (2.1c), the evaluated likelihood of z given some prior meanm− and residual

covarianceW is calculated as

κRE
EKF =

∣∣2πW ∣∣− 1
2 exp

{
− 1

2
[z − hv(m−)]TW−1[z − hv(m−)]

}
, (4.148)
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where it is clear that the exponential term contains the (squared) Mahalanobis distance of Eq. (4.147).

This allows the inequality of Eq. (4.147) to be expressed in terms of the evaluated likelihood κRE
EKF

of Eq. (4.148), such that

κRE
EKF <

∣∣2πW ∣∣− 1
2 exp

{
− 1

2
Υ
}

(4.149)

is an equivalent expression where, if true, indicates that the measurement should be rejected. This

treatment of residual editing can be extended to the update of a GSF, where the prior pdf of xmust

be available in the GM form of Eq. (4.90). For this GM representation, the evaluated likelihood

equivalent of κRE
EKF from Eq. (4.148) can be expressed as

κRE
GSF =

L−∑
ξ=1

w−ξ κξ ,

where

κξ =
∣∣2πWξ

∣∣− 1
2 exp

{
− 1

2
[z − hv(m−ξ )]TW−1

ξ [z − hv(m−ξ )]
}

Wξ = Hv(m
−
ξ )P−ξ H

T
v (m−ξ ) +Rv .

As a result, the residual thresholding inequality of Eq. (4.149) when subjected to a GM prior

becomes

κRE
GSF <

L−∑
ξ=1

w−ξ
∣∣2πWξ

∣∣− 1
2 exp

{
− 1

2
Υ
}
, (4.150)

such that the updated pdf for a GSF with a global application of residual editing is given as

p+(x) =


L−∑
ξ=1

w−ξ pg(x|m
−
ξ ,P

−
ξ ) , if κRE

GSF <
L−∑
ξ=1

w−ξ
∣∣2πWξ

∣∣− 1
2 exp

{
− 1

2
Υ
}

L+∑
ξ=1

w+
ξ pg(x|m

+
ξ ,P

+
ξ ) , otherwise

, (4.151)
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where

L+ = L− (4.152a)

w+
ξ =

w−ξ κξ∑L−

ξ=1w
−
ξ κξ

(4.152b)

m+
ξ = m−ξ +Kξ[z − hv(m−ξ )] (4.152c)

P+
ξ = P−ξ −KξHv(m

−
ξ )P−ξ (4.152d)

Kξ = P−ξ H
T
v (m−ξ )W−1

ξ . (4.152e)

4.8 Simulation and Results

This section implements and tests some of the fault-cognizant filters derived in this chapter.

This is accomplished within the scope of two different simulated systems, the first being the fa-

miliar falling body simulation and the second being an orbit determination scenario. As the filter

update is the element being tested, all filters are equipped with identical propagation algorithms

equivalent to Eqs. (2.7)–(2.9) of the GSF.

4.8.1 Simplified Falling Body Simulation Revisited

Once again, the falling body system of Fig. (2.4) is revisited. As the primary interest of this

analysis is the performance of the filter update, as opposed to the filter propagation, the effects

of nonlinear dynamics are of less interest. Thus, the dynamics are made linear by neglecting

drag, such that the simplified falling body system of Section 3.2.3 already provides the appropri-

ate system configuration, with a few exceptions. Measurement scans are generated every second,

where valid sensor returns conform to the nonlinear, Gaussian model given by Eq. (2.33), where

the measurement noise covariance for valid sensor returns is taken to be Rv = 10 ft2. Faulty

measurements are produced using models specified in each analysis, which will change based on

the type of fault-cognizant filter used; however, all filters are equipped with the GSF propagation

algorithms of Eqs. (2.7)–(2.9), such that the propagation of the state estimate for each filter is func-

tionally equivalent. The duration of the simulation is 10 seconds, and each analysis is performed
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over 10,000 Monte Carlo (MC) trials.

As the fault-cognizant filters and the GSF are both nonlinear filters constructed on GM approx-

imations of the estimated distribution, the accuracy of their solutions improve with an increase in

the number of components [47]. The baseline GSF does not naturally produce additional compo-

nents in the update as the fault-cognizant filter does, and consequently does not benefit from the

nonlinear architecture if initialized with only a single Gaussian. To address this issue, the Gaus-

sian distribution of Eq. (3.25) is split into a GM of 9 components via a three-component splitting

library applied across both position and velocity as described in Section 2.2.3.3. Additionally,

to bypass any approximation error that the splitting process may incur, the initial state is drawn

directly from the 9 component GM instead of Eq. (3.25). To regulate the number of GM com-

ponents that the fault-cognizant filters generate, they are equipped with the merging and pruning

procedures described in Sections 2.2.3.1 and 2.2.3.2, where the pruning and merging thresholds

are set to wthresh = 10−5 and dthresh = 10−4, respectively. It is found that under these thresholds,

components are reduced primarily by pruning, with only a few components being merged in each

analysis, and that, on average, the maximum number of components accumulated within a single

simulation run is only 41.

4.8.2 Falling Body Analysis of FCU-1

This first set of analyses of the simplified falling body problem is used to test the FCU-1

updates derived in Section 4.6.2, where performance is compared to a baseline filter equipped with

the residual editing update of Section 4.7.2. As such, all measurement scans will consist of single

measurement returns, where the state-independent probability of validity is taken to be v = 0.99,

such that any given measurement has a 1% chance of being generated as faulty. Addtionally, these

analyses are also used to survey the various faulty spatial distributions presented in Section 4.5.2

in order to better understand how faulty measurement distributions affect residual editing and the

fault-cognizant filters themselves.

In an effort to enforce impartiality when comparing the baseline and proposed filters, the per-

formance of the GSF with residual editing is tested under the varying conditions of the simulation.
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The results of these initial tests are then used to tune the residual editing threshold parameter, sub-

sequently improving the overall performance of the baseline filter. Referring to the threshold check

of Eq. (4.150), it is found that a threshold of Υ = 16.45 produces a well performing filter, and it

is also noted that this value corresponds to a χ2 probability gate of 99.995% for one dimensional

range measurements.

4.8.2.1 Performance Comparison Analysis Under Ideal Conditions

To show that all filters are operational, this analysis evaluates the performance of the FCU-

1 filter when the exact faulty measurement distribution is known—an ideal condition. This is

useful as a performance reference for the later analyses. Two specific cases are examined, the first

being when the faulty measurements are uniformly distributed and the second being when they are

normally distributed.

4.8.2.1.1 Uniformly Distributed Faulty Range Measurements

In this case, the faulty measurements are generated according to a uniform distribution as out-

lined in Section 4.5.2.1. It is assumed that the FCU-1 filter is informed of the correct faulty mea-

surement model and is equipped with the uniform FCU-1 update of Eq. (4.97). For this simulation,

the range sensor can only return measurements in the domain z ∈ [0 ft, 100000 ft], such that the

sensor volume is V = 100, 000 ft. The results of this analysis are provided in Fig. (4.13), which

include average filter error results as well as MC statistics pursuant to Eqs. (2.25) and (2.26).

Again, the sign of a well-behaving filter is one in which the average filter error is nearly zero and

where the MC statistics closely match those of the filter average. Immediately upon inspection, it

is clear that the outcome of the FCU-1 filter of Fig. (4.13a) is nearly identical to that of the residual

editing filter of Fig. (4.13b), where they both produce ideal behavior in the presence of uniform

faulty measurements. In fact, the overconfidence of residual editing is imperceptible enough to

be considered practically negligible. While this level of performance is expected of the fault-

cognizant filter, as it precisely models the faulty measurements, the exceptional performance of

residual editing is credited to the large size of the sensor volume (V = 100, 000 ft) relative to
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Figure 4.13 Comparison results for uniformly distributed faulty measurements, expressed as eι
( ), 3σfilt,ι ( ), and 3σMC,ι ( )

the covariance of the estimate. In such a situation, few, if any, faulty measurements occur within

the editing threshold, and thus filtering operations are adequately protected by residual editing.

Consequently, as the sensor volume V becomes smaller, it is anticipated that the performance of

residual editing will degrade.

Recalling attention to the near identical nature of Figs. (4.13a) and (4.13b), this is attributed

to the fact that the FCU-1 update via a uniform faulty likelihood operates similarly to residual

editing. Since the uniform faulty likelihood is state-independent, the means and covariances of

the components are not updated when accounting for the possibility of faulty data. However, the

weights of the components are still updated, which reflects the possibility that the measurement

may or may not be faulty, such that, on average, the FCU-1 update can lead to lower errors than

the residual editing update.
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Figure 4.14 Comparison of results for normally distributed faulty measurements, expressed as
eι ( ), 3σfilt,ι ( ), and 3σMC,ι ( )

4.8.2.1.2 Normally Distributed Faulty Range Measurements

In this case, the faulty measurements are produced by a single normal distribution according

to the model provided in Section 4.5.2.2. The faulty observation function hf (·) is taken to be

identical to the valid observation function hv(·) of Eq. (2.33), but the faulty measurement noise

covariance differs as Rf = 100Rv = 10, 000 ft2. Again, it is assumed that the FCU-1 filter is

given the exact true measurement model and, as such, is equipped with the normal FCU-1 update

of Eq. (4.102). The average and Monte Carlo results of the analysis are given in Fig. (4.14), where

Fig. (4.14a) presents the results of the proposed FCU-1 update, and Fig. (4.14b) presents the results

of the baseline GSF with residual editing.

Here, the results are more promising than the uniform distribution results of Section 4.8.2.1.1,

as the performance of the FCU-1 update in Fig. (4.14a) far exceeds that of residual editing in

Fig. (4.14b). While the results of the FCU-1 update are nearly the same between the analyses of

Figs. (4.13) and (4.14), the results of the baseline filter with residual editing become much worse,

191



as seen in Fig. (4.14b). The MC statistics for both the position and velocity estimates now exceed

the average filter error covariance to the point that the GSF with residual editing can be considered

a divergent filter. This poor performance is caused by the remarkably similar nature of the faulty

and valid measurement distributions. While the covariances of each may differ significantly in

size, the means of the distributions are the same, which leads to more faulty measurements falling

inside of the residual editing threshold. Subsequent analyses further confirm that cases such as this

make residual editing much less effective.

4.8.2.2 Model Mismatch Analysis

This analysis is designed to test how robust the FCU-1 update is to unknown faulty measure-

ment models, which can be compared to the baseline filter’s performance in Figs. (4.14b) and (4.17b).

As residual editing makes no explicit modeling assumptions as to how faulty data is generated,

baseline results strictly unique to this analysis are not attainable and thus are presented only in

other analyses to avoid redundant figures.

Two different cases are analyzed, the first when faulty measurements are normally distributed

and the second when they are exponentially distributed. In both cases, the FCU-1 filter utilizes

the uniform FCU-1 update with the filter probability of validity set as vfilt = 0.90, an erroneous

assumption as faulty measurements are generated according to the true probability v = 0.99.

While not strictly true, setting vfilt < v is generally a conservative assumption, as there is typically

less state information gained from faulty measurements than from valid measurements. Since

conservative filter behavior is customarily more desirable than overconfidence, it is advised that

vfilt ≤ v for most practical applications.

The motivation behind this section is based on the notion that many data screening methods,

including residual editing, are appealing in part because no extra modeling considerations need be

made for invalid returns. This application of the uniform FCU-1 update is intended to mimic a

scenario in which, instead of expending effort to find an appropriate model, faulty measurements

are simply treated as uniformly distributed.
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4.8.2.2.1 Normally Distributed Faulty Range Measurements

This case is configured similarly to the previous analysis of Section 4.8.2.1.2, as the faulty

measurements are produced by the same normal distribution. However, instead of an FCU-1 filter

equipped with the correct update, results are taken from a filter with the uniform FCU-1 update of

Eq. (4.97) where the sensor volume is again taken to be V = 100, 000 ft. The data resulting from

this model mismatch analysis is provided in Fig. (4.15a).

First, it is important to mention that Fig. (4.14b) contains the residual editing results for nor-

mally distributed faulty measurements, which should be referenced for comparison. When inspect-

ing the FCU-1 update alone, the results in Figs. (4.14a) and (4.15a) are also important to compare,

as they both operate on measurement sets where the faulty measurements are generated by a normal

distribution. By introducing model mismatch via the uniform FCU-1 update, the filter performance

is degraded slightly, as indicated by the minor overconfidence of Fig. (4.15a) when compared to

Fig. (4.14a). However, the FCU-1 filter still performs exceptionally well considering it is subjected

to the burden of model mismatch. In fact, assuming a uniform distribution and implementing an

FCU-1 filter produces results that handily outperform the baseline filter with residual editing of

Fig. (4.14b), despite the FCU-1 filter fallaciously adopting vfilt = 0.90 when, in truth, v = 0.99.

4.8.2.2.2 Exponentially Distributed Faulty Range Measurements

To further test the effects of model mismatch, this case again utilizes a filter outfitted with the

uniform FCU-1 update of Eq. (4.97), with a sensor volume of V = 100, 000 ft. The actual faulty

measurements are generated according to an exponential distribution as

zf = hv(x)− doffset + wexp , (4.153)

where hv(·) is the valid measurement model from Eq. (2.33), doffset = 25 ft is a parameter that

offsets the mean of the faulty measurement distribution from the mean of the valid distribution,
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Figure 4.15 Model mismatch results for proposed FCU-1 filter, expressed as eι ( ), 3σfilt,ι

( ), and 3σMC,ι ( )

and wexp is a random noise drawn from an exponential distribution as

wexp ∼ pe(λ) , (4.154)

where λ = 50 ft is the rate parameter of the exponential distribution. This model is intended to

imitate a scenario where some unmodeled effect of the target produces faulty range measurements

that indicate the object is closer than it actually is, and is especially dubious by design. As the

faulty measurement model is state-dependent via the function hv(x), and the faulty distribution

is concentrated relatively close to the valid distribution, it is more difficult for the filters to differ-

entiate between valid and faulty measurements. Plotting the average filter error and Monte Carlo

statistics for the FCU-1 filter yields Fig. (4.15b).

Once again, when comparing the results of the proposed filter in Fig. (4.15b) to the baseline

filter of Fig. (4.17b), the FCU-1 update undoubtedly outperforms residual editing. There do exist
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similarities between the results of Figs. (4.15a) and (4.15b), where the FCU-1 update is slightly

overconfident earlier in the simulation, but regains a healthier estimate later on. However, as this

analysis is subjected to model mismatch, the exact source of the overconfidence is challenging to

diagnose. Regardless, even with mismodeled faults, the proposed filter is certainly more robust

than the baseline filter, as Fig. (4.17b) is, again, characteristic of divergent filter behavior. It is

clear that unmodeled faulty measurements existing in close proximity to the valid measurements

is not as much of an issue for the FCU-1 filter as it is for residual editing.

4.8.2.3 FCU-1 via GM Approximation Analysis

This analysis examines the abilities of the proposed FCU-1 filter when the actual faulty mea-

surement distribution is approximated with a GM. Here, it is assumed that faulty sensor returns

conform to the same exponential model presented in Eqs. (4.153) and (4.154). The proposed filter,

however, is limited to a 5 component GM approximation of the exponential distribution, utilizing

the FCU-1 update described in Section 4.6.2.2. The approximation is made using a variant of the

expectation-maximization (EM) algorithm [45], and Fig. (4.16) shows how closely the two likeli-

hoods resemble each other when plotted with respect to the measurement space. Clearly there are
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dissimilarities between the two distributions of Fig. (4.16), but equipping the FCU-1 update with

a rough approximation such as this tests its capabilities under an extreme case. Additionally, more

components compound the number of computations in the update, making fewer components more

desirable when seeking to limit the computational burden. The results of the Monte Carlo trials for

both the proposed and baseline filters are found in Fig. (4.17).
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Figure 4.17 GM approximation results for exponentially distributed faulty measurements, ex-
pressed as eι ( ), 3σfilt,ι ( ), and 3σMC,ι ( )

For a filter possessing only an approximate representation of the faulty measurement distribu-

tion, the FCU-1 update performs remarkably well, as evidenced by Fig. (4.17a). As expected, there

is a large decrease in the filter’s overconfidence when compared to Fig. (4.17b) where a GSF with

residual editing is used. What is more interesting is that there are only marginal improvements

between Fig. (4.15b)—where the FCU-1 is supplied with the incorrect faulty spatial distribution—

and Fig. (4.17a)—where the FCU-1 filter directly approximates the faulty distribution. While this
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indicates the FCU filter with a GM approximate of the faulty measurement model produces esti-

mates that are more accurate than simply assuming the distribution is uniform, the enhancement

may not be substantial enough to justify the extra modeling. It is therefore worth mentioning that

as the probability of validity v increases, such that faulty measurements become less influential,

modeling the faulty distribution—either exactly or approximately—within the FCU-1 update be-

comes less beneficial. This is supported by the performance of the FCU-1 filters in Figs. (4.13a),

(4.14a), (4.15a), (4.15b), and (4.17a), where, despite being subjected to various faulty distributions

and outfitted with different updates, the uncertainty profiles are extremely similar. As v = 0.99 in

these simulations, the posterior estimate is almost entirely composed of the valid likelihood, and

thus there is little information gain across the state-dependent FCU-1 updates. Conversely, as v

decreases, the information gain from the state-dependent faulty measurements increase, and the

uncertainty profiles of the FCU-1 filter will differ more between analyses, warranting the effort

required to model the faulty distribution.

The decision to accurately model the faulty distribution notwithstanding, it is apparent that

the FCU-1 filter performs as well as, if not considerably better than, residual editing in all cases,

signifying that there exist clear advantages to utilizing a filter with soft decisions as opposed to one

constructed on strict categorizations.

4.8.3 Falling Body Analysis of FCU-2

While the analyses of Section 4.8.2 are concerned with testing FCU-1 under various faulty

measurement spatial distributions, this section uses the simplified falling body simulation to an-

alyze FCU-2 of Section 4.6.3 with varying models for probability of detection. As the results

from Section 4.8.2.2 support the choice of uniform faulty measurements as a highly robust model,

faulty measurements are taken to be spatially uniform across a sensor field-of-view on the interval

[0 ft, 5000 ft]—such that the sensor volume is Vrange = 5000 ft—and are temporally Poisson ac-

cording to Eq. (4.72) with rate parameter specified in each analysis. In these analyses, the pruning

threshold is raised to wthresh = 10−8, such that the number of components remains tractable at

all times, with the maximum number of components accumulated in each trial, averaged across
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all MC trials, being 191 for the FCU-2 filter with Gaussian model and 70 for the FCU-2 filter

with zeroth-order approximation. Since the GSF with residual editing does not naturally generate

additional components, the number of components never exceeds 9.

The probability of detection is randomly sampled from the Gaussian model of Section 4.4.2.4,

where

g(x) = pD,max −
pD,max − pD,min

Vrange
h(x) (4.155)

is the nonlinear function of the mean. Note that values for pD,max, pD,min, and RD are specified for

each analysis.

4.8.3.1 Filter Configurations

Three variants of filters are evaluated in this analyses, the configurations of which are speci-

fied here. They correspond to the low-, medium-, and high-fidelity pD(1,x) models described in

Sections 4.4.2.2–4.4.2.4.

4.8.3.1.1 GSF with Residual Editing:

This filter, outlined in Section 4.7.2, is considered a framework with the lowest amount of

pD(x) modeling, where the only mechanism being applied is a residual check. Not only does it

not necessitate a pDz return, it also does not need any function of pD(x) to be specified. The same

residual editing threshold as Section 4.8.2 of Υ = 16.45 is used, which corresponds to a χ2 value

of 99.995%.

4.8.3.1.2 FCU-2 Filter with Zeroth-Order Approximated pD:

This version of the proposed filter is constructed in Eqs. (4.110) and is representative of a

moderate amount of pD(x) modeling as it also does not require a value of pDz to be reported.

Instead, it calculates a zeroth-order approximation of the probability of detection as

pD(m) = g(m) .
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4.8.3.1.3 FCU-2 Filter with State-Dependent pD:

This filter, described in Eqs. (4.113), possesses the highest level of pD(x) modeling and re-

quires a reported probability of detection return, pDz , from some external sensing operation. In

this simulation, it is randomly sampled according to the distribution of Eq. (4.70) with mean g(x)

defined by Eq. (4.155).

4.8.3.2 Analysis 1: Ideal Sensing Conditions

Before analyzing the filters under extreme stress, it is useful to first prove that they operate

well in prototypical conditions. Therefore, this analysis is intended to mimic more ideal sensing

conditions, where the probability of detection remains relatively constant and near 1 during the

entirety of the simulation (pD,min = 0.95, pD,max = 0.99, RD = 0.0025), and clutter is generated

at a very low rate of λ = 0.001. The results of all three filters are presented in Fig. (4.18), where

performance of each is nearly identical, and all are observed to be well-behaved as the average

filter and MC standard deviations match almost exactly.

As none of the filters show signs of degeneracy, it can be said that any one of the filters is

an appropriate selection in similar systems with nearly constant/unity probability of detection and

essentially non-existent clutter. If minimal modeling and good computational efficiency is desired,

the GSF with residual editing is advisable, as it performs as well as the other filters in this instance.

This outcome is by design, of course, and this analysis provides a good baseline for the remaining

analyses.

4.8.3.3 Analysis 2: Cluttered Environment with Highly Variable pD

To evaluate filtering performance under less ideal conditions, clutter returns are generated at

a rate of λ = 0.25, and the probability of detection mean of Eq. (4.155) is given parameters of

pD,min = 0.10, pD,max = 0.99, and RD = 0.0025, such that pD(x) varies much throughout the

simulation. The corresponding MC results are found in Fig. (4.19), where it is immediately clear

that all filters exhibit higher levels of uncertainty than in Fig. (4.18), as the quality of incoming

measurements has significantly decreased. By the uncertainty profile of Fig. (4.19a), the GSF
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Figure 4.18 Filter results in ideal sensing environment plotted as eι ( ), 3σfilt,ι ( ), and
3σMC,ι ( )
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Figure 4.19 Filter results in cluttered sensing environment plotted as eι ( ), 3σfilt,ι ( ), and
3σMC,ι ( )
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Figure 4.20 Filter results for failing sensor plotted as eι ( ), 3σfilt,ι ( ), and 3σMC,ι ( )
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outfitted with residual editing is no longer capable of producing a valid filtering solution and shows

divergent behavior. Meanwhile, the other filters show good consistency between MC and average

filtering standard deviations, indicating healthy estimation solutions. However, the filter with a

Gaussian model pD of Fig. (4.19c) produces estimates with lower uncertainty than that of the filter

with zeroth-order approximation of Fig. (4.19b). This is attributed to two factors. First, as pD

varies more, there is a greater amount of information gain from the Gaussian model. Secondly,

near the beginning of the simulation, the probability of detection is generally lower, such that

fewer valid measurements are being generated. Therefore, information gained from pDz returns is

more influential at this time. As pD nears 1 towards the end of the simulation, valid measurements

become the dominant contributor of incoming information, and both FCU-2 filters achieve similar

performance.

As expected, residual editing is not robust enough for cluttered sensing conditions with low

detection probability, and the GSF of Section 4.7.2 is not capable of acceptable performance. Both

FCU-2 filters, on the other hand, are considered well-behaved, although modeling pD explicitly

shows a significant advantage over the simple zeroth-order approximation here.

4.8.3.4 Analysis 3: Sensor Failure/Model Mismatch

As the proposed filters of this work are intended to be fault resistant, this analysis mimics a

possible scenario with a failed sensor, where the filter is informed of an incorrect model for pD(x)

in the time interval between two and six seconds. While the FCU-2 filters expect a relatively

high probability of detection with pD,min,filt = 0.95, pD,max,filt = 0.99, and RD,filt = 1, starting

at two seconds, the actual probability of detection is generated according to pD,min,true = 0.05,

pD,max,true = 0.15, and RD,true = 0.0025. Note that the covariance RD,filt is inflated here to reflect

a lack of trust in the model, and it is ill-advised to ever set RD,filt < RD,true. To further stress the

system, the rate of faulty measurements is increased tenfold to λ = 2.5. The results of this analysis

are found in Fig. (4.20).

Upon inspection, it is clear that the GSF with residual editing of Fig. (4.20a) still performs

the worst by far and that the FCU-2 filters operate well, by comparison. However, the zeroth-
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order approximate FCU-2 filter of Fig. (4.20b) becomes significantly more overconfident than the

Gaussian model FCU-2 filter of Fig. (4.20c), while also producing higher overall errors. This

implies that the FCU-2 filter with a Gaussian model for pD(x) is the most robust to extreme model

mismatch, but it is noted that it can also be the most sensitive if the filter covariance is not increased

enough; i.e., if RD,filt is too small in situations with extreme model mismatch, then the filter of

Fig. (4.20c) performs much worse. It is found that in cases where the model of pD(x) is very

poorly known and model mismatch of the probability of detection occurs, that setting RD,filt ≥ 1

is sufficient, as this not only expands the conventional 3σ confidence interval to include any return

0 ≤ pDz ≤ 1, but also almost completely removes the information gain from the probability of

detection.

4.8.4 Orbit Determination Simulation

To further test the FCU-2 update with varying models for probability of detection, a more com-

plex simulation is introduced in this section. This orbit determination (OD) simulation involves

the tracking of the satellite O3B FM7 (Catalog ID 40080), maintained in Earth centered inertial

(ECI) coordinates, and initialized on August 15, 2021 at 8:30AM UTC using a two-line element

set from space-track.org.

To sufficiently define the dynamics of the system, satellite motion is governed by simple Kep-

lerian two body dynamics, and no process noise is imparted to the system. Tracking is done by a

ground-based observer located at the Haleakalā observatories on Maui, where measurement scans

of right-ascension and declination are simulated every minute for 2.5 days, a duration that allows

for multiple satellite passes and three “night” periods for the observer. It is assumed that the optical

sensor has valid noise standard deviations of 3 arcseconds with a field-of-view spanning 3◦ by 3◦,

and clutter is uniformly generated across it at a rate of λ = 50.

Following procedures in [53], the admissible region of Fig. (4.21) is formed and subsequently

approximated by a GM of 165 components, which provides a distribution to initialize the filter.

To limit the increasing number of components, GM pruning and merging are applied according to

Sections 2.2.3.1 and 2.2.3.2, where wthresh = 10−10 and dmerge = 0.05. Additionally, the splitting
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procedure of Section 2.2.3.3 is used to split each existing GM component into 729 smaller compo-

nents (applied across 6 dimensions using a 3 component splitting library), which is performed any

time the number of components falls below 3.
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Figure 4.21 Admissible region generated for O3B FM7

Results are generated across 350 MC trials according to Eqs. (2.25) and (2.26), where both the

zeroth-order approximation and Gaussian model versions of the FCU-2 filter from Eqs. (4.110)–

(4.113) are tested. In this simulation, the GSF with residual editing is found to fail so often that it

is infeasible to generate any meaningful MC results and is thus left out of this comparison entirely.

Clearly, this indicates that a more nuanced approach to fault resistance than simply screening

measurement residuals is needed for a simulation of this nature.

4.8.4.1 Probability of Satellite Detection

A four-part model of the probability of detection is built as

g(x) = pD,1 pD,2(x) pD,3(x) pD,4 , (4.156)

where each term pD,i corresponds to a different factor affecting detectability. While this model

may not cover all aspects of satellite observability, it is intended to be more complete than a simple

visibility check and provide a higher level of complexity with which to test the filters. Again, the

simulated probability of detection is randomly sampled according to the model of Section 4.4.2.4,
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where Eq. (4.156) is the state-dependent mean and RD = 0.032 is the variance. An example of the

simulated probability of detection over the duration of the simulation is presented in Fig. (4.22),

the profile of which illustrates nine distinct periods of higher detectability.
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Figure 4.22 Profile of randomly sampled probabilities of detection of satellite

4.8.4.1.1 Observer Sky Brightness:

It is assumed that, for valid sensor returns to be possible, the observer’s sky must be sufficiently

dark, a factor that is dictated by the elevation of the Sun αsun with respect to observer horizon [109].

This model assumes that the sky begins to darken at nautical twilight (αNT = −6◦) and reaches

maximal darkness at astronomical twilight (αAT = −18◦), the transition between which is modeled

via a sigmoid function as

pD,1 =
1

1 + exp{c1(c2 + αsun)}
, (4.157)

where choosing c1 = 2 1
deg and c2 = 9◦ in Eq. (4.157) yields a smooth function of pD,1 that behaves

as desired, which is plotted in Fig. (4.23a). Note that this specific model assumes that the observer

cannot detect satellites under daylight conditions, which neglects the recent advancements in day-
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time observing [110].

4.8.4.1.2 Satellite Elevation:

For valid satellite observations to be possible, the satellite must, of course, be above the ob-

server horizon. This is simulated via pD,2(x), which is also modeled as a sigmoid function as

pD,2(x) =
1

1 + exp{c1(c2 − αsat)}
, (4.158)

where αsat is the satellite’s elevation and, in this case, c1 = 5 1
deg and c2 = −0.5◦ produce behavior

desirable for Eq. (4.158), the profile of which is shown in Fig. (4.23b).

4.8.4.1.3 Satellite Illumination:

In order for the satellite to be visible to the observer, it must be sufficiently illuminated by the

Sun. Put simply, a near-Earth satellite may be 1) not illuminated at all during an umbral eclipse, 2)

partially illuminated during a penumbral eclipse, or 3) fully illuminated if no eclipse occurs [109].

Again, a sigmoid function is used to model a smooth transition between pD,3 = 0 and pD,3 = 1,

such that

pD,3(x) =
1

1 + exp{c1(c2 − θ)}
, (4.159)

where θ is the apparent angle between the centers of the Earth and Sun, calculated as

θ = cos−1

(
rE · rS∥∥rE∥∥ · ∥∥rS∥∥

)
c1 =

7.5

θ1 − θ0

c2 = θ0 +
θ1 − θ0

2

θ0 = |θE − θS|

θ1 = θE + θS ,
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and where θE and θS are the semi-diameters of the earth and sun, respectively, given by

θE = sin−1

(
RE∥∥rE∥∥

)
and θS = sin−1

(
RS∥∥rS∥∥

)
.

Note that rS is the position vector from the satellite to Sun, and rE is the position vector from

the satellite to Earth, whereas RE and RS are the radii of the Earth and Sun, respectively. More

importantly, θ < θ0 corresponds to an umbral eclipse, θ0 ≤ θ ≤ θ1 corresponds to a penumbral

eclipse, and θ > θ1 corresponds to no eclipse at all. Figure (4.23c) contains a representative profile

of the detectability function in Eq. (4.159).

-25 αAT αNT 0
0

0.5

1

Sun Elevation αsun [deg]

p
D
,1

a) Plot of pD,1

0 5 10

0

0.5

1

Satellite Elevation αsat [deg]

p
D
,2
(x

)

b) Plot of pD,2

θ0 θ1

0

0.5

1

Apparent Eclipse Angle θ [deg]

p
D
,3
(x

)

c) Plot of pD,3

Figure 4.23 Profiles of detectability factors contributing to the overall probability of detection

4.8.4.1.4 Pointing Direction:

Given the small size of the observer’s FOV relative to the horizon, it is unrealistic to assume

that the observer is always able to capture the satellite within the image frame. Instead, this model
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proposes that the observer is equipped with a fairly successful sensor tasking scheme, such that

the satellite remains in view of the sensor approximately 91% of the time. If the vector to the

satellite is considered the nominal pointing direction, then perturbations of right ascension δra and

declination δd are randomly sampled from a normal distribution as

δra, δd ∼ pg

(
δ
∣∣∣0,(3

4

)2

deg2

)
,

which are then used to offset the pointing direction from its nominal state. Thus, if max[|δra|, |δd|] >

1.5◦, then the satellite is outside the FOV, and a detection does not occur. Accordingly, pD,4 is given

by

pD,4 = Pr{|δra| ≤ 1.5◦}Pr{|δd| ≤ 1.5◦}

= 0.91107 . (4.160)

4.8.4.2 Orbit Determination Simulation Discussion

The MC results for both FCU-2 filters are found in Figs. (4.24) and (4.25), which, at a glance,

contain remarkably similar results. Neither of the filters fail during the simulation, and, towards

the end of the simulation, both filters acheive nearly identical levels of uncertainty. However,

earlier in the simulation, especially between hours three and six, the zeroth-order approximated

filter of Fig. (4.24b) shows a slight overconfidence that the FCU-2 filter with Gaussian model of

Fig. (4.24a) does not have. As this simulation is relatively complex, it is difficult to attribute this

overconfidence to one specific factor, yet it can be stated that the proposed filter with Gaussian

modeled pD(x) does exhibit better behavior than the zeroth-order approximation variant. Addi-

tionally, near the end of the simulation, the average filter uncertainty 3σfilt,ι ( ) of Fig. (4.25a)

is slightly lower than that of Fig. (4.25b). This indicates that the high-fidelity FCU-2 filter with

Gaussian model produces a more certain estimate than that of the medium-fidelity FCU-2 filter

with zeroth-order approximation, which is most likely due to the additional information gain from
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explicitly modeling the state-dependent probability of detection. Note that this difference in uncer-

tainty is slight enough to the point that it is imperceptible in Fig. (4.25), which is simply because

the optical measurements taken by the observer are much more accurate than the probability of

detection returns supplied to the filter.
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a) FCU-2 w/ Gaussian model
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b) FCU-2 w/ Zeroth-order approx.

Figure 4.24 Zoomed MC results of first 10 hours of OD simulation plotted as eι ( ), 3σfilt,ι

( ), and 3σMC,ι ( )

211



−0.4
−0.2

0

0.2

0.4
x

E
rr

or
[k

m
]

−0.4
−0.2

0

0.2

0.4

y
E

rr
or

[k
m

]

−0.4
−0.2

0

0.2

0.4

z
E

rr
or

[k
m

]

−2

−1

0

1

2
·10−4

ẋ
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ẋ
E

rr
or

[k
m

/s
]

−2

−1

0

1

2
·10−4

ẏ
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Figure 4.25 Zoomed MC results of entire OD simulation plotted as eι ( ), 3σfilt,ι ( ), and
3σMC,ι ( )
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5. CONCLUSION

To conclude this dissertation, this chapter summarizes the research of the preceding chapters,

highlights key findings from the collection of analyses, and posits potential future work.

5.1 Summary of Research

Preceded by a general introduction to robustness and filtering, the main body of this research is

presented in three chapters, each focusing on a specific paradigm important to fulfilling this disser-

tation’s purpose. As it is implemented frequently throughout this work, Chapter 2 is dedicated to

nonlinear filtering. The general nonlinear framework is described by differentiating it from linear

estimation, and the scope of nonlinear filtering is narrowed to Gaussian mixture (GM) filters. To

illustrate the benefits of nonlinear filtering, the traditional Gaussian sum filter (GSF) is compared

to its linear counterpart, the extended Kalman filter (EKF), by way of a Monte Carlo simulation.

With the utility of nonlinear filters established, Chapter 3 focuses on achieving robustness by

way of non-Bayesian filtering. As Bayes’ rule inherently assumes that all models are precisely

known, generalized variational inference (GVI) provides an alternate foundation for updates more

robust to model misspecification. Several different GVI updates are investigated via numerical op-

timization before a closed-form, confidence-based GVI update is derived. Both linear and nonlin-

ear (GM) realizations of the confidence-based update are presented, which are then tested against

underweighting to showcase its relevance to navigation.

While Chapter 3 seeks robustness by adjusting the confidence of a model’s validity, Chap-

ter 4 attains robustness by increasing model fidelity to include faulty measurements. Where tra-

ditional measurement models assume all incoming measurements are “valid”, the fault-cognizant

measurement models (FCMMs) permit the existence of undesirable or erroneous measurements.

By establishing the spatial and temporal distributions of both valid and faulty measurements, the

FCMMs can be processed via Bayes’ rule, producing nonlinear closed-form fault-cognizant up-

dates (FCUs). These FCUs are tested in several simulations, where residual editing is provided as
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a performance baseline, as it is common to navigation.

5.2 Future Work

When conducting research, it is almost inevitable for the rate at which questions arise to out-

pace the time and resources required to answer them. This section is the result of this, describing

several possible paths of research that solicit further investigation.

5.2.1 Alternate Closed-Form GVI Updates

While the confidence-based update of Section 3.3 is certainly useful when deriving closed-form

non-Bayesian updates, other closed-form posteriors derived from generalized variational inference

(GVI) are possible. Based on the promising results of Section 3.2.3.3, when the Kullback-Leibler

divergence of Eq. (3.5) and the log-form of the expected γ-loss function of Eq. (3.11) are selected

as the GVI cost function, then it can be shown that

p+(x) ∝ p−(x)`(z|x)γ−1
[ ∫

`(s|x)γds
] γ−1

γ
,

which is derived similarly to Eq. (3.36). This update is particularly suitable for Gaussian mea-

surement noise models, as the integral can be computed in closed-form. While this yields a rather

similar result to the confidence-based filter for linear-Gaussian systems of Section 3.3.1.1, this is

just one example of a possible posterior. It is the opinion of the author that a great deal more can

be learned by using GVI as a genesis and testbed for the derivation of robust updates.

5.2.2 Combining Non-Bayesian and Fault-Cognizant Filtering

While stemming from different motivations, the non-Bayesian updates of Chapter 3 and fault-

cognizant updates of Chapter 4 are not necessarily incohesive frameworks; the non-Bayesian up-

dates focuses on replacing Bayesian fusion with GVI-based updates, whereas fault-cognizance is

achieved by defining more complex measurement models. While the combination of the two seems

justified, as it allows for a robust fusion of prior and incoming information while simultaneously

modeling faults, it is unfortunately not straightforward to simply merge the two. For example,
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pairing the confidence-based update of Eq. (3.38) with FCMM-1 of Eq. (4.14) yields a new update

of the form

p+(x) =

{
v(x)`v(z|x) +

[
1− v(x)

]
`f (z|x)

} 1−φ
φ
p−(x)∫ {

v(s)`v(z|s) +
[
1− v(s)

]
`f (z|s)

} 1−φ
φ
p−(s)ds

. (5.1)

While it is possible to reach closed-form solutions for the corresponding FCU of Eq. (4.91) and

the confidence-based update of Eq. (3.38) separately, this does not imply that the combined update

of Eq. (5.1) has a closed-form as well. Already, it is clear that the exponential term of Eq. (5.1)

is problematic, as the exponent does not distribute well among the terms that make up the fault-

cognizant likelihood. Therefore, a closed-form solution to such an update requires significant

additional effort to find, if one exists at all. Furthermore, if a closed-form update does exist, the

resulting behavior of the combined update, if undesirable, may not warrant its existence. Therefore,

further investigation is worthwhile.

If such an update is investigated in the future, it is the opinion of the author that analytically

solving for the power of a GM, either exactly or approximately, is a practical first step. Specifically,

if one can find a general expression for

[ L∑
ξ=1

wξpg
(
x|mξ,Pξ

)]α
⇒ c(α)

L∑
ξ=1

ωξ(α)pg
(
x|µξ(α),Πξ(α)

)
, (5.2)

which moves the α term from the exponential to either a leading coefficient or inside the GM

components, it is then possible to directly multiply Eq. (5.2) with other Gaussians, the product

of which will also be Gaussian. Not only would this be a fairly useful operation for various GM

applications, but it would help in calculating closed-form solutions to fault-cognizant non-Bayesian

updates like Eq. (5.1) as well.
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5.2.3 Practical Applications of Fault-Cognizance

Many different variations of fault-cognizant updates are presented in Section 4.6, each designed

for a specific system or desired estimator behavior. The simulations of Section 4.8 analyze most

of these FCUs, sufficiently illustrating the benefits of fault-cognizance in measurement modeling,

but it would be impossible to exhaustively derive and test all possible FCUs. Instead, the author

believes that a high-fidelity simulation, such as a digital emulation of a realistic GNC system, is a

more practical way to further test fault-cognizance. Unfortunately, the resources and time required

to enact such a simulation are beyond the scope of this dissertation, but should be investigated in

the future.

5.3 Final Remarks

Without robust implementations, many practical applications of filters are not possible. An

effective robustness approach must not only protect the filter against agents known to debase its

algorithms, but also against any unknown elements within the system. To accomplish this, current

practice is mostly comprised of procedure-first methods, which affix ad hoc mechanisms to pre-

existing filter frameworks to prevent failure. For example, spacecraft navigation commonly uses

residual editing, underweighted information gains, redundant sensors, and filter resets to avoid

many causes of corruption to the navigation filter. While some of these causes are simply unmod-

eled effects of the system, other causes are long-known within the estimation community, such

as the linearization error of the EKF. These procedure-first methods, while effective, are in some

ways only relevant because of a continued reliance on the EKF, preferred mainly for its familiarity

and computational efficiency.

These procedure-first/EKF-centric tendencies within the field of navigation motivate the ma-

jority of this dissertation, where the focus is achieving model-first robustness through nonlinear

updates. Instead of amending existing frameworks to make them robust, the many updates of this

research are robustly derived from first principles and with nonlinear GM realizations that circum-

vent both the linearization errors and Gaussian-reliant models afflicting linear estimators. This
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model-first mindset is approached in two ways.

First, since models only approximate the reality of physical systems, Bayes’ rule is theoretically

inappropriate, as it inherently assumes that the models for prior and incoming information are

exactly known. This solicits the investigation of non-Bayesian updates, the result of which is a

GVI-based update that allows for variable confidence in the validity of system models. Whereas

a naive Bayesian filter forms more efficient estimates, assuming nothing will disagree with its

models, the confidence-based filter produces more conservative estimates, reflecting the possibility

that its models are misspecified. While conservative estimation can functionally be achieved in a

variety of manners (filter tuning, fictitious process noise, underweighting, etc.), this confidence-

based update is a more nuanced approach that is theoretically well-founded.

The second approach to model-first robustness in this work challenges traditional measurement

modeling, where measurements are assumed to be generated according to a single, valid distribu-

tion. It goes without saying that filters are functionally “aware” of a system only to the extent of

their models; if a (Bayesian) filter is constructed with a Gaussian measurement model, it assumes

that all measurements, Gaussian or not, must abide by the prescribed model and treats them as

such. In this way, any measurement that does obey the valid model is faulty and may cause signif-

icant damage to the filter. Traditionally, measurements are screened such that any existing outside

of the filters expectations are rejected. Alternatively, this work suggests fault-cognizance be im-

parted to the filter by attempting to model these faulty measurements instead of simply screening

for them. This requires extra modeling and assumptions that are highly system-specific, which

results in many different fault-cognizant updates. Analyzing these updates, it is shown that fault-

cognizance, while computationally more expensive, is more robust to faulty measurements (model

mismatch) than residual editing.

Regardless of the precise approach selected, the culmination of this dissertation is a collection

of updates, each designed with a slightly different system or behavior in mind. The functional

differences between these updates may be large or small, but all differences can be attributed to the

assumptions unique to each derivation. While the author would certainly be pleased if any future
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applications are able to directly apply the algorithms of this work, that is not the main goal of this

dissertation; it is unreasonable to exhaustively construct a filter designed for every possible system.

Instead, it is the author’s intent to convey the following: every filter can be wholly derived with

assumptions suitable for its specific system. While many reuse established estimators like the EKF,

there is often a more suitable framework that is much better suited for the conditions at hand, the

only caveat being it has yet to be created. Of course, deriving a customized filter is a challenging

feat, which may require statistical expertise and in-depth system knowledge. If the contents of

this dissertation—wherein robust updates are progressively derived from statistical theory to prac-

tical closed-forms—provides instruction (or, even better, encouragement) that makes the tailored

derivation of filters seem more tenable, then this dissertation has fulfilled its intended purpose. Af-

ter all, when building a filter, one is not limited solely to the catalog of existing architectures, and

this work is a single step towards a future where more individuals are comfortable with designing

estimators from the ground-up.
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APPENDIX A

SELECT IDENTITIES

A.1 Gaussian Identities

As the Gaussian distribution is frequently encountered and invoked throughout this dissertation,

this section defines a few important Gaussian identities.

A.1.1 The Guassian Distribution

Let pg(x|m,P ) represent a multivariate Gaussian distribution of x with mean m and covari-

ance P = P T > 0, such that

pg(x|m,P ) =
∣∣2πP ∣∣−1/2exp

{
− 1

2
(x−m)TP−1(x−m)

}
. (A.1)

A.1.2 Ho’s Rule for Nonlinear Measurement Models

Given h(·),R,m, and P are of appropriate dimensions andR and P are symmetric, positive-

definite [44, 76]

pg(z|h(x),R)pg(x|m,P ) = pg(z|h(m),H(m)PHT (m) +R)pg(x|µ,Π) , (A.2a)

where

µ = m+K[z − h(m)] (A.2b)

Π = P −KH(m)P (A.2c)

K = PHT (m)[H(m)PHT (m) +R]−1 . (A.2d)

Note that H(m) is the Jacobian of h(x) evaluated at x = m. The relationship in Eq. (A.2a) is

found using a first-order Taylor series expansion of the nonlinear function h(x) aboutm.
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A.1.3 Generalized Ho’s Rule

A more generalized version of Eqs. (A.2) can be shown to be

pg(z|H(m)x+ b,R)pg(x|m,P ) = pg(z|H(m)m+ b,H(m)PHT (m) +R)pg(x|µ,Π) ,

(A.3)

where

µ = m+K[z −H(m)m− b]

Π = P −KH(m)P

K = PHT (m)[H(m)PHT (m) +R]−1 ,

and where b must be deterministic.

A.1.4 Integral Form of Ho’s Rule

Given h(·),R,m, and P are of appropriate dimensions andR and P are symmetric, positive-

definite, then

∫
pg(z;h(x),R)pg(x;m,P )dx = pg(z;h(m),H(m)PHT (m) +R) , (A.4a)

which is derived by integrating Eq. (A.2a) with respect to the variable x, since pg(x|µ,Π), is a

pdf.

A.1.5 Powers of Gaussians

Given a vector x of n random variables that is distributed as an n-dimensional multivariate

Gaussian of meanm and covariance P , the ath power of said Gaussian can be shown to be [111]

[
pg(x|m, P )

]a
= |a|−n/2|2πP |(1− a)/2pg(x|m, 1/aP ) . (A.5)
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A.1.6 Product of N Multivariate Gaussians

Given N Gaussian pdfs of the form pg(x|mi,Pi), the product of N Gaussian pdfs yields

N∏
i=1

pg(x|mi,Pi) = γpg(x|m̃, P̃ ) , (A.6)

where

P̃ =
( N∑
i=1

P−1
i

)−1

m̃ = P̃
( N∑
i=1

P−1
i mi

)
γ =

|2πP̃ | 12∏N
i=1 |2πPi|

1
2

∏
i<j

exp
{
− 1

2
(mi −mj)

TP−1
i P̃P−1

j (mi −mj)
}
.

A.2 Linear Algebra Identities

Two identities useful for matrix manipulation are presented here.

A.2.1 Matrix Inversion Lemma

Given matricesA,B, C, andD, ifA and C are invertible, then [112]

(A+BCD)−1 = A−1 −A−1B(C−1 +DA−1B)−1DA−1 . (A.7)

A.2.2 Sylvester’s Determinant Theorem

Given matricesA andB of sizes n×m and m× n, respectively, [79]

∣∣In +BA
∣∣ =

∣∣Im +AB
∣∣ . (A.8)
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A.3 Optimization Identities

As the topic of optimization is discussed fairly often in this work, mostly when creating GVI

updates, several identities useful to optimization are provided here.

A.3.1 Convexity of Functions

A function f is considered to be convex if [71]

f
(
θx+ (1− θ)y

)
≤ θf

(
x
)

+ (1− θ)f
(
y
)
, (A.9)

where x,y ∈ dom(f) and 0 ≤ θ ≤ 1. Furthermore, if

f
(
θx+ (1− θ)y

)
< θf

(
x
)

+ (1− θ)f
(
y
)
, (A.10)

then the function f is considered to be strictly convex. Additionally, if

f
(
θx+ (1− θ)y

)
= θf

(
x
)

+ (1− θ)f
(
y
)
, (A.11)

then the function f is considered to be affine.

A.3.2 Properties of Convex Functions

A.3.2.1 Weighted Sum of Convex Functions

Given a set of N convex functions denoted by fi, the non-negative weighted sum of these

functions is also convex, such that [71]

g(x) =
N∑
i=1

wifi(x) , (A.12)

is convex, where wi are non-negative weights. Furthermore, it can be shown that the weighted sum

of strictly convex functions is strictly convex. It is also of note that Eq. (A.12) applies to weighted

sums of a single term, meaning that any (strictly) convex function multiplied by a non-negative

236



scalar is also (strictly) convex.

A.3.2.2 Sum of Convex and Strictly Convex Functions

Consider f to be a convex function defined by Eq. (A.9) and g to be a strictly convex function

defined by Eq. (A.10). When subjected to the definition of convexity, it can be shown that

(f + g)
(
θx+ (1− θ)y

)
= f

(
θx+ (1− θ)y

)
+ g
(
θx+ (1− θ)y

)
and

θ(f + g)
(
x
)

+ (1− θ)(f + g)
(
y
)

= θf
(
x
)

+ (1− θ)f
(
y
)

+ θg
(
x
)

+ (1− θ)g
(
y
)
.

Noting again that f is convex and g is strictly convex, it can be shown that

f
(
θx+ (1− θ)y

)
+ g
(
θx+ (1− θ)y

)
< θf

(
x
)

+ (1− θ)f
(
y
)

+ θg
(
x
)

+ (1− θ)g
(
y
)

(f + g)
(
θx+ (1− θ)y

)
< θ(f + g)

(
x
)

+ (1− θ)(f + g)
(
y
)
, (A.13)

demonstrating that the sum of a convex and strictly convex function is strictly convex.

A.3.3 First Variation

The first variation of some functional F (x) in the direction of y is defined as

δF (x, y) =
d
dε

[
F (x+ εy)

]
ε=0

, (A.14)

where x and y are functions and ε is a scalar.

A.3.4 Log Sum Inequality

Consider the following sums of N terms

a =
N∑
i=1

ai and b =
N∑
i=1

bi ,
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where ai, bi ≥ 0∀i = 1, 2, . . . , N . The log sum inequality states that [113]

N∑
i=1

ai log

{
ai
bi

}
≥ a log

{
a

b

}
, (A.15)

where the equality holds if and only if

ai
bi

=
aj
bj

∀i, j = 1, 2, . . . , N .

A.4 Other Identities

A.4.1 Total Probability Theorem

If events Bi for i = 1, . . . , n are mutually exclusive and exhaustive such that

Pr{Bi, Bj} = 0 , ∀i 6= j (A.16a)
n∑
i=1

Pr{Bi} = 1 , (A.16b)

where Pr{·} denotes probability. Then, for any event A,

Pr{A} =
n∑
i=1

Pr{A|Bi}Pr{Bi} . (A.17)

Similarly, for continuous random variables this can be represented as

p(x) =

∫ ∞
−∞

p(x|y)p(y) dy , (A.18)

where p(·) denotes a probability density function. For situations with both random variables and

events, this theorem produces

p(x) =
n∑
i=1

p(x|Bi) Pr{Bi} . (A.19)
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A.4.2 Multinomial Theorem

For a positive integer k and some non-negative integer n, the multinomial theorem states that

[114]

( k∑
i=1

xi

)n
=

∑
b1+b2+···+bk=n

 n

b1, b2, . . . , bk

 k∏
i=1

xbii , (A.20)

where  n

b1, b2, . . . , bk

 =
n!

b1!b2! . . . bk!
.

Note that the number of terms on the right hand side of Eq. (A.20) is

n+ k − 1

n

.
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APPENDIX B

SELECT DERIVATIONS

B.1 Minimum Mean Square Error Derivation

As a supplement to Section 1.1.3, the minimum mean square error (MMSE) estimate x̂ is

derived by minimizing the cost function of Eq. (1.7) with the risk function defined in Eq. (1.8),

which is given by

x̂ = min
x̃

{
Ep(x)

[
(x− x̃)T (x− x̃)

]}
. (B.1)

Making use of the linearity of the expectation operator, the cost function of Eq. (B.1) can be

manipulated to yield

J = Ep(x)

[
x̃T x̃

]
− Ep(x)

[
x̃Tx

]
− Ep(x)

[
xT x̃

]
+ Ep(x)

[
xTx

]
= x̃T x̃− x̃TEp(x)[x]− Ep(x)[x]T x̃+ Ep(x)[x

Tx] . (B.2)

To find possible x̂ that minimize Eq. (B.1), the partial derivative of Eq. (B.2) is taken with respect

to x̃ as

∂J

∂x̃
=

∂

∂x̃

{
x̃T x̃

}
− ∂

∂x̃

{
x̃TEp(x)[x]

}
− ∂

∂x̃

{
Ep(x)[x]T x̃

}
+

∂

∂x̃

{
Ep(x)[x

Tx]
}

= 2
(
x̃− Ep(x)[x]

)T
. (B.3)

When Eq. (B.3) is set equal to zero the solution for x̃ is

x̃ = Ep(x)[x] , (B.4)
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which is the mean of the random variable x. At this point, Eq. (B.4) has only been shown to

be an extremum of the cost function of Eq. (B.2) and has yet to be proven a minimum satisfying

Eq. (B.1). To do this, a sufficient condition for minimality is convexity of the cost function of

Eq. (B.2) at the extremum of Eq. (B.4), which can be accomplished by confirming that the second

derivative of Eq. (B.2) is non-negative (or, in the case of vector calculus, a positive semi-definite

matrix). Therefore, starting with Eq. (B.3), an additional derivative is taken as

∂

∂x̃

{
∂J

∂x̃

}T
=

∂

∂x̃

{
2
(
x̃− Ep(x)[x]

)}
= 2I ∀ x̃ , (B.5)

which indicates that Eq. (B.2) is not only convex with respect to x̃, but strictly convex as well,

as 2I is positive definite [71]. Furthermore, since Eq. (B.5) has no dependency on x̃ this strict

convexity holds across all values of x̃, such that Eq. (B.2) is, in fact, a strictly convex function of

x̃. Since any strictly convex cost function will take on a unique minimum, Eq. (B.4) is the unique,

globally optimal MMSE estimate of p(x).

B.2 Confidence-based Ho’s Equation for a Linear-Gaussian Update

To supplement the confidence-based updates of Section 3.3.1, a more in-depth derivation of the

confidence-based Ho’s equation is presented here, and is similar to the approach taken in [115].

Note that an exceeding amount of detail is contained in this derivations as it is intended to be a step-

by-step guide through Ho’s rule. To start, it is assumed that p+(xk−1) is a Gaussian distribution

such that, after propagating according to linear-Gaussian dynamics, p−(xk) is also a Gaussian

distribution of the form

p−(x) = pg(x|m, P ) , (B.6)

where the time index k is omitted for brevity, since the remainder of this update will exist within

the scope of a single time step. Furthermore, assume that the likihood function `(z|x) exists in its
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linear-Gaussian form of

`(z|x) = pg(z|Hx, R) . (B.7)

Now, taking the numerator of the confidence-based update from Eq. (3.38), as well as the expres-

sions in Eqs. (B.6) and (B.7), it can be shown that

p−(x)`(z|x)
1−φ
φ = pg(x|m, P )pg(z|Hx, R)

1−φ
φ

=
∣∣2πP ∣∣−1/2exp

{
− 1

2
(x−m)TP−1(x−m)

}

×

[∣∣2πR∣∣−1/2exp
{
− 1

2
(z −Hx)TR−1(z −Hx)

}] 1−φ
φ

=
∣∣2πP ∣∣− 1

2 exp
{
− 1

2
(x−m)TP−1(x−m)

}
×
∣∣2πR∣∣− 1

2
1−φ
φ exp

{
− 1

2

(
1− φ
φ

)
(z −Hx)TR−1(z −Hx)

}
=
∣∣2πP ∣∣− 1

2
∣∣2πR∣∣− 1

2
1−φ
φ

× exp
{
− 1

2

[
(x−m)TP−1(x−m) +

(
1− φ
φ

)
(z −Hx)TR−1(z −Hx)

]}
.

(B.8)

For brevity, the scalar α is defined to be

α =
1− φ
φ

. (B.9)

Taking the expression found inside [· · · ] and expanding the variables yields

(x−m)TP−1(x−m) + α(z −Hx)TR−1(z −Hx) =

= xTP−1x− xTP−1m−mTP−1x+mTP−1m

+ α[zTR−1z − zTR−1Hx− xTHTR−1z + xTHTR−1Hx]
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= xT (αHTR−1H + P−1)x− 2xT (αHTR−1z + P−1m) +mTP−1m+ αzTR−1z .

(B.10)

The argument of the quadratic term in x is defined as

Π−1 , αHTR−1H + P−1 , (B.11)

which can be solved for using the matrix inversion lemma of Eq. (A.7) to yield

Π = P − PHT (HPHT + α−1R)−1HP . (B.12)

If Eq. (B.11) is used in Eq. (B.10), then Eq. (B.8) can be reformed into

p−(x)`(z|x)α =
∣∣2πP ∣∣− 1

2
∣∣2πR∣∣− 1

2
αexp

{
− 1

2

[
xTΠ−1x

− 2xTΠ−1Π(αHTR−1z + P−1m) +mTP−1m+ αzTR−1z

]}
.

(B.13)

Notice that an additional Π−1Π has been introduced. This is to support the use of µ defined by

µ , Π(αHTR−1z + P−1m) . (B.14)

Substituting Eq. (B.14) into Eq. (B.13) yields

p−(x)`(z|x)α

=
∣∣2πP ∣∣− 1

2
∣∣2πR∣∣− 1

2
αexp

{
− 1

2

[
xTΠ−1x− 2xTΠ−1µ+mTP−1m+ αzTR−1z

]}
.

(B.15)
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Once again, taking the terms contained within [· · · ] of Eq. (B.15), the following manipulations can

be made:

xTΠ−1x− 2xTΠ−1µ+mTP−1m+ αzTR−1z =

= xTΠ−1x− xTΠ−1µ− µTΠ−1x+ µTΠ−1µ− µTΠ−1µ+mTP−1m+ αzTR−1z

= (x− µ)TΠ−1(x− µ)− µTΠ−1µ+mTP−1m+ αzTR−1z ,

which, when substituted back into Eq. (B.15) yields

p−(x)`(z|x)α =
∣∣2πP ∣∣− 1

2
∣∣2πR∣∣− 1

2
αexp

{
− 1

2

[
(x− µ)TΠ−1(x− µ)

− µTΠ−1µ+mTP−1m+ αzTR−1z

]}
. (B.16)

At this point, new variables will need to be introduced in order to help manipulate the µTΠ−1µ

term. First,K is defined as

K , PHT (HPHT + α−1R)−1 . (B.17)

From this definition ofK, it is clear that Π in Eq. (B.12) can also be written as

Π = P −KHP . (B.18)

Note that we can find an alternate definition of by taking Eq. (B.11) and modifying it as follows:

Π−1 = αHTR−1H + P−1

αΠ−1 = α2HTR−1H + αP−1

αΠΠ−1P = α2ΠHTR−1HP + αΠP−1P

αP = α2ΠHTR−1HP + αΠ
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αPHTR−1 = α2ΠHTR−1HPHTR−1 + αΠHTR−1

αPHTR−1 = αΠHTR−1(αHPHTR−1 + I)

αPHTR−1 = αΠHTR−1(αHPHT +R)R−1

αPHT = αΠHTR−1(αHPHT +R)

αPHT (αHPHT +R)−1 = αΠHTR−1

PHT (HPHT + α−1R)−1 = αΠHTR−1 . (B.19)

Recalling the definition from Eq. (B.17) and substituting into Eq. (B.19), it is clear that K can

also be defined as

K = αΠHTR−1 . (B.20)

Later on, it will be useful to note that Eq. (B.20) can be rearranged to the form

KTΠ−1 = αR−1H . (B.21)

Consequently, we can use Eqs. (B.18) and (B.20) to substitute in for the expression of µ in

Eq. (B.14) to yield

µ = Π(αHTR−1z + P−1m)

= αΠHTR−1z + ΠP−1m

= αΠHTR−1z + (P −KHP )P−1m

= αΠHTR−1z + PP−1m−KHPP−1m

= αΠHTR−1z +m−KHm

= Kz +m−KHm

= m+K(z −Hm) . (B.22)
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Now, µTΠ−1µ can be manipulated by introducing the definition of µ from Eq. (B.22) as well as

Eq. (B.21), producing

µTΠ−1µ = (mT + (z −Hm)TKT )Π−1(m+K(z −Hm))

= mTΠ−1m+ 2(z −Hm)TKTΠ−1m+ (z −Hm)TKTΠ−1K(z −Hm)

= mTΠ−1m+ 2(z −Hm)TαR−1Hm+ (z −Hm)TαR−1HK(z −Hm)

= mTΠ−1m+ 2αzTR−1Hm− 2α(Hm)TR−1Hm+ αzTR−1HKz

− 2α(Hm)TR−1HKz + α(Hm)TR−1HKHm . (B.23)

Substituting Eq. (B.11) into Eq. (B.23) yields

µTΠ−1µ

= mT (αHTR−1H + P−1)m+ 2αzTR−1Hm− 2α(Hm)TR−1Hm+ αzTR−1HKz

− 2α(Hm)TR−1HKz + α(Hm)TR−1HKHm

= mTP−1m+ 2αzTR−1Hm− α(Hm)TR−1Hm+ αzTR−1HKz

− 2α(Hm)TR−1HKz + α(Hm)TR−1HKHm

= mTP−1m+ αzTR−1HKz − α(Hm)T [R−1 −R−1HK]Hm

− 2α(Hm)T [R−1 −R−1HK]z . (B.24)

The definition ofK from Eq. (B.17) can be substituted into the termR−1−R−1HK in Eq. (B.24)

as

R−1 −R−1HK = R−1 −R−1HK

= R−1 −R−1HPHT (HPHT + α−1R)−1

= R−1[I −HPHT (HPHT + α−1R)−1]

= R−1[HPHT + α−1R−HPHT ](HPHT + α−1R)−1
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= α−1R−1−1R(HPHT + α−1R)−1

= α−1(HPHT + α−1R)−1 . (B.25)

Substituting the result of Eq. (B.25) into Eq. (B.24) results in a form of µTΠ−1µ expressed as

µTΠ−1µ

= mTP−1m+ αzTR−1HKz − (Hm)T (HPHT + α−1R)−1Hm

− 2(Hm)T (HPHT + α−1R)−1z . (B.26)

Equation (B.25) can be manipulated to yield

R−1HK = R−1 − α−1(HPHT + α−1R)−1 , (B.27)

which can be applied directly to Eq. (B.26) to produce

µTΠ−1µ

= mTP−1m+ αzT [R−1 − α−1(HPHT + α−1R)−1]z

− (Hm)T (HPHT + α−1R)−1Hm− 2(Hm)T (HPHT + α−1R)−1z

= mTP−1m+ αzTR−1z − zT (HPHT + α−1R)−1z

− (Hm)T (HPHT + α−1R)−1Hm− 2(Hm)T (HPHT + α−1R)−1z

= mTP−1m+ αzTR−1z − (z −Hm)T (HPHT + α−1R)−1(z −Hm) . (B.28)

With Eq. (B.28), this form of µTΠ−1µ is substituted back into Eq. (B.16) to yield

p−(x)`(z|x)α =
∣∣2πP ∣∣− 1

2
∣∣2πR∣∣− 1

2
α

exp

{
(B.29)

− 1

2

[
(x− µ)TΠ−1(x− µ) + (z −Hm)T (HPHT + α−1R)−1(z −Hm)

]}
.
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The exponential in Eq. (B.29) can be separated into two distinct exponentials as

p−(x)`(z|x)α =
∣∣2πP ∣∣− 1

2
∣∣2πR∣∣− 1

2
α (B.30)

exp

{
-
1

2
(x− µ)TΠ−1(x− µ)

}
exp

{
-
1

2
(z −Hm)T (HPHT + α−1R)−1(z −Hm)

}
.

The exponentials in Eq. (B.30) can forcibly be made Gaussian by introducing normalizing con-

stants, resulting in

p−(x)`(z|x)α

=

∣∣2πP ∣∣− 1
2
∣∣2πR∣∣− 1

2
α∣∣2πΠ

∣∣− 1
2
∣∣2π(HPHT + α−1R)

∣∣− 1
2

∣∣2πΠ
∣∣− 1

2 exp

{
− 1

2
(x− µ)TΠ−1(x− µ)

}
×
∣∣2π(HPHT + α−1R)

∣∣− 1
2 exp

{
− 1

2
(z −Hm)T (HPHT + α−1R)−1(z −Hm)

}
=

∣∣2πP ∣∣− 1
2
∣∣2πR∣∣− 1

2
α∣∣2πΠ

∣∣− 1
2
∣∣2π(HPHT + α−1R)

∣∣− 1
2

pg(x|µ, Π)pg(z|Hm, HPHT + α−1R) . (B.31)

The leading term in Eq. (B.31) can be simplified as

∣∣2πP ∣∣− 1
2
∣∣2πR∣∣− 1

2
α∣∣2πΠ

∣∣− 1
2
∣∣2π(HPHT + α−1R)

∣∣− 1
2

=

[∣∣2πΠ
∣∣∣∣2π(HPHT + α−1R)

∣∣∣∣2πP ∣∣∣∣2πR∣∣α
] 1

2

=

[
(α−1)m

∣∣2πΠ
∣∣∣∣2π(HPHT + α−1R)

∣∣
(α−1)m

∣∣2πP ∣∣∣∣2πR∣∣α−1∣∣∣∣2πR∣∣
] 1

2

=
∣∣2πR∣∣ 1−α2 [α−m∣∣2πΠ

∣∣∣∣2π(HPHT + α−1R)
∣∣∣∣2πP ∣∣∣∣2πα−1R

∣∣
] 1

2

= α−
m
2

∣∣2πR∣∣ 1−α2 [∣∣2πΠ
∣∣∣∣2π(HPHT + α−1R)

∣∣∣∣2πP ∣∣∣∣2πα−1R
∣∣

] 1
2

= α−
m
2

∣∣2πR∣∣ 1−α2 [∣∣Π∣∣∣∣(HPHT + α−1R)
∣∣∣∣P ∣∣∣∣α−1R

∣∣
] 1

2

= α−
m
2

∣∣2πR∣∣ 1−α2 [∣∣ΠP−1
∣∣∣∣(HPHT + α−1R)αR−1

∣∣] 1
2
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= α−
m
2

∣∣2πR∣∣ 1−α2 [∣∣ΠP−1
∣∣∣∣αHPHTR−1 + I

∣∣] 1
2
,

(B.32)

wherem is defined by the size of matrixR such thatR is anm×mmatrix. Now, using Sylvester’s

theorem from Eq. (A.8) and noting that Eq. (B.11) can be rearranged to

αHTR−1H = Π−1 − P−1 , (B.33)

Eq. (B.32) can be manipulated to yield

∣∣2πP ∣∣− 1
2
∣∣2πR∣∣− 1

2
α∣∣2πΠ

∣∣− 1
2
∣∣2π(HPHT + α−1R)

∣∣− 1
2

= α−
m
2

∣∣2πR∣∣ 1−α2 [∣∣ΠP−1
∣∣∣∣αHPHTR−1 + I

∣∣] 1
2

= α−
m
2

∣∣2πR∣∣ 1−α2 [∣∣ΠP−1
∣∣∣∣αHTR−1HP + I

∣∣] 1
2

= α−
m
2

∣∣2πR∣∣ 1−α2 [∣∣ΠP−1
∣∣∣∣(Π−1 − P−1)P + I

∣∣] 1
2

= α−
m
2

∣∣2πR∣∣ 1−α2 [∣∣ΠP−1
∣∣∣∣Π−1P − P−1P + I

∣∣] 1
2

= α−
m
2

∣∣2πR∣∣ 1−α2 [∣∣ΠP−1
∣∣∣∣Π−1P

∣∣] 1
2

= α−
m
2

∣∣2πR∣∣ 1−α2 [∣∣ΠP−1Π−1P
∣∣] 1

2

= α−
m
2

∣∣2πR∣∣ 1−α2 [∣∣ΠP−1PΠ−1
∣∣] 1

2

= α−
m
2

∣∣2πR∣∣ 1−α2 [∣∣I∣∣] 1
2

= α−
m
2

∣∣2πR∣∣ 1−α2 . (B.34)

Substituting Eq. (B.34) into Eq. (B.31) produces

p−(x)`(z|x)α = α−
m
2

∣∣2πR∣∣ 1−α2 × pg(x|µ, Π)pg(z|Hm, HPHT + α−1R) . (B.35)
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Recalling the definition of α from Eq. (B.9), Eq. (B.35) assumes the form

p−(x)`(z|x)
1−φ
φ =

[
φ

1− φ

]m
2 ∣∣2πR∣∣ 2φ−1

2φ × pg
(
x
∣∣∣µ, Π

)
pg

(
z
∣∣∣Hm, HPHT +

φ

1− φ
R

)
,

(B.36a)

where

µ = m+K(z −Hm) (B.36b)

Π = P −KHP (B.36c)

K = PHT (HPHT + α−1R)−1 . (B.36d)

If the identity in Eq. (B.36a) is used in the update of Eq. (3.38), then

p+(x) =

[
φ

1−φ

]m
2
∣∣2πR∣∣ 2φ−1

2φ × pg
(
x
∣∣µ, Π

)
pg
(
z
∣∣Hm, HPHT + φ

1−φR
)

∫ [
φ

1−φ

]m
2
∣∣2πR∣∣ 2φ−1

2φ × pg
(
s
∣∣µ, Π

)
pg
(
z
∣∣Hm, HPHT + φ

1−φR
)
ds

=
pg
(
x
∣∣µ, Π

)
pg
(
z
∣∣Hm, HPHT + φ

1−φR
)∫

pg
(
s
∣∣µ, Π

)
pg
(
z
∣∣Hm, HPHT + φ

1−φR
)
ds

. (B.37)

Considering only the denominator of Eq. (B.37), it can be shown that

∫
pg
(
s
∣∣µ, Π

)
pg
(
z
∣∣Hm, HPHT +

φ

1− φ
R
)
ds (B.38)

= pg
(
z
∣∣Hm, HPHT +

φ

1− φ
R
) ∫

pg
(
s
∣∣µ, Π

)
ds ,

which is valid as the terms taken outside of the integral have no dependence on s. Furthermore,

since it is assumed that pg(·|·, ·) is a valid pdf, it is known that integrating over the support will

result in unity, and therefore Eq. (B.38) can be further reduced to

pg
(
z
∣∣Hm, HPHT +

φ

1− φ
R
) ∫

pg
(
s
∣∣µ, Π

)
ds = pg

(
z
∣∣Hm, HPHT +

φ

1− φ
R
)
.

(B.39)
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Using the result of Eq. (B.39) to replace the denominator of Eq. (B.37), it can be shown that

p+(x) =
pg
(
x
∣∣µ, Π

)
pg
(
z
∣∣Hm, HPHT + φ

1−φR
)

pg
(
z
∣∣Hm, HPHT + φ

1−φR
)

= pg
(
x
∣∣µ, Π

)
. (B.40)

B.2.1 Extension for a Nonlinear System

Now, consider systems with measurement models that are nonlinear functions of x. Un-

der these types of systems, the Gaussian likelihood equivalent of the measurement model from

Eq. (2.1c) is

`(z|x) = pg(z|h(x), R) , (B.41)

which has been restated here without time dependencies. As it is common practice in filtering to

linearize such models using first-order Taylor series approximations (as like the EKF), such an

approach is made here. Again, assuming that an a priori estimate of the state exists as

p−(x) = pg(x|m−, P−) ,

Equation (B.41) can be linearized via a first-order Taylor series about the meanm− to produce

`(z|x) = pg(z|h(m−) +H(m−)[x−m−], R)

= pg(z|H(m−)x+ [h(m−)−H(m−)m−], R) . (B.42)

Now, considering the numerator of the confidence-based update in Eq. (3.38) to form

`(z|x)αp−(x) = pg(z|H(m−)x+ [h(m−)−H(m−)m−],R)αpg(x|m−,P−) .
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Utilizing the power of a Gaussian identity from Eq. (A.5) yields

`(z|x)αp−(x) (B.43)

= |α|−
n
2 |2πR|

1−α
2 pg

(
z|H(m−)x+ [h(m−)−H(m−)m−],

1

α
R
)
pg(x|m−,P−) .

Instead of rederiving Ho’s generalized equation here, it is provided in the appendix as Eq. (A.3),

such that the expression in Eq. (B.43) becomes

`(z|x)αp−(x) = |α|−
n
2 |2πR|

1−α
2 pg

(
z|h(m−),H(m−)P−HT (m−) +

1

α
R
)
pg(x|m+,P+) ,

(B.44)

where

m+ = m− +K[z − h(m−)]

P+ = P− −KH(m−)P−

K = P−HT (m−)
[
H(m−)P−HT (m−) +

1

α
R
]−1

.

The denominator of the confidence-based update from Eq. (3.38) can be solved for by integrating

Eq. (B.44) as

∫
`(z|s)αp−(s)ds (B.45)

=

∫
|α|−

n
2 |2πR|

1−α
2 pg(z|h(m−),H(m−)P−HT (m−) +

1

α
R)pg(x|m+,P+)ds

= |α|−
n
2 |2πR|

1−α
2 pg(z|h(m−),H(m−)P−HT (m−) +

1

α
R)

∫
pg(x|m+,P+)ds

= |α|−
n
2 |2πR|

1−α
2 pg(z|h(m−),H(m−)P−HT (m−) +

1

α
R) ,
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where it is recalled that a Gaussian must integrate to unity. Next, substituting the results from

Eqs. (B.44) and (B.45) into the update of Eq. (3.38) yields

p+(x) =
`(z|x)αp−(x)∫
`(z|s)αp−(s) ds

=
|α|−n2 det{2πR} 1−α

2 pg(z|h(m−),H(m−)P−HT (m−) + 1
α
R)pg(x|m+,P+)

|α|−n2 det{2πR} 1−α
2 pg(z|h(m−),H(m−)P−HT (m−) + 1

α
R)

= pg(x|m+,P+) ,

such that the complete equations for the confidence-based update for a nonlinear Gaussian system

are

p+(x) = pg(x|m+,P+) , (B.46)

where

m+ = m− +K[z − h(m−)]

P+ = P− −KH(m−)P−

K = P−HT (m−)
[
H(m−)P−HT (m−) +

1

α
R
]−1

.

Due to the linearization via a first-order Taylor series, it is noted that this recursion only achieves

approximate closure, as a Gaussian prior is only approximated to remain Gaussian under the update

for nonlinear systems.

B.3 Gaussian KLD

Assuming that p−(x) and p(x) are Gaussian distributions of the form

p−(x) = pg(x|m−, P−)

p(x) = pg(x|m, P ) ,
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it can be shown that the KLD becomes [74]

DKL[p‖p−] =

∫
p(x) ln

(
p(x)

p−(x)

)
dx

= Ep
{

ln[p(x)]− ln[p−(x)]
}

=
1

2

[
ln

(
|P−|
|P |

)
− Ep

{
(x−m)T (P )−1(x−m)

}
+ Ep

{
(x−m−)T (P−)−1(x−m−)

}]
, (B.47)

where using properties of traces, as found in [79], it can be shown that

Ep
{

(x−m)TP−1(x−m)
}

= Ep
{

tr
{

(x−m)(x−m)TP−1
}}

= tr
{
Ep
[
(x−m)(x−m)T

]
P−1

}
= tr

{
PP−1

}
= nx , (B.48)

where nx is the size of the state vector x. Similarly, using properties from [79], it can be shown

that

Ep
{

(x−m−)T (P−)−1(x−m−)
}

= tr
{

(P−)−1P
}

+ {(m− −m)T (P−)−1(m− −m)
}
.

(B.49)

Substituting the results of Eqs. (B.48) and (B.49) into Eq. (B.47), the KLD under Gaussian as-

sumptions is shown to be

DKL[p‖p−] =
1

2

[
ln

(
|P−|
|P |

)
− nx + tr

{
(P−)−1P

}
+ (m− −m)T (P−)−1(m− −m)

]
.

(B.50)
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B.4 Convexity of Kullback-Leibler Divergence

The Kullback-Leibler divergence (KLD) has the form

DKL[p‖q] =

∫
p(x) ln

(
p(x)

q(x)

)
dx , (B.51)

where p(x) and q(x) are probability density functions (pdfs). It is well known that the KLD is a

convex function with respect to both densities p and q; however, when q is fixed, it can be shown

that the KLD becomes strictly convex. Considering the definition of convexity in Eq. (A.9), it can

be shown that

DKL[θp+ (1− θ)π‖q] =

∫ (
θp(x) + (1− θ)π(x)

)
ln

(
θp(x) + (1− θ)π(x)

q(x)

)
dx (B.52)

and also that

θDKL[p‖q] + (1− θ)DKL[π‖q]

= θ

∫
p(x) ln

(
p(x)

q(x)

)
dx+ (1− θ)

∫
π(x) ln

(
π(x)

q(x)

)
dx

=

∫ {
θp(x) ln

(
p(x)

q(x)

)
+ (1− θ)π(x) ln

(
π(x)

q(x)

)}
dx

=

∫ {
θp(x) ln

(
θp(x)

θq(x)

)
+ (1− θ)π(x) ln

(
(1− θ)π(x)

(1− θ)q(x)

)}
dx . (B.53)

Relating the expressions inside of the integrals of Eqs. (B.52) and (B.53) yields

(
θp(x) + (1− θ)π(x)

)
ln

(
θp(x) + (1− θ)π(x)

q(x)

)
(B.54)

< θp(x) ln

(
θp(x)

θq(x)

)
+ (1− θ)π(x) ln

(
(1− θ)π(x)

(1− θ)q(x)

)
,
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where the inequality follows directly from the log sum inequality identity of Eq. (A.15). Note that

the inequality of Eq. (B.54) is strictly less than as

θp(x)

θq(x)
6= (1− θ)π(x)

(1− θ)q(x)
.

Therefore, integrating Eq. (B.54) results in

∫ (
θp(x) + (1− θ)π(x)

)
ln

(
θp(x) + (1− θ)π(x)

q(x)

)
dx

<

∫ {
θp(x) ln

(
θp(x)

θq(x)

)
+ (1− θ)π(x) ln

(
(1− θ)π(x)

(1− θ)q(x)

)}
dx ,

or, equivalently,

DKL[θp+ (1− θ)π||q] < θDKL[p||q] + (1− θ)DKL[π||q] , (B.55)

such that by the definition of Eq. (A.10), the Kullback-Leibler divergence of p(x) with q(x) fixed

is strictly convex.

B.5 Convexity of Expected Loss Function

Consider the expectation of the loss function given by

Ep
[
L(z,x)

]
=

∫
x∈X

p(x)L(z,x)dx , (B.56)

where p(x) is a probability density function of x over the domain X. Given the definition of

convexity from Eq. (A.9), it can be shown that

E[
θp+(1−θ)g

][L(z,x)
]

=

∫
x∈X

[
θp(x) + (1− θ)g(x)

]
L(z,x)dx

= θ

∫
x∈X

p(x)L(z,x)dx+ (1− θ)
∫
x∈X

g(x)L(z,x)dx

= θEp
[
L(z,x)

]
+ (1− θ)Eg

[
L(z,x))

]
,
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which indicates that Eq. (B.56) is affine (as well as convex) with respect to p(x).

257


	ABSTRACT
	DEDICATION
	CONTRIBUTORS AND FUNDING SOURCES
	NOMENCLATURE
	TABLE OF CONTENTS
	LIST OF FIGURES
	LIST OF TABLES
	INTRODUCTION
	Filtering
	Propagation
	Discrete Dynamics
	Continuous Dynamics

	Update
	Estimate Extraction

	Robust Statistics
	Current Filtering Practices
	Spacecraft Navigation
	Additional Applications

	Dissertation Objectives

	NONLINEAR FILTERING
	Linear Estimators
	A Traditional Linear Estimator: The EKF
	EKF Initialization
	EKF Propagation
	EKF Update

	Nonlinear Estimators
	Particle Filtering
	Gaussian Mixture Filtering
	The Gaussian Distribution
	Gaussian Mixture Models
	Generating GMMs using the EM Algorithm
	Classic example: The Gaussian Sum Filter
	GSF Propagation
	GSF Update


	GMM Component Management Schemes
	Pruning
	Merging
	Splitting
	Estimate Extraction


	Linear vs. Nonlinear: GSF and EKF
	Monte Carlo Analysis
	Falling Body Simulation
	Filter Configuration
	Monte Carlo Results



	NON-BAYESIAN FILTERING
	Bayesian Filtering
	Generalized Variational Inference
	The Rule of Three
	Divergence
	Kullback-Leibler Divergence
	Rényi Divergence
	-Divergence

	Loss Function
	Negative Log-Loss
	-Loss

	Feasible Distributions
	Gaussian


	Robust GVI Updates
	Gaussian Divergences
	Gaussian KLD
	Gaussian RD
	Gaussian -D

	Gaussian Expected Loss Functions
	Gaussian NLL
	Gaussian -LF


	Simplified Falling Body Simulation
	Filter Configurations
	GVI Update 1: DKL and LNL
	GVI Update 2: DKL and L
	GVI Update 3: DR and LNL
	GVI Update 4: D and LNL

	Analysis 1: Ideal Measurements
	Analysis 2: Measurement Model Mismatch
	Analysis 3: Dynamics Model Mismatch


	Confidence-based Update
	Closed-Forms for Linear Filters
	Linear-Gaussian Derivation
	Scaling Factor for Adaptive Confidence
	Extending Closed-Form Confidence-Based Update to Nonlinear Systems
	Scalar Measurement Processing

	Closed-Forms for Nonlinear Filters
	GM Update for Linear-Gaussian Systems
	State-dependency of 

	GM Update for Nonlinear Systems


	Application to Navigation
	Navigation and the Underweighted EKF
	Second-Order Extended Kalman Filter

	Analysis of Linear Confidence-based Update
	Falling Body Simulation
	Filter Configurations
	Simulation Analysis

	Relative Satellite Motion Simulation
	Configuration
	Performance Comparison


	Analysis of Nonlinear Confidence-based GM Update
	Analysis 1: Static 
	Analysis 2: Adaptive 


	FAULT-COGNIZANT FILTERING
	Traditional Measurement Modeling
	The Reality of Faulty Measurements
	Fault-Cognizant Measurement Models
	FCMM-1: Single Measurement Returns
	FCMM-2: Single-Valid Measurement
	Special Case 1 [m = 0]:
	Special Case 2 [m = 1]:

	FCMM-3: Multiple-Valid Measurement - IID
	FCMM-4: Multiple Unique Valid Measurements

	Valid Measurement Modeling
	Valid Spatial Distribution
	Spatially Gaussian Valid Measurements
	Spatially Modeling Valid Measurements as GMMs

	Valid Temporal Distribution
	Probability of Validity vs Probability of Detection
	Low Fidelity Model: Neglecting pD
	Medium Fidelity Model: Zeroth-Order Approximation
	Zeroth-Order Approximation About Overall Prior
	Zeroth-Order Approximation About Individual GM Components

	High Fidelity Model: Gaussian Modeled Probabilities


	Faulty Measurement Modeling
	Faulty Temporal Distribution
	Example: Physical Interpretation of Probability of False Alarm
	Probability of False Alarm vs. False Alarm Rate
	State-Dependency of Probability of False Alarm
	Temporally Poisson Faulty Measurements

	Faulty Spatial Distribution
	Spatially Uniform Faulty Measurements
	Spatially Normal Faulty Measurements
	Approximating Spatial Distribution of Faulty Measurements with GMMs


	Fault-Cognizant Updates
	Closed-Form Related GMM Assumptions
	FCU-1: Scans of Single Measurements
	FCU-1 with Spatially Uniform Faulty Measurements
	FCU-1 with Spatially GM Faulty Measurements
	FCU-1 with Spatially Normal Faulty Measurements

	FCU-2: Single-Valid Measurement
	FCU-2 with Zeroth-Order Approximated pD:
	FCU-2 with Gaussian pD:

	FCU-3: Multiple-Valid Measurement – IID
	FCU-4: Multiple Uniquely-Distributed Valid Measurement
	Tractable Implementations
	Approximating Posterior Weights
	Subset of Feasible Features
	Ranked Assignment Approach

	Order of Measurement Processing

	Application to Navigation
	Residual Editing
	Extending Residual Editing to GM Filters

	Simulation and Results
	Simplified Falling Body Simulation Revisited
	Falling Body Analysis of FCU-1
	Performance Comparison Analysis Under Ideal Conditions
	Uniformly Distributed Faulty Range Measurements
	Normally Distributed Faulty Range Measurements

	Model Mismatch Analysis
	Normally Distributed Faulty Range Measurements
	Exponentially Distributed Faulty Range Measurements

	FCU-1 via GM Approximation Analysis

	Falling Body Analysis of FCU-2
	Filter Configurations
	GSF with Residual Editing:
	FCU-2 Filter with Zeroth-Order Approximated pD:
	FCU-2 Filter with State-Dependent pD:

	Analysis 1: Ideal Sensing Conditions
	Analysis 2: Cluttered Environment with Highly Variable pD
	Analysis 3: Sensor Failure/Model Mismatch

	Orbit Determination Simulation
	Probability of Satellite Detection
	Observer Sky Brightness:
	Satellite Elevation:
	Satellite Illumination:
	Pointing Direction:

	Orbit Determination Simulation Discussion



	CONCLUSION
	Summary of Research
	Future Work
	Alternate Closed-Form GVI Updates
	Combining Non-Bayesian and Fault-Cognizant Filtering
	Practical Applications of Fault-Cognizance

	Final Remarks

	REFERENCES
	APPENDIX Select Identities
	Gaussian Identities
	The Guassian Distribution
	Ho's Rule for Nonlinear Measurement Models
	Generalized Ho's Rule
	Integral Form of Ho's Rule
	Powers of Gaussians
	Product of N Multivariate Gaussians

	Linear Algebra Identities
	Matrix Inversion Lemma
	Sylvester's Determinant Theorem

	Optimization Identities
	Convexity of Functions
	Properties of Convex Functions
	Weighted Sum of Convex Functions
	Sum of Convex and Strictly Convex Functions

	First Variation
	Log Sum Inequality

	Other Identities
	Total Probability Theorem
	Multinomial Theorem


	APPENDIX Select Derivations
	Minimum Mean Square Error Derivation
	Confidence-based Ho's Equation for a Linear-Gaussian Update
	Extension for a Nonlinear System

	Gaussian KLD
	Convexity of Kullback-Leibler Divergence
	Convexity of Expected Loss Function


