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ABSTRACT

The service worker (SW) is an emerging web technology that was introduced to enhance the

browsing experience of web users. At the core, it is essentially a JavaScript file that runs in an

isolated and privileged context separated from the main web page or web workers. Websites can

register a service worker to enable native mobile application features including but not limited

to supporting offline usage and sending push notifications. With the help of this technology, tra-

ditional websites can now act like native mobile apps or become appified. Recently, the use of

service workers has gained much attention from web developers, security researchers, and even

cyber-criminals due to the service worker’s unique capabilities, especially the ability to intercept

and modify web requests and responses at runtime. Such capabilities inevitably introduce new

factors to web security considerations.

The goal of this research is to systematically study both the vulnerabilities and the security en-

hancement to websites that can come with the introduction of service workers. The contributions

of this dissertation are three folds. First, we investigate the service worker lifecycle and uncover

a vulnerability allowing cross-site scripts to be executed inside the service worker. We term this

novel attack as Service Worker Cross-Site Scripting (SW-XSS) and develop a dynamic taint track-

ing tool to measure the impact of SW-XSS in the wild. Second, we analyze the communication

channels between the service worker and other web contexts. We identify two vulnerable channels,

IndexedDB and Push notifications. These channels can be utilized to launch SW-XSS and push

hijacking attacks, which can lead to the privacy leakage of users. Third, we propose and develop a

framework, SWAPP (Service Worker APplication Platform), for implementing security appliances

by leveraging the unique capabilities of a service worker. Not only can SWAPP prevent the afore-

mentioned attacks against service workers but also be used to implement defense mechanisms for

traditional web attacks such as Cross-Site Scripting (XSS), data leakage, or side-channel attacks.

We develop several defenses for traditional attacks using SWAPP and show that they are easier to

develop, have lesser installation requirements, and are effective compared to existing solutions.
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1. INTRODUCTION

Over the past decades, the Internet, web, and mobile have become an integral part of our

lives, and our online presence has become as important as our physical presence. Undeniably, the

Internet brings us much convenience. Now, we can connect to different people across the world

in almost real-time, access and perform banking operations within a few clicks, or anonymously

express our opinions that can reach out to millions of people. However, these also make our online

presence become a prime target for attackers. For instance, our banking accounts may get stolen,

or our anonymous accounts may get de-anonymized by attackers.

A majority of cyber attacks can come in the form of client-side web attacks. These attackers

often search for vulnerabilities in a website code and leverage them to compromise sensitive data

and privacy of unfortunate visitors who are usually tricked into visiting the vulnerable websites

through social engineering. With every web technology being released, a new vulnerability may

also be introduced.

In this chapter, I first introduce the service worker, a recent web technology that can transform

websites and the web security paradigm. I explain why, at the same time, it can be a threat and

also an improvement to the web security ecosystem. Then, I outline the research challenges and

clarify the goals I want to achieve, which mainly come in three folds: identifying a vulnerability,

measuring the impact on a large scale, and providing security enhancements. Next, I provide an

overview of our solution to address the challenges. Finally, I summarize the contributions of this

thesis and outline the organization of the remaining chapters.

1.1 Service Worker: Transforming Web into App

Traditionally, a digital product (i.e., website, application, software) needs a different develop-

ment pipeline. For instance, web developers work on a website, mobile developers work on an

app, and desktop developers work on different versions of the same software that would run on

different operating systems. Much development effort is wasted on different platforms and they
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are not transferable. As a result, several companies are moving toward web-centric products be-

cause websites are cross-platform. However, the problems with websites are that they cannot work

offline, do not support instant push notifications, and lack native UI like mobile apps or desktop

software.

To solve these limitations, the service worker is introduced with the capabilities to intercept net-

work traffic (to provide a cached response when offline) and to be reactivated at any time (to display

spontaneous push messages). The service worker (SW) is essentially a JavaScript file that runs in a

special web environment, known as the service worker context, as part of the background thread of

a browser. This background thread runs separately from the web page’s rendering thread (known

as the document context) and the browser interface, thus service workers could be reactivated even

when the browser is closed. When a website registers a service worker, its control covers all pages

and resources loaded that originate from the same origin. For example, suppose example.com

registers a service worker, the service worker can control example.com/pageA.html. Un-

der a proper setting, if pageA.html tries to fetch third-party.com/resources then the re-

sources can also be under the service worker’s control. These unique features from service workers

enable the appification of websites so that they can provide web users an experience similar to that

of using a mobile app or desktop software. As a result, I will also refer to SW-enabled websites as

appified websites.

As a service worker runs in a unique execution context and provides several unique fea-

tures, it is gaining attention from the research community. Lee et al.[1] were the first to dis-

cuss how attackers can abuse malicious service workers to run a crypto-mining script. In this

attack, Lee showed that by periodically sending push messages to reactivate the malicious ser-

vice worker, the attackers can make a profit from using the client’s resource to mine crypto-

currency. Similarly, Papadopoulos et al. [2] improved Lee’s proposed attack by utilizing the

background synchronization API, which can reactivate the malicious service worker automati-

cally. Because the background synchronization API does not produce push messages like Lee’s

attack, this attack was considered more stealthy. In another type of attack, Watanabe et al. [3]
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discovered that re-hosted web services (i.e., web translation and web proxy) are vulnerable to

web hijacking attacks. Specifically, all re-hosted websites share the same origin (i.e., https:

//rehost.com?target=example.com), which can be controlled by a single malicious

service worker registered for the domain rehost.com. Once the attackers register the mali-

cious service worker for a victim’s client accessing the re-hosted web service, all different origins

re-hosted by the service will be hijacked by the attackers.

Existing studies on service workers have two elements in common. First, they often explored

the security impacts when attackers register or start a malicious service worker in a victim’s client.

However, such a scenario may not be as practical because service workers cannot run indefinitely.

For the attacker to take full advantage of the malicious service worker, the victim has to keep

visiting the malicious website (or the attackers must periodically reactivate the malicious service

worker as discussed by Lee and Papadopoulos). Second, they only discussed security threats but

never explored the potential of using service workers to enhance the security of websites.

1.2 Research Challenges and Goals

In this dissertation, I intend to explore two research directions that were not discussed in pre-

vious work. The goals of this study are as follows:

(G1): I want to show that despite the security considerations of service workers discussed in the

W3C specifications1, benign website’s service workers can be compromised and leveraged.

This assumption is more generalized than previous work in two aspects. First, Lee and

Papadopoulos’s assumptions only work when the victim visits a malicious website, and the

impact is simply the victim’s computational resources being utilized illegitimately. On the

other hand, compromising a benign service worker means the attackers can fully control

the benign website. The impact of such attacks is at least as potent as persistent Cross-

site scripting attacks, which often lead to user accounts or sensitive information (i.e., log-in

credentials) being stolen. Second, the attack discussed by Watanabe only works in re-hosted

web services, not in any vulnerable benign website.
1https://www.w3.org/TR/service-workers-1/
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Table 1.1: Summary of Service Worker Attack Surfaces and Consequences

Attack Surface Surface Type Attack Type Consequences

S1. SW Registration Lifecycle SW-XSS Persistent code execution, sensitive information leakage, phishing attack, etc.
S2. IndexedDB Communication Channel SW-XSS Persistent code execution, sensitive information leakage, phishing attack, etc.
S3. Push Message Communication Channel Push Hijacking Information leakage such as user locations.
S4. Cache Communication Channel Side-Channel Information leakage such as user browsing history.
S5. postMessage Communication Channel XSS Code execution, sensitive information leakage, phishing attack, etc.

(G2): I want to patch the security flaws in service workers and show that the service worker can

be utilized by web developers to deploy security appliances to prevent client-side web at-

tacks. Generally, web defenses are deployed as parts of the web server [4, 5], browser ex-

tensions [6, 7, 8], browser modifications [9, 10, 11], or document context [12, 13]. However,

the service worker context is never considered despite its unique capabilities that hold sev-

eral advantages over previous methods. First, the service worker can intercept all requests

and responses, which cannot possibly be achieved by web servers without additional costs to

deploy an additional (reverse) proxy. Second, the service worker is installed automatically

when a user visits the website, unlike browser extensions that require users to manually in-

stall in order to be protected. Third, the SW context runs apart from the document context,

which hosts several scripts from different origins. Previous work showed that third-party

scripts are commonly embedded in the document context (including those that are vulnera-

ble) [14]. Once a script in the document context is compromised, all scripts including the

defense mechanisms deployed could also be rendered ineffective.

1.3 Solution Overview

In this dissertation, I divide the solutions into two major parts corresponding to each goal (G1

and G2).

For goal G1, we systematically analyze the service worker lifecycle and communication chan-

nels that it utilizes to connect with other contexts. Figure 1.1 shows the overall attack surfaces that

come with a service worker. The attacks and their consequences are summarized in Table 1.1.

Surface S1 corresponds to the service worker registration lifecycle. We analyze the registration
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Figure 1.1: An Illustration of Service Worker Attack Surfaces.

process of service workers and discover that attackers can utilize URL search parameters spec-

ified in the SW’s register API to compromise the service worker. We term this attack Service

Worker Cross-Site Scripting (SW-XSS). To measure the prevalence of SW-XSS vulnerability, we

implement a web crawler to collect service worker files and parameters registered by the top 100K

appified websites (based on Tranco ranking [15]). Next, we develop a dynamic taint analysis tool,

SW-Scanner, to detect SW-XSS vulnerability in appified websites. SW-Scanner taints the SW

registration API parameters and leverages forced execution to improve the code coverage of our

scanner.

Surfaces S2 and S3 correspond to the communication channels between the service worker and

the main web page. Our manual investigation shows that there are four channels (postMessage,

IndexedDB, push notification, and Cache) that can be used to communicate with a service worker.

However, Cache and postMessage are studied by previous work [16, 17], thus we focus on the

remaining two channels: IndexedDB and push notification. To this end, we extend the Chromium

Taint Tracking project [11] to also taint IndexedDB input/output and collect push subscription
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information during the analysis. The extended tool identifies potential data flows that can reach

inside the secure service worker context.

For goal G2, we propose a platform for developers to implement security appliances in the

service worker. We refer to the framework as SWAPP (Service Worker APlication Platform).

SWAPP is implemented as a JS library for a service worker. Because the service worker context can

be vulnerable through the registration and communication APIs (S1-S5), we enhance the security

of service workers using SWAPP. Specifically, we use SWAPP to instrument code to regulate the

APIs related to S1-S5. Furthermore, SWAPP provides development interfaces to also implement

security apps that can prevent multiple types of web attacks.

1.4 Dissertation Contributions and Organization

In summary, this dissertation has three contributions.

(1) We analyze the service worker registration process and identify a new type of web attack,

which we term SW-XSS (Service Worker Cross-Site Scripting). We implement a dynamic taint

analysis tool, SW-Scanner, and identify SW-XSS vulnerabilities in the wild. The result shows

SW-Scanner can identify 40 vulnerable websites that attackers can fully take control of via the

SW-XSS attacks. (Chapter 3).

(2) We analyze the communication channels between the service worker context and the main

page. We find two channels that can allow attackers to manipulate the secure service worker con-

text: IndexedDB and Push APIs. We extend a taint tracking tool to identify potential vulnerabilities

of these two channels in the wild. The result shows that the extended taint tracking tool can identify

200 vulnerable websites with 1.75M user visits per month. (Chapter 4).

(3) We propose a security application development framework utilizing a service worker, SWAPP

(Service Worker APplication Platform). We show that SWAPP can mitigate attacks against the five

attack surfaces S1-S5 and be used to implement various types of web defenses with low cost and

high programmability. Specifically, there are four web defenses that we develop as examples,

which can prevent XSS attacks, side-channel attacks, data leakage, and Autofill abusing attacks.

(Chapter 5).
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2. BACKGROUND AND RELATED WORK

2.1 Background

In the early stage of web development, a single processor’s thread was used to handle all the

needs of a website, such as handling UI events and manipulating the DOM. However, modern

websites offer rich functionalities which require running several tasks simultaneously, such as

processing a large amount of data while keeping the UI responsive. For such needs, a single thread

was not enough to ensure a smooth web browsing experience for users. This led to the development

of web workers to handle concurrent tasks. Ultimately, a web worker is JavaScript code that runs

in a different thread to handle delegated concurrent tasks that do not require user interaction.

A service worker is a type of web worker. It runs in an event-based manner in a background

thread that is separated from the main web page. Unlike other types of web workers, the service

worker contains a set of unique features as shown in Table 2.1. A service worker supports two

core features: offline usage and instant push notifications. As a result, a service worker can modify

HTTP requests/responses of the corresponding website to serve an appropriate web page when the

network is offline. Furthermore, it can be activated any time, regardless of whether the main page

is open, to instantly display a push message that may arrive spontaneously. Additionally, once

registered, a service worker can persist across sessions. These are the unique traits of a service

worker as compared to other web workers.

2.1.1 Service Worker Lifecycle

For a website to utilize a service worker, it has to first fully operate securely in HTTPS. Then,

the website can call the navigator.serviceWorker.register API to register a service worker. This

API accepts two parameters: the file path of a service worker and the scope that the service worker

can control. The first parameter is required, but the second parameter is optional. When the scope

parameter is not provided, the default scope is the current path, allowing the registered service

worker to control HTTP traffic of web pages under the current path. Once the register API is
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Table 2.1: A List of Service Worker Events.

Event Dispatch Condition

install A service worker is installed
activate A service worker is activated
fetch A network request is issued
push Receive a notification
notificationclick A notification is click
notificationclose A notification is closed
sync Network is available
canmakepayment A payment request can be handled
paymentrequest A payment is requested
message Receive a postMessage
messageerror Cannot receive a postMessage

called, the browser will download, parse, and execute the specified service worker file. If the file

is new or has changed from the previous version, the browser will install the new service worker.

Otherwise, the browser will simply reactivate and return the current service worker. A successfully

registered service worker will go through the install and activate lifecycle events. We illustrate the

installation process in Figure 2.1. Note that in some cases, the website can install itself as a mobile

app, which is also called Progressive Web App (PWA). This only happens when a Manifest file,

which is the PWA metadata, is also provided.

Install. This event only occurs once per lifecycle during its initial execution. A website can add

the install event listener to handle this event and use this opportunity to execute any preliminary

tasks such as caching resources. When the browser is installing a new service worker, it allows

event handlers to be added to the service worker. These event handlers include fetch, push, and

message, which can be used to control HTTP traffic, handle push messages, and communicate

through the postMessage API respectively.

Activate. This event is dispatched when the installed service worker is activated and becomes

fully functional. Once a service worker is activated, its event handlers will be ready to handle the

corresponding events. The activated service worker can operate until it is put into idle. When its

main page is closed, the service worker will be put idle within a short period of time (usually less
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navigator.serviceWorker.register(‘sw.js’)

self.addEventListener(‘fetch’, function(…));

self.addEventListener(‘push’, function(…));

*Add to Home

Offline Usage

Push Notification gcm_sender_id

Manifest

*name, 
start_url, 

icons

Service Worker Context

Figure 2.1: Service worker Installation Process.

than a minute). All ongoing tasks will be frozen until an event such as a push message’s arrival is

dispatched, and then the service worker will be activated again.

2.1.2 Service Worker Communication Channels

There are four communication channels (postMessage, Cache, IndexedDB, and push message)

between the document and SW contexts.

postMessage. This communication channel is the most direct method. It allows communi-

cation to flow between the document and SW contexts and also between different iFrames. As

studied by Guan et al. [18] and Son et al. [17], this communication channel can be leveraged by

attackers to attack iframes, in which the same techniques can be applicable to the SW context. The

attackers can also use this channel as a means to communicate with the malicious code inside the

service worker that is established through a different channel (i.e., IndexedDB). While we do not
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identify novel attacks utilizing postMessage, we take the lessons learned from previous attacks and

provide an enhanced postMessage API in our proposed framework SWAPP’s Message Manager

module.

Cache. The Cache is shared by both the document and SW contexts to provide offline usage to

an appified website. This channel can be used by attackers, i.e., to determine the state of the victim

through response timings [16]. Generally, the service worker stores static assets in the Cache

and the stored assets will be loaded in the document context to improve performance or support

offline access. However, the difference in loading time between cached and non-cached resources

can be used to infer a user’s browsing history. Therefore, we take this observation and develop a

countermeasure as a SWAPP app, Cache Guard (further discussed in Section 5.5.1).

IndexedDB. The IndexedDB is storage that works asynchronously, thus can be used inside

the SW context, unlike the sessionStorage and localStorage APIs. As it is origin-oriented (deter-

mined by the protocol/host/port), it is protected from another website’s access. Nevertheless, it has

no defense mechanisms for service workers against untrusted scripts embedded in the document

context. The document and SW contexts may be executed in isolation, but the IndexedDB has

shared storage spaces that can be the weak link to let temporary XSS attackers manipulate criti-

cal program states or the variables of service workers. For instance, it is possible for attackers to

completely compromise the benign service worker if the data fetched from the IndexedDB is used

inside a sensitive function like importScripts. Once compromised, the service worker can be used

by the attackers to extend the initial attack such as to bypass certain client-side defenses or turn a

temporary compromised session into a permanent one. We illustrate a practical attack using the

IndexedDB in a real-world case study in Section 4.2.

Push message. Notifications shown in appified websites closely resemble native app push

messages, but they are handled by the browser (e.g., Chrome) instead of the operating system (e.g.,

Android). For a website to provide push notifications, it must ask for a user’s permission before

subscribing the user through a specific push subscription protocol. Generally, the subscription

protocol and the website’s code to handle push messages are provided through third-party services.
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We find that such practice can lead to user privacy leakage, especially leaking the user locations as

discussed later in Section 4.3.

2.1.3 Service Worker Security

As a service worker contains unique privileges that other contexts do not have, it is designed

with security as one of its priorities. Naturally, an attacker cannot easily compromise a benign

service worker due to the service worker’s built-in safeguards. Here we discuss the built-in security

that an attacker could face while targeting a benign service worker and how the attacker may

circumvent the corresponding protections.

First-party only registration. A browser only allows a first-party file to be registered as

a service worker. This ensures third-party scripts embedded in the document context will not

register their own script as a service worker. However, it does not prevent the registered service

worker from importing an additional script from an external domain through the importScripts API.

Therefore, this API can still create an opportunity for an attacker to launch an SW-XSS attack as

we later discuss in Chapter 3.

Order of execution. A service worker runs mostly in an event-based environment, thus the

privileges are provided in the form of events that can be handled. For instance, the fetch event

is used to handle network traffic, and the push event is used to handle push messages. The list

of all events currently supported by service workers is shown in Table 2.1. Most of these event

handlers can only be added (using the addEventListener API) during the install lifecycle. Once the

installation is finished, the browser will deny any attempt to register a new event listener. Similarly,

an event (except the message event) cannot have more than one listener attached to it. Therefore,

the goal of attackers is to add event handlers before the legitimate code adds its own handlers.

When an attacker fails to add an event listener, the impact of the attack is greatly limited.

The injected malicious code would not gain any privileges and it will only get executed when

the service worker is activated (i.e., when the website itself is visited), which is no different than

compromising the document context. In this scenario, to indirectly influence the handler, the

malicious code could still try overriding existing functions inside the service worker that will be
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called by an event handler.

While the SW-XSS attack heavily relies on the order of execution of the malicious code, we

find that it is not difficult to launch an attack in practice. As we will later show in Section 3.4.3,

websites with service workers often add event listeners at a later stage after having imported addi-

tional scripts. This action of importing additional scripts is actually the root cause of the SW-XSS

vulnerability. As a result, the current trend in how websites implement their service workers sur-

prisingly favors the SW-XSS attackers.

Service worker’s freshness. Generally, a web browser will constantly check a registered ser-

vice worker and compare it to the hosted service worker file to make sure the service worker is

up-to-date. When there is a different version available (i.e., a byte difference between the files is

detected), the old service worker will be replaced. Therefore, an attacker who may have hijacked

the old service worker will lose control of it.

Although this security mechanism can theoretically help prevent an attacker from keeping con-

trol of a hijacked service worker for a long period of time, there are two reasons why it is insuffi-

cient in practice. First, this check of freshness does not include the imported files. Even when an

attacker manipulates or replaces an imported file, the browser will not replace the service worker

as long as the service worker file itself does not change. Second, websites may not update the

service worker as often as expected. As we later show in Section 3.4.4, our measurement indicates

most websites are stale and rarely update their service workers in practice. This provides attackers

an opportunity to circumvent this safeguard and compromise a benign service worker.

2.2 Cross-Site Scripting Attack

Cross-site scripting or XSS attack is one of the most common types of web attacks due to the

simplicity with which it can be launched (e.g., requires minimal interaction with the victim) and

its immediate impact. As a result, several forms of XSS attacks and the corresponding counter-

measures were proposed.

Typically, XSS attacks are a type of code injection generally in the form of client-side scripts

(e.g., JavaScript), which come from a malicious cross-domain source. The XSS attackers exploit a
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flaw that allows inputs, usually in the form of URL parameters, to reach a sensitive function (such

as eval) without proper sanitization. There are three common types of XSS.

Stored-XSS. An attacker crafts and navigates to a URL with a parameter that will get stored

in a server database. The parameter, in the form of malicious JavaScript code, may normally be

represented as a message in a forum or the description of a user’s public profile. When a victim

visits the page with the malicious code, the code can get executed in the victim’s browser, allowing

the attacker to steal sensitive information from the victim.

Reflected-XSS. An attacker lures or redirects a victim to visit a URL with a malicious parame-

ter, which will then get forwarded to the corresponding web server. In this case, the parameter does

not get stored, but it is immediately reflected (or echo-ed) back to the victim and gets executed in

the victim’s browser.

DOM-XSS. Similar to Reflected-XSS, an attacker first lures or redirects a victim to visit a ma-

licious URL. However, the specified parameter will not get forwarded to the corresponding server,

and the attack occurs entirely on the client-side. A prime example of DOM-XSS vulnerability is

when a website reads its URL (using document.location) and writes the URL parameters onto its

page (i.e., using document.write) without proper sanitization.

2.3 Existing Attacks on Service Worker

The security of service workers is an emerging research topic that recent researchers have

discussed. Lee et al. [1] and Papadopoulos et al. [2] demonstrated how a malicious service worker

can be utilized by attackers to run malicious background tasks (i.e., crypto-currency mining or

botnet client). Watanabe et al. discussed how a malicious service worker can be injected into a

benign re-hosted website [3]. Karami et al. [16] and Squarcina et al. [19] discussed how attackers

can leverage the cache API, which is supported in the service worker, to leak user privacy or

escalate the initial XSS attack. These prior studies tried to leverage or manipulate service workers

for malicious purposes. Our work is orthogonal to them as we take the lessons learned to enhance

the security of service workers and demonstrate how service workers can become a unified platform

to provide security for websites.
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2.4 Existing Defenses Against Web Client-Side Attacks

We categorize defense techniques into three categories based on how the proposed defenses

can be deployed.

Browser-Centric solutions require browser modifications to implement a defense mechanism.

This type of defense is the most robust as it runs in the lowest level, the browser code. Bypassing

browser-centric defenses usually implies the attackers can tamper with the browser’s binary, or the

defense’s design has a critical flaw. Once the proposed defense is acknowledged in the community,

it may be put into the web standard such as in the case of CSP [20].

Nevertheless, the limitation of browser-centric defenses is that there is a significant time lag

before a proposed solution becomes official, and until then, it is difficult for the prototype to be

widely deployed. For instance, autofilling hidden fields in websites was first reported to Chromium

as early as January 13th, 2015 [21] with a proof of concept attack shown two years later [22]. Since

then, Chrome has constantly improved its autofill security such as disabling autofill insecure forms

in Chrome 87 (October 2020) or showing explicit prompts when autofilling an address in Chrome

95 (October 2021). It could take years before a security feature is developed, tested, and deployed.

Considering that the web is fast progressive, new attacks may already evolve into a different variant

that is more resistant to the proposed solution. Even when a new feature has been supported, not

all users will use the latest version of their browsers, which further delays the deployment of

these features. Therefore, although browser-centric defenses are robust, they are too rigid for the

current web development. Our proposed platform, SWAPP (discuss in Chapter 5), addresses these

limitations by allowing developers to deploy new prototypes without being officially integrated

into the web standard to keep up with new attacks.

User-Centric solutions usually take the form of browser extensions that users can manually

install to provide protection. For instance, Schwarz et al. proposed JSZero [6] to help prevent

micro-architectural side-channel attacks. A more popular example of a user-centric solution is

AdBlocker, which can prevent unwanted advertisements. Such user-centric defenses are usually

easier to deploy than browser-centric solutions, i.e., installing an AdBlock extension only takes a
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few clicks. However, it is unclear whether the prototype, developed as a browser extension, will

be widely deployed by users. For instance, even Adblocker, one of the most common browser

extensions, is reportedly installed in less than 50% of clients [23]. There is at least another half

of the population that is not used to (or decide not to) utilizing browser extensions. This may also

apply to any other user-centric defenses in general.

Additionally, users are known to be the Achilles heels in security. As reported by Akhawe et

al. [24], users may even ignore security warnings such as the SSL error. Therefore, web developers

should only treat user-centric solutions as optional when considering the security of web users.

Because a service worker is automatically installed by default during a user visit, we propose

SWAPP as a service worker library as it is more controllable by web developers and reachable to

the user clients. We find that more than 95% of running browsers support service workers [25].

Server-Centric solutions are deployed by web developers at the back-end server, as a proxy,

or as parts of the websites. Depending on where a server-centric defense is deployed, there can be

limitations. For solutions that run in the server like network firewall [5, 26], they lack the context

of the client at run-time, hence they may not detect an attack that occurs exclusively on the client.

Solutions that are deployed as a proxy also require additional infrastructures, which can incur

additional cost and complexity [27, 28]. On the other hand, client-side defenses that run in the

document context such as XSS filters [12, 13] share the execution context with attackers. This put

them at risk of getting bypassed or manipulated at run-time [29]. Therefore, they are alternatives

proposed in the form of defensive JS [30]. Nonetheless, defensive JS solutions may require major

changes to the legacy code. SWAPP, on the other hand, does not require many changes to the

legacy code compared to existing methods.
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3. SW-XSS: SERVICE WORKER CROSS-SITE SCRIPTING ATTACK*

As a service worker provides such unique functionalities and execution environment, its secu-

rity is critical. In this study, we systematically analyze the service worker lifecycle. Generally,

web browsers enforce several rules to ensure a service worker will be safe from outside tampering.

Despite existing safeguards, we find that many websites introduce a questionable practices during

the installation process that can jeopardize the security of a service worker.

These websites introduce a questionable programming practices and break the security as-

sumptions in favor of configurability and flexibility of their service workers. They usually install

a service worker with URL search parameters as internal configurations, which are blindly trusted

inside the service worker. When a malicious parameter is fed and reaches a sensitive function, it

can allow an attacker to execute a cross-site script and compromise the service worker. We term

this type of vulnerability as Service Worker Cross-Site Scripting (SW-XSS). Unlike other types of

XSS, SW-XSS attackers do not necessarily leverage a web page’s vulnerable parameters. Instead,

they target the vulnerable parameters of a service worker and gain access to extra capabilities from

the service worker that are not available to other XSS attackers.

In summary, we discuss the motivation of the attackers to launch SW-XSS attacks and the

consequences. Then, we demonstrate how SW-XSS vulnerability can occur in appified websites.

To assess the real-world security impact, we propose and develop a tool called SW-Scanner and use

it to analyze top websites in the wild. Our findings reveal a worrisome trend. In total, SW-Scanner

finds 40 websites vulnerable to this attack including several popular and high-ranking websites.

We estimate the number of monthly visitors to the vulnerable websites to be up to 300M users. We

report the vulnerabilities to all affected websites. Finally, we discuss potential defense solutions to

mitigate the SW-XSS vulnerability.

* Reprinted with permission from “Security Study of Service Worker Cross-Site Scripting” by Phakpoom Chin-
prutthiwong, Raj Vardhan, Guangliang Yang, Guofei Gu, 2020. The Proceedings of 36th Annual Computer Security
Applications Conference (ACSAC ’20), Copyright 2020 by Chinprutthiwong et al., publication rights licensed to
ACM.
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Figure 3.1: An illustration of SW-XSS attack threat model

3.1 Threat Model

Generally, web attacks consider two separate contexts of client and server. However, as shown

in Figure 3.1, we extend the web attack model and divide the client-side into two contexts: docu-

ment context and service worker context. Document context can be regarded as the usual scope of

the client-side in a traditional web attacker’s threat model, which covers the main page’s execution

context or the DOM. The service worker context, which was not accounted for in the previous

literature, can be regarded in a similar manner to the server-side in a traditional web attack model,

where an attacker cannot directly tamper with it but can still leverage a vulnerability in the service

worker context to compromise it. A service worker provides several unique functionalities that

are not available in other contexts, thereby making it a new target for attackers. In this attack, we

consider two types of attackers which we term weak attackers and strong attackers.

3.1.1 Weak Attackers

represent a threat model consistent with the existing Web attackers presented in any typical

XSS attack. This type of attacker can craft a URL that exploits certain vulnerable code in the

target website. When a victim navigates to the URL or visits a malicious website that includes

an iFrame pointing to the URL, the victim’s service worker will be immediately compromised.

The attackers can use the service worker’s fetch event to inject malicious code into the document

context and carry out malicious tasks that any typical XSS attacker can perform.
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The most prominent aspect of the weak attackers model is that a service worker creates a new

attack vector in the form of a new sensitive function called navigator.serviceWorker.register. This

function plays an important role in the SW-XSS attack as it can potentially allow URL param-

eters to pass into the service worker, which can then be used to inject malicious code back into

the document context. Therefore, the unsafe usage of this function can at least lead to similar

consequences as other sensitive functions such as document.write or innerHTML utilized by a

DOM-XSS attacker. To the best of our knowledge, we are the first to identify the service worker’s

register API as a sensitive function.

Not only can a service worker opens a new attack vector for launching an XSS attack, but it

can also provide several unique functionalities that can be leveraged by an attacker. For a weak

attacker, these features are a bonus that can be used to escalate the initial attack, but they are the

main goal for a strong attacker. Therefore, we will explore these functionalities while discussing

the motivation for a strong attacker.

3.1.2 Strong Attackers

are present in the form of JavaScript code executing in the document context. This type of

attacker has access to document context’s other unprotected scripts and APIs, thus they can already

launch a wide range of attacks such as cookie stealing, phishing, etc. Their goal is to infect and take

control of the presumably secure service worker to obtain additional capabilities from the service

worker context. Such attackers can still greatly benefit from compromising a service worker, given

that, as stated by the W3C service worker’s security consideration, service workers create the

opportunity for a bad actor to turn a bad day into a bad eternity.1

As a strong attacker already resides in the document context, the motivation is different from a

weak attacker’s. A strong attacker mainly wants to compromise a benign service worker to utilize

its features to escalate or strengthen the initial attack. We discuss the features unique to the service

worker context and how an attacker may utilize them as follows.

Network traffic interception. Unlike the document context, a service worker has access to the
1https://www.w3.org/TR/service-workers/#security-considerations
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network traffic of the website. It can intercept network traffic of the files under its scope and modify

any HTTP header and content. This type of interception can be used to inject malicious content,

and it is not subjected to the monitoring or security enforcement of existing defenses. For example,

when a malicious third-party script in the document context is prohibited from modifying other

DOM elements (e.g., by other proposed defenses that limit the access of third-party origins [31,

32]), it can use the service worker to directly modify the web page’s DOM content. Therefore, an

attacker can potentially use a compromised service worker to circumvent certain types of defenses

in the document context and execute the actual payload.

Persistent across sessions. Once successfully registered, the service worker’s content (e.g.,

event listeners) will persist until a newer service worker replaces the old one. Similarly, a malicious

payload stored in a service worker can last across sessions. An attacker can use this capability in

conjunction with network traffic manipulation to fully take control of the target website for an

extended period of time. This can especially benefit a temporary strong attacker (i.e., in the case

of reflected XSS attacks) as she can turn the attack into a permanent one by hijacking the service

worker.

Instant push notification. One feature of a service worker is that it allows a service provider

(or an attacker) to remotely activate a push event and display a push message at any time regardless

of whether the browser is open. This feature brings about two advantages for an SW-XSS attacker.

First, the attacker is not required to wait for a victim to visit the website on her own accord to launch

a phishing attack. The attacker can initiate the attack at any time through a push message. Second,

the push message’s sender is shown as coming from the website, which is normally a legitimate

website. Therefore, the phishing message will appear more realistic compared to a message that

comes from a different and unknown website.

Nevertheless, both types of attackers share an important requirement. The target service worker

must use URL search parameters inside a sensitive function without proper sanitization during the

registration process, allowing code execution inside the service worker. This basis defines what we

consider a vulnerability throughout this section.
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3.2 SW-XSS: Service Worker Cross-Site Scripting Attack

Despite the built-in security mechanisms of the service worker, it is possible for an attacker to

compromise a benign service worker. Due to a bad practice followed by a number of SW-enabled

websites, an attacker can leverage it to import an arbitrary script into the target service worker.

Bad practice in service worker registration. When registering a service worker, a website can

specify two parameters: a service worker’s path and scope. The path specified can forward URL

search parameters into the installation. For instance, if a website registers ‘sw.js?userid=bob’ as the

path, the service worker’s URL will become ‘https://example.com/sw.js?userid=

bob’. This search parameter is accessible through the self.location API from the service worker

context (equivalent to the window.location in the document context). Such practice is becoming

popular and frequently used by websites as a way to correctly initialize service workers based on

visiting users. This is due to the limitation of service workers in which they cannot directly access

the document context information, causing websites to utilize search parameters in the service

worker registration process to forward necessary data.

Typically, HTTP GET is a commonly used method for websites to make a request to a server.

It is not too surprising that a website would also utilize URL search parameters to communicate

with its service worker. However, for web servers to blindly trust information sent through the

parameters, they face associated risks that the parameters may be maliciously crafted as studied by

Saxena et al. [33] and Mendoza et al [34]. Similarly, we observe that service workers encounter the

same issue considering that the search parameters may originate from an untrusted or vulnerable

source in the document context, which is not uncommon in practice [35, 14].

Cross-site script injection in service worker. Although using URL search parameters in

a service worker does not necessarily lead to code execution in the service worker context, we

find that many websites use the parameters in sensitive functions. In the following example, we

demonstrate an SW-XSS attack using a real-world sports website with more than 50 million visits

each month. We refer to the website in this example as vulnerable.com.

Listing 3.1 shows the vulnerable HTML page of vulnerable.com and its corresponding service
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worker. We can observe that vulnerable.com hosts a vulnerable page called sw.html. At lines (1-5),

sw.html adds the load event, which will be executed upon page load. This event handler reads and

directly forwards the whole URL parameters into the register API. Then, at lines (7-12), the service

worker will read the parameters from its URL, extract a specific parameter called resourceHost,

and directly uses it in the importScripts API. Throughout the whole process, the parameters from

the original HTML page can reach the importScripts API, which is a sensitive function, without

any sanitization. This kind of practice is questionable. Unfortunately, we find that it exists on

several websites including high-profile websites such as this sports website.

1 <sw.html>

2 window.addEventListener("load", function() {

3 navigator.serviceWorker.register("/sw.js"

4 +location.search);

5 });

6

7 <sw.js>

8 (function() {

9 self.param = parseParams(location.search);

10 var host = self.param.resourceHost;

11 self.importScripts(host+"/sw_fn.js");

12 }())

Listing 3.1: A simplified code from a vulnerable HTML page and service worker code allowing

malicious code injection from web attackers

Based on this kind of practice, an attacker can leverage it to launch an SW-XSS attack. Figure

3.2 illustrates the attack on vulnerable.com. First, an attacker needs to make the victim’s browser

visit vulnerable.com with exploitable URL search parameters. For example, the attacker can

craft a URL as ‘https://vulnerable.com/sw.html?resourceHost=attacker.

com’ and either tricks the victim into clicking the URL or includes an iFrame to the URL in an

attacker-controlled website. By visiting this URL, the victim’s browser will automatically regis-

ter ‘https://vulnerable.com/sw.js?resourceHost=attacker.com’ as vulner-

able.com service worker. Consequently, the service worker will extract the parameter and im-

port ‘attacker.com/sw_fn.js’ into the service worker context. The attacker can host the
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Figure 3.2: A screenshot of an SW-XSS attack targeting vulnerable.com.

sw_fn.js in her own domain to import event listeners into the service worker and take control of

the website.

After the attacker successfully injects malicious code into the target service worker, she can

register for any event handler inside the service worker context. The most important event that the

attacker needs to focus on to fully take advantage of the service worker’s capabilities is the fetch

event. A fetch event is generated for every resource request. The fetch event handler has access

to the request’s HTTP headers, which it can freely modify. More importantly, the handler also

has access to the corresponding responses and can easily modify or replace their HTTP headers or

bodies.

By using the fetch event handler, the attacker can inject a malicious payload into the document

context. The malicious payload is usually for stealing cookie, launching a phishing attack, or

performing any task normally done in a typical XSS attack. As shown in Figure 3.2, the attacker

can easily use the fetch event to modify a betting page of vulnerable.com to launch a phishing

attack. When the victims click on the link, they will be redirected to another phishing page that

can steal sensitive data, especially payment information.

It is worth noting that during the whole process, the victims may not even realize that they are
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under attack. Because service worker registration does not require any permission from users and

occurs silently in the background, when the attacker registers a malicious service worker inside a

benign website, especially through an iFrame, the victims are given no visual cues. Additionally,

even after the victims close the browser, the malicious service worker can stealthily infect the vic-

tims for as long as vulnerable.com does not update the service worker file or the victims manually

remove the service worker.

SW-XSS in comparison with existing XSS. Although SW-XSS shares some similarities with

existing XSS attacks such as DOM-XSS, there are certain differences that make the SW-XSS

novel. We highlight the main differences between this attack and the existing XSS as follows.

1. XSS entry point. In traditional XSS, an attacker normally initiates the attack by crafting a

malicious URL of a vulnerable web page, which may be in the form of HTML or PHP. We

consider such a URL as an XSS entry point. While it is true that a weak attacker can also

initiate the SW-XSS attack in a similar fashion, the actual entry point of SW-XSS comes

from the URL of the registered service worker, which is strictly a JavaScript file. A weak

attacker may be able to launch a normal XSS attack, but it does not necessarily lead to

SW-XSS if the service worker and its URL are not vulnerable.

2. XSS target. While traditional XSS can compromise a web page or other web workers, to

the best of our knowledge, we are the first to identify XSS in a service worker. Naturally, a

service worker does not have direct access to the DOM, thus it is conflicting to regard this

attack as DOM-XSS. Additionally, a service worker has unique features, such as network

manipulation, that other types of web workers or web pages do not have. Therefore, we

distinguish and regard this type of attack as SW-XSS.

3.3 SW-Scanner: Detecting SW-XSS Through Dynamic Taint Analysis

In this section, we introduce our SW-XSS detection tool, SW-Scanner. First, we discuss the

goal of SW-Scanner in detecting SW-XSS in the wild. Then, we present the design of SW-Scanner

and its implementation.
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Figure 3.3: An illustration of SW-Scanner’s pipeline.

Ultimately, the SW-XSS vulnerability stems from the unsafe usage of URL parameters in a

sensitive function inside a service worker. Therefore, to search for SW-XSS vulnerability in real-

world websites, we need to track how a service worker consumes a given URL search parameter.

To accomplish this goal, we develop SW-Scanner as a taint tracking tool that can taint the URL

search parameters of a service worker and report when a tainted value reaches a sensitive function.

Specifically, the taint source is the self.location API and the taint sinks are the importScripts,

Function, eval, setTimeout, and setInterval APIs. SW-Scanner mainly consists of two modules:

the Code Instrumenter module can add taint tracking capability onto the target script; the Code

Evaluation module acts as the controller and will execute the instrumented code and ensure that

the taint tracking runs and reports correctly.

3.3.1 Code Instrumenter Module

This module accepts a JavaScript file as an input. Then it checks the input’s validity using Ba-

bel [36], a JavaScript compiler. When the input JavaScript code is malformed, this module will use

Babel to try fixing the code before rejecting it if Babel cannot do so. After the code is validated and

normalized, the instrumenter will instrument the code to add the taint tracking capability using an

existing dynamic analysis library called Iroh [37]. Iroh uses a JavaScript parser to read the target’s

code and transforms it into an intermediate representation, which can easily locate and instrument

key locations such as the variable declaration, conditional check, or function’s enter/exit. The full

list of such locations is presented on Iroh’s Github website [38]. Once one of these predefined

locations is reached during execution, Iroh generates a corresponding event that can be handled.
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This allows SW-Scanner to instrument JavaScript code into the predefined key locations.

For the purpose of tracking URL search parameters, SW-Scanner instruments taint information

(by adding object’s properties) into the taint source. The information includes a tainted label and

a list of tainted words. For example, when a tainted string "example.com" is concatenated with

a static string "/index.html", the resulting string "example.com/index.html" will have the tainted

label and a list ["example.com"].

To correctly propagate the taint information, SW-Scanner adds hooks to the following events:

the Function and API call events, the New operator event, and the Binary operation event. In

the case of functions and API calls, when the calling object or the parameters contain a tainted

value, the hook will taint the resulting object. Similarly, when a New operator is called, SW-

Scanner checks the parameters and taints the resulting object if a parameter is tainted. For a binary

operation event, SW-Scanner will check the left and right operands and taint the result if at least

one of the operands is tainted. When a tainted value reaches a sensitive sink, SW-Scanner will log

the tainted value.

3.3.2 Code Evaluation Module

This module is developed as a website. It accepts the instrumented files as input and reports

the tainted result. The workflow of SW-Scanner follows these simple steps. First, SW-Scanner

prepares its environment to mimic that of the target website. It overrides the self.location object

and modifies all origin-related properties into the target’s origin. SW-Scanner also registers its own

service worker file using the same search parameters as the target service worker. Next, the target’s

instrumented service worker and imported files are saved in a folder, and SW-Scanner strips off all

directory hierarchy from each file’s path. By overriding the importScripts API, SW-Scanner can

redirect all fetch requests to the local copies to avoid CORS-related errors. After the environment

is set, SW-Scanner proceeds to eval the target’s instrumented service worker file inside the service

worker context. This will reenact the registration process and report the taint tracking result upon

completion.

Adding taint information can affect the execution path of the service worker because primitive
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Table 3.1: A table summary of the taint tracking analysis result.

Taint Source Taint Sink
Parameter Type Count importScripts Function

Hash 367 4 0
URL 141 80 (35) 0
Code 1 0 1

data types in JavaScript (such as String or Number) can transform into an Object when the taint

properties are added. When the service worker checks a variable’s type and finds the type is

mismatched, it can essentially alter the execution path. SW-Scanner ensures that this does not

happen by executing the target service worker twice during the analysis. For the first execution,

SW-Scanner does not add the taint information to the sources. Instead, SW-Scanner adds hooks to

path-related events such as the If-Else and Switch-Case events. When the target service worker is

eval-ed the first time, SW-Scanner records the path and the order that the target service worker has

taken. Then during the second eval-ed, SW-Scanner adds the taint information and forces the path

according to the first execution.

3.4 Evaluating SW-Scanner

In this section, we conduct an evaluation of the security impact of the SW-XSS vulnerability

in real-world websites. First, we describe the data collection process and the overall statistics of

service workers and their parameter usage on top websites. Next, we uncover the SW-XSS vulner-

abilities in the wild, present the results of SW-Scanner, and discuss the responsible disclosure of

the vulnerabilities discovered. Then, we evaluate the practicality of attackers utilizing the persis-

tency of service workers by measuring the service worker’s "freshness." Finally, we provide a case

study of a vulnerable popular shopping website.

3.4.1 Data Collection and Overall Statistics

We first crawl the top 100,000 websites, based on Tranco’s list created in December 2019 [15],

using a custom Chromium build that we slightly modify to log the service worker registration and
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importScripts API calls. We record the path, including the URL search parameters, used in these

APIs. After this step, we are left with 7,060 websites with a service worker registered.

Next, we use Puppeteer’s headless browser to revisit the websites in the list and download

the JavaScript files. Then, we use Babel, a JavaScript compiler, to check the code’s validity and

possibly fix small syntax issues. If Babel is unable to parse the files, then we consider the files

corrupted or protected from external download requests, and disregard these websites. After this

step, we are left with 6,182 websites.

From the 6,182 websites, we measure the URL search parameter usage in the registration pro-

cess. Specifically, we check the log files obtained from the data collection and analyze the service

worker’s paths. We use a regular expression to match the ‘?[key]=[value]&...’ patterns in the

path. Overall, We find that 2,525 of 6,182 websites (40.84%) specify at least one parameter in the

registration API, and each website includes 1.29 URL search parameters on average.

3.4.2 SW-XSS Vulnerabilities in the Wild

For the 2,525 websites with parameter usage in a service worker, we use SW-Scanner to iden-

tify the SW-XSS vulnerability. For the taint source, we use heuristics to further categorize the

parameter types and count the number of websites with a corresponding parameter type as shown

in Table 3.1. We originally divided parameters into six types (Hash, URL, Version, Flag, Key, and

Code), but only three types associated with at least one vulnerable website are reported here. Note

that the numbers on the Taint Source column only represent the numbers of websites with a corre-

sponding parameter type (not necessarily used in a sensitive sink). Instead, the Taint Sink column

shows the number of websites that have at least one taint flow from the taint source reaching a

corresponding sink.

We find that there are 367 websites with hashed parameters. Mostly, these parameters do not

represent sensitive information. We manually analyze a set of sample websites that utilize these

hashed variables and find that most of the samples used the variables as public API keys or a

visitor’s public information like username, which poses no immediate threat in our threat model.

Nevertheless, we find four websites reported by SW-Scanner that hash a URL path used in the
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importScripts API.

The URL type is the most dangerous as it is used mostly to interact with external sources,

and it can be manipulated to point to an attacker’s host. We find that 141 websites pass URLs

as a parameter. Although the majority of websites use them in a non-sensitive sink, there are 80

websites originally reported by SW-Scanner that use it in the importScripts API. However, some

of these reports contain parameters that cannot be leveraged by an attacker. For example, the

parameter "?target=production" used in a website reaches the importScripts API, but the string is

concatenated to a static domain, thus the attacker will not be able to import a cross-domain script

into this website. SW-Scanner performs filtering based on whether the tainted value can affect the

imported file’s origin by checking the list of tainted words. Unless the list contains a domain, the

report is removed. In total, SW-Scanner automatically removes 45 reports, leaving 35 websites.

Lastly, there is one website directly passing JavaScript code into the URL search parameters, which

we will further discuss in Section 3.4.5.

In total, SW-Scanner reports vulnerabilities in 40 websites. As our threat model assumes two

types of attackers, further categorization of these vulnerable websites is required. For each of the

40 vulnerable websites, we manually inspect its source code to find all window.location and register

API usages. When we locate a function that may allow URL search parameters to get executed as

source code or reach the service worker registration API, we try launching an XSS attack on our

client to verify the vulnerability. If the malicious URL search parameters can reach the registration

API in these vulnerable websites, we label the attack’s requirement as Weak, corresponding to the

Weak Attacker Model. Otherwise, the attack’s requirement is labeled Strong.

From the 40 vulnerable websites, 11 of them can be attacked by the Weak Attacker model, with

the highest rank being in the top 20,000 websites. We use SimilarWeb [39] to measure the number

of visitors to these websites and find that there are approximately 95M monthly visitors for the

11 websites in total. We do not claim that these visits represent vulnerable users, but any one of

these visits can be a potential target for the attackers. Figure 3.4 summarizes the number of all 40

vulnerable websites and their monthly visits based on the category of websites. The Media category
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Figure 3.4: A chart representing the number of vulnerable websites by category and monthly
visitors.

has the highest number of vulnerable websites, followed by the Shopping category. However, based

on the numbers of monthly visits, the Shopping and Sports categories may actually be the most

affected as there are 112.5 and 185 million monthly visits to the affected websites respectively.

From this result, we can see that even though the number of vulnerable websites may appear to be

low, the actual impact may affect a lot of users in practice.

3.4.3 SW-Scanner Performance

Here we discuss how we confirm the vulnerabilities reported by SW-Scanner and further ad-

dress the impact of unexplored paths in the taint analysis on the number of vulnerabilities reported.

Confirming vulnerabilities. We manually inspect the 40 reported websites to confirm the vul-

nerabilities. For each website, we use Chrome’s DevTools to inspect the target website and put a

breakpoint at the reported sink. Then, we call the register API to re-install a service worker using

a parameter that we specifically modify from the original value to point to another domain that
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we control. In the other domain, we prepare a JavaScript file that would simply add event listen-

ers. When the parameter reaches the breakpoint without its value being altered, which essentially

allows the imported file to register the event listeners, we can confirm that the website is indeed

vulnerable. From our analysis, we find that all of the 40 websites can be confirmed as vulnerable

and we do not have any false-positive reports.

Unexplored paths. It is possible that some websites had a vulnerable path to a sensitive func-

tion that was left unexplored by SW-Scanner. To study the likelihood of such cases, we randomly

select 100 websites that were not originally reported as vulnerable by SW-Scanner for further anal-

ysis. Then, for each of these websites, we use SW-Scanner to instrument instructions that can force

the exploration of all branches of the website’s service worker. SW-Scanner keeps re-executing the

service worker and tries taking different paths until all paths have been exhausted. Finally, SW-

Scanner reports websites that contain an invocation of a sensitive function, and we use Chrome’s

DevTools to manually inspect them. This entire process takes 10 minutes on an average per web-

site. Due to the time and manual effort involved, it was not feasible to inspect all the 2485 websites

that were not reported as vulnerable.

From the 100 websites, we find 81 websites with importScripts, 39 websites with eval, 66 web-

sites with setTimeout, 11 websites with setInterval, and 37 websites with Function. The numbers

are not mutually exclusive as one website may contain several sensitive functions. Our manual

analysis aided by SW-Scanner for these specific functions helped us in uncovering some interest-

ing trends in developer practices related to service workers.

For 79/81 websites with the importScripts API, we notice that the API is invoked within the

first 40 instructions of the service worker with no branch happening before the API invocation.

The other 2 websites include a packed website and an obfuscated website. Before importing any

other file, the packed website performs an unpacking process and the obfuscated website per-

forms a deobfuscation process. We reverse engineer the obfuscated website, which turns out to

be using a static key that can be recovered, and find that it has a similar structure to the packed

website. Specifically, both websites first unpack/deobfuscate the service worker, and then pro-
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ceed to invoke the importScripts within the next 40 instructions similar to the other 79 websites.

Based on such real-world observations from the 81 websites we manually inspect, we find that a

service worker execution normally follows a basic sequence of operations structured as [unpack-

/deobfuscate(optional)][short setup][import scripts][add event listeners and other functions]. The

unpacking/deobfuscation process and the short setup normally do not depend on any input param-

eter, thus their execution will always follow the same path. Based on this observed basic structure

of service worker’s execution sequence in these real-world websites, typically there would not

be an unexplored path for SW-Scanner that leads to an importScripts API. That is because such

straightforward paths to the API are easily covered by SW-Scanner.

Additionally, we manually check each instance of eval, setTimeout, setInterval, and Function

found in the 100 websites. All of the 39 websites with eval and the 37 websites with Function

use the corresponding function simply to obtain the global service worker object (e.g., by calling

(0, eval)(’this’)). Also, the setTimeout and setInterval are used safely among these websites (e.g.,

the parameter is a static function). We believe that because these APIs are well-known sensitive

functions targeted by attackers (especially DOM-XSS attackers), web developers put more empha-

sis on the safety of these APIs. This is in line with our findings as we find almost no vulnerable

websites with these APIs. In any case, when these APIs are used unsafely, SW-Scanner will be

able to detect the vulnerability as shown in one case among the 40 vulnerable websites involving

the Function API. Therefore, from our overall manual inspection of the 100 randomly selected

websites, we find that the impact caused by unexplored paths is minimal.

While this basic structure of service worker’s sequence of operations may hold today, it is

possible that service workers will evolve in the future with new functionalities added. This could in

turn make their usage more varied and thereby causing the structure to change. We plan to improve

our tool to accommodate this change in the future by adding symbolic execution capability to SW-

Scanner so that we can automatically traverse all paths and decide whether a path is vulnerable

based on the possible values of the parameters. This will significantly reduce the need for any

manual intervention while ensuring the likelihood of false negatives is low.
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Figure 3.5: A scatter plot illustrating the length between updates of service worker files based on
website ranking

3.4.4 Service Worker Freshness

Earlier, we claimed that a temporary strong attacker can benefit from the persistence of a ser-

vice worker. However, it remains questionable whether a strong attacker can actually utilize the

persistency in practice as the compromised service worker could get replaced. Therefore, we aim

to measure how often each website updates its service worker to deduce the upper bound for how

long an attacker can infect users.

We use the Internet Archive’s Wayback Machine to retrieve the old service worker files [40].

Since some websites are not archived in the Wayback machine, we cannot obtain the complete data.

In total, we can retrieve 3,166 data points from 777 websites with service workers that contain more

than one archived service worker file as illustrated in Figure 3.5. For each website, we pick the

oldest, newest, and eight randomly archived files, resulting in at most ten files per website. Finally,

we sort the files based on the timestamps and compare each file if they are different. When the
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Figure 3.6: A screenshot of a vulnerable shopping website

adjacent timestamp files are different, we approximate the update time to be the mean value of the

two timestamps and compute the length based on the update time. As a result, we find that websites

update their service worker files on average every 40 days (while the median is 20 days), and the

longest time a service worker file is not updated is 649 days. This shows a strong attacker can take

advantage of the service worker’s persistency for 40 days on average, supporting our claim that

service workers are not as "fresh" in practice.

Additionally, we find a high-profile shopping website with 50M monthly visits did not update

its service worker file from April 2018 to at least the end of 2019. During this period, we find

that this website had an XSS vulnerability reported by OpenBugBounty [41] in which the bug

was resolved after a few months. Because there is no change to the service worker file, any XSS

attack from back then could theoretically last in the victim’s machine for more than a year had the

attackers also leveraged the SW-XSS attack. This illustrates the practicality of SW-XSS as it can

be used in conjunction with other XSS attacks and further shows the importance of keeping service

workers updated.
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3.4.5 Case Study

We discuss a case study of another high-profile shopping website (Figure 3.6) with approxi-

mately 40M monthly visits that SW-Scanner reported. This website is the only vulnerable case in-

volving direct code execution through the Function API rather than indirect code execution through

the importScripts API like the majority of the vulnerable websites reported. Furthermore, this web-

site has compressed and packed its service worker file making it difficult to analyze its source code

both manually and automatically. Nevertheless, we demonstrate that SW-Scanner can effectively

discover this case despite the complexity created by the unpacking process. The partial code of the

website’s service worker is shown in Listing 3.2.

1 ...

2 function i(t) {

3 var e = /^MATCH PATTERN$/.exec(t);

4 if (!e)

5 throw new TypeError(’Err’);

6 var n, r = o()(e, 4), i = r[1], u = r[2], a = r[3];

7 c = unescape(a);

8 ...

9 n = decodeURIComponent(escape(atob(c)));

10 ...

11 return new Function(n)

12 }

13 ...

14 var a = o.value; // o is service worker’s URL

15 ...

16 f = new URL(a.uri,location);

17 ...

18 i(f.href)()

19 ...

Listing 3.2: A partial of service worker’s code of a vulnerable website showing direct code execu-

tion from URL search parameters.

Starting at line 14, the service worker obtains its URL parameters and uses them to craft a URL

object with its own origin at line 16. Afterward, the crafted URL, stored as f, is passed into the

function i(). In the function, the URL pattern is tested at line 3, but the test does not affect the
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attack in any way as it simply checks if the URL contains certain tags indicating that JavaScript

code is specified in the parameters. From lines (6-9) the code is extracted from the parameters and

returned at line 11, which later gets executed on line 18. This process happens before any event

handler is registered. Therefore, an attacker can specify JavaScript code in the service worker’s

URL parameter to register her own event handlers and hijack the service worker.

From this case study, we illustrate that SW-XSS can be found even on high-profile websites and

can occur in a complicated manner making it hard to be detected. Therefore, such problems may

be overlooked by web developers. We hope that our work will help raise awareness regarding the

importance of service worker security and provide useful insights for web developers to implement

secure service workers in the future.

3.4.6 Responsible Disclosure

We directly contacted all affected developers of the vulnerable libraries and received replies

from 7 websites, which have also fixed the problem. As not all websites have been fixed yet, all

examples and results related to a vulnerable website’s identity will be anonymized.

3.5 Countermeasures

As the main cause of SW-XSS comes from the unsafe/unsanitized usage of URL search pa-

rameters in service workers, the most natural solution is to properly check how the parameters are

used inside the service workers. Nevertheless, we notice that the reason why websites follow the

bad practice in the first place is that the service worker lacks a way to initially communicate with

other contexts while being installed. Note that the postMessage API itself cannot be accessed until

after the installation process is finished and the service worker is successfully activated. There-

fore, viable options are to restrict the URL search parameters of a service worker, provide another

way for the document context or web server to communicate with the service worker during the

installation, limit script inclusion in the SW context, and prevent the registration API from being

accessed after initial installation.

Restrict the URL search parameters of a service worker. We suggest a method involving
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the manifest file, which is normally already included in SW-enabled websites. While the worker-

src directive of the Content-Security-Policy (CSP) can limit the domains and paths that can be

registered as a service worker, our attack utilizes the parameters of the same service worker file.

According to the CSP3 specification [42, 43], the path does not include the parameters. Therefore,

this CSP directive is currently not effective (unless there is a new specification that includes URL

search parameters for source lists). In any case, we notice that the Manifest used to have the

serviceworker property that can tell the browser which service worker the developers intend to

install. Although this property has become obsolete [44], we believe that such a method could help

mitigate the SW-XSS vulnerability as the intended URL search parameters can be specified as the

service worker src property. One downside of this method is that the Manifest file is usually static,

so the web server may need to provide multiple versions of the Manifest files if the URL search

parameters need to be varied for each visitor. This leads to our second suggestion to use cookie,

which can provide more dynamic values.

Provide an alternative for service worker to instantiate with data. Even though cookie is

currently not accessible by a service worker, there is an active development of the Cookie Store

API, which allows cookie access to a service worker. This can help web servers communicate with

the service worker during the installation. For instance, the web server can specify the parameters

along with a cookie. However, an attacker in the document context could still launch an SW-XSS

attack by manipulating a service worker’s cookie. Therefore, we suggest that the service worker’s

cookie should be isolated (or at least give an option/flag) from the document’s cookie. For instance,

an additional SWOnly flag can limit access from the document context but allows the Cookie Store

API from the service worker to access it. One downside of this method is that it may require

browsers to change their implementation to additionally check the calling context of the cookie

API (whether it is from the service worker context). This could lead to additional overhead.

Limit script inclusion in SW context. Another defense option for the SW-XSS attack is to

limit script inclusion through the importScripts API. To this end, web developers can utilize the

CSP script-src directive in the service worker to specify which domain names can be imported
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inside the SW context. This can effectively prevent SW-XSS attackers from importing malicious

cross-domain files to hijack the service worker. However, there are two downsides to this solu-

tion. First, it cannot prevent SW-XSS attacks when the payload can be specified directly through

the URL search parameters because the attackers do not need to use the importScripts API. This

requires web developers to also implement a defense for URL search parameters (i.e., by using

the Manifest as we suggested) to fully prevent SW-XSS attacks. Second, CSP is not widely de-

ployed [45] and can be hard to configure correctly or can be bypassed [46]. Although specifying

the script-src for service workers is seemingly simple and effective, we cannot guarantee that it is

impossible for attackers to find a way to bypass this directive in the future.

Disallow SW registration after installation. Because most mitigation methods we discussed

require changes to the browser implementation, it may take a long time for them to be officially

supported or they may not even be picked up officially. Here, we propose another alternative

that does not need browser modification. It is possible to use our proposed framework, SWAPP,

to mitigate SW-XSS attacks. The intuition is that SW-XSS attacks occur during an installation.

Therefore, we can simply disable the register API once the service worker is installed legitimately.

SWAPP disables the registration API after SWAPP is installed in the service worker by instrument-

ing the register API. This makes further attempts to launch an attack against the service worker

impossible. While this approach requires the users to have SWAPP installed prior to an attack,

the assumption is very much practical because the service worker is automatically installed upon

user visits. The user simply has to visit the website once before an attack happens. Note that the

website can still update or replace the service worker by sending HTTP’s Clear-Site-Data header,

which will remove the instrumentation.

3.6 SW-Scanner Internet Distribution

We open-source our tool and the collected data, which can be found at https://u.tamu.

edu/sw-scanner, to support more research in this direction.
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3.7 Summary

In this chapter, we discussed a novel attack, Service Worker Cross-Site Scripting (SW-XSS),

which is a new variant of XSS attacks. Furthermore, we described our dynamic taint analysis tool,

SW-Scanner, which we developed to measure the prevalence of SW-XSS vulnerability in appified

websites. The result showed that SW-XSS is emerging with 40 websites vulnerable to this attack.

Lastly, we explored mitigation options against SW-XSS attacks.
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4. SECURITY ANALYSIS OF SERVICE WORKER COMMUNICATION CHANNELS*

In our first study (Chapter 3), we learn that despite the intrinsic security mechanisms deployed

in service workers, it is still possible to compromise or leverage a benign-but-vulnerable service

worker. In this study, we extend our security analysis from the service worker lifecycle to the

communication channels of service workers.

As discussed in Section 2.1.2, there are four communication channels. In this study, we focus

on utilizing IndexedDB and Push to leverage a benign service worker, and we discuss the security

enhancements of postMessage and Cache in the next chapter. There are two observations regarding

the IndexedDB and Push channels. First, we observe that the IndexedDB can be modified from

the document context and read inside the SW context, allowing attacker-controlled data to reach

sensitive functions. Second, the push subscription can be easily hijacked by XSS attackers as there

are no security mechanisms to verify the subscribing party. As a service worker is used to handle

the push message event, the hijacked push subscription can be used by the attackers to potentially

leverage the benign service worker. Therefore, these two channels make it lucrative for attackers

to pursue the benign service worker.

In summary, we first discuss the threat model. Then, we demonstrate the SW-XSS via In-

dexedDB and Push hijacking attacks using real-world examples. To assess the impact of these

attacks, we extend a dynamic taint analysis tool and use it to measure the prevalence of both

attacks. Our findings estimate up to 1.75M users can be affected by the Push hijacking attack.

Finally, we discuss the mitigation methods.

4.1 Threat Model

In this work, we assume that the service worker and all imported files in the service worker

are benign. Additionally, all network links in an appified website are made over HTTPS, and

* Reprinted with permission from “The Service Worker Hiding in Your Browser: The Next Web Attack Tar-
get?” by Phakpoom Chinprutthiwong, Raj Vardhan, Guangliang Yang, Yangyong Zhang, Guofei Gu, 2021. The 24th
International Symposium on Research in Attacks, Intrusions and Defenses (RAID ’21), Copyright 2021 by Chinprut-
thiwong et al., publication rights licensed to ACM.

39



example.com/index.html

SW Context

Proxy

Push
Handler

IndexedDB
APIs

Push
APIs

Embedded
Scripts

Document Context

Web Servers

Browser's background process

Figure 4.1: Appified web threat model & attack channels.

we assume the absence of network attackers. Instead, we assume the presence of XSS attackers

who utilize an XSS vulnerability in the document context to further compromise or leverage the

service worker as shown in Figure 4.1. As discussed in Chapter 3, this gives the attacker more

extended capabilities and attacking options including bypassing certain defenses and controlling

the push subscription. Such options are especially worthwhile when the website credentials are

well protected or simply do not exist. We further evaluate the practicality of this threat model in

Section 4.5.1.

4.2 IndexedDB Attack

We illustrate the SW-XSS via IndexedDB attacks using a real-world website that we found,

caused by the unsafe usage of IndexedDB inside the SW context. We show a simplified and

anonymized code snippet of this website in Listing 4.1. The website initially stores a configuration

variable inside the IndexedDB. Then its service worker will read the configuration and process it.

As shown in lines (1-5), the service worker opens an IDB instance, fetches an entry called data,

and obtains the config variable from the database. Next, at lines (6-8) the service worker reads the

url from the config variable and finally passes it to the importScripts API at line 12. This results in
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the service worker importing the JavaScript file specified by the url variable to its secure context.

By manipulating the url variable through IndexedDB, attackers can inject an arbitrary code to be

executed in the service worker.

1 const request = indexedDB.open(’db’, 1);

2 request.onsuccess = (event) => {

3 const db = event.target.result;

4 const t = db.transaction([’data’], ’readonly’)

5 const query = t.objectStore(’data’).get(’config’);

6 query.onsuccess = (event) => {

7 const data = event.target.result;

8 url = data.url;

9 var chk = "^https:\/\/(?:[^.]+\.)?example\.com\/.*$"

10 var regex = new RegExp(chk);

11 if(regex.test(url)) {

12 importScripts(url);

13 ...

Listing 4.1: An example of a vulnerable service worker

Although this website attempts to sanitize the url variable using a regular expression at lines

(9-11), we find that it is insufficient. The whole regular expression would match https://

example.com/sw.js or https://sub.example.com/sw.js, but it will not match with

https://malicious.com/.example.com/sw.js. Hence, the attackers cannot seem-

ingly include another file from a different domain inside this service worker. Nevertheless, the

regular expression can be bypassed to inject any arbitrary domain that does not belong to the exam-

ple.com’s subdomain by taking advantage of URL encoding. For example, attackers can encode the

“.” into “%2E” resulting in https://malicious%2Ecom/.example.com/sw.js. This

URL string will naturally pass the regular expression check, and more importantly, decode back

correctly by the importScripts API allowing attackers to inject a malicious file from their controlled

domain into the service worker.

Because this vulnerable code is executed before the legitimate code gets to register event han-

dlers, the attackers can initialize the fetch event handler first and elevate the initial XSS attack into

a kind of persistent Man-In-The-Middle (MITM) attack. By controlling the fetch event, which can
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inspect and modify all requests/responses of the website, the attackers naturally take full control

of the website persistently until the service worker is replaced. Although the service worker will

be replaced once a new service worker file is detected, it could take appified websites 40 days on

average to update their service workers as discussed in Section 3.4.4. Therefore, the attackers can

potentially leverage this benign service worker for a considerably long period of time.

1 let p = [Input manipulable by an attacker];

2 let t = decodeURIComponent(p);

3

4 if (new URL(t,location.href).host === location.host) {

5 ...

6 self.importScripts(t),

7 ...

8 }

Listing 4.2: An example of a robust input sanitization

Using importScripts with (non-static) parameters is not uncommon among appified websites,

and robust sanitization is crucial to ensure the security of service workers. Here, we show another

real-world example that uses importScripts with a sensitive parameter but with proper sanitization.

The code snippet in Listing 4.2 shows a shorten and generalized service worker code provided

by Akamai, a cloud service provider. In this case, the variable p (line 1) holds a value that is

manipulable by an attacker. However, this service worker reconstructs the input, obtains the origin,

and compares the input origin with its own origin in line 3 before importing the result in line 5.

Therefore, an attacker will not be able to leverage this service worker to import a cross-origin file.

As it can be difficult to thoroughly check the correctness or completeness of a regular expression,

we recommend developers use alternative approaches similar to this example instead.

4.3 Push Hijacking Attack

To use push notifications, there are 3 steps that a website must follow. First, the website must

explicitly ask for user permission to show a notification. Second, the website can then subscribe a

user to a push subscription server, i.e., the Firebase Cloud Messaging (FCM) managed by Google.

Third, if the subscription server permits the subscription request, the push credentials, including
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Figure 4.2: A screenshot from our OneSignal account page illustrating what user information can
be made accessible once subscribed.

the endpoint working in place of the address of a subscribed user, will be returned to the website.

The website can use the credentials to send push messages to the subscribed user. In the case that

the website uses a third-party push provider (e.g., OneSignal), these three steps are usually handled

by the third party. Normally, the website developers only need to embed the third-party script and

access the third-party web portal to manage subscribed users.

Nevertheless, we observe that it is possible for attackers to hijack the push subscription to

leverage a benign service worker. Corresponding to the second step, any script can initiate the

subscription and unsubscribing processes. Typically, a script can call the subscribe API, which

accepts an optional parameter (applicationServerKey). When specified, the applicationServerKey

can act as a means to identify the sender. However, there is no limitation to which key is allowed

for the website’s push subscription. Additionally, unsubscribing a user can also be done by any

script. As a result, attackers can freely call the subscribe API using their own key to hijack any

legitimate subscription. Because it is the service worker who handles push notifications, attackers

can use the hijacked push subscription to potentially leverage the benign service worker.

After attackers successfully hijack the push subscription, they can utilize it to track user lo-

cations. We observe that third-party push providers normally offer the demographic of users and

location-triggered push messages to their customers. Such features, when used legitimately, can

help improve the marketing scheme of the deploying websites. However, attackers can similarly

leverage these features to compromise a user’s location. For instance, location-triggered messages

can infer user locations, which can be as precise as in meters. Some push providers can also report

when a user last visits the website that the user is subscribed to. Such information can be used to in-
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Figure 4.3: An illustration of how attackers can leverage push subscription to track user locations.

fer the victim’s online behaviors, which can potentially reveal the victim’s daily routine. Figure 4.2

demonstrates what kind of information is possibly available to attackers if the push subscription is

hijacked. Therefore, attackers may not necessarily need to re-implement these stalkerware1-like

features and simply leverage a benign service worker that already implements them.

Here, we use a real-world example to demonstrate how attackers can leverage a benign ser-

vice worker to track user locations easily through the provided functionalities of third-party push

providers. The overview of the attack is illustrated in Figure 4.3.

Normally, an appified website can use the primitive pushManager.subscribe API to register for

push notifications. However, in practice, a large number of appified websites utilize a third-party

push library to handle push messages. As a result, we choose the most popular (based on our

measurement) third-party push library, OneSignal, as our case study. The generalized code snippet

of our appified website, which we create as a proof-of-concept, is shown in Listing 4.3.

OneSignal (and generally any push libraries) follows a similar push subscription process with

their own abstractions. At lines (1-12), our website subscribes a visitor through the init function,

specifying the appId that works in place of the applicationServerKey. The init function will then

register a service worker with the URL search parameter appId set to BENIGN_APP_ID.

To demonstrate how attackers can hijack a push subscription, we create two OneSignal ac-

counts, a benign account and an attacker account. We also enable location-triggered notifications

1Privacy-invasive malicious software or code that tracks and monitors victim’s activities, which is becoming a
worrisome problem [47, 48]
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as suggested by OneSignal [49] at lines (16-19). This sendTags function will send a visitor’s loca-

tion to OneSignal (if the visitor has previously granted the location permission). This information

can be accessed through the OneSignal account page as shown in Figure 4.2.

1 <head>

2 <script src="OneSignalSDK.js" async=""></script>

3 <script>

4 var OneSignal = window.OneSignal || [];

5 OneSignal.push(function() {

6 OneSignal.init({

7 appId: "BENIGN_APP_ID"

8 });

9 OneSignal.registerForPushNotifications();

10 });

11 </script>

12 </head>

13 <body>

14 <script>

15 //Normal Operations

16 OneSignal.sendTags({

17 latitude: latitude,

18 long: longitude

19 });

20 ...

21 //Injected by reflected XSS

22 subscription.unsubscribe();

23 serviceWorker.unregister();

24 OneSignal.init({

25 appId: "ATTACKER_APP_ID"

26 });

27 </script>

28 </body>

Listing 4.3: A generalized code snippet of our proof-of-concept website demonstrating how at-

tackers can hijack OneSignal subscription and track user’s location.

Then on lines (22-26), we assume that the code is injected through an XSS attack. First, the

code unsubscribes us from the benign account. Second, it un-registers the current service worker,

which is tied to the benign account. Third, it re-subscribes through the init API with the attacker
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account’s appId, which will automatically register a new service worker (but of the same JS file)

tied to the attacker account. These steps (though produce some errors/warnings to our console)

allow the attacker account to replace the push subscription from the benign account. As OneSignal

provides all the implementations and also an easy-to-use web portal to access the subscribed user

information, the attackers only need to run a few lines of code inside the document context to easily

track victim locations.

When we navigate through other pages of our test website or close the web browser, we find

that we are still subscribed to the attacker’s account. This is because a service worker will only

get replaced/reinstalled when a different service worker file is detected or the (un)register API is

deliberately invoked. As the attacker-bound service worker uses the same legitimate file (but with

a different appID as a URL parameter), the service worker will survive until a web page or the

victim specifically requests the browser to reinstall/remove it.

Note that the steps from lines (22-26) are tested to work on OneSignal, but the problem does

not tie to OneSignal’s implementation. The outcome would have been the same had we used a

different library or even used the native APIs, albeit the steps may be slightly different. This is be-

cause the underlying problem is with the push protocol not having any mechanism to check a list

of allowed applicationServerKey. In the case that the target website does not use a third-party push

provider, the attackers may have to implement the backend server to handle push subscriptions and

an alternative function to track geo-location instead. While this can increase the attack require-

ments, it does not completely repel persistent attackers. Nonetheless, we have notified OneSignal

and are in contact with their developers regarding this issue.

This case study demonstrates how attackers can leverage a benign service worker (implemented

by OneSignal in this case), instead of starting their own malicious service worker. The attackers

simply re-subscribe the victim using their push account to utilize the location-triggered notification

feature to track the victim. We find that a number of push providers are starting to advertise similar

features to improve user experience [50, 51] and expect that such features will be more common

in the future. In any case, further study is required to understand how many users would grant per-

46



mission for location-triggered notifications. We leave this direction to future work. Nevertheless,

if attackers can also fully hijack the service worker (i.e., through the IDB channel), then they can

directly use the compromised service worker to inject the location tracking code into the document

context to persistently track the victim’s locations.

Improving Stealthiness and Persistency. Generally, a website home page will contain the

code to check and subscribe to push notifications. As a result, even if an attacker hijacks the push

subscription, when the user revisits the website again, the malicious subscription will be replaced

with a legitimate subscription. However, there is a way for the attackers to prolong the attack.

We observe that a website can have multiple service worker registrations and multiple push

subscriptions. Specifically, each website’s path can register a unique service worker and push sub-

scription. For instance, the path /home/ can register "homesw.js" and the path /work/ can register

"worksw.js". These service workers can co-exist and work separately. The homesw.js will control

all paths under the /home/ folder. Similarly, the "worksw.js" will control /work/ sub-folders.

Based on this observation, the attacker can register a service worker and subscribe to push

notifications in a different sub-folder than the home page. Listing 4.4 shows the example attack

payload. Note that the path of a service worker can be different than the path that it is registered

to. This makes the push hijacking attack more stealthy and persistent.

1 <script>

2 navigator.serviceWorker.register(’onesignal.js?param=attackerID’, {’scope’: ’others/’});

3

4 navigator.serviceWorker.ready.then(function(reg) {

5 reg.pushManager.subscribe({

6 applicationServerKey: urlB64ToUint8Array(attacker_key)

7 });

8 });

9 </script>

Listing 4.4: An example attack payload to register a service worker in a different path and subscribe

to push notification.

47



4.4 Detecting Vulnerability Through Taint Tracking

Our extensions to further identify SW-XSS attacks via IndexedDB and Push hijacking attacks

can be divided into two components. The first component corresponds to the data collection.

Specifically, we extend the crawler discussed in Section 3.4.1. It now collects IndexedDB us-

age and push subscription metadata in addition to service worker registration information. The

IndexedDB usage statistic can be used as a heuristic to identify whether the website could be vul-

nerable to SW-XSS attacks via IndexedDB. Further taint analysis will need to be performed on

websites that show IndexedDB usage. The push subscription metadata includes a third-party li-

brary that is used to handle push subscriptions, subscription parameters, etc. This information is

used to determine the prevalence of push hijacking vulnerability.

The second component corresponds to the dynamic taint analysis. Specifically, we extend the

Chromium Taint Tracking project developed by Melicher et al [11]. It is extended to also consider

IndexedDB data flow as both a taint source and sink. Specifically, we add two additional taint

sources, IDB Get and Push message, and two additional taint sinks, IDB Put and importScripts, to

the original tool. The intuition behind this change is that considering the document context, the

IndexedDB is a taint sink because attackers can save malicious code inside the IndexedDB. On the

other hand, considering the service worker context, the IndexedDB is a taint source because the

service worker can read a malicious code from the IndexedDB and execute it in another taint sink

such as eval.

With these extensions, we revisit the 7,060 appified websites that we identified in Section 3.4.1

to collect the Push metadata. Then, we perform taint analysis on the set of websites that show signs

of IndexedDB usage.

4.5 Evaluation

In this section, we present our assessment of the security of service workers. First, corre-

sponding to our threat model, we evaluate the prevalence of XSS vulnerabilities in appified web-

sites (Section 4.5.1). Second, we assess the prevalence of the IndexedDB attack channel (Section
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Table 4.1: A table of XSS reports in appified websites.

Report type # of websites # of reports

Unpatched 934 1646
Patched 1636 3550
Onhold 169 251

Total 2739 5447

4.5.2). Last, we assess the prevalence of the push attack channel (Section 4.5.3). Note that the

attacks mostly come from design flaws and cannot be directly fixed by web developers. We have

taken appropriate measures with our best effort to notify those potentially affected parties that

could have the problems alleviated from the web developer side (i.e., IDB attacks and OneSignal).

4.5.1 XSS vulnerability in appified websites

Previous works have reported that regular websites do embed vulnerable JS libraries that are

prone to XSS attacks [45, 14, 35]. Here, we aim to evaluate whether such a trend also applies to

appified websites. To identify vulnerable JS libraries in appified websites, we use vulnerability

reports from OpenBugBounty [41], a public bug bounty platform that allows security researchers

to submit a bug report to a vulnerable website. As OpenBugBounty contains all types of vulnera-

bilities, we filter out other vulnerabilities and focus on the XSS bug reports.

We query OpenBugBounty for the bug reports of all 7,060 appified websites. The result is

shown in Table 4.1. The reports are divided into three categories: unpatched, patched, and onhold.

A report is labeled onhold for 30 days after the initial report, which also limits access to the detail

of the vulnerability to prevent other attackers from leveraging the vulnerability. The result shows

that there are 934/7,060 (13.23%) appified websites with an unpatched XSS report.

To verify if the bugs are still applicable, we manually inspect 30 of these reports. We confirm

that the reports contain a vulnerable URL that can be easily followed to attack the vulnerable web-

sites. Although the number of unpatched reports may be alarming, the majority of these websites

do not provide login sessions or payment systems (i.e., news websites or web blogs). As login
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credentials and payment information are the main targets of XSS attackers, we speculate that the

web developers simply ignore the reports since they believe the cost to fix the bug outweighs the

risks. Nevertheless, there are always associated risks even in websites that do not provide login

or payment mechanisms because now websites can be equipped with a service worker that can

provide extended capabilities for attackers to leverage. As we discussed in Section 4.3, XSS

attackers can still leverage these types of websites for other purposes such as tracking user loca-

tions. As more features are implemented into the service worker, this problem can only get worse

if appropriate protections are not implemented correspondingly. We further discuss the number

of XSS-vulnerable websites tied to each attack channel in their respective subsections, i.e., the

IndexedDB channel in Section 4.5.2 and the push channel in Section 4.5.3.

4.5.2 Prevalence of IDB attack channel

Our measurement study reported that there are 3,813 (of 7,060) websites with IDB access and

21% (828/3,813) of these websites load an IDB entry to use inside their service workers. More

importantly, there are 40 information flows that reach a sensitive sink in the SW context. We find

5 flows reach the importScripts API and 35 flows reach the setInterval API.

Confirming vulnerabilities. We manually check these 40 sensitive flows and confirm that all

5 flows (corresponding to 5 different websites) that reach the importScripts API are vulnerable. We

find that these 5 websites save a URL into the IndexedDB, and the corresponding IDB entry is read

and passed into the importScripts API. We use Chrome’s DevTools to test that when the URL is

modified to our own host, we are able to hijack the service worker of these websites. Note that our

test does not actually affect the websites as the test was done locally, in which we ourselves are the

victim. We further confirm the other 35 sensitive flows regarding the setInterval API. Fortunately,

these 35 flows are safe due to the tainted data being numerical and used solely to specify an interval

for the API.

To measure the false-negative rate, we manually inspect 60 websites. We randomly select 30

websites from the set of websites that do not have IDB access based on our tool report. Then

we randomly select another 30 websites from the set of websites that access IDB but do not con-
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Table 4.2: A list of variable types of IndexedDB entries loaded inside a service worker.

Type # Entries Examples

Bool 63 true/false

Flag 485
persistNotification
emailAuthRequired
isPushEnabled

URL 88
https://www.eazydiner.com/
https://via.batch.com/2.1.0/worker.min.js
Albertonews.com

Push Key 13
dwRH5VdycN4:APA91bEgqyRo0t9R1hW9oqwJAjLk6MUL9QNQ
7fLhMSrXxS0-MWdkZBV3tqIbfMl633itH8bakis3L6HTIOZJ51
o_tAST-ogHg1XJTBHnJvY_E3sNSz0OdJvNEgCfOg2gfya-Ely2p_Mi

ID 306
83AEAB70-31DF-2ADC-98F3-F0F365A753A1
f45438cb19044fd78277994b2231ddea
NY0C-5Skyo1ijcRfgddX_w

Title 11 Discover The Latest Fashion Trends

Numeric 101 2.2, 1.2.0, 224

Email 3 vibethemes@gmail.com

Others 92
America/Chicago
Chrome/77.0.3818.0 Safari/537.36
Sun Dec 22 2019 14:53:47 GMT-0600 (Central Standard Time)

tain a sensitive flow. We use Chrome’s DevTool to interact with these 60 websites and inspect

their source code. This process takes us approximately 15 human hours in total, which limits us

to only conducting this evaluation on a handful of websites. Overall, we find 7 websites from

the first set actually access the IDB but only after we subscribe for push notifications or create

a login account. This limitation is not specific to our tool, and previous work [11] that requires

automated web crawling similarly faced the code coverage issue. While several techniques were

proposed to improve web crawlers, efficient and exhaustive web exploration under time-bound

constraints remains a challenge, especially for rich web applications that require login creden-

tials [52]. Nonetheless, we do not find any additional sensitive flow that our tool missed from these

60 websites. Therefore, we estimate that our false-negative rate is minimal.
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Based on the 5 vulnerable websites, we notice the potential problem with the URL data type

used in the IndexedDB. Therefore, we further investigate 828 websites that load an IDB entry

inside their service worker. We use string-based heuristics to identify whether the data stored is a

URL as summarized in Table 4.2. For instance, a string with only numbers and dots is considered

numerical, a true/false string is Boolean, a string containing only alphabets is likely a flag, a string

with multiple spaces is textual or title, or a string with no spaces and special characters except

underscore or dash is likely an ID. On the other hand, the patterns of URL, Push key, or email is

more well-defined. We can use regular expressions to match these data types more narrowly.

We find that there are 88 IDB entries from 88 websites that read a URL from the IndexedDB to

use inside their service workers. We use our taint tracking tool, which is practically a web browser,

to visit and further interact with each website. We check the taint information to see if there is

any additional taint flow that can come from an unexplored path in the original analysis and use

the Chrome Devtool to inspect the service worker’s execution. Fortunately, there is no additional

vulnerable website found.

We use OpenBugBounty to query the past records of reported XSS vulnerabilities on these five

websites. We find that one website has an unpatched XSS vulnerability and three websites have

records of XSS vulnerabilities that were patched. Such XSS vulnerabilities naturally allow XSS

attackers to compromise the service worker through the IDB attack channel. In total, there are 5

appified websites that we can confirm as vulnerable (in which one is also exploitable) to the IDB

attack channel. We have notified the five websites regarding the attack, and four of them eventually

fixed the issues.

4.5.3 Prevalence of push attack channel

There are two types of push protocols: legacy and VAPID. First, the legacy protocol uses

gcm_sender_id to identify the sender. The sender ID is normally shared between users of the

same third-party library, thus we collect and measure the most common gcm_sender_id. Second,

the VAPID protocol uses the applicationServerKey to identify the sender. However, the key is

normally different between users of the same third-party library. Therefore, we identify the third-
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party library by grouping similar JavaScript files together and manually labeling them.

Legacy push protocol. Although Google has deprecated the Google Cloud Messaging (GCM),

which utilizes the legacy protocol, in April 2018, there are still 359 websites supporting the legacy

protocol. Among these websites, there are 4 popular libraries that they used to handle push no-

tifications. The libraries are Aimtell, Insider, Feedifly, and Rich as shown in Table 4.3 (right).

The websites that use these libraries are potentially vulnerable as the same gcm_sender_id may

be shared among all accounts of these public push services, which attackers can also create an

account. In the case of Youtube, its gcm_sender_id is shared within its own sub-domains, and thus

cannot be leveraged by any attackers.

VAPID push protocol. Websites that utilize the VAPID protocol are intrinsically vulnerable.

Because there is no security policy that can regulate the allowed key used in the VAPID subscrip-

tion, any third-party script can register its own key and easily hijack the victim website’s push

service. From Table 4.3 (left), the most popular VAPID push libraries are OneSignal, Izooto,

Pushowl, Firebase, and Pushly. As a result, we mark these 5 libraries for further investigation.

Considering push libraries in both the legacy and VAPID protocols, there are 9 public libraries

that may be leveraged by attackers. We further survey these libraries’ account creation process

and find that 5 libraries offer free account registration without requiring any personal identification

as shown in Table 4.4 (Free-tier). Furthermore, they offer an equivalent feature to the location-

triggered notification in their services (i.e., geo-segmenting). We regard these libraries as vulnera-

ble as attackers can easily utilize the web interfaces of these libraries to track victims.

In total, there are 993 websites that utilize these 5 push libraries. We use OpenBugBounty [41]

to search for websites with an XSS vulnerability among these 993 websites. Surprisingly, we

find 200/993 websites with an unpatched XSS vulnerability. Attackers can easily hijack the push

subscription of users who visit these websites by leveraging these XSS vulnerabilities.

We randomly select 40 websites from the 200 vulnerable websites to further verify how many

websites could be used for location tracking. Because a website often does not ask for user location

unless the user logs in or interacts more with the website, we have to manually inspect this sample
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Table 4.3: A list of five most popular VAPID push libraries (left) and a list of five most common
gcm_sender_id (right) in popular appified websites.

VAPID Count Legacy Count

OneSignal 854 71562645621[Aimtell] 28
Izooto 126 912856755471[Insider] 14
Pushowl 59 343259482357[Feedifly] 9
Firebase 37 402845223712[Youtube] 7
Pushly 34 361246025320[Rich] 4

Total 1110 Total 62

of websites and cannot automatically verify all 200 websites. We use our best effort to manually

interact with them to see whether they will ask for the location permission. For example, we try to

register an account and subscribe for push notifications (using Google translate when the website is

non-English). Eventually, there are 14/40 (35%) websites that ask for location permission. These

websites can allow attackers to utilize the location-triggered APIs to send user locations when the

push subscription is hijacked and users grant the permissions.

To estimate the number of potential victims, we use SimilarWeb [39] to get the number of

monthly visits to the 200 vulnerable websites. We find that there are over 1 billion visits in one

month. According to a report from OneSignal [53], the most popular push library in our list, around

10% of visitors would subscribe to a push service, and 5% of subscribed users would interact with

a push message. As subscribing for push notifications can be an indicator that these users are well-

engaged with the websites and may also grant the location permission, we estimate the number of

victims to be approximately 1.75M users (derived from 1 billion x 10% x 5% x 35%) per month.

Note that this number does not represent the actual vulnerable users but only an upper bound

estimation since the number of visits counts repeated users, and attackers still have to launch an

XSS attack against these users.

Nonetheless, this estimation only includes the top 5 push libraries that attackers can easily

utilize, and there are more than a thousand websites that use other libraries or implement their

own. These websites can also be targeted, but they require different steps to reproduce the same
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Table 4.4: A table of the pricing for top 7 push libraries.

Name Free tier Paid tier (per month)

OneSignal 30K (devices) $99 (unlimited)
Izooto - $85/30K (devices)
Pushowl 500 (messages) $19/10K (messages)
Firebase Unlimited -
Pushly 100 (devices) $15 (base) + 0.005/device
Aimtell - $49/10K (devices)
Feedify 10 (message) $25/3K (devices)

attack based on the detailed implementation of each push library. As we cannot manually confirm

the attack on all push libraries, we leave these websites out of our estimation.

4.6 Discussion

4.6.1 Key observation from IDB attack channel study.

Although we can only confirm 5 vulnerable websites in this study, we observe a worrying

trend regarding this attack channel. We observe that the dynamic configuration of service workers,

which is designed to be more or less static, is the root cause of the vulnerability.

We notice that the vulnerable websites utilize a third-party script to handle all of the service

worker’s implementation. These websites start a simple service worker that does not contain any

functionality other than importing another third-party script. We refer to such third-party scripts

as third-party service worker providers or SW providers in short. We speculate that the vulnerable

appified websites use the IndexedDB to specify the path of the file being imported because the

SW provider encourages them to do so. The provider likely has several service worker config-

urations corresponding to different service worker files that fit different types of customers (i.e.,

provider.com/sw-conf1.js and provider.com/sw-conf2.js). Therefore, instead of providing different

starting SW files that import a different static URL to each customer, the providers use a common

(but vulnerable) starting service worker file and let the customer dynamically choose the configu-

ration through the IndexedDB.
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Based on our further verification of the 88 websites that load a URL inside a service worker,

we notice that the 5 vulnerable websites are not the only ones following this practice. Fortunately,

the other SW providers have properly sanitized the IDB entry before passing it to the importScripts

API. Once this type of service becomes more popular, and if SW providers do not take caution in

sanitizing IDB entries (as we show in Section 4.2 that a security check could be bypassed), the

IndexedDB attack channel can become more prevalent in the future.

4.6.2 Key observation from push attack channel study.

Based on our manual investigation of popular push providers, we find that major push providers

do offer or advertise location-based features. For example, subscriber demographic can help pro-

vide the statistics needed to improve the business campaign, and location-triggered notifications

can increase subscriber engagement, especially for limited time/location events. Nevertheless, we

only see such features currently implemented in a relatively small fraction of appified websites

(i.e., 14/40 websites). As location-based features are widely used in other domains (i.e., for mar-

keting and advertising) [54, 55], we speculate that the same trend will follow push notifications

and the number of appified websites utilizing such features will increase in the future.

Interestingly, we find that a large number of websites that we manually investigate currently

use push messages abusively instead (i.e., to promote phishing messages or illegal services). Al-

though attackers in our threat model can also hijack push subscriptions from legitimate websites

to use push messages abusively, we do not consider this direction in this work. This is mainly

because abusive messages will likely make users unsubscribe, causing attackers to lose control of

the hijacked subscription. Nonetheless, as Chrome (starting from version 80) has started blocking

push notification permission by default (instead of the "ask by default") for some users or websites,

we believe that this kind of problem may be rather pervasive. Therefore, this problem may be a

worthwhile research direction for future work.

Additionally, we observe that some push providers implement some forms of protection against

push hijacking attacks (albeit it may be coincidental and a by-product of the API designs). For

example, OneSignal prevents its subscribe API from being invoked twice. This should prevent
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Table 4.5: A table of execution overhead occurred in the defense prototypes.

Average (ms) Min (ms) Max (ms) Median (ms)

Push[Subscribe] 156 (+40) 141 (+22) 185 (+46) 154 (+35)
IDB[Open New] 36 (+8) 30 (+10) 47 (+4) 36 (+8)
IDB[Open Existed] 2 (+7) 2 (+4) 2.5 (+12) 2.3 (+6.8)
IDB[Store] 0.5 (+2.5) 0.4 (+1.1) 1.1 (+4.6) 0.5 (+1.8)
IDB[Read] 0.2 (+0.4) 0.1 (+0.3) 0.8 (+0.9) 0.2 (+0.4)

attackers in our threat model from re-subscribing using the attacker’s account. However, by re-

moving the service worker, we observe that the subscribe API can be invoked again, even though

it produces some error/warning messages. Therefore, such client-side checks may not be enough

to prevent this kind of attack and server-side checks may be a more reliable mitigation method.

4.6.3 Possible mitigation/defense

There are two directions that we try in order to provide mitigation against the IndexedDB and

Push hijacking attacks. First, we implement ad-hoc changes into the Chromium browser to provide

exclusive storage for service workers and to extend the current push APIs. Second, we discuss how

SWAPP can be used to easily provide secure storage and push subscriptions.

IndexedDB. To prevent attackers from utilizing the IndexedDB against the service worker, the

most effective method is to sanitize the IndexedDB entries before using them inside a sensitive

function. However, it is extremely difficult to perfectly sanitize all inputs, which is why XSS

attacks are still prevalent nowadays. Therefore, an improvement that can help enhance the security

of service workers is to provide dedicated storage for service workers.

Currently, service workers have to use the IndexedDB, which is shared between different con-

texts of the same origin. While this is useful for sharing data, especially for web workers that

may need to sync parallel computation results, it limits service workers from storing sensitive data

as untrusted scripts from a different context can freely access the IndexedDB. Although the SW

context is isolated, the IndexedDB can be a weak link that invalidates the context isolation. In the

future, it is possible that service workers may be used for a wider range of applications and require
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sensitive data to be stored locally, especially to still support offline usage. Therefore, it may be

crucial for service workers to have additional dedicated storage.

As an ad-hoc solution, we try to implement a prototype in Chromium to understand the feasi-

bility and side effects of this improvement on web browsers. To this end, we manually inspect the

source code of Chromium and find that the existing IndexedDB API can be extended to provide

dedicated storage for service workers. We create another copy of an IDB Factory (back-end of

the IndexedDB API). We link this copy with a new API that can only be accessed from the SW

context. We name this API as privateIDB. This modification to Chromium requires about 1K LoC

to get a working version of the new API. Note that we only test the new API on basic usages in

which it can provide the isolation without crashing. As our implementation is a proof-of-concept,

the actual implementation may require more changes to the source code and more intensive testing.

To calculate the overhead of the new dedicated storage, we compare the modified Chromium

with a baseline version. Specifically, we visit our website that simply opens an IndexedDB and

executes the privateIDB API (i.e., open, read, write). We record the run time of each API call and

take the average between ten runs. Then, we repeat the same tasks using the baseline Chromium

to execute the original IndexedDB API. Table 4.5 rows (2-4) show the overhead incurred by this

modification. The first number in each cell refers to the baseline average run time, and the number

in the parenthesis refers to the added time using the modified Chromium. Based on these num-

bers from our crude prototype, we believe that providing dedicated storage for service workers is

probable. However, further optimization may be needed and planned out by the browser developer

community to better provide a robust solution on a larger scale.

On another note, we also suggest an alternative method to initialize the service worker. For

instance, a new type of cookie, SWOnly (Service-worker-only) cookie, that only allows access

exclusively to a service worker can potentially mitigate the attack through the IndexedDB. Unlike

the HTTPOnly cookies, which completely disallow script access, the SWOnly cookies would sim-

ply disallow script access from the document context (or normal web workers). We observe that

the attacks against service workers usually occur during the installation phase, which still allows
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an attacker to add sensitive event listeners (i.e., FetchEvent). By initializing the service worker

through SWOnly cookies instead of the IndexedDB, attackers will not have a way to manipulate

the internal SW variables during the installation phase anymore.

Originally, the service worker was designed to not need cookie access. However, such a design

was soon proven wrong, and the Cookie Store API [56], which allows cookie access to the service

worker, is under development to satisfy the needs of the developer community. Therefore, we

expect that a mechanism like the SWOnly cookie may be supported in the future, though it may

take some time before it is officially released.

Push subscription. To prevent any script from using an arbitrary key for the subscription, one

possible solution is to allow a website to specify allowed keys that can be used to subscribe for push

notifications. For instance, web browsers can reserve a Manifest entry (i.e., Allowed-Application-

Server-Keys), which contains a list of allowed keys. Then, when the subscribe API is used, the

browsers can check if the specified key is allowed in the Manifest entry. However, a similar

suggestion was raised in the developer community [57], but it was rejected due to possible usability

issues. Nevertheless, given that push providers start to incorporate location-based messages as a

new standard, which can be utilized by attackers to track user locations, we believe the benefit is

worth the adoption cost of this improvement.

As an ad-hoc solution, we implement a prototype for this improvement in Chromium. The

changes we make to Chromium are a few hundred lines of code, and we manually verify that it

can successfully prevent a random key from being used without crashing. We repeat a similar

evaluation (done with the privateIDB), and the overhead is shown in the first row of Table 4.5.

Although the push’s subscribe API is rarely called, there is a considerable overhead that could have

a significant impact on a website. Regardless, we urge the developer community to re-evaluate the

push notification APIs given that service workers can enable new ways for attackers to utilize

hijacked push subscriptions as discussed in Section 4.3.

Another possible method that push providers may employ to mitigate push hijacking is to check

when two accounts are tied to the same website. During our manual investigation, we observe
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that push providers will ask for the website URL that wants to provide push notifications while

creating a new project (or app). However, as discussed in Section 4.3, we are able to make two

separate accounts (a benign and an attacker account) link to the same website. By preventing

another account from linking it to a website that is currently tied to another account, attackers

will not be able to easily utilize the push providers anymore. Although this only prevents attackers

from utilizing the push providers, it forces the attackers to use the native API such that the attackers

have to implement the back-end push server by themselves. These extra steps can potentially chase

away attackers due to the gain is not worth the extra effort. We suggest push providers consider

this method in addition to any existing client-side checks to further enhance the defense against

future attacks.

SWAPP as a defense. Because our ad-hoc solutions require code changes to the browser,

we propose an alternative to enhancing these two channels using SWAPP. For the IndexedDB,

SWAPP uses the Trusted Code Block (TCB) module to instrument IndexedDB APIs to reserve

certain storage names that cannot be opened in the document context. As a result, scripts in the

service worker can use this reserved storage internally, while attackers in the document context

do not have access to this storage. For the Push subscription, we implement Push Guard as a

SWAPP app to check the push subscription ID. If the ID does not match, Push Guard will reject

the subscription request. We discuss the details of SWAPP and its apps in Chapter 5.

4.7 Summary

In this chapter, we discussed the security analysis of service worker communication channels.

We found two channels that can be leveraged by attackers: IndexedDB and Push subscription.

Specifically, The IndexedDB can introduce SW-XSS attacks similar to what we discussed in Chap-

ter 3. The Push subscription can lead to Push hijacking attacks where user locations and browsing

behaviors can be leaked to attackers. We extended a taint analysis tool to conduct a large-scale

study of these vulnerabilities in appified websites. The analysis found five additional websites ex-

posed to the SW-XSS attacks via IndexedDB and approximately 1.75M users are vulnerable to the

Push hijacking attacks. Lastly, we discussed several mitigation methods against these attacks.
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5. SWAPP: A NEW PROGRAMMABLE PLAYGROUND FOR WEB APPLICATION

SECURITY*

Ever since the introduction of the Internet, cybersecurity threats have always been relentless,

especially regarding client-side web attacks. For example, one of the most prevalent attacks, Cross-

site scripting (XSS), costs more than $4M a year in bug bounty rewards [58]. In response to

new attacks, researchers have proposed many defense/detection mechanisms. While each of the

methods has been proven reasonably effective in its rights, there are corresponding limitations

based on where the mechanisms are mainly deployed as discussed in Section 2.4.

To mitigate the aforementioned limitations, a client-side framework for security functionalities

is required. In this study, we explore an option to develop apps and deploy them in a new context,

the service worker. To the best of our knowledge, we are the first to provide a platform to deploy

apps inside service workers. Nonetheless, there are several challenges including patching the five

service worker attack surfaces that we discussed in Chapter 3 and Chapter 4. We discuss the

challenges in detail later in Section 5.2.

There are three goals that we want to realize with this platform.

• (G1) Adoptability. We want to provide browser-agnostic security functionalities that can be

quickly adopted by web developers with minimal changes to the legacy code and without

user involvement and continuous support from browser vendors.

• (G2) Compatibility. We want to provide a unified environment for different functionali-

ties, including non-security libraries such as Workbox [59] (for cache management), to be

compatible and run coherently in the same environment.

• (G3) Fast prototyping. We want to provide the extensibility and programmability with the

platform for developers to implement security apps against existing and future attacks.

To achieve the first goal, we implement SWAPP (Service Worker APplication Platform) to be

* Reprinted with permission from “SWAPP: A New Programmable Playground for Web Application Security”
by Phakpoom Chinprutthiwong, Jianwei Huang, Guofei Gu, 2022. The 31st USENIX Security Symposium (Security
’22), Copyright 2022 by Chinprutthiwong et al., publication rights licensed to USENIX.
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deployed inside a service worker, which has been supported by all mainstream web browsers[25].

SWAPP is a new development framework for developing security prototypes and applications.

It is a generalized platform that can be used for any website or in an enterprise setting accessible

from specific networks such as business applications. Nonetheless, realizing SWAPP is non-trivial,

especially to provide a secure environment for apps to run as parts of SWAPP. While the service

worker is designed with security as a priority, it can still be compromised as discussed in Chapter 3

and Chapter 4. In consequence, we harden service worker APIs that can be leveraged as an attack

vector and systematically evaluate the security of SWAPP against possible attacks (Section 5.4).

For the second goal, the heterogeneity of apps running inside SWAPP can be a problem. As

we envision SWAPP to be a platform for future security prototype development, SWAPP needs to

handle different apps (including legacy ones like Workbox) that try to handle the same resource

coherently. However, the service worker is designed to work homogeneously. Because it runs

asynchronously, each key resource is provided as an event that can only be handled by a single

event listener. As a result, only one party has a monopoly on each type of resource, i.e., only

Google’s Workbox can handle the fetch event. To address this issue, SWAPP promotes a new sub-

event queuing system by extending the original event handling mechanism. SWAPP will generate

corresponding sub-events from the original event to allow different apps to sequentially handle a

copy of the original event based on the app priority levels. The results will then be combined by

SWAPP. This allows multiple security apps to run cohesively without any conflicts.

To address the third goal, we provide four interfaces based on the most crucial functionalities:

network manipulation, document context access, secure communication, and secure storage. We

develop several example security apps to show that SWAPP can be used to implement security apps

against various types of attacks, including a recent side-channel attack [16] targeting websites with

a service worker (Section 5.5).

Based on the limitations of existing defenses and our goals (G1-G3), there are three key reasons

why we implement our platform in the service worker.

• Adoptability. Corresponding to the first goal (G1), SW-centric defenses are easy to deploy
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and update because a service worker is automatically installed/updated by web browsers.

Users do not have to make an extra effort to be protected compared to defenses deployed as

a browser extension. Nonetheless, there are certain requirements that the clients and servers

have to meet in order to utilize our platform. We evaluate the adoptability in Section 5.6.1.

• Compatibility. For our second goal (G2), the service worker runs in a different context than

the main page, thus it minimally affects legacy code in the document context. Additionally,

the service worker runs in an event-based manner in which a library may occupy an event

handler. If the library utilizes a different set of events than what our platform requires (i.e.,

the fetch event), it will be compatible. In the case that the legacy code utilizes the same event

handler, our proposed platform can encapsulate them as an app to run alongside other apps

as we will discuss in Section 5.6.2.

• Locality. Regarding our third goal (G3), SW-centric defenses are deployed at an advan-

tageous location, without requiring additional infrastructures. The service worker context

provides rich capabilities especially allowing apps to act as a proxy for the website. With

our provided interfaces for the proposed platform, developers can quickly implement, adopt,

or update new prototypes. We evaluate the extensibility and programmability of our platform

in Section 5.6.3.

In summary, we first discuss the threat model of SWAPP, when SWAPP can provide protection

and when it does not. Then, we discuss the technical challenges to realizing SWAPP as a unified

platform for service workers. Next, we provide the system design of SWAPP and evaluate the

security of such design against different types of attacks. Then, we demonstrate how SWAPP can

be used to implement several security apps. Lastly, we evaluate the performance of SWAPP and

discuss its limitations.

5.1 Threat Model

We regard the service worker context as our root of trust. Therefore, all scripts included as

parts of the service worker and SWAPP apps are benign. We assume the presence of XSS attackers
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who may utilize the communication channels from the document context to compromise our root

of trust as discussed in Chapter 3 and Chapter 4. This includes overriding native JS APIs to execute

malicious code inside the protected scopes in the document context, i.e., prototype pollution attack.

We also assume side-channel attackers who trick a user into visiting their websites, in which they

insert iFrames pointing to the target websites to measure the page load timing and infer the user

browsing history [16]. Further detail on this type of attacker will be discussed in Section 5.5.1.

Because service workers can only partially resist MITM attackers (e.g., browsers will never

replace or update service workers when there is an SSL error despite the user clicking through the

error to visit the web page), we do not assume attackers are able to obtain a legitimate certificate.

This protection makes service workers resistant to the evil twin attackers with a self-signed certifi-

cate. Nonetheless, it is still vulnerable to capable MITM attackers who have a legitimate certifi-

cate (e.g., a compromised cloud edge serving first-party web content or a compromised first-party

server). Such capable attackers will bypass any defenses with the same assumptions as SWAPP,

which implements purely in JavaScript without browser modifications, browser extensions, or an

additional proxy.

Furthermore, we assume SWAPP has been installed in the victim’s browser prior to an attack.

This is a reasonable assumption in all modern browsers because service workers are automatically

installed on the first normal visit. If the victim visits the website exclusively in incognito mode

(or other equivalences) before and during an attack, then SWAPP will not be activated because the

incognito mode disables several features including the service worker. Additionally, changing the

browser profile, device, or clearing the website data will remove the service worker, thus SWAPP

will need to be reinstalled prior to an attack.

Note that we design SWAPP to be deployed by first-party developers. Most of our developed

apps only need to access first-party scripts and exclude third-party content. This is because when

an app needs to intercept cross-origin requests, there may be complications regarding the Cross-

Origin-Resource-Sharing (CORS) protocol. We further discuss the limitation of SWAPP (and its

apps) with CORS mode in Section 5.7.

64



Lastly, attackers in the forms of malicious browser extensions (or malware that can control web

browsers) installed in the clients can remove any installed service worker, thus they are beyond

the scope of our protection. This assumption holds true for any defenses implemented purely in

JavaScript.

5.2 Challenges

In order to achieve the three goals (G1-G3), we have to carefully address three technical chal-

lenges (TC1-TC3) while designing our platform. This is because the service worker environment

is not initially designed to support multiple apps utilizing the same event handler.

TC1: Homogeneous SW Environment. The service worker context is designed to mostly

work homogeneously. Based on the W3C specification of the service worker, most crucial service

worker events (i.e., fetch) can only be managed by a single handler, unlike the document context

events such as postMessage, which allow multiple handlers. Because the fetch event can be crucial

to a variety of apps, this design may prevent multiple apps from sharing the handler. For example,

an XSS defense may want to perform ingress filtering to detect an XSS payload, while a CSRF

defense may need egress filtering to check the HTTP’s referer header. The fetch event allows

network interception to perform both ingress and egress filtering. However, the problem arises

when the XSS and CSRF defenses are developed independently by different groups of developers.

This can cause conflicts, and only one defense may be allowed to run as the fetch event handler.

As a first step toward providing a unified platform for the service worker environment, the

design of SWAPP must first accommodate and promote heterogeneity. To this end, we introduce a

new event queue for the fetch, activate, and message event handlers. A Supervisor is assigned for

each event to keep track of which app gets to execute and in which order.

TC2: Limitation of Original SW Events/APIs. While the initial service worker events pro-

vide unique capabilities that do not exist in the document context, they are still rather limited in

the granularity to enable the development of security applications that are rich in diversity. For in-

stance, the fetch event is dispatched during a network request, but the network response is treated

as the byproduct of the request instead of having a dedicated event separately. To this end, SWAPP
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utilizes the Supervisor to provide a custom event for apps to handle. The custom event system

can improve the granularity of the original events especially by decoupling the request-response

pairing from the fetch event into a request event and a response event.

TC3: SWAPP Security Against Attackers Because SWAPP is designed to act as a central-

ized controller to protect the website, it is unavoidable that SWAPP itself will be subjected to web

attacks. For instance, Chapter 3 and Chapter 4 discussed attacks against service workers using

the APIs that can propagate information from the document context to the service worker such as

serviceWorker.register and IndexedDB. Son et al. [17] also discussed an attack using the postMes-

sage API, which Steffens et al. [60] later highlighted the prevalence of this attack in a large scale.

While the attack originally targets iFrames, it is also applicable to service workers. Because there

are no built-in capabilities to reinforce security or accommodate web developers to utilize these

APIs securely, we have to enhance the security of all channels and APIs that can reach the service

worker.

5.3 SWAPP: System Design and Implementation

The components of SWAPP reside in both the service worker and document context. There

are four key components that make up SWAPP: Supervisor, Custom Event Manager, Trusted Code

Block, and Message Manager.

5.3.1 Supervisor

The Supervisor resides in the service worker context. It is deployed within an event listener.

The main purpose of the Supervisor is to provide a heterogeneous execution environment inside the

service worker (TC1). In our current implementation, we have put the Supervisor in three events:

activate, message, and fetch. While we do not deploy the Supervisor in all events, these three

events are sufficient to implement several apps as we later discuss in Section 5.5. This method can

also be extended to support other events such as push or future events that are not yet released.

The Supervisor acts like a mediator between an originally dispatched event and apps. When it

receives an original event (e.g., fetch) from the browser, it creates an event queue for SWAPP apps
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to handle. We call events distributed from the queue to an app as subevents. Each app can register

a subevent handler through the Supervisor, which will manage the execution order between apps

and combine the execution results before making the final decision regarding the original event.

There are mainly two types of subevents for apps to handle.

• The match subevent tells the apps about the information of the original event. For example,

if the original event is a fetch event, the information will include the HTTP headers and body

of a request. Note that the available HTTP headers are still limited by the list of Forbidden

header [61]. The handler of this event should tell SWAPP whether the app is interested in

manipulating the event by returning a Boolean value.
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• The action subevent is dispatched for apps interested in the original event after the Supervisor

receives the answer from the match event. In general, the handler of the action event will

have access to the final object, fObject, which is passed as a parameter that must be returned

to be fed to the next handler as a parameter. The fObject contains a clean copy of the original

event and a dirty version, which other apps may have modified.

For the Supervisor to manage the execution order of each app and to decide what to do with

an event, an app can be assigned two parameters: execution order value (eOrder) and decision

priority level (pLevel). A lower eOrder implies the app is ahead in the line and will execute earlier.

A higher pLevel implies the app has a higher priority and can override the decision. If these

parameters are not specified, the Supervisor will follow the app’s installation order (i.e., the first

app installed executes first and has the highest decision priority).

Furthermore, the possible values for a decision will be based on the original event. For instance,

the decision of a fetch event can be original (proceed with the original), dirty (proceed with the

modified version), cache (respond with specified cached content), or drop. The activate event

cannot specify a decision as they are mainly provided for apps to initialize their variables when

the service worker is activated. For the message event, we wrap it in an additional layer to provide

enhanced security (further discuss in Section 5.3.4).

5.3.2 Custom Event Manager

The Custom Event Manager is closely tied to the Supervisor and can be considered as an

extension of the Supervisor. Its main purposes are to define custom events, manage the transition

between each custom event loop/queue (CL), and mediate between the Supervisor and apps. These

are to provide more granularity to the original service worker events (TC2). Currently, we imple-

ment the Custom Event Manager only for the fetch event, but this concept can be extended to other

events as needed.

Primarily, we use the Custom Event Manager to decouple the fetch event into the request and

response custom events. Specifically, the Custom Event Manager divides the original fetch event

into two stages. The first stage is similar to the original fetch event, which is triggered upon receiv-
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ing a network request. However, unlike the original, this event ends when a decision regarding the

request is made, not when a response is specified. The second stage starts immediately after the

first stage if the decision of the request custom event is not to drop. Apps will then be notified to

modify the response accordingly.

5.3.3 TCB Environment

The Trusted Code Block (TCB) Environment is injected into every web page by the Supervisor

inside the fetch event listener. It is essentially located in the document context to provide a secure

environment for apps that need to execute a piece of code in the document context. By design, the

service worker cannot directly execute code in the document context. This leads to both advantages

and disadvantages when considering implementing a defense. The advantage is that attackers, in

the form of malicious scripts injected into the main web page, cannot directly access the service

worker. However, the opposite is also applied that the service worker may not be able to enforce

certain restrictions to the malicious script before the malicious operation is already in-flight to the

fetch event. Several proposed defenses and techniques [6] rely on having trusted code running in

the document context.

Similar to how the Supervisor operates, SWAPP allows app to listen to the TCB’s match and

action subevents. When SWAPP attempts to inject the TCB environment to a web page, the match

event is dispatched. The handler will receive the web page information (e.g., the URL, HTTP

headers, and the response body) and can decide whether the app wants to inject any code along

with the TCB environment. The code will then be invoked when the TCB environment has finished

initializing. We further elaborate on how the TCB provides a secure environment in Section 5.4.1.

5.3.4 Message Manager

The Message Manager runs both inside the message event listener in the service worker and

inside the TCB. It provides a secure communication channel between the service worker and doc-

ument context within SWAPP (more details of its security are discussed in Section 5.4.2). For an

app to send a message, it can call our internal API, broadcastMsg, which will send a message to
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a dedicated message port. This API accepts two parameters: the message content and the list of

tags. The tags can be used to identify which apps are the intended recipients. An app can register

a tag list along with a handler with the Message Manager. When the Message Manager receives a

message, it will notify all apps that have a matching tag and invoke the registered handler.

5.4 SWAPP: Security Analysis

SWAPP itself can be the target of attackers (TC3). Here we elaborate on how we enhance

SWAPP against threats from different attack vectors. In this section, we discuss the security en-

hancement of three attack surfaces: document context (S1), postMessage (S5), and IndexedDB

(S2). For other surfaces S3/S4, we implement two apps corresponding to each surface (later dis-

cuss in Section 5.5.5 and Section 5.5.1 respectively).

5.4.1 Security of Document Context

Our threat model assumes that attackers can execute malicious code in the document context.

This allows attackers to target the TCB directly. To this end, SWAPP puts the TCB inside a Closure

and freezes sensitive JS objects used by the core of SWAPP similar to the method discussed by

Schwarz et al. [6]. Nonetheless, apps may evoke JS APIs that are not originally frozen inside the

TCB, and attackers can manipulate these objects [62]. For instance, if a SWAPP app registers a

mouse click event listener that will call console.log to print out some information, attackers can

override the log function to perform malicious tasks such as sending internal SWAPP messages to

manipulate the service worker. Because the TCB is an anchor for SWAPP in the document context,

we need to ensure that the TCB will not be compromised.

The security of TCB can be considered in two cases. The first case is the initial execution of

the TCB. In this case, attackers cannot launch an attack nor modify any code. This is because the

scripts in the document context will execute sequentially. SWAPP can intercept a web page and

insert the initialization script at the topmost of the header (if available) or body to ensure the TCB

is established before other code runs. Therefore, any attacks in this phase are not a threat.

The second case is after the initial execution of the TCB. In this case, SWAPP does not know
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in advance what APIs the apps will use that need to be frozen. Furthermore, SWAPP cannot

preemptively freeze all JS objects due to possible conflicts with existing libraries. Instead, SWAPP

has to identify when there is a code tampering with an object executing inside the TCB. A way to

check the integrity of a callable object is to inspect its definition through the toString function. A

native object would return "[Native code]" upon inspecting, while a modified object would return

the code that redefines it. However, there are many evasion techniques that can trick the toString

function to return "[Native code]".

To avoid the cat and mouse game with the attackers in the document context entirely, our

solution is to pass the target object to a fresh iFrame before calling the toString function. With

this method, the malicious code that tries to trick the toString function (including its prototype

chain) will not apply to the iFrame context. This is because the evasion techniques will tamper

with a certain point in a prototype chain. By sending the object to a fresh iFrame, the object can

be executed without the attacker’s manipulation.

We provide a helper function, checkIntegrity, to help verify the integrity of the list of given

objects. This function will create a fresh iFrame, go through the list of native API calls that the

app wants to use, pass each API reference to the iFrame, obtain the object definition, and return

the value to the original context. The returned value will then be hashed for future comparisons.

Because the iFrame is newly created and destroyed after each use (and the API to manipulate

iFrames will be frozen), attackers will not be able to affect the iFrame.

Now that we obtain the hashed API definition, we can check if it is malicious. The list of APIs

to be checked is given by the app developers. They can inspect their own code and give SWAPP

the list of hashed benign API definitions when installing the app. When an unmatched is found for

an API definition, we know that an unexpected (and potentially malicious) code overrides the API

and we alert the app to prevent the code from executing. In this way, we can protect the TCB while

minimizing the effect on other legitimate libraries.

Because the service worker (un)registration APIs are also accessible in the document context,

we must also prevent attackers from removing the service worker, which contains SWAPP’s core
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functionalities. To this end, SWAPP disables the register (and unregister) API entirely. This also

prevents SW-XSS attacks (S1) as the attackers can no longer call the register API. If the website

wants to legitimately execute the register API, then it can send the Clear-Site-Data HTTP header

to remove SWAPP. Once SWAPP is removed, the APIs will not be overridden, and the website can

invoke the register API again.

We test these enhancements by launching prototype pollution attacks with multiple bypassing

techniques in our example website. We find that with a correct list of sensitive APIs defined,

malicious code cannot be executed inside the TCB.

5.4.2 Security of postMessage

Existing works discussed the Postman attack [17], which utilizes the postMessage (PM) to

attack a different context such as iFrames, and its prevalence [60]. The results show that websites

often neglect or perform inadequate origin checks regarding the message sender, leading to code

execution inside the targeted context. This type of attacker is especially potent in our threat model

where the service worker is treated as the root of trust. Therefore, SWAPP’s Message Manager

must provide a mechanism to prevent this attack surface (S5) by default.

To mitigate against this type of attacker, we enhance and extend the original PM APIs. In the

service worker, multiple PM (also referred to as message event) handlers can be registered. We

register an instance of the handler and deploy a Message Manager inside the service worker (SW-

PM). Correspondingly, the document context also has a Message Manager deployed (DOC-PM) in

the TCB. The message operations within SWAPP are accessed through SWAPP’s dedicated APIs

as shown in Table 5.1.

Intuitively, we provide security in SWAPP’s internal messaging system by limiting the sources

of messages from the document context. When the DOC-PM is instantiated inside the TCB, it will

also use the MessageChannel API to create communication ports. Then, it will send the port infor-

mation to the SW-PM, who will keep the port information for records. Further communication will

be made using this port. The SW-PM will reject messages from unauthorized message channels.

As discussed in Section 5.4.1, the ports cannot be accessed by attackers outside the TCB. With
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these enhancements, we mostly limit the sender origins of postMessage communications to only

within SWAPP.

To test these enhancements, we try to launch the Postman attack (in a local environment) by

sending post messages to the service worker. We find that without the apps leaking the dedicated

port or other libraries running inside the service worker being vulnerable, attackers will not be able

to successfully contact the service worker.

5.4.3 Security of IndexedDB

Chapter 4 shows that despite service workers executing in an isolated context, they can still

be compromised through the IndexedDB (S2). Considering SWAPP apps run inside the service

worker, which only has access to IndexedDB as a storage space, it is especially crucial to en-

hance the security of IndexedDB. This is because apps may need to store sensitive statistics, state

information, or configurations locally.

In order to prevent attackers from utilizing the IndexedDB, SWAPP provides an isolated storage

space dedicated to the SW context (SW_DB) and to SWAPP (SWAPP_DB). SWAPP overrides the

IndexedDB APIs when initializing the TCB such that these two database names are restricted.

SWAPP_DB is used internally as parts of SWAPP, and other scripts outside of the TCB will not

be able to access it. The SW_DB is used specifically in the SW context, and even the TCB will not

have access to it.

We try to launch an attack against SWAPP with these enhancements by attempting to access

the private IndexedDB. We find that without apps (un)intentionally leaking the IndexedDB’s trans-

action that opens the private database, attackers will not be able to access the secure storage.

5.5 Case Studies

Considering that both attacks and defenses are evolving, it could be almost impossible to im-

plement a solution that can satisfy all types of defenses out-of-the-box. Therefore, SWAPP aims

to provide a framework that abstracts generic security primitives and enables the extensibility for
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Table 5.1: A List of Example SWAPP Interfaces.

Category Interface Description

Network
Manipulation

reqMatch Check if a request matches interception criteria
reqAction Perform the modification to a request
reqPriority Specify the priority level of the app to a request
reqOrder Specify the execution order of the app to a request
respMatch Check if a response matches interception criteria
respAction Perform the modification to a response
respPriority Specify the priority level of the app to a response
respOrder Specify the execution order of the app to a response
setDecision Set the decision for a request/response
get/setMeta Get/Set the metadata of a request/response
get/setBody Get/Set the body of a request/response

Document
Context Access

tcbMatch Check if a web page matches injection criteria
tcbAction Perform the modification to the document context
tcbOrder Specify the execution order of the app in the TCB

Secure
Communication

msgLabel Specify message labels of the app’s interest
msgHandler Specify a message handler
broadcastMsg Send a message to all apps

Secure Storage
Management

get Get stored data from secure database
set Save data to secure database
delete Delete data from secure database
createTable Create a new table in secure database
removeTable Remove a table in secure database
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developers. Currently, the core of SWAPP provides four types of primitives1 (with corresponding

interfaces shown in Table 5.1).

• Network Manipulation enables apps to inspect and modify any network requests and re-

sponses in-flight. Such capability can be leveraged by many types of defenses, i.e., XSS

filter [63, 64], CSRF detection [65], or proxy-based mechanisms [27, 66].

• Document Context Access allows apps to execute code securely in the document context.

This is crucial to defenses that require code instrumentation to enforce security policy at run

time in the document context [6].

• Secure Communication provides a secure channel for the communication between the service

worker context and the document context. As SWAPP spans in both contexts, an app may

have parts of its logic located in different contexts or want to communicate with another app.

This primitive helps alleviate these tasks for developers.

• Secure Storage Management ensures that data stored by apps will not be tampered with by

unauthorized scripts from the document context. The only existing reliable storage provided

to service workers is the IndexedDB, which is also shared with the document context (and

can even be utilized for an XSS attack [67]). Thus, our new primitives can help restrict such

unauthorized access and ensure attackers will not be able to manipulate app data.

5.5.1 Cache Guard

Karami et al. have recently discussed privacy-invasive attacks on websites utilizing service

workers for caching (S4) [16]. The attackers lure victims into visiting their website, where the

target web pages (or resources) will be loaded in iFrames, and the load times are measured to

determine whether they are served through cache. If certain resources are served through cache,

the attackers can infer that the victims have visited privacy-sensitive pages before. This includes

inferring the victim’s WhatsApp social graph. Such side-channel attacks (determining cached

content to infer the victim’s browsing history) are common threats for websites that want to utilize

a service worker (or cache in particular) [1]. Note that this attack can work even when the X-
1Primitives and associated interfaces could be extended in future.
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if(fObj.getDecision() == "cache")
return true;

CG.startTimer(fObj);

reqMatch (fObj)

let ref = fObj.getMetadata().referer;
let refHost = (new URL(ref)).host;
if(!allowedList.includes(refHost))
fObj.setDecision("deny")

if(CG.isDummy(fObj))
delay(CG.avgLoad);

reqApply (fObj)

CG.initialize();

onswactivate

let needDummy = false;

if(fObj.getDecision() != "cache")
CG.stopTimer(fObj);
CG.updateAvgLoad();

if(isWebPage(fObj)) {
needDummy = true;
CG.lastWebPageVisited.startTimer();

} else {
if(CG.lastWebPageVisited.elapsed() < tthresh) {

if(!CG.isValidLoad(fObj)) {
delay(CG.avgLoad);
CG.updateProfile(fObj);
CG.save();

}
} else {

delay(CG.avgLoad);
}

}

return needDummy;

respMatch (fObj)

CG.addDummy(fObj);

respApply (fObj)

Figure 5.2: Workflow of Cache Guard.

Frame-Options or CSP is specified on certain browsers such as Firefox. This is because even when

the browser does not show the iFrame content, the load time can still be measured.

To mitigate against this type of attack, Karami et al. implemented a helper tool for developers,

in which the tool will instrument the fetch handler to check the referer HTTP header. If the header

is not specified in the allowed list, the request will be dropped. However, this cannot prevent an

attack where the website supports open redirection because the attackers can essentially forge the

referer using the same-origin redirection page. To illustrate that SWAPP can be used by researchers

as a platform to develop new defense mechanisms, we develop Cache Guard using SWAPP in

response to this attack with two goals in mind. First, Cache Guard should be easily implemented

and distributed by researchers and deployed by web developers. Second, Cache Guard should

further prevent the attacks even when the website supports open redirection.
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In addition to Karami’s proposed defense (checking the referer header), which we implement

using SWAPP in a few lines of code, we further improve Cache Guard to additionally protect when

the website has open redirection. The final version is implemented in 258 LoC, and the overview

is shown in Figure 5.2. The intuition behind this improvement is to delay the cached response to

make it looks like it is loaded over the network when necessary. Because the cache is introduced

to reduce load time and provide the offline capability, Cache Guard cannot simply delay all cached

responses. As a result, we consider two scenarios for delaying cached responses.

First, if the resource being loaded is a web page, Cache Guard will attach a dummy resource

request using the respAction event (the custom subevent for a response action). By using the

reqAction event (the custom subevent for a request action), the dummy will be delayed to make

the page load time similar to network loading. Cache Guard keeps the load time of prior resources

to calculate the average network delay over time. The timer starts in the reqMatch (request match)

event and stops in the respMatch (response match) event. In this way, users will not experience

the delay and attackers cannot accurately determine the cache usage because the page load time is

measured when the page has finished loading all resources in the page.

Second, if the resource being loaded is not a web page (and not our dummy resource), Cache

Guard will delay it unless there is a prior web page request that Cache Guard knows will need

the resource (i.e., legitimate resource requests). The intuition is that non-page requests mostly

originate from a web page. Therefore, Cache Guard will cumulatively build a resource loading

profile for each web page and check when there is a non-page request. If it does not match a prior

profile, Cache Guard will delay it first before updating the profile. These are mostly done in the

respMatch event.

Because attackers typically rely on measuring the first resource load time by adding random

URL parameters, our approach will nullify this type of attack. We evaluate the effectiveness of

Cache Guard by launching the side-channel attack discussed by Karami et al. We develop a

demonstration website locally (accessible in our Github directory) and use Chrome’s DevTools

to measure the average resource load time across multiple runs. We use Chrome’s Fast3G throt-
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tling network profile to emulate the network delay. We find that with Cache Guard enabled, the

first cached resource load time is within 10% of the average network load time. Furthermore,

subsequent access to the resource is still as fast as the normal cache load time (within 50% of the

average network load time). Therefore, Cache Guard is effective against this side-channel attack.

5.5.2 Autofill Guard

Nowadays, websites provide a login mechanism for users, usually as a form that users can

type in manually or be autofilled by browsers or external tools. The login credentials are often

a target for attackers, who could steal these sensitive login credentials from a login form that is

automatically filled by browsers or external tools. For instance, Silver et al. [68] and Stock et

al. [69] show that auto-filled forms are vulnerable to MITM and XSS attacks respectively. In this

example, we propose an alternative defense, called Autofill Guard, that can protect login forms

from XSS attackers. Autofill Guard can work complementary to and in conjunction with other

existing defense mechanisms.

Autofill Guard mainly provides protection through isolation (by using iFrames). By putting a

form inside an iFrame, which is isolated from the main context, XSS attackers will not be able

to access the form anymore. Furthermore, to prevent attackers from creating an invisible form

(different from the legitimate one) and tricking password managers to give them the credentials,

Autofill Guard can also override JavaScript APIs and disallow form creation. The overview of

Autofill Guard is illustrated in Figure 5.3.

When a user requests a website, Autofill Guard’s Form Detector automatically detects a sen-

sitive form and encapsulates it inside an iFrame. Then, if the form is submitted, Autofill Guard’s

Mediator will forward the request to the webserver to log in. Upon receiving the response, Autofill

Guard’s Notifier will notify the TCB to reload the main page. These processes are done automati-

cally, thus there will be no differences from the user perspective.

We test the effectiveness of Autofill Guard by constructing a similar attack discussed by Stock

et al. [69], where attackers inject malicious JavaScript code that tries to read the input of a login

form. We perform the mock attack in a local environment with Chrome 80 to access the mock
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website. We verify that Chrome automatically fills in the login form, but the malicious script we

add cannot access the form information.

It is worth noting that there are two limitations in the current Autofill Guard version. First, as

Autofill Guard is intended to protect against attacks targeting autofill in static login forms, it has to

disable APIs that can create new forms, which can possibly introduce false positives (i.e., blocking

legitimate form creation).

Second, the JS code that accompanies the forms would not be able to access the original page’s

DOM. In practice, web developers could modify Autofill Guard to include the necessary JS code

along with the iFrame, i.e., to validate the correctness of the filled values or to handle an onclick

event. However, the JS code would not have direct access to the main page’s DOM due to the iso-

lation provided by Autofill Guard. The developers could establish a postMessage channel between

the iFrame and the main page, but this would defeat the purpose of Autofill Guard. This is because

Autofill Guard is developed to isolate the forms from malicious scripts in the DOM and establish-

ing such communication could expose the iFrame to the attackers. In any case, if the forms and

the accompanied JS code do not rely on the main page’s DOM, they would be compatible with

Autofill Guard.

Autofill Guard is developed as a proof of concept to demonstrate how SWAPP can enable

new directions and use cases. Our implementation of Autofill Guard utilizes iFrames and the

service worker to manage extra requests/responses to allow the login to work despite the form

being submitted in an iFrame instead of the main context. We hope this method can spark new

ideas to implement more complicated defenses in the future.

5.5.3 Data Guard

HTML resources are used in websites for displaying various content to users. However, due

to the complexity of designing and implementing access control policies, broken access control

vulnerabilities exist on many websites. For resources that contain privacy (e.g. URL to a private

file on the website or privileged operations [70][71]), if an access control vulnerability exists and

attackers are able to steal the URL, the privacy could be leaked. To protect such data from being
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compromised, we designed Data Guard to automatically preserve the data in a service worker

and add them back to HTTP requests according to the context. The overview of Data Guard is

illustrated in Figure 5.4.

1 ...

2 function dg_init(){

3 ...

4 add_undoc_data_type("data_name", extraction_cb);

5 ...

6 }

7

8 function extraction_cb(body, headers){

9 // define the data extraction strategy here

10 }

11 ...

Listing 5.1: Data Guard Undocumented Data Extension Template

Data Guard will first perform static analysis and find all predefined data types on the web page.

Web developers can also define their customized data extraction strategies to support other types

of data. To enable the customization in Data Guard, we provide a template for web developers to

define their own data extraction strategies, as shown in Listing 5.1. For each element identified by
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Data Guard, we will replace the sensitive data with a unique string, which will be an SHA-256 hash

string generated from the element. The original sensitive data and the corresponding unique string

will be stored in secure storage provided by SWAPP as a key-value pair. Whenever the unique

string is detected in any outgoing message, Data Guard will replace the string with the original

sensitive data. Currently, Data Guard will replace all URLs on the web page as a proof of concept.

Based on our observation, such practice will not harm the normal workflow of the websites we

have tested.

With Data Guard, attackers will not be able to send valid requests to the server with the stolen

data since it has been replaced with unique strings that can only be recognized by SWAPP in the

victim’s browser.

5.5.4 DOM Guard

Cross-site scripting (XSS) attacks have been one of the most prevalent web attacks. In recent

years, an emerging type of XSS called DOM-XSS is becoming a severe problem. DOM-XSS is

unique to existing XSS in that it occurs mostly at the client-side, making server-side solutions
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ineffective. DOM Guard, however, can utilize existing techniques such as server-side firewall and

apply it to the client-side through SWAPP.

Our implementation of DOM Guard allows a plug-and-play strategy where different types of

techniques can be switched. Currently, as proof of concepts, we use a filtering technique as the

detection strategy. To detect DOM-XSS payload from executing on the client-side, DOM Guard

will check the URL segment of every request for potential payload using an HTTP encoder [72].

DOM Guard will compare the encoded URL segment with the original segment to determine a

potential attack. Nonetheless, this can be improved by applying other existing detection techniques

in DOM Guard. For example, Chaudhary et al. proposed a proxy-based technique to validate

network responses [28]. In this case, DOM Guard can act as the proxy to lessen the requirement

of the technique that needs a physical proxy to be deployed.

We demonstrate the effectiveness of DOM Guard using an existing XSS payload [73]. We

create a website with a vulnerable page that will read the value of its URL segment and directly

write it into the DOM. Then, we install SWAPP with DOM Guard activated. We test to see if the

payload is executed by checking if the alert function is called. After we have visited the vulnerable

page with the given payload list, we find that the filtering is effective.

As DOM Guard is currently designed to apply existing XSS detection techniques, it will inherit

their limitations. Additionally, techniques that require heavy computation can potentially affect

the clients. Nevertheless, the advantage of DOM Guard is that once a new technique is developed,

DOM Guard can potentially make use of it. DOM Guard as a DOM-XSS detection app that can

easily switch to different techniques/strategies demonstrates the flexibility of SWAPP.

In any case, it is also possible to implement XSS filtering in the TCB. However, implementing

a filter in the document context may require additional native objects related to the filtering such as

the input sources (e.g., Document.location) or sinks (e.g., appendChild) to be instrumented. There

are two disadvantages to this approach. First, it could conflict with legacy code that utilizes these

objects due to code instrumentation. Second, the instrumented code directly affects the page’s

responsiveness as it introduces delays to users when interacting with the web page. Implementing
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the filter inside the service worker does not have the same disadvantages.

First, the service worker context is separated from the document context, thus does not conflict

with the legacy code in the document context. Furthermore, URL filtering is native to the fetch

event in which apps can easily check the outgoing request whether it contains a suspicious param-

eter. Instead of instrumenting several sources and sinks in the document context, our DOM Guard

app requires only a few lines of code to achieve the same result.

Second, the overhead incurred in the service worker context affects user experience less be-

cause the service worker runs asynchronously in a different thread. The overhead is added to an

already lengthy network delay and is non-blocking (i.e., does not block user interaction with the

web page). For instance, a Fast 3G configuration used in Chrome’s DevTools would normally add

300-500 ms to a network request. The filtering takes 10-20 ms (based on our measurement), so the

overhead is likely not noticeable to the user. However, if a page needs an additional 10-20 ms for

DOM Guard before it can be interactable, then this could affect user experience especially when

more apps are deployed.

Nevertheless, we do not intend DOM Guard to completely replace or supersede existing XSS

defenses. We simply demonstrate an alternative option for implementing an XSS defense in a new

platform. We hope that our example will provide evidence for security researchers and practitioners

to utilize SWAPP for more security apps in the future.

5.5.5 Push Guard

To prevent push hijacking attacks (S3) discussed in Section 4.3, we implement a simple app

that checks push subscription ID against a list of allowed IDs that can be predefined by developers.

When a push subscription is initiated, if the ID specified does not match, Push Guard will reject

the request. This is possible because the Push ID of the provider is static and tied to one owner.

Typically, the developers can obtain the ID from a third-party push provider and inform Push

Guard. When the developers want to switch push providers, they can also easily configure the

allowed list of IDs again.
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5.6 Evaluation

In this section, we aim to demonstrate an alternative method to enhance website security. As a

result, our evaluation will focus on four aspects: adoptability (Section 5.6.1), compatibility (Sec-

tion 5.6.2), extensibility/programmability (Section 5.6.3), and efficiency (Section 5.6.4).

5.6.1 Adoptability

Our first goal is to provide a security framework that is easily deployable by web developers

(G1). We evaluate the adoptability of our framework using two studies. First, we focus on browser

clients and survey popular browsers to check if there are any vendors/versions that cannot adopt

our framework. Second, we focus on web servers and measure the number of websites that meet

the requirements to adopt our framework.

Client. To measure the adoptability of SWAPP within client devices, we first list out APIs that

are utilized by SWAPP such as serviceWorker, Fetch, and IndexedDB. Then we refer to the statis-

tics provided by an open-source project, CanIUse [74]. The project gathers front-end web APIs

and provides usage statistics, which are regularly updated and maintained by the web developer

community. According to the statistics, 95% of web users are using a browser that supports all

APIs used by SWAPP.

Server-side. As our framework requires a service worker, we first need to measure how many

websites are ready to install it. To this end, we conduct a measurement study on the top 10,000

websites based on the Tranco [15] list obtained in April 20212. We develop a custom web crawler

based on Node’s Puppeteer and Chrome Devtools Protocol (CDP). Our crawler will visit each

website’s home page (with a 60s timeout), and the CDP will collect all network requests/responses

and service worker updates. If the crawler fails to visit a website, it will retry three times before

logging the error message.

Table 5.2 shows the configurations we use for our crawler. Because several websites apply

different techniques to detect web crawler and trap it in an infinite loop, we have to utilize coun-

2https://tranco-list.eu/list/2QV9
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Table 5.2: The settings and environment information for crawling SW-enabled websites.

Chromium Version 92.0.4515.159
Puppeteer
Puppeteer-extra-plugin-stealth
Arguments

Version 10.2.0
Version 2.7.8
[ headless: false, ‘no-sandbox’, ‘disable-setuid-sandbox’,
‘disable-infobars’, ‘window-position=0,0’,
‘ignore-certifcate-errors’, ‘ignore-certifcate-errors-spki-list’,
‘start-maximized’ ]

Chrome Devtools Protocol
Events listened

Version 0.0.901419
[ ‘Network.requestWillBeSent’,
‘Network.requestWillBeSentExtraInfo’,
‘Network.responseReceived’,
‘Network.responseReceivedExtraInfo’,
‘ServiceWorker.workerVersionUpdated’ ]

Operating System Ubuntu 18.04 (64-bit)

termeasures such as using the Puppeteer stealth plugin and trying different crawling arguments.

While there are still cases that our crawler fails to visit, the numbers we report should sufficiently

represent the adoption trend of service workers among top websites. Further optimization can

potentially lower the failed cases, but our aim is simply to understand the adoption trend without

being more disruptive than necessary to the crawled websites. Our crawler is not invasive and

simply visits the home page of a website once without scraping the website data.

In total, our crawler successfully visits 9,293 websites. According to the error messages, 491

websites are not reachable, 183 websites are timed out, 11 websites have certificate errors, and

22 websites have other errors. We manually check 50 domain registration information of the 491

websites and find that they are mostly domain names that are not supposed to serve a web page

such as googleusercontent.com. Furthermore, we manually visit 50 of the 183 timed-out websites

and find that many websites are loaded within 1 minute outside our crawler despite using the same

browser version (and setting), indicating bot prevention mechanisms may have been deployed

to trap the web crawlers from finishing loading. In any case, we do not try to further collect

information from these websites and refer to the 9,293 websites as our baseline.

Among 9,293 websites, 8,361 websites (90%) fully use HTTPS for all their requests, which
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is a strict requirement to use a service worker. On another note, 694 websites (7.5%) are already

using a service worker, which may require slight modification to work with SWAPP.

5.6.2 Compatibility: Working with an Existing Service Worker

While the number of SW-enabled websites is still small (7.5%), we believe service workers

will be increasingly adopted by top websites in the future. Because SWAPP may conflict with

existing service worker libraries, we need to illustrate that SWAPP can be deployed with minimal

changes.

To this end, we discuss how Workbox, a library that provides the cache-ability to SW-enabled

websites, can be encapsulated and run as a SWAPP app. We choose Workbox as an example for

two reasons. First, Workbox is one of the most popular libraries embedded inside a service worker.

Among the 694 SW-enabled websites, 174 websites (25%) use Workbox. We obtain this number

through static analysis of the service worker file and identify Workbox’s API calls using regular

expressions. Second, Workbox mainly utilizes the fetch event for cache, which has a direct relation

with our example app, Cache Guard, discussed in Section 5.5.1.

In order for SWAPP to work with Workbox, we have to encapsulate Workbox as a SWAPP

app, which requires less than 30 lines of code modification to the original Workbox file. We utilize

the Workbox CLI and follow the instruction provided by Google [75] to generate a service worker

file (workbox-sw.js) with the default setting. Next, we create an app wrapper (WorkboxApp.js)

for the generated service worker shown in Listing 5.2. Finally, we modify the generated service

worker file and import it inside the app. This process preserves the caching policy provided by

Workbox, and the SWAPP’s Workbox app we create also works in conjunction with Cache Guard

as expected.

1 [WorkboxApp.js]

2 + var wbApp = new Object();

3 + wbApp.reqMatch = function(fObj) {

4 + return true;

5 + };

6

7 + self.importScripts("workbox-sw.js");
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8 + f2fInst.addApp(wbApp);

9

10 [workbox-sw.js]

11 addFetchListener() {

12 - self.addEventListener("fetch", (e => {

13 - const {

14 - request: t

15 - } = e, s = this.handleRequest({

16 - request: t,

17 - event: e

18 - });

19 - s && e.respondWith(s)

20 - }))

21

22 + let ref = this;

23 + wbApp.reqApply = async function(fObj) {

24 + let e = fObj.getMetadata();

25 + const {

26 + request: t

27 + } = e, s = await ref.wbHandleRequest({

28 + request: e,

29 + event: e

30 + });

31 + let b = await s.text();

32 + fObj.setMeta(s);

33 + fObj.setBody(b);

34 + fObj.setDecision("cache");

35 + return fObj;

36 }

37 }

Listing 5.2: Migrating Workbox to SWAPP

5.6.3 Extensibility and Programmability

In Section 5.5, we demonstrate the programmability of SWAPP in accordance to the goal G3.

Here, we further show how easy to develop various security apps on our platform, compared with

existing defense solutions. As shown in Table 5.3, SWAPP provides a unified platform that can

be used to develop various defense solutions against different types of web attacks such as side-
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Table 5.3: Extensibility and Easiness of Programmability of SWAPP

Attack type Defense Name Description Defense Platform # of LoC

Side-channel Attack
Cache Guard Selectively delay cached response on suspicious requests SWAPP 258

Instrumented JS APIs Instrument sensitive sensor APIs to apply policy Chrome Extension >400

Autofill Abusing Attack
Autofill Guard Mitigate password stealing attacks in log in forms by isolation with iFrames SWAPP 223

Insecure Form Warning Disable Autofill for forms to insecure url and send alert to users Chromium ~160

Data Stealing
Data Guard Reserve sensitive data in secure storage to prevent it from beling stolen SWAPP 325

Access Control Management Enhance the access control policies to deny unauthorized access Sever-side Manual work

DOM-XSS Attack
DOM Guard Inspect URL parameters to filter XSS payload SWAPP 406

DOMPurify.js XSS sanitizer for HTML, MathML, and SVG Client-side 1542

channel attacks, autofill abusing attacks, data stealing, and DOM-XSS attacks. These apps in our

system can be instantly deployed or updated without waiting for months/years for browsers to

officially support the same features.

Furthermore, we roughly quantify the easiness of programmability on our framework by com-

paring the lines of code (LoC) app developers need to implement the same functionalities (or

equivalence) of existing defense mechanisms. From Table 5.3, we can see that the number of LoC

of apps in SWAPP is noticeably smaller than that in traditional platforms for most defenses, which

suggests that SWAPP can reduce the cost of implementing applicable defense mechanisms.

5.6.4 Overhead

We have shown that SWAPP can help develop security prototypes on the client-side. However,

it is also imperative to show that the clients do not suffer as a result. To this end, we evalu-

ate the overhead of SWAPP imposed on a client in four different aspects: the page load time,

computational power, heap usage, and network bandwidth. We perform the testing and measure-

ment in a commodity laptop running Ubuntu 18.04 with Intel Core i7-8565U CPU, onboard Intel

UHD Graphics 620, and 16GB of memory. We set up four testing configurations, each based on

WordPress and phpBB on a local webserver. The first configuration, referred to as the Baseline,

represents the original WordPress or phpBB. The second configuration, referred to as EmptySW,

has a service worker that simply registers a fetch handler without other functionalities. The third

configuration has SWAPP installed but does not contain any apps. We refer to this configuration as

SWAPP. The fourth configuration has SWAPP installed with four apps activated: Autofill Guard,
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Figure 5.5: Overhead of SWAPP

DOM Guard, Workbox, and Cache Guard. This configuration is referred to as +Apps. Then, we

use Chrome’s DevTools to measure website visit traces. Both the client and server are running on

the same machine, thus the network delay does not need to be taken into account. The results are

shown in Figure 5.5.

5.6.4.1 Page Load Time (PLT)

In this evaluation, we compare the average page load time between each configuration in ph-

pBB and WordPress. We make sure that the browser caching is disabled and all site data is cleared

for every measurement. The average page load time is calculated among five runs, and it is shown

in Figures 3(a) and 3(b).

First Page Load. This scenario represents the first time a user visits the website. As shown in

Figure 5.5(a), we observe a gradual increment in the page load time across different settings due to

the parsing of additional JavaScript files. Note that the service worker and SWAPP functionalities

may not be fully activated during the first-page load. For instance, the initial fetch events for the
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first-page load will not go through the service worker.

Subsequent Page Load. In the following visits, the service worker will be fully activated.

In addition to extra JavaScript files being parsed, we observe an overhead incurred by service

worker activation cost. Specifically, even when a service worker is empty, the browser still needs

to activate the service worker before a request can be fetched. The difference between the Emp-

tySW settings from Figures 3(b) and 3(a) represents this activation cost. On average, an additional

26.8ms (10.26%) and 20.6ms (6.01%) activation cost is incurred to WordPress and phpBB respec-

tively. This behavior is also documented in Google’s blog [76], in which navigation preload is

used to reduce the activation cost. However, SWAPP cannot preload a resource as prefetching a

malicious request can mean the attack is already successful (i.e., the information from the victim

already reaches the attacker’s server).

SWAPP Overhead. There are two types of overhead introduced by SWAPP: application logic

and SWAPP logic. The application logic overhead scales with the number of requests because

an app may need to process every request/response. On average, Workbox, Cache Guard, DOM

Guard, and Autofill Guard introduce 35.22ms, 5.4ms, 9.5ms, and 3.8ms to WordPress (and 43.2ms,

15.9ms, 17.64ms, and 11.44ms to phpBB) respectively. The distribution of this overhead is illus-

trated in Figure 5.5(c). Note that the numbers of requests for loading WordPress and phpBB home

pages are 18 and 48 respectively. In total, the four apps introduce 53.92ms (20.28%) to the original

WordPress and 88.18ms (25.5%) to the original phpBB.

The SWAPP logic overhead scales with the size of each response’s body. This is because

when an app needs to inspect a response, SWAPP needs to parse the body of the response. We

can observe this overhead in phpBB shown in Figure 5.5(c). When there are no apps, SWAPP’s

logic incurs 58.8ms (17%) overhead. When there are four apps installed, SWAPP’s logic incurs

118.8ms (34.4%). On the other hand, WordPress only has 40ms (15.8%) and 45.4ms (18.1%)

overhead when there are no apps and when there are four apps, respectively. Note that WordPress

requires 50.1kB for loading its home page and phpBB requires 187kB. We observe that parsing

the largest response of phpBB incurs almost 20ms alone.
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In total, when deploying SWAPP in the original WordPress and phpBB with the four apps,

there are 138ms (55%) and 225ms (65.2%) overhead, respectively. Note that for the purpose

of evaluation, we enable the four apps for all types of requests. In practice, the developers can

configure the apps to selectively activate them for certain pages or types of resources. This could

help reduce the overhead of SWAPP and its apps. For instance, the largest file requested by phpBB

is a font, which SWAPP spends 20ms parsing but none of the four apps actually takes any action

on it. Furthermore, the measurement was conducted in a local environment, and the calculations

do not consider the network delay. The network latency depends on several factors, but Google’s

DevTools would add approximately 300-500ms when the Fast3G setting is applied in our testing

environment. Considering an actual user experience with a 400ms network delay, the overhead

of SWAPP would be 12% for WordPress without apps and 21.2% with four apps. Similarly, the

overhead would be 10.3% for phpBB without apps and 30.2% with four apps. Therefore, we

believe SWAPP can be a considerable option for web developers, researchers, and practitioners to

quickly develop new prototypes in the future.

5.6.4.2 CPU/Memory Power and Heap Usage

To measure the CPU and memory usage, we utilize Lighthouse, a gadget provided by Chrome’s

Devtools for measuring the website’s overall performance. Lighthouse will load the website and

give a score for the CPU and memory power as a numerical value. While this might not be the

most accurate method to measure, it gives a value that can be easily compared. Based on the result

shown in Figure 5.5(d), we observe no differences between each configuration, thus the CPU and

memory utilization overhead are minimal.

To measure the heap usage, we manually define a set of actions that normal users would do

(i.e., visit the home page, log in, post a forum’s topic or publish a blog, etc.). Then, we collect the

heap sampling records. The numbers shown in Figure 5.5(e) represent the peak heap usage during

the actions. Note that using samplings may not yield the absolute peak usage, thus we average the

numbers across five trials. Overall, we observe a strictly increasing trend in heap usage in both

WordPress and phpBB. The inclusion of SWAPP can bring additional 20-30% to the heap usage
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compared to an empty service worker, and the apps can introduce 10-30% overhead compared to

when there is no app. Nonetheless, the idle heap usage of WordPress and phpBB are similar across

all settings with 4.6Mb (+/-5%) and 5.1Mb (+/-7%) respectively.

5.6.4.3 Network Bandwidth

Because we run the client and server for our testing on the same machine, there is no actual

network bandwidth. Regardless, Chrome’s DevTools can calculate the network bandwidth during

a page load, which can correctly measure the amount of bandwidth caused by SWAPP. We collect

the network bandwidth of a set of page navigation similar to Section 5.6.4.2. The amount of

resources loaded is shown in Figure 5.5(f).

We observe that the amount of additional resources loaded is mostly negligible across all set-

tings. The size of SWAPP is less than 1kB, and it is only loaded on the first page as expected.

Although we observe almost a double amount of the number of requests, it does not incur addi-

tional resource loaded. The DevTools simply counts a request twice, once for the original request,

and second for when the request is handled by the service worker. This also explains why the page

load time increases when a website has a running service worker with a fetch event handler. For ev-

ery request, now the browser will have to wake up the service worker to handle the request, which

can incur additional computational overhead. Regardless, the amount of extra network bandwidth

is still negligible.

5.7 Limitation

Nowadays, most websites (94% according to a recent report [77]) embed at least one third-

party resource, e.g., through <script> or <img> tags. Similarly, many websites also make use of

cross-origin AJAX requests (XHR). Generally, for a cross-origin XHR to be fetched correctly, the

CORS (Cross-Origin Resource Sharing) protocol of the resource must be correctly configured.

Our approach requires network interception, which may include intercepting cross-origin re-

quests. Because the service worker also adheres to the CORS protocol, SWAPP will not be able

to read certain request headers or modify the content of cross-origin responses depending on the
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CORS configuration [78]. For example, when it is the no-cors mode, only simple HTTP headers

are accessible and the response properties will be inaccessible to SWAPP. If an app attempts to

access such response, it will result in an error.

Among the apps that we developed, Autofill Guard and Data Guard do not access cross-origin

resources and only modify HTTP pages, which are from the same origin, while simply forwarding

other requests/responses. In the case of Cache Guard, it sets the timer of each request (including

cross-origin) when forwarding non-page requests for computing the average network delay. There-

fore, it requires CORS-enabled responses, in which the no-cors mode would suffice because Cache

Guard does not read the response properties.

While the restriction from the CORS protocol limits the direct applicability of SWAPP to seam-

lessly work with cross-origin resources, we envision SWAPP as a first step toward providing first-

party developers a fast-prototyping framework for deploying security applications. With more

websites adopting service workers, SWAPP will have better protection coverage. We leave the full

integration of SWAPP with third-party resources for future work.

5.8 SWAPP Internet Distribution

We open-source SWAPP, which can be found at https://github.com/successlab/

swapp, to support more research in this direction.

5.9 Summary

In this chapter, we proposed and open-sourced a framework, SWAPP, to develop security ap-

plications on the client side. SWAPP runs in the service worker context and enhances all the attack

surfaces (S1-S5). Furthermore, we demonstrated that SWAPP can be used to implement several

types of apps including defenses against traditional attacks like XSS, data leakage, side-channel,

and autofill abusing attacks. Lastly, we evaluate SWAPP based on the adoptability, compatibility,

extensibility/programmability, and efficiency. The result showed that SWAPP can be an alterna-

tive for web developers to implement security defenses that can be easily deployed without many

requirements.
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6. LESSONS LEARNED

In this chapter, we plan to answer the following questions: How are our systems related to and

different from each other? What lessons have we learned from designing these systems?

6.1 Summary of Appified Web Security

In this dissertation, there are three types of systems that we provide.

First, systematic analysis of service worker attack surfaces. To this end, we manually in-

vestigate the web specification, implementation, and how the service worker works in practice.

Furthermore, we survey previous work that utilizes service workers abusively. The accumulation

of the obtained knowledge becomes the systematic view of the service worker attack surfaces.

Second, we propose and develop detection systems to identify real vulnerabilities in top appi-

fied websites. For instance, SW-Scanner can be used to detect SW-XSS attacks based on surface

S1 and extended to detect attacks based on surfaces S2 and S3. Because surfaces S4 and S5 are dis-

cussed by previous work, which includes their detection tools, we do not re-implement the wheel

and simply refer to their finding results.

Third, we propose and develop defense mechanisms for each attack surface. Our system is

called SWAPP. Not only SWAPP can patch the attack surfaces, but it can also provide generic

protection against traditional or emerging client-side web attacks. We summarize the attack surface

and the corresponding defense in the following.

Table 6.1 shows the summary of all attack surfaces and how our systems can mitigate them. In

total, there are five attack surfaces for the service worker.

Table 6.1: Summary of our Attacks and Defenses

Attack Surface Surface Type Attack Type Corresponding SWAPP Defense

S1. SW Registration (§3.2) Lifecycle SW-XSS TCB Module preventing SW registration after SWAPP installation (§5.4.1)
S2. IndexedDB (§4.2) Communication Channel SW-XSS Enhanced IndexedDB (§5.4.3)
S3. Push Message (§4.3) Communication Channel Push hijacking Push Guard (§5.5.5)
S4. Cache [16] Communication Channel Side-Channel Cache Guard (§5.5.1)
S5. postMessage [17] Communication Channel XSS Enhanced postMessage API (§5.4.2)
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S1 Attack. The first attack surface, S1, is due to the flaw in the service worker registration

lifecycle that allows attackers to manipulate URL search parameters. We find that appified web-

sites blindly trust these parameters and use them inside the service worker leading to SW-XSS

vulnerability.

S1 Defense. In order to prevent SW-XSS attacks via SW registration, SWAPP’s TCB module

disables the registration API entirely once SWAPP is installed. If the website wants to reinstall,

it must send the "Clear-Site-Data" HTTP header. While this method does not prevent the attacks

that are attempted prior to SWAPP installation, we argue that the attackers will not obtain any

meaningful information in this scenario. This is because SWAPP is installed upon the first visit. If

the victim never visits the target website, there is likely not any worthwhile data for the attackers

to steal.

S2 Attack. Based on the first attack surface, we extend our analysis beyond the lifecycle into

the communication channels of a service worker. The second surface S2 extends our SW-XSS

attacks onto the IndexedDB channel. While the concept is similar, it is non-trivial to study the

prevalence of the vulnerability of this channel in the wild. This is because the IndexedDB entries

are used for different purposes than the SW registration parameters. We need to extend another

taint tracking tool and utilize real IndexedDB entry to discover the vulnerability. As a result, we

find five additional websites that are vulnerable to SW-XSS.

S2 Defense. To prevent SW-XSS via IndexedDB, our system, SWAPP, enhance the IndexedDB

API. SWAPP instruments the API to reserve specific database names that cannot be opened in the

document context. All scripts in the service worker can use the reserved IndexedDB. In this case,

attackers will not be able to manipulate a service worker’s internal variables anymore.

S3 Attack. The third surface S3 does not lead to SW-XSS, unlike the first two surfaces. While

the impact of this channel is more limited, it still leads to user locations being leaked to attackers.

Furthermore, there are more websites that contain this vulnerability due to the popularity of third-

party push providers, thus making this attack surface the most prevalent.

S3 Defense. To address this attack surface, we implement a simple SWAPP app called Push
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Guard. This app instruments the push subscription API to check for the registering subscription

ID. If the ID does not match an allowed list that the developers provide, Push Guard will reject the

call.

S4 Attack. This attack surface was discussed by Karami et al. [16]. The attackers utilize

differences in page load timing between cached and non-cached resources to determine the user’s

history. We thoroughly studied this attack surface following Karami’s idea and came up with a

mitigation method that can be easily deployed and effective.

S4 Defense. We develop a SWAPP app called Cache Guard to prevent side-channel attacks

through Cache timing. Cache Guard selectively extends the page load time without affecting the

user experience. We show that Cache Guard works effectively and without jeopardizing the web-

site’s performance.

S5 Attack. This attack surface was discussed by Son et al. [17]. The attack targets communi-

cation between different iFrames. However, the same can be applied to service workers. Therefore,

we take the lessons learned from Son’s idea to implement an effective mitigation method by en-

hancing the postMessage API.

S5 Defense. To provide intrinsic security to postMessage API, SWAPP utilizes a secret port

established inside the TCB. This port is used when communicating within SWAPP (including both

in the document and service worker contexts). By limiting the senders to within a trusted group,

attackers can no longer compromise the service worker context.

6.2 Lessons Learned

A benign service worker can be compromised. In the earlier studies of service worker secu-

rity, the common threat model involves a malicious website starting a service worker to utilize the

victim’s computational power. Nevertheless, such a model is limited in its impact especially when

most previous attacks utilize the computational power to mine crypto-currency. Nowadays, it is

much more difficult to mine crypto-currency without a specialized machine. Therefore, we aim

to show that it is also possible to compromise a benign service worker. This assumption is more

generic than the previous threat model.
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As we have shown throughout this dissertation, there are several attack surfaces that can allow

attackers to compromise the service worker. Once compromised, the attackers can also steal sen-

sitive information leading to more severe consequences than in previous attacks. Hence, we learn

that despite security mechanisms in service workers, it is possible to compromise or leverage a

benign service worker.

While the service worker introduces new attack vectors, it can also be used to enhance

client-side security. The service worker introduces several attack surfaces to the client-side. How-

ever, once these surfaces are patched, the unique capabilities of service workers can be utilized by

developers to implement innovative applications. As shown in Chapter 5, SWAPP allows several

security apps to be implemented and deployed easily. Furthermore, SWAPP can even implement

non-security apps such as the wrapped Workbox app discussed in Section 5.6.2. As we are the first

to utilize service workers to improve client-side security, we envision that SWAPP will be the first

step toward more innovations in the future.

Service worker adoption is increasing. Since the start of our study on service workers (2018),

we have found that the service worker adoption rate increases every year. By the time we do our

most recent data collection (2020), we found that the number of appified websites increased from

2,700 to 7000 websites. Based on this growth, we expect service workers to be adopted by more

websites in the future.

One potential reason why more websites start to adopt service workers could be that new fea-

tures are also being implemented for service workers. We noticed that initially, the service worker

did not support many event types, thus many websites did not find service workers attractive. Be-

cause service workers are constantly being improved, we see new features (such as payment APIs)

being added and tested by browser developers. We expect the service worker to be more powerful

in the future, which in turn makes its security even more important.
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7. CONCLUSION AND FUTURE WORK

7.1 Conclusion

The service worker is a recent web technology that enables appification of websites turning

traditional websites into native mobile apps or desktop software. It comes with unique capabilities

including network traffic interception and spontaneous activation of its code. These both bring new

attack surfaces for attackers to target and new opportunities for developers to utilize the service

worker for innovation.

In this dissertation, we systematically analyzed the security model of the service worker. First,

we analyzed the service worker lifecycle and discovered a new variant of XSS attacks, called SW-

XSS. Second, we extended our analysis to the communication channels used by service workers.

We identified two channels that can be utilized by attackers to launch SW-XSS attacks and push

hijacking attacks. Third, we measured the prevalence of these attack surfaces in the top 100,000

websites using our developed taint tracking tool called SW-Scanner. The large-scale study showed

that 40, 5, and 200 benign websites could be compromised through SW-XSS (via registration),

SW-XSS (via IndexedDB), and push hijacking attacks respectively. As a result, we satisfied the

goal G1 as discussed in Section 1.2.

Furthermore, we proposed a platform utilizing the service worker as the root of trust on the

client-side to implement security applications. Our platform, SWAPP, patched all attack surfaces

exposed to service workers, thus preventing the aforementioned attacks against service workers.

More importantly, SWAPP can also be used to implement innovative defenses that can mitigate

against other traditional web attacks such as DOM-XSS, data leakage, and side-channel attacks.

Therefore, we satisfied goal G2.

7.2 Future Work

There are two paths that I intend to work on in the future. First, I want to expand my knowledge

of web security to the Web3, which incorporate blockchain mechanisms with traditional websites
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to provide decentralization. To this end, I am looking toward phishing attack studies in the domain

of Web3 as the interaction between users and Web3 providers is different than traditional websites.

Furthermore, I want to potentially provide mitigation methods against Web3-specific phishing at-

tacks, especially regarding anti-phishing wallet. Second, I want to continue my research on service

worker security as follows.

• Improvement on the SWAPP efficiency and implementation of other applications using

SWAPP. Currently, SWAPP incurs an acceptable but considerable overhead. We plan to

further optimize SWAPP performance by selectively parsing resources that are useful while

skipping other resources. Furthermore, we want to fully support third-party resources on the

website. Due to the limitation of CORS, SWAPP cannot fully control third-party content.

An alternative is to build SWAPP natively as a browser extension or modification. Lastly,

we want to develop more apps using SWAPP as SWAPP apps can easily be installed. We

believe that future studies on new SWAPP apps will be useful for future researchers.

• Unexpected service worker registration using first-party scripts. One research direction

I am considering is using existing first-party scripts as gadgets and registering the initial

gadget as a service worker to import malicious code into the service worker context. The in-

tuition is that the service worker does not allow third-party codes to be registered. However,

it does not limit normal first-party scripts running in the document context to being regis-

tered. We notice that much first-party code running in the document context contains code

importing mechanisms such as importScripts (in normal web workers) and module import.

If such scripts allow the importing URL to be controlled, it is possible to forcefully regis-

ter the script as a service worker and control the importing URL to point to the attacker’s

server. We aim to explore the use of these script gadgets to compromise service workers in

the future.

• Formal method for analyzing service workers. Another direction is to apply formal meth-

ods for analyzing service workers similar to what Fett et al. did on OAUTH2 [79]. In my
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work, I have studied the attack surfaces and defenses of service workers. However, service

workers do not just interact with a website’s code but also it can interact with other aspects

such as web browsers. I plan to extend my knowledge and provide formal verification of

service worker security in all aspects.
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