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ABSTRACT 

Climate Change and Natural Disaster Loss Prediction in the United States 

Jordan Vick 

Department of Political Science 

Texas A&M University 

Research Faculty Advisor: Dr. Michelle Meyer 

Department of Landscape Architecture and Urban Planning  

Texas A&M University 

This project intends to answer the question of how rising disaster losses correlate to 

essential climate change variables. Despite the substantial upward trend in economic losses from 

disaster, there is still debate over whether anthropogenic climate change has been the main driver 

of losses. This is due to the need to control for complex socioeconomic variables such as 

population, social vulnerability, economic growth effects, and more. The project will investigate 

the effects of temperature, precipitation, and vulnerability on disaster losses to examine how 

these measures have predicted the human cost of disaster. I hypothesize that climate indicators 

will predict disaster damages, and that these effects will vary based on social vulnerability and 

physical exposure. I also predict regional climate data will predict damages more accurately than 

global data. By illuminating the variables that best predict losses and identifying quantitative 

trends, this project will quantify the relative contribution from anthropogenic climate change to 

disaster losses and provide helpful information about the predictive power of individual climate 

variables. Quantitative analysis of the secondary data will be conducted and the implications of 

climate change in the future will be discussed, as well as a review of the literature, especially in 
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the area of disaster attribution. The secondary data are available through NOAA, SHELDUS and 

NLDAS datasets. These data will be used to quantitatively study the relationship of specific 

climate variables to disaster losses. Correlation and regression analysis will be conducted on a 

county-level and global scale using Stata. 

  



3 

 

DEDICATION 

Dedicated to the Hazard Reduction & Recovery Center at Texas A&M, including Dr. Michelle 

Meyer, Mason Alexander, Dr. Nathaniel Rosenheim, and Dr. Doug Wunneburger for helping me 

through the research process, as well as the professors and TAs who taught me all I needed to 

know. 

  



4 

 

ACKNOWLEDGEMENTS 

Contributors 

I would like to thank my faculty advisor Dr. Michelle Meyer for her guidance and 

support throughout the course of this research. I would also like to thank the research group of 

Dr. Meyer's NSF CAREER grant. This includes: Dr. Kenny Taylor, Postdoc J. Carlee Purdum, 

PhD Students Mason Alexander-Hawk and Joy Semien, Master Student Haley Yelle, and 

undergraduates Adrian Rodriguez, and Saul Romero. 

Funding Sources 

Undergraduate research was supported by a REU Supplement Award from the National 

Science Foundation and the Hazard Reduction and Recovery Center in the College of 

Architecture at Texas A&M. 

This work was also made possible in part by the National Science Foundation under 

Grant Number 1944329. Any opinions, findings, and conclusions or recommendations expressed 

in this material are those of the author(s) and do not necessarily reflect the views of the National 

Science Foundation. 

  



5 

 

1. INTRODUCTION 

Despite the continual rising of temperatures throughout the 1990s, studies prior to the 

mid-2000s have implied or outright stated that extreme weather events are impossible to trace 

back to anthropogenic climate change (Allen, 2003). The frequency and intensity of extreme 

weather such as El Niño, the 2017 wildfires, the 2020 Atlantic hurricane season, the 2021 freeze 

event in Texas, and extreme tornado outbreaks have put this into question. Recently, projections 

and models have been increasingly used to predict extreme weather and climate instability. As 

our understanding of the climate system has changed with new climate models’ predictions 

(IPCC 2013), research has provided more than enough evidence that anthropogenic greenhouse 

gas emissions largely drive climate change.  

There are still many uncertainties in the literature when it comes to specific estimates of 

the effect of climate change. The effects of climate change (precipitation, heat extremes, etc.) on 

the environment are complex, varying based on geography and natural variability (Nature 

Climate Change, 2019), which makes direct attribution difficult. The project will identify which 

markers of climate change have a substantial effect on natural disasters and the consequences of 

them. To facilitate better attribution, this paper will also test the relationships between climate 

variables to strengthen or disprove existing hypotheses. One such hypothesis, proposed by Liu et 

al. (2021), is that heavier precipitation predicts an increase in floods. Annual hurricanes have 

been predicted to increase by 50% for each 1 C increase in surface temperatures (Alvarez et al. 

2021), temperature being one of the more predictive markers in the literature. To continue to 

understand the impacts of climate change, this paper will analyze essential climate variables 

alongside the rising cost of disaster.  
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An important mediator to consider between climate change and disaster damage is the 

built and social environment (Highfield et al. 2014). While hazard exposure captures structural 

characteristics of the built environment, social vulnerability captures the socioeconomic 

characteristics that impact hazard mitigation and recovery (Highfield et al. 2014). Extreme 

weather events of the past 30 years, as well as climate change in general, have had serious 

implications for vulnerable populations (Van et al. 2012; Meyer et al. 2021). A 1 °C rise in 

surface air temperature “would increase losses by between US$26 and US$88 billion”, according 

to only nonlinear estimates (Estrada et al., 2015). While social vulnerability has been shown to 

correlate positively with losses (Fothergill & Peek, 2004; Bouwer, 2011), it has been accounted 

for with different methods, with differences between linear and nonlinear normalization 

procedures leaving a large room for uncertainty.  

The research question will ask: how do specific indicators of climate change uniquely 

predict the losses incurred by natural disasters? The model will track different types of climate 

change markers and measure their individual ability to predict losses, while acknowledging 

complicated factors of vulnerability and exposure (Highfield et al. 2014). By studying climate 

variables that have already been established for prediction and analysis of disasters, quantitative 

trends in data can be identified. Investigating the relationships between these markers can 

strengthen our understanding of how climate change predicts disaster. 

1.1 Definitions 

The United Nations General Assembly standardized several terms in a 2020 report. 

Hazards are defined as “a process, phenomenon or human activity that may cause loss of life, 

injury or other health impacts, property damage, social and economic disruption or 

environmental degradation” (UNDRR, 2020). In short, it is a condition that poses a threat 
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(Flanagan et al. 2011). Disasters are defined as “a serious disruption of the functioning of a 

community or a society at any scale due to hazardous events interacting with conditions of 

exposure, vulnerability and capacity, leading to one or more of the following: human, material, 

economic and environmental losses and impacts” (UNDRR, 2020). Exposure is “the situation of 

people, infrastructure, housing, production capacities and other tangible human assets located in 

hazard-prone areas” (UNDRR, 2020). Vulnerability refers to “the conditions determined by 

physical, social, economic and environmental factors or processes which increase the 

susceptibility of an individual, a community, assets or systems to the impacts of 

hazards” (UNDRR, 2020). Social vulnerability, a subset of vulnerability, entails “socioeconomic 

and demographic factors that affect the resilience of communities” (Flanagan et al. 2011). 

Factors that tend to be included in this definition are race, ethnicity, poverty, gender, and age, 

among others (Highfield et al. 2014).  

Losses in this paper and in the data refer only to direct losses (CEMHS, 2020; National 

Research Council, 1999), a monetary measure of the structural impact of hazards on physical 

infrastructure. Losses have also been referred to in the literature as economic damages, or cost of 

damages (Coronese et al. 2019). Meanwhile, disaster damage is typically referred to in physical 

units of destruction that occur immediately during or after a hazard event (UNDRR, 2020). 

Direct losses are easier to objectively measure than indirect losses. Indirect losses are effects 

such as business interruption due to a hazard, and are difficult to measure and sometimes 

intangible. Likewise, the complete loss data including direct and indirect losses would create 

much higher estimates than standard loss records (National Research Council, 1999). Lastly, 

land surface models (LSMs) are complex models that simulate several processes occurring at the 

Earth’s surface, such as evaporation, carbon emissions, or sunlight (Fisher & Koven 2020). 
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1.2 Literature Review 

1.2.1 Temperature 

Globally, there is a lot of natural variability associated with temperatures as a measure, 

especially when it comes to weather patterns influenced by heat oscillations. Notably, El Niño 

heat oscillations are irregular periodic fluctuations in sea surface temperature which can cause 

extreme weather in the eastern Pacific. Studies have found much higher likelihood of disasters 

with temperatures several standard deviations above the mean with concurrent warming of 1.25 

C (Schär et al 2004). Natural variability is only part of the equation; “numerous factors have 

been shown to influence these local sea surface temperatures, including natural variability, 

human-induced emissions of heat-trapping gases, and particulate pollution” (Wuebbles et al. 

2017). Generally, record-breaking extremes are found when natural variability overlaps with 

human-induced warming (Trenberth 2011).  

According to NOAA’s 2020 annual report, the combined land and ocean temperature has 

increased at an average rate of 0.13 degrees Fahrenheit ( 0.08 degrees Celsius) per decade since 

1880; however, the average rate of increase since 1981 (0.18°C / 0.32°F) has been more than 

twice that rate. (Sánchez-Lugo et al. 2020) Global annual average temperatures have typically 

been derived from “integrated collection of historical temperature observations over the land and 

ocean.” (Vose et al. 2012). Rise in global temperature has been 1.2°F (0.7°C). The acceleration 

of the warming can be attributed to increased greenhouse gases (Wuebbles et al. 2017).  

In the United States, trends are similar. Temperature increases since 1896 have centered 

around 1.2-1.8 °F. In a Climate Science Special Report (Wuebbles et al. 2017), average 

minimum temperature increased at a slightly higher rate than average maximum temperature, 

which was confirmed in the NLDAS dataset used in the project. Additionally, warming and 
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frequency (variance) of heat waves has intensified over the last 30 years (Wuebbles et al. 2017). 

However, regions of the Midwest have not followed suit, possibly because of anthropological 

agricultural conditions. This ‘warming hole’ where some regions have not experienced increases 

in warming in the southeast has been explained by the presence of other climate forcing, such as 

the prevalence of anthropogenic aerosols, which peaked from 1970-1990 (Leibensperger et al. 

2012).  

In terms of the utility of global and regional temperatures, global climate models 

generally have more use in understanding the broad consequences of warming, especially when 

implementing climate policy. Global temperature rise is often used as a yardstick for policy, with 

the Paris Agreement aiming to limit temperature rise under 1.5 C globally. Regionally, measured 

temperatures for a location may be average relative to the rest of the world, but might differ 

relative to what is typical for the geographical area (Peterson et al. 1997). Analyzing local 

temperatures can hint towards a possible deviation from the average for a given area. 

Additionally, using reference values computed on small scale establishes a baseline from which 

anomalies can be calculated. Anomalies are able to show weather trends and allow comparison 

between locations (Peterson et al. 1997). A recent report found that “recent increases in activity 

are linked, in part, to higher sea surface temperatures in the region that Atlantic hurricanes form 

in and move through. Additionally, studies have found evidence that ocean surface temperatures 

were linked to increases in strong cyclones (Graham & Diaz 2001). 

1.2.2 Precipitation 

Precipitation is the general term for rainfall, snowfall, and other forms of frozen or liquid 

water falling from clouds (Trenberth 2006). Precipitation amount, intensity, and frequency all 

vary with changes in climate (Trenberth 2008). Precipitation also affects trends in tropical storms 
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and hurricanes. Flooding, which is associated with extremes in rainfall, is often driven by 

tropical storms or thunderstorms (Trenberth 2008). Hydrological models have been used in 

projections of future flooding, which often use rainfall and temperature, among other climate 

data. Land-surface models have also been used to evaluate climate change impacts on flooding 

(Madsen et al. 2014).   

Peterson et al. (2008a) reported that in North America, heavy precipitation has been 

increasing over 1950-2004, as well as the average amount of precipitation falling on days with 

precipitation (Wuebbles et al. 2017). In the United States, precipitation is varied. While it has 

generally stayed at similar levels despite increases and decreases occurring in different regions, 

heavy precipitation events have increased in frequency and intensity since roughly 1979 

(Wuebbles et al. 2017). Annual precipitation averaged across the contiguous United States has 

increased approximately 4% since 1901. Precipitation has decreased across the West, Southwest, 

and Southeast and increased in most of the Northern and Southern Plains, Midwest, and 

Northeast (Wuebbles et al. 2017). These events have also been found to increase by 6-7% per 

every degree Celsius increase (Wuebbles et al. 2017). Earlier studies have suggested a climate 

change pattern of wet areas getting wetter and dry areas getting drier (Greve et al. 2014). This 

simplified concept seems to be supported by the observations that generally, the southern parts of 

the US are experiencing a decrease in precipitation, and the northern parts are experiencing an 

increase. However, research in precipitation trends have used inconsistent terms and 

measurements, leaving it difficult to confirm this hypothesis or predict precipitation in the future 

(Roth et al. 2021). 

Worldwide, there has been a ‘substantial’ increase in measures of Atlantic hurricane 

activity, including “intensity, frequency, and duration” (Wuebbles et al. 2017). Across global 
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land areas, there has been a “slight” rise in precipitation, not statistically significant due to a lack 

of earlier data in the past century (Wuebbles et al. 2017). Despite only a small increase in 

precipitation, extreme precipitation events are becoming more frequent worldwide (IPCC 2013). 

Ntegeka & Willems (2008) found statistical significance in the historical increase in extreme 

rainfall over the past century.  

Trends in precipitation and flooding have become a recent topic of interest with respect to 

a changing climate. These increasing surface temperatures “are very likely to lead to changes in 

precipitation and atmospheric moisture,” and “more active hydrological cycle, and increases in 

the water holding capacity throughout the atmosphere” (IPCC 2001). Changes in heavy 

precipitation have occurred over the last three decades in eastern regions of the United States. 

Some research has measured a 14% increase in heavy precipitation (upper 5%) and a 20% 

increase in very heavy precipitation (upper 1%) according to Trenberth et al. (2008), with 

increases in extremes outweighing increases in mean precipitation. This helps support the wet-

areas-wetter hypothesis, since the IPCC contends “it is likely that there has been a widespread 

increase in heavy and extreme precipitation events in regions where total precipitation has 

increased, e.g., the mid- and high latitudes of the Northern Hemisphere” (IPCC 2001). 

1.2.3 Vulnerability 

Vulnerability comes in many forms. Vulnerability is a factor which increases the 

susceptibility of an individual, a community, assets or systems to the impacts of hazards 

(UNDRR 2020). Social vulnerability is a more recently considered phenomenon that sheds light 

on damage patterns, as well as recovery and mitigation. Exposure and structural vulnerability are 

important determinants of damage sustained to structures. Population growth and wealth are 
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main determinants of exposure. Exposure & vulnerability in different geographical areas has 

implications for the amounts of disaster losses. 

However, when these factors are controlled for, social vulnerability continues to impact 

damage with lower-valued homes receiving more damage (Highfield et al. 2014). Community 

vulnerability can be described as susceptibility to harmful impacts of disasters (Zandt et al. 

2012). Community vulnerability mapping has been used in hazard mitigation and disaster 

recovery planning (Van et al. 2012). Vulnerability to environmental hazards means potential for 

loss (Cutter et al. 2003), though there are different definitions of vulnerability in the literature. 

Based on socioeconomic status, extreme weather events have disproportionately impacted lower 

income communities (Fouillet et al., 2008; Elliott and Pais, 2006; Bullard and Wright, 2010). 

Climate change impacts relative to economic strength have been higher in low-income countries 

(Handmer et al., 2012). Increases in extreme events coincide with rises in vulnerability (Maarten 

K. van Aalst (2006), making it hard to disentangle which has caused the rising costs and by how 

much. This has led to a substantial increase in economic losses that has been mainly attributed to 

socioeconomic exposure (Preston, 2013). Since 1960, exposure has been increasing - sevenfold 

since the 1960s (O’Brien et al., 2006) - but spatially heterogenous (Preston, 2013) and influenced 

by path dependence. 

However, there is still debate over whether anthropogenic climate change has been a 

driver of losses, due to the need to control for complex socioeconomic variables such as 

population, social vulnerability (Kashem et al., 2016; Fothergill & Peek, 2004; Berke et al., 

2019), economic growth effects, and more (Bouwer, 2011). Only part of the literature identifies 

climate change as an explanation over commonly used socioeconomic variables (Estrada et al., 

2015). There is no consensus within the social science community on a consistent measure of 
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social vulnerability, though tools such as social vulnerability indexes have been created (Cutter 

et al. 2003). Vulnerability assessments have typically focused on housing construction and 

quality, with later research evaluating social characteristics as highly relevant.  

1.2.4 Attribution 

The area of disaster attribution in climate research is highly controversial; attributing 

observed changes in losses to climate change is difficult, given increasing coastal development 

and natural variability in storm patterns (Emanuel 2011); vulnerability is “increasing for reasons 

that have nothing to do with greenhouse-gas emissions, such as rapid population growth along 

coasts” (Pielke 2007). Researchers have suggested the increase in hurricane and tropical cyclone 

damages “may be due to anthropogenic climate change” (Ranson et al. 2014). Efforts to 

understand the effects of climate change on storm damages have therefore relied on predictive 

modelling. In Ranson et al. (2014), a quantitative analysis of cyclone losses, they found that 

across all models on average, a hypothetical 2.5 C increase in global air-surface temperature 

would cause hurricane damages to rise 63%. Models can have a wide range of predictions. Some 

studies have concluded that the Russian heat wave of 2010 was mostly “natural in origin”, (Dole 

et al., 2011), directly contradicting other authors such as Rahmstorf & Coumou (2011), whose 

work concluded that climate change was the main cause of the heat wave; up to 80%. A 

discrepancy in the literature has been the lack of information from certain time periods, 

undercounting of storms (Estrada et al., 2015) and other inconsistencies with models that have 

been used.  

Attribution has come a long way. Human contribution to the European heatwave of 2003 

(Stott et al. 2005) was a groundbreaking paper which was the first of a series of attempts at more 

specific attribution of natural disasters. The conclusion of the paper was that human influence 
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had “more than doubled” the risk of European summer temperatures as hot as the 2003 heat 

wave. In the years after, interest in the area grew at a rapid pace. A National Academy of 

Sciences report (2017) wrote that “an indication of the developing interest in event attribution is 

highlighted by the fact that in 4 years (2012-2015), the number of papers increased from 6 to 

32.” In spite of the different opinions in various event attribution studies, the authors of Stott et. 

al (2005) stated that it is an “ill-posed question” whether or not climate change stands as a sole 

cause of the 2003 European heat wave, or other such events. Instead, their stance is that “…it is 

possible to estimate by how much human activities may have increased the risk of the occurrence 

of such a heatwave.” (Stott et. al 2005).  
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2. METHODS 

2.1 Hazard Data 

The hazard data is drawn from the Spatial Hazard Event and Loss Database for the 

United States version 19.0 (CEMHS, 2020). It is maintained by the Hazards and Vulnerability 

Research Institute and is mainly based on NCEI Storm Data as the original data source. Version 

19.0 contains 925,847 loss records from 1960 to 2019 for 18 hazard types. The loss data is 

disaggregated at a county level, a detail level that allows for comparison with the county level 

temperature and precipitation data. The dataset works for the purposes of this project because, 

according to the NOAA, “no database offered the ability to download inflation-adjusted losses” 

(Gall et al. 2009), which allows for consistency over the years. Despite its helpful features, 

SHELDUS underrepresents drought events and overrepresents flooding (NWS 2007) due to 

difficulty recording droughts and required NCEI “guesstimates” of flooding (CEMHS, 2020). 

However, flooding and wildfires are two hazard types which are highly sensitive to climate 

conditions and will still be the main focus of the analysis. 

Losses are equally distributed among counties if there is a multi-county hazard event, 

according to the documentation. “For instance, a thunderstorm event affecting Richland and 

Lexington County in South Carolina and causing property damages of $50,000 will be entered 

into the database as an event affecting Richland County with $25,000 and Lexington County 

with $25,000 worth of damage” (CEMHS, 2020). The losses are conservatively estimated. 

“Whenever losses are reported as a range… SHELDUS selects the lower bound of the range” 

(CEMHS, 2020). Between 1960 and 1995, loss estimates were given as a range rather than 

specific amounts, so losses were systematically lower. In 1995, specific amounts were given 
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instead and spatial resolution also increased, leading to higher monetary accuracy (CEMHS, 

2020).  

2.2 Temperature and Precipitation Data 

2.2.1 County 

The North America Land Data Assimilation System (NLDAS) data available on the CDC 

WONDER website contains county-level daily average air temperatures ranging from 1979 to 

2011 (NLDAS 2012). Max daily air temperature and min daily air temperature from the NLDAS 

dataset was used for regional temps and averaged to create a mean of temperature for use in 

regression analysis. NLDAS contains both real-time and retrospective hourly forcing data 

(Cosgrove et al. 2003). It is a land surface model with both data sets being produced using the 

same spatial and temporal methods and extensively quality controlled as a collaboration between 

several organizations, notably the National Oceanic and Atmospheric Administration (NOAA). 

Local precipitation was from the NLDAS. The data available on CDC WONDER are 

county-level average daily precipitation observations in millimeters spanning the years 1979-

2011 (NLDAS 2012). Reported measures are the number of observations and the range for the 

daily precipitation values. Data contains the 48 contiguous states and District of Columbia, 

stored by region, division, state, and county, and temporally (year, month, day). 

2.2.2 Global 

The global time series used for global surface temperature anomalies, the 

NOAAGlobalTemp data set, was derived from blended land and ocean data from the NOAA. It 

is a blend of the Global Historical Climatology Network monthly (GHCNm v4.0.1) and the 

Extended Reconstructed Sea Surface Temperature (ERSST v4) dataset for blended land & ocean 

data. It contains anomaly observations for each year from 1880-2021. Global precipitation was 
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from the same NOAA source. Using temperature and precipitation anomalies can describe 

climate variation on a more granular scale than absolute measurements. 

2.3 Techniques 

Techniques include trimming dataset to 1990-2010, cleaning data, and merging datasets 

to make comparisons. Resources include North America Land Data Assimilation System 

(NLDAS) Daily Air Temperatures and Heat Index (1979-2011) available from the CDC, the 

NOAAGlobalTemp dataset, the Spatial Hazard Events and Losses Database (SHELDUS), social 

vulnerability data from the US Census and CDC, and Stata statistical data program.  

The NLDAS data was downloaded from the CDC WONDER website for the years 1990-

2010. SHELDUS data was then merged with minimum and maximum daily air temperature data 

from NLDAS. The two temperature variables were averaged to create a mean temperature 

variable seen in Tables 1.1-1.2. County-level precipitation data from NLDAS was also merged. 

Next, crop damage and property damage adjusted for 2018 were summed per county to create a 

total damage variable, also seen in Tables 1.1-1.2. Global temperature and precipitation from 

NOAAGlobalTemp dataset was merged. Two datasets, one containing only flooding hazards and 

one containing only wildfire hazards, were created out of the prior merged datasets. In the 

flooding dataset, 48 of 3,169 counties in the US did not experience flooding hazards. Therefore, 

missing observations of hazards were given a damage value of 0. In the wildfires dataset, 2,484 

counties did not experience wildfires, and were given a damage value of 0. Descriptive statistics 

of seven weather variables and losses from flooding and wildfires datasets are shown in Table 

1.1. A correlation analysis of five variables from both datasets was performed and shown in 

Table 1.5 and 1.6.  
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3. RESULTS 

Table 1.1: Descriptive statistics of weather and losses

 

Displayed in Table 1.1 are summary statistics describing the number of observations, 

mean, standard deviation, median, minimum, and maximum of seven variables. The unit of 

observation is each US county over the 20 year period, of which 3,111 are not missing weather 

data. The table includes 15 possible hazard types categorized by SHELDUS. “Losses” refers to 

USD property and crop damage, summed together and adjusted for inflation to 2018. “Mean 

Temp” refers to minimum and maximum temperatures averaged together on the county level, 

which hovered around 13.2 C°. The min and max ranged between 8.3 and 18.1 degrees C°, with 

a standard deviation of four degrees. “Mean Precip” indicates daily average millimeters of 

precipitation. “Global Temp” and “Global Precip” are two measures that represent the change in 

global average – worldwide, temperatures rose 0.515 degrees Celsius, and precipitation increased 

by 1.194 millimeters over this period.  
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Table 1.2: Regression of Annual Losses 

 

Description of results – In Table 1.2, annual losses is the dependent variable. This table 

contains all hazard types. There are four independent variables, “Mean Temp” and “Mean 

Precip” again referring to county-level measures, while global temp and precip refer to a 

worldwide statistic. The variables are the same as in the previous table. In the results, global 

precipitation has a very statistically significant effect on annual losses, which is a total of all 

losses per year. This is interesting because global measures in Tables 1.5 and 1.6 did not reach 

significance. That may point to global measures being more useful in long-term observations of 

losses, as opposed to predictions of losses in specific hazard types, such as flooding and 

wildfires. 
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Table 1.3: Highest and lowest USD hazard losses 

 

Table 1.3 lists the largest and smallest disasters within each hazard type. This gives an 

idea of the scale of losses as well as some totals across the 20 years – the figure in the #1 

category that caused $11,600,000,000 in losses was Hurricane Andrew in 1992, one of the most 

costly storms on record. The Iowa Flood of 2008 and Oakland Hills firestorm of 1991 are two of 

the other highest-loss disasters in their respective categories. Four out of five of the highest cost 

disasters took place in California, whereas the flooding events with the greatest losses occurred 

mostly in southeast regions of the United States; notably, not along coasts. 
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Table 1.4: Highest USD losses annually 

 

Table 1.4 is a series of statistics across the years 1990-2010, describing the number of 

counties that sustained damage, the average USD losses, and largest disaster for that year as well 

as its location. It is divided into all hazards, flooding, and wildfire hazard types, similarly to 

Table 1.3. 
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Figure 1.1: Mean of hazard losses 

This figure shows a large variation in the size of disaster losses; “annualalldmgadj2018” 

is the yearly total of property and crop damage in USD summed together. This is data from all 

hazard types in general. There is a sharp increase for the year 2005, the year of Hurricane 

Katrina. This raises the question of whether variance in disaster losses is increasing over time.  
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Table 1.5: Correlation table of flooding losses and weather variables 

 

This correlation table is a pairwise correlation table including only flooding-related 

losses. The five variables are the same as the ones used in Table 1.1., except for min and max 

temperature. Of the total of 3,111 counties with nonmissing weather variables, 3,093 counties 

experienced flooding-related hazards. Mean precipitation has a highly statistically significant 

positive relationship to mean temperature, as well as the global variables. Generally, the weather 

variables are strongly correlated with each other. Interestingly, between global and county-level 

measures, the association was negative; lower global temperature and precipitation predict higher 

county temperature and precipitation, and vice versa. In terms of the climate variables’ effect on 

flooding losses, mean temperatures on a county level (“Mean Temp”) have a very statistically 

significant negative inverse relationship with flooding losses. This means the lower temperature 

areas experienced smaller losses. One possible explanation as to why there is a negative 

correlation is that cooler areas are more susceptible to flooding. Hot areas are dryer, and are 

therefore less prone to flooding. This is evidence for the hypothesis that temperature predicts 

flooding events. This coincides with the wet-areas-wetter hypothesis, since wetter climates in the 

US tend to be cooler. Additionally, the mean temp variable is on the county level, whereas global 

temp is not. This means that more granular measures of temperature predict losses better than a 

worldwide measure. 
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Table 1.6: Correlation table of wildfire losses and weather variables 

 

Table 1.8 is a pairwise correlation table consisting of wildfire-related losses and the 

associated weather variables. Of 3,111 counties, 641 counties experienced wildfire hazards over 

the 20 year period. The five variables are the same as Table 1.7. However, the significance of the 

results is different. In this case, mean precipitation was very negatively correlated with losses 

with a p-value lower than 0.01. Evidently, with less precipitation, wildfires were much more 

likely to occur. Unlike Table 1.7 which showed evidence of mean temperature having an effect 

on flooding losses, mean temperature did not have a significant impact on wildfire losses. 

However, mean temperature does still have a negative relationship with losses. The county-level 

and global measures of climate also have an inverse relationship here as well. In the table, (2) 

and (3) have a positive relationship, and (4) and (5) separately are positively correlated.  
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Figure 1.2: Mean Temperatures 1990-2010 

In Figure 1.3, temperature is on the Y axis with years on the X axis of the scatterplot. The 

unit of observation here is county-years. Mean temperatures have slowly increased; the line of 

best fit has trended upwards, within a range of approximately 13-14 C°. In a separate calculation, 

rise in average min air temp over 1990-2010 amounted to 0.0121 C°. The rise in average max air 

temp over 1990-2010 was 0.0381 C°, so average min air temp increased at a slower pace than 

max air temp. 
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Figure 1.3: Losses 1990-2010 

In Figure 1.4, losses are on the Y axis while years are on the Y axis. The unit of 

observation is county-years. The data points indicating losses have increased in variance which 

coincides with Figure 1.1 – the points are more scattered as time goes on. Average minimum 

temperature increased at a slightly higher rate than average maximum temperature. 
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4. CONCLUSION 

I have set out to show quantitative evidence of climate change indicators’ impact on 

disaster losses because of uncertainties in literature as to what extent climate change has 

impacted disasters. The results demonstrate a variety of effects climate change has on losses. On 

the county scale, temperature predicts flooding events, while precipitation was found not to have 

a significant effect on flooding; this contradicts the hypothesis that precipitation would be related 

to flooding. Some support was found for the wet-areas-wetter hypothesis as the cooler the 

temperature, the more likely for flooding to occur as seen in Table 1.5. The results also show that 

lack of precipitation predicts wildfires. However, temperature has comparatively little effect on 

wildfires, against expectations. The increase in mean temperature leads to the question of how 

changing mean temperature affects the climate, and in what ways. As mean temperatures have 

increased, average minimum temperature increased at a higher rate than average maximum 

temperature. County level measures of weather were shown to have different impacts on losses 

than global ones.  

Regional climate data was expected to be more predictive than global ones, but this was 

disproven. In the regression seen in Table 1.2, global temperature had a highly significant effect 

on total losses. Interestingly, the regional and global weather variables used throughout were 

found to have little correlation to each other. Temperature on a high spatial resolution is 

extremely valuable in the prediction of disaster losses, but only in certain categories of hazards. 

This study clarified that global and local measures of climate change are relevant in different 

applications. As shown in Table 1.2, global temperature does influence losses in general, while 

location-specific county indicators can reveal more about a specific hazard type. For example, in 
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Table 1.6, the correlation showed that a lack of precipitation predicts wildfires to a large extent. 

By using measures on a higher spatial resolution, loss prediction and attribution is more useful 

when observing hazard types. In the future, it might be prudent to concentrate on certain 

indicators as they relate to these hazard types, especially considering how strong the link 

between precipitation and wildfires is.  

In terms of implications of this study for future research, the various relationships 

between variables need to be tested extensively so that attribution studies can use county and 

global-scale indicators more effectively. NLDAS data on a county level is especially valuable for 

its predictive power. As disaster losses continue to rise because of increasing temperatures, 

vulnerability, and exposure, climate change indicators can account for and explain some 

variation in our climate and allow for prediction of disasters in the future.   
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