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ABSTRACT

Climate Change and Natural Disaster Loss Prediction in the United States

Jordan Vick
Department of Political Science
Texas A&M University

Research Faculty Advisor: Dr. Michelle Meyer
Department of Landscape Architecture and Urban Planning
Texas A&M University

This project intends to answer the question of how rising disaster losses correlate to
essential climate change variables. Despite the substantial upward trend in economic losses from
disaster, there is still debate over whether anthropogenic climate change has been the main driver
of losses. This is due to the need to control for complex socioeconomic variables such as
population, social vulnerability, economic growth effects, and more. The project will investigate
the effects of temperature, precipitation, and vulnerability on disaster losses to examine how
these measures have predicted the human cost of disaster. | hypothesize that climate indicators
will predict disaster damages, and that these effects will vary based on social vulnerability and
physical exposure. | also predict regional climate data will predict damages more accurately than
global data. By illuminating the variables that best predict losses and identifying quantitative
trends, this project will quantify the relative contribution from anthropogenic climate change to
disaster losses and provide helpful information about the predictive power of individual climate
variables. Quantitative analysis of the secondary data will be conducted and the implications of
climate change in the future will be discussed, as well as a review of the literature, especially in
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the area of disaster attribution. The secondary data are available through NOAA, SHELDUS and
NLDAS datasets. These data will be used to quantitatively study the relationship of specific
climate variables to disaster losses. Correlation and regression analysis will be conducted on a

county-level and global scale using Stata.
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1. INTRODUCTION

Despite the continual rising of temperatures throughout the 1990s, studies prior to the
mid-2000s have implied or outright stated that extreme weather events are impossible to trace
back to anthropogenic climate change (Allen, 2003). The frequency and intensity of extreme
weather such as El Nifio, the 2017 wildfires, the 2020 Atlantic hurricane season, the 2021 freeze
event in Texas, and extreme tornado outbreaks have put this into question. Recently, projections
and models have been increasingly used to predict extreme weather and climate instability. As
our understanding of the climate system has changed with new climate models’ predictions
(IPCC 2013), research has provided more than enough evidence that anthropogenic greenhouse
gas emissions largely drive climate change.

There are still many uncertainties in the literature when it comes to specific estimates of
the effect of climate change. The effects of climate change (precipitation, heat extremes, etc.) on
the environment are complex, varying based on geography and natural variability (Nature
Climate Change, 2019), which makes direct attribution difficult. The project will identify which
markers of climate change have a substantial effect on natural disasters and the consequences of
them. To facilitate better attribution, this paper will also test the relationships between climate
variables to strengthen or disprove existing hypotheses. One such hypothesis, proposed by Liu et
al. (2021), is that heavier precipitation predicts an increase in floods. Annual hurricanes have
been predicted to increase by 50% for each 1 C increase in surface temperatures (Alvarez et al.
2021), temperature being one of the more predictive markers in the literature. To continue to
understand the impacts of climate change, this paper will analyze essential climate variables

alongside the rising cost of disaster.



An important mediator to consider between climate change and disaster damage is the
built and social environment (Highfield et al. 2014). While hazard exposure captures structural
characteristics of the built environment, social vulnerability captures the socioeconomic
characteristics that impact hazard mitigation and recovery (Highfield et al. 2014). Extreme
weather events of the past 30 years, as well as climate change in general, have had serious
implications for vulnerable populations (Van et al. 2012; Meyer et al. 2021). A 1 °C rise in
surface air temperature “would increase losses by between US$26 and US$88 billion”, according
to only nonlinear estimates (Estrada et al., 2015). While social vulnerability has been shown to
correlate positively with losses (Fothergill & Peek, 2004; Bouwer, 2011), it has been accounted
for with different methods, with differences between linear and nonlinear normalization
procedures leaving a large room for uncertainty.

The research question will ask: how do specific indicators of climate change uniquely
predict the losses incurred by natural disasters? The model will track different types of climate
change markers and measure their individual ability to predict losses, while acknowledging
complicated factors of vulnerability and exposure (Highfield et al. 2014). By studying climate
variables that have already been established for prediction and analysis of disasters, quantitative
trends in data can be identified. Investigating the relationships between these markers can
strengthen our understanding of how climate change predicts disaster.

1.1 Definitions

The United Nations General Assembly standardized several terms in a 2020 report.
Hazards are defined as “a process, phenomenon or human activity that may cause loss of life,
injury or other health impacts, property damage, social and economic disruption or

environmental degradation” (UNDRR, 2020). In short, it is a condition that poses a threat



(Flanagan et al. 2011). Disasters are defined as “a serious disruption of the functioning of a
community or a society at any scale due to hazardous events interacting with conditions of
exposure, vulnerability and capacity, leading to one or more of the following: human, material,
economic and environmental losses and impacts” (UNDRR, 2020). Exposure is “the situation of
people, infrastructure, housing, production capacities and other tangible human assets located in
hazard-prone areas” (UNDRR, 2020). Vulnerability refers to “the conditions determined by
physical, social, economic and environmental factors or processes which increase the
susceptibility of an individual, a community, assets or systems to the impacts of

hazards” (UNDRR, 2020). Social vulnerability, a subset of vulnerability, entails “socioeconomic
and demographic factors that affect the resilience of communities” (Flanagan et al. 2011).
Factors that tend to be included in this definition are race, ethnicity, poverty, gender, and age,
among others (Highfield et al. 2014).

Losses in this paper and in the data refer only to direct losses (CEMHS, 2020; National
Research Council, 1999), a monetary measure of the structural impact of hazards on physical
infrastructure. Losses have also been referred to in the literature as economic damages, or cost of
damages (Coronese et al. 2019). Meanwhile, disaster damage is typically referred to in physical
units of destruction that occur immediately during or after a hazard event (UNDRR, 2020).
Direct losses are easier to objectively measure than indirect losses. Indirect losses are effects
such as business interruption due to a hazard, and are difficult to measure and sometimes
intangible. Likewise, the complete loss data including direct and indirect losses would create
much higher estimates than standard loss records (National Research Council, 1999). Lastly,
land surface models (LSMs) are complex models that simulate several processes occurring at the

Earth’s surface, such as evaporation, carbon emissions, or sunlight (Fisher & Koven 2020).



1.2 Literature Review
1.2.1 Temperature

Globally, there is a lot of natural variability associated with temperatures as a measure,
especially when it comes to weather patterns influenced by heat oscillations. Notably, El Nifio
heat oscillations are irregular periodic fluctuations in sea surface temperature which can cause
extreme weather in the eastern Pacific. Studies have found much higher likelihood of disasters
with temperatures several standard deviations above the mean with concurrent warming of 1.25
C (Schér et al 2004). Natural variability is only part of the equation; “numerous factors have
been shown to influence these local sea surface temperatures, including natural variability,
human-induced emissions of heat-trapping gases, and particulate pollution” (Wuebbles et al.
2017). Generally, record-breaking extremes are found when natural variability overlaps with
human-induced warming (Trenberth 2011).

According to NOAA’s 2020 annual report, the combined land and ocean temperature has
increased at an average rate of 0.13 degrees Fahrenheit ( 0.08 degrees Celsius) per decade since
1880; however, the average rate of increase since 1981 (0.18°C / 0.32°F) has been more than
twice that rate. (Sanchez-Lugo et al. 2020) Global annual average temperatures have typically
been derived from “integrated collection of historical temperature observations over the land and
ocean.” (Vose et al. 2012). Rise in global temperature has been 1.2°F (0.7°C). The acceleration
of the warming can be attributed to increased greenhouse gases (Wuebbles et al. 2017).

In the United States, trends are similar. Temperature increases since 1896 have centered
around 1.2-1.8 °F. In a Climate Science Special Report (Wuebbles et al. 2017), average
minimum temperature increased at a slightly higher rate than average maximum temperature,

which was confirmed in the NLDAS dataset used in the project. Additionally, warming and



frequency (variance) of heat waves has intensified over the last 30 years (Wuebbles et al. 2017).
However, regions of the Midwest have not followed suit, possibly because of anthropological
agricultural conditions. This ‘warming hole’ where some regions have not experienced increases
in warming in the southeast has been explained by the presence of other climate forcing, such as
the prevalence of anthropogenic aerosols, which peaked from 1970-1990 (Leibensperger et al.
2012).

In terms of the utility of global and regional temperatures, global climate models
generally have more use in understanding the broad consequences of warming, especially when
implementing climate policy. Global temperature rise is often used as a yardstick for policy, with
the Paris Agreement aiming to limit temperature rise under 1.5 C globally. Regionally, measured
temperatures for a location may be average relative to the rest of the world, but might differ
relative to what is typical for the geographical area (Peterson et al. 1997). Analyzing local
temperatures can hint towards a possible deviation from the average for a given area.
Additionally, using reference values computed on small scale establishes a baseline from which
anomalies can be calculated. Anomalies are able to show weather trends and allow comparison
between locations (Peterson et al. 1997). A recent report found that “recent increases in activity
are linked, in part, to higher sea surface temperatures in the region that Atlantic hurricanes form
in and move through. Additionally, studies have found evidence that ocean surface temperatures
were linked to increases in strong cyclones (Graham & Diaz 2001).

1.2.2 Precipitation

Precipitation is the general term for rainfall, snowfall, and other forms of frozen or liquid

water falling from clouds (Trenberth 2006). Precipitation amount, intensity, and frequency all

vary with changes in climate (Trenberth 2008). Precipitation also affects trends in tropical storms



and hurricanes. Flooding, which is associated with extremes in rainfall, is often driven by
tropical storms or thunderstorms (Trenberth 2008). Hydrological models have been used in
projections of future flooding, which often use rainfall and temperature, among other climate
data. Land-surface models have also been used to evaluate climate change impacts on flooding
(Madsen et al. 2014).

Peterson et al. (2008a) reported that in North America, heavy precipitation has been
increasing over 1950-2004, as well as the average amount of precipitation falling on days with
precipitation (Wuebbles et al. 2017). In the United States, precipitation is varied. While it has
generally stayed at similar levels despite increases and decreases occurring in different regions,
heavy precipitation events have increased in frequency and intensity since roughly 1979
(Wuebbles et al. 2017). Annual precipitation averaged across the contiguous United States has
increased approximately 4% since 1901. Precipitation has decreased across the West, Southwest,
and Southeast and increased in most of the Northern and Southern Plains, Midwest, and
Northeast (Wuebbles et al. 2017). These events have also been found to increase by 6-7% per
every degree Celsius increase (Wuebbles et al. 2017). Earlier studies have suggested a climate
change pattern of wet areas getting wetter and dry areas getting drier (Greve et al. 2014). This
simplified concept seems to be supported by the observations that generally, the southern parts of
the US are experiencing a decrease in precipitation, and the northern parts are experiencing an
increase. However, research in precipitation trends have used inconsistent terms and
measurements, leaving it difficult to confirm this hypothesis or predict precipitation in the future
(Roth et al. 2021).

Worldwide, there has been a ‘substantial’ increase in measures of Atlantic hurricane

activity, including “intensity, frequency, and duration” (Wuebbles et al. 2017). Across global
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land areas, there has been a “slight” rise in precipitation, not statistically significant due to a lack
of earlier data in the past century (Wuebbles et al. 2017). Despite only a small increase in
precipitation, extreme precipitation events are becoming more frequent worldwide (IPCC 2013).
Ntegeka & Willems (2008) found statistical significance in the historical increase in extreme
rainfall over the past century.

Trends in precipitation and flooding have become a recent topic of interest with respect to
a changing climate. These increasing surface temperatures “are very likely to lead to changes in
precipitation and atmospheric moisture,” and “more active hydrological cycle, and increases in
the water holding capacity throughout the atmosphere” (IPCC 2001). Changes in heavy
precipitation have occurred over the last three decades in eastern regions of the United States.
Some research has measured a 14% increase in heavy precipitation (upper 5%) and a 20%
increase in very heavy precipitation (upper 1%) according to Trenberth et al. (2008), with
increases in extremes outweighing increases in mean precipitation. This helps support the wet-
areas-wetter hypothesis, since the IPCC contends “it is likely that there has been a widespread
increase in heavy and extreme precipitation events in regions where total precipitation has
increased, e.g., the mid- and high latitudes of the Northern Hemisphere” (IPCC 2001).
1.2.3 Vulnerability

Vulnerability comes in many forms. Vulnerability is a factor which increases the
susceptibility of an individual, a community, assets or systems to the impacts of hazards
(UNDRR 2020). Social vulnerability is a more recently considered phenomenon that sheds light
on damage patterns, as well as recovery and mitigation. Exposure and structural vulnerability are

important determinants of damage sustained to structures. Population growth and wealth are
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main determinants of exposure. Exposure & vulnerability in different geographical areas has
implications for the amounts of disaster losses.

However, when these factors are controlled for, social vulnerability continues to impact
damage with lower-valued homes receiving more damage (Highfield et al. 2014). Community
vulnerability can be described as susceptibility to harmful impacts of disasters (Zandt et al.
2012). Community vulnerability mapping has been used in hazard mitigation and disaster
recovery planning (Van et al. 2012). Vulnerability to environmental hazards means potential for
loss (Cutter et al. 2003), though there are different definitions of vulnerability in the literature.
Based on socioeconomic status, extreme weather events have disproportionately impacted lower
income communities (Fouillet et al., 2008; Elliott and Pais, 2006; Bullard and Wright, 2010).
Climate change impacts relative to economic strength have been higher in low-income countries
(Handmer et al., 2012). Increases in extreme events coincide with rises in vulnerability (Maarten
K. van Aalst (2006), making it hard to disentangle which has caused the rising costs and by how
much. This has led to a substantial increase in economic losses that has been mainly attributed to
socioeconomic exposure (Preston, 2013). Since 1960, exposure has been increasing - sevenfold
since the 1960s (O’Brien et al., 2006) - but spatially heterogenous (Preston, 2013) and influenced
by path dependence.

However, there is still debate over whether anthropogenic climate change has been a
driver of losses, due to the need to control for complex socioeconomic variables such as
population, social vulnerability (Kashem et al., 2016; Fothergill & Peek, 2004; Berke et al.,
2019), economic growth effects, and more (Bouwer, 2011). Only part of the literature identifies
climate change as an explanation over commonly used socioeconomic variables (Estrada et al.,

2015). There is no consensus within the social science community on a consistent measure of
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social vulnerability, though tools such as social vulnerability indexes have been created (Cutter
et al. 2003). Vulnerability assessments have typically focused on housing construction and
quality, with later research evaluating social characteristics as highly relevant.
1.2.4 Attribution

The area of disaster attribution in climate research is highly controversial; attributing
observed changes in losses to climate change is difficult, given increasing coastal development
and natural variability in storm patterns (Emanuel 2011); vulnerability is “increasing for reasons
that have nothing to do with greenhouse-gas emissions, such as rapid population growth along
coasts” (Pielke 2007). Researchers have suggested the increase in hurricane and tropical cyclone
damages “may be due to anthropogenic climate change” (Ranson et al. 2014). Efforts to
understand the effects of climate change on storm damages have therefore relied on predictive
modelling. In Ranson et al. (2014), a quantitative analysis of cyclone losses, they found that
across all models on average, a hypothetical 2.5 C increase in global air-surface temperature
would cause hurricane damages to rise 63%. Models can have a wide range of predictions. Some
studies have concluded that the Russian heat wave of 2010 was mostly “natural in origin”, (Dole
et al., 2011), directly contradicting other authors such as Rahmstorf & Coumou (2011), whose
work concluded that climate change was the main cause of the heat wave; up to 80%. A
discrepancy in the literature has been the lack of information from certain time periods,
undercounting of storms (Estrada et al., 2015) and other inconsistencies with models that have
been used.

Attribution has come a long way. Human contribution to the European heatwave of 2003
(Stott et al. 2005) was a groundbreaking paper which was the first of a series of attempts at more

specific attribution of natural disasters. The conclusion of the paper was that human influence
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had “more than doubled” the risk of European summer temperatures as hot as the 2003 heat
wave. In the years after, interest in the area grew at a rapid pace. A National Academy of
Sciences report (2017) wrote that “an indication of the developing interest in event attribution is
highlighted by the fact that in 4 years (2012-2015), the number of papers increased from 6 to
32.” In spite of the different opinions in various event attribution studies, the authors of Stott et.
al (2005) stated that it is an “ill-posed question” whether or not climate change stands as a sole
cause of the 2003 European heat wave, or other such events. Instead, their stance is that “...it is
possible to estimate by how much human activities may have increased the risk of the occurrence

of such a heatwave.” (Stott et. al 2005).
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2. METHODS

2.1  Hazard Data

The hazard data is drawn from the Spatial Hazard Event and Loss Database for the
United States version 19.0 (CEMHS, 2020). It is maintained by the Hazards and Vulnerability
Research Institute and is mainly based on NCEI Storm Data as the original data source. Version
19.0 contains 925,847 loss records from 1960 to 2019 for 18 hazard types. The loss data is
disaggregated at a county level, a detail level that allows for comparison with the county level
temperature and precipitation data. The dataset works for the purposes of this project because,
according to the NOAA, “no database offered the ability to download inflation-adjusted losses”
(Gall et al. 2009), which allows for consistency over the years. Despite its helpful features,
SHELDUS underrepresents drought events and overrepresents flooding (NWS 2007) due to
difficulty recording droughts and required NCEI “guesstimates” of flooding (CEMHS, 2020).
However, flooding and wildfires are two hazard types which are highly sensitive to climate
conditions and will still be the main focus of the analysis.

Losses are equally distributed among counties if there is a multi-county hazard event,
according to the documentation. “For instance, a thunderstorm event affecting Richland and
Lexington County in South Carolina and causing property damages of $50,000 will be entered
into the database as an event affecting Richland County with $25,000 and Lexington County
with $25,000 worth of damage” (CEMHS, 2020). The losses are conservatively estimated.
“Whenever losses are reported as a range... SHELDUS selects the lower bound of the range”
(CEMHS, 2020). Between 1960 and 1995, loss estimates were given as a range rather than

specific amounts, so losses were systematically lower. In 1995, specific amounts were given
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instead and spatial resolution also increased, leading to higher monetary accuracy (CEMHS,
2020).
2.2  Temperature and Precipitation Data
2.2.1 County

The North America Land Data Assimilation System (NLDAS) data available on the CDC
WONDER website contains county-level daily average air temperatures ranging from 1979 to
2011 (NLDAS 2012). Max daily air temperature and min daily air temperature from the NLDAS
dataset was used for regional temps and averaged to create a mean of temperature for use in
regression analysis. NLDAS contains both real-time and retrospective hourly forcing data
(Cosgrove et al. 2003). It is a land surface model with both data sets being produced using the
same spatial and temporal methods and extensively quality controlled as a collaboration between
several organizations, notably the National Oceanic and Atmospheric Administration (NOAA).

Local precipitation was from the NLDAS. The data available on CDC WONDER are
county-level average daily precipitation observations in millimeters spanning the years 1979-
2011 (NLDAS 2012). Reported measures are the number of observations and the range for the
daily precipitation values. Data contains the 48 contiguous states and District of Columbia,
stored by region, division, state, and county, and temporally (year, month, day).
2.2.2 Global

The global time series used for global surface temperature anomalies, the
NOAAGIobalTemp data set, was derived from blended land and ocean data from the NOAA. It
is a blend of the Global Historical Climatology Network monthly (GHCNm v4.0.1) and the
Extended Reconstructed Sea Surface Temperature (ERSST v4) dataset for blended land & ocean

data. It contains anomaly observations for each year from 1880-2021. Global precipitation was
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from the same NOAA source. Using temperature and precipitation anomalies can describe
climate variation on a more granular scale than absolute measurements.
2.3  Techniques

Techniques include trimming dataset to 1990-2010, cleaning data, and merging datasets
to make comparisons. Resources include North America Land Data Assimilation System
(NLDAS) Daily Air Temperatures and Heat Index (1979-2011) available from the CDC, the
NOAAGIobalTemp dataset, the Spatial Hazard Events and Losses Database (SHELDUS), social
vulnerability data from the US Census and CDC, and Stata statistical data program.

The NLDAS data was downloaded from the CDC WONDER website for the years 1990-
2010. SHELDUS data was then merged with minimum and maximum daily air temperature data
from NLDAS. The two temperature variables were averaged to create a mean temperature
variable seen in Tables 1.1-1.2. County-level precipitation data from NLDAS was also merged.
Next, crop damage and property damage adjusted for 2018 were summed per county to create a
total damage variable, also seen in Tables 1.1-1.2. Global temperature and precipitation from
NOAAGIobalTemp dataset was merged. Two datasets, one containing only flooding hazards and
one containing only wildfire hazards, were created out of the prior merged datasets. In the
flooding dataset, 48 of 3,169 counties in the US did not experience flooding hazards. Therefore,
missing observations of hazards were given a damage value of 0. In the wildfires dataset, 2,484
counties did not experience wildfires, and were given a damage value of 0. Descriptive statistics
of seven weather variables and losses from flooding and wildfires datasets are shown in Table
1.1. A correlation analysis of five variables from both datasets was performed and shown in

Table 1.5 and 1.6.
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Summary statistics

3.

RESULTS

Table 1.1: Descriptive statistics of weather and losses

N Mean Std. Dev. Median min max
Losses 3169 78047705 36314356 16391445 0 8.566e+08
Mean Temp 3111 13.22 4.592 13.09 =704 24941
Mean Precip 3111 2707 917 2.888 25 7.655
Min Temp 3111 8.332 435 8.213 -5.378 21.883
Max Temp 3111 18.107 492 17.899 3.812 30.704
Global Temp 3169 515 014 514 465 a2
Global Precip 3169 1.194 053 1.191 -92 2197

Displayed in Table 1.1 are summary statistics describing the number of observations,

mean, standard deviation, median, minimum, and maximum of seven variables. The unit of

observation is each US county over the 20 year period, of which 3,111 are not missing weather

data. The table includes 15 possible hazard types categorized by SHELDUS. “Losses” refers to

USD property and crop damage, summed together and adjusted for inflation to 2018. “Mean

Temp” refers to minimum and maximum temperatures averaged together on the county level,

which hovered around 13.2 C°. The min and max ranged between 8.3 and 18.1 degrees C°, with

a standard deviation of four degrees. “Mean Precip” indicates daily average millimeters of

precipitation. “Global Temp” and “Global Precip” are two measures that represent the change in

global average — worldwide, temperatures rose 0.515 degrees Celsius, and precipitation increased

by 1.194 millimeters over this period.
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Table 1.2: Regression of Annual Losses

Regression results

Annual Losses Coef. St Brr. t-value p-value [95% Conf Interval] Sigr
Mean Temp 46550.596 178392.52 0.26 J94 30509232 396193.51

Mean Precip 1561929 882568.39 0.18 .86 -1573609.4 18859952

Global Temp 12347017 25718534 4.80 0 7306276.9 17387757 ok
Global Precip 279254.16 351679.54 0.79 A27 -410025.06 968533.39
Constant 1943522 12099707 1.61 108 -427976.96 43150209

Mean dependent var 7819995971 5D dependent var 141241796.494

Orwerall r-squared 0.001 Number of obs 66381
Chi-square 32946 Prob > chi? 0.000
R-squared within 0.000 R-squared between 0.009

P 01, *F p<05, *p<.]

Description of results — In Table 1.2, annual losses is the dependent variable. This table
contains all hazard types. There are four independent variables, “Mean Temp” and “Mean
Precip” again referring to county-level measures, while global temp and precip refer to a
worldwide statistic. The variables are the same as in the previous table. In the results, global
precipitation has a very statistically significant effect on annual losses, which is a total of all
losses per year. This is interesting because global measures in Tables 1.5 and 1.6 did not reach
significance. That may point to global measures being more useful in long-term observations of
losses, as opposed to predictions of losses in specific hazard types, such as flooding and

wildfires.
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Table 1.3: Highest and lowest USD hazard losses

Across all All Types of Hazards Flood Wildfire
years
All $519,000,000,000 $98,800,000,000 $17,000,000,000
Counties
County 5 County 5 County 5
MName, Mame, Mame,
State State State
#1 Collier, FL 1.16e+10 Linn, 1A 8.75e+09 Alameda, 3.13e+09
CA
H#2 Linn, IA 8.75e+09 Grand 4.69e+09 Los 2.19e+09
Forks, ND Alamos,
MM
#3 Lafourche, 7.75e+09 Davidson, 1.762+09 San 1.53=+09
LA ™ Diego,
CA
#4 Grand 4,71e+09 lefferson, 1.37e+09 Orange, 9.10e+08
Forks, ND AL CA
#5 Maricopa, 3.24e+09 Polk, 1A 1.23e+09 San 7.06e+08
AZ Diego,
CA
Fifth to Last | Lebanon, 3.69 Payette, 9.61 Power, 428.58
PA 1D 1D
Fourth to Garfield, 3.08 lefferson, 8.95 Douglas, 302.77
Last uT AL WA
Third to Trego, KS 2.92 Campbell, 8.69 Hawaii, 265.36
Last WY HI
Second to Morris, NJ 2.37 Quachita, 8.24 Douglas, 230.31
Last LA WA
Last MNottoway, 0.16 Windham, 6.05 lones, 175.57
VA VT GA

Table 1.3 lists the largest and smallest disasters within each hazard type. This gives an

20

mostly in southeast regions of the United States; notably, not along coasts.

idea of the scale of losses as well as some totals across the 20 years — the figure in the #1
category that caused $11,600,000,000 in losses was Hurricane Andrew in 1992, one of the most
costly storms on record. The lowa Flood of 2008 and Oakland Hills firestorm of 1991 are two of
the other highest-loss disasters in their respective categories. Four out of five of the highest cost

disasters took place in California, whereas the flooding events with the greatest losses occurred




Table 1.4: Highest USD losses annually

Top All Types of Hazards Flood Wildfire
County
Ezch
Year
# of Avg. & County County 3 # of Avg. 5 County County 3 # of Avg. 5 County County &
counties 3Cross Name, counties 3Cross Name, State counties 3Cross Nzme,
with Counties State with Counties with Counties State
damage damage damage
1530 2,782 7020516 La Salle, 9.61=+08 1,577 1445342 Brown, TX 1.92e+08 1 30.69376 Cascade, 57022
TX T
1591 2,753 3561975 Alameda, | 3.13=+08 1,210 458563.2 Cameraon, 9.22=+07 44 9318514 | Alameds, 3.13=+08
CA TX CA
1592 2,772 2.15e+07 | Collier, FL | 1.1p=+10 1,300 £38522.1 Ocean, NI 1.03+08 1 31141.45 Boise, ID 9342407
pEEE] 2,958 1.30e+07 Paolk, 14 1.28=+08 1,515 7205132 Polk, 14 1.23e+08 16 876578.8 | Orange, CA | 9.10=+08
1594 2,887 1308434 | Chickasaw, | 1.36=+03 1,275 185528 .4 Price, Wl £.25e+07 159 7523665 | Larimer, CO | 3388758
M5
1595 2,857 8512143 | Escambia, | 1.28e=+08 1,070 920919.1 | Monteray, | 5.45=+03 26 2204758 | Marin, CA | 6.592+07
FL CA
1598 2,560 6526156 Pender, 3.35=+08 967 1323156 lefferzon, 1.60=+08 12 33074.01 | 3=znDiego, | 5.39=+07
MNC PA Ca
1597 2,457 EB16421 Grand 4.71=+08 958 3445233 Grand 4.65=+08 13 2140595 Yuba, CA 2.35e+07
Forks, ND Forks, ND
1593 2,658 2461300 3an 1.11e+08 1,134 1378011 Coffes, AL | 2.03=+08 96 3285674 | Breward, FL | 3.12=+08
Benita, CA
1593 2,568 7011751 Mizmi- 7.54=+08 810 852516 Somerset, E.40=+08 33 £8009.21 | Monterey, | 1.01=+08
Dade, FL ] CA
2000 2,448 5270516 Los 2.192+08 708 941665.2 Miami- 7.12=+08 71 575372 Loz 2.19=+03
Alamaos, Dzde, FL Alamos,
MM ME
2001 2,255 7732536 King, Wa | 1.41=+08 811 4573734 | Columbia, 1.70=+08 15 20350.85 | 3aznDiego, | 1.742+07
AR CA
2002 2,361 3084237 Roseau, 2.79=+08 324 328193.7 | Roseau, MN | 2.79=+03 34 83536.8% | Tulare, CA | B8.372+07
N
2003 2,334 6331069 | 5am Diego, | 1.55=+09 1,007 1127119 lefferson, 1.37e+08 25 1001325 | 3znDiego, | 1.532+0%
CA AL CA
2004 2,358 146e+07 | Okalooss, | 1.78=+09 1,032 853031 Luzerne, PA | 1.40=+03 23 7386171 | Riverside, 8582037
FL Ca
2005 2,344 E.56e+07 | Lafourche, | 7.75e+05 907 ES0602.7 | Washington, | 3.36=+08 43 15798.31 | Czliaham, 1.41=+07
LA ut T%
2006 2,512 5214383 | Columbia, | 6.26=+03 730 1345523 Lake, OH 4.26=+08 34 1854313 Sizkiyou, 1.73e+08
Wi Ca
2007 2,605 3601004 | Sam Diego, | 8.77=+08 a76 E87318.7 | Bumnet, TX | 1.66=+03 ] E03324.1 | 3znDiega, | 7.06=+08
CA CA
2008 2,651 1.00e+07 Linn, 14 8.75=+03 1,038 4745134 Linn, 14 8.75=+03 73 74637.81 3an 5.33e+07
Bernardino,
ca
2009 2,541 3105134 East 8.20=+08 1,032 4321433 | Wayne, IA 2.93=+08 73 41123.51 Santa 3.38=+07
Carroll, LA Barbara, CA
2010 2,638 5458573 | Maricopa, | 3.24=+09 1,193 1863447 Davidson, 1.76=+03 a2 83917.83 | Larimer, CO | 1.26=+08
AZ TN

Table 1.4 is a series of statistics across the years 1990-2010, describing the number of
counties that sustained damage, the average USD losses, and largest disaster for that year as well
as its location. It is divided into all hazards, flooding, and wildfire hazard types, similarly to

Table 1.3.
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Figure 1.1: Mean of hazard losses

This figure shows a large variation in the size of disaster losses; “annualalldmgadj2018”
is the yearly total of property and crop damage in USD summed together. This is data from all
hazard types in general. There is a sharp increase for the year 2005, the year of Hurricane

Katrina. This raises the question of whether variance in disaster losses is increasing over time.
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Table 1.5: Correlation table of flooding losses and weather variables

Pairwise correlations - Flooding

Vanables (1) (2) (3) (4) (5)
(1} Losses 1.000

(2) Mean Temp -0.035* 1.000

(3) Mean Precip -0.009 0458 1.000

(4) Global Temp -0.011 -0.182%%= -0.186%*= 1.000

(5) Global Precip -0.006 0. 107H= S0 010 0196%* 1.000

% 520,07, ** p<0.05, * p<0.7

This correlation table is a pairwise correlation table including only flooding-related
losses. The five variables are the same as the ones used in Table 1.1., except for min and max
temperature. Of the total of 3,111 counties with nonmissing weather variables, 3,093 counties
experienced flooding-related hazards. Mean precipitation has a highly statistically significant
positive relationship to mean temperature, as well as the global variables. Generally, the weather
variables are strongly correlated with each other. Interestingly, between global and county-level
measures, the association was negative; lower global temperature and precipitation predict higher
county temperature and precipitation, and vice versa. In terms of the climate variables’ effect on
flooding losses, mean temperatures on a county level (“Mean Temp”’) have a very statistically
significant negative inverse relationship with flooding losses. This means the lower temperature
areas experienced smaller losses. One possible explanation as to why there is a negative
correlation is that cooler areas are more susceptible to flooding. Hot areas are dryer, and are
therefore less prone to flooding. This is evidence for the hypothesis that temperature predicts
flooding events. This coincides with the wet-areas-wetter hypothesis, since wetter climates in the
US tend to be cooler. Additionally, the mean temp variable is on the county level, whereas global
temp is not. This means that more granular measures of temperature predict losses better than a
worldwide measure.
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Table 1.6: Correlation table of wildfire losses and weather variables

Pairwise correlations - Wildfires

Variables (1) (2) (3) (4) (5)
(1) Losses 1.000

(2) Mean Temp -0.004 1.000

(3) Mean Precip -0.057 %= 0.458%*= 1.000

(4) Global Temp -0.004 -0.182%%= -0 186%*=* 1.000

(5) Global Precip -0.002 S0 107HRR 0 L10%ER (0 ]96%E 1.000

FEH0.07, = p<0.05, ¥ p=<0.7
Table 1.8 is a pairwise correlation table consisting of wildfire-related losses and the

associated weather variables. Of 3,111 counties, 641 counties experienced wildfire hazards over
the 20 year period. The five variables are the same as Table 1.7. However, the significance of the
results is different. In this case, mean precipitation was very negatively correlated with losses
with a p-value lower than 0.01. Evidently, with less precipitation, wildfires were much more
likely to occur. Unlike Table 1.7 which showed evidence of mean temperature having an effect
on flooding losses, mean temperature did not have a significant impact on wildfire losses.
However, mean temperature does still have a negative relationship with losses. The county-level
and global measures of climate also have an inverse relationship here as well. In the table, (2)

and (3) have a positive relationship, and (4) and (5) separately are positively correlated.
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Figure 1.2: Mean Temperatures 1990-2010

In Figure 1.3, temperature is on the Y axis with years on the X axis of the scatterplot. The
unit of observation here is county-years. Mean temperatures have slowly increased; the line of
best fit has trended upwards, within a range of approximately 13-14 C°. In a separate calculation,
rise in average min air temp over 1990-2010 amounted to 0.0121 C°. The rise in average max air
temp over 1990-2010 was 0.0381 C°, so average min air temp increased at a slower pace than

max air temp.
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Figure 1.3: Losses 1990-2010

In Figure 1.4, losses are on the Y axis while years are on the Y axis. The unit of
observation is county-years. The data points indicating losses have increased in variance which
coincides with Figure 1.1 — the points are more scattered as time goes on. Average minimum

temperature increased at a slightly higher rate than average maximum temperature.
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4. CONCLUSION

| have set out to show quantitative evidence of climate change indicators’ impact on
disaster losses because of uncertainties in literature as to what extent climate change has
impacted disasters. The results demonstrate a variety of effects climate change has on losses. On
the county scale, temperature predicts flooding events, while precipitation was found not to have
a significant effect on flooding; this contradicts the hypothesis that precipitation would be related
to flooding. Some support was found for the wet-areas-wetter hypothesis as the cooler the
temperature, the more likely for flooding to occur as seen in Table 1.5. The results also show that
lack of precipitation predicts wildfires. However, temperature has comparatively little effect on
wildfires, against expectations. The increase in mean temperature leads to the question of how
changing mean temperature affects the climate, and in what ways. As mean temperatures have
increased, average minimum temperature increased at a higher rate than average maximum
temperature. County level measures of weather were shown to have different impacts on losses
than global ones.

Regional climate data was expected to be more predictive than global ones, but this was
disproven. In the regression seen in Table 1.2, global temperature had a highly significant effect
on total losses. Interestingly, the regional and global weather variables used throughout were
found to have little correlation to each other. Temperature on a high spatial resolution is
extremely valuable in the prediction of disaster losses, but only in certain categories of hazards.
This study clarified that global and local measures of climate change are relevant in different
applications. As shown in Table 1.2, global temperature does influence losses in general, while

location-specific county indicators can reveal more about a specific hazard type. For example, in
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Table 1.6, the correlation showed that a lack of precipitation predicts wildfires to a large extent.
By using measures on a higher spatial resolution, loss prediction and attribution is more useful
when observing hazard types. In the future, it might be prudent to concentrate on certain
indicators as they relate to these hazard types, especially considering how strong the link
between precipitation and wildfires is.

In terms of implications of this study for future research, the various relationships
between variables need to be tested extensively so that attribution studies can use county and
global-scale indicators more effectively. NLDAS data on a county level is especially valuable for
its predictive power. As disaster losses continue to rise because of increasing temperatures,
vulnerability, and exposure, climate change indicators can account for and explain some

variation in our climate and allow for prediction of disasters in the future.
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