
HYBRID MODELING APPROACHES INTEGRATING PHYSICS-BASED MODELS WITH

MACHINE LEARNING FOR PREDICTIVE CONTROL OF BIOLOGICAL AND CHEMICAL

PROCESSES

A Dissertation

by

MOHAMMED SAAD FAIZAN BANGI

Submitted to the Graduate and Professional School of
Texas A&M University

in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

Chair of Committee, Joseph Sang-Il Kwon
Committee Members, Eduardo Gildin
 M M Faruque Hasan
 Costas Kravaris
Head of Department, Victor Ugaz

August 2022

Major Subject: Chemical Engineering

Copyright 2022 Mohammed Saad Faizan Bangi

ABSTRACT

Recently, there has been growing interest in data-based modeling as the amount of data avail-

able has increased tremendously. One such method is Dynamic Mode Decomposition with Control

technique, which builds temporally local linear models using data. But its limited domain of ap-

plicability (DA) hinders its use for prediction purposes. To overcome this challenge, we proposed

an algorithm that utilizes multiple "local" training datasets, and it was applied successfully to hy-

draulic fracturing. Although data-based modeling offers simplicity and ease of construction, it

lacks robustness and parametric interpretability, unlike first-principles modeling.

To balance the advantages and disadvantages of data-based models and first-principles mod-

els, hybrid modeling was proposed using artificial neural networks (ANNs). Since then, Machine

Learning (ML) has advanced where deep neural networks (DNNs) with more than three layers can

be trained to approximate any function accurately. In this work, we proposed a deep hybrid model-

ing (DHM) framework that integrates first-principles with DNNs and successfully applied it to two

complex processes, i.e., hydraulic fracturing and full-scale fermentation reactor. Similarly, Uni-

versal Differential Equations (UDEs) was proposed in ML where DNNs are represented as ODEs

and solved using ODE solvers. We utilized UDEs to successfully build a DHM using simulation

and experimental data for batch production of β-carotene. One limitation of DHM is that its DA

is affected by the DNN within it, and its accuracy is high within its DA. Therefore, it is important

to consider its DA when designing a model-based controller. To this end, we proposed a Con-

trol Lyapunov-Barrier Function (CLBF)-MPC to stabilize and ensure that the closed-loop system

stays within DA of DHM. Theoretical guarantees were provided for the CLBF-MPC controller,

and it was successfully implemented on a CSTR. The idea of integrating physics with ML can

be extended to Reinforcement Learning (RL). In case when model-based controller design is not

possible, we proposed a model-free Deep RL (DRL) controller that utilizes prior knowledge in its

reward function to quicken the learning process. This DRL controller was successfully applied to

hydraulic fracturing wherein Nolte’s law was included in the reward function for fast convergence.

ii

DEDICATION

To my teachers, friends, and family.

iii

ACKNOWLEDGMENTS

Firstly, I am grateful to Allah for my good health, well-being, the opportunity to pursue research

at Texas A&M University, and for all the innumerable blessings upon me.

Secondly, I am thankful to my advisor Dr. Joseph Sang-il Kwon for his timely help, support,

and patience during the course of my study. He gave me the opportunity to take full responsibility

of this work, but steered me in the right direction whenever I needed it. I cannot thank him enough

for always being there to help me.

Thirdly, I would like to extend my gratitude towards my committee members Dr. Costas

Kravaris, Dr. M. M. Faruque Hasan, and Dr. Eduardo Gildin for their help in guiding and re-

viewing my work.

Fourthly, I would like to thank Harwinder, Abhinav, Prashanth, Bhavana, Yeon-Pyeong, Parth,

Ziyan, Pallavi, Silabrata, Kaiyu, Choi, Niranjan for all the stimulating discussions we had, and

for their contributions. Thanks to all my friends and colleagues at Texas A&M for all the good

memories that I will cherish for the rest of my life.

Lastly, I must express my very profound gratitude to my wife and parents for being an in-

spiration to me. I cannot thank them enough for their unconditional support and encouragement

throughout this journey.

iv

CONTRIBUTORS AND FUNDING SOURCES

Contributors

This work was supervised by a thesis committee consisting of Dr. Joseph Sang-il Kwon [prin-

cipal advisor] of the Department of Chemical Engineering and Texas A&M Energy Institute, Dr.

M. M. Faruque Hasan of the Department of Chemical Engineering and Texas A&M Energy Insti-

tute, Dr. Costas Kravaris of the Department of Chemical Engineering, and Dr. Eduardo Gildin of

the Department of Petroleum Engineering.

All the work conducted for the thesis was completed by the student independently.

Funding Sources

Financial support from the Artie McFerrin Department of Chemical Engineering and the Texas

A&M Energy Institute are gratefully acknowledged.

v

TABLE OF CONTENTS

Page

ABSTRACT . ii

DEDICATION . iii

ACKNOWLEDGMENTS . iv

CONTRIBUTORS AND FUNDING SOURCES . v

TABLE OF CONTENTS . vi

LIST OF FIGURES . ix

LIST OF TABLES. xii

1. INTRODUCTION AND LITERATURE REVIEW .. 1

1.1 Data-based modeling. 1
1.2 Hybrid modeling . 3
1.3 Organization and objectives of the proposed research . 4

2. DATA-BASED REDUCED-ORDER MODELING . 8

2.1 Enlarging the Domain of Attraction of the Local Dynamic Mode Decomposition
with Control Technique: Application to Hydraulic Fracturing . 8
2.1.1 Local Dynamic Mode Decomposition with Control . 11

2.1.1.1 Capturing local dynamics . 11
2.1.2 Enlarging the DOA of Local DMDc. 13

2.1.2.1 Data Generation . 14
2.1.2.2 Temporal Clustering. 15
2.1.2.3 Local ROM Selection . 17

2.1.3 Application to hydraulic fracturing . 18
2.1.3.1 Dynamic modeling of hydraulic fracturing process 20
2.1.3.2 Building LDMDc-based ROMs . 24

2.1.4 Model validation. 26
2.1.5 Model prediction . 28

2.1.5.1 Random input . 28
2.1.6 Comparison with LDMDc . 31

3. DEEP HYBRID MODELING . 33

vi

3.1 Deep hybrid modeling of chemical processes: Application to hydraulic fracturing . . 33
3.1.1 Deep neural networks . 35
3.1.2 Levenberg-Marquardt training . 36
3.1.3 Proposed deep hybrid model . 38
3.1.4 Training algorithm. 39
3.1.5 Hydraulic fracturing process . 42
3.1.6 Deep hybrid model for hydraulic fracturing process . 43

3.1.6.1 Comparison of Deep hybrid model and black box model 46
3.1.6.2 Comparison of Deep hybrid model and first principles model 48

3.2 Deep neural network-based hybrid modeling and experimental validation for an
industry-scale fermentation process: Identification of time-varying dependencies
among parameters . 51
3.2.1 First-principles model of the bio-fermentation process. 53
3.2.2 Improving the first-principles model . 55

3.2.2.1 Incorporation of component X1 . 55
3.2.2.2 Incorporation of component X2 . 56

3.2.3 Sensitivity analysis and clustering . 56
3.2.3.1 Sensitivity analysis . 57

3.2.4 Improving the revised first-principles model through clustering 63
3.2.5 Development of the hybrid model . 65

3.2.5.1 Improving the revised first-principles model through hybrid mod-
eling . 65

3.2.6 Error analysis . 69
3.3 Universal hybrid modeling of batch kinetics of aerobic carotenoid production using

Saccharomyces Cerevisiae . 73
3.3.1 First-principles model for β-carotene production . 74
3.3.2 Neural ODEs and UDEs . 75

3.3.2.1 Neural ODEs . 76
3.3.2.2 UDEs. 76

3.3.3 UDE model for β-carotene production . 77
3.3.3.1 Case 1 . 78
3.3.3.2 Case 2 . 80

3.4 Physics-informed neural networks for hybrid modeling of lab-scale batch fermen-
tation for β-carotene production using Saccharomyces Cerevisiae . 83
3.4.1 Microorganism and culture media . 86
3.4.2 Bioreactor cultivation results. 86
3.4.3 UDE model for lab-scale β-carotene production . 86
3.4.4 Testing UDE model with different initial concentrations of glucose 88

4. DEEP HYBRID MODELING-BASED PREDICTIVE CONTROL . 90

4.1 Stabilization with guarantees on domain of applicability for hybrid model-based
predictive control . 90
4.1.1 Stability analysis and DA guarantees . 91

4.1.1.1 Notation . 93

vii

4.1.1.2 Lyapunov-based control for system stability . 94
4.1.1.3 Hybrid model . 95
4.1.1.4 Characterization of Domain of Applicability (DA) 95
4.1.1.5 Control Barrier function (CBF) . 96
4.1.1.6 Stabilization and DA guarantees via CLBF . 96
4.1.1.7 Design of constrained CLBF . 99
4.1.1.8 CLBF-based model predictive control . 100
4.1.1.9 Sample-and-hold implementation . 103
4.1.1.10 Mathematical formulation of CLBF-MPC . 105

4.1.2 Application to a CSTR . 107

5. INCORPORATING PHYSICS IN REINFORCEMENT LEARNING-BASED CONTROL114

5.1 Deep reinforcement learning control of hydraulic fracturing . 114
5.1.1 Background . 118

5.1.1.1 Reinforcement learning . 118
5.1.2 Actor-Critic framework . 119
5.1.3 Deep reinforcement learning (DRL) controller . 119

5.1.3.1 States and actions. 120
5.1.3.2 Reward functions . 120
5.1.3.3 DNNs as function approximators . 121
5.1.3.4 DRL training. 121

5.1.4 Design of DRL controller for hydraulic fracturing . 124
5.1.4.1 RL state definition and dimensionality reduction . 124
5.1.4.2 Action . 125
5.1.4.3 Reward function . 125
5.1.4.4 DRL controller learning. 127
5.1.4.5 DRL controller hyperparameters . 127
5.1.4.6 ROM for hydraulic fracturing. 129

5.1.5 DRL controller results . 130
5.1.5.1 Initializing the learning process . 130
5.1.5.2 First stage of learning . 132
5.1.5.3 Second stage of learning . 133

6. SUMMARY . 137

REFERENCES . 139

viii

LIST OF FIGURES

FIGURE Page

2.1 The PKN fracture model [1]. 20

2.2 Different ‘training’ input profiles used to generate open-loop simulation data for
model training. 24

2.3 Clustering output representation in the input space. 26

2.4 Validation input. 27

2.5 Comparison of the approximate solution computed using LDMDc-based ROMs
with the full-order solution.. 28

2.6 Profile for E(t) with time for solution obtained from our proposed methodology
when the validation input is used. 29

2.7 Random input profile used for model prediction.. 29

2.8 Comparison of the prediction output computed using LDMDc-based ROMs with
the full-order solution. 30

2.9 Profile for E(t) with time for the prediction when the random input is used. 31

2.10 Input used to build a LDMDc-based ROM.. 32

2.11 Comparison of the relative error profiles of our proposed methodology and the
LDMDc technique. 32

3.1 Deep neural networks. 35

3.2 Proposed deep hybrid model. 39

3.3 Block diagram for Levenberg-Marquardt based deep hybrid model training. 42

3.4 Schematic of deep hybrid model for hydraulic fracturing process. 44

3.5 Comparison of wellbore widths obtained from the hybrid model, and the training
data. 46

3.6 Relative error of the hybrid model predictions in comparison to the training data. 47

ix

3.7 Comparison of leak off rates predicted from the DNN and actual values calculated
using Eq. (3.28). 48

3.8 Comparison of wellbore widths obtained from the DNN-based black box model,
and the training data. 49

3.9 Comparison of wellbore widths obtained from the hybrid model, black box model
and the test data.. 50

3.10 Comparison of wellbore widths obtained from the hybrid model, first principles
model and the actual data. 50

3.11 A comparison of growth rate parameter estimation using the first-principles model,
revised first-principles model, and clustered model. 64

3.12 A comparison of the hybrid model and training data during phase 2. 67

3.13 A comparison of the hybrid model and validation data during phase 2.. 68

3.14 A comparison of the hybrid model and additional validation dataset 1, during phase 2. 69

3.15 A comparison of the hybrid model and additional validation dataset 2, during phase 2. 70

3.16 Relative errors between the models (i.e, the first-principles model, revised first-
principles model, and hybrid model) and the training data obtained from the indus-
try sponsor. 71

3.17 Relative errors between the models (i.e, the first-principles model, revised first-
principles model, and hybrid model) and the validation data obtained from the
industry sponsor. 72

3.18 Training progress with iteration for Case 1. 79

3.19 Comparison of UDE model predictions versus data for Case1.. 80

3.20 Relative error variation for Case 1. 80

3.21 Training progress with iteration for Case 2. 81

3.22 Comparison of UDE model predictions versus data for Case2.. 82

3.23 Relative error variation for Case 2. 82

3.24 Biomass, glucose consumption, ethanol and acetic acid concentration and carotenoids
production in batch cultures of Saccharomyces Cerevisiae with 20 g/L initial glucose 87

3.25 Comparison of UDE model predictions after training versus predictions from first-
principles model for an initial glucose concentration of 20 g/l. 88

x

3.26 Comparison of UDE model predictions versus predictions from first-principles
model for an initial glucose concentration of 22.36 g/l. 89

4.1 Simple schematic representing the various sets Uρc , Uρmin , Uρs and the bounded
region U which is ‘not DA’ of the hybrid model. 101

4.2 Comparison of hybrid model predictions versus actual data. 109

4.3 Training data and the identified DA of the deep hybrid model. 110

4.4 Closed loop trajectories of the original CSTR system using deep hybrid model-
based CLBF-MPC. 112

4.5 Profile of concentration of A in feed for the three initial conditions under CLBF-
MPC controller. 113

4.6 Heat input profile for the three initial conditions under CLBF-MPC controller. 113

5.1 A schematic of the actor-critic framework. 119

5.2 A schematic of the proposed learning strategy. 129

5.3 Training input for building ROMs. 130

5.4 Output predictions from the ROMs at the wellbore and 6 other locations. 131

5.5 Net reward gained in each episode during the ROM learning. 133

5.6 Net reward gained in each episode during the entire learning process of the DRL
controller. Please note that the learning curve of the second stage continues from
Figure 5.5, and corresponds to the episodes between 603 and 724 in this figure.. 134

5.7 The input profile implemented in the last episode. 134

5.8 Evolution of states in the last episode. 135

5.9 The input profile obtained from the DRL controller (left) and the concentration
profile at the end of pumping process (right) are presented. 136

xi

LIST OF TABLES

TABLE Page

3.1 Summary of the training algorithm. 38

3.2 Local sensitivity analysis: a list of sensitive parameters with D-optimality criterion
(φD) values for (a) when output states in the model for phase 2 are equally im-
portant, and (b) when Substrate 2 and Product are 5 times more weighted than the
other states. 59

3.3 Global sensitivity analysis: a list of sensitive parameters for each output present in
the revised first-principles model for phase 2. 61

3.4 Global sensitivity analysis: a list of sensitive parameters with D-optimality crite-
rion (φD) values when Substrate 2 and Product are 5 times more weighted than the
other states. 62

3.5 Clustered growth rate parameters. 65

3.6 Clustered phase 2 parameters. 66

3.7 RMSE values for all three models using training data . 71

3.8 RMSE values for all three models using validation data . 72

3.9 Parameters used in the first-principles model. 77

3.10 MSE values for training and testing data-sets. 89

4.1 Parameters used in CSTR system.. 108

5.1 Hyperparameter values for the DRL controller . 129

5.2 Hyperparameter values used in rewards calculation . 132

xii

1. INTRODUCTION AND LITERATURE REVIEW

1.1 Data-based modeling

Process modeling is the task of obtaining a mathematical representation for knowledge about

any physical process [2]. Depending on the nature of knowledge, models can be classified into

various categories. First principles or mechanistic models also known as ‘white box’ models are

obtained using the mass and energy conservation laws, kinetic laws, thermodynamic laws, trans-

port laws, etc. This class of models is transparent, easy-to-understand as they usually contain

parameters with physical meaning, valid over a wide range of operating conditions of the pro-

cess, but are complex and computationally expensive to solve. Motivated by the computationally

expensive nature of first-principles models, data-based model order reduction (MOR) techniques

have found traction in the field of modeling in order to develop reduced-order models (ROMs) that

can represent the process dynamics approximately with a fraction of computational time. MOR

techniques assume that solutions of large-scale systems can be often found in sub-spaces with

dimensions smaller than that of the original system.

One of the earliest data-based subspace identification techniques is Multi-variable Output Er-

ror State Space (MOESP) which has been extensively used in the design and study of feedback

controllers for hydraulic fracturing process [3, 4, 5]. Also, one of the most widely used MOR

techniques is Proper Orthogonal Decomposition (POD), also known as Karhunen-Loeve analysis.

In this method, spatial-temporal data is used to capture the dominant spatial patterns via a set of

empirical basis functions. The method of snapshots is used to compute the basis functions, which

assumes that each basis function can be represented as linear combination of the snapshots. These

basis functions are then used in a projection method such as Galerkin’s projection method in order

to obtain low-dimensional ODEs which are an approximate representation of the original system.

Additionally, temporal clustering can be incorporated in the POD-Galerkin MOR technique to

construct temporally local eigen functions, which are then used to obtain a set of temporally lo-

1

cal ROMs with each of them being represented by low dimensional ODEs. These set of ODEs

together represent the complex hydraulic fracturing process and have been shown to be more ac-

curate when compared to their temporally global counterparts [6]. Unlike POD that captures the

dominant spatial patterns that carry most of the flow energy in a dynamic system, Dynamic Mode

Decomposition (DMD), a recently developed ROM technique, captures those spatial patterns that

contribute to the long-term dynamics of the system [7]. This technique of DMD has been extended

to control applications in the form of DMDc (DMD with control) which considers the manipulated

inputs to extract the underlying dynamics from the measurements of a system. In ROM context,

DMDc provides a linear model that best represents the underlying dynamics [8]. But for highly

non-linear and complex systems like hydraulic fracturing, a linear relationship is not an accurate

representation. Therefore, local DMDc was developed which involves temporal clustering of the

spatial-temporal data of hydraulic fracturing system and building temporally local DMDc-based

ROM for each cluster. It has been shown that together, these local ROMs are an accurate represen-

tation of the hydraulic fracturing system [9, 10]. Alternatively, building linear models that are valid

over a larger domain is possible through Koopman operator theory which states that any finite-

dimensional nonlinear system can be represented linearly in the space of all possible functions of

the system states. In this infinite-dimensional space, the evolution of the system is governed by an

infinite-dimensional linear operator called the Koopman operator. A finite approximation of the

Koopman operator can be calculated using Extended DMD (EDMD) [11]. This concept of EDMD

was successfully extended to design Koopman-based ROMs for control purposes [12, 13, 14] and

used them in the feedback control of fracture geometry and spatial proppant concentration profiles

in hydraulic fracturing process [15].

Another data-driven model identification method is Sparse identification of nonlinear dynamics

(SINDy) which identifies a mathematical model describing the underlying dynamics of a nonlinear

process. Specifically, SINDy uses sparse regression techniques to select significant functions rele-

vant to the process model from an over-full library of candidate functions. Consequently, the model

identified using SINDy is sparse and physically interpretable. Because of its simplicity, the SINDy

2

algorithm has been implemented in various process safety and control applications [16, 17, 18, 19].

These MOR and model identification techniques fall in the category of data-driven models or ‘black

box’ models, and are computationally inexpensive to solve, but are usually difficult to interpret as

the nature of parameters is unknown, and have narrow domain of applicability. To overcome this

challenge, hybrid models or ‘grey box’ models have been developed which are a combination of

white box and black box sub-models [20].

1.2 Hybrid modeling

In process modeling, the concept of hybrid (grey box) models evolved from the field of neural

networks [21, 22, 23, 24]. The idea was to build neural network based hybrid models through

the use of first principles knowledge. This resulted in hybrid models with better prediction ac-

curacy compared to the first principles models, and better interpolation, extrapolation, and in-

terpretation compared to solely neural networks based models. There exist other kinds of grey

box models that combine different types of first principles knowledge and/or empirical submod-

els. During the 90s, the term ‘grey box’ models appeared in systems and control theory wherein

the structural information from the first principles models was incorporated into the data-based

models [25, 26, 27]. But understanding of the term ‘grey box’ has evolved to represent all types of

hybrid models that combine first principles and data-based submodels. Nonetheless, hybrid model-

ing balances the advantages and disadvantages of strictly first principles and data-based modeling,

and offers desirable benefits such as high prediction accuracy, better extrapolation capabilities,

ease of calibration, and better interpretability. For these reasons, hybrid modeling has numer-

ous applications in chemical and biochemical engineering. For instance in modeling of chemical

reactor [28, 29, 30, 31], polymerization processes [32, 33], crystallization [34, 35], metallurgic

processes [36, 37, 38], distillation columns [39, 40], drying processes [41], thermal devices [42],

mechanical reactors [43], milling [44, 45], modeling of yeast fermentations [46, 47, 48], modeling

of fungi cultivations [49, 50], modeling of bacteria cultivations [51, 52], modeling of mammalian

cell cultivations [53, 54], modeling of insect cell cultivations [55], modeling of hybridoma cell

3

cultivations, [56, 57], etc. For more information one can view [58, 59], excellent review papers on

hybrid modeling in the field of process systems engineering. Additionally, to understand the path

forward and the challenges that lie ahead in chemical engineering related to integrating data-driven

processing with scientific reasoning, one can review this excellent review paper [60].

Recall, hybrid modeling started in 1992 from the use of neural networks along with first prin-

ciples knowledge [21, 22, 23, 24]. Neural networks are connectionist models that map an input

space to an output space and were inspired by the biological networks present in the brain. Each

neural network contains elements called ‘neurons’ or ‘nodes’ that process an input and give an

output, and comprises of layers containing many such nodes. Each node in a particular layer is

connected to every node in an adjoining layer, and the strength of each connection is represented

by an assigned weight. Consequently, a node in a particular layer receives inputs from all the nodes

in the previous layer which are added together after weights are applied on each of them, and a

‘bias’ is added to the sum. If the neural network only contains weights and biases, then it behaves

as a linear function. In order to capture nonlinearity in the input-output data, certain nonlinear

functions called ‘Activation functions’ are used in each node. With activation functions, the input

to the neural network undergoes nonlinear transformation through each layer and is collected as the

output at the final layer. Overall, the number of nodes, number of layers, weights in each connec-

tion, and the biases are the internal parameters of the neural network. Under certain assumptions,

neural networks, if sufficiently large, have been shown to capture any nonlinear continuous func-

tion accurately [61]. With the advancements in Machine Learning, the field of neural networks has

evolved from the use of a single hidden layer to multiple hidden layers resulting in deep neural

networks.

1.3 Organization and objectives of the proposed research

The growing availability of data provides a tremendous opportunity to find novel ways to inte-

grate deep neural networks with existing process knowledge in the context of modeling and con-

trol. To this end, the overall objective of this doctoral study is to develop mathematical frameworks

4

which combine deep neural networks with available process knowledge for hybrid modeling, hy-

brid model-based predictive control and Reinforcement Learning-based control. Sections 2, 3, 4,

and 5 outline the results obtained by utilizing the proposed deep hybrid modeling, hybrid model-

based predictive control, and DRL (deep reinforcement learning) control frameworks.

In recent years, there has been a lot of interest in data-based modeling as the amount of data

measured and stored has increased tremendously, and the resulting data-based models are simple

and easy to construct. Some of the data-based modeling methods that are widely used are Dynamic

Mode Decomposition (DMD), DMD with control (DMDc), Proper Orthogonal Decomposition

(POD), neural networks, etc. One such method is the Local Dynamic Mode Decomposition with

Control (LDMDc) technique, which builds temporally local linear models using data only. But the

limited domain of attraction (DOA) of LDMDc hinders its widespread use for prediction purposes.

To systematically enlarge the DOA of the LDMDc technique, in Section 2, a mathematical frame-

work was developed that utilizes multiple “training” data-sets, implements a clustering strategy

to divide the data into clusters, uses DMDc to build multiple local models, and implements the

k-nearest neighbors technique to make a selection among the set of local models during prediction.

The proposed algorithm was applied successfully to hydraulic fracturing.

Although data-based modeling offers simplicity and ease of construction, it lacks robustness

and parametric interpretability, unlike modeling based on first-principles. To balance the advan-

tages and disadvantages of data-based models and first-principles models, hybrid modeling was

proposed using artificial neural networks (ANNs). ANNs are connectionist models containing

three layers with multiple neurons in each of them and are widely used as function approxima-

tors. Since the introduction of ANNs for hybrid modeling, the field of Machine Learning has ad-

vanced where deep neural networks (DNNs) with more than three layers can be efficiently trained

to approximate any function accurately. In Section 3.1, a deep hybrid modeling framework is

developed using DNNs and Levenberg-Marquardt training algorithm, and is successfully applied

to build a deep hybrid model for hydraulic fracturing. In the hydraulic fracturing, the unknown

process parameters, i.e., fluid leak-off rates were predicted by the DNN and then utilized by the

5

first-principles model to calculate the hybrid model outputs. This deep hybrid model was easier to

analyze, interpret, and extrapolate compared to a data-based model, and showed higher accuracy

compared to the first-principles model.

In Section 3.2, to further prove the efficacy of the proposed deep hybrid modeling framework, it

was utilized to model a full-scale bio-fermentation reactor with a volume of over 100,000 gallons.

The resulting deep hybrid model was more accurate and robust than the (original and improved)

first-principles models, and it captured unknown time-varying dependencies among parameters.

Similar to the concept of deep hybrid modeling, Universal Differential Equations (UDEs) was

proposed in the field of Machine Learning. The concept of UDEs is a natural extension to another

concept called Neural ODEs wherein neural networks are represented as ODEs and solved using

ODE solvers. Now, in UDEs, neural networks are integrated with any physics-based knowledge

of the system in the form of differential equations, and the resultant UDE model is solved using

appropriate ODE solvers. This concept of UDEs was utilized to build a hybrid model for the batch

production of β-carotene in two scenarios. In Section 3.3, theoretical assumptions about the un-

known dynamics in the existing kinetic model of this process were made, and it was showed that

a trained UDE is able to accurately capture these dynamics which were assumed to be unknown

initially. In Section 3.4, a UDE model was built for the lab-scale batch production of β-carotene.

The existing kinetic model of this process suffers from poor accuracy when compared to the ex-

perimental data. Therefore, the concept of UDE was build to build a superior hybrid model. It was

showed that the trained UDE model outperforms the existing kinetic model, both in training and

testing scenarios.

Integrating physics with DNNs either in a modeling or a control framework comes with few

limitations. One such limitation in the case of the deep hybrid modeling framework is that the

Domain of Applicability (DA) of the deep hybrid model is greatly influenced by the capabilities of

the DNN contained within it. Subsequently, the accuracy of the deep hybrid model is high within

its DA and vice versa. Therefore, it is important to take into account the DA of the deep hybrid

model when using it to design a model-based controller. In Section 4, a Control Lyapunov-Barrier

6

Function (CLBF)-based MPC was developed that combines a Control Lyapunov Function (CLF)

and a Control Barrier Function (CBF) to stabilize as well as ensure that the closed-loop states stay

within the DA of the deep hybrid model where its prediction accuracy is high. Theoretical guar-

antees were provided on the performance of this CLBF-MPC controller, and it was successfully

implemented on a CSTR system.

The idea of integrating prior knowledge about a process with a Machine Learning framework

can also be extended to Reinforcement Learning-based process control. Reinforcement Learning

(RL) is a field within Machine Learning that deals with designing data-based controllers which

learn an optimal control policy by directly utilizing data from the process. In Section 5, a Deep

Reinforcement Learning (DRL) controller was developed based on the actor-critic approach that

directly utilizes prior knowledge about the process in its reward function formulation to quickly

learn an optimal control policy. This DRL control framework was successfully applied to hy-

draulic fracturing process wherein prior knowledge about Nolte’s power law pumping schedule

was included in the form of a reward function to obtain uniform proppant concentration along the

length of the fracture at the end of the proppant injection process. The inclusion of Nolte’s law

helped the DRL controller quickly reach convergence to an optimal policy. In Section 6, a brief

summary and conclusion of the doctoral research was provided, followed by list of references cited

in this doctoral study.

7

2. DATA-BASED REDUCED-ORDER MODELING

2.1 Enlarging the Domain of Attraction of the Local Dynamic

Mode Decomposition with Control Technique: Application

to Hydraulic Fracturing∗

Many chemical processes are usually represented by high-dimensional complex models which

accurately describe the dynamics of the system but their utility in the design of feedback control

systems is limited due to the model complexity which puts considerable strain on the computational

resources. Nonetheless, the solutions of such large-scale complex systems can be approximately

explained by a very specific set of low-dimensional equations. For example, only three ODEs

were required to represent the essential features of a laminar fluid flow passing a 2D cylinder [62].

Many model order reduction techniques are based on this idea and they have been widely used

in industrially important engineering problems to deal with high-dimensional models without los-

ing much accuracy. One ROM technique is network-based wherein complex chemical systems

are divided into a network of small units, the characteristics of each unit can be defined by very

few ordinary differential equations, and solving these equations for each unit would give a dis-

tribution of properties such as mass, energy, and momentum. More recently, this network-based

ROM technique has been applied to gasifier which is represented as a network of ideal reactors

consisting of plug flow reactors (PFRs) and continuous stirred tank reactors (CSTRs) [63, 64, 65].

Two of the commonly used modal decomposition techniques in model order reduction methods

are Proper Orthogonal Decomposition (POD) and Dynamic Mode Decomposition (DMD). Both

of these techniques extract coherent structures within the system by analyzing sequential data ob-

tained either by simulation of the high-fidelity model of the high-dimensional system, or obtained

∗Reprinted with permission from “Enlarging the Domain of Attraction of the Local Dynamic Mode Decomposition
with Control Technique: Application to Hydraulic Fracturing” by Bangi, M. S. F., Narasingam, A., Siddhamshetty,
P. and Kwon, J. S. 2019. Ind. Eng. Chem. Res., 58, 5588-5601, Copyright 2019 American Chemical Society.

8

via experimental studies. POD technique extracts structures that capture the most energy [66] and

can be used to build a ROM for the system.The POD technique has been applied to build ROMs for

various applications [67, 68, 69, 70, 71, 72, 6, 73]. But using energy as a criterion for identifying

these coherent structures is not always useful as it ignores those structures with zero-energy but

are dynamically relevant [74].

DMD was initially introduced in the fluid community to extract flow structures by observing the

high-dimensional data that can accurately represent the dynamics of the flow [75]. In comparison

to POD, this method extracts those structures that are dynamically relevant and contribute towards

the long-term dynamics of the system [76] rather than selecting those that carry the most energy.

Mathematically, DMD assumes that nonlinear systems with complex models can be represented

using a linear form and this may seem inaccurate at first but understanding DMD as a numerical

approximation of Koopman spectral analysis has validated this representation [77, 78, 79]. DMD

has been successfully applied to both numerical [7, 80, 81, 82, 83] and experimental [84, 85, 86,

87, 88, 89, 90] fluid flow data to represent relevant physical mechanisms in a linear form. Many

works have been carried out regarding the numerics of the DMD algorithm which include the

development of memory efficient algorithms [91, 92], a method for selection of a sparse basis of

DMD modes [93], and an error analysis of DMD growth rates [90]. Apart from this, theoretical

works have been carried out to explore and understand its relationship with other methods such

as Fourier analysis [94], POD [7], and Koopman spectral analysis [77, 78, 79]. Also, different

methods have been proposed as variations of DMD such as Optimized DMD [94] and Optimal

Mode Decomposition [95, 96].

Within this context, DMDc, a purely data-driven modal decomposition technique, was devel-

oped to represent nonlinear systems, especially those whose dynamics are influenced by external

inputs, in a discrete state-space form by extracting dynamically relevant spatial structures using

both measurements of the system and the external inputs applied on it [8]. DMDc provides an

understanding of the input-to-output behavior, which can be utilized to predict and design feed-

back control systems. However, for a highly nonlinear system, a global linear representation might

9

not be a good approximation considering the fewer degrees of freedom associated with the linear

model. Because of this limitation, the global method may fail to capture the effect of the changes in

the process parameters such as permeability and Young’s modulus of the rock formation on the lo-

cal dynamics in the case of hydraulic fracturing as these constants are space-dependent. In order to

better capture the local dynamics, temporal clustering can be integrated to DMDc to develop local

ROMs that better represent the dynamics of the overall system and this technique was introduced

as LDMDc [9]. Local DMDc divides the snapshot data into different clusters and for each cluster

it obtains a pair of linear operators which together represents a local ROM for their corresponding

cluster. The local model will approximately explain the dynamics of the system under the condi-

tions in which the snapshots belonging to that particular cluster were obtained. It has been shown

that LDMDc performs better than global DMDc when a single data set obtained under a particular

operating condition is used to build the models [9]. However, the drawback of these models is that

their domain of attraction (DOA) is limited by the data used for model training; in other words,

these models will perform poorly when used for prediction under other operating conditions.

Our contribution in this work is to enlarge the DOA of LDMDc technique by implementing su-

pervised and unsupervised learning techniques on multiple ‘training’ data sets to build and utilize

multiple local ROMs, respectively. These data sets are obtained under different operating con-

ditions by performing simulations of the high-fidelity model. In order to obtain highly-accurate

local ROMs, we implement a particular clustering strategy instead of the conventional approaches

available in the literature. The clustering strategy involves considering each ‘training’ data set in-

dividually and clustering it using only the information of the inputs such that the optimal number

of clusters are obtained along with the clustered output. The reason we opted for the clustering

strategy is that it is easier to implement, and the resulting clustered output satisfies constraints re-

quired to build highly accurate ROMs which will be discussed later in this text. Using the clustered

output, LDMDc-based ROMs are built and these ROMs will be used for prediction. During predic-

tion, at any instance, the selection of a ROM is accomplished by utilizing the k-nearest neighbors

(kNN) classification technique. Another novelty is that in our proposed algorithm, we utilize both

10

the states of the system and the external inputs applied on it which is necessary because the dy-

namics of the system are influenced by both the state and the applied external input. This aspect of

our algorithm makes it different from the LDMDc technique proposed by Narasingam and Kwon

[9] wherein only the states of the system were utilized to cluster the data. Also, in the LDMDc

technique proposed by Narasingam and Kwon [9] selection of ROM was not necessary as only one

‘training’ input was used to build the model. On the contrary, in our proposed algorithm any input

profile satisfying an imposed constraint within the enlarged DOA can be utilized for prediction and

this necessitates the use of the kNN classification technique. Despite the differences, our proposed

technique still holds the advantages of the LDMDc technique proposed by Narasingam and Kwon

[9] in that it is completely data-driven and captures local dynamics efficiently all while requiring

no knowledge in terms of the system model.

2.1.1 Local Dynamic Mode Decomposition with Control

Recall, the technique of DMDc represents the underlying dynamics of a nonlinear system in

a linear state-space form by utilizing both the measurements of the system and the external input

applied on it. Mathematically, this would mean that the snapshots are related to each other by a

linear operator pair. But considering that most of the systems are inherently nonlinear, this linear

representation will not be accurate. To accurately represent a nonlinear system using DMDc,

Narasingam and Kwon [9] proposed a framework to divide the snapshots into clusters wherein in

each cluster its underlying local dynamics can be captured and be represented in a linear form by

using DMDc on the snapshots within that cluster.

2.1.1.1 Capturing local dynamics

DMDc is applied to each cluster using its corresponding snapshots to obtain a linear operator

pair A and B to build a ROM that will capture the cluster’s underlying local dynamics. Algorithm

below describes how to apply DMDc to each cluster and obtain the pairs (Aj,Bj) for every cluster

in detail. The ROM to describe the dynamics of the system in each cluster can be formulated as

11

Algorithm 1 DMDc for each cluster
1: Suppose the jth cluster contains the states {x1 x2 . . . xn}j and the corresponding inputs applied on

them are {u1 u2 . . . un}j . Arrange the data matrix {x1 x2 . . . xn}j into matrices X and Y such that

X = {x1 x2 . . . xn−1}j , Y = {x2 x3 . . . xn}j

where X ∈ Rs×(n−1) and Y ∈ Rs×(n−1). The corresponding inputs for the states in X be Γ such that

Γ = {u1 u2 . . . un−1}j

where Γ ∈ Rl×(n−1)

2: The state space form corresponding to this cluster can be defined as

Y = Aj ∗X + Bj ∗ Γ

where Aj ∈ Rs×s and Bj ∈ Rs×l
3: The equation can be rewritten in an augmented form as

Y = [Aj Bj] ∗
[
X
Γ

]
= G ∗Ω

where G ∈ Rs×(s+l) and Ω ∈ R(s+l)×(n−1)

4: Compute the Singular Value Decomposition (SVD) of the augmented matrix Ω as

Ω = Û Σ̂ V̂∗

5: Reduce the order of the augmented system Ω from ‘s + l’ to ‘p’ by selecting an appropriate tolerance
limit for the singular values of Ω

6: Compute Û∗1 ∈ Rs×p, and Û∗2 ∈ Rl×p such that

Û =

[
Û1

Û2

]
7: Compute the SVD of the shifted snapshot sequence Y as

Y = Ũ Σ̃ Ṽ∗

8: Reduce the order of the subspace of Y from ‘s’ to ‘r’ by selecting an appropriate tolerance limit for the
singular values of Y. Here, Ũ ∈ Rs×r, Σ̃ ∈ Rr×r, and Ṽ ∈ R(n−1)×r

9: Compute the low dimensional representation of the system matrices as

Âj = Ũ∗ Y V̂ Σ̂
−1

Û∗1 Ũ B̂j = Ũ∗ Y V̂ Σ̂
−1

Û∗2

where Âj ∈ Rr×r and B̂j ∈ Rr×l

10: Apply the inverse transformation to project the approximate system matrices, Âj and B̂j , in the r-
dimensional subspace to the full order space

Aj = Ũ Âj Ũ∗ Bj = Ũ B̂j

where Aj ∈ Rs×s and Bj ∈ Rs×l

12

follows:

xi+1 = Aj ∗ xi + Bj ∗ ui (2.1)

The above equation represents the system as a discrete-time linear state space model. Therefore,

we recognize that DMDc can be used for system identification of a high dimensional, nonlinear

system as a linear state-space model by capturing its underlying dynamics using the data obtained

from its high-fidelity model.

2.1.2 Enlarging the DOA of Local DMDc

As mentioned previously, the DOA of the LDMDc technique proposed by Narasingam and

Kwon [9] is narrow with respect to both the input and the state space, meaning that the model built

using this technique can only reproduce accurately the ‘training’ data when the ‘training’ input is

applied and applying any other input on the model will produce unsatisfactory results. In this work

we use a variety of operating conditions to obtain the ‘training’ data which would then be used to

enlarge the DOA of LDMDc.

Suppose Xh is the trajectory followed by the state x ∈ Rs when an input u ∈ Rl is applied on

the high fidelity model, and Xr is the trajectory followed by the state xr ∈ Rs when the same input

u ∈ Rl is applied on the reduced-order model obtained from the proposed algorithm. Then,

Xh := {x ∈ Rs : ẋ(t) = f(x(t), u(t)) s.t. x(0) = 0, u ∈ Rl,∀t ∈ [0, te]}

Xr := {xr ∈ Rs : xr(k + 1) = Ak ∗ xr(k) +Bk ∗ u(k)) s.t.

xr(0) = 0, Ak ∈ A, Bk ∈ B, u ∈ Rl, ∀k ∈ [0, kte]}

(2.2)

where f represents the high-fidelity model as a function of state x and input u, te is the end of

fracturing time, and Ak and Bk are the linear operator pairs obtained by using the ‘training’ data.

The DOA D is then defined as

D := {x, xr ∈ Rs : | x− xr |< ε} (2.3)

13

where ε is the error. In other words, the DOA is the set of all states obtained from the reduced-order

models which can satisfactorily describe the system under well-defined conditions.

2.1.2.1 Data Generation

The ‘training’ data can be obtained by implementing various input profiles on the system either

on an experimental basis or by carrying out simulations of the high fidelity model. In this work we

choose the latter option for data generation. An important point to remember here is that it is very

crucial to identify the DOA for which the model is intended to be built, and to select inputs within

this region. To identify this region, it is necessary to understand the application of the ROM. One of

the important applications of ROMs is in the design of controllers and one of the most widely used

control techniques in these days is an optimization-based control scheme to obtain the optimal

control action. Therefore, it would be ideal to select a region which would contain the solution

(optimal control action) to the optimization (control) problem. Also, these multiple inputs need to

be spread all across this finite region to make sure that the ‘training’ data is ‘rich’. Consequently,

the resultant model will be able to accurately predict for any input under a constraint, which will

be discussed later, within this finite region. Finally, the number of ‘training’ inputs to be used is up

to the discretion of the users. Large amounts of data would definitely improve the accuracy of the

model but this would come at the cost of high computational expenses. Having a priori knowledge

of the system, and an understanding of the application of the model will help in deciding the

number of ‘training’ inputs necessary to build the model. To summarize, the following guidelines

should be taken into account when defining the ‘training’ inputs.

1. To identify the region, information from the existing literature/experimental studies must be

considered along with other system and practical constraints.

2. The selected ‘training’ inputs should cover the entire identified input region to maximize the

predictive capability of the reduced-order model.

3. To reduce the computational expenses, the ‘training’ inputs should be unique but within the

defined region.

14

Once the ‘training’ inputs have been identified, ‘training’ data sets can be generated by performing

numerical simulations of the high-fidelity model. Assuming that ‘d’ ‘training’ data sets are gen-

erated and each data set contains ‘n’ snapshots, the nomenclatures used to represent the state and

input matrices are shown in [97].

2.1.2.2 Temporal Clustering

Recall, the LDMDc technique divides the generated snapshots of data temporally into clusters.

The GOS algorithm was used to partition the snapshots into clusters and it was sufficient to use

only the state vectors as only one ‘training’ input profile was used to obtain a ROM via Local

DMDc [9]. But in this work, since multiple ‘training’ inputs are considered, we propose to use both

the state vector and the input by stacking them vertically to form an ‘augmented’ vector, and these

‘augmented’ vectors will now constitute our ‘training’ data sets. Before applying any clustering

technique, it is essential to normalize the data as the components of the ‘augmented’ vector operate

in two different spaces (i.e., the state space and the input space) and the range of each component

varies with the other. To perform normalization, we first concatenate all the ‘augmented’ vectors

horizontally to form one ‘combined’ data matrix. To further understand this ‘combined’ data

matrix, its rows represent the components of the ‘augmented’ vector and its columns represent the

time instances. Each row of the ‘combined’ data matrix must be normalized individually across all

the columns of the ‘combined’ data matrix. The nomenclatures used to represent above-mentioned

matrices are shown in [97]. In Algorithm 1, the state vectors and the input vectors have been

defined to contain s and l components respectively. As a result, the ‘augmented’ vector contains

s+ l components. Therefore, the normalization process is repeated for the entire s+ l rows in the

‘combined’ data matrix.

A point to consider here is the dimensions of the state vector and the input vector. It is usually

the case where the dimension of the state vector is much larger compared to the dimension of

the input vector. Furthermore, considering that clustering algorithms typically use ‘distance’ as a

metric based on which snapshots are divided into clusters, it is quite possible that the contribution

of the state vector towards this metric might numerically outweigh the contribution of the input

15

vector. To overcome this imbalance, we propose to apply two weights on the ‘augmented’ vector,

wherein one weight is equally divided among all the components of the ‘augmented’ vector that

represent the state vector, and similarly, the other weight is applied on the input component of the

‘augmented’ vector. Numerically, these weights have to be ascertained by trial and error as they

depend on the system, and the type of ‘training’ inputs used to generate ‘training’ data to build

the model. We then perform Principal Component Analysis (PCA) on the weighted matrix. PCA

helps in reducing the order of the model which helps in minimizing the number of dimensions

that we have to deal with when clustering the data, validating the model, and using the model

for prediction. Applying PCA transforms the weighted matrix into its PCA scores (PCSs) which

represent the data in the principal component space, and we will only use those scores whose

corresponding components can together be used to represent at least 90% of the variance in the

data. Now, we have the necessary transformed data to implement the clustering strategy.

The clustering strategy to be implemented is highly dependent on the ‘training’ data used,

and the application in which the resultant model will be used. Nonetheless, it should satisfy the

following output criteria: (a) no two data points from two different ‘training’ data sets will lie

in the same cluster, (b) no two data points with different inputs will lie in the same cluster. The

reasons for the above criteria are that when snapshots belonging to different ‘training’ data sets, or

belonging to the same ‘training’ data set but having different inputs are kept in the same cluster, the

resultant operator pair (A, B) will capture the local dynamics inaccurately for that cluster and this

linear operator pair will give inaccurate results when used for prediction. Conventional clustering

techniques can be applied but it would be much easier to satisfy the above mentioned criteria by

implementing a clustering strategy which involves considering each ‘training’ data set individually

and clustering based on the inputs such that the optimal number of clusters is obtained along with

the clustered output. Once clustering is done, the cluster centers can be calculated in terms of the

PCSs by calculating the average of all the PCSs of the data points within each cluster, and these

centers will be used in the selection of the local ROM which is explained in the section below.

16

2.1.2.3 Local ROM Selection

After building a ROM for each cluster, we use this set of local ROMs for validation and for

model prediction. In both the cases we adopt the same approach to select the appropriate local

ROM. Recall, at a given time instance, the future state of the system is dependent on both the

current state of the system and the input to be applied on it. Hence, we will use both the information

in the selection of the appropriate ROM.

At this stage it is important to understand that each local ROM is developed for a cluster of state

vectors and their corresponding inputs. At any time instance, given the state and the input, we need

to find a snapshot in the ‘combined’ matrix whose state vector and the input closely match with the

ones in consideration. Next, we locate the cluster in which this selected snapshot belongs to and

use that particular cluster’s ROM to predict the future state for an applied input profile. But finding

the closest snapshot in the ‘combined’ matrix is a computationally expensive task considering the

huge amounts of data in use. Instead it would be much easier to find the nearest cluster center to

both the state vector and the input in consideration and use the corresponding local ROM to predict

the future state trajectory.

Considering that the state vector and the input operate in two different spaces, it is difficult to

make a selection of which ROM to use without an appropriate transformation. To overcome this,

we apply the transformation similar to the one used in the clustering step of our algorithm. We

first stack them vertically to form the ‘augmented’ vector, normalize each row of the ‘augmented’

vector using the corresponding mean and variance of that row in the ‘combined’ matrix obtained

in the clustering step, and apply weights on the state vector and the input in the exact manner

as done in the clustering step. Recall, in the clustering step, we perform PCA on the weighted

matrix to reduce the number of dimensions we have to deal with in various steps of our algorithm,

which includes the selection of the local ROM. Considering that we transformed the ‘training’

data into PCSs of its dominant PCA components in the clustering step, we similarly calculate the

PCS of the weighted vector in consideration by using the same dominant PCA components. Now

the transformation of the state vector and the input in consideration is complete and the above

17

calculated PCSs will be further used in the ROM selection step.

We use kNN technique to select the appropriate local ROM. Recall, kNN technique selects ‘k’

points from a data set that are closest to the query point with respect to the Euclidean distance

metric. In our method the above calculated dominant PCSs of the weighted vector in consideration

is the query point. The set of cluster centers given to the kNN technique as the input data set

will not comprise all the cluster centers. Using all the cluster centers will result in the incorrect

selection of the local ROM because it is entirely possible that there exists two ‘augmented’ vectors

whose states and inputs are dissimilar respectively but may have approximately the same PCSs.

To avoid such scenarios we include the following constraint in our algorithm: at the given time

instance, those cluster centers are selected in the subset of cluster centers to the kNN technique

whose respective clusters contain the snapshot having the same time instance. Implementing the

kNN technique with the above constraint will help the algorithm in selecting the correct local ROM.

Given a (xi,ui) at the time instance ti, the right pair of (Aj,Bj) can be selected and the next state

of the system can be calculated as defined in Eq. (2.1). The proposed method is summarized in

Algorithm 2.

2.1.3 Application to hydraulic fracturing

Shale gas is natural gas trapped within rocks of low porosity and low permeability, and hy-

draulic fracturing is a technique to obtain shale gas by stimulation of such rocks by controlled

explosions along the length of the wellbore resulting in the formation of fractures. A clean fluid

called pad is then introduced inside the wellbore at high pressures to extend the length of the initial

fractures. A fracturing fluid containing water, proppant and additives is then introduced to further

extend the fractures. Once pumping is stopped, the remaining fluid is allowed to leak off into the

reservoir resulting in the formation of a medium of proppant in the fractures. The natural stresses

in the rocks cause the closure of fractures, thereby, trapping the proppant which would then act as

a conductive medium for the extraction of the gas present in the reservoir. Two control objectives

usually associated with hydraulic fracturing during proppant injection is to obtain uniform prop-

18

Algorithm 2 Proposed methodology for enlarging the DOA of LDMDc
1: Say the dth data set contains the state matrix Xd = {x1 x2 . . . xn}d and the corresponding inputs

applied on them are Ud = {u1 u2 . . . un}d, respectively.
2: For every data set, stack the state and input matrices to construct the ‘augmented’ matrix Ωd

Ωd =

[
Xd

Ud

]
3: Form the ‘combined’ matrix Ω by stacking each ‘augmented’ matrix horizontally

Ω = {Ω1 Ω2 . . . Ωd}

4: Normalize each row of the matrix Ω to form the ‘normalized’ matrix ΩN

ΩN = {Ω1
N Ω2

N . . . Ωd
N} =

[
X1
N X2

N . . . Xd
N

U1
N U2

N . . . Ud
N

]
5: Apply weights wx and wu on the ‘normalized’ matrix ΩN such that wx and wu will be equally divided

among the components of the state vector and input vector, respectively. The ‘weighted’ matrix is Ωw

Ωw = [wx wu]

[
X1
N X2

N . . . Xd
N

U1
N U2

N . . . Ud
N

]
=
[
Ω1
w Ω2

w . . . Ωd
w

]
6: Perform PCA on the ‘weighted’ matrix Ωw and select the first ‘p’ Principal Components such that the

cumulative sum of their Principal Component Variances is at least 90%.
7: Transform the data in the matrix Ωw to their corresponding PCSs. As we are only considering the first

‘p’ Principal Components, the dimension of the matrix Ωw reduces to ‘p’.

PCA(Ωw) =


PCS1(Ω1

w) PCS1(Ω2
w) . . . PCS1(Ωd

w)

PCS2(Ω1
w) PCS2(Ω2

w) . . . PCS2(Ωd
w)

...
...

...
PCSp(Ω1

w) PCSp(Ω2
w) . . . PCSp(Ωd

w)


8: Cluster the matrix PCA(Ωw) using any clustering technique such that the clustering output satisfies

the criteria mentioned in the clustering subsection. Obtain the cluster centers in terms of the average
PCSs of the snapshots within the respective clusters.

9: For every cluster j, obtain the corresponding linear operator pair (Aj ,Bj) using the original ‘training’
data of snapshots within that cluster.

10: To select the correct local ROM, implement the kNN technique with k value as 1 as only one local
ROM is required to calculate the next state of the system. A subset of cluster centers is selected as
explained previously. Also the query point is transformed as described in Steps 2 to 5, its PCSs will be
obtained using the same ‘p’ PCA components obtained in Steps 6 to 7, and then will be used in the kNN
technique.

pant concentration throughout the length of the fracture, and to obtain a desired fracture geometry.

In this section we applied our proposed methodology to build a LDMDc-based ROM which can

be used to predict the proppant concentration at various locations of the fracture at various times

19

of the proppant injection process for a wide range of proppant pumping schedules.

2.1.3.1 Dynamic modeling of hydraulic fracturing process

Hydraulic Fracturing can be classified into 3 subprocesses which are as follows: (1) Fracture

propagation, (2) Proppant transport, and (3) Proppant bank formation.

Fracture propagation: The fracture propagation is assumed to follow the Perkins, Kern, and

Nordgren (PKN) model [1, 98] which is shown in Figure 2.1. The other assumptions considered

with regard to the fracture propagation are as follows: (1) the fracture length is much greater than

its width, and hence, the fluid pressure along the vertical direction remains constant; (2) large

stresses in the rock layers above and below the fracture resulting in the fracture being confined

to a single layer; and (3) the rock properties such as Young’s modulus and Poisson’s ratio remain

constant with respect to both time and space, and the fracturing fluid is incompressible. Consid-

ering the above assumptions, it must be noted that the fracture will take an elliptical shape and its

cross-sectional area will be rectangular.

Z
H

L(t)

Figure 2.1: The PKN fracture model [1].

20

Fluid momentum is explained using the lubrication theory which relates the fluid flow-rate in

the horizontal direction, qz, to the sustained pressure gradient, −∂P
∂z
ẑ, as follows:

qz = −πHW
3

64µ

∂P

∂z
(2.4)

where P is the net pressure varying with the z coordinate, H is the fracture height, W is the width

of the fracture, and µ is the fracturing fluid viscosity. The maximum width of the fracture can be

related to the net pressure exerted by the fracturing fluids as follows:

W =
2PH(1− ν2)

E
(2.5)

where E is the Young’s modulus and ν is the Poisson’s ratio of the formation. The continuity

equation obtained by local mass conservation of an incompressible fluid is given by:

∂A

∂t
+
∂qz
∂z

+HU = 0 (2.6)

where A = πWH/4 is the cross-sectional area of the fracture, t is the time elapsed since the

beginning of the fracturing process, z is the time-dependent spatial coordinate in the horizontal

direction, and U is the fluid leak off rate per unit height into the reservoir. The fluid leak off rate is

in the orthogonal direction to the fracture plane and is given by [99, 100]:

U =
2Cleak√
t− τ(z)

(2.7)

where Cleak is the overall leak off coefficient, and τ(z) is the time instance at which the fracturing

fluid reached the coordinate z for the first time. Plugging Eqs. (2.4)-(2.5) into Eq. (2.6) results in

the following partial differential equation:

πH

4

∂W

∂t
− πE

128µ(1− ν2)

[
3W 2

(∂W
∂z

)2

+W 3∂
2W

∂z2

]
+HU = 0 (2.8)

21

The two boundary conditions and an initial condition for the process are formulated as follows [101,

102]:

qz(0, t) = Q0 W (L(t), t) = 0, (2.9)

W (z, 0) = 0 (2.10)

where Q0 is the fluid injection rate at the wellbore, and L(t) is the fracture tip varying with time.

Proppant transport: In this model, the proppant is assumed to travel with the superficial velocity

of the fracturing fluid in the horizontal direction, and it is assumed to travel with the settling

velocity relative to the fracturing fluid in the vertical direction due to the effect of gravity. The

other assumptions adopted are as follows: (1) the proppant particle size is assumed to be large

enough to neglect the diffusive flux while only convective flux is taken into consideration; (2) the

interactions between the proppant particles are neglected while only drag and gravity effects are

considered; and (3) the proppant particles have a uniform size. Based on these assumptions, the

advection of proppant in the z direction can be computed as:

∂(WC)

∂t
+

∂

∂z
(WCVp) = 0 (2.11)

C(0, t) = C0(t) and C(z, 0) = 0 (2.12)

where C(z, t) is the suspended proppant concentration at the coordinate z, and at time t. C0(t) is

the proppant concentration injected at the wellbore. Vp is the net velocity of the proppant particles

and is obtained by [103]:

Vp = V − (1− C)Vs (2.13)

where V is the superficial fluid velocity in the horizontal direction, and Vs is the gravitational

settling velocity which can be computed as [104]:

Vs =
(1− C)2(ρsd − ρf)gd2

101.82C18µ
(2.14)

22

where ρsd is the proppant particle density, ρf is the pure fluid density, d is the proppant particle

diameter, g is the gravitational constant, and µ is the fracture fluid viscosity which can be related

to the proppant concentration as follows [105]:

µ(C) = µ0

(
1− C

Cmax

)−α
(2.15)

where µ0 is the pure fluid viscosity, Cmax is the maximum theoretical concentration determined by

Cmax = (1−φ)ρsd where φ is the proppant bank porosity, and α is an exponent in the range of 1.2

to 1.8.

Proppant bank formation: The proppant settling results in the formation of a proppant bank

and the variation of the bank height, δ, can be explained using the following equations [101, 106]:

d(δW)

dt
=

CVsW

(1− φ)
(2.16)

δ(z, 0) = 0 (2.17)

where Eq. (2.17) is the initial condition for Eq. (2.16). More information about the first-principles

model of hydraulic fracturing process can be obtained from [4, 3, 5].

We solve the dynamic model of the hydraulic fracturing process for various input profiles in

the selected finite region of the input space. A numerical scheme is adopted considering the highly

nonlinear nature of the model, and the moving boundary of the system [4, 107]. We used a fixed

mesh strategy to solve the high-fidelity model. A finite region of the input space was selected in

which a total of 13 distinct ‘training’ input profiles were chosen as shown in Figure 2.2. Note that

the proppant injection was started at t = 220 s. The reason for this design of the ‘training’ input

profiles is to closely imitate the practically viable inlet proppant concentration in the field which is

usually an increasing staircase profile. The step increases have been kept constant at 0.5 in all the

cases. Another reason for this kind of pattern is to make sure that we cover the entire finite region

so as to obtain rich ‘training’ data sets and the amount of data used in model building would be

23

Injection Time (s)

0 200 400 600 800 1000 1200 1400

In
je

c
te

d
 P

ro
p
p
a
n
t
C

o
n
c
e
n
tr

a
ti
o
n
 (

p
p
g
a
)

0

2

4

6

8

10

12

Figure 2.2: Different ‘training’ input profiles used to generate open-loop simulation data for model
training.

optimal. Random input profiles can be considered within this region but the number of ‘training’

inputs required to cover the entire region would be larger. Also, to avoid using many ‘training’

inputs and to cover the entire region would require the step increase to be greater than 0.5, which

is usually not practical to be implemented in the field.

Each ‘training’ input profile is implemented on the open-loop system, and the corresponding

response of the system is obtained by solving the high fidelity model. The simulations are carried

out for tf = 1236.4 s which resulted in a total of 12365 snapshots in each ‘training’ data set. The

high-order discretization scheme resulted in a total of 501 spatial points across the length of the

fracture out of which only 101 were selected at equidistant points. The same discretization scheme

was applied to the simulations of all the ‘training’ input profiles. The ‘training’ data obtained in

these simulations were used in building ROMs through LDMDc.

2.1.3.2 Building LDMDc-based ROMs

Our algorithm can be divided into 3 sections: (1) Temporal clustering, (2) Building ROMs for

each cluster, and (3) Model selection for validation/prediction. Note that only the data after the

24

proppant injection began was used in this work.

We first built the ‘augmented’ vectors by stacking the state vector with its corresponding input

vertically, formed the ‘combined’ matrix by stacking horizontally all the ‘augmented’ vectors from

all the ‘training’ data sets, normalized each row of the ‘combined’ matrix, and applied weights on

the resultant ‘normalized’ matrix. In this work we applied equal weights [0.5, 0.5] on the state

vector and the input. And, the weight 0.5 on the state vector was equally divided among the

components of the state vector whereas the weight on the input was kept the same. The reason

we chose this weights is that both the current state of the system and the input applied on it are

equally important in propelling the system forward. In other applications it is possible that this

may not be the case, and therefore, we suggest that a trial and error scheme needs to be adopted

to obtain these weights. We performed PCA on weighted matrix and found that the 1st principal

component (PC) was able to capture 99.59 % of the total variance. Therefore, it was sufficient

for us to just use the 1st PCS of all the data points in the clustering step as well as in the model

selection step of the algorithm. The clustering strategy was implemented that satisfies the criteria

mentioned previously; that is, no two data points from two different ‘training’ data sets will lie in

the same cluster, and no two data points having the same input will lie in the same cluster. We

obtained a total of 143 clusters and the output of this clustering strategy in the input space is shown

in Figure 2.3 wherein each color represents a cluster. The cluster centers were computed in terms

of the 1st PCS and stored to be used in the local ROM selection step of the algorithm.

We applied the DMDc method to every cluster wherein we set the tolerance limit on the singular

values as 1 to determine the corresponding p and r values for the purpose of model order reduction.

For each cluster, we obtained a pair of linear operators, (Aj,Bj), that captures the underlying local

dynamics exhibited by the snapshots of that particular cluster. This pair of linear operators is then

used to build the linear state-space model which will be then used for model validation and for

prediction in the case of random inputs selected within the finite region.

During model validation or model prediction, at any time step, a local ROM needs to be selected

based on the current state of the system and the input to be applied on it to further propagate the

25

Injection time (s)

0 200 400 600 800 1000 1200

In
je

c
te

d
 P

ro
p
p
a
n
t
C

o
n
c
e
n
tr

a
ti
o
n
 (

p
p
g
a
)

4

5

6

7

8

9

10

11

12

Figure 2.3: Clustering output representation in the input space.

system. To achieve this objective, we implemented the kNN technique by setting the k value as 1

as we only need to select one local ROM. To obtain the subset of cluster centers, we implemented

the constraint that at any time step only those cluster centers will be used in the selection process

whose corresponding clusters contain the snapshot which was obtained at the same time instance

during the open-loop data generation process. Also, at every time step, the query points (i.e.,

the current state and the input) were transformed in the exact manner adopted in the clustering

step. Recall, the parameter used in the selection process is the PCSs with respect to the dominant

components. In this work, the 1st PCSs of the subset of cluster centers, and of the query point were

used as the 1st PC was able to capture 99.59 % of the total variance in the data.

2.1.4 Model validation

To verify the accuracy of our proposed methodology, we implemented one of the ‘training’

inputs which is shown in Figure 2.4. We utilized the developed LDMDc-based ROMs to compute

the output for the selected ‘training’ input and it is compared against the output of the full-order

model. Figure 2.5 shows the comparison of these two models with respect to the evolution of the

proppant concentration at four different locations during the injection process. It can be seen that

26

Injection Time (s)

0 200 400 600 800 1000 1200

In
je

c
te

d
 P

ro
p
p
a
n
t
C

o
n
c
e
n
tr

a
ti
o
n
 (

p
p
g
a
)

4

5

6

7

8

9

10

11

12

Figure 2.4: Validation input.

the output obtained using the proposed algorithm mimics the output from the full-order model.

We used a relative error metric, E(t), to quantify the performance of our proposed methodology

in comparison to the full-order solution. The relative error is calculated by using the Frobenius

norms of the state vectors as follows:

E(t) =
‖xfull − xrom‖fro
‖xfull‖fro

(2.18)

where ‖.‖fro is the Frobenius norm, xfull is the state vector obtained from the full-order solution,

and xrom is the state vector obtained from a ROM developed by the proposed methodology. The

relative error for the approximate solution obtained from our proposed methodology is presented in

Figure 2.6. From the plot we observe that the proposed methodology is able to provide an accurate

approximation when compared to the full-order solution. Similarly, our proposed methodology

will give accurate solutions when any of the other 12 ‘training’ inputs are used for validation pur-

poses. Thus, these results validate the proposed methodology and warrant its use for the purposes

of prediction when random inputs are used within the selected finite input space.

27

Injection Time (s)

0 200 400 600 800 1000 1200

C
 (

p
p
g
a
)

0

2

4

6

8

10

12
Proposed ROM

full-order

(a) C(t) at the wellbore

Injection Time (s)

0 200 400 600 800 1000 1200

C
 (

p
p
g
a
)

0

2

4

6

8

10

12
Proposed ROM

full-order

(b) C(t) at z = 33 m

Injection Time (s)

0 200 400 600 800 1000 1200

C
 (

p
p
g
a
)

0

2

4

6

8

10

12
Proposed ROM

full-order

(c) C(t) at z = 66 m

Injection Time (s)

0 200 400 600 800 1000 1200

C
 (

p
p
g
a
)

0

2

4

6

8

10

12
Proposed ROM

full-order

(d) C(t) at z = 99 m

Figure 2.5: Comparison of the approximate solution computed using LDMDc-based ROMs with
the full-order solution.

2.1.5 Model prediction

Equipped with the set of LDMDc-based ROMs, we used our model selection step to predict

the output when a random input is considered within the selected finite input region.

2.1.5.1 Random input

In this case a random input was generated with the constraint that the injected proppant concen-

tration was varied at every 100s as in the ‘training’ inputs. The generated random input is shown

in Figure 2.7. Note that in all the ‘training’ inputs, as described in Figure 2.3, the step increase of

28

Injection Time (s)

0 200 400 600 800 1000 1200

R
e
la

ti
v
e
 E

rr
o
r

E
(t

)

0

0.1

0.2

0.3

0.4

0.5

Figure 2.6: Profile for E(t) with time for solution obtained from our proposed methodology when
the validation input is used.

Injection Time (s)

0 200 400 600 800 1000 1200

In
je

c
te

d
 P

ro
p
p
a
n
t
C

o
n
c
e
n
tr

a
ti
o
n
 (

p
p
g
a
)

4

5

6

7

8

9

10

11

12

Figure 2.7: Random input profile used for model prediction.

0.5 in the injected proppant concentration was kept constant throughout the pumping process. But

in the case of this model prediction a different constraint was implemented that when generating

29

the random input the step increase in the injected proppant concentration will lie in the range of

[0.425 0.575]. The reason we implemented this constraint is that it makes the generated random

input closely mimic the ‘training’ inputs and also allows flexibility to deviate from them to a lim-

ited extent. The output predicted by the proposed algorithm is compared with the output from the

high fidelity model at 4 different locations along the length of the fracture and are presented in

Figure 2.8. From the figure we observe that the proposed methodology is able to accurately predict

Injection Time (s)

0 200 400 600 800 1000 1200

C
 (

p
p
g
a
)

0

2

4

6

8

10

12
Proposed ROM

full-order

(a) C(t) at the wellbore

Injection Time (s)

0 200 400 600 800 1000 1200

C
 (

p
p
g
a
)

0

2

4

6

8

10

12
Proposed ROM

full-order

(b) C(t) at z = 33 m

Injection Time (s)

0 200 400 600 800 1000 1200

C
 (

p
p
g
a
)

0

2

4

6

8

10

12
Proposed ROM

full-order

(c) C(t) at z = 66 m

Injection Time (s)

0 200 400 600 800 1000 1200

C
 (

p
p
g
a
)

0

2

4

6

8

10

12
Proposed ROM

full-order

(d) C(t) at z = 99 m

Figure 2.8: Comparison of the prediction output computed using LDMDc-based ROMs with the
full-order solution.

the concentration at 4 different locations when compared to the full-order solution. To quantify the

accuracy of the prediction, we calculated the relative error as defined in Eq. (3.21) and is plotted at

30

various times during the injection process as shown in Figure 2.9.

Injection Time (s)

0 200 400 600 800 1000 1200

R
e
la

ti
v
e
 E

rr
o
r

E
(t

)

0

0.1

0.2

0.3

0.4

0.5

Figure 2.9: Profile for E(t) with time for the prediction when the random input is used.

2.1.6 Comparison with LDMDc

In this section, we illustrate the superior performance of our proposed methodology in compar-

ison to the LDMDc technique proposed by [9] for a randomly generated, constrained input within

the finite region of input space. To do so, we first generated the required data by carrying out open-

loop simulations of the high-fidelity model. The ‘training’ input used mimics the ones used in our

proposed methodology; in particular, the step increase in the concentration of the injected proppant

is kept constant at 0.5 all throughout the injection process as shown in Figure 2.10. We then used

just the information of the states to cluster the data into 11 clusters, where for each cluster we

captured the local dynamics using LDMDc-based ROMs. These ROMs are then used to calculate

the approximate solution of the full-order model. Now that the LDMDc technique has been used to

build the model, we used the prediction input shown in Figure 2.7 to compare its performance with

the performance of our proposed methodology by plotting the relative error profiles for both the

techniques as shown in Figure 2.11. Note that the relative errors for each technique was obtained

31

Injection Time (s)

0 200 400 600 800 1000 1200

In
je

c
te

d
 P

ro
p
p
a
n
t
C

o
n
c
e
n
tr

a
ti
o
n
 (

p
p
g
a
)

4

5

6

7

8

9

10

11

12

Figure 2.10: Input used to build a LDMDc-based ROM.

by comparing their corresponding approximate solutions to the solution of the high-fidelity model.

From the plot we observe the limitation of the LDMDc technique, which is its poor performance

Injection Time (s)

0 200 400 600 800 1000 1200

R
e
la

ti
v
e
 E

rr
o
r

E
(t

)

0

0.1

0.2

0.3

0.4

0.5
Proposed ROM

LDMDc

Figure 2.11: Comparison of the relative error profiles of our proposed methodology and the LD-
MDc technique.

when a random input is used, which can be overcome by using our proposed methodology.

32

3. DEEP HYBRID MODELING

3.1 Deep hybrid modeling of chemical processes: Application

to hydraulic fracturing∗

Data-based models are easy to construct but lack in robustness and extrapolation properties un-

like first-principles model. In order to balance the advantages and disadvantages of data-based

models and first-principles models, hybrid models have been developed which integrate first-

principle models with data-based models. Such models have superior accuracy compared to the

first-principles model, and better extrapolation properties compared to the data-based models. In

process modeling, the concept of hybrid (grey box) models evolved from the field of neural net-

works [21, 22, 23, 24]. The idea was to build neural network based hybrid models through the

use of first principles knowledge. This resulted in hybrid models with better prediction accuracy

compared to the first principles models, and better interpolation, extrapolation, and interpretation

compared to solely neural networks based models. There exist other kinds of grey box models that

combine different types of first principles knowledge and/or empirical submodels. During the 90s,

the term ‘grey box’ models appeared in systems and control theory wherein structural information

from the first principles models was incorporated into the data-based models [25, 26, 27]. But

the understanding of the term ‘grey box’ has evolved to represent all types of hybrid models that

combines first principles and data-based submodels. Nonetheless, hybrid modeling balances the

advantages and disadvantages of strictly first principles and data-based modeling, and offers desir-

able benefits such as high prediction accuracy, better extrapolation capabilities, ease of calibration,

and better interpretability.

Neural networks are connectionist models that map an input space to an output space and were

inspired by the biological networks present in the brain. Each neural network contains elements

∗Reprinted with permission from “Deep hybrid modeling of chemical process: Application to hydraulic fracturing”
by Bangi, M. S. F., and Kwon, J. S. 2020. Comput. Chem. Eng., 134, 106696, Copyright 2020 Elsevier.

33

called ‘neurons’ or ‘nodes’ that process an input and give an output, and comprises of layers con-

taining many such nodes. Each node in a particular layer is connected to every node in an adjoining

layer and the strength of each connection is represented by an assigned weight. Consequently, a

node in a particular layer receives inputs from all the nodes in the previous layer which are added

together after weights are applied on each of them, and a ‘bias’ is added to the sum. If the neural

network only contains weights and biases, then it behaves as a linear function. In order to capture

nonlinearity in the input-output data, certain nonlinear functions called as ‘Activation functions’

are used in each node. With activation functions, the input to the neural network undergoes non-

linear transformation through each layer and is collected as the output at the final layer. Overall,

the number of nodes, number of layers, weights in each connection, and the biases are the inter-

nal parameters of the neural network. Under certain assumptions, neural networks, if sufficiently

large, have been shown to capture any nonlinear continuous function accurately [61].

With the advancements in Machine Learning, the field of neural networks has evolved from

the use of a single hidden layer to multiple hidden layers resulting in deep neural networks. Re-

cently, there has been lots of interests in understanding and comparing the capabilities of shallow

neural networks and deep neural networks as function approximators. For instance, it has been

proven that deep sum-product networks for polynomial functions [108], deep neural networks for

piecewise smooth functions [109], and three layer network for a specific function [110] require

an exponentially less number of neurons than their shallow counterparts. Also, it has been shown

that the number of linear regions of the functions approximated by deep neural networks is expo-

nentially large compared to shallow neural networks [111]. These works demonstrate that shallow

networks require an exponentially large number of neurons compared to deep networks for specific

functions, and hence, depict the power of deep networks over shallow networks.

In this work, we develop a hybrid model for a hydraulic fracturing process that combines its

first principles model with a deep neural network that acts as an estimator of its unmeasured pro-

cess parameters. The hydraulic fracturing process is a complex system in which the fracturing fluid

containing proppant is pumped into the reservoir to create and sustain the created fractures in order

34

to extract oil/gas through them from the reservoir. There are two main issues when modeling this

process which are its moving boundary nature and numerous process uncertainties. One such un-

certainty is the leak off rate of the fracturing fluid into the reservoir which is difficult to accurately

explain using first principles, and building a first principles based model with such a knowledge

gap will result in its inaccuracy. Therefore, the novelty in this work is two fold. First, the use of

deep neural networks for the purpose of building hybrid models. Second, the application of this

hybrid modeling methodology to a complex hydraulic fracturing process in order to explain one of

its underlying fluid leak-off phenomena and build a superior model.

3.1.1 Deep neural networks

Deep neural networks are the neural networks with more than three layers and each layer

contains multiple neurons. The neurons in each layer are fully connected to the neurons in the

subsequent layer as shown in Figure 3.1. The strength of each connection is assigned by its weight

w, and each neuron processes the input through a nonlinear function called activation function f .

Input
layer

Hidden
layers Output

layer

Figure 3.1: Deep neural networks.

Let nk+1(i) be the net input to each unit i in layer k + 1 which is given by

nk+1(i) =
Sk∑
j=1

wk+1(i, j)ak(j) + bk+1(i) (3.1)

35

Let ak+1(i) be the output of unit i in layer k + 1 which is given by

ak+1(i) = fk+1(nk+1(i)) (3.2)

Assuming there are M layers in the network, the equations in matrix form can be represented as

Ak+1 = F k+1(W k+1Ak +Bk+1), k = 0, 1, ...,M − 1 (3.3)

A0 = uq, q = 1, 2, ..., Q (3.4)

where uq is the input vector to the neural network and its corresponding output isAMq . The matrices

Ak, F k,W k, and Bk contain the outputs, the activation functions, weights, and biases of all the

neurons in layer k, respectively. The aim of the neural network is to learn the relationship between

the input-output pairs {(u1, y1), (u2, y2),(uQ, yQ)}. The performance of the neural network is

measured as follows:

V =
1

2

Q∑
q=1

eTq eq (3.5)

eq = (yq − AMq) (3.6)

where eq is the error when the qth input is given to the neural network. The error matrix E can be

defined as follows:

E = [e1 e2 . . . eQ]T (3.7)

3.1.2 Levenberg-Marquardt training

The Error Backpropagation (EBP) algorithm [112, 113] is one of the most significant break-

throughs in regard to the training of neural networks, but it has an issue of slow convergence,

which can be explained using the following two reasons. First, the step size should be small to

prevent oscillations around the required minima but this would lead to slow training process. Sec-

ond, the curvature of the error surface could vary in different directions, so the classical ‘error

36

valley’ problem [114] could exist and may lead to slow convergence rate. Despite its issue of slow

convergence, the steepest descent algorithm is widely used to train neural networks. Its update rule

utilizes the gradient g, which is the first-order derivative of the total error function, is defined as

follows:

g =
∂V (u,w)

∂w
=

[
∂V

∂w1

∂V

∂w2

. . .
∂V

∂wN

]T
(3.8)

The update rule of the steepest descent algorithm is written as:

wk+1 = wk − αgk (3.9)

where α is the learning constant.

This issue of slow convergence in the steepest descent algorithm can be improved by the Gauss-

Newton algorithm [114]. The Gauss-Newton algorithm utilizes the second-order derivatives of the

error function to gauge the curvature of error surface and find the appropriate step size for each

direction. The convergence is fast if the error function has a quadratic surface, without which this

algorithm would be mostly divergent. The update rule of the Gauss-Newton method is defined as:

wk+1 = wk − (JTk Jk)
−1JkEk (3.10)

where J is the Jacobian matrix which is defined as:

J =



∂e1

∂w1

∂e1

∂w2

. . .
∂e1

∂wN
∂e2

∂w1

∂e2

∂w2

. . .
∂e2

∂wN
...

...
...

∂eQ
∂w1

∂eQ
∂w2

. . .
∂eQ
∂wN


(3.11)

The Levenberg-Marquardt algorithm [115, 116] combines the steepest descent method and

the Gauss-Newton algorithm. Consequently, it inherits the stability characteristic of the steep-

est descent algorithm and the speed of the Gauss-Newton algorithm. The Levenberg-Marquardt

37

algorithm functions as the steepest descent algorithm when the curvature of error surface is com-

plex until the local curvature takes a reasonable approximation of a quadratic surface wherein the

Levenberg-Marquardt can behave as the Gauss-Newton algorithm. Essentially, the Levenberg-

Marquardt algorithm utilizes the superior aspects of the steepest descent algorithm and the Gauss-

Newton algorithm alternatively based on the situational requirements. The update rule of the

Levenberg-Marquardt algorithm is given by

wk+1 = wk − (JTk Jk + µI)−1JkEk (3.12)

where µ is the combination coefficient, and I is the identity matrix. When the µ value is large, then

the Levenberg-Marquardt algorithm behaves as the steepest descent method; otherwise, it behaves

as the Gauss-Newton method as summarized in Table 3.1.

Algorithm Parameter updates Convergence Computational issue
EBP wk+1 = wk − αgk stable, slow Gradient

Gauss-Newton wk+1 = wk − (JTk Jk)
−1JkEk unstable, fast Jacobian

Levenberg-Marquardt wk+1 = wk − (JTk Jk + µI)−1JkEk stable, fast Jacobian

Table 3.1: Summary of the training algorithm.

3.1.3 Proposed deep hybrid model

Consider a dynamical system with the following generic representation:

dx

dt
= f(x, u, p) (3.13)

p = g(x, u) (3.14)

where x, u, and p denote the states, control inputs, and model parameters, respectively. The

dynamics of the states of the system is explained by the equations in f which are dependent on

parameters p. These parameters p are related to the states x and the inputs u through the equations

in g. Consider the dynamical system defined using Eqs. (3.13), (3.14) along with the following

38

equation:

y = h(x) (3.15)

where y denotes the output of the system which is related to the states through the equation in h.

In this proposed methodology, a DNN will be trained using data to predict the originally unknown

parameter values p, and this trained DNN alongside a first principles model, will be used as shown

in Figure 3.2 to build a hybrid model.

Deep
Neural Network

First Principles
Model

xk, uk

yk

p

Figure 3.2: Proposed deep hybrid model.

A DNN is initialized by assigning some values for the number of layers, number of neurons

in each layer, type of activation function, and the initial values of weights and biases. A DNN

has more than one hidden layer apart from the input and output layers. There are many kinds of

activation functions being used today but widely used are Sigmoid, Hyperbolic tangent, Rectified

linear unit (ReLU), and Leaky rectified linear unit (Leaky ReLU).

3.1.4 Training algorithm

We use an input-output training data set (u1, y1), (u2, y2),(uq, yq),(uQ, yQ) for the pur-

pose of training the hybrid model which includes a DNN to approximate the unknown parameters

p. The inputs u are presented to the hybrid model, specifically to the first principles model and

39

the DNN. The inputs to the DNN are propagated through its layers and the network’s outputs are

obtained at the final layer. Eqs. (3.1), (3.4) are utilized to calculate the outputs of the DNN which

are the predicted parameter values p. These predictions are used as inputs to the first principles

model to calculate the outputs of the hybrid model y′ . For the deep hybrid model, the squared

prediction error of the output for all Q training patterns was minimized as:

V̂ =
1

2

Q∑
q=1

(eq)
T (eq) (3.16)

eq = yq − y
′

q (3.17)

The DNN’s output pq does not explicitly appear in the above error equation as it is generated

and utilized internally in the hybrid model. In order to update the parameters of DNN using Eqs.

(3.11), (3.12), the effect of the DNN’s output pq on the prediction error of the hybrid model eq needs

to be quantified. For this purpose, we utilize finite difference methods to calculate the gradient of

the hybrid model’s output y′q with respect to the DNN’s output pq. Hence, we obtain the following

equations:
∂eq
∂y′q

= −1 (3.18)

∂y
′
q

∂pq
=
y
′
q+1 − 2y

′
q + y

′
q−1

pq+1 − pq−1

(3.19)

∂eq
∂pq

=
∂eq
∂y′q

∂y
′
q

∂pq
= −

y
′
q+1 − 2y

′
q + y

′
q−1

pq+1 − pq−1

(3.20)

Let’s define the sensitivity of the error eq to changes in the net input of unit i in layer k as:

δkq (i) =
∂eq
∂nkq(i)

(3.21)

Now, the above equation can be rewritten using Eq. (3.2) as:

δkq (i) =
∂eq
∂nkq(i)

=
∂eq
∂akq(i)

∂akq(i)

∂nkq(i)
=

∂eq
∂akq(i)

ḟk(nk(i)) (3.22)

40

For the last layer M, the above equation leads to:

δMq =
∂eq
∂AMq

ḞM(nMq) (3.23)

But the output AMq from the final layer M is the predicted parameter pq which results in

∂eq
∂pq

=
∂eq
∂AMq

(3.24)

Using Eqs. (3.20), (3.23), (3.24), the δMq value can be calculated. Recall, the Jacobian matrix

contains the sensitivities of the error eq to changes in the parameters of the DNN, i.e., W k and Bk.

In mathematical form, these sensitivities can be represented as ∂eq
∂Wk and ∂eq

∂Bk
, and can be calculated

for the neurons in the final layer M using δMq and Eq. (3.1) in the following way:

∂eq
∂WM

= δMq AM−1
q (3.25)

∂eq
∂BM

= δMq (3.26)

For other layers, k = 1, ..., M − 1, δkq value can be calculated using the following recurrence

relation:

δkq = Ḟ k(nkq) W
k+1T δk+1

q (3.27)

Using δkq value, the Jacobian matrix can be calculated in a manner similar to when obtaining Eqs.

(3.25), (3.26). Following the calculation of the Jacobian matrix, the parameters of the DNN can be

updated using Eq. (3.12). The Levenberg-Marquardt training algorithm starts with an initial value

for µ but it is multiplied by a factor β whenever an update would result in the increase of V̂ . On

the other hand, when an update reduces the V̂ value, then µ is divided by β. The training algorithm

is repeated until the value of V̂ reaches a predefined tolerance. The proposed algorithm has been

summarized in Algorithm 3.

Also, the flow diagram of the proposed hybrid modeling framework is presented with details

41

Algorithm 3 Deep hybrid model training
1: Present all the inputs uq to the hybrid model and calculate its corresponding output y

′
q. Compute the

errors eq using Eq. (3.17) and the sum of the squared of errors over all inputs V̂ using Eq. (3.16).
2: Compute the Jacobian matrix using Eqs. (3.11), (3.20), (3.21), (3.22), (3.23), (3.24), (3.25), (3.26),

(3.27)
3: Update the parameters of the DNN using Eq. (3.12) and recalculate V̂ using Eq. (3.16). If it is smaller

than that computed in Step 1, then reduce µ by β, and proceed to Step 1 with the new parameters of the
DNN. If the V̂ is greater than that computed in Step 1, then increase µ by β and repeat this step.

4: The algorithm is terminated when V̂ is less than a predetermined value.

in Figure 3.3.

wk , bk, m = 1
Present inputs (u1 ,u2….,uQ)

Calculate outputs (y’1 ,y’2….,y’Q)

START

V̂k+1 ≤ V̂kError V̂k

Sensitivity analysis
Jacobian mtrix

wk+1 = wk – (J’k J + µ I)-1 Jk ek

Present inputs (u1 ,u2….,uQ)
Calculate outputs (y’1 ,y’2….,y’Q)

Error V̂k+1

V̂k+1 > V̂k

V̂k+1 ≤ V̂msx

END

m ≤ 5m > 5

µ = µ / β

wk = wk+1

µ = µ * β

Restore wk

m = m + 1wk = wk+1

Figure 3.3: Block diagram for Levenberg-Marquardt based deep hybrid model training.

3.1.5 Hydraulic fracturing process

Shale gas is the natural gas trapped in rocks with low porosity and permeability which is diffi-

cult to extract using conventional oil/gas extraction techniques. Horizontal drilling and hydraulic

fracturing process enabled the extraction of oil/gas from such rocks. In a hydraulic fracturing pro-

cess, controlled explosions are carried out inside the wellbore to create initial fractures followed

by pumping of a clean fluid called pad to extend the geometry of these fractures. Later, a fracturing

fluid containing water, proppant and additives is pumped inside the system to further extend these

fractures. During and after the pumping process, the fracturing fluid leaks off into the reservoir

leaving behind proppant in the fractures. The natural stresses present in the reservoir cause the clo-

sure of these fractures with proppant inside them. The presence of proppant creates a conductive

medium for the oil/gas to flow through these fractures making their extraction possible. The phe-

42

nomenon of interest in this work is the leak off of the fracturing fluid into the reservoir during the

hydraulic fracturing process as its knowledge is essential to obtain the optimal fracture geometry.

Obtaining the fracture geometry requires huge amounts of fracturing fluid, and hence, fluid leak

off indirectly affects the economic efficiency of the hydraulic fracturing process. In our past work

on modeling and control of hydraulic fracturing process, we utilized a mathematical expression

of time-dependent fracturing fluid leak-off rate. In practice, advancement in pressure analysis has

made it possible to estimate the leak-off rate from pressure decline following injection of fractur-

ing fluid. But this method requires the knowledge of gross fracture height, and hence, this method

is suitable for the formations with a large net permeable height. As previously described, in this

work, we utilize a DNN to estimate the fluid leak-off rate from input-output data of the hydraulic

fracturing process as explained in the previous section. To achieve this objective, we also utilize a

first principles based model of hydraulic fracturing process as described in Eqs. (2.4)-(2.17) [4].

3.1.6 Deep hybrid model for hydraulic fracturing process

Recall, the deep hybrid model structure as shown in Figure 3.1 is utilized to predict the un-

known parameters of the first principles model. We utilized the first principles model of the

hydraulic fracturing process discussed above along with a DNN to build a hybrid model. The

objective of the DNN, once it is trained, is to predict the leak off rate U of the fracturing fluid

into the reservoir by using time t as input. The input to the hybrid model is the fracturing fluid

injection rate Q0(t) and the output of the hybrid model is the width of the fracture Wz at vari-

ous points z = 1, 2, 3......251 along the length of the fracture in the horizontal direction z. The

schematic of the deep hybrid model for hydraulic fracturing process is shown in Figure 3.4. Unlike

the schematic of hybrid model shown in Figure 3.1, wherein both the state and the input applied

on the system are used as inputs to the DNN, we only utilize the time t as input to the DNN as

seen in Figure 3.4. For the DNN, we considered a fully connected network consisting of 5 layers,

i.e., 3 hidden layers, 1 input layer, and 1 output layer. Each hidden layer contains 20 neurons, and

the input and output layer contain 1 neuron each. Hyperbolic tangent was used as the activation

43

Deep
Neural Network

First Principles
Model-Hydraulic

Fracturing

Q0(t)

Wz(t)

U(t)

t

Q0(t)

Figure 3.4: Schematic of deep hybrid model for hydraulic fracturing process.

function in the hidden layers and the linear function in the outer layers. To generate training data

in order to train the hybrid model, we simulated the first principles model using a constant input

flow rate of Q0(t) = 0.03 m3/s and the leak off model, as shown in Eq. (3.28) [99, 100], with the

assumption that the leak off rate U is independent of spatial location z. The other parameters of the

first principles model used in our process calculations are as follows [101]: H = 20 m, µ = 0.56

Pa · s, E = 5 × 103 MPa, and ν = 0.2. The output from the simulation was the widths Wz at

various points z = 1, 2, 3......251 along the length of the fracture. These 251 points are spaced

equidistantly with a distance of 0.2 m between two consecutive spatial points and we collected

2841 time snapshots of the output data with a time difference of 0.1s between two consecutive

snapshots. Since we have used the model in Eq. (3.28) for leak off rate when generating the sim-

ulation data, we expect the DNN in the hybrid model to capture a similar variation of the leak off

rate U .

U =
2Cleak√
t− τ(z)

(3.28)

Now that the hybrid model structure and its components have been defined, and the training

data is available, we initialized the parameters of DNN (i.e., weights W and biases B), and began

the Levenberg-Marquadt based training algorithm as discussed above in Algorithm 3. The inputs

Q0(t) were presented to the hybrid model with the DNN utilizing t as its input and the first princi-

ples model utilizing Q0(t) as its input. The input t to the DNN undergoes transformation through

44

its layers and gives the output U(t) which is presented to the first principles model as an input.

The first principles model utilizes Q0(t) along with U(t) to calculate the outputs W ′
z(t). Since

the parameters of DNN were randomly initialized, the initial predictions of U(t) by the DNN is

more likely inaccurate than its actual value which in turn will affect the error e(t) calculated using

Eq. (3.17). As the algorithm progresses, the parameters of the DNN are updated, and hence, its

predictions of U(t) will move closer to its actual value. A point to note here is that despite the

hybrid model predicting widths at 251 locations, we only considered just the width at the wellbore,

i.e., W ′
1(t) in the objective function calculation Eq. (3.16), and hence in error e(t) calculation Eq.

(3.12) as well. This is because we assumed earlier that U does not vary with spatial location, and

hence, the U(t) approximated by the DNN is applicable at all locations which implies that when

theW ′
1(t) values predicted by the hybrid model move towards convergence by updating the param-

eters of the DNN, the widths at other locations i.e., W ′
z where z = 2, 3......251 also move towards

convergence.

In order to reduce the error and reach the tolerance of 10−6 for V̂ , we needed to update the

parameters of DNN, i.e., its weights W and biases B using Eq. (3.12). To do so, we calculate

the Jacobian matrix as explained previously which includes initializing the value of µ. We used

an initial value of µ as 10−2 and β as 2, and updated the weights. Using the updated weights,

we recalculated V̂ and continued with the training process as explained in Algorithm 3. Once the

tolerance for V̂ was reached, we stopped the training process. We compared the outputs (i.e., Wz

of the hybrid model and the actual outputs from the training data) at the wellbore. It can be seen

from Figure 3.5 that the outputs obtained using the proposed deep hybrid model closely mimic the

output from the training data. This indicates that the DNN has been well trained and the hybrid

model accurately predicts the outputs Wz. We used a relative error metric, RE(t), to quantify the

performance of the hybrid model in comparison to the training data. The relative error is calculated

by using the Frobenius norms of the state vectors as follows:

RE(t) =
‖Wtraining(t)−Whybrid(t)‖fro

‖Wtraining(t)‖fro
(3.29)

45

Figure 3.5: Comparison of wellbore widths obtained from the hybrid model, and the training data.

where ‖.‖fro is the Frobenius norm, Wtraining(t) and Whybrid(t) are the width vectors obtained

from the training data and the hybrid model, respectively, at time t. The relative error in the widths

predicted by the hybrid model in comparison with the training data at different times is presented

in Figure 3.6. In order to compare the performance of the DNN in approximating the underlying

phenomena of leak off, we used the obtained DNN and computed the leak off rate U values by

presenting time inputs t. The predicted U values are compared against the actual leak off rate

values obtained using Eq. (3.28), and the comparison is shown in Figure 3.7.

From Figure 3.6, we note that the DNN has been well trained and was able to accurately

approximate the underlying leak off rate in the training data. A point to observe here is that there

is slight inaccuracy in the approximation of the leak off rate U by the DNN in the initial stages of

pumping whose effect can also be seen in the larger relative errors as shown in Figure 3.6.

3.1.6.1 Comparison of Deep hybrid model and black box model

The deep hybrid model utilizes a DNN to approximate the unobserved process parameters. As

discussed previously, the structure of the hybrid model is similar to the first principles model except

the DNN which does not alter the nature and characteristics of the known parameters in the first

46

Figure 3.6: Relative error of the hybrid model predictions in comparison to the training data.

principles model. The presence of the first principles model in the hybrid model enables it with

better extrapolation properties. On the other hand, the parameters of a black box model, which are

purely data-driven, do not carry any physical meaning and such models have narrow applicability.

To quantitatively prove this point, we built a black box model using a DNN containing 2 hidden

layers, and 2 outer layers. We used the same training data as was in the case of hybrid model

training in order to train the black box model. Once trained, we compared the output of the black

box model with the actual output from the training data. It can be seen from Figure 3.8 that

the outputs obtained using the black box closely mimics the output from the training data. This

indicates that the DNN has been well trained and the black box model accurately predicts the width

when the training input Q0 = 0.03 m3/s is presented to it. In contrast to the hybrid model, the

parameters of the black box model (i.e., the DNN parameters) do not carry any physical meaning

and hence, cannot give any insights about the process. To compare the extrapolation properties of

the deep hybrid model and the black box model, we presented to them another input of Q0 = 0.04

m3/s, which is a small deviation from the training input.

Figure 3.9 shows the comparison of the widths Wz from the hybrid model, black box model

and the true data at the wellbore. Although the DNN-based black box model captures the trend in

47

Figure 3.7: Comparison of leak off rates predicted from the DNN and actual values calculated
using Eq. (3.28).

the outputs but clearly has poor accuracy, whereas the hybrid model accurately predicts the output

when presented with the test input. An important point to note here is that the difference between

the training input (Q0 = 0.03 m3/s) and the test input (Q0 = 0.04 m3/s) is small; however, the

performance of the black box model varies considerably in both these cases as shown in Figure

3.9. As explained previously, this inaccurately stems from the fact that the black box model can

accurately approximate the relationship between the training inputs and the training outputs by

utilizing various parameters which do not carry any physical significance. Hence, when a test

input different from the training input is presented to it, the black-box model fails to replicate

the accuracy seen in the case of training data. On the other hand, since the hybrid model retains

the structure of the first principles model and its parameters carry physical meaning, it is able to

accurately predict the output in the case of test input.

3.1.6.2 Comparison of Deep hybrid model and first principles model

The main objective of the deep hybrid model is to develop a DNN that enhances the perfor-

mance of the first principles model by accurately predicting its unknown parameters. In this work,

we developed a DNN to extract the parameter associated with the leak-off rate from the training

48

Figure 3.8: Comparison of wellbore widths obtained from the DNN-based black box model, and
the training data.

data. In order to compare the performance of the hybrid model with only the first principles model,

we assume a constant value for the leak off rate in the first principles model, and we do not make

any changes to the deep hybrid model developed above. The three different cases of the first prin-

ciples model were considered with three different values (U = 1.2× 10−5, 1.2× 10−6, 6.3× 10−6)

for the leak off rate. From Figure 3.10, it can be seen that the hybrid model accurately predicts,

as expected, when compared to the first principles model. This superior performance is attributed

to the accurate prediction of the parameter associated with the leak-off rate by the DNN in the

hybrid model. On the other hand, the first principles model with (U = 1.2 × 10−5) performed on

par with the hybrid model but the process described by it takes longer time to reach the desired

fracture length, and the first principles models with (U = 1.2 × 10−6 and 6.3 × 10−6) predicted

poorly both in terms of accuracy as well as the time to reach the desired fracture length. The above

comparison proves the superiority of hybrid model over first principles model in terms of accuracy

as the hybrid model contains a DNN to accurately predict the leak off rate U values. A point to

be noted here is that in all of the above results we utilized simulation data. In our future work, we

plan to apply our proposed methodology for field/experimental data.

49

Figure 3.9: Comparison of wellbore widths obtained from the hybrid model, black box model and
the test data.

Figure 3.10: Comparison of wellbore widths obtained from the hybrid model, first principles model
and the actual data.

50

3.2 Deep neural network-based hybrid modeling and experi-

mental validation for an industry-scale fermentation pro-

cess: Identification of time-varying dependencies among

parameters∗

Bio-fermentation processes are widely used for industrial production of many useful products

such as chemicals, enzymes, food products, and pharmaceuticals. They involve the use of micro-

organisms as ‘catalysts’ which convert substrates to products of interest. These micro-organisms

can be bacteria, fungi, mammalian cells, etc., and are often optimized and engineered to achieve

greater yields of product than observed in naturally occurring systems. These processes are ad-

vantageous over chemical processes as they are sustainable due to there low-temperature and low-

pressure operations, and no requirements for harsh chemicals [117]. A typical bio-fermentation

process is carried out in two phases. During the first phase, a bulk of substrate is combined with

micro-organisms and other essential nutrients which are required for their growth. During this

phase, the micro-organisms consume the available substrate, and consequently, there is an increase

in the biomass concentration. In the second phase, other additional substrates are continuously fed

into the reactor, and the rates of feeding are heavily regulated to avoid overfeeding or underfeed-

ing which can significantly reduce the productivity of the process. Product is recovered from the

reactor either continuously during the process or at the end of the second phase.

Modeling a bio-fermentation process is a challenging task given the complex interactions that

occur within it. Usually, a first-principles model is developed using mass and energy conservation

laws, kinetic laws, thermodynamic laws, etc., and it is able to capture the essential dynamics

of the process. For this reason, building such a model requires significant time, resources, and

∗Reprinted with permission from “Deep neural network-based hybrid modeling and experimental validation for an
industry-scale fermentation process: Identification of time-varying dependencies among parameters” by Shah, P.,
Sheriff, M. Z., Bangi, M. S. F., Kravaris, C., Kwon, J. S., Botre, C., and Hirota, J. 2020. Chem. Eng. J., 441, 135643,
Copyright 2022 Elsevier.

51

process insight. Additionally, due to the complex nature of the process, some mechanisms within

the process are not understood to a level that they can be accurately modeled, and in such cases,

empirical formulations are introduced in the first-principles model. The overall accuracy of the

first-principles model is dependent on these empirical relationships. On the other hand, a data-

based model can be developed using historical process data, which is easy to build and is accurate

in its training regime, but will not be robust over a wide range of operating conditions of the

process [9, 118, 97]. Another class of models called hybrid models exist which are a combination

of first-principles models and data-based models [20].

Given the advantages of a hybrid model, it has been widely used to model lab-scale or pilot-

scale bio-fermentation processes. It usually involves an ANN as a function approximator predict-

ing unknown parameters or states to be combined with a first-principles model [119, 120, 121,

122]. The resulting hybrid model shows superior model accuracy compared to the first-principles

model. But the field of neural networks has evolved from the use of a single hidden layer in an

ANN to the use of multiple hidden layers in a DNN which requires exponentially less number of

neurons than their shallow counterparts to approximate a specific function [123]. Additionally, a

hybrid modeling approach has never been applied to a full-scale bio-fermentation reactor.

Motivated by these limitations, we developed a DNN-based hybrid model approach for a full-

scale bio-fermentation process with a volume of over 100,000 gallons. Specifically, prior to build-

ing the hybrid model, we first improved the first-principles model by adding additional components

and parameters to its equations based on process knowledge acquired from literature studies. This

improved first-principles model was tested against multiple experimental datasets provided by an

industry sponsor. Then, we identified critical parameters in the improved first-principles model

which highly influence its outputs using local and global sensitivity analysis. Finally, these time-

varying parameters were then estimated using a data-clustering approach, and approximated using

a DNN which was then combined with the first-principles model to build a hybrid model. This

hybrid model’s performance was tested against multiple batches of process data provided by the

industry sponsor, and compared against the accuracy of the first-principles model and the improved

52

first-principles model [124].

3.2.1 First-principles model of the bio-fermentation process

The first-principles model presented and discussed throughout this work is based on real pro-

cess data provided by an industry sponsor, where the original first-principles model is similar to

one used in [125]. The growth rate model is as follows:

µ = µS1 + µS2 + µI (3.30)

µS1 =
µmax,S1 · ξS2 · ξI · S1

KS,S1 + S1 + aS1,S2 · S2 + aS1,I · I
(3.31)

µS2 =
µmax,S2 · S2

KS,S2 + S2 + aS2,S1 · S1 + aS2,I · I
(3.32)

µI =
µmax,I · I

KS,I + I + aI,S1 · S1 + aI,S2 · S2

(3.33)

where, µ, µi, and µmax,i refer to the overall growth rate, the growth rates associated with each

component (i.e., Substrate 1 (S1), Substrate 2 (S2), Intermediate (I)), and the maximum specific

growth rate of the micro-organisms associated with each component, respectively. KS,i and ai,j

refer to the half-velocity constant associated with each component, and the inhibitory effect of

component i on utilization of component j by the micro-organisms, respectively. It is important

to note that ξS2 · ξI in Eq. (3.31) is incorporated with µmax,S1 to account for any inhibitory effects

Substrate 2 and Intermediate have on the growth rate associated with Substrate 1. The process has

two operation modes, i.e., phase 1 and phase 2, and since the nutrient source is different in these

two phases, the respective reactor models for each phase are different.

During phase 1, the reactor model can be described by the following equations:

µ = µS1 (3.34)

µS1 =
µmax,S1 · ξS2 · ξSI · S1

KS,S1 + S1 + as1,s2 · S2 + as1,I · I
(3.35)

53

dB

dt
= (µS1 + µS2 + µI) ·B (3.36)

dS1

dt
= −µS1 ·B

YB/S1

(3.37)

where B refers to Biomass, and YB/S1 refers to the yield coefficient of Biomass associated with

Substrate 1.

During phase 2, the reactor model can be described by the following equations:

dB

dt
= (µS1 + µS2 + µI) ·B −mp1 ·

Fin
V
·B (3.38)

dS1

dt
= −µS1 ·B

YB/S1

− Fin
V
· S1 (3.39)

dS2

dt
= k1 · µS1 ·B −

µS2 ·B
YB/S2

− Fin
V
· (S2 − S2initial) (3.40)

dI

dt
= (k2 · µS1 + k3 · µS2) ·B −

µI ·B
YB/I

− Fin
V
· I (3.41)

dP

dt
= (α1 · µS1 + α2 · µS2 + α3 · µI) ·B + β ·B − Fin

V
· P (3.42)

dV

dt
= Fin (3.43)

where P is the Product concentration, V is the reactor volume, αi is the coefficient linked to the

growth rate responsible for increase in Product, ki refers to the coefficient linked to the growth rate

responsible for the increase in Substrate 2 and Intermediate, β is the coefficient linked to the non-

growth associated term responsible for the increase in Product, and Fin refers to the feed flow rate

of Substrate 2. The parameters YB/S1 , YB/S2 , and YB/I refer to the yield coefficients of Biomass

associated with each component. It should be noted that the coefficients linked to the growth rate,

ki, incorporate temperature dependence through Arrhenius equation as follows:

ki = ci · e
−Eai
RT (3.44)

where ci is the pre-exponential factor, Eai is the activation energy, R is the universal gas constant,

54

and T refers to the temperature.

It is important to note that this is the original model that was provided by the industry sponsor,

who also introduced a manipulated parameter (mp1) to the second term of Eq. (3.38) associated

with Biomass in order to obtain a better fit. The following section will provide a summary of

modifications that were carried out on the original first-principles model to improve its prediction

capability. It is also important to note that all results presented in this work are normalized, at the

request of the industry sponsor.

3.2.2 Improving the first-principles model

As the estimation results for the original first-principles model are not ideal for certain states,

an improvement in the original first-principles model was first pursued through the incorporation

of two additional components. These components may account for discrepancies encountered

when utilizing the original first-principles model, and these modifications will be discussed next.

These modifications include the incorporation of two components X1 and X2. Component X1 is

a manipulated input for which continuous values are available, and it behaves similar to catalyst

when added during phase 2 of the process. Component X2 is an essential chemical which ensures

optimal conditions for micro-organisms. Measurements of component X2 are also available, and

the incorporation of both components in the original first-principles model is highly desirable.

3.2.2.1 Incorporation of component X1

Through information obtained from historical operation data, the addition of component X1 in

phase 2 was observed to increase the production of the micro-organisms, consequently resulting in

an increase in the consumption of Substrate 2, and thus, an increase in the production of Product.

This information was utilized to update Eqs. (3.40) and (3.42) through the addition of empirical

terms as follows:

dS2

dt
= k1 · µS1 ·B −

µS2 ·B
YB/S2

− Fin
V
· (S2 − S2initial)− p1 ·X1 (3.45)

55

dP

dt
= (α1 · µS1 + α2 · µS2 + α3 · µI) ·B + β ·B − Fin

V
· P + p2 ·X1 (3.46)

where p1 and p2 are empirical coefficients that allow X1 to be incorporated as consumption and

production terms in the equations for Substrate 2 and Product, respectively.

It is important to note that since X2 functions in a way similar to catalyst, it was initially

incorporated in the growth rate coefficient related to µS2 in Eq. (3.32). Unfortunately, satisfactory

results were not obtained through this approach, and the empirical terms shown in Eqs. (3.45) and

(3.46) had to be introduced instead.

3.2.2.2 Incorporation of component X2

Through information obtained from historical operation, it is understood that measurements

from an online sensor are available for X2. Therefore, it is desirable to incorporate component

X2 as well. X2 is expected to play a role similar to the role played by oxygen in bio-fermentation

processes, and was hence incorporated as follows [126]:

µ = (µS1 + µS2 + µI) ·
(

X2

KX2 +X2

)
(3.47)

dX2

dt
= kLa · (X2max −X2)− qX2 ·B (3.48)

where X2max and KX2 are the maximum value of X2 during a particular batch run, and the half-

velocity constant associated with X2, respectively. kLa and qX2 are the mass transfer coefficient,

and uptake rate of X2, respectively. It should be noted that online measurements for X2 are avail-

able throughout phase 1 and phase 2 of the bio-fermentation process. An additional objective of

the industry sponsor was to incorporate X2 in the original first-principles model and predict it like

the other states, so that its estimates can be tracked in real-time.

3.2.3 Sensitivity analysis and clustering

To develop a hybrid model that utilizes all available information (i.e., first-principles), sensi-

tivity analysis needs to be carried out to identify highly sensitive model parameters.

56

3.2.3.1 Sensitivity analysis

Before modifying the model further by considering new measurements or using data-driven

approaches to improve the existing model, it is essential to perform a sensitivity analysis to under-

stand which parameters greatly influence the outputs. In this section, a local and global sensitivity

analysis of the model is presented.

A local sensitivity analysis around the nominal values of the model parameters is initially

carried out to understand how the model parameters and initial conditions influence the different

outputs, i.e., Substrate 1, Substrate 2, Biomass, Product, Intermediate, and X2.

A sensitivity matrix is first derived in order to come up with the parameter set which affects

the outputs. The sensitivity matrix shows the dependencies of the outputs with respect to the

parameters and initial conditions, as shown below:

S =



∂y1(t1)/∂θ1 . . . ∂y1(t1)/∂θnθ
...

∂y1(tnt)/∂θ1 . . . ∂y1(tnt)/∂θnθ
...

∂yny(t1)/∂θ1 . . . ∂yny(t1)/∂θnθ
...

∂yny(tnt)/∂θ1 . . . ∂yny(tnt)/∂θnθ



(3.49)

Here, yεRny represents the output states, and θεRnθ represents the parameters and initial condition

whose sensitivity analysis is carried out. These sensitivity matrix values are typically normalized

by multiplying with the nominal values of parameters and by dividing through the nominal values

of the outputs to ensure that different units for the parameters/outputs do not affect the sensitivity

analysis results.

To capture the effect that these parameters have on the outputs, a criterion called Fisher infor-

mation matrix is calculated in the form of sensitivity matrix as follows:

57

FIM = STΣS (3.50)

where Σ is an identity matrix. A specific criterion is required to evaluate the information contained

in the Fisher information matrix, and for this purpose, the D-optimality criterion (φD) is used. It

minimizes the logarithm of the determinant of the inverse of the Fisher information matrix. Using

inverse determinant property, we get:

φ∗D = max φD (FIM) = max log det (FIM) (3.51)

For the purpose of this sensitivity analysis, one parameter is evaluated at a time, and φD is com-

puted to show the effect it has on an output. A higher φD value implies that the concerned model

parameter has a higher influence on the given output. As the process states in the first-principles

model are measurable, these states are the model outputs in the bio-fermentation process, i.e., y

= x where x is the state. It is important to note that the study is carried out for the outputs of the

reactor model for phase 2, since it is the most important phase of the bio-fermentation process as

Substrate 2 is present in this phase and majority of Product is formed in this phase. Substrate 2

is tied to the operating cost of the process and is the main energy source for the micro-organisms.

As the supply of Substrate 1 is limited, it is primarily used for the initial growth of Biomass, and

only a relatively small percentage of product is formed in phase 1 when compared to phase 2. To

calculate the sensitivity of states with respect to the parameters, the following equation is solved:

d

dt

∂x

∂θi
=

∂f

∂xT
∂x

∂θi
+
∂f

∂θi
(3.52)

When θ represents an initial condition of the state in Eq. (3.57), the second term (∂x
∂θi

) is 1, and for

all other parameters, this term is 0. For the case of this bio-fermentation process, the dimension of

the overall sensitivity matrix is [195, 6, 38] where 195 denotes the number of time instants in the

process, 6 denotes the number of states (i.e., Substrate 1, Biomass, Product, Substrate 2, Interme-

diate, added component X2), and 38 is the number of parameters including the initial conditions.

58

Equal weight to outputs φD Substrate 2/Product with 5 times weight φD
S2initial 22.7 V0 68.6
YB/S2 22.6 S2initial 68.01
V0 22.3 YB/S2 67.8
B0 9.02 α2 27.4

µmax,S2 8.66 µmax,S2 25.9
KS,S2 8.24 KS,S2 24.6
α2 5.47 B0 6.08

man_para 0.858 β 2.08
β 0.416 G0 0.018
G0 0.018 P0 −5.77

Table 3.2: Local sensitivity analysis: a list of sensitive parameters with D-optimality criterion
(φD) values for (a) when output states in the model for phase 2 are equally important, and (b) when
Substrate 2 and Product are 5 times more weighted than the other states.

Overall, in this sensitivity analysis study, we consider the effect of these 38 parameters on the out-

put states. The parameters consist of six initial conditions corresponding to the six states, and 32

parameters from the growth rate and phase 2 reactor model.

Since the local sensitivity analysis was carried out initially, all the parameters were considered

to be at the nominal values. The result from this study is shown in Table 3.2. Two cases are

examined, the first case is where all the output states are assumed to be equally important, and

the second case is where Substrate 2 and Product are considered 5 times more weighted than the

rest, as they are the primary states of interest and need to be predicted accurately. Parameters are

listed according to decreasing order of φD for both the cases. The importance of the parameter is

determined by how high it appears in the table.

For the first case where output states are assumed to be equally weighted, it is seen that the yield

coefficient associated with Substrate 2 and the initial concentration of Substrate 2 being fed into

the reactor are particularly important, along with the initial conditions of the state. Additionally,

µmax,S2 , KS,S2 , and α2 are also considerably important. The initial conditions of the output and the

initial concentration of pure Substrate 2 flowing into the fermenter, S2initial , cannot be estimated

using optimization. This is because, their value is subject to the real-time operation of the bio-

fermentation plant, varying with different batches. Thus, the main focus is on the parameters

59

present in the growth rate and phase 2 that can be better estimated in order to attain a superior

output prediction compared to the revised first-principles model.

From the local sensitivity analysis, it can be concluded that regardless of the weight to the

states, the initial concentration of Substrate 2 in the feed, the yield coefficient with respect to Sub-

strate 2, and the initial value of Volume are important parameters. The initial conditions of most

of the states are important. The half-velocity constant KS,S2 , which is associated with Substrate 2,

is the only half-velocity constant that is important. The non-associated growth term β is an impor-

tant parameter affecting Product. The maximum specific growth rate associated with Substrate 2,

µmax,S2 , and the growth rate coefficient associated with Substrate 2 responsible for the increase in

Product, α2, also play important roles in affecting the outputs.

As the parameters generally vary a lot depending on different batches, operating conditions,

and changes in measurements, it is important to see how sensitive the outputs are, based on a

wide range of parameter values, i.e., through a global sensitivity analysis. From global sensitivity

analysis, we can identify the parameters and initial conditions that are the most important and

significantly affect the outputs, particularly, Substrate 2 and Product concentrations. To decide the

range of parameter values upon which the global sensitivity analysis model would be developed,

5 experimental datasets were run with a slight change in certain conditions, e.g., initial parameter

guess, parameter bounds, etc. Based on the estimated parameter values obtained from these runs,

an overall range was decided for each parameter and initial condition, leaving a 20-50% margin of

error to account for the maximum range of values possible. A wider range is generally preferred

because different batches can estimate different parameter values, and it is helpful to see how the

outputs might react to parameter values that are far from their nominal value.

For the global sensitivity analysis, we use lhsdesign (Latin Hypercube Sampling) in MATLAB

to construct a matrix of random values between 0 to 1 for each parameter. 100 different cases of

parameter sets are considered for this analysis and are averaged at the end. The overall combined

global sensitivity analysis of the model is done using the formulation below:

60

No. Substrate 1 Biomass Product Substrate 2 Intermediate Added component X2

Parameters
1 YB/S1 YB/S2 α2 aS2,I aS2,I V0

2 G0 E0 YB/S2 E0 µmax,S2 kLa
3 µmax,S1 S2initial E0 µmax,S2 E0 S2initial

4 − aS2,I S2initial YB/S2 YB/S2 qX2

5 − man_para β aS2,S1 aS2,S1 YB/S2

6 − B0 aS2,I KS,S2 aS2,I p1

7 − µmax,S2 µmax,S2 S2initial KS,S2 YB/S1

8 − aS2,S1 V0 V0 S2initial µmax,S2

9 − V0 c3 man_para c3 KS,S2

10 − c3 aS2,S1 aI,S2 µmax,I B0

11 − KS,S2 P0 B0 YB/I E0

12 − YB/I KS,S2 c3 man_para YB/I

Table 3.3: Global sensitivity analysis: a list of sensitive parameters for each output present in the
revised first-principles model for phase 2.

φD(model) = φD(Substrate 1) + φD(Biomass) + φD(Intermediate)

+5 · [φD(Substrate 2) + φD(Product)]

(3.53)

The range (lower and upper bounds LB and UB) of each parameter considered is shown below:

Range of each parameter = [LB LB + (UB − LB) · lhsdesign] (3.54)

The effect of all these 38 parameters on the outputs is studied, individually and for the model as

a whole. The results of global sensitivity analysis for individual outputs are summarized in Table

3.3, where the importance of the parameter is determined by how high it appears in the table. Most

of the parameters in Table 3.3 have a positive φD value and parameters not included in this table

are negative, implying that they do not affect the outputs significantly.

It should be noted that the parameters are much more significant for the global sensitivity analy-

sis, compared to the local sensitivity analysis where the initial conditions were of high significance

to the outputs. It is seen that the yield coefficient associated with Substrate 2, initial concentration

61

Substrate 2/Product with 5 times weight φD
E0 65.0
aS2,I 59.9
YB/S2 55.4
µmax,S2 38.6
α2 37.34

S2initial 29.4
β 16.9

aS2,S1 6.80
KS,S2 −7.14
P0 −8.74

Table 3.4: Global sensitivity analysis: a list of sensitive parameters with D-optimality criterion
(φD) values when Substrate 2 and Product are 5 times more weighted than the other states.

of Substrate 2 when it is fed into the fermenter, inhibition parameters aS2,I (effect of Substrate

2 on utilization of Intermediate by micro-organisms), and maximum specific growth rate of the

micro-organisms associated with Substrate 2 are the most important parameters. Additionally, β

(non-growth associated term responsible for the increase in Product) and α2 (coefficient associated

with Substrate 2 responsible for the increase in Product) are sensitive to Product. KS,S2 (Half ve-

locity associated with Substrate 2) is sensitive to Substrate 2. Only three parameters are seen to

affect Substrate 1 in phase 2, and the rest of the parameters have a negative or zero φD value.

In combined global sensitivity analysis of the developed revised first-principles model, the

effect of all outputs is considered together. Substrate 2 and Product outputs are given five times

more weight than Substrate 1, Biomass, and Intermediate. As mentioned earlier, the reason for that

is the need for accurate prediction of these two states. A summary of the results of the combined

global sensitivity analysis is shown in Table 3.4. From Table 3.4, the following conclusions can be

made:

• Regardless of the weight to the states and global/local analysis, it should be noted that the

initial concentration of Substrate 2 in the feed, S2initial , the yield coefficient with respect to

Substrate 2, YB/S2 , coefficient associated with Substrate 2 responsible for the increase in

Product, α2, and maximum specific growth rate associated with Substrate 2, µmax,S2 , are

important parameters.

62

• The initial condition of all states is important for local analysis, but not as important for

global analysis.

• The half-velocity constant associated with Substrate 2, KS,S2 , appears to be the only half-

velocity constant of significant importance.

• Inhibition parameters are very important and sensitive to the model according to the global

sensitivity analysis, especially the ones associated with Substrate 2.

• The non-associated growth term, β, is an important parameter affecting Product.

The results of the sensitivity analysis can be utilized in order to examine variation in sensitive

model parameters, through parameter clustering as presented in the following section.

3.2.4 Improving the revised first-principles model through clustering

The sensitivity analysis identified µmax,S2 , µmax,I , and KS,S2 as the sensitive model parame-

ters for the growth rate, and YB/S2 , c3, α2, and kLa as the sensitive model parameters for phase 2.

Some of the other sensitive parameters like aS2,I and other inhibition parameters are sensitive to the

outputs but they do not vary with time. The identified model parameters can now be utilized in a

parameter clustering approach to observe their variation through the course of the bio-fermentation

process, and to determine which parameters might benefit from a hybrid model approach. This ap-

proach is beneficial if there is no first-principles model to define potential time-varying parameters.

In these cases, DNNs are used to develop a relation between frequently available online measure-

ments and estimated parameters. This allows the model accuracy to be improved by utilizing

time-varying parameters rather than a single estimate for the given model parameter.

To the knowledge of the authors, there were no first-principles models for any of the sensitive

model parameters that were identified, and thus, a clustering approach was pursued to determine if

there were large variations in the sensitive model parameters. In this approach, sensitive parameters

are estimated separately in different clusters of time. This approach provides different estimates

for the sensitive model parameter in each cluster, thus enabling time-varying parameters to be

63

Figure 3.11: A comparison of growth rate parameter estimation using the first-principles model,
revised first-principles model, and clustered model.

obtained.

Experimental datasets provided by the industry sponsor included the values at 50 different

time instants for each state. These were used to create 5 clusters, each comprised of 10 values.

Insensitive growth parameters values were fixed. This is done since limited experimental data is

available, and re-estimating all parameters may lead to over-fitting.

A comparison of the simulation results of all the developed models, i.e., first-principles model,

revised first-principles model, and clustered model with experimental data for the growth rate, is

provided in Figure 3.11. Here, improved estimation of the growth rate using the parameter cluster-

ing approach can be observed on the normalized time scale. But still the clustered model is unable

to accurately track the time-varying nature of the growth rate characteristics. The parameters es-

timated by the clustered approach for the growth rate are presented in Table 3.5. Similarly, the

parameters estimated by the clustered approach for the reactor model for phase 2 are presented in

Table 3.6. These results demonstrate that the sensitive model parameters are time-varying, par-

ticularly the growth rate coefficients associated with Substrate 2 and Intermediate, µmax,S2 and

µmax,I , and yield coefficient associated with Substrate 2, YB/S2,1. These parameters may benefit

from developing a hybrid model, which will be explored in the following section.

64

Growth rate parameter Time period (normalized) Value Unit
µmax,S2,1 0.0-0.2 0.512 hr−1

µmax,S2,2 0.2-0.4 0.202 hr−1

µmax,S2,3 0.4-0.6 0.133 hr−1

µmax,S2,4 0.6-0.8 0.124 hr−1

µmax,S2,5 0.8-1.0 0.129 hr−1

KS,S2,1 0.0-0.2 68.9 g Substrate 2 L−1

KS,S2,2 0.2-0.4 2.03× 102 g Substrate 2 L−1

KS,S2,3 0.4-0.6 2.37× 102 g Substrate 2 L−1

KS,S2,4 0.6-0.8 2.85× 102 g Substrate 2 L−1

KS,S2,5 0.8-1.0 2.79× 102 g Substrate 2 L−1

µmax,I,1 0.0-0.2 0.972 hr−1

µmax,I,2 0.2-0.4 0.772 hr−1

µmax,I,3 0.4-0.6 0.687 hr−1

µmax,I,4 0.6-0.8 0.555 hr−1

µmax,I,5 0.8-1.0 0.612 hr−1

Table 3.5: Clustered growth rate parameters.

3.2.5 Development of the hybrid model

3.2.5.1 Improving the revised first-principles model through hybrid modeling

In the previous section, sensitive model parameters were identified and estimated in a clustered

manner, where each of the five values estimated for the parameters was used to improve model

prediction. The parameters mentioned in Table 3.5 and Table 3.6 show that there was significant

variation in their values with time, but parameters such as µmax,S2 , µmax,I , and YB/S2,1 change more

frequently, and nonlinearly in time unlike kLa, and c3,1. Thus, to get a more accurate representation

of these parameters and capture their complete time-varying nature over all the time instants, a

hybrid modeling approach was adopted.

As described previously, a hybrid model is one that utilizes a data-driven model along with a

first-principles model. A DNN is trained to estimate µmax,S2 , µmax,I , and YB/S2,1, which are to

be utilized in the improved first-principles model. The inputs to the DNN are the concentrations

of Substrate 2, Biomass, Intermediate, Product, Volume, and X2. As this approach is primarily

for phase 2 model, Substrate 1 is not considered since it is experimentally known to be negligible

65

Phase 2 parameter Time period (normalized) Value Unit
YB/S2,1 0.0-0.2 0.855 g Cell/g Substrate 2
YB/S2,2 0.2-0.4 0.155 g Cell/g Substrate 2
YB/S2,3 0.4-0.6 0.135 g Cell/g Substrate 2
YB/S2,4 0.6-0.8 0.115 g Cell/g Substrate 2
YB/S2,5 0.8-1.0 0.156 g Cell/g Substrate 2
c3,1 0.0-0.2 0.30 g Intermediate/g Cell
c3,2 0.2-0.4 1.00 g Intermediate/g Cell
c3,3 0.4-0.6 1.50 g Intermediate/g Cell
c3,4 0.6-0.8 1.50 g Intermediate/g Cell
c3,5 0.8-1.0 1.50 g Intermediate/g Cell
α2,1 0.0-0.2 0.011 g Product/g Substrate 2
α2,2 0.2-0.4 0.056 g Product/g Substrate 2
α2,3 0.4-0.6 0.051 g Product/g Substrate 2
α2,4 0.6-0.8 0.035 g Product/g Substrate 2
α2,5 0.8-1.0 0.010 g Product/g Substrate 2
kLa1 0.0-0.2 13.4 hr−1

kLa2 0.2-0.4 3.36 hr−1

kLa3 0.4-0.6 3.36 hr−1

kLa4 0.6-0.8 2.36 hr−1

kLa5 0.8-1.0 2.06 hr−1

Table 3.6: Clustered phase 2 parameters.

during this phase as it gets consumed almost completely in phase 1. The first layer is the input,

and the last layer is the output. The nodes are connected using weights, and each node has a

bias. Rectified Linear (ReLu) activation function is used to calculate the output of each node. The

DNN used in this work consists of 3 hidden layers with 5 nodes each and 3 outputs, which are the

parameters mentioned above. These parameters are then used in the first-principles model, and the

output concentrations are calculated.

Now, say, xk are the states of the improved first-principles model mentioned earlier, i.e., Sub-

strate 2, Biomass, Product, Intermediate, X2, and Volume, and uk are the manipulated inputs to

the process which will also be used as an input to the hybrid model such as temperature, added

component X1, alkali flow rate, and Substrate 2 flow rate. It is important to note that alkali flow

rate is a critical input to the fermenter as it is added to keep the pH in check as it can neutralize

Intermediate and added chemical X1.

66

The DNN is initially pre-trained using the MATLAB deep learning toolbox, and the clustering

parameter values. These parameters are used in the first-principles model for phase 2 wherein the

other parameters are constant. The output concentrations from the hybrid model are represented

as xk+1, which will be used as input to the model in the next time step. Yk is the plant measure-

ment of these output concentrations. Once we have the output from the hybrid model, the SSE

is calculated. Jacobian matrix is then calculated which is used to update the weights and biases.

Levenberg Marquardt algorithm is used to update the DNN parameters. These updated weights

and biases are then used in the next iteration, and the hybrid model gives a new set of outputs.

Once again, the error is calculated, and SSE is computed. This process is repeated until the error

is less than a tolerance value. It is important to note that unlike the clustering method which had 5

estimated values for each parameter, the DNN has 50 parameter values corresponding to 50 output

measurements, thus estimating time-varying parameters in a much more accurate manner.

Figure 3.12: A comparison of the hybrid model and training data during phase 2.

The results for the hybrid model using the training data are illustrated in Figure 3.12. It can

be seen that all the states are predicted well and the model fit is more accurate than the revised

first-principles model’s prediction, especially for Product and Substrate 2, which are the primary

states of interest in this work. Estimation of states using validation data is shown in Figure 3.13,

67

Figure 3.13: A comparison of the hybrid model and validation data during phase 2.

and it shows that all the states except Intermediate are predicted fairly accurately. There is an order

of magnitude difference between the measurements of Intermediate from different batches due to

uncertainty from the yeast cells and the significant effectsX1 and alkali flow rate have on it. Hence,

its prediction for validation batch is not as accurate as the other states. The main concern with

Intermediate concentration is regarding identification of abnormality in bio-fermentation process,

and there are other means of tracking Intermediate that the industry sponsor uses. The results also

show that the prediction accuracy of component X2 is high thus the developed model can be used

to successfully track X2 along with the other states.

The parameters estimated by the hybrid model were used to further validate 2 additional

batches, shown in Figure 3.14, and Figure 3.15. Due to difficulty in taking offline measurements,

only Substrate 2 and Product concentrations are measured during normal operation of the bio-

fermentation plant. The results show reasonable prediction for both these states using the two

batches. For further improving the prediction accuracy, it is crucial to have more experimental

data so that the neural network can be trained even more precisely as larger the sample size of data,

the better the parameter estimates. For the objective of this work, all these validation plots show

that the states, especially Substrate 2 and Product, are predicted reasonably well.

68

Figure 3.14: A comparison of the hybrid model and additional validation dataset 1, during phase
2.

3.2.6 Error analysis

In order to quantify and compare the performance of the three models, i.e., original first-

principles model, revised first-principles model, and hybrid model, we utilize the relative error

(RE) formulation as defined below:

REk = 1− xk+1

Yk
(3.55)

In Eq. (3.55), xk+1 are the predicted state concentrations using the models and Yk are the

plant measurements, as described in detail in Section 5.1. First, performance of the three models

is compared using the training batch that was used to train the DNN in the hybrid model. The

predicted outputs from these three models were utilized to calculate the RE value as defined in

Eq. (3.55) at every time step. The RE plots are plotted and compared in Figure 3.16. The key

observation here is that the hybrid model outperforms the first-principles model and the revised

first-principles model. This can be attributed to the fact that the hybrid model includes a trained

69

Figure 3.15: A comparison of the hybrid model and additional validation dataset 2, during phase
2.

DNN which accurately predicts the sensitive parameter values as well as the dependencies among

themselves, and this results in better prediction of outputs.

Next, the performance of the three models is compared using the validation batch. The pre-

dicted outputs were utilized to calculate the RE value as defined in Eq. (3.55). Once again, it

can be observed from Figure 3.17 that the hybrid model performs much better than the other two

models, except in the case of the prediction of Intermediate, where the performance of the hybrid

model is comparable to the first-principles model.

Additionally, the error is numerically quantified using the root mean squared error (RMSE).

RMSE values were calculated by comparing the predictions from all three models against the

training and validation batches, and are summarized in Table 3.7 and Table 3.8, respectively. From

these tables, it can be observed that the hybrid model outperforms the first-principles model and

the revised first-principles model in the prediction of all the states except for the Intermediate.

Moreover, the RMSE values for Product and Substrate 2 for the two additional validation batches

using the hybrid model were found to be low: 0.0625 (Product) and 0.1279 (Substrate 2) for the

70

Figure 3.16: Relative errors between the models (i.e, the first-principles model, revised first-
principles model, and hybrid model) and the training data obtained from the industry sponsor.

first, and 0.0448 (Product) and 0.1240 (Substrate 2) for the second. In conclusion, the hybrid model

shows superior performance as it is equipped with a DNN that predicts time-sensitive parameters

accurately.

Biomass Product Substrate 2 Intermediate X2 Volume

First-principles 0.2162 0.0260 0.2886 0.2046 - 0.0792

Revised first-principles 0.2218 0.0672 0.1932 0.4851 0.1158 0.0993

Hybrid model 0.0590 0.0278 0.0707 0.1368 0.0719 5.877e-04

Table 3.7: RMSE values for all three models using training data

71

Figure 3.17: Relative errors between the models (i.e, the first-principles model, revised first-
principles model, and hybrid model) and the validation data obtained from the industry sponsor.

Biomass Product Substrate 2 Intermediate X2 Volume

First-principles 0.1972 0.0480 0.2968 2.536 - 0.0862

Revised first-principles 0.2189 0.0463 0.6030 0.3460 0.1170 0.0776

Hybrid model 0.1274 0.0278 0.1862 1.079 0.0639 9.792e-04

Table 3.8: RMSE values for all three models using validation data

72

3.3 Universal hybrid modeling of batch kinetics of aerobic

carotenoid production using Saccharomyces Cerevisiae

In this work, we utilize a physics-informed machine learning method called Universal Ordi-

nary Differential Equations (UDEs) to build a hybrid model for a bio-fermentation process. The

concept of UDE is based on Neural ODEs (NODEs) method wherein the derivative of a function

is modeled using a DNN which is trained using modern ODE solvers, and in UDEs only a part of

the derivative function is modeled using a DNN. Now, in our hybrid modeling approach, the DNN

represents the unknown terms in the ODEs of the first-principles model of the bio-fermentation.

Essentially, this DNN captures the derivatives of unknown dynamics occurring within the process.

This hybrid model is trained using the DifferentialEquations.jl package available in Julia program-

ming language. The key difference between our proposed approach and the deep hybrid model

proposed by Bangi and Kwon (2020) is that in the deep hybrid model, the structure of the DNN

is fixed at the beginning of the training process, whereas the depth of the DNN in the UDE model

is a parameter that is optimized during the training process. Considering the depth of the DNN as

a parameter alleviates the problem of tuning the structure of the DNN during the model building

process which is usually done using trial-and-error approach. Additionally, this difference is cru-

cial as it means that by making the size of the DNN a parameter during the training process, we

are essentially controlling the overall accuracy of the UDE model. This allows us to obtain any

desired accuracy and very high accuracy will come at the cost of long training times.

In this work, we develop a UDE-based hybrid model (or Universal hybrid model) for the pro-

duction of β-carotene using Saccharomyces cerevisiae strain mutant SM14 with glucose as the

carbon source. Carotenes such as β-carotene improve human health as a precursor of vitamin A.

There have been studies that show its positive impacts on human health, antioxidant properties,

and protective properties against cancer [127, 128, 129, 130]. Recently, a first-principles model

was developed for the batch production of β-carotene using Saccharomyces cerevisiae strain mu-

tant SM14 with glucose as the main substrate [131]. This model is also capable of predicting

73

concentrations of biomass, glucose, ethanol and acetic acid, and hence, it is used in our work, as

the first-principles model for the production process of β-carotene.

3.3.1 First-principles model for β-carotene production

Bio-fermentation processes utilize microbes to convert raw materials into useful products such

as chemicals, food products, pharmaceuticals, etc. These microbes can be fungi, bacteria, mam-

malian cells, etc., and they are engineered in such a manner so as to produce greater yields of a

desired product. These processes are widely used in the industry as they are sustainable due to their

low-temperature and low-pressure operations, and no requirements for harsh chemicals [132]. A

bio-fermentation process is usually modeled using first-principles such as conservation of mass,

conservation of energy, kinetic laws, thermodynamic laws, transport laws etc., and these models

are robust as they capture the essential dynamics that occur within it. The first-principles model

from the work of Ordonez et. al. (2016) was adopted in this work. The growth rate model is as

follows:

µ = µG + µE + µA (3.56)

µG =
µmax,G · ξE · ξA ·G

KS,G +G+ aG,E · E + aG,A · A
(3.57)

µE =
µmax,E · E

KS,E + E + aE,G ·G+ aE,A · A
(3.58)

µI =
µmax,A · A

KS,A + A+ aA,G ·G+ aA,E · E
(3.59)

where µ is the overall growth rate. µi, and µmax,i refer to the growth rates, and the maximum spe-

cific growth rates associated with each component (i.e., glucose, ethanol, and acetic acid), respec-

tively. KS,i is the half-velocity constant associated with each component, and ai,j is the inhibitory

effect of component i on utilization of component j by the microorganisms. The variables ξE · ξA

in Eq. (3.57) are added in order to account for any inhibition effect that ethanol or acetic acid may

have on the glucose growth rate. Now, the cell growth is represented as follows:

74

dX

dt
= µ ·X (3.60)

The glucose consumption rate is given by Eq. (3.61), where YX/G is the biomass yield coefficient

on glucose.
dG

dt
= − µG

YX/G
·X (3.61)

The production and consumption of ethanol is governed by the following equation:

dE

dt
= k1 · µG ·X −

µE
YX/E

·X (3.62)

Similarly, the production and consumption of acetic acid is governed by the following equation:

dA

dt
= (k2 · µG + k3 · µE) ·X − µA

YX/A
·X (3.63)

Finally, β-carotene production is related to cell growth and biomass concentration as shown in Eq.

(3.64).
dP

dt
= (α1 · µG + α2 · µE + α3 · µA) ·X + β ·X (3.64)

where α’s represent the coefficients for growth-associated product formation with respect to each

substrate, and β is the coefficient for non-growth-associated product formation.

3.3.2 Neural ODEs and UDEs

DNNs such as residual networks and recurrent neural networks learn the relationship between

the input-output data by building a sequence of transformations to a hidden state h as follows:

ht+1 = ht + f (ht, θt) (3.65)

where t ∈ {0...T} and ht ∈ RD. The iterative updates as shown in Eq. (3.65) is very similar to the

Euler discretization of a continuous transformation. This similarity is the fundamental idea behind

75

Neural ODEs and UDEs.

3.3.2.1 Neural ODEs

In a neural ODE, the continuous dynamics of hidden state h are parameterized using an ODE

specified by a neural network as shown below:

dh(t)

dt
= f (h(t), t, θ) (3.66)

where h(0) and h(T) are the values of the hidden state at the input layer and the output layer,

respectively. Starting with h(0), the value of h(T) can be computed using a differential equation

solver, which evaluates f with desired accuracy whenever necessary. The parameters of the neural

network can be trained by performing reverse-mode differentiation through the ODE solver. The

ODE solver is treated as a black box, and the gradients are calculated using the Adjoint Sensitivity

method. In this method, the gradients are calculated by solving a second ODE backwards in time.

This approach has low memory cost and explicitly controls accuracy [133].

3.3.2.2 UDEs

A UDE model is the extension of Neural ODEs to build a hybrid model by combining it with

first-principles model. Specifically, part of the ODEs in the first-principles model contains an

embedded DNN that learns the dynamics unaccounted in the first-principles model. An example

of a UDE is shown below:
du

dt
= g (u, t, Uθ(u, t)) (3.67)

where du
dt

= g (u, t) is the first-principles model with missing terms which are represented by Uθ,

i.e., a DNN with θ as its parameters [134].

Now, training a UDE means minimizing a cost function L(θ) calculated with respect to the

current solution uθ(t), which is the solution of the UDE with respect to parameters θ. If the loss

function L(θ) is minimized using methods such as gradient descent, or Adam, or L-BFGS (Limited

memory-Broyden-Fletcher-Goldfarb-Shanno algorithm), then it requires the gradient of L with

76

respect to θ, i.e., dL
dθ

. By chain rule, this requires the calculation of du
dθ

. Therefore, training a UDE

essentially boils down to obtaining the gradients of the solution of the UDE with respect to DNN

parameters [134]. There exists many methods to calculate these gradients called Adjoints in Julia

programming language. Also, the UDE model can be built by using the DifferentialEquations.jl

package [135]. Specific details about the Julia packages used in this work are provided in the

results section.

3.3.3 UDE model for β-carotene production

In our work, we generated data by solving Eqs. (3.56)-(3.64) with initial glucose concentration

of 20 g/L and a fermentation time of 72 h. The parameter values used when solving the first-

principles model are tabulated in Table 3.9. Now, in a UDE, the embedded DNN learns unknown

dynamics that are not accounted for in the first-principles model. The structure of the DNN used in

our work consists of 3 hidden layers with 20 neurons in each of them. The activation function in all

the three layers is the linear function. The solver used to solve the ODEs is VCABM (an adaptive

order adaptive time Adams Moulton method) in Julia [135]. Also, to calculate the gradients of

the solution of the UDE model uθ(t) with respect to the parameters L(θ), we used ForwardDiff-

Sensitivity method, i.e., an implementation of discrete forward sensitivity analysis through Julia

package ForwardDiff.jl [136].

Parameter Value Unit Parameter Value Unit
µmax,G 0.2516 h−1 KS,G 0.4137 g Glucose L−1

µmax,E 0.0218 h−1 KS,E 0.5618 g Ethanol L−1

µmax,A 0.0182 h−1 KS,A 0.4506 g Acetic Acid L−1

aG,E 1.2964 − aG,A 1.0318 −
aE,G 1.0636 − aE,A 1.0058 −
aA,G 1.0000 − aA,E 1.0031 gCell

gEthanol

YX,G 0.1855 gCell
gGlucose

YX,E 0.3637 gCell
gEthanol

YX,A 1.0163 gCell
gAceticAcid

α1 0.7545 mgProduct
gGlucose

α2 13.9280 mgProduct
gEthanol

α3 1.1089 mgProduct
gAceticAcid

β 0.2804 mgProduct
gCellh

k1 1.7300 gEthanol
gCell

k2 0.0936 gAceticAcid
gCell

k3 0.2937 gAceticAcid
gCell

Table 3.9: Parameters used in the first-principles model.

77

Now, in order to train the parameters of the DNN, we solve an optimization problem using

multiple shooting method. In multiple shooting method, the training data is split into multiple

groups. The solver is then implemented on each individual group. If the end prediction of any

group coincides with the initial prediction of the adjacent group, then the resultant solution is same

as solving the optimization problem on the entire training data set. The objective function is the

sum of the squared deviation of the hybrid model prediction with respect to the training data and a

penalty term. This penalty is added to ensure that the overlapping parts of two consecutive groups

coincide [137]. The objective function is shown below:

C (θ) = min
θ

(Ppred − Pdata)2 + Penalty (3.68)

Penalty = Pf ·
∑
i

|Ppred,i − Ppred,i+1| (3.69)

where Ppred and Pdata are the product values predicted by the UDE model and from the training

data, respectively. Pf is a positive factor to ensure that their is continuity in the solution when

performing the multiple shooting method. In our work, we used a value of 200 for Pf . Ppred,i

and Ppred,i+1 are the last product value predicted in group i and the first product value predicted

in group i+ 1, respectively. Now, solving the optimization problem via multiple shooting method

is performed in 2 steps. In the first step, the Adam solver is used to get to a minimum, and in

the second step, we hone in on the minimum using the BFGS (Broyden-Fletcher-Goldfarb-Shanno

algorithm) solver. We considered two hypothetical scenarios to show the capabilities of the UDE

model.

3.3.3.1 Case 1

The assumption in this case is that the dynamics of the production of product (i.e., dP
dt

) are

entirely unknown. Now, in order to learn the product dynamics, we embed a DNN in the ODEs

of the first-principles model, and train the resultant UDE using the training data. The resultant

78

product equation in the UDE is as follows:

dP

dt
= Uθ(X) (3.70)

where U is the DNN, and θ is its set of parameters, i.e., weights and biases. The input to the DNN

is the biomass concentration and its output is the approximated product dynamics. Now, the UDE

model including Eq. (3.70) is trained, and Figure 3.18 shows the training progress via the objective

function value with respect to the iteration number.

Figure 3.18: Training progress with iteration for Case 1.

In Figure 3.18, we observe that the objective function values are high initially. This is because

the parameters of the DNN are randomly initialized and its predictions of product dynamics are

highly inaccurate. But as training progresses, the parameter values are optimized and the objective

function reaches a minimum. Once training ends, we utilize the UDE model to make predic-

tions for all 5 concentrations (i.e., biomass, glucose, ethanol, acetic acid, and product). The UDE

model’s predictions are compared against training data, and this comparison is shown in Figure

3.19. From Figure 3.19, we observe that the UDE model’s predictions are accurate.

In order to quantify the performance of the UDE model, we calculate relative error as shown

79

Figure 3.19: Comparison of UDE model predictions versus data for Case1.

below:

Error = 1−
∣∣∣∣PpredPdata

∣∣∣∣ (3.71)

The error variation with time is plotted in Figure 3.20. In this figure, we observe that the relative

error percentage was able to go as low as less than 10% with time.

Figure 3.20: Relative error variation for Case 1.

3.3.3.2 Case 2

The assumption in this case is that the dynamics of the production of product are partially

unknown (i.e., β ·X is assumed to be missing in the first-principles model). In order to learn the

80

unknown product dynamics, we embed a DNN in the ODEs of the first-principles model, and train

the resultant UDE using the training data. The resultant product equation in the UDE is as follows:

dP

dt
= (α1 · µG + α2 · µE + α3 · µA) ·X + Uθ(X) (3.72)

where U is the DNN, and θ is its set of parameters, i.e., weights and biases. The input to the DNN

is the biomass concentration and its output is the approximated unknown product dynamics. Now,

the UDE model including Eq. (3.72) is trained and Figure 3.21 shows the training progress.

Figure 3.21: Training progress with iteration for Case 2.

From Figure 3.21, we observe that the objective function values are high initially but as training

progresses, the performance of the UDE model improves until a minimum is reached. Once train-

ing ends, we utilize the UDE model to make predictions and compare it against the first-principles

model (with partially known dynamics) and the training data. This comparison is shown in Fig-

ure 3.22. From Figure 3.22, we observe that the UDE model’s predictions are very accurate but

the first-principles model’s performance is poor because of the unknown dynamics.

In order to quantify the performance of the UDE model and the first-principles model (with

partially known dynamics), we calculate their relative errors as shown in Figure 3.23.

In Figure 3.23, we observe that the relative error for the UDE model is near 0%, whereas,

81

Figure 3.22: Comparison of UDE model predictions versus data for Case2.

Figure 3.23: Relative error variation for Case 2.

for the first-principles model it goes beyond 50%. Also, the performance of the UDE model in

this case is far superior compared to Case 1, and this can be observed by comparing Figs. 3.22

and 3.23. The performance of the UDE model in these two figures highlights the importance of

incorporating any known knowledge about the process in the UDE model structure.

82

3.4 Physics-informed neural networks for hybrid modeling of

lab-scale batch fermentation for β-carotene production us-

ing Saccharomyces Cerevisiae∗

In the previous section, we built a UDE model to approximate the kinetics involved in the

production of β-carotene using Saccharomyces Cerevisiae. In order to show the effectiveness of

the UDE method, we made few theoretical assumptions about the kinetic model as described in

Eqs. (3.56)-(3.64), and built the UDE model. But in this work, we use experimental data to test

the effectiveness of the UDE method to build a hybrid model [138].

Carotenoids are a diverse group of yellow-orange pigments which have been extensively used

in food pigmentation and as constituents in dietary and vitamin supplements [139, 140]. Specif-

ically, β-carotene, which is a precursor for Vitamin A, has shown to have a positive impact on

human health, antioxidant properties and protective properties against cancer [129, 130, 127, 128].

Currently, some of the Carotenoids are produced synthetically using chemical technology but the

byproducts in such chemical processes have undesirable side effects when consumed. For this

reason, the use of microbial sources for the production of Carotenoids has received lots of atten-

tion [141, 140, 142, 143, 144].

An accurate model which can describe biomass growth, substrate consumption, and β-carotene

formation is critical for process optimization and control purposes. Usually, a first-principles

model is developed to describe the physical and bio-chemical phenomena occurring in the batch

fermentation process, which includes fundamental laws such as conservation of mass and energy,

kinetic laws, thermodynamic laws, and transport laws. A first-principles model is robust, but it can-

not account for all the complex interactions within the process, thereby limiting its accuracy. An

alternative to first-principles modeling is data-driven modeling. Recently, there has been a lot of

∗Reprinted with permission from “Physics-informed neural networks for hybrid modeling of lab-scale batch fermenta-
tion for β-carotene production using Saccharomyces Cerevisiae” by Bangi, M. S. F., Kao, K., and Kwon, J. S. 2022.
Chem. Eng. Res. Des., 179, 415-423, Copyright 2022 Elsevier.

83

interest in data-driven modeling [145, 146, 147, 148] and control [149, 150] in the field of chemical

engineering as the amount of data collected, stored, and utilized has increased tremendously. Data-

driven models are computationally inexpensive to solve, but they show poor extrapolation over a

range of inputs and operating conditions [97, 17]. To overcome the above-mentioned limitations,

hybrid modeling is utilized which combines a first-principles model with a data-driven model. Hy-

brid models show superior accuracy and better extrapolation properties than first-principles models

and data-driven models, respectively [151]. The idea of hybrid models began with combining ar-

tificial neural network models with first-principles models [21]. Since then, hybrid modeling has

been applied in various chemical and biochemical engineering applications. For example, in mod-

eling of bacteria cultivations [52], crystallization [34, 35], fungi cultivations [50], insect cell

cultivations [55], mammalian cell cultivations [54], yeast fermentations [48], intracellular sig-

nal pathway [152, 153], chemical reactor [28], mechanical reactors [43], distillation columns

[39, 40], drying processes [41], metallurgic processes [38], milling [45], polymerization pro-

cesses [33], thermal devices [42], etc. For more information on hybrid modeling, one can view

[58, 154], which are excellent review papers.

Recall, hybrid modeling started in 1992 from the use of artificial neural networks along with

first-principles knowledge [21]. Since then, the field of neural networks has evolved from artificial

neural networks with a single hidden layer to deep neural networks (DNNs) with multiple hid-

den layers. These DNNs require an exponentially fewer number of neurons than artificial neural

networks to approximate specific functions [108, 110, 109]. Recently, [151] developed a hybrid

model using a DNN for hydraulic fracturing which consists of a discrete number of hidden lay-

ers between input and output layers. In a DNN with a discrete number of hidden layers, each

layer adds a small error to its output which traverses through the hidden layers. Generally, adding

more layers to the DNN structure will reduce the overall modeling error. But with the number

of layers increasing, the accuracy of the DNN saturates first and then begins to degrade [155].

Adding new connections in the DNN to form Residual network (ResNet) will solve this degrada-

tion problem [155]. Mathematically, these ResNets resemble the solution obtained using Euler’s

84

method for ordinary differential equations (ODEs). This similarity led to the development of a new

class of networks called Neural Ordinary Differential Equations (Neural ODEs) in which instead

of specifying a discrete sequence of hidden layers between the input and output domains, the pro-

gression of the hidden states through the hidden layers becomes continuous [133]. This continuous

equation is solved using a black-box differential equation solver to obtain the output of the Neural

ODEs. These continuous-depth networks adapt their evaluation strategy to each input, explicitly

trade computational speed for accuracy, and have constant memory cost. These Neural ODEs can

be combined with an existing first-principles model to build a physics-informed neural network

model called Universal Differential Equations (UDEs) [134].

In this work, the UDE framework is utilized to build a hybrid model for batch production of

β-carotene using Saccharomyces cerevisiae. The key difference between the UDE-based hybrid

model approach and the deep hybrid model proposed by Bangi and Kwon (2020) is that the depth

of the neural network in the UDE-based hybrid model is a parameter during the model training pro-

cess. On the other hand, in Bangi and Kwon (2020), the structure of the neural network is fixed at

the beginning of the training process, and is optimized using trial-and-error approach. Considering

the depth of the neural network as a parameter alleviates the challenge of tuning it during the model

building stage which is usually done using a trial-and-error approach. Additionally, this difference

is crucial as it means that by making the depth of the neural network a parameter during the train-

ing process, the overall accuracy of the UDE-based hybrid model can be controlled. This allows

us to obtain any desired accuracy, but very high accuracy will come at the cost of long training

times. In order to reduce the training time, prior knowledge about the process can be incorporated

during the UDE-based hybrid model training. Specifically, careful selection of the input features to

the Neural ODE in the UDE-based hybrid model can ensure faster convergence of its parameters.

Therefore, the novelty of the proposed work can be summarized as follows: a) building a hybrid

model which has superior accuracy compared to the existing kinetic model for batch production of

β-carotene using Saccharomyces cerevisiae, b) utilizing UDE approach and experimental data to

train and validate a hybrid model for a complex batch fermentation process, and c) incorporation

85

of prior process knowledge to ensure convergence of UDE-based hybrid model parameters.

3.4.1 Microorganism and culture media

As mentioned previously, Saccharomyces cerevisiae strain mutant SM14 [156] was used in

this work. In the engineered yeast strain, which is the ancestor for SM14, the carotenogenic path-

way genes crtYB/crtI/crtE were introduced into yeast S288c strain. The engineered β-carotene

producer was subjected to an adaptive evolution experiment. Strain SM14 was a β-carotene hyper-

producer that resulted from the evolution experiment. These yeast strains, engineered to produce

beta-carotene, were streaked out for single colonies from −80 ◦C cryostorage onto YPD plates.

Fresh plates were streaked out every 3 weeks. Experiments were performed to obtain the optimal

initial glucose concentration of 20 g/L. Each colony was inoculated in a flask containing 50 ml

YNB (Yeast Nitrogen Base) supplemented with 20 g/L glucose and grown overnight at 200 rpm

and 30 ◦C for use as seed culture for bioreactor runs.

3.4.2 Bioreactor cultivation results

Figure 3.24 shows the concentrations of biomass, β-carotene, ethanol and acetic acid pro-

duction and subsequent consumption, and glucose consumption of Saccharomyces Cerevisiae in a

stirred-tank bioreactor with initial glucose concentration of 20 g/L. In the first 24 h, yeast exhibited

an exponential growth period until the glucose was completely utilized, and the ethanol concen-

tration had reached a maximum concentration value of 5.42 g/L. After glucose was completely

utilized, ethanol was utilized as a carbon source, resulting in the decline of ethanol concentration

and a maximum in the acetic acid concentration of 1.19 g/L at 50 h. Thereafter, acetic acid was

consumed. β-carotene production increased during the growth phase and continued throughout the

cultivation period. The β-carotene production reached nearly 120 mg/L at the end of a 72 h period.

3.4.3 UDE model for lab-scale β-carotene production

The kinetic model as described in Eqs. (3.56)-(3.64) is used as the first-principles model. In

this work, we utilized data as shown in Figure 3.24 with initial glucose concentration of 20 g/L and

86

a fermentation time of 72 h. The parameter values used when solving the first-principles model

are tabulated in Table 3.9. Now, in a UDE, the embedded DNN learns unknown dynamics that

Figure 3.24: Biomass, glucose consumption, ethanol and acetic acid concentration and carotenoids
production in batch cultures of Saccharomyces Cerevisiae with 20 g/L initial glucose

are not accounted for in the first-principles model, and we utilized 3 DNNs for building the UDE

model. Each DNN was utilized to learn and predict the unknown dynamics in the biomass, acetic

acid, and product equations, respectively. The inputs to the DNNs are the biomass and ethanol

concentrations. The structure of each DNN used in our work consists of 2 hidden layers with 5

neurons in each of them. The activation function in all the three layers is the hyperbolic tangent

(tanh) function. The solver used to solve the ODEs is VCABM (an adaptive order adaptive time

Adams Moulton method) in Julia [135]. Also, to calculate the gradients of the solution of the UDE

model uθ(t) with respect to the parameters L(θ), we used ForwardDiffSensitivity method, i.e., an

implementation of discrete forward sensitivity analysis through Julia package ForwardDiff.jl [136].

Now, in order to train the parameters of the DNN, we solve an optimization problem with an

objective function as shown in Eq. (3.73):

C (θ) = min
θ

(xpred − xdata)2 (3.73)

where xpred and xdata are the concentration values of biomass, acetic acid, and product predicted

by the UDE model and from the training data, respectively. Now, solving the optimization problem

is performed in 2 steps. In the first step, the Adam solver is used to get to a minimum, and in the

87

second step, we hone in on the minimum using the BFGS (Broyden-Fletcher-Goldfarb-Shanno

algorithm) solver.

Figure 3.25: Comparison of UDE model predictions after training versus predictions from first-
principles model for an initial glucose concentration of 20 g/l.

The training results are shown in Figure 3.25. The biomass and product concentrations have

improved when compared to the predictions from the first-principles model. The UDE model

outperforms first-principles model vastly when it comes to the prediction of acetic acid. It is able

to accurately capture the dynamic behavior in acetic acid concentration especially in the period of

40 to 60 h. This shows the effectiveness of utilizing the UDE method to build a hybrid model to

improve the prediction accuracy.

3.4.4 Testing UDE model with different initial concentrations of glucose

The UDE model is tested with other experimental data-set where the initial concentrations of

glucose is 22.36 g/. The UDE model predictions are compared against the predictions from the

first-principles model, and this comparison is shown in Figure 3.26.

From Figure 3.26, it can be observed that the UDE model is able to outperform the first-

principles model even when the initial concentration of glucose is different from the training case.

88

Figure 3.26: Comparison of UDE model predictions versus predictions from first-principles model
for an initial glucose concentration of 22.36 g/l.

In order to quantify these comparisons, we utilize the Mean Squared Error (MSE) metric as shown

below:

MSE =

∑
(xpred − xdata)2

N
(3.74)

The MSE values for both the training and testing cases are calculated using Eq. (3.74), and are

tabulated in Table 3.10.

MSE UDE Training First-principles Training UDE Testing First-principles Testing
Biomass 0.0253 0.0492 0.0345 0.0524

Acetic Acid 0.0251 0.1102 0.1317 0.1319
Product 0.0236 0.0411 0.0423 0.0486

Table 3.10: MSE values for training and testing data-sets.

From Table 3.10, it can be observed that the MSE values for the UDE model are smaller than

the first-principles model. This is because the DNNs in the UDE model are trained to capture the

hidden dynamics of the process which are unaccounted in the first-principles model. This shows

the advantage of building a UDE model because of its superior accuracy.

89

4. DEEP HYBRID MODELING-BASED PREDICTIVE CONTROL

4.1 Stabilization with guarantees on domain of applicability

for hybrid model-based predictive control

Historically, process modeling began with the use of first-principles such as conservation of

mass and energy balances, thermodynamic laws, kinetic laws, etc. These first-principle models

have wide domain of applicability (DA) but can have poor accuracy due to some unexplained

physical/chemical phenomena in the process. On the other hand, data-based models such as deep

neural networks (DNNs) can be developed using plant measurements or simulation data that are

computationally inexpensive, highly accurate within the DA but have a narrow DA. Hybrid models

combine first-principles models with data-based models resulting in superior accuracy compared

to first-principles models and better extrapolability compared to data-based models. Recently, a

deep hybrid model was developed which combines first-principles model with a DNN for hydraulic

process.

The gain in extrapolability in deep hybrid model when compared to a purely data-based DNN

model is useful in practical applications. Specifically, when designing a model-based predictive

controller wherein a wide range of DA of the model allows for a wider search of the input space

in order to obtain optimal control actions. Also, a narrow DA would restrict the input space and

would lead to sub-optimal control performance. Although, the deep hybrid model has a wider

DA compared to a DNN model it is still finite and is influenced by the DA of the DNN within it.

Therefore, in this work, we propose to design a deep hybrid model-based controller that obtains

the optimal control policy within the DA of the deep hybrid model while guaranteeing the stability

of the original system.

In the last couple of decades, model predictive control (MPC) has been utilized widely to con-

trol multi-variable processes with linear/nonlinear models and constraints. Specifically, Lyapunov-

90

based MPC (LMPC) has been developed which uses a Lyapunov-based control law to ensure fea-

sibility and stabilizability within a well defined stability region [157, 158]. In order to incorporate

the DA of the deep hybrid model within the LMPC controller, we propose to develop and incorpo-

rate within the MPC design a Control Barrier Function (CBF) that has prominence in the field of

safety [159, 160, 161, 162, 163, 164, 165]. The developed CBF ensures that the controller stays

within the DA of the deep hybrid model which is obtained by implementing the k-nearest neigh-

bors (knn) technique on the training data used for training the DNN in the deep hybrid model.

Subsequently, in order to ensure simultaneous stability and guarantees on DA by the MPC, we de-

velop a Control Lyapunov-Barrier Function (CLBF) which combines both the Control Lyapunov

Function (CLF) and the CBF. This CLBF is incorporated in the form of various constrains in the

MPC formulation in order to ensure closed-loop stable performance within the DA of the deep hy-

brid model. This work is divided into two parts. In the first part, we provide stability analysis and

theoretical guarantees with respect to the DA of the deep hybrid model for a CLBF-MPC ontroller.

In the second part, we apply our proposed method on a chemical process example i.e., a continuous

stirred tank reactor (CSTR).

4.1.1 Stability analysis and DA guarantees

Consider a continuous-time nonlinear system described by the following state-space form:

ẋ = F (x, u) = f(x) + g(x)u (4.1)

Let its existing first principles model be described by the following equation:

ẋ = F̃ (x, u) = f̃(x) + g̃(x)u (4.2)

Assuming that the accuracy of the first-principles model is limited, we utilize a deep neural network

D(x) to build a hybrid model in order to improve its accuracy. The following equation represents

91

the hybrid model:

ẋh = Fh(xh, u) = F̃ (xh, u) +D(xh, θ) (4.3)

Here F̃ is known to us and D represents the unknown dynamics of the system. Let θ be the

parameters of D, which can be optimized by minimizing the following objective function:

JT (θ) =
1

T

∫ T

0

||ẋ(t)− F̃ (x, u)−D(x; θ)||2dt+R(θ) (4.4)

Here R(θ) is the regularization term which promotes sparsity in the parameter values. In an ideal

scenario, an optimal deep neural network D∗ with parameters θ∗ will fully represent the unknown

dynamics of the system such that:

ẋ = F (x, u) = F̃ (x, u) +D∗(x, θ∗) (4.5)

Based on the universal approximation theorem for neural networks which states that given a suffi-

cient number of neurons, a DNN is able to approximate any dynamic nonlinear system on compact

subsets of the state-space for finite time. Extending this principle to the hybrid model system, such

that, for any δo > 0 the following equation holds true:

||D∗(x, θ∗)−D(x, θ)|| ≤ δo (4.6)

Using Eq. (4.6), Eq. (4.5) can be rewritten as:

ẋ = F (x, u) = Fh(x, u) + e(t) (4.7)

such that

sup
t∈[0,T]

||e(t)|| ≤ δo (4.8)

92

Integrating Eqs. 4.3 and 4.7, for any t ∈ [0, T], subtracting, and taking norms we obtain

||x(t)− xh(t)|| ≤ ||x(0)− xh(0)||+
∫ t

0

||Fh(x, u)− Fh(xh, u)||ds+

∫ t

0

||e(s)||ds (4.9)

Using Eq. (4.8), and assuming Fh is L-Lipschitz, we obtain

||x(t)− xh(t)|| ≤ ||x(0)− xh(0)||+ L

∫ t

0

||x(s)− xh(s)||ds+ δoT (4.10)

Using the integral form of the Gronwall Lemma, we obtain

||x(t)− xh(t)|| ≤ [||x(0)− xh(0)||+ δoT] eLt (4.11)

Assuming the initial state in the hybrid model is identical to that of the actual system, we obtain

||x(t)− xh(t)|| ≤ δoTe
Lt (4.12)

4.1.1.1 Notation

The Euclidean norm of a vector is represented as | · |, and the weighted Euclidean norm is

represented as | · |Q where Q is a positive definite matrix. xT represents the Transpose of x. R+

represents the set [0,∞). The null set is represented using φ. LfV (x) represents the standard Lie

derivative i.e., LfV (x) := ∂V (x)
∂x

f(x). A scalar continuous function V : Rn → R is proper if the set

x ∈ Rn|V (x) ≤ k is compact ∀k ∈ R which is equivalent to V being radially unbounded. Assume

positive real numbers β and ε such that Bβ(ε) := {x ∈ Rn| |x − ε| < β} is an open ball around ε

with a radius of β. Subtraction of sets is denoted using “\", i.e., A\B := {x ∈ Rn|x ∈ A, x /∈ B}.

A function f is of class C1 if it is continuously differentiable. Given a set D, the boundary and the

closure of D are denoted by ∂D and D̄, respectively. A continuous function α : [0, a)→ [0,∞) is

said to belong to class K if it is strictly increasing and is 0 only when evaluated at 0.

93

4.1.1.2 Lyapunov-based control for system stability

We assume that there exists a Control Lyapunov function (CLF) V for system in Eq. (4.1)

such that V is proper, positive definite, and satisfies the small control property i.e., ∀ε > 0,∃δ >

0, s.t.∀x ∈ Bδ(0), there exists u that satisfies |u| < ε and LfV (x) + LgV (x)u < 0, and also the

following condition:

LfV (x) < 0, ∀x ∈ {z ∈ Rn\{0}|LgV (z) = 0} (4.13)

This assumption implies that there exists a stabilizing control law Φ(x) ∈ U for the system of Eq.

(4.1) that renders the origin of the system asymptotically stable ∀x in a neighborhood around the

origin such that Eq. (4.13) holds for u = Φ(x). An example of such a controller is given by the

Sontag’s formula [166]:

ki(x) =


−p+
√
p2+γ|q|4
|q|2 q if q 6= 0

0, if q = 0

(4.14a)

ΦS,i(x) =


umin if ki(x) < umin

ki(x) if umin ≤ ki(x) ≤ umax

umax if ki(x) > umax

(4.14b)

where p denotes LfV (x), q denotes LgV (x), and γ > 0. Also, the constraints on the control action

is defined by u ∈ U := {umin ≤ u ≤ umax} ⊂ Rm, where umin and umax are the minimum

and maximum values of inputs allowed, respectively. Based on the Lyapunov control law Φ(x),

a region φu can be found under constrained inputs such that the time-derivative of the CLF is

negative i.e., φu = {x ∈ Rn|V̇ < 0, u = Φ(x) ∈ U}. Also, a level set Ωb inside φu is defined as

Ωb = {x ∈ φu|V (x) ≤ b, b > 0}. Since Ωb is a forward invariant subset of φu, it is guaranteed that

for any initial state x0 ∈ Ωb, ∀t ≥ t0, x(t) of system remains in Ωb under control law of Eq. (4.14).

94

4.1.1.3 Hybrid model

A hybrid model (first-principles combined with DNN) as shown in Eq. (4.3) is developed with

the following form:

ẋh = Fh(xh, u) = fh(xh) + gh(xh)u (4.15)

such that

fh(xh) = f̃(xh) +D(xh, θ) (4.16)

gh(xh) = g̃(xh) (4.17)

where xh ∈ Rn is the hybrid model state vector and u ∈ Rm is the manipulated input vector.

Throughout the manuscript, we use x to represent the state of the system in Eq. (4.1) and xh is

the state obtained using the hybrid model of Eq. (4.15). Also, to ensure that the hybrid model of

Eq. (4.15) has the same steady-state as the original system of Eq. (4.1), the generalization error

needs to be bounded within the operating region as shown in Eq. (4.12). Additionally, we assume

that there exists a CLF V and a stabilizing controller u = Φh(x) ∈ U that renders the origin of the

hybrid model of Eq. (4.15) asymptotically stable.

Now, by the universal approximation theorem, DNNs are able to model any continuous nonlin-

ear functions on compact subsets of the state-space Rn with sufficient number of neurons. Further-

more, D(xh, θ) is the output of a series of nonlinear transformations involving inputs to the DNN,

weights and biases. We choose activation functions that are Lipschitz continuous in the compact

subset within which the DNN training data is collected, such as tanh. All hidden layers and out-

put layer of the DNN model use tanh as the activation function, therefore making the DNN also

Lipschitz continuous. Now, assuming F̃ to be continuous, this leads to the conclusion that Fh is

also continuous.

4.1.1.4 Characterization of Domain of Applicability (DA)

As mentioned previously, we utilize a training set S to build the hybrid model as shown in Eq.

(4.15). Ideally, the DA of the hybrid model would span the entire set S. But in order to build a

95

Control Barrier function (CBF), we need two sets of points. One set for defining the DA region

and the other for defining the ‘not DA’ region. Therefore, we divide the training set S into two

sets D and U such that D is considered as DA, and U is outside D. A Control Lyapunov Barrier

function (CLBF)-based predictive controller based on hybrid model will be developed to ensure

the closed-loop stability while avoiding U .

Now, D ⊂ Rn is the DA within which the performance of the hybrid model is satisfactory, and

U is the region outside the DA of hybrid model such that U ∩ D = ∅ and {0} ⊂ D. The objective

is to design a controller such that the system in Eq. (4.1) is stable and remains within D in the

following sense:

Definition 1. Consider the system of Eq. (4.1). If there exists a control law u = Φ(x) ∈ U such

that for any initial state x(t0) = x0 ∈ D, x(t) remains inside D, ∀t ≥ 0 and the origin of the

closed-loop system of Eq. (4.1) can be rendered asymptotically stable, we say that the control law

u = Φ(x) maintains the process state within DA at all times.

4.1.1.5 Control Barrier function (CBF)

Following the definition on stability and DA guarantees, the definition of a CBF is as follows:

Definition 2. Given a set of points outside the DA in state space U , a C1 function B(x) : Rn → R

is a CBF if it satisfies the following properties:

B(x) > 0 ∀x ∈ U , (4.18a)

LfB(x) ≤ 0 ∀x ∈ {z ∈ Rn\U|LgB(z) = 0}, (4.18b)

XB := {x ∈ Rn|B(x) ≤ 0} 6= ∅ (4.18c)

4.1.1.6 Stabilization and DA guarantees via CLBF

We utilize the method proposed in [160], where it has been shown that if a CLBF Wc(x) exists

for the system of the form Eq. (4.1), then there exists a controller of the form Eq. (4.14) with

Wc(x) replacing V that guarantees both safety and stability. But in our work, we design a CLBF

96

controller that provides stability and gives guarantees on DA instead of safety.

Definition 3. Given a set of points U in state space i.e., ‘not DA’ of the hybrid model, a C1 function

Wc(x) : Rn → R, which is proper and lower-bounded, is a CLBF if it has a minimum at the origin

and satisfies the following properties:

Wc(x) > ρc, ∀x ∈ U ⊂ φuc (4.19a)∣∣∣∣∂Wc(x)

∂x

∣∣∣∣ ≤ r(|x|) (4.19b)

LfhWc(x) < 0, ∀x ∈ {z ∈ φuc\(U ∪ {0} ∪ Xe)|LghWc(z) = 0}, (4.19c)

Uρc := {x ∈ φuc|Wc(x) ≤ ρc} 6= ∅ (4.19d)

φuc\(U ∪ Uρc) ∩ U = ∅ (4.19e)

where ρc ∈ R, and Xe := {x ∈ φuc\(U ∪ {0})|∂Wc(x)/∂x = 0} is a set of states where

LfhWc(x) = 0 (for x 6= 0) due to ∂Wc(x)/∂x = 0.

Under a stabilizing control law Φh(x) i.e., Eq. (4.14) with Wc replacing V , φuc is defined to

be the union of the origin, Xe and the set where the time-derivative of Wc(x) is negative with con-

strained input: φuc = {x ∈ Rn|Ẇc(x(t),Φh(x)) = LfhWc +LghWcu < −α|Wc(x)−Wc(0)|, u =

Φh(x) ∈ U} ∪ {0} ∪ Xe, and α is a positive real number used to characterize the set φuc. Also, we

define the set of initial conditions by XWc := {x ∈ φuc\U} where ({0} ∪ Xe) ∈ XWc . The control

law u = Φh(x) ∈ U that renders the origin exponentially stable within an open neighborhood φuc

is assumed to exist for the hybrid model of Eq. (4.3) such that there exists a C1 constrained CLBF

function Wc(x) that has a minimum at the origin and satisfies the following equations ∀x ∈ φuc:

ĉ1|x|2 ≤ Wc(x)− ρ0 ≤ ĉ2|x|2 (4.20a)

∂Wc(x)

∂x
Fh(x,Φh(x)) ≤ −ĉ3|x|2,∀x ∈ φuc\Bδ(xe) (4.20b)∣∣∣∣∂Wc(x)

∂x

∣∣∣∣ ≤ ĉ4|x| (4.20c)

97

where ĉ1, ĉ2, ĉ3, ĉ4 are positive real numbers, Bδ(xe) is a small neighborhood around xe ∈ Xe,

and Wc(0) = ρ0 is the global minimum value of Wc(x) in φuc. Additionally, assuming continuity

and smoothness for system in Eq. (4.1), there exists positive constants M,Lx, L
′
x such that the

following equations hold

|F (x, u)| ≤M (4.21a)

|F (x, u)− F (x′, u)| ≤ Lx|x− x′| (4.21b)∣∣∣∣∂Wc(x)

∂x
F (x, u)− ∂Wc(x

′)

∂x
F (x′, u)

∣∣∣∣ ≤ L′x|x− x′| (4.21c)

A constrained CLBF that satisfies Eq. (4.19) can be constructed following the method in [160],

wherein a CLF and CBF are constructed separately and then combined together.

Consider the hybrid model as shown in Eq. (4.3) with a constrained CLBF function as shown

in Eq. (4.19). Assuming a bounded U , i.e., ‘not DA’ region, we derive simultaneous stability and

DA guarantees for the hybrid model. In the scenario of a bounded U , there exist stationary points

Xe such that the continuous controller cannot render the origin exponentially stable. This problem

can be tackled by designing them as saddle points and implementing discontinuous control actions

such that the state of the system moves away from them in the direction of Wc(x). In the following

theorem we show that the hybrid model of Eq. (4.3) can be rendered exponentially stable at the

origin using the control law based on constrained CLBF function of Eq. (4.19) while guaranteeing

the state of the hybrid model system remains within its DA.

Theorem 1. Given a region U ‘not DA’ for hybrid model of Eq. (4.3) with input constraints u ∈ U ,

consider a constrained CLBF Wc(x) : Rn → R with minimum at origin. Then the feedback

control law Φh(x) guarantees that the closed-loop system stays in XWc and does not enter U for

all times for x(0) = x0 ∈ XWc . Additionally, the origin is rendered exponentially stable provided

discontinuous control actions i.e., u = ū(x) ∈ U are applied at saddle points xe such that Wc(x)

decreases.

Proof: We first show that x(t) /∈ U ,∀t ≥ 0 if x(0) = x0 ∈ XWc .

98

a) (i) Consider that x0 ∈ Uρc . According to the definition of φuc, it is guaranteed that Ẇc < 0

everywhere in XWc\(Xe ∪ {0}). (ii) If x ∈ (Xe ∪ {0}), then Ẇc = 0. Therefore, from (i) and

(ii), it follows that Ẇc ≤ 0, implying x(t) ∈ Uρc ∀t ≥ 0 if x0 ∈ Uρc . According to the definition

of Wc being proper and because of its property Ẇc ≤ 0, Uρc is a compact invariant set. Because

Uρc ∩ U = ∅, it follows that ∀x0 ∈ Uρc , x(t) /∈ U .

b) Next, we show that x(t) /∈ U ,∀t ≥ 0 if x(0) = x0 ∈ φuc\(Uρc ∪ U). For any x0 ∈

φuc\(Uρc ∪ U), Wc(x0) > ρc and Ẇc < 0 along the trajectory of x(t). Because of Eq. (4.19e), it

holds that any trajectory starting in φuc\(Uρc ∪U) will reach the boundary of φuc\(Uρc ∪U) before

reaching U), and that φuc\(Uρc ∪ U) ∩ Uρc is a nonempty set. Therefore, since Wc(x) > ρc within

φuc\(Uρc ∪ U) and Wc(x) ≤ ρc within Uρc from Eq. (4.19d), Wc(x) = ρc, ∀x ∈ ∂φuc\(Uρc ∪ U)

due to the continuity property of Wc. This means that the trajectory after reaching the boundary of

φuc\(Uρc ∪ U) will enter Uρc and remain there. This concludes the proof that x(t) /∈ U ,∀t ≥ 0 if

x(0) = x0 ∈ XWc .

c) However, exponential stability of the origin is not guaranteed when using the controller

u = Φh(x) ∈ U because it is possible that the state of the hybrid model could converge to a

saddle point xe instead of the origin. In order to overcome this issue, continuous control actions

(i.e., ū ∈ U) need to be implemented at the saddle point xe such that the state of the hybrid

model moves away from xe in the direction of decreasing Wc. These control actions ū need to be

calculated in advance and applied when necessary.

From a), b), and c), it is concluded that the feedback control law Φh(x) guarantees that the state

of the hybrid model stays in XWc and does not enter U for all times for x(0) = x0 ∈ XWc .

4.1.1.7 Design of constrained CLBF

In this section, the method for constructing a constrained CLBF is presented. Specifically, a

constrained CLBF can be constructed by combining a CLF and CBF which satisfies the constraints

of Eq. (4.19). The following definition gives the guidelines as developed in [165], for choosing

the CLF and CBF, and the corresponding weights that renders that Wc(x) has a global minimum

at the origin.

99

Definition 4. Given a region U ‘not DA’ for nominal system of Eq. (4.1), assume that there exists

a C1 function V : Rn → R+, and a C1 function B : Rn → R, such that:

c1|x|2 ≤ V (x) ≤ c2|x|2, ∀x ∈ Rn, c2 > c1 > 0 (4.22)

U ⊂ H ⊂ φuc, 0 /∈ H (4.23)

B(x) = −η < 0, ∀x ∈ Rn\H; B(x) ≥ −η, ∀x ∈ H; B(x) > 0 ∀x ∈ U (4.24)

where H is a compact and connected set inside φuc. Define Wc(x) to have the form Wc(x) :=

V (x) + µB(x) + ν, where : ∣∣∣∣∂Wc(x)

∂x

∣∣∣∣ ≤ r(|x|) (4.25)

LfhWc(x) < 0, ∀x ∈ {z ∈ φuc\(U ∪ {0} ∪ Xe)|LghWc(z) = 0} (4.26)

µ >
c2c3 − c1c4

η
, (4.27a)

ν = ρc − c1c4, (4.27b)

c3 := max
x∈∂H

|x|2 (4.27c)

c4 := min
x∈∂U
|x|2 (4.27d)

then for initial states x0 ∈ φuc\UH, where UH := {x ∈ H|Wc(x) > ρc}, the control law Φh(x)

with Wc(x) replacing V (x) guarantees that the closed-loop system’s state is bounded in φuc\UH

and does not enter the region UH for all times.

4.1.1.8 CLBF-based model predictive control

In this section, a CLBF-MPC is designed using the hybrid model to optimize process perfor-

mance while driving the process states to a small bound around the origin. First, we show that

the stability and DA guarantees of Theorem 1 hold for the original system of Eq. (4.1) using the

controller u = Φh(x) which is designed for the hybrid model system. Next, the CLBF-MPC

formulation is presented which drives the state of the original system of Eq. (4.1) to a small neigh-

100

Figure 4.1: Simple schematic representing the various sets Uρc , Uρmin , Uρs and the bounded region
U which is ‘not DA’ of the hybrid model.

borhood around the origin under sample-and-hold implementation as shown in Figure 4.1.

Proposition 1. Consider the original system of Eq. (4.1), and assuming the hybrid model system

of Eq. (4.15) has the same initial condition as the system in Eq. (4.1) (i.e., x(0) = xh(0)), there

exists a positive constant k such that following inequality hold:

Wc(x) ≤ Wc(xh) +
ĉ4

√
ρc − ρ0√
ĉ1

(δoTe
Lt) + k(δoTe

Lt)2 (4.28)

Proof: Since Wc(x) is a continuous function and bounded on compact sets, Taylor series is used

to expand it around xh such that

Wc(x) ≤ Wc(xh) +
∂Wc(xh)

∂x
|x− xh|+ k|x− xh|2 (4.29)

In Taylor series expansion there exist higher order terms but in our work we bound our expansion

using the term k|x− xh|2. From Eqs. (4.20a) and (4.20c) we obtain

Wc(x) ≤ Wc(xh) +
ĉ4

√
ρc − ρ0√
ĉ1

|x− xh|+ k|x− xh|2 (4.30)

101

The above equation can be further simplified using Eq. (4.12) as follows

Wc(x) ≤ Wc(xh) +
ĉ4

√
ρc − ρ0√
ĉ1

(δoTe
Lt) + k(δoTe

Lt)2 (4.31)

This completes the proof.

Proposition 2. Consider the original system of Eq. (4.1) under the controller u = Φh(x) with

a bounded region U i.e., ‘not DA’ of the hybrid model in Eq. (4.15). Then the stability and DA

guarantees of Theorem 1 also hold for the original system of Eq. (4.1) under u = Φh(x) ∈ U and

u = ū(x) ∈ U given that Eq. (4.32) is satisfied under discontinuous control actions u = ū(x) ∈ U

when x(tk) = xh(tk) ∈ Bδ(xe).

Wc(xh(t)) < Wc(xh(tk))−
ĉ4

√
ρc − ρ0√
ĉ1

(δoTe
L(t−tk))− k(δoTe

L(t−tk))2,∀t > tk (4.32)

Proof: First, to show that the origin of the original system of Eq. (4.1) can be rendered exponen-

tially stable under u = Φh(x), we prove that Ẇc(x) ≤ 0 ∀x ∈ φuc\Bδ(xe) as follows

Ẇc =
∂Wc(x)

∂x
F (x,Φh(x)) =

∂Wc(x)

∂x
(Fh(x,Φh(x)) + F (x,Φh(x))− Fh(x,Φh(x))) (4.33a)

=
∂Wc(x)

∂x
(Fh(x,Φh(x))) +

∂Wc(x)

∂x
(F (x,Φh(x))− Fh(x,Φh(x))) (4.33b)

(Using Eqs. (4.20b), (4.20c), assuming |F (x, u)− Fh(x, u)| ≤ γ|x|) (4.33c)

≤ −ĉ3|x|2 + ĉ4|x|γ|x| (4.33d)

≤ −ĉ3|x|2 + ĉ4γ|x|2 (4.33e)

Assuming γ < ĉ3/ĉ4 implies that Ẇc ≤ 0 ∀x ∈ φuc\Bδ(xe). Next, we show that at the saddle

points, discontinuous control actions u = ū(x) ∈ U can drive the state of the original system away

from the saddle points in the direction of decreasing Wc(c). Assuming that the state of the original

system enters a neighborhood around the saddle points at t = tk such that xh(tk) = x(tk) ∈ Bδ(xe),

Eq. (4.32) holds true for discontinuous control actions ū(xh).

102

Then ∀t > tk, using Eq. (4.31), we get the following:

Wc(x(t)) ≤ Wc(xh(t)) +
ĉ4

√
ρc − ρ0√
ĉ1

(δoTe
L(t−tk)) + k(δoTe

L(t−tk))2 (4.34a)

Wc(x(t))− ĉ4

√
ρc − ρ0√
ĉ1

(δoTe
L(t−tk))− k(δoTe

L(t−tk))2 ≤ Wc(xh(t)) (4.34b)

(Using Eq. (4.32))

Wc(x(t))− ĉ4

√
ρc − ρ0√
ĉ1

(δoTe
L(t−tk))− k(δoTe

L(t−tk))2 < Wc(xh(tk))

− ĉ4

√
ρc − ρ0√
ĉ1

(δoTe
L(t−tk))− k(δoTe

L(t−tk))2 (4.34c)

Wc(x(t)) < Wc(xh(tk)) (4.34d)

From Eq. (4.34), we can conclude that the state of the original system will move away from the

saddle points in the direction of decreasing Wc(x) provided that the discontinuous control actions

satisfy Eq. (4.32). Using the results from Eqs. (4.33)-(4.34), we can conclude that the closed-loop

state of the original system can be driven to the origin using the control actions u = Φh(x) ∈ U

and u = ū(x) ∈ U while avoiding the region U .

4.1.1.9 Sample-and-hold implementation

In this section, we derive the stability properties of the CLBF-based controller under sample-

and-hold implementation. Specifically, we show that the closed-loop state of the original system

is bounded in Uρc and will be driven to a small neighborhood around the origin Uρmin . The control

actions of u = Φh(x) ∈ U and u = ū(x) ∈ U are implemented in sample-and-hold fashion

i.e., ∀t ∈ [tk, tk+1), u(t) = u(tk), where tk+1 = tk + ∆, and ∆ is the sampling period of the

CLBF-MPC.

Proposition 3. Consider the original system of Eq. (4.1) under the sample-and-hold implementa-

tion of controller u = Φh(x) and u = ū(x) ∈ U with a bounded region U i.e., ‘not DA’ of the

hybrid model in Eq. (4.15). Given that Eq. (4.32) is satisfied under sample-and-hold implemen-

tation of discontinuous control actions u = ū(x) ∈ U when x ∈ Bδ(xe), and there exist εw > 0,

103

∆ > 0, ρ > ρmin > ρh > ρs such that

− −ĉ3 + ĉ4γ

ĉ2

(ρs − ρ0) + L′xM∆ ≤ −εw (4.35)

ρh := max{Wc(xh(t+ ∆))|xh(t) ∈ Uρs , u ∈ U} (4.36)

ρmin ≥ ρh +
ĉ4

√
ρc − ρ0√
ĉ1

(δoTe
L∆) + k(δoTe

L∆)2,∀t > tk (4.37)

then Wc(x(t)) decreases within every sampling period, and thus, the state of the system remains in

Uρ for all times and is ultimately bounded in Uρmin .

Proof: Assuming x(tk) = xh(tk) ∈ Uρ\Uρs , the time derivative ofWc(x(t)) for the original system

of Eq. (4.1) is shown below:

Ẇc(x(t)) =
∂Wc(x(t))

∂x
F (x(t),Φh(x(tk))) (4.38a)

Ẇc(x(t)) =
∂Wc(x(tk))

∂x
F (x(tk),Φh(x(tk))) +

∂Wc(x(t))

∂x
F (x(t),Φh(x(tk))) (4.38b)

− ∂Wc(x(tk))

∂x
F (x(tk),Φh(x(tk))) (4.38c)

Using Eqs. (4.20),(4.21), and (4.33), we obtain

Ẇc(x(t)) = −−ĉ3 + ĉ4γ

ĉ2

(ρs − ρ0) + L′xM∆ (4.39)

The above equation does not hold around the neighborhood of saddle pointsBδ(xe) since Eqs. (4.20)

and (4.33) may not be valid there. Using Eq. (4.39) and assuming Eq. (4.35) holds true, we obtain

the following equation ∀x(tk) ∈ Uρ\Uρs and t ∈ [tk, tk+1):

Ẇc(x(t)) ≤ −εw (4.40)

The above equation ensures that the closed-loop state of the original system stays within Uρ un-

der sample-and-hold implementation. Also, if Eq. (4.32) is satisfied under sample-and-hold im-

104

plementation of discontinuous control actions u = ū(x) ∈ U , it is proven in Eq. (4.34) that

Wc(x(t)) < Wc(x(tk)) holds true for the original system of Eq. (4.1), ∀t > tk. Therefore, under

sample-and-hold implementation the state of the original system leaves the neighborhood around

saddle points.

Finally, we show that once the state enters Uρs i.e., x(tk) = xh(tk) ∈ Uρs , it is bounded within

Uρmin for the remaining time t ≥ tk. Eq. (4.36) states that Uρh is the largest level set of Wc(xh) that

the state of the hybrid model can reach starting from Uρs within one sampling period. Additionally,

according to Eq. (4.37), Uρmin is the largest level set of Wc(x) based on the state of the original

system when the hybrid model state xh is bounded in Uρh . Since, Ẇc(x(t)) ≤ −εw may not always

hold true in Uρs under the sample-and-hold implementation of u = Φh(x) ∈ U , the sets Uρh

and Uρmin are defined to guarantee that the states of the original system and the hybrid model are

bounded around the origin in a neighborhoods that are bigger than Uρs .

This completes the proof that the state of the original system stays within the DA and is

bounded within Uρ for all times, and is ultimately driven to Uρmin under the sample-and-hold

implementation of the controller u = Φh(x) and u = ū(x) ∈ U .

4.1.1.10 Mathematical formulation of CLBF-MPC

The optimization problem solved in the CLBF-MPC is as follows:

J = min
u∈S(δ)

∫ tk+N

tk

L(xh(t), u(t))dt, (4.41a)

s.t. ẋh(t) = Fh(xh(t), u(t)), (4.41b)

xh(tk) = x(tk), (4.41c)

u(t) ∈ U,∀t ∈ [tk, tk+N), (4.41d)

Ẇc(x(tk), u(tk)) ≤ Ẇc(x(tk),Φh(tk)), (4.41e)

if x(tk) /∈ Bδ(xe) and Wc(x(tk)) > ρh

Wc(xh(t)) ≤ ρh,∀t ∈ [tk, tk+N), (4.41f)

if Wc(x(tk)) ≤ ρh

105

Wc(xh(t)) < Wc(x(tk))−
ĉ4

√
ρc − ρ0√
ĉ1

(δoTe
L(t−tk))− k(δoTe

L(t−tk))2,∀t ∈ (tk, tk+N), (4.41g)

if x(tk) ∈ Bδ(xe)

where xh(t) is the predicted state from the hybrid model, N is the number of sampling times in

the prediction horizon, and S(∆) is the set of piece-wise constant functions with sampling period

∆. Eq. (4.41a) is the objective function of the MPC optimization problem which is usually in a

quadratic form i.e., xThQxh + uTRu, where Q and R are positive definite matrices. Eq. (4.41b) is

the hybrid model and Eq. (4.41d) are the input constraints. Eqs. (4.41e)-(4.41g) ensure closed-loop

stability and DA guarantees for the system of Eq. (3.13).

Theorem 2. Consider the original system of Eq. (4.1) with a constrained CLBF Wc that satisfies

Eq. (4.19) and has a minimum at the origin. For any x0 ∈ Uρ, it is guaranteed that CLBF-MPC

optimization problem of Eq. (4.41) can be solved with recursive feasibility for all times. Also,

under the sample-and-hold implementation of CLBF-MPC using the hybrid model that satisfy the

conditions in Proposition 3, it is guaranteed that the state is bounded in Uρ ∀t ≥ 0 for any x0 ∈ Uρ

and is ultimately bounded in Umin.

Proof: The proof consists of two parts. In first part we show the recursive feasibility of the CLBF-

MPC optimization problem. In second part we prove the simultaneous stability and DA guarantees

of the original system Eq. (4.1) under the CLBF-MPC which utilizes a hybrid model of Eq. (4.3).

Part 1: In Propositions 1-3, it has been shown that the controller u = Φh(x) ∈ U and

u = ū(x) ∈ U under sample-and-hold implementation satisfy the CLBF-MPC constraints of

Eqs. (4.41e)-(4.41g). Specifically, the control actions u = Φh(x) ∈ U and u = ū(x) ∈ U satisfy

the input constraint of Eq. (4.41d). Eq. (4.41e) is satisfied by letting u(tk) = Φh(x(tk)) when

x(tk) ∈ Uρ\Bδ(xe) ∪ Uρh . Also, it is shown in Proposition 3 that once the state enters Uρs under

the controller u = Φh(x) ∈ U , it will not leave Uρh within one sampling time for any u ∈ U .

Therefore the constraint of Eq. (4.41f) is satisfied. Lastly, the constraint of Eq. (4.41g) is satisfied

as the control actions u = ū(x) ∈ U are designed to take the state of the system away from the

106

saddle points Bδ(xe). This completes the proof of recursive feasibility of the optimization problem

in Eq. (4.41).

Part 2: The proof for closed-loop stability and DA guarantees is presented here. Given x0 ∈

Uρ\Uρh , Eq. (4.41e) drives the state towards the origin. If a saddle point is encountered then

Eq. (4.41g) becomes active and moves the state away from the saddle point in the direction of

decreasing Wc(x). Once the state moves away from the neighborhood of the saddle points Bδ(xe),

then closed-loop stability and DA guarantees are obtained using Eqs. (4.41e)-(4.41f). This means

that the state of the system stays in Uρ for all times and ultimately converges to Uρmin . This

completes the proof of simultaneous stability and DA guarantees of the original system Eq. (4.1)

under the CLBF-MPC.

4.1.2 Application to a CSTR

In this section, a CSTR example is utilized to show the effectiveness of the proposed CLBF-

MPC controller which utilizes a deep hybrid model for predicting the states of the system. We

consider a well mixed, nonisothermal CSTR where an irreversible and exothermic reactionA→ B

takes place with second order kinetics. The dynamics of the CSTR system is explained using based

on mass and energy conservation laws as shown below:

dCA
dt

=
F

V
(CA0 − CA)− k0exp(−

E

RT
)C2

A (4.42)

dT

dt
=
F

V
(T0 − T) +

−∆H

ρLCp
k0exp(−

E

RT
)C2

A +
Q

ρLCpV
(4.43)

where CA is the concentration of reactant A in the CSTR, F is the volumetric flow rate of feed,

V is the volume of the CSTR, CA0 is the concentration of reactant A in the feed, k0 is the pre-

exponential constant, E is the activation energy, R is the ideal gas constant, T is the temperature

of the CSTR, T0 is the temperature of the feed, ∆H is the enthalpy of reaction, ρL is the density of

reacting liquid, Cp is the heat capacity of the reacting liquid, and Q is heat input rate. The values

of these parameters are shown in Table 4.1.

107

F = 5 m3/hrK
V = 1 m3

k0 = 8.46 ∗ 106m3/kmol hr
E = 5 ∗ 104 kJ/kmol
R = 8.314 kJ/kmol K

∆H = −1.15 ∗ 104 kJ/kmol
ρL = 1000 kg/m3

Cp = 0.231 kJ/kg K
T0 = 300 K

Table 4.1: Parameters used in CSTR system.

The set-point for the CLBF-MPC controller is (CAs, Ts) =(1.95 kmol/m3, 402 K) which is

the unstable steady state of the CSTR system. The manipulated inputs are the feed concentration of

CA0 and the heat input rate Q. The limits on the manipulated input are as follows: 0.5 kmol/m3 ≤

CA0 ≤ 7.5 kmol/m3 and −5 ∗ 105 kJ/hr ≤ Q ≤ 5 ∗ 105 kJ/hr. The states and the inputs of

the closed-loop CLBF-MPC controller are xT = [CA − CAs T − Ts] and u = [CA0 Q] such that

(x∗s, u
∗
s) = (0, 0). The sampling time for the controller is 0.01 hr and the integration time-step to

solve the ODEs is 10−3 hr.

To build a deep hybrid model, it is assumed that the available first-principles model of the

CSTR is as follows:
dCA
dt

=
F

V
(CA0 − CA)− C2

A (4.44)

dT

dt
=
F

V
(T0 − T) +

−∆H

ρLCp
C2
A +

Q

ρLCpV
(4.45)

Numerous open loop simulations of the original system as shown in Eqs. (4.42)-(4.43) are per-

formed to generate the training data. Specifically, different initial conditions are considered in the

state-space and inputs within the constraints (i.e., u ∈ U) are implemented such that the generated

training data set is large enough to represent the operating region. Next, a DNN D(x) is con-

structed using 2 hidden layers with 50 neurons each. The two hidden layers have leaky rectified

linear unit and linear unit as their activation functions, respectively. Using this DNN, the equations

for the proposed deep hybrid model are as follows:

108

dCA
dt

=
F

V
(CA0 − CA)− C2

A +D(T)C2
A (4.46)

dT

dt
=
F

V
(T0 − T) +

−∆H

ρLCp
C2
A +

Q

ρLCpV
+
−∆H

ρLCp
D(T)C2

A (4.47)

Using Adam optimizer and an initial learning rate of 0.001, the DNN in the deep hybrid model was

trained. Figure 4.2 shows the comparison between the predictions from the deep hybrid model and

the true data for a given inputs and initial condition. From Figure 4.2 it is observed that the deep

Figure 4.2: Comparison of hybrid model predictions versus actual data.

hybrid model is well trained and can be utilized for building the CLBF-MPC controller.

The objective of the CLBF-MPC controller is to operate the CSTR system at the unstable

stead-state by identifying optimal control actions within the DA of the hybrid model. Usually,

predictions from the hybrid model are compared to the ‘true’ model but in real world chemical

applications the ‘true’ model is not available. Therefore, a different method needs to be adopted

to identify the DA. In order to identify the DA region for the developed deep hybrid model, the

109

knn technique is used. For each candidate training point, we identify 10 of its nearest neighbors,

and calculate the average Euclidean distance between the candidate point and its neighbors. A

tolerance of 0.01 is set for this average distance. Training points with average distance less than

the tolerance are considered as within the DA of the deep hybrid model, and training points with

average distance greater than the tolerance are considered as outside the DA. Figure 4.3 shows all

the training points within the operating region. The training points within the red curve were found

to lie outside the DA, and therefore, this small region is not included within the DA of the deep

hybrid model. The rest of the training points in the operating region are considered to be part of the

DA. The region not considered to be part of the DA of the deep hybrid model can is defined as U :=

Figure 4.3: Training data and the identified DA of the deep hybrid model.

{x ∈ R2|FU(x) = (x(1)−0.5897)2

0.91922
+ (x(2)+22.8613)2

88.38832
< 0.02}. Considering the practical considerations

such as the modeling error between the hybrid model and the actual system, we consider a slightly

110

larger region for U such that U := {x ∈ R2|FU(x) = (x(1)−0.5897)2

0.91922
+ (x(2)+22.8613)2

88.38832
< 0.03}. Using

this definition of U , the CBF is defined as follows:

B(x) =


e2 − e

FU (x)

FU (x)−0.03 , if x ∈ U

−e2, if x /∈ U
(4.48)

The CLF is constructed in the standard quadratic form of V (x) = xTPx such that P is as follows:

P =

1060 22

22 0.52

 (4.49)

Using the CLF V (x) and CBF B(x), the CLBF Wc(x) = V (x) + µB(x) + ν is constructed with

the values of the parameters as follows: ρ = 0, c1 = 0.1, c2 = 1061, c3 = 1190, c4 = 90,

ν = ρ− c1c4 = −9, and µ = 1.71 ∗ 105.

We choose a quadratic objective function for the CLBF-MPC in order to drive the system to

the defined set-point while minimizing the inputs i.e., concentration of A in feed as well as the heat

supplied/removed. The objective function is given as follows:

L(xh, u) = |xh(t)|2QL + |u(t)|2RL (4.50)

where the weight matrices QL and RL are as follows:

QL =

20 0

0 0.01

 (4.51)

RL =

0.1 0

0 0.05

 (4.52)

The MPC sampling time was 0.01 hr and the prediction horizon was chosen to be 15. The con-

strained nonlinear optimization was solved in MATLAB.

111

Figure 4.4: Closed loop trajectories of the original CSTR system using deep hybrid model-based
CLBF-MPC.

We first show the implementation of the CLBF-MPC in order to obtain an optimal input tra-

jectory that such that the close-loop state of the original CSTR system stays within the DA of

the deep hybrid model. In this regard, we select three initial conditions in the subset of Uρ̂ i.e.,

(2.95 kmol/m3, 362K), (2.95 kmol/m3, 347K), and (0.95 kmol/m3, 457K). Figure 4.4 shows

the closed-loop trajectory starting from these initial conditions under the CLBF-MPC controller.

Figure 4.5 and Figure 4.6 are the inputs implemented by the CLBF-MPC controller. Figure 4.4

shows that for any initial state within Uρ̂ (a subset of Uρ), the closed-loop states of the original

CSTR system stay within the DA of the deep hybrid model, avoid the region U . and ultimately

converge to Umin under the deep hybrid model-based CLBF-MPC.

112

Figure 4.5: Profile of concentration of A in feed for the three initial conditions under CLBF-MPC
controller.

Figure 4.6: Heat input profile for the three initial conditions under CLBF-MPC controller.

113

5. INCORPORATING PHYSICS IN REINFORCEMENT LEARNING-BASED CONTROL

5.1 Deep reinforcement learning control of hydraulic fractur-

ing∗

Hydraulic fracturing is performed for extraction of oil and gas from rocks that have low poros-

ity and low permeability [168]. This is achieved by first carrying out controlled explosions within

the formation to create initial fracture paths. Next, a fluid called pad is injected at high pressures to

extend the initial fracture paths, which is followed by injection of a fracturing fluid which consists

of water, additives, and proppant at high pressures in order to further extend these fractures into

the rock formation. Materials other than water have also been considered to enhance the produc-

tivity of the hydraulic fracturing process [169, 170, 171, 172]. Once pumping is stopped, these

fractures close due to the natural stresses in the rock formation as the fracturing fluid leaks into

the reservoir, leaving behind proppant in the fractures. The trapped proppant acts as a highly con-

ductive medium for easier extraction of oil and gas. The proppant concentration and the fracture

geometry are the two main factors that affect the efficiency of the hydraulic fracturing process.

To achieve the desired values for these attributes, it is necessary to design an optimal pumping

schedule. Many works have been conducted in this direction [173, 174, 4]. These works con-

sider this control problem in an open-loop formulation. Additionally, there have been efforts to

design model predictive control (MPC) schemes for hydraulic fracturing processes after advances

in real-time measurement techniques such as downhole pressure analysis and microseismic mon-

itoring [102, 5, 3, 175, 176, 177, 107, 178, 179]. A ROM-based feedback control system was

designed to maximize the net present value (NPV) of oil produced from a horizontal well before

gas breakthrough by computing optimal oil production profile [180]. An optimization framework

was developed to obtain optimal multi-size proppant pumping schedule that maximizes shale gas

∗Reprinted with permission from “Deep reinforcement learning control of hydraulic fracturing” by Bangi, M. S. F.,
and Kwon, J. S. 2021. Comput. Chem. Eng., 154, 107489, Copyright 2021 Elsevier.

114

production from unconventional reservoirs using the MP-PIC model [181]. The effect of varying

proppant diameters across pumping stages on shale gas production was modeled to obtain opti-

mal pumping schedule that maximizes cumulative shale gas production volume [182]. A control

framework was proposed to incorporate sustainability considerations in hydraulic fracturing via

the removal of total dissolved solids (TDS) in flowback water from fractured wells using ther-

mal membrane distillation [183]. A novel model-based controller was developed to maximize the

net profit from shale gas development while keeping the total cost associated with water man-

agement to a minimum [184]. For efficient and sustainable water management, a comprehensive

study was conducted to better understand freshwater consumption and flowback and produced

water production for shale gas wells to expand and upgrade the existing water and shale gas net-

work [185]. An optimization model was developed which uses ‘enhanced gas recovery by carbon

dioxide (CO2) injectionâĂŹ (EGR-CO2) technology to identify the optimal shale gas supply chain

network configuration in a MILP problem that maximizes the profit obtained from shale gas pro-

duction [186]. An optimal pumping schedule was designed to obtain optimal fracture geometry

and proppant concentration in a fracture which was obtained using a non-Newtonian high-viscosity

gel [187]. However, these model-based control systems require an accurate model which is dif-

ficult to build given the various uncertainties in the rock formation and is an ongoing research

area [188, 189, 190, 118, 97, 191, 151, 192]. Additionally, the performance of a MPC system

depends on its tuning parameters, and the accuracy of the process model. It is a common practice

to continuously monitor the controller’s performance and begin a model re-identification process

or re-tune the parameters of the controller in case the controller performance degrades, which is

time-consuming and is resource intensive. To summarize, there are two challenges with designing

a model-based controller for hydraulic fracturing process: a) Its first principles model involves

highly-coupled partial differential equations (PDEs) with moving boundaries which are computa-

tionally expensive to solve at each sampling time, and b) Regular re-tuning of controller and model

parameters.

To address the limitations of a model-based controller, we design a model-free data-based con-

115

troller suitable for nonlinear chemical processes, specifically for hydraulic fracturing, by combin-

ing concepts from reinforcement learning (RL) and deep learning (DL). RL is a branch of machine

learning which deals with solving complex decision making problems, and it involves an agent

which interacts with the environment (process) to derive an optimal policy in order to reach the

desired target [193, 194]. RL has delivered tremendous success in computer games [195, 196],

board games [197, 198], robotics [199, 200], etc. Furthermore, developments in DL have enabled

its combination with RL, which has achieved huge success such as AlphaGo defeating human

champions in the game Go [201]. Another RL algorithm called deep-Q-network (DQN) [195]

has achieved the human level performance in Atari video games. Despite its success in other do-

mains, application of RL to process control has been very limited [202, 203, 204, 205, 206, 148]

even though many process control problems can be defined as Markov decision processes (MDPs)

[207]. The challenge is the lack of RL algorithms that can efficiently deal with continuous state

and action spaces, which is usually the case with process control applications. It is possible to

discretize and use Dynamic programming (DP) to obtain a solution to the RL problem in such

cases, but there is an exponential growth in computational complexity with respect to the number

of states and actions which is referred to as the curse of dimensionality [208]. Approximate dy-

namic programming (ADP) was proposed, which utilizes simulations and function approximators

to overcome this challenge (i.e., curse of dimensionality). In addition to ADP, many other RL

algorithms have been proposed for continuous-time nonlinear systems [209, 210]. But these algo-

rithms require high-accuracy models that are either available or that can be identified using system

identification methods. Given the limitations of model-based RL methods, several data-based RL

methods have been proposed, which come with their own limitations [207]. The recent success of

combining RL with DL has led to a resurgence of interest in data-based RL for continuous state

and action spaces.

In this work, we design a deep reinforcement learning (DRL) controller which is based on

actor-critic approach and temporal difference (TD) learning [149, 211]. The actor (controller) in-

teracts with the process iteratively and implements control actions that give maximum rewards.

116

The critic, as the name suggests, evaluates the control policy followed by the actor and modifies it

to achieve the optimal policy. In the DRL controller, the actor and the critic are both represented by

two deep neural networks (DNNs) in order to effectively generalize them for continuous-time vari-

ables. The DRL controller also utilizes deep deterministic policy gradient (DDPG) algorithm [212]

which is usually used for continuous action spaces. We also utilized concepts such as replay mem-

ory (RM), target networks and constrained action spaces to make learning more suitable for com-

plex systems like hydraulic fracturing [200]. Replay memory (RM) is used to break the temporal

correlation between two consecutive experiences obtained from the process. Without the RM, the

DRL controller will learn from temporally correlated tuples of online data which will lead to in-

efficient learning. Taking random experiences from the RM breaks this correlation, and hence,

speeds up the learning process. Target networks are separate networks used to stabilize the learn-

ing process by providing stable targets to the actor and the critic networks. At the beginning of the

learning process, these networks are initialized as the copies of the actor and the critic networks,

and during the learning process their parameters are constrained to change slowly, which enhances

their stability. Action spaces are to RL what control input spaces are to process control. The re-

lationship between the controller’s action in the DRL framework and the control input from the

process control perspective is direct. The DRL controller traverses the action space to obtain an

optimal control policy for the defined control problem. In order to enforce constraints on the action

space, we included an action-based reward function in the overall reward calculation. Also, based

on the prior knowledge about the process from the literature, we know that the optimal solution

should follow a monotonically increasing profile [173]. But Nolte’s power law pumping schedule

is practically infeasible to implement. Hence, a step-wise increasing profile which is practical to

implement is desired from the DRL controller. This can be obtained by enforcing a constraint on

the amount of change in two consecutive inputs. We include this information in the overall reward

function. Additionally, we utilized Principal Component Analysis to reduce the dimension of the

RL state before using it in the learning of the actor and the critic. Transforming the RL state to the

reduced PCA space helped in faster learning of the control policy. Moreover, we utilized transfer

117

learning wherein the DRL controller learns offline using a data-based reduced-order model (ROM)

first and then learns online from the process. We summarize the novelty of our framework as

follows [150]: 1) We propose to use a data-based model-free DRL controller for control of a hy-

draulic fracturing process which is a complex moving-boundary system and is difficult to develop

a highly accurate model; 2) We propose to utilize PCA in the DRL control framework to reduce the

dimension of the RL state; 3) We propose a cumulative reward function to handle various process

constraints of the hydraulic fracturing process; and 4) We propose the use of transfer learning for

the DRL controller to reduce the online learning time.

5.1.1 Background

5.1.1.1 Reinforcement learning

In RL framework, an agent interacts with the environment E at its current state st by imple-

menting control action at and receiving a reward of rt. The cumulative future discounted reward

is given by

Rt =
∞∑
k=0

γkrt+k (5.1)

where the discount factor is 0 < γ ≤ 1. The expected return Q after implementing action at on

state st is defined as

Q(s, a) = E[Rt

∣∣st = s, at = a] (5.2)

The optimal action-value is defined as the maximum expected return after implementing action at

on state st, and is given as

Q∗(s, a) = maxE[Rt

∣∣st = s, at = a] (5.3)

The optimal action-value Q∗ can be calculated by iteratively solving the Bellman equation which

is shown below:

Q∗(s, a) = maxE[r + γmaxQ∗(s′, a′)
∣∣s, a] (5.4)

118

where s′ and a′ are the subsequent state and action, respectively. Overall, the solution to a RL prob-

lem is obtained by implementing control actions on the environment and by learning an optimal

control policy by receiving data from it.

5.1.2 Actor-Critic framework

The actor-critic framework is a widely used RL algorithm as it can be generalized to systems

with continuous spaces. It has two components, i.e., the actor and the critic. The actor finds an

optimal policy, and the job of the critic is to evaluate the policy calculated by the actor. With

each iteration of learning, the actor is updated by the policy gradient theorem by adjusting the

parameters of the policy function which can be represented using function approximators like

neural networks. The critic estimates the action-value function Q which can be represented using

a neural network and its parameters are updated using stochastic gradient descent (SGD) method

such that the Bellman optimality condition is reached. A schematic diagram of the actor-critic

algorithm is shown in Figure 5.1.

Figure 5.1: A schematic of the actor-critic framework.

5.1.3 Deep reinforcement learning (DRL) controller

The DRL controller [149] is a model-free controller based on the actor-critic framework. It

utilizes two DNNs; one to generalize the actor in the continuous state space, and the other to

119

generalize the critic in the continuous state and action spaces.

5.1.3.1 States and actions

Let ut and yt be the input applied on the system at time t and output from the system, re-

spectively. The RL action at is same as the input ut as understood from a control perspective.

Therefore, at = ut. But the relationship between RL state st ∈ S and the state of the system

is different as the RL state st should contain information about the system deemed necessary for

the successful working of the RL controller. An example of a RL state definition can contain past

outputs and the current deviation from the set-point as shown below:

st := [yt, yt−1, ...yt−dy , (yt − ysp)] (5.5)

where dy is the number of past outputs to be included in the DRL controller. The state of the system

is initialized as y0 in every episode, and ysp is the defined set-point for the controller. During the

learning process, in every episode, and at every time step, the RL state s is updated as we obtain

measurements from the system. Additionally, the RL controller computes a deterministic control

policy µ for each state st ∈ S such that µ : S → A, where at ∈ A.

5.1.3.2 Reward functions

The goal of the RL controller is to reach the set-point using an optimal policy µ that maximizes

the aggregate reward that the agent gains from the system. Two examples of reward functions

r : S × A× S → < are shown below:

r(st, at, st+1) =


c if |yi,t − yi,sp| ≤ ε

−
∑n

i=1 |yi,t − yi,sp| otherwise
(5.6)

r(st, at, st+1) =


0 if |yi,t − yi,sp| > |yi,t+1 − yi,sp| ∀i ∈ {1, ...n}

−1 otherwise
(5.7)

120

where yi,t is the ith output, yi,sp is the set-point for the ith output, yi,t+1 is the subsequent ith

output, and ε is the user defined. As per Eq. (5.6), the agent receives a reward of c > 0 only

if all the outputs are within the tolerance limit. The reward function of Eq. (5.6) leads to faster

tracking but has the disadvantage of obtaining an aggressive control strategy. On the other hand,

Eq. (5.7), a polar reward function, assigns a reward of 0 if the deviation from the set-point is

monotonically decreasing for all n outputs at each sampling time, and assigns a reward of -1

otherwise. This reward function incentivizes gradual improvement towards the set-point, which

results in a smoother tracking performance and a less aggressive control strategy.

5.1.3.3 DNNs as function approximators

The DRL controller utilizes two DNNs to approximate the policy and the Q functions. The

actor utilizes a DNN with parameters Wa to generalize the policy function over the continuous

action space such that given the state st, it produces control actions at = µ(st,Wa). Likewise, the

critic utilizes a DNN with parameters Wc to generalize the Q function such that given the state st

and action at, it produces Q values as network outputs, i.e., Qµ(st, at,Wc).

5.1.3.4 DRL training

The objective of DRL controller training is to calculate the parameter values Wa and Wc such

that, once the networks are trained, the actor network can be used to obtain the optimal control

actions for any given state.

The DDPG algorithm [200] was proposed in order to improve the trainability of the existing

policy gradient theorem. DDPG borrows a concept of mini-batch training from DQN method

which involves learning in mini-batches rather than learning directly from online data. DQN uti-

lizes a RM to store historical data in the form of [s(i), a(i), r(i), s′(i+1)], and during the training

process, mini-batches of data are sampled from the RM which are used to update the parameters of

the DNNs that represent the actor and the critic. Using mini-batches of size M from the RM helps

in stabilizing the training process, and randomly sampling tuples from the RM helps in breaking

the temporal correlations between the samples. At each sampling time, the latest tuple is stored

121

in the RM, and an old tuple is discarded from the RM in order to keep its size constant. The

parameters of the critic are updated using SGD and samples from the RM so that the TD error is

minimized and the update equation is given as follows:

Wc ← Wc +
αc
M

M∑
i=1

[(ỹ(i) −Q(s(i), µ(s(i),Wa),Wc)) ∗ ∇WcQ
µ(s(i), µ(s(i),Wa),Wc)] (5.8)

where

ỹ(i) ← r(i) + γQµ(s′(i), µ(s′(i),Wa),Wc),∀i = 1, ...,M (5.9)

The parameters of the actor are updated in a batch-wise manner using M samples from the RM,

following the DPG theorem, and the update equation is as follows:

Wa ← Wa +
αa
M

M∑
i=1

[∇Waµ(s(i),Wa)∇aQ
µ(s(i), a,Wc)

∣∣
a=a(i)

] (5.10)

To further stabilize the learning process, target networks are used to provide stable targets to the

critic. In Eq. (5.8), the parameters Wc are utilized to calculate ỹ in Eq. (5.9), which is a target

for the critic network. If the target updates are erratic then the parameter updates are also erratic,

which may cause the network to diverge. Hence, separate neural networks called target networks

are utilized to provide stable targets to be used in Eq. (5.9). Suppose the parameters of the target

networks are W ′
a and W ′

c, then, Eq. (5.9) changes as follows:

ỹ(i) ← r(i) + γQµ(s′(i), µ(s′(i),W ′
a),W

′
c),∀i = 1, ...,M (5.11)

where

W ′
c ← τWc + (1− τ)W ′

c
(5.12)

W ′
a ← τWa + (1− τ)W ′

a
(5.13)

where τ is the target network update rate. As per Eqs. (5.12) and (5.13), the parameters of the

target networks slowly track the critic and the actor network, which ensures that the targets are

122

changed slowly, thereby, stabilizing the learning process.

In practical applications, even though the action space is usually continuous, it is bounded too.

This is because the control action is usually a representative of physical quantities like flow rate,

pressure, and these physical quantities have limits. In order to ensure that the control actions are

predicted within the set control limits, it is necessary to bound the actor network. If the actor

network is not bounded, then the critic will continue to push the actor to predict control actions

outside the control limits. To avoid this scenario, in our work we use gradient clipping to bound

the output layer of the actor network. This is done by multiplying the gradient used in the update

step, Eq. (5.10), with an appropriate factor. Suppose the action space is bounded in the interval

[aL, aH] such that aL < aH , then the gradient clipping is done as follows:

∇aQ
µ(s, a, w)← ∇aQ

µ(s, a, w) ∗


(aH − a)/(aH − aL) if∇aQ

µ(s, a, w) increases a

(a− aL)/(aH − aL) otherwise
(5.14)

With gradient clipping in place, the control actions will saturate at the upper bound aH when

the critic continually recommends increasing the control actions. On the other hand, the gradient

clipping will ensure that the control actions do not decrease beyond the lower limit aL when the

critic continually recommends decreasing the control actions. Combining the above described

concepts, the Algorithm 4 lists the steps in the training of the DRL controller. As presented in

Algorithm 4, RL training is started by first initializing the parameters of the actor and the critic

network. Then the target networks are initialized as outlined in Line 3 of the algorithm. In Line 4,

RM is initialized with tuples of historical data. Then, for each episode, a set-point is defined (Line

5). Now for each time step of the episode, the RL state s is defined (Line 8), a control action at is

obtained from actor, which is implemented on the system to obtain a new output yt+1 and reward

rt (Lines 9-10), and the latest tuple (s, at, s
′, rt) is stored in the RM (Line 12). Now, M samples

are uniformly drawn from the RM to update the actor network, the critic network, and the target

networks (Lines 13-23). Lines 8-23 are repeated until the end of the episode.

123

Algorithm 4 DRL controller training
1: Output: Optimal control policy µ(s,Wa)
2: Initialize Wa, Wc

3: Initialize W ′a ←Wa, W ′c ←Wc

4: Initialize RM with historical data
5: for each episode do
6: Set the set-point for episode as ysp
7: for each step t = 0, 1, ...T − 1 do
8: Set s← [yt, yt−1, ...yt−dy , (yt − ysp)]
9: Set at ← µ(s,Wa)

10: Implement at and obtain yt+1 and rt
11: Set s′ ← [yt, yt−1, ...yt−dy , (yt − ysp)]
12: Store tuple (s, at, s

′, rt) in RM
13: Obtain M tuples from RM
14: for i = 1, ...M do
15: ỹ(i) ← r(i) + γQµ(s′(i), µ(s′(i),W ′a),W

′
c)

16: end
17: Update Wc using Eq. (5.8)
18: for i = 1, ...M do
19: Calculate ∇aQµ(s(i), a,Wc)

∣∣
a=µ(s(i),Wa)

20: Clip gradient using Eq. (5.14)
21: end
22: Update Wa using Eq. (5.10)
23: Update W ′c and W ′a using Eqs. (5.12) and (5.13), respectively
24: end
25: end

5.1.4 Design of DRL controller for hydraulic fracturing

We used a dynamic model of the hydraulic fracturing process as described in Eqs. (2.4)-(2.17)

and for more details one can refer to [4]. In our work, we design a DRL controller with the

objective of obtaining an optimal control policy that leads to a uniform proppant concentration

profile at the end of the pumping process.

5.1.4.1 RL state definition and dimensionality reduction

In order to obtain a uniform concentration profile at the end of the pumping process, we define

a set-point Csp for the concentration at 6 different locations along the length of the fracture and use

these concentration variables as the outputs to be controlled. Let these be variables be represented

as Ci where i = 1, ..., 6. Another important parameter in the hydraulic fracturing process is the

total amount of proppant injected into the fracture At by time t. The total amount to be injected in

124

the entire pumping process is prefixed, and this criteria has to be met by the DRL controller at the

end of the pumping process. In order to ensure that this constraint is satisfied, we include At in the

output definition with the prefixed value as its set-point Asp. Therefore, the output vector at time t

is as follows:

yt = [C1t C2t C3t C4t C5t C6t At]
T (5.15)

In our work, unlike Eq. (5.5), we propose to use a simpler definition of RL state as follows:

st := [yt] (5.16)

In order to quicken the learning process, we propose to reduce the dimension of the RL state by us-

ing Principal Component Analysis (PCA) on the concentration vector, i.e., [C1t C2t C3t C4t C5t C6t].

We use historical data to obtain the Principal Components (PCs) and select the most dominant one

to calculate the corresponding PCA score. Therefore, the reduced output vector at time t is as

follows:

yr,t = [Cr,t At]
T (5.17)

Using the reduced output vector, the RL state definition is changed as follows:

st := [yr,t] (5.18)

5.1.4.2 Action

Action at is the concentration of proppant injected into the fracture at time t. The unit of at is

in terms of ppga which means one pound of proppant added to a gallon of water. The range of at

in ppga is [0 10] but is normalized to [0 1], and the sampling time is 100 seconds.

5.1.4.3 Reward function

At each time step, the controller receives a reward rt from the process whose aggregate value

is to be maximized by the controller. Since the objective of the controller in set-point tracking is

125

to minimize the tracking error, we incorporate this in the reward function r1 as follows:

r1(t) =


1− rtracking(t) if t < tend

1 if |yi,end − yi,sp| ≤ ε ∀i ∈ {1, 2...7}

penalty ∗ [1− rtracking(t)] if |yi,end − yi,sp| > ε ∀i ∈ {1, 2...7}

(5.19)

where rtracking is the squared euclidean distance of the elements of the output vector from their

respective set-points, and is defined as:

rtracking(t) = ω1 ∗
6∑
i=1

|Cit − Csp|2

6
+ ω2 ∗ |At − Asp|2 (5.20)

where since the variables Ci and A are normalized between 0 and 1, the range of r1 is [0 1]. The

weights ω1 and ω2 indicate the significance of the variables Ci and A, respectively, to the reward

function r1.

Additionally, in our work, we do not use the gradient clipping technique to ensure that the

control actions are within the feasible range [aL aH] as specified in Algorithm 1. Instead we use a

reward function r2 to achieve this goal. The reward function r2 is defined as follows:

r2(t) =


0 if a(t) ∈ [0 1]

−a(t)∗(a(t)−1)
0.25

otherwise
(5.21)

Since the range of [aL aH] is normalized to [0 1], we use the product term a(t) ∗ (a(t)− 1) in r2 to

penalize the controller if the control actions predicted are outside the feasible range.

Also, based on the knowledge about the process from the literature, we know that the optimal

solution should follow a monotonically increasing profile [173]. But Nolte’s power law pumping

schedule is practically infeasible to implement. Hence, a step-wise increasing profile which is

practical to implement is desired from the DRL controller. This can be obtained by enforcing a

constraint on the amount of change in two consecutive inputs. We include this information in the

126

form of a reward function r3, which is defined as follows:

r3(t) =


0 if ∆a(t) ∈ [0 0.3]

−∆a(t)∗(∆a(t)−0.3)
0.0225

otherwise
(5.22)

where ∆a(t) = a(t)− a(t− 1). The reward function r3 ensures that the controller learns a control

policy which is monotonically increasing with an increment less than 4 ppga/stage. The upper

limit of 4 ppga/stage when normalized is equal to 0.3.

Therefore, considering all the constraints, the net reward rt that the controller receives at time

t is the cumulative sum of the rewards obtained using Eqs. (5.19)-(5.22) as shown below:

rt = r1(t) + r2(t) + r3(t) (5.23)

Considering the reduced RL state definition and the tailor-made reward function, the algorithm

for training the DRL controller for the hydraulic fracturing process is shown in Algorithm 5.

5.1.4.4 DRL controller learning

In our work, we use two stages of learning. In the first stage, the controller learns using a

reduced-order-model (ROM) of the process and the learning process is terminated when the con-

troller learns a sub-optimal policy. In the second stage of learning, transfer learning is used wherein

the sub-optimal controller parameters are used as initial values, and the controller continues to

learn by interacting with the process directly. A schematic of our learning strategy for the DRL

controller is shown in Figure 5.2.

5.1.4.5 DRL controller hyperparameters

The actor and the critic are each represented using a DNN. Each of the DNNs has two hidden

layers, where the first hidden layer consists of 400 neurons and the second hidden layer consists

of 300 neurons. A large number of neurons are utilized because these networks have to represent

complex policy and value functions for continuous state and action spaces. Rectified linear unit

127

Algorithm 5 DRL algorithm for hydraulic fracturing
1: Output: Optimal control policy µ(s,Wa)
2: Initialize Wa, Wc

3: Initialize W ′a ←Wa, W ′c ←Wc

4: Initialize RM with historical data
5: Calculate the dominant PC
6: Set the set-point for DRL controller as ysp
7: for each episode do
8: for each step t = 0, 1, ...T − 1 do
9: Calculate yr,t using yt and PC

10: Set s← [yr,t]
11: Set at ← µ(s,Wa)
12: Implement at and obtain yt+1

13: Calculate yr,t+1 using yt+1 and PC
14: Set s′ ← [yr,t+1]
15: Calculate rt using Eq. (5.23)
16: Store tuple (s, at, s

′, rt) in RM
17: Obtain M tuples from RM
18: for i = 1, ...M do
19: ỹ(i) ← r(i) + γQµ(s′(i), µ(s′(i),W ′a),W

′
c)

20: end
21: Update Wc using Eq. (5.8)
22: for i = 1, ...M do
23: Calculate ∇aQµ(s(i), a,Wc)

∣∣
a=µ(s(i),Wa)

24: end
25: Update Wa using Eq. (5.10)
26: Update W ′c and W ′a using Eqs. (5.12) and (5.13), respectively
27: end
28: end

and linear activation functions were used in the hidden layers and output layer, respectively. For

the first stage of learning, the parameters of the actor and the critic network, i.e., the weights and

the biases, were initialized using Xavier initialization as this helps in maintaining constant variance

in the outputs from the neurons across every layer. This constant variance helps prevent vanishing

or exploding gradients. Also, batch normalization [213] was used in the hidden layers in order

to ensure that the training is effective as different variables could have different units and could

vary on different scales. Finally, we used Adam optimizer [214] in order to train the networks as

it is computationally efficient and well-suited for our optimization problem with a large number

of parameters. Adam optimizer combines the advantages of AdaGrad and RMSProp, two popular

stochastic optimization methods, by computing adaptive learning rates for each parameter using

128

Figure 5.2: A schematic of the proposed learning strategy.

estimates of the first and the second moments of the first-order gradients [214]. The hyperparame-

ters used in our work are given in Table 5.1.

Actor learning rate 0.01
Critic learning rate 0.01

Target network update rate 0.001
Minibatch size 16

RM size 4110
Reward discount factor 0.9

Control action limits [0, 1]

Table 5.1: Hyperparameter values for the DRL controller

5.1.4.6 ROM for hydraulic fracturing

In our work, we developed a ROM by applying the multivariate output error state space (MOESP)

algorithm [215] to regress a linear time-invariant state-space model of the hydraulic fracturing pro-

cess, which is presented in the following form:

x(tk+1) = Ax(tk) +Bu(tk) (5.24)

y(tk) = Hx(tk) (5.25)

where y(tk) is the concentration of proppant at 25 different locations, i.e., [ccw, cc9, ..., cc216],

where cczi is the concentration at location zi with zi−zi−1 = 0.5 m, and u(tk) = [ccw(tk), ...cc0(tk−

129

θ216)] is the input to the state space model where ccw is the concentration at the wellbore, and θzi

is the input time-delay due to the time required for the proppant to travel from the wellbore to

location zi. In order to obtain the ROM, we obtained training data from the first principles model

presented in the previous section by giving input as shown in Figure 5.3.

Figure 5.3: Training input for building ROMs.

The locations that are of interest for the purpose of designing the DRL controller are z =

36, 72, 108, 144, 172, 216 which are included in the output of the ROM. Figure 5.4 shows the com-

parison between the predictions from the ROM and from the first principles model at the wellbore

and at these 6 locations. It can be observed that the predictions of the proppant concentration at

these locations across the fracture are fairly accurate.

5.1.5 DRL controller results

5.1.5.1 Initializing the learning process

To briefly summarize the hydraulic fracturing process, a fracturing fluid along with proppant is

injected at high pressures to extend the fracture and to deposit proppant inside the fracture which

130

Figure 5.4: Output predictions from the ROMs at the wellbore and 6 other locations.

acts as an artificial medium for the easier extraction of oil and gas. The objective of the DRL

controller is to learn a control policy with injected proppant concentration as the manipulated

variable and the concentration at 6 locations, i.e., z = 36, 72, 108, 144, 172, 216 from the wellbore

as the controlled outputs with the objective of obtaining a uniform concentration of 10 ppga at

these locations. The limits for the control actions are 0 and 10 ppga. The total fracking time

considered is 1220 s. During the first 220 s of the injection process, called pad time, no proppant

is injected, and thereafter, proppant injection begins. The pad time of 220 s was fixed in order to

prevent premature termination of the hydraulic fracturing process, due to the tip screen-out. So the

DRL controller learns a control policy from 220 s onwards. The injection process occurs over 10

131

stages with a constant fracturing fluid rate of Q = 0.03 m3/s in order to reach a fracture length of

135 m.

For the construction of the RM, we generated simulation data by implementing 411 input pro-

files on the first-principles model and collected 4110 snapshots of input-output data. PCA was

used on the RM data to calculate the dominant PC in order to reduce the RL state during the learn-

ing process. In each episode of learning, the set-point for Ci is 10 ppga and for A is 24000 kgs

but after normalization these values change to 1. The tolerance for Ci is 0.08 and for A is 0.0417

after normalization. These tolerance values should be selected carefully as stricter tolerances will

require longer training times, and laxer tolerances will result in poor performance of the DRL

controller. The parameters used in the rewards calculation are shown in Table 5.2.

ω1 0.1
ω2 0.9

penalty 0.1

Table 5.2: Hyperparameter values used in rewards calculation

5.1.5.2 First stage of learning

In the first stage of the learning process, the parameters of the DRL controller are initialized as

described in the previous section, and the learning process using the ROM was started. The DRL

controller implements the control action as predicted by the actor and implements it on the ROM to

obtain the outputs. The rewards are calculated using Eq. (5.23), and the tuple (s, a, s′, r) is stored

in the RM. Then M = 16 tuples are randomly selected from the RM and used to update the actor,

critic, and the target networks. The learning process is terminated when the following criteria are

satisfied: (a) the net reward gained in an episode is 0.75 times the theoretical maximum (obtained

from literature); and (b) the total amount of proppant injected is within the tolerance.

The DRL controller reaches the above-mentioned criterion at 603 episodes and in order to

track the learning process, the net reward gained in each episode is plotted as shown in Figure 5.5.

Initially, since the weights and the biases of the DNNs are randomly initialized, the DRL controller

shows poor performance. From episode 17, the controller performs reasonably well as observed in

132

Figure 5.5: Net reward gained in each episode during the ROM learning.

Figure 5.5, but does not meet the criterion for termination until episode 603 wherein it gains a net

reward of 3.481.

5.1.5.3 Second stage of learning

In the second stage of the learning process, the weights and the biases are initialized using

the parameters obtained from the last episode of learning from the previous stage. The learning

process is repeated and terminated when all the states (i.e., the concentrations at 6 locations and

the total amount of proppant injected) reach their respective set-points. The DRL controller is able

to meet the criteria by episode 724. The learning curve in terms of net rewards per episode for

both the stages is shown in Figure 5.6. Initially, the curve undergoes fluctuations as the parameters

are randomly initialized in the first stage, and thereafter, the controller performance improves until

episode 603 where the criteria for the first stage learning is satisfied. The DRL controller continues

to improve even in the second stage until episode 724 wherein the controller reaches the desired

control objectives.

Figure 5.7 shows the input profile implemented by the controller in the last episode of learning,

133

Figure 5.6: Net reward gained in each episode during the entire learning process of the DRL
controller. Please note that the learning curve of the second stage continues from Figure 5.5, and
corresponds to the episodes between 603 and 724 in this figure.

Figure 5.7: The input profile implemented in the last episode.

134

and Figure 5.8 shows the evolution of the concentrations at the selected locations in the same

episode. The input profile obtained is a step-wise increasing profile with the injected proppant

concentration values within the specified control limits of 0 − 10 ppga, and a maximum step

increase of 3 ppga between two control actions. Additionally, as seen in Figure 5.8, all the states

are within their specified tolerance limits from their respective set-points. Hence, learning was

terminated at the end of this episode.

Figure 5.8: Evolution of states in the last episode.

135

Figure 5.9: The input profile obtained from the DRL controller (left) and the concentration profile
at the end of pumping process (right) are presented.

In order to test the DRL controller’s performance, we stop the learning process, utilize the

actor to predict control actions, and obtain the corresponding outputs. Figure 5.9 shows the inputs

predicted by the DRL controller, and the concentration profile across the fracture length at the

end of the proppant injection process. The input profile predicted by the controller satisfies the

constraints, and the concentrations at the 6 selected locations are within the tolerance limits from

the set-point.

136

6. SUMMARY

In the first part of the work, we developed a framework to systematically enlarge the domain

of attraction for the LDMDc technique and showed its efficacy by applying it to the hydraulic

fracturing process. In the second part of the work, we developed a novel deep hybrid modeling

framework by integrating deep neural networks with a first-principles model. This deep hybrid

model was trained using the Levenberg-Marquardt algorithm. The proposed deep hybrid modeling

framework was applied to the hydraulic fracturing process to accurately capture the uncertainty

in the leak-off rate by the DNN. We showed the superior accuracy of the proposed deep hybrid

model over the existing first-principles model. Also, we proved the superior extrapolation proper-

ties of the deep hybrid model over a black-box model. In the third part of the work, we showed

the effectiveness of the deep hybrid modeling framework in a real-world case study by building a

deep hybrid model for a full-scale bio-fermentation process with a volume of over 100,000 gal-

lons. In this work, we developed a three-step method. Firstly, we improved the accuracy of the

first-principles model via incorporating mathematical terms in its equations which are based on

obtained process knowledge from a literature study. Secondly, we performed a local and global

sensitivity analysis to identify sensitive parameters in the improved first-principles model that have

considerable influence on its prediction capability. Finally, we developed a deep hybrid model by

integrating the improved first-principles model with a DNN which is trained to predict the iden-

tified model parameters. We showed that the resulting deep hybrid model is more accurate and

robust than the existing first-principles model. In the fourth part of the work, we developed a

UDE model for batch production of β-carotene using synthetic data. We showed that the DNN in

the UDE model can effectively capture the unknown dynamics. In the fifth part of the work, we

utilized the UDE approach to build a hybrid model for lab-scale batch production of β-carotene.

We utilized experimental data to train the UDE model and showed the superior accuracy of the

UDE model over the existing kinetic model. Also, we showed the superior extrapolation prop-

erty of the UDE model using another experimental data set. In the sixth part of the work, we

137

designed a CLBF-MPC controller using a deep hybrid model which simultaneously stabilizes as

well as gives guarantees on the DA of the deep hybrid model. We provided theoretical guarantees

on the performance of the CLBF-MPC controller, and successfully implemented it on a chemical

process example. Finally, we integrated prior knowledge about the hydraulic fracturing process

in the design of a data-based DRL controller. Nolte’s law was formulated as a constraint in the

reward function for the DRL controller, and we showed that the resulting DRL controller was

able to quickly achieve convergence towards an optimal control policy to obtain uniform proppant

concentration at the end of the proppant injection process.

138

REFERENCES

[1] T. K. Perkins and L. R. Kern, “Widths of hydraulic fractures,” J. Pet. Technol., vol. 13,

pp. 937–949, 1961.

[2] I. T. Cameron and K. Hangos, Process Modelling and Model Analysis. Academic Press,

2001.

[3] P. Siddhamshetty, S. Yang, and J. S.-I. Kwon, “Modeling of hydraulic fracturing and design-

ing of online pumping schedules to achieve uniform proppant concentration in conventional

oil reservoirs,” Comput. Chem. Eng., vol. 114, pp. 306 – 317, 2018. FOCAPO/CPC 2017.

[4] S. Yang, P. Siddhamshetty, and J. S. Kwon, “Optimal pumping schedule design to achieve

a uniform proppant concentration level in hydraulic fracturing.,” Comput. Chem. Eng.,

vol. 101, no. C, pp. 138–147, 2017.

[5] P. Siddhamshetty, J. S. Kwon, S. Liu, and P. P. Valko, “Feedback control of proppant bank

heights during hydraulic fracturing for enhanced productivity in shale formations,” AIChE

J., vol. 64, pp. 1638–1650, November 2017.

[6] A. Narasingam, P. Siddhamshetty, and J. S. Kwon, “Temporal clustering for order reduction

of nonlinear parabolic PDE systems with time-dependent spatial domains: Application to a

hydraulic fracturing process,” AIChE J., vol. 63, no. 9, pp. 3818–3831, 2017.

[7] P. J. Schmid, “Dynamic mode decomposition of numerical and experimental data.,” J. Fluid

Mech., vol. 656, pp. 5–28, 2010.

[8] J. L. Proctor, S. L. Brunton, and J. N. Kutz, “Dynamic mode decomposition with control.,”

SIAM J. Appl. Dyn. Syst., vol. 15, no. 1, pp. 142–161, 2016.

[9] A. Narasingam and J. S. Kwon, “Development of local dynamic mode decomposition with

control: Application to model predictive control of hydraulic fracturing,” Comput. Chem.

Eng., vol. 106, pp. 501–511, 2017.

139

[10] A. Bao, E. Gildin, A. Narasingam, and J. S. Kwon, “Data-driven model reduction for cou-

pled flow and geomechanics based on dmd methods,” Fluids, vol. 4, no. 3, 2019.

[11] M. O. Williams, I. G. Kevrekidis, and C. W. Rowley, “A data-driven approximation of the

Koopman operator: Extending dynamic mode decomposition.,” J. Nonlinear Sci., vol. 25,

no. 6, pp. 1307–1346, 2015.

[12] A. Narasingam and J. S.-I. Kwon, “Koopman lyapunov-based model predictive control of

nonlinear chemical process systems,” AIChE Journal, vol. 65, no. 11, p. e16743, 2019.

[13] A. Narasingam, S. H. Son, and J. S.-I. Kwon, “Data-driven feedback stabilisation of nonlin-

ear systems: Koopman-based model predictive control,” International Journal of Control,

vol. 0, no. 0, pp. 1–12, 2022.

[14] S. H. Son, A. Narasingam, and J. S.-I. Kwon, “Handling plant-model mismatch in

koopman lyapunov-based model predictive control via offset-free control framework,”

arXiv:2010.07239, 2020.

[15] A. Narasingam and J. S.-I. Kwon, “Application of Koopman operator for model-based con-

trol of fracture propagation and proppant transport in hydraulic fracturing operation,” Jour-

nal of Process Control, vol. 91, pp. 25–36, 2020.

[16] B. Bhadriraju, A. Narasingam, and J. S.-I. Kwon, “Machine learning-based adaptive model

identification of systems: Application to a chemical process,” Chem. Eng. Res. Des.,

vol. 152, pp. 372–383, 2019.

[17] B. Bhadriraju, M. S. F. Bangi, A. Narasingam, and J. S. Kwon, “Operable adaptive sparse

identification of systems: Application to chemical processes,” AIChE J., vol. 66, no. 11,

p. e16980, 2020.

[18] B. Bhadriraju, J. S.-I. Kwon, and F. Khan, “OASIS-P: Operable Adaptive Sparse Identifi-

cation of Systems for fault prognosis of chemical processes,” Journal of Process Control,

vol. 107, pp. 114–126, 2021.

140

[19] B. Bhadriraju, J. S.-I. Kwon, and F. Khan, “Risk-based fault prediction of chemical pro-

cesses using operable adaptive sparse identification of systems (OASIS),” Comput. Chem.

Eng., vol. 152, p. 107378, 2021.

[20] M. L. Thompson and M. A. Kramer, “Modeling chemical processes using prior knowledge

and neural networks,” AIChE. J., vol. 40, no. 8, pp. 1328–1340, 1994.

[21] D. C. Psichogios and L. H. Ungar, “A hybrid neural network-first principles approach to

process modeling,” AIChE. J., vol. 38, no. 10, pp. 1499–1511, 1992.

[22] M. A. Kramer, M. L. Thompson, and P. M. Bhagat, “Embedding theoretical models in neural

networks,” in 1992 American Control Conference, pp. 475–479, 1992.

[23] T. A. Johansen and B. A. Foss, “Representing and learning unmodeled dynamics with neural

network memories,” in 1992 American Control Conference, pp. 3037–3043, 1992.

[24] H. Su, N. Bhat, P. A. Minderman, and T. J. McAvoy, “Integrating neural networks with first

principles models for dynamic modeling,” in IFAC Symposium on Dynamics and Control of

Chemical Reactors, Distillation Columns and Batch Processes, pp. 327–332, 1993.

[25] T. Bohlin and S. F. Graebe, “Issues in nonlinear stochastic grey box identification,” Inter-

national Journal of Adaptive Control and Signal Processing, vol. 9, no. 6, pp. 465–490,

1995.

[26] S. B. Jorgensen and K. M. Hangos, “Grey box modelling for control: Qualitative models as

a unifying framework,” International Journal of Adaptive Control and Signal Processing,

vol. 9, no. 6, pp. 547–562, 1995.

[27] H. J. A. F. Tulleken, “Grey-box modelling and identification using physical knowledge and

bayesian techniques,” Automatica, vol. 29, no. 2, pp. 285 – 308, 1993.

[28] G. Zahedi, A. Lohi, and K. Mahdi, “Hybrid modeling of ethylene to ethylene oxide hetero-

geneous reactor,” Fuel Processing Technology, vol. 92, no. 9, pp. 1725 – 1732, 2011.

141

[29] S. Gupta, P.-H. Liu, S. A. Svoronos, R. Sharma, N. A. Abdek-Khalek, Y. Cheng, and

H. El-Shall, “Hybrid first-principles/neural networks model for column flotation,” AIChE

J., vol. 45, no. 3, pp. 557–566, 1999.

[30] E. Molga and R. Cherbański, “Hybrid first-principle-neural-network approach to modelling

of the liquid-liquid reacting system,” Chem. Eng. Sci., vol. 54, no. 13, pp. 2467 – 2473,

1999.

[31] H. Qi, X.-G. Zhou, L.-H. Liu, and W.-K. Yuan, “A hybrid neural network-first principles

model for fixed-bed reactor,” Chem. Eng. Sci., vol. 54, no. 13, pp. 2521 – 2526, 1999.

[32] A. Y. D. Tsen, S. S. Jang, D. S. H. Wong, and B. Joseph, “Predictive control of quality

in batch polymerization using hybrid ann models,” AIChE J., vol. 45, no. 2, pp. 455–465,

1996.

[33] B. Fiedler and A. Schuppert, “Local identification of scalar hybrid models with tree struc-

ture,” IMA Journal of Applied Mathematics, vol. 73, no. 3, pp. 449 – 476, 2008.

[34] P. Lauret, H. Boyer, and J. Gatina, “Hybrid modelling of a sugar boiling process,” Control

Engineering Practice, vol. 8, no. 3, pp. 299 – 310, 2000.

[35] P. Georgieva and S. de Azevedo, Computational intelligence techniques for bioprocess mod-

elling, supervision and control, Volume 218. Berlin/Heidelberg:Springer, 2009.

[36] M. Reuter, J. V. Deventer, and T. V. D. Walt, “A generalized neural-net kinetic rate equation,”

Chem. Eng. Sci., vol. 48, no. 7, pp. 1281 – 1297, 1993.

[37] G. Hu, Z. Mao, D. He, and F. Yang, “Hybrid modeling for the prediction of leaching rate

in leaching process based on negative correlation learning bagging ensemble algorithm,”

Comput. Chem. Eng., vol. 35, no. 12, pp. 2611 – 2617, 2011.

[38] R. da Jia, Z. zhong Mao, Y. qing Chang, and L. ping Zhao, “Soft-sensor for copper extraction

process in cobalt hydrometallurgy based on adaptive hybrid model,” Chem. Eng. Res. Des.,

vol. 89, no. 6, pp. 722 – 728, 2011.

142

[39] A. Safavi, A. Nooraii, and J. Romagnoli, “A hybrid model formulation for a distillation

column and the on-line optimisation study,” Journal of Process Control, vol. 9, no. 2, pp. 125

– 134, 1999.

[40] V. Mahalec and Y. Sanchez, “Inferential monitoring and optimization of crude separation

units via hybrid models,” Comput. Chem. Eng., vol. 45, pp. 15 – 26, 2012.

[41] F. A. Cubillos and G. Acuña, “Adaptive control using a grey box neural model: An exper-

imental application,” in Advances in Neural Networks – ISNN 2007 (D. Liu, S. Fei, Z.-G.

Hou, H. Zhang, and C. Sun, eds.), (Berlin, Heidelberg), pp. 311–318, Springer, 2007.

[42] M. R. Arahal, C. M. Cirre, and M. Berenguel, “Serial grey-box model of a stratified thermal

tank for hierarchical control of a solar plant,” Solar Energy, vol. 82, no. 5, pp. 441–451,

2008.

[43] C. A. O. Nascimento, R. Giudici, and N. Scherbakoff, “Modeling of industrial nylon-6,6

polymerization process in a twin-screw extruder reactor. ii. neural networks and hybrid mod-

els,” Journal of Applied Polymer Science, vol. 72, no. 7, pp. 905–912, 1999.

[44] H. C. Aguiar and R. M. Filho, “Neural network and hybrid model: a discussion about dif-

ferent modeling techniques to predict pulping degree with industrial data,” Chem. Eng. Sci.,

vol. 56, no. 2, pp. 565 – 570, 2001.

[45] P. Kumar Akkisetty, U. Lee, G. V. Reklaitis, and V. Venkatasubramanian, “Population bal-

ance model-based hybrid neural network for a pharmaceutical milling process,” Journal of

Pharmaceutical Innovation, vol. 5, no. 4, pp. 161–168, 2010.

[46] J. Schubert, R. Simutis, M. Dors, I. Havlik, and A. Lübbert, “Bioprocess optimization and

control: Application of hybrid modelling,” Journal of Biotechnology, vol. 35, no. 1, pp. 51

– 68, 1994.

[47] J. Schubert, R. Simutis, M. Dors, I. Havlik, and A. Luebbert, “Hybrid modelling of yeast

production processes âĂŞ combination of a priori knowledge on different levels of sophis-

tication,” Chemical Engineering & Technology, vol. 17, no. 1, pp. 10–20, 1994.

143

[48] R. Eslamloueyan and P. Setoodeh, “Optimization of fed-batch recombinant yeast fermenta-

tion for ethanol production using a reduced dynamic flux balance model based on artificial

neural networks,” Chem. Eng. Comm., vol. 198, no. 11, pp. 1309–1338, 2011.

[49] H. Preusting, J. Noordover, R. Simutis, and A. Lübbert, “The use of hybrid modelling for

the optimization of the penicillin fermentation process,” CHIMIA International Journal for

Chemistry, vol. 50, no. 9, pp. 416–417, 1996.

[50] X. Wang, J. Chen, C. Liu, and F. Pan, “Hybrid modeling of penicillin fermentation process

based on least square support vector machine,” Chem. Eng. Res. Des., vol. 88, no. 4, pp. 415

– 420, 2010.

[51] R. Simutis and A. Lübbert, “Exploratory analysis of bioprocesses using artificial neural

network-based methods,” AIChE J., vol. 13, no. 4, pp. 479–487, 1997.

[52] S. Gnoth, M. Jenzsch, R. Simutis, and A. Lübbert, “Product formation kinetics in genetically

modified e. coli bacteria: inclusion body formation,” Bioprocess and Biosystems Engineer-

ing, vol. 31, pp. 41–46, Jan 2008.

[53] M. Dors, R. Simutis, and A. Lübbert, “Advanced supervision of mammalian cell cultures

using hybrid process models,” in Computer Applications in Biotechnology, IFAC Postprint

Volume, pp. 72 – 77, Amsterdam: Pergamon, 1995.

[54] A. P. Teixeira, C. Alves, P. M. Alves, M. J. T. Corrondo, and R. Oliveira, “Hybrid ele-

mentary flux analysis/nonparametric modeling: application for bioprocess control,” BMC

Bioinformatics, vol. 8, no. 30, 2007.

[55] N. Carinhas, V. Bernal, A. P. Teixeira, M. J. T. Carrondo, P. M. Alves, and R. Oliveira, “Hy-

brid metabolic flux analysis: combining stoichiometric and statistical constraints to model

the formation of complex recombinant products,” BMC Systems Biology, vol. 5, no. 34,

2011.

144

[56] P. C. Fu and J. P. Barford, “Integration of mathematical modelling and knowledge-based

systems for simulations of biochemical processes,” Expert Systems with Applications, vol. 9,

no. 3, pp. 295 – 307, 1995.

[57] P. C. Fu and J. P. Barford, “A hybrid neural network-first principles approach for modelling

of cell metabolism,” Comput. Chem. Eng., vol. 20, no. 6, pp. 951–958, 1996.

[58] M. von Stosch, R. Oliveira, J. Peres, and S. F. de Azevedo, “Hybrid semi-parametric model-

ing in process systems engineering: Past, present and future,” Comput. Chem. Eng., vol. 60,

pp. 86 – 101, 2014.

[59] J. Sansana, M. N. Joswiak, I. Castillo, Z. Wang, R. Rendall, L. H. Chiang, and M. S.

Reis, “Recent trends on hybrid modeling for industry 4.0,” Comput. Chem. Eng., vol. 151,

p. 107365, 2021.

[60] V. Venkatasubramanian, “The promise of artificial intelligence in chemical engineering: Is

it here, finally?,” AIChE J., vol. 65, no. 2, pp. 466–478, 2018.

[61] M. Stinchcombe and H. White, “Universal approximation using feedforward networks with

non-sigmoid hidden layer activation functions,” pp. 613–617, 1989.

[62] B. R. Noack, K. Afanasiev, M. Morzyński, G. Tandmor, and F. Thiele, “A hierarchy of low-

dimensional models for the transient and post-transient cylinder wake.,” J. Fluid Mech.,

vol. 497, pp. 335–363, 2003.

[63] M. H. Sahraei, M. A. Duchesne, P. G. Boisvert, R. W. Hughes, and L. A. Ricardez-Sandoval,

“Dynamic reduced order modeling of an entrained-flow slagging gasifier using a new recir-

culation ratio correlation,” Fuel, vol. 196, pp. 520 – 531, 2017.

[64] M. H. Sahraei, M. A. Duchesne, P. G. Boisvert, R. W. Hughes, and L. A. Ricardez-Sandoval,

“Reduced-order modeling of a commercial-scale gasifier using a multielement injector feed

system,” Ind. Eng. Chem. Res., vol. 56, no. 25, pp. 7285–7300, 2017.

145

[65] M. H. Sahraei, M. A. Duchesne, R. Yandon, A. Majeski, R. W. Hughes, and L. A. Ricardez-

Sandoval, “Reduced order modeling of a short-residence time gasifier,” Fuel, vol. 161,

pp. 222 – 232, 2015.

[66] P. Holmes, J. L. Lumley, and G. Berkooz, Turbulence, Coherent Structures, Dynamical

Systems and Symmetry. New York: Cambridge University Press, 1996.

[67] A. Armaou and P. D. Christofides, “Finite-dimensional control of nonlinear parabolic PDE

systems with time-dependent spatial domains using empirical eigenfunctions.,” Int. J. Appl.

Math. Comput. Sci., vol. 11, no. 2, pp. 287–317, 2001.

[68] G. Berkooz, P. Holmes, and J. Lumley, “The proper orthogonal decomposition in the analy-

sis of turbulent flows.,” Ann. Rev. Fluid. Mech., vol. 25, pp. 539–575, 1993.

[69] E. Christensen, M. Brons, and J. Sorensen, “Evaluation of proper orthogonal decomposi-

tion based decomposition techniques applied to parameter-dependent nonturbulent flows.,”

SIAM J. Sci. Comput., vol. 21, pp. 1419–1434, 2000.

[70] H. M. Park and M. W. Lee, “An efficient method of solving the navier-stokes equations for

flow control.,” Int. J. Numer. Methods Eng., vol. 41, pp. 1133–1151, 1998.

[71] S. Ravindran, “Proper orthogonal decomposition in optimal control of fluids.,” Int. J. Numer.

Methods Fluids, vol. 34, pp. 425–448, 2000.

[72] H. S. Sidhu, A. Narasingam, P. Siddhamshetty, and J. S. Kwon, “Model order reduction

of nonlinear parabolic pde systems with moving boundaries using sparse proper orthogonal

decomposition: application to hydraulic fracturing,” Comput. Chem. Eng., vol. 112, pp. 92–

100, 2018.

[73] S. Pitchaiah and A. Armaou, “Output feedback control of distributed parameter systems

using adaptive proper orthogonal decomposition,” Ind. Eng. Chem. Res., vol. 49, no. 21,

pp. 10496–10509, 2010.

146

[74] B. R. Noack, M. Schlegel, B. Ahlborn, B. Mutschke, M. Morzyński, P. Comte, and G. Tad-

mor, “A finite-time thermodynamics formalism for unsteady flows.,” J. Non-Equilib. Ther-

modyn., vol. 33, pp. 103–148, 2008.

[75] P. J. Schmid and J. Sesterhenn, “Dynamic mode decomposition of numerical and experi-

mental data.,” In Bull. Amer. Phys. Soc. 61st APS Meeting, San Antonio, Texas., vol. 208,

2008.

[76] M. Ghommem, V. M. Calo, and Y. Efendiev, “Mode decomposition methods for flows in

high-contrast porous media. A Global approach,” J. Comput. Phys., vol. 257, no. A, pp. 400–

413, 2014.

[77] C. W. Rowley, I. Mezić, S. Bagheri, P. Schlatter, and D. S. Henningson, “Spectral analysis

of nonlinear flows.,” J. Fluid Mech., vol. 641, pp. 115–127, 2009.

[78] I. Mezić, “Analysis of fluid flows via spectral properties of the Koopman operator.,” Ann.

Rev. Fluid Mech., vol. 45, pp. 357–378, 2013.

[79] S. Bagheri, “Koopman-mode decomposition of the cylinder wake.,” J. Fluid Mech., vol. 726,

pp. 596–623, 2013.

[80] P. J. Schmid, L. Li, M. P. Juniper, and O. Pust, “Applications of the dynamic mode decom-

position.,” Theor. Comput. Fluid Dyn., vol. 25, pp. 249–259, 2011.

[81] A. Seena and H. J. Sung, “Dynamic mode decomposition of turbulent cavity flows for self-

sustained oscillations.,” Int. J. Heat Fluid Fl., vol. 32, pp. 1098–1110, 2011.

[82] Y. Mizuno, D. Duke, C. Atkinson, and J. Soria, “Investigation of wall-bounded turbulent

flow using dynamic mode decomposition.,” J. Phys. Conf. Ser., vol. 318, p. 042040, 2011.

[83] T. W. Muld, G. Efraimsson, and D. S. Henningson, “Flow structures around high-speed

train extracted using proper orthogonal decomposition and dynamic mode decomposition,”

Comput. Struct., vol. 57, pp. 87–97, 2012.

147

[84] P. J. Schmid, “Dynamic mode decomposition of experimental data.,” In 8th International

Symposium on Particle Image Velocimetry - PIV09, 2009.

[85] P. J. Schmid, K. E. Meyer, and O. Pust, “Dynamic mode decomposition and proper orthog-

onal decomposition of flow in a lid-driven cylindrical cavity.,” In 8th International Sympo-

sium on Particle Image Velocimetry - PIV09, 2009.

[86] P. J. Schmid, “Application of the dynamic mode decomposition to experimental data.,” Exp.

Fluids., vol. 50, pp. 1123–1130, 2011.

[87] C. Pan, D. Yu, and J. Wang, “Dynamical mode decomposition of gurney flap wake flow.,”

Theor. Appl. Mech. Lett., vol. 1, p. 012002, 2011.

[88] O. Semeraro, G. Bellani, and F. Lundell, “Analysis of time-resolved PIV measurements

of a confined turbulent jet using POD and Koopman modes.,” Exp. Fluids, vol. 53, no. 5,

pp. 1203–1220, 2012.

[89] F. Lusseyran, F. Gueniat, J. Basley, C. L. Douay, L. R. Pastur, T. M. Faure, and P. J. Schmid,

“Flow coherent structures and frequency signature: Application of the dynamic modes de-

composition to open cavity flow,” J. Phys. Conf. Ser., vol. 318, p. 042036, 2011.

[90] D. Duke, J. Soria, and D. Honnery, “An error analysis of the dynamic mode decomposition.,”

Exp. Fluids, vol. 52, pp. 529–542, 2012.

[91] J. H. Tu and C. W. Rowley, “An improved algorithm for balanced pod through an analytic

treatment of impulse response tails,” J. Comput. Phys., vol. 231, no. 16, p. 5317âĂŞ5333,

2012.

[92] B. A. Belson, J. H. Tu, and C. W. Rowley, “Algorithm 945: modredâĂŤa parallelized model

reduction library.,” ACM Trans. Math. Softw, vol. 40, no. 4, 2014.

[93] M. R. Jovanović, P. J. Schmid, and J. W. Nichols, “Sparsity-promoting dynamic mode de-

composition.,” Phys. Fluids, vol. 26, p. 024103, 2014.

148

[94] K. K. Chen, J. H. Tu, and C. W. Rowley, “Variants of dynamic mode decomposition: Con-

nections between Koopman and Fourier analyses.,” J. Nonlinear Sci., vol. 22, no. 6, pp. 897–

915, 2012.

[95] P. J. Goulart, A. Wynn, and D. S. Pearson, “Optimal mode decomposition for high dimen-

sional systems.,” Proceedings of the 51st IEEE Conference on Decision and Control. Maui,

Hawaii., vol. 4965-4970, 2012.

[96] A. Wynn, D. S. Pearson, B. Ganapathisubramani, and P. J. Goulart, “Optimal mode decom-

position for unsteady flows.,” J. Fluid Mech., vol. 733, pp. 473–503, 2013.

[97] M. S. F. Bangi, A. Narasingam, P. Siddhamshetty, and J. S.-I. Kwon, “Enlarging the domain

of attraction of the local dynamic mode decomposition with control technique: Application

to hydraulic fracturing,” Ind. Eng. Chem. Res., vol. 58, pp. 5588–5601, Apr. 2019.

[98] R. Nordgren, “Propagation of a vertical hydraulic fracture,” Soc. Petrol. Eng. J., vol. 12,

pp. 306–314, 1972.

[99] G. C. Howard and C. R. Fast, “Optimum fluid characteristics for fracture extension,” Drill.

prod. pract., vol. 24, pp. 261–270, 1957.

[100] M. J. Economides and K. G. Nolte, Reservoir stimulation. Chichester: Wiley, 2000.

[101] Q. Gu and K. A. Hoo, “Evaluating the performance of a fracturing treatment design.,” Ind.

Eng. Chem. Res., vol. 53, no. 25, pp. 10491–10503, 2014.

[102] Q. Gu and K. A. Hoo, “Model-based closed-loop control of the hydraulic fracturing pro-

cess.,” Ind. Eng. Chem. Res., vol. 54, no. 5, pp. 1585–1594, 2015.

[103] J. Adachi, E. Siebrits, A. Pierce, and J. Desroches, “Computer simulation of hydraulic frac-

tures.,” Int. J. Rock Mech. Min. Sci., vol. 44, pp. 739–757, 2007.

[104] A. Daneshy, “Numerical solution of sand transport in hydraulic fracturing.,” J. Pet. Technol.,

vol. 30, pp. 132–140, 1978.

149

[105] R. Barree and M. Conway, “Experimental and numerical modeling of convective proppant

transport.,” J. Pet. Technol., vol. 47, pp. 216–222, 1995.

[106] E. J. Novotny, “Proppant transport,” in Proceedings of the 52nd SPE Annual Technical Con-

ference and Exhibition, vol. (SPE 6813), (Denver, CO), 1977.

[107] P. Siddhamshetty, Modeling of Hydraulic Fracturing and Design of Online Optimal Pump-

ing Schedule for Enhanced Productivity in Shale Formations. PhD thesis, Texas A&M

University, 2020.

[108] O. Delalleau and Y. Bengio, “Shallow vs. deep sum-product networks,” in Advances in

Neural Information Processing Systems 24 (J. Shawe-Taylor, R. S. Zemel, P. L. Bartlett,

F. Pereira, and K. Q. Weinberger, eds.), pp. 666–674, Curran Associates, Inc, 2011.

[109] S. Liang and R. Srikant, “Why deep neural networks for function approximation?,” in 5th

International Conference on Learning Representations, 2017.

[110] R. Eldan and O. Shamir, “The power of depth for feedforward neural networks,” in Pro-

ceedings of the 29th Annual Conference on Learning Theory (V. Feldman, A. Rakhlin, and

O. Shamir, eds.), vol. 49 of Proceedings of Machine Learning Research, (Columbia Univer-

sity, New York, USA), pp. 907–940, PMLR, 23–26 Jun 2016.

[111] G. F. Montufar, R. Pascanu, K. Cho, and Y. Bengio, “On the number of linear regions of deep

neural networks,” in Advances in Neural Information Processing Systems 27 (Z. Ghahra-

mani, M. Welling, C. Cortes, N. D. Lawrence, and K. Q. Weinberger, eds.), pp. 2924–2932,

Curran Associates, Inc., 2014.

[112] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning representations by back-

propagating errors,” Nature, vol. 323, pp. 533–536, 1986.

[113] P. J. Werbos, “Backpropagation: past and future,” PSecond International Conference on

Neural Network, vol. 1, pp. 343–353, 1988.

[114] M. R. Osborne, “Fisher’s method of scoring,” International Statistic Review, vol. 86,

pp. 271–286, 1992.

150

[115] K. Levenberg, “A method for the solution of certain non-linear problems in least squares,”

Quarterly of Applied Mathematics, vol. 2, no. 2, pp. 164–168, 1944.

[116] D. Marquardt, “An algorithm for least-squares estimation of nonlinear parameters,” SIAM J.

Applied Mathematics, vol. 11, no. 2, pp. 431–441, 1963.

[117] L. Mears, S. M. Stocks, M. O. Albaek, G. Sin, and K. V. Gernaey, “Mechanistic fermentation

models for process design, monitoring, and control.,” Trends in Biotechnology, vol. 35,

no. 10, pp. 914–924, 2017.

[118] A. Narasingam and J. S.-I. Kwon, “Data-driven identification of interpretable reduced-order

models using sparse regression,” Comput. Chem. Eng., vol. 119, no. 2, pp. 101 – 111, 2018.

[119] D. Beluhan and S. Beluhan, “Hybrid modeling approach to on-line estimation of yeast

biomass concentration in industrial bioreactor,” Biotechnology Letters, vol. 22, pp. 631–

635, 2000.

[120] R. G. Silva, A. J. Cruz, C. O. Hokka, R. L. Giordano, and R. C. Giordano, “A hybrid neural

network algorithm for on-line state inference that accounts for differences in inoculum of

cephalosporium acremonium in fed-batch fermentors,” Applied Biochemistry and Biotech-

nology, vol. 91-93, pp. 341–352, 2001.

[121] M. Ignova, G. C. Paul, C. A. Kent, C. R. Thomas, G. A. Montague, J. Glassey, and A. C.

Ward, “Hybrid modelling for on-line penicillin fermentation optimisation,” IFAC Proceed-

ings Volumes, vol. 34, no. 1, pp. 395–400, 2002.

[122] S. O. Laursen, D. Webb, and W. F. Ramirez, “Dynamic hybrid neural network model of an

industrial fed-batch fermentation process to produce foreign protein,” Comput. Chem. Eng.,

vol. 31, no. 3, pp. 163–170, 2007.

[123] R. Eldan and O. Shamir, “The power of depth for feedforward neural networks,” Proceed-

ings of the Twenty-Ninth Annual Conference on Learning Theory, vol. 49, pp. 907–940,

2016.

151

[124] P. Shah, M. Z. Sheriff, M. S. F. Bangi, C. Kravaris, J. S.-I. Kwon, C. Botre, and J. Hirota,

“Deep neural network-based hybrid modeling and experimental validation for an industry-

scale fermentation process: Identification of time-varying dependencies among parameters,”

Chem. Eng. J., vol. 441, p. 135643, 2022.

[125] M. C. Ordonez, J. P. Raftery, T. Jaladi, X. Chen, K. Kao, and M. N. Karim, “Modeling of

batch kinetics of aerobic carotenoid production using saccharomyces cerevisiae,” Biochem-

ical Engineering Journal, vol. 114, pp. 226–236, 2016.

[126] Z. Duan, T. Wilms, P. Neubauer, C. Kravaris, and M. N. C. Bournazou, “Model reduction of

aerobic bioprocess models for efficient simulation,” Chem. Eng. Sci., vol. 217, p. 115512,

2020.

[127] R. Edge, D. J. McGarvey, and T. G. Truscott, “The carotenoids as anti-oxidants-a review,”

J. Photochem. Photobiol., vol. 41, no. 3, pp. 189–200, 1997.

[128] P. J. Hulshof, T. Kosmeijer-Schuil, C. E. West, and P. C. Hollman, “Quick screening of

maize kernels for provitamin a content,” Journal of Food Composition and Analysis, vol. 20,

no. 8, pp. 655–661, 2007.

[129] P. Polazza and N. Krinsky, “Antioxidant effects of carotenoids in vivo and in vitro: an

overview,” Methods Enzymol., vol. 213, pp. 403–420, 1992.

[130] G. Van Popel and R. A. Goldbohm, “Epidemiologic evidence for beta-carotene and cancer

prevention,” Am. J. Clin. Nutr., vol. 62, pp. 291–296, 1995.

[131] M. C. OrdoÃśez, J. P. Raftery, T. Jaladi, X. Chen, K. Kao, and M. N. Karim, “Modelling of

batch kinetics of aerobic carotenoid production using saccharomyces cerevisiae,” Biochem-

ical Engineering Journal, vol. 114, pp. 226–236, 2016.

[132] L. M. S. M. Stocks, M. O. Albaek, G. Sin, and K. V. Gernaey, “Mechanistic fermenta-

tionmodels for process design, monitoring, and control,” Trends in Biotechnology, vol. 35,

no. 10, pp. 914–924, 2017.

152

[133] T. Q. Chen, Y. Rubanova, J. Bettencourt, and D. K. Duvenaud, “Neural ordinary differential

equations,” (Montreal, Canada), pp. 6571–6583, 2018.

[134] C. Rackauckas, Y. Ma, J. Martensen, C. Warner, K. Zubov, R. Supekar, D. Skinner, and

A. Ramadhan, “Universal differential equations for scientific machine learning,” arXiv

preprint arXiv:2001.04385, 2020.

[135] C. Rackauckas and Q. Nie, “Differentialequations.jl–a performant and feature-rich ecosys-

tem for solving differential equations in Julia,” Journal of Open Research Software, vol. 5,

no. 1, 2017.

[136] J. Revels, M. Lubin, and T. Papamarkou, “Forward-mode automatic differentiation in Julia,”

arXiv:1607.07892 [cs.MS], 2016.

[137] C. Rackauckas, M. Innes, Y. Ma, J. Bettencourt, L. White, and V. Dixit, “Diffeqflux.jl - A

julia library for neural differential equations,” CoRR, 2019.

[138] M. S. F. Bangi, K. Kao, and J. S.-I. Kwon, “Physics-informed neural networks for hybrid

modeling of lab-scale batch fermentation for beta-carotene production using saccharomyces

cerevisiae,” Chem. Eng. Res. Des., vol. 179, pp. 415–423, 2022.

[139] H. Nelis and A. De Leenheer, “Microbial sources of carotenoid pigments used in foods and

feed,” J. Appl. Bacteriol., vol. 70, no. 3, pp. 181–191, 1991.

[140] R. Ausich, “Commercial opportunities for carotenoid production by biotechnology,” Pure

Appl. Chem., vol. 69, no. 10, pp. 2169–2174, 1997.

[141] W. S. E. Johnson, “Microbial carotenoids,” Adv. Biochem. Eng. Biotechnol., vol. 53,

pp. 119–178, 1995.

[142] P. Lee and C. Schmidt-Dannert, “Metabolic engineering towards biotechnological produc-

tion of carotenoids in microorganisms,” Appl. Microbiol. Biotechnol., vol. 60, pp. 1–11,

2002.

153

[143] G. Fregova and D. Beshkova, “Carotenoids from rhodotorula and phaffia: yeast of biotech-

nological importance,” J. Ind. Microbiol. Biotechnol., vol. 36, no. 2, pp. 163–180, 2009.

[144] P. B. P. Vachali, P. Bhosale, “Microbial carotenoids from fungi,” Methods Mol. Biol.,

vol. 898, pp. 41–59, 2012.

[145] Z. Ge, “Review on data-driven modeling and monitoring for plant-wide industrial pro-

cesses,” Chemometrics and Intelligent Laboratory Systems, vol. 171, pp. 16–25, 2017.

[146] F. J. MontÃąns, F. Chinesta, R. GÃşmez-Bombarelli, and J. N. Kutz, “Data-driven modeling

and learning in science and engineering,” Comptes Rendus MÃl’canique, vol. 347, no. 11,

pp. 845–855, 2019. Data-Based Engineering Science and Technology.

[147] C. Fan, D. Yan, F. Xiao, A. Li, J. An, and X. Kang, “Advanced data analytics for enhanc-

ing building performances: From data-driven to big data-driven approaches,” Build. Simul.,

vol. 14, pp. 3–24, 2021.

[148] E. N. Pistikopoulos, A. Barbosa-Povoa, J. H. Lee, R. Misener, A. Mitsos, G. V. Reklaitis,

V. Venkatasubramanian, F. You, and R. Gani, “Process systems engineering - the generation

next?,” Comput. Chem. Eng., vol. 147, p. 107252, 2021.

[149] S. Spielberg, A. Tulsyan, N. P. Lawrence, P. D. Loewen, and R. B. Gopaluni, “Toward self-

driving processes: A deep reinforcement learning approach to control,” AIChE. J., vol. 65,

no. 10, p. e16689, 2019.

[150] M. S. F. Bangi and J. S. Kwon, “Deep reinforcement learning control of hydraulic fractur-

ing,” Comput. Chem. Eng., vol. 154, p. 107489, 2021.

[151] M. S. F. Bangi and J. S.-I. Kwon, “Deep hybrid modeling of chemical process: Application

to hydraulic fracturing,” Comput. Chem. Eng., vol. 134, p. 106696, 2020.

[152] D. Lee, A. Jayaraman, and J. S. Kwon, “Development of a hybrid model for a partially

known intracellular signaling pathway through correction term estimation and neural net-

work modeling,” PLoS Comput. Biol., vol. 16, no. 12, p. e1008472, 2020.

154

[153] D. Lee, A. Jayaraman, and J. S. Kwon, “Identification of cell-to-cell heterogeneity through

systems engineering approaches,” AIChE. J., vol. 66, no. 5, p. e16925, 2020.

[154] J. Sansana, M. N. Joswiak, I. Castillo, Z. Wang, R. Rendall, L. H. Chiang, and M. S.

Reis, “Recent trends on hybrid modeling for industry 4.0,” Comput. Chem. Eng., vol. 151,

p. 107365, 2021.

[155] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,” (Las

Vegas, NV, USA), pp. 770–778, 2016.

[156] L. Reyes, J. Gomez, and K. Kao, “Improving carotenoids production in yeast via adaptive

laboratory evolution,” Metab. Eng., vol. 21, pp. 26–33, 2014.

[157] P. Mhaskar, N. H. El-Farra, and P. D. Christofides, “Stabilization of nonlinear systems with

state and control constraints using Lyapunov-based predictive control,” Systems & Control

Letters, vol. 55, no. 8, pp. 650–659, 2006. New Trends in Nonlinear Control.

[158] D. Munoz de la Pena and P. D. Christofides, “Lyapunov-based model predictive control of

nonlinear systems subject to data losses,” IEEE Transactions on Automatic Control, vol. 53,

no. 9, pp. 2076–2089, 2008.

[159] F. Albalawi, H. Durand, and P. D. Christofides, “Process operational safety using model

predictive control based on a process safeness index,” Comput. Chem. Eng., vol. 104, pp. 76–

88, 2017.

[160] M. Z. Romdlony and B. Jayawardhana, “Stabilization with guaranteed safety using control

lyapunov-barrier function,” Automatica, vol. 66, pp. 39–47, 2016.

[161] Z. Wu and P. D. Christofides, “Handling bounded and unbounded unsafe sets in control

lyapunov-barrier function-based model predictive control of nonlinear processes,” Chem.

Eng. Res. Des., vol. 143, pp. 140–149, 2019.

[162] B. Niu and J. Zhao, “Barrier lyapunov functions for the output tracking control of con-

strained nonlinear switched systems,” Systems & Control Letters, vol. 62, no. 10, pp. 963–

971, 2013.

155

[163] K. P. Tee, S. S. Ge, and E. H. Tay, “Barrier Lyapunov Functions for the control of output-

constrained nonlinear systems,” Automatica, vol. 45, no. 4, pp. 918–927, 2009.

[164] X. Xu, P. Tabuada, J. W. Grizzle, and A. D. Ames, “Robustness of Control Barrier Functions

for safety critical control,” IFAC-PapersOnLine, vol. 48, no. 27, pp. 54–61, 2015. Analysis

and Design of Hybrid Systems ADHS.

[165] Z. Wu, F. Albalawi, Z. Zhang, J. Zhang, H. Durand, and P. D. Christofides, “Control

lyapunov-barrier function-based model predictive control of nonlinear systems,” Automat-

ica, vol. 109, p. 108508, 2019.

[166] Y. Lin and E. D. Sontag, “A universal formula for stabilization with bounded controls,”

Systems & Control Letters, vol. 16, no. 6, pp. 393–397, 1991.

[167] S. Chen, Z. Wu, and P. D. Christofides, “Machine-learning-based construction of barrier

functions and models for safe model predictive control,” AIChE Journal, e17456, 2021.

[168] M. J. Economides, L. T. Watters, and S. Dunn-Normall, Petroleum well construction. Chich-

ester: Wiley, 1998.

[169] S. Pahari, B. Bhadriraju, M. Akbulut, and J. S.-I. Kwon, “A slip-spring framework to study

relaxation dynamics of entangled wormlike micelles with kinetic monte carlo algorithm,”

Journal of Colloid and Interface Science, vol. 600, pp. 550–560, 2021.

[170] S. Liu, Y. Lin, B. Bhat, K. Kuan, J. S. Kwon, and M. Akbulut, “pH-responsive viscoelas-

tic supramolecular gels based on dynamic complexation of zwitterionic octadecylamido-

propyl betaine and triamine for hydraulic fracturing applications,” RSC Advances, vol. 11,

pp. 22517–22529, 2021.

[171] S. Pahari, J. Moon, M. Akbulut, S. Hwang, and J. S.-I. Kwon, “Estimation of microstructural

properties of wormlike micelles via a multi-scale multi-recommendation batch bayesian

optimization,” Ind. Eng. Chem. Res., vol. 60, no. 43, pp. 15669–15678, 2021.

156

[172] B. Bhat, S. Liu, Y.-T. Lin, M. L. Sentmanat, J. Kwon, and M. Akbulut, “Supramolecular

dynamic binary complexes with ph and salt-responsive properties for use in unconventional

reservoirs,” PLOS ONE, vol. 16, pp. 1–16, 12 2021.

[173] K. G. Nolte, “Determination of proppant and fluid schedules from fracturing-pressure de-

cline,” SPE Prod Eng, vol. 1, pp. 255–265, July 1986.

[174] H. Gu and J. Desroches, “New pump schedule generator for hydraulic fracturing treatment

design,” in Proceedings of the SPE Latin American and Caribbean Petroleum Engineering

Conference, (Port-of-Spain, Trinidad and Tobago), Apr. 2003.

[175] P. Siddhamshetty, K. Wu, and J. S.-I. Kwon, “Modeling and control of proppant distribution

of multistage hydraulic fracturing in horizontal shale wells,” Ind. Eng. Chem. Res., vol. 58,

no. 8, pp. 3159–3169, 2019.

[176] Y. Ahn, P. Siddhamshetty, K. Cao, J. Han, and J. S.-I. Kwon, “Optimal design of shale gas

supply chain network considering MPC-based pumping schedule of hydraulic fracturing in

unconventional reservoirs,” Chem. Eng. Res. Des., vol. 147, pp. 412–429, 2019.

[177] P. Siddhamshetty and J. S.-I. Kwon, “Simultaneous measurement uncertainty reduction

and proppant bank height control of hydraulic fracturing,” Comput. Chem. Eng., vol. 127,

pp. 272–281, 2019.

[178] P. Siddhamshetty, P. Bhandakkar, and J. S.-I. Kwon, “Enhancing total fracture surface area

in naturally fractured unconventional reservoirs via model predictive control,” J. Petr. Sci.

and Eng., vol. 184, p. 106525, 2020.

[179] K. Cao, S. H. Son, J. Moon, and J. S.-I. Kwon, “A closed-loop integration of scheduling and

control for hydraulic fracturing using offset-free model predictive control,” Applied Energy,

vol. 302, p. 117487, 2021.

[180] P. Siddhamshetty and J. S.-I. Kwon, “Model-based feedback control of oil production in oil-

rim reservoirs under gas coning conditions,” Comput. Chem. Eng., vol. 112, pp. 112–120,

2018.

157

[181] P. Siddhamshetty, S. Mao, K. Wu, and J. S.-I. Kwon, “Multi-size proppant pumping sched-

ule of hydraulic fracturing: Application to a MP-PIC model of unconventional reservoir for

enhanced gas production,” Processes, vol. 8, no. 5, 2020.

[182] P. Bhandakkar, P. Siddhamshetty, and J. S.-I. Kwon, “Numerical study of the effect of

propped surface area and fracture conductivity on shale gas production: Application for

multi-size proppant pumping schedule design,” Journal of Natural Gas Science and Engi-

neering, vol. 79, p. 103349, 2020.

[183] P. Etoughe, P. Siddhamshetty, K. Cao, R. Mukherjee, and J. S.-I. Kwon, “Incorporation of

sustainability in process control of hydraulic fracturing in unconventional reservoirs,” Chem.

Eng. Res. and Des., vol. 139, pp. 62–76, 2018.

[184] K. Cao, P. Siddhamshetty, Y. Ahn, R. Mukherjee, and J. S.-I. Kwon, “Economic model-

based controller design framework for hydraulic fracturing to optimize shale gas production

and water usage,” Ind. Eng. Chem.Res., vol. 58, no. 27, pp. 12097–12115, 2019.

[185] K. Cao, P. Siddhamshetty, Y. Ahn, M. M. El-Halwagi, and J. S.-I. Kwon, “Evaluating the

spatiotemporal variability of water recovery ratios of shale gas wells and their effects on

shale gas development,” Journal of Cleaner Production, vol. 276, p. 123171, 2020.

[186] Y. Ahn, J. Kim, and J. S.-I. Kwon, “Optimal design of supply chain network with carbon

dioxide injection for enhanced shale gas recovery,” Applied Energy, vol. 274, p. 115334,

2020.

[187] S. Pahari, P. Bhandakkar, M. Akbulut, and J. S.-I. Kwon, “Optimal pumping schedule with

high-viscosity gel for uniform distribution of proppant in unconventional reservoirs,” En-

ergy, vol. 216, p. 119231, 2021.

[188] A. Narasingam, P. Siddhamshetty, and J. S. Kwon, “Handling spatial heterogeneity in reser-

voir parameters using proper orthogonal decomposition based ensemble Kalman filter for

model-based feedback control of hydraulic fracturing,” Ind. Eng. Chem. Res., vol. 57, no. 11,

pp. 3977–3989, 2018.

158

[189] P. Siddhamshetty, K. Wu, and J. S.-I. Kwon, “Optimization of simultaneously propagating

multiple fractures in hydraulic fracturing to achieve uniform growth using data-based model

reduction,” Chem. Eng. Res. Des., vol. 136, pp. 675–686, 2018.

[190] H. Singh Sidhu, P. Siddhamshetty, and J. S. Kwon, “Approximate dynamic programming

based control of proppant concentration in hydraulic fracturing,” Mathematics, vol. 6, no. 8,

2018.

[191] P. Siddhamshetty, M. Ahammad, R. Hasan, and J. Kwon, “Understanding wellhead ignition

as a blowout response,” Fuel, vol. 243, pp. 622–629, 2019.

[192] S. Mao, P. Siddhamshetty, Z. Zhang, W. Yu, T. Chun, J. S.-I. Kwon, and K. Wu, “Impact

of proppant pumping schedule on well production for slickwater fracturing,” SPE Journal,

vol. 26, pp. 342–358, 02 2021.

[193] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction. Cambridge: MIT

Press, 1998.

[194] M. Suglyama, Statistical Reinforcement Learning: Modern Machine Learning Approaches.

Florida: CRC Press, 2015.

[195] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wierstra, and M. Ried-

miller, “Playing Atari with deep reinforcement learning,” arXiv preprint arXiv:1312.5602,

2013.

[196] V. Mnih, K. Kavukcuoglu, and D. e. a. Silver, “Human-level control through deep reinforce-

ment learning,” Nature, vol. 518, pp. 529–533, 2015.

[197] G. Tesauro, “Temporal difference learning and TD-gammon,” Commun. of the ACM, vol. 38,

no. 3, pp. 58–68, 1995.

[198] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. van den Driessche, J. Schrit-

twieser, I. Antonoglou, V. Panneershelvam, M. Lanctot, S. Dieleman, D. Grewe, J. Nham,

N. Kalchbrenner, I. Sutskever, T. Lillicrap, M. Leach, K. Kavukcuoglu, T. Graepel, and

159

D. Hassabis, “Mastering the game of Go with deep neural networks and tree search,” Na-

ture, vol. 529, pp. 484–489, 2016.

[199] L. Lehnert and D. Precup, “Policy gradient methods for off-policy control,” arXiv Preprint,

arXiv:1512.04105, 2015.

[200] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D. Silver, and D. Wierstra,

“Continuous control with deep reinforcement learning,” arXiv Preprint, arXiv:1509.02971,

2015.

[201] D. Silver, J. Schrittwieser, K. Simonyan, I. Antonoglou, A. Huang, A. Guez, T. Hubert,

L. Baker, M. Lai, A. Bolton, Y. Chen, T. Lillicrap, F. Hui, L. Sifre, G. van den Driess-

che, T. Graepel, and D. Hassabis, “Mastering the game of Go without human knowledge,”

Nature, vol. 550, pp. 354–359, 2017.

[202] L. A. Brujeni, J. M. Lee, and S. L. Shah, “Dynamic tuning of PI-controllers based on model-

free reinforcement learning methods,” in Proceedings of the International Conference on

Control, Automation and Systems (ICCAS), pp. 453–458, 2010.

[203] T. A. Badgwell, J. H. Lee, and K.-H. Liu, “Reinforcement learning - overview of recent

progress and implications for process control,” Comput. Aid. Chem. Eng., vol. 44, pp. 71–

85, 2018.

[204] J. Shin, T. A. Badgwell, J. H. Lee, and K.-H. Liu, “Reinforcement learning - overview

of recent progress and implications for process control,” Comput. Chem. Eng., vol. 127,

pp. 282–294, 2019.

[205] J. W. Kim, B. J. Park, H. Yoo, T. H. Oh, J. H. Lee, and J. M. Lee, “A model-based deep re-

inforcement learning method applied to finite-horizon optimal control of nonlinear control-

affine system,” J. Process Control, vol. 87, pp. 166–178, 2020.

[206] H. Yoo, B. Kim, J. W. Kim, and J. H. Lee, “Reinforcement learning based optimal con-

trol of batch processes using Monte-Carlo deep deterministic policy gradient with phase

segmentation,” Comput. Chem. Eng., vol. 144, p. 107133, 2021.

160

[207] J. H. Lee and J. M. Lee, “Approximate dynamic programming based approach to process

control and scheduling,” Comput. Chem. Eng., vol. 30, pp. 1603–1618, 2006.

[208] D. P. Bertsekas, Dynamic Programming and Optimal Control. MA: Athena Scientific, 2005.

[209] D. Vrabie and F. Lewis, “Neural network approach to continuous-time direct adaptive op-

timal control for partially unknown nonlinear systems,” Neural Networks, vol. 22, no. 3,

pp. 237–246, 2009.

[210] K. G. Vamvoudakis and F. L. Lewis, “Online actor-critic algorithm to solve the continuous-

time infinite horizon optimal control problem,” Automatica, vol. 46, no. 5, pp. 878–888,

2010.

[211] Y. Ma, W. Zhu, M. G. Benton, and J. Romagnoli, “Continuous control of a polymerization

system with deep reinforcement learning,” J. Process Control, vol. 75, pp. 40–47, 2019.

[212] D. Silver, G. Lever, N. Hess, T. Degris, D. Wierstra, and M. Riedmiller, “Deterministic pol-

icy gradient algorithms,” in Proceedings of the 31st International Conference on Machine

Learning, PMLR, vol. 32, (Beijing, China), pp. 387–395, 2014.

[213] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep network training by re-

ducing internal covariate shift,” in Proceedings of the 32nd International Conference on

Machine Learning (ICML), vol. 37 of JMLR Workshop and Conference Proceedings, (Lille,

France), pp. 448–456, July 2015.

[214] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” in Proceedings of

the 3rd International Conference on Learning Representations, ICLR 2015, San Diego, CA,

USA, May 2015.

[215] P. Van Overschee and B. De Moor, Subspace Identification for Linear Systems: Theory -

Implementation - Applications. New York: Springer, 1996.

161

	ABSTRACT
	DEDICATION
	ACKNOWLEDGMENTS
	CONTRIBUTORS AND FUNDING SOURCES
	TABLE OF CONTENTS
	LIST OF FIGURES
	LIST OF TABLES
	Introduction and Literature Review
	Data-based modeling
	Hybrid modeling
	Organization and objectives of the proposed research

	DATA-BASED REDUCED-ORDER MODELING
	Enlarging the Domain of Attraction of the Local Dynamic Mode Decomposition with Control Technique: Application to Hydraulic Fracturing
	Local Dynamic Mode Decomposition with Control
	Capturing local dynamics

	Enlarging the DOA of Local DMDc
	Data Generation
	Temporal Clustering
	Local ROM Selection

	Application to hydraulic fracturing
	Dynamic modeling of hydraulic fracturing process
	Building LDMDc-based ROMs

	Model validation
	Model prediction
	Random input

	Comparison with LDMDc

	DEEP HYBRID MODELING
	Deep hybrid modeling of chemical processes: Application to hydraulic fracturing
	Deep neural networks
	Levenberg-Marquardt training
	Proposed deep hybrid model
	Training algorithm
	Hydraulic fracturing process
	Deep hybrid model for hydraulic fracturing process
	Comparison of Deep hybrid model and black box model
	Comparison of Deep hybrid model and first principles model

	Deep neural network-based hybrid modeling and experimental validation for an industry-scale fermentation process: Identification of time-varying dependencies among parameters
	First-principles model of the bio-fermentation process
	Improving the first-principles model
	Incorporation of component X1
	Incorporation of component X2

	Sensitivity analysis and clustering
	Sensitivity analysis

	Improving the revised first-principles model through clustering
	Development of the hybrid model
	Improving the revised first-principles model through hybrid modeling

	Error analysis

	Universal hybrid modeling of batch kinetics of aerobic carotenoid production using Saccharomyces Cerevisiae
	First-principles model for -carotene production
	Neural ODEs and UDEs
	Neural ODEs
	UDEs

	UDE model for -carotene production
	Case 1
	Case 2

	Physics-informed neural networks for hybrid modeling of lab-scale batch fermentation for -carotene production using Saccharomyces Cerevisiae
	Microorganism and culture media
	Bioreactor cultivation results
	UDE model for lab-scale -carotene production
	Testing UDE model with different initial concentrations of glucose

	DEEP HYBRID MODELING-BASED PREDICTIVE CONTROL
	Stabilization with guarantees on domain of applicability for hybrid model-based predictive control
	Stability analysis and DA guarantees
	Notation
	Lyapunov-based control for system stability
	Hybrid model
	Characterization of Domain of Applicability (DA)
	Control Barrier function (CBF)
	Stabilization and DA guarantees via CLBF
	Design of constrained CLBF
	CLBF-based model predictive control
	Sample-and-hold implementation
	Mathematical formulation of CLBF-MPC

	Application to a CSTR

	INCORPORATING PHYSICS IN REINFORCEMENT LEARNING-BASED CONTROL
	Deep reinforcement learning control of hydraulic fracturing
	Background
	Reinforcement learning

	Actor-Critic framework
	Deep reinforcement learning (DRL) controller
	States and actions
	Reward functions
	DNNs as function approximators
	DRL training

	Design of DRL controller for hydraulic fracturing
	RL state definition and dimensionality reduction
	Action
	Reward function
	DRL controller learning
	DRL controller hyperparameters
	ROM for hydraulic fracturing

	DRL controller results
	Initializing the learning process
	First stage of learning
	Second stage of learning

	SUMMARY
	REFERENCES

