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ABSTRACT

Automated diet monitoring, an important tool in preventing healthy individuals and those with

pre-diabetes from developing Type 2 Diabetes, requires automatic eating detection and estimation

of the macronutrient contents of ingested food. While signals from continuous glucose monitors

may track the post-prandial glucose response (glucose response after eating) and use this for es-

timation of nutritional information, the proper identification and segmentation of these periods of

eating require additional sensing modalities and contextual information. In this work, we devel-

oped a framework for machine learning modeling to detect eating periods, properly segment post-

prandial glucose responses, and estimate nutritional content from these segments in real-world

environments using data captured from a continuous glucose monitor and augmented with con-

textual data from smartwatch wearable sensors. Using a custom-developed platform, we conduct

a human subject study where participants were free to eat what they wished, when they wished,

logging data and wearing a set of sensors. To aid future, just-in-time diet monitoring applica-

tions, we found that contextual data improved eating moment detection and thus enables real-time

macronutrient estimation.
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1. INTRODUCTION

1.1 Outline

This chapter introduces the topic and declares the study’s goals; the second chapter defines the

context and reviews the literature for how context is defined and used, its definition, and applica-

tion specifically in relation to biosensing and health monitoring. The third chapter introduces our

methodology and establishes a framework for data collection, providing details and applications

used for this study in the experiments conducted. The fourth chapter is dedicated to experiments

and results, and the final chapter concludes this study and explores potential future directions.

1.2 Objectives

There are 1.4 (0.5) billion people in the world with a body-mass index of > 25 (> 30) suffering

from being overweight (obese). Obesity can increase the chance of diabetes mellitus, a medical

condition where the body cannot regulate blood glucose properly, which is a leading cause of death

(based on the World Health Organization report). Additionally, it serves as a primary co-morbidity

to a number of other serious medical complications, including indirect deaths in COVID-19 pan-

demic Caballero et al. [2020]. Therefore, significant research has investigated the prescription of

diet control and exercise to prevent healthy individuals and those with pre-diabetes from devel-

oping type 2 diabetes, which depends on correctly logging meal times and macronutrient content

(such as carbohydrate, fat, etc. and protein). Therefore, in this study, I aim to perform an accurate

eating detection and subsequently estimate the macronutrient of such detected meals.

1.2.1 Eating Detection

This diet and exercise monitoring involves monitoring the frequency, quantity, and quality

(macronutrient content) of the diet, as well as periods of intense exercise and of inactivity Solis

et al. [2019], Akbari et al. [2020]. However, the consistent logging and monitoring of this infor-

mation is an arduous task and is often accompanied by user error in the process of data insertion

(wrong values, types, or time) and can cause a lot of issues for machine learning models Cordeiro
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et al. [2015], Chung et al., Sajjadi et al. [2021]. We can break the task into detecting eating mo-

ments and estimating meal nutrition. However, some methods can help both of them. Lots of

efforts were made to detect the eating periods automatically, such as placing a sensor to detect

chewing and swallowing sound near the throat Gao et al. [2016], putting cameras in glass lenses or

frames to detect the eating and the content and size of a meal Gemming et al. [2015], monitoring

the tensions and contractions in temporalis muscles to monitor muscle Zhang and Amft [2018].

All of the methods above are invasive to the user’s privacy; on the other hand, with the advent of

smartwatch, hand movements can be monitored and tracked to detect eating gestures which relieve

the user from the burden of wearing extra and unorthodox sensors. Such a detection was previously

done using medical-grade wearable but the model suffers high number of false positives Dong et al.

[2014], Sharma et al. [2020]. Similar efforts were made using continuous glucose monitor (CGM)

sensor mostly for diabetic participants Staal et al. [2019]; however, such a detection is accompa-

nied by a lag (required for food metabolism). Therefore, it will be of interest to make an effort

to provide some contextual information for CGM models (such as hand motion) to improve the

model performance.

1.2.2 Macronutrient Estimation

Macronutrient estimation is additionally challenging Cordeiro et al. [2015], Chung et al., even

when correct periods of meal detection occur. To help the user reduce errors and automate the

process, we can utilize extra sensors (such as CGM) to discern the fat, protein, and carbohydrate

content of a meal as their post-prandial glucose response (PPGR) has a different peak time, am-

plitude, and area under the curve Zeevi et al. [2015]. Several studies have attempted to estimate

the nutrient content of a meal based on CGM readings for non-diabetic participants in a laboratory

controlled environment with meals of known macronutrient quantities and fixed periods of fast-

ing and inactivity Sajjadi et al. [2021], Paromita et al. [2021], Huo et al. [2019]. Even with such

limitations results suffer from low performance. The reason behind such a poor performance can

be misinformation (lack of data) or disinformation (biased data), which can be alleviated using

contextual information provided by wearables and nearables.
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1.3 Context Awareness

Unique and novel wearable sensors enable a breadth of personal health monitoring applica-

tions. Physiological and behavioral data collected by wearables, especially in uncontrolled envi-

ronments, is affected by noise, motion artifact, and external stimuli such as daily activities. There-

fore, understanding the contextual information surrounding wearable data is paramount. Context

data provides additional information on who, what, where, when, why, and how of remote data

collection. However, context is not a universal definition for analytic models on sensing systems.

By evaluating context, sensing systems can capture health and behavior from very discrete actions

to long-term longitudinal health monitoring. The ADL recognition, along with other behavioral

information, can further be used for detecting high-level lifestyle information such as diet, which

itself could provide contextual information when looking into physiological data for health mon-

itoring. Accordingly, context is the key to unlocking the potential of sensing and bio-sensing for

health and wellness applications as dicussed in the next chapter.

1.4 Conclusion

Finally, by combining the methodology from eating detection studies, macronutrient estima-

tion methods, and introducing contextual information, I build a multi-modal model to identify

periods of eating in the wild correctly. Additionally, I set the stage ready for the next level, which

is the macronutrient estimation of the meal based on PPGR and contextual information of such

segmented meal times.

3



2. DEFINING CONTEXT AWARENESS FOR REMOTE HEALTH MONITORING

2.1 Introduction

2.2 Context for Lifestyle Monitoring: Complex Behavior Modeling

Contextual information can aid the capture of data that effectively monitors health and well-

ness Hurley et al. [2020]. This context, the who, what, where, when, why, and how of remote data

collection allow models to understand and interpret changes in biomarker data. This section high-

lights the importance of utilizing contextual information for lifestyle monitoring. Here, actions

are not specified to windows of time or locations but may be more complex in nature, duration,

and overlap with others. We then demonstrate this in the context of health and behavior, namely,

tracking activity and diet monitoring, which itself then provides invaluable context for health and

wellness monitoring applications, such as diabetes management, hypertension control, and other

chronic conditions where lifestyle interventions aid recovery and outcome. Whereas the prior

section provided methods by which automated exercise monitoring is possible Das et al. [2021],

Mortazavi et al. [2014], we demonstrate this context definition, identification, and use through diet

monitoring to complete a holistic lifestyle monitoring review.

2.2.1 Need for Context for Lifestyle Monitoring

Blood glucose and diet monitoring management (through meal macronutrient estimation) are

essential for tracking lifestyle and behavior choices of individuals, particularly those with or at risk

of developing type 2 diabetes. Continuous glucose monitoring (CGM) are a great example of sen-

sors that track biometric information which both enable health and wellness applications but also

need significant context to frame the data capture. A study by Zeevi et al. [2015] showed that by

monitoring the postprandial glucose response (PPGR), individualized responses to specific meals

can be identified. In particular, it identifies what causes the glucose responses to become elevated,

stay elevated and how to avoid hypoglycemic events through meal choices. Exercise can also im-

pact glucose responses, where exercise can cause reductions in glucose excursions Cockcroft et al.
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[2019], MC et al. [2019].This information is extremely important in helping participants make the

right diet and exercise choices.

Deciphering the personalized response from CGM sensors to automate and interpret diet, how-

ever, is an arduous task. Using 8 hours of glucose data and constraining participants to single meals

and no exercise, it becomes possible to recover diet information automatically from sensing devices

Das et al. [2021], Huo et al. [2019], Sajjadi et al. [2021], Yang et al. [2021]. However, removing

those restrictions quickly increases the difficulty of this task. Moreover, the same person might not

respond to the same meal equally as his/her body response highly depends on environmental and

personal factors such as psychological mood, energy expenditure (sports), and medications Oviedo

et al. [2017]. With the advent of sophisticated machine learning models, there is an opportunity

to augment the blood glucose time series with contextual information to enhance prediction accu-

racy. Therefore, in the last two decades, a growing number of studies leveraged contextual data

along with blood glucose readings for diet monitoring Akbari and Chunara [2019], Oviedo et al.

[2017], Rabby et al. [2021]. Contextualizing and personalizing glucose response from additional

sources of data, such as multi-omics data, can aid longitudinal monitoring of choices and their

health effects Zhou et al. [2019].

Indeed, one of the most important contextual data for smart diet monitoring is automated de-

tection of eating moments. Not only could this context help with more accurate computations, but

it can also facilitate nutrition logging and data annotation for the end users by sending them timely

reminders. Placing acoustic sensors for detecting chewing and swallowing sound near the throat

region Amft et al. [2005], Gao et al. [2016], Pasler and Fischer [2014], cameras or smart glasses

to visually detecting the food Gemming et al. [2015], Hodges et al. [2006], Sun et al. [2014], elec-

tromyograph on temporalis muscles to monitor muscle contractions Huang et al. [2017], Zhang and

Amft [2016, 2018], and wearables on the hand to detect the hand movement Dong et al. [2012],

Luktuke and Hoover [2020] have all been explored. This information provides a foundation for

context information in lifestyle monitoring, identifying when certain choices are being made. Us-

ing wearable to detect eating moments is the most orthodox method in the literature as the eating
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gesture is usually patterned and periodic. Wearables can be categorized into the medical grade

(such as Empatica, Actigraph, and Shimmer), which are typically available to researchers with

more battery life, higher price, higher functionality, or commercial ones (such as Apple Watch,

Samsung, and Fitbit). These wearables can record the participants’ hand movements and gestures

1) using an accelerometer and gyroscope or 2) measuring and calculating the current location of

the hand with respect to the body or hand’s attitude (such as InertiaCube3). The collected time

series can be fed to machine learning models or simpler algorithms (such as naive Bayes classifier)

for feature extraction.

2.2.2 Context Pattern Extraction for Lifestyle Monitoring

An integral part of diet management comes from estimating the macronutrient content of a

meal for health information. Currently, this work remains burdensome for the user, requiring man-

ual logging which can be facilitated using automatic detection methods Mortazavi and Gutierrez-

Osuna [2021]. Some techniques exist to aid in providing context to meal logging, defining context

for diet monitoring applications.

Food crushing and swallowing can have a distinct sound that can be used toward detecting a

meal. To do so, a microphone should be placed near the mouth to listen to the process. The eating

process usually has three distinct stages of tearing, crushing, and swallowing. (Amft et al., 2005)

Amft et al. Amft et al. [2005] placed a microphone in the ear channel (which is usually used for

hearing aids) to listen to these three stages and recognized the chewing part among four test sub-

jects for the period of 3827 seconds (in total) eating a predefined food (potato chips, apple, lettuce,

pasta, and rice). Using spectral analysis (Fourier transform) and applying the cut-off of 5 dB, they

recognized the chewing and the meal type by 99% and 80-100%. To make this methodology more

accessible Gao et al. [2016] proposed to use Bluetooth headset, which provided 95% and 77%

to 94% accuracy in the laboratory (where there is a low amount of noise) and in a realistic setup

outside the lab.

The visual feed is usually used as a reminder to report and log the meal rather than an auto-

matic way of detecting the eating moment or the meal content. Although the camera sensors can
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be used toward automatic detection of eating, due to privacy issues, battery life, low performance,

and being inconvenient, they are used as a way to refresh the participant memories. Hodges et

al. Hodges et al. [2006] developed the SenseCam platform initially to help patients with amnesia

and Alzheimer’s disease, but it can be used toward smart dieting as well. Gemming et al. Gem-

ming et al. [2015] analyzed social and environmental parameters using the SenseCam worn by 40

participants for four days. Sun et al. Sun et al. [2014] utilized a camera mounted at the chest to

detect food and estimate the macro-nutrient contents using a nutrition database. This approach

gives satisfactory results in the macro-nutrient content detection in 85% of the time (for 100 tested

meals) with an error of less than 30% if the images are not occluded.

Similar to auditorial detection of the chewing sound, we can consider the muscle tension as

contextual data for eating. The jaw and temporalis muscles contract and relax periodically during

the chewing process or tearing the food. The chewing process can be recognized by planting myel-

ography and vibration sensors near the temporalis muscle Zhang and Amft [2016]. By planting a

myelography sensor into an eyeglass, Zhang et al. Zhang and Amft [2018] were able to detect the

eating moments and classify the food hardness with the accuracy of 95% and 94%. In a similar

approach, Huang et al. Huang et al. [2017] reached the accuracy of 96% detection of a chewing

cycle and 91% of the food type.

Dong et al. Dong et al. [2009] tried to estimate the number of bites using an InertiaCube3

sensor capable of recording the wrist motions (yaw, pitch, and roll orientations) with the frequency

of 60 hertz. Using such a sensor and methodology on ten participants eating a meal (using hands

or utensils), they reached the recall of 91%. In a follow-up, Dong et al. Dong et al. [2014]

successfully detected the eating moments outside the laboratory environment (not controlled) with

an accuracy of 80%. In this study, the accelerometer and gyroscope time-series were collected

from an iPhone placed on participants’ hands for about 12 hours with the frequency of 15 Hz for a

batch of 30 participants. In a similar trial, Luktuke et al. Luktuke and Hoover [2020] classified the

eating gestures among 276 participants at the Clemson university cafeteria using IMU data with

the frequency of 15 Hz with an accuracy of 75 % to 85% (for different motions such as drinking
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and biting). It should be noted that although the earlier studies have higher accuracy, the eating

tonalities and food had lower diversity than the newer ones; therefore, it was a simpler task with

higher accuracy.

2.2.3 Using Context Framework for Lifestyle Monitoring

Considering the importance of contextual information, several studies and trials tried to include

it in their datasets. For example, the Ohio T1DM dataset, which is a dataset compiled at the

University of Ohio, contains not only the continuous glucose monitoring time series but also the

self-reported time of the meal, exercise, sleep, work, stress, and illness as well as sensor data

such as accelerometer, gyroscope, body temperature, heart rate, galvanic skin response and step

count Marling and Bunescu [2020]. Also, the D1NAMO dataset, which consists of twenty-nine

participants (twenty normal and nine with type-1 diabetes), for about five days contains glucose

time series as well as ECG, breathing, accelerometer, and meal pictures Dubosson et al. [2018].

So, one might think about augmenting the CGM readings with contextual information to help the

prediction in smart dieting. Although to our knowledge, there is no study to do such an integration,

a few recent works benefited from context to enhance predicting blood glucose which are discussed

below.

Rabby et al. Rabby et al. [2021] used the Ohio T1DM dataset to predict participants’ blood

glucose using both CGM and the context data using a deep learning model. Considering that

the insulin bolus and meal carbohydrate content are discrete events, the authors proposed a semi-

analytical formulation to spread them over time and convert them to a continuous variable. By

doing that, all of the contextual variables (insulin, sleep, galvanic response, heart rate, steps, car-

bohydrate) become continuous and ready for feature extraction. The extracted features from the

contextual information are fed into a stacked LTSM model for temporal decoding and finally to a

deep learning model for classification. Using contextual information can lower the prediction error

by 8% on average. It should be noted that similar efforts have been made by other studies Akbari

and Chunara [2019], Martinsson et al. [2020].

Considering the improvements achieved in blood glucose prediction using contextual informa-
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tion, one might find the future of this field in doing the same for macro-nutrient prediction task as

well as taking the game to the next level by making it cheaper, more thorough, convenient, and ac-

cessible. With the advent of commercial smartwatches and their sophisticated sensors, the context

collection paradigm is shifted drastically. Previously, the collection of heartbeat, body tempera-

ture, ECG, and galvanic skin response time series were limited to only medical-grade wearables.

However, nowadays, these data can be collected cheaper (the commercial smartwatch prices are

one-third of the medical-grade ones), more accessibly (many of us are wearing them in day-to-day

life), and more conveniently (wearing a smartwatch is much easier than wearing an accelerometer

on the hip or a breathing band). Therefore, the next generation of smart dieting trials and datasets

should benefit from these accessible, cheap, and accurate devices in addition to continuous glucose

monitor readings.

2.3 Conclusions

Context is not a ubiquitous definition for analytic models on sensing systems. Contextual

information obtained from wearable sensors can serve as building blocks to help the system to

interpret the environmental parameters more efficiently. By evaluating context as a hierarchy of

information, sensing systems can capture health and behavior from very discrete actions to long-

term longitudinal health monitoring. Health and wellness monitoring with sensors can range from

applications that require instant recognition of sensing (heartbeat to heartbeat for example) to long

term context and trends. As a result, context recognition for sensing systems cannot be considered

a single paradigm, but rather a hierarchical concept that builds and integrates. Context-driven

classification helps improve systems for health and wellness applications because knowing the

specific contextual state can at least focus: 1) sensor (and axis) selection; 2) features for recognition

of a variety of lifestyle monitoring applications; and 3) enable longitudinal health and wellness

modelling. Context is the key to unlocking the potential of sensing and biosensing for health and

wellness applications.
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3. FRAMEWORK

3.1 Introduction

Manual meal announcement and content estimation is an arduous, faulty process and cannot

be trusted as it is often forgotten and accompanied by significant errors as big as 28 grams for

carbohydrates on average Rhyner et al. [2016]. Therefore, it is essential to automate this pro-

cess. Several attempts with different tonalities have been made in this regard, as discussed in the

previous chapter Amft et al. [2005], Hodges et al. [2006], Dong et al. [2014], Sun et al. [2014],

Pasler and Fischer [2014], Gemming et al. [2015], Gao et al. [2016], Zhang and Amft [2016],

Huang et al. [2017], Zhang and Amft [2018], Luktuke and Hoover [2020]. In addition to privacy

concerns of some methods such as monitoring visual and auditorial signals (for food images and

chewing sound), these methods cannot estimate the content of the food accurately; on the other

hand, models based on CGM readings can be helpful in this regard Zeevi et al. [2015], Staal et al.

[2019]. Although PPGR can reflect the content of an eaten meal Zeevi et al. [2015], it is insight-

ful only after a significant delay required for macronutrient absorption. Literature suggests that

context-aware models perform better in smart health monitoring Rabby et al. [2021], Marling and

Bunescu [2020], Akbari and Chunara [2019], Bertrand et al. [2021], specifically for the eating

detection module hand gestures captured by wearables are of interest Dong et al. [2014], Sharma

et al. [2020]. Therefore, in this study, I augment the contextual information of wearables to CGM

readings to predict an eating moment sooner and more accurately. Additionally, I cater to the need

for a macronutrient estimation model by providing the data required for estimating the content of a

meal in the wild. In the absence of a dataset containing CGM and contextual information, we per-

formed a pilot trial to cater to our needs, as explained later. Despite studies where medical-grade

smartwatches were used Dong et al. [2014], Sharma et al. [2020], Rabby et al. [2021], we made the

study more inclusive and financially more available by using typical off-the-shelf smartwatches.

As discussed later, such a modification required us to develop applications for the data collection
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process.

In the following subsections, I explain the necessity of designing a new study and its key

characteristics, the developed applications, and the methodology for processing the data.

3.2 Study Design

The role of contextual information in smart dieting has not received enough attention until

recent years. Several recent studies made an effort to include wearables and other wearables for

diabetic patients with the hope of augmenting data for a better prediction, including D1-NAMO

Dubosson et al. [2018] and Ohio T1-D Marling and Bunescu [2020]. D1-NAMO consists of twenty

healthy and nine type-I diabetic participants who logged their meals in addition to blood glucose,

acceleration, ECG, and breathing measurements. Ohio T1-D contains twelve type-I diabetic par-

ticipants who recorded their insulin, meal times and carbohydrate contents, EDA, heart rate, steps,

and temperature. Although these two datasets contain some contextual information, they fail to

provide the hand gesture features necessary for eating detection as explained by Dong et al. Dong

et al. [2014]. Also, they are more focused on type-I diabetic participants whose body metabolism

and PPGRs behave differently from normal healthy ones. Therefore, to cater to our needs, we de-

signed a new study where participants wear a smartwatch and a CGM in addition to logging meal

timing and macronutrient contents. Although most of the commercial CGM sensors are reliable

and offer comparable collection frequency and accuracy, choosing the right type of smartwatch

can be challenging as it should 1) be commercially and financially available, 2) contains an ac-

celerometer and gyroscope for measuring hand gestures, and 3) offers the option for easy and

robust application development for data collection. Below, I compare some of the most common

wearables to choose the most appropriate one for our trial.

Several wearables offer contextual information, including Empatica, Apple, Fitbit, and Shim-

mer. Table 3.1 compares some of their specifications. Considering the studies done by Dong et

al. Dong et al. [2014], the presence of gyroscope and accelerometer readings can help detect hand

gestures during eating periods. Therefore, Empatica E4 is not a viable option as it suffers from

not having a gyroscope sensor. Similarly, Empatica Embrace 2 does not currently offer rotation
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data, although it has a gyroscope sensor. Fitbit Sense measures both acceleration and rotation, but

it does not save them, so a custom application should be developed to collect such data. Upon

further investigation, I realized that the watch is not capable of buffering such data with a high-

frequency (> 1 Hz) for more than a couple of minutes, mainly due to the absence of a powerful

operating system and low internal memory storage; therefore, it is not a viable option. Shimmer 3

IMU unit is a promising option and has been used by other studies Dong et al. [2014]; however, it

is not commonly available among participants (in comparison to off-the-shelf smartwatches such

as Apple watch or Fitbit), and also it does not offer the health data (such as burnt calorie, heart rate,

and temperature) which might be helpful in macronutrient estimation Rabby et al. [2021]. Also,

its price is drastically higher (two or three times) than other wearables. Therefore, I decided to

use the Apple watch as the primary smartwatch as it gives both motion and health data, it is com-

monly used, comfortable to wear, financially accessible, well-documented, and tested. To include

more health data, I decided to use Emaptica E4 as the secondary watch for further exploration and

measuring the impact of its precise high-frequency data in the eating detection model.

Unite Acclerometer Gyroscope Common Health

Empatica E4 3 7 7 PPG, EDA, Thermo

Shimmer3 IMU 3 3 7 7

Empatica Embrace 2 3 7* 7 Thermo, EDA

Apple Watch 6 3 3 3 HR,Act, Cal, Step

Fitbit Sense 7* 7* 3 Cal, Step, HR, Act

Table 3.1: Motion and health sensor for Empatica E4, Empatica Embrace 2, Apple Watch 6, Fitbit
Sense, Shimmer 3 IMU wearables. PPG, EDA, Thermo, HR, Act, Cal, Step denotes photoplethys-
mography, electrodermal activity, thermometer, heart rate, activity type/summary, burnt calories,
steps. The stared cells are not commercially available or not providing data with the required
resolution.
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3.3 Developed Applications

Contextual information, including hand gestures, metabolism, and energy expenditure, can be

important to smart dieting studies. As discussed previously, in smart diet trials, the meal timing,

macronutrient composition, and participant activities should be logged and recorded. Also, the

contextual information from wearable sensors such as temperature, heart rate, electrodermal ac-

tivity, hand acceleration, and rotation can be helpful. Therefore, we developed two applications

to allow 1) collecting participant inputs (meals and activities) and gathering smartwatch sensor

readings as well as 2) helping analysts to match meal information with its pictures.

3.3.1 iPhone-iWatch Context Collector Application

The application should collect motion and health data from smartwatch sensors and transfer

it to the Cloud robustly and accurately. The term robust refers to being able to buffer the data

and handle Internet outages (even up to a day), while being accurate means to align the sensor

data with its corresponding time and save it with enough precision. The application consists of a

phone module and a companion one for the wearable. The companion wearable module should

be standalone; otherwise, any disruption on the phone module (i.e., if the user accidentally closes

the application on the phone) negatively affects the data collection process. Also, the companion

should be able to communicate with the phone module to temporarily store the data (in the case

of no Internet coverage) and transfer it to the Cloud due to the following reasons. Routing the

data from the watch to the phone and subsequently to the Cloud avoids further battery consump-

tion in the smartwatch, considering that its battery is severely limited compared to phones. Also,

it prevents the necessity of the watch from being directly connected to the Internet through cel-

lular (which is more expensive due to the required monthly subscription) or WiFi (extra battery

drainage). Such a architecture is shown in Figure 3.1
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Figure 3.1: Schematic of application modules showing the rout of data from the watch to the Cloud.

This application was designed and developed using SWIFT language in collaboration with

Amin Hamiditabar and its source code can be found under our GitHub repository. The next sub-

sections explain it features and architecture.

3.3.1.1 Phone Module

The phone module should provide the option to log the user meals and activities in the front-

end side as well as handle the watch-phone and phone-Cloud connections on the back-end. Figure

3.2 shows the application GUI which allows users to log various types of activities (exercise,

travel, sleep, work and other annotations) as well as meals with its macronutrient information

(calories, carbohydrate, fat, protein, ingredients and eaten portion). We enforced the insertion

of meal pictures to help us checking and retrieving lost macronutrient information in subsequent

processing. Although logging meals and activities in real-time can help avoid forgetting it, we

provided the option to log an old input/activity.
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Figure 3.2: Phone module snapshots a) main menu, b) activity logger and c) meal logger.

Just-in-time interventions and real-time processing of data is of interest in smart dieting. To

cater for this need and monitoring the trials (to ensure that participants are in compliance to the

study instructions), I designed the application to send the data packets received from the watch to

the Cloud with a minimal lag. We used FireBase service developed by Google as it offers free,

reliable and secured connection (to satisfy HIPPA and IRB requirements) to phones where the data

can be stored for further processing. Considering that several participants are recruited for each

round of a trial where all of them should be able to use this application at the same time, it should

be able to correctly recognize and classify participant’s data; therefore, an identification method

is required which should not allow revealing the identity of the participants. Hence, I used the

participant ID for this matter and the FireBase agent classified the data upon receiving them. The
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participant ID should be entered only once after the installation of the application on the phone (by

the recruiter).

3.3.1.2 Wearable Module

The data collection frequency is crucial as it can severely affect the battery life of the watch

and eating detection and macronutrient estimation process. Although Apple watch offers the core

motion data with the frequency of up to 64 Hz, doing so limit the battery life to less than a day,

which negatively affects the trial (considering that the nocturnal data are not needed, participants

can charge up the battery and phone every night). Therefore, to balance the battery life and data

precision, I chose the frequency of 10 Hz as the similar value is suggested by the literature Dong

et al. [2014]. Although the developer can control the core motion frequency, Apple iOS directly

handles the frequency of healthkit data reports (heart rate, calories, and steps are reported sporadi-

cally depending on tonality and severity of the physical activity).

Considering the limited battery life on wearables, operating systems take radical actions to

assure killing abusive applications that use resources (i.e., battery, RAM, CPU) tremendously.

This posed an extra challenge to our application as it should monitor the participant motions for

a significant portion of a day (10+ hours) which iOS counts as abusive usage. This resulted in

our application to get a forced closure after two to three hours. The iOS shows some flexibility

and allows applications to run longer during sessions (i.e., workout, focus); however, this option

is limited to six hours. So, the participant has the burden of manually putting the application into

session mode. To mitigate this issue, I could avoid iOS closing the application by making inquiries

about the location because this makes the application counted as a navigation one that is permitted

to run for an extended amount of time. Therefore, although the location is frequently acquired, it

is not saved (this explains the arrow sign on the watch screen when the application is collecting

data).
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3.3.2 Meal Match Graphical Application

Extracting the timing and contents of a meal in a smart-dieting trial is crucial, arduous and

prone to errors. To alleviate this burden, I designed and developed an application to ease this

process through a mix-and-match graphical interface. This application can be used alongside of

the previous one (meal logger) to both help modify the content of a meal as well as filling the

missed meals through pictures captured by the user.

The application GUI should be flexible and robust to allow easy, fast, and accurate matching

meals with their pictures. The interface of the application can be seen in Figure 3.3, and it contains

the following elements: 1) meal information (red box), 2) meal pictures (blue box), and 3) control

module (green box).

A summary of each meal information alongside its start/end timing and some controlling mod-

ules are offered for each meal as shown in the red box. The "Start Pic" and "End Pic" columns are

initially empty and shall be filled by the analyst using the meal picture table (blue box) through

drag and drop. "Ratio" is the amount of the eaten meal estimated by the analyst visually. "Note"

is an editable column and allows the analyst to leave notes for further processing about each meal.

The "Modify" column allows changing/adding constituents which will be discussed later.

The meal pictures in the blue box allow a visual detection by the analyst to match meal pictures

and their names. After recognizing the meal and matching it to its picture, the analyst can simply

drag and drop the meal picture from the blue box to a corresponding row in the red box. This

process sets the start and end times of the meal in the back-end side of the application and updates

the CSV file. To ease the matching process, all of the match pictures are grayed-out as shown in

Figure 3.3.
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Figure 3.3: Schematic of the application GUI, which is color-coded as red, blue, and green for
meal information, meal pictures containing the time of the meals, and control module.

The control box (green box) gives control to the analyst to add/fix records. Most of the logged

meals are recorded during the trial by the participant; however, the analyst might need to access

and modify their details. There are some exceptional cases where the analyst should manually

insert or delete a meal. This can be done by using "Add Row" and "Clean Cells," where the first

one makes a new row entry while the latter one cleans selected cells in the red box. To make the

visual detection easier, we filter the pictures in the blue and red boxes by dates, and the analyst

can navigate through different dates using "« Prev Day" and "Next Day» buttons. The application

automatically saves the changes when moving to the next or previous date to avoid data loss.

Finally, "Open", "Save" and "Export" buttons are used to open a new CSV file for processing,

temporarily saving the changes and finishing the file processing.

The application should be flexible and offer an option to cater to the need for manual modifica-

tions by the analyst in exceptional cases. I designed and placed the "Modify" column, containing

a "Modify" button for each row. By clicking the button, a new window pops up and offer meal
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name, type, and macronutrient in editable text boxes, as shown in Figure 3.4.

Figure 3.4: Modifying option to change and correct meal information including name, type, car-
bohydrate, fat, protein, fiber, sugar and calorie of each meal.

This application is developed using Python language and PyQt5 package and can be found

under GitHub repository.

3.4 Methodology

Eating detection and macronutrient estimation models use the past readings to predict future

meals and their contents. In such supervised modeling, the extracted features from CGM and

contextual time-series are fed to the models to predict the labels by a regression model to handle

the carbohydrate, fat, and protein content of the meal and a binary classifier to discern eating

from non-eating moments. Sensor data often suffer from collection noise that requires attention

and filtration. An additional challenge is to correctly map the sensor data to labels where the

temporal relation of the data is not lost. My approach to analyze the CGM readings and contextual

information consist of three main steps: data pre-processing, data windowing, feature extraction,

and modeling.
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3.4.1 Pre-processing

Sensor data and user inputs collected in the field environment are subject to various noises,

errors, and degradation in quality; therefore, proper smoothing, correction, and filtration are often

required. Literature suggests that CGM errors can benefit from the Kalman filter as they are often

accompanied by normal noise Staal et al. [2019], Rabby et al. [2021]. Therefore, I applied the

Kalman filter on the CGM time series and interpolated the results up to a minute. Similarly, I

used the exponential move mean average technique over the acceleration and gyroscope data with

the window of one second as suggested by Dong et al. [2014]. Although users were strongly

encouraged to log their meals and activities right after, several instances required further attention

before getting analyzed as the participant inserted the wrong time (AM vs. PM) or date. Unlike

the clinical trials where the participants are limited to eating only at some time of the day or to

having a predetermined meal decomposition Huo et al. [2019], Sajjadi et al. [2021], Paromita et al.

[2021], this trial did not limit the participants in any way. Therefore, it is expected to see more

variation and unexpected results such as mealtime longer than usual (i.e., a participant has a glass

of oat milk in 45 minutes or snack while working). After reviewing the data, I had to exclude two

participants’ data due to missing meal logs and smartwatch data loss.

3.4.2 Data Windowing

Eating moment detection models depend on the temporal variation of BG and hand motion;

therefore, a proper representation should be able to capture and resolve such changes. As an

example, Figure 3.5 shows a general profile of PPGR after consuming a meal where BG starts to

rise after a lag and then drops as the meal is absorbed and metabolized. Deep learning models can

address this characteristic and resolve the temporal relation in BG variations using LSTM (long

short-term memory) or GRU (gated recurrent unit) layers; however, such a technique gives robust

results only in the presence of an abundant amount of accurately labeled meal. On the other hand,

for cases with a sparse dataset, the sliding window can be used as denoted in the literature Mishra

et al. [2020], Minor et al. [2017], J. et al. [2016].
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The sliding window method slices a time series into several sub-samples where each one con-

tains a label and is treated as an independent observation for further statistical analysis. Activity

and BG variations have a temporal scale of minutes, while accelerometer and gyroscope vary

abruptly in the order of a second. Therefore, two sliding windows with different temporal reso-

lutions should be defined to capture the micro (minute) and macro (hour) resolutions. The outer

window acquires the CGM data and decides about the eating meal flag. On the other hand, the

inner window, which is shorter and located inside the outer one, inquires about the core motion

and health data. For example, if the outer window denotes 12:40 to 13:40, the inner window loops

through it minute by minute and extract the contextual data as shown in Figure 3.5.
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Figure 3.5: The schematic shows the sliding window technique with the outer window (dashed
green) and inner ones (dashed light blue) on CGM (top panel) and smartwatch data (bottom five
panels) where the outer window is about 1 hour and the inner one is 25 minutes long. For the sake
of better visualization, I made the inner window longer. The inner window slides inside the outer
one, as shown. The red dot in the top panel shows the meal time for the participant and CGM
signals start to rise with about 45 minutes lag after the meal.

The outer window should slide through time to capture the daily picture of participant activity

and diet. To avoid any complications in labeling the window, the overlap is avoided between outer

windows. The positive ones start before a meal and are followed by negative ones until the next
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positive window is met. In other words, if a positive outer window begins at 12.40 and lasts for an

hour, then a negative window starts at 13.40 and repeat every hour till the next meal as shown in

Figure 3.6 (the next meal is later in the day and not shown in the figure).
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Figure 3.6: The sliding of outer window through time with positive (green dashed lines) and neg-
ative (red dashed lines).
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After acquiring the information of each window, one can form a table of window information

containing all the motion, health, BG data and eating/non-eating labels as shown in Figure 3.7.

After creating such a table, it should be submitted to the feature extraction module to be presented

to the model.

Figure 3.7: Each row of the table shows the extracted data for an outer window. Each row contains
several sub-lists of different sensors such as CGM, heart rate, temperature, EDA, accelerometer
and gyroscope.

Instead of directly feeding the model with raw accelerometer and gyroscope data, the literature

suggests translating them into parameters that represent the dynamics of the motion more clearly.

Therefore, the core motion data extraction module translates the acceleration and rotation data

based on the formulation offered in Equation set 3.1 Dong et al. [2014], Sharma et al. [2020].
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Unlike the core motion, health and CGM data do not show significant variations during the length

of a minute (inner window length), and they are directly understandable for the model. Therefore,

I took the averaged value for heart rate, EDA, and temperature for each inner window and passed

it to the feature extraction module.

Rotational to linear acceleration feature =
W∑ |Sφ|+ |Sθ|+ |Sψ|
|Sx|+ |Sy|+ |Sz|

Linear acceleration feature =
W∑
|Sx|+ |Sy|+ |Sz|

(3.1)

where W , Sφ, Sθ, and Sψ are window size, yaw, pitch, roll and Sx, Sy, Sz are linear acceleration.

3.4.3 Feature Extraction

Although the sliding window can break a lengthy time series into smaller sub-samples, the

representation is still not complete as they should be summarized through population informant

metrics. Therefore, inner window raw data are passed to the feature extraction module, and the

extracted features are fed into the models. Figure 3.8 shows the relation between modules and the

pipeline of data and feature extraction.
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Figure 3.8: Schematic of the eating moment detection and meal macro-nutrient estimation.

3.4.4 Model

Considering the nature of the dataset and its sparsity, tree-based models are a plausible choice.

For the hand motion, I benefited from the existing dataset to train a model to detect eating from

hand gestures and subsequently transfer it to our collected context-aware dataset. Additionally,

there is a need for another multi-modal model to consider both hand motion as well as CGM and

health data. The sections below discuss the details of each model thoroughly.

3.4.4.1 Eating Detection Using Hand Motion

Pre-trained models and domain generalization can be interesting when the collected dataset is

small or significantly imbalanced, and the literature offers a significant amount of labeled data. To

benefit from the studies done by Sharma et al. [2020], I made an effort to build a model trained by
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previously collected contextual information and test it on my dataset. Such a domain generalization

requires standardization and normalization to remove any difference between populations.

I exploited an XGBoost classifier (hereinafter XG1) to perform binary classification (eating vs.

non-eating) on sliding window data captured from the Clemson dataset with satisfactory results.

The Clemson data is publicly available, which can be accessed at Adam Hoover’s project website

and explained in Sharma et al. [2020]. It contains 354 participants who wore a shimmer unit for

one day in a free-style living and manually logged the beginning and end of the meals. The dataset

offers the start and ends timestamps of meals, acceleration in X, Y, and Z directions, and yaw,

pitch, and roll. I applied the sliding window technique with the length of one minute on the data

and labeled windows that occurred during a meal as positive and the rest of them as negative. To

make the model extendable to all participants, I normalized the extracted features of windows by

removing the mean and dividing by the standard deviation for each participant.

To avoid overfitting, I performed 5-fold cross-validation where 30 % of each fold train data

was dedicated to validation through a stratified splitter (to assure fair and balanced division). The

model was tuned (against the validation set) for various values of the number of estimators (50 to

400) and max depth (3 to 7). The best model chosen based on the ROC-AUC has the number of

estimators and max depth of 150 and 5 on validation data. To tackle the imbalance ratio of positive

to negative windows (1 to 17.2), I employed both the Synthetic Minority Over-Sampling (SMOTE)

technique and higher positive class weights which had similar results. Figure 3.9 shows the XG1

ROC curve. Repeating the experiment with Random Forest resulted in slightly lower performance.
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Figure 3.9: The ROC curve of XG1 trained and tested on Clemson dataset with the area under the
curve of 0.78.

Having a high value for ROC-AUC guarantees that there is a threshold at which the model

can provide satisfactory metrics. Testing XG1 on Clemson test fold gives the averaged accuracy-

weighted, recall, specificity, precision-weighted, and F1-weighted score of 71%, 66%, 75%, 93%,

and 81% respectively. Figure 3.10 provides the confusion matrix. Considering that the dataset

is highly imbalanced, a weighted version of precision, accuracy, and F1-score are of interest to

provide a robust picture Dong et al. [2014]. Such a performance is similar and comparable with

the literature Dong et al. [2014], Bertrand et al. [2021].
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Figure 3.10: The confusion matrix of XG1 trained and tested on the Clemson dataset. The eating
and non-eating labels are provided for each row and column. The ground truth (True label) is
shown in rows, and predicted ones are denoted as columns.

3.4.4.2 Multi-Modal Eating Detection Using Hand Motion, CGM and Health Data

To benefit from the existing datasets on contextual information, I augmented the XG1 model

with CGM and health data in a new XGBoost model (hereinafter XG2). I developed XG2 to

account for CGM and health data (temperature, heart rate, and EDA). XG2 is fed by the top con-

secutive five minutes prediction probability from XG1 and extracted features from CGM and health

data. Considering that XG2 does not have enough positive data to afford hyperparameter tuning

and the minimal sensitivity of XG1 to hyperparameters, I skipped the tuning phase and used a

typical XGBoost model with the number of estimators and max depth of 200 and 3, respectively,

with a 5-fold cross-validation for each participant. Please note that the hand motion model XG1 is

a general one as participants share similar gestures while XG2 is a personalized model to account

for BG variation and PPGR differences as suggested by Sajjadi et al. Sajjadi et al. [2021]. To test

the efficiency of each sensor in the detecting process, I defined several combinations and compared

their predictions as discussed in the next chapter.
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4. EXPERIMENTS, RESULTS & DISCUSSION

4.1 Introduction

In this section, 1) I review the meal information of recruited participants, and 2) the perfor-

mance of eating detection model in different case scenarios and combinations.

4.2 Pilot Trial

We conducted a 10-day data collection trial on healthy participants who wore an Abbott FreeStyle

Libre Pro CGM (which samples interstitial glucose every 15 minutes), a Dexcom G6 Pro CGM

(samples interstitial glucose every 5 minutes), an Empatica E4 smartwatch, and an Apple Watch

Series 6, and were asked to log all activities and context changes on a custom smartphone ap-

plication. This study was approved under Texas A&M IRB 2019-0793 and was piloted on eight

healthy participants, aged average (standard deviation) of 26.8 (3.8) years and less than 35, with

the body mass index < 35, resting heart rate < 120 per minute, blood pressure < 140/90, and

no known history of cardiovascular disorders or diabetes. Out of eight participants, three were

female. We explained the objectives, process, limitations, and benefits of the project to the re-

cruited participants. Participants were asked not to postpone the meal and activity logging as it can

cause errors in timing and content. The custom-developed application (discussed in the previous

chapter) was installed on their iPhone (two Android-user participants benefited from the lab loaner

iPhone) on the first day of trial during the CGM insertion. Throughout the trial, recruiters were

in touch with the participants to ensure a successful experience. Participants were asked to wear

both smartwatches during the day, put them into charge (sync mode for E4) right before going to

bed, and put them back on first thing in the morning. We dropped the first day of each round as

the CGM readings were inaccurate (warming up). Also, we had to discard two participants’ data

due to lack of adherence, resulting in 1,392 hours of data. Table 4.1 offers some information about

meals consumed by each participant.
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ID Num of Meals Duration (std) Calories (std) Carb (std) Fat (std) Protein (std)

p1 35 14.8 (17.4) 401.7 (219.0) 45.6 (25.5) 13.6 (12.6) 17.9 (12.9)

p3 44 17.7 (32.3) 328.8 (289.4) 5.6 (5.4) 21.1 (19.1) 21.5 (29.2)

p5 21 18.9 (9.1) 477.7 (369.5) 52.9 (38.8) 21.1 (21.2) 23.9 (23.3)

p6 42 23.8 (18.6) 731.1 (503.2) 84.9 (68.6) 30.8 (28.0) 36.5 (35.7)

p7 55 12.2 (13.5) 308.4 (219.2) 46.0 (36.2) 12.8 (20.7) 10.7 (10.8)

p8 57 9.3 (5.9) 441.7 (306.3) 46.5 (31.6) 15.8 (16.2) 22.7 (22.2)

Table 4.1: Participants’ meal information and variation are categorized by the number of meals,
duration, calories, carbohydrate, fat, and protein. For all columns (except ID and Num of Meals)
the value is an average while the parenthesized values denotes standard deviation. The values for
meal duration are in minutes while carbohydrate, fat and protein are measure in grams.

4.3 Eating Detection Results

This section discusses the results of XG1 and XG2 models in different case scenarios and

analyzes the efficiency of sensor combinations in the eating detection process. In this chapter, I

make an effort to analyze the results and model performance by answering the following questions.

1. Can the watch identify eating moments?

2. Is the eating detection using CGM more accurate than motion?

3. How is the detection by motion and CGM affected by the length of the outer window?

4. Does the CGM model benefit from motion and health data augmentation?

5. Can the motion help shorten the CGM detection period?

Answering these questions requires a thorough analysis where all combinations of sensors and

environmental parameters are considered. Therefore, I defined the following sensor combinations:

CGM, CM, CGM+CM, CGM+CM+Health, where CM and Health are core motion and health data
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(heart rate, EDA, and temperature), respectively and outer window length of 15 to 90 minutes with

the step of 5 minutes.

4.3.1 Eating Detection Using Motion

XG1, a pre-trained model on the Clemson University dataset (as explained in the previous

chapter), detects eating moments solely using features extracted from hand motion obtained from

smartwatches. By normalizing the data collected in the trial and feeding them to XG1 model, I was

able to perform a successful domain adaptation. High ROC-AUC values in Figure 4.1 confirms this

assertion. Obtaining high ROC-AUC values assures that there is a threshold at which the data can

properly get classified and categorized. Based on Figure 4.1 most of the participants can benefit

from the core motion data in the eating detection as ROC-AUC is ≥ 0.75 (aside from P7 with

ROC-AUC of 0.68).
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Figure 4.1: The ROC curve of XG1 tested on our context-aware dataset for each participant.
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4.3.2 Motion vs CGM in Eating Detection

Identifying eating moments through motion can be more challenging than CGM for meals with

an extended eating time. In day-to-day life, we usually don’t finish a meal in a rush; instead, we

often enjoy watching TV or listening to the radio while eating, which extends a meal (i.e., 17

minutes instead of 5 as shown in Table 4.1). This absence of hand gestures during such time can

deteriorate the detection through motion and make it more challenging. On the other hand, the

PPGR will still respond robustly (though with a more considerable lag) to the consumed macronu-

trients. Therefore, we expect to see a better detection using CGM than motion in such a setup.

Figure 4.2 can be helpful in this regard as it compares the eating detection recall using motion

and CGM against each other. Figure 4.2 confirms such an assertion as the lines fitted to CGM

mostly land above the CM except for P3 and P6. However, it should be noted that P3 was on a

Ketogenic diet which prohibits the consumption of carbohydrates and instead motivates using fat

and protein. As discussed earlier, such an anomaly suppresses the BG abrupt rises, which is the

most prominent way of eating detection for XG2 using CGM data. Therefore, it is expected to see

a low performance for P3 using CGM.
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Figure 4.2: XG2 recall for all participants across different outer window length. Each panel con-
tains CGM, CM and CGM+CM recall curves in orange, blue and green colors. The lines and their
shades demonstrate the linear regression and 95% of confidence interval. The CGM+CM+Health
combination is not plotted as it has similar values to CGM+CM.
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4.3.3 Role of Length of Retrospective Information in Eating Detection by Motion

It is interesting to analyze the effects of retrospective information length (outer window du-

ration) on the ROC curve of eating detection using core motion data. To answer this question,

I ran the model with a variety of outer window durations as shown in Table 4.2 which suggests

high ROC-AUC values for all participants/window lengths. The variation among participants’

ROC-AUC is higher when the window length is small (i.e., 15 minutes); however, as the window

becomes bigger, participants tend to have closer AUC and converge toward the Clemson dataset

baseline (0.78). In other words, for participants with significantly higher AUC, such as P5, widen-

ing the outer window lowers the AUC. On the other hand, for ones on the other side of the spectrum,

such as P7, this causes an improvement.

Retrospective [min] P1 P3 P5 P6 P7 P8 STD

15 0.73 0.79 0.84 0.79 0.68 0.78 0.056

30 0.74 0.79 0.80 0.81 0.66 0.76 0.055

45 0.76 0.74 0.78 0.82 0.70 0.79 0.042

60 0.76 0.77 0.79 0.83 0.70 0.78 0.042

75 0.79 0.75 0.74 0.83 0.72 0.77 0.039

Table 4.2: ROC-AUC of eating detection using motion for participants with various length of
retrospective (outer window) information. The last column denotes the standard deviation of the
row.

4.3.4 Motion and Health Data Augmentation to CGM

Knowing that motion data is informative in making decisions about eating moments, I con-

tributed the probability predicted by XG1 in the XG2 model. Intuitively, one can expect to see

better results by adding informative sensors. So, I measured XG2 performance against the com-

binations mentioned above (CGM, CM, CGM+CM, CGM+CM+Health) to test this hypothesis.
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Although there is a lot of variability among participants’ recall, the general trend is CGM+CM >

CGM, CM, which aligns well with our hypothesis. On the other hand, the presence of Health data

does not help the prediction task, and the model completely ignores them. Having the recall of a

model does not necessarily provide the big picture as the model might act more sensitive toward

positive observation (thus higher recall value). Therefore, it is essential to show that although the

recall is growing, the model remains specific and avoids bias toward positive instances. Figure 4.3

can be helpful in this regard as it provides the model precision, which is effectively the ratio of true

positives to predicted positives. Adding the growing trends in Figure 4.3 to the ones in Figure 4.2

assures that the model is getting better in detection eating moments while remaining specific.
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Figure 4.3: Similar to Figure 4.2 but for XG2 precision.

Additionally, there is a semi-linear improvement in recall and precision as the outer window
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grows for most participants. Making the outer window longer provides more retrospective infor-

mation and makes the eating detection easier both for the watch and CGM sensors. Therefore, it is

expected to see improvement in the detection as the window becomes bigger. This assertion holds

for all participants with all combinations (CM, CGM, CM+CGM) except for P5, where the recall

and precision do not follow any discernible pattern. To unmask the reason behind such an anomaly,

I refer you to the number of logged meals by P5 (Table 4.1) which is almost half of the others. Fur-

ther analysis suggested that there are several days for which the logs are scarce (one meal or none)

which put the P5 logging into question. Such an issue is common in an uncontrolled environment

as mentioned in the literature Cordeiro et al. [2015], Sajjadi et al. [2021] and is one of the main

goals behind this study to remove the burden of logging from participant’s shoulders. Therefore,

it is legitimate to discard P5 from this analysis and claim that the bigger windows provide better

results for eating detection.

4.3.5 Shortening the Eating Detection Period by Fusing CGM and Motion Data

Although the previous subsections proved the efficiency of motion augmentation with CGM,

one might want to demonstrate such an enhancement quantitatively. One way to answer this quest

is to measure how much time can be saved in the eating detection by fusing CGM and motion

data. In another word, what is the relation between TCGM+CM and TCGM for a constant recall

of R% where TCGM and TCGM+CM are the length of retro respective information for CGM and

CGM+CM. To answer this question, we can benefit from the slopes and intercepts acquired from

the linear regression process in Figure 4.2. Table 4.3 shows such information for the arbitrary

values of TCGM = 45 and 60 minutes for all participants, which corresponds to ≈ 40% reduction

of time to achieve a similar recall value by fusing CGM and motion data.
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Participant TCGM+CM , 45 [min] TGGM+CM , 60 [min]

P1 37 (-8) 50 (-10)

P3 12 (-33) 23 (-37)

P5 20 (-25) 39 (-21)

P6 13 (-32) 17 (-43)

P7 42 (-3) 56 (-4)

P8 30 (-15) 44 (-15)

Table 4.3: First column denotes the participant ID while TCGM+CM , 45 and TCGM+CM = 45,
60 suggest the time by CGM+CM to reach the same recall of CGM alone at 45 and 60 minutes
respectively. The parenthesized values are time reduction in minutes by fusing motion and CGM
data.

4.4 Conclusion

This section explored several case scenarios with different measurement tonalities and analyzed

the effects of retro respective information duration in the eating detection process. The list below

summarizes the findings in this section:

• CGM data can be very informative in discerning eating moments from non-eating ones,

especially for participants who are not avoiding carbohydrates in their diet.

• Hand motion can play a pivotal role in detecting eating moments while it might result in false

positives or false negatives when the meals are extended due to secondary activities such as

watching TV.

• CGM data can be more effective for an extended set of meals as PPGR acts robustly.

• Providing longer retrospective information enhances the recall and precision at the same

time for eating detecting using hand motion and CGM.

• Fusing the motion data to CGM can increase the model’s performance by removing false

positives.
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• Temperature, EDA, and heart rate data do not help the eating detection process.

• Adding the motion data to CGM can reduce the detection period approximately by 40% for

the window of 45 and 60 minutes.
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5. CONCLUSION & Future Work

In this study, we conducted a context-aware trial that contains consumed meal timing and

content, performed activities and exercise timing and type, blood glucose, and hand motion time

series. Additionally, two applications were developed and explained, which are crucial for the

data collection and analysis process. I used a data-driven model to detect eating moments with

and without context and compared their performance against each other. It was shown that adding

hand motion to blood glucose data can help the model to detect eating moments faster and more

accurately. On the other hand, the addition of temperature, electrodermal activity, and heart rate,

categorized under health data, does not help the model performance. Although the macronutrient

estimation of the detected models was not done in this study, the current platform is capable of

such extension, as discussed in future work. The study highlights are listed below.

5.1 Thesis Highlights

• Recent studies have made an effort to enhance the smart health monitoring models by incor-

porating contextual information.

• Most of the currently available datasets with blood glucose are focused on type-I diabetic

participants and suffer from the absence of contextual information (especially hand acceler-

ation and rotation).

• To fill this gap, we designed a context-aware study and ran a pilot version with eight healthy

participants where they logged their activities and meals and wore CGM and two smart-

watches.

• In the absence of a robust lab-on-a-wrist platform to collect needed contextual information,

I relied on the commercially typical available smartwatches for this regard. Considering the

required sensors, robust data collection, capability to stream the data to the cloud, and battery

life, I decided to use Apple Watch 6.
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• Apple watch does not automatically save the required data; therefore, I developed a custom

application to collect hand motion and gestures as well as a GUI for logging meals and

activities.

• To explore the efficiency of health data, I added Empatica E4 as the second watch.

• I pre-processed the Apple watch, E4, and BG data and pipelined them for the modeling

phase.

• I trained an XGBoost classifier model (XG1) to discern eating from non-eating moments on

an existing dataset that contains more than 1000 meals and 354 participants.

• I successfully transferred the XG1 model to our context-aware dataset and tested its perfor-

mance.

• I trained another XGBoost classifier (XG2) to identify eating moments considering blood

glucose and health data and the eating probability provided by XG1 for hand motion.

• Analysis suggested that blood glucose and hand motion data are informative for eating de-

tection among most participants.

• XG2 model suffers from low performance for participants consuming a very low amount of

carbohydrate as the model relies on abrupt glucose excursion caused by carbohydrate mainly.

• Fusing the motion and CGM data helps the model remove false negatives and find more

positive instances (higher recall and precision simultaneously).

• Providing more retrospective information helps the model detect eating faster and more con-

fidently.

5.2 Future Work

Although the current model provides satisfactory results in eating detection using blood glu-

cose and hand motion, it relies on past information to make such a decision. Such a dynamic is
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not enough for just-in-time prevention and interventions where the model should provide a recom-

mendation (or possibly prompt the user) with a robust prediction about the near future. The current

data collection platform allows for such an extension, but more efforts should be made to enhance

the modeling module.

Detecting and segmenting the eating moments is the first step in smart dieting, where more

analyses are required to backtrack the macronutrient of a detected consumed meal. Although

the literature suggests accurate prediction in this regard for a controlled environment, transferring

and extending this task to a free-living style has not been achieved yet. Such a transition can

benefit from the developed platform in this study as it considers not only the blood glucose data for

annotated meals (including the macronutrient concentration) but also contextual information such

as heart rate, electrodermal activity and temperature, which can be helpful in this regard.
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