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ABSTRACT 

 

Machine learning has served to develop and explore a wide range of applications 

for geoscientists and petroleum engineers. Fundamental limitations of conventional 

methodologies include mathematical formulations of physical systems, multi-scale 

heterogeneity, processing of large datasets, and computational time. The impact of these 

new technologies has brought the interest of multiple energy industries such as 

renewables, oil and gas, carbon sequestration, and geothermal. The acquisition of 

subsurface measurements has been a key factor to characterize reservoir properties. 

Hence, the integration of machine learning could provide essential information and new 

knowledge of subsurface monitoring signals. In this work, we focus on the use of 

unsupervised learning to determine new insights into geophysical tools and subsurface 

physical properties. We propose three methodologies using microseismic, distributed 

acoustic sensing (DAS), seismic and electrical resistivity tomography. 

A critical aspect of monitoring tools is the high computational power of big data. 

We applied unsupervised dimensionality reduction to compress, denoise and retrieve vital 

information of microseismic and DAS data. To achieve this, we implemented high-order 

SVD for high-dimensional arrays of 3D and 4D space.  For the 3D microseismic, we 

achieved a compression of approximately 75% and a reduction of samples from 1,728,000 

to 431,303. We also tested the model to the 3D DAS data where we obtained a 

compression of 70.2% for a data size of 3.5 GB. Lastly, a 4D HOSVD model was 

established using a synthetic microseismic tensor, accomplishing a reduction of 83%. 
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Another major application of unsupervised learning is the clustering algorithms to 

group observations of similar characteristics. We applied spatial-temporal clustering to 

identify hidden patterns of subsurface mapping for a geological carbon storage field. The 

studies were divided according to the geophysical method (crosswell seismic and ERT) 

and temporal component (single time or time-series).  Using crosswell seismic, we 

developed a multi-level clustering approach to visualize the CO2 plume behavior.  For the 

first level, we obtained a silhouette score of 0.85, a Calinski-Harabasz of 160666.50, and 

a Davies-Bouldin value of 0.43. The second level achieved a silhouette, Calinski-

Harabasz, and Davies-Bouldin score of 0.74, 59656.01, and 0.32 respectively. We 

established a total of four clusters of non, low, medium, and high SCO2.  

Finally, we elaborated a spatial-temporal clustering using derived-SCO2 from 

daily ERT images.  A novel feature extraction methodology was designed to retrieve the 

spatial and temporal changes of the moving CO2. Four clusters were determined and linked 

to the saturation levels. The interval validation of clusters was 0.58 for the DTW-silhouette 

score, 262791.45 for Calinski-Harabasz, and 0.71 for the Davies-Bouldin index. To 

evaluate the dynamics of CO2 flow regimes, we performed a second clustering where 6 

distinctive plume patterns were observed. Therefore, machine learning and in particular 

unsupervised learning can be used to describe complex systems and optimize data 

processing.  
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CHAPTER I  

INTRODUCTION  

 

Machine learning has become one of the most important techniques in a wide range 

of disciplines. These algorithms have the ability to extract patterns in the data without any 

prior programming. Among the different industries, energy systems (e.g., oil, gas, 

geothermal, and carbon sequestration) have been in ongoing progress. Some of these 

machine learning applications are increasingly used for solving big data memory and 

interpreting complex dynamic processes.  

Developments in the oil and gas industry have been extensively observed. 

Nikravesh (2007) presented the application of artificial intelligence for reservoir 

characterization using multiple datasets such as geophysical, geological, and production 

measurements. In carbon capture and sequestration (CCS), machine learning is used to 

improve and optimize existing technologies and processes of carbon capture design 

(Rahimi et al., 2021). Nevertheless, some of these techniques can be applied to any 

subsurface earth resource. For instance, data dimensionality has been used for multiple 

geophysical tools to reduce their computational size.  Consequently, the application of 

machine learning provides a variety of advantages on subsurface characterization.   

Overview of machine learning 

Machine learning (ML) is a branch of artificial intelligence that provides the ability 

of learning data relationships without being explicitly programmed (Samuel, 1959). The 

impact of ML algorithms can be observed under multiple circumstances such as detecting 
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hidden patterns, complex approaches, predicting future responses, discovering new 

models, and intensive traditional coding (Géron, 2019). Extensive applications have been 

observed to tackle key problems in different domains: climate change, medical diagnosis, 

speech recognition, fraud detection, and image recognition.  

Supervised versus unsupervised learning 

Two major machine learning approaches correspond to supervised and 

unsupervised learning.  The main difference between them is linked to the associated 

response of each measurement. Supervised learning relates each observation to a specific 

response where we aim to build a model that can map the features measurements and 

response (labels).  Multiple algorithms are being established to obtain an accurate 

relationship in the supervised domain (James et al., 2021).   

Conversely, unsupervised learning lacks the response of the features observations. 

In other words, there are no labels in the learning process. To retrieve insights into the 

structure of the observations, we draw inferences between the features or observations. 

One widely unsupervised technique from unlabeled datasets is clustering. Unsupervised 

cluster analysis seeks to assign single observations of similar behavior into distinct groups. 

Lastly, a hybrid approach is sometimes required for an imbalanced dataset of more 

observations and fewer responses. This is called semi-supervised learning where we aim 

to incorporate all the observations with and without labels.  

Unsupervised learning algorithms 

Some of the most important unsupervised learning approaches can be classified as 

(Géron, 2019):  
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• Clustering or cluster analysis, to identify groups of similar data structures. 

• Anomaly and novelty detection, to remove or retrieve the outliers from the 

dataset. 

• Dimensionality reduction, to reduce the data feature space without losing the 

most valuable information.  

• Association rule learning, to reveal uncover relations from large datasets. 

Unsupervised clustering 

As mentioned above, clustering splits the data into groups of strong resemblance. 

Unsupervised clustering assigns a unique class to each observation to represent a well-

separated set of clusters. Numerous approaches have been developed which can be divided 

into partitioning, density, hierarchical, and grid-based algorithms. 

K-means, which corresponds to a partitioning-based method, designates a data 

point to a region of the data where no observation belongs to another region. This 

algorithm aims to minimize the within-cluster-variation by iteratively updating the regions 

(cluster centers) and reassigning the observations. Another commonly used method is 

agglomerative clustering. This hierarchical-based algorithm merges data points of their 

hierarchy using a specified similarity criterion. The clustering can display a hierarchical 

path of all the intermediate steps for each data point clustering. Both K-means and 

agglomerative requires to previously choose the number of clusters, being this a 

hyperparameter to tune. For the density-based method, techniques such as DBSCAN and 

Meanshift can be used. Meanshift cluster data points on regions of maxima density and a 

predefined radius. On the other hand, DBSCAN groups data on their trajectory nearby 
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space taking into account the shape of the dataset and similar data responses. The use of 

these density methods does not require the number of clusters.  

Dimensionality reduction 

In unsupervised transformation, a dataset can be represented in a structure of lower 

features by only capturing the essential values. Some of the most popular reduction 

techniques are principal component analysis (PCA), linear discernment analysis (LDA), 

and non-negative matrix factorization (NMF).  PCA transforms a correlated set of features 

into uncorrelated ones by performing an orthogonal rotation of the dataset. This rotation 

captures a subset of features of the most impactful features that maximizes the variance of 

the data (Muller & Guido, 2016). Similarly, LDA projects the high-dimensional dataset to 

a lower-dimension that maximize the separation of classes (Reddy et al., 2020). On the 

other hand, NMF extracts components by decomposing the data into a non-negative sum 

of components; hence, features can only be greater or equal to zero.  

For data visualization, t-distributed stochastic neighbor embedding (t-SNE) is 

widely used to visualize the high-dimensional dataset. It creates a lower-dimensional 

projection of two dimensions.    

Machine learning application in subsurface characterization 

A vast number of machine learning models have been developed in subsurface 

characterization. Datasets comprise a wide range of measurement tools such as well logs, 

seismic, electromagnetic, electric, remote sensing, and reservoir modeling. This section 

briefly introduces studies conducted in reservoir engineering.  
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Li et al. (2018) proposed the use of neural networks to generate synthetic NMR 

logs. They performed two machine learning models called long short-term memory 

(LSTM) and variational autoencoder with a convolutional layer (VAEc), where they 

manage to achieve an accuracy of R2 of 0,78 and 0.75 respectively. 

Wu et al. (2019) developed an SEM (scanning electron microscope) image 

segmentation model to visualize four rock components: pores, rock matrix, pyrite, and 

organic components. The workflow involved the use of feature extraction techniques and 

the random forest classifier. The segmentation was validated, obtaining an F1-score 

greater than 0.9. 

Furthermore, Chakravarty et al. (2021) applied unsupervised learning to map the 

geomechanical alterations of hydraulic fracturing operations. Ultrasonic transmission 

waveforms were used to retrieve fracture damage using clustering analysis. The physical 

significance of each group was evaluated to validate the geomechanical change.  

Bao et al. (2020) proved the use of recurrent neural networks for reservoir 

modeling.  The objective was to build a model that can relate control parameters and 

production outputs. The method shows an accuracy improvement, a reduced 

computational cost, and a reservoir simulation proxy model. 

Thesis objectives and contributions 

In this research, we explore the use of machine learning to discover new 

understandings of spatial-temporal subsurface monitoring. To achieve this, three studies 

were conducted using real-field and synthetic datasets for unconventional oil and gas, and 
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carbon sequestration. The imaging tools used were microseismic, distributed acoustic 

sensing (DAS), crosswell seismic, and electrical resistivity tomography.  

The study will provide a set of detailed methodologies to assess data compression, 

CO2 mitigation strategies, and the discovery of new knowledge in dynamic systems. 

Thesis organization 

 This work is organized on three major study cases, where we implemented ML 

to:  

• First, reduce microseismic/DAS dimensionality. 

• Second, to retrieve unsupervised CO2 plume visualizations. 

• Third, to identify fluid mechanic properties using unsupervised clustering. 

This framework aims to explore the use of unsupervised learning on key aspects 

of subsurface engineering such as big data processing and dynamic reservoir properties.
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CHAPTER II  

MICROSEISMIC DENOISING AND COMPRESSION USING HIGH-ORDER 

SINGULAR VALUE DECOMPOSITION * 

 

Introduction 

Unconventional reservoirs have been one of the primary sources in U.S. for oil and 

gas production. According to the EIA annual energy outlook (U.S. Energy Information 

Administration, 2020), unconventionals constitute the main driving force in the growth of 

oil and gas (O&G) production, representing a key factor in the global energy supply.  

Subsurface technologies are being continuously applied to gather critical information on 

the O&G extraction process. Hydraulic fracturing is one of these vital components. 

Knowledge of hydraulic fracturing is necessary to optimize its design and fracture 

propagation. Geophysical tools are being used to provide a better understanding of the 

reservoir and its interaction with hydraulic fractures. Different technologies have been 

applied for fracturing monitoring such as DAS, DTS, microseismic, VSP, and 

electromagnetic sensing. Among the various geophysical measurements, our research 

focuses on the application of microseismic. 

Microseismic can be defined as the passive monitoring of small ground 

displacements associated with seismic waves radiated by small scale fracturing events 

 

*
 Reprinted with permission from “Improving Microseismic Denoising Using 4D (Temporal) Tensors and 

High-Order Singular Value Decomposition” by Gonzalez, K., Gildin, E., and Gibson, R. L, 2021. 

SPE/AAPG/SEG Unconventional Resources Technology Conference, Copyright 2021 by Gonzalez, K., 

Gildin, E., and Gibson, R. L. 
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during hydraulic fracturing. Observations can lead to the estimation of fracture properties 

(e.g., height, length, azimuth, asymmetry, dip, and complexity) and insights into the 

fracture propagation (Warpinski, 2009). This indirect measurement has been widely used 

in the hydraulic fracturing process, due to the direct link between fracture development 

and the small energy detection. One of the main challenges during microseismic 

processing is the quality of seismic data, as the Signal-to-Noise ratio (S/N) hinders 

subsequent analyses. The S/N provides a ratio of the desirable and undesirable seismic 

energy.  Conventional denoising algorithms can be affected by the complexity and 

assumptions of regularly sampled data (Mandelli, Lipari, Bestagini, and Tubaro, 2019). 

Another major concern is the computational time and memory requirements. 

Microseismic is considered to be a big data technology due to the increasing volumes of 

data. Hence, alternative methodologies need to be applied to manage the data size and 

quality, since real-time tools are being used for fracturing treatment data interpretation.  

Recently, the use of machine learning techniques has increased in seismic 

processing and data interpretation. Common techniques include deep learning, regressors, 

classifiers, clustering, and time-series methods.  A growing application has been the use 

of unsupervised learning for dimensionality reduction. Some of the most important 

algorithms are matrix and tensor decomposition. Multiple studies have been developed 

using subsurface measurements. Bekara and van der Baan (2007) demonstrated the 

application of local singular value decomposition (SVD) to enhance seismic signals. Freire 

and Ulrych (1988) also implemented SVD on VSP processing to separate upgoing and 

downgoing waves. Furthermore, this application can be extended and applied to higher-
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order dimensions. Kreimer and Sacchi (2012) introduced tensor higher-order SVD 

(HOSVD) for a 4D pre-stack seismic tensor.  Microseismic data has also been used as 

input for denoising and compression (Yatsenko et al., 2019). However, this methodology 

can be implemented in other sets of data. Afra and Gildin (2016) extended the use of 

HOSVD for reservoir model parameterization, proving the performance and 

computational reduction of it. On the other hand, other decomposition techniques have 

been established on other geophysical measurements such as distributed acoustic sensing 

(DAS).  Brankovic et al. (2021) developed a shifted-matrix decomposition for application 

to DAS data.  

In this research, we propose a novel tensor decomposition workflow to generate 

the compressed and denoised tensor. We developed a methodology based on the Tucker 

and high-order singular value decomposition (HOSVD). This framework has the 

capabilities of working with high-dimensional datasets, that can be compressed, denoised, 

and used to discover hidden patterns in the data. We first applied HOSVD on a synthetic 

3D microseismic tensor and tested it on a field 3D DAS tensor, providing evidence of real-

world datasets. This would support the applicability on large datasets with fine spatial and 

temporal sampling. We also exploit the temporal variation compression by using HOSVD 

for a 4D microseismic array. The results provided a solution for high-dimensional data 

processing, reducing computational demands and data size. In particular, it was able to 

denoise and compressed different sets of data with different measurement principles. 

Besides, it displayed stability in the 4D HOSVD model by denoising and compressing the 

tensor without the inclusion of artificial signatures.   
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Tensor decomposition and unsupervised learning 

Tensors are multidimensional arrays that can be defined as a generalization of 

vectors and matrices to higher dimensions.  The tensor can display different orders or 

numbers of dimensions. Scalars are interpreted as zero-order, first-order as vectors, and 

second-order as matrices (Rabanser, Shchur, and Günnemann, 2017). A third-order or 

higher dimension represents tensors of more than two dimensions. A representation of 

their structure can be observed in figure 1 for vectors, matrices, and higher dimension 

tensors. 

 

Figure 1. Graphical representation of tensors structure for vectors (d=1), matrices (d=2), third-

order tensor (d=3), fourth-order (d=4), and higher-order tensor (d>3) 

 

Tucker decomposition (TD) and higher-order SVD (HOSVD) 

Tensor decomposition represents the decomposition of a tensor as a sum of its 

meaningful parts (Kolda, 2018). This technique has been used for a vast number of 

applications such as signal processing, neuroscience, and pattern recognition. Different 

tensor decomposition algorithms have been established, with TD being one of the most 

popular ones. It can be considered as a generalization of higher-order SVD (singular value 

decomposition), retaining the main properties of matrix SVD. Specifically, the TD 
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approach decomposes a tensor into multiple factor matrices and a so-called dense core 

tensor. In a three-dimension case, the TD can be express as: 

𝑋(𝑁1×𝑁2×𝑁3) ≈ 𝑔 ×1 𝑈 ×2 𝑉 ×3  𝑊

= ∑ ∑ ∑ 𝑔𝑟1𝑟2𝑟3
 ∘ u𝑟1

 ∘ v𝑟2
 ∘ wr3

= ⟦𝑔; 𝑈, 𝑉, 𝑊⟧

𝑅3

𝑟3=1

𝑅2

𝑟2=1

𝑅1

𝑟1=1

 

(1) 

Where X represents the original tensor, 𝑔 ∈  ℝ𝑟1×𝑟2×𝑟3 the core tensor and 𝑈 ∈

 ℝ𝑁1×𝑟1 , 𝑉 ∈  ℝ𝑁2×𝑟2 , 𝑊 ∈  ℝ𝑁3×𝑟3 the factor matrices (Kolda and Bader, 2007). On the 

other hand, ×1, ×2, ×3 represents the tensor unfoldings for each mode. These unfoldings 

rearrange the tensors 1-d structures to matrices form which allow us to mathematically 

obtain a more convenient expression of the tensor (Kolda, 2016).   

Different methodologies can be used for computing a TD. They are mainly 

differentiated on their optimization technique which focus on the minimization and 

reconstruction of our decomposed tensor. Among the different algorithms, we are going 

to use HOSVD to reconstruct our original signal. Figure 2 displays the relationship 

between HOSVD and SVD. The indices of them correspond to the nth element of the 

tensor on each N vector space. 

The optimal solution that we wish to solve is defined as 

min
𝑋̂

‖𝑋 − 𝑋̂‖
𝐹

2
 (2) 

being 𝑋̂ ∈  ℝ𝑁1×𝑁2×𝑁3 the compressed sized of the tensor. Moreover, given a 

relative error (𝜖) we can choose the projection ranks of the core tensor to satisfy the 

required error.  
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‖𝑋 − (𝑔 ×1 𝑈 ×2 𝑉 ×3  𝑊)‖ ≤ 𝜖‖𝑋‖ (3) 

 

Figure 2.  Schematic of the singular value decomposition (SVD) and higher-order SVD 

(HOSVD). The top image corresponds to the SVD structure which is defined as the three factor 

matrices (U, V, and ∑). The bottom represents the HOSVD scheme of the three factor matrices 

and (U, V, W) and one dense core tensor (G).   

 

An example of the use of HOSVD is displayed in figure 3 for a reservoir model 

parameterization. The input data set is a 3D tensor of stacked state snapshots. These 

snapshots correspond to the pressures and saturations from the reservoir model simulation. 

The application of HOSVD allows to maintain and reparametrize the most important state 

features without losing essential information. The resulting tensor provides a low-

dimensional representation of the state snapshots (Afra and Gildin, 2016).  
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Figure 3.  Representation of state snapshot SVD with their respective reduced variables, and 

HOSVD implementation for 3D tensor form. 

 

HOSVD on microseismic data 

In signal processing, the implementation of HOSVD has been used as a 

compression and denoising algorithm (Yatsenko et al., 2019; Iqbal et al., 2018; Kreimer 

& Sacchi, 2012). Microseismic data can be arranged into multiple tensor forms due to the 

different features that could be extracted. For instance, the dimensions of a higher order 

data tensor could include event location, magnitude, geophone location, or recording time.  

Denoising is a major concern during seismic acquisition, as large amplitude noise 

makes it difficult to detect and process seismic signals. The HOSVD algorithm can act as 

a noise filter by retaining only the most impactful values, those representing desired 

waveforms. This approach will increase the S/N ratio and remove the undesired noise 

(Figure 4). Furthermore, microseismic data sets from DAS are big data; hence, HOSVD 

is attractive for its ability to compress large, multidimensional data volumes. 
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Figure 4. Microseismic traces of original and compressed tensor of 2000 milliseconds. Left: 

Original microseismic with noisy signals at the last three traces. Right: Recovered microseismic 

with noise-free signals. 

 

Methodology 

Data description 

This work investigates the use of HOSVD for microseismic denoising and 

compression. We also evaluate the interpretability of it by analyzing the reduced tensor 

components. According to Vesselinov et. al (2019), the decomposed tensors may provide 

insights into hidden patterns in the data. This would introduce the ability to discover 

fracture propagation signatures and their importance.  

As shown in figure 5, the dataset is comprised of a third-order synthetic 

microseismic tensor. We used synthetic microseismic signals with different levels S/N 

ratio. This complexity helped us to incorporate data complexity and noise levels. The 

tensor modes correspond to 2000 milliseconds recording time, 12 geophones, and 24 
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location variations. The events location variation can be separated into x-, y- and z-

components, creating a final tensor of shape 2000x12x72. 

 

Figure 5. Third-order microseismic tensor with dimensions of 2000x12x72 where mode 1 

represents the milliseconds, mode 2 the receivers, and mode 3 the event locations. This tensor will 

serve as the input data on the HOSVD algorithm. 

 

Furthermore, we tested the proposed workflow to field DAS data. The application 

to real data allowed us to validate the use of HOSVD for compression and denoising. For 

this research, we used field DAS from the Marcellus Shale to provide subsurface 

information during well stimulation. The complete DAS data comprises the 28 stimulation 

stages of the horizontal well MIP-3H (Figure 6). 

The tensor was formed by using 43 SEGY files from stage 9, which corresponds 

to 20,000 samples in time and 493 traces. Figure 7 shows the data structure with their 

corresponding dimensions. 
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Figure 6. DAS measurements from the horizontal well MIP-3H. These recordings correspond to 

the different stimulation stages, covering a total of 28. 

 

Figure 7. Third-order DAS tensor of 20,000x493x43 dimensions. Mode 1 represents the 

milliseconds, mode 2 the traces and mode 3 the SEGY files. 

 

Workflow for tensor decomposition 

In this section, we provide the proposed workflow for HOSVD implementation. 

Moreover, we analyze the decomposed tensor using the factor matrices and core tensor. 

The main steps are displayed in figure 8 and can be divided into five key stages. 
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Figure 8. The proposed workflow of HOSVD for a microseismic tensor. The methodology was 

divided into five stages: data preprocessing, algorithm implementation, validation, estimation of 

singular values, and decomposition assessment. 

 

Stage 1. Perform data preprocessing: The preprocessing corresponds to the 

tensorization of the microseismic data. The dataset was constructed to include a 

combination of noisy signals and noise-free data. The 3D array was later converted into a 

tensor format for the HOSVD application.  

Stage 2. Implement higher-order SVD: We use ST-HOSVD (sequentially 

truncated-HOSVD) from the SNL tensor toolbox (Bader et al., 2021) to construct the 

reduced tensor. The algorithm establishes the four orthogonal factor matrices and core 

tensor according to a tolerance level or requested relative error. In addition, it displays the 

elapsed time being this a feature for the subsequent analysis of the results.  

  



18 

Stage 3. Estimate compression ratio and relative error: To validate the HOSVD 

results, we consider the estimation of the compression ratio, relative error, and computing 

time. The normalized relative error can be expressed as 

Relative error =
‖𝑋 − 𝑋̂‖

‖𝑋‖
 

(4) 

Where X is the original tensor and X ̂ the compressed one. On the other hand, the 

compression ratio (CR) can be computed as 

CR =
# 𝑡𝑜𝑡𝑎𝑙 𝑏𝑖𝑡𝑠 𝑡𝑜 𝑠𝑡𝑜𝑟𝑒 𝑋̂ 

# 𝑡𝑜𝑡𝑎𝑙 𝑏𝑖𝑡𝑠 𝑡𝑜 𝑠𝑡𝑜𝑟𝑒  𝑋
 

(5) 

Stage 4. Calculate the singular values of each mode: We estimated the normalized 

singular values to obtain the variation and decay of each tensor mode. The normalized 

singular values are generated by applying the Frobenius norm. 

Stage 5. Compare the reduced tensor with the original: For the analysis of model 

results, we developed a comparison between the compressed tensor (𝑋̂) and the original 

one (𝑋). We also examined the noisy seismic traces to verify the denoising trade-off.  

4D (Temporal) Tensors and HOSVD 

Microseismic tensors can be constructed for the analysis of event temporal 

variations. During the fracturing process, the monitoring of the growth of hydraulic 

fractures is essential to determine their fracture propagation. In addition, it may reveal the 

interaction between them and their relationship with natural fractures.   

The temporal microseismic decomposition requires an extension of the 3D 

HOSVD methodology.  Under this scenario, we developed a synthetic case of a 4D 

microseismic tensor with 1000 milliseconds recording time, 10 geophones, 3 event 
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locations, and 5 the time variations of different reference times. This latter dimension was 

created to represent the different elapsed times of a single microseismic event. For 

instance, this could represent the elapse time from 1 hour to 5 hours. The structure of the 

extended tensor of size (1000x10x3x5) is display in figure 9, being this the input data for 

the HOSVD algorithm. Here we focus on the stability of the algorithm and its ability to 

denoise 4D tensors without introducing artificial seismic artifacts.  

 

Figure 9. 4D microseismic tensor of dimensions 1000x10x3x5. The dimensions represent the 

source/recording time in milliseconds (1000), receivers' number (10), components of event 

location (3), and temporal variation or elapse time (5). 

 

The temporal HOSVD design is illustrated in figure 10. The decomposition is 

going to provide four factor matrices and a 4D core tensor. This extra factor matrix will 

be directly related to the time variation of each slice in the source/recording time. The 4D 

HOSVD is computed as: 
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𝑇(𝑁1×𝑁2×𝑁3×𝑁4) ≈ 𝑔 ×1 𝑈 ×2 𝑉 ×3  𝑊 ×4 𝐹 = ⟦𝑔; 𝑈, 𝑉, 𝑊, 𝐹⟧ (6) 

Where 𝑇 corresponds to the 4D tensor, 𝑔 ∈  ℝ𝑟1×𝑟2×𝑟3×𝑟4 core tensor, and 𝑈 ∈

 ℝ𝑁1×𝑟1 ,   𝑉 ∈  ℝ𝑁2×𝑟2 , 𝑊 ∈  ℝ𝑁3×𝑟3 , 𝐹 ∈  ℝ𝑁4×𝑟4 the factor matrices. 

 

Figure 10. Illustration of 4D HOSVD design which displays the decomposition of a tensor into 

four factor matrices (U, V, W, and F) and a core tensor of four dimensions. 

 

To investigate the applicability of 4D HOSVD, we tested multiple cases for the 

compression and denoising of the synthetic microseismic array. In addition, we developed 

a time variation analysis by subtracting the first (e.g. 1 hour) and last (e.g. 5 hours) elapse 

times of the compressed tensor. This would represent the variation of the data in time. The 

difference of it can potentially reveal physical insights into the time fracture propagation. 

Results and discussion 

Implementation of 3D-HOSVD  

Synthetic microseismic data 

To evaluate the most appropriate HOSVD compression, we tested four distinctive 

cases at different tolerance levels (0.2, 0.02, 0.002, and 0.0002). Each one of them is 
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associated with a specific compression ratio and execution time. A key aspect under any 

compression technique is the relation between the compression and the removal of 

significant data. As illustrated in figure 11, we can distinguish in cases one and two the 

removal of important parts of the synthetic waveforms. The compression ratios were 

higher (98.8% and 96%) due to the established tolerance level. 

 

Figure 11. Compressed HOSVD results for four different cases in a single microseismic event. 

Case 1 (a): tolerance level (TL)=0.2 and compression ratio (CR)=98.95%, case 2 (b): TL=0.02 and 

CR=96.2%, case 3 (c): TL=0.002 and CR=89.57%, and case 4 (d): TL=0.0002 and CR=75%. The 

best compressed tensor was achieved on case 4 by prevailing the most significant signatures. 

 

Based on these four cases, the most accurate compression resulted given a 

tolerance level of 0.0002 (Figure 11. d). The number of samples was reduced from 

1,728,000 to 431,303 while achieving a compression ratio of 75% (Figure 12. b). This 

compression supports the tolerance level and HOSVD implementation by prevailing the 

noise-free microseismic data. Furthermore, we estimated the singular values for each 

mode (Figure 12. a). This represents the decay of strength in the recording time, receiver, 

and event location dimensions. This mode variation reveals the most impactful values that 

contributed to the original microseismic tensor. For instance, it can be seen that for mode 

1 the significant components are arranged up to 50 observed at the inflection point.  

 (a)   (b)  

 

 (c)   (d)  
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Figure 12. Left: Normalized singular values which were used to analyze the singular values 

variation and decay. Right: The number of samples reduction from original (1,728,000) to 

compressed tensor (431,303) under a compression ratio of 75%. 

 

We also conducted a comparative study with the core tensor dimensions, relative 

error, and compression ratio (Table 1).  For all four cases, the values are displayed in the 

pair plots of figure 13. In plot number one (Figure 13. a), we mapped the relationship 

between core tensor dimensions and compression ratio.  For the higher compression ratio 

(96%) we obtained a core dimension of 9x3x1. On the other hand, for the lowest 

compression (75%) we reach a 181x34x11 core tensor. It should be noted that the core 

tensor of dimensions equal to the original tensor describes the tensor without any 

reduction. In the second plot, we validated the correlation between the compression ratio 

and relative error (Figure 13. b). A relative error of 0.0002 displays a compression ratio 

of 75%, and an error of 0.2 a compression of almost 100%. Thus, a large value 

compression ratio correlates with a high relative error and a low dimensions core tensor. 

 

 (a)   (b)  
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Table 1. Relative error, compression ratio, and core tensor dimensions for the four tested cases. 

 

 Relative error Compression ratio (%) Core tensor dimensions 

Case 1 0.2 98.94 9x3x1 

Case 2 0.02 96.19 32x18x2 

Case 3 0.002 89.57 84x28x5 

Case 4 0.0002 75 181x34x11 

 

 

Figure 13. Pair plot of core tensor dimensions and compression ratio (a): A relationship can be 

established between a high CR and low core dimensions. Pair plot of relative error and 

compression ratio (b): A high CR corresponds to a high relative error. 

 

In terms of the execution time, the corresponding computational times can be 

found in table 2. The time increases with the decrease of compression ratio, obtaining a 

value of 4.910 seconds for the selected compression of 75%. 

 

 

 

 (a)   (b)  
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Table 2. Execution time with their respective compression ratios and relative error. A lower CR 

will indicate a lower elapse time. 

 

 
Compression Ratio (%) Computational Time (s) Relative Error 

Case 1 98.9 4.620 0.850 

Case 2 96.2 4.639 0.224 

Case 3 89.57 4.876 0.082 

Case 4 75 4.910 0.023 

 

Field DAS data 

With our developed workflow, we also tested the algorithm on a field 3D DAS 

data. The DAS data are comprised into recorded SEGY files. Each file contains 493 traces 

with 20,000 samples per trace. We tested three tolerance levels (0.01, 0.02, and 0.05) and 

analyzed the compression and denoising of each case. As shown in figure 14, we captured 

a compression ratio of 44.77% for case 1, 70.2% for case 2 and 93.35% for case 3. The 

results indicate case 2 as the most appropriate one due to the stability of both compression 

and denoising. Case 1 also manages to accurately display a compression and denoising 

but in a lower degree while case 3 implemented excessive compression, eliminating most 

of the significant information. 
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Figure 14. HOSVD results for field DAS data under three tolerance levels. Case 1 (a): tolerance 

level (TL)=0.01 and compression ratio (CR)=44.77%, case 2 (b): TL=0.02 and CR=70.2%, and 

case 3 (c): TL=0.05 and CR=93.35%. Original data is display in the red rectangle to understand 

the impact of HOSVD. 

 

This behavior can also be observed in the reduction of the number of samples. We 

acknowledge the relationship between the compression ratio and number of samples. A 

shallow compression will display a lower number of reduced variables; conversely, a deep 

compression is going to retain a few original samples. In figure 15, we compared this 

relationship, confirming a strong reduction of samples at increased compression ratio. The 

best model (70.2%) achieved a reduction from 423,980,000 to 126,337,269 samples. 

 

Figure 15. Number of reduced variables at three compression ratios. Case 1 seems to be 

compressed 45% of samples, case 2 a 70% and case 3 a 93%. 

 

 (a)   (b)   (c)  
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In addition, we determined the singular values on each mode to analyze their 

decay. The decay can be observed in figure 16. a. which corresponds to the singular values 

at a compression ratio of 70.2%. This variation may reveal a strong decay with low number 

of samples. Furthermore, in figure 16. b. we validated the compression and denoising of 

the DAS traces by comparing the original and recovered results. We can infer that the 

compression did not include artificial seismic artifacts while denoising the data.  

 

Figure 16. Left: Normalized singular values for best HOSVD compression. Right: Original and 

recover DAS traces after HOSVD, which allow us to confirm the stability of results. 

 

Temporal variation HOSVD on a synthetic microseismic tensor (4D-HOSVD)  

With the proposed workflow, we extended the application to a synthetic 4D 

temporal tensor.  The tensor comprises recording time (1000), receivers (10), event 

location (3), and elapsed time (5). The P-wave and S-wave arrival are shown in figure 17 

in respect of the milliseconds recording/source time and receivers’ location. For the 

HOSVD implementation, we had to fix the core dimensions due to the sensitivity of the 

algorithm. This provided compression and denoising without any introduction of seismic 

artifacts. The final compression was achieved at 82.8% with a tolerance level of 0.079.  

 (a)   (b)  
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Figure 17. Left: temporal microseismic tensor of fourth-order at ten receivers' location. Right: 

microseismic traces and their respective p- (red) and s-wave (blue) arrivals. 

 

Figure 18 shows the multidimensional decomposition of temporal variation τ=1 

and τ=5. At τ=1 (Figure 18. a) we can acknowledge the compression while maintaining 

the original seismic information. For τ=5 (Figure 18. b), we validated the compression and 

denoising by retrieving a noise-free signature. Furthermore, in the recovered seismic 

image the algorithm was able to provide the p- and s-wave arrivals at almost all receivers.   

To obtain insights into fracture propagation, we perform the reference time 

difference between τ=1 and τ=5. A preprocessed step had to be performed in order to 

compare them. For this, we aligned/shifted the event signals of τ1 and τ5 at the same p- 

and s-wave arrivals. The estimated difference was later compressed using the suggested 

HOSVD algorithm. The results are displayed in figure 19 with the τ=5 compressed tensor. 

The reduced [τ5- τ1] tensor did not display a substantial difference from the recovered τ5. 

However, the decomposition maintained the seismic content and denoising.  
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Figure 18. HOVD results on the reference times 1 and 5. Time 1 (a) illustrates the accuracy of 

compressed tensor by performing the compression without altering the seismic signals. Time 5 (b) 

displays the capability of HOSVD for denoising seismic traces on a 4D tensor. 

 

 

Figure 19. Time variation analysis of the subtraction of first and last time, and time 5 results. The 

difference aims to display the fracture propagation and behavior of temporal datasets. The solid 

white lines depict the arrivals of p- and s-wave. 
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We also carry out an analysis of the seismic traces to assess the HOSVD results 

(Figure 20). A reduction of seismic amplitudes was observed due to the amplitude 

differences between τ1 and τ5. Lastly, we recognized the lack of fracture propagation 

information by noticing the same P- and S-wave arrivals for both times. 

 

Figure 20. Left: Microseismic traces of time 1 (τ1) and 5 (τ5), being the blue line τ1 and orange 

τ5. Right: Microseismic trace of τ5 and τ1 subtraction which illustrates the reduction of seismic 

amplitudes. Red represents p- and blue s-wave arrivals on both plots. 

 

The compression for all conditions revealed the accurate application of HOSVD. 

This served as an indicator of the model stability and demonstrated the use of 4D-HOSVD 

for denoising and compression. 

Assumptions and Limitations 

This work is based on the following assumptions:   
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• The core tensor is assumed to contain the most impactful signals of 

microseismic and DAS compression. The architecture for this needs to be 

investigated for the retrieval of them.  

• The synthetic 4D microseismic tensor was constructed to represent the 

temporal behavior of a single microseismic event at constant geological conditions.  

•  Synthetic cases for 3D and 4D arrays incorporate a combination of noisy 

and noise-free signals at different receivers’ locations.  

• The signals of the 4D tensor are aligned in time for all reference times at 

both p- and s-wave first arrivals. The key idea was to compare the variation of each 

temporal change.  

Final Remarks 

In this work, three multilinear tensor decompositions were generated for 3D 

microseismic, 3D DAS and 4D temporal microseismic tensors. We developed a novel 

decomposition workflow for the denoising and compression of seismic traces that enable 

us to improve microseismic and DAS detection. The following conclusions can be drawn 

from this research: 

1. Based on the HOSVD results, the developed model can be safely applied 

to multidimensional arrays without adding artificial artifacts. This model displayed 

stability by preserving the most significant signatures.  

2. The HOSVD implementation allowed a reduction of the computational 

memory and time. The compressed model demonstrated the improvement of big data 

analysis by cutting down the execution time from months to seconds. In addition, it 
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provided a fast approximation of conventional seismic filters which involve a high 

computational cost.   

3. The model provided applicability on other datasets for unconventional 

subsurface measurements, handling data sizes of 4 to 5GB.  

4. Mathematical operations can be applied on multidimensional tensors to 

obtain insights into the data. The proposed 4D tensor only displayed an amplitude 

decrease which corresponds to a postseismic relaxation along the fracture. 

The HOSVD model established the possibility of using tensor decomposition as 

an unsupervised learning method through the analysis of their decomposed parts. It holds 

great promise for feature extraction, unsupervised clustering, and feature importance. 
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CHAPTER III  

UNSUPERVISED LEARNING VISUALIZATION OF CO2 PLUME CONTENT 

DURING CARBON SEQUESTRATION 

 

Introduction 

Geological carbon storage represents one of the main technologies for the 

reduction of anthropogenic CO2 emissions. A large amount of carbon dioxide has led to 

an increase in global temperatures at an average of 0.87 °C. Concerns for the environment 

have impacted energy production, demanding rapid solutions at low carbon emissions. 

Numerous industries are developing technologies and mitigation strategies to tackle their 

high concentration of CO2. And geosequestration could be part of the solution. 

The role of carbon storage represents a potential solution for net-zero emissions. 

It involves the injection of CO2, at supercritical conditions, into an underground geological 

formation. Various carbon storage sites are suitable, being the most important: oil and gas 

reservoirs, CO2 enhanced oil recovery (EOR), unused saline aquifers, coal seams, and 

coalbed methane. In particular, EOR and saline formations have been displayed as 

promising solutions due to their global storage and economic potential. EOR is considered 

a key methodology for CO2 reuse, while saline aquifers the potential to store one Mt of 

CO2 per year.  

According to the IPCC (2018), over 700 Gt of CO2 needs to be removed from the 

air to stabilize the carbon content. This is equivalent to emissions from 143 million 

vehicles for one year. Hence, new CO2 sequestration projects are needed to be developed 
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to address this goal. In addition, investments in carbon capture and storage have increased, 

expecting to worth $3.5 billion by 2025 (Markets and Markets, 2020). This could establish 

the geosequestration and carbon capture industry as one of the most attractive ones.  

Different aspects of CO2 storage are needed to consider. The overall process 

involves the selection of a suitable geological site, transport, injection, surveillance, 

verification, and assessment of long-term CO2 storage. Nevertheless, due to the 

complexity of each process, large uncertainties are encounter. Major initiatives include 

the analysis of risk management for the development of leakage detection systems, work 

for effective CO2 monitoring to understand the behavior of injected carbon, ground motion 

to predict the extent of pressure change and potential induced seismicity and focus on 

geochemical research to analyze the chemical interaction between CO2 and in-site fluids.  

To investigate the lifecycle of CO2 injection and storage, geophysical surveys are 

acquired. Geophysical signatures are essential to establish a proper reservoir 

characterization, safe long-term storage, and monitoring of evolving CO2 plume. 

Moreover, it can provide a detailed reconstruction of the subsurface at different resolution 

levels. Integration of diverse monitoring techniques would also enhance the accuracy of 

results. This includes experimental measurements from other areas such as core, 

geochemical and geomechanical analyses. 

Over the last few years, artificial intelligence has been recognized as a powerful 

technology to address climate change. Machine learning has served as a tool to assist the 

ongoing subsurface monitoring and injection process. This is also a well suitable technique 

to address the high uncertainty for the long-term process and their spatial-temporal 
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evolution. Areas with potential growth involve computer vision and unsupervised learning 

approaches. The necessity for obtaining insights into CO2 processes are essential to the 

feasibility of carbon storage, and this could be solved by the application of machine 

learning techniques. In addition, methodologies have been proposed to manage the 

urgency of rapid CO2 knowledge, such as real-time visualizations, real-time forecasts, and 

rapid prediction models (National Energy Technology Laboratory, 2020). 

In this work, we proposed an unsupervised clustering model to identify signatures 

of CO2 content using field surveillance data. For this, we developed a novel and reliable 

machine learning methodology where we implemented a multi-level clustering design 

using unsupervised learning and computer vision techniques. This is a major difference 

between current models that so far have focused on training models with synthetic data 

and a known target. The approach is also free of assumptions since this is a data-driven 

model that does not require human intervention. The model is developed to deal with the 

unknown features, unknown response, and unbalanced dataset. Its accuracy was evaluated 

through statistical analysis and the implementation of different clustering algorithms to 

validate the consistency of CO2 saturation levels. 

CO2 plume location and movement 

CO2 injection and plume migration  

The injection of CO2 is performed under CO2 supercritical conditions. Carbon 

dioxide has the property to behave as both liquid and gas at critical pressures (1070 psi) 

and temperatures (87.8 °F). As the CO2 encounters the supercritical setting, the CO2 starts 
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behaving like gas with liquid density. This increases the CO2 storage capacity at low 

toxicity and environmental impact.  

The process of injection occurs through non-corrosive injection wells where 

materials need to be carefully picked to maintain the well integrity. Subsequently, the 

injected CO2 is continuously monitored to assess the reservoir response and regular 

pressure changes. Pressure and temperature gauges are usually installed to surveille the 

injection progress and identify any potential well problems (Rackley, 2010).   

The CO2 plume is defined as the volume of carbon dispersed in the reservoir. CO2 

can be immiscible or miscible in presence of other fluids. For instance, water and CO2 are 

immiscible while CO2 and natural gas are miscible. Under immiscible fluids, CO2 needs 

to be injected at a higher-pressure rate to displace the in-situ reservoir content. Once the 

injection stops, it migrates to the base of the caprock since density is lower than reservoir 

fluids. 

Over a longer period, CO2 can be trapped by capillary forces preventing the 

movement of the carbon molecules. Furthermore, it starts dissolving the CO2 due to their 

chemical interaction with formation water, allowing more storage space in the rock; 

however, the dissolution could be slow depending on the CO2 and water ratio. These 

chemical reactions can also modify the porosity and permeability of the formation. Finally, 

mineral reactions may occur decreasing the size and connectivity of the pores. In short, 

CO2 could be trapped into four mechanisms: structural, capillary, solubility and mineral. 
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Need for CO2 plume monitoring  

Monitoring of CO2 is vital to track the movement and plume behavior, and it aims 

to confirm the injection process and CO2 prevalence. This is a vital element for risk 

assessment and mitigation strategies, being a key factor and main challenge. For instance, 

the identification of early leakages could lead to the prevention of groundwater 

contamination. It can also assess the effect of geomechanical changes and induced 

seismicity since the injection of CO2 (at high-pressure rates) can enhance the movement 

of the subsurface, increasing the possibility of leakage. 

Another important aspect is the prediction of the CO2 plume. Plume visualization 

can provide useful information on movement and location. More specifically, the 

surveillance data permits the validation and modeling of CO2 growth, allowing to predict 

the behavior of long-term CO2 storage. Besides, carbon storage becomes riskier over time. 

Data-driven frameworks could be established to reduce this uncertainty to more 

appropriate results. In particular, it can help to select appropriate methodologies for plume 

interpretation.  

Monitoring techniques  

Geophysical data analysis has a crucial role in carbon storage processes. A diverse 

number of geophysical technologies can be used in the lifecycle of CO2 monitoring. A 

wealth of knowledge already exists in this area due to their current application in the oil 

and gas industry, which was rapidly expanded to geosequestration. 

Monitoring and verification of CO2 movement are classified according to their 

specific surveillance goal. The main commercial measurements involve injection well 
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monitoring, plume location and movement, ground displacement survey, and leakage 

detection (Rackley, 2010). For CO2 plume, the measurement techniques are summarized 

in table 3, to understand the variability of techniques. Time-lapse seismic is considered 

the most effective tool due to the high contrast of CO2 acoustic impedances. Pre- and post-

injection seismic are commonly acquired to provide an image of the change of fluids over 

time. 

Table 3. Geophysical methods for plume location and migration according to their physical 

principles. 

 

Plume location and migration  

Type Monitoring technique 

Seismic  Time-lapsed seismic 

Crosswell seismic 

Vertical seismic profile 

Microseismic  

Gravimetry Time-lapsed gravimetry 

Electric and electromagnetic  Electric resistance tomography 

Crosswell resistivity 

Electric spontaneous potential  

Remote sensing  Satellite interferometry 

Airborne electromagnetic 
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Crosswell seismic imaging  

Crosswell seismic is another effective tool to monitor the supercritical CO2 

movement. This technique involves the use of downhole seismic sources and receivers’ 

array (figure 21). Both are placed in adjacent wells to transmit and capture high-frequency 

soundwaves. As the source and receivers move, the process is repeated multiple times to 

obtain an image of the subsurface properties. The high frequency of the data provides 

detailed information of thin reservoirs, from 3 to 33 feet, at interwell distances of 33 to 

330 feet. 

 

Figure 21. Crosswell survey scheme on a source-receiver profile where the transmissions of sound 

waves are captured from source to receiver well. This process is repeated as the seismic source 

and receivers move. 

 

The data can be processed into two fundamental measurements: tomography and 

reflection imaging. Reflections are used to gather a detailed reflection image of the 
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formation while for crosswell tomography a velocity map of properties.  And velocities 

are often the best indicators of fluids movement. As the CO2 is injected, the velocities 

decrease aiding to identify the injected CO2. The difference of time-lapsed tomography 

may provide a direct image of the CO2 plume where only the areas of velocity change are 

going to be displayed. It also captures the degree of velocity change which can be 

associated with the concentration levels of CO2. 

Methodology 

SECARB Cranfield project  

The Southeast Partnerships (SECARB) Cranfield Project was a commercial CO2-

EOR program located at Cranfield field in Mississippi. This project was designed to 

establish the feasibility of long-term CO2 storage at low risk. It also serves to set up 

strategies for stacked storage, where EOR infrastructure can be used to inject CO2 above 

and below EOR operations (Hovorka, 2013). The project started with the CO2 injection in 

the fluvial sandstones of the Tuscaloosa formation on an unused saline aquifer.  

The research was divided into five stages called: 1) phase-two, 2) high volume 

injection test, 3) detailed area of study (DAS), and 4) near-surface observatory area 

(Hovorka et al., 2011). The SECARB project conducted effective subsurface monitoring 

to evaluate the behavior and permanence of carbon dioxide. Different monitoring 

techniques were used according to their specific research goal. The Cranfield project 

focused their analyses on three main goals: risk management, CO2 plume prediction, and 

pressure impact.  
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Time-lapsed seismic, electromagnetic, and tracer chromatography measurements 

were techniques used for CO2 plume prediction. For environmental assurance, pressure 

temperature, and groundwater and soil gas analysis were frequently applied (Hovorka et 

al., 2011). 

Dataset description  

The dataset consists of two time-lapsed crosswell tomographies. Three wells were 

used at an interwell distance of 229 feet for the first profile and 98 feet for the second 

profile. Figure 22 displays the schematic representation of the well’s location and 

acquisition design. The depth of interest corresponds to a range of 10,400 and 10,510 feet 

where the supercritical CO2 condition can be met. 

 

Figure 22. Schematic representation of the study area showing the side view of the crosswell 

survey. 

These profiles were acquired before and after the injection stage using a 10-level 

hydrophone array. The data was recorded on both profiles at a time difference of 10 
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months. During the seismic acquisition, the source and receivers were switched to capture 

the high frequency of soundwaves. The data acquired was processed into two components, 

reflection imaging, and tomography. The latter provided a seismic velocity map of the 

subsurface properties and in-situ fluids.  

Due to the high correlation of seismic velocity and CO2 content, the difference 

between the pre- and post-injection tomography was used. This resulting difference 

revealed the change of velocity under CO2 injection and provided an image of the CO2 

plume. Figure 23 displays the percentage change of velocity from the crosswell 

tomography difference. Values close to zero represent non to low CO2 content while 

values close to 14 a higher CO2 concentration.   

 

Figure 23. Left: Crosswell tomography image obtained after the data processing of pre- and post-

injection profile. Right: Study site of Cranfield field using one injection well (F1) and two 

monitoring wells (F2 and F3). 

Workflow for CO2 plume visualization  

A novel workflow approach was proposed for the visualization of CO2 content. 

The workflow is presented in figure 24 where we aim to discover signatures of CO2 using 
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unsupervised clustering algorithms. The clustered results reflected the levels of saturation 

ranging from low to high concentrations. 

 

Figure 24. Flowchart of the unsupervised learning clustering for CO2 plume visualization. 

The first step was to process and convert the time-lapsed tomography data into a 

change of velocity image. The image covers a depth between 10,440 and 10,550 feet, and 

an interwell distance of 229 feet and 98 feet. The quantification of velocity changes was 

represented with pixel values to quantify the CO2 content (figure 25). Pixels values close 

to zero were linked to low-velocity changes while values between 50 and 255 to medium 

and high-velocity changes. The images comprise a size of 42749 pixels for profile 1 and 

54776 for profile 2. 

Due to the nature of the data and unknown features, pixel intensity served as the 

input to extract relevant features. The number of features was a major factor for the success 

and accuracy of the machine learning models. Fourteen features were extracted where 
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each one of them represents a specific image characteristic of the velocity change. Table 

4 compiles the extracted features and their description. 

 

Figure 25. Representation of crosswell seismic tomography using pixel values. The percentage 

velocity change was determined by the difference between pre and post CO2 injection. Higher 

values correspond to higher CO2 concentrations while values of zero of no-CO2. 

With this new higher-dimensional dataset, the features had to be preprocessed 

before applying any clustering algorithm. First, robust scaler and power transformation 

were implemented to achieve a Gaussian distribution and to standardize features in a 

unique range. This was a vital step to obtain accurate results using similar features weight. 

Histograms and scatter plots were used to assess this processing stage. Moreover, features 

needed to be analyzed based on their impact. Statistical tests were performed to select the 

appropriate set of features, selecting those that displayed low multi-collinearity and high 

statistical importance. For this study, only nine features were selected:  
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• Pixel intensity 

• GLCM ASM  

• GLCM correlation 

• GLCM dissimilarity 

• Local binary patterns 

• Wavelet transform 

• Fast-Fourier transform 

• Edges 

• Hxx (Hessian matrix)  

Table 4. Brief description of extracted features from pixel intensity input. 

Feature Description 

Gray-Level Co-

Occurrence Matrix 

(GLCM) 

Statistical analysis of spatial relations between pixels. 

Statistical methods include contrast, dissimilarity, 

homogeneity, energy, correlation, and ASM.  

Fast-Fourier 

transform 

Transformation of the image from spatial to the frequency 

domain. Low and high pass filters permit to pass certain 

image frequencies.   

Linear binary pattern 

(LBP) 

Texture operator which labels pixels based on the intensity of 

the central point   

Sobel (Edges) Gradient of pixels intensity for edge detection. It captures 

changes of intensity. 

Wavelet transform Time-frequency analysis for selection of suitable frequency 

band. It is commonly used to remove noisy signals. 
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Unsupervised clustering  

The lack of ground truth represents a major difficulty for the assurance of a safe, 

long-term storage site. For the development of real-time visualization tools and leakage 

system, the discovery of signatures becomes an essential part. In this study, unsupervised 

clustering was implemented to discover hidden patterns of geophysical data. These 

measurements serve as indicators of CO2 content and plume visualization.   

The clustering process begins by analyzing the preprocessed dataset. Imbalance in 

the data was found to be a critical problem for clustering algorithms. Therefore, a novel 

approach was designed to handle the disparity of class samples. This procedure involved 

a multi-level clustering to first distinguish CO2 from Non-CO2 and to later obtain levels 

of saturation. Algorithms such as K-means, agglomerative and meanshift were deployed 

to group the carbon content according to their similitude. Each of them is based on 

different clustering assumptions, allowing us to evaluate the consistency of results. 

Methods for evaluating the clusters 

A key aspect during the application of clustering algorithms is the number of 

clusters. The optimal number was calculated using techniques such as elbow plot, 

silhouette score, Davies-Bouldin, and Calinski-Harabasz index. These algorithms were 

applied on each clustering level to evaluate the performance of the different number of 

clusters. The best one is defined according to each metric scoring range with the purpose 

to obtain a denser and well-separated number of clusters.  

Hessian matrix Second-order derivative of the Gaussian kernel for region 

detector. It is applied in the Hxx, Hxy, and Hyy direction. 
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The silhouette score (Rousseeuw, 1987) is given as:   

𝑠(𝑖) =
𝑏(𝑖) − 𝑎(𝑖)

max{𝑎(𝑖), 𝑏(𝑖)}
,    − 1 ≤ 𝑠(𝑖) ≤ 1 

(7) 

Where 𝑎(𝑖) represents the average distance of each point on the same cluster and 

𝑏(𝑖) the average distance to the nearest other cluster. The best performance, a score equals 

to 1, is achieved under lower distances of 𝑎(𝑖) and higher distances of 𝑏(𝑖) . This implies 

a lower dissimilarity within clusters and a higher dissimilarity between them.   

The Davies-Bouldin index (Davies & Bouldin, 1979) computes the average 

similarity within clusters and between. The mathematical formulation is defined as: 

𝑅𝑖𝑗 =
𝑆𝑖 + 𝑆𝑗

𝑀𝑖𝑗
, 𝑅̅ =

1

𝑁
∗ ∑ max(𝑅𝑖𝑗)

𝑁

𝑖=1

 
(8) 

𝑆𝑖 and 𝑆𝑗 corresponds to the average distance between each point and their 

respective centroid cluster, and 𝑀𝑖𝑗 the distance between the cluster’s centroids. The 

optimal number will be the one that minimizes the similarity between clusters (𝑅̅). 

The Calinski-Harabasz index (Calinski & Harabasz, 1974) is characterized as the 

following equation: 

𝑠 =

[
∑ 𝑛𝑘  ||𝑐𝑘 − 𝑐||

2𝐾
𝑘=1

𝐾 − 1 ]

[
∑ ∑ ||𝑑𝑖 − 𝑐𝑘||

2𝑛𝑘
𝑖=1  𝐾

𝑘=1

𝑁 − 𝐾 ]

=
[
𝐵𝐺𝑆𝑆
𝐾 − 1]

[
𝑊𝐺𝑆𝑆
𝑁 − 𝐾]

 

 

(9) 

It represents the ratio of within-cluster (WGSS) and between-cluster sum of square 

(BGSS). 𝑛𝑘 is the number of points per cluster, and 𝑐𝑘 and 𝑐 the cluster and global 
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centroids. A higher value indicates a denser and well-separated cluster, being this the most 

optimal one.  

Clusters were also validated through the similarity measure of different clustering 

methods.  K-means, agglomerative and meanshift clustering were compared using the 

adjusted rand index and homogeneity metric. Both of these techniques measure the 

clustering results by comparing the assigned labels of each cluster. In this case, a value of 

one indicates a perfect match.  

Finally, clusters were analyzed to evaluate the CO2 distribution and features 

importance. A frequency histogram was carried out to investigate clusters distribution and 

levels of CO2. For the feature importance, different statistical tests were applied. The first 

test is the ANOVA or analysis of variance F-test which calculates the ratio between the 

variance of the group means and within-group variances. A large value of it is going to be 

an indicator that their distribution is unique. A second test was performed called mutual 

information. This analysis estimates the statistical dependence or joint probability of two 

variables. In addition, Kendall’s Tau correlation coefficients were estimated to measure 

the relationship between clusters and features. This method relies on the association 

between variables with the non-Gaussian distribution.  

We also conducted post-hoc tests to estimate the features’ statistical difference 

between groups or CO2 levels. The test we implemented was Tukey's honestly significant 

difference (Tukey's HSD). The evaluation consists of examining the means clusters 

difference of the most impactful features, where a high difference between them indicates 

how different the clusters are. 
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Two-level clustering 

Design of multi-level clustering  

In this work, a novel methodology was developed to handle the imbalanced nature 

of the dataset. An analysis of features was performed where signatures were linked to a 

specific range of values. Inconsistency can be observed on clustering algorithms since 

they cannot find a clear pattern in the data. The main issue relies on the fact that an 

imbalanced dataset introduces bias to favor the majority of class samples. Hence, clusters 

tend to be not well-separated or dense enough at different cluster levels.  

This study adopts a multi-level clustering approach by mapping the features to a 

lower-dimensional space. The essential idea was to develop a two-level clustering model 

to obtain levels of CO2 concentration at a higher clustering efficiency. Various clustering 

algorithms were applied; being K-means the algorithm used for final clustering results. 

Other cluster techniques such as agglomerative and meanshift were implemented to 

validate the clustering results from the K-means approach. It’s necessary to mention that 

all of these algorithms display different mathematical assumptions. Hence, the consistency 

of these methods provides a good representation of a similar data structure. 

The first level of clustering was initially performed to differentiate CO2 content 

from non-CO2 (figure 26). Clustering scores were estimated to assess the performance of 

the results. This CO2 cluster data served as the input for the second level clustering. A 

mask was developed to extract and map the features from the cluster of interest. Then, the 

second clustering was implemented to this new feature space to generate the final 

clustering of CO2 levels (figure 26). This to improve the learning and disparity of cluster 
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samples. The selection of the optimal number of clusters was determined using the second 

level clustering scores. Some of the methods used were silhouette, Davies-Bouldin, and 

Calinski-Harabasz index where these scores represent the measurements of the 

dissimilarity between and within clusters. 

 

Figure 26. Top: Silhouette plot for two clusters and K-means first-level clustering. Clustered 

results correspond to no-CO2 (cluster 0) and CO2 content (cluster 1). Bottom: Silhouette plot for 

three clusters and K-means second-level clustering for first-level cluster 1 

Traditional K-means clustering was performed to analyze the impact of an 

imbalanced dataset. Internal clustering scores were also applied to determine the most 
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suitable number of clusters. The improvement between both of them can be observed 

through the distribution of clustered data. 

Results and discussion 

Validation of clustering models  

We validate the clustering results by evaluating the density and separation of 

clusters. To assess the clustering performance, silhouette scores, Davies-Bouldin and 

Calinski-Harabasz index were computed at the two clustering levels. The coefficients 

indicate the degree of similarity between and within clusters based on mathematical 

relationships. This provides a useful measure for the prediction of CO2 saturation levels.  

A smaller value of Davies-Bouldin indicates a better performance while for Calinski-

Harabasz and silhouette a high value.  

At the first level, two clusters were established to differentiate CO2 from non-CO2. 

As shown in table 5, silhouette scores were close to one with a value of 0.85. The Davies-

Bouldin index also confirmed the partition by obtaining a value close to zero, indicating 

accurate segregation of the CO2 content. These results represent the performance of the 

clustering, obtaining dense and well-separated clusters of the CO2 and non-CO2. 

With the first level of CO2 content, a second clustering was performed. We utilize 

the same performance algorithms to evaluate the model efficiency and the optimal number 

of clusters. The scores were computed at 10 clustering levels to choose the most 

appropriate number. The results displayed a better performance for three clusters. The 

silhouette and Davies-Bouldin scores achieved values of 0.74 and 0.32, confirming the 
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need for a second-level approach (table 5). Calinski-Harabasz was also estimated to show 

a good agreement with the other two clustering scores.  

Table 5. Silhouette scores, Davies-Bouldin score, and Calinski-Harabasz index for first and 

second-level clustering. 

 

For this work, the three clusters represent the three levels of CO2 saturation ranging 

from low to high CO2 concentrations. A total of four clusters were established, providing 

an image of the CO2 plume after nearly 10 months of injection. 

Traditional clustering vs. two-level clustering  

In this section, we compared the traditional clustering and proposed multi-level 

clustering. The intent of it was to highlight the impact and improvement of this novel 

approach. Traditional clustering consists of a one-level partitioning of the extracted data. 

Four clusters were predefined to analyze the clustering behavior and compare it with the 

proposed methodology.     

Figure 27 shows the clustering results for the traditional and two-level k-means.  

The results are reasonable for the Non-CO2 cluster; however, the levels of CO2 displayed 

Profile Clustering level 
 

Score 
 

 
 Silhouette 

 

Davies-

Bouldin 

Calinski-

Harabasz 

F2-F3 First-level clustering 0.85 0.43 160666 

 
Second-level clustering 0.74 0.32 59656 

F1-F2 First-level clustering 0.79 0.68 450364 

 
Second-level clustering 0.68 0.30 72783 
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high discrepancies. Differences between them can be attributed to the majority of the Non-

CO2 class. For the CO2 levels, the traditional clustering presented clusters with low 

separation and density, resulting in a higher uncertainty of the CO2 location.  Hence, the 

multi-level clustering display a better approach for regions with high CO2 content.  

 

Figure 27. Left: k-means second-level clustering. Right: “traditional” k-means clustering where 

clusters were established with no previous cluster data. 

Comparison of two-level clustering using various clustering methods  

A comparative analysis was conducted to confirm the consistency of cluster labels 

using k-means. As shown in figure 28, three clustering algorithms were used on the two-

level approach. The study consists of implementing similarity scores between different 

clustering methods. To evaluate the k-means CO2 labels, agglomerative and meanshift 

clustering were applied. Mean-shift aims to cluster data points based on the discovering 

of the modes in a data distribution. Meanwhile agglomerative intends to group the samples 

on their similarity, and recursive clusters merge 
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Figure 28. Spatial clustering using the two-level k-means, mean-shift, and agglomerative 

clustering. The similarity of each clustering algorithm reinforces the consistency and robustness 

of the proposed workflow. 

For the quantitative analysis, we used two pair-wise clustered scores. Table 6 

summarizes the results of both adjusted random score and homogeneity. Adjusted random 

estimates the similarity between two clustering results while ignoring permutations. The 

homogeneity approach evaluates the clusters labeling based on the principle of clusters 

containing only a single class. The values range from 0.95 to 0.99, being one a perfect 

label match. The consistency among these cluster labels confirms the reliability of the 

model by displaying a high consistency of distinct clustering principles.  

Table 6. Comparison of two-level clustering using K-means, meanshift, and agglomerative 

clustering. Scores close to one indicates a high similitude between two clustering results. 

 

 

 

 

Clustering comparison 

methods 

Adjusted 

random score 

Homogeneity 

score 

K-means and agglomerative 0.989 0.956 

K-means and mean-shift 0.999 0.994 

Mean-shift and agglomerative 0.989 0.954 
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Statistical analysis of spatial clustering 

In this section, we perform multiple statistical tests to explore the physical 

relationship of CO2 and each cluster label. This will serve as an indicator to physically 

meaningful labels. Figure 29 shows the histogram distribution of the cluster labels. Based 

on their frequency, the Non-CO2 (Cluster 0) constitutes the majority of the cluster samples, 

accounting for accounts for approximately 76.5% of the data. Clusters 1, 2, and 3 represent 

regions containing low, medium, and high CO2 content. Regions containing low, medium, 

and high are equivalent to 4.5%, 11.5%, and 7.5% of the data, respectively. This behavior 

can also be observed in the silhouette plots of figure 26, where the thickness of each cluster 

represents the number of data points belonging to a particular cluster. 

 

Figure 29. Clusters frequency results using the two-level k-means clustering of the nine extracted 

features. Cluster 0 is associated with no-CO2 whereas clusters 1, 2, and 3 with various levels of 

CO2 content. 

To further investigate the uniqueness of clusters, we estimated the Euclidean 

distances between each cluster center. The estimation is presented in table 7, where larger 

distances correspond to larger dissimilarities. According to the results, cluster 3 (high 
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CO2) is farthest from cluster 0 (non-CO2) and cluster 1 (low CO2). Thus, distinctive 

characteristics can be observed from each other.  

Table 7. Euclidian distances between cluster centers. Cluster “0” represents regions of Non-CO2, 

while Clusters “1”, “2”, and “3” indicate the regions that contain low, medium, and high CO2 

content. 

 

 

 

 

 

 

 

Analysis of most impactful and discriminative features  

With the extracted features, we aim to analyze their contribution in the clustered 

data. We first implemented two statistical analyses named ANOVA (analysis of variance) 

F-test and mutual information values to evaluate the strength of the association between a 

feature and the clusters (Figure 30). Mutual information quantifies the mutual dependence 

between a feature and a cluster. In other words, it measures the amount of information 

obtained about the clusters when a specific feature is implemented in the clustering. 

Mutual information for a discrete target variable was used in this study, which is based on 

the entropy estimation of features and target. Meanwhile, ANOVA F-test compares the 

variances between groups and within groups. This is a specific statistical test that allows 

the analysis of multiple clusters to determine the features that exhibit significant variation 

across the clusters. High values of ANOVA F-Test and mutual information indicate that 

Distances between cluster centers 

Clusters 0 1 2 3 

0 0.00    

1 1462.63 0.00 

2 188.97 1273.93 0.00 

3 806.43 656.22 617.74 0.00 
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pixel intensity, fast-Fourier transform coefficients, and wavelet transform coefficients are 

the most discriminative, informative, and relevant features. 

 

 

 

 

 

 

 

 

Figure 30. Normalized F-test values and mutual information results to determine the most 

impactful features. Fast-Fourier transform, wavelet transform, and pixels are the signatures that 

provide most of the clustered information. 

Kendall’s τ correlation were also estimated to assess the statistical association of 

ranked data. This non-parametric method was designed for a categorical target, such as 

classes and clusters. Moreover, this correlation method does not require assumptions of 

the underlying distributions in data which can be used for non-gaussian distributions. A 

strong association displays values close to 1 or -1 whereas values close to zero a weaker 

Features 

number 

Feature 

0 GLCM ASM 

1 GLCM Correlation 

2 GLCM Dissimilarity 

3 Fast-Fourier transform 

4 LBP 

5 Edges 

6 Wavelet transform 

7 Hxx 

8 Pixels 
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relation. It reveals the concordance or discordance of two paired variables. As shown in 

table 8 the strongest correlations are linked to pixel, fast-Fourier, and wavelet transform. 

Table 8. Correlation scores of clusters and features using Kendall’s tau for F2-F3 profile. The 

correlation score displayed wavelet transform and pixels intensity as the most impactful features. 

 

 

 

 

 

 

 

 

 

 

 

For all statistical analyses, it was concluded that pixel, fast-Fourier, and wavelet 

transform are the features that best describe the spatial CO2 distribution in the reservoir. 

In addition to previous tests, Post-hoc “Tukey HSD” was implemented to identify the 

mean difference between clusters on the most significant features. Table 9 summarizes the 

statistical mean difference for pixel, fast-Fourier, and wavelet transform. Among the three, 

Fast Fourier transform is the most significant one. Cluster 3 (high CO2 content) is the most 

distinct from both clusters 0 and 1, while clusters 0 and 1 are the most similar. 

 

Feature Kendall’s tau score 

GLCM ASM 0.64 

GLCM Correlation 0.62 

GLCM Dissimilarity 0.63 

Fast-Fourier Transform 0.63 

Linear Binary Pattern 0.48 

Sobel (Edges) 0.64 

Wavelet Transform 0.96 

Hxx (Hessian matrix) 0.14 

Pixels Intensity 0.95 
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Table 9. Tukey HSD for post hoc analysis of the significance of the feature for fast-Fourier 

transform, wavelet transform, and pixels. Mean differences between clusters indicate the 

significance among them. Cluster “0” indicates Non-CO2 content, while Clusters “1”, “2”, and “3” 

indicate the low, medium, and high CO2 regions. 

 

 

In addition, we generated boxplots to examine the signature responses per cluster 

on the high- impact features (figure 31). Among the three features, fast Fourier transform 

Feature Clusters being compared 
Mean difference 

Fast-Fourier Transform  Cluster # Cluster # 

0 1 177.02 

0 2 751.82 

0 3 1364.24 

1 2 574.80 

1 3 1187.22 

2 3 612.42 

Wavelet Transform  Cluster # Cluster # 
 

0 1 61.25 

0 2 260.83 

0 3 468.20 

1 2 199.57 

1 3 406.94 

2 3 207.36 

Pixels Cluster # Cluster # 
 

0 1 25.72 

0 2 130.41 

0 3 241.26 

1 2 104.70 

1 3 215.54 

2 3 110.85 
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has the most distinctive values for each cluster. Wavelet transform has a large overlap 

between clusters 2 and 3 and clusters 1 and 2. On the other hand, pixel intensity only 

displays large overlap between clusters 2 and 3. This confirms that signatures of impactful 

features can clearly differentiate levels of CO2 content. 

 

Figure 31. Boxplot of clustered fast-Fourier transform, wavelet transform, and pixels intensity. 

Boxplots were defined for a low 5th percentile and a high 95th percentile. For fast-Fourier 

transform, values of 0 were associated with non-CO2, ~1-80 to low CO2, ~81-180 medium CO2, 

and ~181-257 to high CO2. For wavelet transform, values of 0 were associated with non-CO2, ~1-

170 to low CO2, ~171-360 medium CO2, and ~361-510 to high CO2. For pixels, values of 0 were 

associated with non-CO2, ~1-75 to low CO2, ~76-175 medium CO2, and ~176-255 to high CO2. 

Assumptions and Limitations 

This study is based on the following assumptions:   

• The available dataset corresponds to the derived CO2 from the crosswell 

seismic inversion. An accurate approach will involve the use of raw seismic 

velocities before and after CO2 injection.  
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• The model involves the use of only one time-lapse image of CO2 

distributions. A larger dataset will improve our results while incorporating other 

subsurface scenarios.  

• Due to the nature of our data, preprocessing steps were already performed 

by the seismic processing geophysicist. Therefore, new datasets of raw seismic data 

will need to include seismic preprocessing.  

• The integration of other subsurface measurements would provide a better 

description of the clustered CO2 content. Pressure, temperature, and well logs are 

some of the measurements that could be included in the clustering model. 

Final Remarks 

In this work, a novel unsupervised learning methodology was implemented to 

discover patterns of CO2 levels from field monitoring data. We generated a rapid and 

reliable plume visualization using geophysical data sets for CO2 migration assessment. 

The following conclusions have been drawn from the results:  

1. A new workflow was proposed for CO2 visualization which incorporates 

the first-time feature extraction, feature selection, and two-level clustering design. 

This accounts for the unknown features and unbalanced data. In addition, it served 

to distinguish the variables that best described the CO2 content, being this a vital step 

for further analysis.  

2. The use of machine learning provided a fast approximation to substitute 

rock-physics modeling, free of assumptions implemented in physics-driven models. 
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Thus, the application could be extended to many CO2 geo-sequestration scenarios at 

different conditions.  

3. Machine learning with unsupervised methods allowed visualizing CO2 

content on regions with similar rock alterations and providing a rapid image of the 

CO2 plume. The developed model was intended to represent the growth of plume 

movement at different time scales. 

4. Improved computational performance of this approach was demonstrated 

using real data from a saline aquifer and existing CO2-EOR field, reducing 

modeling/computing time from months to minutes. Real-time visualizations could 

be implemented to assess the safe long-term storage. 
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CHAPTER IV  

IDENTIFICATION OF FLUID TRANSPORT MECHANISMS USING SPATIAL-

TEMPORAL CLUSTERING 

 

Introduction 

Subsurface monitoring of geological CO2 sequestration is critical to ensure storage 

integrity and efficiency. To identify and map potential pathways of CO2, appropriate 

imagining technologies are required. According to Davis et al. (2019), these can be divided 

into three main categories: surface, near-surface, and subsurface techniques. For 

subsurface mapping, a set of monitoring tools can be used to establish the CO2 location 

by providing a spatial image of the migrated CO2. 

A critical aspect of any CCS project is the real-time location of the injected CO2 

and its migration. Numerous processes can affect the CO2 plume evolution such as 

geological heterogeneity, interfacial tension, geological structures, leaky pathways, and 

gravity forces. For instance, geological heterogeneity can significantly reduce the CO2 

injection capacity due to regions of low permeability. On the other hand, geological 

structures such as dips can affect the migration of CO2 by obtaining a condensed 

supercritical fluid at the bottom of the seal. Hence, the understanding of these dynamic 

systems is vital to establish safe long-term storage and reducing potential CO2 leakage.  

Machine learning (ML) algorithms are ideal for uncovering hidden relationships 

of monitoring changes in complex physical behaviors. Haghighat et al. (2013) 

demonstrated the use of ML using modeled CO2 leakage and real-time pressure data. Ni 
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and Benson (2020) developed an unsupervised clustering model to identify capillary flow 

regimes on five CO2 coreflooding datasets.  Pires de Lima et al. (2019) used convolutional 

neural networks to model the amount of leaked CO2 using synthetic pressure and seismic 

data. Nevertheless, studies of CO2 systems using ML are often comprised of synthetic 

datasets and limited subsurface measurements. Moreover, subsurface imaging has to be 

acquired for an extensive period of time to incorporate the respective spatial plume 

change. These problems could be solved by using spatial-temporal ML for time-series 

datasets. 

In this chapter, we perform unsupervised clustering to investigate the dynamic 

fluid properties of subsurface mapping. We aim to identify spatial-temporal patterns of 

plume migration to assess the feasibility of carbon storage and the processes affecting the 

trapping. The model is developed using electrical resistivity tomography (ERT) from the 

field SECARB project. 

Crosswell electrical resistance tomography (ERT)  

ERT is an electrical geophysical method that involves the use of a direct electric 

current to measure the electric potential difference in the subsurface. Crosswell ERT 

configuration is displayed in figure 32 where electrodes are placed on two monitoring 

wells at a prespecified electrode spacing. An electrode from the first well is going to 

transmit the electric current while the other ones from the second well will measure the 

voltage gradient. The acquisition is repeated multiple times to obtain the different current 

pathways and produce a map of spatial resistivity. The supercritical CO2 content can be 
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visualized due to the high resistivity response on brine reservoirs, providing an image of 

the injected CO2 plume.   

  

Figure 32. Schematic representation of the crosswell ERT acquisition where the electric potential 

is measure at the receivers electrodes. I = electric current, V= measured voltage gradient. 

 

Methodology 

Dataset description  

The dataset utilized contains 91 daily ERT measurements collected from 09 

December of 2009 to 12 March of 2010. The ERT acquisition was configured in two 

monitoring with the placement of 14 electrodes in well F-2 and 7 electrodes in well F-3. 

The injection well is set to a distance of approximately 229 feet from the F-2 and 327 feet 

from the F-3. The reservoir depth is set at a range of 10449.5 to 10521.5 feet at a thickness 

of 72 feet, being this the focalized zone of research (figure 33).  
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Figure 33. Time-lapse CO2 saturation images of profile F2 and F3. The injected reservoir 

corresponds to the perforated zone, displaying a thickness of ~22 m and a length of ~32 m. The 

saturation ranges from 0 to 22.5 % of CO2 content.  

Processing of the data was previously carried out by Carrigan et al. (2013) where 

three major steps were performed:  

1) Removal of noisy data points using multiple thresholds 

2) Modeling baseline measurements to construct a reference dataset  

3) Time-lapse inversion obtains CO2 saturations from the resistivity changes.  The 

processing approach was based on the ratio inversion scheme and Archie’s law. 

To investigate the different flow regimes, the CO2 saturations were used as input 

data due to the lack of resistivity information. The CO2 is measured as percentage being 

zero the lowest response and 25 the highest saturation increase. The ERT spatial 

coordinates correspond to a distance of 33 meters on the x-axis and 57 on the y-axis. These 

coordinates represent the distance between well F-2 and F-3 (x-axis), and the first and last 

electrode (y-axis).  

Workflow for spatial-temporal clustering 

In this study, the purpose is to identify hidden patterns of spatial-temporal plume 

behavior and uncover potential processes affecting the efficiency of CO2 migration. The 
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proposed workflow is shown in figure 34 with the main steps of the spatial-temporal 

clustering model. 

 

Figure 34. Workflow used for the spatial-temporal clustering of SCO2 ERT. Six main stages are 

needed to process, implement, and evaluate time-lapse CO2 migration.  

 

The steps are summarized as:  

Step 1: Data preprocessing. The dataset was gathered and cleaned by identifying 

the missing and irrelevant data points to increase model quality. The creation of SCO2 

regions was performed as a previous step of feature extraction to retrieve the spatial-

temporal changes of the input data.  

Step 2: Spatial-temporal Feature Extraction. A novel design was developed to 

incorporate the previous, current and subsequent stages of daily SCO2 measurements. We 

extracted 12 features from a 3D tensor centered in the second temporal dimension and 

combined them through statistical methods.    
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Step 3: Data scaling and feature selection. We applied MinMax scaling to 

transform the features to a compared scale for the unsupervised clustering algorithm. 

MinMax scaler estimation is presented as:  

𝑋𝑠𝑐𝑎𝑙𝑒𝑑 =
𝑥 − min (𝑥)

max(𝑥) − min (𝑥)
 

(10) 

Where “min” and “max” represent the feature range and “x” the feature vector. 

This standardization will transform the samples into a range of 0 and 1.   

From the extracted features, we selected the most impactful ones based on their 

pairwise correlations and the appropriateness for moving spatial clusters.  

Step 4: Spatial-temporal Clustering. With the extracted features, we implemented 

k-means clustering using the time series distance metric: dynamic time warping (DTW). 

The optimal number of clusters was assessed by the metric scores of Davie-Bouldin, 

Calinski-Harabasz, and DTW silhouette. 

Step 5: Clustering Validation. We employed statistical analysis to validate the 

clustering results and retrieve the features that best describe the data response. For this, 

we applied ANOVA (analysis of variance) and post-hoc Tuckey’s test to capture the 

statistical difference of selected features.  

In addition, to assess the DTW k-means approach, we applied conventional 

clustering algorithms such as agglomerative, mean-shift and Euclidean k-means. We 

established their performance and comparison with the metric scores of Davie-Bouldin 

and Calinski-Harabasz. 

Step 6: Physical interpretation. Using the wellbore measurements (temperature, 

pressure, and flow rate) of the injected well, we compared the daily clusters count with F-
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1 injection phases. We aim to link the behavior of each class to the wellbore responses by 

examining their temporal changes. Subsequently, we implemented a second clustering 

model to group the time frame of clustered results. The data is reshaped to a daily format 

to discover CO2 fluid regimes of a similar response.    

With this workflow, we expect to discover the predominant CO2 fluid mechanisms, 

the evolution of CO2 plume and the systems affecting the migration and storage efficiency. 

Feature extraction design 

To incorporate the temporal and spatial change of moving CO2 content, we 

developed a novel feature extraction approach. The extraction procedure begins by 

conditioning the original SCO2 ERT data. We first created regions of 5 by 5 dimensions 

and focalized the data to the reservoir and injected zone (figure 35).   

 

Figure 35. Creation of SCO2 regions of 5x5 dimensions of the time-lapse images. Each CO2 image 

will contain 5x6 regions of 5x5 observations. This was used to account for the local spatial 

information for the tensor-based feature extraction. 

With the daily regions, we designed a tensor-based feature extraction 

methodology.  As illustrated in figure 36, regions were arranged into 3D tensors of 3x5x5 

shape where we aim to incorporate the temporal response of the previous, current, and 
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following day. Subsequently, we performed feature extraction on each slice of the 3D 

array and combined their responses to obtain a final representation of the feature. The 3D 

structure will provide the spatial-temporal flow dynamics by adding the change of a 

moving system. The exact procedure was conducted on all regions for different extracted 

features.  

 

Figure 36. Tensor-based feature extraction design for 3D arrays of 3x5x5 dimensions. To account 

for the temporal and spatial components of ERT measurements, four steps were implemented: 1) 

regions are arranged in 3D tensors, 2) feature extraction on each tensor slice, 3) transformation of 

3D to a 2D array, and 4) repetition of the process to all tensor regions.   

Using the previously described methodology, the extraction techniques applied 

were: sobel, gray-level co-occurrence matrix, fast-Fourier transform, linear binary pattern, 

hessian matrix, difference of Gaussians, structure tensor, entropy, height bellow, height 

above, contrast stretching, and SCO2 difference. Nevertheless, only 5 features were 
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selected based on their statistical correlation and impact to describe moving objects.  The 

features used are displayed in table 10 with a brief explanation of the extraction technique.  

Table 10. Brief description of extracted features from ERT SCO2. 

 

 

Spatial-temporal clustering 

Dynamic time wrapping and k-means 

In this study, we used Dynamic time wrapping (DTW) as the distance metric for 

spatial-temporal clustering. DTW evaluates the optimal aligning between two time-

dependent signals (Muller, 2007). This is a technique suitable for time-series datasets due 

to the ability to capture the similarity/dissimilarity of temporal distances that do not have 

an equal temporal length. In other words, invariant to time shifts. These pairwise distances 

are warped in a nonlinear regime to approximate both sequences.  The use of k-means 

clustering and DTW can be divided into two major steps where the algorithm is going to:   

• First, it arranges the time-series to similar shapes by using DTW 

Feature Description 

Fast-Fourier 

transform 

Transformation of the image from spatial to the frequency 

domain. Low and high pass filters permit to pass off certain 

image frequencies.   

Structure tensor Estimation of the weighted sum of squared differences in a 

centered pixel window. 

Height bellow Difference between the highest elevation point and current 

point.  

Contrast stretching Stretching or shrinking of pixels intensity levels.  

SCO2 difference Difference between the previous date and current date 

observations. 
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• And second, it computes the barycenters or clusters centers with the use of 

DTW. This will provide an average shape of clusters while taking into 

account temporal shits.  

Physical interpretation of spatial-temporal clusters 

To provide the physical meaning of clustering results, we examined the association 

between each cluster class and the wellbore measurements of the injection well. These 

measurements were acquired daily to monitor the response of injected CO2. We used the 

pressure, temperature, and flow rate to analyze the relationship of clusters variability. With 

the clustering classes, we aggregated their values by the daily appearance, counting their 

classes each day. Based on both datasets, we aim to correlate the changes in pressure, 

temperature, and flow rate with the changes of clusters occurrence (Figure 37).   

 

Figure 37. Wellbore measurements: a) flow rate, b) temperature and 3) pressure of injection well; 

and d) daily clusters occurrences. Clusters count changes were used to correlate the injection 

phases with the clustering results.  

a) 

b) 

c) 

d) 
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In addition, we established a second clustering model to uncover the temporal 

patterns from the previous clustering results. As illustrated in figure 38, the clusters were 

rearranged to group the dates of similar clustering responses. Based on this, we applied k-

means to group the dates of each individual clustered ERT image. These clustered dates 

were compared with the wellbore measurements to investigate the relationship between 

injection phases. 

 

Figure 38. Representation of second clustering input data for the temporal analysis of flow 

regimes.  

Results and discussion 

Validation of clustering 

To evaluate the performance of the spatial-temporal clustering, Davies-Bouldin, 

Calinski-Harabasz, and DTW-Silhouette scores were estimated. These clustering metrics, 

called internal validation measures, assess the goodness of the partition without the use of 

any external information. The criteria used are commonly based on the compactness 

(similarity) and separation (distinction) of clusters (Liu et al., 2010).  A higher value of 

Calinski-Harabasz and DTW-Silhouette will indicate a better partition while Davies-

Bouldin a lower value.  
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In the DTW K-means implementation, four clusters were established using the 

Davies-Bouldin and Calinski-Harabasz scores. Figure 39 presents the original ERT SCO2 

and clustering results for the time-lapse dataset. Clusters classes were linked to levels of 

SCO2 content, ranged from zero to high CO2. The validation measures confirmed the 

clustering with a Davies-Bouldin index of 0.71, a Calinski-Harabasz of 262791.45, and a 

DTW-silhouette score of 0.58. These values indicate the measures of the highest clustering 

performance. 

 

Figure 39. Left: SCO2 ERT dataset for the 03/03/2010 acquisition. Right: DTW K-means 

clustering. Clustered results correspond to no-CO2 (cluster 0), low CO2 (cluster 1), medium CO2 

(cluster 2), and high CO2 (cluster 3). 

 

Comparison of multiple clustering methods and DTW K-means 

A comparative analysis was performed, to validate the use of DTW K-means for 

spatial-temporal datasets. Three clustering algorithms were implemented to characterize 

the moving CO2. K-means with Euclidean distance, agglomerative, and mean-shift were 

the applied methods. These approaches are often applied to sequences of high spatial 

components using ordinary distances such as Euclidean. As shown in figure 40, 

differences between them are mainly associated with: 1) the low characterization of the 

moving CO2 content (cluster 3) 2) low separation and compactness of meanshift clusters.  
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Figure 40. Spatial-temporal clustering using a) Euclidean k-means, b) meanshift and c) 

agglomerative clustering. Qualitatively k-means and agglomerative display a similar behavior of 

low migration movements, while meanshift display a poorly clustering performance.  

Moreover, Davies-Bouldin and Calinski-Harabasz scores were calculated to 

compare the goodness of all the clustering results. Table 11 presents the scores of each 

method, being DTW K-mean the one with a better data partition.  Hence, temporal 

distances could enhance spatial-temporal clustering by incorporating the time-series 

components.  

Table 11. Internal metric scores of clustering results for the algorithms of DTW k-means, 

Euclidean k-means, meanshift, and agglomerative. A lower Davies-Bouldin value indicates a 

better performance while for Calinski-Harabasz it displays a higher score. DTW k-means has the 

lowest Davies-Bouldin and highest Calinski-Harabasz score.  

 

Clustering algorithms 
Score 

Davies-Bouldin Calinski-Harabasz 

DTW K-means 0.71 262791.45 

Euclidean K-means 0.83 157866.86 

Agglomerative 0.95 131593.57 

Meanshift 1.01 69438.35 
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Statistical analysis 

In this workflow stage, we examined the statistical difference of the extracted 

features among the spatial-temporal clusters. The analysis of these differences determines 

the most impactful features for ERT SCO2 measurements. To quantitatively evaluate the 

statistical significance, we applied one-way ANOVA (analysis of variance). The results 

from the ANOVA tests are displayed in figure 41, being contrast stretching and fast-

Fourier transform the features that best describe the CO2 content.  

  

Figure 41. Normalized F-test values to establish the most impactful features. Contrast stretching 

and fast-Fourier transform are the signatures that provide significant clustered information to 

describe SCO2. 

 

Subsequently, we conducted the post-hoc Tukey’s test to further analyzed the 

pairwise clusters difference of selected features. Using the ANOVA results, contrast 

stretching and fast-Fourier transform were assessed (table 12). From the features mean 

difference, clusters “0” and “3” display the highest difference between each clusters class. 

Conversely, clusters “2” and “3” reveal the lowest difference or highest clusters similarity. 

Features  

number 

Feature 

0 Structure tensor 

1 Fast-Fourier 

transform 

2 SCO2 difference 

3 Contrast stretching 

4 Height bellow 
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We also established contrast stretching, as the strongest feature due to their high clusters 

difference.   

Table 12. Tukey HSD for post hoc analysis of the features contrast stretching and fast-Fourier 

transform. Mean differences between clusters indicate the significance among them. Cluster “0” 

indicates non-CO2 content, and clusters “1”, “2”, and “3” their respective level of saturation (low, 

medium, and high). 

 

 

To validate this difference, we draw boxplots of clustering results for the most 

impactful features. As shown in figure 42, contrast stretching provides a better 

representation of the spatial-temporal clusters. We also confirm the similarity between 

clusters “2” and “3”, and the statistical difference of clusters “0” and “3”. For fast-Fourier-

Feature Clusters being compared 
Mean difference 

Normalized 

difference Contrast stretching Cluster # Cluster # 

0 1 834395206.29 0.45 

0 2 1588207701.76 0.85 

0 3 1867909636.58 1.00 

1 2 753812495.47 0.40 

1 3 1033514430.28 0.55 

2 3 279701934.81 0.15 

Fast Fourier Transform  Cluster # Cluster #   

0 1 5.89 0.41 

0 2 11.09 0.76 

0 3 14.51 1.00 

1 2 5.20 0.36 

1 3 8.62 0.59 

2 3 3.42 0.24 
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transform clusters overlap on all classes. A combination of both features could potentially 

differentiate them to a higher degree.  

 

Figure 42. Boxplot of clustered contrast stretching and fast-Fourier transform. Boxplots were 

defined for a low 5th percentile and a high 95th percentile. 

 

Physical meaning using wellbore measurements and second temporal clustering 

The physical interpretation of clusters is investigated with the wellbore 

measurements of the injection well. Figure 43 displays the daily flow rate, temperature, 

pressure, and the respective daily count of cluster “3” (High CO2). We can distinguish 

from the dates of “2010-01-30” to “2010-03-09” a decrease/increase of both cluster 

occurrence and flow rate. These changes are attributed to the injection phases which 

directly affect the CO2 plume migration.  
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Figure 43. Wellbore measurements: a) flow rate, b) temperature and c) pressure of injection well; 

and d) daily count of cluster 3 (high SCO2).  The gray background corresponds to the dates from 

“2010-01-30” to “2010-03-09” where a change of all measurements is observed.  

To further evaluate the clustering results, we applied a second clustering from the 

previous clusters. Dates were clustered to discover flow regimes of similar behavior. 

Figure 44 shows the second clustering results for the daily domain where we can observe 

the distinctive plume behaviors of all clusters. The clustering analysis is established in 

table 13 where we can distinguish different stages of injected CO2. Lastly, the temporal 

clusters also display a concordance with the flow rate (figure 45) by identifying temporal 

patterns in the clustered ERT images. From these results, unique temporal behaviors were 

uncovered. They can be linked to the phases of plume development and their respective 

CO2 flow mechanisms. The movement of clusters is observed at the bottom and top of the 

reservoir boundaries. In addition, we can distinguish slow access of certain reservoir 

regions from the clustered plume shape. 

a) 

b) 

c) 

d) 
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Figure 44. Daily clustered images from the resulted temporal clustering. Six clusters were 

determined to retrieve CO2 flow regimes using the first clustering results. “T0” contains 4 images 

“T1” = 11, “T2” = 16, “T4” = 9, “T3” = 20, and T5 =18.   
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Table 13. Analysis of daily cluster dates from the derived spatial-temporal clustering.  

Temporal clusters Clustering analysis  

Cluster T0 Occurrence of clusters 1 and 2 (low and medium SCO2) 

Cluster T1 Occurrence and increment of cluster 3 (high SCO2) 

Cluster T2 No significant clustering changes 

Cluster T3 Spatial movement of cluster 3 (high SCO2) and change of clusters 

shape 

Cluster T4 Decrease and increase of cluster 3 (high SCO2) 

Cluster T5 No significant clustering changes. Cluster 3 (high SCO2) is arranged 

into subregions.  

 

 

Figure 45. Wellbore measurements and temporal clustering of the daily dates from spatial-

temporal results. Changes in plume shape are linked to the temporal clusters by uncovering the 

drastic changes in flow rate, temperature, and pressure. 
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Assumptions and Limitations 

In this work the following assumptions can be drawn:   

• The time-lapse dataset was previously preprocessed by geophysicists, 

being the input data the derived CO2 saturations from the ERT images using a ratio 

inversion scheme.  

• A rock physics model was implemented (Archie's model) where 

assumptions such as the saturation exponent and non-conductive gas phase are 

incorporated. Resistivity measurements would remove these assumptions from the 

spatial-temporal model. 

• Multiple processes can affect the migration of injected CO2; hence, other 

subsurface measurements should be incorporated such as geomechanical and 

geochemical analyses. 

• The proposed pipeline can be used under different geological conditions 

for multiple mapping tools. This would include subsurface imagining tools on 

different geo-sequestration fields.    

Final Remarks 

A spatial-temporal clustering model was developed and validated to uncover 

hidden patterns of derived-SCO2 from daily ERT images. We proposed and implemented 

a novel feature extraction design to include the spatial and temporal neighboring regions. 

From the clustering work, we can make de following conclusions: 

1. The inclusion of previous and subsequent measures enhances the feature 

extraction and behavior of moving objects. Furthermore, the local windows or 
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regions, used in the tensor-based extraction, provide a better representation of spatial 

changes. 

2. A growth of CO2 plume is observed through the changes of plume shape 

and CO2 levels. This reveals the dynamics of a CO2 plume where processes affecting 

the migration and trapping can be determined (e.g. increase/decrease of the injection 

flow rate or the geological heterogeneity of the reservoir).  

3. The daily second clustering discloses the stages of plume evolution such as 

early development, CO2 equilibrium, and multiple saturation changes. In addition, 

several fluid flow forces are distinguished at the top (buoyancy), bottom (gravity), 

and regions of partially filled CO2 (capillary). 
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CHAPTER V  

CONCLUSIONS AND FUTURE WORK 

 

The recent advances and success of machine learning on subsurface geophysical 

tools have led to the improvement of data exploration in reservoir characterization. In 

particular, a growth of unsupervised learning applications has been observed due to the 

high limitations of traditional modeling and the necessity of understanding complex 

physical systems. To examine the spatial-temporal reservoir patterns, we conducted three 

independent studies using three distinctive geophysical methods. 

In chapter 2, we explore the use of dimensionality techniques to compress, denoise 

and discover relevant information of microseismic and DAS datasets. Moreover, a CO2 

visualization model was developed (chapter 3) to investigate the signatures of CO2 content 

from derived-SCO2 of crosswell seismic. From chapter 4, we presented a spatial-temporal 

clustering approach to identify the predominant fluid-flow mechanisms of carbon storage 

and CO2 plume migration. The key findings from the studies brought the following 

conclusions:  

• Unsupervised learning for dimensionality reduction can be used to 

substantially reduce the computational time and memory of large datasets. 

• Tensor decomposition provides the possibility of retrieving the insights 

into the most impactful features for high-dimensional datasets. This also performs 

parallel processing by denoising and compressing the input data. 
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• Using unsupervised clustering, we can visualize the CO2 levels of time-

lapse measurements. The new data-driven model gives a better understanding of the 

CO2 movement by taking an evidence-based approach of low human intervention.  

• The multi-level clustering method outperforms the traditional clustering 

techniques for datasets of unbalanced nature. This allows discretizing the important 

information and further analysis of subsurface mapping tools.  

• Unsupervised clustering for spatial-temporal datasets is crucial to establish 

the dynamics of moving systems. Both temporal and spatial components need to be 

incorporated at different workflow stages to achieve an efficient clustering and 

impactful set of features.  

• Major characteristics of injected fluid can be observed from the temporal 

clustering of spatial-based measurements. These hidden patterns are tied to the local 

changes of both domains, revealing the evolution of reservoir fluid flow systems.  

Lastly, future work is needed to be addressed for improving the proposed models and 

retrieving insights from large volumes of data. The main recommendations for future 

analysis are: 

• Investigate the core tensor properties to extract the most impactful signals of 

high-dimensional datasets. The HOSVD structure allows the examine the 

components of the tensor decomposition, being the core tensor the one that 

contains the main information of the system. 
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• Use other subsurface tools to integrate and analyze the CO2 plume behavior 

and evolution. Datasets available from the SECARB project involve 

measurements of VSP, bottom hole gravity, well logs, and core analysis.  

• Combine field with simulated data to incorporate scenarios of CO2 leakage 

or any processes affecting the CO2 migration and trapping.  
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