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ABSTRACT

Flow separation is the detachment of boundary layer from a surface, which is associated with

aerodynamic loss. In this work, the feasibility of controlling flow separation by backward (toward

downstream) traveling waves is studied using large-eddy simulations (LES) of traveling waves (1)

within an incompressible turbulent channel to investigate the impact of traveling wave parameters

such as wave speed and wave steepness, (2) on an inclined plate and suction side of a NACA0018

airfoil at stall angle of attack where the flow is massively separated, and (3) within a compress-

ible wavy turbulent channel. For (3), an LES framework for compressible flow is developed and

combined with the curvilinear immersed boundary (CURVIB) method. Both incompressible and

compressible frameworks are validated. The incompressible framework is validated for a fully de-

veloped turbulent channel, a pitching airfoil, two-dimensional inclined plate, and an NREL PHASE

VI wind turbine. The compressible framework is validated by performing simulations for isotropic

decay, subsonic and supersonic turbulent channel, and shock diffraction by a cylinder. The results

of the simulations of actuated airfoil and plate reveal that low-amplitude backward traveling waves

can postpone stall. Moreover, it is found for the first time that traveling waves are more effective

than other types of oscillations, e.g., standing waves and pitching motion, in delaying stall because

traveling waves can directly increase the axial momentum of the fluid in addition to triggering

boundary layer instabilities, which occurs in all type of flow control with periodic excitation. In

addition to the axial momentum, the traveling waves increase the lateral velocity of the fluid near

the surface, which tends to separate the flow. The scalings of axial force and lateral velocity, which

depend on amplitude, wavelength and frequency, were derived analytically using elongated body

theory (EBT). Based on the scalings and the results, in contrast to common belief, wave speed (the

main parameter for the axial force) is not the only parameter for flow reattachment, and amplitude,

wavelength and frequency individually can impact flow separation by triggering instabilities or

increasing the lateral velocity.
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NOMENCLATURE

AOA Angle of Attack

CL Lift Coefficient

CD Drag Coefficient

Cf Skin Friction Coefficient

Cp Pressure Coefficient

Cs Smagorinsky Constant

µt Eddy Viscosity

ν Kinematic Viscosity

µ Dynamic Viscosity

ρ Density

λ Wavelength

f frequency

s Wave steepness

uτ Friction Velocity

p Pressure

Re Reynolds Number

τ Turbine Shaft Torque

CFD Computational Fluid Dynamics

FSI Fluid-structure Interaction

FSI Immeresed Boundary Method

LES Large Eddy Simulation

NS Navier-Stokes
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DNS Direct Numerical Simulation

RANS Reynolds-averageed Navier-Stokes

CURVIB Curvilinear immersed boundary method

ALE Arbitrary Lagrangian Eulerian

WENO Weigthed Essentially Non-Oscillatory
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1. INTRODUCTION AND MOTIVATION

Flow separation or boundary layer separation is the detachment of a boundary layer from a

surface into a wake. Flow separation is associated with aerodynamic loss and decrease of energy

efficiency. To solve this problem, several techniques have been used to remove flow separation,

referred as flow control, in engineering applications. Flow control strategies can be classified based

on the mechanism of reattachment into: (i) direct injection of momentum to the boundary layer,

e.g., steady blowing [5, 6], or (ii) indirect transfer of momentum by periodic excitations, e.g., by

surface morphing [7], zero net mass flux synthetic jets [8], etc., which trigger flow instabilities

that form large coherent structures (LCS) to entrain high momentum fluid into the near-wall flow.

The surface morphing is the most recent flow control method which is energy efficient, using

light, low-power piezoelectric actuators [8, 9] which can create low-amplitude oscillations. The

main objective of this study is to numerically investigate controlling flow separation by surface

deformations in the form of traveling waves (Fig. 1.1), which have been created experimentally

[10]. The main hypothesis to be tested in this work is that traveling waves perform better than

pure periodic excitations because they can inject momentum (generate thrust) and also trigger flow

instability.

t=t0

t=t  +dt0

h=a sin(2 (ft-x/ ))

y

x

C=f

(a)

Figure 1.1: The schematic of backward traveling wave, in which wave propagates from the leading
edge towards the trailing edge. Reprinted from [183]
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1.1 Flow control

Since separation is associated with significant performance losses, its mitigation becomes im-

portant. Flow control is a technique introduced to reduce flow separation which can be applied by

both passive and active devices. From this perspective, flow control is classified into passive and

active flow control. In this section, we briefly review passive and active flow control methods.

1.1.1 Passive flow control

The main advantage of passive control is that they do not require any additional power. Vortex

generators (VG) and boundary layer trips are the most popular passive flow control techniques. In

vortex generator technique, the VGs act similar to a surface roughness and intensify the boundary

layer instabilities which leads to transition to turbulence.

The earlier transition to turbulence increases the boundary layer momentum and consequently

reduces flow separation. The vortex generators and surface roughness has been used in different

flight regimes, including subsonic, transonic, and supersonic flight. Mueller and Batil (1982) found

an improvement in the lift-curve slope of a NACA 663-018 airfoil at Re = 40,000 by using sur-

face roughness. Vortex generators has also been found to have a positive effect on low Re airfoil

performance (Lin, 2002; Kerho et al., 1993; Manolesos and Voutsinas, 2015).

The surface roughness has also been used for supersonic flow control. The main effects of

surface roughness on supersonic flight vehicles are to increase skin drag coefficient and to promote

boundary layer transition to turbulence, which increases the heat transfer coefficient. However, if

the roughness size is large enough, the surface roughness might generate shock waves [11] that

significantly influence the boundary layer characteristics, increase drag by wave drag, and increase

heat transfer. For example, Ekoto et al. [12] observed strong compressibility effects at Mach 2.9

when the roughness was in the form of diamond-shaped elements. They found that these strong

compressibility effects had a significant effect on the turbulent flow statistics, such as the Reynolds

stress.

The drawback of passive control is that it cannot adapt to changing flow conditions. Although
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Gopalarathnam et al. [13] found that trips have a net drag benefit, the performance of this flow

control method was only optimum for a given flight condition. Similarly, while VGs were found to

improve performance at certain conditions, they have also been found to exhibit a drag penalty at

others [14]. In fact, VGs were most suitable when the separation location was fixed so they could

be optimally positioned upstream of this location [15]. Due to these drawbacks, several active flow

control methods have been proposed which will be briefly reviewed in section 1.1.2.

1.1.2 Active flow control

Active flow control requires additional power but they are aerodynamically harmless when

they are inactive, e.g., at low angle of attack (AOA). Various active flow control techniques such

as steady blowing [16, 5, 6], periodic suction and blowing [17, 18, 19, 20, 21, 22], and surface

morphing [23, 24, 25, 26, 27] have been applied to delay stall. These flow control techniques

have been studied experimentally [23, 8, 9, 22] and numerically using different turbulence model-

ing approaches such as direct numerical simulation (DNS) [28, 29], large eddy simulation (LES)

[30, 31, 32], and Reynolds-Averaged-Navier-Stokes (RANS) [31]. Steady blowing and suction

blowing are among the early active flow control methods. These methods are capable of improving

performance, but complex auxiliary compressors and plumbing result in a high power consump-

tion [17]. Seifert et al. [18] replaced a periodic jet with a constant blowing jet and could achieve

84% power saving. These periodic jets, increase the boundary layer momentum by triggering

the boundary layer instabilities without directly increasing the boundary momentum like constant

blowing. Another active flow control method is morphing which is defined as changing the shape

of an airfoil using flaps and slats or vibrating its surface.

The morphing can be employed in several forms, including trailing edge flaps (TEF) [33, 27,

34, 25], leading edge flaps (LEF) [26, 35, 24], and suction side vibrations [36, 23, 28, 29, 37].

The leading edge and trailing edge flaps conventionally work based on adapting the shape of an

airfoil by changing either the radius of the leading edge or the camber of the trailing edge [38].

Typically, changing the shape of an airfoil requires large deformations which can be done by

servomotors. In contrast to TEF and LEF, morphing by surface vibrations, which is referred to
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as surface morphing hereafter, can be performed using light, low-power piezoelectric actuators

[8, 9]. In the following sections, recent work on surface morphing with a focus on traveling wave

morphing will be reviewed.

1.1.2.1 Surface morphing

Surface morphing is a modern energy efficient flow control method that can be deployed using

light, low-power piezoelectric actuators [8, 9, 10] which can create low-amplitude oscillations.

Flow control via surface morphing has been investigated in several studies [28, 29, 37, 36]. Munday

et al. [36, 39] reported up to 60% decrease in flow separation. Recently, Jones et al. [23] reported

a delay in the onset of stall by morphing the suction side of a NACA4415 airfoil in which the

fibers of piezoelectric materials covered about 80% of the whole suction side. In these studies,

the oscillations of the surface were in the form of a standing wave [23] or a simple vibration

[36], which accelerates the fluid adjacent to the surface along its normal direction. These types of

surface morphing reduce flow separation by triggering the boundary layer instability and increasing

the mixing of high momentum fluid of the separated shear layer to the low momentum fluid of

the reverse flow zone [23, 18], similar to other periodic excitation methods. Nevertheless, the

morphing can increase the boundary layer momentum directly if the surface vibrations are in the

form of backward (opposite direction to the forward motion of an airfoil, i.e., toward downstream)

traveling waves (Fig. 1.1) because traveling waves can increase the fluid momentum along their

propagation direction [4, 40, 41], e.g., backward traveling waves, in which the wave is propagated

from the leading edge toward the trailing edge, can increase the streamwise momentum. This

enhancement of the streamwise momentum by backward traveling waves has also been observed

in aquatic swimmers [42] which will be further discussed in sections 1.1.2.2 and 4.2.3.

1.1.2.2 Bio-inspired active flow control

Flow control has been observed in nature by flying animals and aquatic swimmers. In nature,

the hovering wings of bats and insects can improve flow attachment, e.g., the leading edge vortex

(LEV) created on the leading edge of their wings becomes stable [43, 44, 45, 46]. The stabil-
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ity of LEV, which is due to the wings rotational acceleration [47], can enhance the aerodynamic

performance and postpone the stall.

In addition to the flying animals, flow over aquatic swimmer’s wavy bodies remains attached

[48, 42, 45] as they generate high amplitudes backward traveling waves on their bodies. The

reason for flow attachment on aquatic swimmers’ bodies is the creation of backward traveling

waves which increases the fluid chordwise momentum in the vicinity of their bodies.

1.1.2.3 Traveling wave morphing for flow control

Traveling waves create the propulsion force (thrust) of the aquatic swimmers [42, 49]. Several

studies have investigated the propulsion mechanism and force generation by these waves. Wu [50]

and Lighthill [40] analytically investigated the propulsion characteristics of a plate undergoing an

undulatory motion to understand the basic principle of fish swimming hydrodynamics. Lighthill

[40] proposed elongated body theory (EBT), in which the instantaneous lift of an undulating slen-

der body (low thickness) is scaled with the added mass force (reactive force). The produced reac-

tive force by the undulation generates a thrust that increases as wave speed (C = λf ) is increased.

It also predicts zero net lateral force (perpendicular force to the body) as the flow is assumed po-

tential which remains periodic. Furthermore, the investigations of Taneda [51] and Triantafyllou

[42] also, show that traveling waves reattach the flow on wavy surfaces. Taneda [51] experimen-

tally observed that when the wave speed is less than flow speed (C < U ), the flow separates from

the first crest of the horizontal plate, but it becomes attached when it is more than the flow speed,

i.e., (C > U ). These visualizations were confirmed by simulations for a turbulent channel flow

[4]. They also reported that turbulence intensity reduces by the increase in C/U . Traveling waves

have also been used for controlling flow separation over bluff bodies. For example, Wu et al. [52]

controlled the flow separation of a circular cylinder by employing a traveling wave over the cylin-

der. Musgrave and Tarazaga [53] controlled flow separation over an airfoil by employing spanwise

traveling waves.

These observations reveal that backward traveling wave deformations might be more effective

than other types of morphing as they can increase the fluid momentum directly by accelerating the
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Figure 1.2: The schematic of traveling wave generation by the piezoelectric actuators.

flow along axial direction [4, 42, 54] and in indirectly by triggering the boundary layer instabilities

similar to standing wave morphing.

Nevertheless, the experimental creation of traveling waves is a difficult problem but possible

using piezoelectric actuators. To understand the experimental challenges, first a two-mode excita-

tion traveling wave generation mechanism developed by Olivett et al. [10] is explained. Two-mode

excitation generates traveling waves by mixing two adjacent longitudinal vibrational modes of the

morphing surface along in transverse deflection. The concept of morphing wings created by Olivett

et al. [10] is demonstrated in Fig. 1.2. The mechanism is driven by two sets of actuators. The ac-

tuators in the leading edge generate a bending wave that propagates toward the trailing edge. The

counter-actuators are driven at the same frequency, but offset phase, and eliminate reflection at

the boundary, therefore removing the possibility of standing wave formation. Nevertheless, these

waves are not pure traveling waves. In fact, they are a combination of traveling waves and standing

waves [10] because the waves in finite media still reflect at the trailing edge which result in creation

of standing waves [55].

Due to the complexity of the creation of these traveling waves, the performance of traveling

waves needs to be tested numerically. To apply these waves in complex engineering applications,

first, the effects of traveling waves on the physics of the turbulent boundary layer need to be un-

derstood. To achieve this aim, the role of different parameters of traveling waves on reducing flow

separation and turbulence statistics are studied in sections 4.1 and 6 with our numerical frame-

work. Later, the feasibility of applying surface deformations to control flow separation needs to

be tested on highly separated flows, e.g., inclined plates and airfoils. Therefore, we have investi-
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gated the impacts of different parameters of surface deformations, i.e., frequency, amplitude, and

wavelength on flow separation of a plate and NACA18 airfoil at high angles of attack in sections

4.2 and 4.3, respectively. After controlling flow separation on airfoils and plates via traveling wave

oscillations, we investigate the effect of pitching oscillations on the performance of a phase VI

wind turbine (chapter 5). Simulations of flow over the wind turbine are more complicated than

flow over airfoils because the turbine blade has a more complicated geometry, e.g., large span to

chord ratio (≈ 10) and twist angle, and also it has a periodic rotary motion. Finally, the effect of

wavy surface and traveling waves are studied for turbulent compressible boundary layers by our

developed compressible framework in §6.

The above-mentioned simulations are performed using our LES curvilinear sharp-interface im-

mersed boundary (CURVIB) method framework. The morhing flow control problems need to

handle turbulent flows interacting with moving surfaces. In our framework, the moving surfaces

are handled with a sharp-interface immersed boundary method. To model turbulent compressible

flows a dynamic LES model is added to the framework. More details about numerical method for

surface morphing is described in 1.2 and our framework is explained in detail in chapter 2.

1.2 Numerical methods for surface morphing flow control

Computational fluid dynamics (CFD) is a proper tool to handle these problems because it can

provide sufficient data about the underlying physics, e.g., pressure and velocity of the fluid sur-

rounding the moving surface, and it can handle complex surface motions such as undulation which

their experimental creation is still complicated. To handle the surface morphing flow control prob-

lem, the CFD framework needs to be capable of handling (i) moving solid surfaces surrounded by

the fluid and (ii) turbulent flows. The problems involving moving surface (boundary) can generally

be classified into (a) boundary conforming or interface tracking and (b) non-boundary conform-

ing or interface capturing methods. More information about these methods will be provided in

section 1.2.1. The turbulent flows involved with morphing wings can be modeled with three ap-

proaches (a) direct numerical simulation (DNS), (b) Reynolds averaged Navier-Stokes (RANS),

and (c) large-eddy simulation (LES). These turbulence modeling approaches for morphing flow
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control are discussed in 1.2.2. Later, the LES modeling which has been used and developed for

surface morphing flow control will be described in §1.2.3.

1.2.1 Handling moving surface

The problems involving moving surface (boundary) are classified into (a) boundary conforming

or interface tracking and (b) non-boundary conforming or interface capturing methods. In the

following sections, different methods for handling moving boundaries will be reviewed with a

focus on sharp-interface immersed boundary method that has been used in this work.

1.2.1.1 Boundary conforming methods

The boundary conforming techniques can keep a high resolution near moving boundaries more

efficiently, but suffer from highly skewed grids when deformations are large [56]. Such methods

have been applied to simulate flows with moving boundaries [57, 58, 59], but typically require

remeshing for large deformations. The most well-known boundary conformed methods are arbi-

trary Lagrangian Eulerian (ALE) [60, 61, 62] a. The ALE method can track complex geometries

and be used in fluid-structure-interaction problems. However, ALE is a computationally expen-

sive method since the mesh needs to be updated [63]. ALE has been applied in many engineering

and bioengineering applications. Here, we name few studies in which ALE has been used. It has

been used in aeroelastic applications, e.g, in modeling flow over bridges [64], flapping of flexible

wings with nonlinear elasticity [65, 66], and parachute inflation [67]. In biological flows, flow over

mechanical heart valves and mitral heart valve [68, 69, 70, 71, 72, 73, 74] are modeled.

1.2.1.2 Non-conforming methods

In non-boundary conforming methods, which are also called Eulerian methods, the moving

boundary moves over a fixed background mesh, i.e., does not conform to the moving boundary

and there is no mesh deformation. One of the main non-boundary conforming methods is the

immersed boundary method (IBM) [75, 76, 56] which can be implemented in different ways such

as the Brinkman penalization [77], cut-cell, [78, 79], direct forcing [80, 81], and sharp-interface

immersed boundary method [82, 1], among others.
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1.2.1.3 Immersed boundary method

Immersed boundary method was first introduced by Peskin [83, 84, 85, 86] for modeling car-

diovascular flow. In this method, generally, a boundary condition is imposed, typically in the form

of a forcing term, to model the effect of moving boundaries [83, 56]. Based on the implementation

of the boundary condition the immersed boundary method can be classified as a diffused inter-

face method and sharp interface method [87]. In the diffuse interface method, the forcing term is

distributed over several grid nodes in the vicinity of the immersed boundary, but in the sharp inter-

face method the forcing term is applied (explicitly or implicitly) only on the nodes adjacent to the

moving boundary. The diffuse interface methods require excessive resolution near the boundary

because the force distribution smeared the effect of boundaries over several grid nodes. To over-

come this problem, these methods are being combined with adaptive mesh refinement [88, 89, 90].

Sharp interface methods can be classified as direct forcing, and cut cell methods [87, 56]. In

direct forcing method, a forcing term [91] is added directly to the right hand side of N-S. This

forcing term is applied to satisfy the no-slip boundary condition on the interface. Later Fadlun et

al. [92] modified this method by enforcing the effect of forcing directly to the velocity and pressure

of fluid near the interface by using ghost nodes. The ghost nodes are nodes in the solid that have at

least one neighbor node in the fluid. In this approach, the velocity and pressure of the ghost nodes

are interpolated such that the no-slip boundary condition is applied on the moving boundary. Later

Gilmanov et al. [82] developed a hybrid incompressible Cartesian/immersed boundary method, in

which the velocity and pressure of the fluid nodes adjacent to the boundary are reconstructed using

an interpolation along the normal direction of the interface. This method has been later extended

for curvilinear coordinates [1, 2] and is now called as CURVIB (curvilinear immersed boundary).

1.2.1.4 Curvilinear immersed boundary (CURVIB)

The CURVIB has been developed for more than a decade and has been validated extensively

[1, 45]. It has been used for different applications, including biological flows such as aquatic loco-

motion [46, 93, 94, 95], cardiovascular flows [1, 96, 97, 98, 99, 100, 97, 101, 102], and aneurysm
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blood flow [103, 104], and rheological flow [105, 106]. This method (CURVIB) has also been

used for modeling turbulent flow over rotating blades, e.g. hydrokinetic turbines [107]. Recently,

Hedayat and Borazjani [108] added an overset to the framework for reducing the computational

cost of simulations with large solid motions, e.g., wind turbine simulation. In this study, CURVIB

is used for handling moving surfaces (Fig. 1.1) interacting with surrounding fluid in surface mor-

phing flow control problems.

Recently, Borazjani [109] extended the CURVIB framework for laminar compressible flows

interacting with immersed boundaries. In this framework, the inviscid fluxes of compressible

flow equations in curvilinear coordinates are discretized with a third-order weighted essentially

nonoscillatory (WENO) scheme and it has been validated against experimental measurements and

shown to be between second- and third-order-accurate in the presence of immersed boundaries.

Nevertheless, the framework was not suitable for modeling turbulent flows because third-order

WENO is very dissipative and therefore cant be used for turbulent flows. Therefore, in this work,

we added LES modeling for handling turbulent compressible flows. More detailed background

about the WENO scheme and LES of compressible flows is provided in §1.2.4, and velocity and

flux reconstruction in CURVIB is described in detail in §2.3.

1.2.2 Turbulence modeling for flow control

DNS is the only method in which turbulence is not modeled but the full Navier Stokes (NS)

equations are solved. Solving full NS equations requires resolving the smallest length scale, i.e.,

the Kolmogorov scale which decreases as Re−3/4. Therefore, DNS computational costs increase

with Re3, which limits its applications. Even though the computational power of supercomputers

has increased considerably in recent years, DNS is still restricted to moderate Reynolds numbers.

Therefore, most of the DNS studies on flow control with surface morphing are performed for

Reynolds numbers ranging from 5000 to 60,000 [28].

Due to the high cost of DNS, RANS, LES, and hybrid RANS-LES are more popular for high

Reynolds number flows, e.g., flow control problems. In the RANS modeling, which is the least

expensive turbulence modeling, the Reynolds closure stresses are modeled to solve the Reynolds
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averaged equations to determine the mean velocity [110]. The Reynolds averaged models can

typically be categorized into: (i) turbulent viscosity model, and (ii) Reynolds stress model which

is known to be more accurate [111]. RANS is the most popular method at high Reynolds flow

simulations, e.g., flow over wind turbines Re >6 [112, 113, 114], and it has been used for active

flow control of high speed morphing wings [115, 116, 117]. Nevertheless, in the flow control

problems, the large-scale dynamics needs to be properly captured because it may contain large

regions of highly unsteady separated flow that are not in turbulent equilibrium [32]. For exam-

ple, Large-coherent structures (LCS) which can significantly influence flow separation might be

present. These LCSs might break due to unsteady forcing or triggering the unsteady shear layer

and result in the generation of additional small-scale structures and transitional flowfield. Since

RANS models cannot handle this unsteadiness and transitions they are not suitable for flow control

problems. In contrast to RANS, LES can handle these difficulties. In LES modeling, the filtered

velocity field which represents the large turbulent motion is solved and the effect of small scales on

the large scale motion is modeled. High resolution LES, LES without wall modeling, can resolve

the viscous sub-layer boundary layer and capture the effect of unsteady large coherent structures.

Therefore, LES is the most suitable approach for modeling active flow control problems [32] with

Re < 200, 000 because it is computationally less expensive than DNS, and it is more appropriate

than RANS for unsteady and transitional flows. However, LES will be computationally expensive

at high Reynolds number, for example, a LES with Re ≈ 107 requires 1011 grid points [118], and

a hybrid model is preferred at those range of Reynolds numbers.

Nevertheless, LES has been used extensively in active flow control at low Reynolds number

flows. Wang et al. [119] Dandois et al. [120], Asgari and Tadjfar [121] used LES for synthetic jet

flow control. Abdesssemed [122], Rizzetta et al. [123], Shide et al. [124], [125], Garmann and

Visbal [126], Ogunka et al. [127], and Bonnet [128] performed surface morphing flow control with

LES.
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1.2.3 Large-eddy simulation (LES)

The LES modeling is first introduced by Smagorinsky [129] to model atmospheric flows. In

these models, the small scale motions are modeled as dissipation explicitly by subgrid-scale stress

(SGS) terms. Based on his model, several subgrid-stress models were developed, including the dy-

namic Smagorinsky model [130, 131] and the mixed model [132]. The SGS model has two major

drawbacks. The first one is that the SGS flow is considered to be homogeneous isotropic far from

the wall, while it has been shown that SGS flow is not ideally homogeneous far from the wall [133].

The second problem is choosing a proper test filter in finite volume and finite element approaches

[133]. Nevertheless, the SGS models have been used extensively in turbulent homogeneous, wall

bounded flows and showed a good performance in flows involving complex geometries with low

order schemes, e.g., second-order central [94] and fourth-order central schemes [134]. The other

popular LES method is implicit LES, which has been used extensively in finite volume and finite

element approaches. In these models, the subgrid-stress term are computed implicitly by artifi-

cial dissipation [135, 133] introduced by intrinsic nonlinear high-frequency filters built into the

convection discretization. These models require high order schemes and are not suitable for prob-

lems involving immersed boundaries due to the difficulty associated with high order schemes near

the immersed boundary. Recently, by the new progress in machine learning and artificial intelli-

gence, data-driven models have been proposed [136]. In this approach, the closure term which is

appeared by filtered Navier-Stokes is modeled using data-driven methods. The closure term is esti-

mated from previous DNS data using machine learning algorithms [136]. These models are novel

and have only been tested for homogeneous and simple wall-bounded flows and their capability

for handling complex flows is not confirmed.

For these reasons, the sub-grid scale models are used for LES modeling of flows involving

immersed boundaries in this work. Our incompressible framework utilize a dynamic Smagrinsky

model [45] with a second-order central scheme for handling turbulent flows involving immersed

boundaries. In this work, we have first, validated the model by turbulent channel simulations (§3)

and later we used it for traveling wave flow control problem (§4) and wind turbine problem (§5).
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For compressible flows, we have developed a new framework that models SGS based on the model

proposed by Moin et al. [137] and Vreman [138].

1.2.4 LES of compressible flows

Applying LES models for compressible flows is a more complicated task than incompressible

flows due to the modeling of complicated SGS terms coming from the energy equation and the

presence of shock waves at high-speed flows. Modeling shock turbulence interaction is challenging

because it requires special schemes to accurately capture shock waves as well as resolve turbulent

fluctuations. To solve this problem, two approaches are proposed: (i) high order scheme with ILES,

and (ii) hybrid schemes. Implicit compressible LES models are similar to the incompressible ones,

i.e., the SGS terms are implicitly modeled by high frequency filters. In these models, usually, a high

order (O > 5) weighted essentially non-oscillatory (WENO) schemes [139, 140] is deployed for

grid discretization. High-order WENO schemes are used to calculate the inviscid fluxes with high

order accurate conservative fluxes in smooth regions and resolve shock and contact discontinuity

profiles monotonically with a Riemann solver [141]. However, low-order WENO schemes (O < 5)

are dissipative and are not suitable for LES modeling because their dissipative nature may dominate

the dissipation from the subgrid-scale modeling. The issue of high dissipation of low-order (O =

3) WENO schemes can be solved by hybridizing WENO with a central or compact scheme [142,

143]. By this approach, inviscid fluxes in smooth regions are computed by the central scheme, and

the discontinuity is handled with WENO. The transition between schemes is typically performed

by switch functions that act like a shock sensor [144, 143]. By using hybrid models, SGS can be

modeled explicitly far from the shock discontinuity, and the computational stencil will be reduced

which makes it a proper choice for problems associated with immersed boundaries. In fact, a third-

order WENO and a central scheme has a small stencil (3 to 5, for second order and fourth-order

central schemes, respectively), which reduces the computational cost and alleviates the numerical

implementation near the immersed boundary.

Recently, Borazjani [109] has developed a compressible framework in the context of CURVIB

[1] that properly solves laminar compressible problems involving immersed boundaries. To model
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turbulent compressible flows using this framework, we developed a hybrid scheme that incorpo-

rates the third-order WENO with a fourth-order skew-central scheme. Moreover, for modeling the

SGS terms, we added a dynamic SGS [137, 138] into our framework. The developed compressible

LES is described in detail in §6.2. The framework has been validated in §3. First, LES is validated

against DNS results by simulations of decaying isotropic turbulent flow, which is a key turbulent

feature for calibrating phenomenological turbulence models. Afterwards, it has been tested for

wall bounded flows by modeling turbulent channel flow. The final validation is performed to in-

vestigate the capability of our hybrid scheme immersed boundary framework for shock capturing

by performing 2D simulations of the diffraction of a moving shock by a circular cylinder. Finally,

the simulation of wavy channels and traveling wave channels are performed in section 6.
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2. NUMERICAL METHODS *

This chapter is organized as follows: In section 2.1 we present the governing equations used

to solve turbulent incompressible flows in a non-inertial frame of reference along with the LES

modeling used in the context of general curvilinear coordinates. In section 2.2 we describe the

dynamic sub-grid scale LES method. Finally, the sharp-interface immersed boundary method is

reviewed in §2.3.

2.1 LES of Incompressible flows in overset-CURVIB

The equations governing the flow are three-dimensional filtered unsteady incompressible con-

tinuity and Navier-Stokes equations. The governing equations are first written in an inertial frame

in the context of curvilinear coordinates (ξi: i = 1 to 3) and then transformed version in the

non-inertial-frame curvilinear coordinates.

The filtered Navier-Stokes equations in curvilinear coordinates ξi = ξi(x, y, z), are as follows

in tensor notation (i, j,m, q = 1, 2, 3):

J
∂U i

∂ξi
= 0, (2.1)

∂U i

∂t
= ξij

( ∂

∂ξn
(Unuj)−

∂

∂ξq
(
ξqj
J
p) +

1

Re

∂

∂ξq
(
gqm

J

∂uj
∂ξm

)− ξqm
J

τjm
ξq

+
fj
J

)
. (2.2)

Here, J = |∂(ξ1, ξ2, ξ3)/∂(x1, x2, x3)| is the determinant of the Jacobian of the transformation

ξjm = ∂ξj/∂xm; gqm is the contravariant metric of the transformation, gqm = ξqj ξ
m
j ; p is the filtered

non-dimensional pressure; Re = U∗H∗/ν∗ is the Reynolds number where ν∗ is the kinematic

viscosity of the fluid; U q = umξ
q
m/J is the non-dimensional contravariant velocity of the fluid, fj

is a constant value added to RHS only along the streamwise direction to enforce a constant flow

*Part of This chapter is reprinted with permission from "Large eddy simulations of a turbulent channel flow with
a deforming wall undergoing high steepness traveling waves" by A.M. Akbarzadeh and I. Boazjani, 2019 Physics of
Fluid 31 (12), 125107, copyright [2019] by authors.
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rate [145] for turbulent channel flow studies, and τjm is the sub-grid scale (SGS) stress tensor for

LES. The details of derivations of the governing equations in CURVIB can be found in previous

studies [2, 146, 1].

To reduce the computational cost of problems with overset grids that contain solid objects with

large deformation, e.g., wind turbine simulation, Eq. 2.2 are transformed to a non-inertial frame of

reference by Borazjani et al. [146]. Figure 2.1 illustrates the position and orientation of a grid in

inertial and non-inertial coordinates relative to each other.

Let t, x′i and xi (i = 1, 2, 3) denote time, Cartesian coordinates of the inertial and non-inertial

frame, respectively, as shown in Fig. 2.1. Here, (’) denotes the inertial parameter. Pressure and

non-inertial Cartesian velocity is denoted by p and u, respectively, (italic variables are scalar while

the Boldface variables are vectors). The non-inertial velocity u is obtained by rotating the inertial

velocity by an orthogonal rotation tensor Q as follows using a tensor notation

uq = Qqru
′
r (2.3)

The frame velocity is v, and it is composed of a rotation velocity (w) and translational velocity

(uctr)

vi = wi + uctri (2.4)

wi = εilmΩlX
int
m (2.5)

where uctrq = uctrq (t) and Ωq = Ωq(t) are the translational and rotational velocity of the non-inertial

frame, respectively, relative to the inertial frame. X int
q is a component of the position vectors in

the inertial reference frame. By using a curvilinear transformation ξi(x1, x2, x3), i = 1, 2, 3, based

on the hybrid staggered/non-staggered approach [2], the continuity and momentum equations in a

non-inertial frame of reference are formulated as follows in a tensor notation [146] (see appendix
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?? for the derivation):

J
∂

∂ξr
(U r) = 0 (2.6)

∂U r

∂t
=
ξrq
J

(∂uq
∂t

)
=
ξrq
J

(
− C1(uq)− C2(wq)−Gq(p) + (

1

Re
+ νt)D(uq)

)
(2.7)

where νt is the eddy viscosity, C1, C2,G, andD are the convective, gradient, and viscous operators

in curvilinear coordinates

C1(∗) = J
∂

∂ξr

[(
U r − V r

)
∗
]
, (2.8)

C2(∗) = J
∂

∂ξr

[
U r ∗

]
, (2.9)

Gq(∗) = J
∂

∂ξr

(ξrq
J
∗
)
, (2.10)

D(∗) = J
∂

∂ξr

(grm
J

∂

∂ξm
∗
)
, (2.11)

where U q and V q are the contravariant velocity components, which are correlated with the Carte-

sian velocity components as follows:

U r = uq
ξrq
J
, and V r = vq

ξrq
J

(2.12)

2.1.1 Subgrid-scale large-eddy simulation

The filtered Navier-Stokes equations solved in LES (Eq. 2.2) are obtained by decomposing the

velocity into resolved and unresolved components and integrating the Navier-Stokes equations over

a spatial filter. By applying the spatial filter, a subgrid-stress term (τij) appears in the momentum

equations (Eq.2.2) which is modeled using the dynamic Smagorinsky sub-grid scale (SGS) model

[147, 129] as follows:

τjm − τnnδjm = Cs∆
2|S̄|S̄jm (2.13)
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x
int
(0)

'
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'

Figure 2.1: schematic position and orientation of a curvilinear grid in a non-inertial frame and an
inertial frame where xint, xnon−int and xctr are the coordinate vectors in inertial frame, non-inertial
frame and origin of non-inertial frame in inertial coordinate.
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where, the left hand side is same as νt in Eq.2.7, δjm is Kronecker delta, overbar denotes the grid

filtering, Sjm is the strained-rate tensor, |S| = 0.5
√
S̄mnS̄mn, ∆ = (J−1/3) is the filter size and Cs

is Smagorinsky constant computed by the curvilinear version [148] of the dynamic Smagorinsky

model proposed by Lilly et al. [131] as follows

Cs =
< LimMjng

mn >

< MimMjngmn >
(2.14)

where <> signifies spatial averaging which is typically employed in the homogeneous direction,

Mij = −2(∆̂2|̂̄S|̂̄Sij − ∆2|̂̄S|S̄ij) and Lij = (∆̂2|̂̄S|̂̄Sij − ∆2|̂̄S|S̄ij) is resolved turbulent stress.

Herein, the caret symbol (̂ ) is the test filter [147] which has a length of three grid size in each direc-

tion. Note that all the terms of Eqn. (2.2) are grid filtered. The sub-grid stress tensor (Eqn. 2.13) is

computed once at the beginning of each iteration. The details of the implementation of this method

in curvilinear coordinate are similar to the previous publications [107, 45].

2.1.2 Solution of the Navier Stokes

The convective and viscous terms are discretized with a second-order hybrid staggered/non-

staggered central scheme in space. The above equations are advanced in time using a fractional

step method on curvilinear grids [2]. The momentum equations (Eqs.2.7) is discretized in time in

a fully implicit manner using a second-order backward difference scheme:

3U (∗) − 4U (n) + U (n−1)

2∆t
= RHS(U (∗),u(∗), p(n)) (2.15)

where U , u, and p are the contravariant velocity, Cartesian velocity, and pressure, respectively. n

denotes the time level andRHS is the right hand side of Eq. 2.7. Equation 2.15 is solved implicitly

using a Newton-Krylov method to obtain the intermediate fluxes U (∗). However, these fluxes are

not divergence-free and need to be corrected to satisfy the continuity Eq.2.6. This correction is

made by using the projection method in which the Poisson equation is solved. This method can be

written for our problem in curvilinear coordinates as follows:
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pn+1 = pn + φ, (2.16)

where φ is the correction term that can be obtained by solving the Poisson Eq. as follows:

− ∂

∂ξr
(
ξrq
J
Gq(φ)) =

3

2∆t

∂

∂ξr
U∗r (2.17)

where, the Poisson equation for the pressure correction (φ) is solved using flexible GMRES

with multigrid as a preconditioner to obtain divergence-free solution [2]. By solving the presssure

correction terms, the divergence-free fluxes are obtained as follows:

Un+1 = U∗ +
2∆t

3

ξrq
J
Gq(φ), (2.18)

The solver is fully parallelized using MPI and PETSc libraries [149].

2.2 LES of compressible flows in CURVIB

In this section, the LES framework developed for solving turbulent flows is presented. First,

the governing equations in a generalized curvilinear coordinates are presented. Afterwards, the

deployed LES and numerical solution are provided.

2.2.1 Governing equations

The governing equations for the filtered compressible flow in curvilinear coordinates ξq(m, p, q, r =

1, 2, 3 and repeated indices imply summation) are as follows:

1

J

∂Q

t
+

∂

∂ξq
(Fq − Fq

v) = G, (2.19)
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where Q is the variable vector, Fq and Fq
v are the filtered inviscid and viscous flux vectors, respec-

tively:

Q =



ρ̄

ρ̄ũ1

ρ̄ũ2

ρ̄ũ3

ρ̄E


Fq =

1

J



ρ̄Ũ q

ρ̄ũ1Ũ
q + ξqx1 p̄

ρ̄ũ2Ũ
q + ξqx2 p̄

ρ̄ũ3Ũ
q + ξqx3 p̄

(ρ̄E + p̄)Ũ q


Fq
v =

1

J



0

ξqxr(σ̃1r − τ1r)

ξqxr(σ̃2r − τ2r)

ξqxr(σ̃3r − τ3r)

ξqxr(K̃r)


G =



0

0

0

f3

−α− β + ε+ ρ̄ũ3f3


(2.20)

where the overbar denotes a filter operation, which commutes with the partial derivatives. The tilde

filter represents the Favre filter operation, which is defined as ũ = ρu/ρ̄, where ρ is density, ũp

(p = 1, 2, 3) is the pth component of the filtered Cartesian velocity, E is the total energy per unit

mass, J = |∂(ξ1, ξ2, ξ3)/∂(x1, x2, x3)| is the determinant of the Jacobian of the transformation,

ξqxr , Ũ
q = ũrξ

q
xr is the contravariant velocity, p̃ = (γ − 1)(ρ̄E − 0.5ρ̄ũrũr) is filtered pressure, γ

is the ratio of the specific heats, σ̃rm = µ̄(ξpxm
∂ũr
∂ξp

+ ξpxr
∂ũm
∂ξp

) − 2
3
µξpxk

∂ũk
∂ξp
δrm is the filtered shear

stress tensor in curvilinear coordinates, µ is the dynamic viscosity, δrm is the Kronecker delta

tensor, Kr = γµPr−1ξpxr∂(E − 1
2
ũmũm)/∂ξp + ũpσ̃rp, Pr is the Prandtl number. Here, τrm is the

subgrid stress tensor (SGS) of the momentum equation, and f3 is a source term, which is nonzero

in turbulent channel simulation added to keep the mass flux of the channel constant.

2.2.2 Subgrid-scale LES of compressible flows

To date, subgrid-scale models have been used extensively to model turbulent flows in different

turbulent regimes such as isotropic turbulent flows [150, 151], wall flows [147, 152, 153], and

shock wave turbulence interaction [154, 155, 156, 124]. The LES model of this study is employed

based on subgrid-scale models of Vreman et al. [138, 137], which is similar to its incompressible

version [129]. The SGS term (τij) is modeled by the dynamic model proposed by Moin et al.[137]
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as follows:

τij =
2

3
CI ρ̄∆2|S̃|2δij − 2Csρ̄∆2|S̃|(S̃ij −

1

3
S̃mmδij), (2.21)

where the first term is the isotropic term of the SGS, Sij = 0.5(ξmxj
∂ũi
∂ξm

+ ξmxi
∂ũj
∂ξm

), and |S| =√
2SijSij , and the second term is the eddy viscosity term. Here, Cs is the Smagorinsky constant

that can be modeled dynamically [137] or be a constant value (Cs = 0.01) similar to the values used

for incompressible flows. However, the term CI can be modeled dynamically [137] or assumed to

be CI = 0.06 [138]. Here, Cs is computed by the dynamic model proposed by Moin et al.[137] as

follows:

Cs =
< [ρ̂̄ρvkvl − (1/ρ̂)(ρ̂vkρ̂vl)Skl]− 1

3
Smm(ρ̂vjvj − (1/ρ̂)(ρ̂vj ρ̂vj)) >

< −2ρ̂∆̂2|Ŝ|(ŜklSkl − 1
3
ŜmmSjj) + 2∆2(ρ̂|S|SklSkl − 1

3
̂ρ|S|SmmSjj) >

(2.22)

where <> signifies spatial averaging which is typically employed in the homogeneous direction,

and if flow is not homogeneous it will be averaged in a cube of 3× 3× 3 cells.

Based on the model proposed by Vreman et al. [138], the subgrid-terms in the energy equations

have the following form in curvilinear coordinates:

α = ũiξ
m
j

∂(ρ̄τij)

∂ξm

β = ξmxj
∂((puj − p̄ũj)(γ − 1))

∂ξm

ε = σijξmxj
∂ui
∂ξm

− σ̄ijξmxj
∂ũi
∂ξm

,

(2.23)

where α is the turbulent stress term on the scalar level that is calculated conveniently from τ̄

(Eq. 2.21). β is the pressure-velocity subgrid-term, and ε is subgrid-scale turbulent dissipation.

Here, the effect of pressure dilatation is ignored as it has been shown previously [138] that it has

minor effect on the energy term. Herein, β and ε are modeled with a simple eddy-viscosity model

proposed by Vreman et al. [138] as follows:
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Figure 2.2: 1D computational scheme for computing fluxes, 6 points stencil is used for central
fluxes and 5 points stencil are used for WENO fluxes.

β = −ξnj
∂
(

ρνt
(γ−1)PrM2 ξ

m
j

∂T
∂ξm

)
∂ξn

(2.24)

ε = Cερ

√
3/4νt|S|

3
2

∆
(2.25)

where T = γM2p/ρ is the fluid temperature and Cε = 0.6.

2.2.3 Solution of the compressible Navier Stokes

Here, the viscous terms are discretized with a second-order central scheme, and the convective

terms are discretized by a hybrid WENO-central scheme. The hybridization is applied using a

switch function that smoothly transforms from a fourth order skew-central scheme to a third order

WENO scheme [140] in the vicinity of the shock by a switch function proposed by Wu and Zhao

[144]. The detail of the discretization of the convective flux is described for the 1D version (q = 1)

of eqn. 2.19 for simplicity as follows:

∂Fi

∂ξ
=

(
F̂i+1/2 − F̂i−1/2

∆ξ

)
, (2.26)

where i denotes cell center location, and i ± 1/2 denotes cell interface location, where the fluxes

are computed. The flux Fi+1/2 in a hybrid scheme is

F̂i+1/2 = σi+1/2F
central
i+1/2 + (1− σi+1/2)F

WENO
i+1/2 (2.27)
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where σi+1/2 is the switch function, Fcentral
i+1/2 and FWENO

i+1/2 are the central and WENO convective

fluxes, respectively. Fcentral
i+1/2 for a given convective term such as (vw)(i+1/2), where (v, w) can be

(ρu1, U
1) or (ξ1x1 , p), is calculated with a fourth-order skew-central as follows [157]:

(vw)i+1/2 =
1

12
(−vi+2wi+2 + 7vi+1wi+1 + 7viwi − vi−1wi−1) +

1

3

(
1

2
(vi+1wi+1 + viwi)−

1

4
(vi+1 + wi)(vi+1 + wi)

) (2.28)

The third-order WENO flux in the context of CURVIB is provided by Borazjani [109] based

on the work of Shu et al. [140]. The WENO fluxes are approximated by a Lax-Friedrichs flux to

avoid oscillations near the shock [140]:

FWENO
i+1/2 = FLF (Q−i+1/2, Q

+
i+1/2)

= 1/2(F−i+1/2 + F+
i+1/2)− 1/2α((Q+

i+1/2 −Q
−
i+1/2)

(2.29)

where Q±
i+ 1

2

are obtained by the WENO reconstruction, F±
i+ 1

2

are the exact fluxes based on the

reconstructed parameters (Q±
i+ 1

2

), and α = Max(λ−
i+ 1

2

, λ+
i+ 1

2

) is the maximum eigenvalue of the

Jacobian ∂F/∂Q. The maximum eigenvalue is λq = |
√
gqq/, γp/ρ|+ |U q|, where gqq = ξqx1ξ

q
x1 +

ξqx2ξ
q
x2 + ξqx3ξ

q
x3. More details on WENO reconstruction can be found in Borazjani [109].

Here, we employed the switch function proposed by Wu and Zhao [144]. The switch function

has a value ranging from 0 (3rd order WENO) to 1 (4th order skew-central). The switch function

is defined at half points (i+ 1/2) as follows:

σi+1/2 =
1

2

tanh(
3(ri+1/2−rd)

max(rd,|ri+1/2−rd|)
)

tanh(3)
+

1

2
, (2.30)

where ri+1/2 = min(ri, ri+1), and ri is obtained as follows:

ri =
|2∆fi+1/2∆fi−1/2|+ ε

(∆fi+1/2)2 + (∆fi−1/2)2 + ε
, (2.31)

where ∆fi+1/2 = fi+1 − fi, ε < 10−10 is a small number to avoid divide by zero. Note that the 3rd
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order accuracy of the WENO and 4th of the central scheme is only obtained on uniform grids. For

non-uniform grids the order of accuracy of this discretization will be 2nd order due to the 2nd order

accurate calculation of the metric of the transformation ξqxr . For non-periodic boundary conditions

and points adjacent to the immersed nodes, the inviscid fluxes are constructed from second-order

central and third-order ENO due to lower stencil near those points [109].

The governing equations (Eq.2.19) are advanced in time using a third-order Runge-Kutta method

at each grid point similar to the immersed boundary method for compressible flows (without tur-

bulence) [109].

2.3 Sharp-interface immersed boundary method

The boundaries of the solid objects, which can undergo any arbitrary motion, are handled

using the sharp-interface immersed boundary (IB) method. This method is described in detail in

previous publications [1, 2], however, to complete this section, a brief description of our sharp-

interface immersed boundary method is given. In this method, the background grid is fixed and

a

b
c

ab
bc

Figure 2.3: The schematic of the sharp-interface immersed boundary method [1]. The velocity at
the boundary nodes are reconstructed along the normal direction [2].

does not move with the boundaries. The solid boundaries are discretized by the triangular mesh and

placed as a sharp-interface IB over the fixed background grid. However, to explain the immersed
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boundary method more clearly, a 2D schematic of the immersed boundary is presented in Fig. 2.3.

The background grid nodes are classified into solid (red), fluid (blue) and IB nodes (yellow) by

an efficient ray-tracing algorithm [1]. The grid nodes inside the immersed boundary (solid nodes)

are blanked out, while the variables, p, u, and ρ (compressible flow) on the nodes that are exterior

to, but adjacent to, the immersed boundary, i.e., IB nodes, are reconstructed using an interpolation

along the normal to the boundary [82]. The classification of the grid nodes is performed once in

the whole simulation for the cases with static boundaries and once in each time step for the moving

boundaries. The method is fully validated for flows with moving boundaries [158, 1, 159, 160],

and has been used in different applications [161, 103, 162, 161, 163, 164].

2.3.1 Immersed boundary reconstruction

The interpolation is similar for the both incompressible and compressible solver. The interpo-

lation along the normal direction imposes a no-slip boundary condition on the solid wall which can

be applied with different methods based on the flow regime and wall unit grad spacing (y+) along

the wall normal. For turbulent flows with a high Reynolds number, a wall function is required

if y+ > 5 for the immersed points, otherwise the velocity of the immersed points can be recon-

structed with a linear interpolation [165]. The interpolation equations are explained here using

Fig. 2.3. By assuming the velocity at points a, b, and c are ua, ub and uc, the goal is reconstruct-

ing ub by uc and ua. The velocities can be decomposed into a normal and tangential term, e.g.,

ua = unan + utat, where n and t superscripts denote the normal and tangential, respectively. The

normal term is obtained by a linear interpolation as follows:

unb =
|ab|unc + |bc|una

|ac|
(2.32)

where |ab|, |bc|, and |ac| are the distance of those points. The above equation is applied for any

flow regime and Re, and a similar relation can be used for estimating utb when the viscous sublayer

is resolved [165].

utb =
|ab|utc + |bc|uta

|ac|
(2.33)
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Here, when viscous sublayer is not resolved, two types of wall functions are used, i.e., the

log-law wall model and a wall shear stress balance model [166]. For the log law model, first the

friction velocity uτ =
√

(τw/ρ) is obtained by solving the three following equations:

y+c = uτ |ac|/ν (2.34)

u+c = (utc − uta)/uτ (2.35)

u+c =
1

κ
ln(y+c ) +B (2.36)

where κ = 0.42 and B = 5.2. These three equations are solved with an iterative method. After,

calculating uτ , u+b is calculated as follows

y+b = uτ |ab|/ν (2.37)

u+b =

 y+b if y+b < 11.0

1
κ
ln(y+c ) +B if y+b ≥ 11.0

(2.38)

utb = uta + u+b uτ (2.39)

After calculating u+b , the physical velocity can easily be calculated by adding the wall velocity

This model works properly when the flow is attached and the boundary layer is turbulent. However,

it is not suitable for more complex flows such as separated and transition flow. For these types of

flows, a wall stress balanced model is more suitable, where the velocity is estimated as follows

[107]:

utb =

∫ |ab|
0

1/(ν + νt)dl∫ |ac|
0

1/(1/Re+ νt)dl
(utc − uta) + uta (2.40)
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where

τt =
1∫ |ac|

0
dl

ν+νt

(utc − uta) (2.41)

where νt is the eddy viscosity near the wall which is modeled with a near-wall damping model as

follows:

νt/ν =
1

κ
(y+b )(1.0− e−y+) (2.42)

Equations 2.41 and 2.42 are solved with a Newton iterative method to calculate (uτ ).

For both compressible and incompressible solver, the pressure at immersed point needs to be

calculated. The pressure of immersed point (pb) is same as the fluid points pc when the surface

is stationary because of zero pressure gradient near wall. When the wall is moving, the effect of

surface motion on pressure is calculated by adding surface acceleration along normal to the surface

duna
dt

:

pb = pc + ρ
duna
dt

. (2.43)

For compressible flows, the density should be reconstructed as well based on the type of the

boundary condition which can be Dirichlet or Neumann. For example, an isothermal wall imposes

a Dirichlet boundary condition for the immersed boundary, i.e., Ta, temperature of solid surface

at point (a) remains constant. Consequently, the temperature at point b can be computed using a

linear interpolation similar to velocity

Tb =
|ba|Tc + |bc|Ta

|ac|
. (2.44)

The density of immersed point can be computed conveniently by using the state equation:

ρb = pb/(RTb). (2.45)

Now, with the computed velocity, pressure and density, the energy term (ρE) can easily be com-
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puted.
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3. VALIDATION *

In this chapter, the validations for LES of incompressible and compressible flows are reported

in §3.1 and §3.2, respectively. Part of these studies are now published in Akbarzadeh & Borazjani

[167, 158, 127].

3.1 Incompressible LES

This section is organized as follows: The validation for incompressible channel flow is pre-

sented in 3.1.1 which is published in Akbarzadeh and Borazjani [167]. The validations for an

inclined plate is presented in 3.1.2 that is published now in Akbarzadeh and Borazjani [158], and

section 3.1.3 demonstrates the validation of our framework for a pitching airfoil published in Ak-

barzadeh and Borazjani [158].

3.1.1 Incompressible turbulent channel

Two types of validations are performed here: First, the validation for a turbulent boundary layer

for a channel with smooth (flat) walls are presented in §3.1.1.1. Afterwards, the validations are

performed for a wavy channel in 3.1.1.2 to ensure our framework can handle separated turbulent

boundary layer as well.

3.1.1.1 Turbulent channel with flat walls

The simulations were performed for a turbulent channel with Re = UH/ν = 10, 000, de-

fined based on the channel half width (H), mean bulk velocity (U ), and kinematic viscosity (ν).

Figure 3.1a shows the simulation set-up. The mesh is cuboid and two walls are placed in the

fluid domain as immersed boundaries. The simulations of flat channel are performed with two

grids that their details are provided in Table 3.1. The simulation with the coarse grid is performed

with a Cabot wall modeling. The simulations of the wavy channel are performed with grid 2 in

which the grid spacing is kept constant in the vicinity of the wave, i.e., at −1.2 < y < −0.8

*Part of this chapter is reprinted from "Large eddy simulations of a turbulent channel flow with a deforming wall
undergoing high steepness traveling waves" by A.M. Akbarzadeh and I. Boazjani, 2019 Physics of Fluid 31 (12),
125107
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Table 3.1: The details of grids of the simulations. Grid 1 (coarse) and 2 (fine) are used for grid
sensitivity study in the flat channel. Grid 2 is used for wavy channel as well.

grid Nx Ny Nz ∆xmin ∆ymin ∆zmin
1 48 48 48 0.0652 0.016 0.1308
2 61 201 361 0.0331 0.0041 0.0110

the grid spacing is (δy = 0.0042) as expressed in Table 3.1 and Fig. 3.1b,c. The wall normal

resolution (δy = 0.0042) is equivalent to y+ = u∗τδy
∗/ν∗ = 2.5 which is enough for reconstruct-

ing the velocity of the IB nodes with a linear interpolation [165]. The non-dimensional time step

(δt = δt∗U∗/H∗) is set to δt = 0.004 for the flat wall and wavy channel with grid 2, respectively.

The corresponding Courant-Friedrichs-Lewy (CFL=U∗δt∗/∆z∗min) number for the flat and wavy

simulations is 0.35. The time step of the motionless channel corresponds to the time-step in wall

unit of δt+ = δt∗u∗
2

τ /ν
∗ = 0.13 which is sufficient for capturing the turbulence statistics [168].

The boundary conditions along streamwise (z), and spanwise (x) directions. The averaging for

the flat channel simulations is performed from the time t = 250H/U at which the flow is statis-

tically stationary for a duration of t = 220H/U . The averaging for the motionless wavy channel

simulations are performed after t = 85H/U and the averaging is performed for t = 75H/U .

Figure 3.2a shows the mean normalized streamwise velocity profile (ū+z = ūz/uτ ) compared

with the DNS study of Lee and Moser [169]. The flat channel flow study is performed for a coarse

grid (grid 1) and a fine grid (grid 2), as shown in Fig. 3.2. The normalized streamwise velocity for

both grids follow the log region reasonably though there is a small discrepancy near the wall for

the coarse grid due to a lower grid resolution near the wall (Fig. 3.1c). In addition, the profile of

normalized turbulent kinetic energy (q = 0.5(u
′2
x +u

′2
y +u

′2
z ): u′j = uj− ūj is velocity fluctuation)

is plotted in Fig. 3.2b.

3.1.1.2 Turbulent channel with wavy walls

The results of validations for separated flow over a wavy channel are presented in Fig. 3.3.

Here, the goal is validating the immersed-boundary LES for separated flows by simulating the
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Figure 3.1: Flow simulation set-up: (a) 3D flat channel, (b) 3D wavy channel, and (c) 2D view
of the simulation grid and the wavy channel wall. The fluid is discretized with a cartesian grid
whose resolution increases near the walls. The wavy bottom wall is discretized with triangular
elements and placed as an immersed body onto the background mesh. Every third and fourth
points, respectively, are shown in y and z directions for the background grid. Reprinted from
[167].

separated flow over a wavy sinusoidal channel, which is placed as an immersed boundary in the

fluid domain. The results of these simulations are compared to the LES of Henn and Skyes [170]

and the experiment of Buckles et al. [171]. In this simulation, the lower wall has a sinusoidal

wavy deformation y = sλ sin(2πz/λ): h: is lower wall displacement, the wave steepness is

s = a/λ = 0.1, a is the wave amplitude and λ is the wavelength. The channel streamwise

length is L = 2λ, channel spanwise length is λ, channel height is 2H = λ, and Reynolds number

is HU/ν = 5300. In this validation study, the time-averaged spanwise-averaged profile of the

wall pressure pw, i.e., the pressure of the closest immersed nodes to the wall, and streamwise

velocity (uz) over the crest and trough of the wave are plotted in Fig. 3.3a,b,c, respectively. To

validate the results, the velocity and pressure are normalized similar to the previous simulations

and experiments [170, 171]. The velocity is normalized with the streamwise bulk velocity U∗b ,
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Figure 3.2: Validation for a fully developed turbulent flat channel. (a): Mean streamwise velocity
profile. (b): Profile of the normalized turbulent kinetic energy along the channel vertical axis.
Reprinted from [167].

which is defined with a normalizing depth equal to the minimum channel depth (2H − a) rather

than the mean channel depth 2H . The bulk velocity (Ub) is defined as follows [171]

Ub =
1

2H − a

∫ 2H

h

uzdy, (3.1)

Similarly, wall pressure (pw) is nondimensionalized with 1
2
ρU2

b , where ρ is the density. This

definition of the bulk velocity (Ub) is used to compare the velocity and pressure of this study to the

previous work [170, 171]. Figure 3.3a demonstrates that the computed wall pressure is in good

agreement with the previous numerical observation [170] and experimental measurements [171].

The pressure over the downslope and trough of the wave agrees well with the experiment, while

there is a small discrepancy (under-prediction) near the uphill. The profile of mean streamwise

velocity at both sections (z = 0 and z = 0.5λ) approximately matches the experimental one as

shown in Fig. 3.3b,c. In both streamwise sections (crest and trough of the wave), the maximum

velocity is about 1.2 at y = 1.2 from the wavy wall. In fact, it is deviated toward the flat wall as

the momentum of the fluid near the wavy wall has reduced. In Fig. 3.3c, the magnitude of reverse

flow on the trough of the wave is approximately equal to the value observed in the experiment.
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3.1.1.3 Turbulent channel with traveling wavy walls

The LES-IBM is further validated for traveling waves by carrying out LES simulation of a wavy

channel in which its lower wall undergoes traveling waves deformations and comparing the forces

against the DNS of Shen et al. [4]. The Reynolds number based on the mean velocity U of the

external flow and wall motion wavelength λ is 10,170; the wave steepness is 2πa/λ = 0.04 where

a is the traveling wave amplitude. Simulations are performed for the static case and a traveling

case with wave speed of C/U = 1.0. The simulation mesh is almost the same as grid 2 (3.1)

except the channel half width, which is H = 2λ/π. The drag force of the waves are shown in

Table 3.2. Herein, Cd is the total drag force consists of a form drag (Cp) and a friction drag (Cf ),

and the forces are normalized with ρU2A, where A is the area of the flat plate. The results show

about 18.2% discrepancy against DNS for the static case whereas a 7.3% for the traveling wave

case.

Table 3.2: Comparison of force coefficients obtained from LES with DNS of Shen et al. [4] for
wave speeds C = 0 and C = 1.0.

case C Cd Cp Cf
DNS 0 0.0055 0.0038 0.0017
LES 0 0.0065 0.0045 0.0020
DNS 1.0 0.0025 -0.0002 0.0025
LES 1.0 0.0027 -0.0005 0.0027

3.1.2 Inclined plate

To ensure that LES modeling can predict the aerodynamic performance of inclined plates, flow

over a 2-D flat inclined plate was simulated at angles of attack ranging from θ = 0 to 12o with Re

= 40,000, which is the same Re in the LES of [172]. The computational domain is presented in

Fig.3.4a. As it is shown, the domain is a cube of 0.1L× 15L× 15L in x, y and z directions. The

mesh is cuboid and has 21 × 421 × 401 grid points along x, y, and z direction, respectively. The
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Figure 3.4: Time averaged lift coefficient for a flat inclined plate at various angles of attack θ.
Solid line is the classic thin airfoil theory. Reprinted from [158].

grid is clustered in the vicinity of the plate, i.e., it is a rectangle of 0.34 with 280× 200 grid points

evenly distributed. The mesh is extended towards the boundary with a hyperbolic function. The

boundary conditions are as follows: inlet is a uniform flow; in the y directions boundary conditions

are slip walls, the outlet is Neumann, and the spanwise boundary condition is periodic since the

plate is 2D. The plate is placed as an immersed boundary in the fluid domain centered in the refined

zone. More details about the grid and setup can be found in section 4.2 and Table 4.3.

The time-averaged lift coefficient is plotted in Fig. 3.4, where the results for negative angles

of attack are extrapolated due to the plate’s symmetry, i.e., CL(−θ) = −CL(θ). In addition, the

lift coefficient for an inviscid thin plate is plotted where the lift coefficient is CL = π2θ/90 (θ in

degree). The results of this study agree well with the experimental data of [173] and LES results of

[172]. Until angle of attack of 8o the results follow exactly the experimental results, but there are

small discrepancies with the experimental results for higher angles of attack (θ > 8), which can

be related to the effect of Reynolds number, as the Reynolds number in the experiment of [173] is

80, 000. Nevertheless, the agreement of our LES with the experimental results is similar to that of

[172].
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3.1.3 Pitching airfoil

To validate LES simulations for moving boundary with high (Re) we checked the thrust (Ct=

-CD) for a pitching NACA0012 airfoil at Re =12600. The airfoil pitching motion is given by:

θ(t) = θ0 sin(2πf ∗t) (3.2)

where θ0 = 2o is the amplitude of the pitching motion and the center of the rotation is at 0.25L,

same as previous experiments [174]. The computational grid used for this simulation is a 0.09L×

15L × 15L box in x, y and z directions, where L is the chord length, respectively. The airfoil is

placed as an immersed body at 5L from the inlet boundary. The x−y−z directions are discretized

by 21 × 401 × 601 ' 5 million nodes. The inlet is a uniform flow and boundary conditions in

the x and y directions are slip walls and the outlet is Neumann. Figure 3.5a shows the variation

of mean thrust coefficient (CT = −CD), with reduced frequency f ∗. As it can be observed, the

thrust coefficient in our simulations was in good agreement with the previous experimental and

numerical results [175, 174, 176] for low reduced frequency (f ∗ < 3). However, there are dis-

crepancies between our numerical results, the experimental results of Koochesfahani et al. [174]

and numerical results of Lai and Platzer [175] and [176] for higher reduced frequency, i.e., our

results underestimate the thrust reported by [175] about 10% at f ∗ = 4 and overestimate the thrust

reported by [174] about 40% at f ∗ = 3.5. The reason for the discrepancy between our results and

reported thrust of [175] and [176] can be the difference between the numerical methods, i.e., [176]

used a DNS compressible flow solver for their two dimensional simulations, whereas ours is an

incompressible LES flow solver for 3D simulation (there are 21 nodes in the spanwise direction

to handle the 3D effects of the flow). The reason for the discrepancy between the experimental

result of [174] and numerical results at high reduced frequency can be the uncertainties for esti-

mating the forces as [174] estimated the thrust by applying the integral momentum theorem to a

control volume surrounding the airfoil. Although they consider the effect of velocity fluctuations

in their estimation, but even calculating the fluxes induced by velocity fluctuation has uncertainty
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sional frequency (fl/U ). (b) to (d) Wake visualization by spanwise vorticity; (b) f ∗ = 1.5, (c)
f ∗ = 2.0, (d) f ∗ = 3.5. Reprinted from [158].

which increases by increasing f ∗ as reported by [174]. In addition, the the spanwise vorticity field

is presented for three frequencies (figure 3.5(b,c,d)) which is similar to the vorticity distribution

observed by [174], [177] and [176]. The streamwise spacing between vortices is proportional to

1/f ∗ as it is also reported by [174], i.e., the streamwise spacing was 0.65L, 0.52L, and 0.37L for

reduced frequencies 1.5, 2.0, and 3.5, respectively.

3.2 Compressible LES

In this section the validations for the developed compressible LES are presented. First, the LES

is validated against decaying isotropic turbulent flows. Afterwards, the validation of compressible

channel flow, and shock diffraction by a cylinder are reported.

3.2.1 Decaying isotropic turbulent flow

To validate our computational scheme and our LES, large eddy simulations of isotropic decay-

ing turbulence are performed with a dynamic Cs and the results are compared against the results

of direct numerical simulations (DNS) of Samtaney et al. [178] and LES of Li et al. [179]. The

computational details of this simulation are described as follows.

The computational domain is a cube of [0, 2π] × [0, 2π] × [0, 2π] which is discretized evenly
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with 64 grid points in each direction. The boundary conditions are periodic for every parameter at

all boundaries. Here, the Mach number is Mt = u′/c = 0.4, where u′ is the turbulent fluctuation

velocity and c is the speed of sound. The Reynolds number is Reλ = λu′ρ/µ = 153, defined based

on u′ and taylor length scale (λ). The turbulence fluctuation velocity is <u2i /3>, where <> is the

volume average in the computational domain, ui (i = 1, 2, 3) is the i-th component of the velocity

vector, and Taylor length scale is defined as

λ2 =
u′2

< (∂ui/∂xi)2 >
, (3.3)

The simulation is initialized with a specified spectrum [178] for velocity which is divergence

free initially and given by

E(k) = Ak4exp(−2k2/k20) (3.4)

where k is the wave number, k0 = 6 is the wave number at which the spectrum peaks, similar

to study of Li et al. [179], and A is a constant chosen to get initial kinetic energy of 1.0. The

turbulence decay is presented for different times (t/τ ), where τ is the initial large-eddy turnover

time, defined as

τ =

√
32

A
(2π)

1
4k
−7
2

0 (3.5)

The turbulence decay is presented in Fig. 3.6, which visualizes the magnitude of vorticity in com-

putational domain at three different times t/τ = 1, t/τ = 2, and t/τ = 5. The reduction of the

magnitude of vorticity in time indicate the reduction of turbulence intensity of the flow. The plot

of turbulent kinetic energy spectrum (E(k)) versus k is presented at 4 different times in Fig.3.6d.

The computed plot for energy cascade at t/τ = 5 reveals that the LES model can capture the iner-

tial subrange as the energy spectrum follows the theoretical 5/3 power law. The validation of the

study is performed by comparing the time history of turbulent kinetic energy (TKE) of the domain

obtained from LES and DNS of Samtaney et al. [178] and LES of Li et al.[179] in Fig. 3.6e. The

TKE is defined as TKE=0.5 < u2i >. The plot for the time history of the TKE is in good agreement

with the DNS at times t/τ > 2, but there is a small discrepancy at t/τ < 2, which can be due to
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lower grid resolution compared to DNS because a similar discrepancy is also observed in LES of

Li et al. [179] which had a similar grid resolution. Nevertheless, the good agreement between the

history of the turbulence decay of our simulations and previous studies [179, 178] show that our

LES deployed and the hybrid scheme can properly model the subgrid stress tensor.
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Figure 3.6: (a) The decay of vorticity at (a) t/τ = 1, (b) t/τ = 2, and (c) t/τ = 5. (d) The decay
of energy spectrum E(k) in time, (e) the decay of turbulence kinetic energy (TKE)

3.2.2 Compressible channel

To validate our code and setup for turbulent wall bounded flows, LESs of a turbulent channel

are performed for a subsonic flow with M = 0.5 and a supersonic flow with M = 1.5. The

simulations are performed with two grids, which their details are shown in Table 3.3. The channel

length and width of grids are 2πH and πH , respectively. The grid mesh is a cuboid (Fig. 3.1a)

40



Table 3.3: The details of grids of the simulations. Grid 1 (coarse) and 2 (fine) are used for grid
sensitivity study in the flat channel. Grid 2 is the main grid of the simulations with wavy walls.

grid Nx Ny Nz ∆xmin ∆ymin ∆zmin
1 48 48 48 0.0652 0.016 0.1308
2 120 112 240 0.0261 0.0035 0.0261

that is evenly spaced along x and z directions. In the y direction, the grid is clustered towards both

walls with a hyperbolic function as shown in Fig. 3.1a. The grid spacing near the wall is (δy =

0.0035H) as expressed in Table 3.3. The wall normal resolution (δy = 0.0035H) is equivalent to

y+ = uτδy/µ = 0.8 which is enough for reconstructing the velocity of the IB nodes with a linear

interpolation [165]. The non-dimensional time step (δt∗ = δtū/H) is set to δt∗ = 0.002.

The results of subsonic and supersonic cases are compared against the results of direct numer-

ical simulations (DNS) of Lee et al. [169] and Coleman et al. [180], respectively. Note that we

compare the subsonic case against incompressible results because it has been demonstrated when

the Mach number is lower than 0.6, the flow regime is expected to follow a quasi-incompressible

pattern. The validation results are presented in Fig. 3.7. The mean streamwise velocity (< uz >)

is normalized with the friction velocity (uτ ), i.e., < u >+=< uz > /uτ , and plotted against

wall normalized distance (y+) in Fig. 3.7a. It can be observed that the mean velocity is in good

agreement with DNS of Lee et al.[169] for both grids. The mean velocity < u > normalized by

bulk velocity (u0 = 1
2H

∫ 2H

0
uzdy) and the mean density (< ρ >) normalized by the bulk density

(ρ0 = 1
2H

∫ 2H

0
ρdy) are plotted along channel half width for case 2. It can be observed that by

refining the grid, the profiles of mean velocity and density agree well with the DNS of Coleman et

al. [181]. The results of the validation study indicate that our framework can properly resolve the

turbulent boundary layer.

3.2.3 Shock diffraction

In this section, 2D simulation of the diffraction of a moving planar shock at Mach number

M=2.81 with a stationary cylinder is presented. The simulations are performed with a hybrid

scheme and Cs is 0.01. The domain size of the simulations is 25D×10D, where D is the diameter
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of the cylinder, and meshed evenly with 4400×1200 nodes. The time-step is chosen 0.001D/U

that corresponds to Courant–Friedrichs–Lewy (CFL) number of 0.2. The simulation is carried out

with no-slip conditions on the surface of the cylinder. The Reynolds number UDρ/µ = 8700

(where U =
√

(p/ρ) is the velocity scale, and µ is the dynamic viscosity behind the undisturbed

shock) which matches the Reynolds number of experiments of Bryson and Gross [3]. Figure 3.8

shows the interaction of a moving shock with a cylinder. The moving shock is reflected by the

cylinder (Fig. 3.8b) and generates a reflected shock (R.S.), incident shock (I.S.), and a Mach shock

(M.S.). The intersection of the R.S., M.S.1, and I.S. is called the first triple points (T.P.1). The

interaction of M.S.1 from the top and the bottom of the symmetry plane creates M.S.2 and their

intersection creates T.P.2 (Fig.3.8d). The contact discontinuity (C.D.2) is formed behind M.S.1

and M.S.2.

Figure 3.9a presents the comparison of the loci of the triple points, i.e., x = 0 and y = 0

corresponds to the center of the cylinder. As it can be observed in Fig. 3.8c, two triple points

appear on either side of the plane of symmetry of the flow. The first one (T.P.1) starts at the

front of the cylinder (x/D = 0.0), and the second one (T.P.2) at the plane of symmetry behind

the cylinder (x/D = 1.6). The location of both triple point obtained from the simulation is in
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good agreement with the experimental results [3], which reveal that the hybrid scheme and switch

function can properly capture the shock waves for flows interacting with immersed boundaries.

Moreover, the flow is visualized with the contours of out-of-plane vorticity (ωz) in Fig. 3.9b. The

flow visualization shows vortex shedding in the wake of the cylinder at about 8.6D upstream of

the moving shock. The shedding occurs when the shear layer in the wake of the cylinder becomes

unstable.
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Figure 3.8: The interaction of a moving shock and a circular cylinder. R.S. reflected shock, M.S.1
Mach shock, I.S. incident shock, T.P.1 the first triple point, and T.P.2 is the second triple point.
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4. TRAVELING WAVES FOR FLOW CONTROL OF INCOMPRESSIBLE FLOWS*

In this chapter, the results of simulations of active flow control by traveling wave surface mor-

phing in turbulent flows are presented. First, the effect of traveling waves on a turbulent chaanel are

presented in 4.1. The effects of traveling waves on flow separation for an inclined plate and airfoil

are studied in §4.2 and §4.3. Part of these studies are now published in Akbarzadeh & Borazjani

[167, 158, 182, 183].

4.1 Traveling wavy turbulent channel flow

In this section, LES of flow in turbulent channel with motionless wavy wall, and traveling wave

walls are carried out. This chapter is organized as follows: a background on wavy incompressible

channel and traveling wave is studied in §4.1.1. The details of the simulations are shown in §4.1.2.

The results of the simulations are presented in §4.1.3. The discussion and conclusion are provided

in §4.1.4 and finally the limitation and future work are presented in §4.1.5.

4.1.1 Background

Flow of a motionless wavy channel becomes separated from the crest of the wave as the flow

over a concave surface is subject to a centrifugal instability that generates a Gortler vortex [184].

However, the separated flow over the wavy wall is removed when the wall undergoes a backward

traveling wave [4]. In addition, it is found that backward traveling waves can reduce the pressure

drag and turbulent kinetic energy [4]. Based on previous studies of traveling waves with a small

steepness (s = a/λ < 0.0625, a: nondimensional wave amplitude, λ: nondimensional wavelength)

[4], it is thought that the nondimensional wave-speed (C∗ = C/U , C: dimensional wave-speed,

U : mean channel velocity) is required to be more than one to have a zero net drag. In addition,

*Part of This chapter is reprinted with permission from "Large eddy simulations of a turbulent channel flow with
a deforming wall undergoing high steepness traveling waves" by A.M. Akbarzadeh and I. Boazjani, 2019 Physics of
Fluid 31 (12), 125107, copyright [2019] by authors, "Reducing flow separation on an inclined plate via backward
traveling waves" by A.M. Akbarzadeh and I. Boazjani, 2019 JFM 880, 831-863, copyright [2019] by Cambridge
University Press, and "Controlling Flow separation on a thick airfoil using backward traveling waves" by A.M. Ak-
barzadeh and I. Boazjani, 2020 AIAA journal 58 (9), 3799-3807, copyright [2020] by authors.
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it has been reported that when C > U , the turbulence intensity highly reduces in the vicinity of

the wavy surface, i.e., has its minimum value [185]. Nevertheless, most of the studies on traveling

wavy channel focused on low wave-steepness (s = a/λ ≈ 0.05; a : amplitude, λ : wavelength),

and effect of waves with higher steepness has not been investigated. Our goal in this study is

to investigate the effect of high wave steepness waves (s > 0.1) on mean flow and turbulence

statistics, as many swimmers undulate their bodies with high wave steepness waves [186]. To

achieve this goal, simulations of turbulent channels in which a wall was undergoing traveling wave

deformations were carried out. In these simulations, the steepness ranges from 0.05 < s < 0.15

and wave speed ranges from −0.4U < C < 1.6U .

4.1.2 Methods

In this study, we numerically investigate the turbulent flow of a channel in which a wall is under-

going traveling wave oscillations as shown in Fig. 4.1a. Flow is in the frame xi = (x, y, z) where

x, y, z are spanwise, vertical and streamwise coordinates, respectively. Here, the characteristic

length is the channel half width (H∗), which is same as the wavelength (λ∗), and the characteristic

velocity is the mean velocity U∗. As shown in Fig. 4.1b, the lower wall is undergoing a vertical

oscillation (y direction) in the form of a backward sinusoidal traveling wave in the streamwise

direction (z) as follows:

h = a cos(
2π

λ
(C t− z)) (4.1)

where h = h∗/H∗ is the non-dimensional vertical displacement of the lower wall, a =

a∗/H∗ = sλ is the non-dimensional amplitude of the wave, λ = λ∗/H∗ is the non-dimensional

wavelength, s is the wave steepness, C is the non-dimensional wave-speed, and t = t∗H∗/U∗ is

the non-dimensional time. Here, the parameters with (*) symbol are dimensional. The simula-

tion set-up configuration, including the domain size, grid size, and wave varying parameters are

summarized in Table 4.1. The Reynolds number is chosen Re = H∗U∗/ν∗ = 10, 000 based on the

mean streamwise velocity (U∗), channel half height (H∗) and kinematic viscosity (ν∗), which is

equivalent to Reτ∗ = u∗τH
∗/ν∗ = 570, based on the friction velocity (u∗τ ) [169]. The simulations

46



(b)

2H

*

2H

y

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

H*
= =1

Figure 4.1: Flow simulation set-up: (a) 3D (b) 2D view of the simulation grid and the wavy
channel wall. The fluid is discretized with a cartesian grid whose resolution increases near the
walls. The bottom wall of the channel which moves with a traveling wave is discretized with
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fourth points, respectively, are shown in y and z directions, respectively, for the background grid.
Reprinted from [167].

are performed using three grids presented in Table 4.1. Grid 1 is used only for validation and

grid sensitivity studies. The undulatory simulations are performed using grid 2, and the domain

sensitivity study of the undulating cases is performed using grid 3, in which the streamwise length

is doubled but its resolution is kept the same as grid 2 (Table 4.1). The channel length and width

of grid 2 are 4H∗ and 2H∗, respectively. The grid mesh is a cuboid (Fig. 4.1a) that is evenly

spaced along x and z directions. In the y direction, the grid is clustered towards both walls with a

hyperbolic function as shown in Fig. 4.1b. The grid spacing is kept constant in the vicinity of the

wave, i.e., at −1.2 < y < −0.8 the grid spacing is (δy = 0.0042) as expressed in Table 4.1 and

Fig. 4.1b. The wall normal resolution (δy = 0.0042) is equivalent to y+ = u∗τδy
∗/ν∗ = 2.5 which
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is enough for reconstructing the velocity of the IB nodes with a linear interpolation [165]. The

non-dimensional time step (δt = δt∗U∗/H∗) is set to δt = 0.004, and δt = 0.003 for the motion-

less wavy wall and the traveling wave, respectively. The corresponding Courant-Friedrichs-Lewy

(CFL=U∗δt∗/∆z∗min) number for the motionless and traveling wavy simulations are 0.35 and 0.27,

respectively. The time step of the motionless channel corresponds to the time-step in wall unit of

δt+ = δt∗u∗
2

τ /ν
∗ = 0.13 which is sufficient for capturing the turbulence statistics [168]. The

boundary condition along the streamwise and spanwise direction is periodic.

In the traveling wave simulations, the varying parameters are C and s = a/λ (changed by a) in

Eqn. (4.6). Different case studies are presented in Table 4.2 which are classified by their amplitude

into 4 rows. Case 4 is the validation case study, which has wavy motionless wall with amplitude

and wavelength identical to Henn and Skyes [170] simulation. In cases 1-3, the non-dimensional

wavelength is λ = 1.0 and the non-dimensional wave-speed (C) varies from -0.4 to 1.6, where the

negative wave-speed represents a forward traveling wave. The non-dimensional amplitude ranges

from 0.05 − 0.15 which leads to the Strouhal number (St = 2sC) varies from 0.04-0.48. The

LES simulations are first performed for a flat channel in §3.1 with grids 1 and 2 to further test the

grids for LES. Afterwards, the validations for wavy channel are performed, which are presented in

§3.1. The instantaneous results of the motionless wavy channel are used as the initial condition of

the traveling wave simulations. It has been observed that the flow of the traveling wavy channel

become quasi-steady after about 25 cycles. However, the averaging is performed after at least

30 cycles for 20 cycles. In fact, the flow over the oscillating wall becomes quasi steady-state in

a shorter time than the flat channel and motionless wavy channel because the flow is dominated

by the prescribed oscillations which will be shown later. To ensure that the averaging time was

sufficient the sampling uncertainty of the forces is calculated using the procedure described by

Oliver et al.[187] which is reported in appendix §B.1.

4.1.3 Results

The effect of undulatory oscillations with different wave-speeds at three wave steepness s =

0.05, 075, 0.15 (Table 4.2) on the mean flow, mean streamwise forces acting on the wave, and the
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Table 4.1: The details of grids of the simulations. Grid 1 (coarse) and 2 (fine) are used for grid
sensitivity study in the flat channel. Grid 2 is the main grid of the simulations with wavy (stationary
and traveling) walls, and grid 3 is used for the domain sensitivity study. Reprinted from [167].

grid Nx Ny Nz ∆xmin ∆ymin ∆zmin
1 48 48 48 0.0652 0.016 0.1308
2 61 201 361 0.0331 0.0041 0.0110
3 61 201 721 0.0331 0.0041 0.0110

Table 4.2: Undulating waves with different parameters, amplitudes, wavelength, steepness, and
wave-speed. The traveling wave with a negative wave-speed represents a forward traveling wave.
Reprinted from [167].

case a/H λ s Cmin Cmax
1 0.05 1.0 0.05 -0.4* 1.6
2 0.075 1.0 0.075 -0.4 1.6
3 0.15 1.0 0.15 -0.4 1.6
4† 0.2 2.0 0.1 0.0 0.0

(a) (b)

(d) (e)

(c)

(f)

0.0

.075

Z

Y

0.5 1.0

Figure 4.2: Streamlines of the velocity for case 2 (s = 0.075) with different wave-speeds: (a)
forward traveling wave with C = −0.4, (b) motionless wavy channel (C = 0.0), (c) backward
traveling wave with C = 0.4, (d) backward traveling wave with C = 0.8, (e) backward traveling
wave with C = 1.2, and (f) backward traveling wave with C = 1.6. The inset of (b) shows the
position of the separation bubble, and inset of (f) indicates the reverse flow on the crest of the wave.
Reprinted from [167].
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(b) (c)

(d) (e) (f)

(a)

Figure 4.3: Streamlines of the velocity for case 3 (s = 0.15) with different wave-speeds: (a)
forward traveling wave with C = −0.4, (b) motionless wavy channel (C = 0.0), (c) backward
traveling wave with C = 0.4, (d) backward traveling wave with C = 0.8, (e) backward traveling
wave with C = 1.2, and (f) backward traveling wave with C = 1.6. The inset shows the reverse
flow on the crest of the wave. Reprinted from [167].

turbulence kinetic energy (TKE) is reported in this section. Because the surface oscillations are

periodic, the velocity field and TKE of the traveling wave case are phase-averaged. Our observa-

tions reveal that the velocity field for cases 1 and 2 are similar. Therefore, to avoid repetition, only

the flow visualization for case 2 is shown.

The structure of mean flow for waves with two steepness values is presented by the streamlines

in Figs. 4.2 and 4.3 for cases 2 and 3, respectively. In each case, the mean flow is visualized for

different non-dimensional wave-speeds of C = -0.4, 0.0, 0.4, 0.8, 1.2, and 1.6 in Figs. 4.2-4.3a,

b, c, d, e, and f, respectively. When the wavy wall is motionless (C = 0) with a low steepness

(s = 0.05 and 0.075), the flow becomes separated on the downslope of the wave and generates a

separation bubble (a clockwise vortex) that reattaches on the uphill of the wave (Fig. 4.2b). The

center of the separation bubble is at Z = 0.37 and Z = 0.42 for cases 1 and 2, respectively, where

Z = 0 is at the crest of the wave (see the inset of Fig. 4.2b). The streamwise location of the
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Figure 4.4: Streamwise velocity profile for a forward traveling wave with wave-speed C = −0.4,
motionless wavy channel (C = 0.0), and backward traveling waves with wave-speeds C = 0.4
and C = 0.8 along six streamwise sections for two cases: (a) case 2 (s = 0.075), and (b) case 3
(s = 0.15). Reprinted from [167].

center of the sparation bubble is similar to the one reported in Shen et al. [4] in which the wave

steepness was s = 0.04 and Z was about 0.38. When the wave steepness increases to s = 0.15

(Fig. 4.3b), the separation bubble grows such that it fills the whole trough of the wave, and the

streamwise location of its center translates to Z = 0.52. The generated vortex (separation bubble)

of the motionless wave (Fig. 4.3b) resembles the one observed by Henn and Skyes [170], and

Ganju et al. [188]. As the wavy wall undulates with a forward traveling wave (C = −0.4), a
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high reverse flow is generated in the trough of the wave (see the direction of streamlines in Figs.

4.2a and 4.3a), similar to the results of Shen et al. [4]. While a negative wave-speed increases

the reverse flow in the troughs of the wave (Figs 4.3a), a positive one increases the streamwise

velocity in that zone (Figs 4.3c-f). By increasing the wave-speed, the magnitude of the vertical

velocity of the fluid adjacent to the surface increases monotonically because the velocity of the

surface scales with uy = O(sC), which can be analytically obtained by taking the derivative of

the vertical oscillations (h) with respect to the time (t) in Eqn. (4.6). As the vertical velocity of

the fluid adjacent to the surface increases, the vertical velocity of the flow away from the surface

increases, which can be observed by comparing the streamlines over the trough of the wave for

high wave-speed case C = 1.6 (4.2f and 4.3f) and the rest of the cases. In fact, the size of the zone

where the flow is influenced by the wave is larger for the high wave-speed waves (Figs. 4.2f and

4.3f). In addition, the traveling wave with a high wave-speed (C = 1.6) induces a reverse flow on

the crest of the waves (Figs. 4.2f and 4.3f).

To see the effect of the wave steepness and the wave-speed on the streamwise velocity, the

profiles of the mean streamwise velocity for cases 2 and 3 for a forward traveling wave with C =

−0.4, a motionless wavy channel (C = 0.0), and two backward traveling waves with C = 0.4, 0.8

are plotted in Figs. 4.4a and b, respectively. Comparing the velocity profile of cases 2 and 3 for the

motionless wavy channel demonstrates that the reverse flow has increased by increasing the wave

steepness (sections L3, L4 and L5 in Fig. 4.4a,b). Figure 4.4 shows that the flow near the wavy

wall is influenced by the wave-speed of the traveling wave. For both cases, in sections L3, L4, L5

and L6, when the wave-speed increases, the streamwise velocity near the wall increases and the

forward traveling wave induces a reverse flow. The change of uz with respect to the motionless

wavy channel is higher for the high steepness waves (case 3) because they have a higher surface

velocity (uy = O(sC)) which increases the velocity of the fluid near the surface. The backward

traveling waves increase the axial momentum of the fluid near the wavy surface, e.g., a local

maximum is observed in Fig. 4.4b in case 3, for wave-speed C = 0.8 at z = 0.5λ (section L4)

and z = 0.67λ (section L5). For case 3, the traveling waves also affect the streamwise velocity
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Figure 4.5: The profile of instantaneous forces including, total instantaneous force CF (t), and
viscous force Cv(t) for three cycles for waves with wave-speed of C=-0.4, 0.0, and 0.8, for two
wave steepness: (a) case 1 (s = 0.05), and (b) case 3 (s = 0.15). Reprinted from [167].

of the fluid far away from the wavy wall, e.g., near the flat wall (Fig. 4.4b). It can be observed

that at y > −0.5 at sections L2 to L6, the streamwise velocity decreases by the increase of wave-

speed such that the maximum of uz on section L4 of the motionless wavy channel decreases from

uz = 1.22 to uz = 1.14, when C becomes 0.8. The reason for the decrease of uz far away from the

wavy wall is the increase of uz in the vicinity of the wavy wall. The mass flux in each section of the

channel remains almost constant due the conservation of mass (
∫ 2

h
ūzdy = 2 ± 0.01). Therefore,

the reverse flow near the forward traveling wavy wall is canceled out with the increase of uz around
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the middle of the channel to keep the mass flux at a constant value (see sections L3, L4, and L5 of

Fig. 4.4b).

Traveling waves affect the forces acting on the wavy surface. The instantaneous force acting

on the wavy wall along stramwise direction (z) is composed of the pressure and viscous forces as

follows (see[189] for more detail):

CF (t) =
1

1
2
× Aflat

∫
A

(−pn3 + τ3j nj)dA, (4.2)

where all elements of Eqn. (4.2) are in their non-dimensional form, defined in §4.1.2. Here, the

force coefficient is normalized the area of the flat surface Aflat = 8. The first term of the integral

is the pressure force, and the second term is the viscous force. dA is the area of an element of

the wavy surface, ni is the ith component of the unit normal vector on dA, and τij is the viscous

stress tensor. The instantaneous normalized pressure and viscous forces are denoted, respectively,

by Cp(t) and Cv(t). Depending on whether CF (t) is positive or negative, it is either drag- or thrust-

type, respectively. The instantaneous forces are plotted for cases 1 and 3, for a forward traveling

wave (C = −0.4), a motionless wavy channel, and a backward traveling wave with C = 0.8 in

Fig. 4.5a,b. When the steepness increases from s = 0.05 (Fig. 4.5a) to s = 0.15 (Fig. 4.5b), the

magnitude of the forces and their fluctuations increase for all wave-speeds. The total forces do

not follow the trend of viscous forces for both s=0.05 and 0.15 (Fig. 4.5), i.e., the pressure force

is the main contributor to the total force. Similar to the stationary channel, the pressure force is

the dominant force for traveling wave channel regardless of their wave-speeds at high Reynolds

numbers. It can be observed in Fig. 4.5 that by increasing the wave-speed fromC = 0.0 toC = 0.8,

the mean of the force coefficient decreases but the viscous force increases slightly similar to the

viscous force of an undulatory swimmer[190, 48]. The time history of the force coefficient shows

that the backward traveling wave generates a temporally periodic force on the wavy surface, but

the forward traveling wave generates a randomly fluctuating force. When the steepness increases

from s = 0.05 to s = 0.15, the amplitude of the fluctuations of the force coefficient increases for

all wave-speeds.
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The mean forces are calculated by averaging the instantaneous forces over 10 cycles. The time-

averaged normalized total, pressure, and viscous forces are denoted, respectively, by CF , Cp, and

Cv. The forces are plotted for cases 1-3 (Table 4.2) for various C, ranging from −0.4 to 1.6, in

Fig. 4.6a. Based on the mean force sign, the forces are classified into the net drag type (CF > 0)

and the net thrust type (CF < 0). It can be observed that over the motionless wavy channel

(C = 0) the force acting on the wavy channel is dominated by the pressure force and it increases

by increasing the wave steepness, whereas the viscous force decreases by increasing the wave

steepness, similar to the trend of the instantaneous force. In fact, Cp/Cv of the motionless wavy

channel increases from 2.5 to 18.8 as s increases form 0.05 to 0.15. When the wavy surface undu-

lates with a backward traveling wave oscillation, the pressure force (Cp) decreases monotonically

by increasing the wave-speed, but the viscous force varies slightly which is negligible compared

to the variations of the pressure force. Because the total force follows the trend of the pressure

force, consequently, the total force (CF ) decreases monotonically when C increases. On the other

hand, comparing the plots of pressure force for different s shows that the slope of Cp increases by

increasing the wave steepness. Therefore, the wave-speed at which the mean force (CF ) becomes

zero decreases by the increase of the wave steepness. For instance, for s = 0.05 the wave-speed at

which CF becomes zero is, approximately, at C = 1.6 (Fig. 4.6a) similar to the values reported by

Shen et al. [4]. By increasing the wave steepness to s = 0.075 and s = 0.15 (cases 2 and 3) the to-

tal force (CF ) becomes zero at wave-speeds 0.9 and 0.7 (Fig. 4.6a), respectively. Nevertheless, the

wave-speed at which the pressure force goes to zero is in a smaller range, e.g., the mean pressure

force (Cp) is zero at wave-speeds 0.9, 0.6, 0.6 for cases 1 to 3 (s = 0.05, 0.075, 0.15), respectively.

Note that these given wave-speeds are estimated from the plot of the force coefficient in the inset

of Fig. 4.6a.

While backward traveling waves reduce the force coefficient, a forward one (C < 0) increases

it as forward waves generate an axial momentum along the upstream direction. Similar to the

backward traveling wave, the magnitude of the drag variation increases, even more intensely, by

increasing the wave steepness for a forward traveling wave (Fig. 4.6a). For example, for case 3, a
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forward traveling wave (C = −0.4) increases CF about 400% compared to the motionless wavy

channel, whereas a backward one with the same wave-speed (C = 0.4) decreases the mean force

only by about 70%.

To better observe the effect of traveling waves on the mean forces, the variations of mean nu-

merical thrust (CTn) with respect to s for backward traveling waves are presented in Fig. 4.6b. The

mean numerical thrust is defined as CTn = 0.5(−Cp + |Cp|), where Cp is the mean pressure coef-

ficient. By this definition, only a mean negative pressure force (thrust type) accounts for the thrust

force. The numerical thrust is compared with the thrust predicted by EBT[40] for an undulatory

surface in the external flow. Based on EBT, the non-dimensional predicted thrust coefficient is:

CTEBT =
π

4
(πsC)2(1− (

1

C
)2), (4.3)

where CTEBT is the non-dimensional EBT thrust coefficient, and π/4 is the term appeared from the

virtual mass term (see Akbarzadeh and Borazjani[158] for the derivation). Here, the virtual mass

is assumed to be half of the virtual mass of an oscillating plate because only one side of the wavy

surface is in contact with the fluid. In Fig. 4.6b, the analytical thrust is plotted for C > 1 because

thrust is generated only when the wave-speed exceeds one (C > 1) based on Eqn. (4.3).

Figure 4.6b shows that the numerical thrust of waves at a constant wave-speed increases by

increasing the wave steepness. Moreover, thrust increases for a given s by the increase of the

wave-speed (Fig. 4.6b), e.g., for case 3, when C increases from 1.0 to 1.6, CTn increases from

0.05 to 0.27. Similarly, the EBT thrust (CTEBT ) follows the same trend as the numerical thrust

(CTn), i.e., the increase of thrust by the increase of the wave steepness (Eqn. 4.3). While EBT

predicts thrust generation for waves with C > 1.0, Fig. 4.6b shows that waves with C < 1 can

also generate thrust. For instance, a thrust is generated when the wave-speed is greater than 0.6 for

cases 2 and 3 (Fig. 4.6b). The EBT thrust is close to the numerical thrust for wave-speed C = 1.2,

but it overestimates the thrust for higher wave-speeds, e.g., CTEBT is three times larger than CTn

for C = 1.4 and C = 1.6. The overestimation of thrust by EBT has also been observed in the
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previous studies [191, 190, 192].

The traveling wave oscillations impact not only the mean flow but also turbulent intensities

such as the turbulent kinetic energy (TKE). The effect of undulations on TKE for cases 2 and

3 (s = 0.075 and s = 0.15) are presented in Figs. 4.7 and 4.8, respectively, which plots the

contours of TKE over lower half of the channel. Here, the TKE of the motionless wavy channel

(C = 0) and traveling wavy channels (C 6= 0) is computed using, respectively, time-averaged

and phase-averaged velocities. Over a motionless wavy wall with low steepness (Fig. 4.7b), the

maximum TKE is generated over the trough of the wave, above the separation bubble (Fig. 4.2b).

For the higher steepness (Fig. 4.8b), the maximum TKE is over the separation bubble (Fig. 4.3b)

but with a smaller magnitude compared to case 2. For low amplitude case, TKE of the most region

of the channel decreases monotonically by increasing the wave-speed from 0.4 to 1.2 as shown

in Fig. 4.7c to f. From the decrease of TKE, it can be concluded that the traveling waves have

relaminarized the flow as observed previously [185, 4]. The traveling wave oscillation on a high

steepness wave, in contrast to the lower one, does not lead to a monotonic decrease. The TKE

decreases substantially in the entire lower half of the channel by increasing the wave-speed from

C = 0 to C = 0.6 (Fig. 4.8d). By increasing C further from 0.6 to 0.8 the TKE increases on

the uphill of the wave (Fig. 4.8e) while the TKE decreases away from the wall at higher lateral

positions, i.e., y > −0.6. When C increases to 1.2 (Fig. 4.8f), the TKE increases in the trough of

the wave but decreases at higher lateral positions similar to C = 0.8 (Fig. 4.8e). Comparing the

TKE for different wave-speeds of case 3, in Fig. 4.8, indicates that TKE over the trough and uphill

of the wave, where have the highest TKE in the channel, is qualitatively minimum when C = 0.6,

the wave-speed at which the drag is almost zero (Fig. 4.6a).

While a backward traveling wave (C > 0), in general, reduces TKE in the most of the channel,

a forward traveling wave (C < 0) increases it. The negative wave-speed, C = −0.4, in both high

and low amplitude waves (Figs. 4.7a, 4.8a) increases TKE in the entire lower half of the channel

compared to motionless wavy channel. The increase of TKE is associated with the increase of

mixing due to the interaction of the main flow and the reverse flow.
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The effect of undulation on turbulent kinetic energy can also be observed qualitatively in the in-

stantaneous flow field. Figure 4.23 shows the instantaneous vortical coherent structures visualized

by the iso-surface of q-criterion (Q=20), colored by the magnitude of vorticity, and the streamwise

velocity on a spanwise cross section of the channel. The results are presented for three wave-speeds

C = −0.4, 0.0 and 0.8 in Fig. 4.23 for cases 2 and 3. The enhancement of TKE via a negative

wave-speed, which was observed in Figs. 4.7a and 4.8a can also be detected in Figs. 4.23a, d. The

number of vortical structures of an undulating wall with negative wave-speed is higher than the

corresponding motionless one, e.g., compare Figs. 4.23a,b, which elucidates the enhancement of

TKE that was observed in Figs. 4.7a, 4.8a. (The mechanism of production of vortical structures

in the forward traveling wave which is equivalent to the increase of TKE can be visualized better

via the movies which show that the vortical structures are produced over the troughs where the

reverse flow interacts with the outer layer flow of the channel). Nevertheless, by increasing the

wave-speed to a positive value such as C = 0.8, the vortical structures inside the channel decrease

for both steepness s = 0.15 (Fig. 4.23f) and s = 0.075 (Fig. 4.23c) compared to the corresponding

motionless ones. At this wave-speed (C = 0.8), the vortical structures are mostly visible in the

troughs of the wave, which indicates that the vortical structures are more organized compared to

the motionless wavy channel. In fact, the traveling wave relaminarizes the flow by decreasing the

random component of the flow [193]. Note that the trend of variation of the coherent structures

near the flat wall (upper wall) is similar to the wavy wall, i.e., the amount of vortical structures

decreases as the wave-speed increases. The increase in the amount of coherent structures near the

flat wall of a motionless wavy channel compared to a flat turbulent channel has also been reported

previously [194].

4.1.4 Discussions and conclusions

Flow of a motionless wavy channel becomes separated from the crest of the wave as the flow

over a concave surface is subject to a centrifugal instability that generates a Gortler vortex [184].

The separated flow increases by increasing the wave steepness [170] as observed in Figs. 4.2b

and 4.3b. When the lower wall undergoes a backward traveling wave, the separated flow decreases
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monotonically by increasing the wave-speed of the wave (Fig. 4.4) regardless of its steepness. The

profile of the streamwise velocity demonstrates that the streamwise velocity (uz) increases in the

vicinity of the troughs of the wave when the wave steepness increases. The enhancement of the

streamwise velocity in case 3 (high steepness) compared to case 2 implies the generation of a

higher axial momentum near the traveling wavy wall when steepness increases.

High steepness traveling waves modify both pressure and viscous forces acting on the wavy sur-

face. Backward traveling waves slightly increase the mean viscous force (Fig. 4.5a) and decrease

the mean pressure force compared to a motionless wavy channel, but forward traveling waves act

vice versa. The reason for the increase of the viscous forces with a backward traveling wave is the

increase of the streamwise velocity in the vicinity of the wave (Fig. 4.4), which increases the term

1/Re(∂uz/∂y) of the viscous force (Eqn. 4.2). The viscous force of the undulating surface with

this range of steepness and wave-speed, however, is smaller than a flat channel. For example, the

viscous force of the flat channel at this Re is Cv = 0.0065 but the maximum viscous force of the

traveling wavy surface is Cv = 0.00375 for a backward traveling wave with C = 1.6 in case 3.

Nevertheless, the change of the mean viscous force due to traveling waves is small compared to

pressure forces (Fig. 4.5b) due to the high Re of the flow and the high steepness of the wave. The

mean pressure force decreases monotonically by the increase of the wave-speed for waves with a

constant steepness, similar to the previous studies [4, 48, 195]. Furthermore, both pressure and

total force coefficients decrease monotonically by the increase of the wave steepness for a given

wave-speed (Fig. 4.6). Consequently, the rate of change of the total force coefficient with respect to

the change of the wave-speed (slope of CF in Fig 4.6a) increases as the wave steepness increases.

Therefore, the critical wave-speed, i.e., the wave-speed at which the net force is zero, is not con-

stant. In fact, the critical wave-speed reduces from C = 1.6 to C = 0.7 as s increases from 0.05

to 0.15. These observations indicate that the wave-speed of one (C = 1.0), in contrast to common

belief and EBT[196], is not the critical wave-speed in terms of thrust generation, specifically for

waves with a high wave steepness (s > 0.05). In fact, the wave-speed at which a net thrust is

generated reduces by increasing the wave steepness and it can be less than one.
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Figure 4.7: Distribution of the turbulent kinetic energy (TKE) for case 2 (s = 0.075) at six wave-
speed, (a) forward traveling wave with C = −0.4, (b) motionless wavy channel (C = 0.0), (c)
backward traveling wave with C = 0.4, (d) backward traveling wave with C = 0.6, (e) backward
traveling wave with C = 0.8, and (f) backward traveling wave with C = 1.2. Reprinted from
[167].
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Figure 4.8: Distribution of the turbulent kinetic energy (TKE) for case 3 (s = 0.15) at six wave-
speed, (a) forward traveling wave with C = −0.4, (b) motionless wavy channel (C = 0.0), (c)
backward traveling wave with C = 0.4, (d) backward traveling wave with C = 0.6, (e) backward
traveling wave with C = 0.8, and (f) backward traveling wave with C = 1.2. Reprinted from
[167].
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In this study, the backward traveling wave deformations of the lower wall have resulted in the

reduction of the turbulence intensity in most of the region of the channel, including the vicinity

of the wave and far away from that (Fig. 4.7, 4.8). In addition to the traveling wavy deformation,

traveling wavy suction and blowing [197, 198, 199], and forcing [193] can also decrease turbulence

intensity by reducing the turbulent shear stress. Mamori et al. [198] observed that relaminarization

occurs when the maximum vertical speed, wave-speed and wavelength of the suction blowing wave

are in the range of uy ≈ 0.1, C ≈ 1.5 and λ ≈ 4, respectively, for a traveling wavy suction and

blowing channel with a low Reynolds number (Re = 2000). In fact, for traveling wavy forcing or

suction and blowing walls, effects of the wall deformations are not taken into account as the wall

was flat. In addition, in the previous studies at which the wall was deforming with a traveling wavy

motion [4, 185], the wave steepness was s ≤ 0.04 and the corresponding wave-speed at which a

significant reduction of TKE, i.e., relaminarization, was observed was near one (C ≈ 1). In this

study, the wave-speeds at which the TKE of the flow near the wave is qualitatively minimized are

C = 1.2, 1.2, and 0.6, respectively, for the wave steepness of s = 0.05, s = 0.075, and s = 0.15. In

fact, the critical wave-speed for TKE, the wave-speed at which the TKE is qualitatively minimized,

i.e., highly reduced in all regions of the channel, for cases 1 and 2 is similar to the study of [4], but,

for case 3, the critical wave-speed has become less than 1 as the higher wave speeds increase the

TKE near the traveling walls (Fig. 4.8). In summary, the critical wave-speed varies by increasing

the wave steepness, i.e., it can be less than one.

4.1.5 Limitation and future work

The main finding of this work was finding the effective wave speed at which the flow separation

was suppressed. The simulations were performed only for one Reynolds number. Therefore, main

limitation of this work was Reynolds number. The other limitations are the range of steepness and

wave speeds which can be a part of future work.
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4.2 Controlling flow separation of inclined plates by using backward traveling waves

In this section, effects of low-amplitude traveling waves on controlling flow separation for an

inclined plate at 10 degrees angle of attack is investigated. This section is organized as follows:

a background on active flow control over bluff bodies is provided in §4.2.1. The methods of

the simulations are presented in §4.2.2. The results of simulations are presented in §4.2.3 and

discussed in §4.2.4. The conclusion is presented in §4.2.5, and finally the limitation and future

work are presented in §4.2.6.

4.2.1 Background

It is known that traveling waves can reduce flow separation on flat plate at zero angle of attack

[200], over a turbulent channel [4], or a swimmer’s body. The traveling waves can reduce the

pressure drag as they create thrust force on a swimmer’s body or a wavy surface. Lighthill [40]

derived a scaling for the thrust force acting on the swimmers using elongated body theory (EBT).

Based on EBT, the instantaneous lift of an undulating slender body (low thickness) is scaled with

the added-mass force (reactive force). The reactive force produced by the undulation generates

a thrust force that increases as wave speed (C) is increased. The thrust generated by the waves

can increase the momentum of the fluid adjacent to the wavy surface as it was observed in the

previous study (see the profile of streamwise velocity near the wavy surface in Fig. 4.4a,b). The

momentum enhancement might help reducing flow separation over bluff bodies, e.g., when a plate

is at an angle of attack. This idea is tested by applying low-amplitude (0.01L) backward traveling

waves on an inclined plate at angle of attack of 10o, where the flow is massively separated. Effect

of different wave parameters, such as reduced frequency, and wavelength on flow separation and

aerodynamic performance were studied. The results of these simulations can be used as a guideline

for applying traveling waves for flow control.

4.2.2 Methods

Numerical simulations are performed for an inclined, three dimensional plate of aspect ratio

2 at the angle of attack of 10o. The angle of attack is chosen to be 10o because it is high enough
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to generate an unstable leading edge vortex (LEV) for a wing with an aspect ratio of 1.5 to 3

[173, 201]. The plate chord length is L, its thickness is 0.02L, and the spanwise length is 2L. The

free stream velocity (U ) and the chord length (L) are the reference velocity and length scales for

nondimensionalization, respectively. As shown in Fig. (4.1a), flow is in the frame (x, y, z) where

x, y, z are spanwise, vertical and streamwise coordinates, respectively. Simulations are performed

for both flat and undulatory inclined plates. The prescribed undulatory motion is a backward

traveling wave that starts from 0.1L of the leading edge with a linearly increasing amplitude toward

the trailing edge. To calculate the new position of the inclined plate under motion in the flow

frame, a local frame (X, Y, Z) is defined, which is rotated by the angle of attack (figure 4.1b). The

undulations h are prescribed perpendicular to the plate, i.e., along Y direction in the rotated frame,

based on the traveling wave equation:

h(Z, t) = a(Z) sin(Ω∗t∗ − 2πZ∗/λ∗) (4.4)

where h is the lateral undulation, Z∗ = Z/L is nondimensional chordwise length in local coor-

dinates, respectively, and a(Z) is the amplitude of the wave. The origin is at the top surface of

leading edge such that Z = 0 and Z = L are the leading edge and trailing edge, respectively.

Frequency (f ) and wavelength (λ) are the varying terms of the wave, where λ∗ = λ/L is nondi-

mensionalized with L. The amplitude envelope of the traveling wave is a(Z) = 0 for Z < 0.1L

and a(Z) = amax(Z − 0.1L)/0.9L for Z > 0.1L, where amax = 0.01L is the dimensional max-

imum amplitude of the wave. The reduced frequency is f ∗ = fL/U , Ω∗ = 2πf ∗, θ = 10o is

the angle of attack, and t∗ = tU/L is the nondimensional time where t is the dimensional time.

The maximum amplitude amax is chosen to be small because traveling waves generated by smart

structures have small amplitudes [202]. Herein, (∗) symbol denotes nondimensional parameters

including length, time, velocity, and vorticity. However, the notation for nondimensional pressure

and Q-Criterion are p, and Q, respectively.

The Reynolds number in this study isRe = LU/ν = 20, 000, (ν: kinematic viscosity). Varying
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parameters in these simulations are f ∗ and λ∗ which have the range of (0− 30) and (0.15− 2.0),

respectively. The Strouhal number, defined as St = 2amaxf/U is in the range of (0.0 − 0.6),

which is close to the range typically observed in the nature (0.2 − 0.7) [42]. More specifically,

the simulations for undulating cases are carried out for three reduced frequencies, f ∗ = (6, 20, 30)

and six wavelengths λ∗ = (0.15, 0.2, 0.5, 1.0, 2.0, 1000.0). The different f ∗, λ∗ for each case is

presented in Table 4.4. Case 1 is a flat inclined plate and case 9 (λ = 1000.0) is a pitching plate.

It should be noted that when the wavelength is increased, the wave speed (C/U = f ∗λ∗) increases

and the wave steepness (a∗max/λ
∗) decreases.

To discuss the impact of undulations on the flow over the plate, scalings for velocity, vorticity

and thrust are derived based on EBT [40] in appendix A. EBT is based on inviscid slender body

theory, i.e., the flow perturbation in the lateral direction is much smaller than the axial direction.

In addition, the pressure of the adjacent fluid to the swimmer scales with the reactive force that

is related to the fluid acceleration. Although EBT is based on inviscid flow assumption and low

velocity undulation, it will be demonstrated in section 4.2.3 that such scalings can predict the pat-

terns of the simulations for flow characteristics such as lateral velocity, out of plane vorticity, and

relative drag force compared to the flat inclined plate (thrust force) because the main mechanism

for thrust generation in EBT, i.e., the added mass, is dominant in high frequency undulations.

The computational domain of the simulation (figure 4.1a) is a cuboid with dimensions 3L ×

15L×15L, which is discretized with 81×421×301 grid nodes in x, y and z directions, respectively.

The thin plate is placed 5L from the inlet boundary and centered in the lateral (y) and spanwise (x)

directions as shown in figure 4.1a. To resolve the flow near the thin plate, a curvilinear grid is built

with a constant resolution of 0.0013L and 0.01L in a rectangle of 0.34L×L in y and z directions,

respectively, which contains the undulating plate and stretches out to the domain boundaries using

a hyperbolic function as shown in figure 4.1b. The grid resolution is constant in the x direction

and grid spacing normal to the wall is 1.5 wall units (y+ = uτδ/ν = 1.5, where uτ is the friction

velocity and δ is the normal distance of the IB node to the plate). The first grid point is within the

viscous sublayer (y+ < 5) of the turbulent boundary layer which is enough for reconstructing the
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velocity of the IB nodes with a linear interpolation citepope. The nondimensional time step for the

flat inclined plate is 0.0025 and for the rest of the cases is 1
240f∗

. The sensitivity of the simulations

to the grid and time-step size is investigated in the next subsection.

The boundary condition on the lateral and spanwise boundaries is the slip wall, the inlet is

uniform (plug) flow, and the outlet is a Neumann boundary with a correction to satisfy the conser-

vation of mass. All simulations in which the plate is undulating are initialized by the flow field of

the flat inclined plate where both leading and trailing edge vortices are shedding. Furthermore, the

hydrodynamic forces (lift and thrust) are computed by integrating the pressure and viscous forces

acting on the plate.
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Figure 4.9: The (a) pressure and (b) skin friction coefficient along the chord on the midplane of
the flat inclined plate for four different grids. The upper and lower curves are the coefficients on
the suction and pressure side of the plate, respectively. Reprinted from [158].

4.2.2.1 Grid and time-step sensitivity studies

A grid sensitivity study is performed to investigate the effect of mesh size and domain spanwise

size on the pressure distribution and skin friction for the flat inclined plate with four grids (figure

4.9a, b). In addition, a grid sensitivity study and a time-step sensitivity study are performed to

ensure that the results of the simulations are time-step and grid independent for undulating cases.

The details of grids, time-step, mean lift and drag coefficients with their corresponding root-mean-
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case grid Lx Nx Ny Nz ∆xmin ∆ymin ∆zmin δt∗ CD CL CDrms CLrms
(1) 1 3 81 421 301 0.0375 0.0013 0.010 0.0025 0.120 0.542 0.001 0.004
(1) 2 5 121 421 401 0.020 0.0013 0.005 0.0018 0.117 0.523 0.001 0.004
(1) 3 7 121 541 481 0.020 0.0009 0.0036 0.0012 0.115 0.514 0.001 0.005
(1) 4 3 105 541 481 0.020 0.0009 0.0036 0.0012 0.115 0.520 0.001 0.005
(4) 1 3 81 421 301 0.0375 0.0013 0.010 0.00020 0.060 0.631 0.492 1.732
(4) 2 5 121 421 301 0.020 0.0013 0.005 0.00020 0.063 0.611 0.451 1.623
(4) 1 3 81 421 301 0.0375 0.0013 0.010 0.00010 0.062 0.635 0.517 1.769

Table 4.3: The details of grid and time-step size for the grid sensitivity studies. A grid sensitivity
study for a flat inclined plate (case 1) with four grids is performed. A grid sensitivity study with two
grids as well as a time-step sensitivity study are performed for a high frequency undulating plate
(case 4 (f ∗ = 20, λ∗ = 0.2)). δt∗ is the nondimensional time step size, Lx is the domain spanwise
length, CDrms and CLrms are the rms of lift fluctuations for drag and lift coefficient, respectively,
and all hydrodynamic forces are nondimensionalized with ρU2L2 as the spanwise length of the
plate is 2L (plate area is L2).

squared (rms) of fluctuations are presented in Table 4.3. Grid 2 has a higher resolution along

the streamwise and spanwise directions, while grids 3 and 4 have a higher resolution in three

directions, i.e., the grid spacing has decreased to 0.53, 0.69, and 0.33 of that of grid 1 in x, y, z

directions, respectively. The spanwise length of the domain has increased from 3 for grid 1 to 5

and 7 for grids 2 and 3, respectively, whereas grid 4 has the same domain size as grid 1. In fact,

grid 4 has the same grid resolution near the thin plate as grid 3, while the same domain size as grid

1. Consequently, comparing the results of grids 1 and 4 (same domain size) reveals the effect of

grid resolution while comparing the results of grids 3 and 4 (same resolution) reveals the effect of

the spanwise length of the numerical domain.

The grid sensitivity study for the flat inclined plate shows the drag coefficient as well as the

rms of fluctuations vary less than 4% for all four grids (Table 4.3), and the lift coefficient decreases

slightly (less than 6%) as the grid becomes finer. Nevertheless, even the lift coefficient of the

coarsest grid (CL=0.54 for grid 1) is within the range of 0.48 − 0.54, reported for Reynolds num-

bers of 6 × 104 − 20 × 104 [173, 203]. Figure 4.9a shows the time-averaged pressure coefficient

(Cp = 2p/ρU2) on both sides of the plate for grids 1, 2, 3 and 4. As it can be observed, the pres-

sure coefficient is similar between the four grids. Figure 4.9b shows the skin friction coefficient
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Cf = 2
Re

∂u∗z
∂y∗

along the plate on both sides of the plate, where u∗z is the nondimensional streamwise

velocity. As it can be observed in figure 4.9b, the curves of Cf for all of the grids on the pressure

side of the plate are approximately identical, but there are some discrepancies on the suction side

where the flow is separated. The Cf of grids 3 and 4 shows slightly higher fluctuations of the skin

friction on the suction side as they have a higher resolution. These discrepancies, nevertheless,

does not influence the force coefficients (see Table 4.3) because the friction force is significantly

(an order of magnitude) smaller than the pressure force (Cf � Cp as observed in Fig. 4.9) and

also the magnitude of Cf on the suction side is small compared to the pressure side (see the profile

of Cf on both sides of the plate in Fig. 4.9b). Based on these results, i.e., similarity of the pressure

coefficients on the mid-plane for these grids (figure 4.9a), observing a very close lift coefficients

(less than 6% difference), and the similarity between skin friction coefficients (figure 4.9b), the

spatial and spanwise length are enough to capture the flow physics and forces.

Another grid sensitivity study is also carried out for an undulating case with grids 1 and 2 by

comparing the lift and drag coefficients and their corresponding rms fluctuations. The difference

between the aerodynamic performances of two grids are less than 6%, and the difference between

their rms is less than 10%. Based on the averaged forces and their rms we conclude that the

undulating simulations are grid insensitive as well. The time step sensitivity study is performed

with a time step size δt∗ = 1/480f ∗ which is half of the original time step size (δt∗ = 1/240f ∗)

used in this study. The averaged forces obtained from time step sensitivity study are similar and

the difference between the rms of the forces is around 5% (Table 4.3) which shows that the time

step is small enough to capture the correct physics.

4.2.3 Results

To see the effect of undulation on flow separation, time-averaged results, including mean flow

field and turbulence intensity are presented in subsections §4.2.3.1 and §4.2.3.2. The mean and

instantaneous aerodynamic forces are shown in §4.2.3.3 and compared with the scalings obtained

using EBT. Afterward, the trends observed for mean flow separation and aerodynamic forces for

different frequencies and wavelengths are discussed based on the phase-averaged flow in §4.2.3.4
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to identify the mechanisms affecting flow reattachment by the traveling waves.

4.2.3.1 The effect of traveling waves on the flow separation of the mean flow

In this section, the mean flow is visualized to see the impact of both frequency and wavelength

of traveling waves on flow separation. The impact of frequency and wavelength of the traveling

wave on flow separation is reported quantitatively by defining a reattachment length for the sepa-

rated flow. The reattachment length is defined here as the distance between the leading edge and

the point where the time-averaged streamwise velocity becomes greater than zero (uz > 0) on the

midplane. For oscillating plates, the reattachment point is found over the buffer zone of motion,

which contains all the points that the moving plate has passed through at least once in a cycle. This

buffer zone is shown schematically by the gray region in figure 4.11a. This buffer zone is defined

because the time averaging of values, e.g. velocities, is valid only for the fluid nodes and not the

solid nodes. Therefore, the time-averaged values in this study, including the pressure and velocity

values, are for the nodes which are out of this buffer zone. The reattachment point can be visually

detected by the streamline normal to the plate as shown schematically in figure 4.11a. The exact

reattachment length, denoted by R, is reported in Table 4.4.

To visualize the flow separation, the time-averaged streamlines and out-of-plane vorticity on

the midplane of the nine cases (Table 4.4) are presented in figure 4.10. The left column of figure

4.10 shows the cases with similar wavelength but different frequency, i.e., the effect of frequency,

while the right column shows the cases with similar frequency but different wavelength, i.e., the

effect of wavelength. Due to the sharp leading edge of the plate, the flow separates from the

leading edge for all cases and forms a clockwise recirculatory region near the leading edge (figure

4.10), which is depicted schematically in figure 4.11a. This recirculatory (separation) region is

represented by the negative (clockwise) vorticity (figure 4.10).

Over the flat inclined plate (figure 4.10a), the separated shear layer, which is inviscidly un-

stable, transitions to turbulence and reattaches near the trailing edge (0.93L) as the turbulent flow

energizes the near wall flow [204]. The traveling wave at low frequency f ∗=6 does not affect the

flow separation (figure 4.10b) and the reattachment length is similar to the flat inclined plate (Ta-
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(b)  case 2: �*=0.2, f*=6

(c)  case 4:  �*=0.2, f*=20

(a)  case 1: flat inclined (e)  case 3: �*=0.15, f*=20

(i)   case 9: pitching, f*=20

(h)  case 8: �*=2.0, f*=20

(f)   case 6:  �*=0.5, f*=20

(g)  case 7: �*=1.0, f*=20

(d)  case 5: �*=0.2, f*=30

Out-of-plane vorticity
-20 -10 0 10 20

Figure 4.10: Out of plane vorticity contours and streamlines of the mean flow on the midplane
for nine cases. The left and right columns show the effect of frequency and wavelength on flow
separation, respectively.

ble 4.4). By increasing f ∗ from 6 to 20 and 30 (C/U from 1.2 to 4 and 6), however, the separated

shear layer reattaches earlier at 0.78L and 0.70L from the leading edge (Table 4.4), respectively,
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case f ∗ λ∗ C/U CD CDf CDp CDrel CL R CDrms CLrms
1 0 - 0 0.120 0.011 0.109 0.000 0.54 0.93L 0.001 0.004
2 6.0 0.2 1.2 0.118 0.009 0.109 0.002 0.54 0.92L 0.031 0.110
3 20.0 0.15 3.0 0.080 0.007 0.073 0.041 0.70 0.73L 0.471 1.752
4 20.0 0.2 4.0 0.060 0.008 0.052 0.060 0.63 0.78L 0.492 1.732
5 30.0 0.2 6.0 -0.023 0.008 -0.031 0.143 0.71 0.70L 1.170 4.104
6 20.0 0.5 10 0.029 0.007 0.022 0.090 0.60 0.89L 1.442 8.015
7 20.0 1.0 20 -0.008 0.015 -0.023 0.127 0.57 0.57L 4.500 25.420
8 20.0 2.0 40 -0.043 0.016 -0.059 0.163 0.55 0.68L 9.412 51.501
9 20.0 - - -0.070 0.016 -0.086 0.190 0.54 0.82L 11.761 66.890

Table 4.4: Values of the mean drag coefficient (CD), relative drag coefficient (CDrel), viscous
drag (CDf ), form drag (CDp), relative drag (CDrel), lift coefficient (CL), the reattachment length
(R), and the rms values of drag and lift coefficients for different cases. The relative drag (CDrel)
is defined as the drag reduction relative to case 1 (flat inclined) along the plate chord (CDrel =
(Cflat inclined

D −Cundulating
D )/cos(θ)), which is a measure of the thrust force produced by the wave.

All force coefficients are nondimensionalized with ρU2L2 since the area of the plate is 2L2. Case
1 is the non-moving flat inclined plate and case 9 is the pitching inclined plate for which the wave
speed is not defined.

as observed in figure 4.10c,d. In fact, comparing the streamlines in the left column of figure 4.10

shows that increasing the wave speed by increasing the frequency in this range reduces flow sepa-

ration monotonically.

The wavelength variation at constant frequency did not produce a monotonic pattern for de-

crease/increase of the flow separation (right column of figure 4.10). Increasing λ∗ from 0.15 (case

3) to 0.2 (case 4) and 0.5 (case 6) at constant f ∗ = 20, i.e., increasing C/U from 3 to 4 and

10, increases the separation length from 0.73L to 0.78L and 0.89L, respectively (Table 4.4 and

compare figures 4.10e, c, and f). By increasing the wavelength further from 0.5 (case 6) to 1.0

(case 7) and 2.0 (case 8) (C/U from 10 to 20 and 40), however, the reattachment length reduces

to 0.57L and then increases to 0.68L (Table 4.4), respectively, as observed in figure 4.10f, g, h.

For the pitching plate (case 9), the flow separation increases compared to case 8 (λ∗ = 2.0), i.e.,

reattachment length increases to 0.82L (Table 4.4 and figure 4.10h,i). In summary, when the wave

speed increases by increasing the wavelength (left column of figure 4.10), in contrast to the trend
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Figure 4.11: (a) Schematic of the average flow field. The gray zone is the buffer zone of the motion
which includes all points the plate passes through at least once in a cycle. (b) The nondimensional
time-averaged streamwise velocity profile u∗z at midplane. Reprinted from [158].

observed for frequency (left column of figure 4.10), the flow reattachment length neither decreases

nor increases monotonically.

To clearly show the reattaching and reverse flows, figure 4.11b presents the time-averaged

streamwise velocity profile at six sections on the midplane. The time-averaged streamwise velocity

profile of cases 1 and 2 are approximately identical in all sections of figure 4.11b, which agrees

with the results of Table 4.4, indicating that low f ∗ (case 2) does not change the reattachment

length compared to the flat inclined one (case 1). As f ∗ increases to 20, the reverse flow increases
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Figure 4.12: Streamwise velocity field over the plane adjacent to the top surface of the buffer zone
of the motion. (a) flat inclined plate, (b) undulating plate case 2 (f ∗ = 6, λ∗ = 0.2), (c) undulating
plate case 4 (f ∗ = 20, λ∗ = 0.2), and (d) undulating plate case 6 (f ∗ = 20, λ∗ = 0.5). The green
rectangle is the plate. (e) The corresponding reattachment line plotted along the span of the plate
by detecting the zero streamwise velocity for these cases. x = 0 and x = 2L are tips, and x = L is
the midplane of the plate. (f) Time-averaged vortices on the suction side, including LEV, tip vortex
(TV) identified by Q-criterion with Q=10 and colored with nondimensional streamwise vorticity
(ω∗z ). Reprinted from [158].

slightly near the leading edge, in sections L1 and L2 of figure 4.11b, for cases 6 and 8, whereas it

decreases in section L2 for case 7 which has the minimum reattachment length (Table 4.4). Near

the trailing edge, at section L4 of figure 4.11b, the time-averaged streamwise velocity of cases 3 to

8 is higher than cases 1 and 2 as the flow has reattached earlier for cases 3 to 8 (Table 4.4).

To investigate the flow reattachment at different spanwise locations, the time-averaged stream-

wise velocity field on the plane that is adjacent to the top surface of the buffer zone of the motion

is shown for cases (1, 2, 4, 6) in figure 4.12(a, b, c, d). The velocity vectors in figure 4.12(a, b, c,

d) are the projected velocity field to this plane. It can be observed in figure 4.12(a, b, c, d) that the

reverse flow is higher near the midplane (x = L) for all cases and decreases towards the tips of the

plate as the spanwise velocity increases. Figure 4.12e shows the reattachment lines of cases (1, 2,
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4, 6), which are plotted by detecting the boundary of zero streamwise velocity of figure 4.12(a, b,

c, d), and the time averaged tip vortex (TV) and LEV of the flat inclined plate are visualized using

Q-criterion in figure 4.12f. The profile of the reattachment length (figure 4.12e) shows that the flow

reattaches earlier as we move toward the tips from the midplane due to the impact of the tip vortex.

The tip vortex, which has a higher streamwise vorticity compared to the LEV, induces a spanwise

velocity near the tips (figure 4.12(a, b, c, d)) which contributes to the earlier flow reattachment

near the tips of the plate [205].

(a) (b)

(c) (d)

Figure 4.13: Distribution of nondimensional turbulent kinetic energy in (a) flat inclined plate, (b)
undulating plate case 2 (f ∗ = 6, λ∗ = 0.2), (c) undulating plate case 4 (f ∗ = 20, λ∗ = 0.2), and
(d) undulating plate case 6 (f ∗ = 20, λ∗ = 0.5). The undulations increase the TKE over the plate,
but decrease it in the wake downstream of the trailing edge. Reprinted from [158].

4.2.3.2 The effect of traveling waves on turbulence intensity

Traveling waves are known to reduce the turbulence intensity of turbulent boundary layers,

e.g., turbulent channel flows [4, 185, 198], by decreasing the random component of the flow [198].

However, the effect of traveling waves on the turbulent intensity in external flows, e.g., flow over

an inclined plate, where the boundary layer is not fully turbulent, is unknown. Here, we investigate

the effect of traveling waves on turbulence intensity of the flow.

To investigate the effects of traveling waves on turbulence intensity, turbulent kinetic energy

(TKE) is shown for case (1, 2, 4, 6) in figure 4.13(a,b,c,d), respectively. The TKE of the flat

inclined plate is non-zero on the plate’s suction side where the separated shear layer mixes with
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reverse flow near the wall, but zero on the pressure side. Similarly, TKE is non-zero only on the

suction side of the low frequency case (case 2) (figure 4.13b). The TKE of the flow adjacent to

the both sides of the undulating plate increases as f ∗ and λ∗ increase (figure 4.13c,d). However, in

case 4 which has the lowest reattachment length among these cases, the TKE over the plate at the

separation zone is higher than other cases (figure 4.13c). In addition, the TKE is lower in the wake

on the downstream of the plate for case 4 and 6 compared to the flat incline plate.

y

x

z

*| *|x

(a) (b)

(c) (d)

Figure 4.14: 3D vortical structures visualized by the instantaneous isosurfaces of Q-criterion (Q =
20) from mid-plane to the tip. (a) flat incline plate, (b) undulating plate case 2 (f ∗ = 6, λ∗ = 0.2),
(c) undulating plate case 4 (f ∗ = 20, λ∗ = 0.2), and (d) undulating plate case 6 (f ∗ = 20,
λ∗ = 0.5). Reprinted from [158].

The decrease of TKE in the downstream wake for high frequency undulatory cases (figure

4.13c,d) can also be observed by the instantaneous three dimensional vortical structures. Figure

4.14 shows the 3-D vortical structures visualized by the isosurface of Q-criterion. Comparing

the wake of cases 4 and 6 with the flat inclined one (figure 4.14a, c, d) reveals that the number

of vortical structures have decreased for cases 4 and 6 compared to case 1, which confirms the

decrease of turbulence intensity in the wake (figure 4.13a,c,d). Furthermore, it can be observed

that the shear layer separates from the sharp leading edge and breaks down into small vortices as it
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becomes unstable. The vortical structures of the flat inclined plate resemble the vortices visualized

by [201] whose plate had the same aspect ratio (=2) but the angle of attack was 8o. It can also be

observed that the flow is more spread laterally at the midplane compared to the regions near the

tips of the plate.

4.2.3.3 The effect of traveling waves on the aerodynamic performance

The flow visualizations in the previous section showed that traveling waves can reduce flow

separation, which can impact both of the drag and lift forces. A reduction in drag force is expected

because backward traveling waves are known to generate thrust which propels aquatic swimmers

forward [40, 206, 207]. However, the effect of traveling waves on the lift coefficient cannot be

predicted purely based on the thrust generation because traveling waves completely change the

pressure field by creating a low pressure region on both sides of the plate at high frequencies as

will be discussed below. In addition, the effects of traveling waves on the mean and instantaneous

aerodynamic forces are discussed by comparing the trend of computed forces and the analytically

derived ones using EBT [40].

To quantify the aerodynamic performance, the drag (CD), relative drag (CDrel), lift (CL) co-

efficients, and the root-mean-square (rms) of fluctuations of drag and lift coefficients are reported

in Table 4.4. Drag coefficient is the total nondimensional drag force (CD = Fdrag/(ρU
2L2))

that consists of the viscous (CDf ) and form (CDp) drag acting on the plate along the incoming

flow (z direction), and lift coefficient (CL = Flift/(ρU
2L2)) is the total nondimensional force

acting normal to the incoming flow in the y direction. The relative drag coefficient for each

case is defined as the drag reduction relative to the flat inclined case along the plate (CDrel =

(Cflat inclined
D −Cundulating

D )/cos(θ)) which is almost equivalent to the thrust force produced by the

oscillations. The time-averaged results for the oscillating plates are averaged over 60 cycles and

the averaging is started after 50 cycles.

Table 4.4 shows that the viscous drag is about 10% of the form (pressure) drag. When the plate

undulates at a high reduced frequency (f ∗ ≥ 20), e.g., cases (3-8), the ratio of the viscous to the

form drag increases because the form drag is reduced by the undulations (undulations generate
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thrust) while viscous drag is negligibly changed. In fact, the change in the viscous drag with

respect to the flat inclined plate is less than 0.005 for all cases (|∆CDf | < 0.005, where ∆CDf =

Cflat inclined
Df

− Cundulating
Df

is the difference between the viscous drag of the flat inclined plate and

an undulating one). Consequently, the reduction in form drag accounts for the majority of the

reduction in drag coefficient (CD).

Comparing the time-averaged values, Table 4.4 shows that in case 2 (f ∗=6, C/U=1.2), the

traveling wave does not improve the aerodynamic performance compared to the flat inclined plate.

However, increasing the wave speed by increasing the reduced frequency to f ∗=20 (C/U=4) and

f ∗ =30 (C/U=6) increases the lift force by 16.7% and 31.4% and decreases the drag force by 50%

and 119.2% (generates thrust), respectively. It is interesting to note that when the traveling wave

generates thrust (positive relative drag in Table 4.4) at high f ∗, e.g., cases 3-8, a jet-like profile

velocity is observed in the wake (sections L5 of figure 4.11b). In addition, the thrust produced

in case 5, 7, 8 and 9 is high such that the drag (CD) is negative (thrust-type). In these cases a

streamwise flow can be observed in the middle of plate (section L3 of figure 4.11b), i.e., jet-like

profile is initiated earlier (closer to the leading edge).

When the frequency is kept the same (f ∗ = 20), increasing the wave speed by increasing the

wavelength from λ∗=0.15 (C/U=3) in case 3 to λ∗=0.2 (C/U=4) in case 4 decreases the lift by 10%

(case 3 is 29% higher than the flat inclined plate) but increases the relative drag by 33%. Similarly,

when the wave speed is further increased by increasing the wavelength to 0.5 in case 6 (f ∗=20,

C/U=10), lift decreases but thrust (relative drag) increases compared to case 4. Nevertheless, CL

is still 9.2% higher than the lift of the flat inclined plate. Similar results such as the increase of

thrust (relative drag) and the decrease of lift are observed by increasing the wavelength to 1.0 and

2.0 in cases 7 and 8, respectively. It can also be observed that the pitching motion (case 9) produces

the maximum relative drag but it does not change the lift compared to the flat inclined case.

Theoretically, the time-averaged thrust (relative drag) increases by both frequency and wave-
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length as wave speed C increases according to EBT [40]—see appendix A for the derivation:

CT = 0.11π(2πf ∗a∗max)
2(1− (

1

λ∗f ∗
)2) (4.5)

Note that 1/(λ∗f ∗) = U/C. The calculated relative drag (Table 4.4) follows the trend predicted

by EBT, i.e., the thrust (relative drag) increases by increasing wave speed through increasing f ∗

and/or λ∗. However, the lift force does not follow the same trend.

The lift force of cases (3-7) (undulating at high f ∗) has increased compared to the flat inclined

plate (case 1) as observed in Table 4.4. A simple explanation is that the traveling waves on the

plates generate thrust along the Z direction (figure 4.1b) which has a component in the lift (y)

direction, i.e., enhances lift. The contribution of thrust force, generated by traveling waves, to the

lift coefficient (denoted by ∆CL here) can be approximated by the component of the thrust force

in the lift (y) direction, i.e., ∆CL = CT sin(θ) where θ is the angle of attack (the angle between Z

and y direction in figure 4.1). Therefore, for case 3, ∆CL = (0.06) × (sin(10o)) ≈ 0.005. This

is two orders of magnitude smaller than the lift enhancement of cases (3-6) (≈0.1) relative to the

flat inclined plate (Table 4.4). Therefore, the y component of the generated thrust is not the main

reason for such lift enhancement. The lift enhancement is due to the modification of the pressure

distribution around the plate, which is further investigated below.

To see how the lift force along the plate is modified by the traveling waves, the mean spanwise

averaged lift distribution along the plate for the flat inclined plate and three undulating case (2,

4, 6) is presented in figure 4.15a. To see the spatial dependency of the lift force, the spanwise

averaged are shown along with the lift coefficient at three sections across the span of the plate,

X = 0.1L,X = 0.3L,X = L, where X is the spanwise distance between the section and the tip

of the plate (see figure 4.12e). It can be observed that the range of spanwise variation of the lift

is higher in the recirculatory (separated) zone (see the error bars (vertical lines) in figure 4.15a)

because the lift is high on the midplane but decreases more near the tips of the plate (X = 0.1L)

due to the tip vortex (figure 4.12f) [205, 208]. In addition, it can be observed that these variations
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Figure 4.15: (a) spanwise averaged distribution of the lift coefficient along the plate with three
points along the span of the plate. ◦, � and + symbols are the lift coefficient at 0.3L, L (mid
plane) and 0.1L from the tip of the plate, respectively, for cases (1, 4, 6). (b) to (e) Time-averaged
pressure field at midplane for cases (1, 2, 4, 6), respectively. (f) Time history of cycle averaged lift
(upper curve) and drag coefficient (lower curve), for cases (2, 4 and 6). Here, T is the period time
of the wave for undulating cases which is 1/f , and T is defined as T = L/U for flat inclined plate.
Reprinted from [158]

are higher for the undulating cases.

To show that the lift force along the plate has reached quasi-steady state, the time histories of

the cycle averaged lift and drag coefficients for flat inclined and three undulating case (1, 2, 4, 6)

are shown in (figure 4.15f). Figure 4.15f shows that the cycle averaged forces for undulating cases

become steady after about 12 cycles. The lift forces of undulating cases (2, 4 and 6) plotted in
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figure 4.15a are averaged over 20 cycles, and averaging is started after 50 cycles as the forces are

steady as shown in figure 4.15f. The time averaging for flat inclined plate is performed for 10t/T

which is equivalent to 4000 iterations.

Comparing the mean spanwise averaged lift coefficient of undulating plates with the flat in-

clined one (figure 4.15a) shows that CL does not change significantly for the low frequency undu-

lating case (case 2), but it becomes higher near the leading edge and slightly decreases near the

trailing edge for high frequency undulatory cases. This indicates that the total lift of case 4 and

6 has increased compared to the lift of the flat inclined plate (case 1) due to the increase of the

generated lift near the leading edge. In fact, case 4 that has the largest CL near the leading edge

(figure 4.15a) has the highest total lift coefficient among these four cases (Table 4.4).

The lift of high f ∗ cases (case 4 and 6) has increased near the leading edge because of the lower

pressure in the recirculatory zone relative to the pressure side (figure 4.15d,e). The reason for the

slightly lower lift coefficient of the high f ∗ cases in the vicinity of the trailing edge (figure 4.15a),

is the symmetric time-averaged pressure distribution (figure 4.15d,e). It can be observed in figures

4.15d,e that a low pressure exists on both suction and pressure sides of the undulating plate near

the trailing edge area, which can be explained by the scaling of pressure on an undulating surface

at high frequency. The pressure on an undulating inclined plate is generated by two mechanisms:

(a) the angle of plate which pushes the incoming flow downward (downwash) generating a higher

pressure on the lower surface and a lower pressure on the upper surface; and (b) the pressure

created by the undulations of the plate which accelerates the fluid near the plate (appendix A.2).

The pressure due to undulations (undulating pressure) increases as frequency increases. In fact,

for the undulating pressure, the normal component of the time-averaged pressure gradient along

the lateral direction pointing outwards from the plate ∂p̄/∂n, near the trailing edge, scales with

(a∗max)
2(f ∗ − 1/λ∗)2, which is derived by simplifying the time-averaged Navier-Stokes equations

(see appendix A.2). Note that the positive ∂p̄/∂n indicates that the pressure increases as we move

away from the plate in the normal direction, i.e., a low pressure near the undulating plate. At high

frequencies (case 3 to 8), the undulating component dominates the pressure created by downwash
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(flat inclined plate). In fact, the magnitude of pressure near the trailing edge of an undulating plate

at higher frequencies is one order of magnitude larger than the pressure over the trailing edge of

the flat inclined plate (case 1). Therefore, the pressure near the trailing edge on both sides of the

plate becomes similar at high f ∗, i.e., results in a low symmetric time-averaged pressure distribu-

tion (figure 4.15d,e), because (a) the pressure at the trailing edge is dominated by the undulating

pressure at high f ∗ and (b) the undulating pressure is similar (low) on both sides of the plate.
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Figure 4.16: (a) The effect of wavelength on the instantaneous lift coefficient: instantaneous lift
coefficients for three cycles at quasi steady state for four oscillating cases with the same f ∗ = 20,
case 3 (f ∗ = 20, λ∗ = 0.15), case 4 (f ∗ = 20, λ∗ = 0.2), case 6 (f ∗ = 20, λ∗ = 0.5), and case 7
(f ∗ = 20, λ∗ = 1.0). (b) The effect of frequency on instantaneous lift coefficient: instantaneous lift
coefficient for three cycles at quasi steady state for three undulating cases with the same λ∗ = 0.2
and different f ∗, case 2 (f ∗ = 6, λ∗ = 0.2), case 4 (f ∗ = 20, λ∗ = 0.2), and case 5 (f ∗ = 30, λ∗ =
0.2). Here, T = 1/f is the period time of the wave for undulating cases. Reprinted from [158]

Although EBT does not predict any mean lift generation when the plate is undergoing an undu-

latory oscillation, it predicts a sinusoidal profile for instantaneous lift and thrust, similar to aquatic
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swimmers [42, 189], which increases the rms of the forces. The rms values of lift and drag coef-

ficient are presented in Table 4.4. It can be observed that the (rms) values for fluctuations of both

lift and drag coefficient are small for the flat inclined plate (CLrms = 0.004, CDrms = 0.001).

When the plate undulates with a low frequency (case 2: f ∗ = 6, λ∗ = 0.2), the rms values

increase compared to the flat inclined plate, but the rms values are still less than mean values

(CLrms/CL ≈ 0.2 and CDrms/CD ≈ 0.25). By increasing the reduced frequency, however, in case

4 (f ∗ = 20, λ∗ = 0.2), CLrms/CL and CDrms/CD increase approximately to 3 and 6, respectively.

It can be observed that when the wavelength increases, the rms values increase more intensely,

e.g., in case 6 (f ∗ = 20, λ = 0.5) CLrms/CL increases to 50. The high rms of the forces in high

frequency oscillating cases (3-9) can be explained by the instantaneous forces. The effect of λ∗

and f ∗ on the instantaneous lift coefficient after reaching quasi steady state is shown in figure

4.16a and b, respectively. When the frequency increases, the intensity of the fluctuations increases

(figure 4.16b) and consequently the rms of the forces increases as well (Table 4.4). Increasing the

wavelength, however, increases the amplitude of the forces more intensely (figure 4.16a), e.g., the

amplitude of the lateral force has increased from 14 to 37 by increasing the wavelength from 0.5 to

1.0. It can be noted that although the net reduced drag generated by the wave is higher for case 5

than cases 6 and 7 (Table 4.4), but the amplitude of the fluctuation is higher for cases 6 and 7. The

observed trends are consistent with the theoretical trend for the amplitude of instantaneous lateral

(reactive) force, according to EBT [40]. In fact, the amplitude of the lateral force of an undulating

plate scales with O(λ∗(f ∗ − 1/λ∗)2), according to equation A.26 derived in appendix A.

4.2.3.4 Traveling waves and the mechanisms of flow reattachment

Traveling waves were shown to reduce turbulence intensity in the wake but increase it near the

plate (section 4.2.3.2). In addition, they were shown to reduce flow separation of the mean flow

at high frequency while the wavelength effect was not monotonic (section 4.2.3.1). To explain

the effect of wave parameters on turbulence intensity, reattachment, and detachment of the flow,

the phase averaged flow along with their corresponding scalings, e.g., lateral velocity (uY ), are

investigated in this section, which will reveal the main mechanisms governing flow reattachment
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Figure 4.17: The effect of frequency on the phase-averaged flow field of undulating cases with
similar wavelength (λ∗ = 0.2) on the midplane. The first row for each case visualizes the contours
of out-of-plane vorticity and the footprint of Q-criterion (Q = 40) by black lines for phase angle
t/T = 0. The second to fifth rows for each case visualize the vorticity and velocity vectors of
the flow close to the plate for four phase angles (a0-a4) is the undulating plate case 2 (f ∗ = 6,
λ∗ = 0.2), (b0-b4) is the undulating plate case4 (f ∗ = 20, λ∗ = 0.2), and (c0-c4) is the undulating
plate case 5 (f ∗ = 30, λ∗ = 0.5). The inset shows the shear layer vorticity over the pressure side,
and the plate vorticity over the pressure and suction sides of the plate. The visualizations of the
second to the fifth rows of each case is for phase-angle of (1) t/T=0.0; (2) t/T=0.25; (3) t/T=0.5;
and (4) t/T=0.75, respectively. T = 1/f is the period of each case.

by traveling waves.

Figures 4.17 and 4.18 represent the effect of frequency and wavelength, respectively, on the

phase-averaged flow field visualized by out-of-plane vorticity and velocity vectors for four phase

angles. The first row of each case (figures 4.17,4.18) shows the contours of vorticity and the
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case 6 (f*=20, �*=0.5) case 7 (f*=20, �*=1.0) case 8 (f*=20, �*=2.0)
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Figure 4.18: The effect of wavelength on the phase-averaged flow field of undulating cases with
similar frequency (f ∗ = 20) on the midplane. The first row for each case visualizes the contours
of out-of-plane vorticity and the footprint of Q-criterion (Q = 40) by black lines for phase angle
t/T = 0. The second to fifth rows for each case visualize the vorticity and velocity vectors of flow
close to the plate for four phase angles (a0-a4) is the undulating plate case 6 (f ∗ = 20, λ∗ = 0.5),
(b0-b4) is the undulating plate case 7 (f ∗ = 20, λ∗ = 1.0), and (c0-c4) is the undulating plate case
8 (f ∗ = 20, λ∗ = 2.0). The inset shows the shear layer vorticity over the pressure side, and the
plate vorticity over the pressure and suction sides of the plate. The visualizations of the second to
fifth rows of each case is for phase-angle of (1) t/T=0.0; (2) t/T=0.25; (3) t/T=0.5; and (4) t/T=0.75,
respectively. T = 1/f is the period of each case. Reprinted from [158]

footprints of the 3D vortices identified by the isolines of Q-criterion for the first phase angle (t/T =

0). The four rows below it show the velocity vectors and vorticity contours near the plate at four

other time instants in the cycle. In all cases, an attached and a separated shear layer is formed on
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the pressure and suction sides of the plate, respectively. The shear layer on the suction side, which

has been separated at the leading edge, forms an LEV that sheds into the wake.

In addition to the vortices shed to the wake by the LEV, there are vortices on the plate that

travel by the traveling wave along the plate and into the wake (see figure 4.17a0). The vorticity of

these vortices (the nondimensional out-of-plane vorticity of the fluid on the plate) is composed of

the plate vorticity (∂u
∗
Y

∂Z∗
) and the shear layer vorticity (∂u

∗
Z

∂Y ∗
), i.e., out-of-plane vorticity= − in-plane

vorticity= −ω∗x = −(
∂u∗Y
∂Z∗
− ∂u∗Z

∂Y ∗
). The plate vorticity is obtained by taking the derivative of the

lateral velocity with respect to the streamwise length (∂u
∗
Y

∂Z∗
) because the plate has no streamwise

motion (uZ = 0). The plate vorticity scales with O((a∗max/λ
∗)(f ∗ − 1/λ∗)) while the shear layer

vorticity scales with O(
√
Re) for an attached boundary layer of the plate based on Blasius skin

friction coefficient [209]—see appendix A.

If the flow is separated, e.g., on the suction side, the shear layer vorticity is low and the plate

vorticity dominates. Consequently, the vorticity of the fluid near the plate follows the same trend

as the plate vorticity on the suction side as observed in figures 4.17 and 4.18, e.g., the vorticity on

the suction side is counter-clockwise (positive) and clockwise (negative) on the peaks and valleys

of the wave, respectively, similar to the plate vorticity for all cases (figures 4.17 and 4.18). On

the pressure side, however, the shear layer is attached and creates a counter-clockwise (positive)

vorticity. The shear layer vorticity is approximately 0.3
√
Re ≈ 45, which is much higher than

the plate vorticity at low frequency (case 2) that is approximately 4π2(a∗max/λ
∗)(f ∗ − 1/λ∗) ≈

2. Similarly, for case 8 which has a high wavelength (λ∗) the approximation of plate vortic-

ity (∂u∗Y /∂Z
∗ ≈ 4π2(a∗max/λ

∗)(f ∗ − 1/λ∗) ≈ 5) is much smaller than shear layer vorticity

(∂u∗Z/∂Y
∗ ≈ 0.3

√
Re ≈ 45). Therefore, no clockwise (negative) vorticity is observed on the

valleys on the pressure side for case 2 (figure 4.17a0-a4) and case 8 (figure 4.18c0-c4). For other

cases (4, 5, and 6), however, the clockwise (negative) vorticity is observed on the pressure side for

cases 4, 5 and 6 on the valleys of the wave close to the plate while the counter-clockwise (positive)

shear layer is still present and stretches from the leading to the trailing edge on the pressure side

(figure 4.17b,c and figure 4.18a). This agrees with the trend predicted by the scaling because the
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order of plate vorticity increases by the increase of f ∗ and the decrease of λ∗ (cases 4, 5, 6) and

becomes similar to the order of the shear layer vorticity on the pressure side.

The counter-clockwise and clockwise vortices, which are on the suction side for case 2 and

on both sides for cases 4 to 8, travel on the peaks and valleys of the traveling wave, respectively,

to the wake (figure 4.17a0). The counter-clockwise (positive) vortices, identified by the isolines

of Q-criterion, are visible in the wake of case 2 (figure 4.17(a0)), but neither the clockwise nor

the counter-clockwise vortices are observed in the wake (after the trailing edge) of cases 4 to 8

(figure 4.17(b,c), figure 4.18(a,b,c)). The reason for the annihilation of these vortices in the wake

of cases 4 to 8 is the interaction of the clockwise and counter-clockwise vortices due to the sudden

reduction in their speed in the wake. In fact, these vortices are convected on the peaks and valleys

of the wave toward the wake with the wave speed C. However, their speed suddenly reduces when

they reach the wake as the speed in the wake is much smaller (U�C). Therefore, shortly after a

clockwise vortex enters the wake and slows down, the adjacent counter-clockwise one (traveling

with the wave speed C) reaches the wake as well. Due to the short distance of these vortices,

afterwards, they interact and cancel out each other. For case 2, the clockwise (negative) vortices

are dissipated in the wake due to the interaction with the turbulent flow of the wake. However, the

attached shear layer on the pressure side amplifies the counter-clockwise (positive) ones, so they

are still visible in the wake (figure 4.17(a0)). Note that, for values of Q> 10 at which the coherent

structures can be distinguished, the annihilation of these vortices is found to be independent of the

value of Q used for the visualization (Q=40 in figures 4.17 and 4.18). The cancellation of these

vortices in the wake for C � U is the main reason for the observed lower turbulence intensity in

the wake of traveling waves (§4.2.3.2).

The flow reattachment can better be observed by the phase-averaged velocity field, which is

shown for four phase angles in figures 4.17 and 4.18. The velocity and vorticity above the trailing

edge and into the wake of case 2 is very small (figure 4.17a), which indicates that the plate does

not impart enough momentum into the flow because of its low frequency (f ∗ = 6). By increasing

the frequency to f ∗ = 20 in case 4 both the velocity in the wake above the trailing edge and the
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plate vorticity (figure 4.17b1-b4) are much higher than case 2 (figure 4.17a1-a4), which indicates

a higher momentum transfer into the wake because of higher f ∗ of the plate. By increasing the

frequency further to f ∗ = 30 in case 5, the streamwise velocity increases near the trailing edge

(figure 4.17c1-c4) compared to case 4 (figure 4.17b1-b4), but the streamwise flow does not change

near the leading edge, i.e., the reverse flow can be observed in all phase angles near the leading

edge (figure 4.17). However, increasing the wavelength from 0.5 to 1.0 or 2.0 (figure 4.18) to-

tally removes the reverse flow near the leading edge in case 7 (figure 4.18b3) and case 8 (figure

4.18c2) which is probably due to the high instantaneous reactive force generated at high wave-

lengths (figure 4.16 and eqn. A.26) that changes the flow field from the leading to the trailing edge.

In addition, by increasing the wavelength, both the lateral and streamwise velocities increase at

the trailing edge (figure4.18b,c) where the increase of streamwise velocity was also observed as a

jet-like profile of the time-averaged velocities in figure 4.11b at section L5.

When f ∗ increases from 6 to 20 or 30 in cases 3 to 8, considerable thrust is generated by

the wave (see CDrel in Table 4.4) and flow reattaches earlier compared to cases 1 and 2 (see R

Table 4.4). Note that the increase in thrust is equivalent to the increase in the axial momentum of

the wake here (eqn. A.30) as shown by a simple control volume analysis in Appendix A. Such a

reduction in flow separation by increasing the frequency is, therefore, due to the increase in the

transfer of axial momentum to the fluid by the undulations similar to the steady blowing technique

in flow control [6]. Nevertheless, higher axial momentum is not the only consideration for reducing

flow separation based on our results. Case 8 compared to case 7 and also in case 6 compared to

case 4 have a higher λ∗ (similar f ∗) but a higher separation as well (Table 4.4). Higher λ∗ indicates

a higher momentum transfer to the fluid according to Eqns. 4.5 and A.30 as well as the results of

relative drag in Table 4.4, i.e., the lower axial momentum is not the reason for larger reattachment

length for case 8 compared to case 7 and also for case 6 compared to case 4 (Table 4.4). It is

probably due to the higher lateral velocity as it affects the spreading of the wake.

Based on EBT, the lateral velocity of a fluid particle over an undulating plate scales with

O(a∗max(f
∗ − 1/λ∗))—see appendix A for details. This scaling shows that at a given reduced fre-
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quency and amplitude, the magnitude of lateral velocity increases as wavelength increases. When

the magnitude of the lateral velocity increases, the lateral spreading of the flow increases which

tends to increase the separation. Here, the spreading of the wake is approximated as the ratio of

the height (H) of the wake at the trailing edge to the chord length. The height (H) is defined as

the distance between the plate trailing edge and the point above the trailing edge (y-direction) at

which the out-of-plane vorticity is close to zero. The spreading of the wake is 0.44, 0.48 and 0.51

for cases 2, 4 and 6, respectively, which confirms that the spreading of the wake increases as the

lateral velocity is increased by either wavelength or frequency. Herein, the vorticity threshold used

for distinguishing the height of the wake is a small value (out-of-plane vorticity = 1.0) to filter out

the vorticity produced by numerical perturbations. Our observation reveals that choosing a higher

threshold such as out-of-plane vorticity = 3.0 does not change the pattern observed above, i.e., the

spreading of the wake increases by the increase of either wavelength or frequency.

4.2.4 Discussion

Previous studies on flow control using surface morphing actuators on airfoils [210, 7] explained

reattachment mechanism as follows: the oscillation amplifies the Kelvin-Helmholtz instability,

which leads to the earlier roll up of the vortices and generation of a spanwise large coherent struc-

ture (LCS). Finally, the break-up of the LCS energizes the near wall flow and improve flow reat-

tachment. They also reported that the reverse flow near the leading edge of the airfoil will be

reduced gradually by transferring the high momentum flow of the shear layer to the surface. Here,

there is no such a vortex roll-up as flow separates from the sharp leading edge. In addition, there

is no such an LCS over the plate as observed in figure 4.14a-d for the instantaneous flow of cases

1, 2, 4 and 6. Also, the presence of a jet-like streamwise velocity adjacent to the plate and the fast

transition of reverse flow to streamwise flow near the trailing edge has not been reported in surface

morphing studies. In this study, therefore, the reattachment is due to the momentum transfer into

the flow by the traveling waves, and the amplification of the Kelvin-Helmholtz instability near the

leading edge does not contribute to flow reattachment.

Studies on aquatic swimmers have reported that the viscous force increases due to undulation,
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i.e., viscous force of a swimming fish is higher than a translating fish stretched straight [211, 190,

48]. However, it can be observed in Table 4.4 that the viscous drags of cases 2 to 6 are smaller than

the flat inclined plate (case 1), whereas cases 7 and 8 are higher, i.e., high frequency undulations

have decreased the viscous drag in cases 3-6. The reason for the reduction of the viscous drag

in cases 3 to 6 compared to case 1 might be the stronger clockwise vortices on the plate whose

(negative) vorticity is much higher than the shear layer vorticity on the pressure side as discussed

in the previous section (figures 4.17,4.18). These clockwise vortices may reduce the wall shear

stress on the peaks of the wave on the pressure side, which may consequently decrease the CDf

for these cases. Nevertheless, such changes in the viscous drag CDf are negligible compared to the

variations of the pressure drag CDp as observed in Table 4.4. In fact, the thrust generated by the

undulations (CDrel) mainly reduces the pressure drag (Table 4.4).

Thrust increases by increasing the wave speed C/U = f ∗λ∗ according to EBT (Eqn. 4.5).

Taking into account that the increase in thrust is equivalent to the increase of axial momentum in

the wake (see Eqn. A.30 in Appendix A), therefore, the axial momentum exerted by a traveling

wave on a fluid increases by increasing the wave speed. The higher axial momentum by increasing

C/U is thought to decrease flow separation. However, the higher separation of flow in case 6

compared to cases 3 and 4, and in case 8 compared to case 7 shows that separation cannot be

decreased just by increasing C/U as the waves with C/U = 3 (case 3) and C/U = 4 (case 4)

have lower separation than the waves with C/U = 10 (case 6). These observations are in contrast

to the observation of flow reattachment over wavy walls [200, 4] or aquatic swimmers [48, 189]

for C/U > 1. This is probably due to the fact that the nature of flow separation and reattachment

over an inclined plate is different from that of a plate at zero angle of attack. Over a wavy plate at

zero angle of attack [4, 200], flow separates over the valleys of the waves. In this study, however,

flow separates from the leading edge due to the plate angle of attack (AOA = 10o) and the sharp

leading edge of the plate. Increasing λ∗ increases the wave speed (C/U ) and decreases the wave

steepness (a∗max/λ
∗). Increasing the wave speed and decreasing the wave steepness reduces flow

separation over the valleys of the waves [4] but does not necessarily reduces flow separation at the
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leading edge of an inclined plate.

As discussed above, C/U is not the only parameter that affects flow separation on an inclined

plate. In fact, both f ∗ and λ∗ impact the flow separation in highly separated flows. Increasing

frequency f ∗ from 6 to 20 and 30 reduces flow separation (Table 4.4). Increasing λ∗, however,

does not result in monotonic reduction in flow separation, e.g., increasing the wavelength from

0.5 to 1 reduces flow separation, but increasing it from 0.2 to 0.5 increases flow separation (Ta-

ble 4.4). This indicates that flow separation is not directly related to the thrust generated by an

undulating inclined plate because thrust increases by increasing f ∗ and λ∗ as shown by Eqn. 4.5

or the computed relative drag in Table 4.4. In fact, based on our results (figures 4.17, 4.18 and Ta-

ble 4.4), both the generated thrust and the lateral velocity influence flow reattachment: thrust tends

to reduce flow separation by increasing the axial momentum (see Eqn. A.30 and related deriva-

tion in Appendix A), whereas the lateral velocity increases flow separation by spreading the wake.

Therefore, in some cases, e.g., case 4, 5 and 7, the effect of axial momentum on flow separation

dominates the lateral velocity, and in some cases vice versa, e.g., cases 6 and 8. Note that it is

impossible to generate thrust without lateral undulations with a traveling wave because a traveling

wave by definition (Eqn. 4.4) only vibrates in the lateral direction. As discussed previously, the

lateral velocity scales with O(f ∗ − 1/λ∗) (Eqn. A.23) which also appears in scaling of thrust, i.e.,

O(f ∗2 − 1/λ∗2) = O(f ∗ − 1/λ∗)(f ∗ + 1/λ∗) according to Eqn. 4.5. Due to the non-linearity of

flow separation and the interdependence of lateral velocity and thrust, it might not be possible to

predict the flow separation just by the scalings of lateral velocity and thrust a priori. Nevertheless,

these scalings provide insights and general guidelines for reducing flow separation.

As a final note, low-amplitude traveling waves, which are recently generated by piezoelectric

actuators [202], are used in this investigation. It is expected that such low-amplitude traveling

waves reduce flow separation on an inclined plate for angles of attack lower than 10 degrees be-

cause separation is known to decrease with the decrease of angle of attack for flat inclined plates

[173]. For higher angles of attack (AOA > 10o), however, flow separation and drag coefficient

are higher. Therefore, these low-amplitude traveling waves might not reattach the flow. For higher
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angles of attack, nevertheless, waves with higher amplitudes might reattach the flow.

4.2.5 Conclusions

The impact of low-amplitude traveling waves on flow separation and aerodynamic perfor-

mances of a thin plate at the angle of attack of 10o is investigated numerically. In addition, the

scaling of lateral velocity, thrust, and vorticity are derived based on EBT to support and provide

insight into the numerical results.

The results of simulations show that flow separation, drag, and lift are not changed via a trav-

eling wave with a reduced frequency f ∗ = 6 and wavelength λ∗ = 0.2, whereas the drag decreases

by 50% and the flow reattaches earlier when the reduced frequency and consequently the wave

speed increases (f ∗ = 20;λ∗ = 0.2). Further increase of wave speed by increasing frequency

from 20 to 30 reduces flow separation further and decreases drag such that the wave produces a

net thrust. Increasing the wavelength to 0.5 from 0.2 with frequency f ∗ = 20 increases the flow

separation, although the drag decreases 75% compared to the flat inclined plate. Similarly, reduc-

ing wavelength from λ∗ = 0.2 to λ∗ = 0.15 reduces flow separation and decreases drag by 33%

compared to the flat inclined plate. Increasing the wave speed considerably by increasing wave-

length from λ∗ = 0.5 to λ∗ = 1.0− 2.0, interestingly, decreases flow separation and the drag such

that a net thrust is generated. Based on these results, the wave speed, which depends on f ∗ and λ∗

according to C/U = f ∗λ∗, should be high enough to reduce flow separation and drag. However,

increasing the wave speed does not necessarily reduce flow separation. Consequently, it can be

concluded that the wave speed is not the main parameter for flow reattachment, but both f ∗ and λ∗

individually impact the flow separation.

4.2.6 Limitation and future work

The limitations of this section are the Reynolds number and AOA. The future work can be

focused on effect of these waves on flow separation at higher AOA.
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4.3 Controlling flow separation of a NACA0018 airfoil by backward traveling waves

In this section the application of traveling waves for controlling flow separation for a NACA0018

airfoil at stall angle of attack is studied. This section is organized as follows: A background of ac-

tive flow control with surface morphing is provided in §4.3.1. The numerical setup is described

in §4.3.2. Results are explained in §4.3.3 and the conclusion is brought in §4.3.4. Finally, the

limitation and future work are presented in §4.3.5.

4.3.1 Background

Flow control via surface morphing has been investigated in several studies [28, 29, 37, 36].

Munday et al. [36, 39] reported up to 60% decrease in flow separation. Recently, Jones et al.

[23] reported a delay in the onset of stall by morphing the suction side of a NACA4415 airfoil

in which the fibers of piezoelectric materials covered about 80% of the whole suction side. In

these studies, the oscillations of the surface were in the form of a standing wave [23] or a simple

vibration [36], which accelerates the fluid adjacent to the surface along its normal direction. These

types of surface morphing reduce flow separation by triggering the boundary layer instability and

increasing the mixing of high momentum fluid of the separated shear layer to the low momentum

fluid of the reverse flow zone [23, 18], similar to other periodic excitation methods. Nevertheless,

the morphing can increase the boundary layer momentum directly if the surface vibrations be in

the form of backward traveling waves because traveling waves can increase the fluid momentum

along their propagation direction [4, 41], e.g., backward traveling waves, in which the wave is

propagated from the leading edge toward the trailing edge, can increase the streamwise momentum.

Previous studies [52, 167, 41] has shown that backward traveling wave deformations can reduce

flow separation.

Using traveling waves to control flow separation is inspired from aquatic swimmers as they

propel themselves by undulations in the form of backward traveling waves [200, 212]. It has been

observed that traveling waves can reduce flow separation in different flow regimes and applica-

tions, including the turbulent boundary layer of a turbulent channel [4, 41] and bluff bodies such as
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a circular cylinder [52] and an inclined plate [167]. Recently, Akbarzadeh and Borazjani [182] per-

formed large eddy simulations (LES) of flow over a NACA0018 airfoil at prestall angle of attack

of 10o to investigate the role of traveling oscillations on the suction side. They observed that the

lift coefficient might increase up to 4% by backward traveling wave oscillations. However, flow

control is more effective at higher angles of attack, i.e., near the stall angle [17]. Inspired from the

impact of traveling waves on reducing flow separation over bluff bodies and recent developments

in smart materials [213, 214, 8], which have facilitated the generation of such low-amplitude trav-

eling waves [215], our previous work is extended to investigate the impact of oscillations on the

suction side with different waveforms, including backward/forward traveling and standing waves

for NACA0018 at the stall angle of attack (AOA = 15o).

Previous studies on surface morphing with standing waves [23, 29, 37] have shown that the

amplitude and frequency of the oscillations are the main parameters affecting flow separation.

However, when the oscillations are in the form of traveling waves, wavelength and wave speed

(product of wavelength and frequency) can also influence the flow separation [200, 167]. For

example, it is found that increasing the wave speed by increasing the frequency decreases the

flow separation [200, 4, 41], but increasing the wave speed by increasing the wavelength does not

necessarily decrease the flow separation [167]. Here, the effect of amplitude, frequency, and wave

speed of traveling waves at a constant wavelength (λ = 0.2L;L : chord length) is studied.

4.3.2 Methods

The simulation set-up, including the fluid mesh and the airfoil geometry, is presented in Fig. 4.19.

The flow is in a Cartesian frame (Fig. 4.19), in which x, y and z are along streamwise, vertical and

spanwise directions, respectively. The suction side of the airfoil undergoes an actuation which can

be either a traveling or standing wave deformation, as it is shown in Fig. 4.19b. To calculate the

new position of the suction side of the airfoil under motion in the original Cartesian frame (x, y, z),

a local frame (X, Y, Z) is defined, i.e., its origin is at the leading edge and is rotated by the an-

gle of attack (Fig. 4.19b). The backward traveling wave oscillation (h(X, t)) prescribed along Y
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direction, is:

h∗(X, t) = a∗(X) sin(2π(f ∗t∗ −X∗/λ∗)), (4.6)

where h∗ = h/L is the nondimensional displacement of the suction-side, f ∗ = fL/U is the

reduced frequency, λ∗ = λ/L is the nondimensional wavelength, and t∗ = tU/L is the nondimen-

sional time, X∗ = X/L is the nondimensional streamwise length that starts from the leading edge,

and a∗(X) = a(X∗)/L is the amplitude of the wave which starts from X = 0.1L to X = 0.85L.

The amplitude is constant and equal to its maximum value a∗ = a/L from X = 0.2L to X = 0.8L

and decreases linearly toward leading and trailing edges. Here, the parameters with (*) symbol

are nondimensional. The schematic of a backward traveling wave, in which the wave propagates

with wave speed C∗ from the leading edge toward the trailing edge is depicted in Fig. 1.1. To

investigate the effect of actuation type, a standing and a forward traveling wave actuation have also

been employed on the suction side. The corresponding equation for a forward traveling wave, in

which the wave propagates towards upstream, is:

h∗(X, t) = a∗(X) sin(2π(f ∗t∗ +X∗/λ∗)), (4.7)

and the standing wave oscillation has the following deformation:

h∗(X, t) = a∗(X) sin(2πf ∗t∗) sin(2πX∗/λ∗), (4.8)

where the parameters of Eqns.4.7 and 4.8 are same as Eqn. 4.6.

The Reynolds number, in the entire study, is chosen Re = LU/ν = 50, 000 based on the free

flow velocity (U ), airfoil chord length (L) and kinematic viscosity (ν). The fluid grid is an O-

type grid (Fig. 4.19b) generated in the curvilinear frame (ξ, η, ζ), where η is normal to the airfoil

surface, and ξ is parallel to the airfoil surface. This two dimensional domain is extruded in the

ζ = z direction for 0.1L to generate a 3D domain. Note that, in regular body fitted grids η = 0

is attached to the surface of the airfoil, but here it is inside the immersed airfoil to capture the

motion of the surface, i.e., η = 0 has a minimum normal distance of 0.012 from the surface of the
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(b)

Figure 4.19: The simulation set-up configuration, (a) flow and airfoil in the curvilinear and Carte-
sian coordinates, (b) representation of an undulating airfoil as an immersed boundary (red line)
within the O-grid mesh. Every 10th point , and every 5th point in η and ξ directions are presented,
respectively. Reprinted from [183]

airfoil (see the grids inside the immersed boundary in Fig. 4.19b). The boundary condition along

ξ, ζ is periodic, and it is defined on η(Nη) (outer boundary) as follows: It is inlet (ux = U ) in

the upstream, (x<0), and it is Newman with a mass flux correction in the downstream (x>0). Note

that the span size of the domain is chosen to be small to reduce computational costs. Therefore,

the focus of this work is on spanwise-averaged results due to the limitation for capturing three-

dimensional effects with this span size.

Table 4.5: The details of grid and time-step size of the simulation. R is the approximate radius of
the O-type grid in Fig. 4.19a. Nξ, Nη, and Nζ are the number of points along ξ, η, and ζ directions,
respectively. ∆lminξ , ∆lminη , and ∆lminζ are the minimum grid spacing along ξ, η, and ζ directions,
respectively.

grid R Nξ Nη Nζ ∆lminξ ∆lminη ∆lminζ

1 15L 421 281 21 0.001L 0.0003L 0.005L

The simulation set-up configuration, including the domain size and grid size are summarized in
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Table 4.5. The grid resolution is maintained 0.0003L along the η direction in the vicinity of the air-

foil surface which is equivalent to a wall unit spacing of η+ = 0.9, where η+ = δlηuτ/ν, δlη is the

normal distance between the surface and first fluid node, and uτ is the friction velocity. With this

resolution, the viscous sublayer (η+ < 11.0) of the boundary layer has at least 12 grid points along

wall normal direction (η). The grid spacing remains constant up to η = 0.022, then it increases

with a hyperbolic function to the boundaries. Using the curvilinear O-type grid in conjunction with

the immersed boundary is suitable for low amplitude morphing simulations since it can capture the

low amplitude oscillations with a lower computational cost compared to a Cartesian mesh. The

time step is 0.0005L/U for the unactuated case and it ranges from 0.00032L/U to 0.00048L/U

for the actuated cases, which corresponds to Courant-Friedrichs-Lewy numbers (CFL=Uδt/∆x)

less than 0.5.

Table 4.6: The case studies, including unactuated airfoil, standing wave, forward traveling wave
and backward traveling wave actuation with various frequencies and amplitudes. CL, CD, and CPo
are nondimensional, lift, drag and power coefficients, respectively. The wavelength is λ∗ = 0.2 for
all cases. Reprinted from [183]

case actuation type f ∗ a∗ C∗ CL CD CL/CD CPo
1 unactuated − − - 0.676 0.279 2.42 0.0
2 backward traveling wave 2.0 0.002 0.4 0.730 0.221 3.53 0.00012
3 backward traveling wave 4.0 0.002 0.8 0.886 0.096 9.23 0.00017
4 backward traveling wave 8.0 0.002 1.6 0.935 0.088 10.62 0.00027
5 backward traveling wave 4.0 0.008 0.8 0.824 0.125 6.59 0.00035
6 forward traveling wave 4.0 0.002 -0.8 0.807 0.276 2.92 0.00019
7 standing wave 4.0 0.002 - 0.817 0.206 3.96 0.00017

The case studies are presented in Table 4.6. The first case is an unactuated airfoil and the

wavelength of the actuated cases is λ∗ = 0.2. Cases 2 to 4 are backward traveling wave actuated

airfoils with constant amplitude and different reduced frequency (f ∗) ranging from f ∗ = 2.0 to

f ∗ = 8, i.e., corresponding to wave speeds C∗ = 0.4 to C∗ = 1.6. Case 5 is a high amplitude

traveling wave actuation (a∗ = 0.008, f ∗ = 4.0, and C∗ = 0.8), case 6 is the forward traveling
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wave actuation (a∗ = 0.002, f ∗ = 4.0, and C∗ = −0.8), and case 7 is a standing wave actuation

(a∗ = 0.002, f ∗ = 4.0). Note that the positive and negative signs of the wave speeds correspond

to forward and backward traveling waves, respectively.

4.3.3 Results

The mean lift, drag, lift to drag, and power coefficients for all cases are presented in Table 4.6.

Lift coefficient is CL = FL/(0.5ρU
2L), where FL is the mean dimensional per unit of the span

of the airfoil force acting on the airfoil along the y direction, and the mean drag coefficient is

CD = FD/(0.5ρU
2L), where FD is the mean dimensional per unit of the span of the airfoil force

acting on the airfoil along the x direction. The power coefficient is the mean power required to

accelerate the fluid near the oscillating surface which is calculated as follows:

CPo =
1

(0.5ρU3)AT

∫
T

(∫
A

−pnY ḣdA
)
dt. (4.9)

where ḣ is the time derivative of the lateral displacement (Y direction), i.e., the velocity of the

surface oscillation, nY is the Y component of the surface normal, p is the fluid pressure on the

oscillating surface, dA is the area of the surface element, A is the actuated area of the airfoil’s

suction side, and T is the integration time which is equivalent to about 80 cycles for the actuated

cases and 35 nondimensional time (L/U ) for the unactuated case.

The mean lift coefficients (CL) and drag coefficient (CD) are presented in Table 4.6, which

shows that the lift coefficient increases and the drag coefficient decreases by any actuation. The

lowest lift increase (7.4%) is for case 2 which has the lowest f ∗, and the highest lift enhancement

(38.3%) is for case 4, which has a high frequency backward traveling wave. Comparing the lift

and drag coefficients of cases 2 to 4, which have a constant amplitude with different frequencies,

indicates that the lift coefficient increases and the drag coefficient decreases by increasing the

frequency, e.g., CL has increased by 16.4%, 31.0%, and 38.3% compared to the unactuated airfoil

and CD has decreased by 20.7%, 65.5%, and 68.4% compared to the unactuated airfoil, in cases 2,

3, and 4, respectively. By increasing the amplitude from 0.002, in case 3, to 0.008, in case 5, the lift
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Figure 4.20: The (a) mean spanwise-averaged pressure and (b) skin friction coefficients of the
unactuated airfoil (case 1), the morphing airfoil with backward traveling wave actuations of
f∗ = 4.0, a∗ = 0.002 (case 3) and f∗ = 8.0, a∗ = 0.002 (case 4), and a standing wave actua-
tion f∗ = 4.0, a∗ = 0.002 (case 7). Reprinted from [183]

coefficient has decreased and the drag coefficient has increased compared to the lower amplitude

case, i.e., CL has increased by 21.4% and CD has decreased by 55.2% compared to the unactuated

airfoil. Table 4.6 shows that the backward traveling wave actuation is more effective than either

a forward traveling wave or a standing wave actuation in terms of improving the aerodynamic

performance. The lift coefficient of case 3 is higher than cases 6 (forward traveling wave) and 7

(standing wave). The lift coefficient of cases 3, 6 and 7 has increased 31.0%, 19.3% and 20.4%

compared to the unactuated case, respectively. In addition, CD of these cases have reduced by

65.5%, 1.1%, and 26.1%, respectively, compared to the unactuated airfoil. Among these cases,

case 4 has the highest lift to drag ratio, e.g., CL/CD = 10.62 which is about 4 times greater than

the unactuated case (Table 4.6). In addition, among the cases with the same frequency but different

actuation type, i.e., cases 3, 5, 6 and 7, the low amplitude traveling wave actuation (case 3) has the

highest CL/CD of 9.23 and the forward traveling wave actuation (case 6) has the lowest one, i.e.,

it is only 20.6% higher than the unactuated case. In fact, based on the aerodynamic performance

observed in Table 4.6, the low-amplitude traveling wave actuations are more effective than either

forward traveling wave or standing wave actuations. The required power for these oscillations is

small compared to the drag power loss (U × CD). For instance, the CPo is less than 0.0004 for all
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cases while the drag loss power is O(0.1).
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Figure 4.21: The profile of the mean spanwise-averaged streamwise velocity (ux) for cases 1, 3, 4,
and 7 at 8 different sections spaced by 0.1L, starting from L1 at 0.1L to L8 at 0.8L of the airfoil’s
leading edges. Reprinted from [183]

The enhancement of lift coefficient by the actuations in Table 4.6 can better be observed by the

distribution of the mean pressure coefficient around the circumference of the airfoil. The pressure

coefficient can be expressed as Cp = 2p/(ρU2), where the reference pressure (zero pressure) is

pressure at leading edge (X, Y = 0). The mean pressure coefficient (Cp) is computed by averaging

the pressure of the grid point adjacent to the surface. The mean pressure coefficient is plotted for

cases 1, 3, 4, and 7 in Fig. 4.20a. The profile of Cp (Fig. 4.20a) shows that the lift coefficient of the

actuated airfoil increases because Cp of the suction side of the airfoil decreases in the vicinity of

the leading edge, i.e., the negative Cp contributes to lift. The profile of the pressure coefficient of

the unactuated case shows the stall condition. For instance, on the suction side of the unactuated

airfoil, the Cp decreases from the leading edge, i.e., it has a peak at x = 0.03, then it has a flat-

100



like profile at 0.05 < x < 0.83, and finally, it decreases again near the trailing edge, similar

to the Cp profile reported by Puri et al. [31]. When a backward traveling wave actuation (cases

3 and 4) is applied, the peak of Cp increases substantially (pressure decreases) compared to the

unactuated airfoil, i.e., lift coefficient increases. In case 4, there is a pressure recovery from the

peak (x = 0.03) up to the trailing edge. However, for cases 3, there is a plateau from x = 0.10 to

x = 0.18, and then the pressure recovery occurs toward the trailing edge. When a standing wave

actuation (case 7) is applied, the peak is higher than the unactuated airfoil but it is lower than the

one generated by the traveling wave actuations (cases 3 and 4).

Flow over an airfoil at the stall angle of attack becomes separated from the leading edge [216].

By using a flow control technique, the flow separation might decrease either by delaying the sepa-

ration to further backward or reattaching the separated flow further backward. The flow separation

and reattachment is an unsteady process and, consequently, the separation/reattachment location

varies with time. Here, to quantify the effect of actuations on the flow separation, the separa-

tion/reattachment is defined based on the mean skin friction (Cf ). The mean skin friction is the

mean spanwise-averaged of instantaneous skin friction on the points adjacent to the surface, where

the instantaneous skin friction is Cf = 2/Re(∂u∗x/∂y
∗) and the velocity gradient in the curvilinear

coordinates is ∂u∗x/∂y
∗ = (∂u∗x/∂ξ)(∂ξ/∂y

∗)+(∂u∗x/∂η)(∂η/∂y∗)). Based on the mean skin fric-

tion, the separation and reattachment location on the suction side are defined as the points where

the mean skin friction (Cf ) becomes negative and positive, respectively. The distribution of Cf

indicates a high positive value on the suction side near the trailing edge, e.g., x > 0.9L. However,

this positive value does not account for a flow reattachment. In fact, the positive Cf at those lo-

cations e.g., x/L > 0.9 is due to a strong trailing edge vortex which is present in the mean flow

similar to the instantaneous ones (Fig. 5a). The Cf plot indicates that the traveling wave actuations

moves the separation point further backward toward the trailing edge. Based on Fig. 4.20b, the

flow of the unactuated airfoil becomes separated from x = 0.05L without reattachment. The skin

friction of case 7 is similar to case 1, i.e., flow separates from the leading edge without reattach-

ment. In case 3, flow separates at x = 0.1L, and reattaches at x = 0.18L, where the plateau region
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for pressure coefficient is created (Fig. 4.20a). Afterwards, flow becomes separated at x = 0.78L.

Nevertheless, in case 4, flow remains attached from the leading edge up to x = 0.75L. The flow

attachment for cases 3 and 4 results in a lower pressure coefficient at those sections as it was shown

in Fig. 4.20a.

In addition to the location of the separation point, the profile of the mean streamwise velocity

can demonstrate effects of the actuations on flow separation by quantifying the reverse flow on

the suction side. The profile of the mean spanwise-averaged streamwise velocity (ux) for the

unactuated airfoil and actuated cases 3, 4, and 7 are presented in Fig. 4.21. As it can be observed

in Fig. 4.21, there is a strong reverse flow at section L2 to L6 for the unactuated and standing wave

cases, whereas there is no reverse flow at that locations for the traveling cases (cases 3 and 4). Note

that the standing wave actuation does not suppress the flow separation similar to the traveling wave

one, but it reduces the reverse flow relative to the unactuated case. Flow becomes separated for

cases 3 and 4 near the trailing edge (section L8) while the reverse flow is less than the unactuated

and standing wave cases, as it was also observed in Fig. 4.20b.

To visualize the instantaneous flow separation and attachment more clearly, the spanwise-

averaged instantaneous out-of-plane vorticity of the seven cases (Table 4.6) at four different time

instants are presented in Fig. 4.22. Flow is fully separated over the suction side of the unactuated

airfoil, i.e., the shear layer separates from the leading edge and sheds to the wake, and on the

trailing edge an unstable counter clockwise vortex (trailing edge vortex) is generated (Fig. 4.22a3).

Both the shear layer and trailing edge separation decrease when any type of actuation is applied.

Similar to the mean flow (Fig. 4.21), the separation reduction is more significant when a traveling

wave actuation with f ∗ ≥ 4 (cases 3 and 4) is applied, i.e., the shear layer is closer to the airfoil’s

surface near the leading edge.

When the low frequency traveling actuation (case 2) is applied, the flow separates from the

leading edge. Nevertheless, the separated shear layer is closer to the airfoil surface, and the trailing

edge vortex is smaller compared to the unactuated airfoil (compare Fig. 4.22b3 and Fig. 4.22a3).

By increasing the frequency to 4 and 8, the shear layer separation decreases (Fig. 4.22c1 to c4
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case 1

Out-of-plane vorticity

case 3

case 5

case 4

case 7

case 6

case 2

(a1) (a2) (a3) (a4)

(b1) (b2) (b3) (b4)

(c1) (c2) (c3) (c4)

(d1) (d2) (d3) (d4)

(e1) (e2) (e3) (e4)

(f1) (f2) (f3) (f4)

(g1) (g2) (g3) (g4)

Figure 4.22: Instantaneous flow field visualized by the contours of out-of-plane vorticity (ωz).
Reprinted from [183]

and Fig. 4.22d1 to d4), and size of the trailing edge vortex decreases due to delayed separation.

By increasing the amplitude to 0.008 in case 5, the shear layer becomes unstable near the actua-

tion point (x > 0.1). The higher amplitude traveling wave oscillations generates large coherent
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structures that become separated from the airfoil surface and shed periodically with the oscillations

frequency into the wake. Nevertheless, the traveling wave oscillations increase the axial momen-

tum and reduce the flow separation near the trailing edge. The generation of the coherent structures

by the traveling waves have also been reported in the previous studies [167, 52]. The forward trav-

eling wave actuation (case 6), in contrast to the backward traveling wave one does not reduce flow

separation (Fig. 4.22f). In case 6, the shear layer is fully separated while a large trailing edge

vortex is generated at the trailing edge, similar to the unactuated case (Fig 4.22a). The standing

wave actuation brings the shear layer closer to the airfoil surface (Fig. 4.22g) but not as closer as

the traveling wave one (Fig. 4.22c).

(b)
(a)

O f l i i

Figure 4.23: Three dimensional vortical structures visualized by the instantaneous isosurfaces of
theQ-Criterion (Q=20) colored by the out-of-plane vorticity for (a) case 1 (unactuated airfoil) and,
(b) case 4 (traveling wave morphing airfoil with f∗ = 8.0, a∗ = 0.002). Reprinted from [183]

Figure 4.23 presents the three dimensional turbulent flow structure (vortices) visualized using

iso-surface of Q-criterion that colored by out-of-plane vorticity for unactuated airfoil (case 1) and

morphing airfoil with f ∗ = 8.0, a∗ = 0.002 (case 4). By comparing Fig. 4.23a and Fig. 4.23b,

it can be observed that the low amplitude traveling wave morphing reduces the flow separation,

similar to the observation of 2D flow field in Fig. 4.22.
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4.3.4 Discussion and Conclusion

Previous studies [158, 41, 40] have shown that backward traveling waves can increase the

streamwise fluid momentum and decrease the drag force, which theoretically scales with (a∗f ∗)2(1−

1/C∗2) [40, 167]. Recently, Akbarzadeh and Borazjani [167] observed that traveling wave oscil-

lations with significantly higher amplitudes (a∗ = 0.01) and frequency (f ∗ = 20) but the same

wavelength (λ∗ = 0.2) as of this study on an inclined plate could reduce the flow separation and

drag coefficient but they could not postpone the stall and reattach the flow to the leading edge

because of the plate’s sharp leading edge. However, in this study, it was shown that a surface mor-

phing in the form of backward traveling waves can suppress the static stall and delay separation.

The results of our LES show that a low amplitude traveling wave (a = 0.002L) with reduced fre-

quencies 4.0 and 8.0, and λ∗ = 0.2 can suppress the stall and increases the lift coefficient by about

34%. The lift enhancement is high compared to our previous study for this airfoil at AOA = 10o

in which the lift increased only by about 4% [158] because flow control is, typically, more effective

at stall and post stall angles where the flow is massively separated [17].

The flow visualizations (Figs. 4.21 and 4.16) indicate that the backward traveling wave actu-

ations are more effective than other actuations because they accelerate the fluid adjacent to the

surface along the streamwise direction [167], i.e., increase the momentum of the fluid near the

surface directly, similar to a swimming fish [40]. While the backward traveling waves with fre-

quency greater than 4, e.g., cases 3 and 4, suppress the stall, a lower frequency of f ∗ = 2 (case

2) does not influence the flow separation significantly. Based on the results of cases 2, 3 and 4,

it can be concluded that the frequency needs to be high enough to control the flow separation be-

cause, theoretically, the axial force created by traveling waves scales with ((af)2(1 − 1/(λf)2))

[40, 167]. However, by increasing the wave amplitude in case 6, the shear layer is only attached

up to the actuation point and it becomes unstable after that point. Afterwards, the unstable shear

layer sheds into the wake in the form of large periodic coherent structures. Therefore, the flow

separation has increased in case 6 compared to case 3, although the amplitude has increased. The

reason for the shear layer destabilization in case 6 is, probably, the high wave steepness (a/λ) as
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the shear layer separates from the first trough of the traveling wave (Fig. 4.16e). In fact, a steep sur-

face deformation can destabilize an attached shear layer and enhance the separation [41, 171]. In

contrast to the backward traveling waves, the forward traveling wave actuation is the least effective

actuation because it increases the reverse flow near the wavy surface [4, 41]. Finally, the stand-

ing wave actuation (case 7) reduced the flow separation though it does not increase the boundary

layer’s streamwise momentum directly. Standing waves reduce the flow separation by triggering

the Kelvin-Helmholtz instability [23] and enhancing the mixing of the separated shear layer with

the low momentum flow of near the surface similar to periodic excitation flow control mechanism

[17]. Note that this mixing occurs for other actuations, including backward and forward traveling

waves, because the airfoil surface oscillates. The oscillating surface induces a normal velocity that

scales with 0.05U < uY = O(2πf a) < 0.1U which is close the velocity induced by the surface

in previous studies [23].

4.3.5 Limitation and future work

One of the limitation of this work is the number of test cases due to computational cost. There-

fore, we could only investigate a low range of frequencies and amplitude. Because of the same

reason, the effect of Reynolds number, and AOA has not been studied yet. Investigating the role

of higher range of amplitudes, frequencies, and AOA, and higher Reynolds number can be a part

of future work. Moreover, we found that traveling wave actuations reduce flow separation by two

mechanisms, (i) increasing the axial momentum induced to the flow and (ii) the triggering of in-

stabilities to increase mixing. Nevertheless, understanding the effect of each of these two terms,

i.e., axial momentum induced to the flow versus triggering the instabilities, on the flow separa-

tion, or investigating the effects of wavelength at the stall and post stall angles of attack can be an

interesting topic for future studies.
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5. NREL PHASE VI WIND TURBINE SIMULATIONS

Owing to the potential severity of climate change as a result of global warming, every country

in the world is taking an active interest in the development of renewable energy. In particular,

the installation of wind power generation systems, which are economically feasible and environ-

mentally friendly, has shown a sharp increase since the 1990s with an average rate of 20% [217].

According to the department of energy report (DOE) [217], the wind energy will generate about

20% of the United States total energy production by 2030, and it is expected that its share increases

to 35% by 2050. One of the fundamental technological field in the wind power system is the blade

design. The blades are typically designed for low wind speeds 4m/s < U < 7m/s and they

lose their efficiency by increasing the wind speed and will not rotate at lower wind speed. This

decrease in efficiency is due to flow separation, which we try to reduce through active flow control.

In this chapter, large eddy simulations of NREL phase VI wind turbine’s blade and the full-scale

turbine are performed. This chapter is organized as follows: a background about NREL Phase VI

wind turbine and active flow control methods for wind turbines are presented in 5.1. Section 5.2

provides the detail of the computational set-up, and overset grids. Section 5.3 presents the results

of the simulations for baseline and pitching blade. The conclusions are presented in section 5.4,

and finally, the limitations and future work are explained in section 5.5.

5.1 Background

Most blades for wind power generation require an optimized aerodynamic design, and rotor

blade designs must predict the flow field in order to improve the aerodynamic performance. To

optimize the blade design parameters, it is necessary to study flow field and aerodynamic perfor-

mance from reliable experiments. However, the experiments are expensive due to the large size

of wind turbines and issues associated with the measurements, e.g., they are often contaminated

by varying wind speeds, changes in wind direction, etc. Therefore, various numerical studies have

been performed to investigate flow around the blade and full-scale wind turbines [218, 112]. Dif-
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ferent CFD models such as finite element method [218], finite volume[112] and finite difference

methods [219] have been utilized to simulate flow over a NREL Phase VI wind turbine which is a

benchmark case as its flow parameters have been measured comprehensively in the wind tunnel of

NASA Ames [220].

The wind turbines are designed for wind speed of 5m/s < U < 7m/s and they lose their

efficiency out of this range due to flow separation. To mitigate this problem several passive and

active flow control techniques are employed. For passive flow control, vortex generators (VG) and

rigid trailing edge flap are used [221, 222]. The VGs are attached on the suction side near the

leading edge on a radius at which flow becomes separated [223]. They create coherent structures

that energize the boundary layer, and consequently delay flow separation and enhance the overall

lift coefficient. Flaps are typically attached near the trailing edge and they augment the power and

reduce the turbine load by varying the airfoil camber [224]. For active flow control, suction blow-

ing, steady blowing, plasma actuator, active camber control, surface morphing, and active pitch

control are utilized [225, 226]. Previous studies have shown that there is an optimum pitch angle

for every wind speed [227]. However, the effect of a sinusoidal dynamic pitch on the aerodynamic

performance of a blade is not understood. A dynamic pitch might act as a vibration and trigger

boundary layer instabilities to enhance boundary layer transition and reduce flow separation.

In this study, we perform LES of NREL Phase VI wind turbine for two different wind speeds

of U = 7m/s and U = 15m/s. First, the framework is validated by comparing the results against

experimental measurements with fixed pitch. Next, we investigate the effect of a low amplitude

dynamic pitch on the performance of a NREL Phase VI wind turbine for both wind speeds.

5.2 Material and Method

In this chapter, simulations of a NREL Phase VI wind turbine are performed using our dynamic

overset framework. NREL phase VI is a modified Grumman Windstream turbine with full-span

pitch control and a power rating of 18 kW. It has 2 blades, with s809 tapered and twisted blade

profile as shown in Fig. 5.1. The rotor diameter is D = 2R =10.058 m, its height is 12.19 m, and

the blade’s maximum chord length is L =0.72m which is at 0.25R as shown in Fig. 5.1. Three
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different types of simulations are performed. First, LES of flow over rotating blade was performed

to validate the framework. Afterwards, simulations of a full-scale turbine that includes nacelle, and

tower were performed to investigate the effect of tower and nacelle on flow. Finally, the simulations

of rotating blades with a low amplitude sinusoidal pitch are carried out. The turbine has an upwind

configuration, the blade tip pitch angle is 3o, the yaw and cone angles are 0o, and the rotational

speed is 72rpm.

tower

(b)

blade

(c)

nacelle

(a)

Figure 5.1: The wind turbine configuration: (a) blade, (b) its airfoil profile (s809), and (c) complete
turbine geometry.

The simulations setup is presented in Fig. 5.2. The turbine has an upwind configuration, and the

wind blows along z direction. The setup has three cuboid blocks where block 1 is the background

domain, block 2 captures the turbines wake, nacelle, and the tower, and block 3 resolves the flow

around the blade (Fig. 5.2c). Blocks 1, 2, and 3 have a size of 112L × 112L × 140L, 20L ×

20L × 24L, and 16L × 1.8L × 2L, respectively. Blocks 1 and 2 are static while block 3 rotates

with the rotating blade. Because block 3 should capture the blade’s boundary layer, the validation
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grid 1

grid 2

grid 3

(a)

x

z

y

(c)

Figure 5.2: The wind turbine simulation set-up. (a) overset is consisted of three blocks; block 1
is the background domain, block 2 includes the tower and nacelle, and block 3 includes the rotor
and rotates with the blades. (b) mesh grid of block 3 and its frame, and (c) a cross section of blade
(every four grid points along y′ and z′ are presented).

and grid sensitivity studies are performed by changing the resolution of block 3. Therefore, four

sets of block 3 are generated while girds 1 and 2 are similar in all set-ups. The details of blocks’

mesh sizes are presented in Table 5.1. The total number of mesh ranges from 30 million in setup

1 to 122 millions in setup 3. The Reynolds number based on the wind speed, blade’s maximum

chord length (L), and the kinematic viscosity of air (ν = 1.48× 10−5) is 345,000 and 739,000, for

low and high wind speed cases, respectively. Moreover, the Reynolds number based on the blade’s

velocity and diameter is in the range of 107.

Flow is incompressible turbulent, which is simulated with our CURVIB chimera framework.

The turbulent flow is modeled with LES model explained in section2.1. The flow in blocks 1 and

2 is solved in an inertial frame while block 3 is solved in a non-inertial frame as it rotates with the

blade. By using a non-inertial frame the simulation cost reduces significantly because the metrics

of the curvilinear coordinates are only calculated once and the search algorithm for identifying

the fluid, solid, and immersed nodes are only called once. The overset framework is explained in
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detail in [108, 228], however, to complete this part the method is explained here briefly. Using the

overset framework, the velocities on the boundaries of blocks 3 and 2 are interpolated from blocks

2 and 1, respectively, via a second-order interpolation. Moreover, the velocities of the overlapping

zones of blocks 1 and 2 needs to be interpolated from finer blocks. To perform the interpolation of

velocities for girds 1 and 2 from grids 2 and 3, respectively, some of the overlapping grid points

are blanked out to transfer the information from the inner block to the outer block. For example,

the pink area in Fig. 5.2c represents the blank of block 2. The velocities of the grid points over

the blank are interpolated from overlapped grid points of block 3. The blank of grid 1 is a cube of

16L × 1.5L × 1.4L that has been cut by a cube of 2L × 1.5L × .4L from the surface that faces

the nacelle and centered with the blade rotating center. Herein, the flow of block 3 is solved in a

non-inertial frame (Fig. 5.2) while the flow in block 2 is solved in the inertial frame. Therefore,

after each interpolation, the interpolated velocity on the boundary of block 3 is transformed to the

non-inertial frame by a rotation. The interpolation of variables within the overlapped zone requires

finding the suitable grid points in each iteration since the blanking zone and block 3 change due to

rotation. The search for the suitable grid points and interpolation of variables are performed using

our parallel overset framework developed by Hedayat et al. [108]. The blade, tower, and nacelle

are placed as immersed bodies, where the blade is in blocks 3, the tower is in block 2, and the

nacelle is in both blocks. The grid points are categorized into fluid, immersed, blank, and solid

points, by ray tracing algorithms [229]. Here, the velocity of the immersed points is interpolated

by Cabot wall modeling [220] because the boundary layer is turbulent and grid normalized wall

spacing along the normal direction is z+ = utauδzmin/ν = O(500), where utau is the friction

velocity.

The flow is initialized with a uniform velocity, uz = 1.0. The inflow of block 1 is a uniform

(plug) flow, the outlet of block 1 is a Neumann boundary with a correction to satisfy the conserva-

tion of mass. The ground, which is along −y boundary has a no-slip boundary condition on both

grids 1 and 2. Each cycle of the turbine rotation has 8000 iterations for setup 1, 10000 iterations

for setup 2, and 20000 iterations for set-ups 3 and 4. The CFL number for these cases ranges from

111



0.28 to 0.72, respectively. The simulations with set-up 3 and 4 are performed for only one cycle,

where the averaging was performed for a half cycle due to high computational cost. Note that,

the aerodynamic torque becomes quasi-steady after about one quarter of a cycle and it has been

observed that a half a cycle averaging is sufficient for reporting the mean values.

Table 5.1: The simulations setup and their corresponding grids. Grids 1 and 2 are the same for all
set-ups.

setup block Nx Ny Nz δxmin δymin δzmin
1 1 201 157 281 0.29L 0.32L 0.3L
1 2 241 241 321 0.11L 0.11L 0.015L
1 3 149 157 133 0.12L 0.008L 0.0057L
2 3 301 273 201 0.06L 0.004L 0.0039L
3 3 401 401 361 0.04L 0.003L 0.002L
4 3 401 481 501 0.12L 0.0026L 0.0016L

5.3 Results

In this section, first, the results of the baseline simulations are presented in §5.3.1. To validate

the simulations, the rotor torque and pressure coefficient are compared against the experiments

with different set-ups. Afterwards, the effect of low-amplitude dynamic pitch is investigated in

section 5.3.2.

5.3.1 Baseline

Flow over the turbine’s blade becomes separated at wind speeds greater than U = 10m/s.

Figure 5.3 shows the vortical structures identified by iso-surfaces of Q-Criteria at Q = 2 for the

rotor both simulation and entire turbine simulation at wind speeds U = 7m/s and U = 15m/s.

While strong tip vortices are generated in the wake of the low wind speed case, these tip vortices

are not observed for high wind speed cases due to flow separation. Nevertheless, strong vortices

can be observed along the nacelle and tower for entire turbine simulation for both wind speeds

(Fig. 5.3c,d).
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(a) (b)

(c) (d)

Figure 5.3: The wind turbine rotor torque for four simulation set-ups.

The flow separation can be observed more clearly by visualizing the flow at different cross

sections. Figure 5.4 presents the contours of instantaneous out-of-plane vorticity and velocity

113



vectors at three different radius, r/R = 0.3, r/R = 0.80, and r/R = 0.95. The velocity vectors

represent the relative velocity of the air with respect to the blade. As it is shown in Fig 5.4, the

flow is attached for all cross sections at low wind speed case but it is separated from the leading

edge at high wind speed case as the angle of attack of the incoming air with the blade increases.

Especially, the separation is higher at r/R = 0.3 since it has the highest angle of attack.

U=7m/s, r/R=0.3 U=7m/s, r/R=0.8 U=7m/s, r/R=0.95 

U=15m/s, r/R=0.3 U=15m/s, r/R=0.8 U=15m/s, r/R=0.95 

Figure 5.4: The contours of out-of-plane vorticity and velocity vectors.

Time-averaged aerodynamic torque is shown for both wind speeds in Fig. 5.5. The rotor

torque of low wind speed case is plotted for set-ups 1, 2, and 3, while it is plotted for set-ups 2, 3,

and 4 for the high wind speed case. The torque values are compared against NREL experiments

[220]. The simulation results and experimental data match remarkably well at the low wind speed

case for set-ups 2 and 3, however, the simulation results for seup 1 underpredicts the torque. The

predicted torque of the high wind speed case for set-up 3 and 4 is in good agreement with the

experimental data but set-up 2 underestimates the torque due to lower grid resolution. To extend

the validations and grid sensitivity studies, the pressure coefficient over the blades is compared

against the experimental measurements. The pressure coefficient is the pressure of the fluid points
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adjacent to the blade surface that is defined as follows:

Cp =
p− p0

1
2
ρ(U2 + (rω)2)

(5.1)

where r is the blade’s radius, ω is the rotor speed, U is the wind speed, and p0 is the reference

pressure, which is the pressure on the leading edge. The pressure coefficient is presented in Fig.

5.6 for two set-ups, i.e., set-ups 2 and 3 for low wind speed case and set-ups 3 and 4 for high wind

speed case at three blade’s radius, r/R = 0.3, r/R = 0.8, and r/R = 0.95. While Cp for the

low wind speed case agrees well with the experimental data on the pressure side for all radius, it

has some discrepancy with the experiments on the suction side near the leading edge. For higher

wind speed case, Cp matches with the experimental data on the pressure side, however, it has

some discrepancy on the suction side for all radius near the leading edge but it follows the trend

well. The discrepancy against experiments at r/R = 0.3 is greater than other radii which has been

observed in the previous numerical studies [218, 112]. Nevertheless, the turbine’s torque and Cp

plots (Figs. 5.5 and 5.6) are in good agreement with the experiments and it can also be observed

that simulations are grid independent when set-ups 2 and 3 are chosen for low wind speed case,

and set-ups 3 and 4 are chosen for the high wind speed case.

5.3.2 Pitching blade

In this part, the effect of low-amplitudes sinusoidal dynamic pitch is investigated. The dynamic

pitch is applied as a prescribed motion on the turbine’s blade which its equation is as follows:

θ(t) = 3.0 + θ0 ∗ sin(2πft) (5.2)

where θ is the blade’s pitch angle, θ0 is the amplitude of the oscillation, and f is the frequency of

oscillations. Here, the frequency is 3.6Hz, and θ0 is 3 and 0.5 degrees for low and high wind speed

cases, respectively. The amplitude of pitching for high wind speed case is chosen to be small due

to computational cost and difficulty associated with high amplitude oscillations in a refined mesh,

the pitching blade simulations are performed with set-up 2 and 3 for low and high wind speed
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Figure 5.5: The wind turbine wake vortices identified by the iso-surface of Qcriteria with Q = 2
for (a) a low wind speed case (U = 7m/s), and (b) a high wind speed case (U = 15m/s).
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Figure 5.6: The pressure coefficient at 30%, 80%, and 95% of

cases, respectively. Moreover, the simulations are performed for rotating blades without the tower

and nacelle to reduce the computational cost. The mean torque for pitching cases are 827N.m

and 1223N.m, at wind speeds U = 7m/s and U = 15m/s, respectively, which are similar to the
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baseline’s values (Fig 5.5). The instantaneous aerodynamic torque is plotted for both wind speeds

in Fig. 5.7. It can be observed that the dynamic pitch increases the torque fluctuations for both

wind speeds. In fact, the results of the simulations suggest that these low amplitude dynamic pitch

not only does not improve the mean aerodynamics but also increases the shaft oscillations which

can generate noise and damage the rotor.
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Figure 5.7: The instantaneous torque coefficient for baseline and pitching blade for (a) U = 7m/s
and (b) U = 15m/s.

Although, the dynamic pitch tested here did not influence the mean torque, but higher am-

plitude/frequency oscillations might work which need to be tested further as a future work. The

pitching motion can modify the tip vortex dynamics. Figure 5.8 compares the wake structure of

the rotating blade with a dynamic pitch for low wind speed case with the baseline. It can be ob-

served that tip vortex is still generated but it has been deformed due to the blade pitching motion.

However, since the pitch angle was small, flow did not separate and strong tip vortices are present

(Fig. 5.8).

5.4 Conclusion

Large-eddy simulations of the full-scale wind turbine are performed using our sharp-interface

immersed boundary framework. The simulation are carried out for wind speeds U = 7m/s and

U = 15m/s. Simulation mesh consists of 3 cuboid blocks that contain the background, wake,

and blade. The results of simulations were validated against the experimental measurements by
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(b)(a)

Figure 5.8: The countours of is-surface Q-criteria for blade at wind speed of U = 7m/s(a) base-
line, (b) pitching.

comparing the mean torque and pressure coefficients, and a good agreement with the experiments

was observed. The effect of low-amplitude sinusoidal dynamic pitch on the torque and flow was

investigated. For both cases, the pitching did not change the mean torque but increased the torque

fluctuations. Moreover, it was observed that the dynamic pitch can deform the tip vortex of the

low-wind speed case.

5.5 Limitation and future work

In this study, a cuboid mesh was used that increased the simulation cost significantly compared

to body-conformed and unstructured grids. Due to this limitation, only two wind speeds were

tested where one pitching case was tested for each wind speed. For the future, simulation of wind
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turbines with curvilinear grids which can capture the boundary layer more accurately with fewer

computational cost can be performed. The other limitation was on the amplitude of pitch angle for

high wind speed case. Due to the complexity of the flow, e.g., high velocity of the tip of the blade,

the flow-solver become unstable at higher amplitude. Therefore, the effect of higher frequency and

amplitude pitching can be tested later by fixing the instability issues as a future work.
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6. TRAVELING WAVES IN TURBULENT COMPRESSIBLE FLOWS

The main application of flow control is in aeronautical flows to reduce flow separation and

improve the aerodynamic performance of flying vehicles. Our previous studies on flow control

with traveling waves (see section 4) were performed for incompressible flows, where Mach num-

ber (M) should be less than 0.2 for the comprehensibility of the air to be negligible. However,

many flying vehicles such as commercial aircraft, UAVs, and miltary aircraft fly at high Mach

numbers, ranging from 0.5 < M < 1.5. At this high-velocity flight, flow surrounding the aircraft

is compressible and the effectiveness of the traveling wave morphing for flow control needs to be

restudied. Therefore, in this chapter, we study the effect of traveling waves on flow separation and

the physics of compressible boundary layer. First, the effects of wavy surfaces on the turbulent

boundary layer for both subsonic and supersonic flows are investigated. Afterwards, the effect of

traveling waves is studied. This chapter is organized as follows: a brief introduction on turbulent

flow in wavy compressible channel is provided in 6.1. The material and methods is presented in

6.2. Section 6.3 reports the results and discussion. Finally, the conclusion, limitation and future

work are presented in 6.4.

6.1 Background

One of the main applications of wavy surface roughness is passive flow control. The sur-

face roughness can accelerate the transition to turbulence and enhance the lift coefficient of wings

[230]. The role of wavy roughness has been investigated for incompressible turbulent boundary

layer comprehensively [231, 171, 170, 167]. For example, previous studies of incompressible tur-

bulent wavy channel have demonstrated that the wave steepness, i.e., the ratio of wave amplitude

to the wavelength, is an important factor on turbulent boundary layer physics [232, 231]. It has

been observed that a wave steepness of 0.05 can separate the turbulent boundary layer of an in-

compressible flow within a Reynolds number of 180 < Reτ < 570 [231, 171, 167]. Nevertheless,

the effect of wave steepness on flow separation for compressible wavy turbulent channels has not
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been investigated yet.

The fluid compression can modify the temperature and density near the wall of a flat channel

with a negligible effect on turbulence statistics and mean velocities [181]. The effect of Mach

number is more significant for wavy channels as the crest of the wave can compress the flow and

create shock waves at supersonic Mach numbers. For example, the direct numerical simulation

(DNS) study of Tyson and Sandham [11] for wavy channel at three different Mach numbers of

of M = 0.3, 1.5, and 3 suggested strong alternation of mean and turbulence statistics due to the

shock patterns associated with the sinusoidal wavy roughness at M = 3.0. Muppidi & Mahesh

[233] found that counter-rotating vortices, generated by the roughness elements, break the shear

layer and trigger boundary layer transition. Jouybari et al. [234] investigated the effect of 2D and

3D sinusoidal wavy roughness in a supersonic turbulent channel at M=1.5. They found strong

modifications of mean and turbulence statistics by roughness geometries. They observed strong

oblique shock waves by 2D surface waves at M =1.5, in contrast to the result of Tyson and

Sandham [11] in which the strong shock waves were only observed at M = 3.0. This discrepancy

in the literature indicates that the effect of compressibility and surface wavy roughness is not

understood well for turbulent boundary layers.

The problem of the turbulent wavy channel becomes more complicated when the wavy wall

channel undergoes deformations, similar to our study in section 4.1. In particular, when shock

waves interact with the turbulent boundary layer. However, there are not many studies on con-

trolling turbulent separated flows at supersonic Mach numbers due to the complexity and variety

of shock wave boundary layer interaction (SWBLI) problems. In fact, the properties of SWBLIs

depend on flow as well as geometric parameters, including Mach and Reynolds numbers, and the

nature of the shock generator. Nevertheless, the effects that surface deformation has on SWLBI

has been investigated recently by Shinde et al. [124]. They demonstrated that vertical surface

oscillations can reduce the separated flow that is induced by SWBLI. However, to best of our

knowledge, there is no study on the interaction of traveling wave deformations on compressible

turbulent boundary layers. As mentioned above, at high M , the wavy wall might create weak
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shocks, and the possible effect of wall deformation on physics is unknown.

In this study, first, the role of wave steepness on the mean and turbulence statistics of turbulent

boundary layer is studied for a quasi-compressible (M = 0.5) and supersonic (M = 1.5) wavy

channel by our compressible LES sharp-interface immersed boundary solver. Afterwards, we will

investigate the role of traveling wave deformations on the instantaneous and mean flow.

6.2 Methods

The numerical method and validations have already been reported in §2. Here, the numerical

setup is presented.

The computational setup is shown in Fig. 6.1a. Flow is in the frame xi = (x, y, z) where

x, y, z are spanwise, vertical, and streamwise coordinates, respectively. Here, the characteris-

tic length is the channel half width (H) and the characteristic velocity is the bulk velocity U =

1
2πH×2H×πH

∫
u dxdydz. The lower wall undergoes a streamwise traveling wave as shown in

Fig. 6.1b. The lower wall motion is:

h = a sin(
2π

λ
z − Ct) (6.1)

where h is the vertical location of the lower wall with respect to the flat wall, a is the amplitude

of the wave, λ is the wavelength, which is λ = π
2
H , and C = fλ is the wave speed, where f is

the frequency of the wave. Here, C = 0 leads to a wavy channel and positive wave speed (C > 0)

means a streamwise traveling wave. In this study, the spatial averaging is performed along the

homogeneous direction (x), and mean spanwise-averaged terms are denoted by <>.

The simulations are performed with a cuboid grid, which its details are presented in Table 6.1.

The domain size is same as the validation test case in §3, i.e., a cube of πH × 2H × 2πH . The

grid mesh is shown in Fig. 6.1a. The grid mesh is evenly spaced along x and z directions. In

the y direction, the grid is clustered towards both walls with a hyperbolic function as shown in

Fig. 6.1b. The grid spacing is kept constant in the vicinity of the wave, i.e., at −0.1 < y < 0.1

the grid spacing is (δy = 0.0035H) as expressed in Table 4.1 and Fig. 6.1b. The wall normal
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Table 6.1: The details of computational setup.

grid Nx Ny Nz ∆xmin ∆ymin ∆zmin
1 120 112 240 0.0261 0.0035 0.0261

2H

H

(b)

y

-1.2

-1
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Figure 6.1: Flow simulation set-up: (a) 3D (b) 2D view of the simulation grid and the wavy
channel wall. The fluid is discretized with a cartesian grid whose resolution increases near the
walls. The walls of the channel are discretized with triangular elements and placed as an immersed
body onto the background mesh.

resolution (δy = 0.0035H) is equivalent to y+ = uτδy/µ = 0.8 which is enough for reconstructing

the velocity of the IB nodes with a linear interpolation [165]. The non-dimensional time step

(δt∗ = δtū/H) is set to δt∗ = 0.002 for the wavy case and for the traveling wave case it is

δt∗ = 0.001. The LES simulations are validated for a flat channel in §3.

The physical parameters, including wave amplitude, the Mach number (M ), the Prandtl number

(Pr), the ratio of specific heats (γ), the viscosity exponent (n) where µ ∝ T n are presented in Table

6.2. The Reynolds number based on the bulk velocity and channel half width is Re = ρUH/µ =

3000. The simulations are performed for a subsonic (M = 0.5) and a supersonic Mach number

(M = 1.5). Cases 1 and 2 in Table 6.2 are for the stationary wavy channel, and cases 3 and 4

represent the traveling wave simulations. The traveling wave simulations are performed for only

one nondimensional frequency f ∗ = fH/U = 0.5.

The boundary condition along the streamwise and spanwise direction is periodic, and the walls
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Table 6.2: Physical parameters of the simulations.

case a/H fH/U M Pr γ µ
1 0.05 0.0 0.5 0.7 1.4 T 0.7

2 0.05 0.0 1.5 0.7 1.4 T 0.7

3 0.05 0.5 0.5 0.7 1.4 T 0.7

4 0.05 0.5 1.5 0.7 1.4 T 0.7

are no-slip adiabatic ∂T/∂n = 0, where n is the surface normal and T = p/(Rρ) where R

is the ideal gas constant. Here, the adiabatic boundary condition is applied by imposing a zero

pressure gradient along the wall normal. Afterwards, ρ is updated from the adiabatic boundary

condition (see §3.2.2 for more details). The simulations are initialized with nondimensional values

uz/U = 1.0, ρ/ρ̄ = 1.0 and p = 1
2
γM2(ρ̄U2), where ρ̄ is the bulk density.

6.3 Results and discussion

The mean flow for the supersonic channel is presented in Fig. 6.3b. The results of wavy cases

are time-averaged for 150H/U , and for traveling wave channel are averaged for 5 cycles.

The contours of instantaneous streamwise velocity uz are presented in Fig. 6.2. It can be ob-

served that there is a reverse flow in the vicinity of the troughs of the wave for both wavy stationary

cases (case 1 and case 2). However, by applying the traveling waves the reverse flow is removed

by increasing the fluid momentum in the vicinity of the wave. The role of the wavy surface and

the traveling wave can be observed more clearly by visualizing the mean flow. The profile of the

mean streamwise velocity ūz is presented in 6.3. It can be observed that flow separates from the

downhill of the wave for both stationary cases (case 1 and 2) and reattaches near the uphill. A

comparison between the mean flow profile of stationary subsonic and supersonic channels reveals

that the reverse flow is stronger in the vicinity of the wave trough for the supersonic case. Never-

theless, when a traveling wave is applied on the lower wall of the channel, the flow separation is

removed for both Mach numbers, which implies that traveling waves have a similar effect on mean

velocities regardless of the fluid compression, i.e., increase the fluid momentum in the vicinity of

the wave and reduce flow separation. Nevertheless, the effect of wavy roughness and traveling

124



waves on other flow parameters such as pressure and temperature will be discussed below.

The wavy surface and traveling waves can have significant effects on flow physics for the

supersonic case due to higher fluid compression and shock generation. Figure 6.4 presents the

effect of wavy roughness and traveling waves on shock waves for the supersonic cases. The shock

waves are visualized with the contours of the pressure gradient (|∇p|). It can be observed that

the wavy surface imparts strong shock patterns that go all from the peak of the wave to the upper

surface and reflect from the upper wall to the domain. These shock patterns exhibit the same

wavelength of wavy surface and impact the flow properties in the entire channel. However, these

shock patterns become weaker when the traveling waves are applied, in particular near the wavy

surface. Previous studies on wavy supersonic channels [155] explained that the shock waves are

generated due to fluid compression on the peaks of the wave. When the wall undergoes a traveling

wave, the peak and trough of the wave move along the streamwise direction with wave speed

(C = λf ), which means that flow has a lower relative speed and consequently, a lower Mach

number with respect to the wave. In fact, the lower surface has a wave speed of (C = λf = π/4).

Therefore, the relative velocity of the incoming flow is 1 − π/4 ≈ 0.22U which corresponds to

a Mach number of M = 0.33. Because the relative velocity of the wave to the flow becomes

subsonic, the shock waves that have been generated in a wavy channel (Fig. 6.4a) are disappeared

(Fig. 6.4b).

The profile of spanwise-averaged mean and phase-averaged temperature (< T >) and density

(< ρ >) at peak and trough of the wave of the supersonic channel are plotted along the channel

width (y/H) in Fig. 6.5. The shock waves in the wavy supersonic channel have created a signif-

icant variation in density and temperature along the streamwise direction (Fig 6.5). For example,

the mean temperature is about 0.3 higher along the trough of the wave near the wavy wall, and this

high temperature difference is observed up to the top wall. In contrast, when the traveling waves

are applied, the profiles of < ρ > and T at the peak and trough of the wave become similar as the

shock is disappeared.
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Figure 6.2: The contour of instantaneous streamwise velocity for (a) case 1 (wavy subsonic chan-
nel), (b) case 2 (wavy supersonic channel), (c) case 3 (traveling wave subsonic channel), and (d)
case 4 (traveling wave supersonic channel).
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Figure 6.3: The profile of mean streamwise velocity at 6 location along the wave.

6.4 Conclusion, limitation, and future work

The results of the wavy stationary channel reveal the generation of reverse flow in the vicinity

of the trough of the waves for both supersonic and subsonic flows, similar to the incompressible

simulations. However, the reverse flow is slightly higher near the trough of the wave when the

flow is supersonic. Moreover, shock waves were observed near the lower and upper walls of

the supersonic channel due to fluid compression near the peaks of the wave. In fact, the higher

reverse flow in the vicinity of the wave of the supersonic case can be due to the generation of

these shock waves. Nevertheless, when the lower wall undergoes a backward traveling wave that

propagates along the mainstream with a wave speed C = π
4
U the reverse flow is disappeared for

both cases, and more importantly, the shock waves of the supersonic case were disappeared. One of

the limitations of this work is the low range of test cases, e.g., the simulations have been performed

for a small number of amplitudes and wave speeds. Moreover, there are not many studies in the

literature on wavy supersonic channels, even, there is a discrepancy in literature regarding the wavy
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Figure 6.4: The shock visualization with instantaneous pressure gradient for the supersonic chan-
nel, (a) case 2 and (b) case 4.

channel simulations which makes the validation and discussion more challenging. To overcome

this problem, simulations with finer grids and larger domain size should be performed as a future

work to ensure that the domain size and grid resolution is sufficient.
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Figure 6.5: The plots of mean and phase-averaged (a) temperature and (b) density, at peak and
trough of the wave for cases 2 and 4.
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7. SUMMARY AND OUTLOOK

Flow separation is associated with aerodynamic loss. To solve this problem, several techniques

have been used to remove flow separation, referred as flow control, in engineering applications.

Flow control strategies can be classified based on the mechanism of reattachment into: (i) direct

injection of momentum to the boundary layer, e.g., steady blowing or (ii) indirect transfer of mo-

mentum by periodic excitations which trigger flow instabilities that form large coherent structures

(LCS) to entrain high momentum fluid into the near-wall flow. Knowing that traveling waves can

directly inject momentum to the boundary layer and also can trigger boundary layer instabilities

similar to other surface morphing actuations, the feasibility of controlling flow separation with

backward traveling waves was studied for a turbulent channel, inclined plate, and a NACA0018

airfoil at stall. For the first time, it has been shown that traveling waves can control massively

separated flows over bluff bodies such as inclined plates and airfoils. The other major finding of

this work was uncovering that traveling wave actuations are more effective for flow control than

other types of actuation, e.g., standing wave and pitching motion. It was shown that the critical

wave speed, i.e., the wave speed at which flow is attached and TKE is minimized can be less than

one and it changes with the wave steepness. The simulations of traveling waves for a NACA0018

airfoil at AOA = 15o showed that surface morphing in the form of backward traveling waves can

suppress the static stall and delay separation. It was observed that a low amplitude traveling wave

(a = 0.002L, L : chord length) with reduced frequencies fL/U = 4.0 and fL/U = 8.0, and

λ = 0.2L can suppress the stall and increases the lift coefficient by about 34% and reduce the drag

by 67% compared to the baseline (section 4).

The role of different parameters of traveling waves on the flow separation was studied. It has

been shown for the first time that in contrast to common belief, wave speed is not the only crit-

ical parameter for controlling flow separation. In fact, both wavelength and frequency influence

the flow separation individually. These observation were further studied by investigating the flow

control mechanisms of traveling waves and analyzing them with EBT (in §4.2.3.4). The travel-
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ing wave deformations can control flow separation by directly increasing the momentum of the

fluid surrounding the wave and triggering the boundary layer instabilities. The direct momen-

tum enhancement mechanism occurs by accelerating the fluid particles along the axial direction

(added mass mechanism) which can creates a thrust force that was observed as a jet flow in the

wake of inclined plate and near the trough of the wave. Based on EBT, the thrust force (CT ),

which tends to attach the flow, scales with O((a∗max)(f
∗ − 1/λ∗)(f ∗ + 1/λ∗)) and the lateral ve-

locity of a fluid particle (uY ) over an undulating plate, which tends to detach the flow, scales with

O(a∗max(f
∗ − 1/λ∗))—see appendix A for details. Therefore, just increasing the wave speed to

enhance the thrust C = f ∗λ∗ does not necessarily reattach the flow because the lateral velocity

will also increase.

The surface morphing was further applied in more complex flows. Low-amplitude pitching

surface morphing were applied on the blade of a NREL PHASE VI wind turbine to increase the

torque. To validate the framework, the simulations of a full-scale NREL PHASE VI wind turbine

at wind speeds U = 7m/s and U = 15m/s were performed using overset-CURVIB. To the best of

our knowledge, it was the first wind turbine simulation with a cuboid mesh and immersed boundary

method. The validation performed by comparing the mean torque and pressure coefficients, and a

good agreement with the experiments was observed. The pitching blade simulations show that the

tested dynamic pitch cannot enhance the aerodynamic performance but it can modify the turbine’s

wake (section 5).

The effect of traveling waves on flow separation in wavy channels was investigated for com-

pressible flows by developing a dynamic sub-grid stress LES for the CURVIB framework. The

inviscid fluxes of compressible flow equations in curvilinear coordinates are discretized with a hy-

brid discretization comprising a fourth-order central scheme and a third-order weighted essentially

non-oscillatory (WENO) scheme. The framework is validated extensively by performing simula-

tions for isotropic decay, subsonic and supersonic turbulent channel, and shock diffraction by a

cylinder (section 2). The results of a wavy stationary compressible channel reveal the generation

of reverse flow in the vicinity of the trough of the waves for both supersonic and subsonic flows,
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similar to the incompressible simulations. However, the reverse flow is slightly higher near the

trough of the wave when the flow is supersonic. Moreover, shock waves were observed near the

lower and upper walls of the supersonic channel due to fluid compression near the peaks of the

wave. Nevertheless, when the lower wall undergoes a backward traveling wave that propagates

toward the downstream with a wave speed C = π
4
U, (U : bulk channel velocity) the reverse flow

is disappeared for both cases, and more importantly, the shock waves of the supersonic case were

disappeared (section 6).

7.1 Limitations and Future work

One of the limitations of this work is the number of test cases due to computational cost.

Therefore, we could only investigate a low range of frequencies and amplitude. Because of the

same reason, the effect of Reynolds number, and AOA has not been studied yet. Investigating the

role of a higher range of amplitudes, frequencies, and AOA, and higher Reynolds number can be

a part of future work. Moreover, we found that traveling wave actuations reduce flow separation

by two mechanisms, (i) increasing the axial momentum induced to the flow and (ii) the triggering

of instabilities to increase mixing. Nevertheless, the impact of each of these mechanisms was not

studied here. Therefore, understanding the effect of each of these two terms, i.e., axial momentum

induced to the flow versus triggering the instabilities, on the flow separation can be an interesting

topic for future studies (section 4).

The simulations of the wind turbine were performed by a cuboid mesh, which increased the

simulation cost significantly compared to body-conformed and unstructured grids. Due to this lim-

itation, only two wind speeds were tested where one pitching case was tested for each wind speed.

For the future, simulation of wind turbines with curvilinear grids which can capture the boundary

layer more accurately with fewer computational cost can be performed. The other limitation was

on the amplitude of pitch angle for the high wind speed cases. Due to the complexity of the flow,

e.g., high velocity of the tip of the blade, the flow-solver becomes unstable at a higher amplitude.

Therefore, the effect of higher frequency and amplitude pitching can be tested later by fixing the

instability issues as future work.
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One of the main limitations of this work is the low range of test cases for compressible simula-

tions, e.g., the simulations have been performed for a small number of amplitude and wave speeds.

Moreover, there are not many studies in the literature on wavy supersonic channels and the two

studies in the literature regarding the wavy channel simulations [11, 234] are not in full agreement

which makes the validation and discussion more challenging. To overcome this problem, more

simulations and/or experiments are needed. The other important future work is performing more

validation studies for shock wave turbulent boundary layer (SWBLI) problems to ensure that our

framework can handle these interactions properly, in particular, in the vicinity of the immersed

boundaries. To this aim, the WENO scheme might need to have further modifications. In this

study, a third-order WENO is used near discontinuities. In the WENO implementation, the in-

viscid fluxes are computed directly from the reconstructed variables, i.e., pressure, velocity, and

density that are computed using WENO scheme. This WENO implementation can add diffusion

near the discontinuities, in particular at high Mach numbers. To solve this problem, the following

three steps need to be performed: (I) the inviscid fluxes should be calculated directly from the

variables, (II) the computed fluxes will be modified by a flux limiter, and (III) the final inviscid

fluxes at half points will be approximated by the WENO scheme. Moreover, a fifth-order WENO

can be deployed to reduce the numerical dissipation.
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APPENDIX A

DERIVATIONS

In this appendix derivations of this study are presented. In section ?? a different derivation of

the conservative form of momentum equations in a non-inertial frame of reference is presented. In

[108], the same equations were derived by transforming the conservative form of the momentum

equation in Cartesian coordinates to curvilinear ones. In section A the scalings for lateral velocity,

spanwise vorticity, thrust coefficient, instantaneous reactive coefficient of an undulating plate are

derived using EBT [40]. In section A.2 the derivation of pressure is presented.

In this appendix a different derivation of the the conservative form of momentum equations in

a non-inertial frame of reference is presented. In [108], the same equations were derived by trans-

forming the conservative form of the momentum equation in Cartesian coordinates to curvilinear

ones. Here, the starting point is the momentum equations in curvilinear coordinates in an inertial

frame of reference, and the non-inertial form is derived from the inertial one (both in curvilinear

coordinates).

The continuity and momentum equations in an inertial frame of reference in strong conservative

form after introducing a general time dependent curvilinear coordinate transformation (x′1, x
′
2, x
′
3, t)→

(ξ1, ξ2, ξ3, τ) are [235]:

J ′
∂

∂ξr
(U ′r − V ′r ) = 0, (A.1)

∂u′i
∂t

= −C ′1(u′i)−G′i(p) +
1

Re
D′(u′i) (A.2)

Here, τ = t, i = 1, 2, 3, (′) denotes term in the inertial frame (Fig. 2.1), and C ′1, G
′, and D′ are
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the convective, gradient, and viscous operators in curvilinear coordinates

C ′1(∗) = J ′
∂

∂ξr

[(
U ′r − V ′r

)
∗
]
, (A.3)

G′i(∗) = J ′
∂

∂ξr

(ξ′ri
J ′
∗
)
, (A.4)

D′(∗) = J ′
∂

∂ξr

(g′rm
J

∂

∂ξm
∗
)
, (A.5)

where J ′ is the determinant of the Jacobian of the transformation, J ′ = |∂(ξ1, ξ2, ξ3)/∂(x′1, x
′
2, x
′
3)|,

ξ′ri = ∂ξr
∂x′i

, g′rm is the contravariant metric tensor, g′rm = ξ′rqξ
′
mq, U

′
q and V ′q are the contravariant

velocity components, which are correlated with the Cartesian velocity components as follows:

U ′r = u′i
ξ′ri
J ′
, and V ′r = v′i

ξ′ri
J ′

(A.6)

where u′i and v′i are Cartesian fluid and frame grid velocity in inertial frame. Equation A.2 is

valid for grids with any arbitrary deformation. However, using this equation requires updating the

metrics of transformation ξ′ri at each time-step, which is computationally expensive.

To avoid computing the metrics at each time step, for a grid undergoing a rigid body motion

(translation and/or rotation), Eq. A.2 can be transformed to a non-inertial frame of reference. In

fact, for a given rotation with a rotation matrix Q, the transformation becomes (x′1, x
′
2, x
′
3, t) →

(x1, x2, x3, τ)→ (ξ1, ξ2, ξ3, τ). Using this rotation, the velocity and contravariant metrics will be

ui = Qiru
′
r (A.7)

ξ ij = Qjrξ
′
ir (A.8)

where ξ ij is the initial contravariant metric that does not change in a non-inertial frame of reference.

In fact, ξij represents the jth component of vector ξi. Similarly, u′r can be obtained by Q−1, i.e.,

inverse of rotation matrix. Furthermore, the following relation is always valid for dot product of
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any two arbitrary vectors a and b:

Q−1a.Q−1b = a.b (A.9)

Equation A.9 is the key equation in deriving the non-inertial terms. For example, the fact that

contravariant velocity Ur, which is the flux passing through a cell surface in ξr direction, does

not change due to frame rotation (U = U ′) can be shown by mathematically by using the above

equation and Eqns. A.7-A.9 as follows

U ′r = u′i
ξ′ri
J ′

= Q−1ik ukQ
−1
in

ξrn
J

= ui
ξri
J

= Ur, (A.10)

Similarly, it can be shown that V = V ′. Moreover, J is inverse of the volume of a grid cell.

Therefore, J = J ′ because the volume of the grid cell does not change due to rigid motion. By

a similar approach (Eqn. A.10) it can be shown that operators C ′1(u
′
i) = Q−1ij C1(uj), D′(u′i) =

Q−1ij D(uj), and G′i(p) = Q−1ij Gj(p) where C1, D, and Gi are operators in Eqns. A.3-A.5 with the

non-inertial terms.

C1(∗) = J
∂

∂ξr

[(
Ur − Vr

)
∗
]
, (A.11)

Gi(∗) = J
∂

∂ξr

(ξri
J
∗
)
, (A.12)

D(∗) = J
∂

∂ξr

(grm
J

∂

∂ξm
∗
)
, (A.13)

On the other hand, by replacing u′ with u and applying rotation matrix (Eqn. A.7), the left

hand side of the momentum Eqn. A.2 becomes

∂u′i
∂t

= Q−1ij
∂uj
∂t

+ uj
∂Q−1ij
∂t

, (A.14)

where ∂Q−1ij /∂t = ∂vi/∂xj is the rate of change of rotation of the frame. Applying the continuity

equation, the last term of Eqn. A.14 becomes ∂
∂xj

(ujvi), which is similar to the convective term of
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the Navier-Stokes equation that can be obtained in the curvilinear form using metrics as

∂

∂xj
(ujvi) = J

∂

∂ξr

(
viU

r
)

(A.15)

By multiplying the momentum equations (Eqn. A.2 by metric tensor (Q−1ij
ξrj
J

), and replacing

the inertial term with non-inertial terms it becomes

Q−1ij
ξrj
J
Q−1im

∂um
∂t

= −Q−1im
ξrm
J
Q−1ij

(
C1(uj) + C2(vj) +Gj(p)−

1

Re
D(uj)

)
(A.16)

C2(∗) = J
∂

∂ξr

(
Ur

)
(A.17)

where the left hand side becomes ∂Ur
∂t

,and its final form is:

∂Ur
∂t

=
ξrj
J

(
− C1(uj)− C2(vj)−Gj(p) +

1

Re
D(uj)

)
(A.18)

When the grid undergoes a rigid body motion, its volume is constant. Therefore, ∂Vr
∂ξr

= 0 and the

continuity equation becomes

J
∂

∂ξr
(Ur) = 0 (A.19)

The frame velocity v is composed of a rotational term w and a transnational term vt. Using

Eqn. A.19 and knowing that all spatial derivatives of vt are zero, Eqn. A.18 will be simplified as

follows:
∂Ui
∂t

=
ξij
J

(
− C1(uj)− C2(wj)−Gj(p) +

1

Re
D(uj)

)
(A.20)

A.1 Velocity, vorticity, time averaged thrust, and instantaneous reactive force scalings

The scalings for lateral velocity, spanwise vorticity, thrust coefficient and instantaneous reactive

coefficient of an undulating plate are derived using EBT [40]. In the derivations, the effect of angle

of attack is neglected because the angle of attack is small (cos(10o) ≈ 1) and to simplify the

derivations, i.e., the scalings are for an undulating plate at zero angle of attack. The lateral velocity
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of fluid adjacent to the plate is composed of plate velocity (∂h/∂t) and a velocity induced by the

curvy shape of a plate creating an angle of attack with the incoming flow (U∂h/∂Z) [40]:

uY =
Dh

Dt
=
∂h

∂t
+ U

∂h

∂Z
(A.21)

where uY is the fluid lateral velocity and h is the lateral undulations along the plate. Using Eqn. 4.4

for h = h(Z, t), and nondimensionalizing Eqn. A.21 by U , the nondimensional lateral velocity

(u∗Y ) becomes:

u∗Y = a∗max
Z∗ − 0.1

0.9
(2πf ∗ − 2π/λ∗) cos(2π(f ∗t∗ − Z∗/λ∗)) +

a∗max
0.9

sin(2π(f ∗t∗ − Z∗/λ∗))

(A.22)

Near the trailing edge, the first term in the above equation is dominant because 2π(f ∗−1/λ∗)� 1

for the test cases here with f ∗ � 1. Therefore, the lateral velocity at the trailing edge is approxi-

mated by:

u∗Y ≈ 2πa∗max(f
∗ − 1/λ∗) cos(2π(f ∗t∗ − Z∗/λ∗)) (A.23)

According to the above equation, the magnitude of lateral velocity of fluid near the trailing edge

scales with a∗max(f
∗ − 1/λ∗).

The instantaneous reactive force FR is the rate of change of lateral momentum, for which the

dimensional form is given as follows [40]:

FR(Z, t) =
D(muY )

Dt
= −m(ρ, L)amax(2π(f − 1/λ))2 sin(2π(ft− Z/λ)) (A.24)

where FR(Z, t) is the reactive force per unit of length in axial (Z) direction at distance Z from

leading edge. m = m(ρ, L) is the virtual (added) mass per unit of length in axial direction which is

approximated by m = 0.25ρπs2, where s is the span of the plate, according to EBT. Nevertheless,

it has been shown by [240] and [241] that this equation is good only for low aspect ratio plates

(s/L < 0.4), and for plates with higher aspect ratio (s/L > 0.5), equation given in the following
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can be used [240]:

m =
π/4ρLs

(1 + (L/s)n)1/n
(A.25)

where n is real number which has been reported typically greater than one [241, 240]. Here, the

virtual mass is approximated by m = 0.44ρπL2 by setting n=2 in equation A.25.

Because the local reactive force (Eqn. A.24) acts along Y direction and the angle of attack

is small, it can be an approximation of the local lateral momentum [40]. The sum (integral) of

the local reactive force on the chord provides the total instantaneous reactive force FRT (t). The

nondimensional form of the total reactive force F ∗RT is derived by integrating Eqn. A.24 along Z

direction as follows:

F ∗RT (t∗) =
1

ρU2L2

∫ Z=L

Z=0.1L

FR(Z, t)dZ

=

∫ Z∗=1

Z∗=0.1

−m∗a∗max(Z∗ − .1)/0.9(2π(f ∗ − 1λ∗))2 sin(2π(f ∗t∗ − Z∗/λ∗))dZ∗

= −0.11m∗a∗maxλ
∗(f ∗ − 1/λ∗)2[sin(2πf ∗t∗ − 2π/λ∗)

− cos(2πf ∗t∗ − 2π/λ∗) + cos(2πf ∗t∗ − 0.2π/λ∗)]

(A.26)

Equations A.23 and A.24 show that the velocity and lateral force are periodic, hence their time-

averaged value is zero. [40] derived thrust TR by subtracting kinetic energy of flow due to lateral

motion and work it has done by lateral motion:

TR =
1

2
m[(

∂h

∂t

2

)− U2(
∂h

∂Z

2

)]Z=L (A.27)

where the quadratic terms in equation A.27 are time-averaged that can be conveniently calculated

using equation 4.4 at the trailing edge (Z=L). Now substituting m from Eqn. A.25 into Eqn. A.27,

and nondimensionalizing it with ρU2L2, the nondimensional thrust coefficient CT is obtained con-

veniently as:

CT = [0.11π(2πf ∗a∗max)
2(1− (

1

f ∗λ∗
)2)] (A.28)

This equation shows that thrust scales with CT = O((f ∗a∗max)
2(1 − ( 1

f∗λ∗
)2)) irrespective of
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how the added mass m is approximated.

The relation of thrust (the external force, assuming pressures cancel out) and the axial momen-

tum for a control volume (CV) is given by the Reynolds transport theorem as follows:

TR =
∂

∂t

∫
CV

ρuZdV +

∫
CS

ρuZ~u.n̂dS (A.29)

where ρuZ is the axial momentum per unit volume, ~u is the velocity vector, dV is the volume

differential within CV, dS is the area differential on the CV surfaces, i.e., the control surface (CS),

and n̂ is the outward normal of dS. By averaging the above equation over a cycle, the derivative of

the volume integral goes to zero because we reach a quasi-steady (periodic) state. If we consider

a cubic CV that is far away from the plate in the lateral and spanwise direction, then the net flux

on the lateral and spanwise faces of the CS will be zero. Consequently, the above equation will

reduce to only the axial direction:

T̄R = (ρū2ZS)outlet − (ρū2ZS)inlet (A.30)

which indicates that the average thrust is the difference between the time-averaged axial momen-

tum flux at the outlet and inlet. Because uZ at the inlet (upstream of the plate) is uniform, the inlet

momentum is constant. Consequently, the change in the thrust is directly related to the change in

the mean axial momentum at the outlet (wake). Therefore, we have used thrust (force) and the

mean axial momentum interchangeably in this manuscript, e.g., we have used increase in thrust as

an equivalent to increase in the mean axial momentum in the wake.

The nondimensional plate vorticity (ω∗x = ∂u∗Y /∂Z
∗) is approximated by calculating the deriva-

tive of equation A.23 with respect to Z

ω∗x ≈ 4π2a∗max
(f ∗ − 1/λ∗)

λ∗
sin(2π(f ∗t∗ − Z∗/λ∗)) (A.31)

The scaling of the shear layer vorticity on pressure side of a flat inclined plate can be obtained
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using the friction coefficient for a laminar boundary layer based on the Blasius solution. The

nondimensional friction coefficient at trailing edge is Cf = 0.332/
√
ReL based on the Blasius

profile [209]. Using the Blasius friction coefficient and Cf = 1/ReL
∂u∗Z
∂Y ∗

, the nondimensional

shear layer vorticity scaling becomes:

∂u∗Z
∂Y ∗

= 0.332
√
ReL (A.32)

However, it has been observed that the skin friction of a moving plate is greater than the skin

friction of a Blasius boundary layer [211, 242]. Therefore, we also extract the skin friction scaling

for the undulating plate using the drag coefficient derived by [242] and then we compare it with

the one derived by Blasius friction coefficient (Eqn. A.32). The drag force based on [242] is:

D = 1.4µURe1/2s

√
uY
U

(A.33)

where Res = Us/ν is the Reynolds number based on the span s = 2L. Nondimensionalizing D

(Eqn. A.33) by sρU2, and replacing s by 2L, gives the nondimensional skin friction by:

Cf = 1.4

√
u∗Y√

2ReL
= 1/ReL

∂u∗Z
∂Y ∗

(A.34)

Equation A.34 shows that ∂u∗Z
∂Y ∗

is proportional to
√
u∗y
√
ReL. The maximum nondimensional

lateral velocity (u∗Y ) does not exceed 1.6 according to Eqn. A.22 even for the high frequency cases.

Therefore, this relation also provides a scaling of O(
√
ReL) similar to the Blasius relation. For

simplicity, we use the Blasius skin friction for the approximation of shear layer vorticity on the

pressure side of the plate, which leads the shear layer vorticity to be approximately ∂u∗Z
∂Y ∗
≈ 45.
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A.2 Pressure gradient scaling due to undulations

The lateral averaged pressure gradient over an undulationg plate at zero angle of attack is

estimated by 2D Reynolds-averaged Navier-Stokes equation in the nondimensional form (A.35):

u∗z
∂u∗y
∂z∗

+ u∗y
∂u∗y
∂y∗

= − ∂p

∂y∗
+

1

Re
(
∂2u∗y
∂y∗2

+
∂2u∗y
∂z∗2

)−
∂u′∗y u

′∗
z

∂z∗
−
∂u′∗y u

′∗
y

∂y∗
(A.35)

where overbar terms are time-averaged, u′∗y u′∗y and u′∗y u′∗z are the nondimensional Reynolds stresses.

Because velocity of an undulating plate is periodic, the time-averaged lateral velocity over a period

is zero. The lateral velocity fluctuation scales with instantaneous lateral velocity expressed in A.23.

u′∗y = u∗y − u∗y ≈ (2πa∗max(f
∗ − 1/λ∗))cos(2π(f ∗t∗ − Z∗/λ∗)) (A.36)

In fact, the assumption of negligible mean lateral velocity is correct in this study, though it is

valid for turbulent boundary layer of a flat plate, because (u′∗y = u′y/U) ≈ 1, and u′y is oscillatory,

which implies that u′∗y � u∗y. By this assumption, the lateral velocity fluctuation u′∗y u
′∗
y is the

dominant term in equation A.35 because left hand side and viscous terms become zero as u∗y ≈ 0.

Therefore, the pressure gradient term can be simplified as:

∂p

∂y∗
≈ −

∂u′∗y u
′∗
y

∂y∗
≈ − 1

∆y∗
[− 1

T

∫ T

0

(2πa∗max(f
∗ − 1/λ∗))2cos2(2π(f ∗t∗ − Z∗/λ∗))dt∗]

=
(2πa∗max)

2(f ∗ − 1/λ∗)2

∆y∗

(A.37)

The right hand side of equation A.37 is obtained by assuming that u′y is negligible at nondi-

mensional distance ∆y∗ from the plate (∆y∗ = ∆y/L), and, consequently the Reynolds stress is

negligible (u′∗y u
′∗
y ≈ 0) at ∆y = L. It is also assumed that the Reynolds stress is decreasing lin-

early and ∆y = O(L). Note that, the assumption of zero velocity fluctuation (u′y ≈ 0) at ∆y ≈ L

is based on the assumption for the boundary layer of a flat plate, in which u′y ≈ 0 at ∆y = O(L).

Similar arguments are applicable to the other (lateral) side of the undulating body, i.e., −y direc-

tion, because velocity fluctuations decrease on the other side as well when we move away from the
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body. Therefore, the order of nondimensional pressure gradient based on Eqn. A.37 in the lateral

direction n, pointing outwards from the body, and assuming zero velocity fluctuation atO(L) from

the body, is:
∂p

∂n
= O((a∗max)

2(f ∗ − 1/λ∗)2) (A.38)

Positive ∂p
∂n

requires the pressure to increase as we move away from the plate, i.e., low average

pressure near the plate.
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APPENDIX B

DOMAIN SENSITIVITY AND COMPUTATIONAL BUDGET

In this appendix the domain sensitivity study and computational budget of different studies are

presented.

B.1 Domain sensitivity and sampling error for turbulent channel simulation

During the LES of the channel flow, different types of numerical errors might be introduced

which can be originated from the domain size, data sampling, time-step size and grid size. Our

validation and grid sensitivity studies presented in §3.2.2 and previous numerical studies of channel

flows [168] and turbulent traveling wave simulations [158, 236] indicate that our grid and time step

size were sufficient. However, a sampling error for calculating the averaged parameters such as

mean force coefficients (Fig. 4.6) might be introduced due to the insufficiency of the data used for

averaging, e.g. the mean forces of the traveling wavy channel are computed by taking the average

of 20 cycles of the forces. Therefore, the sampling uncertainty of the forces is quantified to ensure

that the averaging is performed for a sufficient number of cycles. The sampling uncertainty of

the mean forces is quantified using the method described by Oliver et. al. [187], which has been

used by Jozsa et al. [237] for turbulent channel with compliant walls. It has been observed that

the sampling uncertainty for the mean force coefficient of the motionless wavy channel is less

than 1.0×10−5, when the averaging is performed for a non-dimensional time of t =75 which

corresponds to 18,800 time-steps (data samples). When the channel’s wall undulates, the sampling

uncertainty of the forces increases, i.e., it increases by the increase of either C or s as the amplitude

of the instantaneous forces increases as shown in Fig. 4.5. Hence, the highest sampling uncertainty

of CF is observed for the traveling wave channel with C = 1.6. The sampling uncertainty is

0.00028 which corresponds to 0.59% of the drag reduction with respect to the motionless wavy

channel. The previous studies have reported that the change of the domain size can affect the

force of a turbulent channel with either a motionless flat wall (baseline) [238] or a deforming
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wall [237, 239]. To calculate the error generated by the domain size, another LES simulation is

performed for a traveling wave channel with C =0.8 and s=0.15. The simulation is performed

using grid 3 (Table 4.1) which its streamwise length is 8H∗, twice of grid 2, but its resolution is

same as grid 2. Similar to the previous simulations, the traveling wave simulation is initialized with

a motionless wavy channel simulation and the averaging is performed for 20 cycles. Using grid 3,

the mean force coefficient of this case is CF = −0.0067 whereas the CF of the same simulation

with grid 2 is −0.0069. The change of mean force coefficient due to domain size corresponds to

%2.9 decrease in the drag reduction with respect to the motionless wavy channel (C =0.0). Such

a small difference in the mean values and drag-reduction does not affect the conclusions of this

work.

B.2 Computational budget

All simulations in this work are performed using Texas A&M university cluster (Terra) com-

puting nodes where each node has 28 cores, i.e., Intel Xeon E5-2680 v4 (Broadwell), 2.40GHz,

14-core, with 64GB. By doing many simulations, it was found that the optimum speed-up can be

obtained with 228 CPUs for plate and channel flow simulations whereas the wind turbine simula-

tions require at least 336 cores where the maximum speed-up was obtained with the same number

of CPUs. In fact, it was obtained that no speed-up can be achieved by increasing the number

of CPUs by having more than 336 cores due increase in the data-communication (send and re-

ceive) cost. The details of computational cost is described in Table B.1. The total number of

mesh (Ntot), number of CPUs, time of the simulation, and the number of time-steps per SU, i.e.,

SU= CPU (core) × time (hour), are presented. The compressible simulations have the maximum

timestep/CPU. In contrast, the wind turbine simulation has the lowest time-step/SU due to having

overset and, rotating grid, and high Reynolds number of the flow.
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Table B.1: The details of computational cost.

simulation Ntot (Million) NCPU time (hr) time-step/SU
Incompressible Channel 4.4 228 144 8.18
Inclined plate 10.2 228-280 128 1.12
Wind turbine 112.5 336-448 720 0.2
Compressible channel 24.7 228 28 32.5
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