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 ABSTRACT 

 The dissertation has two aspects. The first aspect is to investigate the relationships 

between process parameters and responses of interest in two types of additive 

manufacturing processes: PolyJet and Binder Jetting. The second aspect is to compensate 

color deviations of printed samples from color specifications entered in the printer 

software using a data-driven approach. 

 In the first two chapters of the dissertation, the effects of PolyJet process 

parameters (such as surface finish type, print orientation, and layer thickness) on 

mechanical properties, surface roughness, and dimensional accuracy of printed samples 

are investigated by designed experiments. Analysis of variance (ANOVA) is used to 

determine whether these process parameters are statistically significant. Some process 

parameters are found to have significant main effects as well as interaction effects on the 

responses. 

From chapter three to chapter five, color inaccuracy issue of the PolyJet process is 

addressed in three steps. First, the effects of surface finish type on the measured color of 

printed samples are investigated. Then, a machine learning algorithm, i.e., multilayer 

perceptron neural network, is utilized to model the relationship between color 

specification and measured color. The established model results in a high prediction 

accuracy. Lastly, a compensation methodology, which combines design of experiments, 

predictive modeling, and multi-response optimization, is proposed to find the optimal 

color specifications for the printer software to result in a color on the printed sample that 
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has the smallest deviation from the target color. Case studies validate that the proposed 

methodology reduces color deviations. 

In the last part of the dissertation, powder dispense rate of ultrasonic hopper 

dispensing system equipped on a Binder Jetting 3D printer is investigated. The effects of 

initial powder amount, ultrasonic intensity, ultrasonic frequency, and cumulative number 

of dispensing cycles on powder dispense rate are evaluated experimentally. It is found that 

powder dispense rate can be controlled by altering process parameters, but it decreases as 

the powder dispensing process continues, even with fixed process parameters. 
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1. INTRODUCTION  

In additive manufacturing (AM), a.k.a. 3D printing (3DP), raw materials are 

stacked in layer-by-layer fashion by different types of bonding mechanisms to fabricate a 

3D object. AM processes involve a variety of process parameters that determine final part 

qualities (including mechanical strength, surface roughness, dimensional accuracy, and 

color accuracy). A number of adjustable parameters unique to each AM process exist. Two 

types of inkjet printing technology-based AM processes are investigated in the dissertation. 

PolyJet is a photocurable polymer AM process known for its high resolution and accuracy, 

as well as multi-material capability. Binder Jetting is another jetting-based AM process in 

which a wide range of metal and ceramic materials in powder shape is temporarily bonded 

by adhesive binder. 

1.1. PolyJet 3D Printing Process 

In the literature, process parameters have been investigated and characterized for 

the PolyJet process. Table 1.1 summarizes frequencies of available literatures about 

effects of process parameters on final part qualities.  

Table 1.1 Literatures and knowledge gaps for the PolyJet process 

 Mechanical 
properties 

Surface 
roughness 

Dimensional 
accuracy 

Color 
accuracy 

Print orientation O O O O 
Layer thickness ∆ ∆ ∆ × 
Finish type ∆ O ∆ ∆ 
Shore hardness × × × × 

* O: >3 studies; ∆: 1~3 studies; ×: 0 study 
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Print orientation is a universal process parameter for most AM processes. Because 

building an object involves continuous layer stacking, it is an anisotropic process. 

Especially, complex geometries are affected by print orientation more 

easily because layering effects could result in different final part properties at local areas. 

There is a consensus in the literature that orientation along the X axis produced the highest 

elastic modulus and elongation for the PolyJet process [1-3]. However, results about the 

effects of print orientation on ultimate tensile strength are not consistent [2-4]. In addition, 

the effects of print orientation on final part properties are mostly investigated by simple 

geometries, and there are no reported studies on how the conclusions hold true for complex 

geometries. Effects of print orientation on surface roughness are well studied [1,5]. It is 

found that surface parallel to print platform has the lowest surface roughness (up to 

submicron level), and surface roughness increases as surface orientation increases until 

90°. Reported studies contain inconsistent results on which print orientation is better for 

dimensional accuracy [6,7]. There are only limited numbers of reported studies about the 

effects of print orientation on color accuracy. It is reported that color uniformity can be 

affected by print orientation and post-processing [8]. Another study minimizes color 

variation among different print orientations [9]. However, no study characterizes 

deviations between the printed colors and colors that set by users. There are no commonly 

accepted methods to predict and compensate such deviations, either.  

Layer thickness is another universal parameter in AM processes. There are fewer 

reported studies about effects of layer thickness, finish type or types of material on 

dimensional accuracy in comparison with print orientation [10]. There is a consensus in 
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the literature that smaller layer thickness gives better dimensional accuracy [11]. It is also 

reported that layer thickness does not significantly affect surface roughness [5,12]. There 

is only one reported study that investigates effects of layer thickness on mechanical 

properties where larger layer thickness is reported to produce higher tensile strength [13]. 

A number of reported studies investigated the effects of finish type on final part 

qualities. Despite the differences in printer and material used in reported studies, these 

studies have a consistent conclusion that glossy finish type leads to lower surface 

roughness than matte finish type [1,5,12,14]. On the other hand, the conclusions about the 

effects of finish type on dimensional accuracy is not consistent. One study finds that glossy 

finish type leads to better accuracy [11], but another study concludes that matte finish type 

offers better dimensional accuracy [15]. One study claims that changing surface texture 

(i.e., glossy finish vs. matte finish) would not affect color appearance significantly [16]. 

However, there are no reported investigations on how finish type affects color accuracy in 

the PolyJet process. 

Shore hardness is a unique parameter in the PolyJet process. There are no reported 

studies on how Shore hardness would affect final part qualities. Whether or not Shore 

hardness has an interaction effect with other process parameters is not reported either. 

In summary, there are knowledge gaps for each final part quality. First, 

information on effects of layer thickness on mechanical properties is limited in the 

literature, and whether there are interaction effects between layer thickness and print 

orientation is unknown. Second, there are no reported studies on Shore hardness, and the 

effects of Shore hardness and finish type on surface finish and dimensional accuracy have 
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not been studied. Lastly, little information on color accuracy of the PolyJet process is 

available in the literature. Effects of finish type on color accuracy have not been reported. 

1.2. Binder Jetting 3D Printing Process 

The literature contains reported studies on critical feedstock powder characteristics 

(e.g., particle sizes, particle distributions, and morphology) that affect final part density 

[17-19]. Powders of fine particle sizes or irregular morphology have good sinterability but 

poor flowability, whereas powders of coarse particle sizes or spherical morphology have 

a poor sinterability but good flowability. Powders with a wide particle distribution are 

prone to powder segregation but could achieve a higher density, while powders with a 

narrow particle distribution could lead to a part with uniform microstructures but would 

not have a high density. Bi-modal powders can take advantage of good powder properties 

from both fine and coarse powders, and is a compromise between a good sinterability and 

flowability as well as powder segregation [19]. 

Critical steps in binder jetting 3D printing that are often investigated in the 

literature include powder spreading, binder deposition, and sintering [17-19]. Table 1.2 

shows steps and related process parameters in the Binder Jetting (BJ) process, and 

numbers of corresponding studies reported in the literature. Process parameters that 

significantly affect final part density include binder saturation, layer thickness, roller 

traverse speed, and roller rotational speed [17]. However, reported effects of powder 

dispensed amount, which is controlled by powder dispensing, on green density are 

contradictory in the literature. Two studies concluded that larger dispensed amount 
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increases green density [20,21], but one study claims that dispensed amount does not 

increase green density significantly [22]. 

Table 1.2 Knowledge gaps regarding effects of process parameters on part quality in 

binder jetting 

Step Parameter Part Density 
Dispensing  Screen size × 
 Ultrasonic frequency × 
 Overdose rate ∆ 
Spreading  Roller traverse speed O  
 Roller rotational speed O 
Printing  Layer thickness O 
 Binder saturation O 
Curing  Curing temperature O 
 Curing duration O 
Sintering  Dwelling time O 
 Sintering temperature O 

* O: >3 studies; ∆: 1~3 studies; ×: 0 study 

Therefore, there are knowledge gaps for powder dispensing in BJ process. Hopper 

powder dispensing has been reported in the literature. Discrete Element Method (DEM) 

has been used to simulate flow behavior of powder inside of a hopper [23-26]. Reported 

studies also investigate effects of hopper shape, powder refilling and hopper internal angle 

on dispensing behaviors [28-30]. However, powders used in these studies are relatively 

large and easy to dispense, and none of the studies are focused on the application to the 

BJ process. 

Powders of fine particle sizes can be dispensed using ultrasonic vibration [31-34]. 

However, no study on how dispensing parameters, especially ultrasonic frequency 

ramping pattern and speed would affect dispensing behaviors of fine powders. In addition, 
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no reported studies are found to investigate changes of powder dispensing behaviors over 

time, and little information can be found on how initial amount of powders in hopper 

affects powder dispensing behaviors. 

1.3. Dissertation Organization 

The first chapter summarizes research gaps in the literature on PolyJet and BJ 

processes. The second to third chapters present two studies regarding characterization of 

the PolyJet process. The first study investigates the effects of print orientation and layer 

thickness on mechanical properties, and the second study characterizes the effects of finish 

type and Shore hardness on surface roughness and dimensional accuracy. Color accuracy 

of the PolyJet process is investigated in the fourth to sixth chapters. Chapter 4 examines 

the effects of material color and finish type on color appearance. Chapter 5 utilizes a 

machine learning technique to predict printed color given specified color and finish type. 

Chapter 6 uses response surface methodology to compensate specified color to achieve 

target printed color. Chapter 7 characterizes ultrasonic hopper powder dispensing process 

in the BJ process. The last chapter summarizes the contributions of the dissertation. 
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2.1. Introduction 

In material jetting additive manufacturing processes, droplets of material are 

selectively deposited [1]. Stratasys PolyJet technology is one type of such processes. 

Stratasys J750 (Stratasys, Eden Prairie, MN) was released in 2016, and is capable of 

printing multi materials and multi colors simultaneously. It is worth clarifying the different 

names of this technology. PolyJet technology was originally invented by Objet Geometries 

(an Israel based company) in early 2000s, and Stratasys acquired the company in 2012. 

3D Systems calls the technology MultiJet printing. Thus, material jetting includes both 

PolyJet and MultiJet printing. 

The J750 printer has several improvements over its predecessor. These 

improvements include; increased material capacities from 3 to 6 types to accomplish 

500,000 different colors in addition to a capability of adjusting material hardness; smaller 

layer thickness down to 14 µm instead of 16 µm; reduced diameters of nozzles from 50 

µm to 10 µm; increased size of build platform to 490 mm × 390 mm × 200 mm; and new 

E6 print heads with up to 40% longer lifespan. However, information on how orientation 

and layer thickness affect the mechanical properties of parts printed by J750 is not 

available in the literature. 

Table 2.1 summarizes reported studies about effects of orientation on elastic 

modulus when printing samples using PolyJet. Note that the model of the printer, model 

material, and orientations used differ among the studies, and none of the studies were 

conducted using J750. There is a consensus in the reported studies that orientation XZ 

produced the highest elastic modulus. Cazon et al. showed that orientation XZ had the 
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highest elastic modulus among 6 orientations, and the difference was statistically 

significant [4]. However, Barclift et al. and Mueller et al. draw a conclusion that effect of 

orientation on elastic modulus was insignificant [5,6]. 

Table 2.1 Summary of reported studies about effects of orientation on elastic modulus 

Ref Printer Material Result 
[4] Cazon (2014) Eden 330 FullCure 720 Samples printed using orientation XZ have the 

highest UTS 
[5] Barclift (2012) Connex 250 VeroWhite Insignificant difference between orientations XZ 

and YZ 
Insignificant difference between orientations YZ 
and YX 

[6] Mueller (2015) Objet500 
Connex3 

VeroWhitePlus No significant difference between orientations 
XZ and YZ 

[8] Kesy (2010) Eden 260 FullCure 720 Samples printed using orientation XY have 
higher than these of XZ 

[9] Sai (2018) Objet260 
Connex 

VeroWhitePlus Samples printed using orientation XZ have the 
highest UTS 

[10] 
Sugavaneswaran 
(2014) 

- VeroWhite 
TangoBlackPlus 

No significant difference between horizontal, 
inclined and vertical orientations 

 

Table 2.2 presents the results about effects of orientation on UTS in literatures, 

which is not consistent in reported studies. Cazon et al. concluded that orientation 

significantly affected UTS, and orientation XZ produced the highest UTS. Nevertheless, 

statistical analysis by Barclift et al. and Mueller et al. concluded that the effect of 

orientation on UTS was insignificant [5,6]. On the contrary, Kesy et al. observed that 

orientation XY had the highest UTS [8]. 
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Table 2.2 Summary of reported studies about effects of orientation on UTS 

Ref Printer Material Result 
[4] Cazon (2014) Eden 330 FullCure 720 Samples printed using orientation XZ have the 

highest UTS 
[5] Barclift (2012) Connex 250 VeroWhite Insignificant difference between orientations 

XZ and YZ 
Insignificant difference between orientations 
YZ and YX 

[6] Mueller (2015) Objet500 
Connex3 

VeroWhitePlus No significant difference between orientations 
XZ and YZ 

[8] Kesy (2010) Eden 260 FullCure 720 Samples printed using orientation XY have 
higher than these of XZ 

[9] Sai (2018) Objet260 
Connex 

VeroWhitePlus Samples printed using orientation XZ have the 
highest UTS 

[10] 
Sugavaneswaran 
(2014) 

- VeroWhite 
TangoBlackPlus 

No significant difference between horizontal, 
inclined and vertical orientations 

Lastly, samples printed using orientations XY and XZ had similar elongations, and 

they were larger than these of orientations YX and YZ. This finding is consistent with the 

results from Mueller et al. where they found that samples printed using orientations XY 

or XZ produced highest elongation, as shown in Table 2.3. 

Table 2.3 Summary of reported studies about effects of orientation on elongation 

Ref Printer Material Result 
[4] Cazon (2014) Eden 330 FullCure 720 Significant difference of orientation XZ 

[6] Mueller (2015) Objet500 
Connex3 

VeroWhitePlus Significant difference between orientations XZ 
and YZ  
Insignificant difference between orientations XY 
and XZ 

[8] Kesy (2010) Eden 260 FullCure 720 Highest elongation in orientation XY  

[9] Sai (2018) Objet260 
Connex 

VeroWhitePlus Highest elongation in orientation XY  

In this study, two control factors are investigated: orientation and layer thickness. 

Mechanical properties studied are elastic modulus, ultimate tensile strength (UTS), and 

elongation. The rest of the paper is organized as follows. Experimental setups are 

described in the next section. Then, results of the tensile tests are summarized and 



 

16 

 

statistical analysis of the results is presented. The effects of orientation and layer thickness 

are discussed using main effects and interaction effects plots. Statistical analysis of the 

results is also presented. The final section includes conclusions and future research 

directions. 

2.2. Experimental Setup 

2.2.1. Mechanism 

The PolyJet AM process is schematically illustrated in Figure 2.1(a), and the 

Stratasys J750 PolyJet printer (Minnesota, USA) is shown in Figure 2.1(b). J750 is a multi-

material printer, and distinguishes itself from its predecessors by increasing material 

capacities from 3 to 6 types, enabling it to print 500,000 different colors. In the PolyJet 

printing process, two types of photocurable resins in liquid form, i.e., base model material 

and support material, are selectively deposited from the print heads. The base model 

material is used for constructing the object, while the support material is used to 

temporarily build foundations for the base model material to be printed. After a layer is 

cured by UV lights attached to both sides of the print heads, the build platform goes down 

by the height of one layer, and the materials are deposited again. These steps are repeated 

until the object is completed. 
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Figure 2.1 PolyJet AM process. (a) Illustration of the PolyJet printing process, and (b) 

picture of the Stratasys J750 PolyJet printer 

2.2.2. Sample generation 

Dimensions of tensile samples were in accordance with ASTM D638-14 type 1 

standard [2]. The dimensions of the samples were drawn in SolidWorks, and exported as 

a binary STL file. The defined axes are corresponding to those set by the printer 

manufacturer, and the X and Z axes are shown in Figure 2.1(a). The Y axis is perpendicular 

to the surface of this paper. The STL file was imported to a software interface called 

GrabCAD Print. The user can also set control factors using it. 

2.2.3. Printing conditions for samples 

Different levels selected for the two control factors are presented in Table 2.4. 

There were six different orientations illustrated in Figure 2.2, and two levels of layer 

thickness: 14 𝜇m (1800 dpi) and 27 𝜇m (900 dpi). Nomenclature of the orientations is 

defined as follows: the first letter represents the direction that the longest dimension of the 

sample is parallel to, the second letter represents the direction that the largest surface of 

(a) (b)
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the sample is perpendicular to. For example, “orientation XZ” means that the sample is 

parallel to the X axis, and its largest surface is perpendicular to the Z axis. 

 
Figure 2.2 Printed samples in 6 orientations 

Table 2.4 Levels of control factors 

Control factor Level 1 Level 2 Level 3 Level 4 Level 5 Level 6 
Orientation XY XZ YX YZ ZX ZY 
Layer thickness 14 𝜇m 27 𝜇m - - - - 

Other parameters are kept the same for all samples. The resolutions of the printer 

in the XY plane are 42 𝜇m (600 dpi). All the samples were made by the same model 

material called VeroMagenta RGD 851. According to Stratasys’s mechanical property 

datasheet, all materials in the Vero family have similar properties, so the color of the 

material is not considered in this study [3]. SUP705 was used for support material. Matte 

is selected as finish type, and Shore hardness value is set to 100 for all samples. Under 

each of the 6 orientations, 5 samples were replicated, making 30 samples in total per 

printing under each layer thickness. The samples were printed after 2 months of the 

machine installation, and maintenances such as cleaning were carried out on the daily 

basis. 
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Orientations ZX and ZY used for tensile testing were printed separately. When 

these samples were printed together with samples of other orientations, the surfaces of the 

samples were extremely inferior, as illustrated in the bottom of Figure 2.3, perhaps due to 

their small contact area at the bottom of the samples with the build platform. Thus, an 

alternative approach was adopted to print them. Specifically, two thin rectangular parts 

(163.6 mm ´ 18.75 mm ´ 3mm) were leaning toward both sides of the sample as close as 

possible without touching. The parts were printed together with each sample to allow 

support materials to fill up between the sample and the support parts. Therefore, the 

contact area at the bottom of the samples with the build platform was increased, and the 

samples were stabilized. The resulting printed samples, as shown in the top side of Figure 

2.3, become much smoother. 

 

Figure 2.3 Printed sample without support parts (bottom), and printed sample with 

support parts (top) 

2.2.4. Post-processing of samples 

After the completion of a printing, wax-like support materials (SUP705) on every 

surface of samples were manually removed by a scraper. Then, pressurized water was 

blasted to the samples to further remove the support materials. Caution must be taken 

while using the pressurized water because high pressure could break the samples. Also, it 
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is optional to immerse the cleaned samples into caustic solution to further clean it, but 

immersing the samples for a long time may corrode it and make it brittle.  Caustic solution 

was not used because it could affect the mechanical properties of the samples. 

2.2.5. Measurement of mechanical properties 

To measure the mechanical properties of printed samples, an Instron 4411 tensile 

testing machine was used, as shown in Figure 2.4. The testing machine is equipped with a 

5 kN load cell. The test speed of 5.08 mm/min was used for all samples. Engineering 

stress-strain curves were obtained from the machine, and mechanical properties (elastic 

modulus, ultimate tensile strength, and elongation) were extracted from the stress-strain 

curve for each sample. Each mechanical property is defined as follows: 

• Elastic modulus: the stress applied on a body to the resulting strain within the 

elastic limit, measured in ksi. First 30 data points are used to calculate the modulus. 

• Ultimate tensile strength (UTS): the maximum strength that a material can 

withstand before rupture, measured in ksi. The highest value of each stress-strain 

curve is recorded. 

• Elongation: the ratio between changed length and initial length after the sample 

breaks, measured in percentage. 
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Figure 2.4 Instron 4411 tensile testing machine 

2.3. Results and Discussions 

2.3.1. Main effects of orientation 

Table 2.5 summarizes the measured mechanical properties under six levels of 

orientations, where “Std. Dev” is standard deviation of the measurements at one level of 

orientation, and each level of orientation has 10 samples. The largest values in the mean 

column are in bold, and the smallest values in the standard deviation column are in bold. 

Figure 2.5, Figure 2.6, and Figure 2.7 show the main effects of orientation on elastic 

modulus, UTS, and elongation, respectively. The effects of orientations on UTS and 

elongation are larger than those for elastic modulus. Orientation XY led to the largest 

elastic modulus and elongation, while orientation YZ produced the highest UTS. On the 

other hand, orientations ZX and ZY resulted in much lower UTS and elongation than other 
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orientations. From Figure 2.7, it can be observed that the samples printed with their longest 

dimension aligned with the X axis (orientations XY or XZ) exhibited larger elongation 

than these aligned with the Y axis (orientation YX or YZ). 

Table 2.5 Results of measured mechanical properties under six levels of orientation 

Orientation 
Elastic 

Modulus (ksi) UTS (ksi) Elongation (%) 

Mean Std. Dev Mean Std. Dev Mean Std. Dev 

XY 232 13.9 7.8 0.16 11.3 0.82 
XZ 228 7.3 7.9 0.09 11.2 1.40 
YX 216 21.5 6.5 1.90 7.4 2.95 
YZ 229 13.9 8.1 0.22 9.8 0.72 
ZX 213 10.1 3.9 0.63 3.0 0.45 
ZY 208 15.8 3.9 0.22 3.1 0.21 

 

 

Figure 2.5 Main effects of orientation on elastic modulus 
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Figure 2.6 Main effects of orientation on UTS 

 

Figure 2.7 Main effects of orientation on Elongation 

2.3.2. Main effects of layer thickness 

Table 2.6 summarizes the measured mechanical properties under the two levels of 

layer thickness, and each level of layer thickness has 30 samples. All mechanical 

properties under the larger layer thickness surpassed those under the smaller layer 

thickness. Figure 2.8, Figure 2.9, and Figure 2.10 show the main effects of layer thickness 

on elastic modulus, UTS, and elongation, respectively. Elastic modulus was the only 

response where the two layer thicknesses had similar means. For UTS and elongation, 

larger layer thickness led to higher values. Moreover, a clear clustering patterns can be 

observed within each layer thickness in the plots of UTS and elongation: the lower cluster 
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of points were from samples printed with their longest dimension parallel to the Z axis, 

and the higher cluster were from the samples aligned with X or Y axis. Note that no study 

was found to have investigated the effects of layer thickness on the mechanical properties. 

Table 2.6 Results of measured mechanical properties under two levels of layer thickness 

Layer thickness (𝜇m) 
Elastic 

Modulus (ksi) 
UTS (ksi) Elongation (%) 

Mean Std. Dev Mean Std. Dev Mean Std. Dev 

27 221.8 15.3 6.7 1.82 8.4 3.78 
14 221.3 17.5 6.0 2.12 6.9 3.65 

 

Figure 2.8 Main effects of layer thickness on elastic modulus 

 

Figure 2.9 Main effects of layer thickness on UTS 
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Figure 2.10 Main effects of layer thickness on elongation 

2.3.3. Interaction effects of orientation and layer thickness 

Figure 2.11 shows the interaction effects of orientation and layer thickness for 

elastic modulus. It can be seen that significant interaction effects exist. For example, 

changing layer thickness from 14 𝜇m to 27 𝜇m increased elastic modulus for samples 

printed using orientations XY, YX, and ZX. However, changing layer thickness from 14 

𝜇m to 27 𝜇m decreased elastic modulus for samples printed using orientations XZ, YZ 

and ZY. 

 
Figure 2.11 Interaction effect plots of orientation and layer thickness for elastic modulus 
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Figure 2.12 shows the interaction effects of orientation and layer thickness for 

UTS. Significant interaction effects can be observed. For example, changing layer 

thickness from 14 𝜇m to 27 𝜇m did not cause observable changes in UTS for samples 

printed using orientations XY, XZ, YZ, ZX, and ZY. However, changing layer thickness 

from 14 𝜇m to 27 𝜇m caused significant change in UTS for samples printed using 

orientation YX (from about 5.4 ksi to 7.7 ksi). 

 

Figure 2.12 Interaction effect plots of orientation and layer thickness for UTS 

Figure 2.13 shows the interaction effects of orientation and layer thickness for 

elongation. Significant interaction effects can be observed. For example, changing layer 

thickness from 14 𝜇m to 27 𝜇m did not cause observable changes in elongation for samples 

printed using orientations XY, YZ, ZX, and ZY. However, changing layer thickness from 

14 𝜇m to 27 𝜇m caused significant change in elongation for samples printed using 

orientations XZ and YX. 
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Figure 2.13 Interaction effect plots of orientation and layer thickness for elongation 

2.3.4. ANOVA for orientation and layer thickness 

Analysis of variance (ANOVA) was carried out to determine statistical 

significance of the differences caused by the two control factors: orientation and layer 

thickness. The ANOVA results are shown in Table 2.7, Table 2.8, and Table 2.9 for elastic 

modulus, UTS, and elongation, respectively. The main effects of orientation are 

significant for all mechanical properties, the main effects of layer thickness are significant 

only for UTS and elongation, and their interaction effects is also significant for all 

mechanical properties. 

Table 2.7 Results of ANOVA for elastic modulus 

  DoF Sum Sq Mean Sq F value Pr(>F) 
Orientation 5 4.95E+9 9.91E+8 5.95 0.0002 
Layer thickness 1 4.28E+6 4.28E+6 0.03 0.8733 
Interaction 5 3.56E+9 7.13E+8 4.28 0.0027 
Residuals 48 7.99E+9 1.66E+8     
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Table 2.8 Results of ANOVA for UTS 

  DoF Sum Sq Mean Sq F value Pr(>F) 
Orientation 5 1.93E+8 3.86E+7 78.63 <0.0001 
Layer thickness 1 5.79E+6 5.79E+6 11.79 0.0012 
Interaction 5 9.07E+6 1.81E+6 3.70 0.0065 
Residuals 48 2.36E+7 4.91E+5     

Table 2.9 Results of ANOVA for elongation 

  DoF Sum Sq Mean Sq F value Pr(>F) 
Orientation 5 724.0 144.8 276.15 <0.0001 
Layer thickness 1 31.9 31.9 60.87 <0.0001 
Interaction 5 51.8 10.4 19.74 <0.0001 
Residuals 48 25.2 0.5     

2.4. Conclusion 

The effects of two control factors, orientation and layer thickness, of Stratasys J750 

PolyJet printer on mechanical properties (elastic modulus, ultimate tensile strength, and 

elongation) of printed samples were investigated. As to orientation, samples printed with 

their longest dimension aligned with the X axis had higher elastic modulus and elongation, 

samples aligned with the Y axis had higher UTS, and samples aligned with the Z axis had 

the lowest mechanical properties. With respect to layer thickness, it was found that larger 

layer thickness led to slightly higher elastic modulus, UTS, and elongation than smaller 

layer thickness. In short, the highest mechanical properties can be achieved by putting the 

longest dimension of a part along the X axis and the largest surface perpendicular to either 

the Y or Z axis. 

2.5. References 

[1] ASTM ISO/ASTM52900-15 Standard Terminology for Additive Manufacturing 

(2015), General Principles Terminology, ASTM International 



 

29 

 

[2] ASTM D638-14 Standard Test Method for Tensile Properties of Plastics (2014), 

ASTM International 

[3] Stratasys PolyJet Materials Data Sheet 

[4] Cazón, A., Morer, P., & Matey, L. (2014). PolyJet technology for product 

prototyping: Tensile strength and surface roughness properties. Proceedings of the 

Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 

228(12), 1664–1675. 

[5] Barclift, M. W., & Williams, C. B. (2012). Examining Variability in The Mechanical 

Properties of Parts Manufactured Via PolyJet Direct 3d Printing, 876–890. 

[6] Mueller, J., Shea, K., & Daraio, C. (2015). Mechanical properties of parts fabricated 

with inkjet 3D printing through efficient experimental design. Materials and Design, 

86, 902–912. 

[7] Sugavaneswaran, M., & Arumaikkannu, G. (2015). Analytical and experimental 

investigation on elastic modulus of reinforced additive manufactured structure. 

Materials and Design, 66(PA), 29–36. 

[8] Kęsy, A., & Kotliński, J. (2010). Mechanical properties of parts produced by using 

polymer jetting technology. Archives of Civil and Mechanical Engineering, 10(3), 

37–50. 

[9] Sai C. D., Rajesh R., & Murugan N. (2018). Effect of build orientation on the strength 

and cost of PolyJet 3D printed parts, Rapid Prototyping Journal 



 

30 

 

[10] Sugavaneswaran, M., & Arumaikkannu, G. (2014). Modelling for randomly oriented 

multi material additive manufacturing component and its fabrication. Materials and 

Design, 54, 779–785. 

 



 

31 

 

3. EXPERIMENTAL INVESTIGATION OF POLYJET 3D PRINTING PROCESS: 

EFFECTS OF FINISH TYPE AND SHORE HARDNESS ON DIMENSIONAL 

ACCURACY AND SURFACE FINISH OF POLYJET PROCESS 

 

Paper title: 

Experimental Investigation of Stratasys J750 PolyJet Printer: Effects of Finish Type and 

Shore Hardness on Surface Roughness 

Experimental Investigation of Stratasys J750 PolyJet Printer: Effects of Finish Type and 

Shore Hardness on Dimensional Accuracy 

 

Published in: 

Proceedings of the ASME 2019 Manufacturing Science and Engineering Conference 

(MSEC 2019), June 10-14, 2019, Erie, Pennsylvania, USA 

 

Authors’ names: 

Wei, X.1, Bhardwaj, A.1, Thakare, K.1, Zeng, L.2, Pei, Z.1 

 

Authors’ affiliations: 

1. Department of Industrial and Systems Engineering, Texas A&M University, College 

Station, Texas 77843, USA 

2. School of Data Science, City University of Hong Kong, Kowloon Tong, Hong Kong 

SAR, China 



 

32 

 

  



 

33 

 

3.1. Introduction 

3D printing, also known as additive manufacturing, is an emerging manufacturing 

method where a thin layer of material is selectively and repeatedly bonded together to 

form a 3D shape [1]. There are some obvious advantages that 3D printing possesses over 

traditional manufacturing methods: shorter lead-time, reduced tooling costs, freedom of 

part complexity, and reduced waste, to name a few. However, quality control has been a 

large factor that have hindered 3D printing from being broadly implemented in practice; 

it still has majority of occasions where it can only be used as a rapid prototyping method. 

The main reason of that is complicated phenomenon and abundant process parameters 

involved during the building process that affects a final quality of a 3D printed part. 

Although research community and commercial industry have been improving quality 

control aspects of 3D printing processes, and such efforts require further attentions. 

In the reported studies of the PolyJet process, a lot of studies have been conducted 

to investigate the effects of process parameter on surface roughness. The examples of 

process parameters include layer thickness, finish type, Shore hardness, material 

combinations, orientation, and post-processing method. First, the effects of finish type on 

surface roughness are reviewed here. Kumar et al. considered three process parameters: 

finish type, orientation, and layer thickness. They developed a mathematical model to 

predict surface roughness, and their prediction errors were under 3 𝜇m compared to the 

actual measurements [2]. Kechagias et al. also considered three factors that affect surface 

roughness: finish type, layer thickness, and sample size [3]. The results show that finish 

type significantly affects surface roughness, more than the other two factors. Cazon et al. 
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studied effects of orientation and finish type on surface roughness, and the effect of finish 

type is statistically significant [4]. Udroiu et al. measured vertical direction of samples 

printed using two finish types, and concluded that glossy finish produces lower surface 

finish than matte finish [5]. Despite the differences in printer and material used among the 

reported studies, there is a consensus that glossy finish leads to lower surface roughness 

than matte finish [2-5]. However, information on how Shore hardness, which is one of the 

unique process parameters exist for the PolyJet process, would affect surface roughness 

has not been studied in the literature at our best knowledge, and whether or not Shore 

hardness could have an interaction effect with finish type is unknown. 

Abundant research has investigated dimensional accuracy of the PolyJet process. 

Kechagais et al. considered three factors: finish type, layer thickness, and sample size. 

They found that glossy finish led to better accuracies [2]. They also concluded that finish 

type plays a more significant role than layer thickness in the Z axis, but layer thickness is 

more significant in the X and Y axes. On the contrary, Yap et al. found that matte finish 

offers better dimensional accuracy because every surface of the part is covered with 

support materials to preserve its original geometry such that deviations from nominal 

dimensions are less [3]. Thakare et al reviewed literatures that studied dimensional 

accuracy related to PolyJet [9]. It was summarized that part orientation is control variable 

whose effects on dimensional accuracy has been studied the most in comparison to layer 

thickness, surface finish type or material. Out of the 37 related studies, 12 had evaluated 

the effect of process parameters on dimensional accuracy. The reported studies contain 

inconsistent results on which part orientation is better for dimensional accuracy. However, 
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the studies are consistent that smaller layer thickness gives better dimensional accuracy 

than the larger one. Additionally, glossy surface finish type is better than matte finish. 

Nevertheless, information on how Shore hardness would affect dimensional accuracy has 

not been studied in the literature, and whether or not Shore hardness could have an 

interaction effect with finish type is unknown. 

In this study, the effects of the two process parameters, finish type and Shore 

hardness, on surface roughness and dimensional accuracy are investigated. The other 

process parameters, such as layer thickness, print orientation, and materials are kept 

constant. The rest of the paper is organized as follows. Experimental setups are described 

in the next section. Then, experimental results are summarized, and the effects of finish 

type and Shore hardness are discussed using main effects and interaction effects plots. 

Statistical analysis of the results is also presented by using analysis of variance (ANVOA) 

and pairwise comparison. The final section includes conclusions and future research 

directions. 

3.2. Experimental Setup 

3.2.1. Sample generation 

Rectangular prism is designed to study the effects of finish type and Shore 

hardness on surface roughness and dimensional accuracy. The geometry of the prism was 

generated in SolidWorks with slightly different dimensions in each of three sides: 0.49″ 

in the X axis, 0.50″ in the Z axis, and 0.51″ in the Y axis. Here, the defined axes are 

corresponding to those set by the printer manufacturer; the X and Z axes are shown in 
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Figure 2.1 (a), and the Y axis is perpendicular to the surface of this paper. The file was 

exported as a binary STL file. Then, it was imported to the GrabCAD Print software in 

which the process parameters were assigned to the prisms. 

3.2.2. Experimental conditions 

A two factor design of experiment is conducted for this study, and selected levels 

for each control factors are presented in Table 3.1. For finish type, two options are 

available: glossy and matte. When glossy finish is selected, support materials will not 

cover the sample surfaces except for the bottom and overhanging surfaces. When matte 

finish is selected, support materials will cover all surfaces of the samples. For Shore 

hardness, four levels of Shore-A values out of available eight levels are selected. All the 

samples were produced by either model materials called VeroYellow RGD 836 or Agilus 

30 FLX 935. VeroYellow is a rigid material whereas Agilus is a flexible rubber-like 

material. By depositing the two materials at different ratios, 8 different values of Shore 

hardness can be set through GrabCAD Print software. For example, Agilus is only used 

for generating samples of Shore hardness of 30, and VeroYellow is only used for making 

samples of Shore hardness of 100. 

Table 3.1 Levels of control factors 

Process Parameter Level 1 Level 2 Level 3 Level 4 
Finish type Matte Glossy - - 
Shore hardness 30 50 85 100 
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Figure 3.1 Sample locations on the build platform 

Other process parameters were kept the same for all samples. Specifically, between 

the two types of available support materials, the wax-like SUP705 is harder than the gel-

like SUP706 and thus not easily removed. Therefore, SUP706 was used in this study to 

reduce influence of support materials on surface quality. Larger layer thickness of 27 𝜇m 

(900 dpi) was used, and the resolution of the printer in the XY plane is 42 𝜇m (600 dpi) 

by default. The 8 treatments (i.e., 2 options of finish type combined with 4 options of 

Shore hardness) with 3 replications for each treatment were randomly placed on the build 

platform, as shown in Figure 3.1. Randomizing sample locations can eliminate or 

minimize potential confounding effects. Nomenclature of the samples used in Figure 3.1 

is defined as follows: the number in front of the letter represents the value of Shore 

hardness. The letter designates the finish type used; “M” denotes matte finish, and “G” 

denotes glossy finish. The second number after the letter signifies sample identifications. 

For example, “50M1” indicates a Shore hardness of 50, matter finish and the first sample. 
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The samples were printed after 7 months of the machine installation, and maintenances 

such as cleaning were carried out on the daily basis. 

3.2.3. Post-processing of samples 

After the completion of a printing, gel-like support materials (SUP706) were 

manually removed by a scraper. Then, pressurized water was blasted to the samples to 

further remove the support materials. Caution has been taken while using the pressurized 

water because the high pressure could affect the surface finish. Also, it was optional to 

immerse the cleaned samples into caustic solution to further clean it, but immersing the 

samples for a long time may corrode it and make it brittle. Caustic solution was not used 

because it could affect the surface qualities of the samples. 

3.2.4. Measurement of surface roughness 

The samples were measured by Mitsutoyo surface roughness profilometer SJ-210 

(Mitsutoyo, Japan). Table 3.2 shows parameter settings for the profilometer. ISO 1997 

was selected as the standard, and arithmetic mean deviations of roughness (Ra) was 

obtained, and Gaussian filter was used. lc denotes the cut-off wavelength used to filter 

out higher frequencies of the primary profile. ls is the cut-off wavelength used to filter 

out lower frequencies of the measured profile. Hence, a roughness profile between the 

values of lc and ls is obtained. The measurement speed and the number of sampling 

length are set to 0.5 mm/s and 5, respectively. The type of detector used was standard 

drive unit in which the detector tip only moves in the axial direction. Measuring force of 

the detector was 0.75 mN. 
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Table 3.2 Parameter settings of Mitutoyo surface profilometer to measure Ra 

Setting Value 
Standard ISO 1997 
Profile Ra 
Filter Gaussian 
λc 0.8mm 
λs 2.5µm 
Measuring speed 0.5 mm/s 
Number of sampling lengths 5 
Drive unit type Standard 
Detector type 0.75 mN 

Figure 3.2 shows how the printed samples were measured by the profilometer. The 

sample was fixed by hand and the device was hold by a clamp. Human hand was used to 

fix the samples because the high friction of samples with low Shore hardness made it 

difficult to fix the samples by fixtures. The sequence of measurement was the same as the 

order of samples printed on the build platform, starting from top left to bottom right 

(Figure 3.1). Top surfaces of the samples were measured, in horizontal direction, which 

corresponding to the X axis direction of the printer. The moving direction of the detector 

tip was placed parallel to the direction of measurements before the measurement. 
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Figure 3.2 Surface roughness measurement by Mitsutoyo SJ-210 

3.2.5. Measurement of dimensional accuracy 

Figure 3.3 shows how printed samples were measured by Mitsutoyo digital caliper 

(Mitsutoyo, Japan). The sequence of measurement was the same as the order of samples 

printed on the build platform, starting from top left to bottom right (Figure 3.1). Each 

sample was held by an operator, and lengths along the X and the Y axes were measured 

at the center of each surface by the caliper. Thus, three measurements were obtained from 

each sample. 

 

Figure 3.3 Dimensional measurement along the X axis for “100G1” 
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3.3. Results and Discussions 

Table 3.3 presents measurement results for surface roughness of top surface and 

dimensions along the X and the Y axes. It can be observed that glossy finish has lower 

surface roughness than matte finish in both directions. Another trend is that surface 

roughness in horizontal direction is always lower than that in vertical direction. This is 

because the way that PolyJet process deposits the model materials creates peaks and 

valleys in horizontal direction. As a result, measurements in vertical direction need to 

traverse these grooves, while measurements in horizontal direction are parallel to either a 

peak or a valley and thus have lower surface roughness. 

Table 3.3 Measurement results 
Finish type Shore hardness Sample Ra (µm) Deviation in X (µm) Deviation in Y (µm) 
Matte 30 1 3.446 -25.4 -190.5 

2 3.522 50.8 -419.1 
3 2.965 114.3 -368.3 

50 1 3.539 -50.8 -101.6 
2 2.503 0.0 -12.7 
3 2.748 -38.1 0.0 

85 1 2.694 76.2 76.2 
2 2.325 76.2 88.9 
3 2.183 63.5 38.1 

100 1 1.860 406.4 152.4 
2 1.814 495.3 165.1 
3 1.670 342.9 114.3 

Glossy 30 1 1.933 -12.7 -139.7 
2 2.163 -114.3 -88.9 
3 2.306 -190.5 -101.6 

50 1 1.984 -76.2 -38.1 
2 1.974 -25.4 -38.1 
3 1.871 -63.5 -50.8 

85 1 1.848 63.5 114.3 
2 1.658 63.5 114.3 
3 1.847 101.6 152.4 

100 1 0.645 25.4 50.8 
2 0.766 25.4 12.7 
3 0.693 25.4 25.4 
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3.3.1. Effects of finish type and Shore hardness on surface roughness 

Figure 3.4 shows the main effect and interaction effect plots. From Figure 3.4(a) 

can be observed that surface roughness decreased as the value of Shore hardness increased. 

As for finish type, Figure 3.4(b) indicates that the means of surface roughness for glossy 

finish were lower than those of matte finish, which coincide with the conclusions in the 

literatures. Looking at the interaction effect plots of finish type and Shore hardness in 

Figure 3.4(c), the two lines are close to parallel, indicating that the interaction effects 

between the two factors are rather weak. 

 

Figure 3.4 Main effect and interaction effect plots 
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ANOVA is carried out to determine the statistical significance of the differences 

caused by the two process parameters at the significance level a = 0.05. Table 3.4 show 

the results of ANOVA. Based on the small p-values, the main effects of both factors are 

significant, while the interaction effects are not significant. Pairwise comparison was 

carried out for Shore hardness by Tukey honest significance test in order to understand 

which value of Shore hardness are different from another. Figure 3.4(d) shows that Shore 

hardness 100 are statistically different Shore hardness 85. However, Shore hardness 85 is 

not different from Shore hardness 50, and Shore hardness 50 is not different from Shore 

hardness 30. Therefore, Shore hardness 100 is the one that caused ANOVA to be 

significant.  

Table 3.4 ANOVA for Ra  

Source DoF Sum Sq Mean Sq F Ratio Pr(> F) 
Finish type 1 5.588 5.588 86.172 <.001 
Shore Hardness 3 7.416 2.472 38.117 <.001 
Interaction 3 0.270 0.090 1.390 0.282 
Error 16 1.038 0.065   
Total 23 14.312       

3.3.2. Effects of finish type and Shore hardness on dimensional accuracy 

Figure 3.5 shows the main effects of finish type for the X axis. According to Figure 

3.5(a), it can be observed that Shore hardness 100 does not lead to the best accuracy in the 

X axis. Instead, Shore hardness of 30 had the smallest dimensional errors, and the actual 

dimensions in the X axis were larger than the nominal dimension as the value of Shore 

hardness increased. On the other hand, increases in dimensional accuracies can be seen 

with increasing Shore hardness value for the Y axis. Like the X axis, the larger value of 
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Shore hardness yielded oversized dimension than the nominal dimension for the Y axis, 

whereas the smaller value of Shore hardness led to undersized dimension than the nominal 

value. From Figure 3.5(b), it can be observed that glossy finish offers more accurate 

dimensions than matte finish, and the samples with matte finish have larger dimensions 

than the nominal value. On the other hand, Figure 3.6 (b) suggests that the means of the 

dimensions are almost identical regardless of the finish type for the Y axis. 

Figure 3.5(c) and Figure 3.6(c) show the interaction effects of finish type and 

Shore hardness for the X and Y axes, respectively. It can be observed that significant 

interaction effects exist for the X axis. For example, changing finish type from matte finish 

to glossy finish increased dimensional accuracy for samples printed using Shore hardness 

of 100. However, changing finish type from matte finish to glossy finish does not affect 

dimensional accuracy for samples printed using Shore hardness of 50. Regarding the Y 

axis, it can be seen that significant interaction effects also exist. For example, changing 

finish type from matte finish to glossy finish increased dimensional accuracy for samples 

printed using Shore hardness of 30 and 100. However, changing finish type from matte 

finish to glossy finish decreased dimensional accuracy for samples printed using Shore 

hardness of 85. 
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Figure 3.5 Main effect and interaction effect plots for X axis 

 

Figure 3.6 Main effect and interaction effect plots for Y axis 
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ANOVA was carried out to determine statistical significance of the differences 

caused by the two process parameters at the significance level a = 0.05. Table 3.5 shows 

the results of ANOVA for the X and Y axes. Based on the small p-values, for the X axis, 

the mains effects of both process parameters are significant. The interaction effect is also 

significant. For the Y axis, finish type was not significant, but Shore hardness is, but its 

interaction with finish type is significant. Figure 3.5(d) shows that only Shore hardness of 

100 was declared to be significantly different from Shore hardness of 50 and 30. 

Therefore, it reinforced the conclusion where smaller values of Shore hardness led to 

higher dimensional accuracy for the X axis. Figure 3.6(d) indicates that only Shore 

hardness of 85 is different from Shore hardness of 100, and thus, it can be concluded that 

Shore hardness of 50 statistically achieved the best dimensional accuracy in the Y axis. 

Table 3.5 ANOVA for the X and Y axes 

Source Axis DoF Sum Sq Mean Sq F Ratio p-value 
Finish type X 1 118877 118877 46.065 <.001 

 Y  9200 9200 3.593 0.076 
Shore hardness X 3 265611 88537 34.308 <.001 

 Y  388729 129576 50.606 <.001 
Interaction X 3 144482 48161 18.662 <.001 

 Y  85611 28537 11.145 <.001 
Error X 16 41290 2581   
 Y  40968 2560   
Total X 23 570260    
  Y   524508       

3.4. Conclusion 

The effects of two process parameters, finish type and Shore hardness, on surface 

roughness and dimensional accuracy for PolyJet 3D printing process were investigated. It 



 

47 

 

was found that, with respect to finish type, samples printed using glossy finish had 

statistically lower surface roughness than matte finish, and glossy finish had more accurate 

dimensions than matte finish for the X and Y axes. That being said, matte finish is often 

unavoidable, especially for overhang structures. For Shore hardness, higher Shore 

hardness values have lower surface roughness, and larger value of Shore hardness led to 

better dimensional accuracy in the Y, whereas smaller value of Shore hardness provided 

more accurate dimension in the X axis. Also, as there were interaction effects between 

finish type and Shore hardness on surface roughness and dimensional accuracy. It can be 

concluded that the combination of glossy finish and Shore hardness 100 will achieve 

lowest surface roughness and highest dimensional accuracy. 
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4.1. Introduction 

In material jetting additive manufacturing (AM) processes, droplets of material are 

selectively deposited [1]. Such processes include PolyJet by Stratasys (Eden Prairie, MN), 

MultiJet Printing (MJP) by 3D Systems (Rock Hill, SC), and Jet Fusion by HP (Palo Alto, 

CA). The latest Stratasys PolyJet printer features combinations of multi-colors and multi-

material, which broadens the possibilities of 3D printing, especially for the purpose of 

prototyping. 

An ability to fabricate full color objects helps product designers to create a 

prototype similar to an actual product. Naturally, it is desirable to have colors of the 

prototype as close to those of the actual product as possible. However, there are more 

factors involved in controlling color in a 3D printing process, compared to traditional 2D 

color printing [2]. Moreover, the framework for color 3D printers has not yet been 

established by the International Color Consortium because factors that affect the 

appearance of 3D printed objects still require further investigations [3]. 

Color appearances of 3D printed parts under different surface finishes have been 

studied. Wang et al. investigated a powder-based color 3D printing process [4]. They 

found that post-processing of 3D printed objects led to higher saturation and smaller 

chromatic aberration, and soakage increased brightness of the color surface. In addition, 

transparency of coating materials reduced surface roughness, and thus effectively 

enhanced color accuracy. Sun and Lai compared appearances of glossy and matte objects 

on RGB camera and established a regression model to estimate color differences of two 

objects [5]. Xiao and Brainard studied effects of glossy finish on color appearance of 3D 
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objects in 2D images [6]. They concluded that changing surface glossiness had only small 

effects on color appearance. 

Effects of printing orientation on color appearance are also reported in the 

literature. Xiao et al. developed a multi-directional color management system based on 

printer RGB values and tristimulus values to minimize color variation across different 

orientations for a powder-binder based MJP [2]. Sun and Sie also developed a method for 

MJP to improve color uniformity across different orientations [7]. Ludwig et al. built a 

perceptual model of color uniformity for 3D printing. They found that color uniformity 

depends on orientations within the printer, and post-processing also plays an important 

role in color uniformity [8]. In short, although several studies investigated powder-based 

3D printing processes, studies on how the PolyJet process affects color accuracy are not 

available in the literature. Therefore, the effects of two factors, finish type and material 

color, on color appearance of PolyJet printed parts are studied here. 

The rest of the paper is organized as follows. Experimental setups are described in 

the next section. After that, experimental results are summarized, and the effects of finish 

type and material color are statistically tested. Post-hoc analysis is also performed, and the 

results are then compared with CIEDE2000 color differences, a popular formula to 

compare two colors. The final section includes conclusions and future research directions. 
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4.2. Experimental Setup and Procedure 

4.2.1. Sample generation 

A thin rectangular prism was designed for the study. The sample geometry was 

generated in Autodesk Fusion 360 with dimensions of 1″ in the X axis and the Y axis and 

0.1″ in the Z axis. Here, the defined axes are corresponding to those set by the printer 

manufacturer; the X and Z axes are shown in Figure 2.1 (a). The Y axis is perpendicular 

to the XZ surface. The design file was exported as a STL file. Then, the STL file was 

imported to the GrabCAD Print software in which users can assign different finish types 

and material colors to the prisms. 

4.2.2. Experimental conditions 

Different levels selected for the two factors are presented in Table 4.1. For finish 

type, two levels are available: glossy and matte. When glossy finish is selected, support 

material will not cover the sample surfaces except for the bottom surface of the sample 

and the surfaces of overhanging structures. When matte finish is selected, support material 

will cover entire surfaces of the sample. For material color, four levels are selected: cyan, 

magenta, yellow and black. 

Table 4.1 Selected levels for two factors 

Factor Level 1 Level 2 Level 3 Level 4 
Finish type Glossy Matte - - 
Material color Cyan Magenta Yellow Black 

Other factors were kept constant for all samples. Two types of support materials 

are available for the PolyJet J750 printer: the wax-like SUP705 and the gel-like SUP706B. 
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SUP706B was used in this study to minimize the impact of support material on surface 

finish since SUP705 is more difficult to remove from printed samples. A layer thickness 

of 27 𝜇m (900 dpi) was used, and the resolution of the printer in the XY plane was 42 𝜇m 

(600 dpi) by default. “Natural shells” and “Natural texture” were selected as the color 

profile and texture profile, respectively. They dictate how the GrabCAD Print software 

convert RGB values to CMYK values with approximations because the CMYK system 

does not cover the full spectrum of colors of the RGB system [9]. 

Combinations of two finish type levels and 4 material color levels produced 8 

unique treatments. Each treatment had 3 replicates, resulting in a total of 24 samples. 

These 24 samples were randomly placed on the build platform, as shown in Figure 4.1. 

Randomizing sample locations can eliminate or minimize potential confounding effects. 

Nomenclature of the samples used in Figure 4.1 was defined as follows: the first letter 

represents the finish type; “G” denotes glossy finish, and “M” denotes matte finish. The 

second letter signifies material color; “C” for cyan, “M” for magenta, “Y” for yellow, and 

“K” for black. The number after the letters is sample index. For example, “MC1” means 

the first replicate of matte finish and cyan color. 
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Figure 4.1 Sample locations on the build platform 

The samples were printed after one year since the machine installation, and 

maintenances such as cleaning had been carried out on the daily basis. Right before the 

printing, cleaning wizard and head optimization were performed to reduce the amounts of 

color contaminations on the print head caused by previous prints. 

4.2.3. Post-processing of printed samples 

After the completion of printing, gel-like support material (SUP706B) on every 

surface of samples was manually removed using a scraper. Then, pressurized water was 

blasted to the samples to further remove the support material. 

4.2.4. Measurement of color 

The color of the samples was measured by a colorimeter, the Nix Pro color sensor 

(Nix Sensor, Ontario, Canada). Table 4.2 summarizes parameter settings of the color 

sensor. The illuminant used was D50 that emulates horizon daylight with a color 

temperature of 5000 Kelvin [10]. The receiver of the illuminant is called observer. It is 
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often set to 2° field of view because cones in fovea of human eyes also have 2° arc [10]. 

Here, both illuminant and observer are the sensor itself. The scanning area of the sensor is 

15 mm2. It measures reflectance factors to calculate the tristimulus values which are then 

converted to other color systems such as the CIELAB color system [11]. The CIELAB 

system was selected as the responses because it was known to have close matches with 

human vision. In this system, L* means lightness, a* denotes red (+) / green (−) value, 

and b* signifies yellow (+) / blue (−) value [12]. Figure 4.2 shows the actual samples and 

the sensor. The measurements were taken according to a random order specified in Table 

4.3. Three measurements were taken on each sample. The average value of the three 

measurements was used as the reported color value for the sample.  

Table 4.2 Parameter settings of Nix Pro color sensor 

Parameter Value 
Illuminant 
 

D50 
Observer 2° 
Scanning area 15 mm2 
Color system CIELAB 
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Figure 4.2 Nix Pro color sensor and printed samples 

Table 4.3 Design matrix and measurement results 
Test order Color Finish Replication L a b 

2 Cyan Matte 1 38.14 -7.54 -48.69 
19 2 38.05 -7.32 -47.94 
16 3 38.09 -7.16 -48.15 
5 Glossy 1 35.44 -7.73 -50.34 
14 2 35.46 -7.54 -50.91 
20 3 35.50 -7.90 -50.70 
3 Magenta Matte 1 38.56 44.79 -10.97 
7 2 38.46 45.15 -10.84 
23 3 39.01 43.83 -10.76 
4 Glossy 1 36.58 47.33 -10.91 
8 2 36.38 48.88 -10.57 
12 3 36.47 47.28 -11.04 
9 Yellow Matte 1 69.87 -9.75 66.59 
15 2 69.31 -9.84 68.76 
24 3 68.84 -9.69 67.43 
21 Glossy 1 67.86 -8.74 76.08 
6 2 68.15 -9.45 76.73 
18 3 68.28 -9.52 77.08 
1 Black Matte 1 17.21 -0.98 -1.06 
13 2 17.03 -1.04 -1.54 
11 3 21.13 -1.01 -1.07 
17 Glossy 1 10.66 -0.86 1.64 
10 2 10.44 -0.75 1.23 
22 3 10.22 -0.97 1.48 
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4.3. Results and Discussions 

4.3.1. ANOVA for finish type and material color 

Analysis of variance (ANOVA) was carried out for each CIELAB value to 

determine the statistical significance of the differences caused by the two factors at the 

significance level a = 0.05. Table 4.4 shows the results of ANOVA for the CIELAB “L”, 

“a”, and “b”. According to the p-values, the main effects of finish type and material color 

are significant; and the interaction effects of the two factors are also significant for all the 

three CIELAB values. Note that significance of the main effects of material color is 

obvious. 

Table 4.4 ANOVA for CIELAB values 

Source DoF CIELAB  Sum Sq Mean Sq F Ratio p-value 

Finish 1 L 74.41 74.413 102.15 <.0001* 

  a 4.67 4.673 23.86 .0002* 

  b 32.69 32.69 139.43 <.0001* 
Color 3 L 8954.03 2984.676 4097.37 <.0001* 

  a 12502.43 4167.475 21278.01 <.0001* 

  b 46368.34 15456.11 65924.99 <.0001* 
Finish*Color 3 L 41.92 13.972 19.18 <.0001* 

  a 11.74 3.913 19.98 <.0001* 

  b 109.09 36.36 155.10 <.0001* 
Error 16 L 11.66 0.73   
  a 3.13 0.20   
  b 3.75 0.23   
Total 23 L 9082.01    
  a 12521.97    
    b 46513.88       

4.3.2. Main effects of finish type 

Table 4.5 presents the results of measured CIELAB values under the two levels of 

finish type, where “Std. Err.” is the standard error of all the measurements at the given 
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level of finish type. It can be observed that glossy finish has a lower “L” value (lightness) 

than matte finish on average. On the other hand, matte finish has lower “a” and “b” values 

compared to glossy finish. Figure 4.3 shows the main effects of finish type on “L”, “a”, 

and “b”, respectively. The dot represents the mean of measured values at each level. 

Table 4.5 Measured CIELAB values under two levels of finish type 

Level 
L a b 
Mean Std. Err. Mean Std. Err. Mean Std. Err. 

Glossy 37.62 6.17 7.50 7.09 4.15 13.89 
Matte 41.14 5.50 6.62 6.68 1.81 12.62 

 

Figure 4.3 Main effects of finish type on CIELAB (a) L, (b) a, and (c) b values 

4.3.3. Interaction effects of finish type and material color 

Figure 4.4 shows the interaction effects of finish type and material color on “L”, 

“a”, and “b”, respectively. For “L”, the effects of finish type on black material is stronger 

than other three materials, which indicates the interaction effects. For “a”, the effects of 
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finish type on magenta material is stronger than other three materials, which also suggests 

that the interaction effects between finish type and material color exists. The same 

observation can be made for “b” where the effects of finish type on yellow material is 

more prominent than other material colors.  

 

Figure 4.4 Interaction effects of finish type and material color on CIELAB (a) L, (b) a, 

and (c) b values 

4.3.4. Pairwise comparisons for the CIELAB values 

Interpretations from Figure 4.4 do not provide statistical significances of the means 

of the interaction effects. Alternatively, Tukey’s honest significant difference (HSD) test 

can determine statistical significances of any pairs of means. Thus, it can be used to 

determine the effects of finish type on a CIELAB value for a given material color, and the 
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interaction effects of finish type and material color are effectively decomposed into three 

CIELAB values. 

Table 4.6 summarizes the results of Tukey’s HSD tests for four material color and 

three CIELAB values, where “Different” means that the effects of finish types on a 

CIELAB value are significantly different for a material color. The results for cyan material 

suggest that the finish types significantly affect the lightness component (“L” value) and 

the blue component (“b” value). Only the effects of finish type on red component (“a” 

value) is significant for magenta material, and the yellow component (“b” value) is 

significantly affected by the finish types for yellow material. Regarding black material, it 

is expected that only the lightness component (“L” value) plays a significant role because 

black should not possess any color component, but it turned out that the effects of finish 

type on “b” value is also significantly different.  

Table 4.6 Tukey’s HSD test for the interaction effects of finish type and material color 

CIELAB Cyan Magenta Yellow Black 

L (lightness) ● ○ ○ ● 

a (red/green) ○ ● ○ ○ 

b (yellow/blue) ● ○ ● ● 
*●: Different, ○: Same    

Two observations can be made by the results of Tukey’s HSD. First, lightness 

component, namely “L” value is prone to be “Different” for darker color because the 

effects of finish type lead to larger contrast between glossy and matte finish. Second, color 

components, i.e., “a” and “b” values, tend to be “Different” for the color that are more 

representative of the color, e.g., “b” value for yellow because finish types particularly 
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affect such color components. To be aware of the effects of finish type on each CIELAB 

value for a material color can be beneficial for an observer of a 3D object. 

4.3.5. Using CIEDE2000 to compare color differences 

CIEDE2000 is the most accurate formula to calculate color differences between 

two colors [13]. While the above pairwise comparisons are conducted for each CIELAB 

value, this formula is introduced to combine all CIELAB values and to examine the effects 

of finish type on each material color. Table 4.7 summarizes the results of ∆E2000 (outputs 

from CIEDE2000). The mean values are the average of Delta E2000 from the 9 

combinations of 3 replicates and 2 finish types. The small p-value suggests that at least 

one of the colors is significantly different from others. It is worth mentioning that a range 

from 1 to 2 in Delta E2000 indicates that the difference between the two colors is only 

perceptible through close observation, and a range from 2 to 10 indicates that the 

difference is perceptible at a glance [14]. Therefore, the difference between the two finish 

types for black can be detected at a glance, while the differences for other colors are not 

obvious without close looks. Figure 4.5 plots the means of Delta E2000 values for material 

colors. The dot represents the mean of Delta E2000 for the material color, and the vertical 

line gives the standard error. 
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Table 4.7 Delta E2000 for material colors 
Color Mean Std. Err. p-value 
Cyan 2.33 0.02 

<.0001 Magenta 2.18 0.11 
Yellow 2.52 0.11 
Black 5.88 0.38 

 

Figure 4.5 Effects of material color on Delta E2000 

Similar to the previous section, significant differences of Delta E2000 in Table 4.8 

only suggest that at least one of the means is different from other means. To find out which 

pairs mean of Delta E2000 differ from each other, Tukey’s HSD tests were performed to 

Delta E2000, and summarized in Table 4.8. Small p-values indicate that the mean of Delta 

E2000 for black material is significantly different from those of other material colors. In 

other words, the effects of finish type on black material is statistically different from those 

on other material colors. Also, the effects of finish type between other material colors are 

not significant. 
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Table 4.8 Tukey’s HSD test for all pairs of material colors 
Color 1  Color 2 Difference Lower CL Upper CL p-value 
Black Magenta 3.700 2.909 4.491 <.0001* 
Black Cyan 3.544 2.754 4.335 <.0001* 
Black Yellow 3.356 2.565 4.146 <.0001* 
Yellow Magenta 0.344 -0.446 1.135 0.644 
Yellow Cyan 0.189 -0.602 0.980 0.916 
Cyan Magenta 0.156 -0.635 0.946 0.950 

4.3.6. Microscope images of the two finish types 

Figure 4.6 compares top surfaces of glossy finish and matte finish through 

microscope with magnification of 10 using an Olympus microscope (Olympus BX51, 

Tokyo, Japan). It can be seen that glossy finish has smooth surfaces, while matte finish 

has repetitive lines with peaks and valleys. The characteristic of surface finish could play 

a significant role on how seriously support materials remain on the surface, and thus could 

affect reflectance and color appearances. It would be interesting to study if different post-

processing methods change color appearances of the matte finish. 

 

Figure 4.6 Microscope images of surfaces of printed samples with black material using 

(a) glossy finish and (b) matte finish 

(a) (b)
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4.4. Conclusion 

In this study, the effects of two factors, finish type and material color, of Stratasys 

J750 PolyJet printer on color appearance of printed samples are investigated. It is found 

that both finish type and material color have significant effects on color appearance. Also, 

there are significant interaction effects of the two factors, which means that the effects of 

finish type on color appearance differ for different material colors. 
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5.1. Introduction 

Medical models are physical models of anatomical structures such as skull and 

heart. They can be used for surgical simulation and planning in complex operations such 

as craniofacial surgeries, and for anatomy teaching in medical curricula. Medical models 

are traditionally made by plaster casting, and have recently been fabricated by 3D printing 

in some cases [1].  

3D printing fabricates an object by selectively and repeatedly stacking materials 

layer by layer [2]. Color of 3D printed objects had been limited to the color of material 

itself in the past, until full color 3D printing became available. Color accuracy of 3D 

printed objects is important. For example, when 3D printing is used to produce medical 

models, it is desirable that 3D printed anatomies have the color as close to real anatomies 

as possible. Such precise representations of colors could enhance effectiveness of medical 

models used in surgical planning and medical education. In addition, when 3D printing is 

used for product prototyping, the ability to precisely represent the color of 3D printed 

objects is needed to determine the final color of designed products used for mass 

production. Furthermore, when 3D printing is used for making final products, the color of 

printed products has psychological effects on users’ perception, and an inaccurate color 

representation can significantly change the attractiveness and impression of the products. 

Figure 5.1 schematically illustrates PolyJet 3D printing. Stratasys J750 PolyJet 

printer (Minnesota, USA) is one of the commercially available full color 3D printers. Two 

types of photocurable resins in liquid form, base model material and support material, are 

deposited from the print heads. The base model materials are used to construct the object, 
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while the support material is used to build foundations to temporarily support some of the 

base model material after being deposited. The print heads move in both X and Y 

directions, and selectively jet materials according to the design of the object. The X and Z 

axes are shown in Figure 5.1; and the Y axis is perpendicular to the XZ plane. After each 

layer is printed and cured by UV lamps attached to both sides of the print heads, the build 

platform goes down by a distance equal to one layer thickness, and the next layer of 

materials are deposited. These steps are repeated until the object is completed. There are 

two types of surface finish (finish type): glossy and matte. When the glossy finish type is 

selected, the support material covers only the bottom surfaces (as well as the surfaces of 

overhangs) of the printed object. When matte finish type is selected, support material 

covers all surfaces of the printed object. 

 

 

Figure 5.1 Illustration of PolyJet 3D printing 

PolyJet can theoretically produce the full range of color. It places multiple base 

model materials (e.g., cyan and yellow) close to each other to make any color other than 
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the colors of base model materials [3]. To print full color, users can specify the color of a 

printed object using the RGB color system in the printer software. In the RGB color 

system, a color is represented by three integers, R, G, and B, each ranging from 0 to 255. 

For example, the pure black color is (0,0,0), and the pure white color is (255, 255, 255). 

In this paper, the measured RGB values (Rm, Gm, Bm) of a printed sample refer to the RGB 

values measured by a colorimeter on the printed sample, and the specified RGB values 

(Rs, Gs, Bs) for a printed sample are entered by the user in the printer software. Table 5.1 

displays some data of specified RGB values and measured RGB values of samples printed 

by the Stratasys J750 PolyJet printer installed in the authors’ lab. The data in the table 

show that the measured color of a printed sample does not always match the specified 

color of the sample very well. 

Table 5.1 Comparison of specified RGB values and measured RGB values 

Color 
Specified Measured 

Rs Gs Bs Rm Gm Bm 
Black 0 0 0 26 28 26 
White 250 250 250 198 211 213 
Red 250 0 0 161 80 33 
Green 0 250 0 123 174 47 
Blue 0 0 250 72 63 125 
Cyan 0 250 250 97 182 181 
Yellow 250 250 0 195 194 32 
Magenta 250 0 250 180 78 142 

Table 5.2 summarizes reported studies regarding color of printed objects by 

PolyJet 3D printers. These studies cover a wide range of topics, from effects of control 

factors (finish type, sample thickness, etc.) on measured color, to methods for improving 

accuracy of color texture reproduction, to development of more accurate color 
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measurement techniques. A machine learning technique is also applied to predict 

relationships between control factors and mechanical properties of PolyJet printed 

anatomical models [4]. However, there is a lack of reports on the relationships between 

measured color and control factors (e.g., specified color and finish type) for PolyJet. This 

paper addresses the knowledge gap in the literature. The authors’ preliminary study uses 

the conventional regression models, i.e., linear regression and cubic regression, to predict 

relationships between measured color and control factors (the results are presented in 

Section 5.4 Results and Discussion), but shows that the prediction accuracies are not 

satisfactory. It has been reported that applications of machine learning in 3D printing can 

produce positive results in process optimization, in-situ monitoring, and quality control 

[5-7]. Therefore, this study mainly reports the development of a multilayer perceptron 

(MLP) neural network model for the relationships between measured color and control 

factors. This model can be used to predict the color of a printed object with high accuracy. 
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Table 5.2 Summary of reported studies regarding color of printed objects by PolyJet 

Topic Method Ref. 

Main effects of finish type, and interaction effects between 
finish type and specified color on measured color 

Experiment [8] 

Characterization of achievable range of color Experiment [9] 

Effects of printed sample thickness on measurement of hue, 
brightness, and saturation 

Experiment [10] 

Effects of subsurface structure on color appearance Experiment [11] 

Establishment of a framework in color measurement of 
translucent resin to substitute traditional spectrophotometers 

Modeling  [12,13] 

Development of a compensation method to produce high-
frequency color texture for translucent resin 

Modeling  [14] 

Controlling material placements along the layer stacking 
direction to achieve spatially varying color and translucency  

Modeling  [15,16] 

Adjusting subsurface material placements to smooth out color 
boundaries 

Modeling  [17] 

 

The rest of the paper is organized as follows. Section 5.2 describes the 

experimental design and setups used to collect experimental data. Section 5.3 presents the 

architecture of the multilayer perceptron neural network (MLP) model, as well as 

optimization algorithm and training strategy. Section 5.4 firstly shows the trends and 

correlations of the experimental data, and then compares the prediction performances of 

the MLP model and two alternative models, the linear regression model and the cubic 

regression model. Finally, Section 5.5 provides conclusions and directions of future 

research. 
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5.2. Experimental Procedure and Data Collection 

5.2.1. Experimental design 

A full factorial design of experiments is used to investigate four control factors 

related to measured color: specified RGB values (Rs, Gs, Bs) and finish type. Table 5.3 

shows the selected levels for the four control factors. Six levels are selected for each of 

the specified RGB values, ranging from 0 to 250 with 50 increments. Both glossy and 

matte finish types are examined. Therefore, there is a total of 432 unique combinations 

from these four control factors, resulting in 432 experimental conditions. Under each 

experimental condition, only one sample is printed because a previous study [5] shows 

that the differences in measured RGB values for replicated samples are negligible. 

Table 5.3 Control factors and their selected levels 

Control factor Levels 
Rs 0, 50, 100, 150, 200, 250 
Gs 0, 50, 100, 150, 200, 250 
Bs 0, 50, 100, 150, 200, 250 
Finish type Glossy, Matte 

5.2.2. Preparation of printed samples  

The samples are printed on a Stratasys J750 PolyJet printer. The shape of the 

samples is a thin square plate with dimensions of 20 mm in the X and Y axes, and 2 mm 

in the Z axis. The designed STL file is generated in Autodesk Fusion 360 (California, 

USA), and imported to the Stratasys GrabCAD Print (Minnesota, USA) software of the 

printer. The specified RGB values and finish type are entered in the software. All samples 

are printed in glossy finish type. The bottom sides of the samples are used to obtain 

experimental data for matte finish type. Therefore, a total of 216 samples are printed for 
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the 432 experimental conditions. The layout of the samples on the build platform is shown 

in Figure 5.2. 

 

Figure 5.2 Printed 216 samples and their layout on the build platform. 

The combinations of a color profile and base model materials determine the range 

of achievable color of a printer [18]. A color profile in full color 3D printing converts 

RGB values used in digital monitors to CMYKW (abbreviation for cyan, magenta, yellow, 

black, and white) values used in physical printers [18]. In this study, “Natural shells” is 

set as the color profile. The following five types of base model materials are used: 

VeroPureWhite (RGD837), VeroBlackPlus (RGD875), VeroCyan (RGD843), 

VeroYellow (RGD836), and VeroMagenta (RGD851). Gel-like support material 

(SUP706B) is used as the support material, and the layer thickness is set as 27 µm. The 

samples are printed after one year since the printer’s installation in the lab, and regular 

maintenance such as cleaning has been carried out according to the maintenance manual 

of the printer. Right before the printing, cleaning wizard and head optimization are 

performed to eliminate or reduce potential color contamination caused by previous 
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printing. After the completion of printing, the support materials on the bottom sides of the 

samples are manually removed using a scraper. Then, pressurized water is blasted to the 

samples for further removal of the support material.  

5.2.3. Measurement of color 

Nix Pro colorimeter (Ontario, Canada) is used to measure the RGB values on the 

printed samples. Illuminant and observer are two parameters that need to be set for the 

colorimeter [19]. The illuminant used is D50 that emulates horizon daylight with a color 

temperature of 5000 Kelvin [20]. The observer (receiver of the illuminant) is set to 2° field 

of view, corresponding to the angle of cones in fovea of human eyes. For each 

experimental condition, three measurements are taken from the sample surface by the 

colorimeter, and the average of the three measurements is reported as the measured RGB 

values. 

5.3. Multilayer Perceptron Neural Network 

5.3.1. Model architecture 

A neural network, formally called artificial neural network, is an interconnected 

group of artificial neurons, each of which functions as a mathematical operator to mimic 

the function of a biological neuron [21]. A network has multiple layers, including an input 

layer, an output layer, and one or multiple hidden layers in between. Each layer consists 

of a number of neurons. The connections between neurons at different layers are called 

edges. Each neuron has its own inputs and an output, where the inputs are weighted and 

then converted to an output through an activation function. As the activation function is 
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nonlinear, a neural network model can estimate nonlinear relationships between input 

variables and output responses. Multilayer perceptron (MLP) [22] is a widely used class 

of neural network model, which has a fully connected model architecture, meaning that 

every neuron in one layer, except the last layer, is connected to all the neurons in the next 

layer. 

 

Figure 5.3 The developed multilayer perceptron neural network model: (a) overall model 

architecture, and (b) the relationship between input variables and the 1st neuron of the 

second layer 

MLP is employed in this study to estimate relationships between control factors 

and the measured color of printed samples by PolyJet. The developed MLP model has four 

layers, i.e., one input layer, two hidden layers, and one output layer, as illustrated in Figure 

5.3(a). There are 4 neurons in the input layer, {𝑥!, 𝑥", 𝑥#, 𝑥$}, corresponding to the four 

control factors (i.e., the specified RGB values 𝑅%, 𝐺%, 𝐵% and finish type), and 3 neurons in 

the output layer, {𝑦!, 𝑦", 𝑦#}, corresponding to the measured RGB values 𝑅&, 𝐺&, 𝐵&. The 

second layer has 128 neurons, and the third layer has 64 neurons. When selecting the 
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number hidden layers and the number of neurons in each layer, there is a trade-off between 

model prediction accuracy and model training time. For example, it is preferred to have a 

large number of neurons, so the model can have more flexibility to adapt to the complex 

relationships between inputs and outputs. But, the training time would be too long if the 

number is too large. The number of hidden layers and the number of neurons used in this 

study are able to achieve a good balance. 

In this model, the ith neuron, 𝑖 = 1,… ,128, in the second layer is calculated by  

                                                 𝑎'" = 𝑔6∑ 𝑤'(! 𝑥(( +	𝑏'";                     (1) 

where 𝑔(∙) is the rectified linear unit (ReLU) activation function, which takes a form of 

𝑔(𝑧) = max{0, 𝑧}. 𝑤'(!  is the weight allocated to the edge between the jth input and the ith 

neuron, and 𝑥( , 𝑗 = 1,… ,4, is the jth input. 𝑏'"  is the bias assigned to the neuron. The 

superscripts are the layer indices. To show the idea more clearly, Figure 5.3(b) 

schematically illustrates the steps involved in the calculation process using 𝑎!"  as an 

example. Essentially, a neuron in the second layer is obtained by first weighting the inputs, 

adding a bias, and then applying the activation function to the linear combination of the 

inputs. Similarly, a neuron in the third layer is calculated by  

                                                          𝑎'# = 𝑔6∑ 𝑤'("𝑎("( +	𝑏'#;          (2) 

where 𝑎'#, 𝑖 = 1,… ,64, is the ith neuron in the third layer, and 𝑎(", 𝑗 = 1,… ,128, is the jth 

neuron in the second layer. Lastly, an output response in the output layer is calculated by  

                                                          𝑦' =	∑ 𝑤'(#𝑎(#( + 𝑏'$                          (3) 
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where 𝑦', 𝑖 = 1, 2, 3, is the ith output response, and 𝑎(#, 𝑗 = 1,… ,64, is the jth neuron in the 

third layer. Note that the activation function is not applied at the output layer. 

Using the collected experimental data, the MLP model is trained to estimate 

parameters in the model, including all the weights and biases in Equations (1) - (3). The 

trained model is then used to predict the color of a printed sample given a set of values for 

the control factors.   

5.3.2. Optimization algorithm 

The weights and biases in Equations (1) - (3) are obtained through an optimization 

algorithm. In this study, the adaptive moment estimation (ADAM) algorithm [23] is used, 

which is more efficient than the commonly used stochastic gradient descent algorithm 

[22]. It is also robust to the choice of hyperparameters. The learning rate in the algorithm 

is set to 0.01.  

The initial values of the weights and biases are randomly generated. Then, the 

MLP model is trained by iteratively adjusting the weights and biases to minimize a loss 

function. In this study, the loss function used is the mean squared error (MSE), defined as 

the average of squared errors between predicted color and observed color,  

 𝑀𝑆𝐸 = !
#)
∑ ∑ (𝑦') − 𝑦K'))"')      (4) 

where 𝑦') is the ith measured RGB values observed, 𝑖 = 1, 2, 3, under the 𝑘th experimental 

condition, and 𝑦K') 	is the corresponding measured RGB values predicted from the MLP 

model. 
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5.3.3. Training strategy 

Cross validation is used to assess the prediction performance of the MLP model. 

In a 𝐾-fold cross validation, the entire dataset is randomly and evenly split into 𝐾 folds. 

In each iteration, one fold is held out as testing data, and the remaining folds are used to 

train the MLP model. Then, the trained model is used to make predictions using the 

conditions under which the testing data are obtained. Afterwards, the prediction error (i.e., 

deviation of predicted values from the testing data) is calculated. This process is repeated 

until every fold has been used as the testing data. The overall prediction performance of 

the MPL model is represented by the average of the 𝐾 prediction errors. In this study, a 5-

fold cross validation is used, and the 432 observations are divided into 5 folds. In each set 

of training data, training data is further split into a training set and a validation set. The 

training set is used to update weights and biases, and the validation set is used to calculate 

training error (MSE) [22]. 20% of the training data is allocated to validation set for each 

of the 5 folds of training data. Data normalization is applied to the entire dataset. The 

epochs (training iterations) are set to 100 since prediction accuracies are not improved 

after tens of epochs. The batch size (number of observations used to train the model at a 

time) of 32 is used [22]. 

Overfitting refers to a situation where a model performs well on validation set, but 

poorly on testing data [22]. Dropout is an effective regularization strategy to alleviate 

model overfitting [22]. Specifically, in each epoch, some randomly selected neurons are 

not updated during that epoch in order to reduce training bias and prevent the model from 
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being stuck in a local optimum. The dropout rate is set to 0.1 in the two hidden (second 

and third) layers. 

5.3.4. Prediction performance 

To quantify the performances of the trained MLP model, two measures are 

calculated: mean absolute error (MAE) and coefficient of determination (R2). MAE [24] 

is defined as	 

𝑀𝐴𝐸 =	 !
#)
∑ ∑ |𝑦') − 𝑦K')|')      (5) 

where 𝑦')  is the 𝑖 th measured RGB values, 𝑖 = 1, 2, 3 , of 𝑘 th observation of the 

experimental condition, 𝑘 = 1,… , 432. MAE is an average of the absolute differences 

(errors) between prediction and observation. R2 is defined as 

	𝑅" = 1 − *++
,++

= 1 − ∑ (/!"0/1!")#"
∑ (/!"0/3!)#"

    (6) 

where RSS is the residual sum of squares, and TSS is the total sum of squares. Coefficient 

of determination (R2) [24] ranges from 0 to 1, indicating what proportion of variances in 

data can be explained by a model. A small MAE and a large R2 usually mean that a model 

has good prediction performance. 

It is also worth mentioning that training and testing results of the MLP model may 

vary in different runs, even if the same sets of training and testing data are used. When the 

training and testing data are split, the same split is insured every run by using the same 

random seed. However, random seeds are not fixed for the random numbers used in 

dropout and ADAM algorithm. As a result, the numbers shown in Table 5.5 could change 

for a different run, but the overall trends of the results are consistent.  
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5.4. Results & Discussion 

This section presents and discusses the experimental and computational results. 

First, data trends of the experimental results are visualized by boxplots, and Pearson 

correlation coefficients are utilized to understand relationships between measured color 

and control factors. Second, prediction performances of the trained MLP model are 

assessed and compared with those of a linear regression model and a cubic regression 

model. 

5.4.1. Characteristics of experimental results 

The boxplots in Figure 5.4 show the trends between the measured RGB values and 

the specified RGB values. Each boxplot contains 72 data points, all of which have the 

same value for one of the specified RGB values (Rs, Gs, or Bs). For example, the boxplot 

of Rm given Rs = 0 in Figure 5.4(a) is plotted using all the measured Rm values from all the 

experimental conditions when Rs is 0, including both finish types. Hereafter, the six 

selected levels of each specified RGB value (i.e., from 0 to 250) are divided into three 

ranges, referred to as lower (0 and 50), middle (100 and 150), and upper (200 and 250) 

ranges, respectively. It can be noticed in Figure 5.4(a) that when Rs takes the values in 

lower or upper ranges (especially 0 and 250), the difference between Rs and Rm is larger. 

If Rs spans in the middle range (e.g., 150), the difference between Rs and Rm is smaller. 

Similar observations can be made for Gs and Bs, as shown in Figure 5.4(b) and (c). When 

specified RGB values are close to the upper and lower ranges, the differences between 

measured RGB values and specified RGB values are larger; when specified RGB values 



 

81 

 

are in the middle range, the differences are smaller. In other words, there are nonlinear 

trends between the measured RGB values and the specified RGB values. 

  

Figure 5.4 Boxplots of measured RGB values for each of the specified RGB values, (a) 

Rs vs. Rm, (b) Gs vs. Gm, and (c) Bs vs. Bm. 

To check the correlation between control factors and measured RGB values, 

Pearson’s correlation coefficients [23] are calculated and presented in Table 5.4. The 

coefficient values range from −1 to 1, where −1 indicates that the two variables are 

perfectly negatively correlated, and 1 means that they are perfectly positively correlated. 

The corresponding p-values are presented next to the coefficient values. The smaller a p-

value is, the more statistically significant the correlation between the variables is. It can 

be observed that multiple specified RGB values are correlated with the measured RGB 

values, and the effects of finish type on measured RGB are different. For example, Rm is 

significantly and positively correlated with Rs and Gs, and the magnitude of correlation 

coefficient for Rs is much larger. The absolute value of the correlation coefficient between 

finish type and Rm is the smallest, compared with the correlations of finish type with Gm 
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and Bm. In fact, negative sign of the coefficient value means that glossy finish type tends 

to cause lower measured RGB values than matte finish type. 

Table 5.4 Correlation coefficients between control factors and measured RGB values 

 

Correlation coefficient (p-value) 
Rs Gs Bs Finish type 

Rm  0.930 (0.001)  0.155 (0.001) -0.051 (0.289) -0.054 (0.262) 
Gm  0.065 (0.181)  0.950 (0.001) -0.003 (0.957) -0.089 (0.064) 
Bm -0.007 (0.892)  0.056 (0.246)  0.907 (0.001) -0.157 (0.001) 

In short, Figure 5.4 and Table 5.4 suggest that there are nonlinear trends between 

measured RGB values and specified RGB values, and more than one control factors are 

correlated with each of the measured RGB values. Therefore, a complex model such as 

MLP would be more suitable for predicting measured RGB values than simple models 

such as a linear regression model. 

5.4.2. Prediction performances of the MLP model 

In Figure 5.5, measured RGB values observed (experimental data) are plotted 

against measured RGB values predicted by 5-fold cross validation using the MLP model. 

There are 432 points in each plot because 5-fold cross validation allows all the 

experimental data to be treated as testing data (one fifth of the data are used as the testing 

data in each validation). The prediction performance is the best if all the points fall on the 

red line. It can be seen that the predicted Rm, Gm, and Bm are fairly close to the observed 

ones, indicating that the overall prediction performance of the MLP model is good.  
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Figure 5.5 Measured RGB values observed vs. measured RGB values predicted by 5-

fold cross validation, (a) observed Rm vs. predicted Rm, (b) observed Gm vs. predicted 

Gm, (c) observed Bm vs. predicted Bm 

Table 5.5 presents the average MAE and R2 of the MLP model from 5-fold cross 

validation for Rm, Gm, and Bm. 5-fold cross validation is also performed for a linear 

regression model and a cubic regression model, and their average MAE and R2 values are 

also included in Table 5.5. The linear regression model includes the four main factors and 

their interactions as predictors. The cubic regression model contains quadratic terms and 

cubic terms of the four main factors, in addition to the terms included in the linear 

regression model. It can be observed that the MLP model outperforms the linear and cubic 

regression models for both performance measures, and the performance of the cubic 

regression model is better than the linear regression model. The prediction power of MLP 

has been demonstrated to be superior to linear regression in other applications when 

relationships between input variables and output responses are complex [21,25-27]. In 

practice, all the experimental data can be used for training, and the established model will 

be used for future predictions. 
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Table 5.5 Performance measures of three models. 

Model 
MAE R2 

R G B R G B 
Linear regression 11.891 12.238 14.192 0.903 0.913 0.881 
Cubic regression 10.440 8.825 11.143 0.926 0.948 0.928 
MLP 6.082 6.008 6.093 0.973 0.974 0.976 

5.5. Concluding Remarks 

A multilayer perceptron (MLP) neural network model is established for predicting 

measured color of printed samples by PolyJet 3D printing given control factors (color 

specification and finish type). The developed MLP model is able to predict the measured 

color of printed samples with high accuracy. Also, the MLP model outperforms the linear 

regression model and the cubic regression model based on the two performance measures, 

MAE and R2. This study applies MLP to the PolyJet 3D printing, but the methodology 

could be also implemented to other 3D full color printing processes (such as binder jetting, 

fused deposition modeling, or laminated object manufacturing) to predict measured color 

given control factors including color specification. 

Data trends of the measured colors indicate that, when specified colors have larger 

or smaller RGB values (i.e., bright or dark in color), the difference between specified 

colors and measured colors of PolyJet printed samples could be large in the RGB color 

system. When specified colors span in the middle of the RGB color system, the difference 

between specified colors and measured colors could be small. It is also found that the 

relationships between control factors and measured color is nonlinear. In addition, matte 

finish type tends to produce higher measured B values than R and G values. 
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Although it has been shown that the MLP model performs adequately for 

predicting measured RGB values, this study has some limitations that will be addressed in 

future research. One limitation is that it lacks a color compensation scheme. The 

developed prediction model can predict output color well given color specification and 

process parameters. It would be more desirable to predict what values the control factors 

should be set in order to obtain a target output color. Ultimately, color compensation 

should be conducted before printing, with an optimization strategy to find the desired 

inputs to 3D printing, including color specification, in order to achieve a target output 

response, such as color, mechanical strength, dimension accuracy, and others. Another 

future direction is to use other advanced predictive models (such as Gaussian process 

regression) to achieve a good prediction accuracy with a small number of experimental 

samples. 
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6.1. Introduction 

3D printing provides a quick way to fabricate objects from computer-aided design 

(CAD) files. In the last decade, it has demonstrated its advantages over traditional 

manufacturing methods for complex and customizable parts [1]. Color 3D printing has 

become possible mainly due to the introduction of multi-material printing. Color of 3D 

printed objects had been limited to the color of material itself in the past, and now any 

color can be theoretically produced by mixing multiple materials. It is desirable to have 

the color of a 3D printed object as close to the target color as possible for several reasons. 

For example, when 3D printing is used to produce medical models [1], it is desirable that 

3D printed anatomies have the color as close to real anatomies as possible. Such precise 

representations of colors could enhance effectiveness of medical models used in surgical 

planning and medical education. In addition, when 3D printing is used for product 

prototyping, the ability to precisely represent the color of 3D printed objects is needed to 

determine the final color of designed products used for mass production. Furthermore, 

when 3D printing is used for making final products, the color of printed products has 

psychological effects on users’ perception, and an inaccurate color representation can 

significantly change the attractiveness and impression of the products. 

However, every printer has its own achievable range of colors and tones [2]. As a 

consequence, the color of the printed object may vary from printer to printer when the 

same target color is used as the specified color in the printer software. PolyJet 3D printing 

can print multiple colors on a single object [3,4]. Although mechanical properties of parts 

printed from the PolyJet 3D printing process are not sufficiently high for load-bearing 
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applications, the process has its advantages in certain applications such as medical models 

or product prototyping [1]. The authors’ preliminary experimental data, summarized in 

Table 6.1, show that the measured color of a printed sample often exhibits considerable 

deviations from the target color (when the target color is used as the specified color) in the 

PolyJet printer software. The colors in Table 6.1 are presented using the RGB color 

system. In the RGB color system, a color can be represented by three integer numbers R, 

G, and B, each ranging from 0 to 255. For example, the black color in the RGB color 

system is (0,0,0), and the white color is (255, 255, 255). Here, the measured color refers 

to the RGB values measured by a color measurement device, and the specified color is 

defined as the RGB values entered by the user in the printer software. Ideally, measured 

RGB values of printed samples should match the specified RGB values in the software. 

However, because the measured RGB values are often different from the specified RGB 

values, as shown in Table 6.1, the printed samples will not have the target color (if the 

target color is used as the specified color). 

Table 6.1 Comparison of specified RGB values and measured RGB values 

Specified (R,G,B) 

(100,100,100) (175,75,75) (75,175,75) (75,75,175) 

    

Measured (R,G,B) 

(109,108,102) (166,84,80) (94,170,73) (84,82,146) 

    

 

Some literature reviews on color 3D printing pointed out that surface color of 3D 

printed parts should be studied as much as other aspects of 3D printing such as material 
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formulation, microstructure optimization, and mechanical properties, to meet modern 

aesthetic and practical standards [5,6]. Color accuracy issues of six types of 3D printing 

processes are summarized by Yuan et al [6]. The significance of colors in 3D printing is 

also reflected in the large number of reported studies focusing on the colors of 3D printing 

[7-15]. Reported studies about the colorimetry of 3D printing mainly focus on the effects 

of surface texture and printing orientation on color appearance of 3D printed objects. For 

example, Wang et al. reported that post-processing of printed samples in a powder-based 

color 3D printing process led to higher saturation and smaller chromatic aberration, and 

soaking the printed samples increased surface brightness [7]. Sun and Lai compared the 

glossy and matte finish objects captured by an RGB camera and established a regression 

model to estimate their color differences [8]. Xiao and Brainard studied the effects of 

surface texture (i.e., glossy finish vs. matte finish) on color perception of observers. Their 

results showed that changing surface texture would not affect color appearance 

significantly [9]. Xiao et al. developed a color management system to minimize color 

variation among different printing orientations for powder-binder based multi-jet printing 

(MJP) [10]. Sun and Sie also developed a method to improve color uniformity among 

different orientations in MJP [11]. Ludwig et al. reported that color uniformity was 

affected by printing orientation and post-processing [12]. Morovic et al. controlled 

composition of individual voxels to co-optimize both color accuracy and mechanical 

properties [13]. Wittbrodt and Pearce studied effects of filament colors on mechanical 

properties in fused deposition modeling process, and found that PLA filaments with five 

colors (Black, Gray, Blue, White, and Natural) resulted in distinctive ultimate tensile 
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strength, yield strength, and maximum strain [14]. Eiriksson et al. studied relationships 

between color input and output spaces, and predicted color output by building a Look-Up 

Table [15]. There are no reported investigations on deviations between the measured 

colors of 3D printed objects and target colors (when the target colors are used as the 

specified colors in the printer software). There are no commonly accepted methods to 

compensate such deviations, either. 

This paper will fill this gap in the literature by presenting, for the first time, a 

systematic approach (versus the trial-and-error approach) to find the optimal color 

specifications for the printer software to result in a color on the printed sample that has the 

smallest deviation from the target color. It reports a study on the color deviation problem 

in PolyJet printing using the response surface methodology (RSM). As a method for 

process optimization, RSM has been widely used [16]. In general, RSM can be broken 

down into three steps: (1) collecting experimental data of response(s) obtained by 

adjusting process parameters in the close proximity to the maximum/minimum of the 

response(s), (2) developing a predictive model for the response(s) given the process 

parameters, and (3) optimizing the process parameters that predict the 

maximum/minimum of the response(s). This study follows these three steps. First, a set of 

designed experiments according to central composite design are conducted for a target 

color to collect measured RGB values of printed samples given specified RGB values in 

printer software. The set of experiments have 15 different specified RGB values (the target 

RGB value plus 14 RGB values that are in the close proximity to the target RGB value). 

Secondly, using the experimental data, a statistical predictive model is developed for 
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predicting deviations between measured RGB values and the target RGB values when 

different specified RGB values are used in the printer software. Finally, the predictive 

model and the desirability function are used to find the optimal color specification (i.e., 

specified RGB values) such that the deviations between the predicted RGB values of a 

printed sample and the target RGB values are minimized. Four cases with four different 

target colors are used to demonstrate the effectiveness of the proposed method. 

The rest of the paper is organized as follows. Section 6.2 presents the experimental 

setup and procedure. Section 6.3 describes the methodology to establish the second-order 

multivariate multiple regression model. Section 6.4 reports the determination of the 

optimal color specification using the predictive model and the desirability function. 

Section 6.5 examines the effectiveness of the proposed method in four cases (four different 

target colors). The results obtained by the proposed method are compared with the 

performance of the conventional color specification method. Finally, Section 6.6 

summarizes conclusions, and discusses limitations of the proposed method, and directions 

of future research. 

6.2. Experimental Setup and Procedure 

6.2.1. Process parameters related to color and their settings 

Important process parameters related to color in PolyJet printing include finish 

type, material combinations, and color profiles. There are two options for finish type: 

glossy finish and matte finish. When glossy finish is selected, support materials only cover 

the bottom surface of the object and the surface of overhanging structure. When matte 
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finish is selected, support materials cover the entire surface of the object. Glossy finish 

type is used in this study because color measurements to avoid potential problems caused 

differences in removal of support material on the surfaces [17].  

For material combinations, five base materials are mixed to generate a desired 

color: VeroPureWhite (RGD837), VeroBlackPlus (RGD875), VeroCyan (RGD843), 

VeroYellow (RGD836), and VeroMagenta (RGD851). SUP706B is used as the support 

material.  

A profile in terms of printing color is a criterion to convert the RGB values used 

in digital monitors to CMYK (abbreviation for cyan, magenta, yellow, and black) values 

used in physical printers. Because the CMYK system does not cover the full spectrum of 

colors of the RGB system, a profile dictates how the software approximates RGB values 

to CMYK values [18]. “Natural texture” and “Natural shells” are chosen as the texture 

profile and color profile, respectively. There are two types of profiles because of two 

different options to print colors: the texture mapping based option and the shell based 

option. The texture mapping based option that imposes color images on the surfaces of an 

object (its interior is white) follows the texture profile, while the shell based option which 

allows users to assign colors to an entire object follows the color profile. The shell based 

option is used to set specified RGB values in this study.  

6.2.2. Experimental design using central composite design 

The central composite design (CCD) is frequently used to design experiments for 

a second-order model, and can provide enough samples without using a full factorial 

design [16]. In this study, each target color requires a CCD to collect measured RGB 
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values and specified RGB values in the proximity to the target RGB values. Figure 6.1 

illustrates the points of RGB values in this experimental design. The RGB system is 

represented by the three axes. The coordinates of each design point are its coded RGB 

values. The center point represents the target color. Each experiment contains only one 

sample for each design point because previous experiments showed that the differences in 

measured RGB values for replicated samples are negligible [19]. Thus, a total of 15 

samples are printed for a target color. 

 

Figure 6.1 Illustration of a central composite design for coded RGB values 

6.2.3. Preparation of printed samples 

Printed samples are 20 mm x 20 mm square plates with the thickness of 2 mm. The 

dimensions are selected because the minimum scanning area required for the color 

measurement device is 15 mm2. The sample geometry is generated in Autodesk Fusion 

360. Layer thickness of 27 𝜇m is selected to save printing time. The samples are printed 

15 months after the printer installation, and maintenances such as cleaning had been 
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carried out according to the manufacturer’s manual. Right before each printing, cleaning 

wizard, a standard procedure of the printer to reduce color contaminations on print heads, 

is performed. After the completion of printing, gel-like support materials (SUP706B) are 

manually removed by using a scraper. Then, pressurized water is blasted to the samples 

for further removal of support materials. 

6.2.4. Measurement of color 

The color of every printed sample is measured by a colorimeter, Nix Pro color 

sensor (Ontario, Canada). Illuminant and observer are two parameters that need to be set 

for the colorimeter [20]. The illuminant used is D50 which emulates horizon daylight with 

a color temperature of 5000 Kelvin [21]. The observer (the receiver of the illuminant) is 

set to 2° field of view, corresponding to the angle of cones in the fovea of human eyes. 

Three measurements are taken on each sample and the average of the three measurements 

yields the measured RGB values for the sample. 

6.3. Second-Order Multivariate Multiple Regression 

Using the experimental data obtained according to CCD, a second-order 

multivariate multiple regression (MMR) model can be built to predict the deviations 

between measured RGB values and target RGB values when different specified RGB 

values are used in the printer software. The second-order MMR model is suitable because 

there are multiple response and predictor variables. Definitions of variables and 

coefficients involved in the MMR are summarized in Table 6.2. Assume there are 𝑛 

observations in the training data. Each observation contains 6 elements 
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{𝑥'!, 𝑥'", 𝑥'#, 𝑦'!, 𝑦'", 𝑦'#: 𝑖 = 1,2… , 𝑛}, where the former three are the specified RGB 

values and the latter three are the measured RGB values. In the MMR model, deviations 

of measured RGB values from the target RGB values are treated as responses and the 

specified RGB values are treated as predictors. The predictive model for the 𝑘-th, 𝑘 =

1, 2, 3, response is as follows 

𝑦') −	𝑡) = 𝛽4) + ∑ 𝛽()#
(5! 𝑥'( + ∑ 𝛽67)𝑥'6𝑥'76,7 + ∑ 𝛽(()#

(5! 𝑥'(" + 𝜀')  (1) 

where 𝛽4)  is the intercept, 𝛽()  is the coefficient of the first-order term, 𝛽67)  is the 

coefficient of the interaction term, 𝛽(() is the coefficient of the second-order term, and 𝜀') 

is the random noise.  The coefficients of the model can be estimated by the least-squares 

method [16] using experimental data (i.e., training data).  

Once the MMR model is established, it can be used to predict the deviations 

between measured RGB values of printed sample and target RGB values (when different 

specified RGB values are used in printer software). Let the	𝑘-th specified RGB values be 

{𝑥!, 𝑥", 𝑥#}, and the corresponding measured RGB values be {𝑦!, 𝑦", 𝑦#}. The prediction 

of the deviation of the 𝑘-th response is 

𝑦K) −	𝑡) = 𝛽U4) + ∑ 𝛽U()#
(5! 𝑥( +∑ 𝛽U67)𝑥6𝑥76,7 + ∑ 𝛽U(()#

(5! 𝑥("    (2) 

where the “		K” sign of the coefficients indicates their estimates based on the training data. 
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Table 6.2 Definitions of variables and coefficients 

Variable/Coefficient Definition 
𝑖 Index of observation in training data, 𝑖 ∈ {1,… ,15} 
𝑗 Index of predictor, 𝑗 ∈ {1,2,3} 
𝑙 Index of predictor, 𝑙 ∈ {1,1,2} 
𝑞 Index of predictor, 𝑞 ∈ {2,3,3} 
𝑘 Index of response, 𝑘 ∈ {1,2,3} 
𝑥$% 𝑗-th predictor of 𝑖-th observation 
𝑥$& 𝑙-th predictor of 𝑖-th observation 
𝑥$' 𝑞-th predictor	of 𝑖-th observation 
𝑥% 𝑗-th given predictor 
𝑥%∗ 𝑗-th optimal specified predictor 
𝑦$) 𝑘-th response of 𝑖-th observation 
𝑦) 𝑘-th measured response for the given predictor 
𝑡) 𝑘-th target response 
𝛽*) Regression intercept for 𝑘-th response 
𝛽%) First-order regression coefficient of 𝑗-th predictor for 𝑘-th response 

𝛽&') Two-way interaction coefficient between	𝑙 -th predictor and 𝑞 -th 
predictor for 𝑘-th response 

𝛽%%) Second-order regression coefficient of 𝑗-th predictor for 𝑘-th response 

𝐴 
Maximum acceptable difference between predicted response and target 
response 

𝑑) Individual desirability of 𝑘-th response 
𝐷 Overall desirability 

6.4. Determination of The Optimal Color Specification 

The optimal color specification (i.e., the specified RGB values to be used in the 

printer software aiming to achieve the measured RGB values of printed sample as close to 

the target RGB values as possible) can be determined by minimizing the difference 

between the predicted RGB values of printed sample and the target RGB values. Since it 

is necessary to optimize the specified RGB values simultaneously, this is a multi-response 

optimization problem. Desirability function is a popular methodology for multi-response 

optimization [22]. The optimal color specification is defined to be the specified RGB 

values {𝑥!∗, 𝑥"∗, 𝑥#∗} whose corresponding predicted RGB values {𝑦K!∗, 𝑦K"∗, 𝑦K#∗} from Eq. (2) 
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are closest to the given target RGB values {𝑡!, 𝑡", 𝑡#}. In other words, the difference 

between {𝑦K!∗, 𝑦K"∗, 𝑦K#∗} and {𝑡!, 𝑡", 𝑡#} is minimized. Since there are three responses, three 

individual desirability functions are firstly defined to measure the difference for each 

response. Specifically, the individual desirability function for the 𝑘 -th, 𝑘 = 1,2,3 , 

response is defined as  

𝑑) = W1 −
|/";	0	="|

>
	𝑖𝑓	𝐴 ≥ |𝑦)Z − 𝑡)|

0									𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
      (3) 

where 𝐴 is the acceptance range set by the user. Intuitively, the desirability 𝑑) indicates 

the difference between the predicted RGB values and its corresponding target RGB values. 

If this difference is larger than the acceptance range, the desirability is 0, meaning that it 

is not acceptable. When the difference is within the acceptance range, the desirability is a 

linear function of the difference and increases as the difference decreases. The highest 

desirability, i.e., 𝑑) = 1, is achieved when the difference is 0, that is, the predicted RGB 

values exactly match the target RGB values. The overall desirability function as the 

objective function in the optimization step is a multiplication of the three individual 

desirability functions.  

𝐷 = ∏ 𝑑)#
)5!         (4) 

The optimal color specification is obtained by maximizing the overall desirability. 

{𝑥!∗, 𝑥"∗, 𝑥#∗} = arg	max
{@+,@#,@,}

𝐷       (5) 
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6.5. Determination of the Effectiveness of the Proposed Method by Four Cases 

Demonstration of the effectiveness of the proposed method consists of four steps: 

1) conducting a set of designed experiments  according to the central composite design 

(CCD) with the target color as its center point, 2) developing a second-order multivariate 

multiple regression model using the experimental data (training data), 3) finding the 

optimal color specification using the developed model and the desirability function, and 

4) printing the sample using the optimal color specification as the specified color in the 

printer software. The proposed method needs to be applied to every target color because 

the model’s predictions are expected to be only effective in the approximation of the target 

color. Four target colors are selected to demonstrate the effectiveness of the proposed 

method. The four target colors are: (1) a color with equal RGB values, (2) a color with a 

larger red value (meaning that the R value is much higher than the G and B values), (3) a 

color with a larger green value, and (4) a color with a larger blue value.  

6.5.1. Conducting a set of designed experiments and collecting experimental data 

For each target color, 15 samples are printed according to CCD and are shown in 

Figure 6.2. Table 6.3, Table 6.4, Table 6.5, and Table 6.6 show the CCD matrices and 

measurement results for Case 1, Case 2, Case 3, and Case 4, respectively. It can be 

observed that there are considerable deviations between the measured RGB values and the 

target RGB values. 



 

103 

 

Table 6.3 CCD matrix and results for Case 1 

Sample  
Specified RGB values Coded RGB values Measured RGB values 

sR sG sB cR cG cB mR mG mB 
1 90 90 90 -1 -1 -1 99 97 92 
2 90 110 90 -1 1 -1 100 115 92 
3 110 90 90 1 -1 -1 117 97 93 
4 110 110 90 1 1 -1 118 116 93 
5 90 90 110 -1 -1 1 102 99 113 
6 90 110 110 -1 1 1 104 119 112 
7 110 90 110 1 -1 1 119 98 113 
8 110 110 110 1 1 1 119 118 112 
9 100 100 100 0 0 0 110 107 101 
10 117 100 100 1.73 0 0 125 106 103 
11 83 100 100 -1.73 0 0 105 108 102 
12 100 117 100 0 1.73 0 110 123 103 
13 100 83 100 0 -1.73 0 110 91 103 
14 100 100 117 0 0 1.73 111 107 119 
15 100 100 83 0 0 -1.73 109 105 83 

 

Table 6.4 CCD matrix and results for Case 2 

Sample 
Specified RGB values Coded RGB values Measured RGB values 

sR sG sB cR cG cB mR mG mB 
1 145 65 65 -1 -1 -1 153 78 75 
2 145 85 65 -1 1 -1 150 94 71 
3 205 65 65 1 -1 -1 163 79 63 
4 205 85 65 1 1 -1 168 89 60 
5 145 65 85 -1 -1 1 155 79 95 
6 145 85 85 -1 1 1 152 96 91 
7 205 65 85 1 -1 1 166 79 81 
8 205 85 85 1 1 1 171 89 79 
9 175 75 75 0 0 0 164 84 79 
10 227 75 75 1.73 0 0 164 80 62 
11 123 75 75 -1.73 0 0 127 82 78 
12 175 92 75 0 1.73 0 168 99 78 
13 175 58 75 0 -1.73 0 159 74 81 
14 175 75 92 0 0 1.73 165 84 96 
15 175 75 58 0 0 -1.73 162 85 65 
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Table 6.5 CCD matrix and results for Case 3 

Sample 
Specified RGB values Coded RGB values Measured RGB values 

sR sG sB cR cG cB mR mG mB 
1 65 155 65 -1 -1 -1 88 160 67 
2 85 155 65 1 -1 -1 101 162 67 
3 65 195 65 -1 1 -1 108 167 56 
4 85 195 65 1 1 -1 117 172 57 
5 65 155 85 -1 -1 1 82 162 85 
6 85 155 85 1 -1 1 98 164 86 
7 65 195 85 -1 1 1 102 169 70 
8 85 195 85 1 1 1 111 173 73 
9 75 175 75 0 0 0 99 168 71 
10 75 210 75 0 1.73 0 115 173 59 
11 75 140 75 0 -1.73 0 87 148 77 
12 92 175 75 1.73 0 0 111 172 73 
13 58 175 75 -1.73 0 0 90 166 71 
14 75 175 92 0 0 1.73 95 170 87 
15 75 175 58 0 0 -1.73 104 167 59 

 

Table 6.6 CCD matrix and results for Case 4 

Sample 
Specified RGB values Coded RGB values Measured RGB values 

sR sG sB cR cG cB mR mG mB 
1 65 65 125 -1 -1 -1 81 78 128 
2 85 65 125 1 -1 -1 99 79 128 
3 65 65 225 -1 -1 1 85 82 141 
4 85 65 225 1 -1 1 94 83 141 
5 65 85 125 -1 1 -1 82 96 127 
6 85 85 125 1 1 -1 98 95 127 
7 65 85 225 -1 1 1 73 85 145 
8 85 85 225 1 1 1 84 86 144 
9 75 75 175 0 0 0 84 82 142 
10 75 75 255 0 0 1.6 84 83 143 
11 75 75 95 0 0 -1.6 87 84 98 
12 91 75 175 1.6 0 0 97 83 141 
13 59 75 175 -1.6 0 0 73 83 143 
14 75 91 175 0 1.6 0 84 93 152 
15 75 59 175 0 -1.6 0 88 78 137 
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Figure 6.2 The Nix Pro colorimeter and printed samples for four cases 

Table 6.7 Coefficient estimates of the fitted MMR models 

Case 𝑦=) 𝛽*∙>   𝛽.∙>  𝛽/∙>  𝛽0∙>  𝛽./∙>  𝛽.0∙>  𝛽/0∙>  𝛽..∙>  𝛽//∙>  𝛽00∙>  
1 mR -100.360 -1.158 1.091 1.409 -0.003 -0.005 0.000 0.013 -0.004 -0.004 
2  -144.596 1.956 -1.460 -0.470 0.007 0.001 0.000 -0.006 0.003 0.003 
3  91.109 1.098 0.626 -0.753 -0.010 0.006 0.000 0.005 0.001 0.001 
4  -36.047 0.362 -0.704 0.500 0.000 -0.004 -0.006 0.006 0.010 0.000 
1 mG -71.940 -0.078 0.158 0.486 0.001 -0.004 0.004 0.001 0.001 -0.002 
2  -54.287 0.755 -0.161 -0.536 -0.005 -0.001 0.001 -0.001 0.011 0.004 
3  -152.095 -0.708 1.892 -0.800 0.005 -0.003 0.003 0.001 -0.006 0.004 
4  4.533 -0.819 -0.343 0.336 -0.003 0.001 -0.007 0.006 0.015 0.000 
1 mB 33.926 -0.744 -1.132 1.542 0.000 -0.003 -0.003 0.005 0.007 0.000 
2  -85.195 0.995 -0.656 0.335 0.001 -0.001 0.001 -0.003 0.001 0.005 
3  -153.829 0.176 0.923 1.433 0.001 0.004 -0.003 -0.004 -0.003 -0.002 
4  -100.584 -0.095 -1.577 1.205 -0.001 0.000 0.002 0.001 0.010 -0.003 

6.5.2. Developing multivariate multiple regression (MMR) model 

For each of the four target colors, the second-order MMR model as described in 

Eqs. (1) - (2) is developed using the experimental data. Table 6.7 shows the coefficient 

estimates of the model for each of the four cases. These models can be used to predict the 

Case 1

Case 2

Case 3

Case 4
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deviation of measured RGB values from the target RGB values. Two observations can be 

made. First, the non-zero coefficient estimates of the three first-order terms in all the 

responses of the four cases indicate that each of the measured RGB values depends on all 

three specified RGB values, instead of merely depending on one of the specified RGB 

values. Second, the coefficient estimates of the interaction and second-order terms are not 

negligible, which indicates the presences of interaction and second-order effects. 

To provide a visual presentation of the MMR models, Figure 6.4 displays the 

deviation response surface plots of Case 3 predicted by the MMR model. Only two of the 

specified RGB values can be shown in each plot. First, it can be observed that the effects 

of the specified G value on the deviations are substantial. The deviations of the measured 

R values positively increase as the specified G value increases, and the deviations of the 

measured B value negatively increases as the specified G value increases. In fact, none of 

the response surfaces are completely flat, which indicate all the specified RGB values have 

effects on the deviation. Second, there are also noticeable interaction and second-order 

effects of the specified RGB values on the deviation. For example, the response surface 

of the deviation of measured R value based on the specified G and B values shows a 

convex curvature, and the response surface of the deviation of measured G value based on 

the specified R and G values shows a concave curvature, meaning that second-order 

effects exist. Moreover, the response surface of the deviation of measured R value based 

on the specified R and G values shows a twisted plane, indicating that interaction effects 

are present. 
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Figure 6.3 Plots of response surfaces for Case 3 based on the coefficient estimates 

6.5.3. Finding the optimal color specification using the developed model and the 

desirability function  

Based on the developed MMR models, the optimal color specification for each 

target color is determined by the desirability function as represented by Eqs. (3) - (5). 

Table 6.8 shows the optimal color specifications (that should be used as specified RGB 

values to print samples) and the associated desirability values. The overall desirability 

values for Case 1 and Case 3 are close to its maximum, 1, meaning that the predicted RGB 

values are close to the target values. The overall desirability values for Case 2 and Case 4 

are relatively low, suggesting that the predicted RGB values are not close to the target 

values. 
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Table 6.8 Optimal color specifications determined by individual and overall desirability 

values 

Case RGB 
Desirability 

Target Predicted  
Optimal color 
specification Individual Overall 

1 R 0.99 0.95 100 100 83  
G 0.92 

 
100 100 92 

 
B 0.93 

 
100 100 97 

2 R 0.33 0.60 175 165 197  
G 0.66 

 
75 78 68 

 
B 0.98 

 
75 75 76 

3 R 0.96 0.96 75 75 16  
G 0.96 

 
175 175 178 

 
B 0.96 

 
75 75 95 

4 R 0.90 0.34 75 76 59  
G 0.31 

 
75 82 72 

 
B 0.14 

 
175 145 198 

6.5.4. Printing samples using the optimal color specifications 

To show the advantage of the proposed method over the conventional method of 

color specification (i.e., using the target color as the specified color), two samples are 

printed for each target color. One sample is printed using the optimal color specification, 

determined by the proposed method, shown in Table 6.8 as the specified RGB values in 

the printer software, and another sample is printed using the target color as the specified 

RGB values in the printer software. Both samples are measured by the colorimeter.  

Table 6.9 compares the measured RGB values obtained by the proposed method 

and the measured RGB values obtained by the conventional method for the four cases. 

Such comparison is also shown in Figure 6.4. The proposed method produces smaller 

deviations (in term of the sum of deviations) than the conventional method in all the four 

cases. The best results are in Case 1 where the sum of deviations from the proposed method 
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is less than 40% of that from the conventional method. This comparison demonstrates that 

the proposed method can achieve the target color better than the conventional method. 

Table 6.9 Comparison of deviations of measured RGB values on printed samples from 

the target RGB values using the proposed method versus the conventional specification 

method without compensation 

Case RGB Target 
Proposed method Conventional specification method 

without compensation 

Specified Measured Deviation 
Sum of 
Dev. Specified Measured Deviation 

Sum of 
Dev. 

1 R 100 83 95 5 7 100 109 9 19 
 G 100 92 101 1  100 108 8  
 B 100 97 101 1  100 102 2  
2 R 175 197 166 9 14 175 166 9 23 
 G 75 68 79 4  75 84 9  
 B 75 76 74 1  75 80 5  
3 R 75 16 77 2 22 75 94 19 26 
 G 175 178 164 11  175 170 5  
 B 75 95 84 9  75 73 2  
4 R 75 59 76 1 42 75 84 9 45 
 G 75 72 83 8  75 82 7  

  B 175 198 142 33  175 146 29  

 
Figure 6.4 Deviations of measured RGB values from target RGB values when using the 

proposed method versus the conventional specification method without compensation 
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6.6. Conclusion 

A method (based on the response surface methodology) has been proposed to 

compensate the color deviation of a printed sample from the target color for the printed 

sample in PolyJet 3D printing. The key of the study is to use the optical color specification 

(not the target color) determined by the proposed method as the specified color in the 

printer software. The proposed method consists of three steps: (1) collecting experimental 

data of printed samples according to the central composite design with its center being the 

target color, (2) developing a second-order multivariate multiple regression model using 

the experimental data to predict the deviation of measured color from the target color, and 

(3) finding the optimal color specification (that minimizes the color deviation when used 

as the specified color in the printer software)  using the developed model and the desira-

bility function.  

This method has been applied to four cases (each has a different target color) to 

demonstrate its effectiveness. Experimental results show that the proposed method 

performs better than the conventional specification method without compensation (di-

rectly using the target color as the specified color in printer software) in all four cases 

(four target colors). The average improvement over the conventional specification method 

without compensation is 33%. It is noted that the proposed compensation method is not 

intended to cover the entire color gamut. In order for the compensation method to work, 

experiments have to be conducted in the proximity to the target color. This paper presents 

a systematic approach (versus the trial-and-error approach) to find the optimal color 

specifications for the printer software to result in a color on the printed sample that has the 
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smallest deviation from the target color. Although this study focused on the PolyJet 

printing process, the proposed method can be applied to any 3D printing processes to 

improve its color quality. 

Future investigations are needed to understand why there are performance dif-

ferences of the proposed method among the four cases. One approach towards consistent 

performance is to use advanced statistical predictive methods such as neural network and 

Gaussian process to improve the model predictive capacity. Furthermore, understanding 

whether and how the printing parameters such as finish type and layer thickness affect the 

color deviation of printed samples could improve explanatory power of the predictive 

methods. 
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7.1. Introduction 

Powder bed additive manufacturing includes powder bed fusion and binder jetting 

processes [1]. In powder bed fusion process, powder is fused via high energy laser or 

electron beam. Material selections for powder bed fusion process range from metals to 

polymers. Binder jetting process selectively deposits binder onto powder bed to 

temporarily adhere particles together to form green parts. The green parts then go through 

post-processing (including curing, debinding, and sintering) to become final parts. Its 

material selections include ceramic materials (e.g., alumina and zirconia) as well as metals 

and polymers [2]. 

Powder bed formation is an important step in both powder bed fusion and binder 

jetting processes. In the traditional piston-based method [3], a spreader (e.g., roller or 

blade) pushes feedstock powder from a feed region to a powder bed. Note that, in order to 

cover the entire powder bed, some of the powder is pushed across a long distance. This 

method is not effective for fine powders (those with small particle sizes, e.g., < 10 µm) 

due to unacceptable flowability [4]. In the hopper-based method, powder bed formation is 

divided into two steps: powder dispensing and spreading. In powder dispensing step, 

feedstock powder is dispensed from the hopper to cover the entire powder bed. In powder 

spreading step, a spreader pushes the powder to uniformly level the powder bed. Note that 

the travel distance of the powder is much shorter, compared to the traditional piston-based 

method. The hopper dispensing system assisted by ultrasonic vibration became available 

recently on some powder bed additive manufacturing printers (e.g., ExOne Innovent Plus 
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binder jetting printers). The ultrasonic hopper dispensing system can dispense powder 

directly onto the powder bed, and is suitable for both fine and coarse powders. 

Table 7.1 summarizes reported studies involving effects of powder dispensing 

variables on powder bed density as well as properties of printed parts, including green 

density, sintered density, and mechanical strength. In these studies, neither powder 

dispense rate (also known as flow rate) nor dispensed powder amount was measured 

directly. However, their results implied that, regardless of which method (hopper-based 

and piston-based) was used, higher dispense rate (or larger dispensed powder amount) 

would improve powder bed density, green density, sintered density, and strength of 

sintered parts. 
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Table 7.1 Reported studies related to effects of powder dispensing variables 

Method Material 
Particle 
size (µm) Printer Major result Reference 

Hopper-based Alumina 40 ExOne 
Innovent 

Faster oscillator speed and slower recoat 
speed (likely causing higher dispense rate) 
led to higher density of printed green parts. 

[5] 

Hopper-based Copper 5 ExOne 
Innovent 
Plus 

Higher ultrasonic intensity (likely causing 
higher dispense rate) led to slightly higher 
density of printed green parts. 

[6] 

Piston-based SS316L 38 ExOne 
M-Flex 

Higher ratios between dispensed powder 
thickness and print layer thickness 
(equavelant to larger dispense amount) led to 
higher density of printed green parts. 

[7] 

Piston-based SS316L N/A* ExOne 
X-1 Lab 

Higher ratios between dispensed powder 
thickness and print layer thickness 
(equavelant to larger dispense amount) led to 
higher strength of sintered parts. 

[8] 

Piston-based Polyamide 58 3D 
Systems 
SLS 

Higher ratios between dispensed powder 
thickness and print layer thickness 
(equavelant to larger dispense amount) led to 
higher powder bed density. 

[9] 

* Information not available in reference paper [8].  

Therefore, it is important to have higher dispense rate to dispense sufficient 

amount of powder onto the powder bed. However, dispensing unnecessarily larger amount 

of powder can also result in longer printing time and higher manufacturing cost. The 

authors observed that the ultrasonic hopper dispensing system on the binder jetting printer 

(Innovent Plus, ExOne, PA, USA) installed in their lab, when dispensing variables are set 

to the fixed values, does not always dispense powder at a constant rate. To overcome this 

drawback, a common practice is to set the dispense rate sufficiently (but maybe 

unnecessarily) high. Therefore, it is desirable to understand the dispensing behavior of the 
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ultrasonic hopper dispensing system. Such knowledge can provide guidance for selection 

and adjustment of dispensing variables of the printer to achieve a desirable dispense rate, 

and therefore, to ensure the quality of printed parts with minimal manufacturing cost. 

This paper presents a study aiming to provide the needed knowledge to understand 

the powder dispensing behavior of an ultrasonic hopper dispensing system equipped on a 

commercial binder jetting 3D printer. In this study, effects of three dispensing variables 

(ultrasonic mode, ultrasonic intensity, and initial feedstock amount) and cumulative 

number of dispensing cycles on dispense rate are experimentally investigated. The rest of 

the paper is organized as follows. Section 7.2 describes experimental setup and conditions, 

measurement method of dispensed powder amount, and determination of dispense rate. 

Section 7.3 presents results and discussion. Section 7.4 summarizes findings from the 

study. 

7.2. Experimental Setup and Conditions 

7.2.1. Ultrasonic hopper dispensing system 

Figure 7.1 illustrates the ultrasonic hopper dispensing system on the ExOne 

Innovent Plus binder jetting 3D printer. The dispensing system consists of three 

components: hopper, ultrasonic generator, and screen. The half angle of the wedge hopper 

is 22.3°, the outlet width is 12.2 mm, the height of the wedge portion is 40 mm, the hopper 

height is 250 mm, and the width of the hopper at the entrance is 144 mm. The ultrasonic 

generator is connected to the right side of the hopper, and the screen is attached to the 

bottom of the hopper. Feedstock powder is dispensed through the screen only when 
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ultrasonic vibration is activated. One dispensing cycle is defined as follows. At the 

beginning of a dispensing cycle, ultrasonic vibration is activated when the dispensing 

system is at the right side of the job box (Figure 7.1a). Then, the dispensing system moves 

towards the left side, while dispensing powder onto the powder bed (Figure 7.1b), until it 

reaches the left side of the job box. Before the next dispensing cycle, the dispensing system 

moves to the right side of the job box without dispensing powder. 

 

Figure 7.1 Illustration of ultrasonic hopper dispensing system on ExOne Innovent Plus 

printer. (a) The dispensing system starts dispensing powder at the right side of the job 

box, and (b) the dispensing system moves towards the left side of the job box 
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7.2.2. Definitions of dispensing variables 

Table 7.2 Definitions of dispensing variables 

Dispensing variable Definition 
Ultrasonic mode Combination of ultrasonic ramping speed and ramping pattern 

at which the ultrasonic generator produces ultrasonic vibration 

Ultrasonic intensity (%) Scaled factor to change the intensity of the ultrasonic vibration  

Initial feedstock 
amount (g) 

Amount of powder loaded in the hopper (the hopper is emptied 
before the initial feedstock amount is loaded) 

Recoat speed (mm/s) Traverse speed of the dispensing system as it moves across the 
powder bed with ultrasonic vibration on  

Time on delay (s) Duration of time that the dispensing system stays at the right 
side of the job box with ultrasonic vibration on before it starts 
to move towards the left side of the job box 

Screen size (µm) Size of the openings of the screen attached to the hopper 

Hopper traverse 
distance (mm) 

Traverse distance of the dispensing system across the powder 
bed with ultrasonic vibration on  

 

The definitions of dispensing variables of the ultrasonic hopper dispensing system 

are summarized in Table 7.2 [10]. The system offers eight ultrasonic modes, depending 

on different combinations of ultrasonic ramping pattern and ramping speed, as shown in 

Table 7.3. Linear ramping pattern increases the ultrasonic frequency from 33 to 37 kHz, 

and goes back to 33 kHz without any delay; and then repeats. Triangular ramping pattern 

increases the ultrasonic frequency from 33 to 37 kHz; and then decreases it from 37 to 33 

kHz using the same amount of time; and then repeats. The specific values of the ramping 

speed are proprietary to the manufacturer of the ultrasonic generator (SK3510, 

TELSONIC, Bronschhofen, Switzerland). The information is acquired via 

communications with the manufacturer. Ultrasonic intensity can be adjusted through 
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either hardware or software. The physical switches of the ultrasonic generator offer eight 

settings from 30% to 100% by 10% increment. The software offers four options of 

ultrasonic intensity from 25% to 100% by 25% increment. The product of the physical 

setting percentage and the software setting percentage determines the ultrasonic intensity.  

Table 7.3 Available ultrasonic modes and their ramping pattern and ramping speed 

Mode Ramping pattern Ramping speed 
A Linear Slow  
B Linear Normal 
C Linear Fast 
D Linear Extra fast 
E Triangular Fast 
F Triangular Normal 
G Triangular Slow 
H Triangular Extra slow 

7.2.3. Experimental conditions 

Effects of three dispensing variables (ultrasonic mode, ultrasonic intensity, and 

initial feedstock amount) and cumulative number of dispensing cycles on dispense rate 

were tested in four experiments. Table 7.4 shows the experimental conditions for these 

four experiments. In Experiment 1, the sequence to conduct tests was randomized for eight 

modes (H→B→A→E→G→C→F→D), and the same sequence was repeated three times. 

Dispensed powder was collected after five dispensing cycles (number of dispensing cycles 

= 5) for each ultrasonic mode without resetting initial feedstock amount. In Experiment 2, 

four levels of ultrasonic intensity were tested, with the sequence randomized and three 

replications for each level. Dispensed powder was also collected after five dispensing 

cycles (number of dispensing cycles = 5) for each level of ultrasonic intensity without 
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resetting initial feedstock amount. In Experiment 3, four levels of initial feedstock amount 

were tested, with the sequence randomized and each repeated three times. Dispensed 

powder was collected after every 20 dispensing cycles (number of dispensing cycles = 20) 

for each level of initial feedstock amount. The cumulative number of dispensing cycles 

(i.e., total number of dispensing cycles since the hopper is loaded with the initial feedstock 

amount) was 100 for each level of initial feedstock amount. In Experiment 4, dispensed 

powder was collected after 20 dispensing cycles (number of dispensing cycles = 20). The 

cumulative number of dispensing cycles was not predetermined. The experiment was run 

until the feedstock powder in the hopper was emptied. Other dispensing variables (recoat 

speed, time on delay, screen size, and hopper traverse distance) were the same for all the 

experiments. 

Table 7.4 Experimental conditions 

Variable 
Experiment 
1 Experiment 2 Experiment 3 

Experiment 
4 

Ultrasonic mode A, B, C, D, 
E, F, G, H D C C 

Ultrasonic intensity (%) 100 25, 50, 75, 
100 100 100 

Initial feedstock amount (g)  2000  2000  
2000, 4000, 
6000, 8000  

4000  
Number of dispensing cycles 5 5 20 20 

Cumulative number of dispensing 
cycles   100 

*till the 
hopper was 

emptied 

Other dispensing variables: Recoat speed = 30 mm/s; Time on delay = 2 s; Screen size = 170 

µm; Hopper traverse distance = 75 mm. 
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7.2.4. Feedstock powder 

Table 7.5 presents properties of the SS316L powder (S3109, ExOne, 

Pennsylvania, USA) used in this study. Each value is the average of three measurements. 

In this study, the standard error was calculated via 𝑆𝐸	 = 𝜎/√𝑛  where 𝜎  is standard 

deviation of samples, and 𝑛 is number of samples. The definitions of these properties 

(apparent density, tap density, repose angle, Hausner Ratio, and D10, D50, and D90) can 

be found in the literature regarding powder properties [11,12]. Apparent density and tap 

density of the powder were measured in accordance with ASTM B417-13 and B527-15 

[13,14]. The measured apparent density and tap density are absolute density with the unit 

of g/cm3. The density values presented in Table 7.5 are relative density, which is the 

absolute density of the powder divided by the theoretical density of the powder material. 

Theoretical density of SS316L used to calculate apparent density and tap density is 7.9 

g/cm3 [15]. Repose angle was measured with assistance of the image processing software 

(ImageJ, National Institute of Health, Maryland, USA).  

Table 7.5 Properties and particle size of SS316L powder 

Property Average Standard Error 
Apparent density (%) 47.8 0.6 
Tap density (%) 59.0 0.1 
Hausner Ratio 1.234 0.002 
Repose angle (°) 49.998 2.110 
Mean size (µm) 10.598 0.076 
D10 (µm) 5.650 0.037 
D50 (µm) 9.797 0.042 
D90 (µm) 16.454 0.167 
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Particle size data of the powder in Table 7.5 were obtained by a particle size 

analyzer (LA-960, Horiba, Kyoto, Japan). The primary axis on the left side of Figure 7.2 

(a) is volume percentage of the powder (density distribution), and the secondary axis on 

the right side of Figure 7.2 (a) is cumulative volume percentage of the powder (cumulative 

distribution [16]) . The error bars in Figure 7.2 (a) (and Figures 7.4, 7.5, 7.6, 7.8, 7.9, and 

7.10) were drawn with upper and lower caps representing corresponding standard error. 

The mean particle size of the powder was around 10 µm, which is much smaller than the 

screen size (170 µm) attached to the hopper. Particle size distribution of the powder was 

relatively narrow. Figure 7.2 (b) shows scanning an electron microscopy image (JSM-

7500F, JEOL, Tokyo, Japan) of the powder. It can be observed that the powder had 

spherical shape. Prior to conducting the experiments, the powder was spread in a large pan 

(20"L × 12"W × 1"D), and kept in a drying oven (DX402C, Yamato Scientific America, 

California, USA) for eight hours at 65 °C to reduce moisture content of the powder. 

  

Figure 7.2 Characteristics of the SS316L powder. (a) density distribution and cumulative 

distribution, and (b) scanning electron microscope image 
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7.2.5. Measurement of dispensed powder amount and determination of dispense 

rate 

Figure 7.3 shows the experimental setup for measuring dispensed powder amount. 

The ultrasonic hopper dispensing system dispensed the powder contained in the hopper 

into a pan (12"L × 8"W × 1"D). After the pre-determined number of dispensing cycles 

(listed in Table 7.4), the dispensed powder in the pan was manually transferred to a small 

bin (6"L × 4"W × 2"D) by a brush. The dispensed powder in the bin was weighed by a 

lab scale (TEK-AB-0392, Yae First Trading, CA, USA) with a maximum measurable 

weight of 500 g and a resolution of 1 mg. The weight measured was recorded as the 

dispensed powder amount. Dispense rate (g/s) was then calculated via the following 

equation. 

𝐷𝑖𝑠𝑝𝑒𝑛𝑠𝑒	𝑟𝑎𝑡𝑒	

= 	
𝐷𝑖𝑠𝑝𝑒𝑛𝑠𝑒𝑑	𝑝𝑜𝑤𝑑𝑒𝑟	𝑎𝑚𝑜𝑢𝑛𝑡

𝑁𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝑑𝑖𝑠𝑝𝑒𝑛𝑠𝑖𝑛𝑔	𝑐𝑦𝑐𝑙𝑒𝑠 ∗ 9𝐻𝑜𝑝𝑝𝑒𝑟	𝑡𝑟𝑎𝑣𝑒𝑟𝑠𝑒	𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑅𝑒𝑐𝑜𝑎𝑡	𝑠𝑝𝑒𝑒𝑑 + 𝑇𝑖𝑚𝑒	𝑜𝑛	𝑑𝑒𝑙𝑎𝑦?
 

  

Figure 7.3 Experimental setup for measuring dispensed powder amount 
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7.3. Results and Discussion 

7.3.1. Effects of ultrasonic mode and ultrasonic intensity 

Figure 7.4 shows the change of dispense rate as ultrasonic mode changed. When 

ultrasonic ramping pattern was linear (Mode A to Mode D), dispense rate did not change 

much as ramping speed changed, except that the “Fast” ramping speed generated slightly 

higher dispense rate than other ramping speeds. When ultrasonic ramping pattern was 

triangular (Mode E to Mode H), dispense rate decreased significantly as ultrasonic 

ramping speed decreased. 

The reported study in the literature closest to this study was done by Touze et al. 

[17]. They attached a piezoelectric transducer to the side wall of a funnel (similar to that 

of a Hall flowmeter). They varied vibration frequency from 1 to 10 kHz to investigate the 

flow rate of Al-Cu powder for the application of laser metal deposition. They observed 

that vibration frequency of 3 kHz generated the highest flow rate. Note that their vibration 

frequencies were much lower than the vibration frequencies in this study (from 33 to 37 

kHz), and they did not change ramping speed and pattern. 
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Figure 7.4 Effects of ultrasonic mode on dispense rate (ultrasonic intensity: 100%, initial 

feedstock amount: 2000 g, and number of dispensing cycles: 5) 

Figure 7.5 displays the change of dispense rate as ultrasonic intensity changed. 

Dispense rate increased approximately linearly as ultrasonic intensity increased. This 

result was consistent with the observations made by Wu et al. [19]. In their study, the 

amplitude of a piezoelectric transducer was studied for micro feeding of SS316L powder 

through a needle attached to a syringe. They observed that flow rate increased with higher 

vibration amplitude.  
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Figure 7.5 Effects of ultrasonic intensity on dispense rate (ultrasonic mode: C, initial 

feedstock amount: 2000 g, and number of dispensing cycles: 5) 

7.3.2. Effects of initial feedstock amount in hopper 

Figure 7.6 shows the change of dispense rate as initial feedstock amount changed. 

Dispense rate shown is the average over the 100 dispensing cycles. It can be observed that 

dispense rate with initial feedstock amount of 2000 g was higher than those with initial 

feedstock amount of 4000, 6000, and 8000 g. Tukey’s honestly significant difference test 

[20] was used to test whether these differences are statistically significant. Table 7.6 lists 

p-values for comparing statistical differences in dispense rate between any two levels of 

initial feedstock amount. Dispense rate with initial feedstock amount of 2000 g was 

statistically higher (at the significance level of 4%) than those with initial feedstock 

amount of 4000, 6000, and 8000 g. 
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Figure 7.6 Effects of initial feedstock amount on dispense rate (ultrasonic mode: C, 

ultrasonic intensity: 100 %, and number of dispensing cycles: 20) 

Table 7.6 p-values from Tukey’s honestly significant difference test to determine 

statistical differences in dispense rate between any two levels of initial feedstock amount  

Initial feedstock amount 4000 g 6000 g 8000 g 
2000 g 0.039 0.005 0.003 
4000 g  0.861 0.799 
6000 g    0.999 

 

This paper is the first report on the effects of initial feedstock amount on dispensing 

behavior of the ultrasonic hopper dispensing system for powder bed additive 

manufacturing in the literature. A reported study close to this was conducted by Anand et 

al. [21]. They investigated discharge rate (i.e., dispense rate) of powder from a wedge-

shaped hopper using simulation (by the discrete element method). They reported that 

discharge rate of bimodal granular powder did not change as the fill height of powder in 

the hopper changed when friction coefficient of particles was high. However, they 

observed that the discharge rate increased as the fill height of powder in the hopper 
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increased when friction coefficient of particles was low. Their simulation results could not 

explain the results in this study: smaller initial feedstock amount produced higher dispense 

rate. 

The authors proposed the following hypothesis to explain why smaller initial 

feedstock amount produced higher dispense rate. When more powder was loaded in the 

hopper, more weight and pressure were applied to the powder particles in the lower part 

of the hopper. This would cause these particles to pack more tightly, and, hence, increase 

their packing density. Assuming that it was more difficult for densely packed particles  to 

pass through the screen (when other conditions are the same), larger initial powder amount 

would cause lower dispense rate. To test this hypothesis, density of the powder in the 

lower part of the hopper was measured for four levels of initial feedstock amount (2000, 

4000, 6000, and 8000 g). For each level of initial powder amount, after adding the 

feedstock powder into the hopper, the hopper was separated into upper and lower parts by 

sliding away the upper part of the hopper, as shown in Figure 7.7. Then the weight of the 

powder in the power part of the hopper was measured. For each level of initial feedstock 

amount, three weight measurements were taken, and the average value of the three 

measurements was used as the weight of the powder in the lower part of the hopper. The 

volume of the hopper was calculated using the weight of water that filled the lower part 

of the hopper, assuming that density of water at room temperature is 0.997 g/cm3. The 

density of powder in the lower part of the hopper (%) was calculated using the following 

equation: 

!"#$%&'	)*	+),-".	%#	&/"	0),".	+1.&	)*	&/"	/)++".	2	
34"%5/&	)*	&/"	+),-".	%#	&/"	0),".	+1.&	)*	&/"	/)++".
6)078"	)*	&/"	,1&".	%#	&/"	0),".	+1.&	)*	&/"	/)++". 9

:/")."&%;10	-"#$%&'	)*	+),-".	81&".%10  



 

132 

 

 

 

Figure 7.7 Separation of the hopper into upper and lower parts by sliding away the upper 

part 

The relationship between the feedstock density in the lower part of the hopper and 

initial feedstock amount is shown in Figure 7.8. At the lowest level of initial feedstock 

amount (2000 g), the feedstock powder in the lower part of the hopper was the lowest. 

Tukey’s honestly significant difference test [20] was used to test whether these differences 

are statistically significant. Table 7.7 lists p-values for comparing statistical differences in 

density of powder in the lower part of the hopper between any two levels of initial 

feedstock amount. The result showed that the feedstock density in the lower part of the 

hopper when initial feedstock amount was 2000 g was statistically different (at the 

significance level of 7%) from those when initial feedstock amount was 6000g and 8000g. 

Upper 
hopper

Lower 
hopper
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Figure 7.8 Effects of initial feedstock amount on density of powder in the lower part of 

the hopper 

Table 7.7 p-values from Tukey’s honestly significant difference test to determine 

statistical differences in density of powder in the lower part of the hopper between any 

two levels of initial feedstock amount  

Initial feedstock amount 4000 g 6000 g 8000 g 
2000 g 0.141 0.009 0.065 
4000 g  0.335 0.731 
6000 g   0.983 

 

7.3.3. Effects of cumulative number of dispensing cycles 

The relationship between cumulative number of dispensing cycles and dispense 

rate is displayed in Figure 7.9. It can be observed that dispense rate gradually decreased 

as cumulative number of dispensing cycles increased. Dispense rate decreased faster in 

the beginning, but became relatively stable as cumulative number of dispensing cycles 

increased. The effects of cumulative number of dispensing cycles on dispensing behavior 

of the ultrasonic hopper dispensing system for powder bed additive manufacturing have 

not been reported in the literature. 
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Figure 7.9 Effects of cumulative number of dispending cycles on dispense rate 

(ultrasonic mode: C, ultrasonic intensity: 100 %, initial feedstock amount: 4000 g, 

number of dispensing cycles: 20) 

The authors hypothesized that the powder inside the hopper became denser as 

cumulative number of dispensing cycles increased, which in turn decreased dispense rate. 

To test this hypothesis, feedstock density in the lower part of the hopper was measured 

under two cases. In one case, 4000 g of the powder was added into the hopper, and the 

density of the powder at the lower part of the hopper was measured. In another case, 4000 

g of the powder was added into the hopper, and 2000 g of the powder was dispensed from 

the hopper to keep the remaining feedstock powder to be 2000 g. Then, the density of the 

powder in the lower part of the hopper was measured using the same method described in 

Section 7.3.2. Measurements under each case were repeated two more times, and the 

average value of the three measurements was used as the  density of powder in the lower 

part of the hopper for each case. 
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The results are presented in Figure 7.10. It can be seen that there was a clear 

difference between these two cases. Analysis by a studentized t-test [20] showed that the 

difference is statistically different (p-value = 0.03). Therefore, decreasing dispense rate as 

cumulative number of dispensing cycles increased could be attributed to the increase of 

density of the powder in the lower part of the hopper.  

  

Figure 7.10 Effects of cumulative dispensed amount on density of powder in the lower 

part of the hopper 
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7.4. Conclusions 

This paper reports an experimental study on powder dispensing behavior of the 

ultrasonic hopper dispensing system equipped on the ExOne Innovent Plus binder jetting 

3D printer. The powder dispensing behavior was evaluated using dispense rate of 

feedstock powder. The dispensing variables investigated were ultrasonic mode (ultrasonic 

ramping speed and pattern), ultrasonic intensity, and initial feedstock amount loaded into 

the hopper. Effects of cumulative number of dispensing cycles (a variable associated with 

cumulative dispensed powder amount) on dispense rate were also investigated. The 

following conclusions can be drawn from the study. 

• When ultrasonic ramping pattern was linear, dispense rate changed little as 

ultrasonic ramping speed increased.  

• When ultrasonic ramping pattern was triangular, dispense rate decreased as 

ultrasonic ramping speed decreased. 

• As ultrasonic intensity increased, dispense rate increased. 

• Dispense rate was higher with smaller initial feedstock amount in the hopper. 

• Dispense rate gradually decreased as cumulative number of dispensing cycles 

increased.  

• Density of powder in the lower part of the hopper was higher when initial 

feedstock amount was larger. 

• Density of powder in the lower part of the hopper became higher as cumulative 

number of dispensing cycles increased. 
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The above conclusions are obtained from the experiments using one type of powder. It is 

possible that the results might be different for other types of powders. For example, the 

initial feedstock amount in hopper (powder height in the hopper) might have little effect 

on flow rate for another type of powder. Nevertheless, the findings from this study provide 

guidance to develop approaches to reduce the variation in dispense rate. For example, 

keeping the amount of feedstock powder in the hopper relatively constant will reduce the 

variation in dispense rate. If the amount of feedstock powder in the hopper cannot be kept 

relatively constant, variation in dispensing rate can be minimized by changing ultrasonic 

intensity accordingly. The results from this study can be useful to both manufacturers and 

users of 3D printers equipped with ultrasonic hopper dispensing systems.  
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8. CONCLUSIONS AND CONTRIBUTIONS 

In this dissertation, final part qualities, including mechanical properties, surface 

roughness, dimensional accuracy, and color accuracy of parts printed by the PolyJet 3D 

printing process are investigated experimentally and theoretically. Additionally, powder 

dispensing behavior of ultrasonic hopper powder dispensing system equipped in a Binder 

Jetting process is investigated. The following conclusions are drawn from the studies. 

1. As to print orientation of the PolyJet process, samples printed with their longest 

dimension aligned with the X axis have statistically higher elastic modulus and 

elongation, and samples aligned with the Y axis have statistically higher UTS. Samples 

aligned with the Z axis have the significantly lower mechanical properties. With 

respect to layer thickness, it is found that larger layer thickness leads to statistically 

higher elastic modulus, UTS, and elongation than smaller layer thickness. Highest 

mechanical properties can be achieved by orienting the longest dimension of a part 

along the X axis and the largest surface perpendicular to either the Y or Z axis. 

2. With respect to finish type of the PolyJet process, samples printed using glossy finish 

type have statistically lower surface roughness than matte finish type, and glossy finish 

type have more accurate dimensions than matte finish type for the X and Y axes. For 

Shore hardness, higher Shore hardness values have lower surface roughness, and a 

larger value of Shore hardness lead to better dimensional accuracy in the Y axis, 

whereas smaller value of Shore hardness provides more accurate dimension in the X 

axis. It can be recommended that the combination of glossy finish and Shore hardness 

100 will achieve lowest surface roughness and highest dimensional accuracy. 
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3. As to finish type of the PolyJet process, samples printed with matte finish type have 

lower brightness, and more green and blue elements, compared to glossy finish type. 

There are significant interaction effects between finish type and material color. Black 

material is influenced by difference in finish type more significantly, compared to 

cyan, magenta, and yellow materials. Glossy finish type is recommended to avoid 

color contamination for a darker color. 

4. Most printed RGB values from the PolyJet process range from 50 to 200 in the RGB 

system, and it is not possible to achieve extreme low or high printed RGB values. 

Moreover, lower ranges of R value and upper ranges of B value are prone to produce 

higher deviations of printed colors. Printed RGB values are crossly correlated with the 

specified RGB values so that a nonlinear model is more suitable for predicting printed 

RGB values. MLP outperforms linear and cubic regression for coefficient of 

determination and mean absolute error, and the performance of cubic regression is 

better than linear regression, which indicates that the relationship between specified 

RGB and printed RGB is nonlinear. 

5. Response surface methodology is an effective way to compensate deviations between 

specified color and target color in the PolyJet process. Experimental results show that 

the proposed method performed better than the conventional specification method 

(directly using the target color as the specified color in printer software) in achieving 

target colors. 

6. Dispense rate gradually decreases as the cumulative number of dispensing cycles 

increases in the ultrasonic hopper powder dispensing system. When the ultrasonic 
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mode is triangular ramping pattern, dispense rate decreases as ultrasonic ramping 

speed decreases. As ultrasonic intensity increases, dispense rate increases. Dispense 

rate is higher with smaller initial feedstock amount in the hopper. 


