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ABSTRACT

Conventional autonomous navigation framework for mobile robots is highly modularized with

various subsystems such as localization, perception, mapping, planning and control. Although these

provide easy interpretation, they are highly dependent on a known map of the robot’s surroundings

for navigating in a cluttered environment. Local planners such as DWA require a map with all

obstacles in the surroundings to calculate an optimal collision-free trajectory to the goal. Planning

and tracking a collision-free path without knowing the obstacle locations is a challenging task.

Since the advent of deep learning techniques, the field of deep reinforcement learning has

proven to be a powerful learning framework for robotic tasks. Deep Reinforcement Learning

has demonstrated wide success in various complex computer games such as Go and StarCraft

which have high dimensional state and action spaces. However, it has rarely been used in real

world applications due to the Sim-2-Real challenges in transferring the trained RL policy into the

real-world.

In this work, we propose a novel framework for autonomously navigating a mobile robot

in a cluttered space without known localisation of the obstacles in its surroundings using deep

reinforcement learning techniques. The proposed method is a modular and scalable approach due

to a strategic design of the training environment. It uses constrained space and randomization

techniques to learn an effective reinforcement learning policy in lesser simulation training time. The

state vector consists of the target location in the mobile robot coordinate frame and additionally a

36 dimensional lidar vector for obstacle avoidance task. We demonstrate the optimal discrete action

policy on a Turtlebot in the real-world. We have also addressed some key challenges in robot pose

estimation for autonomous driving tasks.
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1. INTRODUCTION

Autonomous navigation of mobile robots in indoor environments is an active area of research

with the recent advancements in sensor technology & artificial intelligence. Field applications such

as exploration, surveillance, search and rescue operations require robots to efficiently explore the

space and strategically avoid obstacles. The challenges for this problem include uncertainties in

sensor measurements, fusing data from different sensors, inaccurate maps due to dynamic and

uncertain environments & physical limitations due to the dynamics of the robot. Model free

deep reinforcement learning algorithms have been successful in various complex tasks requiring

sequential decision making. This research work addresses some of the challenges involved in

navigating mobile robots in indoor environments without a known map of the environment, using

state of the art deep reinforcement learning algorithms and onboard sensors.

Current widely used global planners for autonomous navigation tasks provide a sequence of way-

points by optimizing trajectory costs without taking the robot dynamics and physical limitations into

consideration. The mobile robot further tracks these way-points to reach the destination. Control

algorithms such as Proportional-Integral-Derivative (PID) control or Model Predictive Control

(MPC) can be used for tracking these control points. However, there are some challenges involved

with these algorithms. PID algorithms require frequent fine-tuning. MPC requires a dynamic

model to predict the next states with an immediate action. This research work proposes an efficient,

modular and scalable waypoint tracking algorithm using deep reinforcement learning that gives the

feasible sequence of linear and angular velocities in order to smoothly track the waypoints. The

reinforcement learning model is trained to learn the optimal sequence of actions for optimizing the

trajectory errors and distances to obstacles.

1



1.1 Background

1.1.1 Machine Learning

Machine learning (ML) is a subset of the vast field of artificial intelligence. ML entails

the development of algorithms that use statistical techniques to learn from data. It is broadly

classified into 3 categories - supervised learning, unsupervised learning and reinforcement learning.

Supervised learning methods consist of identifying the structure or pattern in labelled data. Some

common supervised learning methods include linear regression, support vector machines or k-

nearest neighbours. On the other hand, unsupervised learning algorithms deal with associating

patterns in unlabelled data. Clustering using k-means is one of the most widely used unsupervised

learning algorithm. Lastly, Reinforcement learning algorithms involve learning from experience to

take the correct sequence of decisions in-order to maximize the notion of a cumulative reward.

With the advent of high-end compute technology, deep learning has gained more prominence

due to its efficiency with large data-sets and its applications in the research and industry. Deep

learning is largely based on the foundation of neural networks to learn more complex function

approximations or abstractions than traditional ML algorithms. Due to its ease of use with high

dimensional unstructured data it has wide applications in the areas of time-forecasting, autonomous

driving systems, natural language processing and robotic process automation.

1.1.2 Reinforcement Learning

In contrast to supervised & unsupervised learning, reinforcement learning (RL) is a framework

where a learner agent gains experience by repeatedly interacting with the environment and gets a

reward signal as feedback from the environment. The objective of the learner is to maximize its

cumulative reward over time.

The RL framework, as per Fig. 1.1 [1] consists of following entities - an agent, an environment

and the reward. The agent interacts with the environment by taking actions and receives

the observed state and a feedback reward from the environment. As the agent acts in the

environment, it can be in one of many states s (sεS), and choose to take an action a (aεA). The

2



Figure 1.1: Agent-Environment Interaction in an MDP

environment gives a reward feedback depending on the action taken and the next observed state,

based on the transition probability matrix P (s′|s, a). The policy π(s) is a behaviour function that

defines the optimal action to take in a particular state s to maximize future rewards in an episode. It

is a mapping between the states and the actions and can either be deterministic or stochastic. In

case of deterministic policy, π(s) = a, and for stochastic policy, π(a|s) = Pπ[a|s]. A training setup

is called on-policy if it uses the samples from the target policy to train an RL algorithm. On the

other hand, training an RL algorithm on the sample distribution by a behaviour policy other than

the target policy is called an off-policy design. The state value function determines how rewarding

a state or an action is by calculating a prediction of future reward. The total sum of discounted

rewards from current time instant t in an infinite horizon or till the end of the episode is called as

the return Gt. The state-value function (Vπ(s)) is the expected return from current state s at time t,

Vπ(s) = Eπ[Gt|St = s]

The action-value function (Qπ(s, a)) is given as -

Qπ(s, a) = Eπ[Gt|St = s, At = a]
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The advantage function given by Aπ(s, a) = Qπ(s, a) − Vπ(s) is considered a low variance

Q-value function, with the state-value taken off as a baseline.

The result of reinforcement learning is the optimal policy learnt by the agent helping it actively

adapt to the environment and maximize future rewards. Thus, the optimal value function produces

maximum return -

V∗(s) = max
π

Qπ(s, a)

and optimal policy is given as -

π∗(s) = arg max
π

Qπ(s, a)

1.1.2.1 Proximal Policy Optimisation Algorithm

Proximal Policy Optimisation Algorithm (PPO) is a popular policy gradient algorithm. Policy

gradient methods of solving RL problems target modelling and optimizing the policy directly. The

policy is modelled with a parametrized function πθ(a|s). The value function is then expressed as

a function of this parameter and various algorithms are applied to optimize θ for the maximum

reward. In a generalized form, policy gradient approaches maximize the expected total reward by

repeatedly estimating the policy gradient. Two main components of a policy gradient are the policy

and the value function. Actor-critic methods consist of these two models where : Critic model

updates the value function parameters w for Qw(a|s) or Vw(s) and the Actor updates the policy

parameters θ for πθ(a|s) in a direction suggested by the critic. The parameters w and θ have two

separate learning rates for the updates.

Let the ratio between the older and newer policies be given by :

r(θ) =
πθ(a|s)
πθold(a|s)

Policy gradient methods are challenging since they are sensitive to the stepsize, the training progress
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is slow for a smaller step-size and it is overwhelmed by noisy signals with a larger step size. To

avoid parameter updates that change the policy drastically resulting in instability in training, TRPO

enforces a KL divergence on the policy update step. PPO simplifies it by using a clipped surrogate

objective. It tries to compute an update that minimizes the objective function while ensuring

deviation from previous policy is relatively small. The objective function for optimizing policy

gradient, as per TRPO, is given by :

JTRPO(θ) = E[r(θ)Aθ(s, a)]

The ratio r(θ) is then constrained to stay within a small interval precisely [1− ε, 1 + ε], ε being a

hyperparameter.

JPPO(θ) = E[min(r(θ)Aθ(s, a), clip(r(θ), 1− ε, 1 + ε)Aθ(s, a))]

This algorithm was observed to have the following failure modes -

1. PPO gets unstable with continuous action spaces, when rewards vanish outside bounded

support

2. PPO gets stuck at suboptimal actions for discrete action spaces with sparse high rewards

3. PPO is sensitive to initialisation when there are locally optimal actions close to its initialisation

Discretizing the action space, designing a good reward function and using KL regularization are

some proposed solutions over above challenges.

1.1.3 Kinematic Modelling

It is crucial to understand the underlying physics of the robots in order to design appropriate

control strategies. Considering the robot as a rigid body in motion, operating in a horizontal plane,

the total dimensions of the robot are three. The degrees of freedom internal to the joints are ignored

to have a simple kinematic model. Thus the pose of the robot at time instant t can be described in a
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Figure 1.2: Holonomic vs Non-holonomic system path

global reference frame with three elements, x and y coordinate of the actual position of the robot

in the global frame and the angular difference between the global and robot local reference frame

given by θ.

pose =


xt

yt

θt


Most widely used mobile robots require the wheels to point in the direction of motion and are not

designed to slide sideways as shown in Fig. 1.2, called as the non-holonomic constraints.

1.1.3.1 Dubin’s Car Model

This is one of the easiest vehicle model. Although it has three degrees of freedom, the action

space is two-dimensional. Consider a vehicle configuration at position and orientation of (xt, yt, θt)

at a time instant t, as shown in Fig. 1.3 with vt as the linear velocity command and φt as the steering

angle. The car moves in a circular motion, with radius determined by the wheel base (WB - distance

between front and rear axle) and φ. The transition dynamics for this configuration are as follows -

xt+1 = xt + vt cos(θt)

yt+1 = yt + vt sin(θt)

θt+1 = θt +
vt
WB

tan(φt)
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Figure 1.3: Dubin’s Car Model Configuration

Here, the steering angle is constrained by the physical limitations between [−φmax, φmax], resulting

in a minimum turning radius of WB
tanφmax

. In this work, the AWS DeepRacer is the real world robot

demonstrating a close-to Dubin’s car model.

1.1.3.2 Differential Drive Model

Typical indoor mobile robots are designed differently then a Dubin’s car. The configuration

consists of two primary motored wheels, a third wheel (caster wheel) helps the robot balance and

rolls passively in the direction of the robot’s motion. Again, the action space is two dimensional

compared to the three degrees of freedom of the robot. Consider a vehicle configuration at position

and orientation of (xt, yt, θt) at a time instant t, as shown in Fig. 1.4 with vt as the linear velocity

command and ωt as the angular velocity command. Due to the differential drive, the angular velocity

is a resultant of the difference in velocities of the left (vlt) and right (vrt ) linear velocities. Thus, with

(vrt = vlt), the resultant velocity of the robot is (vrt + vlt)/2 in the forward direction of the wheels. In

case (vlt 6= vrt 6= 0), the resulting angular velocity is (vrt - vlt)/WB. The transition dynamics for this
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Figure 1.4: Differential Drive Model Configuration

configuration are as follows -

xt+1 = xt + vt cos(θt)

yt+1 = yt + vt sin(θt)

θt+1 = ωt

In this work, Turtlebot3 Burger is a real world robot demonstrating a close-to Differential drive

model.

1.1.4 Mapping & Localization

Simultaneous localization and mapping (SLAM) refers to the problem of generating a map

of the unknown environment surrounding the robot along with knowing the location of the robot

within that map. It is a challenging research area for indoor mobile robots where there is no sensor

accurate enough and GPS is not readily available. There is no direct way to measure a robot’s

precise position instantaneously. With a known up-to-date map and self-localization, a robot has

the necessary information to navigate its surroundings. Foundational approaches to SLAM include
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formulation of two probabilistic estimation problems solved by the application of extended Kalman

Filter or Rao-Blackwellized particle filters. Most widely used sensors in this process are IMUs,

wheel encoders, Lidar, RGB/stereo vision cameras or a sensor fusion of any of these sensors. SLAM

algorithms face practical challenges in dynamic environments combined with lower accuracy or

uncertainties in sensors.

1.1.5 Path-Planning

In order to reach the goal, a robot typically uses a global and a local planner. The global planner

uses the static map to generate a path from the start to goal point. The local planner further use

the global plan, in addition to the robot kinematics, sensor estimation to calculate the a local path-

planning. The objective of path-planning is to obtain a near-optimal collision-free path from starting

to goal position within some constraints such as time, proximity to obstacles, robot kinematics or

path-length using a map of the environment. A widely used global path-planning algorithm is A∗

designed for weighted graph based situations. The weighted graph is similar to an occupancy map,

where weights are the cost of traversing that space. A∗ seeks to find the minimum cost path between

start and goal node of the graph, where cost is the sum of the transition between the nodes and

a heuristic that estimates the cost of cheapest path to the goal node. Since A∗ does not take into

account the non-holonomic constraints, the calculated path needs to be smoothened to satisfy these

constraints. A most commonly used local planner for collision avoidance is the Dynamic Window

Approach (DWA). Besides a distance to the goal point the objective function also takes into account

the distances to the obstacles and the robot kinematics. Thus, DWA produces linear and angular

velocity commands optimal as per the local surroundings of the robot, called the dynamic window.

The search space is restricted to this dynamic window of possible next states of the robot given its

current velocities. The DWA planner performs a simulation and evaluates the different velocity pair

commands using the cost function and chooses the one with the lowest score. The algorithm repeats

these steps in an iterative procedure.
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1.1.6 Control

Autonomous navigation requires a control system in-place for path following consisting of

longitudinal and lateral control. The longitudinal control regulates the cruise velocity while the

lateral control steers the vehicle’s wheels for accurate path tracking. Pure-pursuit is the most

common lateral control strategy. It is a geometric path tracking controller that tracks a reference

path using the vehicle kinematics and reference path. It uses a look-ahead point a fixed distance

ahead on the reference path. Considering a kinematic bicycle model, the instantaneous radius of

curvature R associated with the correct steering is given by -

R =
WB

tan δ

where, δ is the desired steering angle. Thus, δ can be shown as -

δ = arctan(
2WB sinα

ld
)

where, α is the angle between the vehicle heading and the look-ahead reference line, and ld is the

distance between the vehicle and the target. Pure-pursuit controller works proportionately against

the cross-track error. The other path-tracking errors include the heading error and the along-track

error as shown in Fig. 3.2.

1.2 Contribution

This work focuses on implementing reinforcement learning to the problem of autonomous

navigation of mobile robots. The primary contributions are as follows -

1. Developed a modular & scalable framework for autonomous waypoint tracking by mobile

robots

2. Achieves a mapless waypoint tracking scheme

3. Analyses the application to a Dubin’s car and a Differential Drive robotic model
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4. Demonstrates the evaluation of a custom algorithm using the proposed framework

The framework presented in this work reduces the exploration space and hence lowers the

training time for the reinforcement learning model. The trained policy maps the target coordinate

in the robot frame to produce the velocity commands resulting in efficient trajectory toward the

target waypoint. The designed model is trained in a low fidelity Python simulator as well as Gazebo

before transferring to the real-world robot.

1.3 Thesis Outline

Chapter 1 Introduces the area of reinforcement learning and autonomous navigation for robots,

gives an overview of this thesis and the major contributions achieved with this research work and

the motivation to do the same.

Chapter 2 Reviews the relevant research work done till date in the areas of robot path-planning

and obstacle avoidance in cluttered spaces using reinforcement learning.

Chapter 3 Outlines the design of the proposed reinforcement learning strategy for autonomous

navigation of mobile robots

Chapter 4 Describes the experimental setup of the research. It includes the hardware as well

as the software description of the various sensors, controllers, robots, compute technology and

software packages used for this work.

Chapter 5 Presents a detailed analysis and results from the various experiments and design

architectures evaluated during the course of this research study.

Chapter 6 Demonstrates one application of the designed framework for autonomous navigation

for evaluating a custom Deep RL algorithm.

Chapter 7 Derives conclusions from the results and analysis of the experiments conducted as a

part of this research and suggests future work in this area.
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2. LITERATURE REVIEW

Traditional approaches to autonomous navigation include recent optimized path-planning meth-

ods such as A* search, Rapidly-exploring Random Trees(RRT), D* and D* Lite algorithms. Cheng

et al. [2] demonstrate the use of Lidar for Mapping an unknown environment with SLAM techniques

(Hector SLAM & GMapping) and implement global path-planning (A*) and a Dynamic Window

Approach to navigate the mobile robot in an indoor environment. However, these methods are not

suited for dynamic environments where fast response to change is essential. The evolutionary and

hybrid approaches adapt neural networks, genetic algorithm, fuzzy systems and reinforced learning

techniques. Based on a comparison between the two approach styles by Khaksar et al. [3], learning

based approaches seem to have a slight advantage in handling dynamic environments.

Since the inception of Double Q-network (DDQN) by DeepMind [4] in 2016, the use of RL

has gained momentum for autonomous navigation . Lei et al. [5] present a novel path-planning

algorithm based on DDQN. They use CNNs to solve the generalization problem by effectively

extracting the information from Lidar data and reducing network parameters. The work also found

that the use of Lidar information over camera frames allowed for better generalization performance.

Similar work done by Surmann et al. [6] successfully implements deep RL algorithms on the

TurtleBot with fused data from the 3D RGB-D camera and the lidar scanner. They use a custom-

built simulation environment in C++ to have a 1000 times faster, memory efficient and several

instances in parallel compared to traditional simulators like Unity, Gazebo. The parallel learning is

achieved by a Asynchronous Advantage A2C algorithm. Tai et al. [7] presented a learning-based

mapless motion planner by taking the sparse 10-dimensional range findings and the target position

with respect to the mobile robot coordinate frame as input and the continuous steering commands

as output.

Besides path-planning, another challenging problem in autonomous navigation of mobile robots

is avoiding stationary or moving objects in its path. Modern approaches implement a sensor fusion

of data received from on-board Lidar sensors and stereo cameras. Cimrus et al. [8] proposes a
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Convolutional Deep Deterministic Policy Gradient (CDDPG), network of depth-wise separable con-

volutional layers, to tackle depth images efficiently for a goal-oriented collision/obstacle avoidance

by using an actor-critic network and finally transfer it to a real environment for map-less naviga-

tion. With a combination of stack of depth images and estimated position from the goal, the actor

network produces angular and linear velocity as output and the critic network generates an action

based on the actor and estimates Q-value of current state. Two of the most common methods for

dynamic programming in RL are SARSA (on-policy learning) and Q-learning (off-policy learning).

Manuelli et al. [9] demonstrates that both these methods work evidently similar in the discretized

domain. Many of the modern approaches utilize Q-learning based deep neural network to deal with

discrete-time decision making.

For the case of dynamic obstacles, [10] explores Q-Learning by perceiving 3 measurements

with respect to the obstacle: velocity of obstacle, distance to obstacle, and direction with respect to

obstacle. They then propose a reward framework which positively rewards moving away from the

static/dynamic obstacle, and moving towards the target. Another work [11] approaches dynamic

obstacle avoidance by having two planners, a higher level (“long term”) planner which assumes no

dynamic obstacles, and a lower level (“short term”) local planner for dealing with nearby dynamic

obstacles. The former planner gives the agent a general idea of what direction to move in, while the

latter deals with providing more specifics on navigating the immediate locale.

The Sim-To-Real gap is commonly observed to degrade the performance of the trained RL

policies when transferred onto the real robots. One commonly used technique to close Sim-To-Real

transfer gap is domain randomization. In domain randomization, the simulation parameters are

perturbed during training, and have been used for successful sim2real transfer for various robotic

tasks. Methods include adding noise in dynamics [12] and imagery [13], learning model ensembles

[14], adding adversarial noise [15], and assessing simulation bias [16]. Domain adaptation [17] has

also been used for sim2real, particularly to address the visual reality gap.
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3. DESIGN

This chapter outlines the design of the proposed waypoint tracking method using reinforcement

learning and delves deeper into the design choices made and the motivation behind them. A high

level overview of the proposed method is presented in Fig. 3.1. The proposed method is a modular

& scalable approach to solve the problem of tracking a series of waypoints as provided by a global

planner.

3.1 State Space

At every time step the RL agent receives the observed state from the environment and decides

the next optimal action to maximize its future rewards. In order to make it a comprehensive state

representation for the simple task of navigating from an initial fixed point to a randomly assigned

goal for the episode, the state is a relative coordinate of the desired goal coordinates in the robot’s

frame of reference.

state = [xt − xo, yt − yo, θt − θo] (3.1)

In above equation, (xt, yt) are the absolute coordinates of the vehicle at time instance t, (xo, yo) are

the absolute target coordinates of the waypoint, θt is the absolute yaw of the vehicle at time instance

t as calculated from the quaternion angles and θo is the absolute target heading towards the closest

waypoint. Thus, the state is parametrized by the absolute relative distance and relative orientation

from its current position to the closest waypoint giving us a generalized unit-distance model. In

case of the obstacle avoidance task, the state vector is appended with lidar data.

state = [xt − xo, yt − yo, θt − θo, [ld(k)]] (3.2)

In above equation, ld is a 36-dimensional sectorized vector of the raw lidar scan. A raw lidar scan

contains dense information about the proximity of obstacles in two dimensions. Since the tasks in

this research work are carried out in two-dimension settings, a lidar scan conveys same information

14



Figure 3.1: System Overview

density as a depth camera but in a lower dimension state space. Although depth images are also

common for obstacle avoidance tasks, the higher dimension state vector can slow down training

time and lead to sample inefficiency. Similarly, RGB images do not directly provide distances to

obstacles and are variant to lighting conditions.

In this way, the relative distance and orientation to the desired goal along with the lidar data

does not have any dependence on the mapping or localization. In common words, a robot navigating

in a mapless environment only needs an estimate of its relative heading and distance to the desired

goal for controlling the angular and linear velocities of the robot. This is directly motivated by the

natural navigation sense of humans. The state vector provides all the critical information that the

RL agent needs to decide what actions to take to reach the goal.

3.2 Action Space

The action space depends on the robot (or kinematic model) used and the motor’s physical

limits. This research work uses two widely known robots in the robotics research community - AWS

DeepRacer and Turtlebot3 Burger. The AWS DeepRacer resembles a Dubin’s car model wheres

the Burger bot is close-to a differential drive model. Thus, the AWS DeepRacer uses an action pair
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of linear velocity and steering angle action = [v, φ] commands whereas the Burger robot uses a

linear and angular velocity pair action = [v, ω], φ is the steering angle command to the Ackermann

driving mechanism, ω is the angular velocity.

Because of the slower speeds of indoor mobile robots, a discrete action space is preferred,

allowing the action space to be small as possible while still allowing sufficient resolution of control.

The linear velocities that the agent can decide to take ranges from {0.0, 0.1, 0.2}m/s and for angular

velocity ranges from {−0.5,−0.25, 0.0, 0.25, 0.5}rad/s. Keeping the action space of linear and

angular velocity ensures seamless motion between time-steps leading to a 15-dimension action

space.

3.3 Reward Function

The objective of the RL agent is the driving force in designing a proper reward function. For a

task of reaching a desired goal point, the environment should reward the agent for motion directed

towards the goal and penalize it for any motion directing away from the goal or towards the obstacles.

Thus, the following reward function was carefully designed.

reward =



+10, if |xt − x0| ≤ 0.2 and |yt − y0| ≤ 0.2

−1, if it crosses the boundary grid

−100 if it collides

−(c.t.e2 + a.t.e+ h.e. otherwise

where c.t.e is the cross track error given by c.t.e = ld sinα, ld is the distance to the target, α is the

difference between the heading to the target and the vehicle yaw at time t, a.t.e is the along-track

error a.t.e = |xt− x0|+ |yt− y0|, h.e. is teh heading error h.e. = θt− θo))), [xt, yt] are the current

coordinates of the robot while [x0, y0] are the target coordinates of the desired goal point. Refer Fig.

3.3. A collision is detected when the least distance to the obstacle is lower than threshold.

The reward function consists of the error terms derived from conventional path tracking algorithm

for vehicle control, as per Figure 3.2, mainly the cross track error, along track error and the heading
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error. The reward strictly penalizes the cross track error with a quadratic term which demonstrates

tighter tracking trajectory in reaching the target point than a linear term.

Figure 3.2: The three types of path following errors (a) cross track error (δn) (b) along track error
(δs) (c) heading error (δθ)

The above reward function is a result of careful fine-tuning in a low-fidelity simulator to inspect

the combination of coefficients resulting in an optimal behaviour of trained policy.

3.4 RL Algorithm

PPO trains a stochastic policy in an on-policy way. This means that it explores by sampling

actions according to the latest version of its stochastic policy. The amount of randomness in action

selection depends on both initial conditions and the training procedure. Over the course of training,

the policy typically becomes progressively less random, as the update rule encourages it to exploit

rewards that it has already found. This may cause the policy to get trapped in local optima.

State-of-the-art SAC trains a stochastic policy with entropy regularization, and explores in

an on-policy way. The entropy regularization coefficient α explicitly controls the explore-exploit

tradeoff, with higher α corresponding to more exploration, and lower α corresponding to more

exploitation. The right coefficient (the one which leads to the stablest / highest-reward learning)

may vary from environment to environment, and could require careful tuning.

PPO works in both discrete and continuous action space, while SAC works only in continuous

action space. PPO being an on-policy algorithm tends to be more stable but data hungry whereas

off-policy algorithms like SAC tend to be more data-efficient. PPO is also very easy to implement

and shows faster convergence and is used for all the training experiments in this work.

The code-base used for this work is StableBaselines3.
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Figure 3.3: Unit Distance Model Training Scheme

3.5 Training Scheme

The RL training setup shown in Fig. 3.3 consists of teaching the robot to reach a random

target goal point roughly a unit-distance away from its reset position and orientation. For every

training episode, the robot is reset to the origin and a goal point is randomly chosen from a unit

square grid boundary. At every time-step in a training episode, the reward is calculated as given

above. The episode ends if the robot reaches the goal point for that episode, or if it exceeds the

training boundary, or if it collides with an obstacle (in case of the obstacle avoidance task in Gazebo

simulation). The training is complete once the reward converges with 100% episode completion.
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3.6 Evaluation for Waypoint Tracking

The trained unit-distance RL policy (either from the low fidelity simulator or from Gazebo) is

further used for evaluating with a given series of waypoints provided by the global planner, shown in

Fig. ??. The global planner uses a high level map of the robot’s surroundings (walls and corridors)

for planning a trajectory using waypoints a unit-meter distance away. The robot checks for the two

nearest waypoints on the planned trajectory by calculating the distances to the waypoints at every

timestep and sets the farther one as the temporary goal-point for its next episode. It uses the trained

RL optimal policy to navigate to this goal-point and resets the episode once the goal is reached. Due

to the relative distance and orientation in the state vector of the trained policy, it can be generalized

to navigate from a point in the grid-space to any point a unit-meter distance away from it. With this

fast and scalable training and evaluation strategy, a good RL model with effective results is achieved

in lesser time without the use of heavy compute clusters such as multiple GPUs for parallelized

computations or simulation instances.
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4. IMPLEMENTATION

This chapter outlines the details of implementing the design presented in the previous chapter,

along with how the agent was trained and evaluated. Due to larger training time, safety concerns,

and cost effectiveness, it is impractical to fully train the agent on a real robot. Additionally, it

requires constant human supervision to reset the robot after each episode. Thus, training in a

simulator is preferred. The major benefits of training in a simulator include being able to speed

up simulation multiple factors of real-time, and being able to script training such that training is

consistent and can automatically reset when the agent reaches terminal states. For these reasons, the

agent proposed in this thesis is trained entirely in simulation and only evaluated in the real-world.

4.1 Kinematics Simulator

We designed a low-fidelity kinematics simulator using the Open AI Gym framework. It provided

faster training to evaluate different design choices of algorithm, state space, action space and reward

function. A custom environment (a Python Class) is setup, as in Fig. 4.1 using the OpenAI Gym

API for interfacing the RL algorithm with the simulator kinematics equations as follows -

(a) Dubin’s Model (b) Differential Drive Model

Figure 4.1: Low-fidelity Kinematics Simulator
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For Dubin’s Car Model,

xt+1 = xt + vt cos(θt)∆, yt+1 = yt + vt sin(θt)∆, θt+1 = θt +
vt
WB

tan(φt)∆

For Differential Drive Model,

xt+1 = xt + vt cos(θt)∆, yt+1 = yt + vt sin(θt)∆, θt+1 = θt + ωt∆

where xt, yt are the current pose coordinates of the bot, vt is the linear velocity, ωt is the angular

velocity, and θt is its yaw calculated from the quaternion angles, all calculated at time instant t. ∆

is the time discretization factor. We define the state st to be the normalized relative position w.r.t.

the waypoint, i.e., st = ((xt − x0)/G, (yt − y0)/G, θt − θ0), where x0, y0 are the target coordinates

of the waypoint, and θ0t is the target heading to the waypoint at time t. We define the action at to

be the pair of linear and angular velocities, i.e., at = [vt, ωt] for the differential drive model and a

pair of linear velocity and steering angle i.e. at = [vt, φt] for the Dubin’s car model. We discretize

the action space into 15 actions. Thus the environment class description for waypoint-tracking is

described in Table. 4.1.

This simulator demonstrates faster execution and thus lower training times for the RL algorithm.

Without any complex graphics rendering, this simulator trains an RL algorithm using the Nvidia

GeForce RTX 2080 Ti GPU and converges to an optimal policy within a few minutes. Although the

dynamics equations and constants can be configured to match the real-world robot behavior, this

simulator does not account for any of the real-world uncertainties, latencies and sensor inaccuracies.

Also, it is difficult to model complex sensor models such as lidars or vision cameras. However, it

can be used as a quick prototype of the reward structure and RL algorithm design for a waypoint

navigation task without any obstacles in the surrounding.
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Python Simulation : Environment Class Description

(Without Obstacle Avoidance)

Entity Description

State Space Box(low = [-1.0,-1.0,-4.0], high = [1.0,1.0,4.0])

Action Space Discrete(15) - 0: [0., -2.5], 1: [0., -1.25], 2: [0., 0.], 3: [0., 1.25], 4: [0., 2.5],

[v, ω] 5: [1.0, -2.5], 6: [1., -1.25], 7: [1., 0.], 8: [1., 1.25], 9: [1., 2.5],

10: [2., -2.5], 11: [2., -1.25], 12: [2., 0.], 13: [2., 1.25], 14: [2., 2.5]

Reward −cte2 − |x1 − xo| − |y1 − yo| − |θt − θo|

Terminal Goal Reached, Training Boundary Exceeded

Condition Maximum Episode Length Exceeded

Table 4.1: Python Simulation - Environment Class Description

4.2 Gazebo Simulator with ROS

Gazebo is a physics engine simulator with rendering capabilities and can be used for realistic

simulation of the environment. It is configurable and can be used to model robots with multiple

joint constraints, actuator physics, gravity and frictional forces and a wide range of sensors in

indoor as well as outdoor settings. Instead of real-world data for RL training, Gazebo facilitates

close-to-real-world data collection from the robot & sensor models. Since it runs in real-time, it

takes millions of simulation frames for an RL agent to learn simple tasks such as navigating from a

fixed point to a goal point a unit-distance away. With respect to this project, the task of navigating

from a starting point to a target point 8m away took 12 to 14 hrs training. Gazebo can also

speed up simulation by increasing step size. This can however lead to loss of precision. For this

project, we ran the training scheme on Gazebo in almost real time with a simulation step-size of

∆T = 0.001.

The Gazebo simulation setup consists of the differential drive robot (Turtlebot3 Burger) model

spawned in either an empty space or a custom space with static obstacles at predefined locations

(depending on the evaluation task). A default coordinate grid gets setup with respect to the base-link
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Gazebo Simulation - Environment Class Description

(With Obstacle Avoidance)

Entity Description

State Space Box(low = [-1.0,-1.0,-4.0], high = [1.0,1.0,4.0])

Action Space Discrete(15) - 0: [0., -2.5], 1: [0., -1.25], 2: [0., 0.], 3: [0., 1.25], 4: [0., 2.5],

[v, ω] 5: [1.0, -2.5], 6: [1., -1.25], 7: [1., 0.], 8: [1., 1.25], 9: [1., 2.5],

10: [2., -2.5], 11: [2., -1.25], 12: [2., 0.], 13: [2., 1.25], 14: [2., 2.5]

Reward +100 (goal reached), -100 (collision detected), -10 (out of boundary)

Terminal Goal Reached, Training Boundary Exceeded

Condition Episode Length Exceeded, Collision Detected

Table 4.2: Gazebo Simulation - Environment Class Description

of the robot model which is used by the odometer sensor model. An environment class, similar to the

python simulator, for obstacle avoidance is described in Table. 4.2.A ROS framework instantiated

by a custom-built OpenAI Gym environment is used to provide interface between the proposed RL

algorithm and the simulation model via ROS topics.

The ROS topics used are as follows -

/odom (for xt, yt, vt) - Contains the Turtlebot3 odometry information based on the encoder

/cmd_vel (for ωt, θt) - Controls the translational and rotational speed of the robot unit in m/s, rad/s

/scan (for obstacle avoidance) - Reads the scan values of the LiDAR mounted on the Turtlebot3

The topics mentioned were used to capture the state update information of the robot asyn-

chronously in a callback driven mechanism. The /cmd_vel topic was used as the topic to output the

relevant action needed for the robot simulator. The captured state information is used in the step()

function of the OpenAI gym interface to take a relevant action. The reset() function of the OpenAI

gym interface was used to reset the robot to it’s initial configuration.
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Figure 4.2: AWS DeepRacer

4.3 AWS DeepRacer Evo

AWS DeepRacer, Fig. 4.2 is a robotic vehicle that is a 1/18th scale model car developed

for development of autonomous racing algorithms using deep reinforcement learning.It has the

DeepLens camera mounted in the front either as monocular vision or two for stereoscopic vision.

Additionally, it has an on-board Intel Atom processor compute module. The compute module runs

inference in order to drive itself along a racing track. Due to the Ackermann steering mechanism it

has non-holonomic constraints in motion and closely resembles the Dubin’s model of kinematics.

The maximum linear velocity of the AWS DR is 5m/s, with higher velocities for the purpose of

racing. Thus, the action space of the reinforcement learning agent is targeted at maximum of 1m/s

such that it has controlled motion for navigational purpose. The AWS-DR has a Gazebo simulator

model that accurately resembles the kinematics of the real vehicle.

4.4 Turtlebot3 Burger

Turtlebot, Fig. 4.3 is robot commonly used in robotics research. It features a two-wheeled

differential drive train allowing the robot to turn about its center point, which is very useful for

changing directions without needing to move forward or backward. It is supported by casters to

prevent the robot from tipping due to having only two wheels. The maximum linear velocity of the
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Figure 4.3: Turtlebot3 Burger
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Turtlebot is 0.22m/s, so the action space of the reinforcement learning agent is designed such that

the maximum velocity the agent can decide to go is 0.2m/s , safely within the Turtlebot’s ability.

Turtlebot is open source and a model is publicly available for the Gazebo simulator. This

model behaves in simulation just as a Turtlebot in the real world would, with accurate physics and

dynamics simulation.

4.5 Training Environment

The RL models are trained in the pure kinematics simulator as well as the Gazebo simulator as

per the design framework mentioned in Chapter 3. The low-fidelity simulator is an empty world

space without any walls/ corridors/ obstacles. It is designed purely to prototype the design choices

and test the proposed method in a simple environment. The model trained here solves the navigation

task from a point to any goal point a unit distance away. The environment resembles a plain grid

space in the robot’s coordinate frame of reference.

Gazebo, being a more complex physics engine can include some advanced environment design

and addition of walls/ corridors/ obstacles. The model is trained to navigate from a point to any

goal point a unit distance away in the presence of obstacles. The PP algorithm from the Stable

Baselines3 codebase uses PyTorch with a CUDA support that utilizes the host Nvidia GPU RTX

2080 Ti to accelerate the training process. For the task of waypoint tracking in an empty world, the

Gazebo training environment consists of the TB3 Burger robot model spawned in an empty grid

space. In order to limit exploration during the RL training, the Gym environment setup confines the

robot within boundaries and ends the episode in case the robot exceeds the boundary grid. For the

obstacle avoidance task, an obstacle is placed at a fixed location throughout the training (as in Fig.

4.4) and the desired goal point is randomized to ensure a rich exploration of states.

4.6 Evaluation Environment

The trained models from simulation are evaluated with the real robots in an experimental lab

setup. The Unit Distance Model trained for navigating to goal locations is used to track down

way-points as planned by a global planner. The experimental setup consists of a host PC (an Intel
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Figure 4.4: Gazebo Simulator Training Environment

NUC) running the ROS Master core. The turtlebot consists of an onboard Raspberry Pi to run the

inference. The ROS aboard the Raspberry Pi subscribes to the same roscore running on the host

PC. The Raspberry Pi runs the nodes for communicating with various sensors and actuators on the

turtlebot and publishes the data onto topics. An evaluation script running on the host PC subscribes

to these topics via ROS messages. The optimal policy then generates the best sequence of actions to

take based on the observation state vector and publishes that onto the respective ROS topics. The

Raspberry Pi then passes these ROS messages to the motor drives.
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5. RESULTS

5.1 AWS DeepRacer

5.1.1 Pose Estimation Challenges

Successful implementation of the proposed methodology highly depends on the pose estimation

performance by the robot sensors. This challenge was addressed for the real-world robots. The

AWS Deepracer has a fleet of sensors such as the RP Lidar, monocular & stereo cameras. However,

neither of these sensors can provide absolute pose estimation data. We have experimented with

using an external IMU sensor, wheel encoders as well as the on-board Lidar sensor.

The Turtlebot-3 Burger on the other hand has wheel encoders attached on the Dynamixel servo

motors. The Dynamixel servo motors are ultra-precise electric motors equipped with the magnetic

encoders for precise pose estimation of the robot based on wheel rotations. Since the experiments

in this work have been strictly on hard surfaces, the pose estimate has been precise. The wheel

encoders can induce incorrect readings on slippery surfaces. In that case, a possible fusion of the

wheel encoder estimate with an additional sensor such as the Lidar or visual camera can provide a

correction.

Using IMU : We have integrated a 9DoF Razor IMU (as in Fig. 5.1 ) which houses an ITG

3200 gyro, ADXL345 accelerometer, & HMC5883L magnetometer; to make for the pose estimation

required for our experiments. Prior experimentation, the IMU was calibrated by exposing it to

different static poses and offsetting the measurements. Further, we implemented a Kalman Filter to

process the raw data measured from the sensor (Refer Fig.5.3) and the acceleration measurement

was double integrated to calculate the pose, as shown in Fig.5.2. However, the pose estimate

is observed to accumulate significant drift over time (2 - 3 degrees per minute), even in static

conditions, and requires a fusion with another sensor was rectification. An external wheel-encoder

attachment was considered, but due to physical constraints on the free motion of the robot’s wheels,

other approaches were considered.
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Figure 5.1: DR with IMU Integration

(a) (b) (c)

Figure 5.2: IMU Integration data for robot position - (a) is raw acceleration, (b) is velocity after
integration, (c) is pose after double integration

Using Laser Scan Matching : The DR has an onboard 360o Lidar sensor which was used as

a combined state estimation and localization sensor. We implemented the laser scan matching

algorithm that incrementally matches consecutive lidar scans to estimate a pose of the lidar sensor

without any other odometry sensors in place. This algorithm was tested for loop-closure and
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(a) (b)

Figure 5.3: IMU Integration data for robot orientation - (a) is yaw after a 90 degree turn & (b) is
yaw after a 360 degree turn

localization performance showing upto 0.1m deviation at slower speeds (upto 1m/s) and ≥ 0.5m

deviation for faster speeds. We further tested this pose estimation for a straight path along a hallway

as in Fig. 5.4 for performance evaluation using PID waypoint tracking.
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(a)

(b)

Figure 5.4: PID Waypoint Test with Lidar Scan Matcher Pose in a long hallway - (a) over 4m
distance and (b) over 8m distance.

Since the AWS-DR follows Dubin’s path, it was trained with Dubin’s Model Kinematic model

in the simulators before transferring to the real world.
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5.1.2 Unit Distance Model

In Low Fidelity Simulator : Due to longer training times in Gazebo simulation for the DR

physics model, the low fidelity simulator as discussed in section (4.1). was used. Following the

training scheme from section (3.5), a unit-distance RL model for navigating from a fixed point

in space (origin) to a randomly assigned goal point over a square boundary was trained using the

PPO algorithm from Stable Baselines3 (PyTorch). The training reward curve in Fig. 5.5 converged

within 800 episodes taking upto 2hrs on an Intel i7-8550U CPU machine without parallelization.

The Unit-Distance Model was evaluated with different target points in Fig. 5.6. The optimal

policy learns to navigate with the shortest feasible path. The robot evaluates successfully for each

of the runs with different target points. A continuous action space was used to profile the action

space as in Fig. 5.7 for linear velocity and steering angle respectively.

In Gazebo : The above trained Unit Distance Model is evaluated in Gazebo for the same target

points. Note that the inbuilt \odom topic from Gazebo is used for the pose estimate required for

the proposed method. The robot ends its path 10cm before reaching the goal due to the stopping

conditions in-place during model training. The robot is observed to replicate the same feasible

paths, in Fig. 5.8 as observed in the kinematics simulator.

With AWS-DR : The trained Unit Distance Model is further evaluated with the AWS-DR in a

real-world experimental setup. Due to absence of any absolute pose estimation sensors as addressed

in previous Chapter 5. the laser scan matching algorithm is used to provide a pose estimate during

this evaluation task. Although the AWS-DR model in Gazebo closely models the real-vehicle,

the observed evaluation performance as in Fig. 5.9 deviates from the expected trajectory path.

Additionally, the left-turn trajectory Fig. 5.9 (a) is observed to be asymmetric to the right-turn

path Fig. 5.9 (c). Moreover, the straight path is observed towards the right nearing the end of the

trajectory. This deviation could be caused by two natural possibilities -

1. The laser scan matching pose estimate is inaccurate and hence produces incorrect sequence

of actions
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Figure 5.5: Reward curve during training in low-fidelity simulator

2. There are steering asymmetries in the vehicle physics which causes the vehicle to steer right

without any steering command.

However, the trajectory paths in Fig. 5.9 are in the robot frame of reference and the laser scan

matching tool is evaluated in separate experiments in Fig. 5.4. Fig. 5.4 (b) shows a slight deviation

to the right. Observed through multiple experiments, it is evident that the AWS-DR has a steering

asymmetry which cannot be modelled in a Physics engine unless an RL model is trained on

real-world data.

5.1.3 Waypoint Tracking Evaluation

In Low Fidelity Simulator : The trained Unit Distance Model is used for a waypoint nav-

igation task as per the evaluation scheme mentioned in Section 3.6. The model is evaluated for

different trajectories with a series of waypoints either a unit-metre distance away as in Fig. 5.10 (a)

& (b) or more than a unit-metre distance away as well as seen in Fig. 5.10 (c) & (d). The planned

trajectories (a) & (b) are withing feasible region for the robot to track, and are tracked with the
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(a) (b) (c)

Figure 5.6: Unit Distance Model Evaluation on Dubin’s model in low-fidelity simulator

(a) (b)

Figure 5.7: Dubin’s Model Action Space (a) Velocity and (b) Steering Angle Profiling

most-optimal path by the robot reaching the final target point in both cases. On the other hand, the

trajectories (c) & (d) test the performance of the model for almost-infeasible paths. The robot tries

to track all the waypoints but is constrained by its maximum radius of curvature with the ackermann

steering.

34



(a) (b) (c)

Figure 5.8: Unit Distance Model Evaluation in Gazebo

(a) (b) (c)

Figure 5.9: Unit Distance Model Evaluation on DR with optimal trajectory in red.

5.2 Turtlebot3 Burger

Since the TB3-Burger follows Differential Drive constraints, it was trained with a Differential

Drive Kinematic model for different tasks in the simulators before transferring to the real world.

5.2.1 Unit Distance Model

In Low Fidelity Simulator : Following the proposed training scheme from section (3.5), a

unit-distance RL model for navigating from a fixed point in space (origin) to a randomly assigned

goal point over a square boundary was trained using the PPO algorithm from Stable Baselines3
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(a) (b)

(c) (d)

Figure 5.10: Evaluation of Waypoint Tracking in Low-Fidelity Simulator
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(PyTorch), this time with the differential drive kinematics. The training reward curve in Fig.5.11

converged within 200 episodes taking just 45 minutes on an Intel i7-8550U CPU machine without

parallelization. It is observed that the differential drive model is easier to train from the lesser

number of training iterations required. This is justified as the differential drive kinematics can cause

the axles to follow any continuous path in a 2D plane by first rotating itself to point in the direction

of the desired goal point (without translational motion) and then translating linearly towards it.

The most optimal tracking involves only the Euclidean distance travelled by the central axle of the

robot. The Unit Distance Model was evaluated with different target points same as the Dubin’s

Model. Since the optimal policy learns to navigate with the shortest feasible path (learnt as per

reward function design), the navigation paths as seen in Fig. 5.12 are almost a straight path after a

turn-in-place rotation by the robot in the goal direction. The robot evaluates successfully for each of

the different target points with a similar observed behaviour.

In Gazebo : The above trained UDM is evaluated in Gazebo for the same target points. A

built-in \odom topic from Gazebo is used again for the pose estimate required for the proposed

method. The robot is observed to replicate the same optimal paths, per Fig. 5.13, as observed in the

low-fidelity simulator.

With TB3 : The trained Unit Distance Model is further evaluated with the AWS-DR in a

real-world experimental setup. Since the available pose estimate from the wheel encoders onboard

the TB3, and no motion asymmetries, the robot replicates the same behaviour as in Gazebo. Thus,

an RL model trained in a low fidelity simulator was easily transferable to the real-world in the

absence of physical asymmetries and sensor uncertainties.

5.2.2 Waypoint Tracking Evaluation

In TB3 Due to the observed easy transferability from the low fidelity simulator to the real-world,

the UDM trained is evaluated for waypoint navigation in an experimental setup. The model was

evaluated for a single trajectory with a sequence of waypoints. The robot precisely follows the

planned trajectory with an observed deviation of upto 15cm from the optimal path.
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Figure 5.11: Reward curve during training in low-fidelity simulator

(a) (b) (c)

Figure 5.12: Unit Distance Model Evaluation on Differential Drive Model in low-fidelity simulator

5.2.3 Obstacle Avoidance

The differential drive is further trained for an obstacle avoidance task. Since the obstacles or lidar

sensors required for an obstacle avoidance training setup are not easily modelled in the low-fidelity

simulator, the UDM is trained in Gazebo. This UDM was trained with a similar training scheme
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(a) (b) (c)

Figure 5.13: Unit Distance Model Evaluation on Differential Drive Model in Gazebo simulator

as in previous sections using the PPO algorithm from Stable Baselines3 (PyTorch). Although the

reward curve, as seen in Fig. 5.14, converges in about 1000 episodes, the model is trained further

for smoother trajectories and a higher success rate during evaluation. Being trained in Gazebo,

the simulation frames take close-to real-time for execution and cannot be accelerated. This model

achieved desirable performance after upto 8 hours of training on an Nvidia GeForce 2080 Ti GPU.

During evaluation, the robot is tasked with navigating to the same points it experience during

training. As seen in Fig. 5.15, it achieves the desired goal it experienced during training. The

trajectory by nature is a reactive path as the robot gradually deviates away from the obstacle and one

it out of its path, it directs itself towards the desired goal. In trajectories (a) & (b), the optimal route

(shortest / fastest path to goal) is from the left of the obstacle. However, it is observed to navigate

from the right side.

39



Figure 5.14: Reward curve during training in Gazebo for obstacle avoidance

(a) (b) (c)

(d) (e)

Figure 5.15: Obstacle Avoidance Evaluation
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6. APPLICATION

The proposed methodology for autonomous waypoint tracking is used to evaluate a custom-built

RL algorithm LOGO in a real-world setting. The algorithm addresses the challenging problem of

reward sparsity in complex reinforcement learning environments such as navigating autonomously

in unknown environments. As seen in this research thesis, a simple low-fidelity simulator was used

to design an effective reward function for every step taken by the robot to achieve the task at hand.

However, the most intuitive reward function is of a very sparse nature, which goes as - a reward

of +10 for reaching the desired goal point, −1 penalty for every collision detected and 0 reward

otherwise. Thus, current RL approaches depend on a carefully crafted reward function (possibly

from domain experts) as a feedback to the agent. Similar to the strategy of Trust Region Policy

Optimisation (TRPO) where the target policy is within a trust region of the current policy and is

proven to perform well in a dense reward setting; the test algorithm here uses a behaviour policy

trained in a dense reward setting with partially observed data to guide exploration in the sparse

reward setting with full observed state.

6.1 Results

The training performance extraordinary improvement compared to a standard TRPO reward

curve as seen in Fid. 6.1. The algorithm is evaluated on the waypoint tracking & obstacle avoidance

task for the differential drive robot, Turtlebot-3 Burger.

Waypoint Tracking: The goal is to train a policy that takes the robot to an arbitrary waypoint

within 1 meter of its current position in an episode of 20 seconds. The episode concludes when

the robot either reaches the waypont or the episode timer expires. The state space of the agent

are its x, y, coordinates and orientation φ to the waypoint. The actions are its linear and angular

velocities. The agent receives a sparse reward of +1 if it reaches the waypoint, and 0 otherwise. We

created a sub-optimal Behavior policy by training TRPO with dense rewards on our own low fidelity

kinematic model Python-based simulator with the same state and action space. While it shows
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Figure 6.1: Training Reward Convergence

reasonable waypoint tracking, the trajectories that it generates in Gazebo are inefficient, and its

real-world waypoint tracking is poor Fig. 6.2 . As expected, TRPO shows poor performance in this

sparse reward setting and often does not attain the desired waypoint before the episode concludes,

giving the impression of aimless circling seen in Fig. 6.2(b). LOGO is able to effectively utilize the

Behavior policy and shows excellent waypoint tracking seen in Fig. 6.2

Obstacle Avoidance: The goal and rewards are the same as in Task 1, with the addition of an

obstacle that must be avoided to attain an arbitrary waypoint, shown in Fig. 6.3. The complete state

space is now augmented by a 2D Lidar scan in addition to coordinates and orientation described

in Task 1. However, the Behavior policy is still generated via the low fidelity kinematic simulator

without the obstacle, i.e., it is created on a lower dimensional state space. As seen in Fig. 6.3 (a) ,

this renders the Behavior policy impractical for Task 2, since it almost always hits the obstacle in

both Gazebo and the real-world. However, it does possess information on how to track a waypoint,

and when combined with the full state information, this nugget is utilized very effectively by LOGO

to learn a viable policy as seen in Fig. 6.3. Further, TRPO in this sparse reward setting does poorly

and often collides with the obstacle in real-world experiments as seen in Fig. 6.3 (b) .

Training: Waypoint Tracking : In navigation problems, we have a global planner that uses

a high level map of the bot’s surroundings for planning a trajectory using waypoints a unit-meter
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Figure 6.2: Waypoint Tracking Evaluation
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Figure 6.3: Obstacle Avoidance Evaluation
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distance from each other, while the goal of the bot is to achieve these waypoints. To obtain a

waypoint tracking scheme, we first train a behavior policy as per proposed framework in this

research thesis. In each training episode, the bot is reset to the origin and a waypoint is randomly

chosen as xw ∼ uniform([−1, 1]), yw = 1. The episode is terminated if the robot reaches the

waypoint, or if it crosses the training boundary or exceeds the maximum episode length. The

behavior policy obtained after training in the low fidelity simulator is then used in the LOGO

algorithm training on Gazebo. LOGO is trained in Gazebo with sparse rewards, where a reward of

+1 is provided if the bot reaches the waypoint, and 0 otherwise. We evaluate the trained policy in

Gazebo and the real world as per Fig. 6.2, by providing it a series of waypoints to track in order to

reach its final goal.

Training: Obstacle Avoidance : We train our bot for obstacle avoidance in Gazebo using the

behavior policy described in the section above. The goal is to use the skills of waypoint navigation

from the behavior policy to guide and learn the skills of obstacle avoidance. The state space includes

the Lidar scan values in addition to the relative state space reprsentation described previously. The

/scan provides 360 values, each of these indicate the distance to the nearest object in a 1 sector.

For the purpose of our experiments, we use the minimum distance in each 60 sector. This reduces

the Lidar data to 6 values. We train our algorithm on Gazebo with a fixed obstacle for random

waypoints. In each training episode, the bot is reset to the origin and a waypoint is generated

similar to the previous section. The episode is terminated if same conditions in the previous section

are satisfied or if a collision with the obstacle occurs. We demonstrate the performance of our

algorithms both in Gazebo as well as the real-world as shown in Fig. 6.3.

6.2 Implementation Details

We implement all the algorithms in this evaluation task using PyTorch. For all our experiments,

we have a two layered (128× 128) fully connected neural network with tanh activation functions

to parameterize our policy and value functions. We use a learning rate of 3 × 10−4, a discount

factor γ = 0.99, and TRPO parameter δ = 0.01. We decay the influence of the behavior policy by

decaying δk. We start with δ0, and we do not decay δk for the first Kδ iterations. For k > Kδ, we
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geometrically decay δk as δk ← αδk, whenever the average return in the current iteration is greater

than the average return in the past 10 iterations. In table 6.1 we provide details on the demonstration

data collected using the behavior policy.

Environment Offline S Online S A Samples
Average

Episodic Reward
Waypoint traking R3 R3 15 Policy 1

Obstacle avoidance R3 R9 15 Policy −0.88

Table 6.1: Demonstration data details
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7. FUTURE SCOPE AND CONCLUSION

7.1 Conclusion

This work was motivated by the current challenges in dynamic path planning of mobile robots

in unknown environments.

In this thesis work, a mapless autonomous waypoint tracker is dynamically able to navigate

in the real-world with the use of onboard sensor data. We trained the agent first in a low-fidelity

simulator to fine-tune the reward design, algorithm selection and the state & action space. We then

train a transferable model replicating the same RL design in Gazebo, which is a more complex

Physics engine and then evaluate the trained optimal policy in the real world. We have used a

relative state vector and trained in a randomized environment to make it a generalized model for

any pair of initial and target points. A 36-dimensional sectorized lidar scan is included in the state

vector for the obstacle avoidance task. Compared to conventional move-base planners or DWA local

planners, our approach is more effective in complicated environments. The model evaluates well on

Turtlebot3 in the real world equipped with the servo motors with Dynamixel wheel encoders and

the 2D RP Lidar.

We also addressed some of the challenges associated with implementing the same approach

for a high speed Dubin’s car model. Although the low-fidelity simulator and Gazebo simulation

did not show any difference in performance for the same waypoint tracking algorithm, there were

significant challenges in transferring the same on a real-robot (AWS DeepRacer). A canonical

laser scan matcher was used to incrementally localize and map the environment from the previous

and current laser scan readings. However, the brushless DC motors are difficult to control with a

pure RL algorithm. Since the DeepRacer has a servo steering mechanism, it is easier to control

the steering for lateral control compared to the longitudinal control. Thus, it is more suited for an

application such as a lane following task where primarily lateral control is expected.
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7.2 Future Scope

From the detailed analysis and conclusions of this thesis work, we can suggest future directions

to this research and potential improvements in the design.

Dynamic Obstacle Avoidance This thesis work can be extended to a dynamic obstacle avoid-

ance task by augmenting the state vector with a history of lidar scan data, or with depth vision to

estimate the relative velocity of the dynamic obstacles.

Real World Data Challenges with sensor uncertainties/inaccuracies and robot asymmetries

as seen in Section 5.1.1 can be overcome with gathering real-world data from the robot from

demonstration runs along a path. This data can be used to aid the policy training in Gazebo.

Domain Randomization Challenges with sensor/environment uncertainties can be overcome

with domain randomization of state vector. Also, domain randomization in the low fidelity simulator

can make the optimal policy directly transferable to the real-world robot as it can handle minor

noise/deviations in sensor data.

Semantic segmentation for autonomous navigation Semantic segmentation of the robot’s

surrounding can help in training the robot to autonomously navigate to certain objects in its local

neighbourhood. This thesis work can be extended by including a monocular camera on the robot

and using semantic targets for waypoint navigation.
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