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ABSTRACT

Currently, research on securing safety by unmanned systems is being actively conducted. De-

velopment is underway to reduce costs and secure worker safety by filling safety-related person-

nel’s blind spots and reducing their burden. For intelligent safety security, we propose artificial

intelligence models that can detect, identify and distinguish major objects based on photographic

information. In addition, Frequency Channel Attention Network (FcaNet), which supplements the

existing Global Average Pooling (GAP) method, is used to improve the existing algorithm, and the

accuracy is improved.

For this purpose, 12,000 pieces of photographic data images are collected for 5 major equip-

ment to be encountered in the actual construction environment. The detection and identification

performance of the model is maximized by using the FcaNet layer for learning through the existing

Faster-RCNN, Libra-RCNN, and Double-Heads model. As a result, the accuracy of the test dataset

is improved by 6%, 0.4%, and 0.4%, respectively. And, through using random initialization and

improved batch normalization, the shortcomings of limited data are reduced, and the effect of pre-

training is obtained without. This results in an improvement of more than 20% in each model, and

the revised model shows 0.5% higher than the existing one. It is hoped that these results will be

reflected in the work environment intelligence project to further reduce the burden on manpower

and improve efficiency.
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NOMENCLATURE

AP Average Precision

CNN Convolutional Neural Network

CSP Center-and-Scale Prediction

DCT Discrete Cosine Transform

FcaNet Frequency Channel Attention Network

FPN Feature Pyramid Network

GAP Global Average Pooling

GN Group Normalization

IoU Intersection of Union

MR Miss Rate

PPE Personal Protection Equipment

RCNN Region-based Convolutional Neural Network

RPN Region Proposal Network

SE Squeeze-and-Excitation

SyncBN Synchronized Batch Noramalization
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1. INTRODUCTION

As an important material production sector and pillar of industry of the national economy, the

construction industry plays an important role in improving living conditions, improving infrastruc-

ture, absorbing labor employment, and promoting economic growth. At the same time, it is also

a high-risk industry with frequent safety accidents. Construction workers are exposed to a wide

range of hazards, including physical (noise, extreme temperatures, slick floors), chemical (sol-

vents, cement, respirable crystalline silica), mechanical (slips, falls, heavy tools, crushing), and

ergonomic (repetitive tasks, awkward postures, overexertion, using the wrong tools) hazards, all of

which put them at risk for a variety of occupational diseases. Personal Protection Equipment (PPE)

is defined by the Occupational Safety and Health Administration (OSHA) as equipment used to

reduce exposure to a variety of risks, and construction workers are advised to wear a variety of pro-

tective gears. Eye and facial protection (safety glasses, goggles, or a face shield), foot protection

(safety shoes), hand protection (gloves), and head protection are all included [2]. According to a

survey done by the United States Bureau of Labor Statistics (BLS), 84% of employees who had

gotten head impact injuries were not using head protection equipment [3]. Sehsah et al. show that

only 59.4% of workers wear PPE while at work. The most common reported reasons by non-users

are uncomfortable (78.2%), lack of knowledge on how to use (73%), poor fit/falling off (69.2%),

feeling too hot or unavailability (69.2%) [2]. This is simple but essential to safety management.

The biggest problem is finding it, and that is where the most manpower goes. In the safety man-

agement organization, supervisors are located at the site and perform the role of inspecting and

controlling the wearing of PPE and actions of workers. However, this is laborious, and there are

problems such as the existence of blind spots due to the lack of staff, the cost of the contractor

for supervisors, and personal conflicts between administrators and workers. Therefore, there is

an urgent need for a consistent and effective application of unmanned detection technology in the

traditional way that relies on the human eyes.

For some years, the burgeoning area of Artificial Intelligence (AI) has been challenging the
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construction business. The deep usage of AI is rapidly moving the industry ahead to automation

and autonomous systems, from planning to execution. Machine-generated project planning for es-

timating project costs or creating the site layout, automated monitoring of construction operations

and worker safety and deployment of robots to execute construction jobs are just a few examples

[4]. AI is attempting to approximate traditionally difficult issues using human-inspired algorithms.

The following are the most significant benefits of AI for business: using the data it offers, improv-

ing end-user experience, automating processes to allow workers to focus on work that adds value,

decreasing human mistakes and providing services more rapidly. This may be observed in con-

nection to lean concepts, which emphasizing maximizing value, eliminating waste, and improving

working process efficiency [5]. Furthermore, recording equipment and technology that are linked

to a variety of networks [6] are moving toward more efficient, resource-saving, but securing a lot

of information in manpower-intensive construction environment.

Although object detection in the traditional computer vision field has a very mature technology

for detecting some specific targets, the algorithms often do not perform well when directly applied

to the construction site to detect workers and PPE. First, the targets captured by the imaging sensor

are too small to locate because the surveillance cameras are often positioned at a relatively high

position to comprehensively monitor the operation process of the construction site. Second, the

sizes of the PPE are smaller than the ones of the operator and are easy to confuse with the operator

itself, which further increases the difficulty of detection. Therefore, how to improve the perfor-

mance of detecting PPE on construction sites has become a challenge. There are several attempts

to overcome this problem. Liu et al. conduct a comprehensive evaluation of the field linked to the

use of computer vision technologies to monitor construction workers’ dangerous conduct. They

use classic machine learning and deep learning methods to investigate the use of object detecting

technologies in greater depth [6]. Fang et al. propose an object detection of Non-Hardhat-Use

detection in far-field surveillance videos on construction sites. They study the various visual cir-

cumstances of building sites and classify image frames according to their visual conditions to test

the method’s applicability to the construction environment. They are then fed into the Faster-
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RCNN model, which is divided into visual categories [7]. Nath et al. investigate YOLO-based

CNN models for quick construction item identification. They use image dataset containing about

3,500 images and approximately 11,500 instances of common construction site objects. They eval-

uate object detection agility using the YOLO-v2 and YOLO-v3 models. Their method may also

be expanded to accurately anticipate the relative distance of observed objects [4]. However, their

methods are lacking in two ways. First of all, we find that the advanced object detection models

are not used in detection. They use Faster-RCNN, a model that is the basis of object detection, is a

fairly outdated model released in 2015. Although YOLO-v3 is recently developed, it focuses only

on the detecting speed and exposes a serious flaw in accuracy. This makes it difficult to distinguish

between wearing PPE or not and ultimately does not guarantee safety. Second, a large enough

dataset is not used. This can lead to overfitting, resulting in high variance and very high error on

a test set. Also, transfer learning or pre-trained models can help speed up convergence but do not

consequently improve accuracy if the target dataset is too small.

We implement this research by improving three parts. First of all, in object detection model

derived by increasing the accuracy in different ways, we think about a "magic key" that can improve

all of them. As finding the detection necks generally use a Feature Pyramid Network (FPN) to

extract semantic information, we modify the detection neck to make it have a stronger ability to

extract semantic information. We can add the FcaNet layer [8] before each stage in neck outputs to

the multi-scale features of the FPN in cutting-edge object detection models. The FcaNet layer that

accepts input from various channels is selected to compensate for the disadvantage of not using

the various inputs of the information of the existing GAP. Second, we collect 12,000 construction

environment images with setting five classifications: Person, Head, Helmet, Jacket, and Red-life-

jacket. We get different types of images: photos posted on the internet keyframes from surveillance

cameras, real construction sites, and simulated wearing PPE photos. Also, to increase the difficulty

of training and test, photos that are not related to the construction site or PPE are included. Third,

although about 10k images are obtained, measures are needed to secure accuracy and prevent

overfitting. To solve this, we train using scratch with normalization technique appropriately for

3



optimization and training models for sufficiently long time to compensate for the lack of pre-

training.

We get three results. First of all, the accuracy of the existing model with the FcaNet layer

using Cityscapes dataset is improved by 0.5%. Second, we train and test three models with the

FcaNet layer using our customized dataset, and the accuracies are improved by 6%, 0.5% and

0.4%, respectively. Third, using a customized dataset, scratch enhances accuracy by more than

20% compared to when it is not used. And, the revised model using the FcaNet layer gets an

improvement of 0.5% additionally.
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2. RELATED WORKS

2.1 Faster-RCNN

Faster-RCNN creates a Region Proposal Network (RPN) by adding a few more convolutional

layers that regress region bounds and objectness scores at each place on a normal grid at the same

time. A region proposal algorithm generates bounding boxes or locations of possible objects in the

image, a feature generation stage obtains features of these objects, a classification layer predicts

which class this object belongs to, and a regression layer refines the coordinates of the object

bounding box. It includes a new anchor box that may be used as a reference at various scales and

aspect ratios. It provides a pyramid of regression references in the regression layer, reducing the

need to enumerate pictures or filters with numerous scales or aspect ratios. Figure 2.1 illustrates

the RPN and RoI of Faster-RCNN.

Anchor’s translation invariance is an important characteristic. First and foremost, anchors

and functions do not require translation. Second, translation-invariance minimizes the size of

the model, reducing the danger of overfitting on small datasets. It is also more cost-effective to

use sliding windows with numerous sizes on feature maps. It creates a filter pyramid, classifies

and regresses bounding boxes using anchor boxes of various sizes and aspect ratios. Users employ

convolutional features calculated on a single-scale image as a result of this [9].
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Figure 2.1: The Architecture of Faster-RCNN: Region Proposal Network and RoI pooling.
Reprinted from S. Ren, K. He, R. Girshick, and J. Sun, “Faster r-cnn: Towards real-time object
detection with region proposal networks,” Advances in neural information processing systems, vol.
28, 2015.

Figure 2.2: Region Proposal Network from different size of anchor boxes. Reprinted from S.
Ren, K. He, R. Girshick, and J. Sun, “Faster r-cnn: Towards real-time object detection with region
proposal networks,” Advances in neural information processing systems, vol. 28, 2015.
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2.2 Libra-RCNN

For object detection, Libra-RCNN promotes balanced learning. IoU balancd sampling, bal-

anced feature pyramid, and balanced L1 loss are all part of it. First, as an alternate technique for

hard positive samples, it samples equal positive samples for each ground truth. The balanced fea-

ture pyramid is then used to create balanced semantic features by basic averaging features. These

characteristics have been rescaled to make the original features stronger. Embedded Gaussian

non-local attention is also used to enhance the balanced semantic characteristic. It simultaneously

gathers low-level and high-level characteristics. Critical regression gradient is promoted with bal-

anced L1 loss. This combines the gradient formulation and produces a balanced L1 loss. Figure

2.3 shows the architecture of Libra-RCNN.

Figure 2.3: The overview of Libra-RCNN. Reprinted from J. Pang, K. Chen, J. Shi, H. Feng, W.
Ouyang, and D. Lin, “Libra r-cnn: Towards balanced learning for object detection,” in Proceedings
of the IEEE/CVF conference on computer vision and pattern recognition, pp. 821–830, 2019.

Hard negative samples are the most common difficulty in sampling. More than 60% of hard

negatives have an overlap more than 0.05 in the majority of samples, yet random sampling only

offers 30% of training samples that are greater than the same threshold. Extreme samples are used

to tackle this problem, converting difficult samples into hundreds of simple samples. According

to IoU, sampling intervals are uniformly separated into K bins to increase the chosen chance of

hard negatives. As a result, each bin receives the equal number of negative samples from the M
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matching candidates. Experiment parameters pk can be used to set K:

pk =
N

K
∗ 1

Mk

, k ∈ [0, K) (2.1)

To achieve a balanced feature pyramid, it uses the same deeply integrated balanced semantic fea-

tures to reinforce multi-level features.

in multi-level features as L, Cl is featured at resolution level l, lowest and highest index for lmin

and lmax. The balanced semantic feature C is generated by averaging when features are rescaled.

These are rescaled by using the same but opposite method to enhance the original characteristics

[10]:

C =
1

L

lmax∑
l=lmin

Cl (2.2)

2.3 Double-Heads

The fully connected head (fc−head) is found to be more suited for classification, whereas the

convolution head (conv − head) is shown to be more ideal for localization. As a result, these two

heads have come together to work on both categorization and bounding box regression. Y. Wu et al.

examine each individual based on predetermined suggestions and IoUs. Because fc−head is more

spatially sensitive while conv − head employs a shared transformation, respectively. The use of

each head to leverage the advantages of two head structures is demonstrated in the Double-Heads.

In Figure 2.4, classification and localization are shared between a fc − head and a conv − head,

and Double-Heads is extended by incorporating supervision from an unfocused task during training

and pooling classification results from both heads during inference.
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Figure 2.4: The overview of Double-Heads. reprinted from Y. Wu, Y. Chen, L. Yuan, Z. Liu,
L. Wang, H. Li, and Y. Fu, “Rethinking classification and localization for object detection,”
in Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp.
10186–10195, 2020.

Because of their different structures, the two heads gather complementing information for ob-

ject classification. The two classifiers can be combined as follows:

s = sfc + sconv(1− sfc) = sconv + sfc(1− sconv) (2.3)

where sfc and sconv are classification score from fc − head and conv − head, respectively. The

difference between the first and second scores is the product of the second score and the first score’s

inverse. This fusion is only useful under certain circumstances, λfc 6= 0 and λconv 6= 1 [11].

2.4 Attention mechanism

2.4.1 Squeeze-and-Excitation Networks

The Squeeze-and-Excitation (SE) block can be used to improve the quality of representations

produced by a network by explicitly modeling the interdependencies in the channels of its convo-

lutional features. It allows the network to learn to use global information to selectively emphasize

informative characteristics while suppressing less helpful ones, allowing it to undertake feature

recalibration. Figure 2.5 depicts the construction of the SE block.
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Figure 2.5: The overview of SENet. Reprinted from Hu, L. Shen, and G. Sun, “Squeeze-and-
excitation networks,” in Proceedings of the IEEE conference on computer vision and pattern recog-
nition, pp. 7132–7141, 2018.

For any given transformation Ftr mapping the input X to the feature maps U where U ∈

RH×W×C , a convolution, it can construct a corresponding SE block to perform feature recalibra-

tion. The feature U is first squeezed, which results in a channel descriptor that aggregates feature

maps across their spatial dimensions. An excitation operation, in the form of a simple self-gating

mechanism, follows the aggregation. It takes the embedding as input and outputs a set of mod-

ulation weights for each channel. It can then be supplied straight into the network’s succeeding

tiers. The SE block is simple and may be immediately employed in existing state-of-the-art de-

signs by replacing components with their SE counterparts, resulting in significant performance

improvements. It is computationally light and adds just a little amount of model complexity and

computational load.

Showing Ftr mapping an input X ∈ RH′×W ′×C′ to feature maps U ∈ RH×W×C , the output as

U = [u1,u2, · · · ,uC ] can be written as:

uc = vc ∗ X =
C′∑
s=1

vsc ∗ xs (2.4)

where V = [v1, v2, · · · , vC ] denotes the learned set of filter kernels. vc is the parameter of the

c-th filter. The output is generated by adding all channels together; channel dependencies are

encoded in vc, but they are entangled with the local spatial correlation collected by the filter. It

demonstrates that explicitly modeling channel interdependencies improves convolutional feature
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learning, allowing the network to boost its sensitivity to informative features. It gives the SE block

access to global data and allows it to recalibrate the filter response.

It uses GAP to create channel-wise statistics z to aggregate information in the Squeeze stage.

c-th element of z ∈ RC is calculated by

zc = Fsq(uc) =
1

H ×W

H∑
i=1

W∑
j=1

uc(i, j) (2.5)

It seeks to fully capture channel-wise dependencies in a second operation. To ensure that many

channels can be emphasized, sigmoid activation is employed to meet flexibility and leaning non-

mutually exclusive connection.

s = Fex = σ(g(z,W)) = σ(W2δ(W1,W1z)) (2.6)

wehre δ is the ReLu function, W1 ∈ R
C
r
×C and W2 ∈ RC×C

r . ReLu and dimensionality-increasing

layer return to the channel dimension of the transformation output U. The block’s final output is

generated by rescaling U using the activations s:

x̃c = Fscale(uc, sc) = scuc (2.7)

where X̃ = [x̃1, x̃2, · · · , x̃C ] and Fscale(uc, sc) refer to channel-wise multiplication between the

scalar sc and the feature map uc ∈ RH×W [12].

2.4.2 Frequency Channel attention Layer

The GAP operation in the SE block is a pooling operation that is used to substitute completely

linked layers in traditional CNNs. In the final convolutional layer, it creates one feature map for

each matching category of the classification work. By imposing correspondences between feature

maps and categories, it is more organic to the convolution structure. Furthermore, because the

GAP has no parameters to optimize, overfitting is prevented at this layer. Furthermore, GAP sums

up the geographical information, making it more resistant to input spatial translations.
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The 2D DCT [13] can be written as:

G(k, w) =
4

MN

M−1∑
m=0

N−1∑
n=0

X(m)X(n)cos(
kπ

M
(m+

1

2
))cos(

wπ

N
(n+

1

2
)) (2.8)

suppose k and w are 0 in equation X, then it gets:

G(0, 0) =
4

MN

M−1∑
m=0

N−1∑
n=0

X(m)X(n)cos(
0 · π
M

(m+
1

2
))cos(

0 · π
N

(n+
1

2
)

=
4

MN

M−1∑
m=0

N−1∑
n=0

X(m)X(n)

(2.9)

Having a more in-depth mathematical analysis of this, we can see only gap(X)HWBi,j
0,0 is

utilized:

x2di,j = gap(x2d)HWBi,j
0,0 + f 2d

0,1HWBi,j
0,0 + · · ·+ f 2d

H−1,W−1HWBH−1,W−1
0,0 (2.10)

s.t.i = 0, 1, · · · , H − 1, j = 0, 1, · · ·W − 1

X = gap(X)HWBi,j
0,0 + f 2d

0,1HWBi,j
0,0 + · · ·+ f 2d

H−1,W−1HWBH−1,W−1
0,0 (2.11)

Xi,:,: =


x2d0,0 · · · x2d0,W−1

... . . . ...

x2dH−1,0 · · · x2dH−1,W−1

 =


GB0,0

0,0 +D0,0 · · · GB0,v
0,0 +D0,v

... . . . ...

GBu,0
0,0 +Du,0 · · · GBu,v

0,0 +Du,v

 (2.12)

in which Xi,:,: is the i-th channel of feature, G = gap(X)HW,u = H − 1, v = W − 1, and

Di,j = f 2d
0,1B

i,j
0,1 + · · · + f 2d

H−1,W−1B
i,j
H−1,W−1. This demonstrates that the conventional channel at-

tention ignores all other frequency components and saves the lowest DC one. It has a proportionate

12



relationship with GAP. It indicates that GAP corresponds to the lowest frequency, i.e., DC, com-

ponent of 2D DCT, and GAP is a subset of 2D DCT. The channel attention mechanism uses just a

tiny portion of the information in this way. As a result, this research extends GAP to include more

AC coefficients in 2D DCT. Figures 2.6 and 2.7 show the existing GAP method and the revised

one with the multi channel attention.

It divides input X into many parts along the channel dimension to employ various frequency

components:

X i ∈ RC′×H×W i = 0, 1, · · · , n− 1.C ′ =
C

n
(2.13)

And the 2D DCT results can be used as pre-processsing results of channel attention:

Freqi = 2DDCTu,v(X i) =
h=0∑
H−1

w=0∑
W−1

X i
:,h,wB

u,v
h,w, i = 0, 1, · · ·n− 1 (2.14)

The whole vector of pre-processing is achieved by concatenation of i. The multi-spectral chan-

nel attention may be represented as:

multispectral − attention = sigmoid(fc(Freq)) (2.15)

Figure 2.6: The overview of GAP frequency. Reprinted from Qin, Zequn, et al. "Fcanet: Frequency
channel attention networks." Proceedings of the IEEE/CVF International Conference on Computer
Vision. 2021.
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Figure 2.7: The overview of the multi channel attention frequency. modified from Qin, Zequn, et
al. "Fcanet: Frequency channel attention networks." Proceedings of the IEEE/CVF International
Conference on Computer Vision. 2021.

2.5 Using scratch dataset

The results of training on COCO from random initialization without any pre-training are close

to those of pre-trained models. It is devoid of any pre-trained models or fine-tuning. This compen-

sates for the lack of pretraining with revised normalization and extended training hours. The new

normalization method employs Synchronized Batch Normalization (SyncBN) and Group Normal-

ization (GN). GN provides computations that are unaffected by batch size or batch dimensions.

SyncBN is used to implement Batch Normalization (BN). For BN, it avoids small batches and

increases the effective batch size. In terms of training duration, there are no significant differ-

ences that random initialization yields less efficient results. Figure 2.8 shows the comparison of

pre-trained model and random initialization [14].

GN separates channels into groups and normalizes the characteristics inside each group as a

layer. It does not take use of the batch dimension, and its calculation is not affected by batch sizes
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Figure 2.8: Comparing pre-training model and random initialization. Reprinted from He, R. Gir-
shick, and P. Dollár, “Rethinking imagenet pre-training,” in Proceedings of the IEEE/CVF Inter-
national Conference on Computer Vision, pp. 4918–4927, 2019.

[15]. The feature normalization method performs the following computation as in Equation 2.16:

x̂i =
1

σi
(xi − µi) (2.16)

µ and σ are the mean and standard deviation (std) computed by:

µi =
1

m

∑
k∈Si

xk, σi =

√
1

m

∑
k∈Si

(xk − µi)2 + ε (2.17)

with ε as a small constant, Si is the set of pixels in which the mean and std are computed, m is the

size of the set. In Batch Norm and Group Norm, the set Si is defined respectively as:

Si = {k|kC = iC}, (2.18)

Si = {k|kN = iN ,

⌊
kC
C/G

⌋
=

⌊
iC
C/G

⌋
} (2.19)

where G is the number of groups, which is a pre-defined hyper-parameter. C/G is the number of

channels per group. b·c is the floor operation, and if each group of channels is stored in a sequential
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manner along the C axis, "
⌊
kC
C/G

⌋
=
⌊

iC
C/G

⌋
" signifies that the indexes i and k belong to the same

group of channels.

Because the weights change dramatically in SyncBN, the linear scaling method may not be

valid at the start of the training. As a result, it employs Linear Gradual Warmup [16]. It begins by

setting the learning rate to a low value, such as r. The learning rate is then increased at a steady

rate after each iteration until it reaches r̂. It can aid in good convergence when beginning training,

but it is insufficient for bigger mini-batch sizes, such as 128 or 256. Then, Cross-GPU BN takes

care of it. Given a total of n GPU devices, the sum value sk is computed first using the training

examples allocated to device k.

We get the mean value µB for the current mini-batch by averaging the sum values. Then,

for each device, the variance σ2
B can be calculated. We can get standard normalization by y =

γ x−µB√
σ2
B+ε

+ β.
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3. METHODOLOGY

A detector based on deep learning consists of three parts: backbone network, detection neck,

and detection head. First, the backbone network extracts coarse features from the input image, then

these features go through the detection neck to generate high-level semantic features, and finally,

the detection head uses these high-level semantic features for classification and regression. Among

them, to extract semantic information, the detecting neck often uses a FPN. As a result, we may

make changes to the detecting neck to improve its capacity to extract semantic information. The

FcaNet can be added to the multi-scale features of the feature pyramid network before the outputs.

3.1 Preliminary Works

Before applying different models and customized datasets, we preliminarily apply them to the

existing dataset. Cityscapes is an image dataset with an emphasis on urban street scenes. This is

usually used for autonomous driving, video surveillance, action recognition, and tracking. Since

we judge that the research on the construction site environment to be carried out is more similar

to that of MSCOCO, we decide to use it for the preliminary research. Also, we use a Center-and-

Scale Prediction (CSP) model to take advantage of autonomous and intelligent surveillance. To

make sure that the FcaNet layer has similar improvements with other data and models.

3.1.1 Center and Scale Prediction (CSP) Detector

In CNN-based approaches, broad object detection needs a sliding-window classifier or anchor-

based predictions. It adheres to time-consuming window or anchor arrangements. It combines two

issues: the location of the object and its size. However, the CSP detector proposes a higher-level

abstraction that searches for object central points. It splits the "where" and "how" subproblems into

two convolutions, each of which is expressed as a simple center and scale prediction. It produces a

window-free, anchor-free environment, which makes training easier. As a result, it overcomes the

constraints of anchor-based detectors and eliminates the time-consuming post-processing of key

point pairing. Figure 3.1 shows the architecture of CSP model [17].
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Detection in an anchor-based detector is usually stated as:

Dets = H(Φdet, B) = {cls(Φdet, B), regr(Φdet, B)} (3.1)

where B is pre-defined based on the Φdet collection of feature maps, and H is the detection head.

cls(.) and regr(.) denote the prediction of classification scores and scaling, respectively, as well

as the offsets of the anchor boxes. The anchor-free detector, on the other hand, can only be written

using the detecting head and feature maps as:

Dets = H(Φdet) (3.2)

Figure 3.1: The overview of CSP Model. Reprinted from W. Liu, S. Liao, W. Ren, W. Hu,
and Y. Yu, “High-level semantic feature detection: A new perspective for pedestrian detection,”
in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp.
5187–5196, 2019.

To give more exact localization information, the feature extraction is separated into five steps

via downsampling. Then, before concatenation and L2-normalization to rescale their norms to

10, the CSP model uses a deconvolution layer to create multi-scale feature maps with the same

resolution. The two 1x1 Conv layers in Detection Head provide the center heatmap and scale
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map, respectively.

When compared to merely employing the GAP in channel attention, using the multi-spectral

attention has substantial performance gaps. The greatest result is obtained by using a configuration

with 16 frequency components. In this thesis, we choose the frequency components that will give

us the greatest results. Figure 3.2 depicts the visualization of frequency components. The FcaNet

is added to the multi-scale features of the FPN before stage 3 to 5. Figure 3.3 depicts the new

network structure.

We use the cross-entropy loss at the center prediction branch to frame the loss function as a

classification task. A 2D Gaussian mask is centered at the site of each positive to eliminate the

ambiguity of negatives surrounding the positives.

Mij = max
k=1,2,··· ,K

G(i, j;xk, yk, σwk , σhk), G(i, j;xk, yk, σwk , σhk) = e
−( (i−x)

2

2σ2w
+

(j−y)2

2σ2
h

)
(3.3)

where K is the number of objects in a picture, (xk, yk, wk, hk) is the image’s center coordinates,

and the Gaussian mask’s variance (σkw, σ
k
h) is proportional to the height and width of individual

objects.

The categorization loss may be represented as follows:

Lcenter = − 1

K

W/r∑
i=1

H/r∑
j=1

αij(1− p̂ij)γlog(p̂ij) (3.4)

where

p̂ij =


pij if yij = 1

1− pij otherwise
, αij =


1 if yij = 1

(1−Mij)
β otherwise

(3.5)

The network’s estimated probability of whether or not there is an object’s center in the position is

pij ∈ [0, 1]. yij ∈ [0, 1] is the ground truth label, one is the positive location. αij and γ are the

focusing hyper-parameters.

19



For scale prediction, it is form of regression task with the smooth L1 loss:

Lscale =
1

K

K∑
k=1

SmoothL1(sk, tk) (3.6)

where sk and tk are the network’s prediction and ground truth, respectively, for each positive.

When the offset prediction branch is added, the smooth L1 loss is used in the same way.

the full optimization objective can be written as:

L = λcLcenter + λsLscale + λoLoffset (3.7)

where λc, λs and λo are the weights for center classification, scale regression and offset regression

loss.

Figure 3.2: (Left) : The visualization of all frequency components. (Right) : Selected 16 frequency
components. Reprinted from Qin, Zequn, et al. "Fcanet: Frequency channel attention networks."
Proceedings of the IEEE/CVF International Conference on Computer Vision. 2021.
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Figure 3.3: The revised CSP Model

3.1.2 Cityscapes dataset

The Cityscapes dataset is a large collection of data that focuses on the semantic understanding

of the urban environment. It has been recorded in 50 different German cities. It contains around

31k annotated bounding boxes, and 2,975, 500, 1,575 photos in its training, validation, and testing

sets. Figure 3.4 is an example of the Cityscapes image. It has photos at a number of places with

the aim of decreasing city-specific overfitting, and collects photos over the course of many months,

spanning spring, summer, and fall. The recordings are limited to excellent weather, which poses

a substantial hurdle for computer vision and future extensions with customized datasets for varied

weather circumstances [1]. We judge that the data were suitable for this thesis in image selection.

MSCOCO dataset has the advantage of having a large number of images and annotations, but the

disadvantage of a large number of images that are not suitable for the data environment has been

highlighted. Table 3.1 shows a list of those that do not appear to be appropriate to training for

object detection in this thesis.
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Figure 3.4: Example Image of Cityscapes

It chooses to concentrate on semantic, instance-wise dense pixel annotation since it is the most

useful for training scene understanding algorithms, has the most extensive set of evaluations, and

enables easy future dataset additions. It has 25 labels with various aspects, establishing a mix

between common classes, varied uses, and "non-void" classes covering a vast portion of the image.

The labels are described in Table 3.2.
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Group Classes

Sports Equipment Frisbee, Snowboard, Surfboard, Skis, Balls, Bats,

Skateboard, Tennis Racket, Kite, Baseball Glove

Food Banana, Sandwich, Broccoli, Hot Dog,

Donuts, Apple, Orange, Carrot, Pizza, Cake

Home Appliances Chair, Sofa, Potted Plant, Dining Table, Toilet, Bed, Sink

Electronics Laptop, Television, Computer Mouse, Microwave, Oven, Toaster,

Remote Controller, Refrigerator, Cell Phone, Keyboard, Hair Drier

Objects Bottle, Cup, Bowl, Wine Glass, Fork, Spoon,

Book, Watch, Scissors, Pen

Table 3.1: Unnecessary Images in MSCOCO dataset

Group Classes

Flat Road, Sidewalk, Parking, Rail Track

Human Person, Rider

Vehicle Car, Truck, Bus, On Rails, Motorcycle, Bicycle, Caravan, Trailer

Construction Building, Wall, Fence, Guard Rail, Bridge, Tunnel

Object Pole, Pole Group, Traffic Sign, Traffic Light

Nature Vegetation, Terrain

Sky Sky

Table 3.2: Cityscapes Image annotations
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3.1.3 Result of Preliminary Work

The detection performance is evaluated using log average Miss Rate (MR) over False Positive

Per Image(FPPI) over the range [10−2, 100] denoted by MR−2. It has different occlusion levels

namely Reasonable, Small, Heavy, and All [18]. Table 3.3 shows the setting of height and visibility

of the experimental setting for each category. Thus, a small number means better accuracy. We

test with ResNet-50 backbone network.

Setting Height Visibility

Reasonable [50, inf] [0.65, inf]

Small [50, 75] [0.65, inf]

Heavy [50, inf] [0.2, 0.65]

All [20, inf] [0.2, inf]

Table 3.3: Experiment Setting [1]

Table 3.4, presents results of existing CSP and revised with FcaNet one with Cityscapes dataset.

FcaNet layered model achieves more accurate performance in this experimental setting. It shows

improvement of accuracy by 0.49%, 0.55%, 1.8% and 0.67% . This shows the meaningful effec-

tiveness of the FcaNet method.

Reasonable Small Heavy All

Existing 12.2 16.64 38.57 37.72

Revised 11.71 16.09 36.77 37.05

Table 3.4: Preliminary work result
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3.2 Main Work

3.2.1 Architecture

We use three different models: Faster-RCNN, Libra-RCNN, and Double-Heads. We add the

FcaNet layer to the convolution layer before each model. After equipping the FcaNet layer, it

passes feature maps or other revised methods by each model. The architecture of each model is

illustrated in Figures 3.5 - 3.7.

Every CNN has a convolutional layer that transforms the input image to extract features from

it. In this transformation, the image is convolved with a kernel. It is the main building block of

a CNN containing a set of filters or kernels, parameters which are to be learned throughout the

training. the FcaNet layer initializes the DCT weights. It runs only at the very beginning and

does not participate in the training and test. We use the same 16 frequency components as the

preliminary work.

In Faster-RCNN and Double-Heads, the next step is to make feature maps, the result of apply-

ing the filters to an input image. At each layer, the feature map is the output of that layer. Due

to the multi spectral attention of the FcaNet layer, the revised model has different outputs than

the existing one. Libra-RCNN passes IoU Balancing and Balancing pyramid stage to match the

portion of negative samples and integrate multi-level features using lateral connections.

The last step is RPN for Faster-RCNN, Softmax and Balanced L1 for Libra-RCNN and dividing

head for Double-Heads. In RPN, a small network is a slide over a convolutional feature map that

is the output by the last convolutional layer. RPN generates the proposal for the objects. RPN has

a specialized and unique architecture in itself. The balanced L1 part will be illustrated in the loss

function part later. Double-Heads takes the advantage of each benefit of fc−head and conv−head

in classification and bounding box regression, respectively.
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Figure 3.5: The overview FcaNet with Faster-RCNN

Figure 3.6: The overview FcaNet with Libra-RCNN

Figure 3.7: The overview FcaNet with Double-Heads
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3.2.2 Using customized dataset

We collect various sizes and quality images to build construction site images, add unrelated

ones to the working environment. Totally, 11,395 image data are collected, 9,116 and 2,279 images

are assigned for training-validation and test. The annotation file is distinguished by 5: ’Person’,

’Head’, ’Helmet’, ’Jacket’, and ’Red-life-jacket’.

Figures 3.8 (a) - (g) show images and labels of the dataset. Basically, it covers ’Person’, ’Head’

when it comes to image of person. ‘Head’ is labeled for the head without a helmet, and ‘Helmet’

is labeled without a ‘Head’ if worn. In addition, a distinction is made between a general Jacket and

a Red-life-jacket. In the case of the Red-life-jacket, it is classified because it is worn by workers

exposed to a more dangerous environment, unlike a general jacket. In labeling, a distinction is

needed in the not-wearing state. So, when wearing not PPE but a hat, it is labeled as ‘Head’. If the

equipment is just lying around, a person is not wearing, or not wearing the right PPE, it is treated

as nothing and is not labeled. Figures 3.8 (h) - (i) show some examples of these cases.

During this process, a problem is discovered in the CSP model with the dataset, which frus-

trates its use. In the case of the CSP model, it is a method of analysis based on the images and

videos taken by the vehicle camera with a certain image pixel and size. Analyzing uniformly

recorded images is the goal of constructing the dataset. However, it could not be used because it

is incompatible with the images of various sizes used in this thesis. Therefore, we decide to use

state-of-the-art models, which use the MSCOCO format dataset. We don not think we can judge

what is good or bad here. This is because each data has its own goals and is executed accordingly.

In the case of this thesis, the environment here can directly pass through the construction environ-

ment and shoot in a certain environment is inadequate. Therefore, there is a limitation in collecting

uniform images. So, the models for the MSCOCO database, which can handle many types of sizes,

fits the condition of this study.
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Figure 3.8: Labelling for each Image. (a) : Person, Head, Red-life-jacket (b) : Person, Head (c)
: Person, Helmet (d) : Person, Helmet, Jacket (e) : Person, Helmet, Red-life-jacket (f) : Person,
Head, Red-life-jacket (g) : Person, Helmet, Red-life-jacket (h) : Not labelling handled Red-life-
jacket (i) : Not labelling non-helmet hats

However, 12k images have the following problems: the number of uniqueness and diversity

is limited, challenging, occlusion samples are relatively rare. Since the target image itself is too

small, there is a fatal flaw in improving accuracy or obtaining convergence when trying to get

consistent test results. Therefore, an attempt is made to achieve the effect of pre-training using

random initialization. GN/SyncBN are used to replace ’frozen BN’(channel-wise affine) layers,
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longer learning rate scheduling is conducted. We use ’6×scheduling’ which 540k iterations instead

of 90k iterations in normal scheduling [14].

3.2.3 Loss function

The loss function of each model is different by revised equations. The loss function of the

Faster-RCNN is defined as:

L({pi}, {ti}) =
1

Ncls

∑
i

Lcls(pi, p
∗
i ) + λ

1

Nreg

∑
i

p∗iLreg(ti, t
∗
i ) (3.8)

where pi is the predicted probability of anchor i being an object, and i is the index of an anchor in

a mini-batch. If the anchor is positive, the ground-truth label p∗i is 1, and if the anchor is negative,

it is 0. The four parameterized coordinates of the expected bounding box are represented by the

vector ti. The ground-truth box associated with a positive anchor has a t∗i value. The classification

loss Lcls is a two-class log loss. Lreg(ti, t∗i ) = R(ti− t∗i ) is the regression loss function, while R is

the robust loss function. p∗iLreg denotes that the regression loss is only active for positive anchors

and is disabled otherwise. The cls and reg layers’ outputs are {pi} and {ti}, respectively. The

two components are normalized by Ncls and Nreg, respectively, and weighted by λ, a balancing

parameter [9].

Balanced L1 loss is developed from the usual smooth L1 loss in Libra-RCNN, and it promotes

critical regression gradients from inliner to rebalance the involved samples and tasks, resulting in

a more balanced classification training. The balanced L1 loss used by the localization loss Lloc is

defined as [10]:

Lloc =
∑

i∈(x,y,w,h)

Lb(t
u
i − vi) (3.9)

based on this, promoted gradient formulation can be written as:
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∂Lb
∂x

=


αln(b |x|+ 1) if |x| < 1

γ otherwise
(3.10)

Lb(x) =


α
b
(b |x|+ 1)ln(b |x|+ 1)− α |x| if |x| < 1

γ |x|+ C otherwise
(3.11)

In Double-Heads, to use in unfocused task, it uses both loss functions. The overall loss is

computed as follows:

L = wfcLfc + wconvLconv + Lrpn, (3.12)

where wfc and wconv are weights for fc − head and conv − head, respectively. Lfc, Lconv, Lrpn

are the losses for fc− head, fc− conv, and RPN.

The loss for fc−head for the unfocused task contains both classification loss and bounidng box

regression loss, where Lfccls, L
conv
cls , and Lfcreg, L

conv
reg are the fc−head and conv−head classification

and bounding box regression losses, respectively. The weight that regulates the balance between

the two losses is λfc [11].

Lfc = λfcLfccls + (1− λfc)Lfcreg, (3.13)

Lconv = (1− λconv)Lconvcls + λconvLconvreg , (3.14)

3.2.4 Experiment setting

We use MMDetection and Google colaboratory (Colab). MMDetection decomposes the de-

tection framework into individual components, making it simple to create a customized object de-

tection framework. It provides high-performance support for most modern detection frameworks

[19]. MMDetection is an open source object detection toolbox based on PyTorch. The toolbox

includes mainstream detectors, alternative backbone networks, and detection necks.
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Back-propagation and Stochastic Gradient Descent are used to train each model end-to-end.

Each mini-batch is made up of several positive and negative image anchors that come from a

single image. It is feasible to optimize for all anchor loss functions. We extract weights from a

zero-mean Gaussian distribution with a standard deviation of 0.01 to randomly initialize all new

layers.

The backbones are ResNet-50 and the FPN. The ResNet-50 network features a small number

of layers, a rapid processing speed, and less excessive precision loss, allowing it to significantly

reduce training time while maintaining high accuracy. The FPN can decrease feature loss in the

training process and cope with the problem of target shape difference by applying multi-scale

feature fusion. In each cycle, the training scale is chosen at random, and the picture is resized

to fit the chosen scale. It pre-defines a scale range and generates a scale at random between the

minimum and maximum values.

In Colab environment, we train with Pytorch framework and with one Tesla P100-PCIE-

16GB GPU, mini-batch size of 2 images per GPU, NVCC: Build cuda11.1 version, TorchVision:

0.11.1+cu111, MMCV: 1.1.3. CuDNN 8.0.5 version. The weight decay is 1e-4 and momentum is

0.9. All models are tuned with 90k iterations except for using scratch method, the learning rate is

initialized to 0.01.

To evaluate experiments on COCO format images, it is implemented on MMDetection within

70 epochs showing convergence. The standard COCO-style Average Precision(AP) with different

IoU thresholds as evaluation metric. We use AP, AP50,AP75,APS,APM , and APL to show the

performance of the improved network on multiple scales.
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3.2.5 Main results

We compare Faster-RCNN with the FcaNet layer with the state-of-the-art object detection mod-

els on the customized dataset in Table 3.5. Faster-RCNN with the FcaNet layer achieves 37%,

which is 5.3% higher AP than Faster-RCNN without FcaNet layer. Also, it shows 5%, 3.3%, 2.1%

and 0.9% higher in AP than Empirical Attention, Re2net, Carafe and SENet1, respectively.

Models AP AP50 AP75 APS APM APL
Faster-RCNN 31.7 65.6 27.4 5.7 25.3 33.9

Empirical Attention 32 66.3 27.7 7.7 25.9 34.1
Re2net 33.7 67.7 30.7 6.3 26.2 36
Carafe 34.9 69.4 32.4 7.2 29.2 36.9

Faster-RCNN (SENet) 36.1 70.6 33.9 7.6 30.3 37.2
Faster-RCNN (FcaNet) 37 72.1 34.2 8.2 31.2 39

Table 3.5: Results of FcaNet layer and the existing models

1The author would like to sincerely thank Prof. Serap Savari for suggesting the inclusion of SENet results for
comparisons.
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We further extend our FcaNet layer into other models and get the results shown in Table 3.6.

Using Libra-RCNN, Double Heads, it achieves 36.7% and 36.2%, which is 0.4% higher in AP

compared to the original one.

Models FcaNet AP AP50 AP75 APS APM APL
Faster-RCNN 31.75 65.6 27.4 5.7 25.3 33.9

© 37 72.1 34.2 8.2 31.2 39
Libra-RCNN 36.3 71.4 33.5 6.2 30 38.4

© 36.7 71.9 34 6.5 31.2 39.5
Double-Heads 35.8 68 33.7 6.1 27.9 38

© 36.2 68.6 34 7.3 28.5 38.3

Table 3.6: Results of the original and revised models

Using scratch dataset to enhance AP to cover limited dataset, we get 0.4%, 0.2%, and 0.4%

higher for each model in AP. The results are shown in Table 3.7.

Models FcaNet AP AP50 AP75 APS APM APL
Faster-RCNN 55.8 86.2 59.4 21 50.2 58.4

© 56.2 86.5 60.5 22.2 50.5 58.9
Libra-RCNN 57.3 88.5 61.3 22.5 52.3 60

© 57.5 88.8 61.7 22.7 52.5 61.2
Double-Heads 56.5 88.5 60.2 21.5 51.4 59.5

© 56.9 88.9 60.5 22.3 51.6 59.6

Table 3.7: Results of the original and revised models with scratch
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4. DISCUSSIONS AND CONCLUSION

4.1 Recommendation and limitation

4.1.1 Compatibility of FcaNet

The biggest advantage of the FcaNet layer gained through this research is that it does not

significantly hinder the computation and is compatible with various models. The reason for not

burdening is that there is no big difference in the calculation method between the FcaNet and the

GAP. The features are reallocated in the frequency domain channel, so only the frequency domain

transformation is introduced in the process. No additional parameters are introduced, so the amount

of computation is not changed. Also, as we have seen, it can be used in various models. It shows

additional accuracy improvements over those that have already been revised in other ways. We

believe this is possible because it improves accuracy from using only the DC coefficient to using

both the DC and additional AC coefficients in the DCT domain.

4.1.2 No sizable improvement except for Faster-RCNN

What we have observed through this work is that using multiple tools for improvement does

not add all the benefits. In the case of the CSP model in the preliminary work, and Libra-RCNN

and Double-Heads excluding Faster-RCNN in this thesis, these get improvements in accuracy by

capturing and complementing the imbalance and missed part of the existing models as the FcaNet.

Even if the complementary measures are repeated, each effect can not be fully achieved. This is

same with not significantly increasing accuracy with multiple deep learning models.

4.1.3 Limitation of datasets

The most essential limitation of this data is that it only distinguishes between the presence

and absence of equipment and lacks a judgment as to how it is. The models trained by our image

dataset only recognize PPE and can not say whether it is properly worn by the user, that is, whether

workers are guaranteed to be safe. It is possible to recognize that a person is wearing a helmet but
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can not tell if it is exactly worn on head. Therefore, it can be said that this research has achieved the

effect on the most basic part for ensuring construction safety. To reach the discrimination through

detection and recognition, data containing more situations must be added. There are many cases

that need to be included to proceed to this step. In other words, we have to put in everything that

can be happened while we are on the construction site. Not just wearing a helmet, it’s just on it,

upside down, distorted or not, tightly fastened chin strap, and so on.

Also, visual occlusion is the most common and hardest to solve problem [6, 7]. When a worker

is partially or completely obscured by some objects, it can not be detected and monitored. Envi-

ronmental factors also play roles that can not be ignored. For example, blocking the view from

sunlight makes it difficult for the object detection models to monitor easily. Detection from a

distance due to the physical positioning also contributes to reduced accuracy. There are some pro-

posed solutions to deal with this problem: adjusting the camera positions, placing multiple cameras

at the construction site. This helps to reduce some monitoring blind spots. Figure 4.1 shows the

examples of elements diminishing accuracy. However, even the best algorithms still can not detect

some occluded entities accurately due to the constraints of technologies, it should be one of the

future research directions.

Figure 4.1: Reduced accuracy by crowded workers, far distance and occlusion
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4.2 Conclusion

In this thesis, we use construction site images familiar with the real work environment. We have

shown that the FcaNet with the multi-spectral attention module, which generalizes the existing

channel attention mechanism in the frequency domain outperforms the existing models with the

same number of parameters and computational cost. Also, it shows meaningful improvement and

compatibility with many state-of-the-art object detection models. We have found the challenges

and way forward of the application of the FcaNet layer in models: lack of all possible images,

environment, and occlusion in dataset, limit to the usefulness of the FcaNet layer in that there is

no significant improvement in accuracy on once revised models.

It is expected that this thesis will not only enhance understanding of the use of the classical

method DCT in object detection can make progress but also provide insights into the computer

vision based safety and health management in practice.
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