
PROVIDING PRIVATE AND FAST DATA ACCESS

FOR CLOUD SYSTEMS

A Dissertation

by

FATEMEH KAZEMIKORDASIABI

Submitted to the Office of Graduate and Professional Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

Chair of Committee, Alex Sprintson
Committee Members, P.R. Kumar

Chao Tian
Natarajan Gautam

Head of Department, Miroslav M. Begovic

May 2022

Major Subject: Electrical Engineering

Copyright 2022 Fatemeh Kazemikordasiabi

ABSTRACT

Cloud storage and computing systems have become the backbone of many applications

such as streaming (Netflix, YouTube), storage (Dropbox, Google Drive), and computing

(Amazon Elastic Computing, Microsoft Azure). To address the ever growing demand for

storage and computing requirements of these applications, cloud services are typically im-

plemented over a large-scale distributed data storage system. Cloud systems are expected

to provide the following two pivotal services for the users: 1) private content access and

2) fast content access. The goal of this thesis is to understand and address some of the

challenges that need to be overcome to provide these two services.

The first part of this thesis focuses on private data access in distributed systems. In

particular, we contribute to the areas of Private Information Retrieval (PIR) and Private

Computation (PC). In the PIR problem, there is a user who wishes to privately retrieve a

subset of files belonging to a database stored on a single or multiple remote server(s). In

the PC problem, the user wants to privately compute functions of a subset of files in the

database. The PIR and PC problems seek the most efficient solutions with the minimum

download cost that enable the user to retrieve or compute what it wants privately.

We establish fundamental bounds on the minimum download cost required for guaran-

teeing the privacy requirement in some practical and realistic settings of the PIR and PC

problems and develop novel and efficient privacy-preserving algorithms for these settings.

In particular, we study the single-server and multi-server settings of PIR in which the user

initially has a random linear combination of a subset of files in the database as side in-

formation, referred to as PIR with coded side information. We also study the multi-server

setting of the PC in which the user wants to privately compute multiple linear combinations

of a subset of files in the database, referred to as Private Linear Transformation.

ii

The second part of this thesis focuses on fast content access in distributed systems. In

particular, we study the use of erasure coding to handle data access requests in distributed

storage and computing systems. Service rate region is an important performance metric

for coded distributed systems, which expresses the set of all data access request rates that

can be simultaneously served by the system. In this context, two classes of problems arise:

1) characterizing the service rate region of a given storage scheme and finding the optimal

request allocation, and 2) designing the underlying erasure code to handle a given desired

service rate region.

As contributions along the first class of problems, we characterize the service rate

region of systems with some common coding schemes such as Simplex codes and Reed-

Muller codes by introducing two novel techniques: 1) fractional matching and vertex cover

on graph representation of codes, and 2) geometric representations of codes. Moreover,

along the second class of code design, we establish some lower bounds on the minimum

storage required to handle a desired service rate region for a coded distributed system and

in some regimes, we design efficient storage schemes that provide the desired service rate

region while minimizing the storage requirements.

iii

DEDICATION

To my mother, to whom I owe everything.

iv

ACKNOWLEDGMENTS

First, I would like to express my sincere gratitude to my advisor, Prof. Alex Sprintson,

for his constant support and encouragement at every stage of my Ph.D. journey. He taught

me the art of tackling a complex problem, the correct way of conducting research, and the

principles of academic writing and scientific presentation. He has given me the freedom

to pursue new research ideas, while has always been available for guiding me whenever I

needed help, whether for brainstorming new ideas or solving issues before deadlines. He

always encouraged and helped me establish new collaborations, which was instrumental

in my growth as a researcher. This dissertation would have not been successfully accom-

plished without all his supports for which I will always be indebted.

Moreover, I would like to express my very special appreciation to my academic mother,

Prof. Emina Soljanin, who has been an invaluable part of my graduate life. It is beyond

words to describe how supportive she has been and how much I have learned from her. I

am extremely grateful to her for giving me the opportunity to spend a wonderful academic

year in her lab at Rutgers University as a visiting student. I cannot thank her enough for

being an excellent host and an extraordinary mentor. Her ingenuity to convert a complex

research problem into an interesting fun puzzle and to present complex ideas in a simple

way using nice pictures has always amazed me. I am also very grateful to her for helping

me build connections in the academic community and establish new collaborations. I

wholeheartedly thank her for being so caring, compassionate, and supportive.

I would also like to express my sincere appreciation to my committee members, Prof.

P.R. Kumar, Prof. Chao Tian, and Prof. Natarajan Gautam, for kindly accepting to be on

my dissertation committee and for their valuable comments and feedback that helped me

to improve the quality and the presentation of my thesis.

v

I was fortunate to participate in multiple collaborative projects and to work with many

wonderful collaborators over the past few years. My special thanks go to Anoosheh Hei-

darzadeh, from whom I learned a lot. Anoosheh is not only a brilliant researcher but also

an excellent mentor. I am thankful to him for teaching me the principles of conducting

rigorous research and writing a technical paper. I also had the pleasure to work with Prof.

Sascha Kurz, who helped me advance my research. I am thankful to him for his insight,

his valuable comments, and for all the helpful discussions we had over lengthy emails.

I would like to thank Prof. Zixiang Xiong, who supported me to receive the Graduate

Teaching Fellowship award from the College of Engineering at Texas A&M University,

to serve as an instructor for the Random Signal and Systems course during Spring 2021.

I would also like to thank all of my teachers and the faculty members whom I interacted

with over the years, in particular, Prof. Krishna Narayanan. I am also thankful to all of my

wonderful friends and the amazing staff at our department for making my time at Texas

A&M University a wonderful experience in a friendly environment.

I am deeply indebted to my loving parents, Mitra and Jamshid, for their unconditional

love, endless support, and constant encouragement. My achievements would undoubtedly

never have been possible without their countless sacrifices. I am also profoundly thankful

to my dear brother, Nima, who always stands by my side no matter how far we are. Words

truly cannot express the depth of my gratitude and appreciation to them.

Finally, and most importantly, I owe my deepest gratitude to my best friend, my forever

companion, my colleague, and my husband, Navid, for his unconditional love and constant

support, for always believing in me, and for being the source of my confidence and strength

whenever I was overwhelmed and stressed. Being away from my family for these many

years was the hardest part of this journey, and he was the only person who made it bearable

for me. This thesis would be impossible without his support.

vi

CONTRIBUTORS AND FUNDING SOURCES

Contributors

This work was supported by a dissertation committee consisting of Professor Alex

Sprintson (advisor) and Professors P. R. Kumar and Chao Tian of the Department of Elec-

trical and Computer Engineering and Professor Natarajan Gautam of the Department of

Industrial Engineering at the Texas A&M University. The work presented in Chapters 2

and 3 is carried out in collaboration with Dr. Anoosheh Heidarzadeh of the Department of

Electrical and Computer Engineering at the Texas A&M University. The work presented

in Chapters 5, 6 and 7, is carried out in collaboration with Professor Emina Soljanin of the

Department of Electrical and Computer Engineering at the Rutgers University. The work

presented in Chapters 6 and 7 is carried out in collaboration with Professor Sascha Kurz of

the Department of Mathematics at the University of Bayreuth. All other work conducted

for the dissertation was completed by the student independently.

Funding Sources

This work was supported in part by the National Science Foundation (NSF) under

Grants No. CIF-1642983 and CIF-1718658, and the Graduate Teaching Fellowship from

the College of Engineering at Texas A&M University.

vii

NOMENCLATURE

DSS Distributed Storage System(s)

PIR Private Information Retrieval

PLC Private Linear Computation

PLT Private Linear Transformation

PC Private Computation

MDS Maximum Distance Separable

RM Reed-Muller

LP Linear Program

ML Machine Learning

P(·) Probability

P(·|·) Conditional probability

H(·) (Shannon) Entropy

H(·|·) Conditional entropy

I(·; ·) Mutual information

I(·; ·|·) Conditional mutual information

Fq Finite field for a prime power q

F×
q Multiplicative group of Fq

Fql Extension field of Fq

FS
q S-dimensional vector space over Fq

Fk×n
q k × n-dimensional matrix space over Fq

viii

Z≥0 Set of non-negative integers

N Set of positive integers

[i] Set of integers {1, . . . , i}

K Set of integers {1, . . . , k}

0k All-zero vector of length k

1k All-one vector of length k

[n, k]q Linear code of length n and dimension k over Fq

C Linear code

#S Cardinality of the set (or multiset) S

PG(k − 1, q) k − 1-dimensional projective space over Fq

ei Vector of size k, having 1 at position i and 0 elsewhere

⟨S⟩ Span of the set of vectors S

conv(S) Convex hull of the set of vectors S

λi Request arrival rate for file fi

λ = (λ1, . . . , λk) Demand vector

Yi Set of ti recovery sets for file fi

Yi,j jth recovery set for file fi

µ Service rate of each server

λi,j Portion of λi assigned to the recovery set Yi,j

(G,µ) system System with storage scheme G, service rate µ of servers

S(G,µ) Service rate region of (G,µ) system

ix

TABLE OF CONTENTS

Page

ABSTRACT . ii

DEDICATION . iv

ACKNOWLEDGMENTS . v

CONTRIBUTORS AND FUNDING SOURCES . vii

NOMENCLATURE . viii

TABLE OF CONTENTS . x

LIST OF FIGURES . xiv

LIST OF TABLES. xv

1. INTRODUCTION. 1

1.1 Background and Motivation . 1
1.2 Private Data Access in Distributed Systems . 2
1.3 Fast Data Access in Distributed Systems . 4
1.4 Our Contributions and Organization . 7

2. SINGLE-SERVER PRIVATE INFORMATION RETRIEVAL (PIR) 14

2.1 Introduction. 14
2.2 Problem Setup and Formulation . 20

2.2.1 Basic Notation . 20
2.2.2 Setup and Assumptions . 21
2.2.3 Privacy and Recoverability Conditions . 22
2.2.4 PIR-PCSI and PIR-CSI Problems . 24
2.2.5 Capacity and Scalar-Linear Capacity . 24
2.2.6 Problem Statement . 25

2.3 Necessary Conditions . 25
2.4 Single-Server PIR with Private Coded Side Information (PIR-PCSI) 26

2.4.1 Single-Server PIR-PCSI-I . 27
2.4.1.1 Converse . 28

x

2.4.1.2 Achievability . 30
2.4.2 Single-Server PIR-PCSI-II . 34

2.4.2.1 Converse . 35
2.4.2.2 Achievability . 39

2.5 Single-Server PIR with Coded Side Information (PIR-CSI) 41
2.5.1 Single-Server PIR-CSI-I . 41

2.5.1.1 Converse . 42
2.5.1.2 Achievability . 44

2.5.2 Single-Server PIR-CSI-II . 49
2.5.2.1 Converse . 50
2.5.2.2 Achievability . 53

3. MULTI-SERVER PRIVATE INFORMATION RETRIEVAL (PIR). 65

3.1 Introduction. 65
3.2 Problem Setup and Formulation . 70

3.2.1 Basic Notation . 70
3.2.2 Setup and Assumptions . 71
3.2.3 Privacy and Recoverability Conditions . 72
3.2.4 PIR-PCSI and PIR-CSI Problems . 73
3.2.5 Capacity and Server-Symmetric Capacity. 74
3.2.6 Problem Statement . 75

3.3 Necessary Condition . 75
3.4 Multi-Server PIR with Private Coded Side Information (PIR-PCSI) 76

3.4.1 Multi-Server PIR-PCSI-I . 76
3.4.1.1 Converse . 77
3.4.1.2 Achievability . 77

3.4.2 Multi-Server PIR-PCSI-II . 86
3.4.2.1 Achievability . 86

3.5 Multi-Server PIR with Coded Side Information (PIR-CSI) 87
3.5.1 Multi-Server PIR-CSI-I . 87

3.5.1.1 Converse . 88
3.5.1.2 Achievability . 91

3.5.2 Multi-Server PIR-CSI-II . 96
3.5.2.1 Converse . 96
3.5.2.2 Achievability . 100

4. PRIVATE LINEAR TRANSFORMATION. 105

4.1 Introduction. 105
4.2 Problem Formulation . 107

4.2.1 Basic Notation . 107
4.2.2 Setup and Assumptions . 108

xi

4.2.3 Privacy and Recoverability Conditions . 109
4.2.4 Problem Statement . 110

4.3 Main Results. 110
4.4 Proof of Theorem 9 . 114
4.5 Proof of Theorem 10 . 116

5. SERVICE RATE REGION USING COMBINATORIAL APPROACH. 125

5.1 Introduction. 125
5.2 Coded System and its Service Rate Region . 127
5.3 Equivalence to Fractional Matching. 130

5.3.1 Graph Representation of Storage Schemes. 130
5.3.2 Matching and Vertex Cover on Graphs . 131
5.3.3 Example of Equivalence . 134
5.3.4 Equivalence Results . 138

5.4 Generalization of Batch codes . 143
5.4.1 Definitions of Batch Codes and PIR Codes . 143
5.4.2 Connection with Batch Codes and PIR Codes . 144

6. SERVICE RATE REGION USING GEOMETRIC APPROACH 149

6.1 Introduction. 149
6.2 Problem Statement . 151

6.2.1 Notation . 151
6.2.2 Service Rate of Codes . 152
6.2.3 Description of Storage Schemes . 156
6.2.4 First Order Reed-Muller (RM) Codes . 160

6.3 Geometric View on Service Rate of Codes . 162
6.4 Service Rate Region of Simplex Codes . 164
6.5 Service Rate Region of Reed-Muller Codes . 165

6.5.1 Non-Systematic First Order Reed-Muller Codes . 165
6.5.2 Systematic First Order Reed-Muller Codes . 167

6.6 Examples of Service Rate Region . 170
6.6.1 Binary [7, 3] Simplex code . 170
6.6.2 Binary Non-Systematic [8, 4] First Order Reed-Muller code. 171

7. STORAGE-EFFICIENT SCHEMES COVERING GIVEN RATE REGIONS 175

7.1 Introduction. 175
7.2 Problem Setup and Formulation . 177

7.2.1 Basic Notation . 177
7.2.2 Coded Storage System . 177
7.2.3 Service Rate Region . 178
7.2.4 Geometric Description of Linear Codes . 179

xii

7.2.5 Geometric Interpretation of the Service Rate Region. 180
7.2.6 Problem Statement . 182

7.3 Main Results. 182
7.3.1 Structural Properties of Service Rate Region . 183
7.3.2 Using Geometric Approach to Derive Bounds on n(R) 187
7.3.3 Storage-Efficient Schemes for k = 2 . 195

7.4 Example of Storage-Efficient Schemes that Cover Given Rate Regions 201

8. CONCLUSIONS AND FUTURE DIRECTIONS . 203

8.1 Privacy in Distributed Systems . 203
8.2 Service Rate of Distributed Systems . 205

REFERENCES . 208

xiii

LIST OF FIGURES

FIGURE Page

1.1 (left) Replicated, coded, and hybrid systems with n = 4 nodes storing
k = 2 files. (right) Service rate regions of the three systems when the
service capacity of each node is µ = 1. The regions have the same areas.
Coding can handle the skews in request arrival rates λa and λb for the two
stored objects. Reprinted with permission from [1]. 6

5.1 A distributed storage system consists of 7 servers storing files f1, f2, and
f3 using a binary [7, 3] simplex code. 134

5.2 Recovery graph of the binary [7, 3] Simplex code. 135

5.3 Service rate region of binary [7, 3] Simplex code. 137

5.4 Graph representation of the binary [7, 3] simplex code. 148

6.1 7-multiset induced by binary [7, 3] Simplex code (Fano plane). 158

6.2 Recovery sets for data object a in the [8, 4] Reed-Muller code.. 172

6.3 Recovery sets for data object d in the [8, 4] Reed-Muller code.. 172

6.4 Service rate region of the [8, 4]2 first order Reed-Muller code in λa − λd

plane with λb = λc = 0 where the constraints (6.9) and (6.10) are respec-
tively shown with the red line and the green line. 173

7.1 Four service rate regions defined by the constraints λa, λb ≥ 0, λa ≤
α, λb ≤ β, λa + λb ≤ γ, and their corresponding storage schemes that
cover them with a minimum number of nodes. 201

xiv

LIST OF TABLES

TABLE Page

2.1 Summary of our main results for single-server PIR-PCSI . 19

2.2 Summary of our main results for single-server PIR-CSI . 19

3.1 Summary of our main results for multi-server PIR-PCSI . 69

3.2 Summary of our main results for multi-server PIR-CSI. 69

3.3 The queries of the PC protocol for N = 2 servers, 2 coded messages, and
F = 4 functions, when the user demands Z1. 82

3.4 The queries/answers of Sun-Jafar protocol for 2 servers and 3 messages
X̂1, X̂2, X̂3, when the user demands X̂1. 94

3.5 The queries/answers of Sun-Jafar protocol for 2 servers and 2 messages
X̂1, X̂2, when the user demands X̂2. 102

4.1 The queries of the PC protocol for N = 2 servers, 2 super-messages, and
F = 4 functions, when the user demands Y1. 122

xv

1. INTRODUCTION

1.1 Background and Motivation

Cloud storage and computing systems have become the backbone of today’s widely

used applications such as streaming (Netflix, YouTube), storage (Dropbox, Google Drive),

computing (Amazon Elastic Computing, Microsoft Azure), and data analytics. To address

the ever growing demand for storage and computing requirements of these applications,

cloud services are implemented over a large-scale distributed data storage system that

provides the desired content to the users. As a result, the performance of a cloud system

and the quality of user experience rely on the efficiency of underlying distributed storage

system. In addition to providing low-cost and reliable content access, cloud systems are

expected to provide the following two pivotal services for the users: 1) private content

access and 2) fast content access.

Providing private content access is very important for cloud services because online

service providers such as (Google, YouTube, Netflix, etc.) collect significant amounts of

users data (such as email addresses, phone numbers, etc.) for various purposes, most no-

tably for building their advertising platforms through which advertisers can target platform

users. This data that uniquely identify users may pose a severe threat to users’ privacy, for

example, if accessed by untrusted parties. Thus, privacy is a major concern for online

users who may unknowingly reveal critical personal information (such as political pro-

clivity, medical conditions, etc.) through daily online activities. As a result, protecting the

privacy of user’s information is of paramount importance for the online service providers.

This well-acknowledged concern has led to many interesting theoretical problems such as

anonymity, differential privacy, private information retrieval (PIR), and private computa-

tion [2–48].

1

Providing fast content access is vital for cloud services because delayed response turns

away users which results in revenue loss. For example, Google recently reported a 20%

loss of search traffic when the delay in loading search results increased only 0.5 sec. Con-

tent files stored on the cloud storage systems may be simultaneously requested by multiple

users. Maximizing the number of users that can be served simultaneously by the system

reduces the users’ experienced latency, particularly in a high traffic regime, which is very

important for delay-sensitive applications such as video streaming, as well as collabora-

tive applications such as Dropbox and Google Docs, where many users wish to access the

same content at the same time. Thus, cloud services must be able to serve a large number

of users simultaneously.

The goal of this thesis is to understand and address some of the challenges that arise

in providing private and fast content access in cloud systems. In particular, the objective

of this thesis is to provide mathematical underpinnings and practical solutions that enable

private and fast content access in distributed storage and computing systems by developing

insights based on fundamental ideas from different areas of information theory, coding

theory, probability, graph theory, optimization, and combinatorics. Next section outlines

the key contributions of the two parts of this thesis, and describes the organization of the

chapters within these two parts.

1.2 Private Data Access in Distributed Systems

The first part of this thesis focuses on private content access and private computation

in distributed storage systems. In particular, my work contributes to the areas of Private

Information Retrieval (PIR) and Private Linear Transformation (PLT). In addition to its

direct applications in privacy, PIR is intimately related to many fundamental problems in

cryptography, coding theory, and network coding. Therefore, PIR represents an important

focal point to tackle significant challenges across these fields.

2

In the PIR problem, there is a user who wishes to privately download a single or mul-

tiple files belonging to a database stored on a single or multiple (non-colluding or col-

luding) servers. There are two different types of PIR in the literature: computational and

information-theoretic. In the computational PIR (e.g., [2, 3]), the identity of the requested

message(s) must be protected from the server(s), assuming that the server(s) is compu-

tationally bounded. Aside from the computational PIR is the information-theoretic PIR,

introduced by Chor et al. in [4], where no such assumption is made on the computational

power of the server(s), and the identity of the requested message(s) need to be protected

in an information-theoretic sense.

An information-theoretic PIR scheme seeks the most efficient solution with minimum

download cost that enables the user to privately retrieve their demanded file(s) without

revealing any information about the identity of the desired file(s) to any individual server.

The drawback of this strong requirement is that in the single-server case or multi-server

setting when all servers can fully collude, the user must download the entire database

from the server [4]. This has led to an extensive body of work on the multi-server PIR

when the servers do not fully collude (see, e.g., [5–18]) and the PIR settings in which

the user has some side information (unknown to the server(s)) about the messages in the

database [21–33].

In the PLT problem, there are N servers, each of which stores an identical copy of a

database consisting of K independent messages. Also, there is a user who wants to pri-

vately compute L linear combinations of a subset of D messages in the database without

revealing any information to any server about the identity of the messages required for

the computation, while downloading the minimum possible amount of information from

the servers. In the PLT problem, the following two types of privacy requirements can be

considered: (i) the individual privacy, where the identity of each individual message in the

support set of the demanded linear combinations needs to be kept private [49]; and (ii) the

3

joint privacy, in which the identity of the entire set of messages in the support set of the

demanded linear combinations must be kept private [50]. The joint privacy is a stronger

notion of privacy, for which the query must protect the correlation between the indices in

the demand support index set, whereas for individual privacy some information about this

correlation may be leaked, and hence is a weaker notion of privacy. The PLT problem can

be viewed as an interesting extension of the PIR problem and the Private Linear Compu-

tation (PLC) problem in which the goal is to privately compute one linear combination

of a subset of D messages in the database. The PLT problem can be motivated by sev-

eral practical scenarios such as linear transformation technique applied for dimensionality

reduction in Machine Learning (ML) applications (see [50]).

In this thesis, our goal is to develop novel and efficient PIR and PLT algorithms for

practical and realistic settings. In particular, we aim to characterize the minimum required

download costs in each of the considered settings and develop novel and efficient algo-

rithms that satisfy the privacy requirements and enable the user to retrieve the desired file

while achieving the minimum download cost.

1.3 Fast Data Access in Distributed Systems

The second part of this thesis focuses on fast content access in distributed storage and

computing systems. The past two decades have seen an explosive growth in the amount

of data stored in the cloud data centers which was accompanied by a rapid increase in the

volume of users accessing it. To handle these surging demands in a fast, reliable and effi-

cient manner, chunks of a data object are stored redundantly over multiple storage nodes

through either replication or erasure coding. Although replication has been typically pre-

ferred due its simplicity, it can be expensive in terms of storage. Erasure codes have been

shown to be effective in achieving various goals in cloud systems such as providing re-

liability against node failures (see e.g., [51–54]), ensuring availability of stored content

4

during high demand (see e.g., [55–58]), enabling the recovery of a data object from mul-

tiple disjoint groups of nodes (see e.g., [59–61]), and providing fast content download

(see e.g., [62–70]). Content files stored on cloud storage systems may be simultaneously

requested by multiple users. Serving a large number of users simultaneously is a major

concern in cloud systems and so is considered as one of the most significant considerations

in the design of coded distributed systems.

In this thesis, we seek to understand how redundancy can be used to increase the to-

tal volume of requests that can be served concurrently by the system. In particular, we

consider coded distributed systems where k different data objects (rather than k chunks of

one object) are combined into n coded objects which are stored on n nodes. We consider

heterogeneous requests to access these objects at rates λ1, λ2, . . . , λk, respectively. Each

of the n nodes can serve at most µ rate of requests. Thus, the total request rate allocated

to each node must not exceed µ. Under these constraints, we aim to characterize the set

of achievable vectors (λ1, λ2, . . . , λk), which we refer to as the service rate region of a

coded distributed system. Since the nodes storing coded objects can be used to partially

serve requests for any of the objects included in that coded combination, coded distributed

systems are more flexible and can have a different (possibly more favorable) service rate

region than an uncoded system with the same number of nodes. We illustrate this through

the motivating example below.

Motivating Example. Consider an example shown in Figure 1.1, where two objects

a and b are redundantly stored on 4 nodes. Figure 1.1 (left) shows 3 redundant storage

schemes: replication, coding, and replication and coding combined. Given that each node

can serve µ = 1 request per second, we want to maximize λa and λb, the rate of requests

for a and b that can be supported. Object a can be downloaded from the node storing a, or

from two nodes that store coded combinations of a and b.

5

a a b b

vs.
a b a+ b a− b

vs.
a a b a+ b

λb

λa

2

2

2.5

2.5 3

Figure 1.1: (left) Replicated, coded, and hybrid systems with n = 4 nodes storing k = 2
files. (right) Service rate regions of the three systems when the service capacity of each
node is µ = 1. The regions have the same areas. Coding can handle the skews in request
arrival rates λa and λb for the two stored objects. Reprinted with permission from [1].

Figure 1.1 (right) shows the service rate regions of the 3 storage systems. The repli-

cated system can achieve the square service rate region with 0 ≤ λa, λb ≤ 2; this is

because there are two copies of each object and each node can support µ = 1 rate of

requests. The coded system with two nodes storing a + b and a − b respectively instead

of uncoded copies of a and b achieves the blue colored shaded service rate region. This

system can handle skews in λa and λb better than the replicated system when one of the

two objects a and b are more frequently accessed but both objects are unlikely to be pop-

ular simultaneously. The service rate region of a combined replication and coding system

(shown in red) can better support asymmetries in the demands λa and λb and is the best

choice when the request rate for a is expected to be larger than that of b.

The service rate region can be used as an important performance metric in the design

and analysis of erasure coded distributed systems, which describes the set of all data access

requests that can be simultaneously served by the system [1, 71–77]. Characterizing the

service rate region of a coded distributed system gives us a clear picture of the collective

6

rate of requests that can be supported by the system as well as its robustness to heteroge-

neous request patterns where some objects are more frequently accessed than others. It is

noteworthy that expanding the service rate region reduces the users’ experienced latency,

particularly in a high traffic regime, which is important for the delay-sensitive applications

such as live streaming, where many users wish to get the same content at the same time.

In the context of using the service rate region as a metric to design erasure-coded

distributed systems, two classes of problems arise: 1) characterizing the service rate region

of a given storage scheme and finding the optimal request allocation (i.e., optimal policies

to split incoming requests across the nodes in order to maximize the the volume of the

achievable service rate region), and 2) designing the underlying erasure code to cover a

given desired service rate region with minimum storage or to maximize the service rate

region of a distributed system with given number of storage nodes. In this thesis, our goal

is to address some of the problems within each of these two threads.

1.4 Our Contributions and Organization

This section summarizes the key contributions of the two parts of this thesis, and de-

scribes the organization of chapters within these parts.

Part I

In Part I of this thesis, we study the single-server and multi-server settings of the PIR

problem in the scenarios where the user initially has a random linear combination of a

subset of files in the database as side information, in Chapter 2 and Chapter 3, respectively.

These settings can be motivated by several practical scenarios. For instance, the user

may have obtained a coded side information via overhearing in a wireless network, or

on-the-fly recording of a random linear combination of messages being broadcast by an

information source, or from a trusted agent, e.g., an entity who makes profit by offering

privacy to users, with limited knowledge about the database, or from the information which

7

is locally stored, e.g., using an erasure code, in the user’s cache of limited size. We refer to

this problem as PIR with coded side information (PIR-CSI) when only the identity of the

demanded message must be protected, and PIR with private coded side information (PIR-

PCSI) when the identities of both the demanded message and the messages participating

in the side information must be protected. Toward our research goals, in Chapter 4, we

also study the multi-server setting of the PLT problem under a strong privacy guarantee,

referred to as joint privacy guarantee, for which the identity of the entire set of messages

in the support set of the demanded linear combinations must be kept private (i.e., without

leaking any information about the correlation between them).

In Chapter 2 and Chapter 3, we study the single-server and multi-server settings of

single-message (information-theoretic) PIR in the presence of a coded side information,

respectively. In Sections 2.4 and 2.5, we study the single-server setting of the PIR-PCSI

and PIR-CSI problems, respectively. We extend these settings to the multi-server settings

of the PIR-PCSI and PIR-CSI problems in Sections 3.4 and 3.5, respectively.

We assume that the identities of the messages in the support set of the coded side in-

formation as well as the coding coefficients are initially unknown to the server. Depending

on whether the support set of the user’s coded side information includes the user’s demand

or not, we consider two different models for each of the PIR-PCSI and PIR-CSI problems.

In the first model, referred to as Model I, the demand does not belong to the support set

of the coded side information, whereas in the second model, referred to as Model II, the

demand belongs to the support set of the coded side information. We refer to the PIR-

PCSI (or PIR-CSI) problem under Model I and Model II as PIR-PCSI–I (or PIR-CSI–I)

and PIR-PCSI–II (or PIR-CSI–II), respectively.

For each model and for each of the privacy requirements, we consider the problem

of designing a protocol for generating the user’s query and the servers’ answers that en-

ables the user to decode the message they need while satisfying the privacy requirement.

8

We establish fundamental bounds on the capacity of each setting, defined as the ratio of

the number of information bits in a message to the minimum number of information bits

downloaded from the server over all protocols that satisfy the privacy condition. Our con-

verse proofs rely on new information-theoretic and algebraic arguments. We also develop

novel and efficient privacy-preserving protocols for each of the considered settings.

In Chapter 4, we study the multi-server setting of the PLT problem with arbitrary

number of servers N ≥ 1. We focus on the setting in which the coefficient matrix of the

required linear combinations generates a Maximum Distance Separable (MDS) code. This

setting can be motivated by several practical scenarios. For instance, the user may have

chosen the coefficient matrix randomly over the field of real numbers or a finite field of

large size [50]. First, we show that the capacity of PLT problem for the case of L = 1,

i.e., when the user wishes to compute one linear combination of D messages, is equal to

Φ(1/N,K − D + 1), where Φ(A,B) = (1 + A+ A2 + · · ·+ AB−1)
−1. Moreover, we

establish an upper bound on the capacity of PLT problem for any arbitrary parameters

N,K,D,L ≥ 1, and based on some known capacity results, we show the tightness of the

provided upper bound for some special cases of the problem: (i) the case where there is a

single server (i.e., N = 1), (ii) the case where L = 1, and (iii) the case where L = D.

Part II

In part II of this thesis, we first formulate the problem of characterizing the service rate

region and finding optimal request splitting as a constrained optimization problem. How-

ever, it cannot be trivially solved using linear solvers because the number of optimization

variables is large and the problem becomes computationally intractable. As contributions

along this thread, we characterize the service rate region of some well-known classes of

codes such as Simplex (also called Hadamard) codes and first-order Reed-Muller (RM)

codes by introducing two different novel techniques. In particular, in Chapter 5, we use

9

fractional matching and vertex cover on graph representation of codes to find the service

rate region of Simplex codes, and we use the geometric approach in Chapter 6 to find the

rate region of simplex codes and first-order RM codes. These analyses provide insights

into how the service rate region is affected by the length and the rate of the underlying

code. Along the second thread of designing the underlying erasure code, in Chapter 7 we

study the problem of covering a desired rate region with minimum storage.

In Chapter 5, first we introduce a novel technique for constructing a special graph

representation of a linear code in Section 5.3.1. Then, using this approach we show the

following results in Section 5.3.4: 1) equivalence between the service rate problem and the

well-known fractional matching problem and 2) equivalence between the integral service

rate problem and the matching problem. These equivalence results allow us to use tech-

niques from the rich literature of the graph theory for solving the service rate problem.

Leveraging these equivalence results, it is shown that the maximum sum rates that can be

simultaneously served by the system equals the fractional matching number in the graph

representation of the code, and thus is lower bounded and upper bounded by the matching

number and the vertex cover number, respectively. This is of great interest because if the

graph representation of a code is bipartite, then the derived upper bound and lower bound

are equal which allows one to establish the maximum sum rate that can be served by the

system. Leveraging this result, we characterize the service rate region of the binary sim-

plex codes whose graph representation is bipartite, as we will show in Section 5.3.4. We

also show in Section 5.4 that the notion of integral service rate region opens up interest-

ing connections with batch codes, a class of codes designed for simultaneous access [78].

Specifically, we show that the service rate problem can be viewed as a generalization of

the batch code problem, and the multiset primitive batch codes problem is a special case

of the service rate problem when the portion of requests assigned to the recovery sets is

restricted to be integral.

10

In Chapter 6, to study the service rates of codes problem, we introducing a novel ge-

ometric approach that provides a set of half-spaces whose intersection encompasses the

service rate region of a given linear storage scheme. In other words, the geometric ap-

proach provides upper bounds on the sum of each subset of arrival rates in any demand

vector (λ1, · · · , λk) in the service rate region of a linear code in a more straightforward

manner in comparison to other approaches. This technique is of great significance since it

allows one to derive upper bounds on the service rates of linear codes without explicitly

knowing the list of all possible recovery sets while other approaches such as waterfilling

(see [1]) and combinatorial approaches rely on enumeration of all recovery sets that gets

increasingly complex when the number of files k increases. Leveraging our novel geomet-

ric technique, we take initial steps towards deriving bounds on the service rates of some

parametric classes of linear codes without explicitly listing the set of all possible recovery

sets. In particular, in Sections 6.4 and 6.5, we derive upper bounds on the service rates of

the first order Reed-Muller codes and Simplex codes, respectively, as two classes of codes

which are most important in theory as well as in practice. It is worth mentioning that only

the cardinality of the recovery sets matters in deriving upper bounds on the service rate of

linear codes using the geometric approach. Subsequently, we show how the derived upper

bounds can be achieved. Moreover, utilizing the proposed geometric technique, we show

that given the service rate region of a code, a lower bound on the minimum distance of the

code can be derived.

In Chapter 7, we focus on designing the underlying erasure code for covering a given

service rate region with minimum storage. In particular, we consider a practical setting

of designing a coded distributed storage system where we wish to store k files redun-

dantly across multiple storage nodes in a distributed storage system. Also, we are given

a bounded subset R ⊂ Rk
≥0 as a desired service rate region for this storage system. Our

goal is: 1) to find the minimum number of storage nodes n(R) (or a lower bound on

11

n(R)) required for serving all demand vectors λ inside the desired service rate region R,

and 2) to design the most storage-efficient redundancy scheme with the service rate region

that covers the set R. We formulate the problem of minimizing the number of storage

nodes required for covering a desired service rate region as an integer linear programming

(ILP). We show that the corresponding ILP cannot be solved trivially using linear solvers

especially when the number of files K increases. The reason is that in order to list the

constraints of the corresponding ILP, one needs to explicitly know all recovery sets which

becomes increasingly complex when the number of files k increases. By using a novel

geometric technique, we propose three different general lower bounds for n(R) in Sec-

tion 7.3.2. Also, we show that for k = 2, these bounds are tight and we design an efficient

storage scheme that achieves the desired service rate region while minimizing the storage

in Section 7.3.3.

Finally, in Chapter 8, we conclude this thesis by summarizing our results and present-

ing some interesting further directions.

12

Part I

Private Data Access in Distributed Systems

13

2. SINGLE-SERVER PRIVATE INFORMATION RETRIEVAL (PIR)*

2.1 Introduction

In Private Information Retrieval (PIR) problem, there is a user that wishes to privately

download a single or multiple messages belonging to a database stored on a single or

multiple (non-colluding or colluding) servers. There are two types of PIR in the litera-

ture: computational PIR and information-theoretic PIR. In the computational PIR (see,

e.g., [3]), the identity of the requested message(s) must be protected from the server(s), as-

suming that the server(s) is computationally bounded. Aside from the computational PIR

is the information-theoretic PIR, introduced by Chor et al. in [4], where no such assump-

tion is made on the computational power of the server(s), and the identity of the requested

message(s) need to be protected in an information-theoretic sense. The drawback of this

strong requirement is that in the single-server case, the user must download the entire

database from the server [4]. This has led to an extensive body of work on multi-server

information-theoretic PIR (see, e.g., [5–18]).

An information-theoretic PIR scheme seeks the most efficient solution (with minimum

download cost) for a user to privately download a file from a database stored redundantly

on a single or multiple servers, without revealing any information about the identity of the

desired file to any individual server. As an application of PIR, consider the following sce-

nario. Online service providers (such as Google, Facebook, YouTube, Netflix, etc.) collect

significant amounts of user data (such as email addresses, phone numbers, etc.) for various

purposes, most notably for building their advertising platforms through which advertisers

can target platform users. This data that uniquely identify users may pose a severe threat

*Reprinted with permission from [36] "The Role of Coded Side Information in Single-Server Private
Information Retrieval," by A. Heidarzadeh, F. Kazemi, and A. Sprintson, Jan 2021. IEEE Transactions on
Information Theory, vol. 67, no. 1, pp. 25-44. Copyright © by IEEE.

14

to users’ privacy if accessed by untrusted parties, and thus is a major concern for online

users who may unknowingly reveal critical personal information (such as political procliv-

ity, medical conditions, etc.) via daily online activities. As a result, protecting the privacy

of user’s accessed data is of paramount importance for the online service providers. This

well-acknowledged concern has led to many interesting theoretical problems such as PIR

problem, as demonstrated by prior studies [22]. In addition to its direct applications in pro-

viding private content access in cloud storage systems, PIR is intimately related to many

fundamental problems in cryptography, coding theory, and network coding. Therefore,

PIR represents an important focal point to tackle significant challenges across these fields.

Related Work

Initiated by the work of Kadhe et al. in [22] and [37], the information-theoretic PIR

was recently extended to the settings wherein the user has a random subset of messages

in the database as side information, and the identities of side information messages are

unknown to the server(s) [21–24,29,32,33,37,79]. (Some other types of side information,

not closely related to our work, were also studied, see, e.g., [26–28, 80].) Three different

notions of privacy were considered: (i) (W,S)-privacy, where both the identities of the

requested messages (denoted by the index set W) and the identities of the side information

messages (denoted by the index set S) must be protected [22–24, 29, 37, 79]; (ii) joint

W -privacy, where only the identities of the requested messages (and not necessarily the

identities of the side information messages) must be protected [21–23,33,37,79]; and (iii)

individual W -privacy, where the identity of each requested message must be protected

individually (but not necessarily jointly) [32]. In single-message PIR, where the user wants

to retrieve one message only, the notions of joint and individual W -privacy, referred to as

W -privacy for brevity, are equivalent. The differences between these two notions of W -

privacy in multi-message PIR were studied in [32].

15

Main Contributions

In this chapter, we focus on the single-server setting of single-message information-

theoretic PIR in the presence of a coded side information. In Sec. 2.4 and 2.5, we study this

problem for the cases in which W -privacy and (W,S)-privacy are required, respectively,

where W denotes the index of the requested message, and S denotes the index set of the

messages in the support set of the coded side information. In the next chapter, we extends

these works to the multi-server setting in Sec. 3.4 and 3.5, respectively.

In this problem, there is a single server storing a database of K independently and

uniformly distributed messages, and there is a user who is interested in retrieving a single

message from the server. The user initially knows a linear coded combination of a subset

of M messages in the database, where the identities of the messages in the support set of

the user’s coded side information as well as their coding coefficients are initially unknown

to the server(s). This setting can be motivated by several practical scenarios. For instance,

the user may have obtained a coded side information via overhearing in a wireless network,

or on-the-fly recording of a random linear combination of messages being broadcast by an

information source, or from a trusted agent, e.g., an entity who makes profit by offering

privacy to users, with limited knowledge about the database, or from the information which

is locally stored, e.g., using an erasure code, in the user’s cache of limited size. Recently,

inspired by [22], a group of researchers from Google in [81] used the idea of a coded side

information in a new single-server PIR scheme, which leverages both the information-

theoretic and computational PIR.

The problem is to design a protocol for generating the user’s query and the server’s

answer which satisfy one of the following two privacy conditions: (W,S)-privacy, i.e., the

privacy of both the requested message and the messages in the support set of the coded

side information must be preserved, or W -privacy, i.e., only the privacy of the requested

16

message needs to be protected. We refer to this problem as PIR with Private Coded Side

Information (PIR-PCSI) or PIR with Coded Side Information (PIR-CSI) when (W,S)-

privacy or W -privacy is required, respectively.

Depending on whether the support set of the user’s coded side information includes

the user’s demand or not, we consider two different models for each of the PIR-PCSI and

PIR-CSI problems. In the first model, referred to as Model I, the demand does not belong

to the support set of the coded side information, whereas in the second model, referred

to as Model II, the demand belongs to the support set of the coded side information. We

refer to the PIR-PCSI (or PIR-CSI) problem under Model I and Model II as PIR-PCSI–I

(or PIR-CSI–I) and PIR-PCSI–II (or PIR-CSI–II), respectively.

For each of these settings, we define the capacity as the ratio of the number of infor-

mation bits in a message to the minimum number of information bits downloaded from

the server(s) over all protocols that satisfy the privacy condition. We similarly define the

scalar-linear capacity of each setting, except when the minimum is taken over all scalar-

linear protocols that satisfy the privacy condition. Note that in a scalar-linear protocol, the

user only downloads a number of scalar-linear combinations (i.e., linear combinations with

scalar coding coefficients) of the database messages. In contrast, in a general protocol, the

user may download arbitrary (non-linear) functions of the database messages.

In this work, our goal is to characterize the capacity and the scalar-linear capacity of

each of the PIR-PCSI and PIR-CSI settings, and design a capacity-achieving protocol for

each of these settings. We focus on the settings in which (i) the parameter M is fixed and

known to the server; (ii) the indices of the M messages in the support set of the coded

side information are chosen uniformly at random; (iii) the index of the demand message is

chosen uniformly at random from either outside (Model I) or within (Model II) the index

set of messages in the coded side information; and (iv) the (nonzero) coding coefficients

in the coded side information are chosen uniformly at random.

17

The capacity results for the single-server PIR-PCSI and single-server PIR-CSI are re-

spectively summarized in Tables 2.1 and 2.2. The main contributions of this work in each

of these settings are summarized as follows.

Single-Server PIR-PCSI

For the single-server PIR-PCSI–I setting, we prove that the capacity and the scalar-

linear capacity are both given by (K −M)−1 for any 1 ≤M ≤ K − 1. This is interesting

because, as shown in [22, Theorem 2], the capacity of PIR when M randomly chosen

messages are available at the user as side information and the (W,S)-privacy is required,

referred to as PIR with Private Side Information (PIR-PST), is equal to (K −M)−1. This

shows that for achieving (W,S)-privacy, even one random linear coded combination of a

random subset of M messages is as efficient as M randomly chosen messages separately,

as side information. The converse proof is based on the same argument.

For the single-server PIR-PCSI–II setting, we prove that the scalar-linear capacity for

any value of 2 ≤ M ≤ K and the capacity for any value of K+1
2

< M ≤ K are given by

(K −M +1)−1, whereas the capacity for any value of 2 ≤M ≤ K+1
2

remains open. This

shows that when the user knows only one random linear coded combination whose support

set consists of the requested message along with M − 1 other randomly chosen messages,

achieving (W,S)-privacy is no more costly than that when the user knows M−1 randomly

chosen (uncoded) messages, different from the requested message.

Single-Server PIR-CSI

For the single-server PIR-CSI–I setting, we prove that the capacity and the scalar-linear

capacity are given by ⌈ K
M+1
⌉−1 for any 0 ≤ M < K. Interestingly, this is the same as the

capacity of PIR with M randomly chosen messages as side information [22, Theorem 1].

For the PIR-CSI–II setting, we prove that the capacity and the scalar-linear capacity are

equal to 1 for M = 2 and M = K, and are equal to 1
2

for any 3 ≤M ≤ K − 1. This

18

Privacy Condition (W,S)-Privacy

Model
W ̸∈ S

(PIR-PCSI–I)
W ∈ S

(PIR-PCSI–II)
Parameters 1 ≤M ≤ K − 1 2 ≤M ≤ K

Capacity
(K −M)−1

(K −M + 1)−1 for M > K+1
2

Open for M ≤ K+1
2

Scalar-Linear
Capacity

(K −M + 1)−1

Achievability
Scheme

Specialized GRS Code Modified Specialized GRS Code

Table 2.1: Summary of our main results for single-server PIR-PCSI

Privacy Condition W -Privacy

Model
W ̸∈ S

(PIR-CSI–I)
W ∈ S

(PIR-CSI–II)
Parameters 1 ≤M ≤ K − 1 2 ≤M ≤ K

Capacity
⌈ K
M+1
⌉−1

1 for M = 2, M = K
1
2

for 3 ≤M ≤ K − 1
Scalar-Linear

Capacity
Achievability

Scheme
Modified

Partition-and-Code
Randomized

Selection-and-Code

Table 2.2: Summary of our main results for single-server PIR-CSI

result is particularly interesting because, unlike the previous settings, the gap between the

capacity and the trivial capacity upper bound 1 is a constant, regardless of the size of

support set of the side information (M).

The converse proofs are based on new information-theoretic arguments. These ar-

guments are tailored to the setting of single-server PIR and are different from the proof

techniques being commonly used in the multi-server PIR settings. In particular, the main

ingredients in the proofs are a necessary condition for (W,S)-privacy and a necessary

condition for W -privacy, which reveal the combinatorial nature of the problem of single-

19

server PIR in the presence of (uncoded or coded) side information. In addition, our con-

verse proofs for the PIR-PCSI–I and PIR-CSI–I settings serve as alternative information-

theoretic proofs for the results in [22] which were proven using index coding arguments.

The achievability proofs are based on novel scalar-linear PIR-PCSI and PIR-CSI pro-

tocols. In particular, the proposed PIR-PCSI–I and PIR-PCSI–II protocols, termed the

Specialized GRS Code protocol and the Modified Specialized GRS Code protocol, rely on

the Generalized Reed-Solomon (GRS) codes that contain a specific codeword, depending

on the index of the requested message as well as the indices of the messages in the support

set of the coded side information and their coding coefficients.

The proposed protocol for the PIR-CSI–I setting, termed the Modified Partition-and-

Code (MPC) protocol, is inspired by recently proposed Partition-and-Code with Interfer-

ence Alignment protocol in [82] for single-server private computation with uncoded side

information. The MPC protocol also generalizes the Partition-and-Code protocol of [22]

for single-server PIR with uncoded side information. It is noteworthy that we originally

introduced a different PIR-CSI–I protocol in [30], termed Randomized Partitioning (RP)

protocol, which is also capacity-achieving.

For the PIR-CSI–II setting, we propose a protocol, termed the Randomized Selection-

and-Code protocol, which is based on the idea of randomizing the structure of the user’s

query and the server’s answer (instead of always using a fixed structure for query/answer).

We introduced this idea in [30] for the first time, and Tian et al., concurrently and inde-

pendently, used a similar idea in [83] for multi-server PIR without side information.

2.2 Problem Setup and Formulation

2.2.1 Basic Notation

Throughout this work, we denote random variables by bold-face letters and their re-

alizations by regular letters. The functions P(·), P(·|·), H(·), H(·|·), and I(·; ·|·) denote

20

probability, conditional probability, (Shannon) entropy, conditional entropy, and condi-

tional mutual information, respectively. Let Fq be a finite field for a prime power q, and let

F×
q ≜ Fq \ {0} be the multiplicative group of Fq. Let Fql be an extension field of Fq for an

integer l ≥ 1, and let L ≜ l log2 q. The parameters q and l are referred to as the base-field

size and the field-extension degree, respectively. Let K ≥ 1 and 1 ≤ M ≤ K be two

integers. Let K ≜ {1, . . . , K}. We denote by S the set of all M -subsets (i.e., all subsets

of size M) of K, and denote by C the set of all sequences of size M (i.e., all length-M

sequences) with elements from F×
q . Note that |S| =

(
K
M

)
and |C| = (q − 1)M .

2.2.2 Setup and Assumptions

There is a server that stores a set of K messages X1, . . . , XK , denoted by XK ≜

{X1, . . . , XK}, where Xi’s are independently and uniformly distributed over Fql , i.e.,

H(Xi) = L for i ∈ K and H(XK) = KL, where XK ≜ {X1, . . . ,XK}.

There is a user who wants to retrieve a message XW for some W ∈ K from the server,

and knows a linear combination Y [S,C] ≜
∑

i∈S ciXi on the messages XS ≜ {Xi : i ∈ S},

for some S ≜ {i1, . . . , iM} ∈ S and C ≜ {ci1 , . . . , ciM} ∈ C. We refer to XW as the

demand, W as the demand index, XS as the side information support set, S as the side

information support index set, M as the side information support size, and Y [S,C] as the

(coded) side information.

We assume that S and C are uniformly distributed over S and C, respectively. Also,

we consider two different models for the conditional distribution of W given S = S:

Model I: W is uniformly distributed over K \ S,

P(W = W |S = S) =

1

K−M
, W ∈ K \ S,

0, otherwise;

21

Model II: W is uniformly distributed over S,

P(W = W |S = S) =

1
M
, W ∈ S,

0, otherwise.

For both Models I and II, W is distributed uniformly over K.

Let 1{W∈S} be an indicator random variable such that that 1{W∈S} = 0 if W ̸∈ S, and

1{W∈S} = 1 otherwise. Note that 1{W∈S} = 0 in Model I, and 1{W∈S} = 1 in Model II.

We assume that the server knows the underlying model (i.e., whether W ̸∈ S or W ∈

S), the side information support size M , the distributions of S and C, and the conditional

distribution of W given S, in advance; whereas the realizations W,S,C are unknown to

the servers in advance.

2.2.3 Privacy and Recoverability Conditions

For any given W,S,C, to retrieve XW , the user sends to the server the query Q[W,S,C],

which is a (potentially stochastic) function of W,S,C.* For simplifying the notation, we

denote Q[W,S,C] by Q. The query must satisfy one of the following two privacy conditions:

(i) both the user’s demand index and side information support index set must be pro-

tected from the servers;

(ii) only the user’s demand index (and not necessarily the side information support index

set) must be protected from the servers.

The condition (i) is referred to as the (W,S)-privacy condition, and the condition (ii) is

referred to as the W -privacy condition. (Note that (W,S)-privacy is a stronger condition

than W -privacy.)

*In general, the query may also depend on the content of the side information—notwithstanding, in
this work we focus on queries that are “universal” in the sense that any such query achieves privacy for all
realizations of the messages.

22

The (W,S)-privacy condition implies that (W,S) and Q must be conditionally inde-

pendent given 1{W∈S}, that is,

I(W,S;Q|1{W∈S}) = 0.

The W -privacy condition implies that W and Q must be conditionally independent given

1{W∈S},

I(W;Q|1{W∈S}) = 0.

Equivalently, for a given θ ∈ {0, 1}, when (W,S)-privacy is required, it must hold that

P(W = W ∗,S = S∗|Q = Q[W,S,C],1{W∈S} = θ)

= P(W = W ∗,S = S∗|1{W∈S} = θ)

for all W ∗ ∈ K and S∗ ∈ S, and when W -privacy is required, it must hold that

P(W = W ∗|Q = Q[W,S,C],1{W∈S} = θ)

= P(W = W ∗|1{W∈S} = θ)

for all W ∗ ∈ K. The mutual information based definitions of the (W,S)-privacy and

W -privacy conditions will be used in the converse proofs, whereas their probability based

counterparts will be used in the achievability proofs.

Upon receiving Q[W,S,C], the server sends to the user an answer A[W,S,C], which is a (de-

terministic) function of the query Q[W,S,C], the indicator variable 1{W∈S}, and the messages

in XK. For simplifying the notation, we denote A[W,S,C] by A. Note that (W,S,C) →

(Q,1{W∈S},XK) → A forms a Markov chain, and H(A|Q,1{W∈S},XK,W,S,C) = 0

holds.

23

The answer A[W,S,C] along with Q[W,S,C], 1{W∈S}, Y [S,C], and W,S,C must enable the

user to retrieve the demand XW . That is, it must hold that

H(XW|A,Q,1{W∈S},Y
[S,C],W,S,C) = 0.

We refer to this condition as the recoverability condition.

2.2.4 PIR-PCSI and PIR-CSI Problems

For each type of privacy and for each model, the problem is to design a protocol

for generating a query Q[W,S,C] (and the corresponding answer A[W,S,C], given Q[W,S,C],

1{W∈S}, and XK) for any given W,S,C, such that both the privacy and recoverability con-

ditions are satisfied. Note that the protocol is assumed to be known at the server. When

(W,S)-privacy is required, we refer to this problem as Private Information Retrieval (PIR)

with Private Coded Side Information (PIR-PCSI), and when W -privacy is required we re-

fer to this problem as PIR with Coded Side Information (PIR-CSI).

The PIR-PCSI problem under Model I (or Model II) is referred to as the PIR-PCSI–I

(or PIR-PCSI–II) setting; and the PIR-CSI problem under Model I (or Model II) is referred

to as the PIR-CSI–I (or PIR-CSI–II) setting. A protocol for generating queries/answers for

the PIR-PCSI–I (or PIR-PCSI–II) setting is referred to as a PIR-PCSI–I (or PIR-PCSI–II)

protocol. A PIR-CSI–I (or PIR-CSI–II) protocol is defined similarly. A protocol is said to

be scalar-linear if the server’s answer to the user’s query consists only of the scalar-linear

combinations of the messages in XK. This is in contrast to general protocols where the

user can download arbitrary (non-linear) functions of the messages in XK from the server.

2.2.5 Capacity and Scalar-Linear Capacity

The rate of a PIR-PCSI–I (or PIR-PCSI–II) protocol is defined as the ratio of the

entropy of a message, i.e., L, to the conditional entropy of A[W,S,C] given that 1{W∈S} = 0

24

(or 1{W∈S} = 1). The rate of a PIR-CSI–I (or PIR-CSI–II) protocol is defined similarly.

The capacity of PIR-PCSI–I (or PIR-PCSI–II) setting is defined as the supremum of

rates over all PIR-PCSI–I (or PIR-PCSI–II) protocols and over all base-field sizes q and all

field-extension degrees l; and the capacity of PIR-CSI–I (or PIR-CSI–II) setting is defined

similarly.

The scalar-linear capacity of PIR-PCSI–I (or PIR-PCSI–II) setting is defined as the

supremum of rates over all scalar-linear PIR-PCSI–I (or PIR-PCSI–II) protocols and over

all q and l. The scalar-linear capacity of PIR-CSI–I (or PIR-CSI–II) setting is defined

similarly.†

2.2.6 Problem Statement

In this work, our goal is to derive upper bounds on the capacity and the scalar-linear

capacity of the single-server PIR-PCSI–I, PIR-PCSI–II, PIR-CSI–I, and PIR-CSI–II set-

tings, and to design protocols that achieve the corresponding upper-bounds.

2.3 Necessary Conditions

The following two lemmas give a necessary condition for (W,S)-privacy and W -

privacy, respectively. These simple but powerful lemmas are the key components in the

converse proofs of our main results.

Lemma 1. For (W,S)-privacy, for a given θ ∈ {0, 1}, for any W ∗ ∈ K and S∗ ∈ S with

1{W ∗∈S∗} = θ, there must exist C∗ ∈ C such that

H(XW ∗|A,Q,1{W∈S} = θ,Y[S∗,C∗]) = 0.

†Although our definitions of capacity and scalar-linear capacity are independent of the base-field size q
and the field-extension degree l, these quantities may depend on q and l in general. In this work, we show
that the capacity and the scalar-linear capacity of the PIR-PCSI settings are achievable so long as q ≥ K
and l ≥ 1; and depending on the parameters K,M and the model (I or II), the capacity and the scalar-linear
capacity of the PIR-CSI settings are achievable so long as q ≥ 2 or q ≥ 3 and l ≥ 1.

25

Proof. The proof is by the way of contradiction. For a given θ ∈ {0, 1}, consider an

arbitrary W ∗ ∈ K and an arbitrary S∗ ∈ S such that 1{W ∗∈S∗} = θ. Suppose that there

does not exist any C∗ ∈ C such that H(XW ∗|A,Q,1{W∈S} = θ,Y[S∗,C∗]) = 0. If W ∗ and

S∗ are respectively the user’s demand index and side information support index set, no

matter what the user’s side information Y [S∗,·] is, the user cannot recover XW ∗ given the

answer, query, and the side information Y [S∗,·]. This violates the recoverability condition.

Thus, W ∗ and S∗ cannot be the user’s demand index and side information support index

set, respectively. This obviously violates the (W,S)-privacy condition, because given the

query, every W ∗ ∈ K and every S∗ ∈ S such that 1{W ∗∈S∗} = θ must be equally likely to

be the user’s demand index and side information support index set, respectively. 2

Lemma 2. For W -privacy, for a given θ ∈ {0, 1}, for any W ∗ ∈ K, there must exist S∗ ∈

S with 1{W ∗∈S∗} = θ and C∗ ∈ C such that

H(XW ∗|A,Q,1{W∈S} = θ,Y[S∗,C∗]) = 0.

Proof. The proof is similar to the proof of Lemma 1 except that the W -privacy

condition is used instead of the (W,S)-privacy condition, and is omitted for brevity. 2

2.4 Single-Server PIR with Private Coded Side Information (PIR-PCSI)

In this section, we present our main results for the single-server PIR-PCSI–I and

single-server PIR-PCSI–II settings in Section 2.4.1 and Section 2.4.2, respectively. The

capacity and the scalar-linear capacity of the single-server PIR-PCSI–I setting (for all

1 ≤M ≤ K − 1) are characterized in Theorem 1, and the capacity (for all K+1
2

< M ≤

K) and the scalar-linear capacity (for all 2 ≤ M ≤ K) of the single-server PIR-PCSI–II

setting are characterized in Theorem 2. For any 2 ≤ M ≤ K+1
2

, the capacity of the PIR-

PCSI–II setting, which we conjecture to be the same as the scalar-linear capacity, remains

open. The proofs are provided.

26

2.4.1 Single-Server PIR-PCSI-I

Theorem 1. For the single-server PIR-PCSI–I setting with K messages and side informa-

tion support size M , the capacity and the scalar-linear capacity are given by (K −M)−1

for all 1 ≤M ≤ K − 1.

The converse follows directly from the result of [22, Theorem 2], which was proven

using an index coding argument, for single-server single-message PIR with (uncoded) side

information when (W,S)-privacy is required. In this work, we provide an alternative proof

of converse by upper bounding the rate of any PIR-PCSI–I protocol using the information-

theoretic arguments (see Section 2.4.1.1). The key component of the proof is the necessary

condition for (W,S)-privacy, stated in Lemma 1.

The achievability proof relies on a new scalar-linear PIR-PCSI–I protocol, termed the

Specialized GRS Code protocol, which achieves the rate (K−M)−1 (see Section 2.4.1.2).

This protocol is based on the Generalized Reed-Solomon (GRS) codes that contain a spe-

cific codeword depending on W,S,C.

Remark 1. As shown in [22], when there is a single server storing K independent and

identically distributed messages, and there is a user that knows M randomly chosen (un-

coded) messages as their side information and demands a single message not in their

side information, in order to guarantee (W,S)-privacy, the minimum download cost is

(K −M)L, where L is the entropy of a message. Surprisingly, this result matches the

result of Theorem 1. This shows that, when compared to having M random messages sep-

arately as side information, for achieving (W,S)-privacy there will be no additional loss

in capacity even if only one random linear coded combination of M random messages is

known by the user.

27

Proof of Theorem 1

2.4.1.1 Converse

As shown in [22] using an index-coding argument, when (W,S)-privacy is required,

the capacity of PIR with M uncoded messages as side information is given by (K −M)−1.

The capacity of the PIR-PCSI–I setting is upper bounded by this quantity. This proves the

converse for Theorem 1. In this section, we present an alternative information-theoretic

proof for the general case, which also proves the converse for the scalar-linear case.

Lemma 3. For any 1 ≤ M ≤ K − 1, the (scalar-linear) capacity of the PIR-PCSI–I

setting is upper bounded by (K −M)−1.

Proof. In the following, all entropies are conditional on the event 1{W∈S} = 0, and

we remove this event from the conditions everywhere, for the ease of notation. We need

to show that H(A) ≥ (K −M)L.

Take arbitrary W,S,C (and Y ≜ Y[S,C]) such that W ̸∈ S. Then, we have

H(A) ≥ H(A|Q,Y) (2.1)

= H(A|Q,Y) +H(XW |A,Q,Y) (2.2)

= H(A,XW |Q,Y) (2.3)

= H(XW |Q,Y) +H(A|Q,Y,XW) (2.4)

= H(XW) +H(A|Q,Y,XW) (2.5)

where (2.1) follows since conditioning does not increase the entropy; (2.2) holds because

by the recoverability condition, H(XW |A,Q,Y) = 0; (2.3) and (2.4) follow from the

chain rule of entropy; and (2.5) follows from H(XW |Q,Y) = H(XW) since XW is

independent of (Q,Y) (noting that W ̸∈ S).

28

For the case that W ∪ S = K (i.e., M = K − 1), we have H(A) ≥ H(XW) = L (by

using the first term in (2.5)), as was to be shown. For the case that W ∪S ̸= K, we proceed

by lower bounding the second term in (2.5), H(A|Q,Y,XW). By Lemma 1, for each

i ∈ K \ (W ∪ S), there exists Ci ∈ C (and Yi ≜ Y[S,Ci]) such that H(Xi|A,Q,Yi) = 0.

Let I be a maximal subset of K \ (W ∪ S) such that Y and YI ≜ {Yi}i∈I are linearly

independent. (Note that |I| ≤ |S| − 1 = M − 1.) Let XI ≜ {Xi}i∈I . Then, we have

H(A|Q,Y,XW) ≥ H(A|Q,Y,XW ,YI)

≥ H(A|Q,Y,XW ,YI)

+H(XI |A,Q,Y,XW ,YI) (2.6)

= H(A,XI |Q,Y,XW ,YI)

= H(XI |Q,Y,XW ,YI)

+H(A|Q,Y,XW ,YI ,XI)

= H(XI)

+H(A|Q,Y,XW ,YI ,XI) (2.7)

where (2.6) holds because H(Xi|A,Q,Yi) = 0 for all i ∈ I (by assumption); and (2.7)

holds since XI is independent of (Q,Y,XW ,YI) by construction (noting that I and

W ∪ S are disjoint). The first term in (2.7), H(XI), is lower bounded by |I|L ≥ 0.

Thus, in order to further lower bound H(A|Q,Y,XW), we need to lower bound the sec-

ond term in (2.7), H(A|Q,Y,XW ,YI ,XI). By the maximality of I , for each j ∈ J ≜

K \ (W ∪ S ∪ I), there exists Cj ∈ C (and Yj ≜ Y[S,Cj], which is linearly dependent on

Y and YI) such that H(Xj|A,Q,Yj) = 0, and as a consequence, H(Xj|A,Q,Y,YI) =

0. (Note that |J | = K −M − 1− |I|.) Let XJ ≜ {Xj}j∈J . Then, we can write

29

H(A|Q,Y,XW ,YI ,XI)

= H(A|Q,Y,XW ,YI ,XI)

+H(XJ |A,Q,Y,XW ,YI ,XI) (2.8)

= H(A,XJ |Q,Y,XW ,YI ,XI)

= H(XJ |Q,Y,XW ,YI ,XI)

+H(A|Q,Y,XW ,YI ,XI ,XJ)

≥ H(XJ) (2.9)

where (2.8) holds since H(Xj|A,Q,Y,YI) = 0 for all j ∈ J (by assumption); and (2.9)

holds because XJ and (Q,Y,XW ,YI ,XI) are independent by construction (noting that

J and W ∪ S ∪ I are disjoint). Putting (2.5), (2.7), and (2.9) together, H(A) ≥ H(XW)+

H(XI)+H(XJ) = L+ |I|L+(K−M − 1−|I|)L = (K−M)L, as was to be shown.2

2.4.1.2 Achievability

In this section, we propose a scalar-linear PIR-PCSI–I protocol that achieves the rate

(K −M)−1. The proposed protocol requires a base-field size q ≥ K (and arbitrary field-

extension degree l ≥ 1) where the messages Xi’s are elements from Fql .

It is noteworthy that the rate (K −M)−1 is not necessarily achievable for q < K, and

for the special case of scalar-linear schemes, the achievability of this rate is conditional

upon the existence of a (K,K −M) maximum distance seperable (MDS) code over Fq

that has a codeword with support W ∪ S such that the jth code symbol is non-zero for

j = W and it is equal to cj for each j ∈ S where cj is the coefficient of the message Xj in

the coded side information Y [S,C]. In the following, we show how to design such a code

for any q ≥ K.

30

Specialized GRS Code Protocol: This protocol consists of three steps as follows:

Step 1: First, the user arbitrarily chooses K distinct elements ω1, . . . , ωK from Fq, and

constructs a polynomial

p(x) ≜
∏

i∈K\(W∪S)

(x− ωi).

Then, the user constructs K −M sequences Q1, . . . , QK−M , each of size K, defined as

Qi = {v1ωi−1
1 , . . . , vKω

i−1
K },

where the parameters vj’s are chosen as follows. For each j ∈ S, vj =
cj

p(ωj)
where cj is

the coefficient of Xj in Y [S,C]; and for each j ̸∈ S, vj is chosen at random from F×
q .

The user then sends to the server the query Q[W,S,C] = {Q1, . . . , QK−M}.

Note that the jth element in the set Qi can be thought of as the entry (i, j) of a (K −

M) × K matrix G ≜ [gT1 , . . . , g
T
K−M]

T , which generates a (K,K −M) GRS code with

distinct parameters ω1, . . . , ωK and non-zero multipliers v1, . . . , vK [84]. This construction

ensures that such a GRS code has a specific codeword, namely
∑K−M

i=1 pigi where pi is the

coefficient of xi−1 in the expansion of the polynomial p(x) =
∑K−M

i=1 pix
i−1, with support

W ∪ S such that the jth code symbol is non-zero for j = W , and it is equal to cj for each

j ∈ S. This observation is the chief idea in the proof of the recoverability condition for

the proposed protocol.

Step 2: By using Qi’s, the server computes Ai’s, defined as Ai =
∑K

j=1 vjω
i−1
j Xj , and

it sends the answer A[W,S,C] = {A1, . . . , AK−M} to the user.

Note that Ai’s are the parity check equations of a (K,M) GRS code which is the dual

code of the GRS code generated by the matrix G defined earlier.

Step 3: Upon receiving the answer, the user retrieves XW by subtracting off the con-

tribution of the side information Y [S,C] from
∑K−M

i=1 piAi = cWXW +
∑

i∈S ciXi.

31

Example 1. Consider a scenario where the server has K = 4 messages X1, . . . , X4 ∈ F5,

and the user demands the message X1 and has a coded side information Y = X2+X3 with

support size M = 2. For this example, W = 1, S = {2, 3}, and C = {c2, c3} = {1, 1}.

First, the user chooses K = 4 distinct elements from F5, say (ω1, ω2, ω3, ω4) = (0, 1, 2, 3).

Then, the user constructs the polynomial

p(x) =
∏

i ̸∈W∪S

(x− ωi) = x− ω4 = x+ 2.

Note that p(x) = p1 + p2x = 2 + x. The user then computes vj for j ∈ S, i.e., v2

and v3, by setting v2 =
c2

p(ω2)
= 2 and v3 =

c3
p(ω3)

= 4, and chooses vj for j ̸∈ S, i.e., v1

and v4, at random (from F×
5). Suppose that the user chooses v1 = 1 and v4 = 2. Then,

the user constructs K −M = 2 sequences Q1 = {v1, . . . , v4} = {1, 2, 4, 2} and Q2 =

{v1ω1, . . . , v4ω4} = {0, 2, 3, 1}. The user sends the query Q = {Q1, Q2} to the server.

The server computes A1 =
∑4

j=1 vjXj = X1 + 2X2 + 4X3 + 2X4 and A2 =∑4
j=1 vjωjXj = 2X2 + 3X3 + X4, and sends the answer A = {A1, A2} back to the

user. Then, the user computes
∑2

i=1 piAi = 2A1 + A2 = 2X1 + X2 + X3, and recovers

X1 by subtracting off Y = X2 +X3.

For this example, the rate of the proposed protocol is 1/2.

Note that the server knows the protocol, including the parameters ω1, . . . , ω4, and can

compute the multipliers v1, . . . , v4, given the query. Since the side information coefficients

c2 and c3 are uniformly distributed, the server finds each of the polynomials x − ω1 = x,

x− ω2 = 4 + x, x− ω3 = 3 + x, and x− ω4 = 2 + x equally likely to be the polynomial

p(x) = p1 + p2x, constructed in Step 1 of the protocol. Since the server knows that by

the protocol the user requires the linear combination p1A1 + p2A2 to recover the demand,

from the server’s perspective, each of the linear combinations Z1 = A2, Z2 = 4A1 + A2,

Z3 = 3A1+A2, Z4 = 2A1+A2, i.e., Z1 = 2X2+3X3+X4, Z2 = 4X1+4X3+4X4, Z3 =

32

3X1 + 3X2 + 2X4, Z4 = 2X1 +X2 +X3, are equally likely to be the linear combination

required by the user. Note, also, that, for each candidate demand index (e.g., {1}) and

each candidate side information support index set (e.g., {2, 3}), there exists exactly one of

the linear combinations Z1, . . . , Z4 (e.g., Z4) from which the candidate demand (e.g., X1)

can be recovered, given some linear combination (e.g., X2 + X3) of the messages in the

candidate side information support set (e.g., X2, X3). By these arguments, the server finds

every index i ∈ {1, . . . , 5} and every pair of indices {i1, i2} such that i ̸∈ {i1, i2} equally

likely to be the user’s demand index and side information support index set, respectively.

This confirms that the proposed protocol achieves the (W,S)-privacy requirement in this

example.

Lemma 4. The Specialized GRS Code protocol is a scalar-linear PIR-PCSI–I protocol,

and it achieves the rate (K −M)−1.

Proof. Since the matrix G, defined in Step 1 of the Specialized GRS Code pro-

tocol, generates a (K,K − M) GRS code which is an MDS code, the rows of G are

linearly independent. Accordingly, A1, . . . ,AK−M , defined in Step 2, are linearly inde-

pendent combinations of the messages in XK, which are themselves independently and

uniformly distributed over Fql . This implies that A1, . . . ,AK−M are independently and

uniformly distributed over Fql . Since H(Xj) = L for all j ∈ K, then H(Ai) = L for

all i ∈ {1, . . . , K − M}. Thus, for all W ∈ K, S ∈ S, C ∈ C such that W ̸∈ S, we

have H(A[W,S,C]) = H(A1, . . . ,AK−M) =
∑K−M

i=1 H(Ai) = (K − M)L. (Note that

H(A[W,S,C]) = (K − M)L does not depend on the realizations W,S,C.) Given that

W ̸∈ S, W and S are jointly distributed uniformly, and C is distributed uniformly (and

independently from (W,S)). Thus, H(A[W,S,C]|W ̸∈ S) = H(A[W,S,C]) = (K −M)L,

implying that the rate of the Specialized GRS Code protocol is equal to L/((K −M)L) =

(K −M)−1.

33

The scalar-linearity of Ai’s in the messages Xj’s confirms that the Specialized GRS

Code protocol is scalar-linear. From the construction, it should also be obvious that the

recoverability condition is satisfied. The proof of (W,S)-privacy relies on two facts: (i)

the (K,K −M) GRS code, generated by the matrix G, is an MDS code, and hence the

minimum (Hamming) weight of a codeword is K − (K −M)+ 1 = M +1; and (ii) there

exist the same number of minimum-weight codewords for any support of size M + 1 [84].

From (i) and (ii), it follows that for any W ∗ ∈ K, S∗ ∈ S such that W ∗ ̸∈ S∗ (note that

|W ∗ ∪ S∗| = M + 1), the dual code, whose parity check matrix is G, contains the same

number of parity check equations with support W ∗ ∪ S∗ (i.e., the messages {Xi}i∈W ∗∪S∗

have non-zero coefficients and the rest of the messages all have zero coefficients). Thus,

from the perspective of the server, given the query, every pair (W ∗, S∗) is equally likely to

be the pair of the user’s demand index and the user’s side information support index set.

This proves the (W,S)-privacy of the Specialized GRS Code protocol. 2

2.4.2 Single-Server PIR-PCSI-II

Theorem 2. For the single-server PIR-PCSI–II setting with K messages and side informa-

tion support size M , the capacity is given by (K −M + 1)−1 for all K+1
2

< M ≤ K, and

it is lower bounded by (K −M + 1)−1 for all 2 ≤M ≤ K+1
2

. Moreover, the scalar-linear

capacity is given by (K −M + 1)−1 for all 2 ≤M ≤ K.

The proof of converse for the scalar-linear case is based on a mix of algebraic and

information-theoretic arguments (see Section 2.4.2.1), and the converse proof of the gen-

eral case relies on different information-theoretic arguments. The main ingredient of the

proofs is the result of Lemma 1.

The proof of achievability is based on a novel scalar-linear protocol, referred to as

the Modified Specialized GRS Code protocol—a modified version of the Specialized GRS

Code protocol, which achieves the rate (K −M + 1)−1 (see Section 2.4.2.2).

34

Remark 2. Interestingly, comparing the results of [22, Theorem 2] and Theorem 2, one

can see that when the side information is composed of M − 1 randomly chosen mes-

sages (different from the requested message), (W,S)-privacy cannot be achieved more

efficiently than the case in which the side information is only one random linear coded

combination of M randomly chosen messages including the demand.

Proof of Theorem 2

2.4.2.1 Converse

First, we prove the converse for the scalar-linear case of Theorem 2 for all 2 ≤ M ≤

K. The proof is based on a combination of algebraic and information-theoretic arguments.

Lemma 5. For any 2 ≤ M ≤ K, the scalar-linear capacity of the PIR-PCSI–II setting is

upper bounded by (K −M + 1)−1.

Proof. In the following, all the entropies are conditional on the event 1{W∈S} = 1,

and for simplifying the notation, we remove this event from the conditions. We need to

show that H(A) ≥ (K −M + 1)L.

Let I be the set of all i ∈ K such that H(Xi|A,Q) = 0. (Note that 0 ≤ |I| ≤ K). Let

XI ≜ {Xi}i∈I . By assumption, XI and Q are independent and H(XI |A,Q) = 0. Then,

we have

H(A) ≥ H(A|Q)

= H(A|Q) +H(XI |A,Q)

= H(A,XI |Q)

= H(XI |Q) +H(A|Q,XI)

= H(XI) +H(A|Q,XI). (2.10)

35

If |I| ≥ K −M + 1, the first term in (2.10), H(XI), is lower bounded by (K−M +1)L,

and hence, H(A) ≥ (K −M + 1)L, as was to be shown. If 0 ≤ |I| ≤ K−M , the second

term in (2.10), H(A|Q,XI), can be further lower bounded as follows.

Assume, w.l.o.g., that I = {1, . . . , |I|}. (Note that I = ∅ for |I| = 0.) Let J ≜

{1, . . . , K −M − |I| + 1}, and let Sj ≜ {|I|+ 1, |I|+ j + 1, . . . , |I|+ j +M − 1} for

j ∈ J . By Lemma 1, for each j ∈ J , there exists Cj ∈ C (and Yj ≜ Y[Sj ,Cj]) such

that H(X|I|+1|A,Q,Yj) = 0. Let Zj ≜ Yj − cjX|I|+1 where cj is the coefficient of

X|I|+1 in Yj . For any scalar-linear protocol where the answer consists only of scalar-linear

combinations of messages in XK, it is easy to see that for each j ∈ J , (i) H(Zj|A,Q) = 0,

or (ii) H(Zj + cX|I|+1|A,Q) = 0 for some c ∈ F×
q \ {cj}. (Otherwise, the server learns

that W and S cannot be |I| + 1 and Sj , respectively. This obviously violates the (W,S)-

privacy condition.) In either case (i) or (ii), one can see that H(Zj|A,Q,X|I|+1) = 0.

(Note that this observation, which is the key in the proof of Lemma 5, holds for all scalar-

linear schemes, but not necessarily for all vector-linear or non-linear schemes in general.

This implies the need for a different proof technique for the general schemes, and an

example of such a technique is used in the proof of Lemma 6.) Let ZJ ≜ {Zj}j∈J . Then,

we have

H(A|Q,XI) ≥ H(A|Q,XI ,X|I|+1)

= H(A|Q,XI ,X|I|+1)

+H(ZJ |A,Q,XI ,X|I|+1) (2.11)

= H(A,ZJ |Q,XI ,X|I|+1)

= H(ZJ |Q,XI ,X|I|+1)

+H(A|Q,XI ,X|I|+1,ZJ)

≥ H(ZJ) (2.12)

36

where (2.11) holds as H(Zj|A,Q,X|I|+1) = 0 for all j ∈ J (by assumption); and (2.12)

follows because ZJ is independent of (Q,XI ,X|I|+1) by construction, noting that ZJ , XI ,

and X|I|+1 are linearly independent. By the linear independence of Zj’s for all j ∈ J ,

it follows that H(ZJ) = (K −M − |I|+ 1)L. By (2.10) and (2.12), we get H(A) ≥

H(XI) +H(ZJ) = |I|L+ (K −M − |I|+ 1)L = (K −M + 1)L, as was to be shown.

2

Next, we give an information-theoretic proof of converse for the general case of The-

orem 2 for all K+1
2

< M ≤ K. For any 2 ≤M ≤ K+1
2

, the converse proof remains open.

Lemma 6. For any K+1
2

< M ≤ K, the capacity of the PIR-PCSI–II setting is upper

bounded by (K −M + 1)−1.

Proof. Similar to the proof of Lemma 5, for the ease of notation in the following we

remove the event 1{W∈S} = 1 from the conditions of all the entropies. We need to show

that H(A) ≥ (K −M + 1)L.

Let J ≜ {1, . . . , K −M + 1} and Sj ≜ {j, . . . , j +M − 1} for j ∈ J . By Lemma 1,

for each j ∈ J , there exists Cj ∈ C (and Yj ≜ Y[Sj ,Cj]) such that H(Xj|A,Q,Yj) = 0.

Let XJ ≜ {Xj}j∈J . (Note that |J | = K −M + 1 < M when M > K+1
2

). Then, we have

H(XJ ,YJ |Q) = H(XJ ,YJ) (2.13)

= 2(K −M + 1)L, (2.14)

where (2.13) holds since Q is independent of (XJ ,YJ) (by assumption); and (2.14) fol-

lows because XJ and YJ are independent by construction. (Note that XJ and YJ are not

necessarily independent for |J | = K − M + 1 ≥ M , and a different technique which

remains open, is required for converse proof when 2 ≤M ≤ K+1
2

.) Moreover, we have

37

H(XJ ,YJ |A,Q) ≤
∑
j∈J

H(Xj,Yj|A,Q) (2.15)

=
∑
j∈J

H(Yj|A,Q)

+
∑
j∈J

H(Xj|A,Q,Yj)

=
∑
j∈J

H(Yj|A,Q) (2.16)

≤
∑
j∈J

H(Yj)

= (K −M + 1)L, (2.17)

where (2.15) follows from the chain rule of entropy; (2.16) holds because H(Xj|A,Q,Yj) =

0 for j ∈ J (by assumption); and (2.17) holds because Yj’s for all j ∈ J are in-

dependent by construction, and Yj for each j ∈ J is a scalar-linear combination of

Xj,Xj+1, . . . ,Xj+M−1.

Using (2.14) and (2.17), we can bound H(XJ ,YJ ,A|Q) from below and above. On

the one hand, we have

H(XJ ,YJ ,A|Q) ≥ H(XJ ,YJ |Q)

= 2(K −M + 1)L, (2.18)

where (2.18) follows from (2.14). On the other hand, we have

H(XJ ,YJ ,A|Q) = H(A|Q) +H(XJ ,YJ |A,Q)

≤ H(A|Q) + (K −M + 1)L, (2.19)

38

where (2.19) follows from (2.17). Now, combining (2.18) and (2.19), we have H(A|Q) ≥

(K −M +1)L, and as a consequence, H(A) ≥ H(A|Q) ≥ (K −M +1)L, as was to be

shown. 2

2.4.2.2 Achievability

In this section, we propose a scalar-linear PIR-PCSI–II protocol, termed the Modified

Specialized GRS Code protocol, that achieves the rate (K −M + 1)−1. For this protocol,

the requirements for the parameters q and l are the same as those for the Specialized GRS

Code protocol.

Modified Specialized GRS Code Protocol: This protocol consists of three steps,

where the steps 2-3 are the same as Steps 2-3 in the Specialized GRS Code protocol

(Section 2.4.1.2), when the parameter M is replaced with M − 1 everywhere. The step 1

of this protocol is as follows:

Step 1: For K arbitrarily chosen distinct elements ω1, . . . , ωK from Fq, the user con-

structs a polynomial

p(x) =
K−M+1∑

i=1

pix
i−1 ≜

∏
i∈K\S

(x− ωi),

and constructs K −M + 1 sequences Q1, . . . , QK−M+1, each of length K, defined as

Qi = {v1ωi−1
1 , . . . , vKω

i−1
K },

where vj’s are chosen as follows. For each j ∈ S\W , vj =
cj

p(ωj)
where cj is the coefficient

of Xj in Y [S,C]; vW = c
p(ωW)

for a randomly chosen element c from F×
q \ {cW} where cW

is the coefficient of XW in Y [S,C]; and for each j ̸∈ S, vj is chosen at random from F×
q .

The user then sends to the server the query Q[W,S,C] = {Q1, . . . , QK−M+1}.

39

Example 2. Consider a scenario where the server has K = 4 messages X1, . . . , X4 ∈ F5,

and the user demands the message X1 and has a coded side information Y = X1+X2 with

support size M = 2. For this example, W = 1, S = {1, 2}, and C = {c1, c2} = {1, 1}.

First, the user chooses K = 4 distinct elements from F5, (ω1, ω2, ω3, ω4) = (0, 1, 2, 3).

Then, the user constructs the polynomial

p(x) =
∏
i ̸∈S

(x− ωi) = (x− ω3)(x− ω4) = (x+ 3)(x+ 2).

Note that p(x) = p1 + p2x+ p3x
2 = 1 + x2. The user then computes vj for j ∈ S \W ,

i.e., v2, by setting v2 =
c2

p(ω2)
= 3; computes vW , i.e., v1, for a randomly chosen element c,

say c = 4, from F×
5 \ {c1 = 1} by setting v1 = c

p(ω1)
= 4; and chooses vj for j ̸∈ S, i.e.,

v3 and v4, at random (from F×
5).

Suppose the user chooses v3 = 1, v4 = 3. Then, the user constructs K −M + 1 = 3

sequences Q1 = {v1, . . . , v4} = {4, 3, 1, 3}, Q2 = {v1ω1, . . . , v4ω4} = {0, 3, 2, 4}, and

Q3 = {v1ω2
1, . . . , v4ω

2
4} = {0, 3, 4, 2}. The user sends Q = {Q1, Q2, Q3} to the server.

Then, the server computes A1 =
∑4

j=1 vjXj = 4X1 + 3X2 + X3 + 3X4, A2 =∑4
j=1 vjωjXj = 3X2+2X3+4X4, and A3 =

∑4
j=1 vjω

2
jXj = 3X2+4X3+2X4, and sends

the answer A = {A1, A2, A3} back to the user. Then, the user computes
∑3

i=1 piAi =

A1+A3 = 4X1+X2, and recovers X1 by subtracting off Y = X1+X2. For this example,

the rate of the proposed protocol is 1/3.

The proof of (W,S)-privacy for the proposed protocol in this example is similar to the

proof of (W,S)-privacy for the Specialized GRS Code protocol in Example 1.

Lemma 7. The Modified Specialized GRS Code protocol is a scalar-linear PIR-PCSI–II

protocol, and achieves the rate (K −M + 1)−1.

Proof. The proof, omitted to avoid repetition, follows from the same lines as in the

proof of Lemma 4. 2

40

2.5 Single-Server PIR with Coded Side Information (PIR-CSI)

We present our main results for the PIR-CSI–I setting and PIR-CSI–II setting in Sec-

tion 2.5.1 and Section 2.5.2, respectively. The capacity and the scalar-linear capacity of

the PIR-CSI–I setting (for all 1 ≤ M ≤ K − 1) and the capacity and the scalar-linear

capacity of the PIR-CSI–II setting (for all 2 ≤M ≤ K) are characterized in Theorems 3

and 4, respectively.

2.5.1 Single-Server PIR-CSI-I

Theorem 3. For the single-server PIR-CSI–I with K messages and side information sup-

port size M , the capacity and the scalar-linear capacity are given by ⌈ K
M+1
⌉−1 for all

1 ≤M ≤ K − 1.

The proof consists of two parts. In the first part, using information-theoretic arguments,

we give an upper bound on the rate of any PIR-CSI–I protocol (see Section 2.5.1.1). The

proofs rely primarily on the necessary condition for W -privacy, stated in Lemma 2. In

the second part, we construct a new scalar-linear PIR-CSI–I protocol, termed the Modi-

fied Partition-and-Code (MPC) protocol, which achieves this rate upper-bound (see Sec-

tion 2.5.1.2). The proposed protocol is inspired by recently proposed Partition-and-Code

with Interference Alignment protocol in [82] for single-server private computation with

uncoded side information.

Remark 3. Interestingly, the capacity of PIR with (uncoded) side information [22] is also

equal to ⌈ K
M+1
⌉−1 where M is the number of (uncoded) messages known to the user in

advance as side information. This shows that there will be no loss in capacity, when com-

pared to the case that the user knows M randomly chosen messages separately, even if the

user knows only one random linear coded combination of M randomly chosen messages.

41

Remark 4. When (W,S)-privacy is required, the result of Theorem 1 shows that the

capacity of single-server PIR with a coded side information with support size M that

does not include the demand is equal to (K −M)−1. Note that ⌈ K
M+1
⌉ < K −M for all

1 ≤M ≤ K − 2. This implies that the capacity of the PIR-CSI–I setting is strictly greater

than that of the PIR-PCSI–I setting for any 1 ≤M ≤ K − 2. This is expected because

W -privacy is a weaker notion of privacy when compared to (W,S)-privacy. However, for

the extremal case of M = K − 1, as can be seen (W,S)-privacy comes at no extra cost

compared to W -privacy.

Proof of Theorem 3

2.5.1.1 Converse

The capacity of the PIR-CSI–I setting is naturally upper bounded by the capacity of

PIR with uncoded side information [22] where M uncoded messages are available at the

user as side information. As shown in [22], the capacity of this problem is equal to

⌈ K
M+1
⌉−1, and the proof of this result relies on an index coding argument. In this sec-

tion, we present an alternative converse proof for the case of general PIR-CSI–I protocols,

by using information-theoretic arguments. Obviously, this proof also serves for the special

case of scalar-linear PIR-CSI–I protocols.

Lemma 8. For any 1 ≤M ≤ K−1, the (scalar-linear) capacity of the PIR-CSI–I setting

is upper bounded by ⌈ K
M+1
⌉−1.

Proof. In the following, all entropies are conditional on the event 1{W∈S} = 0, and

this event is removed from the conditions for the ease of notation. We need to show that

H(A) ≥ ⌈ K
M+1
⌉L.

Take arbitrary W,S,C (and Y ≜ Y[S,C]) such that W ̸∈ S. Similar to the proof of

42

Lemma 3, it can be shown that

H(A) ≥ H(XW) +H(A|Q,Y,XW). (2.20)

There are two cases: (i) W ∪ S = K, and (ii) W ∪ S ̸= K. In the case (i), M =

K − 1, and so, ⌈ K
M+1
⌉L = L. Since H(A|Q,Y,XW) ≥ 0, then H(A) ≥ H(XW) =

L (by (2.20)), as was to be shown. In the case (ii), we proceed by lower bounding

H(A|Q,Y,XW) as follows.

We arbitrarily choose a message, say XW1 , for some W1 ̸∈ W ∪ S. By Lemma 2, there

exist S1 ∈ S with W1 ̸∈ S1 and C1 ∈ C (and Y1 = Y[S1,C1]) so that H(XW1 |A,Q,Y1) =

0. Since conditioning does not increase the entropy, then H(XW1|A,Q,Y,XW ,Y1) = 0.

Thus, we have

H(A|Q,Y,XW) ≥ H
(
A|Q,Y,XW ,Y1

)
= H(A|Q,Y,XW ,Y1)

+H(XW1|A,Q,Y,XW ,Y1)

= H
(
A,XW1|Q,Y,XW ,Y1

)
= H(XW1|Q,Y,XW ,Y1)

+H(A|Q,Y,XW ,Y1,XW1)

= H(XW1)

+H(A|Q,Y,XW ,Y1,XW1) (2.21)

where (2.21) holds because XW1 and (Q,Y,XW ,Y1) are independent (noting that

W1 ̸∈ W ∪ S ∪ S1), and hence, H(XW1|Q,Y,XW ,Y1) = H(XW1).

Let n ≜ ⌈ K
M+1
⌉. Similarly as above, it can be shown that for all 1 ≤ i ≤ n− 1 there

43

exist W1, . . . ,Wi ∈ K and S1, . . . , Si ∈ S with Wj ̸∈ Sj for all 1 ≤ j ≤ i and Wi ̸∈

∪i−1
j=1(Wj ∪ Sj) ∪ (W ∪ S), and C1, . . . , Ci ∈ C (and Y1 = Y[S1,C1], . . . ,Yi = Y[Si,Ci]),

such that

H(XWi
|A,Q,Y,XW ,Y1,XW1 , . . . ,Yi−1,XWi−1

,Yi) = 0.

Note that by construction,
∣∣∪i−1

j=1(Wj ∪ Sj) ∪ (W ∪ S)
∣∣ ≤ (M +1)i for all 1 ≤ i ≤ n− 1.

Repeating an argument similar to the one being used for lower bounding H(A|Q,Y,XW)

as in (2.21), it can be shown that

H(A|Q,Y,XW ,Y1,XW1 , . . . ,Yi−1,XWi−1
)

≥ H(XWi
) +H(A|Q,Y,XW ,Y1,XW1 , . . . ,Yi,XWi

)

for all 1 ≤ i ≤ n− 1. Combining these lower bounds for all 1 ≤ i ≤ n− 1, we have

H(A|Q,Y,XW) ≥
n−1∑
i=1

H(XWi
)

= (n− 1)L. (2.22)

Putting (2.20) and (2.22) together, we get H(A) ≥ nL = ⌈ K
M+1
⌉L. 2

2.5.1.2 Achievability

This section presents a scalar-linear PIR-CSI–I protocol for arbitrary 1 ≤M ≤ K − 1.

This protocol, termed Modified Partition-and-Code (MPC), is inspired by our recently pro-

posed Partition-and-Code with Interference Alignment protocol in [82] for private compu-

tation with uncoded side information. The MPC protocol does not make any assumption

on the base-field size q and the degree of field-extension l, and is applicable for arbitrary

q ≥ 2 and l ≥ 1.

It should be noted that the Partition-and-Code protocol of [22] is only applicable to

44

the PIR-CSI–I setting when M + 1 divides K. Otherwise, when M + 1 is not a divisor

of K, the Partition-and-Code protocol will generate one part of size less than M + 1.

This immediately results in a violation of the W -privacy condition. This is because the

user’s demand cannot be any of the messages pertaining to this part, noting that (i) the

support set of the user’s side information has size M , and (ii) all messages in the user’s

side information support set need to be combined with the user’s demand.

Modified Partition-and-Code (MPC) Protocol: This protocol consists of 3 steps as

follows:

Step 1: Let us first define n ≜ ⌈ K
M+1
⌉. For 1 ≤ i ≤ n − 1, we define Ii ≜

{(i− 1)(M + 1) + 1, . . . , i(M+1)}, and In ≜ {(n−1)(M+1)+1, . . . , K, 1, . . . , n(M+

1)−K}. (Note that In = {(n− 1)(M + 1) + 1, . . . , K} when M + 1 divides K.)

First, the user constructs a random permutation π on K = {1, . . . , K} as follows.

The user randomly chooses an index j∗ from K, and assigns the demand index W to

π(j∗), i.e., π(j∗) = W . Let i∗ ≜ ⌈ j∗

M+1
⌉ be the smallest index i ∈ {1, . . . , n} such

that j∗ ∈ Ii. Then, the user randomly assigns the side information support indices in S to

{π(j) : j ∈ Ii∗ \{j∗}} and randomly assigns the (not-yet-assigned) indices inK\(W ∪S)

to {π(j) : j ∈ K \ Ii∗}.

Next, the user constructs n sequences U1, . . . , Un, each of size M + 1, defined as

Ui = {π(j) : j ∈ Ii}; and constructs a sequence V , defined as V = {cπ(j) : j ∈ Ii∗}

where cπ(j) for j ∈ Ii∗ \ {j∗} is the coefficient of message Xπ(j) in the side information

Y [S,C], and cπ(j∗) = cW is a randomly chosen element from F×
q .

The user then constructs Qi = (Ui, V) for each 1 ≤ i ≤ n, and sends to the server the

query Q[W,S,C] = {Q1, . . . , Qn}.

Step 2: By using Qi = (Ui, V)’s, the server computes Ai’s as Ai =
∑M+1

j=1 cijXij

where Ui = {i1, . . . , iM+1} and V = {ci1 , . . . , ciM+1
}, and sends back to the user the

45

answer A[W,S,C] = {A1, . . . , An}.

Step 3: Upon receiving the answer from the server, the user retrieves XW by subtract-

ing off the contribution of the side information Y [S,C] from Ai∗ = cWXW +
∑

i∈S ciXi.

Example 3. Consider a scenario where the server has K = 5 messages X1, . . . , X5 ∈ F3,

and the user demands the message X1 and has a coded side information Y = X2 + 2X3

with support size M = 2. For this example, W = 1, S = {2, 3}, C = {c2, c3} = {1, 2}.

The parameters of the MPC protocol for this example are as follows: n = ⌈ K
M+1
⌉ = 2,

I1 = {1, 2, 3}, and I2 = {4, 5, 1}.

First, the user constructs a permutation π of {1, . . . , 5} as follows. The user randomly

chooses an index j∗ from {1, . . . , 5}, say 4, and assigns the index W = 1 to π(j∗) = π(4),

i.e., π(4) = 1. Note that, in this case, i∗ ≜ ⌈ j∗

M+1
⌉ = 2, and Ii∗ = I2 = {4, 5, 1}. The

user then randomly assigns the indices in S, i.e., 2 and 3, to {π(j) : j ∈ Ii∗ \ {j∗}} =

{π(5), π(1)}, say π(5) = 3 and π(1) = 2; and randomly assigns the (not-yet-assigned)

indices 4 and 5 to {π(j) : j ∈ {1, . . . , 5} \ Ii∗} = {π(2), π(3)}, say π(2) = 4 and

π(3) = 5. Thus, the permutation π maps {1, 2, 3, 4, 5} to {2, 4, 5, 1, 3}.

Next, the user constructs n = 2 sequences U1, U2, each of length M + 1 = 3, defined

as U1 = {π(j) : j ∈ I1} = {2, 4, 5} and U2 = {π(j) : j ∈ I2} = {1, 3, 2}; and constructs

a sequence V , defined as V = {cπ(j) : j ∈ I2} = {c1, c3, c2} where c2 = 1 and c3 = 2

are the coefficients of X2 and X3 in the side information Y , and c1 is a randomly chosen

element from F×
3 = {1, 2}, say c1 = 2. Thus, V = {2, 2, 1}.

The user constructs both Q1 = (U1, V) = ({2, 4, 5}, {2, 2, 1}) and Q2 = (U2, V) =

({1, 3, 2}, {2, 2, 1}), and sends the query Q = {Q1, Q2} to the server. The server then

computes A1 = 2X2 + 2X4 +X5 and A2 = 2X1 + 2X3 +X2, and sends the answer A =

{A1, A2} back to the user. Then, the user subtracts off the contribution of Y = X2 + 2X3

from Ai∗ = A2 = 2X2 +X2 + 2X3, and recovers X1.

46

For this example, the rate of the MPC protocol is 1/2. Note that the rate of the Spe-

cialized GRS Code protocol—which achieves (W,S)-privacy and hence W -privacy, for

the scenario of this example is (K −M)−1 = 1/3.

From the perspective of the server, who knows the model and the parameters as well

as the protocol, the messages X1, . . . , X5 are equally likely to be the user’s demand. This

is because, given the query, for each candidate demand, the server finds a unique potential

side information. In particular, by the protocol, there must exist a linear combination Ai in

the answer A = {A1, . . . , An} (i.e., {A1, A2} in this example) which is a function of the

demand and the side information, and not a function of any other message. For example,

given that the candidate demand is X1, the server finds X2+2X3 as the only potential side

information, noting that only A2 = 2X1 + X2 + 2X3 is a linear combination of X1 and

M = 2 other messages (i.e., X2 and X3).

As an another example, consider the message X2. Given that the candidate demand is

X2, there exist two linear combinations A1 and A2, each of which is a function of X2 and

M = 2 other messages. However, by the protocol, among all linear combinations Ai that

are functions of the candidate demand and M other messages, only the linear combination

Ai with the smallest index i is a function of the demand and the side information. Thus, for

the candidate demand X2, the server finds 2X4+X5 as the only potential side information,

noting that among A1 and A2—which are both functions of X2 and M = 2 other messages,

the linear combination A1 = 2X2 + 2X4 + X5 has the smallest index. Similarly, for

each of the other candidate demands X3, X4, X5, the server finds a unique potential side

information. Moreover, the side information support index set is uniformly distributed and

the demand index is conditionally distributed uniformly given the side information support

index set. Putting these arguments together, one can see that given the query each message

is equally likely to be the user’s demand. This confirms that the MPC protocol satisfies

the W -privacy condition for this example. It is worth noting that the existence of a unique

47

potential side information for each candidate demand, which ensures W -privacy, results

in the violation of the (W,S)-privacy condition. For instance, in this example, given the

query, for the candidate demand index 1 the only potential side information support index

set is {2, 3}; and no other pair of indices in {2, . . . , 5} can be a potential side information

support index set for the demand index 1.

Lemma 9. The Modified Partition-and-Code (MPC) protocol is a scalar-linear PIR-CSI–I

protocol, and achieves the rate ⌈ K
M+1
⌉−1.

Proof. By the construction of the Modified Partition-and-Code (MPC) protocol (see

Steps 1-2), A1, . . . ,An are linearly independent combinations of the messages in XK.

Using a similar argument as the one in the proof of Lemma 4, it can be shown that

H(A[W,S,C]) = H(A1, . . . ,An) = nL for all W ∈ K, S ∈ S, C ∈ C such that W ̸∈ S,

and H(A[W,S,C]|W ̸∈ S) = H(A[W,S,C]) = nL. This implies that the rate of the MPC

protocol is equal to L/nL = ⌈ K
M+1
⌉−1.

The scalar-linearity of the MPC protocol follows from the construction. The recover-

ability condition is also obviously satisfied (see Step 3).

To prove that the MPC protocol satisfies the W -privacy condition, we need to show

that for any query Q generated by the protocol,

P(W = W |Q = Q,W ̸∈ S) = P(W = W |W ̸∈ S)

for all W ∈ K, or in turn, P(W = W |Q = Q,W ̸∈ S) does not depend on W . (Note that

by construction, Q is independent of the messages in XK.)

By Step 1 of the protocol, for any given W ∈ K, there exist a unique SW ∈ S (with

W ̸∈ SW) and a unique CW ∈ C such that the triple (W,SW , CW) complies with the

query Q, i.e., given that XW and Y [SW ,CW] are the user’s demand and side information,

48

respectively, the protocol could potentially generate the query Q. Then, we have

P(W = W |Q = Q,W ̸∈ S)

= P(W = W,S = SW ,C = CW |Q = Q,W ̸∈ S).

Since the conditional distribution of (W,S,C) given W ̸∈ S is uniform, by applying

the Bayes’ rule one can see that P(W = W,S = SW ,C = CW |Q = Q,W ̸∈ S) does not

depend on W so long as P(Q = Q|W = W,S = SW ,C = CW) does not depend on W .

By the design of the protocol, we have

P(Q = Q|W = W,S = SW ,C = CW)

=
1

K!

(
K − 1

M

)
(q − 1)−1

for all W ∈ K, and hence P(W = W |Q = Q,W ̸∈ S) does not depend on W . 2

2.5.2 Single-Server PIR-CSI-II

Theorem 4. For the single-server PIR-CSI–II setting with K messages and side infor-

mation support size M , the capacity and the scalar-linear capacity are equal to 1 for

M = 2, K, and 1/2 for all 3 ≤M ≤ K − 1.

For each range of values of M , the proof consists of two parts. In the first part, we use

information-theoretic arguments—based on the result of Lemma 2, so as to upper bound

the rate of any PIR-CSI–II protocol (see Section 2.5.2.1). In the second part, we construct

novel scalar-linear PIR-CSI–II protocols, collectively termed the Randomized Selection-

and-Code (RSC) protocols, for different ranges of values of M . The proposed protocols

rely on probabilistic techniques, and achieve the corresponding rate upper-bounds (see

Section 2.5.2.2).

49

Remark 5. Theorem 4 shows that when W -privacy is required, no matter what the size of

support set of the side information is, the user can privately retrieve any message belonging

to the support set of their coded side information, with a download cost at most twice the

cost of downloading the message directly—which obviously does not preserve the privacy

of the requested message.

Remark 6. As shown in Theorem 2, when (W,S)-privacy is required, the (scalar-linear)

capacity of single-server PIR with a coded side information whose support set includes the

requested message is equal to (K −M + 1)−1, where M is the side information support

size. The result of Theorem 4 matches this result for the cases of M = K and M = K−1,

and hence, (W,S)-privacy and W -privacy are attainable at the same cost in these cases;

whereas for the other cases of M , achieving (W,S)-privacy is much more costly than

achieving W -privacy.

Proof of Theorem 4

2.5.2.1 Converse

In this section, we give an information-theoretic proof of converse for the case of

general PIR-CSI–II protocols, which also serves as a converse proof for the special case

of scalar-linear PIR-CSI–II protocols.

Lemma 10. For M = 2 and M = K, the (scalar-linear) capacity of the PIR-CSI–II

setting is upper bounded by 1, and for any 3 ≤ M ≤ K − 1, the (scalar-linear) capacity

of the PIR-CSI–II setting is upper bounded by 1/2.

Proof. In the following, all entropies are conditional on the event 1{W∈S} = 1, and

for simplifying the notation, we remove this event from the conditions everywhere.

Take arbitrary W,S,C (and Y ≜ Y[S,C]) such that W ∈ S. For the cases of M = 2

and M = K, it suffices to show that H(A) ≥ L. Note that H(A) ≥ H(A|Q,Y) =

H(A,XW |Q,Y), where the equality follows from the recoverability condition.

50

Moreover, H(A,XW |Q,Y) = H(XW |Q,Y) +H(A|Q,Y,XW) ≥ H(XW), where

the inequality follows from the independence of XW and (Q,Y) by assumption. Putting

these arguments together, H(A) ≥ H(XW) = L.

For the cases of 3 ≤ M ≤ K − 1, we need to show that H(A) ≥ 2L. By the above

arguments, we have

H(A) ≥ H(XW) +H(A|Q,Y,XW). (2.23)

Consider an arbitrary index W1 ∈ S. By the result of Lemma 2, there exist S1 ∈ S with

W1 ∈ S1 and C1 ∈ C (and Y1 = Y[S1,C1]) so that H(XW1|A,Q,Y1) = 0. As conditioning

does not increase the entropy, then H(XW1|A,Q,Y,XW ,Y1) = 0. Then, we can write

H(A|Q,Y,XW) ≥ H(A|Q,Y,XW ,Y1)

= H(A|Q,Y,XW ,Y1) +H(XW1|A,Q,Y,XW ,Y1)

= H(A,XW1|Q,Y,XW ,Y1)

= H(XW1|Q,Y,XW ,Y1) +H(A|Q,Y,XW ,Y1,XW1)

≥ H(XW1|Q,Y,XW ,Y1). (2.24)

Noting that Y,XW ,Y1,XW1 are linear functions of the messages in XK, and Q is

independent of XK, there are two possible cases: (i) H(XW1|Q,Y,XW ,Y1) = H(XW1),

i.e., XW1 is independent of (Q,Y,XW ,Y1), or (ii) H(XW1|Q,Y,XW ,Y1) = 0, i.e.,

XW1 can be recovered from Q,Y,XW ,Y1.

In the case (i), H(XW1|Q,Y,XW ,Y1) = H(XW1) by assumption. Rewriting (2.24),

H(A|Q,Y,XW) ≥ H(XW1). (2.25)

By (2.23) and (2.25), H(A) ≥ H(XW) +H(XW1) = 2L.

51

In the case (ii), by assumption, H(XW1|Q,Y,XW ,Y1) = 0. Again, by the linearity

of Y,XW ,Y1,XW1 , it must hold that Y = cWXW + cW1XW1 + Z and Y1 = c′WXW +

c′W1
XW1 + c′Z for some c′W , c′W1

, c′ ∈ F×
q , where Z =

∑
i∈S\{W,W1} ciXi. Unlike the

previous case, this time we turn to an arbitrary index W2 ̸∈ S. Again, by the result of

Lemma 2, there exist S2 ∈ S with W2 ∈ S2 and C2 ∈ C (and Y2 = Y[S2,C2]) such that

H(XW2|A,Q,Y2) = 0. Similar to (2.24), it can be shown that

H(A|Q,Y,XW) ≥ H(XW2|Q,Y,XW ,Y2)

+H(A|Q,Y,XW ,Y2,XW2). (2.26)

If XW2 is independent of (Q,Y,XW ,Y2), similarly as in the case (i) we can show that

H(A) ≥ H(XW) +H(XW2) = 2L. If XW2 is recoverable from (Q,Y,XW ,Y2), it must

hold that Y2 = c′′W2
XW2 + c′′(cW1XW1 + Z) for some c′′W2

, c′′ ∈ F×
q . Note that XW2 is

independent of (Q,Y1,XW1 ,Y2) since by construction, XW2 cannot be recovered from

c′WXW + c′Z and c′′W2
XW2 + c′′Z, or in turn, from Y1 and Y2 given XW1 . Also, XW1 is

independent of (Q,Y1,Y2) as XW1 cannot be recovered from Y1 and Y2. So, we have

H(A) ≥ H(A|Q,Y1,Y2)

= H(A,XW1 ,XW2|Q,Y1,Y2) (2.27)

≥ H(XW1|Q,Y1,Y2) +H(XW2|Q,XW1 ,Y1,Y2)

= H(XW1) +H(XW2) (2.28)

where (2.27) holds as H(XW1|A,Q,Y1,Y2) = 0 and H(XW2|A,Q,Y1,XW1 ,Y2) = 0,

noting that by assumption, H(XW1|A,Q,Y1) = 0, H(XW2|A,Q,Y2) = 0, and (2.28)

holds since as was shown earlier, XW1 and XW2 are independent of (Q,Y1,Y2) and

(Q,Y1,XW1 ,Y2), respectively. By (2.28), we get H(A) ≥ 2L. 2

52

2.5.2.2 Achievability

In this section, we propose a scalar-linear PIR-CSI–II protocol for each of the follow-

ing cases: (Case 1) M = 2; (Case 2) 3 ≤M ≤ K
2
+ 1; (Case 3) K+1

2
≤M ≤ K − 1; and

(Case 4) M = K. (Note that Cases 2 and 3 are overlapping at M = K
2
+ 1 or M = K+1

2

when K is even or odd, respectively. In these scenarios, either of the proposed protocols

for Cases 2 and 3 applies.) It should be noted that the proposed protocols for Cases 1 and 2

are applicable for any base-field size q ≥ 2 and any degree of the field-extension l ≥ 1;

whereas the proposed protocols for Cases 3 and 4 are applicable for any q ≥ 3 and any

l ≥ 1.

The proposed protocols rely on the idea of randomizing the structure of query/answer,

and are referred to as the Randomized Selection-and-Code (RSC) protocols. In particular,

in these protocols, for any given instance of the problem, there exist multiple different

query/answer structures, each of which satisfies the recoverability condition; and one of

these structures will be chosen at random according to a probability distribution, which is

carefully designed to ensure the W -privacy condition.

For example, consider a scenario of Case 1 where the server stores X1, X2, . . . , XK ,

and the user’s demand and side information are X1 and X1 +X2, respectively. The RSC

protocol for Case 1 has two different (query/answer) structures: (i) the user queries X1,

which is the user’s demand, and the server sends X1 back to the user; or (ii) the user

queries X2, which is the other message in the user’s side information, and the server sends

back X2 to the user. (Note that neither of these structures depend on the other messages

X3, . . . , XK .) The RSC protocol for Case 1 randomly generates one of the two structures

(i) and (ii), according to a probability distribution—specified shortly in the description of

the protocol, designed in order to guarantee W -privacy (i.e., given the query, each message

in X1, . . . , XK is equally likely to be the user’s demand.) Using either of the two structures

53

(i) and (ii), the user can recover X1. The RSC protocols for Cases 2-4 use a similar idea.

W.l.o.g., we assume that W = {1}, S = {1, . . . ,M}, and C = {c1, . . . , cM}.

Randomized Selection-and-Code (RSC) Protocols: The RSC protocol for each case

consists of three steps, where the Steps are the same as Steps 2-3 in the MPC protocol

(Section 2.5.1.2). The Step 1 of the RSC protocols are as follows:

Case 1: The user randomly selects the index W (i.e., 1) with probability 1
K

, or the other

index in S (i.e., 2) with probability K−1
K

, and constructs two sets U = {i} and V = {1},

where i is the selected index by the user.

The user then constructs Q = (U, V), and sends the query Q[W,S,C] = Q to the server.

Example 4. Consider a scenario where the server has K = 6 messages X1, . . . , X6 ∈ F3,

and the user demands the message X1 and has a side information Y = 2X1 + X2 with

support size M = 2. For this example, W = 1, S = {1, 2}, and C = {c1, c2} = {2, 1}.

The user randomly selects an index i from S = {1, 2}, where the probability of select-

ing the index i = 1 is 1
K

= 1
6
, and the probability of selecting the index i = 2 is K−1

K
= 5

6
.

Suppose that the user selects the index i = 2. Then, the user requests the server for the

message Xi = X2. Subtracting off X2 from Y = 2X1 +X2, the user then recovers X1.

Here, the rate of the RSC protocol is 1. Note that the Modified Specialized GRS Code

protocol which yields (W,S)-privacy and hence W -privacy, achieves the rate (K −M +

1)−1 = 1/5 for the scenario of this example.

From the server’s perspective, the probability that the message X2 is the user’s demand

is 1
6
, and the probability that one of the messages X1, X3, . . . , X6 is the user’s demand is 5

6
.

Since these messages are equally likely to be the demand, the probability of any of them

to be the user’s demand is 5
6
× 1

5
= 1

6
. This guarantees the W -privacy.

Now, suppose that the user selects i = 1. In this case, the user requests their demand

X1 from the server, and the server responds by sending X1 back to the user. Again, from

54

the perspective of the server, the probability that the message X1 is the user’s demand

is 1
6
, and the probability of any of the messages X2, . . . , X6 to be the user’s demand is

5
6
× 1

5
= 1

6
. This again ensures the W -privacy.

Case 2: The user constructs two sequences U1, U2, each of size M − 1, with elements

from the indices in K, and an sequences V of size M − 1 with elements from F×
q . The

constructions of U1, U2, V are as follows.

First, the user chooses an integer r ∈ {M − 2,M − 1} by sampling from a probability

distribution given by

P(r = r) =

2M−2

K
, r = M − 2,

1− 2M−2
K

, r = M − 1.

If r = M − 1 is chosen, the user randomly selects M − 1 indices from K \ S; otherwise,

if r = M − 2 is chosen, the user selects the index W along with M − 2 randomly chosen

indices from K \ S. Denote by {i1, . . . , iM−1} the sequence of the M − 1 selected indices

(in increasing order). Then, the user constructs U1 = {2, . . . ,M} (i.e., the set of elements

in S \W in increasing order) and U2 = {i1, . . . , iM−1}.

Next, the user constructs the sequence V = {c2, . . . , cM} (i.e., the sequence of ele-

ments in C excluding the element cW).

The user then constructs Qi = (Ui, V) for each i ∈ {1, 2}, and for a randomly chosen

permutation σ : {1, 2} 7→ {1, 2}, sends the query Q[W,S,C] = {Qσ(1), Qσ(2)} to the server.

Example 5. Consider a scenario where the server has K = 6 messages X1, . . . , X6 ∈ F3,

and the user demands the message X1 and has a coded side information Y = 2X1 +

X2 + 2X3 with support size M = 3. For this example, W = 1, S = {1, 2, 3}, and

C = {c1, c2, c3} = {2, 1, 2}.

55

First, the user randomly chooses an integer r ∈ {M − 2 = 1,M − 1 = 2}, where the

probability of choosing r = 1 is 2
3
, and the probability of choosing r = 2 is 1

3
. Suppose

that the user chooses r = 1. The user then selects the index W = 1 along with r = 1

randomly chosen index from {1, . . . , 6} \ {1, 2, 3} = {4, 5, 6}, say the index 4. Then,

the user constructs two sequences U1 = {2, 3} and U2 = {1, 4}, and the sequence V =

{c2, c3} = {1, 2}.

The user builds Q1 = (U1, V) = ({2, 3}, {1, 2}) and Q2 = (U2, V) = ({1, 4}, {1, 2}).

For a randomly chosen permutation σ on {1, 2}, say σ(1) = 2 and σ(2) = 1, the user

constructs the query Q = {Qσ(1), Qσ(2)} = {Q2, Q1}, and sends it to the server. The

server computes Ai =
∑M−1

j=1 cijXij for each i ∈ {1, 2} where Qi = ({i1, i2}, {ci1 , ci2}).

For this example, A1 = X2 + 2X3 and A2 = X1 + 2X4. Then, the server sends the

answer A = {Aσ(1), Aσ(2)} = {A2, A1} back to the user. Subtracting off A1 from Y =

2X1 +X2 + 2X3, the user recovers X1.

For this example, the rate of the RSC protocol is 1/2; whereas the rate of the Modified

Specialized GRS Code protocol for the scenario of this example is (K−M +1)−1 = 1/4.

From the server’s perspective, U1 = {2, 3} and U2 = {1, 4} are equally likely to be

the index set of the user’s side information support set (excluding the demand index). Let

us refer to the event that X2 and X3 (or X1 and X4) are the two messages in the user’s

side information support set as E1 (or E2). Then, E1 (or E2) has probability 1
2
. Note also

that, given E1 (or E2), X2 and X3 (or X1 and X4) have zero probability to be the user’s

demand.

Given E1, (i) with probability 1
3
, the user’s demand is neither X1 nor X4, or (ii) with

probability 2
3
, the user’s demand is either X1 or X4. Given E1-(i), X5 and X6 are equally

likely to be the user’s demand. That is, given E1, X5 (or X6) is the user’s demand with

probability 1
3
× 1

2
= 1

6
. Given E1-(ii), X1 and X4 are equally likely to be the user’s demand.

Then, given E1, X1 (or X4) is the user’s demand with probability 2
3
× 1

2
= 1

3
.

56

Given E2, (i) with probability 1
3
, the user’s demand is neither X2 nor X3, or (ii) with

probability 2
3
, the user’s demand is either X2 or X3. Given E2-(i), either of X5 and X6 is

the user’s demand with probability 1
2
. Then, given E2, X5 (or X6) is the user’s demand

with probability 1
3
× 1

2
= 1

6
. Given E2-(ii), either of X2 and X3 is the user’s demand with

probability 1
2
. Then, given E1, X2 (or X3) is the user’s demand with probability 2

3
× 1

2
= 1

3
.

From the above arguments, it is easy to see that given the query, each message Xi is

equally likely to be the user’s demand, and hence the W -privacy condition is satisfied. For

example, X1 has probability 1
3

(or 0) to be the user’s demand given E1 (or E2). Since

E1 and E2 each have probability 1
2
, the probability of X1 to be the user’s demand is 1

2
×

1
3
+ 1

2
× 0 = 1

6
. As an another example, consider X5. Given either of E1 or E2, X5 has

probability 1
6

to be the user’s demand. Thus, the probability of X5 to be the user’s demand

is 1
2
× 1

6
+ 1

2
× 1

6
= 1

6
.

Case 3: The user constructs two sequences U1, U2, each of size M , with elements from

the indices in K, and a sequence V of size M with elements from F×
q . The constructions

of U1, U2, V are as follows.

The user chooses an integer s ∈ {2M −K − 1, 2M −K} by sampling from a proba-

bility distribution given by

P(s = s) =

1− 2K−2M

K
, s = 2M −K − 1,

2K−2M
K

, s = 2M −K.

If s = 2M−K is chosen, the user randomly selects 2M−K indices from S\W ; otherwise,

if s = 2M −K − 1 is chosen, the user selects the index W together with 2M − K − 1

randomly chosen indices from S\W . Denote by {i1, . . . , iM} the sequence of the 2M−K

selected indices and the K−M indices in K\S (in increasing order). The user constructs

U1 = {1, . . . ,M} (i.e., the set of indices in S in increasing order) and U2 = {i1, . . . , iM}.

57

Next, the user constructs the sequence V = {c, c2, . . . , cM} (i.e., the sequence of the

elements in C, except when the element cW is replaced by the element c) where c is

randomly chosen from F×
q \ {c1} (i.e., F×

q \ {cW}).

The user then constructs Qi = (Ui, V) for each i ∈ {1, 2}, and for a randomly chosen

permutation σ : {1, 2} 7→ {1, 2}, sends the query Q[W,S,C] = {Qσ(1), Qσ(2)} to the server.

Case 4: The user creates two sequences U = {1, . . . , K} and V = {c, c2, . . . , cK}

(i.e., the sequence of elements in C, except when the element cW is replaced by the element

c) where c is randomly chosen from F×
q \ {c1} (i.e., F×

q \ {cW}).

The user then constructs Q = (U, V), and sends the query Q[W,S,C] = Q to the server.

Lemma 11. The Randomized Selection-and-Code (RSC) protocols for M = 2, 3 ≤ M ≤
K
2
+ 1, K+1

2
≤M ≤ K − 1, and M = K are scalar-linear PIR-CSI–II protocols, and

achieve the rates 1, 1/2, 1/2, and 1, respectively.

Proof. The proofs for the rates of the RSC protocols follow the same line as in

the proof of the rate of the MPC protocol in Lemma 9, and hence omitted. From the

construction, it should also be obvious that the RSC protocols are scalar-linear. Moreover,

it should not be hard to see from the description of these protocols that the recoverability

condition is satisfied.

To prove that the RSC protocols satisfy the W -privacy condition, we need to show that

P(W = W |Q = Q,W ∈ S) = P(W = W |W ∈ S)

for all W ∈ K. Alternatively, by the Bayes’ rule, it suffices to show that P(Q = Q|W =

W,W ∈ S) does not depend on W .

Recall that Q = (U, V) for Cases 1 and 4, and Q = {Q1, Q2} = {(U1, V), (U2, V)} for

Cases 2 and 3. For simplifying the notation, let us denote {U1, U2} by U for Cases 2 and 3.

58

By the construction of the RSC protocols and the model assumptions, given W ∈ S, the

following two observations hold:

(i) U and V are conditionally independent given W, and

(ii) V and W are independent.

The observation (i) should be obvious, and the observation (ii) holds because V is

uniformly distributed over all possible choices of V for each case. (For example, for

Case 1, V = {1}; and for Case 2, V = {ci : i ∈ S \W}—where ci’s are uniformly

distributed over F×
q , is uniformly distributed over all sequences of size M−1 with elements

from F×
q .) Using (i) and (ii), we have

P(Q = Q|W = W,W ∈ S) = P(U = U,V = V |W = W,W ∈ S)

= P(V = V |W ∈ S)× P(U = U |W = W,W ∈ S).

As P(V = V |W ∈ S) does not depend on W , instead of showing that P(Q = Q|W =

W,W ∈ S) is not a function of W , it suffices to show that P(U = U |W = W,W ∈ S)

does not depend on W . In the following, we prove this claim for the RSC protocol for

each case separately.

With a slight abuse of notation, hereafter for the ease of exposition, we treat the se-

quences U1, U2 as (unordered) sets.

Case 1: For an arbitrary i ∈ K, consider U = {i}. Take an arbitrary W ∈ K. There

are two cases as follows: (i) W = i, and (ii) W ̸= i.

In the case (i), we have

P(U = U |W = W,W ∈ S)

=
∑

j∈K\W

P(U = U |W = W,S = {W, j})× P(S = {W, j}|W = W,W ∈ S). (2.29)

59

By the model assumption, we have

P(S = {W, j}|W = W,W ∈ S) =
1

K − 1
(2.30)

for all j ∈ K\W . Moreover, given that W = W and S = {W, j}, the protocol constructs

U = {W} with probability 1
K

. This implies that

P(U = U |W = W,S = {W, j}) = 1

K
(2.31)

for all j ∈ K \W . Substituting (2.30) and (2.31) into (2.29),

P(U = U |W = W,W ∈ S) =
1

K
. (2.32)

In the case (ii), we have

P(U = U |W = W,W ∈ S)

= P(U = U |W = W,S = {W, i})× P(S = {W, i}|W = W,W ∈ S)

=
1

K
, (2.33)

noting that by the model assumption,

P(S = {W, i}|W = W,W ∈ S) =
1

K − 1
,

and by the design of the protocol,

P(U = U |W = W,S = {W, i}) = K − 1

K
.

From (2.32) and (2.33), we infer that P(U = U |W = W,W ∈ S) does not depend on W .

60

Case 2: Consider an arbitrary U = {U1, U2}. (Recall that |U1| = |U2| = M −1.) Take

an arbitrary W ∈ K. There are two cases: (i) W ∈ U1 ∪ U2, and (ii) W ̸∈ U1 ∪ U2.

In the case (i), w.l.o.g., assume that W ∈ U1. Note that W = W and W ∈ U1 together

imply that S = W ∪ U2 (by the design of the protocol). Then, we have

P(U = U |W = W,W ∈ S)

= P(U = U |W = W,S = W ∪ U2)

× P(S = W ∪ U2|W = W,W ∈ S). (2.34)

By the model assumption, we have

P(S = W ∪ U2|W = W,W ∈ S) =

(
K − 1

M − 1

)−1

. (2.35)

Moreover, given that W = W and S = W∪U2, the protocol constructs U1 with probability

(2M−2
K

) ×
(
K−M
M−2

)−1
, noting that W ∈ U1. (The protocol selects the demand index W to

be one of the elements in U1 with probability 2M−2
K

, and selects the set of other M − 2

elements in U1 from the set of K −M indices in K \ S with probability
(
K−M
M−2

)−1
.) This

implies that

P(U = U |W = W,S = W ∪ U2)

= 2

(
M − 1

K

)(
K −M

M − 2

)−1

. (2.36)

Substituting (2.35) and (2.36) into (2.34),

P(U = U |W = W,W ∈ S)

= 2

(
M − 1

K

)(
K −M

M − 2

)−1(
K − 1

M − 1

)−1

. (2.37)

61

In the case (ii), we have

P(U = U |W = W,W ∈ S)

= P(U = U |W = W,S = W ∪ U1)

× P(S = W ∪ U1|W = W,W ∈ S)

+ P(U = U |W = W,S = W ∪ U2)

× P(S = W ∪ U2|W = W,W ∈ S)

= 2

(
1− 2M − 2

K

)(
K −M

M − 1

)−1(
K − 1

M − 1

)−1

, (2.38)

noting that

P(U = U |W = W,S = W ∪ U1)

= P(U = U |W = W,S = W ∪ U2)

=

(
1− 2M − 2

K

)(
K −M

M − 1

)−1

,

and

P(S = W ∪ U1|W = W,W ∈ S)

= P(S = W ∪ U2|W = W,W ∈ S)

=

(
K − 1

M − 1

)−1

.

Now, it is easy to verify that

(
M − 1

K

)(
K −M

M − 2

)−1

=

(
1− 2M − 2

K

)(
K −M

M − 1

)−1

.

This shows that (2.37) and (2.38) are equal, completing the proof that P(U = U |W =

W,W ∈ S) does not depend on W .

62

Case 3: Consider an arbitrary query U = {U1, U2}. (Recall that |U1| = |U2| = M .)

Take an arbitrary W ∈ K. There are two cases as follows: (i) W ∈ U1 ∩ U2, and (ii)

W ̸∈ U1 ∩ U2.

In the case (i), we have

P(U = U |W = W,W ∈ S)

= P(U = U |W = W,S = U1)

× P(S = U1|W = W,W ∈ S)

+ P(U = U |W = W,S = U2)

× P(S = U2|W = W,W ∈ S)

= 2

(
2M −K

K

)(
M − 1

2M −K − 1

)−1(
K − 1

M − 1

)−1

, (2.39)

noting that

P(U = U |W = W,S = U1)

= P(U = U |W = W,S = U2)

=

(
2M −K

K

)(
M − 1

2M −K − 1

)−1

,

and

P(S = U1|W = W,W ∈ S)

= P(S = U2|W = W,W ∈ S)

=

(
K − 1

M − 1

)−1

.

63

In the case (ii), w.l.o.g., assume that W ∈ U1. Then, we have

P(U = U |W = W,W ∈ S)

= P(U = U |W = W,S = U1)

× P(S = U1|W = W,W ∈ S)

= 2

(
K −M

K

)(
M − 1

2M −K

)−1(
K − 1

M − 1

)−1

, (2.40)

noting that

P(U = U |W = W,S = U1)

= 2

(
K −M

K

)(
M − 1

2M −K

)−1

,

and

P(S = U1|W = W,W ∈ S) =

(
K − 1

M − 1

)−1

.

It is easy to verify that

(
2M −K

K

)(
M − 1

2M −K − 1

)−1

=

(
K −M

K

)(
M − 1

2M −K

)−1

.

This shows that (2.39) and (2.40) are equal, completing the proof that P(U = U |W =

W,W ∈ S) does not depend on W .

Case 4: The protocol implies that U = K, and hence P(U = U |W = W,W ∈ S) = 1

for all W . 2

64

3. MULTI-SERVER PRIVATE INFORMATION RETRIEVAL (PIR)*

3.1 Introduction

In the Private Information Retrieval (PIR) problem, there is a user who wishes to down-

load a single or multiple messages belonging to a database with copies stored on a single or

multiple servers, while protecting the identity of the demanded message(s) from every in-

dividual server [4,8,9,20]. To retrieve the desired message(s), the user generates one query

for each server. Upon receiving the user’s query, each server will return an answer, which

depends on the stored messages and the received query. To ensure that each server learns

nothing about the identity of the user’s demanded message(s), in an information theoretic

sense, each query must be marginally independent of the desired message(s) index.

In a single-server setting or a multi-server setting when all servers can fully collude,

the user must download the whole database to achieve privacy in the information-theoretic

sense [4]. However, when the user has some side information (unknown to the server(s))

about the messages in the database [21–30, 32, 33] or when the servers do not fully col-

lude [8, 9, 15], the privacy can be achieved more efficiently in terms of the download cost

(i.e., the amount of information downloaded from the server(s)).

For the PIR problem in the presence of side information, two types of privacy require-

ments can be considered: (i) W -privacy, in which the identity of the message(s) demanded

by the user needs to be protected, and (ii) (W,S)-privacy in which the identities of both

the message(s) demanded by user and the message(s) in the support set of the user’s side

information needs to be protected, where W denotes the index set of the user’s requested

*Reprinted with permission from [31] "Private Information Retrieval with Private Coded Side Infor-
mation: The Multi-Server Case," by F. Kazemi, E. Karimi, A. Heidarzadeh, and A. Sprintson, 2019. In
Proceedings of 2019 57th Annual Allerton Conference on Communication, Control, and Computing (Aller-
ton), pp. 1098-1104, Sept 2019 and [35] "Multi-Server Private Information Retrieval with Coded Side
Information," by F. Kazemi, E. Karimi, A. Heidarzadeh, and A. Sprintson, 2019. In Proceedings of 2019
16th Canadian Workshop on Information Theory (CWIT), pp. 1-6, June 2019. Copyright © by IEEE.

65

message(s), and S denotes the index set of the messages in the support set of the user’s

side information. Based on the definitions, it is clear that the (W,S)-privacy requirement

is a stronger privacy requirement compared to the W -privacy requirement.

In this work, there is a user who is interested in retrieving a single message from a

database of K independently and uniformly distributed messages, with copies stored on

N non-colluding servers. The user initially knows a linear coded combination of a subset

of M messages in the database, where the identities of the messages in the support set of

the user’s coded side information as well as their coding coefficients are initially unknown

to the servers. This type of side information is motivated by several practical scenarios. For

instance, the side information could have been obtained in advance from a trusted server

with limited knowledge about the database, or via overhearing in a wireless network, or

from the information locally stored in the user’s cache.

The problem is to design a protocol for generating the user’s query and the servers’

answers which satisfy one of the following two privacy conditions: (W,S)-privacy or W -

privacy. We refer to this problem as PIR with Private Coded Side Information (PIR-PCSI)

when (W,S)-privacy is required and PIR with Coded Side Information (PIR-CSI) when

W -privacy is required.

Related Work: The setting in which the side information is a random subset of mes-

sages is referred to as PIR with Side Information (PIR-SI) or PIR with Private Side In-

formation (PIR-PSI) when W -privacy or (W,S)-privacy is required, respectively. The

single-server settings of these problems were studied in [21–23], and their multi-server

settings were studied in [24,25,29]. In Chapter 2, we studied the single-server setting of a

related problem in which the side information is a random linear combination of a subset

of messages. In particular, Section 2.4 and Section 2.5 studied the single-server setting of

PIR-CSI and PIR-PCSI problems, respectively. In this chapter, we study the extension of

these works to the multi-server settings in Section 3.4 and Section 3.5, respectively.

66

Our Contributions

Depending on whether the support set of the user’s coded side information includes

the user’s demand or not, we consider two different models for each of the PIR-PCSI and

PIR-CSI problems. In the first model, referred to as Model I, the demand does not belong

to the support set of the coded side information, whereas in the second model, referred

to as Model II, the demand belongs to the support set of the coded side information. We

refer to the PIR-PCSI (or PIR-CSI) problem under Model I and Model II as PIR-PCSI–I

(or PIR-CSI–I) and PIR-PCSI–II (or PIR-CSI–II), respectively.

For each of these settings, we define the capacity as the ratio of the number of in-

formation bits in a message to the minimum number of information bits downloaded

from the servers over all protocols that satisfy the privacy condition. We also define the

server-symmetric capacity for the PIR-CSI problem similarly, except when the minimum

is taken over all server-symmetric protocols (the protocols in which the user’s query and

the servers’ answers are symmetric in structure) that satisfy the privacy condition.

In this work, our goal is to characterize the capacity (or server-symmetric capacity)

of the multi-server settings of the PIR-PCSI-I, PIR-PCSI-II, PIR-CSI-I, and PIR-CSI-II

problems, and to design a capacity-achieving protocol for each of these settings. The ca-

pacity results for the multi-server PIR-PCSI and multi-server PIR-CSI, are respectively

summarized in Table 3.1 and Table 3.2. To present our capacity results, we define the

function Φ(A,B) ≜ (1 + A+ A2 + · · ·+ AB−1)
−1 for a positive real number A and pos-

itive integer number B. The main contributions of this work in each of these settings are

summarized below.

Multi-Server PIR-PCSI

For multi-server PIR-PCSI–I setting, we prove that the capacity is Φ(1/N,K −M).

This result is interesting because the capacity of the multi-server PIR-PSI is equal to

67

Φ(1/N,K − M), as shown in [24]. This result shows that there is no loss in capacity

due to restricting the user’s side information to one random linear combination of M mes-

sages, instead of M uncoded messages. The converse proof follows from the fact that

the capacity of this setting is upper-bounded by the capacity of the multi-server PIR-PSI

which is given by Φ(1/N,K −M) (see [24, Theorem 1]).

For the achievability proof, we devise a new protocol that builds upon two existing

achievability schemes for two different problems: (i) the Private Computation (PC) scheme

of [85] for multi-server private computation where a user wishes to privately retrieve one

arbitrary linear combination of the messages replicated at multiple servers, and (ii) our

Specialized GRS Code scheme proposed for single-server PIR-PCSI in Sec. 2.4.

The main ideas of our achievability scheme are as follows. First, the user utilizes the

Specialized GRS Code scheme of [34] for single-server PIR-PCSI to construct K −M

super-messages which are some linearly independent combinations of the original mes-

sages, to play the role of the original messages in a multi-server private computation

problem. Then, the user and all the N servers leverage the PC scheme of [85] for the

constructed K −M super-messages in such a way that the user can privately download

one of
(

K
M+1

)
linear combinations of the K−M super-messages where the support of each

linear combination is a distinct subset of [K] of size M + 1.

For the multi-server PIR-PCSI–II setting, we show that the capacity is lower-bounded

by Φ(1/N,K −M + 1). The proof is based on a new achievability scheme that leverages

the PC scheme of [85] for multi-server private computation, combined with our Modified

Specialized GRS Code scheme proposed in [34] for single-server PIR-PCSI.

Multi-Server PIR-CSI

For the multi-server PIR-CSI–I setting, we show that, for any 1 ≤ M ≤ K − 1, the

capacity is equal to Φ(1/N,
⌈

K
M+1

⌉
). Interestingly, the capacity in this case is the same

68

Privacy Condition (W,S)-Privacy

Model
W ̸∈ S

(PIR-PCSI–I)
W ∈ S

(PIR-PCSI–II)
Parameters 1 ≤M ≤ K − 1 2 ≤M ≤ K

Capacity
(
1 + 1

N
+ · · ·+ 1

NK−M−1

)−1 Lower bound:
(
1 + 1

N
+ · · ·+ 1

NK−M

)−1

Achievability
Scheme

PC + Specialized GRS Code PC + Modified Specialized GRS Code

Table 3.1: Summary of our main results for multi-server PIR-PCSI

Privacy Condition W -Privacy

Model
W ̸∈ S

(PIR-CSI–I)
W ∈ S

(PIR-CSI–II)
Parameters 1 ≤M ≤ K − 1 2 ≤M ≤ K

Capacity (
1 + 1

N
+ · · ·+ 1

N⌈ K
M+1⌉−1

)−1
1 for M = 2, M = K

Open for 3 ≤M ≤ K − 1

Server-Symmetric
Capacity

1 for M = 2, M = K
N

N+1
for 3 ≤M ≤ K − 1

Achievability
Scheme

Sun-Jafar Scheme [8] +
Modified Partition-and-Code

Sun-Jafar Scheme [8]+
Randomized Selection-and-Code

Table 3.2: Summary of our main results for multi-server PIR-CSI

as that of multi-server PIR-SI as shown in [25]. This result shows that by knowing only

one linear combination of M messages as side information, the privacy requirement can

be satisfied as efficiently as (in terms of download cost) knowing M (uncoded) messages

separately. Moreover, comparing this result with the capacity of multi-server PIR without

side information [8], one can see that having a coded side information (which is not a

function of the demanded message) of size M reduces the effective number of messages

from K to ⌈K/(M + 1)⌉.

69

For the multi-server PIR-CSI–II setting, we show that the capacity is equal to 1 for

M = 2 and M = K, and the server-symmetric capacity is equal to N/(N + 1) for any

3 ≤ M ≤ K − 1. Again, a comparison of these results with the capacity of multi-server

PIR without side information reveals that having a coded side information (which is a

function of the demanded message) of size M ∈ {2, K} and M ∈ {3, . . . , K−1} reduces

the effective number of messages from K to 1 and 2, respectively.

Our converse proofs rely on new information-theoretic arguments, and the achievabil-

ity schemes are inspired by our proposed scheme in [30] for single-server PIR-CSI as well

as the Sun-Jafar scheme of [8] for multi-server PIR.

3.2 Problem Setup and Formulation

In this section, we generalize the problem formulation in Section 2.2 to the multi-server

setting.

3.2.1 Basic Notation

Throughout this chapter, we denote random variables by bold-face letters and their

realizations by regular letters. The functions P(·), P(·|·), H(·), H(·|·), and I(·; ·|·) denote

probability, conditional probability, entropy, conditional entropy, and conditional mutual

information, respectively.

Let Fq be a finite field for a prime power q, and let F×
q ≜ Fq \ {0} be the multiplicative

group of Fq. Let Fqm be an extension field of Fq for an integer m ≥ 1, and let L ≜ m log2 q.

The parameters q and m are referred to as the base-field size and the field-extension degree,

respectively.

For an integer i ≥ 1, let [i] ≜ {1, . . . , i}. Let K ≥ 1 and 1 ≤M ≤ K be two integers,

and let K ≜ {1, . . . , K}. We denote by S the set of all M -subsets (i.e., all subsets of size

M) of K, and denote by C the set of all sequences of size M (i.e., all length-M sequences)

with elements from F×
q . Note that |S| =

(
K
M

)
and |C| = (q − 1)M .

70

3.2.2 Setup and Assumptions

There are N non-colluding servers, each of which stores an identical copy of a database

consists of K messages X1, . . . , XK , denoted by XK ≜ {X1, . . . , XK}, where Xi’s are

independently and uniformly distributed over Fqm , that is, H(Xi) = L for all i ∈ K and

H(XK) = KL, where XK ≜ {X1, . . . ,XK}.

There is a user who wishes to retrieve a message XW for some W ∈ K from the

servers, and knows a linear combination Y [S,C] ≜
∑

i∈S ciXi on the messages XS ≜ {Xi :

i ∈ S}, for some S ≜ {i1, . . . , iM} ∈ S and C ≜ {ci1 , . . . , ciM} ∈ C. We refer to XW as

the demand, W as the demand index, XS as the side information support set, S as the side

information support index set, M as the side information support size, and Y [S,C] as the

(coded) side information.

We assume that S and C are uniformly distributed over S and C, respectively. Also,

we consider two different models for the conditional distribution of W given S = S:

Model I: W is uniformly distributed over K \ S,

P(W = W |S = S) =

1

K−M
, W ∈ K \ S,

0, otherwise;

Model II: W is uniformly distributed over S,

P(W = W |S = S) =

1
M
, W ∈ S,

0, otherwise.

For both Models I and II, W is distributed uniformly over K.

Let 1{W∈S} be an indicator random variable such that that 1{W∈S} = 0 if W ̸∈ S, and

1{W∈S} = 1 otherwise. Note that 1{W∈S} = 0 in Model I, and 1{W∈S} = 1 in Model II.

71

We assume that the servers know the underlying model (i.e., whether W ̸∈ S or W ∈

S), the side information support size M , the distributions of S and C, and the conditional

distribution of W given S, in advance; whereas the realizations W,S,C are unknown to

the servers in advance.

3.2.3 Privacy and Recoverability Conditions

For any W,S,C, to retrieve XW , the user generates N queries Q[W,S,C]
1 , . . . , Q

[W,S,C]
N ,

and sends to the n-th server the query Q
[W,S,C]
n . Each query Q

[W,S,C]
n for n ∈ [N] is

assumed to be a (potentially stochastic) function of W,S,C. For simplifying the notation,

we denote Q
[W,S,C]
n by Qn for all n ∈ [N]. The query must satisfy one of the following

two privacy conditions:

(i) both the user’s demand index and side information support index set must be pro-

tected from the servers;

(ii) only the user’s demand index (and not necessarily the side information support index

set) must be protected from the servers.

The condition (i) is referred to as the (W,S)-privacy condition, and the condition (ii) is

referred to as the W -privacy condition. (Note that (W,S)-privacy is a stronger condition

than W -privacy.) The (W,S)-privacy condition implies that (W,S) and Qn for all n ∈

[N], must be conditionally independent given 1{W∈S}, that is,

I(W,S;Qn|1{W∈S}) = 0. ∀n ∈ [N]

The W -privacy condition implies that W and Qn for all n ∈ [N], must be conditionally

independent given 1{W∈S}, that is,

I(W;Qn|1{W∈S}) = 0 ∀n ∈ [N].

72

Equivalently, for a given θ ∈ {0, 1}, when (W,S)-privacy is required, it must hold that

P(W = W ∗,S = S∗|Qn = Q[W,S,C]
n ,1{W∈S} = θ)

= P(W = W ∗,S = S∗|1{W∈S} = θ)

for all n ∈ [N], W ∗ ∈ K and S∗ ∈ S, and when W -privacy is required, it must hold that

P(W = W ∗|Qn = Q[W,S,C]
n ,1{W∈S} = θ)

= P(W = W ∗|1{W∈S} = θ)

for all n ∈ [N] and W ∗ ∈ K.

Upon receiving Q
[W,S,C]
n , the n-th server sends to the user an answer A[W,S,C]

n , which

is a (deterministic) function of the query Q
[W,S,C]
n , the indicator variable 1{W∈S}, and the

messages in XK. For simplifying the notation, we denote A
[W,S,C]
n by An for all n ∈ [N].

It should be noted that (W,S,C) → (Qn,1{W∈S},XK) → An forms a Markov chain,

and for all n ∈ [N], it holds that H(An|Qn,1{W∈S},XK,W,S,C) = 0.

The answers from all servers A[W,S,C]
1 , . . . , A

[W,S,C]
N along with Q

[W,S,C]
1 , . . . , Q

[W,S,C]
N ,

1{W∈S}, Y [S,C], and W,S,C must enable the user to retrieve the demand XW . That is, it

must hold that

H(XW|A,Q,1{W∈S},Y
[S,C],W,S,C) = 0.

where A ≜ {A1, . . . ,AN} and Q ≜ {Q1, . . . ,QN}. We refer to this condition as the

recoverability condition.

3.2.4 PIR-PCSI and PIR-CSI Problems

For each type of privacy requirement and for each model, the problem is to design

a protocol for generating queries Q
[W,S,C]
1 , . . . , Q

[W,S,C]
N (and the corresponding answers

73

A
[W,S,C]
1 , . . . , A

[W,S,C]
N , given Q

[W,S,C]
1 , . . . , Q

[W,S,C]
N , 1{W∈S}, XK) for any given W,S,C,

such that both the privacy and recoverability conditions are satisfied. Note that the protocol

is assumed to be known at the servers. When (W,S)-privacy is required, we refer to

this problem as Private Information Retrieval (PIR) with Private Coded Side Information

(PIR-PCSI), and when W -privacy is required we refer to this problem as PIR with Coded

Side Information (PIR-CSI).

The PIR-PCSI problem under Model I (or Model II) is referred to as the PIR-PCSI–I

(or PIR-PCSI–II) setting; and the PIR-CSI problem under Model I (or Model II) is referred

to as the PIR-CSI–I (or PIR-CSI–II) setting. A protocol for generating queries/answers for

the PIR-PCSI–I (or PIR-PCSI–II) setting is referred to as a PIR-PCSI–I (or PIR-PCSI–II)

protocol. A PIR-CSI–I (or PIR-CSI–II) protocol is defined similarly.

In this work, for the PIR-CSI problem, we focus on server-symmetric protocols in

which the user’s queries and the servers’ answers are symmetric in structure. In partic-

ular, we refer to a PIR-CSI–I protocol (or respectively, PIR-CSI–II protocol) as server-

symmetric if

(Q[W,S,C]
n ,A[W,S,C]

n ,XK) ∼ (Q
[W,S,C]
n′ ,A

[W,S,C]
n′ ,XK)

holds for all n, n′ ∈ [N] and for any W ∈ K, S ∈ S, C ∈ C under Model I (or respectively,

Model II), where the relation U ∼ V means that U and V have identical distributions.

It should be noted that most of the existing multi-server PIR protocols (with information-

theoretic guarantees) are server-symmetric. Server-symmetric protocols are particularly

of interest because the symmetry of queries/answers across the servers makes the imple-

mentation quite simple in practice.

3.2.5 Capacity and Server-Symmetric Capacity

The rate of a PIR-PCSI–I (or PIR-PCSI–II) protocol is defined as the ratio of the

entropy of a message, i.e., L, to the conditional entropy of A[W,S,C] given that 1{W∈S} = 0

74

(or 1{W∈S} = 1). The rate of a PIR-CSI–I (or PIR-CSI–II) protocol is defined similarly.

The capacity of PIR-PCSI–I (or PIR-PCSI–II) setting is defined as the supremum of

rates over all PIR-PCSI–I (or PIR-PCSI–II) protocols and over all base-field sizes q and

all field-extension degrees m; and the capacity of PIR-CSI–I (or PIR-CSI–II) setting is

defined similarly.

The server-symmetric capacity of PIR-CSI–I (or PIR-CSI–II) setting is defined as the

supremum of rates over all server-symmetric PIR-PCSI–I (or PIR-PCSI–II) protocols and

all q and m.

3.2.6 Problem Statement

In this work, our goal is to derive upper bounds on the capacity (server-symmetric ca-

pacity) of the multi-server settings of the PIR-PCSI–I, PIR-PCSI–II, PIR-CSI–I, and PIR-

CSI–II problems, and to design protocols that achieve the corresponding upper-bounds.

3.3 Necessary Condition

The following lemma renders a necessary condition for any server-symmetric PIR-

CSI–I (or PIR-CSI–II) protocol that satisfies the W -privacy condition. This lemma plays

a key role in the converse proof of our main result for the PIR-CSI–II problem.

Lemma 12. Any server-symmetric PIR-CSI–I (or PIR-CSI–II) protocol satisfies the fol-

lowing condition: for any W,W ′ ∈ K, S ∈ S, C ∈ C with W ̸∈ S (or W ∈ S), there exist

S ′ ∈ S, C ′ ∈ C with W ′ ̸∈ S ′ (or W ′ ∈ S ′), such that

(Q[W,S,C]
n ,A[W,S,C]

n ,XK)∼(Q[W ′,S′,C′]
n ,A[W ′,S′,C′]

n ,XK)

holds for all n ∈ [N].

Proof. The proof is by the way of contradiction, and based on the definitions of W -privacy

and server-symmetry. To protect the user’s privacy, for different demands, the strate-

75

gies (queries and answers) must be indistinguishable (identically distributed) from the

perspective of each server. In particular, for each n ∈ [N], it must hold that for any

W ∈ K, S ∈ S, C ∈ C with W ̸∈ S (or W ∈ S), and any candidate demand W ′ ∈ K, there

exist Sn ∈ S, Cn ∈ C with W ′ ̸∈ Sn (or W ′ ∈ Sn) that satisfy the condition of the lemma

for the server n. Otherwise, if there do not exist such Sn ∈ S, Cn ∈ C that satisfy the con-

dition of the lemma for some server n, then the privacy condition is violated. Moreover,

by the server-symmetry assumption, for any candidate demand W ′ ∈ K, there must exist

S ′ ∈ S, C ′ ∈ C (independent of n) with W ′ ̸∈ S ′ (or W ′ ∈ S ′) that make the strategies

indistinguishable from the perspective of each server n ∈ [N]. That is, there must exist

S ′ ∈ S, C ′ ∈ C with W ′ ̸∈ S ′ (or W ′ ∈ S ′) that satisfy the condition of the lemma for all

servers. Otherwise, the server-symmetry assumption is violated.

3.4 Multi-Server PIR with Private Coded Side Information (PIR-PCSI)

In this section, Theorem 5 characterizes the capacity of the PIR-PCSI–I, denoted by

C(W,S)−I, and Theorem 6 presents a lower-bound on the capacity of the PIR-PCSI–II prob-

lem, denoted by C(W,S)−II. The proofs of theorems 5 and 6 are given in sections 3.4.1

and 3.4.2, respectively.

3.4.1 Multi-Server PIR-PCSI-I

Theorem 5. The capacity of the multi-server PIR-PCSI–I problem with N servers, K

messages, and side information size 1 ≤M ≤ K − 1 is given by

C(W,S)−I =

(
1 +

1

N
+ · · ·+ 1

NK−M−1

)−1

.

Interestingly, this result indicates that the capacity of multi-server PIR-PCSI–I, i.e.,

C(W,S)−I, is equal to the capacity of the multi-server PIR-PSI [24] where M uncoded

messages are available at the user as side information.

76

Proof of Theorem 5

3.4.1.1 Converse

Note that having only a random linear combination of M messages as side information

instead of M uncoded messages, cannot increase the capacity which implies the converse.

Thus, to complete the proof of Theorem 5, we only need to prove the achievability (see

Section 3.4.1.2). Notably, our results show that having only one random linear coded

message instead of multiple uncoded messages does not decrease the capacity, either.

3.4.1.2 Achievability

We complete the proof of Theorem 5 by proposing a scheme for any arbitrary N ,

K ≥ 1 and 0 ≤M ≤ K − 1 that achieves the rate
(
1 + 1/N + · · ·+ 1/NK−M−1

)−1. The

proposed protocol, referred to as the Multi-Server PIR-PCSI–I protocol, is a non-trivial

combination of the Specialized GRS Code scheme of [34] for single-server PIR-PCSI

and the Private Computation (PC) scheme of [85] for multi-server PC problem. For the

proposed protocol, we assume that q ≥ K, and each message Xi consists of m = N(K
M+1)

symbols over Fq.

Multi-Server PIR-PCSI–I protocol: The protocol consists of the following five steps:

Step 1: The user utilizes the Specialized GRS Code protocol proposed in [34] to first

construct a polynomial

p(x) =
K−M−1∑

i=0

pix
i ≜

∏
i ̸∈S∪W

(x− ωi)

where ω1, . . . , ωK are K arbitrarily chosen distinct elements from Fq, and then construct

r ≜ K −M vectors u1, . . . , ur, each of length K, such that ui = [β1ω
i−1
1 , . . . , βKω

i−1
K]

for i ∈ [r], where βj =
cj

p(ωj)
for j ∈ S, and βj is a randomly chosen element from F×

q for

j ̸∈ S.

77

Step 2: Let X̂i ≜
∑K

j=1 βjω
i−1
j Xj for i ∈ [r]. Each X̂i is referred to as a coded

message. Note that the vector ui (constructed in Step 1) is the vector of coefficients of

the messages {Xi}i∈[K] in the coded message X̂i. Let F ≜
(

K
M+1

)
, and let J1, J2, . . . , JF

be the collection of all (M + 1)-subsets of [K] in a lexicographical order. The structure

of the Specialized GRS Code protocol [34] ensures that for each Jf , f ∈ [F], there exist

exactly q − 1 linear combinations Z1
f , Z

2
f , . . . , Z

q−1
f of the messages {Xi}i∈Jf with (non-

zero) coefficients from F×
q , such that for every k ∈ [q − 1], Zk

f can be written as a linear

combination of the coded messages X̂1, . . . , X̂r. Let vkf ≜ [vkf,1, . . . , v
k
f,r] be a vector of

length r such that Zk
f =

∑r
i=1 v

k
f,iX̂i.

Note that, for each f ∈ [F], Z1
f , Z

2
f , . . . , Z

q−1
f are the same up to a scalar multiple, i.e.,

for each k ∈ [q − 1], Zk
f = αkZ

1
f , or equivalently, vkf = αkv

1
f , for some distinct αk ∈ F×

q .

For each f ∈ [F], let if ≜ min(Jf). Note also that for every f ∈ [F], there exists a

unique kf ∈ [q − 1] such that the coefficient of the message Xif in the linear combination

Z
kf
f is equal to 1. The user then constructs F vectors v1, . . . , vF , each of length r, such

that vf = v
kf
f . (Note that the above procedure dictates a specific choice of the coefficient

vectors vf . However, for each f ∈ [F], the vector vf can be chosen arbitrarily from the

set of vectors {vkf}k∈[q−1].) Let Zf ≜ Z
kf
f for f ∈ [F]. Each Zf is referred to as a (linear)

function. Note that vf is the vector of coefficients of the coded messages {X̂i}i∈[r] in the

function Zf .

Step 3: The user sends to all servers the vectors u1, . . . , ur (associated with coded

messages X̂1, . . . , X̂r), and the vectors v1, . . . , vF (associated with functions Z1, . . . , ZF).

It is noteworthy that the user needs only to send the vectors {ui}i∈[r] to all servers, and each

server can construct the vectors {vf}f∈[F] by using {ui}i∈[r] (according to the procedure

described in Step 2).

Step 4: The user and the servers leverage the PC scheme of [85] with r (independent)

messages and F (linear) functions of these messages in order for the user to privately re-

78

trieve one of these functions. In particular, the r = K −M coded messages {X̂i}i∈[r] and

the F functions {Zf}f∈[F] play the role of the original messages and the functions in the

PC scheme, respectively, and the user is interested in retrieving the function Zf∗ privately,

where Zf∗ is an F×
q -linear combination (i.e., a linear combination with non-zero coeffi-

cients only) of the messages {Xi}i∈W∪S . (By the construction, there exists one (and only

one) function Zf among Z1, . . . , ZF such that Zf is an F×
q -linear combination of the mes-

sages {Xi}i∈W∪S .) To be more specific, each server first constructs the coded messages

{X̂i}i∈[r] by using the coefficient vectors {ui}i∈[r] (defined in Step 3), and then constructs

the functions {Zf}f∈[F] by using the coded messages {X̂i}i∈[r] and the coefficient vec-

tors {vf}f∈[F] (defined in Step 3). Note that each function Zf for f ∈ [F] consists of

m = NF Fq-symbols where N is the number of servers. Then, each server sends to the

user m(1/N + 1/N2 + · · ·+ 1/NK−M) carefully designed linear combinations of all Fq-

symbols associated with all functions {Zf}f∈[F]. The details of the design of the user’s

query to each server as well as the linear combinations transmitted by each server (which

also depend on the query of the user) can be found in [85, Section 4].

Example 6. Assume that there are N = 2 servers, K = 4 messages from F516 , and

M = 2. Note that each message consists of m = N(K
M+1) = 16 symbols from F5. Suppose

that the user demands the message X1 and has a coded side information Y = X2 +X3,

i.e., W = 1, S = {2, 3}, and C = {1, 1} (i.e., c2 = 1, c3 = 1).

First, the user picks K = 4 distinct elements ω1, . . . , ω4 from F5. Suppose that the user

chooses ω1 = 0, ω2 = 1, ω3 = 2, ω4 = 3. Then, the user constructs the polynomial

p(x) =
∏

i ̸∈S∪W

(x− ωi) = x− ω4 = x− 3.

The user then computes βj for j ∈ S, i.e., β2 and β3, by setting β2 =
c2

p(ω2)
= 2 and

β3 = c3
p(ω3)

= 4, and chooses βj for j ̸∈ S, i.e., β1 and β4, at random (from F×
5). Assume

79

that the user chooses β1 = 1 and β4 = 2. Then, the user constructs r = K −M = 2

vectors u1 and u2, each of length K = 4, such that ui = [β1ω
i−1
1 , . . . , βKω

i−1
K] for i ∈

{1, 2}. That is, the user constructs u1 = [1, 2, 4, 2] and u2 = [0, 2, 3, 1]. For set J1 =

{1, 2, 3}, there exist exactly q − 1 = 4 vectors vk1 = [k, 3k] for k ∈ {1, . . . , 4} such that

ku1 + 3ku2 = k[1, 3, 3, 0].

It should be noted that there exists no other vector v = [v1, v2] such that the support of

the vector v1u1 + v2u2 is J1 = {1, 2, 3}. Note that the coefficient of the message Xi1 = X1

(i.e., i1 = min(J1) = 1) in the function Z1 is equal to 1 when k = 1. Thus, the user con-

structs the vector v1 = v11 = [1, 3]. Similarly, the user constructs the vectors v2 = [1, 2],

v3 = [1, 4] and v4 = [0, 3]. Then, the user sends to all servers the vectors u1 and u2 (associ-

ated with the coded messages X̂1 and X̂2), and the vectors v1, . . . , v4 (associated with the

functions Z1, . . . , Z4). Using the coefficient vectors u1 and u2, each server first constructs

the following two coded messages

X̂1 = X1 + 2X2 + 4X3 + 2X4 and X̂2 = 2X2 + 3X3 +X4.

Then, the user constructs the functions Z1, . . . , Z4 using the coded messages X̂1 and X̂2

and the coefficient vectors v1, . . . , v4 as follows:

Z1 = X̂1 + 3X̂2 = X1 + 3X2 + 3X3

Z2 = X̂1 + 2X̂2 = X1 +X2 + 4X4

Z3 = X̂1 + 4X̂2 = X1 +X3 +X4

Z4 = 3X̂2 = X2 + 4X3 + 3X4

Finally, the user and the servers apply the PC scheme of [85] for two coded messages

X̂1, X̂2 in order for the user to privately retrieve the function Z1. (Note that among the

functions Z1, . . . , Z4, only Z1 is an F×
5 -linear combination of the messages {Xi}i∈W∪S =

80

{X1, X2, X3}.) The details of the PC scheme for this example are as follows. Let π :

[16]→ [16] be a randomly chosen permutation. Let

uf (i) ≜ σiZf (π(i))

for f ∈ [4] and i ∈ [16], where Zf (π(i)) is the π(i)-th F5-symbol of Zf , and σi is a ran-

domly chosen element from {−1,+1}. For simplifying the notation, we define the fol-

lowing: (ai, bi, ci, di) = (u1(i), u2(i), u3(i), u4(i)) for ∀i ∈ [16].

Then, from each of the two servers (S1 and S2), the user queries 15 carefully designed

linear combinations of the symbols {{ai}i∈[16], {bi}i∈[16], {ci}i∈[16], {di}i∈[16]}, as given in

Table 3.3 [85].

As shown in [85], among the 15 symbols queried from S1 (or S2), based on the infor-

mation obtained from S2 (or S1), 3 symbols are redundant. For instance, consider the 15

symbols queried from S1. (Similar observations can be made regarding the queries from

S2.) Among the 4 symbols {a1, b1, c1, d1}, any 2 symbols suffice to recover the other 2

symbols. For example, c1 and d1 can be obtained from a1 and b1. (Note that Z3 and Z4

can be written as a linear combination of Z1 and Z2.)

Thus, the server S1 needs to send two arbitrary symbols from {a1, b1, c1, d1}. In ad-

dition, given any 2 symbols from {a2, b2, c2, d2}, any 5 symbols among the 6 symbols

{a3 − b2, a4 − c2, a5 − d2, b4 − c3, b5 − d3, c5 − d4} queried from S1 would suffice to

recover the remaining symbol. For example, c5 − d4 can be obtained from the symbols

{a3 − b2, a4 − c2, a5 − d2, b4 − c3, b5 − d3, b2, d2} (for the details, see [85, Section 5.1]).

Thus, each of the two servers S1 and S2 needs to send to the user only 12 symbols.

In particular, the servers S1 transmits 2 arbitrary symbols from {a1, b1, c1, d1}, 5 ar-

bitrary symbols from {a3 − b2, a4 − c2, a5 − d2, b4 − c3, b5 − d3, c5 − d4}, and all the 4

symbols {a9 − b7 + c6, a10 − b8 + d6, a11 − c8 + d7, b11 − c10 + d9}, and the symbol

81

Table 3.3: The queries of the PC protocol for N = 2 servers, 2 coded messages, and F = 4
functions, when the user demands Z1.

S1 S2
a1, b1, c1, d1 a2, b2, c2, d2

a3 − b2 a6 − b1
a4 − c2 a7 − c1
a5 − d2 a8 − d1
b4 − c3 b7 − c6
b5 − d3 b8 − d6
c5 − d4 c8 − d7

a9 − b7 + c6 a12 − b4 + c3
a10 − b8 + d6 a13 − b5 + d3
a11 − c8 + d7 a14 − c5 + d4
b11 − c10 + d9 b14 − c13 + d12

a15 − b14 + c13 − d12 a16 − b11 + c10 − d9

{a15 − b14 + c13 − d12}; and S2 transmits 2 arbitrary symbols from {a2, b2, c2, d2}, 5 ar-

bitrary symbols from {a6 − b1, a7 − c1, a8 − d1, b7 − c6, b8 − d6, c8 − d7}, and the 4 sym-

bols {a12 − b4 + c3, a13 − b5 + d3, a14 − c5 + d4, b14 − c13 + d12}, and the symbol

{a16 − b11 + c10 − d9}.

From the answers by the servers, the user obtains all 16 symbols a1, . . . , a16, and ac-

cordingly, all 16 symbols of Z1. (Note that ai = u1(i) = σiZ1(π(i)) for i ∈ [16].) From

Z1 (= X1 + 3X2 + 3X3), the user can decode the desired message X1 by subtracting off

the contribution of their side information X2 +X3.

In order to retrieve X1 which consists of 16 symbols (over F5), according to the pro-

posed protocol, the user downloads 24 symbols (over F5) from both servers, and hence the

rate of the proposed protocol is 16/24 = 2/3.

82

Note that for every 3-subset {Xj1 , Xj2 , Xj3} of the messages {Xi}i∈[4], in the proposed

protocol there exists one (and only one) linear combination Zf for some f ∈ [4] of the

messages Xj1 , Xj2 , Xj3 . On the other hand, the PC scheme guarantees that no server can

obtain any information about the index (f) of the linear combination Zf being requested

by the user. Thus, the proposed scheme satisfies the (W,S)-privacy condition, as it was

desired in this example.

Lemma 13. The Multi-Server PIR-PCSI–I protocol satisfies the recoverability and (W,S)-

privacy conditions, and achieves the rate C(W,S)−I =
(
1 + 1/N + · · ·+ 1/NK−M−1

)−1.

Proof. Since the messages in the XK are uniformly and independently distributed over

Fqm , and {X̂1, . . . , X̂r} are linearly independent combinations of the messages in X[K],

thus {X̂1, . . . , X̂r} are uniformly and independently distributed over Fqm as well, i.e.,

H(X̂1) = · · · = H(X̂r) = m log q = L. Hence, the rate of the Multi-Server PIR-PCSI–I

protocol is the same as the rate of the PC protocol for N servers and K −M messages,

given by
(
1 + 1/N + · · ·+ 1/NK−M−1

)−1 (see [85, Theorem 1]).

From the step 4 of the Multi-Server PIR-PCSI–I protocol, it is evident that the recov-

erability condition is satisfied. The proof of the (W,S)-privacy of the proposed protocol

is as follows. The PC protocol protects the privacy of the function (linear combination)

requested by the user. That is, given the query, no server can obtain any information about

the index of the function requested by the user. Consider an arbitrary server n ∈ [N],

and an arbitrary query Qn to server n, generated by the proposed protocol. Thus, given

Q
[W,S,C]
n = Qn, from the perspective of server n, every function Zf for f ∈ [F] is equally

likely to include the demanded message. We denote the support of Zf byZf , i.e., Zf is the

set of all indices i ∈ [K] such that Xi has a non-zero coefficient in the linear combination

83

Zf . Thus, for all f ∈ [F], we have

Pr(W ∈ Zf |Q[W,S,C]
n = Qn) =

1(
K

M+1

) , (3.1)

noting that F =
(

K
M+1

)
. Note that any given index W ′ ∈ [K] is in the support of exactly(

K−1
M

)
functions Zf , f ∈ [F]. For any given f ∈ [F], given Q

[W,S,C]
n = Qn and W ∈ Zf ,

from the perspective of server n, every index W ′ ∈ Zf is equally likely to be the demand

index. That is, for all f ∈ [F], we have

Pr(W = W ′|Q[W,S,C]
n = Qn,W ∈ Zf)

=

1

M+1
, W ′ ∈ Zf ,

0, otherwise.
(3.2)

Furthermore, for any given f ∈ [F] and W ′ ∈ Zf , we have

Pr(S = S ′|Q[W,S,C]
n = Qn,W ∈ Zf ,W = W ′)

=

1, S ′ = Zf \ {W ′},

0, otherwise.
(3.3)

Consider arbitrary W ′ ∈ [K] and S ′ ⊂ [K]\{W ′}, |S ′| = M . Let f ′ ∈ [F] be the (unique)

index such that Zf ′ = W ′ ∪ S ′. It is easy to see that

Pr(W = W ′,S = S ′,W ∈ Zf |Q[W,S,C]
n = Qn) = 0

84

for all f ∈ [F], f ̸= f ′. Thus, by using (3.1)-(3.3), we can write

Pr(W = W ′,S = S ′|Q[W,S,C]
n = Qn)

=
∑
f∈[F]

Pr(W = W ′,S = S ′,W ∈ Zf |Q[W,S,C]
n = Qn)

= Pr(W = W ′,S = S ′,W ∈ Zf ′ |Q[W,S,C]
n = Qn)

= Pr(W ∈ Zf ′ |Q[W,S,C]
n = Qn)

× Pr(W = W ′|Q[W,S,C]
n = Qn,W ∈ Zf ′)

× Pr(S = S ′|Q[W,S,C]
n = Qn,W ∈ Zf ′ ,W = W ′)

=
1(
K

M+1

) × 1

M + 1
× 1

=
M !(K −M − 1)!

K!
(3.4)

On the other hand, we have

Pr(W = W ′,S = S ′)

= Pr(W = W ′)× Pr(S = S ′|W = W ′)

=
1

K
× 1(

K−1
M

)
=

M !(K −M − 1)!

K!
. (3.5)

From (3.4) and (3.5), for any W ′ ∈ [K] and S ′ ⊂ [K] \ {W ′}, |S ′| = M , we have

Pr(W = W ′,S = S ′|Q[W,S,C]
n = Qn)

= Pr(W = W ′,S = S ′).

This completes the proof of (W,S)-privacy of the proposed protocol.

85

3.4.2 Multi-Server PIR-PCSI-II

Theorem 6. The capacity of the multi-server PIR-PCSI–II problem with N servers, K

messages, and side information size 2 ≤M ≤ K is lower-bounded by

C(W,S)−II ≥
(
1 +

1

N
+ · · ·+ 1

NK−M

)−1

.

This result is interesting because it shows that the lower-bound on the capacity of the

multi-server PIR-PCSI–II is the same as the capacity of multi-server PIR-SI when the size

of side information is M − 1. That is, having a side information which is only a random

linear combination of M messages including the demanded message would be at least as

effective as knowing M − 1 messages separately in terms of minimizing the download

cost. For the proof, we construct a PIR-PCSI–II protocol that achieves the capacity lower-

bound of Theorem 6. It should be noted that the tightness of this lower bound remains

open in general.

Proof of Theorem 6

3.4.2.1 Achievability

In this section, we prove the result of Theorem 2 by constructing a PIR-PCSI–II pro-

tocol, referred to as the Multi-Server PIR-PCSI–II protocol, for arbitrary N , K ≥ 2 and

2 ≤M ≤ K that achieves the rate
(
1 + 1/N + · · ·+ 1/NK−M

)−1.

For the proposed protocol, we assume that q ≥ K, and each message is comprised of

m = N(KM) symbols over Fq.

Multi-Server PIR-PCSI–II protocol: The protocol consists of four steps, where the

steps 2-4 are the same as the steps 2-4 in the Multi-Server PIR-PCSI–I protocol, except

that M is replaced with M − 1 everywhere. The step 1 of the proposed protocol is as

follows:

86

Step 1: The user utilizes the Modified Specialized GRS Code protocol proposed in [34]

to first construct the polynomial p(x) as follows

p(x) =
K−M∑
i=0

pix
i ≜

∏
i ̸∈S

(x− ωi)

where ω1, . . . , ωK are K arbitrarily chosen distinct elements from Fq, and then construct

r ≜ K−M+1 vectors u1, . . . , ur, each of length K, such that ui = [β1ω
i−1
1 , . . . , βKω

i−1
K]

for i ∈ [r], where βj =
cj

p(ωj)
for j ∈ S \W , βW = c

p(ωW)
where c is chosen uniformly at

random from F×
q \ {cW}, and βj is a randomly chosen element from F×

q for j ̸∈ S.

Lemma 14. The Multi-Server PIR-PCSI–II protocol satisfies the recoverability and (W,S)-

privacy conditions, and achieves the rate
(
1 + 1/N + · · ·+ 1/NK−M

)−1.

Proof. The proof is similar to the proof of Lemma 13, and omitted to avoid repetition.

3.5 Multi-Server PIR with Coded Side Information (PIR-CSI)

We present our results for the multi-server PIR-CSI-I and multi-server PIR-CSI-II

in Section 3.5.1 and Section 3.5.2, respectively.

3.5.1 Multi-Server PIR-CSI-I

Theorem 7. The capacity of PIR-CSI–I problem with N servers, K messages, and side

information size 0 ≤M ≤ K − 1 is given by

CW−I =

(
1 +

1

N
+ · · ·+ 1

N ⌈ K
M+1

⌉−1

)−1

.

Interestingly, the capacity of multi-server PIR with (uncoded) side information [25]

is also equal to ⌈ K
M+1
⌉−1 where M is the number of (uncoded) messages known to the

user in advance as side information. This shows that there will be no loss in capacity,

when compared to the case that the user knows M randomly chosen messages separately,

87

even if the user knows only one random linear coded combination of M randomly chosen

messages.

Proof of Theorem 7

3.5.1.1 Converse

The capacity of the multi-server PIR-CSI–I setting is upper bounded by the capacity of

multi-server setting of the PIR problem with uncoded side information where M uncoded

messages are available at the user as side information. As shown in [25], the capacity

of this problem is equal to CW−I =
(
1 + 1

N
+ · · ·+ 1

N
⌈ K
M+1

⌉−1

)−1

. In what follows, we

provide an alternative converse proof for the server-symmetric protocols.

Without loss of generality, suppose the user wishes to retrieve XW for a given W ∈

[K], and has a side information Y ≜ Y [S,C] for given S ∈ S, C ∈ C such that W ̸∈ S.

The user sends to the nth server a query Q
[W,S,C]
n , and the nth server responds to the user

with an answer A[W,S,C]
n . We want to show that the total entropy of the answers from all

servers, denoted by D, is lower bounded by (1 + 1/N + · · ·+ 1/N ⌈ K
M+1

⌉−1)L. The proof

proceeds as follows:

D ≥ H(A[W,S,C]|Q[W,S,C],Y)

= H(A[W,S,C],XW |Q[W,S,C],Y) (3.6)

= L+H(A[W,S,C]|Q[W,S,C],XW ,Y) (3.7)

≥ L+H(A
[W,S,C]
1 |Q[W,S,C],XW ,Y)

= L+H(A
[W,S,C]
1 |Q[W,S,C]

1 ,XW ,Y) (3.8)

where (3.6) follows from H(XW |A[W,S,C],Q[W,S,C],Y) = 0 (by the recoverability condi-

tion); (3.7) holds since XW is independent of (Q[W,S,C],Y), and H(XW |Q[W,S,C],Y) =

H(XW) = L; and (3.8) holds because A
[W,S,C]
1 only depends on (Q

[W,S,C]
1 ,X[K]), and is

88

conditionally independent of Q[W,S,C]
n for all n ̸= 1, given (Q

[W,S,C]
1 ,XW ,Y).

We will consider the following two cases separately: (i) ⌈K/(M + 1)⌉ = 1 (i.e., K =

M + 1), and (ii) ⌈K/(M + 1)⌉ > 1 (i.e., K > M + 1). In the case (i), we need to show

that D is lower bounded by L. Since H(A
[W,S,C]
1 |Q[W,S,C]

1 ,XW ,Y) ≥ 0, then D ≥ L

(by (3.8)).

In the case (ii), in order to continue lower bounding (3.8), we arbitrarily choose a

message, say XW1 , such that W1 ̸∈ W ∪ S. (Note that such W1 exists because |W ∪ S| =

M + 1 < K.) Based on Lemma 12, there exist S1 ∈ S , C1 ∈ C with W1 ̸∈ S1, and

accordingly Y1 ≜ Y [S1,C1], such that

H(A
[W,S,C]
1 |Q[W,S,C]

1 ,XW ,Y) = H(A
[W1,S1,C1]
1 |Q[W1,S1,C1]

1 ,XW ,Y).

Then, we can write

D ≥ L+H(A
[W,S,C]
1 |Q[W,S,C]

1 ,XW ,Y)

= L+H(A
[W1,S1,C1]
1 |Q[W1,S1,C1]

1 ,XW ,Y)

≥ L+H(A
[W1,S1,C1]
1 |Q[W1,S1,C1],XW ,Y).

Similarly, by the server-symmetry assumption we have

D ≥ L+H(A[W1,S1,C1]
n |Q[W1,S1,C1],XW ,Y)

for all n ∈ [N]. Combining all of these inequalities, we get

D ≥ L+
1

N

N∑
n=1

H(A[W1,S1,C1]
n |Q[W1,S1,C1],XW ,Y)

≥ L+
1

N
H(A[W1,S1,C1]|Q[W1,S1,C1],XW ,Y). (3.9)

89

To further lower bound (3.9), we can write

H(A[W1,S1,C1]|Q[W1,S1,C1],XW ,Y)

≥ H(A[W1,S1,C1]|Q[W1,S1,C1],XW ,Y,Y1)

= H(A[W1,S1,C1],XW1|Q[W1,S1,C1],XW ,Y,Y1) (3.10)

= L+H(A[W1,S1,C1]|Q[W1,S1,C1],XW ,Y,XW1 ,Y1) (3.11)

≥ L+H(A
[W1,S1,C1]
1 |Q[W1,S1,C1],XW ,Y,XW1 ,Y1)

= L+H(A
[W1,S1,C1]
1 |Q[W1,S1,C1]

1 ,XW ,Y,XW1 ,Y1) (3.12)

where (3.10) holds since XW1 is retrievable from A[W1,S1,C1], Q[W1,S1,C1], Y1,W1, S1, C1;

and (3.11) holds because XW1 is independent of (Q[W1,S1,C1],XW ,Y,Y1).

We consider two cases separately: (ii.1) ⌈K/(M +1)⌉ = 2, and (ii.2) ⌈K/(M +1)⌉ >

2. In the case (ii.1), from (3.9) and (3.12) it follows that D ≥ L+ L/N .

In the case (ii.2), to continue lower bounding (3.12), we pick a message, say XW2 ,

such that W2 ̸∈ W ∪ S ∪W1 ∪ S1. (Note that such W2 exists since |W ∪ S ∪W1 ∪ S1| ≤

2(M + 1) < K.) According to Lemma 12, there exist S2 ∈ S, C2 ∈ C with W2 ̸∈ S2, and

accordingly, Y2 = Y [S2,C2], such that

H(A
[W1,S1,C1]
1 |Q[W1,S1,C1]

1 ,XW ,Y,XW1 ,Y1) = H(A
[W2,S2,C2]
1 |Q[W2,S2,C2]

1 ,XW ,Y,XW1 ,Y1).

Thus, we have

H(A[W1,S1,C1]|Q[W1,S1,C1],XW ,Y)

≥ L+H(A
[W1,S1,C1]
1 |Q[W1,S1,C1]

1 ,XW ,Y,XW1 ,Y1)

= L+H(A
[W2,S2,C2]
1 |Q[W2,S2,C2]

1 ,XW ,Y,XW1 ,Y1)

≥ L+H(A
[W2,S2,C2]
1 |Q[W2,S2,C2],XW ,Y,XW1 ,Y1).

90

Similarly, by the server-symmetry assumption, we have

H(A[W1,S1,C1]|Q[W1,S1,C1],XW ,Y)

≥ L+H(A[W2,S2,C2]
n |Q[W2,S2,C2],XW ,Y,XW1 ,Y1)

for all n ∈ [N]. Combining all of these inequalities, we get

H(A[W1,S1,C1]|Q[W1,S1,C1],XW ,Y)

≥ L+
1

N
H(A[W2,S2,C2]|Q[W2,S2,C2],XW ,Y,XW1 ,Y1). (3.13)

Putting (3.9) and (3.13) together, we get

D ≥ L+
L

N
+

1

N2
H(A[W2,S2,C2]|Q[W2,S2,C2],XW ,Y,XW1 ,Y1).

By choosing the messages XWi
for the indices i ∈ {3, . . . , ⌈K/(M + 1)⌉} (similarly

as XW1 and XW2) recursively and using the same lower bounding technique, it can be

shown that

D ≥ L+ L/N + · · ·+ L/N ⌈ K
M+1

⌉−1.

3.5.1.2 Achievability

This section proposes a PIR-CSI–I protocol that achieves a rate equal to CW−I. The

proposed protocol employs the Randomized Partitioning (RP) scheme which we proposed

in [30] for single-server PIR-CSI (under Model I) as well as the Sun-Jafar scheme of [8]

for multi-server PIR.

We assume that each message consists of N ⌈K/(M+1)⌉ symbols over Fq.

Multi-Server PIR-CSI–I Protocol:

91

Step 1: The user utilizes the RP scheme of [30] to construct r ≜ ⌈ K
M+1
⌉ sequences

I1, . . . , Ir from indices in [K], each of length M + 1, and r sequences I ′1, . . . , I
′
r with

elements in F×
q , each of length M + 1. In particular, I1 = {W,S} and I ′1 = {c, C} where

C is the sequence of coefficients in the user’s side information Y [S,C], and c is randomly

chosen from F×
q . (For more details, see [30, Section IV-B].)

Step 2: The user then creates Ĩi and Ĩ ′i for each i ∈ [r] by reordering the elements of

both Ii and I ′i with the same randomly picked permutation πi : [M + 1] → [M + 1], and

constructs I∗i = (Ĩi, Ĩ
′
i). Then, the user sends {I∗σ(i)}i∈[r] to all servers, for a randomly

chosen permutation σ : [r]→ [r]. Note that in the RP scheme, {Ii}i∈[r] and {I ′i}i∈[r] are

designed in such a way that given {I∗σ(1), . . . , I∗σ(r)}, any index in [K] is equally likely to

be the user’s demand index.

Step 3: Using I∗σ(i) = (Ĩσ(i), Ĩ
′
σ(i)) for all i ∈ [r], the user and all the servers form r

super-messages X̂1, . . . , X̂r such that X̂i =
∑M+1

j=1 cijXij for all i ∈ [r], where Ĩσ(i) =

{i1, . . . , iM+1} and Ĩ ′σ(i) = {ci1 , . . . , ciM+1
}.

Step 4: The user and the servers then utilize the Sun-Jafar protocol with r super-

messages X̂1, . . . , X̂r in such a way that the user can privately download the super-message

X̂σ−1(1) = cXW + Y [S,C]; and subsequently, subtracting off Y [S,C] from X̂σ−1(1), the user

recovers XW .

Remark 7. Note that the proposed Multi-Server PIR-CSI–I protocol is a server-symmetric

protocol since as explained in Step 4 of this protocol, it builds upon the Sun-Jafar protocol

that enforces symmetry across servers [8].

Example 7. Assume that there are N = 2 servers, K = 9 messages from F38 (i.e., each

message has 8 symbols over F3), and M = 3. Suppose that the user demands the message

X1 and has a side information X2 + 2X3 + X4. Note that for this example, W = 1,

S = {2, 3, 4}, and C = {1, 2, 1}.

92

First, the user labels r = ⌈ K
M+1
⌉ = 3 sequences as I1, I2, I3, each of length M+1 = 4.

For creating these sequences, the user needs to have 12 indices, but at the beginning the

user has 9 indices. For selecting the remaining 3 required indices, following the RP scheme

of [30], the user selects w ∈ {0, 1}, s ∈ {0, 1, 2, 3}, and t ∈ {0, 1, . . . , 5} randomly chosen

indices from W = {1}, S = {2, 3, 4}, and T = {5, 6, 7, 8, 9}, respectively, according to a

carefully designed probability distribution (ensuring W -privacy of the RP scheme) on all

(w, s, t) such that w+ s+ t = 3. For this example, the probability distribution is given by

p(w, s, t) ≜

14
171

, w = 0, s = 3, t = 0

60
171

, w = 0, s = 2, t = 1

36
171

, w = 0, s = 1, t = 2

4
171

, w = 0, s = 0, t = 3

21
171

, w = 1, s = 2, t = 0

30
171

, w = 1, s = 1, t = 1

6
171

, w = 1, s = 0, t = 2

Suppose that the user chooses w = 1, s = 1, t = 1, and selects the 3 indices {1, 2, 5}.

Following the RP protocol, the user forms the sequence I1 = {W,S} = {1, 2, 3, 4}.

In the remaining 8 indices, there is one repetitive index, 5. For forming the other two

sequences, I2 and I3, the user places the repetitive index 5 into both I2 and I3. Next, the

user randomly partitions the remaining 6 indices, {1, 2, 6, 7, 8, 9}, into I2 and I3. For this

example, suppose that I2 = {5, 1, 7, 8} and I3 = {5, 2, 6, 9}.

The user then labels r = 3 sequences as I ′1, I
′
2, I

′
3, each of length 4. For this example,

suppose that the user creates I ′1 = I ′2 = I ′3 = {1, 1, 2, 1}. Then, the user randomly reorders

the elements of Ii and I ′i, and constructs

93

Ĩ1 = {2, 4, 1, 3}, Ĩ ′1 = {1, 1, 1, 2}

Ĩ2 = {7, 5, 1, 8}, Ĩ ′2 = {2, 1, 1, 1}

Ĩ3 = {2, 9, 6, 5}, Ĩ ′3 = {1, 1, 2, 1}.

Next, the user sends a uniform random permutation of {I∗1 , I∗2 , I∗3}, say {I∗1 , I∗3 , I∗2}, to

both servers, where I∗i = (Ĩi, Ĩ
′
i).

The user and the servers then form three super-messages as follows:

X̂1 = X2 +X4 +X1 + 2X3

X̂2 = X2 +X9 + 2X6 +X5

X̂3 = 2X7 +X5 +X1 +X8.

Finally, the user and the servers run the Sun-Jafar protocol as follows for the three

super-messages X̂1, X̂2, X̂3 in such a way that the user can privately download X̂1. For

each X̂i, let [X̂i,1, . . . , X̂i,8] be an independent and uniform random permutation of the 8

symbols (over F3) of X̂i. The user requests 7 symbols from the first server and 7 symbols

from the second server as listed in Table 3.4 [8], where the requested symbols are carefully

designed linear combinations of symbols {X̂i,j}i∈[3],j∈[8]. From the servers’ answers, the

Table 3.4: The queries/answers of Sun-Jafar protocol for 2 servers and 3 messages
X̂1, X̂2, X̂3, when the user demands X̂1.

Server 1 Server 2
X̂1,1, X̂2,1, X̂3,1 X̂1,2, X̂2,2, X̂3,2

X̂1,3 + X̂2,2 X̂1,5 + X̂2,1

X̂1,4 + X̂3,2 X̂1,6 + X̂3,1

X̂2,3 + X̂3,3 X̂2,4 + X̂3,4

X̂1,7 + X̂2,4 + X̂3,4 X̂1,8 + X̂2,3 + X̂3,3

94

user first obtains the super-message X̂1 = X2 + X4 + X1 + 2X3, and then recovers the

desired message X1 by subtracting off the side information X2 + 2X3 + X4. For this

example, the proposed protocol requires to download a total of 14 symbols (over F3),

achieving the rate of 8/14 = 4/7.

Lemma 15. The Multi-Server PIR-CSI–I protocol satisfies the recoverability and W -

privacy conditions, and achieves the rate (1 + 1/N + · · ·+ 1/N ⌈ K
M+1

⌉−1)−1.

Proof. Since the messages X1, . . . ,XK are uniformly and independently distributed over

Fqm , and the messages X̂1, . . . , X̂r are linearly independent combinations of X1, . . . , XK

over Fq, then X̂1, . . . , X̂r are independently and uniformly distributed over Fqm , i.e.,

H(X̂i) = m log2 q = L for all i ∈ [r]. Thus, the proposed protocol achieves the same rate

as the Sun-Jafar protocol for N servers and ⌈K/(M + 1)⌉ identically and independently

distributed messages, i.e., (1 + 1/N + · · ·+ 1/N ⌈ K
M+1

⌉−1)−1 (see [8, Theorem 1]).

From the step 4 of the proposed protocol, it can be easily confirmed that the recov-

erability condition is satisfied. The proof of W -privacy is as follows. By the design of

the protocol, all servers are fully aware of how the super-messages X̂1, . . . , X̂r have been

formed. From the perspective of each server, according to the RP protocol, each super-

message X̂i has a certain probability to be the super-message needed by the user, i.e.,

the super-message from which the user can recover the demanded message. On the other

hand, the Sun-Jafar protocol guarantees that given their query, no server can obtain any

information about which super-message is being requested by the user. That is, given their

query, from each server’s perspective the probability of any super-message X̂i to be the

super-message needed by the user remains the same as that in the RP protocol. Moreover,

the W -privacy of the RP protocol ensures that given their query, each server finds every

message in XK equally likely to be the user’s demand. This proves the W -privacy of the

proposed protocol.

95

3.5.2 Multi-Server PIR-CSI-II

Theorem 8. For the PIR-CSI–II problem with N servers, K messages, and side informa-

tion size M , when M = 2 or M = K, the capacity of is 1, and when 3 ≤M ≤ K − 1,

the server-symmetric capacity is given by CW−II =
N

N+1
, that is

CW−II =

1, M = 2, K,

N
N+1

, 3 ≤M ≤ K − 1.

.

This result shows that for the two corner cases of M = 2 and M = K, the cost of

retrieving one message privately is no more than that of downloading the message directly.

For the cases of 3 ≤ M ≤ K − 1, full privacy can be achieved for only an additional

download cost of L/N .

Proof of Theorem 8

3.5.2.1 Converse

Without loss of generality, suppose the user wishes to retrieve XW for a given W ∈

[K], and has a side information Y ≜ Y [S,C] for given S ∈ S, C ∈ C such that W ∈ S. We

need to show that the maximum total entropy of the answers from all servers, denoted by

D, is lower bounded by L when M = 2 or M = K, and is lower bounded by (1 + 1/N)L

when 3 ≤M ≤ K − 1.

The proof proceeds as follows:

D ≥ H(A[W,S,C]|Q[W,S,C],Y)

= H(A[W,S,C],XW |Q[W,S,C],Y) (3.14)

= L+H(A[W,S,C]|Q[W,S,C],XW ,Y) (3.15)

96

where (3.14) holds because of the recoverability condition, and (3.15) holds because XW

is independent of (Q[W,S,C],Y). By the non-negativity of the entropy, (3.15) yields D ≥

L, which completes the proof for the cases of M = 2 and M = K. For the cases of

3 ≤M ≤ K − 1, we continue lower bounding (3.15) as follows:

D ≥ L+H(A[W,S,C]|Q[W,S,C],XW ,Y)

≥ L+H(A
[W,S,C]
1 |Q[W,S,C],XW ,Y)

= L+H(A
[W,S,C]
1 |Q[W,S,C]

1 ,XW ,Y) (3.16)

where (3.16) holds because given (Q
[W,S,C]
1 ,XW ,Y), A[W,S,C]

1 is conditionally indepen-

dent of Q[W,S,C]
n for all n ̸= 1. In order to continue lower bounding (3.16), we choose an

arbitrary message, say XW1 , such that W1 ∈ S \W . According to Lemma 12, there exist

S1 ∈ S, C1 ∈ C with W1 ∈ S1, and accordingly Y1 ≜ Y [S1,C1], such that

H(A
[W,S,C]
1 |Q[W,S,C]

1 ,XW ,Y) = H(A
[W1,S1,C1]
1 |Q[W1,S1,C1]

1 ,XW ,Y).

Rewriting (3.16),

D ≥ L+H(A
[W1,S1,C1]
1 |Q[W1,S1,C1]

1 ,XW ,Y)

≥ L+H(A
[W1,S1,C1]
1 |Q[W1,S1,C1],XW ,Y).

Similarly, by the server-symmetry assumption, we can write

D ≥ L+H(A[W1,S1,C1]
n |Q[W1,S1,C1],XW ,Y)

97

for all n ∈ [N]. Combining all of these inequalities, we get

D ≥ L+
1

N
H(A[W1,S1,C1]|Q[W1,S1,C1],XW ,Y). (3.17)

To further lower bound H(A[W1,S1,C1]|Q[W1,S1,C1],XW ,Y), we can write

H(A[W1,S1,C1]|Q[W1,S1,C1],XW ,Y)

≥ H(A[W1,S1,C1]|Q[W1,S1,C1],XW ,Y,Y1)

= H(A[W1,S1,C1],XW1|Q[W1,S1,C1],XW ,Y,Y1) (3.18)

where (3.18) holds as XW1 is recoverable from A[W1,S1,C1], Q[W1,S1,C1], Y1,W1, S1, C1.

We consider two cases separately: (i) XW1 is independent of (Q[W1,S1,C1],XW ,Y,Y1),

and (ii) XW1 and (Q[W1,S1,C1],XW ,Y,Y1) are not independent.

In the case (i), as mentioned before XW1 and (Q[W1,S1,C1],XW ,Y,Y1) are indepen-

dent. This means that the following holds

H(XW1|Q[W1,S1,C1],XW ,Y,Y1) = H(XW1) = L.

Then, we can continue lower bounding (3.18) as follows:

H(A[W1,S1,C1]|Q[W1,S1,C1],XW ,Y)

≥ H(A[W1,S1,C1],XW1|Q[W1,S1,C1],XW ,Y,Y1)

= H(XW1|Q[W1,S1,C1],XW ,Y,Y1)

+H(A[W1,S1,C1]|Q[W1,S1,C1],XW ,Y,XW1 ,Y1)

= L+H(A[W1,S1,C1]|Q[W1,S1,C1],XW ,Y,XW1 ,Y1)

≥ L. (3.19)

98

By (3.17) and (3.19), D ≥ L+ L/N , as was to be shown.

In the case (ii), due to the dependence of XW1 and (Q[W1,S1,C1],XW ,Y,Y1) and

the linearity of XW , Y,XW1 , Y1, it must hold that Y = cWXW + cW1XW1 + Z and Y1 =

c′WXW + c′W1
XW1 + c′Z for some c′W , c′W1

, c′ ∈ F×
q , where Z =

∑
i∈S\{W,W1} ciXi, and

ci’s are the elements in the sequence C (i.e., the coefficients of the messages in the side

information Y). We proceed by lower bounding (3.16), when W,S,C, Y are replaced

by W1, S1, C1, Y1. To this end, we choose an arbitrary message, say XW2 , such that

W2 ̸∈ S. Based on Lemma 12, there exist S2 ∈ S, C2 ∈ C with W2 ∈ S2, and accord-

ingly Y2 ≜ Y [S2,C2], such that

H(A
[W,S,C]
1 |Q[W,S,C]

1 ,XW ,Y) = H(A
[W2,S2,C2]
1 |Q[W2,S2,C2]

1 ,XW ,Y).

We consider two cases: (ii.1) XW2 is independent of (Q[W2,S2,C2],XW ,Y,Y2), and

(ii.2) XW2 depends on (Q[W2,S2,C2],XW ,Y,Y2). In the case (ii.1), the proof follows the

exact same line as in the proof of case (i), and hence not repeated.

In the case (ii.2), XW2 must be recoverable from Q[W2,S2,C2], XW , Y, Y2 since XW2

depends on (Q[W2,S2,C2],XW ,Y,Y2).Thus, Y2 = c′′W2
XW2 + c′′(cW1XW1 + Z) for some

c′′W2
, c′′ ∈ F×

q . It is also easy to verify that XW2 is not recoverable from XW1 , Y1, Y2, and

XW2 is independent of (XW1 ,Y1,Y2). On the other hand, we have

D ≥ L+H(A
[W1,S1,C1]
1 |Q[W1,S1,C1]

1 ,XW1 ,Y1) (3.20)

= L+H(A
[W2,S2,C2]
1 |Q[W2,S2,C2]

1 ,XW1 ,Y1).

where (3.20) follows from (3.16) that holds for W1, S1, C1 (and Y1), because D is defined

as the total entropy of answers from all servers over all W ′ ∈ [K], S ′ ∈ S, C ′ ∈ C such that

99

W ′ ∈ S ′. Similarly as before, by the server-symmetry assumption it can also be shown that

D ≥ L+
1

N
H(A[W2,S2,C2]|Q[W2,S2,C2],XW1 ,Y1)

≥ L+
1

N
H(A[W2,S2,C2]|Q[W2,S2,C2],XW1 ,Y1,Y2). (3.21)

As XW2 is independent of (Q[W2,S2,C2],XW1 ,Y1,Y2), and XW2 is recoverable from

A[W2,S2,C2], Q[W2,S2,C2], and Y2, a simple application of the chain rule of entropy yields

H(A[W2,S2,C2]|Q[W2,S2,C2],XW1 ,Y1,Y2) ≥ L. (3.22)

By (3.21) and (3.22), D ≥ L+ L/N , as was to be shown.

3.5.2.2 Achievability

In this section, we propose a server-symmetric PIR-CSI–II protocol for each 2 ≤M ≤

K − 1 that achieves a rate equal to CW−II for the corresponding M .

For 3 ≤ M ≤ K − 1, we assume that each message consists of N2 symbols over Fq.

For M = 2 and M = K, each message can be as short as one Fq-symbol.

Multi-Server PIR-CSI–II Protocols:

Case of M = 2: The user randomly selects one of the two indices, say i, in S as

follows: i = W with probability 1/K, and i = S \W with probability (K − 1)/K. Then,

the user requests the message Xi from a randomly chosen server.

Case of 3 ≤ M ≤ K − 1: The proposed scheme for this case consists of four steps.

In the first step, given W,S,C (and Y [S,C]), the user utilizes the scheme of [30] for single-

server PIR-CSI (under Model II), which we refer to as Modified Randomized Partitioning

(MRP), to construct two sequences I1, I2 of indices in [K], each of length M − 1, and two

sequences I ′1, I
′
2 of elements in F×

q , each of length M − 1. (For details, see [30, Section V-

B].) Next, the user and the servers follow the steps 2-4 of the Multi-Server PIR-CSI–I

100

protocol.

Case of M = K: Assume, w.l.o.g., that W = 1. The user randomly chooses an

element c′1 from F×
q \ {c1}, where c1 is the coefficient of X1 in the side information Y [S,C].

Then, the user requests the linear combination c′1X1+c2X2+· · ·+cKXK from a randomly

chosen server, where ci is the coefficient of Xi in the side information Y [S,C].

Example 8. (Case of 3 ≤M ≤ K
2
+ 1) Assume that there are N = 2 servers, K = 10

messages from F34 (i.e., each message has 4 symbols over F3), and M = 4. Suppose that

the user demands the message X1 and has a coded side information X1+X2+2X3+X4.

Note that, for this example, W = 1, S = {1, 2, 3, 4}, and C = {1, 1, 2, 1}.

First, the user labels 2 sequences as I1, I2, each of length M − 1 = 3. For creating

these sequences, the user selects w ∈ {0, 1} and t ∈ {2, 3} randomly chosen indices

from W = {1} and T = {5, 6, 7, 8, 9, 10}, respectively, according to a carefully designed

probability distribution (ensuring W -privacy of the MRP scheme) on all (w, t) such that

w + t = 3. For this example, the probability distribution is given by

p(w, t) ≜

0.4, w = 0, t = 3

0.6, w = 1, t = 2

Suppose that the user chooses w = 1, t = 2, and selects the 3 indices {1, 6, 10}. Following

the MRP protocol, the user forms the sequence I1 = S\W = {2, 3, 4} and I2 = {1, 6, 10}.

The user then labels 2 sequences as I ′1, I
′
2, each of length 3. For this example, suppose

that the user creates I ′1 = {1, 2, 1}, I ′2 = {1, 1, 1}. Then, the user randomly reorders the

elements of Ii and I ′i, and constructs

Ĩ1 = {3, 2, 4}, Ĩ ′1 = {2, 1, 1}

Ĩ2 = {1, 10, 6}, Ĩ ′2 = {1, 1, 1}.

101

Table 3.5: The queries/answers of Sun-Jafar protocol for 2 servers and 2 messages X̂1, X̂2,
when the user demands X̂2.

Server 1 Server 2
X̂1,1 X̂1,2

X̂2,1 X̂2,2

X̂2,3 + X̂1,2 X̂2,4 + X̂1,1

Next, the user sends a uniform random permutation of {I∗1 , I∗2}, say {I∗2 , I∗1}, to both

servers, where I∗i = (Ĩi, Ĩ
′
i). The user and the servers form two super-messages as follows:

X̂1 = X1 +X10 +X6

X̂2 = 2X3 +X2 +X4.

Finally, the user and the servers run the Sun-Jafar protocol for the two super-messages

X̂1, X̂2 such that the user can privately download X̂2. For each X̂i, let [X̂i,1, . . . , X̂i,4] be

an independent and uniform random permutation of the 4 symbols (over F3) of X̂i. The

user requests 3 symbols from the first server and 3 symbols from the second server as listed

in Table 3.5 [8], where the requested symbols are carefully designed linear combinations

of symbols {X̂i,j}i∈[2],j∈[4]. From the servers’ answers, the user first obtains the super-

message X̂2 = 2X3+X2+X4, and then recovers the desired message X1 by subtracting off

X̂2 from the side information X1+X2+2X3+X4. For this example, the proposed protocol

requires to download a total of 6 symbols (over F3), achieving the rate of 4/6 = 2/3.

Example 9. (Case of K
2
≤M ≤ K − 1) Assume that there are N = 2 servers, K = 5

messages from F34 (i.e., each message has 4 symbols over F3), and M = 4. Suppose that

the user demands the message X1 and has coded a side information X1+X2+2X3+X4.

Note that, for this example, W = 1, S = {1, 2, 3, 4}, and C = {1, 1, 2, 1}.

First, the user labels 2 sequences as I1, I2, each of length M = 4. For creating these

102

sequences, the user selects w ∈ {0, 1} and t ∈ {2, 3} randomly chosen indices from

W = {1} and T = {2, 3, 4}, respectively, according to a carefully designed probability

distribution (ensuring W -privacy of the MRP scheme) on all (w, t) such that w + t = 3.

For this example, the probability distribution is given by

p(w, t) ≜

0.4, w = 0, t = 3

0.6, w = 1, t = 2

Suppose that the user chooses w = 1, t = 2, and selects the 3 indices {1, 2, 4}. Following

the MRP protocol, the user forms the sequence I1 = S = {1, 2, 3, 4} and I2 = {5, 1, 2, 4}.

The user then labels 2 sequences as I ′1, I
′
2, each of length 4. For this example, suppose

that the user creates I ′1 = {2, 1, 2, 1}, I ′2 = {1, 2, 1, 1}. Then, the user randomly reorders

the elements of Ii and I ′i, and constructs

Ĩ1 = {1, 4, 2, 3}, Ĩ ′1 = {2, 1, 1, 2}

Ĩ2 = {1, 5, 2, 4}, Ĩ ′2 = {2, 1, 1, 1}.

Next, the user sends a uniform random permutation of {I∗1 , I∗2}, say {I∗2 , I∗1}, to both

servers, where I∗i = (Ĩi, Ĩ
′
i). The user and the servers form two super-messages as follows:

X̂1 = 2X1 +X5 +X2 +X4

X̂2 = 2X1 +X4 +X2 + 2X3.

Finally, the user and the servers run the Sun-Jafar protocol as explained in the previous

example for the two super-messages X̂1, X̂2 in such a way that the user can privately

download X̂2. The user requests 3 symbols from the first server and 3 symbols from the

103

second server as listed in Table 3.5 [8]. From the servers’ answers, the user first obtains

the super-message X̂2 = 2X1+X4+X2+2X3, and then recovers the desired message X1

by subtracting off the side information X1 +X2 + 2X3 +X4 from X̂2. For this example,

the proposed protocol requires to download a total of 6 symbols (over F3), achieving the

rate of 4/6 = 2/3.

Lemma 16. The Multi-Server PIR-CSI–II protocols for the cases of M = 2, 3 ≤ M ≤

K − 1, and M = K are server-symmetric protocols that satisfy the recoverability and the

W -privacy conditions, and achieve the rates 1, N/(N + 1), and 1, respectively.

Proof. The proof is similar to the proof of Lemma 15, and omitted to avoid repetition.

104

4. PRIVATE LINEAR TRANSFORMATION*

4.1 Introduction

This work studies the Private Linear Transformation (PLT) problem, recently intro-

duced in [49, 50], in which an identical copy of a database consisting of K independent

messages are stored over N servers. There is a user who wishes to compute L independent

linear combinations of a subset of D messages in the database, without revealing any infor-

mation to the servers about the identities of the D messages required for the computation,

while downloading the minimum possible amount of information from the servers.

The PLT problem can be viewed as an interesting extension of the Private Information

Retrieval (PIR) (see e.g., [8,10–12,19–21,30–37,86–88]) and Private Linear Computation

(PLC) (see e.g., [82,85,89,90]) problems, which have been extensively studied in the liter-

ature. To be more specific, for L = D, the PLT problem reduces to the multi-message PIR

problem in which the goal is to privately retrieve a subset of D messages in the database.

Moreover, for L = 1, the PLT problem reduces to the PLC problem in which the goal is to

privately compute one linear combination of a D-subset of messages. The PLT problem

can be motivated by several practical scenarios such as linear transformation technique

applied for dimensionality reduction in Machine Learning (ML) applications (see [50]).

Related Work: In the classical PIR problem, a user wants to privately download a mes-

sage from N replicated non-colluding servers. The capacity of the information-theoretic

PIR was derived in [8]. Then, the PIR problem has been extended in various directions,

such as coded PIR (see e.g., [12, 19, 20]), multi-message PIR (see e.g., [10, 11, 21, 32]),

and PIR with side information (see e.g., [30–37]).

*Reprinted with permission from [38] "Multi-Server Private Linear Transformation with Joint Privacy,"
by F. Kazemi and A. Sprintson, 2021. In Proceedings of 2021 XVII International Symposium "Problems
of Redundancy in Information and Control Systems" (REDUNDANCY), pp. 182-187, Oct 2021. Copy-
right © by IEEE.

105

The problem of Private Computation (PC), initially introduced in [85], is an interest-

ing generalization of the PIR problem, in which the user wishes to compute one arbitrary

linear combination of the messages in the database, while revealing no information about

the identities and the coefficients of these messages to any server. Several variants of the

PC problem were also studied in [82, 89–96]. In [90], a variation of the PC problem was

considered in which it is only required to protect the identities of the messages in the de-

manded linear combination, while the coefficients used to construct the linear combination

do not need to be hidden from the server.

The most related to this work is the PLT problem, recently introduced in [49,50], which

is also closely related to the PIR and PLC problems. Indeed, a naive protocol for the PLT

problem is to privately retrieve all the D messages required for the computation using a

multi-message PIR scheme, and then compute the required linear combinations. Another

simple approach for the PLT problem is to compute each required linear combination

separately using a PLC protocol.

Although there is a significant body of literature on the PIR and PLC problems, there

are only a few studies on the PLT problem. In particular, the PLT problem was studied

in the single-server setting by considering the following two privacy requirements: (i) the

individual privacy, where the identity of each individual message in the support set of the

demanded linear combinations needs to be kept private [49]; and (ii) the joint privacy, in

which the identity of the entire set of messages in the support set of the demanded linear

combinations must be kept private [50]. All variants of the PIR and PC problems, can also

be considered for the PLT that opens several interesting directions for future work.

In [50], Heidarzadeh et al. recently proved that the capacity of the PLT with a single

server and joint privacy is L/(K−D+L). However, the capacity of the PLT in the multi-

server scenario was left open in [50]. Remarkably, neither a general achievability scheme

nor a converse was known in this case. This work is motivated by this open problem.

106

Our Contributions

In this chapter, we consider the multi-server setting of the PLT problem with an ar-

bitrary number of servers N ≥ 1. We focus on the setting in which the coefficient ma-

trix of the required linear combinations generates a Maximum Distance Separable (MDS)

code. This setting can be motivated by several practical scenarios. For instance, the

user may have chosen the the coefficient matrix randomly over the field of real num-

bers or a finite field of large size [50]. The first contribution of this work is to show

that the capacity of PLT problem for the case of L = 1, i.e., when the user wishes to

compute one linear combination of D messages, is equal to Φ(1/N,K − D + 1), where

Φ(A,B) = (1 + A+ A2 + · · ·+ AB−1)
−1. This result establishes the capacity of the PLC

problem for an arbitrary number of servers N , thus settling the open problem mentioned

above for the case of L = 1. Moreover, we establish an upper bound on the capacity of

PLT problem for any arbitrary parameters N,K,D,L ≥ 1, and based on some known ca-

pacity results, we show the tightness of the provided upper bound for some special cases

of the problem: (i) the case where there is a single server (i.e., N = 1), (ii) the case where

L = 1, and (iii) the case where L = D.

4.2 Problem Formulation

4.2.1 Basic Notation

Throughout this chapter, we denote random variables by bold letters and their real-

izations by regular letters. The functions P(·), P(·|·), H(·), H(·|·), and I(·; ·|·) denote

probability, conditional probability, entropy, conditional entropy, and conditional mutual

information, respectively. Let Z≥0 and N denote the set of non-negative integers and the

set of positive integers, respectively. For any i ∈ N, let [i] ≜ {1, . . . , i}. Let Fq be a

finite field for some prime q, F×
q ≜ Fq \ {0} be the multiplicative group of Fq, and FS

q be

the S-dimensional vector space over Fq for some integer S ≥ 1. Let B ≜ S log2 q. Let

107

K,D,L ≥ 1 be integers such that L ≤ D ≤ K. Let K ≜ [K]. Let W denote the set of

all D-subsets (i.e., subsets of size D)W of K, and V denote the set of all MDS matrices

V of dimension L ×D with entries in Fq (i.e., every L × L submatrix of V is full-rank).

We denote the cardinality of a set S by |S|. For a positive real number A and a positive

integer number B, let Φ(A,B) = (1 + A+ A2 + · · ·+ AB−1)
−1.

4.2.2 Setup and Assumptions

Consider N non-colluding servers, each stores an identical copy of a database con-

sisting of K messages, XK = {X1, . . . , XK}, where each message Xi is a row vector

of length S. Let X ≜ [X⊤
1 , · · · , X⊤

K]
⊤ be a matrix of dimension K × S. For some

R ≜ {i1, . . . , ir} ⊂ K, let XR be the submatrix of X of size |R|×S, restricted to its rows

indexed by the setR, i.e., XR = [X⊤
i1
, · · · , X⊤

ir]
⊤.

Suppose that there is a user who wishes to compute L linear combinations of D mes-

sages {Xi : i ∈ W}, as V1XW , · · · , VLXW , where W ∈ W is the index set of the D

messages required for the computation, and Vℓ, ℓ ∈ [L], denoting the coefficient vector of

the ℓth desired linear combination, is the ℓth row of an L×D MDS matrix V with entries

in Fq, i.e., V = [V ⊤
1 , · · · , V ⊤

L]⊤, V ∈ V. In other words, the user wants to compute the

L × S matrix Z [W,V] ≜ V XW whose rows are the L required linear combinations. We

refer to Z [W,V] as the demand,W as the demand’s index set, V as the demand’s coefficient

matrix, L as the demand’s dimension, and D as the demand’s support size.

We assume that X1, · · · ,XK are independently and uniformly distributed over FS
q , that

is, H(Xi) = B for i ∈ K. Thus, H(X) = KB, H(XR) = |R|B for every R ⊂ K, and

H(Z[W,V]) = LB. We also assume that W , V, and X are independent random variables

such that W and V are uniformly distributed over W and V, respectively. Moreover, we

assume that the servers initially know the distributions of W and V, whereas the servers

have no information about the realizationsW and V in advance.

108

4.2.3 Privacy and Recoverability Conditions

To retrieve the demand Z [W,V] for any given W and V , user generates N queries

{Q[W,V]
n }n∈[N], and sends the query Q

[W,V]
n to the n-th server. Note that server n just

receives Q[W,V]
n without having any access to other queries (non-colluding servers assump-

tion). Each query Q
[W,V]
n is a (potentially stochastic) function ofW and V . For clarity, we

denote Q[W,V] ≜ {Q[W,V]
n }n∈[N] and Q[W,V] ≜ {Q[W,V]

n }n∈[N].

Once the n-th server receives the query Q
[W,V]
n , it responds back to the user with an

answer A[W,V]
n . The answer A[W,V]

n is a (deterministic) function of the query Q
[W,V]
n and

X , i.e., H(A
[W,V]
n |Q[W,V]

n ,X) = 0. For clarity, we denote A[W,V] ≜ {A[W,V]
n }n∈[N] and

A[W,V] ≜ {A[W,V]
n }n∈[N].

Recoverability Condition: The answers A[W,V] from all the servers along with the

queries Q[W,V], and the realizations W , V must enable the user to retrieve the demand

Z [W,V]. This condition is referred to as the recoverability condition, as formally stated in

the following

H(Z[W,V]|A[W,V],Q[W,V],W ,V) = 0,

Privacy Condition: The queries Q[W,V] should be designed such that the servers infer

no information about the user’s demand index setW . This condition is referred to as the

joint privacy condition, formally stated as follows

I(W ;Q[W,V]
n ,A[W,V]

n ,XK) = 0 ∀n ∈ [N].

Equivalently, from the perspective of each server, every D-subset of indices K must be

equally likely to be the demand’s index set, i.e., for any given W̃ ∈W, it must hold that

P(W = W̃|Q[W,V]
n = Q[W,V]

n) = P(W = W̃) ∀n ∈ [N].

109

4.2.4 Problem Statement

The problem is to design a protocol for generating queries {Q[W,V]
n }n∈[N] and their

corresponding answers {A[W,V]
n }n∈[N] (for any givenW and V) such that both the privacy

and recoverability conditions are satisfied. We refer to this problem as Private Linear

Transformation (PLT). A protocol for generating queries/answers for PLT is referred to as

a PLT protocol.

The rate of a PLT protocol is defined as the ratio of the entropy of demand , i.e.,

H(Z[W,V]) = LB, to the total entropy of answers from the servers, i.e., ΣN
n=1H(A

[W,V]
n).

The capacity of the PLT problem, denoted by CPLT (N,K,L,D), is defined as the supre-

mum of rates over all PLT protocols, i.e.,

CPLT (N,K,L,D) ≜ sup
LB

ΣN
n=1H(A

[W,V]
n)

In this work, our goal is to characterize (or derive non-trivial bounds on) the capacity of

the PLT problem, i.e., CPLT (N,K,L,D), and to design a PLT protocol that is capacity-

achieving.

4.3 Main Results

In this section, we present our main results. Theorem 9 establishes an upper bound

on the capacity of the PLT problem for all parameters N,K,L,D ≥ 1. Leveraging some

known capacity results, we show that the presented upper bound is tight in the following

regimes: (i) the case where there is a single server (i.e., N = 1), (ii) the case where L = 1,

and (iii) the case where L = D. Theorem 10 characterizes the capacity of the PLT problem

for all parameters N,K,D ≥ 1 and L = 1, i.e., the case where the user wishes to privately

compute one linear combination of D messages in the database. The proofs of theorems 9

and 10 are given in sections 4.4 and 4.5, respectively.

110

Theorem 9. The capacity of PLT problem with N non-colluding and replicated servers,

K messages, demand’s support size D, and demand’s dimension L,

(i) if K−D
L
≤ 1, is upper bounded by

CPLT (N,K,L,D) ≤
(
1 +

K −D

LN

)−1

,

(ii) and if K−D
L
≥ 1, is upper bounded by

CPLT (N,K,L,D) ≤

(
1−

(
1
N

)⌊θ⌋
1− 1

N

+
(θ − ⌊θ⌋)
N ⌊θ⌋

)−1

.

where θ ≜ K−D+L
L

.

The converse proof is provided in Section 4.4, which is based on a reduction argu-

ment and leverages the capacity result for multi-message PIR with private side information

problem, introduced in [88].

Corollary 1. If K−D
L
∈ Z≥0, the capacity upper bounds provided in Theorem 9, can be

written as

CPLT (N,K,L,D) ≤
(
1 +

1

N
+ · · ·+ 1

N
K−D

L

)−1

= Φ(
1

N
,
K −D + L

L
).

Remark 8. The capacity upper bounds in Theorem 9 are tight for the case when N = 1

(i.e., when there is a single server), which is equal to L/(K − D + L) as was shown

in [50, Theorem 2]. Moreover, in Theorem 10, we prove the tightness of this upper bound

for the case of L = 1.

Remark 9. Notably, for the case of L = D, where the user wishes to privately com-

pute D independent linear combinations of D-subset of messages in the database (that is

111

equivalent to privately retrieving these D messages), the capacity upper bound in Theo-

rem 9, i.e., (i) (1 + (K −D)/DN)−1 if K/D ≤ 2, and (ii) Φ(1/N,K/D) if K/D ≥ 2

and K/D ∈ N, is tight as was shown in [11]. Note that in this case, an optimal capacity-

achieving multi-message PIR protocol proposed in [11, Theorems 1, 2] is an optimal pro-

tocol that achieves the capacity upper bound in Theorem 9.

Theorem 10. The capacity of the PLT problem with N non-colluding and replicated

servers, K messages, demand’s support size D, and demand’s dimension L = 1, is given

by

CPLT (N,K, 1, D) =

(
1 +

1

N
+ · · ·+ 1

NK−D

)−1

= Φ

(
1

N
,K −D + 1

)
.

The converse proof follows directly from the result of Theorem 9 for L = 1. Also, an

alternative proof of converse, similar to that of Theorem 9, is provided in Section 4.5. For

the achievability proof, we design a PLT protocol that achieves the proposed upper bound

provided by converse, and is inspired by both our recently proposed scheme of [34] for the

single-server PIR with private coded side information problem, and the scheme proposed

in [85] for the private computation problem.

Remark 10. The result of Theorem 10 generalizes the previous finding reported in [50]

for the PLT problem with a single server, without any prior side information, when joint

privacy is required, and L = 1. As was shown in [50], the capacity of this setting is

equal to K −D + 1, which is consistent with the result of Theorem 10 for N = 1. Also,

evidently it can be observed that for the case of D = 1, the result of Theorem 10 reduces

to the known capacity result of [8] for the classical PIR problem where the user wants to

privately download one message in the database, which is Φ (1/N,K).

Remark 11. It is worthwhile to compare the result of Theorem 10 with the capacity result

of [85] for the related PC problem where the user wishes to compute one arbitrary lin-

112

ear combination of K independent messages in a database replicated at N non-colluding

servers, while hiding both the identities and the coefficients of the messages participating

in the demand. As was shown in [85], the capacity of this setting is equal to Φ (1/N,K).

Unlike the privacy requirements in the private computation problem introduced in [85], in

the PLT problem, the goal is to hide only the identities of the D messages participating

in the user’s demand and not necessarily the values of their coefficients, which based on

the result of Theorem 10, it can be fulfilled more efficiently with much higher rate, i.e.,

Φ (1/N,K −D + 1). This is interesting since this type of access privacy are motivated

by many practical scenarios such as linear transformation technique used for dimension-

ality reduction in Machine Learning (ML) applications (see, e.g. [50, 97] and references

therein). By comparing the capacity results of these two problems, one can readily con-

clude that the advantage of PLT protocols over the a repeated use of a PC protocol becomes

more tangible when the demand’s support size D increases.

Remark 12. It is noteworthy that for* D ≥ 2, a trivial PLT protocol for L = 1 would

be privately retrieving the D messages required for the linear computation using an opti-

mal multi-message PIR scheme satisfying privacy of demand messages jointly, introduced

in [11], and then computing the required linear combination. As was shown in [11, Theo-

rems 1, 2], the optimal rate that can be achieved leveraging this approach, is upper bounded

by D−1 ≤ 1/2. The result of Theorem 10 indicates that the PLT problem in general can

be addressed much more efficiently with the rate of Φ(1/N,K −D + 1) ≥ 1/2.

Remark 13. Interestingly, in the PLT problem, a simple approach of computing each of

the required linear combinations separately through applying an optimal PLT scheme in-

troduced in Theorem 10, cannot achieve the capacity upper bound presented in Theorem 9

for all parameters N,K,L,D.
*Note that for the case of D = 1, the PLT problem reduces to the classical single-message PIR problem

introduced in [8].

113

4.4 Proof of Theorem 9

Converse

The proof of converse follows from the capacity result for the problem of multi-

message PIR with private side information, referred to as M-PIR-PSI, introduced in [88,

Theorem 1]. In this problem, there is a database of K independent messages whose copies

are replicated across N servers, and there is a user who has access to M messages from the

database as side information. The user wishes to retrieve P messages from the database

while leaking no information about the the identities of both the desired messages and the

side information messages, to any individual server. As was shown in [88, Theorem 1],

the capacity of this setting, denoted by CMPIR−PSI(N,K, P,M),

(i) if K−M
P
≤ 2 is given by

CMPIR−PSI(N,K, P,M) =

(
1 +

K −M − P

PN

)−1

, (4.1)

(ii) if K−M
P
≥ 2 is upper bounded by

CMPIR−PSI(N,K, P,M) ≤

(
1−

(
1
N

)⌊ρ⌋
1− 1

N

+
(ρ− ⌊ρ⌋)
N ⌊ρ⌋

)−1

, (4.2)

where ρ ≜ K−M
P

. In case (ii), as was shown [88, Corollary 1], if K−M
P
∈ N, the capacity

is given by

CMPIR−PSI(N,K, P,M) = Φ(
1

N
,
K −M

P
). (4.3)

In the following, we want to show that any PLT protocol designed for the problem

with N servers, K messages, demand’s support size D, and demand’s dimension L, can

be used as a protocol that satisfies both the recoverability and the privacy conditions of

the M-PIR-PSI problem with demand size P = L and side information size M = D − L.

114

Specifically, for a given instance of the M-PIR-PSI problem with the set of demand indices

P of size L, (i.e., P = L), and the set of side information indices S of size D − L , (i.e.,

M = D − L), the user can construct a random L × D MDS matrix V and forms the set

W = P ∪ S. Then, for the given W and V , the user and the servers can apply a PLT

protocol for generating queries Q[W,V] and their corresponding answers A[W,V], such that

the user can privately compute L MDS coded linear combinations of the D messages

indexed by the set W (i.e., union of demands and side information messages). The user

can then retrieve the L desired messages by subtracting off the contribution of the D − L

side information messages from the computed L linear combinations.

Now, we need to prove that the PLT-based protocol described above satisfies both

the recoverability and the joint privacy conditions of the M-PIR-PSI problem. It should

be noted that since the PLT protocol enables the user to compute L MDS coded linear

combinations of D messages, based on the property of MDS codes†, one can readily verify

that the user can always retrieve the L desired messages by subtracting off the contribution

of D − L side information messages from the L computed linear equations, and solving

the resulting system of L linear equations with L unknowns. Thus, the recoverability

condition is satisfied.

It is easy to verify that by applying the PLT protocol, the identities of all the D mes-

sages (i.e., the union of the demand messages and side information messages) participating

in the L linear combinations, will be jointly protected from each server as a result of the

privacy guarantees of the PLT protocol. Indeed, from the perspective of each server, every

D-subset of K messages is equally likely to be the union of the demand messages and

side information messages. Moreover, due to the property of MDS codes, within each D-

subset of messages, every subset of size L can be considered as the set of demand messages

(i.e., the remaining D−L as the set of side information messages) with equal probability.

†Every L× L submatrix of an L×D MDS matrix is invertible.

115

This ensures that the described PLT-based protocol satisfies the privacy condition in the

M-PIR-PSI problem.

Thus, we conclude that any achievable rates in the PLT problem with N servers, K

messages, demand’s support size D, and demand’s dimension L, would be also achievable

(using the PLT-based protocol) in the M-PIR-PSI problem with N servers, K messages,

demand size P = L, and side information size M = D − L. Thus, the capacity of PLT

problem with parameters N,K,D,L, i.e., CPLT (N,K,L,D), is upper bounded by the

capacity of the M-PIR-PSI problem with parameters N,K, P = L,M = D − L, i.e.,

CMPIR−PSI(N,K,L,D − L). Thus, substituting P with L, and M with D − L in equa-

tions 4.1, 4.2 completes the proof. Also, in case (ii), if K−M
P

= K−D+L
L

∈ N or equiva-

lently K−D
L
∈ Z≥0, we have

CPLT (N,K,L,D) ≤ CMPIR−PSI(N,K,L,D − L) = Φ(
1

N
,
K −D + L

L
).

4.5 Proof of Theorem 10

We prove the converse by showing that the capacity for the case of L = 1, that is

CPLT (N,K, 1, D), is upper bounded by the capacity of PIR with private side informa-

tion problem, referred to as PIR-PSI, in which a database of K independent messages is

replicated across N servers, and the user has access to M messages from the database as

side information. The user wants to retrieve one message from the database while hid-

ing jointly the identities of the desired message and the side information messages, from

any individual server. This problem was introduced by Chen et al. [87]. As was shown

in [87, Theorem 1], the capacity of PIR-PSI problem, denoted by CPIR−PSI(N,K,M), is

equal to Φ(1
N
, K −M).

Any PLT protocol designed for the problem with N servers, K messages, demand’s

support size D, and demand’s dimension L = 1, enables the user to compute one linear

116

combination of a subset of D messages while hiding the identities of these messages from

any server. So, based on a similar reasoning used in the converse proof of Theorem 9,

one can easily confirm that such PLT protocol would also be a protocol satisfying the re-

coverability and the privacy conditions in the PIR-PSI problem with side information size

M = D − 1. Thus, any achievable rate in the PLT problem with N servers, K messages,

demand’s support size D, and demand’s dimension L = 1, can be also achieved for the

PIR-PSI problem with N servers, K messages, and side information size M = D − 1.

Thus, we have

CPLT (N,K, 1, D) ≤ CPIR−PSI(N,K,D − 1) = Φ(
1

N
,K −D + 1).

Achievability

In this section, we complete the proof of Theorem 10 by designing a PLT protocol

for the setting with N servers, K messages, demand’s support size D, and demand’s di-

mension L = 1, such that it achieves the upper bound provided by converse on the rate

of any such PLT protocols, i.e., Φ(1/N,K −D + 1). The proposed protocol, referred to

as the Modified GRS Code, leverages ideas from a modified version of the Specialized

GRS Code Protocol proposed for the problem of single-server PIR with private coded side

information in [34], as well as the PC scheme proposed for the PC problem in [85].

Modified GRS Code protocol: Assume q ≥ K, and let each message consists of

S = N(KD) symbols from Fq. Suppose the user wishes to privately compute one linear

combination of D messages indexed by a set W , as V1XW =
∑

i∈W viXi where V1 is a

row vector of length D. This protocol consists of four steps as follows:

Step 1: By using the Modified Specialized GRS Code protocol proposed in [34], the

user first constructs a polynomial p(x) =
∑K−D

i=0 pix
i ≜

∏
i ̸∈W(x− ωi) where ω1, . . . , ωK

are K distinct arbitrarily chosen elements from Fq. The user then constructs r ≜ K−D+

117

1 vectors Q1, . . . , Qr, each of length K, such that Qi = [α1ω
i−1
1 , . . . , αKω

i−1
K], i ∈ [r],

where αj =
vj

p(ωj)
for any j ∈ W , and αj is chosen randomly from F×

q for any j ̸∈ W .

Step 2: Let X̂i ≜
∑K

j=1 αjω
i−1
j Xj for i ∈ [r]. We refer to X̂i as a super-message.

Note that the vector Qi, constructed in Step 1, is the vector of coefficients of the messages

{Xi}i∈K in the super-message X̂i. Let F ≜
(
K
D

)
, and let W1,W2, . . . ,WF be the collection

of all D-subsets of K in a lexicographical order. The structure of the Specialized GRS

Code protocol [34] ensures that for each Wf , f ∈ [F], there exist exactly q − 1 linear

combinations Y 1
f , Y

2
f , . . . , Y

q−1
f of the messages {Xi}i∈Wf

with (non-zero) coefficients

from F×
q , such that for every k ∈ [q − 1], Y k

f can be written as a linear combination of

the super-messages X̂1, . . . , X̂r. Let βk
f ≜ [βk

f,1, . . . , β
k
f,r] be a vector of length r such

that Y k
f =

∑r
i=1 β

k
f,iX̂i. It should be noted that, for each f ∈ [F], Y 1

f , Y
2
f , . . . , Y

q−1
f are

the same up to a scalar multiple, i.e., for each k ∈ [q − 1], Y k
f = δkY

1
f , or equivalently,

βk
f = δkβ

1
f , for some distinct δk ∈ F×

q . The user then constructs F vectors β1, . . . , βF , each

of length r, such that βf = β
kf
f for f ∈ [F], is chosen arbitrarily from the set of vectors

{βk
f}k∈[q−1]. Let Yf ≜ Y

kf
f for f ∈ [F]. Each Yf is referred to as a (linear) function. Note

that βf is the vector of coefficients of the super-messages {X̂i}i∈[r] in the function Yf .

Step 3: The user then sends to all servers the vectors Q1, . . . , Qr, associated with

the super-messages X̂1, . . . , X̂r, and the vectors β1, . . . , βF , associated with the functions

Y1, . . . , YF .

Step 4: Then, the user and the servers leverage the PC scheme of [85] with r (indepen-

dent) messages and F (linear) functions of these messages such that the user can privately

retrieve one of these functions. Indeed, the r = K −D + 1 super-messages {X̂i}i∈[r] and

the F functions {Yf}f∈[F], respectively, play the role of the original messages and the func-

tions in the PC scheme, and the user is interested in retrieving the function Yf∗ privately,

where Yf∗ is a linear combination with non-zero coefficients of the messages {Xi}i∈W .

Note that by construction, there exists only one function Yf∗ among Y1, . . . , YF such that

118

Yf∗ is a linear combination (with only non-zero coefficients) of the messages {Xi}i∈W ,

and the user’s demand is an scalar multiple of Yf∗ . More specifically, each server first con-

structs the super-messages {X̂i}i∈[r] by using the coefficient vectors {Qi}i∈[r] as described

in Step 2, and then constructs the functions {Yf}f∈[F] by utilizing the super-messages

{X̂i}i∈[r] and the coefficient vectors {βf}f∈[F] as explained in Step 2. Note that each

function Yf for f ∈ [F] consists of S = NF symbols (from Fq) where N is the number of

servers. Then, each server sends to the user S(1/N + 1/N2 + · · ·+ 1/NK−D+1) carefully

designed linear combinations of all symbols associated with all functions {Yf}f∈[F]. The

details of the design of the user’s query to each server and each server’s transmitted linear

combinations (which also depend on the query of the user) can be found in [85, Section 4].

Example 1. (Modified GRS Code protocol) Assume that K = 4 independent messages

from F16
5 are replicated over N = 2 servers, and the user wishes to compute one linear

combination of D = 3 messages as 2X1 +X2 +X3, i.e.,W = {1, 2, 3} and V1 = [2, 1, 1]

(i.e., v1 = 2, v2 = 1, and v3 = 1). Note that each message consists of S = N(KD) = 16

symbols from F5.

First, the user chooses K = 4 distinct elements ω1, . . . , ω4 from F5. Suppose that

the user picks ω1 = 0, ω2 = 1, ω3 = 2, ω4 = 3, and then constructs the polynomial

p(x) =
∏

i ̸∈W(x− ωi) = x − ω4 = x − 3. Then, the user computes αj for j ∈ W , as

follows; α1 =
v1

p(ω1)
= 1, α2 =

v2
p(ω2)

= 2 and α3 =
v3

p(ω3)
= 4, and chooses αj for j ̸∈ W ,

i.e., α4, randomly from F×
5 . Assume that the user chooses α4 = 2.

Then, the user constructs r = K −D + 1 = 2 vectors Q1 and Q2, each of length

K = 4, such that Qi = [α1ω
i−1
1 , . . . , αKω

i−1
K] for i ∈ {1, 2}, i.e., the user constructs

Q1 = [1, 2, 4, 2] and Q2 = [0, 2, 3, 1]. Note that for the set W1 = {1, 2, 3}, there exist

exactly q − 1 = 4 vectors βk
1 = [2k, k] for k ∈ [4] such that 2kQ1 + kQ2 = k[2, 1, 1, 0].

Then, the user arbitrarily chooses the vector β1 from the set of vectors {βk
1 = [2k, k]}k∈[4].

Suppose that the user chooses β1 = β2
1 = [4, 2]. Similarly, the user picks the vectors

119

β2 = [3, 1], β3 = [1, 4] and β4 = [0, 3]. Then, the user sends to all servers the vectors

Q1 and Q2 (associated with the super-messages X̂1 and X̂2), and the vectors β1, . . . , β4

(associated with the functions Y1, . . . , Y4). Using the coefficient vectors Q1 and Q2,

each server first constructs the two super-messages X̂1 = X1 + 2X2 + 4X3 + 2X4 and

X̂2 = 2X2 + 3X3 +X4, and then constructs the functions Y1, . . . , Y4 using the super-

messages X̂1 and X̂2 and the coefficient vectors β1, . . . , β4 as follows:

Y1 = 4X̂1 + 2X̂2 = 4X1 + 2X2 + 2X3

Y2 = 3X̂1 + X̂2 = 3X1 + 3X2 + 2X4

Y3 = X̂1 + 4X̂2 = X1 +X3 +X4

Y4 = 3X̂2 = X2 + 4X3 + 3X4

Finally, the user and the servers apply the PC scheme of [85] for two super-messages

X̂1, X̂2 in order for the user to privately retrieve the function Y1. It should be noted

that among the functions Y1, . . . , Y4, only Y1 is a linear combination of the messages

{Xi}i∈W = {X1, X2, X3}, and the user’s demand, i.e., 2X1 + X2 + X3 is equal to 3Y1.

The details of the PC scheme for this example are as follows. Let π : [16] → [16]

be a randomly chosen permutation. Let uf (i) ≜ σiYf (π(i)) for f ∈ [4] and i ∈ [16],

where Yf (π(i)) is the π(i)-th F5-symbol of Yf , and σi is a randomly chosen element from

{−1,+1}. For simplifying the notation, let (ai, bi, ci, di) = (u1(i), u2(i), u3(i), u4(i)) for

all i ∈ [16]. The user then queries 15 carefully designed linear combinations of the sym-

bols {{ai}i∈[16], {bi}i∈[16], {ci}i∈[16], {di}i∈[16]}, as given in Table 4.1 [85], from each of

the servers (S1 and S2).

As shown in [85], among the 15 symbols queried from S1 (or S2), 3 symbols are

redundant (based on the information obtained from S2 (or S1)). For example, consider

the 15 symbols queried from S1. (Similar observations can be made regarding the queries

120

from S2.) Among the 4 symbols {a1, b1, c1, d1}, any 2 symbols suffice to recover the other

2 symbols. For example, c1 and d1 can be obtained from a1 and b1. (Note that Y3 and

Y4 can be written as a linear combination of Y1 and Y2.) Thus, the server S1 needs to

send two arbitrary symbols from {a1, b1, c1, d1}. In addition, given any 2 symbols from

{a2, b2, c2, d2}, any 5 symbols from {a3 − b2, a4 − c2, a5 − d2, b4 − c3, b5 − d3, c5 − d4}

queried from S1 would suffice to recover the remaining symbol. For example, c5 − d4

can be obtained from the symbols {a3 − b2, a4 − c2, a5 − d2, b4 − c3, b5 − d3, b2, d2} (for

details, see [85, Section 5.1]). Thus, each of the servers S1 and S2 needs to send to the

user only 12 symbols. In particular, S1 transmits 2 arbitrary symbols from {a1, b1, c1, d1},

5 from {a3 − b2, a4 − c2, a5 − d2, b4 − c3, b5 − d3, c5 − d4}, and the 4 symbols {a9− b7+

c6, a10 − b8 + d6, a11 − c8 + d7, b11 − c10 + d9}, and the symbol {a15 − b14 + c13 − d12};

and S2 transmits 2 arbitrary symbols from {a2, b2, c2, d2}, 5 arbitrary symbols from {a6−

b1, a7 − c1, a8 − d1, b7 − c6, b8 − d6, c8 − d7}, and the 4 symbols {a12−b4+c3, a13−b5+

d3, a14 − c5 + d4, b14 − c13 + d12}, and the symbol {a16 − b11 + c10 − d9}.

From the answers sent by the servers, the user obtains all 16 symbols a1, . . . , a16, and

accordingly, all 16 symbols of Y1. (Note that ai = u1(i) = σiY1(π(i)) for i ∈ [16].) Then,

the user can compute the desired linear combination, i.e., 2X1 + X2 + X3 by computing

3Y1. In order to retrieve Y1 which consists of 16 symbols (over F5), according to the

proposed protocol, the user downloads 24 symbols (over F5) from both servers. Thus, the

rate of the proposed protocol is 16/24 = 2/3.

It should be noted that for every subset of size 3 of the messages {Xi}i∈[4], in the

proposed protocol, there exists one (and only one) linear combination (with non-zero co-

efficients) of these messages, namely Yf∗ for some f ∗ ∈ [4]. Moreover, as a result of the

privacy guarantees of the PC scheme, no server can infer any information about the index

(f ∗) of the function Yf∗ being requested by the user. Thus, the proposed scheme satisfies

the required joint privacy condition of the PLT problem.

121

Table 4.1: The queries of the PC protocol for N = 2 servers, 2 super-messages, and F = 4
functions, when the user demands Y1.

S1 S2
a1, b1, c1, d1 a2, b2, c2, d2
a3 − b2 a6 − b1
a4 − c2 a7 − c1
a5 − d2 a8 − d1
b4 − c3 b7 − c6
b5 − d3 b8 − d6
c5 − d4 c8 − d7

a9 − b7 + c6 a12 − b4 + c3
a10 − b8 + d6 a13 − b5 + d3
a11 − c8 + d7 a14 − c5 + d4
b11 − c10 + d9 b14 − c13 + d12

a15 − b14 + c13 − d12 a16 − b11 + c10 − d9

Lemma 17. The Modified GRS Code protocol is a PLT protocol, and achieves the rate

(1
N
, K −D + 1).

Proof. The messages X[K] are uniformly and independently distributed over FS
q , and the

messages {X̂1, . . . , X̂r} are linearly independent combinations of the messages in X[K],

thus {X̂1, . . . , X̂r} are uniformly and independently distributed over FS
q as well, i.e.,

H(X̂1) = · · · = H(X̂r) = S log q = B. Hence, the rate of the Modified GRS Code pro-

tocol is the same as the rate of the PC protocol for N servers and K −D + 1 messages,

which is given by Φ(1
N
, K −D + 1) (see [85, Theorem 1]).

From the step 4 of the Modified GRS Code protocol, it is evident that the recoverabil-

ity condition is satisfied. For the joint privacy of the proposed protocol, the proof is as

follows. The PC protocol protects the privacy of the function requested by the user (i.e.,

no server can infer any information about the index of the function requested by the user

122

upon receiving the query). Consider an arbitrary server n ∈ [N], which receives an arbi-

trary query Q
[W,V]
n , generated by the proposed protocol. Given Q

[W,V]
n = Q

[W,V]
n , from the

perspective of server n, every function Yf for f ∈ [F], is equally likely to be the user’s de-

sired function. We denote the support of Yf by Yf , i.e., Yf is the set of all indices i ∈ [K]

such that Xi has a non-zero coefficient in the linear combination Yf . Note that for any

W̃ ∈ W, in the proposed protocol, there exists only one function Yf∗ among Y1, . . . , YF

with Yf∗ = W̃ . Thus, for any W̃ ∈W and every n ∈ [N], the following holds

P(W = W̃|Q[W,V]
n = Q

[W,V]
n) = Pr(W = Yf∗|Q[W,V]

n = Qn) =
1
F
= 1

(KD)
= P(W = W̃).

This completes the proof.

123

Part II

Fast Data Access in Distributed Systems

124

5. SERVICE RATE REGION USING COMBINATORIAL APPROACH*

5.1 Introduction

Providing reliability against failures, ensuring availability of stored content during high

demand, providing fast content download and serving a large number of users simultane-

ously are major concerns in cloud storage systems. The service capacity has been recently

recognized as an important performance metric. It has a wide relevance, and can be inter-

preted as a measure of the maximum number of users that can be simultaneously served

by a coded storage system [71–74, 76, 98, 99]. Thus, maximizing the service capacity is

of great significance for the emerging applications such as distributed learning. Moreover,

maximizing the service capacity reduces the users’ latency, particularly in a high traffic

regime, which is important for the delay-sensitive applications such as live streaming.

The service rate problem is concerned with a distributed storage system in which k

files f1, . . . , fk are stored across n servers using a linear [n, k]q code such that the requests

to download file fi arrive at rate λi, and the server l operates at rate µl. A goal of the

service rate problem is to determine the service rate region of this coded storage system

which is the set of all request arrival rates λ = (λ1, . . . , λk) that can be served by this

system given the finite service rate of the servers. The service rate problem is generally

formulated as a sequence of linear programs, that has been studied only in some limited

cases [73, 74, 76]. In this work, we show that the service rate problem is equivalent to

the fractional matching problem which were extensively studied in the context of graph

theory. This equivalence result allows one to leverage the techniques in the rich literature

of the graph theory for solving the service rate problem.

*Reprinted with permission from [75] "A Combinatorial View of the Service Rates of Codes Problem,
its Equivalence to Fractional Matching and its Connection with Batch Codes," by F. Kazemi, E. Karimi, E.
Soljanin, and A. Sprintson, 2020. In Proceedings of 2020 IEEE International Symposium on Information
Theory (ISIT), pp. 646-651, June 2020. Copyright © by IEEE.

125

Related Work

Existing studies on data access pursue various directions. Many are focused on provid-

ing efficient maintenance of storage under possible failures of a subset of nodes accessed

(see e.g., [51, 52, 99–101]). These studies typically assume infinite service rate (instanta-

neous service) for each storage node. Hence, they do not address the problem of serving a

large number of users simultaneously.

Another important line of work is concerned with caching (see e.g., [56, 57, 102]), in

which generally the limited capacity of the backhaul link is considered as the main bottle-

neck of the system, and the goal is usually to minimize the backhaul traffic by prefetching

the popular contents at the storage nodes of limited size. Thus, these works do not ad-

dress the scenarios where many users want to get the same content concurrently given the

limited capacity of the access part of the network.

The other related body of work is concerned with minimizing the download latency

(see e.g., [62–67, 69, 70, 103–106]). These papers assume that the storage nodes can serve

the customers at some finite rate, and aim to compute the download latency for intractable

queueing systems that appear in coded storage.

We note now and explain in detail later that because of the constraints on the service

rate of servers, by maximizing the service capacity the load balancing is provided in the

distributed storage system (see [98]). In that sense, the most relevant work to this work

includes batch codes, switch codes and PIR codes (see e.g., [16, 107–110]). However, the

problems considered in these papers, as we will show later, can be often seen as special

cases of the service rate problem.

A connection between distributed storage allocation problems (see [99, 111] and ref-

erences therein) and matching problems in hyper-graphs have been observed in computer

science literature [112] (see also [113]). In particular, it was noted that the uniform model

126

of distributed storage allocation considered in [99] leads to a question which is asymptot-

ically equivalent to the fractional version of a long standing conjecture by Erdős [114] on

the maximum number of edges in a uniform hypergraph.

Our Contributions

We first introduce a novel graph representation of coding schemes, which we refer to

as a recovery graph for the coding scheme, in Sec. 5.3.1. We then show the following

results in Sec. 5.3.4: 1) equivalence between the service rate problem and the well-known

fractional matching problem and 2) equivalence between the integral service rate problem

and the matching problem. These equivalence results allow us to show that the service

capacity of a code is equal to the fractional matching number in the recovery graph of

a code, and thus is lower bounded and upper bounded by the matching number and the

vertex cover number, respectively. This is beneficial because if the recovery graph of a

code is a bipartite graph, then the upper bound and lower bound are equal, which allows

us to establish the service capacity of the storage system. Leveraging this result, we deter-

mine the service capacity of the binary simplex codes whose recovery graph, as we will

show, is bipartite. Furthermore, we show that the service rate problem can be viewed as a

generalization of batch codes problem in Sec. 5.4. In particular, we show that the multiset

primitive batch codes problem is a special case of the service rate problem in which the

solution (i.e., the portion of requests assigned to the recovery sets of each file) is restricted

to be integral.

5.2 Coded System and its Service Rate Region

Throughout this work, we use bold-face lower-case letters for vectors and bold-face

capital letters for matrices. Let N denote the set of positive integers. Fq denotes the finite

field with q elements. For i ∈ N, [i] ≜ {1, . . . , i}. For n ∈ N, 1n denotes the all-one

vector of length n.

127

Consider a storage system where k files f1, . . . , fk are stored across n servers labeled

1, . . . , n, using an [n, k]q code with generator matrix G ∈ Fk×n
q . A set of stored symbols

that can be used to recover file fi is referred to as a recovery set for file fi. Let gj be the

jth column of G. The set R ⊆ [n] is a recovery set for file fi if there exists non-zero αj’s

∈ Fq such that
∑

j∈R αjgj = ei, where ei denotes the ith unit vector. In other words, a set

R is a recovery set for file fi if the unit vector ei can be recovered by a linear combination

of the columns of G indexed by the set R.

Let ti ∈ N denote the number of recovery sets for file fi, and Ri = {Ri,1, . . . , Ri,ti}

denote the set of recovery sets for file fi. We assume w.l.o.g. that the time to download

a file from server l ∈ [n] is exponential with rate µl ∈ R≥0, i.e., µl is the average rate at

which server l resolves the received file requests. We denote the service rates of servers

1, . . . , n by the vector µ = (µ1, . . . , µn). We further assume that the arrival of requests for

file fi is Poisson with rate λi, i ∈ [k]. We denote the request rates for files 1, . . . , k by

the vector λ = (λ1, . . . , λk). We consider the class of scheduling strategies that assign a

fraction of requests for a file to each of its recovery sets. Let λi,j be the portion of requests

for file fi that are assigned to the recovery set Ri,j , j ∈ [ti].

The service rate problem seeks to determine the set of arrival rates λ = (λ1, . . . , λk)

that can be served by a coded storage system with generator matrix G and service rate µ,

referred to as service rate region S(G,µ) ⊆ Rk
≥0.

Definition 1. An (G,µ) system is a coded storage system in which k files are stored across

n servers using a linear [n, k]q code with generator matrix G ∈ Fk×n
q such that file fi for

i ∈ [k] has ti ∈ N recovery sets denoted byRi = {Ri,1, . . . , Ri,ti}, and the service rate of

servers in the system is µ = (µ1, . . . , µn).

Definition 2. The service rate region of an (G,µ) system, denoted by S(G,µ), is the set

128

of vectors λ = (λ1, . . . , λk) for which there exist λi,j satisfying the following constraints:

ti∑
j=1

λi,j = λi, for all i ∈ [k] (5.1a)

k∑
i=1

∑
j∈[ti]
l∈Ri,j

λi,j ≤ µl, for all l ∈ [n] (5.1b)

λi,j ∈ R≥0, for all i ∈ [k], j ∈ [ti] (5.1c)

Note that the constraints (5.1a) ensure that the demands for all files are served, and the

constraints (5.1b) guarantee that no node is sent requests in excess of its service rate.

Proposition 1. [76, Lemma 1] The service rate region of an (G,µ) system S(G,µ) is a

non-empty, convex, closed, and bounded subset of the Rk
≥0.

The service capacity of an (G,µ) system, λ⋆(G,µ), is defined as the maximum sum

of arrival rates that can be served simultaneously by the storage system. We define a

maximum demand vector, denoted by λ⋆ = (λ⋆
1, . . . , λ

⋆
k), as a vector in the service rate

region for which
∑k

i=1 λ
⋆
i = λ⋆(G,µ). An instance of the maximum demand vector is

obtained by solving the following linear programming (LP):

max
k∑

i=1

λi s.t. (5.1) holds. (5.2)

Definition 3. The integral service rate region of an (G,µ) system, denoted by SI(G,µ),

is the set of all vectors λ = (λ1, . . . , λk) for which there exist λi,j ∈ Z≥0 satisfying the sets

of constraints (5.1a), (5.1b).

Note that each demand vector λ = (λ1, . . . , λk) in the integral service rate region has

integral coordinates, i.e., SI(G,µ) ⊆ Zk
≥0. However, because of the fractional relaxation

129

of λi,j , it is not guaranteed that the vectors with integral coordinates in the service rate

region S(G,µ) are also in the integral service rate region SI(G,µ).

Remark 14. In the integral setting of the service rate problem where λi,j are non-negative

integers, if each server can serve up to one request at a time, i.e., µl = 1 for all servers

l ∈ [n], then one can easily conclude that λi,j are binary and the recovery sets used for

each file fi, i ∈ [k] are disjoint.

5.3 Equivalence to Fractional Matching

We first introduce a graph representation of a coding scheme, referred to as a recovery

graph, which is useful for characterizing the service capacity of a coded storage system

through relating this problem with the well-known problem of finding the maximum frac-

tional matching in a graph. In particular, we show that the service capacity of a code

equals the fractional matching number in the recovery graph of the code. Another way

of determining the service capacity of a coded storage system is providing tight bounds

on the maximum sum of the arrival rates that can be served by the storage system. We

show that the matching number and the vertex cover number in the recovery graph of a

code, respectively are a lower bound and an upper bound on the service capacity of a code.

Thus, if the recovery graph of a code is a bipartite graph, according to the Duality Theo-

rem [115], the matching number and vertex cover number are identical, and we are able to

determine the capacity. As an application of this result, we determine the service capacity

of the binary simplex codes whose recovery graph, as we will show, is a bipartite graph.

We next describe how to construct the recovery graph of a code, and then we present the

interesting connections.

5.3.1 Graph Representation of Storage Schemes

Here, we introduce a graph representation of storage schemes. For simplicity, we

consider linear codes, however, it is straightforward to generalize the notion for non-linear

130

codes. For the clarity of exposition, we focus on recovery sets of size one and two. In other

words, a recovery set for each file is either a systematic symbol or a group of two symbols,

as is the case when k = 2. As we discuss in Remark 15 later, the notions described

can be easily extended to the general case of arbitrary sized recovery sets by considering

hypergraphs in which each edge can be incident to an arbitrary number of vertices.

Consider an [n, k] code with a k × n generator matrix G. We define a graph G(V,E)

associated with the generator matrix G, referred to as a recovery graph for the coding

scheme G, where the vertices in V correspond to the n encoded data symbols (the servers

of the storage system), and the edges in E correspond to the recovery sets of files. In

G(V,E), each self-loop represents a recovery set of size 1 for the vertex (file) that it is

connected to, and each edge between two vertices represents a recovery set of size 2 for

the file that can be recovered from these two vertices. Each edge is assigned a color such

that the edges that correspond to the recovery sets of the same file are assigned the same

color. In that sense, we have an edge-colored graph. It should be noted that a graph with

self-loops can be simply converted to a graph without any self-loops by adding sufficient

number of dummy vertices (servers). We assume that the label of all dummy servers is

zero and thus we denote a systematic recovery set for file fi by {0, r} where r is the label

of the systematic server storing file fi. Section 5.3.3 provides an example that shows the

recovery graph for the binary [7, 3] simplex code.

5.3.2 Matching and Vertex Cover on Graphs

In this section, we with briefly review the notions of matching and vertex cover on

graphs. For details, we refer the reader to standard texts on graph theory, e.g., [115, 116].

Definition 4. A matching in a graph is a set of all pairwise non-adjacent edges.

Alternatively, a matching in a graph G(V,E) is an assignment of the values x̃e ∈ {0, 1}

to the edges e ∈ E in such a way that for each vertex v ∈ V , the sum of the values on the

131

incident edges is at most 1. All the edges e ∈ E with value x̃e = 1 are in the matching.

Thus, a matching vector in a graph G(V,E) can be defined as a vector x̃ = (x̃e : e ∈ E)

satisfying the following conditions:

∑
e incident to v

x̃e ≤ 1, for all v ∈ V (5.3a)

x̃e ∈ {0, 1}, for all e ∈ E (5.3b)

Definition 5. A maximum matching in a graph is a matching that contains the largest

number of edges. The maximum matching vector is denoted by x̃⋆.

The size of a maximum matching in a graph G(V,E) is called matching number, de-

noted by m(G). There may be several instances of maximum matchings in a graph. The

problem of finding an instance of maximum matching can be formulated as follows:

max
∑
e∈E

x̃e s.t. (5.3) holds. (5.4)

Definition 6. A fractional matching in a graph G(V,E) is an assignment of the values

xe ∈ [0, 1] to the edges e ∈ E such that for each vertex v ∈ V , the sum of the values on

the incident edges is at most 1.

A fractional matching vector in a graph G(V,E) can be defined as a vector x = (xe :

e ∈ E) satisfying the following constraints:

∑
e incident to v

xe ≤ 1, for all v ∈ V (5.5a)

xe ∈ [0, 1], for all e ∈ E (5.5b)

Definition 7. A maximum fractional matching, denoted by x⋆, is a fractional matching

vector in the graph that has the maximum value
∑

e∈E xe.

132

The value of a maximum fractional matching in a graph G(V,E) is called the frac-

tional matching number, denoted as mf (G). Finding an instance of maximum fractional

matching in a graph can be formulated as the following LP:

max
∑
e∈E

xe s.t. (5.5) holds. (5.6)

Definition 8. A vertex cover of a graph is a set of vertices such that each edge of the graph

is incident to at least one vertex in the set.

Alternatively, a vertex cover of a graph G(V,E) is an assignment of the values yv ∈

{0, 1} to the vertices v ∈ V in such a way that for each edge e ∈ E, the sum of the values

on the endpoint vertices is at least 1. All the vertices v ∈ V with value ỹv = 1 are in the

vertex cover. Thus, a vertex cover vector of a graph G(V,E) can be defined as a vector

y = (yv : v ∈ V) satisfying the following conditions:

∑
v incident to e

yv ≥ 1, for all e ∈ E (5.7a)

yv ∈ {0, 1}, for all v ∈ V (5.7b)

Definition 9. A minimum vertex cover in a graph is a vertex cover with minimum number

of vertices.

The cardinality of a minimum vertex cover in a graph G(V,E) is called vertex cover

number, denoted by v(G). There may be several instances of a minimum vertex cover in a

graph. Finding an instance of minimum vertex cover in a graph can be formulated as the

following integer LP:

min
∑
v∈V

yv s.t. (5.7) holds. (5.8)

133

f1 + f2 + f3f2 + f3f1 + f3f3f1 + f2f2f1

Figure 5.1: A distributed storage system consists of 7 servers storing files f1, f2, and f3
using a binary [7, 3] simplex code.

Proposition 2. For an arbitrary graph G, it is known that m(G) ≤ mf (G) ≤ v(G). For

a bipartite graph G, it holds that m(G) = mf (G) = v(G).

In what follows, we assume that each server in the distributed storage system can serve

up to one request at each moment, i.e., µ = (µ1, . . . , µn) = (1, . . . , 1). Thus, S(G,µ)

and λ⋆(G,µ) only depend on the generator matrix G and are respectively denoted by

S(G) and λ⋆(G). Next, we present an example to show how the service rate of a code is

connected to the matching and the vertex cover problems.

5.3.3 Example of Equivalence

Here, we present an example to give more intuition about the subsequent results and

to provide a sketch of the proofs. Consider a distributed storage system in which files f1,

f2, and f3 are stored across 7 servers, labeled 1, . . . , 7, using a binary [7, 3]2 simplex code

with the service rate µl = 1, l ∈ [7]. The generator matrix of this code is given by:

G =

1 2 3 4 5 6 7

1 0 1 0 1 0 1

0 1 1 0 0 1 1

0 0 0 1 1 1 1

,

where the number above each column shows the label of the corresponding column

(server). Fig. 5.1 depicts this distributed storage system.

134

f1

f2

f3

f1 + f2 + f3

1

2

4

7

λ1,1

λ2,1

λ3,1λ2,2λ1,2

λ3,4

λ3,2

λ1,3

λ2,4

λ3,3

λ2,3

λ1,4

∅f1

∅f2

∅f3

f1 + f2

f1 + f3

f2 + f3

0

0

0

3

5

6

Figure 5.2: Recovery graph of the binary [7, 3] Simplex code.

The recovery sets for each file are given by

R1 = {R1,1, . . . , R1,4} = {{0, 1}, {2, 3}, {4, 5}, {6, 7}}

R2 = {R2,1, . . . , R2,4} = {{0, 2}, {1, 3}, {4, 6}, {5, 7}}

R3 = {R3,1, . . . , R3,4} = {{0, 4}, {1, 5}, {2, 6}, {3, 7}}

The recovery graph of [7, 3]2 simplex code is drawn in Fig. 5.2, which is a bipartite

graph. The vertices ∅f1 , ∅f2 and ∅f3 are the dummy vertices added to the graph for the

purpose of removing the self-loops of systematic vertices f1, f2, and f3, respectively. The

edges with color magenta, green, and blue represent recovery sets for files f1, f2, and f3,

respectively. Moreover, the label λi,j above an edge indicates the portion of requests for

file fi that is assigned to the recovery set Ri,j .

135

The service rate region S(G) of this system is the set of vectors λ = (λ1, λ2, λ3) for

which there exist λi,j’s, i ∈ [3] and j ∈ [4], satisfying the set of constraints (5.1) as follows:

(5.1a)⇒

λ1 = λ1,1 + λ1,2 + λ1,3 + λ1,4

λ2 = λ2,1 + λ2,2 + λ2,3 + λ2,4

λ3 = λ3,1 + λ3,2 + λ3,3 + λ3,4

(5.9)

(5.1b)⇒

λ1,1 + λ2,2 + λ3,2 ≤ 1

λ2,1 + λ1,2 + λ3,3 ≤ 1

λ3,1 + λ1,3 + λ2,3 ≤ 1

λ3,4 + λ2,4 + λ1,4 ≤ 1

λ2,2 + λ1,2 + λ3,4 ≤ 1

λ3,2 + λ1,3 + λ2,4 ≤ 1

λ3,3 + λ2,3 + λ1,4 ≤ 1

(5.10)

(5.1c)⇒
{
λi,j ∈ R≥0, for all i ∈ [3], j ∈ [4] (5.11)

Fig. 5.3 shows the service rate region S(G) of this coded storage system.

Based on (5.5), a fractional matching x = (λ1,1, . . . , λ1,4, λ2,1, . . . , λ2,4, λ3,1, . . . , λ3,4)

of the graph depicted in Fig. 5.2, satisfies the constraints (5.10) and (5.11). Thus, according

to Definition 2, a vector λ = (λ1, λ2, λ3) obtained from x using (5.9) is in the service rate

region of [7, 3]2 simplex code. Conversely, for a vector λ in the service rate region of

[7, 3]2 simplex code, there exist λi,j’s, i ∈ [3] and j ∈ [4], satisfying the constraints (5.10)

and (5.11), that define a fractional matching vector x = (λi,j : i ∈ [3] and j ∈ [4]) in the

recovery graph of [7, 3]2 simplex code drawn in Fig. 5.2.

136

4 4

4

λ1
λ2

λ3

Figure 5.3: Service rate region of binary [7, 3] Simplex code.

Based on (5.6), a maximum fractional matching vector x⋆ is obtained by solving the

following LP:

max
3∑

i=1

4∑
j=1

λi,j s.t. (5.10) and (5.11) hold. (5.12)

We want to show that the vector λ = (λ1, λ2, λ3) obtained from x⋆ using (5.9) is in fact a

maximum demand vector λ⋆ in the service rate region of [7, 3]2 simplex code. From (5.9),∑3
i=1

∑4
j=1 λi,j = λ1 + λ2 + λ3. Thus, it can be easily verified that x⋆ provides a solution

for the following LP:

max λ1 + λ2 + λ3 s.t. (5.9), (5.10), (5.11) hold. (5.13)

Moreover, according to (5.2), an instance of maximum demand vector is obtained by solv-

ing the LP in (5.13). Thus, the vector λ = (λ1, λ2, λ3) obtained from x⋆ using (5.9) is

a maximum demand vector λ⋆. On the other hand, for an instance of λ⋆ in the service

rate region of [7, 3]2 simplex code obtained from (5.13), there exists a fractional matching

vector x which according to the same reasoning, provides a solution for (5.12). Thus, the

vector x is a maximum fractional matching vector x⋆ in the recovery graph of [7, 3]2 sim-

137

plex code in Fig. 5.2. Since a maximum demand vector λ⋆ = (λ⋆
1, λ

⋆
2, λ

⋆
3) is obtained from

a maximum fractional matching vector x⋆ by (5.9), it follows that λ⋆
1 + λ⋆

2 + λ⋆
3 =

∑
λ⋆
i,j ,

where λ⋆
i,j’s are the elements of x⋆. Hence, we have λ⋆(G) = mf (G), and based on Propo-

sition 2, m(G) ≤ λ⋆(G) ≤ v(G) holds.

We show that the service capacity of [7, 3]2 simplex code is 4. The proof consists

of two parts. First, we need to prove the converse by showing that the service capacity

cannot be bigger than 4. It is easy to see that the set of vertices {f1, f2, f3, f1 + f2 + f3}

is a minimum vertex cover for the graph in Fig. 5.2. Thus, the vertex cover number of this

graph is v(G) = 4 which indicates that λ⋆(G) ≤ 4. Next, we show the achievability proof

by showing that there exists a demand vector λ = (λ1, λ2, λ3) in the service rate region

such that λ1 + λ2 + λ3 = 4. For this purpose, one can consider the set of edges labeled

by λ1,1, λ1,2, λ1,3, and λ1,4 as a matching in the graph. Corresponding to this matching, a

demand vector λ = (4, 0, 0) is obtained by applying (5.9).

5.3.4 Equivalence Results

We first show an equivalence between the service rate problem and the fractional

matching problem. This equivalence result allow us to derive bounds on the service ca-

pacity of a coded storage system and then to recover the service capacity of the binary

simplex code whose recovery graph is bipartite.

Theorem 11. Consider an (G,µ) system with the service rate µ = 1n. There exists a

demand vector λ = (λ1, . . . , λk) in the service rate region of this system if and only if

there exists a fractional matching vector x = (λi,j : i ∈ [k] and j ∈ [ti]) in the recovery

graph of [n, k]q code such that λ and x are related based on (5.1a).

Proof. If a vector λ = (λ1, . . . , λk) is in the service rate region of this storage system,

there exist λi,j’s, for i ∈ [n] and j ∈ [ti], satisfying the set of constraints in (5.1a), (5.1b)

and (5.1c). Based on the definition of the recovery graph of codes and the fact that

138

µl = 1, l ∈ [n], it is easy to observe that the set of constraints (5.1b) and (5.1c) are equiv-

alent to the set of constraints (5.5). Thus, the vector x = (λi,j : i ∈ [k] and j ∈ [ti]) is

a fractional matching in the recovery graph of [n, k]q code. Now, assume that a vector

x = (λi,j : i ∈ [k] and j ∈ [ti]) is a fractional matching in the recovery graph of [n, k]q

code. Hence, the vector x satisfies the sets of constraints (5.5), or equivalently, it satisfies

the set of constraints (5.1b) and (5.1c). Based on Definition 2, a vector λ = (λ1, . . . , λk)

obtained from x using (5.1a) is in the service rate region of [n, k]q code.

Remark 15. In defining recovery graphs and in Theorem 11, we restricted our attention

to linear coding schemes having recovery sets of size at most two. Extension to the gen-

eral case of a code having recovery sets of arbitrary size is straightforward: we associate

a hypergraph with the code’s generator matrix. (A hypergraph is a generalization of a

graph in which any subset of vertices may be joined by an edge, called a hyperedge, see,

e.g., [117, Chapter 7].) We form a hypergraph G(V,E) associated with G such that its

vertices correspond to columns of G and hyperedges correspond to recovery sets. It is

straightforward to generalize the hypergraph representation for non-linear codes.

Corollary 1. Consider an (G,µ) system with µ = 1n. There exists a maximum demand

vector λ⋆ = (λ⋆
1, . . . , λ

⋆
k) in the service rate region S(G) of this storage system if and only

if there exists a maximum fractional matching vector x⋆ = (λ⋆
i,j : i ∈ [k] and j ∈ [ti]) in

the recovery graph of [n, k]q code such that λ⋆ and x⋆ are related based on (5.1a).

Proof. An instance of the maximum fractional matching vector in the recovery graph of

an [n, k]q code can be obtained by solving the following LP according to (5.6).

max
k∑

i=1

ti∑
j=1

λi,j

s.t. (5.1b), (5.1c)

139

According to the Theorem 11, there exist a demand vector λ = (λ1, . . . , λk) in the

service rate region which is obtained from x⋆ = (λ⋆
i,j : i ∈ [k] and j ∈ [ti]) using (5.1a).

We want to show that the vector λ is in fact a maximum demand vector λ⋆. Using (5.1a),

we have
∑k

i=1

∑ti
j=1 λ

⋆
i,j =

∑k
i=1 λi. Thus, it can be easily verified that x⋆ provides a

solution for the following LP:

max
k∑

i=1

λi

s.t. (5.1a), (5.1b), (5.1c)

Based on (5.2), an instance of the maximum demand vector is obtained by solving the

above linear programming. Thus, the vector λ resulted from x⋆ by (5.1a) is a maximum

demand vector λ⋆. On the other hand, for a maximum demand vector λ⋆ in the service rate

region which is obtained from (5.2), there exists a fractional matching vector x that based

on a similar reasoning, provides a solution for (5.6). Thus, the vector x is a maximum

fractional matching vector x⋆ in the recovery graph of [n, k]q code.

Theorem 12. Consider an (G,µ) system with the service rate µ = 1n. The service ca-

pacity λ⋆(G) of this system is lower bounded by the matching number and upper bounded

by the vertex cover number of the recovery graph of [n, k]q code. i.e., m(G) ≤ λ⋆(G) =

mf (G) ≤ v(G).

Proof. According to Corollary 1, a maximum demand vector λ⋆ = (λ⋆
1, . . . , λ

⋆
k) is ob-

tained from a maximum fractional matching vector x⋆ = (λ⋆
i,j : i ∈ [k] and j ∈ [ti]) us-

ing (5.1a). It follows that
k∑

i=1

λ⋆
i =

∑
λ⋆
i,j

where λ⋆
i,j’s are the elements of x⋆. Thus, λ⋆(G) = mf (G). Thus, according to Proposi-

tion 2, we have m(G) ≤ λ⋆(G) ≤ v(G).

140

It should be noted that if the recovery graph of a code is bipartite, Proposition 2 results

m(G) = λ⋆(G) = v(G).

Theorem 13. The recovery graph of [2k − 1, k, 2k−1]2 simplex code, is a bipartite graph.

Proof. Based on the definition of the bipartite graph, a graph G(V,E) is a bipartite graph

if the vertices V of the graph, can be divided into two disjoint and independent sets, say

V1 and V2 such that every edge of the graph e ∈ E connects a vertex in V1 to one in V2.

Thus, in order to show that the recovery graph of the k-dimensional binary simplex code

with generator matrix G is a bipartite graph, we need to determine the two disjoint sets of

vertices, i.e., V1 and V2, in the recovery graph G(V,E) of the [2k − 1, k]2 simplex code.

Then, we have to prove that every edge e ∈ E of the recovery graph connects a vertex in

V1 to one in V2 or equivalently we have to prove that there is no edge between the vertices

in V1 as well as in V2.

The set of vertices V of the recovery graph G(V,E) of the [2k − 1, k]2 simplex code

correspond to the files stored on the storage nodes or the columns of the generator matrix

G. The columns of the generator matrix G of the [2k − 1, k]2 simplex code are the set of

all non-zero vectors of Fk
2. Note that up to column permutations the generator matrix G

of the [2k − 1, k]2 simplex code is unique. Now, we can partition the columns of G into

two sets V1 and V2 such that V1 is the set of all non-zero column vectors in Fk
2 with odd

number of ones and V2 is the set of all non-zero column vectors in Fk
2 with even number

of ones. Thus, V1 and V2 are two disjoint sets of columns that partition the columns of G.

Moreover, the self-loops corresponding to the systematic recovery sets are removed from

the recovery graph by adding dummy nodes. Consider each dummy node (column) as a

zero vector in Fk
2, denoted by 0. Thus, V1 and V ′

2 = {V2 ∪ 0} determine two disjoint sets

of vertices partitioning V in the G(V,E).

We want to prove that there is no edge between the vertices corresponding to the set

141

of columns V1 and there is no edge between the vertices corresponding to the set V ′
2 .

The proof is based on the contradiction approach. Let x,x′ ∈ V1. Assume that there is an

edge between the vertices corresponding to the x,x′ ∈ V1. This means that {x,x′} forms a

recovery set for a file fi, i ∈ [k], i.e., x+ x′ = ei. Since both x and x′ have an odd number

of ones, their sum must have an even number of ones which is a contradiction. Thus, there

is no edge between the vertices in V1. The proof for V ′
2 is similar. Let x,x′ ∈ V ′

2 . Since

both x and x′ have an even number of ones, their sum must have an even number of ones

which shows that {x,x′} cannot be a recovery set for any file fi, i ∈ [k]. Thus, there is no

edge between any x,x′ ∈ V ′
2 .

Corollary 2. For an (G,µ) system with [2k − 1, k, 2k−1]2 simplex code and service rate

µ = 1n, the service capacity is given by m(G) = λ⋆(G) = v(G) = 2k−1.

Proof. The proof consists of two parts. First, we need to prove the converse by showing

that the service capacity cannot be bigger than 2k−1. It can be easily seen that the set of all

2k−1 vertices corresponding to the columns of G with odd number of ones forms a mini-

mum vertex cover in the recovery graph of the [2k − 1, k, 2k−1]2 simplex code. The reason

is that since the recovery graph of the this code, based on Theorem 13, is a bipartite graph,

all the edges are covered by either one of the two partitions, i.e., V1 and V ′
2 introduced in

the proof of Theorem 13. Thus, the vertex cover number of this graph is v(G) = 2k−1

which indicates that λ⋆(G) ≤ 2k−1.

Next, we show the achievability proof by showing that a vector λ = (λ1, . . . , λk) exists

in service rate region of the [2k − 1, k, 2k−1]2 simplex code with
∑k

i=1 λi = 2k−1. For this

purpose, since the recovery graph of this code is a bipartite graph, we have m(G) =

v(G) = 2k−1 which means that there exists a matching of size 2k−1 in the recovery graph

of the binary k-dimensional simplex code. For the [2k − 1, k, 2k−1]2 simplex code which

is a special subclass of availability codes, it is known that every file fi for i ∈ [k] can be

142

recovered from 2k−1 − 1 (availability) disjoint groups of two (locality) servers. Thus, by

considering the systematic recovery set, for each file fi, i ∈ [k], there are exactly 2k−1

disjoint recovery sets. One can consider the set of edges {λi,1, . . . , λi,2k−1}, for every

i ∈ [k], as an instance of matching in the recovery graph. Corresponding to this matching,

a demand vector λ = 2k−1.ei for i ∈ [k] is obtained by applying (5.1a).

Corollary 3. Consider a (G,µ) system with µ = 1n. A demand vector λ = (λ1, . . . , λk)

exists in the integral service rate region SI(G) of this system if and only if there exists a

matching vector x̃ = (λi,j : i ∈ [k] and j ∈ [ti]) in the recovery graph of [n, k]q code such

that λ and x̃ are related based on (5.1a).

Proof. The proof is similar to the proof of Theorem 11.

Corollary 4. Consider an (G,µ) system with µ = 1n. There exists a maximum demand

vector λ⋆ = (λ⋆
1, . . . , λ

⋆
k) in the integral service rate region SI(G) of this storage system

if and only if there exists a maximum matching vector x̃⋆ = (λ⋆
i,j : i ∈ [k] and j ∈ [ti]) in

the recovery graph of [n, k]q code such that λ⋆ and x̃⋆ are related based on (5.1a).

Proof. The proof is similar to the proof of Corollary 1.

5.4 Generalization of Batch codes

In this section, we show how the service rate problem can be viewed as a generalization

of the problem of batch codes. That further illustrates connections with PIR codes, switch

codes and locally repairable codes which all can be seen as special cases of batch codes

(see [108]).

5.4.1 Definitions of Batch Codes and PIR Codes

Definition 10. [107] An (n, k, t,m, τ) batch code C over a finite alphabet
∑

encodes

any string x = (x1, . . . , xk) into m strings (buckets) y1, . . . ,ym of total length n by an

143

encoding mapping C :
∑k →

∑n, such that for each t-tuple (batch) of indices i1, . . . , it ∈

[k], the entries xi1 , . . . , xit can be decoded by reading at most τ symbols from each bucket.

Definition 11. [108] An (n, k, t) primitive batch code is an (n, k, t,m, τ) batch code,

where each bucket contains exactly one symbol, i.e., n = m. Note that in this setting

τ = 1, i.e., at most one symbol can be recovered from each bucket.

Definition 12. An (n, k, t) multiset primitive batch code is an (n, k, t) primitive batch

code where the information symbols xi1 , . . . , xit are requested by t distinct users such

that the indices i1, . . . , it are not necessarily distinct and in general they form a multiset.

Moreover, the requested symbols can be reconstructed from the data read by t different

users independently (i.e., xij can be recovered by the user j) so that the sets of the symbols

read by these users are disjoint.

It should be noted that for the sake of simplicity, we refer to a linear (n, k, t) multiset

primitive batch code over Fq as an [n, k, t]q batch code.

Proposition 3. [109, Theorem 1] A linear [n, k]q code C with generator matrix G is an

[n, k, t]q batch code if and only if there exist t non-intersecting sets T1, . . . , Tt of indices

of columns in the generator matrix G such that for each j ∈ [t], there exists a linear

combination of columns of G indexed by Tj which equals to the vector eij , for all j ∈ [t]

and ij ∈ [k].

Definition 13. [16] A linear [n, k]2 code C with generator matrix G is called a t-server

PIR code if for every i ∈ [k], there exist t disjoint sets of columns of G that add up to ei.

5.4.2 Connection with Batch Codes and PIR Codes

Theorem 14. Given the integral service rate region SI(G) of code G ∈ Fk×n
q with service

rate µ = 1n, if all vectors in the set St = {λ = (λ1, . . . , λk)|
∑k

i=1 λi = t, λi ∈ Z≥0} are

in the SI(G), the code G is a linear [n, k, t]q batch code.

144

Proof. The existence of all vectors in set St = {λ = (λ1, . . . , λk)|
∑k

i λi = t, λi ∈ Z≥0}

in the integral service rate region SI(G) of code G indicates that for any multiset of

indices {i1, . . . , it}, ij ∈ [k], the requests for the information symbols fi1 , fi2 , . . . , fit can

be served at the same time by the storage system. On the other hand, each server can serve

up to one request at a time, i.e., µl = 1 for all servers l ∈ [n], which shows that λi,j are

binary. As a result, t disjoint recovery sets are used for satisfying each demand vector

λ ∈ St. This means that for every multiset of indices {i1, . . . , it}, ij ∈ [k], there exist t

disjoint sets T1, . . . , Tt of indices of columns in the generator matrix G such that for each

j ∈ [t], there exists a linear combination of columns of G indexed by Tj which equals to

the vector eij . Therefore, based on Proposition 3, the code G is a [n, k, t]q batch code.

Theorem 14 shows that the integral setting of the service rate problem where the so-

lution (the portion of requests that are assigned to the recovery sets) is restricted to be

integral, is the same as the setting of the multiset primitive batch code problem. Thus, the

general setting of the service rate problem where a fractional solution is allowed, can be

viewed as a generalization of the setting of the multiset primitive batch code problem.

Corollary 5. Given the integral service rate region SI(G) of code G ∈ Fk×n
q with service

rate µ = 1n, if all vectors in the set St = {t.e1 = (t, 0, . . . , 0), . . . , t.ek = (0, . . . , 0, t)|t ∈

N} are in the SI(G), the code G is a t-server PIR code.

Proof. The existence of the set St = {t.e1 = (t, 0, . . . , 0), . . . , t.ek = (0, . . . , 0, t)|t ∈ N}

in the integral service rate region SI(G) of code G indicates that for every i ∈ [k], t

requests for file fi can be served at the same time by the storage system. Since µl = 1

for all servers l ∈ [n] and λi,j are binary, one can readily confirm that for each file fi,

i ∈ [k], there exist t disjoint recovery sets which are used for satisfying the demand vector

t.ei ∈ St. Thus, for every i ∈ [k], there exist t disjoint sets of columns in the G that add

up to ei. Thus, based on definition 13, the code G is an [n, k]2 t-server PIR code.

145

Next, we present an example regarding the application of Theorems 14 that shows a

binary [7, 3]2 simplex code is a [7, 3, 4]2 batch code.

Example 10. Consider a binary [7, 3]2 simplex code. In this example, utilizing the re-

covery graph and the integral service rate region of the code, we want to show that this

code is a [7, 3, 4]2 batch code. To this end, we need to show that each demand vector

λ = (λ1, λ2, λ3) with
∑3

i=1 λi = 4, is in the integral service rate region of the [7, 3]2

simplex code, i.e., for each of these vectors, there exists a matching in the recovery graph

of [7, 3]2 binary simplex code. W.l.o.g we assume that λ1 ≥ λ2 ≥ λ3. The 4 recovery

sets of each file, say f1, are known. As can be seen in Fig. 5.4, the four magenta edges

corresponding to the recovery sets of file f1, constructs a maximum matching. Using the

Algorithm 1, we show that how one can start with a maximum matching corresponding to

the vector λa = (4, 0, 0) and by following at most two steps find the maximum matching

corresponding to any vector λb = (λ1, λ2, λ3) with λ1 + λ2 + λ3 = 4. For this purpose,

in a nutshell, we start with the recovery sets of file f1 and replace some of them with the

recovery sets for files f2 and f3 as needed. Next, we define three steps, based on which we

present the Algorithm 1 that can be generalized for any number of files k.

Step 1: Consider the systematic recovery set for file fi, and add the corresponding

edge to the matching set. Accordingly, remove the recovery set for file f1, incident to the

node fi, from the matching set.

Step 2: Find (λi − 1)/2 number of loops, each of size 4, consisting of 2 recovery sets

for file fi and 2 recovery sets for file f1, in the recovery graph of the code. Then, by

considering each of the loops, replace the 2 recovery sets for file f1 with the 2 recovery

sets for file fi in the matching.

Step 3: This step would be the same as step 2, except that here (λi − 1)/2 is replaced

with (λi)/2.

146

Algorithm 1 Finding a Max Matching for any (λ1, λ2, λ3) with λ1 + λ2 + λ3 = 4

Input: Max matching corresponding to (4, 0, 0)
for i = 2 : 3 do
if λi is odd
do Step 1;
do Step 2;
else
do Step 3;
end
Output: Max matching corresponding to (λ1, λ2, λ3)

For instance, to find the corresponding matching for the demand vector λ = (2, 2, 0),

we need to show that there are two recovery sets of file f1 that can be used to form two

recovery sets for file f2. The 4 magenta edges (recovery sets of file f1) form a maximum

matching of size 4. In the graph representation, it is easy to find a loop of size 4 consisting

of two magenta edges, λa,3 and λa,4, and two green edges (recovery sets of file f2), λb,3

and λb,4. Therefore, simply we can replace these two magenta edges with the green edges

and construct another maximum matching of size 4 which is a matching corresponding to

the demand λ = (2, 2, 0).

Now, consider the demand vector λ = (2, 1, 1). Since λ2 and λ3 are odd, we need

to find the recovery sets of file f1 that can be used for building systematic recovery sets

for files f2 and f3. It can be seen that the magenta edges connected to the nodes 2 and

4 of the recovery graph, i.e., λa,2 and λa,3, can be removed from the original maximum

matching and be substituted by the green edge λb,1, and the blue edge λc,1, which represent

systematic recovery sets for f1 and f2, respectively.

147

∅f10 ∅f20 ∅f30

f11 f22 f34

f1 + f23 f1 + f35 f2 + f36

f1 + f2 + f37

λa,1

λa,2 λa,3

λa,4

λb,1

λb,2 λb,3

λb,4

λc,1

λc,2 λc,3

λc,4

Figure 5.4: Graph representation of the binary [7, 3] simplex code.

148

6. SERVICE RATE REGION USING GEOMETRIC APPROACH*

6.1 Introduction

One of the most significant considerations in the design of distributed storage systems

is serving a large number of users concurrently. The service rate is an important perfor-

mance metric that measures the number of users that can be simultaneously served by

a storage system [71–75] that implements an erasure code. Maximizing the service rate

reduces the latency experienced by users, particularly in a high traffic regime.

The service rate problem considers a distributed system where k files, f1, . . . , fk are

encoded into n, and stored across n servers. File fi can be recovered by reading data from

a single or a set of storage nodes, referred to as a recovery set for file fi. Requests to

download file fi arrive at rate λi, and can be split across its recovery sets. Server l can

simultaneously serve multiple requests if their cumulative arrival rate does not exceed the

maximum service rate µl of server l. The service rate problem seeks to determine the

service rate region of the coded storage system which is defined as the set of all request

arrival rate vectors λ = (λ1, . . . , λk) that can be served by this system.

The service rate problem has been studied only in some special cases: 1) for MDS

codes when n ≥ 2k and binary simplex codes in [73] and 2) for systems with arbitrary

n when k = 2 in [73] and k = 3 in [74]. The existing techniques for solving the problem

require enumeration of all possible recovery sets, which becomes increasingly complex

when the number of files k increases. Thus, introducing a technique which is not depend-

ing on the enumeration of recovery sets is of great significance. In this work, we introduce

a novel geometric approach with this goal in mind.

*Reprinted with permission from [76] "A Geometric View of the Service Rates of Codes Problem and
its Application to the Service Rate of the First Order Reed-Muller Codes," by F. Kazemi, S. Kurz, and E.
Soljanin, 2020. In Proceedings of 2020 IEEE International Symposium on Information Theory (ISIT), pp.
66-71, June 2020. Copyright © by IEEE.

149

Related Work

The past two decades have seen an ever increasing interest in coding for storage and

caching. Special codes that support efficient maintenance of storage under node failures

have been proposed in e.g., [51,52,99–101]. The locality and availability of codes matter in

such scenarios. This line of work mostly assumes infinite service rate (immediate service)

for servers, and is primarily concerned with reliability of storage rather than with serving

a large number of simultaneous users.

Another line of work is focused on caching (see e.g., [56, 57, 102]). In these work, the

limited capacity of the backhaul link is considered as the main bottleneck, and the goal

is usually to minimize its traffic by prefetching the popular contents at the storage nodes

with limited size. Thus, these work do not address the scenarios such as live streaming,

where many users wish to get the same content concurrently given the limited capacity of

the access part of the network.

The most related to this work are papers concerned with content download from coded

storage. Load balancing in such systems has recently been addressed in [98]. Memory

allocation that maximizes the probability of successful content download under limited

access to distributed storage was considered in e.g., [99,111] and references therein. Min-

imizing the service rate in these scenarios was considered in [71, 72]. This problem is

similar to ours but it assumes that all users request the same content which is encoded by

an MDS code and stored on nodes with unlimited storage capacity. Fast content download

from coded storage was considered in e.g., [64, 65], and references therein. These papers

strive to compute the download latency for increasingly complex queueing systems that

appear in coded storage [70, 105, 106]. The service rate problem is related to the stability

region of such queues.

150

Our Contributions

We study the service rates of codes problem by introducing a novel geometric ap-

proach. This approach overcomes the main drawback of the previous work which are try-

ing to solve this problem by formulating it as a sequence of linear programs (LP). There,

one must exactly know all possible recovery sets to enumerate the constraints in each LP,

and must also solve all the LPs.

Using our novel geometric technique, we take initial steps towards deriving bounds on

the service rates of some parametric classes of linear codes without explicitly listing the

set of all possible recovery sets. In particular, we derive upper bounds on the service rates

of the first order Reed-Muller codes and simplex codes, as two classes of codes which are

most important in theory as well as in practice. Subsequently, we show how the derived

upper bounds can be achieved. Moreover, utilizing the proposed geometric technique, we

show that given the service rate region of a code, a lower bound on the minimum distance

of the code can be derived.

6.2 Problem Statement

6.2.1 Notation

Throughout this chapter, we denote vectors by bold-face small letters and matrices by

bold-face capital letters. Let N denote the set of the non-negative integer numbers. Let Fq

be a finite field for some prime power q, and Fn
q be the n-dimensional vector space over

Fq. Let us denote a q-ary linear code C of length n, dimension k and minimum distance

d by [n, k, d]q. We denote the Hamming weight of x by w(x). For a positive integer k,

let 0 and 1 denote the all-zero and all-one column vectors of length k, respectively. Let

ei denote a unit vector of length k, having a one at position i and zeros elsewhere. For a

positive integer i, define [i] ≜ {1, . . . , i}. Let us denote the cardinality of a set or multiset

S by #S.

151

6.2.2 Service Rate of Codes

Consider a storage system in which k files f1, . . . , fk are stored over n servers, labeled

1, . . . , n, using a linear [n, k]q code with generator matrix G ∈ Fk×n
q . Let gj denote the

jth column of G. A recovery set for the file fi is a set of stored symbols which can be

used to recover file fi. With respect to G, a set R ⊆ [n] is a recovery set for file fi if there

exist αj’s ∈ Fq such that
∑

j∈R αjgj = ei, i.e., the unit vector ei can be recovered by a

linear combination of the columns of G indexed by the set R. W.l.o.g., we restrict our

attention to the reduced recovery sets obtained by considering non-zero coefficients αj’s

and linearly independent columns gj’s.

Let Ri = {Ri,1, . . . , Ri,ti} be the ti ∈ N recovery sets for file fi. Let µl ∈ R≥0 be

the average rate at which the server l ∈ [n] resolves received file requests. We denote the

service rates of servers 1, . . . , n by a vector µ = (µ1, . . . , µn). We further assume that the

requests to download file fi arrive at rate λi, i ∈ [k]. We denote the request rates for files

1, . . . , k by the vector λ = (λ1, . . . , λk). Let λi,j be the portion of requests for file fi that

are assigned to the recovery set Ri,j , j ∈ [ti].

The service rate region S(G,µ) ⊆ Rk
≥0 is defined as the set of all request vectors λ

that can be served by a coded storage system with generator matrix G and service rate

µ. Alternatively, S(G,µ) can be defined as the set of all vectors λ for which there exist

λi,j ∈ R≥0, i ∈ [k] and j ∈ [ti], satisfying the following constraints:

ti∑
j=1

λi,j = λi, for all i ∈ [k], (6.1a)

k∑
i=1

∑
j∈[ti]
l∈Ri,j

λi,j ≤ µl, for all l ∈ [n], (6.1b)

λi,j ∈ R≥0, for all i ∈ [k], j ∈ [ti]. (6.1c)

152

The constraints (6.1a) guarantee that the demands for all files are served, and constraints

(6.1b) ensure that no node receives requests at a rate in excess of its service rate.

Lemma 18. The service rate region S(G,µ) is a non-empty, convex, closed, and bounded

subset of Rk
≥0.

Proof. It can be easily observed that for every service rate vector µ, setting λi,j = 0,

where i ∈ [k] and j ∈ [ti], satisfies the set of constraints in (6.1) for the all-zero demand

vector of dimension k denoted by 0 = (0, . . . , 0) ∈ Rk. Thus, 0 always belongs to the

service rate region S(G,µ). It proves that the service rate region S(G,µ) is a non-empty

subset of Rk
≥0. Based on the definition of the convex set, we need to show that for all

λ and λ̃ in S(G,µ) and for all 0 ≤ π ≤ 1, all vectors πλ + (1 − π)λ̃ are in S(G,µ).

Since λ ∈ S(G,µ), there exist λi,j’s, where i ∈ [k] and j ∈ [ti], that satisfy the set of

constraints in (6.1) for the demand vector λ and the service rate vector µ. Also, since

λ̃ ∈ S(G,µ), there exist λ̃i,j’s, where i ∈ [k] and j ∈ [ti], that satisfy the set of constraints

in (6.1) for the demand vector λ̃ and the service rate vector µ. One can easily confirm

that (πλi,j + (1− π)λ̃i,j)’s, where i ∈ [k] and j ∈ [ti], also satisfy the set of constraints

in (6.1) for the demand vector πλ+ (1− π)λ̃ for all 0 ≤ π ≤ 1, and the service rate

vector µ. Thus, πλ+ (1− π)λ̃ belongs to S(G,µ) for all 0 ≤ π ≤ 1. This completes the

proof of convexity of the service rate region S(G,µ). Summing up the set of constraints

in (6.1b) leads us to:
n∑

l=1

k∑
i=1

∑
j∈[ti]
l∈Ri,j

λi,j ≤
n∑

l=1

µl

Changing the order of the sums and utilizing the fact that
∑n

l=1

∑
j∈[ti]
l∈Ri,j

λi,j =
∑ti

j=1 λi,j ,

we obtain
k∑

i=1

ti∑
j=1

λi,j ≤
n∑

l=1

µl.

153

Using (6.1a), we rewrite the last inequality to

k∑
i=1

λi ≤
n∑

l=1

µl (6.2)

The equation (6.2) indicates that the elements of every vector λ ∈ S(G,µ) are bounded.

It also shows that all demand vectors λ = (λ1, . . . , λk) with
∑k

i=1 λi >
∑n

l=1 µl are not in

S(G,µ). Hence, S(G,µ) is closed and bounded.

Proposition 4. [118] For any set A = {v1, . . . ,vp} ⊆ Rk, the convex hull of the set A,

denoted by conv(A), consists of all convex combinations of the elements of A, i.e., all

vectors of the form
∑p

i=1 γivi, with γi ≥ 0,
∑p

i=1 γi = 1.

Corollary 6. The service rate region S(G,µ) ⊆ Rk
≥0 forms a polytope which can be

expressed in two forms: as the intersection of a finite number of half spaces or as the

convex hull of a finite set of vectors (vertices of the polytope).

Proof. Based on Lemma 18, the service rate region S(G,µ) is a convex and bounded

subset of the Rk
≥0, which indicates that S(G,µ) is a polytope. Thus, according to [119,

Theorem 4], it can be described as the two mentioned forms, i.e., the intersection of a

finite number of half spaces or the convex hull of a finite set of vectors (the vertices of the

polytope).

The service rate problem seeks to determine the service rate region S(G,µ) of a coded

storage system with generator matrix G and service rate µ. Based on Corollary 6, the

first algorithm for computing the service rate region that comes to mind is enumerating

all vertices of the polytope S(G,µ) and then computing the convex hull of the resulting

vertices. As we will show shortly, this problem can be formulated as an optimization

problem consisting of a sequence of LPs.

154

Given that any k− 1 request arrival rates, λi1 , . . . , λik−1
, are zeros, there exists a maxi-

mum value of λik , denoted by λ⋆
ik

, where 0 ≤ λ⋆
ik
≤
∑n

l=1 µl (see the proof of Lemma 18)

such that λ⋆
ik
.eik ∈ S(G,µ) and all vectors λik .eik with λik > λ⋆

ik
are not in S(G,µ).

These constrained optimization problems of finding the maximum value λ⋆
ik

are all LPs.

For i ∈ [k], let vi = λ⋆
i ei. Since J = {0,v1,v2, . . . ,vk} ⊆ S(G,µ), as an immediate

consequence of Lemma 18 and Proposition 4, the set conv(J) is contained in S(G,µ).

Starting with J , one can iteratively enlarge J until the subsequent procedure stops. A

facet H of conv(J) described by a vector h ∈ Rk
≥0 and η ∈ R≥0 is chosen as follows

H =
{
x ∈ Rk

≥0 : h⊤x = η
}
∩ conv(J).

For the chosen facet H described by the vector h ∈ Rk
≥0 and η ∈ R≥0, one should

solve maxh⊤λ, where λ ∈ Rk
≥0 satisfies the demand constraints (6.1a) and capacity con-

straints (6.1b). If the optimal target value is strictly larger than η, then the solution vector

λ⋆ is added to J and this procedure continues. For any h = (h1, . . . , hk), the primal LP

is given by

max
k∑

i=1

hiλi s.t. (6.1) holds. (6.3)

and the corresponding dual LP is given by

min
n∑

l=1

γlµl (6.4)

s.t. hi ≤ βi ∀i ∈ [k]

βi ≤
∑
l∈Ri,j

γl ∀i ∈ [k],∀j ∈ [ti]

βi ∈ R ∀i ∈ [k]

γl ∈ R≥0 ∀l ∈ [n]

155

Based on the Duality Theorem [120], if both the primal LP and the corresponding

dual LP have feasible solutions, then their optimal target values coincide. It can be easily

confirmed that a feasible solution for the primal LP (6.3) can be given by λi,j = 0 and

λi = 0, and a feasible solution for the dual LP (6.4) can be given by βi = hi and γl =∑k
i=1 hi. Thus, given a generator matrix G of a linear code and a service rate µ of the

servers in a distributed coded storage system, the LP (6.3) can be utilized to compute the

maximum value of η =
∑k

i=1 hiλi, denoted by η⋆, for every vector h ∈ Rk
≥0. Having η⋆

at hand, it is known that all the vectors λ ∈ S(G,µ) satisfy
∑k

i=1 hiλi ≤ η⋆, which is a

valid inequality for S(G,µ). The downside of this approach is that we have to exactly

know the set of all possible recovery sets for each file and also have to optimally solve all

the LPs (6.3). Using the dual LP (6.4), we run into a similar problem since in order to list

all the inequalities in (6.4), again we require to know the elements of all the recovery sets

for each file, which becomes increasingly complex when the number of files k increases.

Thus, characterizing the exact service rate region of some parametric classes of lin-

ear codes or deriving some bounds on the service rate region of a storage scheme is a

challenging problem, which we aim to address in this work. Towards this goal, we in-

troduce a novel geometric approach. Leveraging our geometric approach, upper bounds

on the sum of each subset of arrival rates in any demand vector that can be served by a

linear code. That is, using this approach, one can obtain a finite set of half-spaces (upper

bounds) whose intersection encompasses the service rate region of a given linear storage

scheme. In this work, using our proposed geometric technique, we derive upper bounds

on the service rates of the first order Reed-Muller codes and simplex codes.

6.2.3 Description of Storage Schemes

In this section, we briefly review the geometric description of linear codes. For more

details, see [121–123].

156

Definition 14. For a vector space V of dimension v over Fq, ordered by inclusion, the set of

all Fq-subspaces of V forms a finite modular geometric lattice with meet X ∧ Y = X ∩ Y ,

join X ∨ Y = X + Y , and rank function X 7→ dim(X). This subspace lattice of V is

known as the projective geometry of V , denoted by PG(V).

For a vector space V of dimension v over Fq, the 1-dimensional subspaces of V are the

points of PG(V), the 2-dimensional subspaces of V are the lines of PG(V), and the v − 1

dimensional subspaces of V are called the hyperplanes of PG(V). The projective geome-

try PG(V) is also denoted by PG(v − 1, q), which is referred to as the v − 1 dimensional

projective space over Fq. This notion makes sense because of the fact that, up to isomor-

phism, the projective geometry PG(V) only depends on the order q of the base field and

the (algebraic) dimension v, which is justifying the notion PG(v − 1, q) of (geometric)

dimension v − 1 over Fq.

Let V be a vector space of dimension v over Fq. The set of all k-dimensional subspaces

of V , referred to as k-subspaces, will be denoted by
[V
k

]
q
. The cardinality of this set is given

by the Gaussian binomial coefficient as follows

[
v

k

]
q

=

(qv−1)(qv−1−1)···(qv−k+1−1)

(qk−1)(qk−1−1)···(q−1)
if 0 ≤ k ≤ v;

0 otherwise.

A multiset is a modification of the concept of a set that, unlike a set, allows for multiple

instances for each of its elements. The positive integer number of instances, given for each

element is called the multiplicity of this element in the multiset. More formally, a multiset

S on a base set X can be identified with its characteristic function χS : X → N, mapping

x ∈ X to the multiplicity of x in S . The cardinality of S is #S =
∑

x∈X χS(x). S is also

called #S-multiset.

157

2

6

1

3

7

5 4
0
0
1

0
1
0

0
1
1

1
0
0

1
1
0

1
0
1

1
1
1

Figure 6.1: 7-multiset induced by binary [7, 3] Simplex code (Fano plane).

Definition 15. Let V be a vector space of dimension v over Fq, P be a multiset of points p

in PG(V) with characteristic function χP : PG(V) → N, and H denotes a hyperplane in

PG(V). The restricted multiset P ∩H is defined via its characteristic function as follows

χP∩H(p) =

χP(p) if p ∈

[H
1

]
q
;

0 otherwise.

Then #(P ∩H) =
∑

p∈[H1]q
χP(p).

Let G ∈ Fk×n
q be the generator matrix of a linear [n, k]q code C, a k-subspace of the

n-dimensional vector space Fn
q . Let gi ∈ Fk

q , i ∈ [n] be the ith column of G. Suppose that

none of the gi’s is 0. (The code C is said to be of full length.) Then each gi determines a

point in the projective space PG(k − 1, q), and G := {g1,g2, . . . ,gn} is a set of n points

in PG(k − 1, q) if the gi happen to be pair-wise independent. When dependence occurs,

G is interpreted as a multiset and each point is counted with the appropriate multiplicity.

In general, G is called n-multiset induced by C.

For example, consider the [7, 3]2 Simplex code. The columns of its generator matrix

are the seven non-zero vectors of F3
2, and the seven points in the projective space PG(2, 2).

Figure 6.1 shows the corresponding 7-multiset, known as the Fano plane. Since k = 3, the

7 lines of the PG(2, 2) are also the hyperplanes of this 2-dimensional projective space.

158

Proposition 5. Different generator matrices of a code yield projectively equivalent codes.

In other words, there exist a bijective correspondence between the equivalence classes of

full-length q-ary linear codes and the projective equivalence classes of multisets in finite

projective spaces.

It should be noted that the importance of this correspondence lies in the fact that it

relates the coding-theoretic properties of C to the geometric or the combinatorial properties

of multiset G.

Proposition 6. Let G ∈ Fk×n
q be the generator matrix of a linear [n, k, d]q code C, and G

be the n-multiset induced by code C. The minimum distance d of code C is given by

d = n−max#(G ∩ H),

whereH runs through all the hyperplanes of PG(k − 1, q).

Proof. For an arbitrary non-zero row vector a = [a1, · · · , ak] of dimension k, the Ham-

ming weight of codeword aG ∈ C is given by

w(aG) = n−#{j ∈ [n]; agj = 0} = n−#(G ∩ A),

where A is a hyperplane in PG(k − 1, q) with equation a1x1 + · · ·+ akxk = 0. Thus, the

codeword with minimum Hamming weight is resulted from a hyperplane H in PG(k −

1, q) with maximum #(G ∩ H). The proof is completed considering the fact that the

minimum distance of a code is equal to the minimum Hamming weight of its nonzero

codewords.

Example 11. Consider the k-dimensional simplex code C over Fq. In PG(k − 1, q), the

multiset G induced by code C has
[
k
1

]
q

points, and all hyperplanes contain
[
k−1
1

]
q

points.

159

Thus, as an immediate consequence of Proposition 6 and its proof, every non-zero code-

word of the corresponding linear code has a Hamming weight of qk−1, which indicates that

the minimum distance of code C is qk−1. LetH be an arbitrary hyperplane in PG(k − 1, q)

and P be the set of all qk−1 points of Fk
q that are not contained in H. The corresponding

code of P is known as a k-dimensional first order Reed-Muller code or as an affine k-

dimensional simplex code.

6.2.4 First Order Reed-Muller (RM) Codes

A k-dimensional binary first-order Reed-Muller code RM2(1, k − 1) with parameter

k ≥ 2, is a linear [2k−1, k] code [124–126]. RM codes are important in both theory and

practice.

For a given k, one way of obtaining this code is to evaluate all multilinear polynomials

with the binary coefficients, k − 1 variables and the total degree of one on the elements

of Fk−1
2 . The encoding polynomial for RM2(1, k − 1) can be written as c1 + c2 · Z1 +

c3 · Z2 + · · · + ck · Zk−1 where Z1, . . . , Zk−1 are the k − 1 variables, and c1, . . . , ck are

the binary coefficients of this polynomial. Indeed, the data symbols f1, . . . , fk are used as

the coefficients of the encoding polynomial, and the codeword symbols are obtained by

evaluating the encoding polynomial on all vectors (Z1, . . . , Zk−1) ∈ Fk−1
2 .

Another way of describing k-dimensional binary first order Reed-Muller codes, i.e.,

RM2(1, k − 1) is based on the generator matrix which can be constructed as follows. Let

us write the set of all (k − 1)-dimensional binary vectors as X = Fk−1
2 = {x1, . . . ,xn}

where n = 2k−1 and for i ∈ [n], xi = (xik−1
, . . . , xi1) with xij ∈ F2, j ∈ [k − 1]. For any

A ⊆ X , define the indicator vector IA ∈ Fk−1
2 as follows,

(IA)i =

1 if xi ∈ A;

0 otherwise.

160

For the k rows of the generator matrix of RM2(1, k−1), define k row vectors of length 2k−1

as follows, r0 = (1, . . . , 1) and rj = IHj
, j ∈ [k − 1], where Hj = {xi ∈ X | xij = 0}.

The set {rk−1, . . . , r1, r0} defines the rows of a non-systematic generator matrix of the

RM2(1, k − 1). For a systematic generator matrix of the RM2(1, k − 1), the set of rows

{rk−1, . . . , r1,
∑k−1

i=0 ri} can be considered.

Example 12. Consider RM2(1, 3) which is an [8, 4, 4]2 code. We first define the set X as

follows

X = F3
2 = {(0, 0, 0), (0, 0, 1), . . . , (1, 1, 1)} = {x1, . . . ,x8}

It then follows that H3 = {x1,x2,x3,x4} that gives r3 = (1, 1, 1, 1, 0, 0, 0, 0), and H2 =

{x1,x2,x5,x6} which gives r2 = (1, 1, 0, 0, 1, 1, 0, 0), and H1 = {x1,x3,x5,x7} which

results r1 = (1, 0, 1, 0, 1, 0, 1, 0). Let r0 be the all-one row vector of dimension eight. The

set {r3, r2, r1, r0} defines the rows of a non-systematic generator matrix of the RM2(1, 3)

as follows

G =

1 1 1 1 0 0 0 0

1 1 0 0 1 1 0 0

1 0 1 0 1 0 1 0

1 1 1 1 1 1 1 1

Also,

∑3
i=0 ri = (0, 1, 1, 0, 1, 0, 0, 1), and a systematic generator matrix of RM2(1, 3)

is given by

G =

1 1 1 1 0 0 0 0

1 1 0 0 1 1 0 0

1 0 1 0 1 0 1 0

0 1 1 0 1 0 0 1

161

6.3 Geometric View on Service Rate of Codes

This section uses the geometric description of linear codes. For a linear code C with

generator matrix G ∈ Fk×n
q , we consider the n-multiset G induced by C in PG(k − 1, q)

with the characteristic function χG as defined in the section 6.2.3. Thus, each point

p ∈ PG(k − 1, q) has a certain multiplicity χG(p) ∈ N. In this language, the reduced re-

covery sets are subsets of G such that each point can be taken once in a reduced recovery

set. Also, the service rate of each point p, denoted by µ(p), can be defined as the sum of

the service rates of the nodes (columns of G) corresponding to the point p. Based on this

definition, µ(p) =
∑

l∈Lp
µl where Lp is the set of nodes that correspond to the same point

p ∈ PG(k − 1, q). Since #Lp = χG(p), if all nodes in the set Lp have the same service

rate, say µp, then we have µ(p) = χG(p) · µp.

Lemma 19. Let G ∈ Fk×n
q be the generator matrix of an [n, k]q code C, and G be the

n-multiset induced by code C with service rate µ(p) of each point p ∈ PG(k − 1, q). If for

some i ∈ [k], s · ei ∈ S(G,µ) and a hyperplane H of PG(k − 1, q) is not containing ei,

then we have

s ≤
∑

p∈PG(k−1,q)\H

µ(p).

Proof. Since s · ei ∈ S(G,µ), it means that the request rate of s for file fi is satisfied

by the coded storage system. Whatever the used recovery sets for file fi are, some points

outside of H have to be used since the points in H are not able to generate ei. Thus,

replacing each recovery set inRi by an arbitrary contained point outside of hyperplaneH,

completes the proof.

Corollary 7. Let G ∈ Fk×n
q be the generator matrix of a linear [n, k, d]q code C with

service rate µl = 1 of all nodes l ∈ [n], and G be the n-multiset induced by code C. If for

all i ∈ [k], s · ei ∈ S(G,µ), then the minimum distance d of code C is at least ⌈s⌉.

162

Proof. Since for all i ∈ [k], s · ei ∈ S(G,µ) holds, this means that for all files fi, i ∈ [k],

the request rate of s can be satisfied by the coded storage system. Thus, if we consider any

hyperplane H in PG(k − 1, q), it does not contain at least one of the ei’s for i ∈ [k]. In

the special case of unit service rate of all servers, based on Lemma 19 results in

s ≤ #(G\H) := #G −#(G ∩ H) = n−#(G ∩ H) .

Since for every hyperplane H in PG(k − 1, q), s ≤ n − #(G ∩ H) holds, according to

the Proposition 6 and based on the fact that the minimum distance d is integer, we have

⌈s⌉ ≤ d.

Corollary 8. Let G ∈ Fk×n
q be the generator matrix of a linear [n, k]q code C, and G be

the n-multiset induced by code C with service rate µ(p) of each point p ∈ PG(k − 1, q).

Let I ⊆ [k]. If for all i ∈ I, there exist si ∈ R≥0 such that
∑

i∈I si · ei ∈ S(G,µ) and a

hyperplaneH of PG(k − 1, q) which is not containing ei for all i ∈ I, then we have

s ≤
∑

p∈PG(k−1,q)\H

µ(p).

where s =
∑

i∈I si.

Proof. Since
∑

i∈I si · ei ∈ S(G,µ), based on Lemma 18, si · ei ∈ S(G,µ) holds for all

i ∈ I. On the other hand, the hyperplane H of PG(k − 1, q) does not contain any ei for

all i ∈ I. Thus, by applying Lemma 19 for each i ∈ I, we get si ≤
∑

p∈PG(k−1,q)\H µ(p).

Summing up all these inequalities gives

s =
∑
i∈I

si ≤
∑

p∈PG(k−1,q)\H

µ(p).

163

It should be noted that Corollary 8 enables us to derive upper bounds on the service

rate of the first order Reed-Muller codes and simplex codes. In what follows, without loss

of generality, we assume that the service rate of all servers in the coded storage system is

1, i.e., µl = 1 for all l ∈ [n]. Thus, by this assumption, the service rate region of a code

only depends on the generator matrix G of the code and can be denoted by S(G).

6.4 Service Rate Region of Simplex Codes

In this section, by leveraging a novel geometric approach, we characterize the service

rate region of the binary simplex codes which are special rate-optimal subclass of availabil-

ity codes that are known as an important family of distributed storage codes. As we will

show, the determined service rate region coincides with the region derived in [73, Theorem

1].

Theorem 15. For each integer k ≥ 1, the service rate region of the k-dimensional binary

simplex code C, which is a linear [2k − 1, k, 2k−1]2 code with generator matrix G is given

by

S(G) =

{
λ ∈ Rk

≥0 :
k∑

i=1

λi ≤ 2k−1

}
.

Proof. Note that the simplex code is projective. Since the projective space PG(k − 1, 2)

contains exactly 2k − 1 points, the generator matrix G consists of all non-zero vectors of

Fk
2. (Up to column permutations the generator matrix is unique.) Given an arbitrary i ∈ [k],

we partition the columns of G into ei and {x,x+ ei} for all 2k−1 − 1 non-zero vectors

x ∈ Fk
2 with ith coordinate being equal to zero. Thus, for all i ∈ [k], 2k−1 · ei ∈ S(G). Let

vi = 2k−1 · ei for i ∈ [k]. Since J = {0,v1,v2, . . . ,vk} ⊆ S(G), based on Lemma 18

and Proposition 4, the conv(J) is contained in S(G), i.e.,

S(G) ⊇

{
λ ∈ Rk

≥0 :
k∑

i=1

λi ≤ 2k−1

}

164

For the other direction, we consider the hyperplane H given by
∑k

i=1 xi = 0, which

does not contain any unit vector ei. Thus, for any demand vector λ = (λ1, . . . , λk) in the

service rate region, the Corollary 8 results in
∑k

i=1 λi ≤ 2k−1. The reason is that half of

the vectors in Fk
2 which are the columns of G and so the elements of G, are not contained

inH.

6.5 Service Rate Region of Reed-Muller Codes

This section seeks to characterize the service rate region of the RM2(1, k − 1) code

with a non-systematic and a systematic generator matrix G constructed as described in

section 6.2.4.

6.5.1 Non-Systematic First Order Reed-Muller Codes

Theorem 16. For each integer k ≥ 2, the service rate region of first order Reed-Muller

code RM2(1, k − 1) (or binary affine k-dimensional simplex code) with a non-systematic

generator matrix G constructed as described in section 6.2.4, if k ∈ {2, 3} is given by

S(G) =

{
λ ∈ Rk

≥0 :
k∑

i=1

λi ≤ 2k−2

}
= conv ({0,v1, . . . ,vk})

and if k ≥ 4, is given by

S(G) =
{
λ ∈ Rk

≥0 :
k∑

i=1

λi ≤ 2k−2,

k−1∑
i=1

λi +
3

2
λk − 1 ≤ 2k−2

}
= conv ({0,v1, . . . ,vk−1,uk,w1, . . . ,wk−1}) ,

where vi = 2k−2 · ei for i ∈ [k] and wj = (2k−2 − 2) · ej + 2 · ek for j ∈ [k − 1]. Also,

uk =
2k−1+2

3
· ek.

Proof. The proof consists of a converse and an achievability.

165

Converse: The unit vector ei for all i ∈ [k − 1] is not a column of G which means

that file fi does not have any systematic recovery set. Therefore, for file fi, i ∈ [k − 1],

all recovery sets have cardinality at least two, and the minimum system capacity utilized

by λi, i ∈ [k − 1], is 2λi. For file fk, the cardinality of every reduced recovery set is odd

since all columns of generator matrix G has one in the last row. Hence, for file fk, the

unit vector ek that is a column of G, forms a systematic recovery set of cardinality one,

while all other recovery sets have cardinality at least three. Hence, the minimum capacity

used by λk ≥ 1 is 1 + 3(λk − 1). Since the system has 2k−1 servers, each of service rate

(capacity) 1, based on the capacity constraints, the total capacity utilized by the requests

for download must be less than 2k−1. Thus, any vector λ = (λ1, . . . , λk) in the service

rate region must satisfy the following valid constraint,

k−1∑
i=1

λi +
3

2
λk − 1 ≤ 2k−2 (6.5)

Consider the hyperplane H given by
∑k

i=1 xi = 0, that does not contain any unit vector

ei. The columns of generator matrix G and so the elements of G which are not contained

in H, are the vectors in Fk
2 with one in the last coordinate that satisfy

∑k−1
i=1 xi = 0. It is

easy to see that there are 2k−2 such vectors. Thus, applying Corollary 8 for hyperplane H

impose another valid constraint as follows that any demand vector λ = (λ1, . . . , λk) in the

service rate region must satisfy,
k∑

i=1

λi ≤ 2k−2 (6.6)

Note that for λk < 2, the Inequality (6.6) is tighter than (6.5), while for λk > 2 Inequal-

ity (6.5) is tighter than (6.6). This means that for k ∈ {2, 3} Inequality (6.5) is redundant.

Achievability: For the other direction, we will provide solutions (constructions) for

the vertices of the corresponding polytope as follows. Let R′ ⊆ Fk
2, |R′| = 2k−1 be

166

the set of columns of G with one in the last coordinate. For all i ∈ [k − 1], consider

all the 2k−2 vectors x ∈ R′ with zero in the ith coordinate, then x+ ei ∈ R′, and so

{x,x+ ei} constitutes a recovery set of cardinality two for file fi. Thus, for each file

fi, i ∈ [k − 1], the columns of G can be partitioned into 2k−2 pairs {x,x+ ei} which

determines 2k−2 disjoint recovery sets for file fi, i ∈ [k − 1]. Therefore, the demand

vectors 2k−2 · ei for all i ∈ [k − 1] can be satisfied, i.e., 2k−2 · ei ∈ S(G). For file fk,

there are exactly one systematic recovery set of cardinality one which is the column ek

of G, and (2k−1 − 1).(2k−1 − 2)/6 recovery sets of cardinality three which are the sets

{x,x′,x + x′ + ek} for all pairs x,x′ ∈ R′ \ ek. Note that for k = 2, according to In-

equality (6.6), one can readily confirm that λk ≤ 1. Thus, for k = 2 the systematic re-

covery set of file fk can be utilized for satisfying the demand vector 1 · ek. For k ≥ 3, it

should be noted that that each column x ∈ R′ \ ek is contained in exactly (2k−1 − 2)/2

recovery sets of file fk of cardinality three. Since the capacity of each node is one,

from each recovery set the request rate of 1/(2k−2 − 1) can be satisfied without violat-

ing the capacity constraints. Thus, the demand vector 2k−1+2
3
· ek can be satisfied. For

the remaining part, we consider k ≥ 4. Let i, j ∈ [k − 1] with i ̸= j be arbitrary. With

this {ek, ei + ek} and {ej + ek, ei + ej + ek} are two of 2k−2 recovery sets of cardinal-

ity two for file fi. Thus, the elements in R′\ {ek, ei + ek, ej + ek, ei + ej + ek} can be

partitioned into 2k−2 − 2 recovery sets for file fi, i ∈ [k − 1]. Also, the sets {ek} and

{ei + ek, ej + ek, ei + ej + ek} can be utilized as two disjoint recovery sets for file fk.

Thus, the demand vector
(
2k−2 − 2

)
· ei + 2 · ek can be satisfied.

6.5.2 Systematic First Order Reed-Muller Codes

Theorem 17. For each integer k ≥ 2, the service rate region of first order Reed-Muller

code RM2(1, k − 1) (or binary affine k-dimensional simplex code) with a systematic gen-

erator matrix G constructed as described in section 6.2.4, if k = 2 is given by

167

S(G) =
{
λ ∈ Rk

≥0 : λ1 ≤ 1, λ2 ≤ 1
}
= conv (0, e1 + e2)

if k = 3, is given by

S(G) =
{
λ ∈ Rk

≥0 : −λi +
∑3

j=1 λj ≤ 2,∀i ∈ [k]
}
= conv (0, 2 · e1, 2 · e2, 2 · e3, e1 + e2 + e3)

if k = 4, is given by

S(G) =
{
λ ∈ Rk

≥0 :−λi +
k∑

j=1

λj ≤ 4, 2λi +
k∑

j=1

λj ≤ 10∀i ∈ [k]
}

= conv
(
0,pi ∀i ∈ [k],qi,j ∀i, j ∈ [k] with i ̸= j, 4

3
· 1
)

and if k ≥ 5, S(G) lies inside the region given by

S(G) ⊆
{
λ ∈ Rk

≥0 :
∑

i∈[k]\S

λi +
∑
j∈S

(3λj − 2) ≤ 2k−1 ∀S ⊆ [k]
}
.

where pi =
10
3
· ei and qi,j = 3 · ei + 1 · ej for i, j ∈ [k].

Proof. Based on the construction described in section 6.2.4 for a systematic generator

matrix G of the RM2(1, k − 1), it can be seen that the number of ones in each column of

G is odd, and the constructed systematic generator matrix, up to column permutations, is

unique. Let the columns of G which are the set of vectors in Fk
2 with odd number of ones,

be denoted byR′ ⊆ Fk
2, |R′| = 2k−1.

Converse: For an arbitrary file fi, i∈ [k], the unit vector ei is a column of G that forms

a systematic recovery set of cardinality one, while all other recovery sets have cardinality at

least three. The proof is based on the contradiction approach. Let x,x′ ∈ R′ \ ei. Assume

that {x,x′} forms a recovery set of cardinality two for file fi, i.e., x+ x′ = ei. Since

both x and x′ have an odd number of ones, their sum must have an even number of ones

which is a contradiction. Indeed, for all pairs x,x′ ∈ R′ \ ei, the set {x,x′,x+ x′ + ei}

168

forms a recovery set of cardinality three for file fi, i ∈ [k]. Thus, if λi ≤ 1, the requests

for file fi can be fully satisfied by the systematic recovery set {ei} and the system capacity

utilized by λi is λi. However, for λi ≥ 1, the system capacity utilized by λi is at least

1 + 3(λi − 1) = 3λi − 2. Since the system has 2k−1 servers of capacity 1, any vector

λ = (λ1, . . . , λk) in the service rate region must satisfy:

∑
i∈[k]\S

λi +
∑
j∈S

(3λj − 2) ≤ 2k−1 ∀S ⊆ [k] (6.7)

Applying Corollary 8 on all hyperplanes Hj , j ∈ [k], given by
∑

i∈[k]\j xi = 0, where

each hyperplaneHj , j ∈ [k] does not contain any unit vectors ei, i ∈ [k] \ j, yields another

set of valid constraints on any demand vector λ = (λ1, . . . , λk) in the service rate region

as follows: ∑
i∈[k]\j

λi ≤ 2k−2 ∀j ∈ [k] (6.8)

Note that for k ∈ {2, 3}, Inequality (6.8) is tighter than (6.7). For k = 2, Inequal-

ity (6.8) gives λ1 ≤ 1 and λ2 ≤ 1. For k = 3, Inequality (6.8) gives
∑3

i=1 λi − λi ≤ 2

for all i ∈ [3]. Summing up these three inequalities and dividing them by two, results∑3
i=1 λi ≤ 3. For k = 4, Inequality (6.8) yields

∑4
i=1 λi − λi ≤ 4 for all i ∈ [4]. Sum-

ming up these four inequalities and dividing by three gives
∑4

i=1 λi ≤ 16
3

. Also, for k = 4,

Inequality (6.7) gives a set of constraints, among which the constraints
∑4

i=1 λi+2·λi ≤ 10

for all i ∈ [4], are tighter than the ones already obtained from (6.8) in some region. For

k ≥ 5, Inequality (6.7) is always tighter than (6.8).

Achievability: For k ≤ 4, we have to provide constructions for the vertices of the cor-

responding polytope. As discussed, for each file fi, with i ∈ [k], there are one systematic

recovery set of cardinality one which is the column ei of G, and (2k−1 − 1).(2k−1 − 2)/6

recovery sets of cardinality three which are the sets of the form {x,x′,x+ x′ + ei} for all

169

pairs x,x′ ∈ R′ \ ei. For k = 2, the two disjoint recovery sets {e1} and {e2}, which are

the only recovery sets for files f1 and f2, respectively, can be used to satisfy the demand

vector e1 + e2. Now, consider k ≥ 3. Since each column x ∈ R′ \ ei is contained in

exactly (2k−1 − 2)/2 recovery sets of file fi, i ∈ [k] of cardinality three, and the capac-

ity of each node is one, from each recovery set the request rate of 1/(2k−2 − 1) can be

satisfied without violating the capacity constraints. Thus, the demand vector 2k−1+2
3
· ei

for all i ∈ [k] can be satisfied. This means that for k = 3 and k = 4, respectively the

demand vectors 2 · ei for all i ∈ [3], and 10
3
· ei for all i ∈ [4] can be satisfied. Also, for

k = 3, the demand vector e1+e2+e3 can be achieved by the disjoint systematic recovery

sets {e1}, {e2}, and {e3}. Now, assume k ≥ 4. Let i, j ∈ [k] with i ̸= j be arbitrary.

The systematic recovery sets {ei} and {ej} can be used for files fi and fj , respectively.

Additionally, consider all the (2k−2 − 1).(2k−1 − 4)/3 recovery sets {x,x′,x+ x′ + ei}

of cardinality three for file fi that do not contain ej , each of which can satisfy the request

rate of 1/(2k−2 − 2) for file fi without violating the capacity constraints. Thus, the de-

mand vector 2k−1+1
3
· ei + 1 · ej can be achieved. Therefore, for k = 4 the demand vector

3 · ei + 1 · ej for all i, j ∈ [k] with i ̸= j can be satisfied. For achieving the demand vector

4
3
· 1, one can use all the systematic recovery sets {e1}, {e2}, {e3}, {e4} with capacity 1.

Moreover, the remaining four columns can be used to build up four recovery sets consist-

ing of a unique recovery set of cardinality 3 for each file fi, i ∈ [4], and from each of these

recovery sets the rate of 1
3

can be satisfied. This completes the proof.

6.6 Examples of Service Rate Region

6.6.1 Binary [7, 3] Simplex code

In this section, as an example, we show how the service rate region of the [7, 3] Simplex

code is determined using the geometric approach. Consider a storage system using the

[7, 3] Simplex code. W.l.o.g, assume that µ = 1. Let (x1, x2, x3) denote a generic non-

170

zero vector in F3
2. Observe that the hyperplane H given by

∑3
i=1 xi = 0 (namely, the

hyperplane containing the points (0, 1, 1), (1, 0, 1) and (1, 1, 0) in the Fano plane depicted

in Figure 6.1) does not contain any unit vector ei, i ∈ {1, 2, 3}. Thus, for any demand

vector λ = (λa, λb, λc) in the service rate region, applying Corollary 8 results in λa +

λb + λc ≤ 4. The reason is that the hyperplane H does not contain the points (0, 0, 1),

(0, 1, 0), (1, 0, 0) and (1, 1, 1). Thus, so far we have shown that the service rate region is

contained in the polytope P =
{
λ ∈ R3

≥0 :
∑3

i=1 λi ≤ 4
}

.

For the achievability proof, since the service rate region is a convex subset of R3
≥0,

we only need to show that the vertices of the polytope P , i.e., (0, 0, 0), (4, 0, 0), (0, 4, 0)

and (0, 0, 4), are in the service rate region of this storage system. To see that, we observe

that there are four disjoint recovery sets for each data object), and thus the request rate

of 1 can be assigned to each of these recovery sets without violating the node capacity

constraints. Thus, the service rate region of the [7, 3] Simplex code consists of all demand

vectors (λa, λb, λc) such that λa + λb + λc ≤ 4.

6.6.2 Binary Non-Systematic [8, 4] First Order Reed-Muller code

Consider a system where four objects a, b, c, and d are stored across 8 servers using

the first order Reed-Muller code RM2(1, 3) with a non-systematic generator matrix as:

G =

1 1 1 1 0 0 0 0

1 1 0 0 1 1 0 0

1 0 1 0 1 0 1 0

1 1 1 1 1 1 1 1

which encodes [a, b, c, d] into [a+b+c+d, a+b+d, a+c+d, a+d, b+c+d, b+d, c+d, d].

The recovery sets for objects a and d are shown in Figure 6.2 and Figure 6.3, respectively.

The recovery sets for objects b and c can be obtained similarly to those for a.

171

Figure 6.2: Recovery sets for data object a in the [8, 4] Reed-Muller code.

Figure 6.3: Recovery sets for data object d in the [8, 4] Reed-Muller code.

Let (x1, . . . , x4) be a non-zero vector in F4
2. Observe that the hyperplane H given

by
∑4

i=1 xi = 0 does not contain any unit vector ei, i ∈ [4]. The hyperplane H does

not contain the 4 column vectors (1, 1, 0, 1), (1, 0, 1, 1), (0, 1, 1, 1) and (0, 0, 0, 1) of the

generator matrix. Thus, for any demand vector λ = (λa, λb, λc, λd) in the service rate

region, applying the Corollary 8 results in the constraint below

λa + λb + λc + λd ≤ 4. (6.9)

On the other hand, we know that the unit vector ei for all i ∈ {1, 2, 3} is not a column

of the generator matrix which means that files a, b, and c do not have any systematic

recovery sets. Thus, for files a, b, and c, the cardinality of all recovery sets is at least

two, and the minimum system capacity utilized by λi for i ∈ {a, b, c} is 2λi. For file d,

172

since all columns of the generator matrix have one in the last row, the cardinality of every

recovery set is odd. Hence, for file d, the unit vector e4, which is a column of G, forms

a recovery set of cardinality one, while all other recovery sets have cardinality at least

three. Thus, the minimum system capacity utilized by λd for λd ≤ 1 is λd and for λd ≥ 1

is 1 + 3(λd − 1) = 3λd − 2. Since the system has 8 servers, each of service capacity 1,

based on the capacity constraints, the total capacity utilized by the requests for download

must be at most 8. Thus, any vector (λa, λb, λc, λd) in the service region must satisfy:

2(λa + λb + λc) + λd ≤ 8 for λd ≤ 1

2(λa + λb + λc) + 3λd − 2 ≤ 8 for λd ≥ 1

(6.10)

So far, we showed that the service rate region lies inside the polytope T described

as follows: T =
{
λ ∈ R4

≥0 : λ satisfies (6.5), (6.6)
}
. Figure 6.4 depicts the service rate

region of this storage scheme in the λa − λd plane wherein (6.9) and (6.10) are respectively

shown with the red line and the green line.

λa

λd

1 2 3 4

1

2

10
3

4

Figure 6.4: Service rate region of the [8, 4]2 first order Reed-Muller code in λa − λd plane
with λb = λc = 0 where the constraints (6.9) and (6.10) are respectively shown with the
red line and the green line.

173

For the achievability proof, one needs to provide constructions only for the vertices

of polytope T in λa − λd plane. The demand vector (λa, λb, λc, λd) = (4, 0, 0, 0) can be

achieved by assigning the request rate of 1 to each of the 4 disjoint recovery sets of file

a shown in Figure 6.2. For the (λa, λb, λc, λd) = (2, 0, 0, 2), the λa = 2 can be served

by assigning the request rate of 1 to each of the recovery sets (b + d, a + b + d) and

(b+c+d, a+b+c+d), and λd = 2 can be satisfied by assigning the request rate of 1 to the

systematic recovery set (d), and the request rate 1 to the recovery set (a+d, c+d, a+c+d)

of file d. For the demand vector (λa, λb, λc, λd) = (0, 0, 0, 10
3
), the λd =

10
3

can be served

without violating the node capacity constraints by assigning the request rate of 1 to the

systematic recovery set (d), and the request rate of 1
3

to each of the 7 recovery sets of size

3 for file d, depicted in Figure 6.3.

174

7. STORAGE-EFFICIENT SCHEMES COVERING GIVEN RATE REGIONS*

7.1 Introduction

The explosive growth in the amount of data stored in the cloud data centers is accom-

panied by a rapid increase in the volume of users accessing it. A simple approach to handle

these surging demands in a fast and reliable fashion is to replicate data at multiple storage

nodes. However, replication can be expensive in terms of storage. Erasure codes have been

shown to be effective in achieving various goals such as providing reliability against node

failures (see e.g., [51–54]), ensuring availability of stored content during high demand

(see e.g., [55–58]), enabling the recovery of a data object from multiple disjoint groups of

nodes (see e.g., [59–61]), and providing fast content download (see e.g., [62–70]).

Serving a large number of users simultaneously is a major concern in cloud storage

systems and so is considered as one of the most significant considerations in the design

of coded distributed systems. The service rate region has been recently recognized as an

important performance metric for coded distributed systems, which is defined as the set

of all data access requests that can be simultaneously served by the system [1, 71–76]. It

has been shown that erasure coding of data objects can increase the overall volume of the

service rate region through handling skews in the request rates more flexibly [1, 73, 74].

The service rate problem considers a distributed storage system where k files f1, . . . , fk

are stored across n servers using a linear [n, k]q code. The requests to download file fi

arrive at rate λi, and the service rate of each server is µ. A goal of the service rate problem

is to determine the service rate region of this system which is the set of all request rates

λ = (λ1, . . . , λk) that can be handled by this system.

*Reprinted with permission from [77] "Efficient Storage Schemes for Desired Service Rate Regions,"
by F. Kazemi, S. Kurz, E. Soljanin, and A. Sprintson, 2020. In Proceedings of 2020 IEEE Information
Theory Workshop (ITW), pp. 1-5, April 2021. Copyright © by IEEE.

175

Related Work

All the existing studies on the service rate problem focus on characterizing the service

rate region of a given coded storage scheme and finding the optimal request allocation,

that is, the optimal policies for splitting incoming requests across the nodes to maximize

the service rate region (see [1]). In [73], the service rate region was characterized for MDS

codes when n ≥ 2k, binary simplex codes and systems with arbitrary n when k = 2 . The

service rate region of the systems with arbitrary n when k = 3 was determined in [74].

A connection between the service rate problem and the fractional matching problem is

established in [75]. Also, it has been shown that the service rate problem can be viewed as

a generalization of the multiset primitive batch codes problem. In [75], we characterized

the service rate regions of the binary first order Reed-Muller codes and binary simplex

codes using a novel geometric technique. Also, we showed that given the service rate

region of a code, a lower bound on the minimum distance of the code can be derived.

Our Contributions

In this work, we consider a practical setting of designing a coded distributed storage

system where we are asked to store k files redundantly across some number of storage

nodes in the system. Also, we are given a bounded subset R ⊂ Rk
≥0 as a desired service

rate region for this distributed storage system. Our goal is: 1) to find the minimum number

of storage nodes n(R) (or a lower bound on n(R)) required for serving all demand vectors

λ inside the desired service rate region R, and 2) to design the most storage-efficient

redundancy scheme with the service rate region covering the set R. In this work, we

focus on designing the underlying erasure codes that cover a given service rate region with

minimum storage. Towards this goal, we propose three different general lower bounds for

n(R). Also, we show that for k = 2, these bounds are tight and we design an efficient

storage scheme that achieves the desired service rate region while minimizing the storage.

176

7.2 Problem Setup and Formulation

7.2.1 Basic Notation

Throughout this chapter, we denote vectors by bold-face lower-case letters and matri-

ces by bold-face capital letters. Let Z≥0 and N, respectively, denote the set of non-negative

integers, and the set of positive integers. For k ∈ N, let 0k and 1k, respectively, denote the

all-zero and all-one column vectors of length k. Let ei be a unit vector of length k, having

a one at position i and zeros elsewhere. For any i ∈ N, we define [i] ≜ {1, . . . , i}. Let Fq

be the finite field of order q, and Fn
q be the n-dimensional vector space over Fq. Let [n, k]q

denote a q-ary linear code C of length n and dimension k. We denote the cardinality of a

set or multiset S by #S. Let ⟨S⟩ and conv(S), respectively, denote the span and the con-

vex hull of the set S of vectors. For two vectors x = (x1, . . . , xk) and y = (y1, . . . , yk),

let x ≤ y define xi ≤ yi for all i ∈ [k].

7.2.2 Coded Storage System

Consider a coded storage system wherein k files f1, . . . , fk are stored redundantly

across n servers using a linear code of length n and dimension k over Fq with generator

matrix G. Suppose all files are of the same size, and all servers have a storage capacity of

one file. A set Y is a recovery set for file fi if the unit vector ei can be recovered through a

linear combination of the columns of G indexed by the set Y , i.e., if there exist coefficients

αj’s ∈ Fq such that
∑

j∈Y αjgj = ei where gj denotes the jth column of G. For each file,

w.l.o.g. we consider reduced recovery sets defined as the recovery sets that are not a proper

superset of any other recovery sets for that file. In other words, the reduced recovery sets

are obtained by considering non-zero coefficients αj’s and linearly independent columns

gj’s. Let Yi = {Yi,1, . . . , Yi,ti} denote the ti recovery sets for file fi.

We assume that the service rate of each server is µ, i.e., each server can resolve the

received requests at the average rate µ. We further assume that the requests to download

177

file fi arrive at rate λi, i ∈ [k]. The request arrival rates for the k files are denoted by

the demand vector λ = (λ1, . . . , λk). We consider the class of scheduling strategies that

assign a fraction of requests for a file to each of its recovery sets. Let λi,j be the portion of

requests for file fi that is assigned to the recovery set Yi,j , j ∈ [ti].

7.2.3 Service Rate Region

The demand vector λ can be served by a coded distributed storage system with gen-

erator matrix G ∈ Fk×n
q and service rate µ iff there exists a set {λi,j : i ∈ [k], j ∈ [ti]},

referred to as a valid allocation, that satisfies the following constraints:

ti∑
j=1

λi,j = λi, for all i ∈ [k], (7.1a)

k∑
i=1

∑
j∈[ti]
ℓ∈Yi,j

λi,j ≤ µ, for all ℓ ∈ [n], (7.1b)

λi,j ∈ R≥0, for all i ∈ [k], j ∈ [ti]. (7.1c)

The constraints (7.1a) guarantee that the demands for all files are served, and (7.1b)

ensure that the total rate assigned to each server does no exceed its service rate.

The service rate region of an erasure coded storage system with the generator matrix G

and service rate µ, denoted by S(G, µ) ⊆ Rk
≥0, is defined as the set of all demand vectors

λ that can be served by the system. In what follows, w.l.o.g. we assume that µ = 1 and

abbreviate S(G, 1) as S(G).

Note that there are several generator matrices that span the same linear code, i.e., when-

ever the row spans of two matrices G and G′ coincide, they span the same code. However,

the service rate regions of generator matrices G and G′ of the same linear code might not

be the same, i.e., S(G) ̸= S(G′).

178

7.2.4 Geometric Description of Linear Codes

Here, we briefly review some preliminaries regarding the notions of projective space,

multiset, and projective multisets induced by linear codes that we will use in Sec.7.2.5.

For more details, see [121–123].

Definition 16. For a vector space V of dimension v over Fq, the projective space of V ,

denoted as PG(V), is the set of equivalence classes of V \ {0v} under the equivalence

relation ∼ defined as x ∼ y if there is a non-zero element α ∈ Fq such that x = αy.

We remark that the 1-dimensional subspaces of V are the points of the projective space

PG(V). The 2-dimensional subspaces of V are the lines of PG(V) and the v − 1 dimen-

sional subspaces of V are called the hyperplanes of PG(V).

For a vector space V of (geometric) dimension v over Fq, the projective space PG(V)

is also denoted by PG(v − 1, q), referred to as the projective space of (algebraic) dimen-

sion v − 1 over Fq. This notion makes sense since up to isomorphism, the PG(V) only

depends on the order q of the base field and the dimension v of the vector space V . Thus,

PG(v − 1, q) can be defined as the set of v-tuples of elements of Fq, not all zero, under

the equivalence relation given by (x1, · · · , xv) ∼ (αx1, · · · , αxv), α ̸= 0, α ∈ Fq. The

definition implies that if (x1, · · · , xv) is a point in PG(v−1, q), its scalar multiple (by any

non-zero scalar α ∈ Fq) (αx1, · · · , αxv) is the same point in PG(v − 1, q).

A multiset, unlike a set, allows for multiple instances for each of its elements. A mul-

tiset S on a base set X is defined with its characteristic function, denoted as χS : X → N,

mapping x ∈ X to the multiplicity of x in S. The cardinality of the multiset S is computed

as #S =
∑

x∈X χS(x). The multiset S is also called #S-multiset. As a simple example,

consider the multiset S = {a, a, b, b, b, c} on the base set X = {a, b, c} that is identified

with χS(a) = 2, χS(b) = 3 and χS(c) = 1.

Let G be the generator matrix of an [n, k]q code C that is a k-dimensional subspace of

179

the n-dimensional vector space Fn
q . Let gi, i ∈ [n] be the ith column of G. Then, each gi

is a point in the projective space PG(k − 1, q), and G := {g1, g2, . . . , gn} is an n-multiset

of points in PG(k − 1, q) where each point is counted with the appropriate multiplicity. In

general, G is called the n-multiset induced by C.

Proposition 7. There exists a one-to-one correspondence between the equivalence classes

of full-length q-ary linear codes and the projective equivalence classes of multisets in finite

projective spaces.

An [n, k]q code can be described by a generator matrix G or as discussed by an n-

multiset G of points in PG(k − 1, q). In what follows, for the ease of notation, we restrict

ourselves to the binary field. We associate the points of PG(k − 1, 2) with the non-zero

vectors in Fk
2 \ {0k}, then we interpret each such vector as the binary expansion of the

corresponding integer i ∈ [ℓ] where ℓ := 2k−1. We denote by vi the vector corresponding

to the integer i ∈ [ℓ]. As two examples, in F3
2 \ {03}, the vectors v3 = (0, 1, 1) and

v4 = (1, 0, 0) are corresponding to the integers 3 and 4, respectively. In order to uniquely

characterize a multiset of points G in PG(k−1, 2), we use multiplicities ni ∈ Z≥0, i ∈ [ℓ],

counting the number of occurrences of the vector vi ∈ Fk
2 \ {0k}, i ∈ [ℓ], in the generator

matrix G. Thus, we have
∑

i∈[ℓ] ni = n. Also, due to the correspondence between a

generator matrix G and a multiset of points G (based on the Proposition 7), we can write

S(G) instead of S(G) for the service rate region and we will directly define S(G) shortly.

7.2.5 Geometric Interpretation of the Service Rate Region

A recovery set for file fi, i ∈ [k], is a subset Y ⊆ [ℓ] such that the span of the set

{vj | j ∈ Y } contains the unit vector ei. A recovery set Y for fi is called reduced if there

does not exist a proper subset Y ′ ⊊ Y with ei ∈ ⟨{vj | j ∈ Y ′}⟩. For q = 2 and a reduced

recovery set Y , there is no need to specify the index i of the file that is recovered since∑
j∈Y vj = ei. However, this is not necessarily true for q > 2. As an example, in F3 the set

180

{e1 + e2, e1 + 2e2} spans a 2-dimensional subspace containing both e1 and e2, while none

of these two unit vectors are contained in the span of a proper subset. Since we assume

q = 2, we will mostly speak just of a recovery set without specifying the index i of the

file that it recovers. By Yi we denote the set of all reduced recovery sets for file fi, where

i ∈ [k]. For example, for k = 3 we have Y2 = {{2}, {4, 6}, {1, 3}, {5, 7}, {1, 4, 7}}. Note

that the maximum cardinality of a reduced recovery set is k, which can indeed be attained.

Let αi,Y be the portion of request rates for file fi assigned to the recovery set Y ∈ Yi.

Given a multiset of points G in PG(k − 1, 2), described by the multiplicities nj , j ∈ [ℓ],

the service rate region S(G) is the set of all vectors λ ∈ Rk
≥0 for which there exist αi,Y ’s,

satisfying the following constraints:

∑
Y ∈Yi

αi,Y = λi, for all i ∈ [k], (7.2a)

k∑
i=1

∑
Y ∈Yi
j∈Y

αi,Y ≤ nj, for all j ∈ [ℓ], (7.2b)

αi,Y ∈ R≥0, for all i ∈ [k], Y ∈ Yi. (7.2c)

As noted, for q = 2, each reduced recovery set uniquely characterizes the file it recov-

ers, that is, Yi’s where i ∈ [k] are pairwise disjoint and form a partition of Y := ∪i∈[k]Yi.

With this we can simplify the above characterization, i.e., the service rate region S(G) is

the set of all vectors λ ∈ Rk
≥0 for which there exists αY , satisfying the following:

∑
Y ∈Yi

αY ≥ λi, for all i ∈ [k], (7.3a)

∑
Y ∈Y
j∈Y

αY ≤ nj, for all j ∈ [ℓ], (7.3b)

αY ∈ R≥0, for all i ∈ [k], Y ∈ Yi. (7.3c)

181

7.2.6 Problem Statement

After these preparations, we can state the problems that we explore to address in this

chapter. Consider a practical scenario where we are asked to store k files redundantly

across some number of nodes in a coded distributed storage system. Also, we are given

a bounded subset R ⊂ Rk
≥0 as a desired service rate region for this distributed storage

system. Two natural questions arising in the design of this storage system are the fol-

lowing: 1) What is the minimum number n(R) of storage nodes (or servers) required for

serving all demand vectors λ inside the desired service rate regionR? 2) What is the most

storage-efficient redundancy scheme with the service rate region covering the set R (i.e.,

how should the files be stored redundantly in n(R) storage nodes)?

In other words, for each desired service rate regionR ⊂ Rk
≥0, the goal is to characterize

the minimum number of nodes n(R) (or derive a lower bound on n(R)) such that there

exists a generator matrix G with R ⊆ S(G) (or alternatively, a multiset of points G in

PG(k − 1, q) with R ⊆ S(G)). Thus, deriving lower bounds and constructive upper

bounds for n(R) is of great significance in the context of designing distributed storage

systems, which we aim to address in this chapter.

Recall that S(G) ̸= S(G′) (or S(G) ̸= S(G ′)) even if G,G′ (or G,G ′) generate the

same linear code. Thus, to be more precise, instead of designing an efficient code, we have

to speak of the construction of storage-efficient generator matrices or multisets of points.

7.3 Main Results

In this section, first we investigate a few structural properties and formulate the prob-

lem of determining n(R). Then, using a geometric approach, we derive multiple lower

bounds on n(R) and finally we show that for k = 2 the derived lower bounds are tight by

proposing an storage-efficient redundancy scheme.

182

7.3.1 Structural Properties of Service Rate Region

Here, before we present integer linear programming (ILP) formulations for the deter-

mination of n(R) we first study a few structural properties.

Lemma 20. ForR ⊂ Rk
≥0, we have n(R) = n(conv(R)).

Proof. It suffices to observe that the service rate region S(G) of every generator matrix

G ∈ Fk×n
2 is convex. For more details, see [76].

Definition 17. For a set S ⊆ Rk
≥0, the set S↓:=

{
x ∈ Rk

≥0 | ∃y ∈ S : x ≤ y
}

defines the

lower set of S.

Consider the bounded subset S = conv({(0, 0), (1, 2), (2, 1)}) ⊂ R2
≥0 which is a

triangle with area 3
2
. The lower set of S is S↓= conv({(0, 0), (0, 2), (2, 0), (1, 2), (2, 1)})

which is a pentagon with area 7
2
.

Lemma 21. For a subsetR ⊂ Rk
≥0, we have n(R) = n(R↓).

Proof. It suffices to observe that the service rate region S(G) of every generator matrix

G ∈ Fk×n
2 is its own lower set, i.e., S(G) = S(G)↓.

Taken the above two observations into account, we can parameterize a large class of

reasonable subsets R ⊂ Rk
≥0 through a function T : 2[k] → N that maps the subsets of [k]

to integers in N, where T (∅) = 0.

Definition 18. Let T : 2[k] → N with T (∅) = 0. We define

R(T) :=

{
λ ∈ Rk

≥0 |
∑
i∈S

λi ≤ T (S), ∀∅ ≠ S ⊆ [k]

}

By construction R(T) is a convex polytope and R(T)↓= R(T), i.e., R(T) is its own

lower set. (For more details, see e.g., [76].) It should be noted that in some cases, the

values of the function T : 2[k] → N can be modified without changingR(T).

183

Lemma 22. For each function T : 2[k] → N with T (∅) = 0, there exists a monotone and

subadditive function T ′ : 2[k] → N with T ′(∅) = 0, such that R(T) = R(T ′).*

Proof. Obtain T ′ by running the following algorithm on T : 2[k] → N, T (∅) = 0.

for each S ⊆ {1, . . . , k} do

T ′(S)← T (S)

end for

changed← true

while changed = true do

changed← false

for each S ⊆ {1, . . . , k} do

for each ∅ ≠ U ⊊ S do

if T ′(S) > T ′(U) + T ′(S\U) then

T ′(S)← T ′(U) + T ′(S\U)

changed← true

end if

end for

for each S ⊊ V ⊆ {1, . . . , k} do

if T ′(S) > T ′(V) then

T ′(S)← T ′(V)

changed← true

end if

end for

end for

end while
*T : 2[k] → N is monotone iff T (U) ≤ T (V) for all ∅ ⊆ U ⊆ V ⊆ [k], and is subadditive iff

T (U ∪ V) ≤ T (U) + T (V).

184

We remark that based on the above algorithm, the function T ′ is subadditive, i.e., we

have T ′(U ∪ V) ≤ T ′(U) + T ′(V), and monotone, that is, we have T ′(U) ≤ T ′(V) for all

∅ ⊆ U ⊆ V ⊆ [k]. Now, we need to prove thatR(T) = R(T ′).

After the first initializing loop we obviously haveR(T) = R(T ′). Now, let us consider

a single step in which T ′(S) is replaced by either T ′(U) + T ′(S\U) or T ′(V). Inductively

we know that each λ ∈ R(T ′) satisfies
∑

i∈S′ λi ≤ T ′(S ′) for all S ′ ⊆ [k]. Since this

especially holds for S ′ = U , S ′ = S\U , and S ′ = V we also have

∑
i∈S

λi ≤ T ′(U) + T ′(S\U)

and ∑
i∈S

λi

λ≥0

≤
∑
i∈V

λi ≤ T ′(V).

So, after each replacement we still have R(T) = R(T ′). In order to show that the algo-

rithm terminates let

ε = min{T (U)− T (V) | ∅ ⊆ U, V ⊆ [k], T (U)− T (V)}.

By induction over the number of replacements we can easily show that at each time after

the initialization loop , we have

ε ≤ min{T ′(U)− T ′(V) | ∅ ⊆ U, V ⊆ [k], T ′(U)− T ′(V)}

Thus, every replacement reduces the value of
∑

S⊆[k] T
′(S) by at least ε, so that the algo-

rithm terminates after at least (
∑

S⊆[k] T (S))/ε+ 1 iterations of the while loop.

Note that since in the last iteration of the while loop non of the if-conditions were true,

if we apply the algorithm again on T ′ and obtain T ′′, then T ′ = T ′′.

185

Definition 19. For a subset R ⊂ Rk
≥0 with property R↓= R, a finite set S ⊂ Rk

≥0 is a

generating set of R if conv(S)↓= R. Moreover, we call S minimal if no proper subset of

S is a generating set ofR.

In what follows, without explicitly mentioning, we only consider the minimal gener-

ating sets for each R ⊂ Rk
≥0. As an example, consider the function T : 2[2] → N given by

T (∅) = 0, T ({1}) = T ({2}) = 2, and T ({1, 2}) = 3. Here, a generating set of R(T) is

given by the set {(1, 2), (2, 1)}.

We remark that the generating set ofR(T) is always unique, sinceR(T) is a polytope

that can be written as R(T) = conv(V), where V is the set of vertices of the polytope,

which is a unique minimal set. The unique generating set of R(T) is obtained from V by

removing all vectors v ∈ V such that there exists a vector v′ ∈ V with v ≤ v′.

Next, we present an ILP formulation for the determination of n(R).

Proposition 8. For a desired service rate region R ⊂ Rk
≥0, assume that R↓= R. Let{

λ(1), . . . ,λ(m)
}

be the generating set ofR. Then, n(R) coincides with the optimal target

value of the following ILP

min
∑
j∈[ℓ]

nj (7.4)

s.t.
∑
Y ∈Yj

αi
Y ≥ λ

(i)
j ∀i ∈ [m], j ∈ [k]∑

Y ∈Y
j∈Y

αi
Y ≤ nj, ∀j ∈ [ℓ],∀i ∈ [m]

αi
Y ∈ R≥0, ∀i ∈ [m],∀Y ∈ Y

nj ∈ N, ∀j ∈ [ℓ]

where λ(i)
j is the jth element of the λ(i) and αi

Y is the portion of requests coming from λ(i)

assigned to the recovery set Y .

186

Proof. The multiset of points G is uniquely characterized by the integer multiplicities nj ,

j ∈ [ℓ]. Thus, the stated ILP formulation minimizes the code length n =
∑

j∈[ℓ] nj and

ensures that λ(i) ∈ S(G) by using the characterization (7.3a)–(7.3c) for each i ∈ [m].

The ILP formulation (7.4) in the Proposition 8, underlies a massive combinatorial ex-

plosion. To be more precise, when the number of files k increases, the number of recovery

sets #Y grows doubly exponential, that is, #Y gets quite large even for moderate values

of k. In order to obtain a lower bound on n(R), one simple way is to consider the ceiling

of the optimal target value for the LP relaxation of the ILP (7.4). However, this approach

again suffers from the same drawback and runs into a similar problem since to list all the

constraints of the LP relaxation of the ILP (7.4), one needs to explicitly know all possible

recovery sets which becomes increasingly complex when the number of files k increases.

Thus, introducing a technique which is not depending on the enumeration of recovery sets

is of great significance. Towards this goal, we introduce a novel geometric approach.

7.3.2 Using Geometric Approach to Derive Bounds on n(R)

In this section, we present three general lower bounds for n(R(T)) that are obtained

using a geometric technique. The following Lemma is the key component of the proofs.

Lemma 23. Given a service rate region R with the generating set
{
λ(1), . . . ,λ(m)

}
, if

an n-multiset of points G in PG(k − 1, 2) described by point multiplicities nj for j ∈

[ℓ], covers the service rate region R (i.e., R ⊆ S(G)), then for every hyperplane H in

PG(k − 1, 2) the following holds

∑
j :vj∈G\H

nj ≥ max
i∈[m]

∑
s∈E(H)

λ(i)
s , (7.5)

where E(H) = {h ∈ [k] | eh /∈ H} is the set of all indices h such that the hyperplane H

does not contain the unit vector eh, i.e., eh lies in PG(k − 1, 2) \ H.

187

Proof. Let i ∈ [m] be an arbitrary index. From the ILP of Proposition 8, we conclude that

∑
Y ∈Ys

αi
Y ≥ λ(i)

s (7.6)

Since αi
Y ≥ 0, for each s ∈ E(H) we have

nj ≥
∑

Y ∈Y : j∈Y

αi
Y≥

∑
s∈E(H)

∑
Y ∈Ys : j∈Y

αi
Y (7.7)

Let J = {j ∈ [ℓ] | vj ∈ PG(k − 1, 2) \ H}. Thus, we have

∑
j∈J

nj ≥
∑
j∈J

∑
s∈E(H)

∑
Y ∈Ys : j∈Y

αi
Y

∑
s∈E(H)

∑
j∈J

∑
Y ∈Ys : j∈Y

αi
Y .

The unit vectors es with index s ∈ E(H) are not contained in the hyperplaneH. Thus,

for each Y ∈ Ys with s ∈ E(H) there exists certainly an index j ∈ [ℓ] with j ∈ Y such

that vj ∈ PG(k − 1, 2) \ H. Thus, from Inequality (7.6) we conclude that

∑
j∈[ℓ] :vj∈PG(k−1,2)\H

nj ≥
∑

s∈E(H)

∑
Y ∈Ys

αi
Y ≥

∑
s∈E(H)

λ(i)
s

Corollary 9. If
{
λ(1), . . . ,λ(m)

}
is the generating set of R, then n(R) is lower bounded

by the optimal target value of the following ILP formulation:

min
∑
j∈[ℓ]

nj (7.8)

s.t. (5) holds ∀ hyperplaneH of PG(k − 1, 2)

nj ∈ N ∀j ∈ [ℓ].

188

Note that the ILP of Corollary 9 contains 2k − 1 constraints and (integer) variables.

Thus, with respect to the LP relaxation of the ILP formulation (7.4) in Proposition 8, we

have obtained a smaller formulation for the determination of a lower bound on n(R).

Definition 20. Let P =
{
x ∈ Rk | Ax ≤ b,x ≥ 0

}
be a polytope in Rk with description

(A,b). We say that constraint a(i)x ≤ bi is redundant, where a(i) is the ith row of A, if the

polytope P =
{
x ∈ Rk | A′x ≤ b′,x ≥ 0

}
where A′ and b′ obtained from A and b by

removing the ith row, respectively. We say that a constraint a(i)x ≤ bi is strictly redundant

if there does not exist x̄ ∈ P with a(i)x̄ = bi.

For example, consider T : 2[2] → N defined as T ({1}) = T ({2}) = T ({1, 2}) = 1 and

T (∅) = 0, and the polytope P =
{
λ ∈ R2 |

∑
i∈U λi ≤ T (U), ∅ ≠ U ⊆ {1, 2},λ ≥ 0

}
.

The inequalities λ1 ≤ T ({1}), λ2 ≤ T ({2}) are redundant, while the inequality λ1+λ2 ≤

T ({1, 2}) is not redundant since e.g. the vector (1, 1) is not contained in the polytope.

Here, none of the inequalities are strictly redundant since the vectors (1, 0), (0, 1) are

contained in the polytope.

Theorem 18. Given the function T : 2[k] → N for some k ∈ N, if none of the constraints∑
i∈U λi ≤ T (U) are strictly redundant in Rk

≥0, then we have

n(R(T)) ≥

⌈∑
∅̸=U⊆[k] T (U)

2k−1

⌉
.

Proof. We observe that each hyperplane H in PG(k − 1, 2) can be uniquely character-

ized by a subset ∅ ̸= S(H) ⊆ [k] such that S(H) = {i ∈ [k] | ei /∈ H}. Let w.l.o.g.{
λ(1), . . . ,λ(m)

}
be the generating set of R(T). Due to the fact that none of the con-

straints
∑

i∈U λi ≤ T (U) is strictly redundant, we have

max

 ∑
s∈S(H)

λ(i)
s | i ∈ [m]

 = T (S(H))

189

Thus, for each hyperplane H of PG(k − 1, 2), by applying Lemma 23 and replacing

T (S(H)) in the right hand side of inequality (7.5), we get

∑
j∈[ℓ] :vj∈PG(k−1,2)\H

nj ≥ T (S(H)),

where S(H) = {i ∈ [k] : ei /∈ H}. Since there are 2k − 1 hyperplanes in PG(k − 1, 2),

we have 2k − 1 such inequalities, each of which can be uniquely characterized by subset

S(H). For each j ∈ [ℓ], one can easily verify that vj /∈ H for exactly 2k−1 hyperplanes

H. This means that each nj for j ∈ [ℓ] appears in the left side of 2k−1 inequalities. Thus,

summing all of the 2k − 1 inequalities, dividing by 2k−1 and replacing variable S(H) with

variable U , yields

n =
∑
j∈[ℓ]

nj ≥
∑

∅≠U⊆[k] T (U)

2k−1
.

Finally, since n has to be an integer, we have

n ≥ ⌈
∑

∅̸=U⊆[k] T (U)

2k−1
⌉.

As we will show shortly the lower bound of Theorem 18 is indeed tight if k = 2 and

T : 2[k] → N is monotone and subadditive. However, this bound is not tight in general for

K ≥ 3. The following example shows that for K = 3 this bound is not tight, while none

of the constraints are strictly redundant.

Example 13. For k = 3, consider the desired service rate regionR = R(T) for T : 2[3] →

N defined as T (∅) = 0 and T (S) = #S + 1 for ∅ ≠ S ⊆ [3], that is,R is as follows

R =
{
λ ∈ R3

≥0 : λ1, λ2, λ3 ≤ 2, λ1 + λ2 ≤ 3, λ1 + λ3 ≤ 3, λ2 + λ3 ≤ 3, λ1 + λ2 + λ3 ≤ 4
}
.

190

A generating set
{
λ(1),λ(2),λ(3)

}
of R of cardinality m = 3 is given by λ(1) =

(2, 1, 1), λ(2) = (1, 2, 1), and λ(3) = (1, 1, 2). The possible columns of a generator matrix

G, i.e., the non-zero vectors in F3
2 are v1 = (0, 0, 1),v2 = (0, 1, 0),v3 = (0, 1, 1),v4 =

(1, 0, 0),v5 = (1, 0, 1),v6 = (1, 1, 0),v7 = (1, 1, 1). In order to write down the inequali-

ties from Lemma 23 we describe a hyperplaneH as a set of vectors (x1, x2, x3) ∈ F3
2 \{0}

satisfying a certain constraint
∑3

i=1 cixi, where (c1, c2, c3) ∈ F3
2 \ {0}:

H1 : x1 = 0⇒ e1 /∈ H1 ⇒ n4 + n5 + n6 + n7 ≥ 2 = max(λ
(1)
1 , λ

(2)
1 , λ

(3)
1) (7.9)

H2 : x2 = 0⇒ e2 /∈ H2 ⇒ n2 + n3 + n6 + n7 ≥ 2 = max(λ
(1)
2 , λ

(2)
2 , λ

(3)
2) (7.10)

H3 : x3 = 0⇒ e3 /∈ H3 ⇒ n1 + n3 + n5 + n7 ≥ 2 = max(λ
(1)
3 , λ

(2)
3 , λ

(3)
3) (7.11)

H4 : x1 + x2 = 0⇒ e1, e2 /∈ H4 ⇒ n2 + n3 + n4 + n5 ≥ 3 = max
i∈[3]

(∑
j∈{1,2}

λ
(i)
j

)
(7.12)

H5 : x1 + x3 = 0⇒ e1, e3 /∈ H5 ⇒ n1 + n3 + n4 + n6 ≥ 3 = max
i∈[3]

(∑
j∈{1,3}

λ
(i)
j

)
(7.13)

H6 : x2 + x3 = 0⇒ e2, e3 /∈ H6 ⇒ n1 + n2 + n5 + n6 ≥ 3 = max
i∈[3]

(∑
j∈{2,3}

λ
(i)
j

)
(7.14)

H7 : x1+x2+x3=0⇒ e1, e2, e3 /∈ H7 ⇒ n1+n2+n4+n7 ≥ 4 = max
i∈[3]

(∑
j∈[3]

λ
(i)
j

)
(7.15)

Summing up inequalities (7.9)-(7.15) and dividing by four gives n ≥
⌈
19
4

⌉
= 5. Indeed,

the LP relaxation of the ILP (7.8) from Corollary 9 has an optimal solution n1 = n2 =

n4 = 5
4
, n3 = n5 = n6 = n7 = 1

4
with target value 19

4
. Next, we show that n ≥ 6 for

the optimal target value of ILP (7.8). Assume that there exists an integral solution with

n = 5. Summing the inequalities over all hyperplanes Hi containing v1 = e3, i.e., (7.9),

(7.10), and (7.12), and dividing by two gives
∑

j∈[ℓ]\{1} nj ≥ 3.5, so that n1 ≤ 1. By

symmetry, we also conclude n2, n4 ≤ 1. Summing the inequalities over all hyperplanes

Hi not containing v1 = e3, i.e., (7.11), (7.13), (7.14), and (7.15), and dividing by two

gives 2n1 +
∑

j∈[ℓ]\{1} nj ≥ 6, so that n1 ≥ 1. Thus, n1 = 1 and, by symmetry, also

n2 = n4 = 1. Summing inequalities (7.12)-(7.14), plugging in the known values, and

191

dividing by two gives n3 + n5 + n6 ≥ 1.5, so that n7 ≤ 0.5, i.e., n7 = 0. However, this

contradicts Inequality (7.15).

An integral solution for n = 6 can be attained by setting n1 = n2 = n4 = 2, n3 =

n5 = n6 = n7 = 0. It can be easily checked that the corresponding generator matrix G as

given below satisfies S(G) ⊇ R.

G =

1 1 0 0 0 0

0 0 1 1 0 0

0 0 0 0 1 1

Corollary 10. For some k ∈ N and X ∈ N, given the function T : 2[k] → N defined as

T (∅) = 0, T (U) = X for all subsets ∅ ≠ U ⊆ [k], we have

n(R(T)) ≥

⌈
X ·

(
2k − 1

)
2k−1

⌉
.

Moreover, if X = t · 2k−1 for some integer t, then the lower bound is tight.

Proof. One can easily check that none of the constraints
∑

i∈U λi ≤ T (U) are strictly

redundant in Rk
≥0. Thus, Theorem 18 can be applied. Thus,

n ≥
⌈∑

∅≠U⊆[k] T (U)

2k−1

⌉
=
⌈X · (2k − 1

)
2k−1

⌉
.

The generating set of R(T) is given by {X · ei | i ∈ [k]}. Thus, for X = t · 2k−1, a t-

fold k-dimensional binary simplex code achieves the desired service rate region. For more

details, see [76].

Next, two more general lower bounds for n(R(T)), similar to that of Theorem 18, are

provided that are obtained in the search of finding a tighter lower bound for k ≥ 3.

192

Theorem 19. For some integer k ≥ 2, let T : 2[k] → N be a function such that none

of the constraints
∑

i∈U λi ≤ T (U) are strictly redundant in Rk
≥0. For each i ∈ [k],

n(R(T)) ≥
⌈
αi+βi

2

⌉
holds, where

αi =

⌈∑
∅≠U⊆[k]\{i} T (U)

2k−2

⌉
, βi =

⌈∑
{i}⊆U⊆[k] T (U)

2k−2

⌉
.

Proof. Based on the same reasoning used in the proof of Theorem 18, it can be shown that

for each hyperplaneH of PG(k − 1, 2), we have

∑
j∈[ℓ] :vj∈PG(k−1,2)\H

nj ≥ T (S(H)), (7.16)

where S(H) = {i ∈ [k] : ei /∈ H}. Let i ∈ [k] be arbitrary but fix and ī = 2k−i such that

vī = ei. Then, we proceed by summing Inequality (7.16) for all subsets ∅ ̸= S(H) ⊆

[k] \ {i} and replacing S(H) everywhere with U , that gives

2k−2 ·
∑

j∈[ℓ]\{̄i}

nj ≥
∑

∅≠U⊆[k]\{i}

T (U). (7.17)

Now, summing Inequality (7.16) for all {i} ⊆ S(H) ⊆ [k] and replacing S(H) everywhere

with U gives

2k−1 · nī + 2k−2 ·
∑

j∈[ℓ]\{̄i}

nj ≥
∑

{i}⊆U⊆[k]

T (U). (7.18)

Since the njs are integers, from equations (7.17) and (7.18), we get
∑

j∈[ℓ]\{̄i} nj ≥ αi

and 2nī +
∑

j∈[ℓ]\{̄i} nj ≥ βi, respectively, where

αi =

⌈∑
∅≠U⊆[k]\{i} T (U)

2k−2

⌉
, βi =

⌈∑
{i}⊆U⊆[k] T (U)

2k−2

⌉
.

193

Dividing the sum of these two inequalities by 2 gives

n = nī +
∑

j∈[ℓ]\{̄i}

nj ≥
αi + βi

2
,

Since n has to be an integer, we have n ≥
⌈
αi+βi

2

⌉
.

Theorem 20. For some integer k ≥ 2, let T : 2[k] → N be a function such that none of

the constraints
∑

i∈U λi ≤ T (U) are strictly redundant in Rk
≥0. Then, for each j ∈ [ℓ] we

have the following

n(R(T)) ≥

⌈∑
∅̸=U⊆[k] :#(U∩J)≡0 (mod 2) T (U)

2k−2

⌉
,

where J ⊆ [k] such that vj =
∑

h∈J eh.

Proof. Similar to the proof of Theorems 18 and 19, it can be shown that for each hyper-

planeH in PG(k − 1, 2), we have

∑
i∈[ℓ] :vi∈PG(k−1,2)\H

ni ≥ T (S(H)), (7.19)

where S(H) = {i ∈ [k] : ei /∈ H}. For each index i ∈ [ℓ], it can be easily confirmed that

vi /∈ H for 2k−1 hyperplanesH and vi ∈ H for 2k−1 − 1 hyperplanesH of PG(k − 1, 2).

Let j ∈ [ℓ] be arbitrary but fix. Our aim is to sum Inequality (7.19) over all 2k−1 − 1

hyperplanesH that contain vj .

We proceed by proving a claim that vj =
∑

h∈J eh ∈ H iff #(U ∩ J) ≡ 0 (mod 2),

where U = S(H). We consider two cases: (i) If #U = 1, then w.l.o.g. assume U = {x}

for some x ∈ [k]. A basis of H is given by {ey | y ∈ [k] \ {x}}. Thus, vj ∈ H iff x /∈ J ,

i.e., #(U ∩ J) ≡ 0 (mod 2). (ii) If #U ≥ 2, then for some arbitrary element x ∈ U , a

basis ofH is given by the set {ey | y ∈ [k]\U} ∪ {ex + ez | z ∈ U \ {x}}.

194

In this case, it is easy to see that vj ∈ H iff #(U ∩ J) = 2p for some p ∈ Z≥0, i.e.,

#(U ∩ J) ≡ 0 (mod 2). Thus, the claim is proved. Now, by summing Inequality (7.19)

over all hyperplanesH that contain vj , we obtain

2k−2 ·
∑

i∈[ℓ]\{j}

ni =
∑

hyperplane H :vj∈H

∑
i∈[ℓ] :vi /∈H

ni

≥
∑

∅≠U⊆[k] :#(U∩J)≡0 (mod 2)

T (U).

Since n ≥
∑

i∈[ℓ]\{j} ni and n is an integer, we have

n ≥

⌈∑
∅≠U⊆[k] :#(U∩J)≡0 (mod 2) T (U)

2k−2

⌉
.

Example 14. For some x ∈ N, let T : 2[3] → N be defined via T ({1}) = T ({2}) =

T ({3}) = T ({1, 2}) = T ({1, 3}) = x and T ({2, 3}) = T ({1, 2, 3}) = 2x. Based on

Theorem 18, we have n(R(T)) ≥
⌈
9x
4

⌉
, and according to Theorem 20, considering j = 3

we have n(R(T)) ≥
⌈
5x
2

⌉
. Thus, for x ≥ 3, the lower bound obtained from Theorem 20

is tighter than the one obtained from Theorem 18.

7.3.3 Storage-Efficient Schemes for k = 2

Let w.l.o.g. (based on Lemma 22) the function T : 2[2] → N be monotone, subadditive,

and satisfy T (∅) = 0. Note that for k = 1 each T : 2{1} → N is monotone and subadditive,

while for k = 2 the conditions can be summarized to

max{T ({1}), T ({2})} ≤ T ({1, 2}) ≤ T ({1}) + T ({2}).

The following Lemma describes the generating set ofR(T) for T : 2[2] → N.

195

Lemma 24. If T : 2[2] → N is monotone, subadditive, and satisfies T (∅) = 0, the generat-

ing set ofR(T) is given by

S =
{(

T ({1}), T ({1, 2})− T ({1})
)
,
(
T ({1, 2})− T ({2}), T ({2})

)}
.

Proof. According to the Definition 18, R(T) is the set of all vectors λ ∈ R2
≥0 that satisfy

λ1 ≤ T ({1}), λ2 ≤ T ({2}) and λ1 + λ2 ≤ T ({1, 2}). Based on Definition 19, S ⊂ R2
≥0

is a generating set ofR(T) if conv(S)↓= R(T).

The proof consists of two parts. First, we need to show that conv(S)↓⊆ R(T). For this

purpose, we check that each λ ∈ S satisfies the constraints λ1 ≤ T ({1}), λ2 ≤ T ({2}),

and λ1 + λ2 ≤ T ({1, 2}), i.e., λ ∈ R(T). Thus, S ⊆ R(T). Due to convex property of

R(T) and sinceR(T)↓= R(T), it can be easily concluded that conv(S)↓⊆ R(T).

Now, for the other direction, we need to show that R(T) ⊆ conv(S)↓. Let λ ∈ R2
≥0

satisfy the constraints λ1 ≤ T ({1}), λ2 ≤ T ({2}), and λ1 + λ2 ≤ T ({1, 2}). W.l.o.g.

we assume that at least one of these three inequalities is satisfied with equality, since we

could increase λ otherwise. If λ1 + λ2 = T ({1, 2}), then it can be readily concluded

that λ ∈ conv(S) since λ1 ≤ T ({1}) and λ2 ≤ T ({2}). Thus, let us now consider

the case where λ1 = T ({1}). If λ2 < T ({2}) and λ1 + λ2 < T ({1, 2}) then we could

increase λ, so that we can assume λ2 < T ({2}) and conclude λ1 + λ2 = T ({1, 2})

due to the subadditivity of T . The case λ2 = T ({2}) can be treated analogously. Thus,

R(T) ⊆ conv(S) ⊆ conv(S)↓.

We remark that the cardinality of generating set ofR(T) in Lemma 24 is 2 or 1, where

the latter happens iff T ({1, 2}) = T ({1}) + T ({2}).

Lemma 25. Let {λ} be the generating set of R and n = (n1, · · · , nℓ) be an integral

solution of the ILP of Corollary 9. If λ ∈ R2
≥0 and G is the multiset corresponding to the

n, then λ ∈ S(G), i.e., there exists a feasible choice of αY satisfying (7.3a)-(7.3c).

196

Proof. The constraints of ILP in Corollary 9 are

n2 + n3 ≥ λ1,

n1 + n3 ≥ λ2,

n1 + n2 ≥ λ1 + λ2

and the recovery sets are given by

Y1 =
{
{2}, {1, 3}

}
,

Y2 =
{
{1}, {2, 3}

}
.

Now, set the parameters as follows

α{2} = min {n2, λ1} ,

α{1} = min {n1, λ2} ,

α{1,3} = max {0, λ1 − n2} ,

α{2,3} = max {0, λ2 − n1}

It should be noted that since n1 + n2 ≥ λ1 + λ2, we cannot have n2 < λ1 and n1 < λ2.

Thus, it is easy to verify that

α{2} + α{1,3} = λ1,

α{1} + α{2,3} = λ2,

α{1} + α{1,3} ≤ n1,

α{2} + α{2,3} ≤ n2, and

α{1,3} + α{2,3} ≤ n3.

197

Only the latter inequality needs a case analysis. Let us assume n2 ≥ λ1 and n1 ≥ λ2,

then α{1,3} + α{2,3} = 0 ≤ n3. If n2 < λ1 and n1 ≥ λ2, then α{2,3} = 0, α{1,3} = λ1 − n2,

and α{1,3} + α{2,3} = λ1 − n2 which is at most n3 due to n2 + n3 ≥ λ1. The other case,

that is, n2 ≥ λ1 and n1 < λ2 follows analogously.

Definition 21. For a set ∅ ≠ S ⊂ N, we denote by Simpl(S) the set of all non-zero vectors

in ⟨{ei | i ∈ S}⟩ over F2.

Proposition 9. ([76, Theorem1]) For each ∅ ≠ S ⊆ [k], #Simpl(S) = 2s − 1 and

S(Simpl(S)) = R(T), where s = #S and T : 2[k] → N is given by T (U) = 2s−1 for all

U ⊆ [k] satisfying U ∩ S ̸= ∅ and T (U) = 0 otherwise (for all U ⊆ [k] with U ∩ S = ∅).

Theorem 21. For the desired service rate regionR given by

R =
{
λ ∈ R2

≥0 : λ1 ≤ X,λ2 ≤ Y, λ1 + λ2 ≤ Σ
}
,

where X, Y,Σ are non-negative integers with max{X, Y } ≤ Σ ≤ X+Y , we have n(R) =⌈
X+Y+Σ

2

⌉
.

Proof of Theorem 21. The proof consists of a converse (lower bound) and an achievability

(upper bound).

Converse: The desired service rate regionR is given by:

R =
{
(λ1, λ2) ∈ R2

≥0 : λ1 ≤ X,λ2 ≤ Y, λ1 + λ2 ≤ Σ
}
.

It is easy to see that R = R(T) for T : 2[2] → N defined as T (∅) = 0, T ({1}) = X ,

T ({2}) = Y , and T ({1, 2}) = Σ. Since max{X, Y } ≤ Σ ≤ X+Y holds, so the condition

max{T ({1}), T ({2})} ≤ T ({1, 2}) ≤ T ({1})+T ({2}) is satisfied which means that the

function T : 2[2] → N is monotone and subadditive. Thus, we can apply Lemma 24 to

198

obtain the generating set ofR(T) which is given by

S =
{
λ(1) = (X,Σ−X), λ(2) = (Σ− Y, Y)

}

The inequalities (7.5) from Lemma 23 read

n1 + n3 ≥ X = max{X,Σ− Y },

n2 + n3 ≥ Y = max{Y,Σ−X},

n1 + n2 ≥ Σ = max{Σ,Σ},

so that summing up and dividing by two gives

n = n1 + n2 + n3 ≥
X + Y + Σ

2
.

Since n is an integer, we obtain n(R) ≥
⌈
X+Y+Σ

2

⌉
.

We could also use Theorem 18 for proving the converse. Since max{X, Y } ≤ Σ ≤

X+Y , it can be simply confirmed that none of the constraints λ1 ≤ X , λ2 ≤ Y , λ1+λ2 ≤

Σ are strictly redundant in R2
≥0. Thus, by applying Theorem 18, we directly get the stated

lower bound.

Achievability: First, for the ease of notation, let us define 1
2
· Simpl({i, j}) ≜ {ei, ej}

for two different positive integers i and j. Note that the cardinality of L
2
·Simpl({i, j}) for

some L ∈ Z≥0, is computed as
⌈
L
2
·#Simpl({i, j})

⌉
=
⌈
3L
2

⌉
and the service rate region

of {ei, ej} contains the service rate region of the Simpl({i, j}) scaled by a factor of 1
2
, i.e.,

S({ei, ej}) =
{
λ ∈ Rk

≥0 | λi ≤ 1, λj ≤ 1
}

⊇
{
λ ∈ Rk

≥0 | λi ≤ 1, λj ≤ 1, λi + λj ≤ 1
}
.

199

For the upper bound on n(R), i.e., the constructive part, we need to select the mul-

tiplicities of e1, e2 and e1 + e2 in G, a multiset of points in PG(2 − 1, 2), such that

S(G) ⊇ R(T). Let G = ∪i∈[3]G(i) where

• G(1) consists of Σ− Y copies of Simpl({1})

• G(2) consists of Σ−X copies of Simpl({2})

• G(3) consists of L
2

copies of Simpl({1, 2})

where L = X + Y − Σ. Thus, the cardinality of the multiset G is given by

(Σ− Y) + (Σ−X) +

⌈
3(X + Y − Σ)

2

⌉
=

⌈
X + Y + Σ

2

⌉
.

By construction,R(G) ⊇ R(T) for T (∅) = 0, T ({1}) = X , T ({2}) = Y , T ({1, 2}) = Σ.

The reason is that

S(G(1)) ⊇
{
λ ∈ R2

≥0 | λ1 ≤ Σ− Y, λ2 = 0
}
,

S(G(2)) ⊇
{
λ ∈ R2

≥0 | λ1 = 0, λ2 ≤ Σ−X
}
,

S(G(3)) ⊇
{
λ ∈ R2

≥0 | λ1 ≤ L, λ2 ≤ L, λ1 + λ2 ≤ L
}
.

Thus, it can be easily confirmed that

S(G) ⊇
{
λ ∈ R2

≥0 | λ1 ≤ X,λ2 ≤ Y, λ1 + λ2 ≤ Σ
}
= R.

That is, the proposed storage scheme G obviously can satisfy the demands inR.

200

7.4 Example of Storage-Efficient Schemes that Cover Given Rate Regions

Consider a scenario where k = 2 data objects, movies “a” and “b”, are stored redun-

dantly across multiple nodes in a coded storage system. At each time, each node can serve

at most one request and each user can request to download at most one of the two movies

a and b. It is known that the number of users who are interested in downloading the movie

a and b is less than or equal to α (i.e., λa ≤ α) and β (i.e., λb ≤ β), respectively. Also, it

is known that the total number of users in the area is at most γ (i.e., λa + λb ≤ γ). This

means that the desired service rate region of this storage system is a bounded setR defined

as follows:

R = {λa, λb ≥ 0, λa ≤ α, λb ≤ β, λa + λb ≤ γ} . (7.20)

Two natural questions that arise in the design of this distributed storage system are the

following: 1) What is the minimum number of storage nodes n(R) required to serve all

request vectors (λa, λb) in the setR? 2) How should the files a and b be stored redundantly

in n(R) storage nodes (i.e., what is the most storage-efficient redundancy scheme)?

Using the example shown in Figure 7.1, we illustrate how the storage-minimizing

scheme varies with the shape of the service rate region that we wish to cover. Let β = 4

a a b b a+b a+b

α = 4,β = 4,γ = 4

λa

λb

4

4
(a)

a b b b a+b

α = 2,β = 4,γ = 4

λa

λb

4

4

2

4
(c)

a a b b b a+b

α = 3,β = 4,γ = 4

λa

λb

4

4

3

4
(b)

a b b b b

α = 1,β = 4,γ = 4

λa

λb

4

4

1

4
(d)

Figure 7.1: Four service rate regions defined by the constraints λa, λb ≥ 0, λa ≤ α, λb ≤
β, λa+λb ≤ γ, and their corresponding storage schemes that cover them with a minimum
number of nodes.

201

and γ = 4, and α ∈ {1, 2, 3, 4}. The corresponding four storage-minimizing redundancy

schemes (one for each α) together with their service rate regions are shown in Figure 7.1.

In Figure 7.1(a), the rate region is dominated by points (λa, λb) for which the demands for

a and b are complementary to each other, that is, if λa is high then λb is low, and vice-versa.

In this case, adding two coded nodes a+ b is the most storage-efficient way for achieving

the service rate region. On the other hand, in Figure 7.1(d), where the demand for movie b

dominates the total request rate λa + λb, the best storage scheme does not have any coded

nodes; it simply replicates object b four times, and keeps just one uncoded copy of a.

202

8. CONCLUSIONS AND FUTURE DIRECTIONS

The emergence of flexible and affordable cloud storage and computing systems has

resulted in an exponential growth in the amount of data stored and processed in the cloud

data centers. To accommodate this ever growing demand for storage and computing, cloud

services are implemented over a large-scale distributed data storage system. In addition to

providing low-cost and reliable content access, cloud services are expected to 1) provide

private data access for the users and 2) handle a large number of requests simultaneously.

Achieving these goals opens up many challenges. In this thesis, we addressed some of

these challenges by developing novel algorithms and analyzing the fundamental limits of

their performance metrics. In what follows, we outline the contributions of this thesis

briefly and provide a number of related open problems and potential future directions.

8.1 Privacy in Distributed Systems

In part I of this thesis, we studied the problems appear in providing private data access

in distributed systems. In particular, we addressed some of the challenges that arise in the

Private Information Retrieval (PIR) and Private Linear Transformation (PLT) problems.

In Chapter 2 and Chapter 3, we studied the fundamental limits of single-server and

multi-server settings of single-message (information-theoretic) PIR in the presence of a

coded side information, respectively. Considering two different types of privacy, namely

(W,S)-privacy and W -privacy, we characterized the capacity of the problem under two

different models depending on whether the support set of the user’s coded side information

includes the requested message or not. Moreover, for each of the considered settings, we

developed a novel algorithm that achieves the capacity. Our capacity results uncovered the

surprising insight that by having only one random linear combination of M messages as

side information, the privacy requirements of the user can be satisfied as efficient as (in

203

terms of download cost) the setting in which the user has M random messages separately

as side information.

One natural question that remains open is that how much the capacity will increase if

we relax the assumption that the servers know the considered model, i.e., whether the side

information is a function of the demand or not. Characterizing the capacity for the settings

in which the distributions of the demand and side information support index sets as well

as the coding coefficients are nonuniform remains as another open problem. Such settings

can find application in PIR scenarios where the data items can have different popularities,

such as hot data. Another practically motivated, yet not studied, scenario of PIR with

side information is when the support size of side information is a random variable whose

realization is initially unknown at the server(s). The problem of PIR with side information

has been mainly studied for the two types of uncoded and linearly coded side information

in the literature. However, it remains open whether different types of side information,

such as nonlinear-coded side information, can be leveraged in order to further reduce the

download cost. Another potential direction for future work is to characterize the capacity

of the single-server PIR when the user has multiple coded side information and/or wants

multiple messages from the server. Our initial attempts at studying these settings suggest

that there is a close relation between these problems and the problem of single-server

private computation with coded side information.

In Chapter 4, we studied the fundamental limits of the multi-server setting of PLT

problem under the joint privacy guarantee, where the identity of the entire set of messages

in the support set of the demanded linear combinations must be kept private. We focused

on the setting in which the coefficient matrix of the required linear combinations is a MDS

matrix. For this setting, we established an upper bound on the capacity of the PLT for the

whole range of problem parameters, and we showed the tightness of the proposed upper

bound for some special cases of the problem. Several related problems remained opened.

204

An immediate future direction is to characterize the capacity of the multi-server PLT

problem in general for all problem parameters. It is also interesting to explore the capacity

of single-server or multi-server PLT problem in the presence of a prior side information.

Characterizing the capacity of multi-server PLT under the individual privacy guarantee

remains as another open problem. The multi-server PLT has been studied only for the

replicated databases where the database is replicated over all servers. Another interesting

future direction is to investigate the fundamental limits of the PLT problem for the settings

in which the databases are coded. In the single-server and multi-server settings of the PLT

problem, it has been assume that the user wishes to compute multiple linear combinations

of a subset of the files in the database. However, the capacity of the practically motivated

scenario where the user wants to compute non-linear functions of files remains open.

8.2 Service Rate of Distributed Systems

In part II of this thesis, we studied the problem of handling a large number of concur-

rent data access requests in distributed storage and computing systems. In particular, we

addressed some of the challenges arise in the context of using the service rate region as a

metric to design erasure-coded distributed systems.

In Chapter 5, we introduced a graph representation of codes, referred to as recovery

graph, to capture recovery sets of a linear code, and showed that the problem of service

rate allocation for a given linear code is equivalent to the fractional matching problem on

the recovery graph associated with the code. This enabled us to characterize the service

rate region for binary Simplex codes. We also introduced the notion of integral service

rate region, where allocations are constrained to be integers. We proved that the problem

of characterizing an integral service rate region can be viewed as a generalization of the

problem of designing primitive multiset batch codes. A natural future direction is to ana-

lyze the service rate region for non-binary Simplex codes and other coding schemes that

205

are implemented in practice using the graph-based techniques. Exploring connections be-

tween the general batch codes and the problem of (integral and general) service rate region

is another interesting future direction.

In Chapter 6, we proposed a novel geometric technique for addressing the problem of

characterizing the service rate region of a given linear storage scheme without explicitly

knowing the list of all possible recovery sets. The proposed geometric technique provides a

set of half-spaces whose intersection (forms a polytope) surrounds the service rate region

of a given linear storage scheme. In particular, by leveraging the introduced geometric

technique, we derived upper bounds on the service rate regions of the binary first order

Reed-Muller codes and binary simplex codes. Moreover, we showed how the derived

upper bounds can be achieved by developing an efficient request allocation schemes for

the vertices of the corresponding polytope. Utilizing the geometric technique to investigate

the service rate regions of other common coding schemes such as MDS codes, second

order Reed-Muller codes, non-binary Reed-Muller codes, and non-binary simplex codes

are amongst the most natural future directions. It is also interesting to explore the service

rate region of non-linear storage schemes.

In Chapter 7, we studied the problem of designing the underlying linear storage scheme

for a coded distributed storage system storing k files where a desired service rate region

R of the system is given and the goal is 1) to determine the minimum number of storage

nodes n(R) (or a lower bound on n(R)) for serving all data access vectors inside the setR

and 2) to design the most storage-efficient redundancy scheme with the service rate region

that coversR. Toward this goal, we proposed three general lower bounds for n(R). Also,

for k = 2, we characterized n(R), i.e., we showed that the proposed lower bounds are

tight via designing a novel storage-efficient redundancy scheme with n(R) storage nodes

and the service rate region covering R. A natural future direction is to characterize the

minimum number of storage nodes n(R) for any arbitrary number of files k. Depending

206

on the application, one may be interested in using a particular code with some desired

properties. Then, one interesting open problem is to find the best generator matrix of a

code (the service rate regions of two generator matrices of the same linear code might

not be the same) with respect to the service rate region, that is the generator matrix that

maximizes the volume of the service rate region with a given number of nodes/servers or

covers a given service rate region with the minimum number of storage nodes.

207

REFERENCES

[1] M. Aktaş, G. Joshi, S. Kadhe, F. Kazemi, and E. Soljanin, “Service rate region: A

new aspect of coded distributed system design,” IEEE Transactions on Information

Theory, vol. 67, no. 12, pp. 7940–7963, 2021.

[2] B. Chor and N. Gilboa, “Computationally private information retrieval,” in Proceed-

ings of the twenty-ninth annual ACM symposium on Theory of computing, pp. 304–

313, 1997.

[3] E. Kushilevitz and R. Ostrovsky, “Replication is not needed: single database,

computationally-private information retrieval,” in 38th Annual Symposium on Foun-

dations of Computer Science, pp. 364–373, Oct 1997.

[4] B. Chor, O. Goldreich, E. Kushilevitz, and M. Sudan, “Private information re-

trieval,” in IEEE Symposium on Foundations of Computer Science, pp. 41–50, 1995.

[5] A. Beimel, Y. Ishai, E. Kushilevitz, and J.-F. Raymond, “Breaking the O(n1/(2k−1))

barrier for information-theoretic private information retrieval,” in 43rd Annual IEEE

Symposium on Foundations of Computer Science, pp. 261–270, 2002.

[6] W. Gasarch, “A survey on private information retrieval,” The Bulletin of the EATCS,

vol. 82, no. 72-107, p. 113, 2004.

[7] S. Yekhanin, “Private information retrieval,” Communications of the ACM, vol. 53,

no. 4, pp. 68–73, 2010.

[8] H. Sun and S. A. Jafar, “The capacity of private information retrieval,” IEEE Trans-

actions on Information Theory, vol. 63, pp. 4075–4088, July 2017.

208

[9] H. Sun and S. A. Jafar, “The capacity of robust private information retrieval with

colluding databases,” IEEE Transactions on Information Theory, vol. 64, pp. 2361–

2370, April 2018.

[10] K. Banawan and S. Ulukus, “Multi-message private information retrieval,” in IEEE

International Symposium on Information Theory (ISIT), pp. 1898–1902, June 2017.

[11] K. Banawan and S. Ulukus, “Multi-message private information retrieval: Capac-

ity results and near-optimal schemes,” IEEE Transactions on Information Theory,

vol. 64, pp. 6842–6862, Oct 2018.

[12] N. B. Shah, K. Rashmi, and K. Ramchandran, “One extra bit of download ensures

perfectly private information retrieval,” in 2014 IEEE International Symposium on

Information Theory, pp. 856–860, IEEE, 2014.

[13] T. H. Chan, S. Ho, and H. Yamamoto, “Private information retrieval for coded

storage,” in 2015 IEEE International Symposium on Information Theory (ISIT),

pp. 2842–2846, June 2015.

[14] R. Tajeddine and S. El Rouayheb, “Private information retrieval from MDS coded

data in distributed storage systems,” in 2016 IEEE International Symposium on

Information Theory (ISIT), pp. 1411–1415, 2016.

[15] K. Banawan and S. Ulukus, “The capacity of private information retrieval from

coded databases,” IEEE Transactions on Information Theory, vol. 64, pp. 1945–

1956, March 2018.

[16] A. Fazeli, A. Vardy, and E. Yaakobi, “Codes for distributed PIR with low storage

overhead,” in 2015 IEEE International Symposium on Information Theory (ISIT),

pp. 2852–2856, June 2015.

209

[17] S. R. Blackburn and T. Etzion, “Pir array codes with optimal pir rates,” in 2017

IEEE International Symposium on Information Theory (ISIT), pp. 2658–2662, June

2017.

[18] R. Freij-Hollanti, O. W. Gnilke, C. Hollanti, and D. A. Karpuk, “Private information

retrieval from coded databases with colluding servers,” SIAM Journal on Applied

Algebra and Geometry, vol. 1, no. 1, pp. 647–664, 2017.

[19] R. Tajeddine, O. W. Gnilke, and S. El Rouayheb, “Private information retrieval from

mds coded data in distributed storage systems,” IEEE Transactions on Information

Theory, vol. 64, no. 11, pp. 7081–7093, 2018.

[20] K. Banawan and S. Ulukus, “The capacity of private information retrieval from

coded databases,” IEEE Transactions on Information Theory, vol. 64, no. 3,

pp. 1945–1956, 2018.

[21] S. Li and M. Gastpar, “Single-server multi-message private information retrieval

with side information,” in 2018 56th Annual Allerton Conf. on Commun., Control,

and Computing, Oct 2018.

[22] S. Kadhe, B. Garcia, A. Heidarzadeh, S. E. Rouayheb, and A. Sprintson, “Private

information retrieval with side information: The single server case,” in 2017 55th

Annual Allerton Conf. on Commun., Control, and Computing, pp. 1099–1106, Oct

2017.

[23] A. Heidarzadeh, S. Kadhe, B. Garcia, S. E. Rouayheb, and A. Sprintson, “On the

capacity of single-server multi-message private information retrieval with side in-

formation,” in 2018 56th Annual Allerton Conf. on Commun., Control, and Com-

puting, pp. 180–187, Oct 2018.

210

[24] Z. Chen, Z. Wang, and S. A. Jafar, “The capacity of t-private information retrieval

with private side information,” IEEE Transactions on Information Theory, vol. 66,

no. 8, pp. 4761–4773, 2020.

[25] S. Li and M. Gastpar, “Converse for multi-server single-message pir with side in-

formation,” in 2020 54th Annual Conference on Information Sciences and Systems

(CISS), pp. 1–6, IEEE, 2020.

[26] R. Tandon, “The capacity of cache aided private information retrieval,” in 55th An-

nual Allerton Conf. on Commun., Control, and Computing, pp. 1078–1082, Oct

2017.

[27] Y. Wei, K. Banawan, and S. Ulukus, “Cache-aided private information retrieval

with partially known uncoded prefetching: Fundamental limits,” IEEE Journal on

Selected Areas in Communications, vol. 36, pp. 1126–1139, June 2018.

[28] Y. Wei, K. Banawan, and S. Ulukus, “Fundamental limits of cache-aided private

information retrieval with unknown and uncoded prefetching,” IEEE Transactions

on Information Theory, pp. 1–1, 2018.

[29] S. P. Shariatpanahi, M. J. Siavoshani, and M. A. Maddah-Ali, “Multi-message pri-

vate information retrieval with private side information,” in 2018 IEEE Information

Theory Workshop (ITW), pp. 335–339, IEEE, May 2018.

[30] A. Heidarzadeh, F. Kazemi, and A. Sprintson, “Capacity of single-server single-

message private information retrieval with coded side information,” in 2018 IEEE

Information Theory Workshop (ITW), pp. 1–5, Nov 2018.

[31] F. Kazemi, E. Karimi, A. Heidarzadeh, and A. Sprintson, “Private information re-

trieval with private coded side information: The multi-server case,” in 2019 57th

211

Annual Allerton Conference on Communication, Control, and Computing (Aller-

ton), pp. 1098–1104, IEEE, 2019.

[32] A. Heidarzadeh, S. Kadhe, S. E. Rouayheb, and A. Sprintson, “Single-server multi-

message individually-private information retrieval with side information,” in IEEE

International Symposium on Information Theory (ISIT), pp. 1042–1046, July 2019.

[33] F. Kazemi, E. Karimi, A. Heidarzadeh, and A. Sprintson, “Single-server single-

message online private information retrieval with side information,” in 2019 IEEE

International Symposium on Information Theory (ISIT), pp. 350–354, July 2019.

[34] A. Heidarzadeh, F. Kazemi, and A. Sprintson, “Capacity of single-server single-

message private information retrieval with private coded side information,” in IEEE

International Symposium on Information Theory (ISIT), pp. 1662–1666, July 2019.

[35] F. Kazemi, E. Karimi, A. Heidarzadeh, and A. Sprintson, “Multi-server private

information retrieval with coded side information,” in 2019 IEEE 16th Canadian

Workshop on Information Theory (CWIT), pp. 1–6, 2019.

[36] A. Heidarzadeh, F. Kazemi, and A. Sprintson, “The role of coded side information

in single-server private information retrieval,” IEEE Transactions on Information

Theory, vol. 67, no. 1, pp. 25–44, 2021.

[37] S. Kadhe, B. Garcia, A. Heidarzadeh, S. El Rouayheb, and A. Sprintson, “Private in-

formation retrieval with side information,” IEEE Transactions on Information The-

ory, vol. 66, no. 4, pp. 2032–2043, 2019.

[38] F. Kazemi and A. Sprintson, “Multi-server private linear transformation with joint

privacy,” in 2021 XVII International Symposium" Problems of Redundancy in In-

formation and Control Systems"(REDUNDANCY), pp. 182–187, IEEE, 2021.

212

[39] C. Dwork, A. Roth, et al., “The algorithmic foundations of differential privacy.,”

Found. Trends Theor. Comput. Sci., vol. 9, no. 3-4, pp. 211–407, 2014.

[40] R. J. Bayardo and R. Agrawal, “Data privacy through optimal k-anonymization,” in

21st International conference on data engineering (ICDE’05), pp. 217–228, IEEE,

2005.

[41] K. Liu and E. Terzi, “Towards identity anonymization on graphs,” in Proceedings of

the 2008 ACM SIGMOD international conference on Management of data, pp. 93–

106, 2008.

[42] N. Takbiri, A. Houmansadr, D. L. Goeckel, and H. Pishro-Nik, “Matching

anonymized and obfuscated time series to users’ profiles,” IEEE Transactions on

Information Theory, vol. 65, no. 2, pp. 724–741, 2018.

[43] A. Narayanan and V. Shmatikov, “Robust de-anonymization of large sparse

datasets,” in 2008 IEEE Symposium on Security and Privacy (sp 2008), pp. 111–

125, IEEE, 2008.

[44] N. Takbiri, A. Houmansadr, D. L. Goeckel, and H. Pishro-Nik, “Privacy of depen-

dent users against statistical matching,” IEEE Transactions on Information Theory,

vol. 66, no. 9, pp. 5842–5865, 2020.

[45] Y. H. Hwang, “Iot security & privacy: threats and challenges,” in Proceedings of

the 1st ACM workshop on IoT privacy, trust, and security, pp. 1–1, 2015.

[46] M. Abomhara and G. M. Køien, “Security and privacy in the internet of things:

Current status and open issues,” in 2014 international conference on privacy and

security in mobile systems (PRISMS), pp. 1–8, IEEE, 2014.

[47] N. Takbiri, V. Shejwalkar, A. Houmansadr, D. L. Goeckel, and H. Pishro-Nik,

“Leveraging prior knowledge asymmetries in the design of location privacy-

213

preserving mechanisms,” IEEE Wireless Communications Letters, vol. 9, no. 11,

pp. 2005–2009, 2020.

[48] A. Dorri, S. S. Kanhere, R. Jurdak, and P. Gauravaram, “Blockchain for iot security

and privacy: The case study of a smart home,” in 2017 IEEE international con-

ference on pervasive computing and communications workshops (PerCom work-

shops), pp. 618–623, IEEE, 2017.

[49] A. Heidarzadeh, N. Esmati, and A. Sprintson, “Single-server private linear transfor-

mation: The individual privacy case,” arXiv preprint arXiv:2106.05222, 2021.

[50] A. Heidarzadeh, N. Esmati, and A. Sprintson, “Single-server private linear transfor-

mation: The joint privacy case,” arXiv preprint arXiv:2106.05220, 2021.

[51] A. G. Dimakis, P. B. Godfrey, Y. Wu, M. J. Wainwright, and K. Ramchandran,

“Network coding for distributed storage systems,” IEEE Transactions on Informa-

tion Theory, vol. 56, no. 9, pp. 4539–4551, 2010.

[52] A. G. Dimakis, K. Ramchandran, Y. Wu, and C. Suh, “A survey on network codes

for distributed storage,” Proceedings of the IEEE, vol. 99, no. 3, pp. 476–489, 2011.

[53] K. Rashmi, N. B. Shah, P. V. Kumar, and K. Ramchandran, “Explicit construction

of optimal exact regenerating codes for distributed storage,” in 2009 47th Annual

Allerton Conf. on Commun., Control, and Comput., 2009.

[54] K. V. Rashmi, N. B. Shah, and P. V. Kumar, “Optimal exact-regenerating codes for

distributed storage at the msr and mbr points via a product-matrix construction,”

IEEE Transactions on Information Theory, vol. 57, no. 8, pp. 5227–5239, 2011.

[55] M. Rabinovich and O. Spatscheck, Web caching and replication, vol. 67. Addison-

Wesley Boston, USA, 2002.

214

[56] M. A. Maddah-Ali and U. Niesen, “Coding for caching: fundamental limits and

practical challenges,” IEEE Communications Magazine, vol. 54, no. 8, pp. 23–29,

2016.

[57] K. Shanmugam, N. Golrezaei, A. G. Dimakis, A. F. Molisch, and G. Caire, “Fem-

tocaching: Wireless content delivery through distributed caching helpers,” IEEE

Transactions on Information Theory, vol. 59, no. 12, pp. 8402–8413, 2013.

[58] T. X. Tran, F. Kazemi, E. Karimi, and D. Pompili, “Mobee: Mobility-aware energy-

efficient coded caching in cloud radio access networks,” in 2017 IEEE 14th Inter-

national Conference on Mobile Ad Hoc and Sensor Systems (MASS), pp. 461–465,

IEEE, 2017.

[59] A. S. Rawat, D. S. Papailiopoulos, A. G. Dimakis, and S. Vishwanath, “Locality

and availability in distributed storage,” IEEE Transactions on Information Theory,

vol. 62, no. 8, pp. 4481–4493, 2016.

[60] I. Tamo and A. Barg, “Bounds on locally recoverable codes with multiple recover-

ing sets,” in 2014 IEEE International Symposium on Information Theory, pp. 691–

695, IEEE, 2014.

[61] D. S. Papailiopoulos and A. G. Dimakis, “Locally repairable codes,” IEEE Trans-

actions on Information Theory, vol. 60, no. 10, pp. 5843–5855, 2014.

[62] G. Joshi, Y. Liu, and E. Soljanin, “Coding for fast content download,” in 2012 50th

Annual Allerton Conference on Communication, Control, and Computing (Aller-

ton), pp. 326–333, IEEE, 2012.

[63] G. Liang and U. C. Kozat, “Fast cloud: Pushing the envelope on delay performance

of cloud storage with coding,” IEEE/ACM Transactions on Networking (TON),

vol. 22, no. 6, pp. 2012–2025, 2014.

215

[64] G. Joshi, E. Soljanin, and G. W. Wornell, “Efficient replication of queued tasks

for latency reduction in cloud systems,” in 53rd Annual Allerton Conference on

Communication, Control, and Computing, pp. 107–114, 2015.

[65] G. Joshi, E. Soljanin, and G. W. Wornell, “Efficient redundancy techniques for la-

tency reduction in cloud systems,” TOMPECS, vol. 2, no. 2, pp. 12:1–12:30, 2017.

[66] N. B. Shah, K. Lee, and K. Ramchandran, “The mds queue: Analysing the latency

performance of erasure codes,” in 2014 IEEE International Symposium on Informa-

tion Theory, pp. 861–865, IEEE, 2014.

[67] K. Gardner, S. Zbarsky, S. Doroudi, M. Harchol-Balter, and E. Hyytia, “Reducing

latency via redundant requests: Exact analysis,” ACM SIGMETRICS Performance

Evaluation Review, vol. 43, no. 1, pp. 347–360, 2015.

[68] N. B. Shah, K. Lee, and K. Ramchandran, “When do redundant requests reduce

latency?,” IEEE Transactions on Communications, vol. 64, no. 2, pp. 715–722,

2015.

[69] S. Kadhe, E. Soljanin, and A. Sprintson, “Analyzing the download time of availabil-

ity codes,” in 2015 IEEE International Symposium on Information Theory (ISIT),

pp. 1467–1471, IEEE, 2015.

[70] M. F. Aktaş, S. Kadhe, E. Soljanin, and A. Sprintson, “Download time analysis

for distributed storage codes with locality and availability,” arXiv:1912.09765, Dec

2019.

[71] M. Noori, E. Soljanin, and M. Ardakani, “On storage allocation for maximum ser-

vice rate in distributed storage systems,” in 2016 IEEE International Symposium on

Information Theory (ISIT), pp. 240–244, IEEE, 2016.

216

[72] P. Peng and E. Soljanin, “On distributed storage allocations of large files for max-

imum service rate,” in 2018 56th Annual Allerton Conference on Communication,

Control, and Computing (Allerton), pp. 784–791, IEEE, 2018.

[73] M. Aktaş, S. E. Anderson, A. Johnston, G. Joshi, S. Kadhe, G. L. Matthews,

C. Mayer, and E. Soljanin, “On the service capacity region of accessing erasure

coded content,” in 2017 55th Annual Allerton Conference on Communication, Con-

trol, and Computing (Allerton), pp. 17–24, IEEE, 2017.

[74] S. E. Anderson, A. Johnston, G. Joshi, G. L. Matthews, C. Mayer, and E. Soljanin,

“Service rate region of content access from erasure coded storage,” in 2018 IEEE

Information Theory Workshop (ITW), pp. 1–5, IEEE, 2018.

[75] F. Kazemi, E. Karimi, E. Soljanin, and A. Sprintson, “A combinatorial view of the

service rates of codes problem, its equivalence to fractional matching and its con-

nection with batch codes,” in 2020 IEEE International Symposium on Information

Theory (ISIT), pp. 646–651, June 2020.

[76] F. Kazemi, S. Kurz, and E. Soljanin, “A geometric view of the service rates of codes

problem and its application to the service rate of the first order Reed-Muller codes,”

in 2020 IEEE International Symposium on Information Theory (ISIT), pp. 66–71,

June 2020.

[77] F. Kazemi, S. Kurz, E. Soljanin, and A. Sprintson, “Efficient storage schemes for

desired service rate regions,” in 2020 IEEE Information Theory Workshop (ITW),

pp. 1–5, April 2021.

[78] Y. Ishai, E. Kushilevitz, R. Ostrovsky, and A. Sahai, “Batch codes and their appli-

cations,” in Proceedings of the thirty-sixth annual ACM Symp. on Theory of com-

puting, pp. 262–271, ACM, 2004.

217

[79] S. Kadhe, A. Heidarzadeh, A. Sprintson, and O. O. Koyluoglu, “On an equivalence

between single-server pir with side information and locally recoverable codes,” in

2019 IEEE Information Theory Workshop (ITW), pp. 1–5, IEEE, 2019.

[80] Y.-P. Wei and S. Ulukus, “The capacity of private information retrieval with private

side information under storage constraints,” arXiv:1806.01253, June 2018.

[81] S. Patel, G. Persiano, and K. Yeo, “Private stateful information retrieval,” in Pro-

ceedings of the 2018 ACM SIGSAC Conference on Computer and Communications

Security, CCS ’18, (New York, NY, USA), pp. 1002–1019, ACM, 2018.

[82] A. Heidarzadeh and A. Sprintson, “Private computation with side information: The

single-server case,” in 2019 IEEE International Symposium on Information Theory

(ISIT), pp. 1657–1661, July 2019.

[83] C. Tian, H. Sun, and J. Chen, “Capacity-achieving private information retrieval

codes with optimal message size and upload cost,” IEEE Transactions on Informa-

tion Theory, vol. 65, no. 11, pp. 7613–7627, 2019.

[84] R. Roth, Introduction to Coding Theory. New York, NY, USA: Cambridge Univer-

sity Press, 2006.

[85] H. Sun and S. A. Jafar, “The capacity of private computation,” IEEE Transactions

on Information Theory, vol. 65, pp. 3880–3897, Jun 2019.

[86] B. Chor, O. Goldreich, E. Kushilevitz, and M. Sudan, “Private information re-

trieval,” in IEEE Symposium on Foundations of Computer Science, 1995.

[87] Z. Chen, Z. Wang, and S. A. Jafar, “The capacity of t-private information retrieval

with private side information,” IEEE Transactions on Information Theory, vol. 66,

no. 8, pp. 4761–4773, 2020.

218

[88] M. J. Siavoshani, S. P. Shariatpanahi, and M. A. Maddah-Ali, “Private information

retrieval for a multi-message scenario with private side information,” IEEE Trans-

actions on Communications, vol. 69, no. 5, pp. 3235–3244, 2021.

[89] M. Mirmohseni and M. A. Maddah-Ali, “Private function retrieval,” in 2018 Iran

Workshop on Communication and Information Theory (IWCIT), pp. 1–6, IEEE,

2018.

[90] A. Heidarzadeh and A. Sprintson, “Private computation with individual and joint

privacy,” in 2020 IEEE International Symposium on Information Theory (ISIT),

pp. 1112–1117, IEEE, 2020.

[91] S. A. Obead and J. Kliewer, “Achievable rate of private function retrieval from mds

coded databases,” in 2018 IEEE International Symposium on Information Theory

(ISIT), pp. 2117–2121, IEEE, 2018.

[92] S. A. Obead, H.-Y. Lin, E. Rosnes, and J. Kliewer, “Capacity of private linear com-

putation for coded databases,” in 2018 56th Annual Allerton Conference on Com-

munication, Control, and Computing (Allerton), pp. 813–820, IEEE, 2018.

[93] B. Tahmasebi and M. A. Maddah-Ali, “Private sequential function computation,” in

2019 IEEE International Symposium on Information Theory (ISIT), pp. 1667–1671,

IEEE, 2019.

[94] M. Aliasgari, O. Simeone, and J. Kliewer, “Private and secure distributed matrix

multiplication with flexible communication load,” IEEE Transactions on Informa-

tion Forensics and Security, vol. 15, pp. 2722–2734, 2020.

[95] S. A. Obead, H.-Y. Lin, E. Rosnes, and J. Kliewer, “Private function computation

for noncolluding coded databases,” arXiv:2003.10007, 2020.

219

[96] M. Aliasgari, O. Simeone, and J. Kliewer, “Distributed and private coded matrix

computation with flexible communication load,” in 2019 IEEE International Sym-

posium on Information Theory (ISIT), pp. 1092–1096, IEEE, 2019.

[97] E. Bingham and H. Mannila, “Random projection in dimensionality reduction: ap-

plications to image and text data,” in Proc. of the seventh ACM SIGKDD interna-

tional conference on Knowledge discovery and data mining, pp. 245–250, 2001.

[98] M. F. Aktaş, A. Behrouzi-Far, E. Soljanin, and P. Whiting, “Load balancing perfor-

mance in distributed storage with regular balanced redundancy,” arXiv:1910.05791,

2019.

[99] M. Sardari, R. Restrepo, F. Fekri, and E. Soljanin, “Memory allocation in distributed

storage networks,” in 2010 IEEE International Symposium on Information Theory,

pp. 1958–1962, IEEE, June 2010.

[100] C. Huang, M. Chen, and J. Li, “Pyramid codes: Flexible schemes to trade space for

access efficiency in reliable data storage systems,” ACM Transactions on Storage

(TOS), vol. 9, no. 1, p. 3, 2013.

[101] P. Gopalan, C. Huang, H. Simitci, and S. Yekhanin, “On the locality of codeword

symbols,” IEEE Transactions on Information Theory, vol. 58, no. 11, pp. 6925–

6934, 2012.

[102] K. Hamidouche, W. Saad, and M. Debbah, “Many-to-many matching games for

proactive social-caching in wireless small cell networks,” in 2014 12th Interna-

tional Symposium on Modeling and Optimization in Mobile, Ad Hoc, and Wireless

Networks (WiOpt), pp. 569–574, IEEE, 2014.

[103] G. Joshi, Y. Liu, and E. Soljanin, “On the delay-storage trade-off in content down-

load from coded distributed storage systems,” IEEE Journal on Selected Areas in

220

Communications, vol. 32, no. 5, pp. 989–997, 2014.

[104] S. Kadhe, E. Soljanin, and A. Sprintson, “When do the availability codes make the

stored data more available?,” in 2015 53rd Annual Allerton Conference on Commu-

nication, Control, and Computing (Allerton), pp. 956–963, IEEE, 2015.

[105] M. F. Aktaş and E. Soljanin, “Heuristics for analyzing download time in MDS coded

storage systems,” in 2018 IEEE International Symposium on Information Theory

(ISIT), pp. 1929–1933, IEEE, 2018.

[106] M. F. Aktaş, E. Najm, and E. Soljanin, “Simplex queues for hot-data download,” in

Proceedings of the SIGMETRICS/International Conference on Measurement and

Modeling of Computer Systems, pp. 35–36, ACM, 2017.

[107] Y. Ishai, E. Kushilevitz, R. Ostrovsky, and A. Sahai, “Batch codes and their appli-

cations,” in Proceedings of the thirty-sixth annual ACM symposium on Theory of

computing, pp. 262–271, ACM, 2004.

[108] V. Skachek, “Batch and pir codes and their connections to locally repairable codes,”

in Network Coding and Subspace Designs, pp. 427–442, Springer, 2018.

[109] H. Lipmaa and V. Skachek, “Linear batch codes,” in Coding Theory and Applica-

tions, pp. 245–253, Springer, 2015.

[110] Z. Wang, H. M. Kiah, Y. Cassuto, and J. Bruck, “Switch codes: Codes for fully

parallel reconstruction,” IEEE Transactions on Information Theory, vol. 63, no. 4,

pp. 2061–2075, 2017.

[111] D. Leong, A. G. Dimakis, and T. Ho, “Distributed storage allocations,” IEEE Trans.

Information Theory, vol. 58, no. 7, pp. 4733–4752, 2012.

221

[112] N. Alon, P. Frankl, H. Huang, V. Rödl, A. Rucinski, and B. Sudakov, “Large match-

ings in uniform hypergraphs and the conjectures of erdős and samuels,” J. Comb.

Theory, Ser. A, vol. 119, pp. 1200–1215, 2012.

[113] Y.-H. Kao, A. G. Dimakis, D. Leong, and T. Ho, “Distributed storage allocations

and a hypergraph conjecture of erdős,” in 2013 IEEE International Symposium on

Information Theory, pp. 902–906, 2013.

[114] P. Erdős, “A problem on independent r-tuples,” in ARTICLE IN PRESS B. Bollobás

et al./Journal of Combinatorial Theory, Series A, Citeseer, 1965.

[115] E. R. Scheinerman and D. H. Ullman, Fractional graph theory: a rational approach

to the theory of graphs. Courier Corporation, 2011.

[116] D. West, Introduction to Graph Theory. Featured Titles for Graph Theory Series,

Prentice Hall, 2001.

[117] V. Voloshin, Introduction to Graph and Hypergraph Theory. Nova Science Pub-

lishers, 2009.

[118] R. T. Rockafellar, Convex analysis, vol. 28. Princeton University Press, 1970.

[119] C. Jones, E. C. Kerrigan, and J. Maciejowski, “Equality set projection: A new

algorithm for the projection of polytopes in halfspace representation,” tech. rep.,

Cambridge University Engineering Dept, 2004.

[120] J. Matousek and B. Gärtner, Understanding and using linear programming.

Springer Science & Business Media, 2007.

[121] M. A. Tsfasman and S. G. Vladut, “Geometric approach to higher weights,” IEEE

Transactions on Information Theory, vol. 41, no. 6, pp. 1564–1588, 1995.

[122] S. Dodunekov and J. Simonis, “Codes and projective multisets,” The Electronic

Journal of Combinatorics, vol. 5, no. 1, p. 37, 1998.

222

[123] A. Beutelspacher, B. Albrecht, and U. Rosenbaum, Projective geometry: from foun-

dations to applications. Cambridge University Press, 1998.

[124] D. E. Muller, “Application of boolean algebra to switching circuit design and to er-

ror detection,” Transactions of the IRE professional group on electronic computers,

no. 3, pp. 6–12, 1954.

[125] I. S. Reed, “A class of multiple-error-correcting codes and the decoding scheme,”

tech. rep., Massachusetts Inst. of Tech. Lexington Lincoln Lab., 1953.

[126] E. Arikan, “Channel polarization: A method for constructing capacity-achieving

codes for symmetric binary-input memoryless channels,” IEEE Transactions on In-

formation Theory, vol. 55, no. 7, pp. 3051–3073, 2009.

223

	ABSTRACT
	DEDICATION
	ACKNOWLEDGMENTS
	CONTRIBUTORS AND FUNDING SOURCES
	NOMENCLATURE
	TABLE OF CONTENTS
	LIST OF FIGURES
	LIST OF TABLES
	Introduction
	Background and Motivation
	Private Data Access in Distributed Systems
	Fast Data Access in Distributed Systems
	Our Contributions and Organization

	Single-Server Private Information Retrieval (PIR)
	Introduction
	Problem Setup and Formulation
	Basic Notation
	Setup and Assumptions
	Privacy and Recoverability Conditions
	PIR-PCSI and PIR-CSI Problems
	Capacity and Scalar-Linear Capacity
	Problem Statement

	Necessary Conditions
	Single-Server PIR with Private Coded Side Information (PIR-PCSI)
	Single-Server PIR-PCSI-I
	Converse
	Achievability

	Single-Server PIR-PCSI-II
	Converse
	Achievability

	Single-Server PIR with Coded Side Information (PIR-CSI)
	Single-Server PIR-CSI-I
	Converse
	Achievability

	Single-Server PIR-CSI-II
	Converse
	Achievability

	Multi-Server Private Information Retrieval (PIR)
	Introduction
	Problem Setup and Formulation
	Basic Notation
	Setup and Assumptions
	Privacy and Recoverability Conditions
	PIR-PCSI and PIR-CSI Problems
	Capacity and Server-Symmetric Capacity
	Problem Statement

	Necessary Condition
	Multi-Server PIR with Private Coded Side Information (PIR-PCSI)
	Multi-Server PIR-PCSI-I
	Converse
	Achievability

	Multi-Server PIR-PCSI-II
	Achievability

	Multi-Server PIR with Coded Side Information (PIR-CSI)
	Multi-Server PIR-CSI-I
	Converse
	Achievability

	Multi-Server PIR-CSI-II
	Converse
	Achievability

	Private Linear Transformation
	Introduction
	Problem Formulation
	Basic Notation
	Setup and Assumptions
	Privacy and Recoverability Conditions
	Problem Statement

	Main Results
	Proof of Theorem 9
	Proof of Theorem 10

	Service Rate Region Using Combinatorial Approach
	Introduction
	Coded System and its Service Rate Region
	Equivalence to Fractional Matching
	Graph Representation of Storage Schemes
	Matching and Vertex Cover on Graphs
	Example of Equivalence
	Equivalence Results

	Generalization of Batch codes
	Definitions of Batch Codes and PIR Codes
	Connection with Batch Codes and PIR Codes

	Service Rate Region Using Geometric Approach
	Introduction
	Problem Statement
	Notation
	Service Rate of Codes
	Description of Storage Schemes
	First Order Reed-Muller (RM) Codes

	Geometric View on Service Rate of Codes
	Service Rate Region of Simplex Codes
	Service Rate Region of Reed-Muller Codes
	Non-Systematic First Order Reed-Muller Codes
	Systematic First Order Reed-Muller Codes

	Examples of Service Rate Region
	Binary Simplex code
	Binary Non-Systematic First Order Reed-Muller code

	Storage-Efficient Schemes Covering Given Rate Regions
	Introduction
	Problem Setup and Formulation
	Basic Notation
	Coded Storage System
	Service Rate Region
	Geometric Description of Linear Codes
	Geometric Interpretation of the Service Rate Region
	Problem Statement

	Main Results
	Structural Properties of Service Rate Region
	Using Geometric Approach to Derive Bounds on Lg
	Storage-Efficient Schemes for Lg

	Example of Storage-Efficient Schemes that Cover Given Rate Regions

	CONCLUSIONS AND FUTURE DIRECTIONS
	Privacy in Distributed Systems
	Service Rate of Distributed Systems

	REFERENCES

